ABSTRAK

Analisis biomekanik kaki konvensional memiliki keterbatasan dalam memberikan penilaian real-time dan komprehensif untuk mendeteksi kondisi abnormal. Penelitian ini mengembangkan sistem insole wearable inovatif yang mengintegrasikan sensor piezoresistive dengan teknologi EMG untuk meningkatkan akurasi analisis biomekanik kaki. Sistem menggunakan konfigurasi delapan sensor piezoresistive yang ditempatkan pada zona kritis distribusi beban plantar, beroperasi pada sampling rate 10 Hz. Enam subjek sehat melakukan empat aktivitas (berdiri statis, berjalan, naik/turun tangga) dengan surface EMG pada otot gastrocnemius dan tibialis anterior (sampling rate 500 Algoritma interpolasi Multiquadric Radial Basis Function (MQ-RBF) diimplementasikan untuk peningkatan data real-time. Sistem mencapai performa excellent dengan R² rata-rata 0.98 (rentang 0.92–0.99). Temuan signifikan menunjukkan bahwa abnormalitas biomekanik terdeteksi lebih jelas saat berdiri statis dibandingkan aktivitas dinamis. Subjek normal menunjukkan distribusi tekanan seimbang pada tumit dan forefoot (200–300 kPa), sedangkan subjek supinated memperlihatkan konsentrasi tekanan lateral ekstrem (>300 kPa) dengan kontak medial minimal (<100 kPa). Analisis korelasi EMG-tekanan plantar mengungkapkan pola kompensasi neuromuskular yang signifikan, dengan subjek abnormal menunjukkan aktivitas tibialis anterior tinggi (0.851 V) dan aktivitas gastrocnemius rendah (0.247–0.448 V). Sistem insole pintar berhasil mengintegrasikan modalitas dual-sensor untuk deteksi akurat kondisi biomekanik abnormal.

Kata Kunci: Biomekanik, EMG, Piezoresistive, RBF