

BAB I PENDAHULUAN

1.1 Latar Belakang

Kualitas udara yang buruk telah menjadi isu lingkungan global yang serius, menyebabkan berbagai masalah kesehatan dengan dampak yang signifikan. Polusi udara, yang seringkali dihasilkan oleh emisi dari kendaraan bermotor, industri, dan pembakaran sampah, berkontribusi pada penyakit pernapasan, kardiovaskular, bahkan kematian dini. Menurut Organisasi Kesehatan Dunia (WHO), lebih dari 90% orang di seluruh dunia terpapar kualitas udara yang tidak memenuhi standar, dan ini sangat mengkhawatirkan[1]. Di daerah perkotaan, kepadatan lalu lintas dan aktivitas industri sering kali menjadi penyebab utama menurunnya kualitas udara[2].

Metode pemantauan kualitas udara yang konvensional memiliki keterbatasan signifikan, seperti cakupan yang terbatas, biaya tinggi, dan latensi dalam penyampaian data[3]. Maka dari itu, diperlukan solusi inovatif yang dapat memberikan data kualitas udara secara lebih efisien. Di era *Internet of Things (IoT)*, teknologi ini menawarkan potensi besar untuk mengatasi tantangan ini. IoT memungkinkan integrasi berbagai perangkat untuk mendapatkan dan berbagi data secara real-time, yang sangat bermanfaat dalam sistem pemantauan kualitas udara[4]. Dengan penggunaan jaringan komunikasi yang efisien seperti *Long Range (LoRa)*, sistem pemantauan dapat dioperasikan dengan konsumsi daya rendah dan jangkauan yang luas[5].

Tugas Akhir yang bertujuan mengembangkan sistem monitoring kualitas udara berbasis loT ini mencakup penggunaan sensor multi-parameter, seperti sensor gas CO_2 , NH_3 , suhu, kelembaban, dan tekanan udara[6]. Sistem ini akan mengumpulkan data secara terus-menerus dan mengirimkannya melalui LoRa ke gateway untuk disimpan dan dianalisis. Visualisasi hasil pemantauan akan dilakukan melalui dashboard interaktif berbasis Laravel, yang memungkinkan masyarakat dan pemangku kepentingan mengakses informasi kualitas udara dengan mudah dan cepat .

Dengan adanya sistem pemantauan yang terintegrasi ini, diharapkan dapat memberikan informasi yang dapat digunakan untuk mengambil langkah-langkah mitigasi yang lebih efektif dalam menghadapi polusi udara. Ini juga berkontribusi pada pengembangan teknologi pemantauan lingkungan yang lebih efisien dan terjangkau, serta dapat memfasilitasi respons cepat terhadap kondisi darurat kualitas udara, demi menjaga kesehatan masyarakat.

Tabel 1. 1 State of The Art

No.	Author	Metode	Perfoma
1	Ridho Ansyah Sojuangon Panggabean, Hanif	LoRa, rubber duck, spring, RSSI	RSSI Rubber Duck : -84.5 dBm

	Fakhrurroja. et al (2023)[7]		Spring : -106 dBm
2	Ayub Repa Batong, Prihadi Murdiyat, Abdul Hamid Kurniawan1,(2020) [8]	Lora, RSSI, SNR, Rubber Duck, Yagi	RSSI : -96.6 dBm SNR: 8.58 dBm PL : 0.00%
3	Rahmi Hidayati, Kartika Sari, et al(2024) [9]	DHT 22, MQ-135,MG MG-811, MQ-7, GP2Y1010AU0F	CO2: 5441 ppm Kelembapan : 85,2 °C Debu: 497 µg/m3 O2: 2,2 ppm CO: 0,99 ppm
4	Rodhotul Muttaqina, Wasi Sakti Wiwit Prayitnoa, et al(2024)[10]	NodeMCU ESP32, MQ-135, DHT 11	koefisien determinasi rata-rata: 0,91
5	Khasna Ulin Nuha, Prihatin Oktivasari(2024)[11]	LabVIEW, Arduino UNO, AQMS, DHT22, MQ-135	Kualitas udara : 507,371 ppm ISPU : 107,735 µg/m3
6	Tri Fidrian Arya, Mahar Faiqurahman, Yufis Azhar(2018)[12]	LoRa untuk komunikasi antara sensor node dan sink, HTTP untuk pengiriman data ke server	Algoritma yang digunakan: K-Nearest Neighbor (K-NN) Nilai K terbaik: 5 Akurasi: 94,28% Presisi: 85,16% Recall: 93,35%
7	MILENIA ULWAN ZAFIRA, (2022)[13]	NodeMCU ESP8266 untuk transmisi data secara wireless menggunakan Wi-Fi ke ThingsBoard.	Sensor MQ-4 (Metana - CH4): Rata-rata deteksi 2,79 ppm Sensor MQ-135 (CO2, NH4, Alkohol, Smoke): Alkohol: 1,06 ppm CO2: 2,32 ppm

			NII 14 0 00
			NH4: 3,63 ppm
			Smoke: 0,7 ppm
			Sensor MQ-7 (CO): Rata- rata deteksi 1,1 ppm
8	Gita C. Ulaan, Vecky C. Poekoel, Abdul H. J. Ontowirjo(2022)[14]	Modul Bluetooth ESP32 untuk mengirim data ke aplikasi Android	Sensor MQ-135 (Kualitas udara): Mendeteksi berbagai gas pencemar seperti amonia, benzene, dan uap organik lainnya.
			Sensor MG-811 (CO ₂): Mendeteksi karbon dioksida di udara.
			Sensor Dust PM2.5: Mendeteksi partikel halus yang berbahaya bagi kesehatan.
			Sensor MQ-2 (Asap): Mendeteksi asap dan gas yang mudah terbakar.
			Sensor MQ-9 (CO): Mendeteksi karbon monoksida.
			Sensor MQ-8 (H ₂): Mendeteksi gas hidrogen.
9	Hendi Budianto, Budi Sumanto(2024)[15]	Wi-Fi (NodeMCU ESP8266) untuk mengirim data ke database MySQL melalui internet.	Sensor MQ-135 (Kualitas udara umum): Mendeteksi berbagai gas pencemar seperti amonia, benzene, dan uap organik lainnya.
			Sensor MQ-7 (CO): Mendeteksi karbon monoksida (CO).
			Sensor GP2Y1010AU0F (PM2.5): Mendeteksi partikel debu halus di udara.

			Sensor DHT-22 (Suhu & kelembaban): Mengukur temperatur dan kelembaban udara.
10	Nur Ariefin, Rachmad(2023)[16]	Wi-Fi (ESP8266) untuk	Sensor DHT11 (Suhu & Kelembaban):
		menghubungkan sistem dengan	Akurasi suhu: ±2°C
		aplikasi monitoring di smartphone melalui Blynk Apps	Akurasi kelembaban: ±5%
			Tegangan output: 3.3V
			Sensor MQ-135 (Gas Amonia/NH ₃):
			Mendeteksi kadar gas amonia dalam kandang ayam.
			Batas aman: Jika kadar > 25 ppm, sistem akan menyalakan pompa air untuk membersihkan kotoran.
			Waktu pembersihan: 21 detik untuk menurunkan kadar amonia dari 25 ppm ke 15 ppm.
11	Hairunisa Br Surbakti, Jafaruddin Gusti Amri	Wi-Fi (ESP32) untuk mengirim data ke	Sensor DHT22 (Suhu & Kelembaban):
	Ginting, et al(2024)[17] server cloud melalu protokol MQTT.		Rentang suhu: -40°C hingga 80°C
			Rentang kelembaban: 0% hingga 100% RH
			Akurasi suhu: ±0.5°C
			Akurasi kelembaban: ±2– 5%
			Sensor MQ-135 (CO ₂ dan gas berbahaya lainnya):

			Digunakan untuk mendeteksi polutan udara seperti CO ₂ , NH ₃ , Benzene Sensor MQ-7 (CO): Mendeteksi karbon monoksida (CO) di udara.
12	Sumardi Sadi, Sri Mulyati, et al(2022)[18]	Wi-Fi (ESP8266-01) digunakan untuk mengirim data ke server melalui protokol MQTT.	Sensor MQ-7 (Karbon Monoksida - CO): Hasil pengukuran: 0,25 ppm Sensor MQ-135 (Nitrogen Dioksida - NO ₂): Hasil pengukuran: 0,83 ppm Dust Sensor (Partikulat PM2.5): Hasil pengukuran: 0,10 µg/m³ Sensor BMP180: Digunakan untuk pengukuran suhu udara.
13	Yoli Andi Rozzi, Jhoanne Fredricka, et al(2024)[19]	Wi-Fi (ESP32) untuk mengirim data ke platform Thinger IO secara real-time.	Error rata-rata suhu: 0.32% Error rata-rata kelembaban: 1.3% Rata-rata intensitas cahaya: 199.75 lux Rata-rata kadar CO: 0.985 ppm
14	Muhamad Ridwan Ali Akbar, et al[20]	Wi-Fi (ESP8266) untuk mengirim data ke Firebase dan menampilkan data	Sensor DHT22 (Suhu & Kelembaban): Error rata-rata suhu: 0.013%

		<u> </u>	
		secara real-time di web.	Error rata-rata kelembaban: 0.01%
			Sensor MQ-135 (Gas CO ₂ & NO ₂):
			Rata-rata kadar CO₂: 439.55 ppm
			Error rata-rata pembacaan CO ₂ : 0.000935%
			Indeks Standar Pencemaran Udara (ISPU) untuk CO:
			Terminal Ciamis: 67.1 (kategori sedang, aman untuk manusia)
			Alun-Alun Ciamis: 61.9 (kategori sedang, aman untuk manusia)
15	Hendri Hananta Wahyu Wibowo, et al(2024)[21]	Wi-Fi (ESP32) digunakan untuk	ensor DHT22 (Suhu & Kelembaban):
		mengirim data ke platform Blynk untuk	Rata-rata suhu: 29,4°C
		pemantauan real- time.	Rata-rata kelembaban: 69,8%
			Akurasi suhu: ±0.5°C
			Akurasi kelembaban: ±2– 5%
			Sensor MQ-135 (CO ₂ dan gas berbahaya lainnya):
			Rata-rata kadar CO₂: 439.55 ppm
			Error rata-rata pembacaan CO ₂ : 0.000935%
			Sensor MQ-2 (Asap & Gas Mudah Terbakar):

			Rata-rata kadar emisi asap: 6.76 ppm
16	Ade Silvia Handayani, et al (2020)[22]	Wireless Sensor Network (WSN) dengan beberapa node sensor yang terhubung melalui jaringan internet.	Sensor TGS 2442 (Karbon Monoksida - CO): Rata-rata kadar CO: 45 - 57 ppm Sensor MG811 (Karbon Dioksida - CO ₂): Rata-rata kadar CO ₂ : 320 - 1673 ppm Sensor TGS 2611 (Hidrokarbon - HC): Rata-rata kadar HC: 276 - 433 ppm Sensor SHARP GP2Y1010 (Partikulat PM10 - Debu): Rata-rata kadar PM10: 10 - 21 µg/m³ Sensor DHT11 (Suhu & Kelembaban): Rata-rata suhu: 30 - 33°C Rata-rata kelembaban: 63 - 79%
17	Yusuf Kurniawan (2020)[23]	GPRS (SIM800L V2) digunakan untuk mengirim data sensor ke server Thingspeak secara real-time.	PM2.5 (Partikel Halus): Nilai tanpa asap: 13 µg/m³ Nilai dengan asap (maksimal): 432 µg/m³ Ambang batas ISPU: 150 µg/m³ PM10 (Partikel Kasar): Nilai tanpa asap: 22-26 µg/m³

			Nilai dengan asap (maksimal): 871 µg/m³ Ambang batas ISPU: 350 µg/m³
18	Aditia Budiawan, et al (2025)[24]	Wi-Fi (ESP32) digunakan untuk mengirim data kualitas udara ke web monitoring secara real-time.	Ambang batas gas amonia: 7,2 ppm Jika NH3 > 7,2 ppm, sistem secara otomatis mengaktifkan pompa air untuk menyemprotkan air dan menurunkan kadar amonia.

1.2 Rumusan Masalah

Adapun rumusan masalah dari Tugas Akhir ini, sebagai berikut:

- Bagaimana merancang dan mengembangkan sistem pemantauan kualitas udara berbasis IoT yang dapat mengukur beberapa parameter pencemaran udara?
- 2. Bagaimana memanfaatkan teknologi komunikasi LoRa untuk memastikan pengiriman data yang stabil, hemat daya, dan memiliki cakupan luas dalam pemantauan kualitas udara?
- 3. Bagaimana menguji performa dan keandalan sistem untuk memastikan akurasi data, efisiensi jaringan, serta responsivitas sistem secara keseluruhan?

1.3 Tujuan dan Manfaat

Adapun tujuan dari Tugas Akhir ini, sebagai berikut:

- 1 Membangun sistem pemantauan kualitas udara berbasis *Internet of Things* (IoT) yang terintegrasi dengan berbagai sensor untuk mendeteksi parameter polusi udara seperti CO_2 , NH_3 , suhu, kelembaban, dan tekanan udara.
- 2 Mengadopsi teknologi komunikasi LoRa (Long Range) untuk memungkinkan pengiriman data jarak jauh dengan biaya operasional yang lebih rendah dan konsumsi daya yang lebih rendah.
- 3 Mengevaluasi performa sistem yang dikembangkan dengan mengukur kinerja sensor, latensi data, jangkauan komunikasi LoRa

Manfaat dari penulisan Tugas Akhir ini, sebagai berikut:

1. Membantu masyarakat dalam memperoleh informasi kualitas udara untuk pengambilan keputusan yang lebih cepat.

- Meningkatkan kesadaran masyarakat akan dampak polusi udara terhadap kesehatan dengan menyediakan data yang mudah diakses melalui dashboard interaktif.
- 3. Berkontribusi dalam mendukung pembangunan kota cerdas (smart city) dengan solusi pemantauan kualitas udara berbasis IoT.

1.4 Batasan Masalah

Adapun Batasan masalah dari Tugas Akhir ini, sebgai berikut:

1. Keterbatasan Sensor

Sistem ini hanya mengukur beberapa parameter kualitas udara, yaitu konsentrasi gas karbon dioksida (CO₂), amonia (NH₃), suhu, kelembaban, tekanan udara. Parameter lainnya yang berkaitan dengan kualitas udara, seperti polutan udara lainnya (misalnya, partikel PM2.5 atau PM10), tidak termasuk dalam pengukuran sistem ini.

2. Jaringan LoRa

Sistem ini menggunakan teknologi LoRa untuk komunikasi data, yang memiliki jangkauan terbatas dan kecepatan transmisi yang rendah. Oleh karena itu, sistem ini hanya dapat beroperasi secara optimal dalam area yang dapat dijangkau oleh jaringan LoRa, dengan memperhatikan faktor seperti topografi dan interferensi sinyal.

3. Keterbatasan Cakupan Wilayah Pengujian

Pengujian sistem hanya dilakukan pada lokasi terbatas, yang mencakup daerah Pemukiman warga padat dengan kualitas udara yang bervariasi. Sistem ini belum diuji dalam skala yang lebih luas atau pada kondisi lingkungan ekstrem.

4. Pemrosesan Data

Sistem ini mengandalkan pengolahan data secara real-time, namun tidak mencakup pengolahan atau analisis data tingkat lanjut, seperti peramalan kualitas udara atau model prediksi lainnya. Fokus sistem adalah pada pemantauan dan pelaporan kualitas udara secara langsung.

1.5 Metodologi

Metodologi pada tugas akhir ini, sebagai berikut:

1. Studi Literatur

Pada tahap ini, dilakukan studi literatur untuk mengkaji penelitian terdahulu terkait sistem pemantauan kualitas udara berbasis IoT, komunikasi LoRa. Literatur yang dikaji mencakup jurnal ilmiah, buku referensi, dan regulasi terkait standar kualitas udara. Selain itu, analisis kebutuhan dilakukan

untuk menentukan parameter utama yang akan dipantau, jenis sensor yang digunakan, serta spesifikasi perangkat keras dan lunak yang sesuai dengan kebutuhan sistem. Regulasi seperti Indeks Standar Pencemar Udara (ISPU) dan rekomendasi Organisasi Kesehatan Dunia (WHO) juga digunakan sebagai acuan dalam pengembangan sistem ini.

2. Perancangan Sistem

Tahap ini melibatkan perancangan arsitektur sistem secara keseluruhan, baik dari sisi perangkat keras maupun perangkat lunak.

Perancangan Arsitektur Hardware

Pada bagian ini, sistem dirancang dengan menggunakan sensor udara seperti CO₂, NH₃, suhu, kelembaban, tekanan udara, dan arah mata angin. Sensor-sensor ini akan dihubungkan dengan mikrokontroler ESP32, yang akan bertindak sebagai unit pemrosesan utama. Untuk memastikan transmisi data dalam cakupan luas dengan konsumsi daya rendah, digunakan teknologi komunikasi LoRa (Long Range). Jika diperlukan, sistem juga dapat dikembangkan dengan penambahan aktuator seperti kipas atau sistem penyemprot air untuk menanggapi kondisi udara tertentu.

3. Implementasi dan Pengujian Prototipe

Setelah perancangan selesai, dilakukan implementasi prototipe sistem untuk menguji fungsionalitasnya.

• Perakitan dan Konfigurasi Sistem

Pada tahap ini, sensor akan dirakit dan dikonfigurasi dengan mikrokontroler ESP32. Modul komunikasi LoRa juga akan diintegrasikan agar data dari sensor dapat dikirimkan ke gateway dengan stabil dan efisien.

Pengujian Fungsional dan Kalibrasi Sensor

Sebelum sistem diuji dalam lingkungan nyata, dilakukan pengujian fungsional untuk memastikan bahwa setiap komponen bekerja sesuai dengan yang dirancang. Kalibrasi sensor dilakukan dengan membandingkan hasil pengukuran sensor dengan alat ukur standar untuk memastikan akurasi deteksi parameter kualitas udara.

4. Uji Coba dan Evaluasi Sistem

Untuk memastikan sistem berfungsi dengan baik, dilakukan uji coba dan evaluasi dalam berbagai kondisi lingkungan.

Pengujian Lapangan

Sistem akan ditempatkan di beberapa lokasi dengan kondisi udara yang berbeda untuk menguji keandalan sensor dan stabilitas jaringan LoRa

dalam transmisi data. Lokasi yang dipilih mencakup area perkotaan dengan tingkat polusi tinggi dan area dengan kualitas udara relatif bersih untuk melihat perbedaan hasil pengukuran.

Analisis Data dan Validasi Sistem

Data yang dikumpulkan dari pengujian lapangan akan dianalisis dan dibandingkan dengan standar pemantauan kualitas udara resmi. Selain itu, dilakukan pengukuran terhadap latensi sistem dalam mengirim dan memproses data, serta menguji keandalan sistem dalam kondisi lingkungan yang berbeda. Evaluasi ini akan menentukan apakah sistem dapat memberikan informasi yang akurat dan tepat waktu untuk pengguna.

5. Penyempurnaan Sistem dan Dokumentasi

 Setelah melakukan uji coba dan evaluasi, sistem akan disempurnakan berdasarkan temuan dan umpan balik dari pengujian sebelumnya. Jika ditemukan adanya ketidaksesuaian atau kesalahan dalam pengukuran, dilakukan perbaikan pada algoritma pemrosesan atau kalibrasi ulang sensor. Setelah sistem bekerja dengan optimal, dokumentasi teknis akan disusun untuk menjelaskan arsitektur sistem, hasil pengujian, serta potensi pengembangan lebih lanjut.