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ABSTRACT

Efficient data querying in Hyperledger Fabric-based systems remains a sig-
nificant challenge due to the decentralized architecture and limited query flexibility.
Even though the Hyperledger Fabric offers mechanisms such as Mango Query and
composite keys, those mechanisms have their own limitations, in which Mango
Query lacks performance on multicondition searches, while composite keys are
rigid and context-dependent. Moreover, the reliance on historical or off-chain data
poses consistency and trust issues in real-time applications. To overcome these lim-
itations, this paper proposes a query strategy that dynamically chooses between
Mango-based indexing and composite key access, depending on the number of
query conditions, while operating entirely on a world-state database. Implemented
in a simulated supply chain environment with 10,000 and 50,000 records, the pro-
posed method achieves substantial latency improvements of over 90% in multicon-
dition scenarios, while also supporting flexible query patterns including warehouse,
timestamp, and responsible person. Compared to basic queries without indexing,
this approach offers a scalable and efficient solution for permissioned blockchain
environments, especially in supply chain systems where fast and accurate data re-
trieval is critical.

Keywords: Hyperledger Fabric, Data Retrieval, Supply chain, Composite Key,
Mango Query.
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ABSTRAK

Pencarian data yang efisien dalam sistem blockchain Hyperledger Fab-
ric tetap memiliki tantangan signifikan pada arsitektur terdesentralisasi dan keter-
batasan fleksibilitas pencarian. Meskipun Hyperledger Fabric menyediakan
mekanisme seperti Mango Query dan kunci komposit, mekanisme tersebut memi-
liki keterbatasan masing-masing, di mana Mango Query kurang optimal dalam pen-
carian dengan kondisi ganda, sementara kunci komposit bersifat kaku dan bergan-
tung pada konteks. Selain itu, ketergantungan pada data historis atau off-chain
menimbulkan masalah konsistensi dan kepercayaan dalam aplikasi real-time. Un-
tuk mengatasi keterbatasan ini, Tesis ini mengusulkan strategi pencarian yang se-
cara dinamis memilih antara pengindeksan berbasis Mango dan akses Composite
key, tergantung pada kondisi pencarian, sambil beroperasi sepenuhnya pada world
state database. Dilaksanakan dalam lingkungan rantai pasokan simulasi dengan
10.000 dan 50.000 catatan, metode yang diusulkan mencapai peningkatan latensi
yang signifikan lebih dari 90% dalam skenario multicondition, sambil juga men-
dukung pola kueri fleksibel termasuk gudang, timestamp, dan orang yang bertang-
gung jawab. Dibandingkan dengan kueri dasar tanpa pengindeksan, pendekatan ini
menawarkan solusi yang skalabel dan efisien untuk lingkungan blockchain berizin,
terutama dalam sistem rantai pasokan di mana pengambilan data yang cepat dan
akurat sangat kritis.

Kata kunci: Hyperledger Fabric, Data Retrieval, Supply chain, Composite Key,
Mango Query.
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CHAPTER 1
INTRODUCTION

1.1 Background

Blockchain Technology was Initially created as the basis for cryptocurrencies
like Bitcoin, blockchain technology can now revolutionize a number of industries,
particularly supply chain data sharing [1][2]. In the supply chain industry, timely
access to data plays a critical role in ensuring efficiency and resilience of opera-
tions. Effective data sharing provides real-time informations into the supply chain
information such as inventories, responsible person, and time. information obtained
can be used by stakeholders for the benefit of the company.

However, conventional supply chain data systems often suffer from several
limitations, including data inconsistency, siloed information, and inefficient query
mechanisms when faced with large volumes of heterogeneous data. These limita-
tions become more pronounced as organizations expand globally and the complex-
ity of supply chain networks increases. As a result, stakeholders often struggle with
delayed access to accurate data, leading to suboptimal inventory management and
reduced responsiveness [3].

Blockchain-based platforms such as Hyperledger Fabric have been introduced
to mitigate these issues by providing a decentralized, tamper-resistant infrastruc-
ture for data storage and sharing. Unlike public blockchain platforms, Hyperledger
Fabric is designed for permissioned enterprise environments, where members are
known and authenticated. It supports modular components such as pluggable con-
sensus, chaincode (smart contract) execution, and configurable membership ser-
vices, making it a flexible solution for a wide range of enterprise applications, in-
cluding supply chain management [3].

Nevertheless, despite its modular and secure architecture, Hyperledger Fabric
continues to face performance challenges in data retrieval, especially when oper-
ating over large-scale datasets. Querying the world state database—particularly in
scenarios involving multi-condition filters or high data volume—can introduce sub-
stantial latency. The bottlenecks often occur during the endorsement and validation
phases or as a result of inefficient query processing over unindexed fields [4][5].

Several studies have sought to address these performance limitations. For in-
stance, Zhou et al. proposed LedgerData Refiner, an external data replication ap-
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proach designed to improve query performance by mirroring blockchain data into
off-chain databases [6]. Although effective in enhancing speed, this method intro-
duces trust and consistency risks, as off-chain queries are no longer governed by the
on-chain consensus and endorsement logic. On the other hand, Yan et al. presented
an approach based on composite key design and LevelDB, demonstrating that struc-
tured keys can improve deterministic queries. However, their solution lacked sup-
port for rich query capabilities and was limited to simple key-value access patterns
[7].

To overcome these limitations, this research proposes a hybrid query optimiza-
tion strategy that combines Mango Query indexing and Composite Key construction
within the CouchDB-based world state of Hyperledger Fabric. Mango Queries are
well-suited for handling flexible, multi-field search conditions through JSON-based
selectors and indexed fields. In contrast, composite keys enable high-speed, prefix-
based lookups, particularly efficient for structured or hierarchical data access. By
selectively applying the most suitable technique based on the complexity of the
query—using Mango Queries for single-field filters and Composite Keys for multi-
field lookups—this combined strategy seeks to enhance query performance while
preserving data consistency and chaincode-level trust.

The proposed solution is evaluated using a simulated supply chain dataset of
10,000 and 50,000 records to reflect real-world blockchain data usage. By reducing
query latency and improving scalability, the study aims to contribute to the devel-
opment of more efficient data retrieval mechanisms for permissioned blockchain
systems, enhancing their viability for large-scale industrial applications.

1.2 Theoretical Framework

This research is based on several main theories that underlie the development
of query optimization strategies on Hyperledger Fabric blockchain systems. These
theories include the concept of Distributed Ledger Technology, CouchDB database
structure, Mango Query, and the use of Composite Key. The following is a descrip-
tion of the theories used.

1. Blockchain Theory and Distributed Technology (DLT)
Blockchain is part of Distributed Ledger Technology (DLT), which allows
recording transactions in a decentralized, transparent, and immutable man-
ner. In the Hyperledger Fabric, DLT allows all licensed network members
to participate in consensus and real-time tracking of asset [1]. This supports
transparency and data integrity in supply chain management systems.

2



2. CouchDB and Mango Query on Hyperledger Fabric
Hyperledger Fabric supports world state storage using CouchDB, a NoSQL
document database that stores data in JSON format. Mango Query is a fea-
ture used to perform JSON selector-based searches, enabling flexible multi-
attribute filters. Research by Zheng et al. (2022) showed that the performance
of Mango Query is strongly influenced by the existence and structure of a
suitable index [5].

3. Composite Key Theory in Chaincode
Composite Key is a method of combining multiple attributes into one de-
terministic key to improve query efficiency. Hyperledger Fabric supports
prefix-based search using the CreateCompositeKey function, which is proven
to speed up data access when queries are performed on one specific attribute
[3]. This approach is effective for simple search scenarios, such as by ware-
house ID or product status.

1.3 Conceptual Framework/Paradigm

in this section there are 3 main points of the Conceptual Framework, such as
Input, Process, and Output. Input is the data used for processing, which is in the
form of inventory data containing Product, Quantity, Warehouse, Status, Responsi-

ble person, and Timestamp. In the process section, the data will be entered into the
blockchain block using the private blockchain environment, Hyperledger Fabric.
Next, is the output, the desired output is that when searching for data, the system
will match the data with the Indices or Keys.

Fig. 1.1 Conceptual Framework.

1.4 Statement of the Problem

There are several problems with conventional Hyperledger Fabric query
systems. This problem can certainly cause great disadvantages if it spreads to a
larger scale. These problems are:

3



1. Low Data Retrieval Speed and Efficiency:
In blockchain-based supply chain management systems such as Hyperledger
Fabric, the efficiency of data retrieval is important because it directly affects
the performance of the systems. Hyperledger Fabric has various query meth-
ods for data retrieval, including Mango Query and Composite Key. Each has
advantages and limitations. Mango Query supports multi-attribute searches
but is prone to performance degradation if the data volume is large or the in-
dex is not optimized, while Composite Key excels in single-attribute searches,
but does not support the flexibility of complex queries. Reliance on any one
method can lead to reduced performance, so an adaptive combination strategy
is needed to overcome these limitations.

2. Limitations in data transparency:
It cannot be denied that warehouse data is important because it includes data
on goods, warehouses, and data on the person in charge of the warehouse.
These data are very vulnerable to manipulation by irresponsible people.

1.5 Hypothesis

It is expected that the application of the combination strategy between Mango
Query and Composite Key in the Hyperledger Fabric system can improve the effi-
ciency of data retrieval compared to the use of each method separately. This strat-
egy is expected to speed up query execution time, reduce resource consumption,
and increase system scalability in supply chain management scenarios with large
data volumes and various query complexities.

1.6 Assumption

1. The Hyperledger Fabric system has been properly configured and supports
the use of CouchDB as the state database for Mango Query execution.

2. Mango indexes can be created and maintained regularly to support data search
performance.

3. The key writing scheme for Composite Key has been designed with a consis-
tent deterministic structure to support prefix-based search.

4. All experiments were run in a permissioned blockchain network environment
with stable infrastructure specifications.
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1.7 Scope and Delimitation

This research focuses on testing and evaluating the combination of Mango
Query and Composite Key to improve data retrieval efficiency in the Hyperledger
Fabric network. The scope of implementation is limited to the context of a sup-
ply chain management system, specifically related to inventory data that includes
warehouse attributes, item status, person in charge, and recording time.

Experiments were conducted using one blockchain channel and one organiza-
tion, as well as three organizations. The organization runs one peer instance con-
nected to the CouchDB database as the state database. It should be noted that in the
Hyperledger Fabric architecture, each peer has its own CouchDB, and as long as it
is in the same channel and does not use private data, the contents of the world state
in each CouchDB will be synchronous and identical.

This research also does not cover advanced security aspects such as private data
collection, advanced encryption, or integration with external systems such as IoT.
The main focus is on measuring query performance in terms of execution time,
resource consumption, and efficiency of the data search strategy used.

1.8 Importance of the Study

This research aims to design, implement, and evaluate a combination strategy
between Mango Query and Composite Key in data retrieval on Hyperledger Fabric
permissioned blockchain network. This strategy is expected to improve data query
efficiency in the context of supply chain systems, especially in scenarios with large
data volumes and high complexity. The specific objectives of this research are:

1. Implement a data search function with a combination of Mango Query and
Composite Key in a smart contract (chaincode).

2. Experimenting and measuring data retrieval performance based on time, CPU
usage, and memory consumption.

3. Comparing the performance results of the combination strategy with conven-
tional methods such as Mango-only and Composite-only.
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1.9 Research Plan and Action Point

Month Action Points

October 2024 Conduct initial research on Hyperledger Fabric, Mango Query,
Composite Key, and blockchain-based inventory systems.

November 2024 Study the capabilities of CouchDB and Mango Query in Fabric;
investigate prior optimization methods in rich queries.

December 2024 Set up Hyperledger Fabric testbed with CouchDB and implement
chaincode for querying inventory data.

January 2025 Develop and test an adaptive query function combining Mango
Query and Composite Key logic in Go chaincode.

February 2025 Design baseline functions; build workload scenarios for bench-
mark testing.

March 2025 Conduct single-user experiments; collect execution time, CPU us-
age, memory consumption, and result accuracy.

April 2025 Prepare experimental report and write research paper; analyze
Mango vs Composite vs Adaptive performance.

May 2025 Extend experiment with Mango-only and Composite-only meth-
ods for deeper comparison and novelty enhancement.

June 2025 Finalize thesis document, including all results, analysis, discus-
sion, and conclusions. Prepare for submission.
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CHAPTER 2
BASIC CONCEPT

This chapter discusses the basic concepts of this thesis. These theories become
introduction from the proposed design in this thesis, such as Mango Indexes, Com-
posite Key, and Smart Contract.All explanations related to the theory used are ex-
plained in general terms.

2.1 Inventory Management System

Inventory Management System (IMS) is a system used to manage stock items
in the warehouse. IMS serves to record the entry and exit of goods and ensure that
stock quantities are monitored in order to minimize excess or shortage of inventory.
IMS has become an important component in the supply chain. This is because IMS
can provide efficiency and optimization in warehouse management [8]. This tech-
nology helps companies to simplify inventory tracking and stock auditing. With the
use of IMS, companies can optimize other areas because the supply chain section
has reached the desired level of efficiency [9].

With the development of technology, IMS has evolved to adopt Internet of
Things (IoT) and Artificial Intelligence (AI) to improve tracking and optimize in-
ventory data processing. For example, integration with IoT sensors allows the sys-
tem to monitor the status of goods in real-time. Furthermore, AI is used to predict
future stock based on the analysis of previous data[10]. With the integration of
these two technologies, modern IMS is able to provide intelligent and automatic
decisions, of course, this helps companies reduce errors [11].

In addition, the implementation of IMS can increase transparency and security
in supply chain management. In conventional record-keeping, there is a potential
for human error that results in mismatches between records and actual conditions
in the field [12]. However, with the application of blockchain technology in IMS,
inventory transactions can be recorded in a decentralized and immutable, thus
providing the benefits of a better audit trail and reducing the potential for data
manipulation from irresponsible parties[13][14].
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2.2 Blockchain

Blockchain is a technology that was first introduced by Satoshi Nakamoto
through Bitcoin. It provides secure, transparent, and immutable data recording.
It is now expanding into various fields, including finance, logistics, and supply
chain management. Unlike traditional centralized databases, blockchains store data
in the form of blocks that are interconnected through nodes and cryptographic
hash functions. This makes any changes to the data easily detectable by network
participants[1].

Each block in the blockchain contains a transaction, a timestamp and, the hash
of the previous block. Each block of many blocks will eventually form a chain
that can no longer be changed at all [15]. The validation process on the blockchain
is done through consensus mechanisms such as Proof of Work (PoW) or mining
as used in the Bitcoin system, Proof of Stake (PoS) where the amount of crypto a
user owns determines their ability to validate transactions as in Ethereum, or lighter
consensus algorithms such as PBFT (Practical Byzantine Fault Tolerance) which is
quite commonly used in permissioned blockchains such as Hyperledger Fabric due
to the absence of mining mechanisms [16].

The correlation between supply chain management and blockchain is that
blockchain technology can provide high traceability and data security. Various in-
formation related to the products, quantities, storage location, distribution time, and
the identities of those persons in charge can be recorded and verified by the par-
ties involved in the network in a transparent manner [17]. By adapting blockchain,
companies can reduce dependence on third parties, minimize the risk of data ma-
nipulation, and human error. The ability of blockchain to create a system that can
be trusted makes it a potential solution to improve security, efficiency, and most
importantly, data integrity in logistics management systems.

2.2.1 Blockchain Structure

Blockchain structure consists of various components that work together to en-
sure the security and decentralization of the network. One of the main elements is
the block, which stores a collection of transaction data. In order to efficiently verify
the data in a block, blockchain utilizes a structure called Merkle Tree. This struc-
ture takes the form of a binary tree, where each node is a hash of the node below it.
This allows the system to ensure the integrity of large amounts of data without hav-
ing to read the entire block, an approach that is especially important in large-scale
networks [18][15].
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Fig. 2.1 Block Structure.

Fig. 2.2 Blockchain Structure.

2.2.2 Types of Blockchain

1. Public Blockchain: Public blockchain is an open, decentralized network
where anyone can participate as a node, validate transactions, and access
data. This type of blockchain uses distributed consensus, such as Proof of
Work (PoW) or Proof of Stake (PoS) to verify transactions. The main ex-
amples of public blockchains are Bitcoin and Ethereum. Public blockchains
are highly transparent, but they face challenges related to scalability and high
energy costs as each transaction must be verified by many nodes around the
world[19].

2. Private Blockchain: Private blockchains are closed distributed networks, in
which only authorized parties can participate. Private blockchains are often
used by enterprises for internal applications, such as supply chain manage-
ment or sensitive data management, as they offer more control over data ac-
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cess and participation. An example of a private blockchain implementation
is Hyperledger Fabric, which is designed for enterprise applications. Private
blockchains have higher efficiency than public blockchains due to the smaller
number of nodes and simpler consensus mechanisms such as PBFT (Practical
Byzantine Fault Tolerance)[19].

Table 2.1 Comparison of Public and Private Blockchain

Parameters Public Blockchain Private Blockchain

Access Open to Anyone Restricted by Permit

Decentralization Fully decentralized Restrictedly decentralized

Security Managed by distributed con-
sensus (PoW, PoS)

Managed by a trusted entity
(PBFT)

Speed Slower due to large number of
nodes

Faster with fewer nodes

Usage Cryptocurrency Supply Chain

Example Bitcoin and Ethereum Hyperledger Fabric

2.3 Hyperledger Fabric

Hyperledger Fabric is a modular permissioned blockchain platform developed
under the Hyperledger Project initiative by the Linux Foundation. In contrast to
public blockchains such as Bitcoin or Ethereum, Hyperledger Fabric is intended to
create a private network, where only entities that have been approved to enter the
consortium can join, participate, and perform transactions. The Hyperledger Fabric
architecture provides high flexibility in managing network components such as in
terms of consensus, identity, and data storage, so that customization is very suitable
for fulfilling enterprise needs such as supply chain management [20].

Hyperledger Fabric adopts a data model that separates transaction recording
(ledger) and data current state (world state). For world state, Fabric supports var-
ious backend databases, one of which is often used is CouchDB. CouchDB al-
lows document-based data search using JSON queries through “Rich Query”. With
CouchDB, users can perform complex data searches using Mango Query. Mango
Query provides flexibility in the customization of its index configuration, which
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supports multi-attribute filtering and the use of indexes to improve performance.
However, the performance of Mango Query is highly dependent on the availability
and configuration of indexes that match the data query pattern [21].

Hyperledger Fabric also supports the use of smart contracts (chaincode) that can
be programmed in various languages such as Go, JavaScript, and Java. Through
chaincode, researchers can design condition-based search logic, including auto-
matic selection strategies between Mango Query and Composite Key based on the
type of incoming query. This feature makes Fabric an ideal platform for building
blockchain systems with flexible yet efficient data search requirements.

2.3.1 Key Components: Peer, Orderer, Channel and Chaincode

The Hyperledger Fabric architecture is built from several main components that
have specific and complementary functions to support transaction execution and
data management in a decentralized yet controlled manner. The first and most cen-
tral component is the peer, which is a network node in charge of storing the ledger
and executing the chaincode. Peers also store the world state, which is the cur-
rent status of all data that has been committed to the blockchain. In a network of
multiple organizations, each organization generally has one or more peers that are
independent, but synchronize their ledgers if they are in the same channel. Peers
are divided into several types, such as endorsing peers that validate transactions
through the execution of chaincode, and committing peers that receive transaction
blocks from orderers to be saved to their local ledger.

The next component is the orderer, which is responsible for sorting and dis-
tributing transactions. The orderer acts as a coordination center to arrange validated
transactions into blocks, and then distribute them to all peers in the network associ-
ated with a particular channel. Fabric supports several consensus algorithms for the
orderer, such as RAFT and Kafka, which can be selected according to the availabil-
ity of the network. With this approach, Fabric separates the process of validating
transactions (endorsement) and determining the order of transactions (ordering),
which is not commonly found on public blockchain platforms, thus improving the
efficiency and scalability of the system.

Furthermore, channels are logical entities that facilitate communication and data
exchange between organizations in the Fabric network. Channels enable the estab-
lishment of private data domains, where only organizations that are members of a
particular channel can access the ledgers and transactions within it. This mecha-
nism is the main foundation for the implementation of data privacy and isolation in
the Hyperledger Fabric architecture.
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In this research implementation, one channel is used to store all supply chain
assets, assuming that all participating organizations are in the same data scope and
have shared access to the ledger used.

Fig. 2.3 Hyperledger Fabric Key Components.
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2.3.2 World State Database

In the Hyperledger Fabric architecture, the ledger consists of two main parts, the
blockchain and the world state. The blockchain serves as an immutable historical
record of all transactions that occur in the network, stored in the form of crypto-
graphically interconnected blocks. Meanwhile, the world state is a representation
of the current status of the assets or data stored in the system. When a transaction
is successfully committed, the input or changes that occur will be reflected in the
world state, so users do not need to read the entire blockchain to find out the current
value of an asset.

One of CouchDB features is Mango Query, a built-in query engine that enables
JSON filter-based searches. Mango Query can be optimized by creating custom
indexes (Mango indexes) for specific fields, which can improve query performance.
However, the performance of Mango Query is highly dependent on the availability
of indexes that match the query pattern. Without an index, the search can be slow,
especially when the amount of data is large, as the system will perform a full scan
of all [21] documents.

In the context of this research, CouchDB is used to store supply chain inventory
data and perform various data search functions based on the fields in each asset doc-
ument. The CouchDB-based world state feature is an important foundation for the
implementation of flexible Mango Query strategies and can be dynamically com-
bined with deterministic approaches such as Composite Key to produce optimal
data retrieval system performance.

2.3.3 Mango Query

Mango Query is a document-based data search feature powered by CouchDB,
the state database of choice in Hyperledger Fabric. Mango Query allows user to
make queries in the form of JSON selectors, which can filter documents based on
attribute values. This feature has flexibility as it can be used to query for data based
on one or more attributes, supporting operators such as $eq, $gte, $lte, $and, $or,
and so on. This makes Mango Query very suitable for complex data search scenar-
ios, such as in supply chain management systems that involve many variables[22]
[23].

Hyperledger Fabric supports full integration between chaincode and Mango
Query. In practice, JSON selector queries can be written directly inside chaincode
functions, and run against CouchDB to retrieve relevant assets. With this capability,
developers can build multi-attribute search functions dynamically and efficiently.
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Fig. 2.4 Mango Query Strategy.

2.3.4 Composite Key

Composite Key is a mechanism to form a multi-part key from multiple attributes
in an entity. Composite keys allow developers to combine two or more values into
one deterministic key, which can be used to efficiently store and retrieve data from
the ledger. The main advantage of Composite Key lies in its efficiency in one-
dimensional or consistent pattern-based data searches, such as searches based on
ID prefixes or specific entity categories. Since Hyperledger Fabric stores the ledger
in the form of a key-value structure, searching with Composite Key utilizes lexico-
graphic sorting of keys, so the system can retrieve all data that has the same prefix
without having to scan the entire ledger.

However, Composite Key has limitations in flexibility. This approach does
not support condition-based searches or combinations of fields that are not in key
order[7]. For example, a search based on a combination of warehouse and status
cannot be performed if only the warehouse is in the Composite Key prefix.

Fig. 2.5 Composite Key Strategy.
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CHAPTER 3
THE PROPOSED CODES

This chapter discusses the system and the construction of the proposed combina-
tion of Mango Query and Composite key. Research design and research parameter
is described in this chapter. Furthermore, all scenarios are desrcibed in this chapter.

3.1 Preliminary Research

Before designing the main experiments in this research, a series of preliminary
studies were conducted to evaluate the technical feasibility and initial effectiveness
of the combined approach between Mango Query and Composite Key in data re-
trieval on the Hyperledger Fabric. This research started with testing the Mango
Query-based search function using fields such as warehouse, status, and timestamp.
The test shows that Mango Query performance is strongly influenced by the struc-
ture and availability of Mango indexes. This finding is in line with the study of
Zheng et al, who stated that search efficiency in CouchDB databases is highly de-
pendent on index design and the number of fields involved in the query selector [21].
Without explicit index settings, query execution time increases significantly as data
increases, especially when 5,000 entries are entered. Furthermore, the Composite
Key approach was tested for prefix-based deterministic search scenarios such as rm,
wh, and rs, corresponding to the asset ID structure used in the system. Preliminary
test results show that this method is highly efficient for single-key attribute-based
searches, as it leverages Fabric GetStateByPartialCompositeKey function which in-
ternally optimizes searches based on key prefixes. This is reinforced by the findings
of Yan et al. (2022), who showed that composite key provides significant perfor-
mance improvement for queries with one-dimensional deterministic structure [7].
However, this method does not support multi-attribute search or complex condi-
tions, making it less flexible for advanced search scenarios.

From this exploration, a prototype input condition-based query strategy selec-
tion logic, where the system will select the use of Mango Query for single-field
searches and Composite Key for deterministic multi-field searches. This approach
aims to combine the advantages of each method, with the hope of improving the
efficiency of the data retrieval system in the blockchain without sacrificing query
flexibility.
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3.2 System Model

The system proposed in this research, as shown in Fig 3.1, is designed to op-
timize the efficiency of data retrieval on permissioned blockchain networks using
Hyperledger Fabric. The main focus of the system is on attribute-based inventory
data retrieval, which is commonly used in supply chain management. The system
utilizes the CouchDB-based world state to support flexible queries through Mango
Query, and Composite Key strategy for key prefix-based deterministic search.

The data is stored as JSON documents with important attributes such as idPrefix,
warehouse, status, responsiblePerson, and timestamp. Two main approaches are
used for data retrieval, namely Mango Query and Composite Key, which are then
combined in one adaptive strategy. The query method selection logic is built into
the smart contract (chaincode), which automatically determines the execution path
based on the number and type of parameters provided in the query request.

Fig. 3.1 Mango-Composite Architecture.

The system model was evaluated through a series of experiments involving
single-field and multi-field search scenarios. Each approach is tested on the ba-
sis of execution time, CPU consumption, memory, and the number of data results
obtained. With this approach, the system model is expected to demonstrate the
superiority of the combination strategy over the use of a single query method, espe-
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cially in large-scale and complex data scenarios. The architecture can be abstracted
as a function S(Q) that maps a conditional query Q to the appropriate query strat-
egy. The decision is based on the number of attributes involved in the query. The
system behaves as follows:

S(Q) =

MangoQuery(Q), if |Q|= 1

CompositeKey(Q), if |Q| ≥ 2

3.2.1 Supply Chain integration in Hyperledger Fabric Topology

To represent the SME-based supply chain model more realistically, this study
proposes a blockchain-based system architecture that integrates three main organi-
zations, namely Procurement, Warehouse, and Retail & Sales, as illustrated in Fig
3.2. Each organization has a role in the distribution of goods and data, and has its
own ledger and peers connected through the Hyperledger Fabric network.

In this topology, Organization 1 (Procurement) is responsible for procuring ma-
terials or products from suppliers or factories. This entity records information re-
lated to purchases, delivery schedules, and transaction documents. Next, Organi-
zation 2 (Warehouse) receives goods from Procurement and records data related to
storage, condition status, and logistics movements within the warehouse. Finally,
Organization 3 (Retail & Sales) is responsible for recording distribution activities
to outlets or end customers, including transaction details and delivery status.

This topological approach is adopted to support realistic SME scenarios, which
in practice have limited resources but still require a secure recording system.

Fig. 3.2 Supply Chain Topology.
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3.3 Experimental Setup

The experiments in this research were carried out in a controlled local envi-
ronment using a virtualized Hyperledger Fabric network. The environment was
deployed on an Ubuntu 20.04 LTS-based virtual machine managed by Vagrant and
VirtualBox, with allocated hardware specifications of 2 vCPUs and 6 GB RAM.
All services, including orderers, peers, and CouchDB instances, were run on a sin-
gle VM to ensure consistent performance measurement without external network
interference.

Hyperledger Fabric version 2.5 was used as the blockchain platform, configured
with CouchDB as the state database to enable rich queries through Mango selec-
tors. Chaincode was developed in Go (Golang), integrating both Mango Query and
Composite Key strategies within the query logic. Query execution and benchmark-
ing were performed using the Fabric CLI (peer chaincode invoke and peer

chaincode query) in combination with the /usr/bin/time -v tool to capture
CPU usage, memory consumption, and execution time for each query.

Table 3.1 System Configuration Parameters

Parameters Value

Virtualization Platform Vagrant + VirtualBox

Operating System Ubuntu 20.04 LTS

vCPU 2 Cores

vRAM 6 GB

Blockchain Platform Hyperledger Fabric v2.5

State Database CouchDB (3 Instances)

Chaincode Language Go (Golang)

Testing Method Fabric CLI + /usr/bin/time -v

3.3.1 Experimental Scenario and Limitations

To evaluate query performance under varying operational loads, experiments
were conducted using datasets of 10,000 and 50,000 inventory records. Four query
strategies were tested:

1. HLF Baseline — native CouchDB Mango Query without optimization.
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2. Mango Query Only — single-field and multi-field queries using explicit
Mango selectors.

3. Composite Key Only — key-based lookups using predefined composite key
structures.

4. Mango-Composite (Proposed) — switching mechanism between Mango
Query (single-field) and Composite Key (multi-field).

Each strategy was executed across multiple concurrency levels: single-user, and
multi-user scenarios with 3, 5, and 7 concurrent clients. Queries were divided into
single-field lookups (e.g., by ID prefix, warehouse, status, responsible person) and
multi-field lookups (e.g., warehouse + status, warehouse + timestamp). Each con-
figuration was repeated three times, and average results were taken to reduce mea-
surement variance.

Limitations of the Experimental Environment:

• All components were deployed on a single virtual machine, which does not
fully represent a distributed production environment.

• Limited hardware resources (2 vCPU, 6 GB RAM) may impact scalability
results when extrapolated to larger systems.

• No real network latency or inter-organizational delays were introduced, as all
nodes run locally.

• Maximum dataset size used is 10,000 and 50,000 records, which may reflect
on SMEs, not performance for millions of records.

• This experiment focuses on read/query performance.

This scenario and limitation description ensures that the results are interpreted
within the context of the controlled environment and highlights potential differences
if deployed in a real-world multi-node blockchain network.

3.4 Data Collection Mechanism

The simulation scenario in this research is designed to evaluate the performance
of data retrieval in the Hyperledger Fabric using four search approaches, namely:
Baseline Query (manual query using JSON selector), Mango Query Only, Compos-
ite Key Only, and Mango-Composite Key Strategy combination. These approaches
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are used to test the effectiveness of data query strategies against various variations
of query structures and large data scales in the context of supply chain systems.

The testing is performed on a dummy dataset of 10,000 and 50,000 supply
chain entries by executing each query type defined in Table 3.2. Each entry has
a JSON structure with ID, Warehouse, Status, ResponsiblePerson, and Timestamp
attributes. Six types of query scenarios were tested, which were divided into two
main categories: single-field query and multi-field query. For the single-field cat-
egory, queries were performed based on idPrefix, warehouse, status, and responsi-
blePerson. As for multi-field, the system tested the combination of warehouse +
status and warehouse + timestamp fields.

Table 3.2 Query Types and Method

Query Types Method

QueryByIDPrefix Mango Query + Index

QueryByWarehouse Mango Query + Index

QueryByStatus Mango Query + Index

QueryByResponsiblePerson Mango Query + Index

QueryByWarehouseAndStatus Composite Key

QueryByWarehouseAndTimeStamp Composite Key

Each approach was tested under two user conditions: (1) single-user environ-
ment, where only one organization (Org1) queries the ledger, and (2) multi-user
environment, where three organizations (Org1, Org2, and Org3) query the same
channel in parallel. The purpose of these variations is to evaluate the stability and
efficiency of query strategies in a collaborative context that resembles a real-world
permissioned blockchain network. Each scenario is measured based on query ex-
ecution time, CPU usage, memory consumption, as well as the number of results
returned by the system.

3.5 Benchmark Scenario

The benchmark in this study is designed to evaluate the performance of data
retrieval on the Hyperledger Fabric network by comparing four query strategy ap-
proaches as described in the data collection mechanism section. Each approach is
tested under the same conditions, with a dataset of 10,000 and 50,000 entries. The
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tests were conducted using a quantitative experimental approach, where each query
performance metrics was measured objectively and holistically.

Each type of query, be it single-field or multi-field, was executed 10 times to ob-
tain a stable average value. To get the system performance, the time -v command in
Linux environment is used to record the execution time (second), CPU usage during
the process (percent CPU usage), and memory consumption (maximum resident set
size). These parameters were chosen because they reflect the system performance
from various aspects, such as time efficiency, computational load, and resource us-
age effectiveness. Fig.3.3 illustrates the end-to-end benchmark workflow.

Fig. 3.3 Experimental Benchmarking Architecture

In addition to performance parameters, this test also records the number of
search results or the amount of data successfully retrieved as an indicator of query
success. This is important to ensure that each search method is not only efficient,
but also accurate and consistent in producing data that match the desired criteria.
The tests were conducted in two scenarios, which are single-user environment and
multi-user environment as mentioned in the previous subsection. This aims to eval-
uate the stability and scalability of each strategy under different load conditions.
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CHAPTER 4
PERFORMANCE EVALUATIONS

This chapter presents the results of simulation and benchmarking experiments
conducted to evaluate the performance of four query strategies implemented in Hy-
perledger Fabric, such as Baseline Query, Mango Query Only, Composite Key Only,
and the Combined Mango-Composite Strategy. The evaluation is carried out under
two operational scenarios, namely single-user and multi-user environments, with
each query strategy assessed using four performance metrics, namely execution
time, CPU usage, memory consumption, and number of records retrieved. The
tested queries are categorized into single-field and multi-field types to reflect dif-
ferent levels of query complexity commonly encountered in supply chain systems.
Through this analysis, the research aims to determine the most efficient and scalable
query strategy for blockchain-based inventory systems using CouchDB.

4.1 Overview of the Experiment

The experiments in this study are designed to evaluate the performance of four
approaches to data retrieval strategies in the Hyperledger Fabric network, namely:
Baseline Query, Mango Query Only, Composite Key Only, and Mango-Composite
Strategy Combination. The main objective of this experiment is to measure the
extent to which each approach can handle data retrieval in a blockchain-based sup-
ply chain management system scenario, both in terms of time efficiency, resource
usage, and consistency of search results.

Each approach was tested against two main query categories, such as single-
field queries and multi-field queries. Single-field queries include searches based on
single attributes such as idPrefix, warehouse, status, and responsiblePerson, while
multi-field queries combine two attributes, namely warehouse + status and ware-
house + timestamp. The data used in the test consists of 10,000 and 50,000 inven-
tory asset entries stored in a ledger with a uniform JSON structure.

The experiments were conducted in two user environments: a single-user envi-
ronment, where only one of the three organizations queried, and a multi-user envi-
ronment, where three organizations (Org1, Org2, and Org3) queried simultaneously.
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4.2 10,000 Data Experiment: Single-user Environment

The first test was conducted in a single-user environment scenario, where a user
executes 10,000 data lookup requests independently against the Hyperledger Fab-
ric single organization. The purpose of this test is to measure the performance of
each query strategy under conditions without resource contention, so that the results
reflect the basic efficiency of each approach.

Six types of queries were tested, namely four single-field queries (idPrefix,
warehouse, status, and responsiblePerson) and two multi-field queries (warehouse
+ status and warehouse + timestamp).

Table 4.1 Query Performance Comparison in Single-User Environment using 10,000 Data Entries

Query Strategy Query Type
10,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 2.91 s 3.67 % 28.248 MB

Warehouse 4.30 s 2.67 % 25.396 MB

Status 4.12 s 2.33 % 25.503 MB

ResPerson 3.75 s 2.33 % 25.687 MB

Ware + Stat 6.23 s 2.00 % 29.908 MB

Ware + Time 8.04 s 2.00 % 25.737 MB

Mango Query

IDPrefix 2.90 s 3.33 % 28.654 MB

Warehouse 4.08 s 2.33 % 25.684 MB

Status 4.05 s 2.00 % 28.127 MB

ResPerson 3.73 s 2.00 % 25.615 MB

Ware + Stat 0.49 s 36.00 % 25.513 MB

Ware + Time 0.20 s 68.00 % 26.594 MB

Composite Key

IDPrefix 1.25 s 8.33 % 28.895 MB

Warehouse 1.31 s 10.67 % 27.403 MB

Status 1.20 s 9.00 % 28.248 MB

ResPerson 0.24 s 37.67 % 25.549 MB

Ware + Stat 0.33 s 38.00 % 25.463 MB

Ware + Time 0.44 s 45.33 % 25.635 MB

Mango-Composite

IDPrefix 2.87 s 3.00 % 28.824 MB

Warehouse 3.92 s 2.33 % 25.556 MB

Status 4.06 s 2.33 % 28.107 MB

ResPerson 3.60 s 2.33 % 25.588 MB

Ware + Stat 0.36 s 34.33 % 25.489 MB

Ware + Time 0.25 s 51.00 % 25.359 MB

23



4.2.1 Single-user 10,000 Data Entries: Execution Time Result
and Analysis

Table 4.1 and Figure 4.1 presents the average execution time of each data re-
trieval strategy in a single-user environment with 10,000 data entries. The data is
taken for six query functions with varying levels of complexity, both single-field and
multi-field. The results show that the Composite Key Only approach consistently
provides the fastest execution time for deterministic queries such as QueryByID-

Prefix, QueryByWarehouse, and QueryByStatus, with durations below 1.1 seconds.
This is due to the efficiency of the GetStateByPartialCompositeKey function in per-
forming key prefix-based searches.

In contrast, the Baseline and Mango Query Only approaches show higher
execution times, especially for single-field queries that are not index-optimized.
For multi-field queries such as QueryByWarehouseAndStatus and QueryByWare-
houseAndTimestamp, the Mango Query Only and Mango-Composite Strategy ap-
proaches gave the best results, with average times below 0.5 seconds. The com-
bination approach showed balanced adaptive performance, approaching Composite
Key on simple queries, and resembling Mango Query on complex queries. This
indicates that the combination strategy is able to maintain time efficiency while
retaining flexibility.

Fig. 4.1 Performance comparison of different query strategies on memory usage for single user —
Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.2.2 Single-user 10,000 Data Entries: CPU Usage Result and
Analysis

CPU utilization is an important indicator to assess the computational load re-
quired by each data retrieval strategy. This metric describes the average percentage
of processor usage during the query execution process. In this single-user test, the
CPU value is recorded using the time -v utility and shows how efficient a particu-
lar strategy is in utilizing computational resources, especially when accessing large
volumes of data.

The results in Table 4.1 and Figure 4.2 show that the Composite Key Only ap-
proach tends to have a higher CPU consumption than the other approaches, despite
its very short execution time. This suggests that this approach relies on compu-
tational performance to generate speed. In contrast, Baseline and Mango Query
Only resulted in lower CPU usage, but with longer execution times. The Mango-
Composite Strategy approach exhibits intermediate characteristics, with relatively
efficient CPU usage, especially for multi-field queries such as QueryByWarehouse-

AndTimestamp.

Fig. 4.2 Performance comparison of different query strategies on CPU usage for single user —
Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.2.3 Single-user 10,000 Data Entries: Memory Usage Result
and Analysis

Memory consumption measures the memory (in megabytes) that the system uses
during the query execution process. This measurement gives an idea of how much
memory space each strategy requires, which is important for considering resource
efficiency, especially on RAM-constrained systems. This data is captured using the
Maximum resident set size metric generated by the time -v command.

As shown in Table 4.1 and Figure 4.3, all approaches have relatively similar
memory consumption with small fluctuations. The Composite Key Only approach
tends to have the highest memory consumption in some functions, such as Query-

ByIDPrefix and QueryByWarehouse, but the difference is not significant overall.
Mango-Composite Strategy and Mango Query Only are in about the same memory
range, while Baseline has the most stable memory values, but is not always efficient
in terms of time or CPU performance. These differences show that all strategies
remain within acceptable memory efficiency limits for the scale of data used.

Fig. 4.3 Performance comparison of different query strategies on execution time for single user —
Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.2.4 Single-user 10,000 Data Entries Experimental Result and
Analysis

consistently outperformed other methods in query execution time in single-field
and multi-field scenarios, as detailed in Table 4.2 and illustrated in Fig. 4.3, Fig.4.2,
and Fig.4.1, which visualizes the comparative performance across all query strate-
gies. For single-field queries, it completed the search in an average of 2.87 seconds,
slightly faster than the HLF Baseline (2.91s) and Mango Query Only (2.90s), and
reasonably close to the fastest and heavy method, Composite Key Only (1.25s). In
multi-field queries with minimal data matches, Mango-Composite demonstrated a
remarkable advantage, completing in just 0.24 seconds compared to HLF Baseline

(8.04s), Mango Query Only (0.2s), and Composite Key Only (0.44s).
However, the strategy is not without trade-offs. In certain cases, particularly

multi-field queries, it recorded noticeably higher CPU usage than the HLF Base-

line and Composite Key Only approaches. For instance, the multi-field ware-
house+timestamp query peaked at 51% CPU, surpassing HLF Baseline (2%) and
even Composite Key Only (45.33%). This increase comes from managing condi-
tional routing and maintaining index and key-based paths within the smart contract.

Nonetheless, this increase in resources is justified by the resulting increase in
performance. Mango-Composite can route simple queries through the already in-
dexed Mango selector and complex queries through Composite Key, thus avoiding
costly full scans. Unlike Mango Query Only, which incurs higher CPU due to
complex JSON evaluation, or Composite Key Only, which demands additional iter-
ations. Mango-Composite offers a balanced trade-off between speed and resource
efficiency that makes it well suited for permissioned blockchain environments with
diverse data patterns, such as supply chains.

Table 4.2 Single-user Mango-Composite query performance by field type, including CPU, time, and
memory metrics using 10,000 data entries.

Data Count Field Type Avg. CPU Avg. Time Avg. Memory
2790

Single-field

3% 3,87 s 28,824 MB
2091 2.33% 4.06 s 28.107 MB
569 2.33% 3.92 s 25.556 MB
287 2.33% 3.6 s 25.588 MB
267

Multi-field
34.33% 0.36 s 25.489 MB

1 51% 0.25 s 25.359 MB
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4.3 50,000 Data Experiment: Single-user Environment

The second test was still conducted in a single-user environment scenario, where
a user independently executed 50,000 data search requests against a single Hyper-
ledger Fabric organization. The purpose of this test was to measure the performance
of each query strategy in conditions without resource competition, so that the results
reflect the use of large amounts of data from each approach.

Table 4.3 Query Performance Comparison in Single-User Environment using 50,000 Data Entries

Query Strategy Query Type
50,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 29.37 s 63.23 % 41.680 MB

Warehouse 8.05 s 69.43 % 29.365 MB

Status 8.77 s 58 % 28.283 MB

ResPerson 7.63 s 68.8 % 29.414 MB

Ware + Stat 2.53 s 42.37 % 27.140 MB

Ware + Time 5.87 s 47.77 % 26.773 MB

Mango Query

IDPrefix 27.36 s 51.43 % 39.438 MB

Warehouse 7.17 s 63.43 % 32.019 MB

Status 8.10 s 51.73 % 32.245 MB

ResPerson 7.06 s 52.67 % 28.443 MB

Ware + Stat 1.13 s 77.97 % 27.276 MB

Ware + Time 0.14 s 88.43 % 29.819 MB

Composite Key

IDPrefix 0.13 s 88.03 % 28.896 MB

Warehouse 0.12 s 89.83 % 26.580 MB

Status 0.17 s 86.13 % 26.533 MB

ResPerson 0.11 s 93.67 % 28.380 MB

Ware + Stat 0.13 s 85 % 28.191 MB

Ware + Time 0.14 s 85.07 % 26.785 MB

Mango-Composite

IDPrefix 25.68 s 25.68 % 41.327 MB

Warehouse 6.51 s 60.37 % 32.019 MB

Status 8.30 s 39.33 % 38.651 MB

ResPerson 6.75 s 52.77 % 29.48 MB

Ware + Stat 0.12 s 84.03 % 34.344 MB

Ware + Time 0.11 s 84.97 % 31.463 MB
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4.3.1 Single-user 50,000 Data Entries: Execution Time Result
and Analysis

Table 4.3 and Figure 4.4 presents the average execution time of each data re-
trieval strategy in a single-user environment with 50,000 data entries. The data is
taken for six query functions with varying levels of complexity, both single-field
and multi-field query. The results show that the Composite Key Only approach
consistently provides the fastest execution time for deterministic queries such as
QueryByIDPrefix, QueryByWarehouse, and QueryByStatus, with durations below 1
second. This is due to the efficiency of the GetStateByPartialCompositeKey func-
tion in performing key prefix-based searches.

On the other hand, the proposed system has balanced results even though the
data volume has been increased to a total of 50,000 data entries. First, in single-
column queries, Mango-Composite has a slightly shorter processing time compared
to mango user only. This is due to the use of rich queries, which provide a slight
advantage over pure mango queries, where the mechanism does not rely on doctype
but instead directly indexes the dataset. Next, in multi-column queries, the proposed
system performs slightly better than composite key only. Although not significant,
it is sufficient to match the results of the comparison in terms of processing time.

Fig. 4.4 Performance comparison of different query strategies on execution time for single user —
Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.3.2 Single-user 50,000 Data Entries: CPU Usage Result and
Analysis

The results and analysis of CPU usage in a single-user environment with 50,000
data points show significant differences between the four query strategies. The
Composite Key Only approach consistently uses the highest CPU resources across
all query types, ranging from 85% to 93.67%. This is understandable because this
approach relies heavily on full key scans and direct iterations on the ledger state,
without the assistance of CouchDB indexing.

In contrast, the Mango-Composite strategy demonstrated better efficiency, with
CPU usage ranging from 39.33% to 84.97%. This reflects the effectiveness of adap-
tive selection between Mango Query and Composite Key based on the structure of
the query being executed. For single-field queries such as Status and Responsi-
ble, the MangoUserOnly approach tends to use slightly higher CPU than Mango-
Composite, reaching up to 63.43%, likely because the selector used is less optimal
and involves a broader index scan process in CouchDB.

These results indicate that Composite Key can provide speed, but this comes at
the cost of high CPU consumption. On the other hand, Mango-Composite achieves
a balance between performance and resource efficiency by leveraging the advan-
tages of both approaches.

Fig. 4.5 Performance comparison of different query strategies on execution time for single user —
Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.3.3 Single-user 50,000 Data Entries: Memory Usage Result
and Analysis

Memory usage in testing 50,000 data points showed a rather interesting pattern.
The Mango-Composite strategy generally uses the highest amount of memory, par-
ticularly for single-field queries such as IDPrefix and Status, reaching 41.33 MB
and 38.65 MB, respectively. This can be explained because the Mango-Composite
strategy tends to perform selector evaluation and indexing simultaneously, espe-
cially when the combination of Mango and Composite strategies complements each
other.

Meanwhile, the MangoUserOnly approach shows fairly stable memory usage,
averaging around 30-39 MB. This strategy relies entirely on Mango Query, so the
use of CouchDB indexes makes data processing efficient but still requires a large
space for index, especially when processing large query results like IDPrefix.

Conversely, the Composite Key Only strategy is the most memory-efficient,
with ranging from 26-28 MB across nearly all queries. This indicates that the key
traversal-based approach directly accessing the ledger state, despite its high CPU
usage, does not impose significant memory overhead since it does not involve JSON
selector processing or index parsing.

HLF Baseline strategy produced mixed results, with memory usage that was
not very consistent. For some queries like IDPrefix, memory consumption reaches
41.68 MB, but drops significantly for other queries like Status (26.14 MB) and
Warehouse+Time (26.57 MB).

Fig. 4.6 Performance comparison of different query strategies on execution time for single user —
Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.3.4 Single-user 50,000 Data Entries Experimental Result and
Analysis

In single-user testing with 50,000 data entries, the Mango-Composite approach
maintained its performance, particularly in query execution time. This approach
outperforms the HLF Baseline and Mango Query Only in single-field queries,
achieving faster results, such as 6.51 seconds for a data warehouse query compared
to Mango-only (7.17 seconds) and Baseline (8.05 seconds). Although both Mango-
based methods utilize indexing, the use of doctype in Mango-Composite effectively
avoids the complexity of JSON, resulting in better processing time.

From the perspective of resource usage, memory consumption across all meth-
ods remained relatively moderate, with Mango-Composite maintaining stable us-
age between 26-41 MB. However, CPU usage showed a marked increase, partic-
ularly in complex multi-field queries like warehouse+timestamp, where it peaked
at 84.97%. This suggests that while Mango-Composite achieves time efficiency, it
trades off with a moderately higher processing load, yet still lower than Mango-only
and Composite-only in most cases.

Overall, these results reinforce that Mango-Composite offers a scalable and bal-
anced solution. It suits well even as the dataset size increases significantly, provid-
ing consistent performance benefits without severe overhead, making it suitable for
real-world blockchain environments where query diversity and volume coexist.

Table 4.4 Single-user Mango-Composite query performance by field type, including CPU, time, and
memory metrics using 50,000 data entries.

Data Count Field Type Avg. CPU Avg. Time Avg. Memory
14112

Single-field

43.33% 25.68 s 41.327 MB
2787 60.37% 6.51 s 32.019 MB

10609 39.33% 8.3 s 38.651 MB
326 52.77% 5.85 s 26.473 MB
267

Multi-field
84.03% 0.12 s 34.213 MB

1 94.97% 0.11s 31.859 MB
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4.4 10,000 Data Experiment: Multi-user Environment

The third test was conducted in a multi-user environment scenario, where 3,
5, and 7 users execute data lookup requests independently against the Hyperledger
Fabric network organizations (Org1, Org2, Org3). The purpose of this test is to
measure the performance of each query strategy under conditions without resource
contention, so that the results reflect the basic efficiency of each approach using
10,000 data entries.

Table 4.5 Query Performance Comparison in Multi-User Environment with 3 users testing and using
10,000 Data Entries

Query Strategy Query Type
10,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 4.48 2% 29.275

Warehouse 4.43 2% 27.422

Status 5.94 2% 28.310

ResPerson 5.19 3% 27.592

Ware + Stat 5.63 2% 28.567

Ware + Time 5.94 2% 26.133

Mango Query

IDPrefix 3.01 3% 26.250

Warehouse 4.07 2% 27.445

Status 5.06 2% 28.992

ResPerson 5.10 2% 27.210

Ware + Stat 0.89 38% 27.596

Ware + Time 0.21 69% 27.141

Composite Key

IDPrefix 1.09 15% 29.471

Warehouse 1.02 12% 28.183

Status 0.88 12% 28.057

ResPerson 0.41 36% 27.218

Ware + Stat 0.69 37% 28.155

Ware + Time 0.15 71% 26.909

Mango-Composite

IDPrefix 2.93 3% 26.034

Warehouse 4.06 3% 27.461

Status 4.85 2% 29.194

ResPerson 4.73 2% 27.762

Ware + Stat 0.53 35% 27.389

Ware + Time 0.15 72% 26.669

33



Table 4.6 Query Performance Comparison in Multi-User Environment with 5 users testing and using
10,000 Data Entries

Query Strategy Query Type
10,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 9.16 5.2% 32.916

Warehouse 9.41 5.53% 29.558

Status 12.8 7% 31.841

ResPerson 14.61 7% 30.394

Ware + Stat 14.6 9.4% 31.590

Ware + Time 14.38 9.33% 28.993

Mango Query

IDPrefix 7.1 7.53% 28.491

Warehouse 9.26 6.6% 30.385

Status 10.8 8.27% 31.755

ResPerson 12.72 8.2% 28.703

Ware + Stat 1.5 42.53% 30.175

Ware + Time 0.28 72% 29.047

Composite Key

IDPrefix 2.8 13.8% 29.546

Warehouse 2.1 18.93% 28.928

Status 1.74 20.87% 28.796

ResPerson 1.13 40.6% 26.578

Ware + Stat 1.29 42.28% 26.578

Ware + Time 0.15 74.4% 28.246

Mango-Composite

IDPrefix 6.84 7.6% 28.337

Warehouse 9.21 7.53% 30.842

Status 10.6 10.4% 31.817

ResPerson 11.3 8.2% 30.118

Ware + Stat 0.66 35.4% 29.813

Ware + Time 0.15 72.4% 30.178
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Table 4.7 Query Performance Comparison in Multi-User Environment with 7 users testing and using
10,000 Data Entries

Query Strategy Query Type
10,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 13.60 27.2% 35.124

Warehouse 17.12 28.4% 34.890

Status 22.68 33.5% 31.164

ResPerson 26.91 46.9% 31.426

Ware + Stat 28.40 49.6% 33.714

Ware + Time 27.31 53.6% 33.827

Mango Query

IDPrefix 9.52 31.3% 29.452

Warehouse 15.33 33.3% 36.281

Status 18.27 40.6% 36.883

ResPerson 21.68 43.7% 35.641

Ware + Stat 3.50 90.7% 35.941

Ware + Time 3.68 96.1% 34.612

Composite Key

IDPrefix 3.70 61.8% 30.182

Warehouse 3.10 68.3% 29.104

Status 2.20 74.6% 29.582

ResPerson 2.20 91.4% 28.621

Ware + Stat 1.26 95.7% 30.179

Ware + Time 1.10 99.4% 30.390

Mango-Composite

IDPrefix 8.13 33.8% 30.571

Warehouse 14.07 36.1% 37.149

Status 18.53 41.7% 32.478

ResPerson 20.47 42.4% 33.438

Ware + Stat 1.80 92.5% 30.518

Ware + Time 1.30 97.2% 31.692
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4.4.1 Multi-User 10,000 Data Entries: Processing Time Result
and Analysis

Above in Table 4.5, Table 4.6, and Table 4.7 are results for processing time per
query strategy in a multi-user environment for 3, 5, and 7 users. The execution
time increases with the increased number of users thus increasing the processing
time, meanwhile other factors like the complexity of queries or methods being used
add up to it. For single-field queries such as QueryByIDPrefix, it was observed
that the Composite Key Only method posted processing times of 1.09 seconds (for
three users), 2.8 seconds (for five users), and 3.7 seconds (for seven users) being
faster than Mango-Composite and Mango Query Only methods. On the other hand,
HLF Baseline registered more method processing time compared with all others
that registered up to a high of 13.6 seconds on seven user tests proving that direct
access to ledger convention becomes inefficient under multiuser scenarios.

In multi-field queries such as QueryByWarehouseAndStatus and QueryByWare-

houseAndTime, the Mango-Composite method shows improved efficiency. In a 7-
user test, the execution time for QueryByWarehouseAndTime was only 1.3 seconds,
significantly better than HLF Baseline (27.31 seconds) and even Composite Key
Only (1.1 seconds), which is generally more optimal for conditional queries. This
performance is consistent across all user counts, demonstrating the adaptive strategy
ability to optimize execution paths for both simple and complex queries.

Fig. 4.7 Performance comparison of different query strategies on memory usage with 10,000 for 3
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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Fig. 4.8 Performance comparison of different query strategies on memory usage with 10,000 for 5
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.9 Performance comparison of different query strategies on memory usage with 10,000 for 7
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

This study concludes by stating that in a multi-user scenario with 10,000 data,
the Mango-Composite strategy was able to maintain processing time, resulting in
good performance. This strategy balances between being close to fast execution and
allowing flexibility in chaincode architecture, thus making it an ideal for permis-
sioned blockchain systems where dynamic query patterns exist like supply chains.

4.4.2 Multi-User 10,000 Data Entries: CPU Usage Result and
Analysis

The CPU usage of each strategy in the multi-user scenario is shown in Table 4.5,
Table 4.6, and Table 4.7. It can be seen that query complexity and the number of ac-
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tive users have a direct impact on CPU consumption. Strategies involving JSON se-
lector evaluation or composite key construction at runtime show a significant spike
in CPU usage, especially as the number of users increases.

The Composite Key Only approach consistently shows the highest CPU usage in
almost all scenarios. For example, for the QueryByResponsiblePerson, CPU usage
rise from 36% (3 users) to 40.6% (5 users), then to 91.4% (7 users), which indicates
a heavy computational load on key-based searches. Similarly, Mango Query Only

experiences a significant CPU spike on conditional queries such as QueryByWare-

houseAndTime, with usage reaching 72% at 5 users and 96.1% at 7 users.
On the other hand, the Mango-Composite query method shows better perfor-

mance. Although it does not always have the lowest CPU usage, but this method
has a moderate CPU load. For example, with the QueryByWarehouseAndStatus

method, CPU usage remains below 36% with 5 users and rises to 92.5% with 7
users, still more efficient than the Mango query or Composite key approach in some
query types. This shows that the architecture developed is successful in channeling
queries to a more efficient execution path according to the context.

Fig. 4.10 Performance comparison of different query strategies on CPU usage with 10,000 for 3
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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Fig. 4.11 Performance comparison of different query strategies on CPU usage with 10,000 for 5
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.12 Performance comparison of different query strategies on CPU usage with 10,000 for 7
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Thus, in terms of CPU usage, Mango-Composite shows a balance between per-
formance and resource consumption. This strategy and method is able to adapt to
multi-user loads and complex query types such as multi-field. This makes it a good
and acceptable option in private blockchain systems such as digital supply chains.

4.4.3 Multi-User 10,000 Data Entries: Memory Usage Result
and Analysis

Table 4.5, Table 4.6, and Table 4.7 provide data related to the memory consump-
tion details of the four query strategies across various query types with different
numbers of users. Memory usage tends to be more stable compared to CPU usage
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test results, but still shows variations depending on the scenario used, query type
and complexity, and the load of active users.

The Composite Key Only method consistently shows efficiency and low memory
usage in almost all scenarios. For example, in the QueryByWarehouse function,
memory consumption remains low from 28,183 MB (3 users) to 28,928 MB (5
users), and only 29,104 MB (7 users). This shows that the key-value-based method
minimizes the load of complex data structures in the execution process, although on
the other hand, it has the trade-off of considerable CPU usage.

In contrast, the Mango Query Only strategy experiences fluctuations in memory
usage, especially in multi-field queries such as WarehouseAndStatus or Warehouse-

AndTime. This increase in memory consumption illustrates the burden of parsing
and evaluating JSON selectors in CouchDB, which tends to increase as the number
of users increases.

Fig. 4.13 Performance comparison of different query strategies on memory usage with 10,000 for 3
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

The Mango-Composite method shows balance in testing. In the 7-user scenario,
the average memory consumption remains within a reasonable and balanced range,
such as 30,571 MB for QueryByIDPrefix and 31,692 MB for QueryByWarehouse-

AndTime, nearly matching the efficiency of the Composite Key method but with
greater flexibility. This shows that despite having two execution paths (Mango +
Composite), this strategy is able to keep memory stable with query path retrieval in
this 10,000 data test.

Thus, from a memory usage perspective, Mango-Composite is able to maintain
memory usage stability while remaining flexible to query type variations and in-
creases in the number of active users, making it a viable option for small to medium-
scale permissioned blockchain systems.
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Fig. 4.14 Performance comparison of different query strategies on memory usage with 10,000 for 5
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.15 Performance comparison of different query strategies on memory usage with 10,000 for 7
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

4.4.4 Multi-User 10,000 Data Entries: Experimental Result and
Analysis

The results of testing in a multi-user environment with 3, 5, and 7 users provide a
comprehensive overview of the scalability and efficiency of each query method. The
three main parameters are processing time, CPU usage, and memory usage. These
three parameters were analyzed to identify trade-offs and the relative advantages of
the proposed approach, namely the Mango-Composite combination.

The first parameter is processing time. The Mango-Composite method shows
competitive performance in almost all query types, both single-field and multi-field.
For multi-field queries such as QueryByWarehouseAndStatus, the proposed method
was able to execute in an average time of 0.98 seconds, compared to the HLF Base-
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line which required 16.21 seconds. This shows a reduction in time of 93.9%. For
single-field queries like QueryByIDPrefix, Mango-Composite records an average
time of 5.96 seconds, which is 54.2% faster than the HLF Baseline (13.04 seconds).

Next is the CPU usage parameter. CPU usage in the Mango-Composite com-
bination method also successfully maintained efficiency. The average CPU usage
is around 41%, lower than Mango Query Only (48.73%), and Composite Key Only

(78.53%). This means CPU efficiency has improved by approximately 46.7% com-
pared to Composite Key and 14% compared to Mango Query Only.

The last parameter is memory usage. Memory usage in the Mango-Composite

method provides fairly competitive results. The average memory used is 30.48
MB, slightly lower than the HLF Baseline (31.73 MB), although not lower than the
Composite Key Only method (28.18 MB). In one single-field query scenario such
as QueryByStatus, Mango-Composite uses 33.09 MB, which is more efficient than
Mango-only (34.96 MB or 5.3%) and HLF Baseline (33.77 MB or 2%).

Overall, Mango-Composite provides superior balance in a multi-user environ-
ment. By combining the strengths of selector index and prefix key search, this strat-
egy achieves up to 93% improvement in execution time, up to 46% CPU efficiency,
and up to 5% memory efficiency compared to the HLF baseline and conventional
approaches. This demonstrates its reliability in permissioned blockchain ecosys-
tems with high access loads, such as supply chain systems in the SME sector.
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4.5 50,000 Data Experiment: Multi-user Environment

The last test was conducted in a multi-user environment scenario, where 3, 5,
and 7 users execute data lookup requests independently against the Hyperledger
Fabric network organizations (Org1, Org2, Org3). The purpose of this test is to
measure the performance of each query strategy under conditions without resource
contention, so that the results reflect the basic efficiency of each approach using
50,000 data entries.

Table 4.8 Query Performance Comparison in Multi-User Environment with 3 users testing and using
50,000 Data Entries

Query Strategy Query Type
50,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 29.65 61.33% 40.840

Warehouse 8.37 69.79% 29.863

Status 8.83 70.76% 29.691

ResPerson 7.78 70.84% 28.721

Ware + Stat 2.39 39.79% 27.918

Ware + Time 6.47 48.77% 28.836

Mango Query

IDPrefix 28.72 53.34% 39.631

Warehouse 7.40 66.57% 31.369

Status 8.49 61.42% 32.204

ResPerson 7.23 57.99% 28.056

Ware + Stat 1.56 79.27% 28.673

Ware + Time 0.14 89.46% 32.260

Composite Key

IDPrefix 0.13 85.69% 35.517

Warehouse 0.12 89.41% 26.971

Status 0.12 88.68% 26.887

ResPerson 0.13 89.92% 28.305

Ware + Stat 0.12 87.38% 27.844

Ware + Time 0.12 88.33% 28.038

Mango-Composite

IDPrefix 27.64 49.14% 40.206

Warehouse 6.46 64.83% 30.427

Status 7.03 53.16% 33.250

ResPerson 6.36 55.82% 27.473

Ware + Stat 0.13 83.94% 28.401

Ware + Time 0.12 85.88% 30.682
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Table 4.9 Query Performance Comparison in Multi-User Environment with 5 users testing and using
50,000 Data Entries

Query Strategy Query Type
50,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 33.96 76.27% 43.817

Warehouse 9.23 74.84% 36.447

Status 9.63 77.56% 35.274

ResPerson 11.87 80.41% 33.381

Ware + Stat 7.61 85.86% 35.205

Ware + Time 12.71 87.78% 33.192

Mango Query

IDPrefix 32.78 69.23% 44.128

Warehouse 8.53 75.41% 36.258

Status 9.23 74.93% 34.639

ResPerson 10.25 77.73% 31.773

Ware + Stat 3.93 88.23% 36.644

Ware + Time 0.14 91.59% 37.183

Composite Key

IDPrefix 0.14 94.71% 38.682

Warehouse 0.13 90.57% 35.614

Status 0.14 94.05% 30.587

ResPerson 0.14 93.36% 32.292

Ware + Stat 0.14 94.37% 33.471

Ware + Time 0.14 95.99% 35.144

Mango-Composite

IDPrefix 30.29 70.48% 46.111

Warehouse 8.49 74.57% 35.381

Status 8.71 71.16% 34.207

ResPerson 8.29 73.07% 32.107

Ware + Stat 0.13 89.89% 38.163

Ware + Time 0.14 91.14% 37.386
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Table 4.10 Query Performance Comparison in Multi-User Environment with 7 Users Testing and
using 50,000 Data Entries

Query Strategy Query Type
50,000 Records

Time (s) CPU (%) Memory (MB)

HLF Baseline

IDPrefix 68.34 98.18 47.571

Warehouse 24.51 97.11 43.184

Status 34.71 99.38 44.612

ResPerson 62.13 100 46.306

Ware + Stat 72.63 100 44.257

Ware + Time 86.74 100 38.561

Mango Query Only

IDPrefix 53.52 98.48 48.442

Warehouse 17.46 99.27 45.828

Status 38.61 98.62 46.374

ResPerson 30.65 100 48.542

Ware + Stat 74.21 100 43.002

Ware + Time 80.17 100 38.937

Composite Key Only

IDPrefix 3.18 100 47.140

Warehouse 25.00 100 44.582

Status 71.25 100 42.775

ResPerson 74.93 100 46.284

Ware + Stat 71.84 100 40.338

Ware + Time 68.66 100 38.126

Mango-Composite

IDPrefix 59.36 99.39 48.942

Warehouse 17.47 99.72 44.773

Status 47.66 100 47.921

ResPerson 29.02 99.48 49.249

Ware + Stat 75.05 100 41.472

Ware + Time 85.51 100 39.087
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4.5.1 Multi-User 50,000 Data Entries: Processing Time Result
and Analysis

Testing the query execution time in a multi-user environment (3, 5, and 7 users)
with 50,000 entries shows that the Mango-Composite approach can provide com-
petitive performance in almost all types of queries, although it is not always the
fastest due to bottlenecks caused by virtualization configuration limitations, which
only use 2vCPU and 6GB RAM. A summary of the test results can be seen in Ta-
ble 4.8, Table 4.9, Table 4.10.

For simple or single-field queries such as QueryByIDPrefix with 5 users, the
CompositeKeyOnly approach showed good performance, with processing times be-
low 0.15 seconds for all numbers of users, and remained stable even as the user load
increased. In contrast, the HLF Baseline method experienced a significant decline
in performance, with execution time increasing from 29.65 seconds (3 users) to
76.34 seconds (7 users). Compared to the baseline, the Mango-Composite approach
achieves execution time improvements of up to 61.5% faster on IDPrefix (3 users)
and 59.9% faster on Responsible (5 users), reflecting the efficiency of this strategy.

Next, for queries with two attributes such as Warehouse+Status and Ware-
house+Time, the Mango-Composite approach shows the best results at low concur-
rency levels. For example, with 3 users, the execution time for Warehouse+Status
is only 0.12 seconds, compared to 2.39 seconds on the HLF Baseline (an improve-
ment of 94.98%). However, when the number of users increases to 7, both Mango-
Composite and MangoUserOnly experience a performance degradation due to CPU
saturation. The execution time for Warehouse+Time even increases to 85.51 sec-
onds, nearly matching the HLF Baseline at 86.74 seconds, indicating a bottleneck
effect.

Interestingly, the CompositeKeyOnly approach remained fast and stable across
all single-attribute queries, with execution times around 0.12-2 seconds even when
tested with 7 users. However, for two-attribute queries like Warehouse+Status, ex-
ecution times increased sharply (e.g., 83.59 seconds at 7 users), likely due to the
overhead of composite key iteration.

Overall, the Mango-Composite approach with this scope and a load of 50,000
data points proved to be more scalable than the HLF Baseline and more flexible than
CompositeKeyOnly. The execution time improvement achieved was up to 94.98%
better depending on the query type and concurrency level. Although not the fastest
in all scenarios, this approach provides a performance balance for various search
patterns.
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Fig. 4.16 Performance comparison of different query strategies on Processing Time with 50,000 for
3 users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.17 Performance comparison of different query strategies on Processing Time with 50,000 for
5 users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.18 Performance comparison of different query strategies on Processing Time with 50,000 for
7 users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.5.2 Multi-User 50,000 Data Entries: CPU Usage Result and
Analysis

The results of testing CPU usage show significant differences between query
methods, especially when the number of users increases from 3 to 7. In general, the
CompositeKeyOnly approach experiences the highest CPU usage in all scenarios,
often reaching 100%, indicating that although fast, this method places an extreme
load on the processor and is computationally inefficient for large-scale simultaneous
users.

Next, the Mango-Composite strategy showed more stable performance. The
CPU usage range of Mango-Composite at 3 users was in the range of 40-86%,
increasing to 69-91% for 5 users, and reaching 97-100% when tested with 7 users,
which is close to the CPU usage of other methods. This indicates an increase in
load, but with more controlled growth compared to other strategies. Compared
to the HLF Baseline, which also reaches 100% for nearly all query types with 7
users, Mango-Composite maintains efficiency with fewer users while remaining
competitive in high-performance scenarios.

However, with 7 users, all methods approached the maximum CPU limit (98-
100%), indicating a bottleneck in computing resources on a larger scale. This opens
up opportunities for further research into load balancing in the Hyperledger Fabric
environment.

Fig. 4.19 Performance comparison of different query strategies on CPU Usage with 50,000 for 3
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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Fig. 4.20 Performance comparison of different query strategies on CPU Usage with 50,000 for 5
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.21 Performance comparison of different query strategies on CPU Usage with 50,000 for 7
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

4.5.3 Multi-User 50,000 Data Entries: Memory Usage Result
and Analysis

The Mango-Composite and Composite Key Only strategies showed better mem-
ory efficiency than other strategies. This was particularly evident in the 3- and 5-
user tests. With 7 users, the memory differences between strategies tended to even
out.

In the 3-user test, the Mango-Composite strategy produced the lowest average
memory usage in 4 out of 6 query types, with usage as low as 26.18 MB in Query-
ByStatus. This shows that the combination of Mango indexing with composite keys
can reduce the memory footprint, especially in multi-field query scenarios. The
CompositeKeyOnly method also shows consistently low results, although in some
cases, such as QueryByWarehouseAndStatus, it is still slightly higher than Mango-
Composite.
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In tests with 5 users, the memory efficiency pattern is maintained. The Mango-
Composite strategy is the most efficient for queries such as IDPrefix, Status, and
Warehouse+Time. For example, in QueryByStatus, Mango-Composite only used
30.21 MB, while HLF Baseline and Mango Query Only reached 34.12 MB and
42.63 MB, respectively. This difference shows an efficiency of more than 29%
compared to Mango Query Only.

When the number of users was increased to 7, all strategies began to show high
memory consistency, although some methods such as Mango-Composite experi-
enced large fluctuations, for example reaching 53,259 MB on QueryByResponsi-
blePerson. On the other hand, memory usage in the Mango-Composite method
remained in the range of 41-49 MB, indicating stable memory usage.

Overall, Mango-Composite shows superiority in memory usage efficiency and
stability in all user scenarios. Compared to HLF Baseline, memory savings can
be better in certain queries. Meanwhile, CompositeKeyOnly competes closely, but
in some cases exceeds Mango-Composite in memory usage, especially for simple
queries. The reason why Mango-Composite sometimes has high memory usage is
due to the switching method in query strategy selection based on two conditions, as
explained in the previous chapter, such as single-field and multi-field.

Fig. 4.22 Performance comparison of different query strategies on memory usage with 50,000 for 3
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

50



Fig. 4.23 Performance comparison of different query strategies on memory usage with 50,000 for 5
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.

Fig. 4.24 Performance comparison of different query strategies on memory usage with 50,000 for 7
users — Mango-Composite, Baseline, MangoUserOnly, and CompositeKeyOnly.
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4.6 Analysis of Memory Usage Fluctuations

Based on the tests that have been conducted, memory usage in various ap-
proaches shows a pattern that tends to be stable in most scenarios, with rela-
tively small fluctuations between experiments. However, there are certain condi-
tions where memory consumption shows a sudden increase (spike), especially in
the Mango Query Only and Mango-Composite approaches. These spikes generally
occur in high-complexity multi-field queries, such as QueryByWarehouseAndSta-
tus and QueryByWarehouseAndTime, as well as in single-field queries like Query-
ByStatus that require more intensive selector processing in CouchDB.

These fluctuations can be explained by the nature of Mango Query, which scans
documents based on indexes and the amount of data retrieved from the total amount
of data in the database. Next, in the Mango-Composite strategy, although the use of
Composite Key reduces the search load for some queries, integration with Mango
Query still causes extra memory load on multi-field execution with large amounts
of data.

Overall, despite fluctuations in certain cases, the peak memory consumption val-
ues observed are still within reasonable limits for the test system specifications (6
GB RAM). This shows that the proposed strategy remains feasible for use in a per-
missioned blockchain environment, with consideration for additional optimization
if implemented at a production scale with higher loads.
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CHAPTER 5
CONCLUSION

5.1 Conclusions and Future Works

This research proposes a query optimization strategy that combines the Mango
Query and Composite Key mechanisms to improve data retrieval efficiency in Hy-
perledger Fabric systems, particularly in the context of blockchain-based supply
chains. This strategy is designed with execution path selection based on the number
of query conditions: Mango Query is used for single-field searches, while Com-
posite Key is used for multi-field searches involving two or more attributes. This
approach is implemented in test scenarios with datasets of 10,000 and 50,000 entries
and multi-user workloads involving up to seven users.

The results of the experiment show that the Mango-Composite strategy is able
to reduce processing time compared to the baseline approach significantly. In con-
ditional (multi-field) queries, the execution time was recorded as low as 0.12 sec-
onds, with a performance improvement of up to 90% compared to the baseline. For
comparative validation, two additional approaches were also tested, namely Mango
Query Only and Composite Key Only. Although Composite Key Only showed the
fastest execution time in some cases, high CPU consumption was a major draw-
back due to the iterative process. On the other hand, Mango Query Only offered
selector flexibility, but tended to be memory and CPU intensive in complex filters.
The Mango-Composite strategy consistently balances speed and resource efficiency
across all tests, both in single-user and multi-user scenarios.

Although this strategy incurs a slight overhead in multi-field conditions, its
advantages in terms of responsiveness and efficiency make it suitable for imple-
mentation in permissioned blockchain systems with varying query patterns. In
the future, this research can be further developed by integrating caching strategies
and workload-aware query planning to reduce overhead in environments with high
query frequencies.
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