LIST OF FIGURES

Figure I-1 Thermal and physical signs of overheating during machining.
Figure I-2 Comparison of trochoidal and conventional milling strategies.
Figure I-3 Schematic of trochoidal toolpath showing interaction of spindle speed
(RPM), feed rate (mm/min), and stepover (mm).
Figure I-4 Flowchart of developing a predictive model for tool temperature in PTFE
machining 6
Figure III-5 Problem Solving Systematic Diagram 17
Figure III-6 Experimental setup for thermal data acquisition: VF-2 HAAS CNC
machine, PTFE workpiece in a vice, 8 mm HSS flat end mill, and FLIR thermal
camera for monitoring surface temperature. Thermal data was captured and
processed using FLIR Tools+ software on a connected laptop. 21
Figure III-7 CNC milling setup for trochoidal experiments (a) shows key
components, including the spindle and securely mounted PTFE workpiece. (b)
shows the machining process in action under defined parameters. 22
Figure III-8 Thermal measurement comparison. (a) FLIR thermal image of a heated
reference block. (b) Temperature profile comparison between FLIR and
thermocouple sensors, showing close agreement after initial peak, validating FLIR's
reliability for dynamic monitoring. 23
Figure III-9 Experimental setup with a FLIR thermal camera mounted on the CNC
machine (b) to monitor workpiece temperature during machining. Image (a) shows
the defined region of interest (ROI) used to capture peak temperature for analysis.
24
Figure III-10 Minitab regression model setup interface showing the "Fit Regression
Model - Model" dialog, where Avg. Temp (°C) is selected as the response and
Feedrate, Spindle Speed, and Stepover as predictors for developing the prediction
models. 25
Figure IV-11 Experimental procedure and data analysis process for trochoidal
milling experiments. 27
Figure IV-12 Illustration of data selection from a full temperature chart. "Selected
Data" excludes the initial thermal spike (~first 30%) and final deceleration phase

(~last 5 seconds), focusing analysis on the steady-state thermal behavior during
machining.
Figure IV-13 Average Temperature for Each Run Across Different Machining
Parameters 29
Figure IV-14 Temperature peaks at 48.9 °C at 750 mm/min, then drops slightly a
1000 mm/min. A similar rise occurs at 3 mm stepover, while at 4 mm stepover
temperature changes are minimal across feed rates.
Figure IV-15 Effect of spindle speed on average temperature at 2, 3, and 4 mm
stepover: higher spindle speeds consistently raise temperatures, showing a strong
link between cutting velocity and heat generation.
Figure IV-16 Effect of stepover on thermal generation shows varied trends, from
linear to nonlinear, indicating complex interactions between tool engagement, hea
buildup, and heat dissipation in trochoidal milling.
Figure IV-17 Comparison between predicted temperature values from linear
polynomial, and nonlinear (enzyme-reaction) regression models and the actua
validation data.
Figure V-18 Relationship between feed rate and average temperature shows a non
linear trend, with a peak at 750 mm/min followed by a decline at higher rates unde
certain spindle speeds. 36
Figure V-19 (a) Trochoidal toolpath with alternating feed (red) and non-feed (blue
movements, allowing periodic tool disengagement. (b) Frequent transitions a
higher feed rates improve chip evacuation, helping reduce localized heat buildup
33
Figure V-20 Relationship between spindle speed and average temperature at 2 mn
stepover shows a strong positive correlation across all feed rates, confirming
spindle speed as a key heat contributor. Error bars indicate temperature variability
39
Figure V-21 (a) End mill rotation represents spindle speed. (b) Red-marked too
teeth engage the material each revolution. Higher spindle speeds increase
engagement frequency, raising friction and energy transfer, thus elevating too
temperature. 40
Figure V-22 Interaction of stepover and spindle speed on average temperature 4.

Figure V-23 Comparative graph of average temperature between Conventional and Trochoidal Milling across varying machining parameters.

44