
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Cloud vs. Local Development Stacks: Leveraging

CDE and PaaS Platforms for Academic Web

Development Labs

Raffi Ihza Zuhairnawan

Departement of Information System

Telkom University

Bandung, Indonesia
raffiihza@student.telkomuniversity.ac.id

 Umar Yunan K. S. Hediyanto

Departement of Information System

Telkom University

Bandung, Indonesia
umaryunan@telkomuniversity.ac.id

Muhammad Fathinuddin

Departement of Information System

Telkom University

Bandung, Indonesia
muhammadfathinuddin@telkomuniversity.ac.id

Abstract—In the era of the Fourth Industrial Revolution,

technical skills in web application development are increasingly

crucial for information technology students. This paper presents

a comparative study of cloud-based and local development

stacks within the context of a Web Application Development

practical course at a local academic institution. The study

benchmarked four CDEs (GitHub Codespaces, CodeSandbox,

Jetify Devspace, and DevZero) and four PaaS platforms (Koyeb,

Render, Northflank, and Lade) across parameters including

performance, network latency, booting time, and features. A

final comparison contrasts these cloud systems with a

traditional local setup. The findings indicate that GitHub

Codespaces and Koyeb represent the most suitable combination

of CDE and PaaS for this practical course due to their technical

capabilities, ease of use, and instructional practicality.

Furthermore, the cloud-based target system, utilizing GitHub

Codespaces and Koyeb, proved superior to the existing local

development system across most parameters, offering a more

inclusive, efficient, and scalable solution. Future research may

incorporate wider platforms and integrations.

Keywords—Web Application Development, Cloud

Development Environment, Platform-as-a-Service, GitHub

Codespaces, Koyeb

I. INTRODUCTION

In the Industry 4.0 era, proficiency in web application
development has become a fundamental competency for
Information Technology students, underpinning a wide range
of systems from academic information portals to e‑commerce
and social media platforms [1], [2]. Practical courses in Web
Application Development, such as the one offered at the
Information Systems Program in a local academic institution,
aim to equip students with hands‑on experience using
technologies such as PHP, MySQL, and Laravel. However,
the traditional requirement for each student to install and
configure local toolchains introduces substantial variability
and technical overhead that can detract from core learning
objectives [3].

Students frequently encounter technical difficulties related
to the installation and configuration of programming
environments, including issues with operating system
compatibility, device specifications, port conflicts,
mismatched library versions, hardware constraints, and
various technical errors that can impede their learning [3], [4],
[5]. These issues consume valuable lab time in
troubleshooting, as differences in OS, hardware, and software
proficiencies lead to inconsistent learning experiences [6].

Furthermore, the conventional methods of assessing
practical work, which often rely on screenshots and manual
source code review, have been deemed inefficient [7]. These
processes can be time-consuming for both students and

instructors, potentially increasing student anxiety and
obscuring the intended learning objectives [6].

To address these challenges, this paper explores the
implementation and comparative analysis of Cloud
Development Environments (CDE) and Platform-as-a-
Service (PaaS) platforms within the context of a Web
Application Development practical course. CDEs offer pre-
configured, cloud-based programming environments that
eliminate the need for local installations and configurations,
allowing students to begin practical work more efficiently [3],
[8]. PaaS platforms enable the direct deployment of web
applications to the internet [9], [10], streamlining the
assessment process for instructors. Together, they promise a
more homogeneous, scalable, and maintainable workflow for
both students and instructors. This research specifically
investigates and compares four CDE services (GitHub
Codespaces, CodeSandbox, Jetify Devspace, and DevZero)
and four PaaS platforms (Koyeb, Render, Northflank, and
Lade). The evaluation is based on parameters such as
performance, network latency, booting time, load time, and
features.

This study aims to determine the most suitable CDE and
PaaS solutions for a Web Application Development practical
course by comparing their technical capabilities, ease of use,
and instructional practicality. By analysing the strengths and
weaknesses of these cloud-based platforms and contrasting
them with traditional local development setups, this paper
seeks to provide insights into creating a more inclusive,
efficient, and accessible learning environment for web
application development. Ultimately, the findings will
contribute to enhancing the quality of practical web
development education in academic settings.

II. METHODOLOGY

This research employs a case study methodology to
analyse and compare the implementation of CDE and PaaS
platforms within the context of a Web Application
Development practical course at the Information Systems
Program.

A. Case Study Method

According to [11], the case study approach allows for an
in-depth exploration and understanding of a specific
phenomenon in its real-world context. This method is
particularly suitable for analysing the effectiveness of
technology implementation in an educational setting [12]. The
research followed the four stages of the case study method as
described by [13]. These stages consist of Foundation Phase,
Prefield Phase, Field Phase, and Reporting Phase.

1) Foundation Phase

mailto:raffiihza@student.telkomuniversity.ac.id
mailto:umaryunan@telkomuniversity.ac.id
mailto:muhammadfathinuddin@telkomuniversity.ac.id

 This initial phase involved a thorough identification and
understanding of the challenges associated with the existing
practical Web Application Development course, including
issues related to the installation and configuration of
programming environments, variations in student setups, and
the inefficiencies of the traditional assessment methods.

2) Prefield Phase
 This phase involved the preparation of operational
protocols, the selection of candidate CDE and PaaS platforms,
and the design of detailed data‑collection instruments such as
benchmarks and latency commands.

3) Field Phase
This phase involved the execution the implementations

(provision of four CDEs and four PaaS instances) and
systematically collect data on each platform’s behavior under
simulated lab workloads.

4) Reporting Phase
This final stage encompassed the testing and analysis of

the implemented CDE and PaaS platforms. The findings were
then synthesised into a comprehensive research report.

B. Research Device

All tests were conducted on a system equipped with an
Intel® Celeron® N4020 dual-core processor (1.1 GHz base
frequency, up to 2.8 GHz burst frequency), 4 GB of RAM, and
the Windows 11 operating system to ensure stability and
consistency throughout the testing process.

C. Test Scenarios

Data analysis focused on comparing four CDE services,
four PaaS, and two systems (existing local system and target
cloud-based system). The testing was based on a set of
predefined technical and functional parameters, categorized as
follows:

1. CDEs: usage quota, performance, build time, network
latency, booting time, and features.

2. PaaS: performance, build time, network latency, load time,
uptime, and features.

3. Systems: total install time, performance, network latency,
booting time, and features.

III. RESULTS AND DISCUSSION

This section details a comprehensive testing of selected
platforms, divided into three comparative analyses, which are
CDEs, PaaS providers, and a comparison between local and
cloud-based systems.

A. Comparison Results of CDE Platforms

This section presents the results of the comparative
analysis of the four CDE services respectively GitHub
Codespaces, CodeSandbox, Jetify Devspace, and DevZero.
The comparison is based on the parameters outlined in the
methodology which are usage quota, performance, build time,
network latency, booting time, and features.

1) Usage Quota
The available usage quotas for the free tiers of each CDE

service were compared. The lowest available specifications
were selected, as they were sufficient to support the needs of
the practical course while offering the maximum possible
usage duration. All four CDEs provide ample free‑tier usage

for a typical lab schedule (±15 hours total over five 3‑hour
modules), but quotas vary significantly.

TABLE I. CDE USAGE QUOTA COMPARISON

No Name vCPU
(core)

RAM
(GB)

Storage
(GB)

Quota
(per

month)

1 GitHub
Codespaces

2 8 15 per
month

60

2 CodeSandbox 1 2 20 per
VM

57.14

3 Jetify Devspace 4 16 20 per
month

25

4 DevZero 1 4 5 per VM 58.33

As shown in Table I, GitHub Codespaces provides the
most extensive usage quota, allowing for prolonged
utilization.

2) Performance
Performance was evaluated using single-core and multi-

core CPU benchmark tests on their highest free-tier
specifications with Geekbench 6 for five runs.

TABLE II. CDE PERFORMANCE COMPARISON

No Name vCPU
(core)

RAM
(GB)

Avg
Single
core

Avg
Multi
core

1 GitHub
Codespaces

4 16 1444 3229.2

2 CodeSandbox 4 8 1226.2 3631.2

3 Jetify Devspace 4 16 716.4 1454.2

4 DevZero 1 4 - -

In Table II, GitHub Codespaces achieved the highest
single‑core score and strong multi‑core performance.
CodeSandbox’s extra cores yield the best aggregate
multi‑core throughput. DevZero failed to complete
benchmarks on its 1 vCPU/4 GB instance.

3) Build Time
Build time, the duration required to initialise or build the

CDE instance [14], was measured.

TABLE III. CDE BUILD TIME COMPARISON

No Name Build Time

1 GitHub Codespaces 2 min 3 s

2 CodeSandbox 2 min 50 s

3 Jetify Devspace 2 min 19 s

4 DevZero 6 min 15 s

According to Table III, GitHub Codespaces boots the
fastest. Codespaces’ near‑region (Singapore) infrastructure
likely contributes to its fast container provisioning. A faster
build time contributes to a more seamless user experience,
allowing students to commence practical work promptly [14].

4) Network Latency
Network latency, crucial for the responsiveness of the

browser-based IDE [15], was assessed by measuring the
average latency with HTTP requests (curl) to a local endpoint
from within each CDE for five runs.

TABLE IV. CDE NETWORK LATENCY COMPARISON

No Name Nearest Region Avg Latency (ms)

1 GitHub
Codespaces

Singapore 19.4888

2 CodeSandbox Germany 227.0240

3 Jetify Devspace Virginia, US 229.6950

4 DevZero Portland, US 216.8794

In Table IV, GitHub Codespaces exhibited the lowest
average network latency, benefiting from a server region in

Singapore. Only Codespaces remains well under the 100 ms
interactivity threshold [16], minimizing typing and UI lag.
Low latency is essential for a fluid coding experience,
minimising delays during interaction with the CDE [15].

5) Booting Time
Booting time, the time from activating the CDE until it is

ready for use [17], was measured.

TABLE V. CDE BOOTING TIME COMPARISON

No Name Booting Time

1 GitHub Codespaces 32 s

2 CodeSandbox 27 s

3 Jetify Devspace 58 s

4 DevZero 1 min 16 s

According to Table V, CodeSandbox was the fastest for
boot time. CodeSandbox displayed the fastest booting time.
CodeSandbox’s AWS Firecracker micro‑VMs explain its
rapid spin‑up [18]. A quicker booting time enhances the
efficiency and convenience of using the CDE at the start of a
practical session [17].

6) Features
The features offered by each CDE service were compared

based on their relevance to the web application development
practicum course.

TABLE VI. CDE FEATURES COMPARISON

No Feature Availability

Code
Spaces

Code
Sandbox

Jetify
Devspace

DevZero

1 Predefined
environment

x x x x

2 VS Code in
browser

x x x

3 Remote VS Code
to local device

x x x x

4 Git version
control

x x x x

5 Extension
marketplace

x x x x

6 Live web‑app
preview

x x x x

7 PHP and its
extensions
support

x x x x

8 Apache support x x x x

9 MySQL support x x x x

In Table VI, all platforms meet the practicum’s baseline
needs. DevZero’s requirement for a local VS Code and CLI
install and lack of browser VS Code introduce extra
complexity.

B. Discussion of CDE Comparison

GitHub Codespaces emerges as the strongest free‑tier
CDE. It combines the largest usage quota, top single‑core
performance, fast build/boot times, low latency, and a full
feature set closely integrated with GitHub. CodeSandbox
offers rapid resume and solid multi‑core throughput but
suffers from higher latency. Jetify Devspace’s limited quota
and middling performance make it less suitable for sustained
use. DevZero’s nominal quota advantage is outweighed by its
lengthy build/boot process and cumbersome setup. For
academic web‑dev labs prioritizing consistency, speed, and
minimal setup, GitHub Codespaces is the clear choice.

While the free tier is sufficient for academic lab use and
provides ample usage quota, a potential issue arises if students
heavily utilize GitHub Codespaces for other projects. Should
this occur, students can apply for the GitHub Student Pack to

obtain additional Codespaces usage, or create a new, separate
account for the academic practicum. Both options effectively
circumvent the issue while maintaining free access.

C. Comparison Results of PaaS Platforms

This section presents the results of the comparative
analysis of the four PaaS platforms that consist of Koyeb,
Render, Northflank, and Lade. The comparison is based on the
parameters outlined in the methodology which are
performance, build time, network latency, load time, uptime,
and features.

1) Performance
Performance was evaluated using 1-thread CPU

benchmark tests on each platform’s highest‑free‑tier instance
for five runs.

TABLE VII. PAAS PERFORMANCE COMPARISON

No Name vCPU
(core)

RAM
(MB)

Avg CPU
benchmark

1 Koyeb 0.1 512 329.438

2 Render 0.1 512 513.184

3 Northflank 0.2 512 645.684

4 Lade 1 128 332.464

Table VII shows that in Sysbench CPU benchmarks
(events/sec), Northflank delivers the strongest free‑tier
compute despite having fewer cores than Lade. It is noted that
the application used for the practicum was small, allowing it
to run even on Lade's limited RAM and Koyeb’s lower
benchmark score.

2) Build Time
Build time, the duration required to build and deploy an

application, was measured [14].

TABLE VIII. PAAS BUILD TIME COMPARISON

No Name Build Time

1 Koyeb 1 m 44 s

2 Render 2 m 15 s

3 Northflank 1 m 17 s

4 Lade 48 s

In Table VIII, Lade deploys the fastest. Lade’s streamlined
pipeline likely underlies its rapid rollout.

3) Network Latency
Network latency, crucial for the responsiveness of the

deployed web application [15], was assessed using the curl
command for each PaaS instead of ping command because not
every platform supports ping command.

TABLE IX. PAAS NETWORK LATENCY COMPARISON

No Name Nearest Region Avg Latency (ms)

1 Koyeb Frankfurt,
Germany

34.5964

2 Render Singapore 34.597

3 Northflank Europe 192.7666

4 Lade Singapore 34.4818

Measured via time_connect metric for five runs, as shown
in Table IX, Lade had the lowest latency. Both Render and
Lade, owing to their servers in Singapore, demonstrated lower
average network latencies. Koyeb’s built‑in CDN and edge
network keep its European origin nearly as responsive.

4) Load Time
Load time, the time taken for the web application to fully

load in a browser [19], was also measured.

TABLE X. PAAS LOAD TIME COMPARISON

No Name Avg Load Time (ms)

1 Koyeb 629

2 Render 508

3 Northflank 969

4 Lade 437

Measured via SiteSpeed for five runs, as shown in Table
X, server proximity gives Lade and Render an edge once
again, while Koyeb’s CDN narrows the gap despite a Europe
host.

5) Uptime
Uptime, the percentage of time the deployed application

was accessible [20], was monitored over three days.

TABLE XI. PAAS UPTIME COMPARISON

No Name Uptime Percentage Total Downtime

1 Koyeb 100% 0 s

2 Render 99.77% 9 min 55 s

3 Northflank 100% 0 s

4 Lade 100% 0 s

Table XI shows that over a continuous 72-hour probe (5-
minute polls via UptimeRobot), only Render recorded an
uptime percentage below 100%. Despite this, all platforms
met the basic reliability needs for non-mission-critical
academic web apps.

6) Features
The features offered by each PaaS platform were

compared based on their relevance to web application
deployment and the goals of the research.

TABLE XII. PAAS FEATURES COMPARISON

No Feature Availability

Koyeb Render Northflank Lade

1 Web
dashboard

x x x

2 Docker
deployment

x x x x

3 CLI access x x x x

4 No credit‑card
verification

x x

5 Deployment
on push

x x x

6 Live web‑app
preview

x x x x

7 Free‑tier
multiple
instance
allowance

1
running

app

Unlimited
(limited to
total 720
hours per
month)

2 3

According to Table XII, all platforms meet the practicum’s
baseline needs. A key differentiator was the requirement for
credit or debit card verification for the free tier, which was
required by Render and Northflank but not by Koyeb and
Lade. Lade’s requirement for CLI install and lack of web
dashboard introduce extra complexity.

D. Discussion of PaaS Comparison

Koyeb emerges as a particularly suitable option for the
Web Application Development practical course due to its
combination of factors. While not consistently leading in all
performance metrics, Koyeb offered good performance, low
network latency and load times (benefiting from its built-in
CDN and edge network despite the European server), and
perfect uptime during testing. A significant advantage of
Koyeb is that it does not require credit or debit card
verification for its free tier, making it more accessible to
students. A limitation of Koyeb is the restriction to one free-
tier application instance, which is nonetheless sufficient for

the practical course requirements. Students can circumvent
this limitation for other projects by registering separate
accounts.

Another limitation is that Koyeb doesn't offer separate free
MySQL databases, which are needed for this practicum.
While deploying MySQL within the application container
seems plausible, Koyeb's local storage is ephemeral, and its
persistent volume feature isn't free. To circumvent this, Aiven
was used. Aiven is an external database service that offers a
free MySQL instance. This integration allows students to meet
the database requirements of the practicum without incurring
additional costs or compromising data persistence.

E. Comparison of Existing and Target Systems

This section presents a comparative analysis of the
existing system, which involves local development using
VSCode, Composer, Git, and XAMPP, and the target system,
which utilizes GitHub Codespaces and Koyeb. The
comparison is based on the parameters outlined in the
methodology and relevant to the practical Web Application
Development course.

1) Total Install Time
The total install time, representing the time taken for

students to prepare their development environment, was
compared.

TABLE XIII. SYSTEMS TOTAL INSTALL TIME COMPARISON

No Name Total Install Time

1 Existing system with local stacks 14 min 8 s

2 Target system with cloud stacks 7 min 45 s

In Tabel XIII, installing all local dependencies took was
around 45% longer than spinning up GitHub Codespaces,
deploying to Koyeb, and provisioning Aiven’s database. The
target system offers a pre-configured environment, drastically
reducing the time needed to start practical work.

2) Performance
Performance was evaluated using single-core and multi-

core CPU benchmark tests with Geekbench 6 for five runs.

TABLE XIV. SYSTEMS PERFORMANCE COMPARISON

No Name vCPU
(core)

RAM
(GB)

Avg
Single
core

Avg Multi
core

1 Existing system
with local stacks

2 4 382 651.8

2 Target system with
cloud stacks

4 8 1420.4 1733

In Tabel XIV, the target system, using GitHub Codespaces
demonstrated superior single-core and multi-core
performance compared to the existing system on the research
device. This suggests that the target system provides a more
powerful environment for running development tasks,
potentially benefiting students with lower-specification local
devices.

3) Network Latency
Network latency, crucial for the responsiveness of the

development and deployed environments, was measured for
five runs.

TABLE XV. SYSTEMS NETWORK LATENCY COMPARISON

No Name Region Used Avg Latency (ms)

1 Existing system
with local stacks

No region (local
machine)

0.0000

2 Target system with
cloud stacks

Singapore 19.4888

According to Tabel XV, Local VS Code requires no
internet, effectively 0 ms, versus 19.49 ms for Codespaces,
which is still imperceptible to users. The deployed application
on Koyeb, also benefiting from a Singapore server, similarly
experienced manageable latency. The reliance on an internet
connection is a key difference, as the existing system can
function offline.

4) Booting Time
Booting time, the time taken to start the development

environment, was also compared.

TABLE XVI. SYSTEMS BOOTING TIME COMPARISON

No Name Booting Time (s)

1 Existing system with local stacks 13

2 Target system with cloud stacks 27

According to Table XVI, The existing system had a
slightly faster average booting time compared to the target
system. While the difference exists, the booting time of the
target system is still considered relatively quick and unlikely
to significantly disrupt the practical workflow.

5) Features
The features offered by each system were compared based

on their relevance to the web application development
practicum course.

TABLE XVII. SYSTEMS FEATURES COMPARISON

No Feature Availability

Existing System Target System

1 Predefined
environment

x x

2 VS Code support x x
3 Offline support x

4 GitHub repository
integration

x x

5 Extension
marketplace

x x

6 Live web‑app
preview

x x

7 PHP and its
extensions support

x x

8 Apache support x x

9 MySQL support x x

10 Grading method Screenshot and
source code

Live application
URL

11 Portability (device-
independence)

 x

12 Quota limits Unlimited (local
resources only)

60h per month for
Codespaces

In Table XVII, both systems meet the practicum’s baseline
needs. However, the target system offers a predefined
programming environment, device-independence, and a more
streamlined assessment process via hosted application URLs.
On the other hand, existing system offers the advantages of
offline capabilities and unlimited runtime flexibility,
rendering it more suitable for environments with constrained
network connectivity or quota limitations.

F. Discussion of System Comparison

The target system, leveraging GitHub Codespaces and
Koyeb, offers substantial advantages over the existing local
development environment for the Web Application
Development practical course. It significantly reduces setup
time and vastly improves compute performance, outweighing
modest increases in latency and workspace startup time.
While the local system provides lower network latency and

offline capability, the target system's latency is acceptable,
and reliable campus Wi-Fi mitigates internet dependency
concerns. This cloud-based approach effectively alleviates
technical challenges for students and instructors, enabling a
greater focus on core web development concepts. Overall, for
a controlled academic lab, this cloud stack delivers superior
consistency, scalability, and instructor convenience, with the
local stack serving as a viable fallback.

The proposed target system offers significant advantages,
yet its capabilities can be further expanded. CI/CD pipeline,
like GitHub Actions, would enable automated testing, thus
enhancing code quality. Seamless integration with GitHub
Classroom's built-in code runner could also provide
automated grading and streamlined assessment and feedback.
These additions would further optimize the development
workflow and enrich the learning experience.

 However, reliance on free-tier usage introduces certain
implications. While the current curriculum's needs are met by
the free tiers, the practice of using multiple accounts to
circumvent rare overages, such as for other practicums or
projects, is a workaround. This method is contingent on
platform allowances and carries the risk of account suspension
due to alleged abuse. Should these free options become
unsustainable, transitioning to other free platforms (each with
its own limitations) offers a temporary solution. Ultimately,
ensuring the most consistent and stable experience may
necessitate considering paid-tier services.

IV. CONCLUSION

The shift to cloud-native tools, particularly the
combination of GitHub Codespaces for development and
Koyeb for deployment, has proven to not only reduce the
initial friction associated with setting up local environments,
but also to introduce a higher degree of consistency and
scalability across student experiences. From drastically
reduced installation times to improved compute benchmarks
and a vastly more efficient workflow for instructors assessing
student work, the cloud stack demonstrated a clear edge in
almost every measurable category.

While local development still holds value, especially in
contexts where internet access is limited or consistent
availability of cloud quotas cannot be guaranteed, it is
increasingly difficult to justify its continued dominance in
educational settings. The local approach demands more
manual configuration, introduces environmental
inconsistencies, and creates a heavier workload for teaching
assistants during assessment.

What makes the cloud stack particularly compelling is not
just its technical superiority, but also its alignment with
modern software development practices. Students become
familiar with CI/CD pipelines, containerized environments,
and remote repositories from day one, which are skills that are
directly transferable to industry scenarios.

Looking forward, the success of this case study invites
further exploration into wider platforms, deeper integration
with learning management systems, and the incorporation of
more advanced use cases such as auto-grading or analytics.
However, even in its current form, the GitHub Codespaces
and Koyeb pairing already represents a robust and practical
answer to the pedagogical challenges of running modern web
application labs.

REFERENCES

[1] A. P. M. Dela Rosa, “Development of a Web Application for Learning

Basic Mandarin Chinese,” International Journal of Emerging

Technologies in Learning, vol. 18, no. 4, 2023, doi:

10.3991/ijet.v18i04.37121.
[2] N. Phumeechanya and S. Soonthara, “The Development of Engineering

Design Process on Web Application Learning Model to Enhance Web

Programming Skills for Computer Education Students,” International
Journal of Information and Education Technology, vol. 13, no. 10,

2023, doi: 10.18178/ijiet.2023.13.10.1964.

[3] D. J. Malan, J. Carter, R. Liu, and C. Zenke, “Providing Students with
Standardized, Cloud-Based Programming Environments at Term’s

Start (for Free),” in SIGCSE 2023 - Proceedings of the 54th ACM

Technical Symposium on Computer Science Education, 2023. doi:
10.1145/3545947.3569611.

[4] D. J. Malan, “Standardizing Students’ Programming Environments

with Docker Containers: Using Visual Studio Code in the Cloud with
GitHub Codespaces,” in Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE, 2022. doi:

10.1145/3502717.3532164.
[5] D. J. Malan, “Containerizing CS50: Standardizing Students’

Programming Environments,” in Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE, Association
for Computing Machinery, Jul. 2024, pp. 534–540. doi:

10.1145/3649217.3653567.

[6] K. Fernalld, T. J. Oconnor, S. Sudhakaran, and N. Nur, “Lightweight
Symphony: Towards Reducing Computer Science Student Anxiety

with Standardized Docker Environments,” in SIGITE 2023 -

Proceedings of the 24th Annual Conference on Information
Technology Education, 2023. doi: 10.1145/3585059.3611432.

[7] M. Borowski, J. Zagermann, C. N. Klokmose, H. Reiterer, and R.

Radle, “Exploring the benefits and barriers of using computational
notebooks for collaborative programming assignments,” in SIGCSE

2020 - Proceedings of the 51st ACM Technical Symposium on

Computer Science Education, 2020. doi: 10.1145/3328778.3366887.
[8] A. D. Snowberger and K. You, “Creating a Standardized Environment

for Efficient Learning Management using GitHub Codespaces and

GitHub Classroom,” Journal of Practical Engineering Education, vol.
16, no. 3, pp. 267–274, 2024, doi: 10.14702/JPEE.2024.267.

[9] N. M. Ghazaly, “Experimental Study of PaaS, Its Implementation

Methods and Advantages and Challenges,” International Journal on
Recent and Innovation Trends in Computing and Communication, vol.

9, no. 11, 2021, doi: 10.17762/ijritcc.v9i11.5510.

[10] A. Srivastava, A. Ojha, A. Shaji, A. Sharma, and R. Pandey, “A Review
of Cloud Computing Service Models,” International Journal of

Scientific Research in Computer Science, Engineering and Information

Technology, 2023, doi: 10.32628/cseit2390386.
[11] D. D. K. Putra, S. P. Hari, H. Panduwiyasa, U. Y. K. S. Hediyanto, R.

R. Saedudin, and A. Y. Mubarok, “Comparative Study: Open-Source

Cloud Computing Performance for Small Business with ISO/IEC
25010:2011,” in AIP Conference Proceedings, 2022. doi:

10.1063/5.0107575.

[12] W. A. R. Wan Mohd Isa, A. I. H. Suhaimi, N. Noordin, A. F. Harun, J.
Ismail, and R. A. Teh, “Factors influencing cloud computing adoption

in higher education institution,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 17, no. 1, 2019, doi:
10.11591/ijeecs.v17.i1.pp412-419.

[13] Y. Rashid, A. Rashid, M. A. Warraich, S. S. Sabir, and A. Waseem,

“Case Study Method: A Step-by-Step Guide for Business
Researchers,” Int J Qual Methods, vol. 18, 2019, doi:

10.1177/1609406919862424.

[14] R. Priedhorsky et al., “Charliecloud’s layer-free, Git-based container
build cache,” in ACM International Conference Proceeding Series,

2023. doi: 10.1145/3624062.3624585.

[15] Y. Fu, D. Guo, Q. Li, L. Liu, S. Qu, and W. Xiang, “Digital Twin Based

Network Latency Prediction in Vehicular Networks,” Electronics

(Switzerland), vol. 11, no. 14, 2022, doi: 10.3390/electronics11142217.

[16] H. Mohammed, Z. Wei, E. Wu, and R. Netravali, “Continuous prefetch
for interactive data applications,” Proceedings of the VLDB

Endowment, vol. 13, no. 11, 2020, doi: 10.14778/3407790.3407826.
[17] K. Lee, G. Lee, and T. Song, “Enhanced Configurable Snapshot:

Snapshot-based Fast Booting on NAND Flash with Lifetime Control,”

in Proceedings of the ACM Symposium on Applied Computing, 2022.
doi: 10.1145/3477314.3507061.

[18] B. Holmes, J. Waterman, and D. Williams, “KASLR in the age of

MicroVMs,” in EuroSys 2022 - Proceedings of the 17th European
Conference on Computer Systems, 2022. doi:

10.1145/3492321.3519578.

[19] E. B. Setiawan and A. Setiyadi, “Comparative Analysis of Web
Hosting Server Performance,” International Journal of Engineering,

Transactions A: Basics, vol. 36, no. 3, 2023, doi:

10.5829/ije.2023.36.03c.16.
[20] A. Behera, C. R. Panigrahi, S. Behera, R. Patel, and S. Bera, “trACE -

Anomaly Correlation Engine for Tracing the Root Cause on Cloud

Based Microservice Architecture,” Computacion y Sistemas, vol. 27,

no. 3, 2023, doi: 10.13053/CyS-27-3-4498.

