**ABSTRACT** 

Real-time heart health monitoring is essential for the early detection of

potential arrhythmias. However, conventional electrocardiogram (ECG) devices

are typically large, expensive, and require trained personnel for operation, making

them difficult to access, especially in areas with limited medical facilities. This

study aims to develop an Android application to monitor ECG signals generated by

an ESP32 device as a simulation, display the signal graph in real time, calculate

the heart rate in beats per minute (BPM), classify heart rate conditions, and store

examination results for later retrieval as historical records.

The method includes generating synthetic ECG signals on the ESP32

microcontroller, transmitting the data wirelessly to the Android application,

processing the signal in the application for BPM calculation and heart condition

classification (bradycardia, normal, tachycardia), and sending the results to a

backend server for storage in a cloud database. Testing was conducted to ensure

the application's performance in terms of data transmission rate, latency, and BPM

calculation accuracy.

The test results show that the application can display ECG signals at an

average transmission rate of 125 data points per second, with an average latency

of 82 ms (maximum 110 ms) and a BPM calculation accuracy of 100%. The system

also successfully stores and retrieves historical examination data accurately. These

results indicate that the developed application can serve as a simulation and

educational tool for real-time ECG monitoring without the need for costly medical

devices, thereby supporting broader access to health monitoring.

**Keywords:** ECG, ESP32, Android application, BPM, real-time monitoring

 $\mathbf{v}$