ABSTRACT

This study developed an automatic monitoring system based on Internet of Things (IoT) using the ESP32 microcontroller to monitor environmental conditions in melon cultivation inside a greenhouse. The system uses the AHT10 sensor for temperature and humidity measurement, and the BH1750 sensor for light intensity detection. Sensor data is transmitted in real-time to the Firebase Realtime Database and visualized through an LCD and a remote-accessible web interface.

The system applies Mamdani fuzzy logic to control three main actuators: exhaust fan, water pump, and grow light, aiming to maintain optimal growing conditions of 25–30°C temperature, 60–70% humidity, and at least 3000 lux light intensity. The fuzzy logic engine enables adaptive control decisions using defuzzification output and PWM signals to ensure smooth and intelligent response to environmental changes.

Testing results showed average measurement errors of ± 0.5 °C for temperature, $\pm 2\%$ for humidity, and ± 10 lux for light intensity. Data was successfully transmitted with a 98% success rate and an average delay of 5 seconds. The system effectively maintained optimal conditions and provided remote access, offering significant potential to enhance the efficiency, accuracy, and productivity of techdriven agriculture.

Keywords: Internet of Things, ESP32, fuzzy logic, greenhouse, AHT10, BH1750, Firebase, monitoring system.