
 Fig. 7 shows inference examples of image-text retrieval 
with our model. We observed the model can return higher 
probability to relevant text candidates under normal condition. 
Noise in image affect changes of text probability but the model 
still ranked relevant texts higher. It shows spelling error 
affected quite high changes in probability. In spelling error 
example, the model gave similar probability to second and 
third text. Although the second text got higher probability than 
the third, the gap between second and third text probability 
should be higher in spelling error example. 

 Fig. 8 text-image retrieval examples with our model. We 
tried to query an image from a text query given three images. 
We witnessed the model return highest probability to the 
relevant image given a text query. The model accurately gave 
higher probability to second image among the three images. 
We also observed images with noise did not change much the 
image candidates probability. Spelling error on the text query 
affected much lower probability changes compared to image-
text retrieval inference example. 

V. CONCLUSION 

 This research is the first research to developed image-text 
retrieval in Indonesian. We employed large dataset and 
multimodal Transformer with contrastive loss objective. The 

best model achieved more than 65% of Recall@10 both image 
to text and text to image task on COCO and Flickr30k test set. 
We also observed the model has potential as initial model for 
transfer learning to smaller dataset.  

 English pretrained model mostly got trained on millions of 
image. Our research employed around 500,000 images. We 
should have more dataset to improve our model. So, it can 
achieve metrics similar to English pretrained models in future 
research. There were more image-text pairs dataset in 
NusaCrowd. They were English dataset from web pages 
translated to Indonesian by machine translation system. Even 
though it was not as refined as COCO or Flickr30k set, these 
dataset can be considered to be employed in the future. It 
would be much better to has refined dataset. The refined 
dataset can be acquired either with images carefully annotated 
by Indonesian locals or scraped online documents with careful 
filtering. 
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