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The superior performance of the 64-unit model is particularly notable when compared to the other two 

configurations. The 32-unit configuration, though computationally efficient, frequently underperformed in negative 

sentiment detection—likely due to underfitting. Its limited capacity was insufficient to model the diversity and subtlety 

of user complaints, especially in aspects like Comfort and Safety, which often involved less explicit or emotionally 

complex language. 

In contrast, the 128-unit setup, while sometimes equaling or surpassing the 64-unit performance on some 

negative sentiment tasks (e.g., Information, Comfort), showed signs of overfitting. This configuration likely picked 

up too much noise in the training data, which hurt its generalization to new examples. In particular, it suffered from a 

drop in positive sentiment classification in some categories (e.g., Information, which dropped to 90.39%) with 

increased model capacity, which is evidence of the risk of diminishing returns with larger architectures. 

Further, the model's consistently higher accuracy in positive sentiment classification across all categories and 

configurations captures the simpler, more regular language generally used to convey satisfaction. Positive sentiment 
will tend to feature standard patterns and stronger sentiment cues, which are more easily detected by both CNN filters 

and LSTM memory cells. Negative sentiment is more linguistically diverse, being more likely to contain sarcasm, 

indirect insults, or contextual references that expend effort on both lexical and sequential models. 

These results validate the necessity of quality embedding and model tuning. The use of 300-dimensional 

FastText embeddings, which were trained on massive corpora and could learn subword-level meaning, provided rich 

input representation that allowed the CNN-LSTM architecture to perform well even with moderate model complexity. 

The 64-unit model exploited the rich input without overfitting, thereby being the best configuration for this 

classification task. 

In summary, the integration of text-to-sequence encoding and 300-dimensional FastText embeddings with a 

64-unit CNN-LSTM architecture permitted accurate classification of sentiment and service dimensions in noisy and 

unstructured user review data. The study underlines the necessity for balancing model complexity with the richness 

of input representation and with the inherent variability of the classification problems. The findings also suggest that 

further gains can be achieved through the application of more advanced contextual embedding techniques, e.g., 

transformer-based models, or with the addition of attention mechanisms, which potentially capture the finer and 

contextually sensitive nature of sentiment—particularly in such subtle domains as safety. Such gains could lead to 

greater model robustness and transparency when deployed in real-world sentiment analysis applications. 

4. CONCLUSION 

This study developed and validated a CNN-LSTM model that aims to classify sentiment and extract aspects at 

the same time from Gojek user feedback. Based on a text-to-sequence input and 300-dimensional FastText 

embeddings, the said model was capable of deriving semantic relationships and context dependencies from noisy user-

written text data. Experimental results indicated that the 64-unit configuration of the CNN-LSTM model provided the 

best trade-off between model complexity and generalizability, with the best accuracy across most sentiment and aspect 
classes. The improved performance of the model in positive sentiment classification and its ability to handle 

complicated and diverse negative feedback confirm the strength of combining pretrained embeddings with a hybrid 

CNN-LSTM structure. The results suggest that precise adjustment of model capacity is required to avoid underfitting 

or overfitting when faced with complex natural language tasks. In short, the proposed CNN-LSTM model is a robust 

approach to summarizing useful insights from large volumes of customer opinions to provide useful information that 

can be used to improve service quality and user satisfaction in online platforms like Gojek. Future work can explore 

the addition of more advanced embedding techniques, i.e., transformer models or attention mechanisms, to better learn 

nuanced and context-dependent sentiment nuances via features such as safety. These additions can possibly improve 

the accuracy and interpretability of sentiment systems in real-world applications. 
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