Analisis Klaster Pada Karakteristik Barang Di Gudang Toko Bangunan Menggunakan K-Means++ Clustering

1stSilvana Ari Arsono
Teknologi Informasi
Telkom University Surabaya
Surabaya, Indonesia
silvanaariarsono@student.telkomuniver
sity.ac.id

2ndYohanes Setiawan

Teknologi Informasi

Telkom University Surabaya

Surabaya, Indonesia

yohanessetiawan@telkomuniversity.

3rdBernadus Anggo Seno Aji *Teknologi Informasi Telkom University Surabaya*Surabaya, Indonesia

bernadusanggosenoaji@telkomuniversi

ty.ac.id

Abstrak — Manajemen gudang yang baik sangat penting untuk kelancaran operasional Toko Bangunan Gardatama Mandiri, yang memiliki peran penting dalam menunjang pembangunan infrastruktur. Penempatan barang yang dilakukan secara manual dan belum didukung transformasi digital sering kali menyebabkan pengelolaan ruang gudang menjadi tidak optimal, barang yang tidak diletakkan secara teratur dan ruang gudang tidak dimanfaatkan dengan baik sehingga pengelompokan barang menjadi tidak efisien. Penelitian ini bertujuan untuk mengelompokkan barang berdasarkan karakteristiknya menggunakan algoritma K-Means++ Clustering, dipilih karena keunggulannya dalam menghasilkan pengelompokan yang lebih stabil dan optimal. Metode ini diterapkan pada 160 jenis barang dengan parameter meliputi stok, panjang, lebar, berat, dan tebal. Hasil penelitian menunjukkan bahwa algoritma K-Means++ berhasil mengelompokkan 160 barang menjadi 4 klaster, dimana klaster 0 terdiri dari 41 barang, klaster 1 terdiri dari 41 barang, klaster 2 terdiri dari 20 barang dan klaster 3 terdiri dari 58. Kualitas pengelompokan divalidasi menggunakan Silhouette Score memperoleh nilai 0,538 yang menunjukkan kualitas klaster yang baik. Sistem berbasis website dikembangkan untuk mengimplementasikan hasil analisis ini, yang menampilkan tata letak barang di gudang secara terstruktur untuk meningkatkan efisiensi operasional gudang, meminimalkan kesalahan penempatan, dan mendukung pengambilan keputusan berbasis data yang lebih cepat dan akurat.

Kata kunci — K-Means++, Clustering, Silhouette Score, Gudang, Toko Bangunan.

I. PENDAHULUAN

Usaha toko bangunan menunjukkan prospek yang menjanjikan seiring dengan meningkatnya kebutuhan bahan bangunan akibat pesatnya pembangunan infrastruktur, renovasi rumah, dan perkembangan bisnis properti [1]. Persaingan yang kuat di sektor ritel membutuhkan strategi untuk menarik konsumen, yakni dengan menggunakan metode pemasaran yang efektif [2]. Hal ini berkontribusi besar terhadap peningkatan efisiensi operasional dan optimalisasi pengelolaan toko bangunan secara keseluruhan. Gudang merupakan aspek penting dalam perusahaan, khususnya pada sektor ritel, gudang berperan sebagai pusat

penyimpanan berbagai barang, mulai dari bahan material, aksesoris, hingga peralatan bangunan [3].

Berdasarkan hasil observasi dan wawancara bersama pemilik Toko Bangunan Gardatama Mandiri permasalahan yang dihadapi yakni masih menggunakan penataan ruang gudang secara manual, sehingga pengelolaan tidak optimal. Banyak barang yang tidak diletakkan secara teratur, sehingga pada pencarian barang akan membutuhkan waktu yang lama. Selain itu terdapat ruang gudang yang tidak dimanfaatkan dengan baik menyebabkan pemborosan ruang gudang. Solusi dari permasalahan tersebut, yakni membuat sebuah pengelolaan klaster pada karakteristik barang di toko bangunan yang dikelola dengan baik terhadap ketersediaan barang untuk menghindari kesalahan dalam penempatan barang dan pengelompokan barang. Parameter meliputi seperti jenis barang, stok barang, panjang barang, lebar barang, berat barang dan tebal barang. Pengaturan tata letak gudang yang didukung oleh penerapan teknologi informasi dapat meningkatkan efisiensi operasional perusahaan secara signifikan.

Era revolusi industri 4.0 memperkenalkan *machine learning* sebagai solusi untuk menggantikan peran manusia sebagai pengendali sistem [4]. Solusi untuk melakukan implementasi sistem analisis karakteristik barang menggunakan algoritma *K-Means++ clustering* belum banyak diterapkan pada perusahaan ritel. Kemajuan teknologi telah membawa perubahan signifikan dalam berbagai aspek bisnis, termasuk pengelolaan baranag di toko bangunan. Penerapan sistem *clustering* memungkinkan pengelolaan stok menjadi lebih terstruktur, mempercepat proses pencarian barang, serta meminimalkan risiko kesalahan dalam inventarisasi.

Penelitian ini mengimplementasikan algoritma *K-Means++ clustering*, sebuah metode yang dikembangkan untuk meningkatkan proses inisialisasi centeroid dengan pemilihan centeroid yang lebih tersebar, sehingga meningkatkan akurasi dan kecepatan konvergensi dalam proses klaster [5]. Sistem ini diharapkan dapat membantu dalam meningkatkan efisiensi operasional, meminimalkan kesalahan penempatan, mempercepat proses penyimpanan,

serta menggantikan metode manual yang kurang efektif. *K-Means++* Penerapan metode clustering dalam pengelolaan karakteristik barang dipilah karena keunggulannya dalam menghasilkan pengelompokan data yang lebih optimal, dengan pemilihan centroid yang lebih merata. Keunggulan ini membuat K-Means++ lebih stabil, cepat, akurat sehingga mendukung proses pengelolaan barang secara efisien dan pengambilan keputusan berbasis data yang lebih efektif. Untuk mengevaluasi hasil cluster menggunakan Silhouette Score untuk mengetahui seberapa akurat dan eviseien hasil klaster tersebut.

II. KAJIAN TEORI

A. Gudang

Gudang Gudang merupakan fasilitas penting dalam operasional bisnis yang berfungsi sebagai tempat penyimpanan barang bagi semua sektor usaha, baik sektor industri maupun ritel. Sektor-sektor ini memerlukan gudang untuk menyimpan barang dalam berbagai ukuran, mulai dari bahan baku hingga produk jadi. Ruang penyimpanan dibutuhkan oleh seluruh jenis bisnis, misalnya toko memanfaatka ruang penyimpanan untuk menata stok barang dagangannya. Mengingat fungsi utama gudang sebagai tempat penyimpanan, maka seluruh aktivitas di dalamnya harus dijalankan secara efektif dan efisien guna mendukung operasional perusahaan [6]. Gudang yang ada pada penelitian ini yaitu Gudang Toko Bangunan Gardatama Mandiri yang berlokasi di Kab Jombang.

B. Clustering

Clustering merupakan teknik dalam machine learning yang digunakan untuk mengelompokkan data berdasarkan karakteristik serupa. Metode ini bertujuan untuk memahami pola atau struktur dalam data yang sebelumnya tidak diketahui [7]. Proses clustering membagi data ke dalam kelompok-kelompok dimana setiap cluster memiliki tingkat persamaan yang tinggi, sementara kemiripan dengan cluster lain cenderung rendah [8].

C. K-Means++ Clustering

Algoritma *K-Means*++ adalah versi yang telah disempurnakan dari algoritma K-Means, dirancang untuk meningkatkan akurasi dalam pemilihan *centroid* awal. Algoritma ini menggunakan pendekatan pembobotan (*weighting*) yang berfungsi untuk menentukan probabilitas dari terpilihnya sebuah *centroid* [9].

$$P(x) = \frac{D^{(x)^2}}{\sum x \epsilon x \ D^{(x)^2}} \tag{1}$$

P(x): Merupakan Probabilitas Nilai Centroid $D^{(x)^2}$: Adalah Square Distance $\frac{D^{(x)^2}}{\sum x \in xD^{(x)^2}}$: Merupakan jumlah dari semua nilaiSquared Distance

Terbukti jika algoritma *K-Means++* tidak memerlukan waktu yang lama dalam akurasi. Langkah-langkah pengerjaan pada algoritma *K-Means++* yaitu:

1. Pilihlah satu data untuk menjadi centroid acak.

- 2. Hitunglah nilai D(x), dimana D(x) adalah jarak antara titik x dengan centroid terdekat.
- 3. Hitunglah centroid selanjutnya menggunakan metode D^2 weighting untuk menentukan probabilitas dari terpilihnya sebuah centroid.
- 4. Ulangi point 2 dan 3 hingga mendapatkan centroid sebanyak K.

D. Silhouetee Score

Silhouette Score atau dikenal dengan silhouette coefficient adalah metode untuk menilai kualitas model machine learning [10]. Metode ini digunakan sebagai metrik evaluasi untuk mengukur hasil efektivitas clustering. Silhouette Score mengevaluasi sejauh mana setiap data point berada dalam cluster yang tepat, dibandingkan dengan kedekatanya terhadap cluster lain. Nilai Silhouette Score berkisar dari -1 hingga 1, nilai yang mendekati 1 menunjukkan bahwa clustering yang dihasilkan memiliki kualitas yang baik [11].

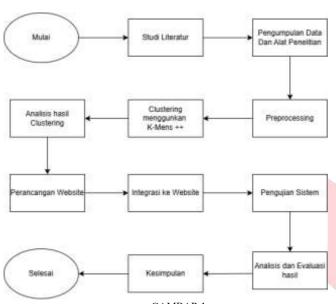
E. Website

World Wide Web (WWW) adalah platform informasi yang memanfaatkan hyperlink untuk memudahkan pengguna, yang dikenal sebagai surfer, dalam menelusuri berbagai informasi di internet. Web terdiri dari sejumlah halaman yang menampilkan berbagai jenis konten, seperti teks, gambar, animasi, suara, dan video, yang bisa bersifat statis dan dinamis, halaman saling terhubung melalui tautan, membentuk jaringan informasi yang saling terkait [12].

F. Visual Studio Code

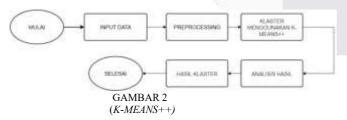
Visual Studio Code (VSCode) aplikasi text editor yang diguanakan para programmer untuk menulis code. Visual Studio Code adalah software yang sangat ringan namun kuat, menggunakan berbagai bahasa pemrograman seperti Java, JavaSkrip, Go, C++ dan lain sebagainya, alat ini memiliki lintas platfrom kode editor yang ringan dan dapat digunakan para programer untuk membuat atau membangun aplikasi maupun website [13].

G. Google Colaboratory


Google Colab (Goggle Colaboratory) merupakan sebuah program berbasis cloud computing yang dikembangkan oleh Google, yang menyediakan pengguna untuk menjalankan kode Phyton dalam lingkungan cloud tanpa perlu menginstal atau mengkonfigurasi perangkat lunak di sistem local mereka. Platform ini banyak digunakan ilmuwan data, peneliti, dan pengembang untuk berbagai aktivitas, termasuk pemrosesan data, pengembangan dan pelatihan model, serta analisis data. Google Colab juga sangat populer karena kemudahan dalam penggunaannya, serta kemampuannya untuk mendukung kerja sama tim [14].

H. Python

Pythton merupakan bahasan pemrograman yang mampu melakukan sejumlah instruksi multi langsung dengan metode Object Oriented Programming, serta menggunakan semantik dinamis untuk memberikan tingkat keterbacaan syntax [15]. Python juga memiliki


kumpulan library yang sangat luas sehingga dapat digunakan untuk mengembangkan aplikasi, *website*, maupun analisis data.

III. METODE

GAMBAR 1 (SISTEMATIKA PENYELESAIAN MASALAH)

Penyesesaian masalah dalam penelitian dilakukan dengan alur yang sistematis yang dapat dilihat pada gambar 1. Tahapan penelitian diawali dengan studi literatur untuk mengkaji landasan teori yang akan menjadi dasar pengembangan sistem. Setelah itu, dilakukan pengumpulan data dan alat penelitian, yang dilanjutkan dengan tahap preprocessing data meliputi pembersihan dan normalisasi. Data yang telah siap kemudian diolah menggunakan algoritma k-Means++ clustering untuk mengelompokkan data berdasarkan karakteristiknya. Selanjutnya, hasil dari *clustering* dianalisis untuk diimplementasikan. Hasil analisis kemudian integrasikan ke sistem berbasis website yang dirancang untuk menyajikan data secara interaktif. Untuk memastikan fungsionalitasnya, sistem diuji secara menyeluruh. Tahapan berikutnya adalah analisis dan evaluasi performa serta inplementasi website yang telah dibuat.

Gambar 2 menjelaskan proses awal klater menggunakan algoritma *k-Means++ clustering* yaitu dengan melakukan input berupa parameter jenis barang, stok barang, panjang barang, lebar barang, dan berat barang. Selanjutnya, pada tahap *preprocessing*, data akan melalui proses pembersihan dan normalisasi agar siap untuk dianalisis. Setelah tahap *preprocessing*, data akan diolah mennguankaan *k-means++ clustering* untuk menggelompokkan barang berdasarkan karakteristiknya.

Hasil dari proses klaster kemudian di analisis untuk mengidentifikasi pola struktur data yang terbentuk. Dari hasil identifikasi tersebut, diperoleh klaster barang yang dapat dijadikan dasar penempatan barang ke dalam gudang sesuai dengan karakteristiknya.

Website gudang dirancang untuk mendukung tiga jenis pengguna, yaitu owner, admin toko, dan admin gudang dalam pengelolaan website toko bangunan. Owner memiliki akses penuh terhadap sistem, termasuk memantau seluruh aktivitas yang terjadi di website. Selain itu, owner dapat mengelola data barang seperti menambah, menghapus, dan memperbarui informasi barang. Owner juga dapat memantau penempatan barang di Gudang A atau Gudang B, serta melihat informasi stok barang secara keseluruhan. Admin toko memiliki akses untuk melihat data stok barang yang tersedia. Sementara itu, admin gudang memiliki wewenang untuk memantau penempatan barang berdasarkan klaster yang telah ditentukan oleh sistem.

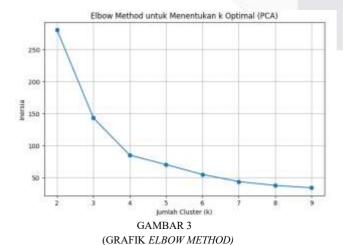
IV. HASIL DAN PEMBAHASAN

Sumber data dalam penelitian ini merupakan data primer yang di peroleh dari Toko Bangunan Gardatama Mandiri. Proses pengumpulan data di ambil dengan observasi langsung dan pencatatan lagsung bersama pemilik dan karyawan toko yang difokuskan pada 160 jenis produk yang ada di toko bangunan tersebut meliputi bahan material, aksesoris, hinga peralatan bangunan. Data yang digunakan dalam penelitian ini meliputi jenis barang, stok barang, panjang barang, lebar barang, berat barang dan tebal barang yang dapat dilihat pada tabel.

TABEL 1 (DATA BARANG)

Nama Barang	Stok	Panjang	Lebar	Berat	Tebal
Asbes Gel Besar 105x300	20	300	105	30	0,5
Asbes Gel Besar 150x250	20	250	105	25	0,5
Asbes Gel Besar 150x200	20	200	105	20	0,5
Asbes Gel Besar 150x150	20	150	105	18	0,5
		::	:	:	:
HCL	50	22	9	1,155	4

Selang Bak Cuci Piring	40	26	22	0,155	2
Kalsibot 120x240	50	240	120	5	2
Gypsum 120x240	50	240	120	15	0,2


Seluruh data sebanyak 160 yang ada dikumpulkan pada tabel 1 untuk mempermudah proses pengelolahan data. Untuk membangun model klaster, keseluruhan data ini digunakan secara utuh, dengan menggunakan 100% data, model klaster diharapkan dapat menghasilkan kelompok- kelompok yang representatif dan akurat sesuai dengan karakteristik barang di gudang.

Setelah data dikumpulkan, tahap selanjutnya adalah pengolahan data. Pada tahap ini, data mentah diolah terlebih dahulu agar siap untuk dianalisis. Tujuan utamnya untuk memastikan hasil klaster yang dihasilkan benar-benar akurat dan representatif. Proses pengelolahan data penting dilakukan tujuannya untuk membersihkan dan menyamaratakan data, membuat model klaster hingga mengimplementasikan hasil.

Setelah proses preprocessing selesai selanjutnya yaitu proses pengolahan data, pada tahap ini penulis menngunakan algoritma k-means++ untuk mengklaster barang. Selanjutnya yaitu analisis hasil dari penerapan algoritma *K-Means++ Clustering* pada data yang telah diolah, yang mencakup penentuan jumlah cluster optimal, verivikasi dan interpretasi karakteristik setiap klaster, serta implikasi praktis dari hasil analisis untuk Toko Bangunan Gardatama Mandiri.

Pemilihan jumlah *cluster* yang tepat adalah langakh yang penting dalam clustering, karena nilai K yang optimal dapat menghasilkan pengelompokan yang baik. Untuk menentukan nilai k yang paling sesuai maka menggunakan 2 metode evaluasi yang saling melengkapai yaitu menggunakan metode *Elbow Method* dan *Silhouette Score*.

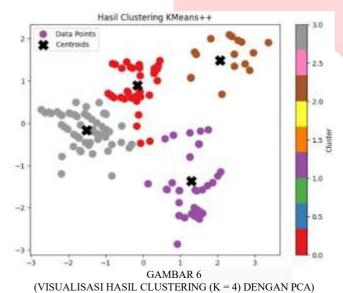
Elbow Method

Elbow method digunakan untuk menentukan jumlah klaster yang optimal dengan menghitung nilai Sum of $Squared\ Errors$ (SSE) atau inersia pada bagian nilai k, dalam hal ini mulai dari k=2 hingga k=10. Pemilihan jumlah k dimuali dari k=2 hingga k=10. Pemilihan jumlah k dimuali dari k=10 bertujuan untuk menghindarai overfiting. SEE merupakan total kuadrat jarak antar setiap data dengan pusat klasternya. Nilai k yang optimal ditandai dengan adanya titik dimana penurunan SSE mulai melambat secara signifikan yang bisa di lihat pada gambar k=100 grafik menunjukan k=100 dalah cluster yang optimal.

Silhouette Score

```
Silhouette Score untuk k=2:
 Silhouette Score rata-rata: 0.445
 Cluster 0: Rata-rata Silhouette Score = 0.284 (Jumlah data = 73)
 Cluster 1: Rata-rata Silhouette Score = 0.581 (Jumlah data = 87)
Silhouette Score untuk k=3:
 Silhouette Score rata-rata: 0.527
  Cluster 0: Rata-rata Silhouette Score = 0.533 (Jumlah data = 82)
 Cluster 1: Rata-rata Silhouette Score = 0.576 (Jumlah data = 42)
  Cluster 2: Rata-rata Silhouette Score = 0.453 (Jumlah data = 36)
Silhouette Score untuk k=4:
 Silhouette Score rata-rata: 0.538
  Cluster 0: Rata-rata Silhouette Score = 0.511 (Jumlah data = 41)
  Cluster 1: Rata-rata Silhouette Score = 0.578 (Jumlah data = 41)
  Cluster 2: Rata-rata Silhouette Score = 0.535 (Jumlah data = 20)
 Cluster 3: Rata-rata Silhouette Score = 0.529 (Jumlah data = 58)
Silhouette Score untuk k=5:
  Silhouette Score rata-rata: 0.522
  Cluster 0: Rata-rata Silhouette Score = 0.443 (Jumlah data = 44)
 Cluster 1: Rata-rata Silhouette Score = 0.585 (Jumlah data = 16)
 Cluster 2: Rata-rata Silhouette Score = 0.598
                                                (Jumlah data = 14)
Silhouette Score untuk k=6:
   Silhouette Score rata-rata: 0.439
  Cluster 0: Rata-rata Silhouette Score = 0.408 (Jumlah data = 37)
  Cluster 1: Rata-rata Silhouette Score = 0.604
                                                 (Jumlah data = 16)
  Cluster 2: Rata-rata Silhouette Score = 0.574
                                                 (Jumlah data = 14)
  Cluster 3: Rata-rata Silhouette Score = 0.416
                                                 (Jumlah data = 38)
  Cluster 4: Rata-rata Silhouette Score = 0.522
                                                 (Jumlah data = 25)
  Cluster 5: Rata-rata Silhouette Score = 0.283 (Jumlah data = 30)
Silhouette Score untuk k=7:
  Silhouette Score rata-rata: 0.454
   Cluster 0: Rata-rata Silhouette Score = 0.427
  Cluster 1: Rata-rata Silhouette Score = 0.593
                                                 (Jumlah data = 16)
  Cluster 2: Rata-rata Silhouette Score = 0.591
                                                 (Jumlah data = 10)
  Cluster 3: Rata-rata Silhouette Score =
                                          0.376
                                                 (Jumlah data =
  Cluster 4: Rata-rata Silhouette Score = 0.522
                                                 (Jumlah data = 25)
  Cluster 5: Rata-rata Silhouette Score = 0.348
                                                 (Jumlah data = 26)
  Cluster 6: Rata-rata Silhouette Score = 0.577 (Jumlah data = 10)
Silhouette Score untuk k=8:
   Silhouette Score rata-rata: 0.436
   Cluster 0: Rata-rata Silhouette Score = 0.446 (Jumlah data = 31)
   Cluster 1: Rata-rata Silhouette Score = 0.584
                                                (Jumlah data = 16)
   Cluster 2: Rata-rata Silhouette Score = 0.336
                                                 Jumlah data = 26)
   Cluster 3: Rata-rata Silhouette Score = 0.533 (Jumlah data = 11)
   Cluster 4: Rata-rata Silhouette Score = 0.522
                                                (Jumlah data = 25)
   Cluster 5: Rata-rata Silhouette Score = 0.443
                                                (Jumlah data = 19)
   Cluster 6: Rata-rata Silhouette Score = 0.673 (Jumlah data = 9)
  Cluster 7: Rata-rata Silhouette Score = 0.193 (Jumlah data = 23)
Silhouette Score untuk k=9:
   Silhouette Score rata-rata: 0.440
  Cluster 0: Rata-rata Silhouette Score = 0.532 (Jumlah data = 21)
  Cluster 1: Rata-rata Silhouette Score = 0.567
                                                (Jumlah data = 16)
   Cluster 2: Rata-rata Silhouette Score = 0.274
  Cluster 3: Rata-rata Silhouette Score = 0.533
                                                 (Jumlah data = 11)
  Cluster 4: Rata-rata Silhouette Score = 0.522
                                                (Jumlah data = 25)
  Cluster 5: Rata-rata Silhouette Score = 0.422 (Jumlah data = 19)
   Cluster 6: Rata-rata Silhouette Score = 0.666
                                                (Jumlah data = 9)
   Cluster 7: Rata-rata Silhouette Score = 0.364 (Jumlah data = 14)
  Cluster 8: Rata-rata Silhouette Score = 0.260 (Jumlah data = 19)
                          GAMBAR 4
                   (SILHOUETTE SCORE)
```

Silhouette Score digunakan untuk memvalidasi kualitas pemisahan antar cluster yang terbentuk. Metode ini mengukur seberapa baik suatu data berapa dalam klasternya, dan seberapa jauh jaraknya dengan klaster lain. Nilai skor


berkisar antar -1 hingga 1, di mana nilai yang mendekati 1 menandakan bahwa klaster terbentuk dengan baik, saling terpisah, dan memiliki kepadatan internal yang tinggi.

Jumlah cluster optimal (berdesarkan Silhouette Score tertinggi): k = 4

Gambar 5 K optimal berdasarkan silhouette score

Seperti yang di tunjukkan pada Gambar 4 dan Gambar 5, menunjukkan hasil dari *silhouette score*. Nilai k = 4 menunjukkan hasil rata-rata tertinggi yaitu 0,538. Hasil ini memperkuat hasil *elbow method*, jumlah klaster yang optimal yang akan digunakan dalam penelitian ini adalah sebanyak 4 klaster.

Model *K-Means*++ kemudian dilatih ulang dengan jumlah klaster k = 4 menggunakan data yang telah elvaluasi. Untuk memvisualisasikan hasil pemisahan klaster, digunakan teknik *Principal Component Analysis* (PCA) dengen. Visualisasi ini memudahkan dalam melihat sebaran dan keterpisahan antar klaster secara lebih jelas.

Pada Gambar 6 menunjukkan terbentuknya empat kelompok, merah, ungu, coklat dan abu-abu yang terpisah dengan baik dalam ruang fitur PCA. Centeroid ditandai dengan X berada di pusat masing-masing kelompok, memvalidasi bahwa algoritma berhasil mengidentifikasi ke-4 pola yang berbeda dalam data.

Setelah pengelompokan divalidasi, langkah selanjutnya adalah melakukan analisis terhadap karakteristik masingmasing klaster guna memberikan interpretasi. Analisis ini bertujuan untuk memahami pola yang terbentuk dari hasil klaster dan menghubungkan dengan strategi penempatan barang yang efektif.

 ${\small TABEL~2}\\ (STATISTIK~DESKRIPTIF~SETAIP~KLASTER)$

Klaster	Metrik	LUAS	BERAT	JUMLAH
Klaster 0	Rata-rata	234,4195	0,572683	41
	Median	133	0,5	
	Min	31,9	0,03	
	Max	1050	1,2	

-				
	Modus	157,5	1	
	Rata-rata	14,122,85	17,45146	
	Median	12000	13,7	
Klaster 1	Min	1200	2,1	41
1	Max	31500	40	
	Modus	2268	40	
	Rata-rata	2,325,7	11,2075	
Klaster 2	Median	830	5,75	
	Min	342	1,05	20
	Max	17200	60	
	Modus	342	5	
Klaster 3	Rata-rata	101,7664	0,214103	
	Median	57,15	0,0725	
	Min	0,52	0,001	58
	Max	640	2	
	Modus	0,52	0,1	

Pada tabel 2 statistik deskriptif setiap klaster, dapat diinterpretasikan sebagai berikut:

- 1. Klaster 0 berisi barang dengan ukuran kecil dan ringan, terdiri dari 41 jenis barang. Barang dalam klaster ini memiliki rata-rata luas sebesar 234,42 cm² dan berat rata-rata 0,57 kg.
- 2. Klaster 1 berisi barang berukuran sangat besar dan berat, terdiri dari 41 jenis barang. Barang dalam klaster ini memiliki rata-rata luas 14.122,85 cm² dan berat rata-rata 17,45 kg.
- 3. Klaster 2 bersis barang dengan ukuran sedang dan berat cukup tinggi, terdiri dari 20 jenis barang. Barang dalam klaster ini memiliki rata-rata luas sebesar 2.325,7 cm² dan berat rata-rata 11,20 kg.
- 4. Klaster 3 berisi barang dengan ukuran dan berat yang sangat kecil terdiri dari 58 jenis barang. Barang dalam klaster ini memiliki rata-rata luas sebesar 101,77 cm² dan berat rata-rata 0,21 kg.

Berdasarkan hasil analisis menggunakan algoritma *K-Means++*, 160 jenis barang berhasil dikelompokkan ke dalam empat klaster yang berbeda berdasarkan karakteristiknya. Pengelompokan ini sangat relevan untuk efisiensi tata letak gudang. Dengan memisahkan barang berdasarkan karakteristik fisik ini, proses *put-away* (penempatan barang) dan *picking* (pengambilan barang) dapat menjadi lebih cepat dan terorganisir.

Hasil analisis berfokus pada hasil clustering untuk menghasilkan sistem rekomendasi penempatan barang. Proses ini mengintegrasikan klaster yang telah di identifikasi sebelumnya dengan asumsi kapasitas gudang yang tersedia, sehingga menghasilkan rekomendasi penempatan barang yang lebih terarah dan sesuai dengan karakteristik masingmasing klaster.

Dalam penelitian ini, klaster barang digunakan untuk mempermudah proses penempatan, dimana setiap klaster dipetakan ke area gudang tertentu berdasarkan ukuran ratarata barang yang dimiliki dan mempertimbagkan luas gudang. Pada penelitian ini penulis menggunakan 160 jenis barang sehingga masih terdapat sisa ruang gudang yang belum terisi.

Total Volume Gudang:

- Gudang A: 1200 m³ (1,200,000,000 cm³) Gudang B: 1650 m³ (1,650,000,000 cm³)

Total Volume Barang Masuk per Gudang (cm³):

- Gudang A: 2,063,863 cm3
- Gudang B: 31,382,623 cm3

Sisa Ruang Gudang yang Belum Terisi (cm³):

- Gudang A: 1,197,936,137 cm³
- Gudang B: 1,618,617,377 cm³

GAMBAR 7 (ALOKASI GUDANG)

- 1. Gudang A memiliki luas 240 m² dan volume total sebesar 1.200 m³ Barang yang telah masuk ke Gudang A memiliki total volume sebesar 2.063 m³, sehingga sisa ruang yang belum terisi adalah 1.197 m^3 .
- 2. Gudang B memiliki luas 330 m², dan volume total sebesar 1.650 m³. Barang yang telah masuk ke Gudang B memiliki total volume sebesar 31.382 m³, sehingga sisa ruang yang belum terisi adalah 1.618 m^3 .

Dengan menggunakan algoritma K-Means++ Clustering, dibuat pengelompokan otomatis dimana klaster dengan rata-rata luas kecil masuk ke gudang A, dan klaster dengan luas besar masuk ke gudang B.

Untuk memberikan hasil pada klaster, dibuat sebuah fungsi. Fungsi ini menghitung estimasi total ruang yang dibutuhkan setiap jenis barang, yang diperoleh dari hasil perkalian antara luas barang dan jumlah stok. Dari nilai tersebut kemudian dibandingkan dengan kapasitas gudang yang telah di klaster. Hasil dari klaster dapat dilihat pada tabel 3. Data hasil cluster ini disimpan di My SQL yang ada di localhost, yang nantinya akan di tampilkan pada website toko.

TABEL 3 (HASIL KLASTER MENGGUNAKAN ALGORITMA K-MEANS++)

NO	NAMA BARANG	Cluster	Rekomendasi Gudang	Status Muatan
1	Asbes Gel Besar 105x300	1	Gudang B	Muat
2	Asbes Gel Besar 105x250	1	Gudang B	Muat
3	Asbes Gel Besar 105x200	1	Gudang B	Muat
4	Asbes Gel Besar 105x150	1	Gudang B	Muat
5	Asbes Gel Kecil 105x300	1	Gudang B	Muat

156	Osasir 1/2 kg	3	Gudang A	Muat
157	HCL	3	Gudang A	Muat
158	Selang Bak Cuci Piring	3	Gudang A	Muat
159	Kalsibot 120x240	1	Gudang B	Muat
160	Gypsum 120x240	1	Gudang B	Muat

Website digunakan untuk menempilkan user interface dari awal hingga output, pada website ini nantinya akan menampilkan hasil *cluster* sehingga mempermudah dalam memahami pola pengelompokan.

Splash Screen

GAMBAR 8 (SPLASH SCREEN)

Gambar 8 Splash Screen yang ditampilan ketika website pertama kali dijalankan, pada tampilan awal akan muncul tampilan logo Gardatama Mandiri sebagai identitas website.

Login

GAMBAR 9 (LOGIN)

Gambar 9 menunjukkan tampilan halama login pada sistem pada aplikasi Gardatama Mandiri yang berfungsi sebagai fitur autentikasi awal bagi pengguna untuk mengakses website sesuai dengan akses yang dimiliki.

Menu Dashboard Owner

GAMBAR 10 (MENU DASHBOARD OWNER)

Gambar 10 merupakan tampilan dashboard owner pada website Gardatama Mandiri yang menyajikan ringkasan operasional dan akses penuh bagi pemilik usaha untuk memantau seluruh aktivitas toko dan gudang secara menyeluruh.

Menu Dashboard Admin Gudang

GAMBAR 11 (MENU DASHBOARD ADMIN GUDANG)

Gambar 11 merupakan tampilan *dashboard admin* gudang pada website Gardatama Mandiri. Pada dashboard ini berfungsi sebagai pusat kendali operasional gudang untuk memantau barang yang ada pada gudang A dan Gudang B.

Menu Dashboard Admin Toko

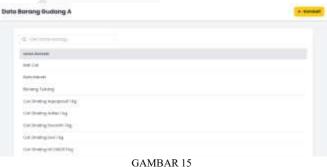
GAMBAR 12 (MENU DASHBOARD ADMIN TOKO)

Gambar 12 merupakan tampilan *dashboard admin* toko pada website Gardatama Mandiri. Pada dashboard ini berfungsi sebagai pusat kendali untuk memantau dan mengelola stok serta informasi barang secara efisien.

Menu Stok

GAMBAR 13 (MENU STOK)

Gambar 13 menunjukkan tampilan manajemen stok barang pada website Gardatama Mandiri yang hanya dapat diakses oleh owner dan admin yang berfungsi untuk memantau jumlah stok secara real-time, serta melakukan penambahan atau pengurangan stok barang.


Menu Barang

GAMBAR 14 (MENU BARANG)

Gambar 14 menampilkan halaman daftar dan jumlah stok pada *website* Gardatama Mandiri yang berfungsi untuk menampilkan informasi jumlah stok barang secara real-time.

Menu Gudang A

GAMBAR 15 (MENU GUDANG A)

Gambar 15 menunjukkan tampilan halaman barang yang ada di gudang A pada website Gardatama Mandiri.

Menu Gudang B

GAMBAR 16 (MENU GUDANG B)

Gambar 16 menunjukkan tampilan halaman barang yang ada di gudang B pada website Gardatama Mandiri.

V. KESIMPULAN

Penelitian ini menyelesaikan permasalahan pada Toko Bangunan Gardatama Mandiri untuk mengklaster barang, algoritma K-Means++ Clustering berhasil mengelompokkan 160 jenis barang yang ada di Toko Bangunan Gardataman Mandiri menjadi empat klaster berdasarkan karakteristiknya dan relevan secara operasionalnya. Penelitian ini juga menunjukkan penerapan sistem berbasis website dapat meningkatkan efisiensi operasional gudang, hasil yang diperoleh menunjukkan pencarian barang di gudang menjadi lebih mudah dan pemanfaatan ruang gudang menjadi lebih optimal. Klaster 0 terdiri dari 41 barang, klaster 1 terdiri dari 41 barang, klaster 2 terdiri dari 20 barang dan klaster 3 terdiri dari 58 barang Validasi menggunakan silhouette Score menghasilkan nilai 0,538 yang menunjukkan kualitas pengelompokan yang baik. Hasil klaster ini memberikan dasar yang kuat untuk merekomendasikan penempatan barang yang terstuktur, yaitu menempatkan klaster 0 dan 3 (barang kecil dan ringan) di gudang A sedangkan klaster 1 dan 2 (barang besar dan berat) di gudang B, sehingga dapat meningkatkan efisiensi operational gudang.

REFERENSI

- [1] O. Gusti et al., "Perluasan Pemasaran Toko Bahan Bangunan Meltarina Tukad Badung Denpasar Melalui Digitalisasi Secara Daring," Jurnal Pengabdian Kepada Masyarakat, vol. 1, no. 9, p. 2022, 2022, [Online]. Available: http://bajangjournal.com/index.php/J-ABDI
- [2] Z. Badi'ati Nabilatul, "Peningkatan Daya Saing Toko Bangunan Sumber Rejeki," vol. 6, pp. 452– 462, 2023.
- [3] A. Ismiyah and P. Eka Dewy Karunia Wati, "Perancangan Tata Letak Gudang pada Distributor Unicharm Menggunakan Metode Class Based Storage," vol. 11, no. 1, pp. 225–229, 2024.
- [4] N. Fathiro Cahyono and S. Mukaromah, "Etika Penggunaan Kecerdasan Buatan Pada Teknologi Informasi," 2023.
- [5] V. Cohen-Addad, S. Lattanzi, A. Norouzi-Fard, C. Sohler, and O. Svensson, "Fast and Accurate \$k\$-

- means++ via Rejection Sampling," Dec. 2020, [Online]. Available: http://arxiv.org/abs/2012.11891
- [6] A. Syaichu, "Perancangan Ulang Tata Letak Gudang Pada Toko Waserda Selamat Menggunakan Metode Sub Class Dedicated Storage," 2022.
- [7] M. R. Nahjan, N. Heryana, and A. Voutama, "Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell," 2023.
- [8] D. Ayu, I. C. Dewi, and K. Pramita, "Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali."
- [9] M. N. Jodiansyah1, F. Azmi2, and C. Setianingsih3, "Sistem Pemantauan Dan Pengelompokan Data Penggunaan Listrik Menggunakan K-Means++ Clustering Pada Gedung Telkom University Monitoring System And Data Clustering Of Electricity Usage At Telkom University Building Using K-Means++ Clustering," 2021.
- [10] D. K. Wardy, K. Gede, D. Putra, N. Kadek, and D. Rusjayanthi, "Clustering Artikel pada Portal Berita Online Menggunakan Metode K-Means," 2022.
- [11] Y. Hasan, "Pengukuran Silhouette Score Dan Davies-Bouldin Index Pada Hasil Cluster K-Means Dan Dbscan," *Jurnal Informatika dan Teknik Elektro Terapan*, vol. 12, no. 3S1, Oct. 2024, doi: 10.23960/jitet.v12i3S1.5001.
- [12] R. Meilano, F. Damanik, P. Jambi Jl Lingkar Barat, and L. Veteran Alam Barajo Kota Jambi, "ELTI Jurnal Elektronika, Listrik dan Teknologi Informasi Terapan Pengembangan Sistem Informasi Persediaan Barang dengan Metode Waterfall," 2020. [Online]. Available: https://ojs.politeknikjambi.ac.id/elti
- [13] S. Hartati, "Perancangan Sistem Informasi Inventaris Barang Pada Kantor Notaris Dan Ppat R.A Lia Kholila, S.H Menggunakan Visual Studio Code," *Jurnal Siskomti*, vol. 3, no. 2, 2020, [Online]. Available: http://www.ejournal.lembahdempo.ac.id
- [14] R. Andarsyah and A. Yanuar, "Sentimen Analisis Aplikasi Posaja Pada Google Playstore Untuk Peningkatan Pospay Superapp Menggunakan Support Vector Meachine," 2024.
- [15] M. Karunia Rahmadhika and A. M. Thantawi, "Rancang Bangun Aplikasi Face Recognition Pada Pendekatan CRM Menggunakan Opency Dan Algoritma Haarcascade," 2021.