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Abstract—The global tuna industry struggles with inconsistent
quality grading due to the subjective and labor-intensive nature of
manual methods. This study develops a tuna loin quality grading
computer vision model based on EfficientNetV2 using image pre-
processing techniques. Tuna loins are classified into three quality
grades (A, B, and C) based on color and texture features. To
address lighting inconsistencies of the environment and enhance
texture detail of the tuna loins, the study evaluates pre-processing
methods including Shades of Gray (SOG), Self-Adaptive Illu-
mination Correction (SAIC), and Contrast Limited Adaptive
Histogram Equalization (CLAHE). Various optimizers (Adam,
AdamW, and SGD) and learning rate schedulers (Cosine Anneal-
ing and Cyclic) are also tested. The final model—combining SAIC
and CLAHE pre-processing with EfficientNetV2M, the Adam
optimizer, and Cyclic Learning Rate Scheduling—achieves 96.9%
validation accuracy and 96.0% test accuracy. This demonstrates
the effectiveness of the proposed approach in improving grading
reliability for real-world applications.

Index Terms—Tuna loin grading, EfficientNetV2, Image Pre-
processing, Shades of Gray, Self-Adaptive Illumination Cor-
rection, Contrast Limited Adaptive Histogram Equalization,
Optimizers, Learning Rate Schedulers.

I. INTRODUCTION

Tuna is one of the most commercially significant seafood
products worldwide. The global tuna market, valued at USD
43.14 billion in 2024, is expected to grow due to rising con-
sumer demand for its high-protein content and omega-3 fatty
acids, which are essential for brain and heart health [1] [2]. As
global consumption increases, maintaining consistent quality
standards in tuna products has become critical to ensuring
consumer satisfaction and meeting export requirements.

Traditional tuna grading relies on human sensory evaluation
of appearance and texture. However, this approach suffers from
high inter-rater variability, subjectivity, and inconsistent qual-
ity control across different batches [3]. These limitations can
pose significant challenges in maintaining grading reliability,
especially in large-scale processing environments.

To address these issues, several works have explored com-
puter vision [4] and machine learning techniques [5]–[8]
for automating quality assessment in the seafood industry.
Convolutional Neural Networks (CNNs), in particular, have
shown strong performance in image-based classification tasks
due to their ability to learn complex visual patterns. These

studies highlight the critical limitations of existing methods,
including small and imbalanced datasets, reliance on uniform
lighting, and suboptimal generalization to real-world condi-
tions. Given these challenges, this paper investigates whether
advanced image pre-processing methods, when combined with
the EfficientNetV2, can improve the accuracy and consistency
of automated tuna loin quality grading. The main objective of
this paper is to achieve a classification accuracy of at least
90% across three grades of tuna loin. This paper is divided
into five sections: Introduction (discusses the problem, and
the proposed solution), Related work, Methodology (discusses
the Dataset, Pre-processing, and Model Configuration for
training), Results and Discussions, and Conclusion.

II. RELATED WORKS

By leveraging computer vision models and feature ex-
traction techniques, tuna industries can increase throughput,
reduce labor costs, and maintain high-quality standards with
minimal human intervention while ensuring consistency, accu-
racy, and efficiency in grading. Several studies have attempted
to automate tuna quality grading with those techniques, each
with notable limitations relating to limited datasets, lighting
conditions, and generalization.

One approach, which is what this paper is inspired by, em-
ploys a Faster Region-based CNN (FR-CNN) combined with
InceptionV2 (IncV2) [9]. This method, trained on a dataset
of 1,517 images (after augmentation), achieved an overall
accuracy of 92.8% in classifying three grades of tuna meat
[9]. However, the FR-CNN combined with the lightweight
Inception V2 model is not designed for real-time grading, as
the overall process depends on two stages, region proposal and
classification, which can cause inference times to be longer.
[9]. Furthermore, this study does not utilize a pre-processing
method that normalizes lighting and improves texture details
because the dataset was collected from only one location under
controlled lighting and background conditions, which limits
the model’s ability to generalize in real-world scenarios where
variations in lighting and background are prevalent [9].

Another study utilizes Discrete Wavelet Transform (DWT)
for feature extraction with the k-Nearest Neighbors (KNN)
to classify four grades of tuna meat (1, 2+, 2, and 3) [10].
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This method possibly offers computational efficiency to an
extent since a deep learning model was not used. However, not
using a deep learning model can also be a disadvantage, since
detailed hierarchical characteristics of the tuna meat cannot
be learned [10]. The images are converted from RGB to HSV
color space to obtain a certain color composition that can
facilitate color segmentation [10]. Feature extraction is then
performed on each channel using Symlet wavelet and Haar
wavelet [10]. However, the dataset used in this method was
limited in number. 95 images were used for training and 66
images for testing [10]. Symlet achieved an accuracy of 81.8%
and Haar achieved an accuracy of 80.3% [10].

Another method utilizes the combination of the color his-
tograms in Red-Green-Blue (RGB) and Hue Saturation Value
(HSV) color spaces for color features and Grey Level Co-
occurence Matrix (GLCM) for texture features to classify
three grades of tuna meat (Grades A, B, and D) using a
Support Vector Machine (SVM) classifier [11]. The GLCM
is a statistical method used in image processing to analyze
texture by examining how pixel intensities (gray levels) relate
to one another in a spatial neighborhood [11]. The study tested
four experimental scenarios, evaluating various combinations
of features and classifier tuning [11]. The best result—81.6%
accuracy—was achieved using both RGB and HSV histograms
along with GLCM features and a tuned SVM [11]. How-
ever, the dataset was relatively small (only 36 images) under
uniform background and lighting conditions, raising concerns
about the model’s ability to generalize to other real-wold
scenarios [11].

Compared to deep learning approaches, this method benefits
from lower computational cost, though it lacks the robustness
and scalability of deep learning approaches [11]. The study
highlights the potential of texture and color-based features
in quality control systems but highlights the need for larger
datasets, the utilization of a deep learning model, and other
advanced pre-processing techniques for broader applications
[11].

III. METHODOLOGY

This study focuses on developing an EfficientNetV2 model
based on the PyTorch framework using the Python program-
ming language with hyperparameter tuning to classify three
grades of tuna loin based on their color and texture details
as they are the key features to determining the loins’ fresh-
ness and quality. The workflow begins with data acquisition,
followed by pre-processing and augmentation techniques to
enhance the dataset and improve model performance.

The proposed classification method is illustrated in Fig.
1, which provides a schematic overview of the tuna loin
grading process. It begins with the acquisition of the dataset,
followed by the implementation of augmentation and image
pre-processing. Then, all images in the dataset are labeled
with their respective quality grades and then split into training,
validation, and test sets. The training and validation sets are
used to train the model and the results will be taken into
consideration for tuning the model in order to achieve the

best performing model. The best performing model will then
be tested by classifying the tuna loin images in the test set.

Fig. 1. Schematic representation of the Proposed Tuna Loin Quality Assess-
ment using EfficientNetV2

A. Dataset

The dataset used in this study was provided by PT. Aruna
Jaya Nuswantara from their two facilities located in Ternate
and Dempo. The dataset of three different grades of tuna
loins (Grades A, B, and C) were captured using a mobile
device at resolutions of 3000×4000, 4000×3000, 2250×4000
and 4000×2250 pixels under varying lighting conditions and
background settings. During the acquisition, 418 images were
taken for Grade A, 602 images for Grade B, and 247 images
for Grade C, resulting in a total of 1,267 images with an
issue of unbalanced distribution across the three grades. Fig.
2. shows a sample of the tuna loin dataset used in this study
and Table I shows the characteristics that determine each of
the three grades.

Fig. 2. Tuna loins: Grade A, Grade B, Grade C (left to right)

TABLE I
TUNA LOIN GRADES CHARACTERISTICS

Grades Color Texture & Details
Grade A Deep red Smooth with thin fibers/tendons
Grade B Light red Slightly coarse with moderately thick fibers/tendons
Grade C Pale red Coarse with thick fibers/tendons
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B. Augmentations

To enhance the dataset size and improve the robustness of
the EfficientNetV2 model, data augmentation techniques were
applied using the OpenCV and Albumentations libraries in
Python to increase and balance dataset size across the three
grades. These included combinations of flipping (horizontally
and vertically), rotations (90°, 180°, and 270°), shearing (20°),
and zoom transformations (70%), which expanded the dataset
to 12,593 images. Then, the dataset was split into three sets:
training (80%), validation (10%), and test (10%). Table II
shows the dataset quantity per grade before and after applying
the augmentations.

TABLE II
DATASET QUANTITY

Grades Original Augmented Original + Augmented
Grade A 418 3792 4180
Grade B 602 3612 4214
Grade C 247 3952 4199

Total 1267 12326 12593

C. Image Pre-processing

To ensure consistent lighting conditions while preserving
essential features such as texture and color variations, image
pre-processing techniques were applied before training the
EfficientNetV2 model for this study. These techniques were
implemented using the OpenCV and NumPy libraries in
Python. The methods used include Shades of Gray (SOG),
Self-Adaptive Illumination Correction (SAIC), and Contrast
Limited Adaptive Histogram Equalization (CLAHE).

The SOG algorithm is a white balance correction method
that adjusts the color balance of an image by normalizing
the illumination across different lighting conditions [12]. The
algorithm works by first converting the input image to a
floating-point format for precise calculations [12]. It then
computes the Minkowski norm (p) for each color channel
(Red, Green, Blue) using a parameter (default is 2, which
corresponds to the Euclidean norm). These norms represent
the average intensity of each channel, raised to the power of
p, averaged, and then the p-th root is taken [12]. The algorithm
calculates the mean of these three channel norms and uses it
to scale each channel so that their intensities are balanced
relative to each other [12]. This scaling adjusts the image
colors, making them more consistent regardless of the original
lighting [12].

SAIC is a pre-processing technique used to adjust the
overall brightness of an image so that its average intensity
matches a predefined target value, typically representing a
neutral or mid-level brightness (here, 128 out of 255) [13].
The process begins by reading the image and converting it
to grayscale to calculate its mean intensity, which reflects
the image’s overall brightness [13]. Then a scaling factor is
calculated as the ratio of the target intensity to the current
mean intensity [13]. This factor is applied uniformly to all
color channels of the original image, effectively brightening or

darkening the image as needed to bring its average brightness
closer to the target [13].

CLAHE is an advanced image pre-processing technique
designed to enhance the local contrast of images, particularly
in regions that are darker or lighter than most of the image
[14]. Unlike traditional histogram equalization, CLAHE ap-
plies local contrast adjustments within small image regions,
ensuring that details in both bright and dark areas are preserved
[14]. This technique enhances the visibility of fine-grained
texture variations, fibers, and tendons in tuna loins, which is
critical for accurate grading.

To ensure consistency across pre-processing techniques, all
images were resized to the default input resolution of the Ef-
ficientNetV2M model (480×480 pixels) whereas the Efficient-
NetV2S had a smaller image input resolution (384×384 pixels)
[15]. Resizing to lower-resolution images may introduce loss
of detail, which could affect texture-based feature extraction.
However, this can be mitigated by using contrast enhancement
techniques like CLAHE.

By combining these pre-processing techniques, the dataset is
normalized for lighting inconsistencies, enhanced for contrast
and texture visibility, and optimized for computer vision
feature extraction, ultimately improving the model’s robustness
in real-world grading scenarios. Fig. 3. shows the same sample
of the dataset shown in Fig. 2. but with the SOG + CLAHE
pre-processing combination in the first row whereas the sec-
ond row shows the same sample with the SAIC + CLAHE
combination.

Fig. 3. SOG + CLAHE (First Row), SAIC + CLAHE (Second Row)

D. Model Training Configuration

Convolutional Neural Networks (CNNs) are widely rec-
ognized for their ability to automatically learn hierarchical
features from images [16]. EfficientNetV2, a state-of-the-art
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CNN architecture, was selected to be the model for tuna
loin classification as it offers an optimal balance of accuracy
and computational efficiency which also makes it ideal for
real-time inference and scalable classification tasks in mobile
applications, such as automated tuna loin grading, where
fast and reliable predictions are critical. Fig. 4. shows the
architecture of the EfficientNetV2M model in PyTorch [15].

EfficientNetV2 improves upon its predecessor by integrat-
ing Fused-MBConv layers, which merges the expansion and
depthwise convolution stages into a single standard convolu-
tion. In contrast, EfficientNetV1 relies on depthwise separable
convolutions [17]. This design significantly reduces memory
access costs and accelerates training, particularly on modern
hardware accelerators. The medium variant of EfficientNetV2,
EfficientNetV2M, was used as the primary model. The small
variant, EfficientNetV2S, was also tested, while the large
variant, EfficientNetV2L, a more complex version of the three,
was excluded due to hardware limitations.

A key feature of EfficientNetV2 is its compound scal-
ing strategy, which systematically adjusts the model’s depth,
width, and input resolution to achieve balanced performance
across various deployment environments such as mobile de-
vices [17]. Unlike traditional scaling, which modifies one
parameter at a time, compound scaling optimizes depth, width,
and resolution simultaneously, improving stability and gener-
alization [17]. This allows the model to begin with smaller,
lightly regularized images for rapid early-stage learning and
progressively transition to larger, more regularized images,
improving final accuracy [17]. This approach enhances gener-
alization while optimizing training efficiency [17].

EfficientNetV2 balances accuracy and computational effi-
ciency, making it ideal for real-time inference and scalable
classification tasks [17]. Its efficiency makes it particularly
ideal for mobile applications, such as automated tuna loin
grading, where fast and reliable predictions are essential.

Training deep learning models effectively also requires the
use of robust optimization techniques. Training is performed
with three different optimizers: Adam, AdamW, and Stochastic
Gradient Descent (SGD). Additionally, each optimizer is ex-
perimented with two learning rate schedulers (LRS): Cosine
Annealing and Cyclic.

Adam is an optimizer that adaptively adjusts the learning
rate for each parameter by combining momentum (which
tracks the moving average of past gradients) and RMSProp
(which tracks the moving average of squared gradients), al-
lowing for faster and more stable convergence during training.
[18]. AdamW is a refined version of Adam that correctly
applies weight decay (a regularization technique to prevent
overfitting) by decoupling it from the gradient update step,
which addresses a known flaw in the original Adam formula-
tion [19]. This separation leads to more effective regularization
and improved generalization, making AdamW the preferred
choice in modern deep learning architectures [19]. SGD uses
only one data sample (or a small mini-batch) at a time to
gradually update the model’s parameters (or weights) in the
direction that reduces the error [20].

For training with the Cosine Annealing LRS, the initial
learning rate was set to 0.001, and the final learning rate was
set to 0.000001. Cosine Annealing gradually decreases the
learning rate following a cosine curve, allowing for a smooth
reduction in learning rate over time, which helps prevent
overshooting the optimal solution and improves convergence
stability [20].

For training with the Cyclic LRS, the base learning rate
was set to 0.00001, and the maximum learning rate was 0.001.
Cyclic LRS oscillates the learning rate between these values
in a cyclic manner, which can help escape local minima and
improve generalization by periodically reintroducing higher
learning rates [21]. The number of training epochs was fixed
at 50, and the batch size was set at 8 to balance computational
efficiency with model performance. However, for this paper,
only the results from the best epoch will be shown from each
training run.

IV. RESULTS AND DISCUSSIONS

A. Experiment Setup

In this study, all training, validation, and testing experiments
were conducted using the NVIDIA RTX 4060Ti GPU with
8GB VRAM and 32 GB of RAM. However, the inference
experiment was conducted on a computer equipped with an
Intel® Core™ i7-14700KF processor and 32 GB of RAM due
to time constraints with mobile deployment.

B. Training, Validation, and Testing

This subsection provides training results for Efficient-
NetV2M and EfficientNetV2S models with different hyper-
parameters and dataset variations. Three types of accuracies
are used to evaluate the models’ performances.

Training accuracy measures how well the model predicts
the correct labels on the same data it was trained on. It is
calculated by running the model on the training set, counting
the number of correct predictions, and dividing by the total
number of samples. High training accuracy means the model
has learned to fit the training data, but it does not guarantee
good performance on new, unseen data.

Validation accuracy is calculated on a separate set of data
(the validation set) that the model has not seen during training.
It is calculated similarly to training accuracy, but using the
validation set (which the model does not see during training).
Validation accuracy aids in monitoring how well the model
generalizes to new data and is often used to tune hyperparam-
eters or decide when to stop training (to avoid overfitting).

Test accuracy is measured on a third, completely unseen
dataset (the test set) after all training and model selection are
complete. Similar to the previous accuracies, it counts correct
predictions on the test set and divides by the total number of
test samples. Test accuracy provides an unbiased estimate of
how well the model will perform in real-world scenarios.

Results in Table III show the EfficientNetV2M model
performance with different optimizer and LRS settings when
trained using the original dataset. Training and validation
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Fig. 4. EfficientNetV2M Architecture

TABLE III
TRAINING RESULTS ON EFFICIENTNETV2M WITH ORIGINAL DATASET

Scenario Optimizer LRS Train Acc (%) Val Acc (%)
1 SGD CosineAnnealing 33.4 35.4
2 SGD Cyclic 34.2 33.9
3 AdamW CosineAnnealing 99.4 89.0
4 AdamW Cyclic 99.0 93.8
5 Adam CosineAnnealing 99.5 89.4
6 Adam Cyclic 99.5 95.6

accuracies were used to evaluate the performance of the model
to determine whether they were overfitting.

Notably, the Adam optimizer with the Cyclic LRS achieved
a training accuracy of 99.5% alongside validation accuracy
of 95.6% (Scenario 6), making it the best-performing com-
bination in this study. The AdamW optimizer also performed
well, achieving a 93.8% validation accuracy (Scenario 4) when
paired with Cyclic LRS. This suggests that both Adam-based
optimizers contribute to strong model generalization, with
Adam slightly outperforming AdamW for the original dataset.

On the other hand, model configurations using the SGD
optimizer performed significantly worse, with validation ac-
curacy dropping below 36% regardless of the LRS used
(Scenarios 1 and 2). This suggests that SGD is not well-suited
for this dataset and model architecture, likely due to its slower
convergence and tendency to get stuck in local minima. The
significant performance gap between Adam-based and SGD
optimizers underscores the importance of adaptive gradient
methods for high classification accuracy.

Cyclic LRS consistently outperforms Cosine Annealing
LRS across all optimizers, as shown by the comparison of
learning rate strategies. For instance, with the Adam optimizer,
Cyclic LRS achieved a validation accuracy of 95.6%, while
Cosine Annealing LRS reached only 89.4% (Scenario 5).
Similarly, with AdamW, Cyclic LRS resulted in 93.8% accu-
racy, outperforming Cosine Annealing LRS, which achieved
89.0%. This suggests that Cyclic LRS, which cyclically adjusts
the learning rate within a defined range, enhances model
generalization more effectively than Cosine Annealing LRS,
which gradually decreases the learning rate over time.

In summary, the Adam optimizer with the Cyclic LRS is
the most effective configuration for training EfficientNetV2M
on this dataset, yielding the highest validation accuracy while
ensuring strong generalization. Although AdamW also per-
formed well, it was slightly less effective than Adam. In

contrast, SGD proved unsuitable, likely due to its slow con-
vergence and inability to optimize the EfficientNetV2M model
efficiently. Additionally, Cyclic LRS emerged as the superior
LRS, consistently improving validation accuracy across differ-
ent optimizers. Therefore, the best combinations for training
the EfficientNetV2M and EfficientNetV2S models on the pre-
processed dataset are the Adam optimizer paired with the
Cyclic LRS.

Table IV contains results for EfficientNetV2M and Efficient-
NetV2S models with the Adam optimizer with Cyclic LRS.
Validation and test accuracies have been utilized to analyze
them, giving insight into performance and generalization on
unseen datasets.

Analyzing the results, EfficientNetV2S (Scenario 7)
achieved a validation accuracy of 96.9% and a testing accuracy
of 96.1% when trained with SOG + CLAHE. However, when
using SAIC + CLAHE (Scenario 8), its validation accuracy
remained at 96.1%, but the testing accuracy dropped signifi-
cantly to 94.3%. This suggests that while both pre-processing
techniques allowed EfficientNetV2S to perform well on vali-
dation data, SOG + CLAHE provided better generalization on
the test set.

EfficientNetV2M (Scenarios 9 and 10) demonstrated an
opposite trend. With SOG + CLAHE, the model obtained
a validation accuracy of 96.1% and a testing accuracy of
95.3%. In contrast, SAIC + CLAHE yielded an improved
validation accuracy of 97.0% and an enhanced testing accuracy
of 96.0%. This indicates that, unlike EfficientNetV2S, the
EfficientNetV2M model benefited from SAIC + CLAHE pre-
processing, achieving the highest overall performance across
both validation and testing sets.

From these observations, we can conclude that pre-
processing techniques play a significant role in model per-
formance, with varying effects depending on the network
architecture. For EfficientNetV2S, SOG + CLAHE provided
superior generalization, whereas EfficientNetV2M performed

TABLE IV
PERFORMANCE COMPARISON BETWEEN PRE-PROCESSING

COMBINATIONS AND EFFICIENTNETV2 VARIANTS

Scenario Model Pre-processing Val Acc (%) Test Acc (%)
7 EfficientNetV2S SOG+CLAHE 96.9 96.1
8 SAIC+CLAHE 96.1 94.3
9 EfficientNetV2M SOG+CLAHE 96.1 95.3
10 SAIC+CLAHE 97.0 96.0
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Fig. 5. Scenario 10 Model Training & Validation Accuracy

best with SAIC + CLAHE. This suggests that deeper or
more complex models may benefit slightly from different pre-
processing strategies compared to smaller models. The results
also emphasize the importance of evaluating both validation
and testing accuracy to ensure a model’s ability to generalize
effectively beyond the training data.

Fig. 5. shows the graph of the training and validation
accuracy of the best model from Table IV (Scenario 10)
during its training and validation. EfficientNetV2M had a
strong learning curve with the Adam optimizer and Cyclic
Learning Rate Scheduling. Training accuracy rose from epoch
1’s 53.3% to epoch 50’s 99.3%, and validation accuracy from
69.4% to 94.0%. Early epochs saw steep rises, with validation
accuracy already crossing 80% by epoch 2 and plateauing in
later epochs in high-90% territory. Validation accuracy reached
a peak of 97.0% at epoch 47 but saw some minor declines
in later epochs. By the final epoch (epoch 50), the training
accuracy was 99.3%, and the validation accuracy settled at
94.0%.

Even with some surges in validation loss, robust generaliza-
tion was maintained by the model. Periodic adjustments to the
learning rate by Cyclic LRS likely averted it from overfitting.
Overall, the model performed adequately with very minimal
fluctuations that could be further refined with fine-tuning. Fig.
6. presents Scenario 10’s confusion matrix for testing. In terms
of classification performance, the model correctly identified
most instances in each grade. Grade A was classified correctly
391 times, with 24 misclassified as Grade B and 3 as Grade
C. Grade B showed strong classification performance, with
403 correct predictions, 14 misclassified as Grade A, and 4 as
Grade C. Grade C had the highest accuracy, with 414 correct
classifications and only 5 misclassified instances. This suggests
that the model was particularly effective at distinguishing
Grade C from the other categories.

Table V presents the results of Scenario 10’s testing. The
precision, recall, and F1-score, all ranged between 95% and
99%, indicating a well-balanced model. Precision is defined
as the ratio of correctly identified positive instances to the

Fig. 6. Scenario 10 Test Confusion Matrix

total instances identified as positive, reflecting the model’s
accuracy in labeling positive cases. Recall measures the ratio
of correctly identified positive instances to the total actual
positive instances, indicating the model’s ability to capture all
relevant cases. The F1-score is the harmonic mean of precision
and recall, providing a single metric that balances both false
positives and false negatives. Grade C had the highest recall
(99%), meaning nearly all Grade C instances were correctly
identified. In contrast, Grade A had the lowest recall (94%),
making it slightly more prone to misclassification. The minor
misclassification between Grade A and Grade B suggests
some overlapping characteristics in appearance, which may be
addressed through additional training data or refined feature
extraction. Overall, the model demonstrates excellent classi-
fication performance with strong F1-scores (95% to 99%),
confirming its ability to generalize well to unseen data.

TABLE V
SCENARIO 10 TEST RESULTS

Metric Grade A Grade B Grade C
Precision (%) 96 94 98

Recall (%) 94 96 99
F1-Score (%) 95 95 99

C. Model Inferencing

The best performing model (Scenario 10) was exported to
the Open Neural Network Exchange (ONNX) using PyTorch
in Python, which is an open format built to represent machine
learning and deep learning models for mobile deployment
[22] [23]. Scenario 10’s model was tested on three images
of tuna loin grades that were not included in the dataset used
in the previous subsections. Table VI presents the inference
results, demonstrating excellent performance, particularly for
Grades B and C. The model correctly classified all samples,
with the Grade A class showing a minor misclassification of
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1.38% as Grade B. Meanwhile, the Grade C class exhibited a
slight misclassification, with values close to 0.0% incorrectly
predicted as Grade A and Grade B. This suggests that while the
model performs well overall, it has a minimal challenge distin-
guishing between adjacent quality grades, particularly Grade A
and Grade B. These findings align with previous observations,
indicating the robustness of the model while highlighting areas
for further refinement. Table VII summarizes the inference
time and resource usage. The Grade A image had the longest
inference time (92.23 ms), while the Grade B image was the
fastest (69.30 ms), and the Grade C image took 73.63 ms. On
average, inference time was approximately 78.38 ms. Memory
usage had a maximum at 209.90 MB for the Grade C image,
with the Grade B image being in the middle with 209.79 MB,
followed by Grade A with the least (209.77 MB), averaging
209.82 MB across all the three experiments.

TABLE VI
SCENARIO 10 ONNX INFERENCING RESULTS

Actual (%) Predicted (%)
Grade A Grade B Grade C

Grade A 98.6 1.4 0.0
Grade B 0.0 100.0 0.0
Grade C <0.1 <0.1 99.9

TABLE VII
SCENARIO 10 ONNX INFERENCE TIME AND MEMORY USAGE

Grade Inference Time (ms) Memory Usage (MB)
Grade A 92.23 209.77
Grade B 69.30 209.79
Grade C 73.63 209.90

D. Comparison with Previous Works

Table VIII shows the comparison between proposed auto-
mated tuna grading methods that were mentioned in Section
II. It describes each methods’ model, pre-processing, dataset
quantity, and the best accuracy achieved overall. This paper
introduces the use of alternative techniques of image pre-
processing. The quantity of the dataset in this paper (12,593
images) is also significantly larger than those of the other
methods, ensuring that the trained model has excellent gen-
eralization in the classification of the tuna loin under various
lighting conditions. The final test accuracy of 96.0% in this
paper is also significantly higher than two of the three previous
methods mentioned, with the FR-CNN and IncV2 combination
achieving the second best overall accuracy of 92.8%.

TABLE VIII
COMPARISON OF AUTOMATED TUNA GRADING METHODS

Model Pre-processing Dataset Quantity Acc (%)
FR-CNN & IncV2 None 1,517 92.8

KNN DWT 161 81.8
SVM RGB, HSV, GLCM 36 81.6

EfficientNetV2M SAIC+CLAHE 12,593 96.0

V. CONCLUSION

This study presents an automated tuna loin grading system
that uses the SAIC and CLAHE pre-processing with Effi-
cientNetV2M, the Adam optimizer, and Cyclic Learning Rate
Scheduling. This configuration achieved the best performance,
with a validation accuracy of 97.0% and a test accuracy of
96.0%. The EfficientNetV2S variant also demonstrated strong
results when paired with SOG + CLAHE pre-processing, the
Adam optimizer, and Cyclic LRS, achieving 96.9% validation
accuracy and 96.1% test accuracy. However, EfficientNetV2M
is the preferred model due to its higher input resolution, which
more effectively preserves tuna loin features. This work has
produced results that are significantly better than what was
achieved in previous works mentioned in this paper. Future
work may focus on addressing dataset imbalance prior to
augmentation, investigating additional pre-processing methods
to further enhance lighting consistency and texture representa-
tion, and evaluating other computer vision and deep learning
models for potential accuracy improvements and deploying
them on a mobile device.

ACKNOWLEDGMENT

This research was supported by the Directorate of Research
and Community Service, Telkom University, through the Inter-
nal Fund Research Grant. The authors would like to thank the
Nanosatellite Laboratory at Telkom University, for providing
the hardware and workspace to conduct the experiments. The
authors also extend gratitude to PT. Aruna Jaya Nuswantara,
Indonesia, for providing the tuna loin dataset and sharing their
expertise.

REFERENCES

[1] “Tuna Fish Market Size, Share, Growth Report, Forecast, 2032 —
fortunebusinessinsights.com.” https://www.fortunebusinessinsights.com/
industry-reports/tuna-fish-market-100744. [Accessed 08-05-2025].

[2] N. Swetha and S. Mathanghi, “Towards sustainable omega-3 fatty acids
production – a comprehensive review on extraction methods, oxidative
stability and bio-availability enhancement,” Food Chemistry Advances,
vol. 4, p. 100603, 2024.

[3] K. Naziba Tahsin, “A review on the techniques for quality assurance of
fish and fish products,” International Journal of Advanced Research in
Science and Engineering, vol. 4, pp. 4190–4206, 07 2017.

[4] A. K. Aziz, M. D. Maulana, R. F. Adawiyah, R. F. Firdaus, L. No-
vamizanti, and F. Ramdhon, “Comparative analysis of yolov8 models
in skipjack fish quality assessment system,” in 2023 3rd International
Conference on Intelligent Cybernetics Technology & Applications (ICI-
CyTA), pp. 237–242, IEEE, 2023.

[5] N. R. Pratama, L. Novamizanti, and D. R. Wijaya, “Automated tuna
freshness assessment via gas sensors and machine learning algorithms,”
in 2024 International Conference on Intelligent Cybernetics Technology
& Applications (ICICyTA), pp. 1008–1012, IEEE, 2024.

[6] H. A. Nurqamaradillah, L. Novamizanti, and D. R. Wijaya, “Comparing
knn and svm for aroma-based tuna freshness detection,” in 2024 IEEE
2nd International Conference on Electrical Engineering, Computer and
Information Technology (ICEECIT), pp. 123–128, IEEE, 2024.

[7] M. R. M. Setyagraha, L. Novamizanti, and D. R. Wijaya, “Comparison
of k-nn and naive bayes algorithms for classifying mackerel tuna
freshness through gas sensors,” in 2024 IEEE Asia Pacific Conference
on Wireless and Mobile (APWiMob), pp. 157–161, IEEE, 2024.

[8] L. M. Hermawan, L. Novamizanti, and D. R. Wijaya, “Crab quality
detection with gas sensors using a machine learning,” in 2024 IEEE
International Conference on Internet of Things and Intelligence Systems
(IoTaIS), pp. 270–275, IEEE, 2024.

The 2025 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)

839



[9] J. E. C. Rosal, D. I. E. Hisola, and M. S. Demabildo, “Grade classifica-
tion of yellowfin tuna meat using f-rcnn with inception v2 architecture,”
in 2023 IEEE International Conference on Artificial Intelligence in
Engineering and Technology (IICAIET), pp. 252–256, 2023.

[10] I. G. S. E. Putra, I. K. G. Darma Putra, M. Sudarma, and A. A.
Kompiang Oka Sudana, “Classification of tuna meat grade quality based
on color space using wavelet and k-nearest neighbor algorithm,” in 2023
International Conference on Smart-Green Technology in Electrical and
Information Systems (ICSGTEIS), pp. 35–40, 2023.

[11] M. Naimullah, F. Sthevanie, and K. N. Ramadhani, “Tuna meat grade
classification using color histogram and grey level co-occurrence ma-
trix,” eProceedings of Engineering, vol. 7, no. 2, 2020.

[12] B. S. Thai, G. Deng, and R. Ross, “A fast white balance algorithm based
on pixel greyness,” Signal, Image and Video Processing, vol. accepted,
03 2017.

[13] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Global
Edition. London, England: Pearson Education, 4 ed., Sept. 2017.

[14] T. P. H. Nguyen, Z. Cai, K. Nguyen, S. Keth, N. Shen, and M. Park,
“Pre-processing image using brightening, clahe and retinex,” 2020.

[15] “EfficientNetV2 &x2014; Torchvision main documentation — py-
torch.org.” https://pytorch.org/vision/main/models/efficientnetv2. [Ac-
cessed 08-05-2025].

[16] M. M. Taye, “Theoretical understanding of convolutional neural net-
work: Concepts, architectures, applications, future directions,” Compu-
tation, vol. 11, no. 3, p. 52, 2023.

[17] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster
training,” 2021.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[19] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019.

[20] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” 2017.

[21] L. N. Smith, “Cyclical learning rates for training neural networks,” 2017.
[22] “ONNX — Home — onnx.ai.” https://onnx.ai/. [Accessed 14-05-2025].
[23] “torch.onnx &x2014; PyTorch 2.7 documentation — pytorch.org.” https:

//pytorch.org/docs/stable/onnx.html. [Accessed 08-05-2025].

The 2025 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)

840


