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Chapter 1 
Introduction 

1.1 Development of Network Slicing 

Mobile communication system has a profound impact on all aspects of human life, 
and the demand for higher performance mobile communication has never stopped. 
The rapid growth of mobile data traffic and the number of mobile terminals brings 
great challenges to the future wireless network construction [11]. In addition to 
emerging services such as ultra-high-definition video, virtual reality, and augmented 
reality that will be supported by smart devices, a variety of new mobile services 
derived from the development of vertical industries such as intelligent driving and 
energy Internet will also emerge rapidly. The endless intelligent applications bring 
huge data flow but also put forward higher performance requirements for the future 
mobile communication system. 

Fifth-generation (5G) networks have been deployed commercially at the end 
of 2019 and researches on sixth-generation (6G) networks are under way in 
several countries and organizations [25]. In the coming era of 6G, applica-
tions such as augmented or virtual reality (AR/VR), unmanned aerial vehicles 
(UAV), fully autonomous driving, satellite-ground communications, etc. are forcing 
mobile network operators (MNOs) to carry the complex scenarios and deliver 
diverse services [7]. Following these applications, scenarios supported by 6G 
include further enhanced mobile broadband (FeMBB), ultra-massive machine-type 
communications (umMTC), extremely ultra-reliable and low-latency communica-
tions (eURLLC), long-distance and high-mobility communications (LDHMC), and 
extremely low-power communications (ELPC) [24], as shown in Fig. 1.1. 

As the differentiation features of various wireless services become prominent, 
operators need to provide network capabilities and resources matching service 
requirements to improve the quality of user experience. Establishing a private net-
work for each category of service is hard to meet the requirements of a wide range of 
applications simultaneously while bringing unbearable cost increment to operators. 
In order to provide various customized services using limited network resources 
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2 1 Introduction

Fig. 1.1 The typical scenarios of 6G networks 

of a common infrastructure network, network slicing (NS) has been proposed by 
wireless industries [12, 15]. Depending on NS technology, differentiated resource 
requirements could be satisfied flexibly while capital expenditure and operational 
expenditure (CAPEX/OPEX) could be decreased. As a fundamental attribute of 5G 
and beyond, NS has been developed rapidly based on the efforts from the industry 
and academia [8]. Definitely, NS which are introduced and developed in 5G will be 
inherited and further innovated in 6G. 

1.2 Basic Concept and Technologies 

In order to cope with the trend of differentiation and customization of mobile 
services and improve the quality of service experience of end users, operators 
need to abandon the deployment and construction of traditional mobile networks. 
By creating a dedicated, virtualized, and isolated logical network for services 
with strictly different requirements in a common infrastructure network, operators 
can optimize network resource usage efficiency while saving costs. This new 
construction idea is the typical application of network slicing concept which is the 
most concerned in the field of wireless network research. Based on virtualization 
technology, network slicing divides the infrastructure network into multiple logical 
networks to meet the differentiated and customized service requirements of vertical 
industries. 

The core of network slicing is the implementation process of a network slicing 
instance. An instance consists of multiple virtual network functions (VNFs) and 
computing, storage, and network resources across multiple technical domains,
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including radio access network (RAN), transport network, core network, and data 
centers that manage third-party applications in industry verticals. The implementa-
tion of network slicing is based on the following three important principles: 

• Isolation. Slices must be isolated from each other, so that congestion or failure 
on one slice will not affect other slices. However, isolation may come at the cost 
of reduced multiplexing gain, which results in lower network resource utilization. 

• Customization. Resources allocated to a specific tenant must be effectively 
utilized to meet the corresponding service requirements to the maximum extent. 

• End-to-end (E2E). It includes two aspects: (i) slices need to span differ-
ent administrative domains, which means that a slice occupies heterogeneous 
resources provided by different infrastructure network providers (InPs); (ii) slices 
need to across different technology domains, including RAN domain, transport 
network domain, and core network domain. 

1.2.1 Enabling Technologies of Network Slicing 

A network slice is defined by International Telecommunication Union (ITU) as a 
logically isolated network partition consisting of multiple VNFs, which is isolated 
and equipped with a programmable control plane and a data plane [10]. The VNFs 
that constitute the network slice may vary greatly according to specific service 
requirements. The service types associated with the network slice determine the 
resources allocated to this network slice and the corresponding processing flow. 
The realization of network slicing is inseparable from software defined network 
(SDN) architecture and network function virtualization (NFV) technology [8]. SDN 
architecture is an appropriate technology for the configuration and control of the 
forwarding planes of the underlying resources, while NFV can manage the life 
cycle of network slices and orchestrate VNFs efficiency. As the key technologies 
to realize network slicing, SDN and NFV enable network components to run on 
virtualized infrastructure networks in the form of software and provide virtual 
resources according to the requirements of slices. 

The core of SDN concept is to separate the control plane of network equipment 
from the data plane, with which network management applications are no longer 
dependent on hardware devices, and can be flexibly developed and loaded according 
to the actual network requirements. NFV enables network functional components 
to run as software, decouples them from the infrastructure on which they run and 
provides the flexibility to instantiate and assign network functions anywhere in the 
network or data center. The comparison diagram of SDN and NFV architecture is 
shown in Fig. 1.2. Network slicing technology combines the flexible characteristics 
of network resources virtualization and the open characteristics of SDN, which 
solves the problem of rigid traditional network management architecture, and at 
the same time opens the network management ability to adapt to the increasingly 
large and complicated wireless network.
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(a) SDN architecture (b) NFV architecture 

Fig. 1.2 The comparison diagram of SDN and NFV architecture 

Fig. 1.3 The environment of network virtualization 

1.2.2 Implementation of Network Slicing 

Partitioning a network into multiple logical subnetworks based on virtualization 
technology is not a new concept, which has long been studied in the network field. 
Network virtualization provides flexibility, promotes diversity, and ensures security 
and manageability by allowing multiple heterogeneous network architectures to 
coexist as a shared physical infrastructure [14]. Network slicing and network vir-
tualization have similar service models and service roles. The relationship between 
these roles in the environment of network virtualization is shown in Fig. 1.3. 

Network virtualization aims to separate the role of traditional Internet service 
providers (SPs) into two separate entities, the InPs which manage the physical
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infrastructures, and SPs which create virtual networks by aggregating resources 
from multiple InPs to provide E2E services. InPs manage resources of infrastructure 
network and provide these resources to different SPs through programmable inter-
faces. SPs rent resources from multiple InPs to create and deploy virtual networks 
and provide E2E services to end users by dividing network resources. A single SP 
can also act as an InP to provide sources for other SPs, which is known as recursion. 
Multiple virtual nodes in a single virtual network can be deployed on the same 
physical node at the same time, which is called revisitation. 

Based on the above business model and role relationship, the general process of 
network slicing is as follows: 

(1) Multiple tenants define slice templates according to the application scenarios 
and service demands. 

(2) InPs design slice instances based on slice templates. 
(3) The management and orchestration (MANO) function allocates resources to 

slices based on their requirements. 
(4) The slice instances are deployed and implemented. 
(5) The running slices are monitored and managed, which contributes to adjusting 

resources in response to the change in requirements. 

As the enabling technology for the above processes, SDN/NFV enables various 
network functions to run on virtual machines. Different types of network slices 
combine these VNFs based on service requirements to logically form multiple 
private networks isolated from each other. In conclusion, the rise of the concept of 
network slicing makes the mobile network more flexible and open, and SDN/ NFV 
technology gives users the ability of simple and quick customization on demand. 
The common physical infrastructure network is divided into multiple proprietary 
logical networks that match service requirements. On the one hand, operators can 
enrich their profit modes, reduce deployment costs and improve operation efficiency. 
On the other hand, it opens up network capabilities to provide third-party tenants 
with higher quality of service experience and finally achieve a win-win situation. 

In network slicing based 5G system, resources of multi-domain infrastructure 
network can be efficiently allocated to multiple network slices according to the 
requirements of use cases [23]. As shown in Fig. 1.4, the set of VNFs within the 
physical infrastructure is logically separated to build dedicated logical networks 
according to the use case families. The ITU has identified three broad use case 
families [17]: enhanced mobile broadband (eMBB), massive machine-type commu-
nications (mMTC), and ultra-reliable and low-latency communication (uRLLC). A 
network slice is composed of a collection of VNFs and specific access technology, 
and the composition depends on the characteristics of use case. 

Not all slices contain the same set of VNFs, and some slices may even be missing 
some VNFs that are critical to mobile networks. VNFs that compose different 
types of network slices are deployed on multiple physical servers in the same 
infrastructure network. Therefore, the virtual node set corresponding to the VNFs 
set of slices is a subset of the physical node set corresponding to the set of physical 
servers. Moreover, since the slices are dynamically created based on the service
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Access network 
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Fig. 1.4 5G network slicing architecture 

requirements corresponding to the use cases, the service requirements should be 
expressed accurately and mapped flexibly to the set of VNFs. Differences in service 
requirements determine the differences in the structure characteristics of these slice. 
By comparing the diagram of 5G network slicing architecture with the diagram of 
network virtualization environment introduced previously, it can be seen that the 
deployment of network slice on the underlying infrastructure network is the same 
as the deployment of virtual network on the infrastructure network, including the 
deployment of virtual nodes and virtual links. 

1.3 Demand for Future Development 

As a key innovation expected to be inherited in 6G, network slicing is able to 
reduce CAPEX/OPEX by sharing the network resources among multiple tenants. 
Tenants, such as mobile virtual network operators (MVNOs), over-the-top (OTT) 
and vertical industries with limited capacity or coverage, rent the physical resources 
of MNOs or InPs to provide diversified services. To further reduce CAPEX/OPEX 
and increase revenue opportunities, tenants are motivated to unite the available 
resources provided by different InPs to enhance their attractiveness and acquire 
more subscribers [16]. Therefore, there is a tremendous need to efficiently manage 
multi-dimensional resources of multi-InPs while meeting the strict and diversified 
service requirements of multi-tenant under dynamic environment.
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1.3.1 Multi-Dimensional Resource Management for 
Multi-InPs 

The introduction of network slicing has undoubtedly brought many advantages to 
wireless networks and facilitated the implementation of business applications in 
vertical industries. However, the future development of network slicing still faces 
various challenges. The maturity level of researches on various aspects of network 
slicing is given in [8]. It is pointed out that although the enabling technology for 
network slicing has been mature enough, the related aspects of E2E network slicing 
have not been well understood and fully solved. As for the future wireless network, 
both the number and scale of network slices are bound to be huge. The rapidity of 
slice deployment and management will directly affect the promotion speed of new 
services and the grasp of business opportunities. Achieving rapid deployment and 
efficient management of E2E slices while ensuring quality of service (QoS) and the 
isolation among slices still be the focus of future research in the field of network 
slicing. 

In the evolution process of wireless network, the explosive data traffic makes 
it urgent to improve network capacity, which results in dense deployment of base 
stations with small coverage, low power and low cost [5]. Also, the ubiquitous 
access makes ultra-dense deployment gradually become the evolution trend of 
radio access network. However, this dense deployment requires a revolutionary 
upgrade of the existing network to provide QoS assurance for various services. 
The cost of such upgrades is prohibitive for most MNOs, and near-limit network 
densities incentivize MNOs to share their network infrastructure and available 
resources through technologies such as dynamic spectrum management. Therefore, 
the traditional business model in which several large MNOs achieve E2E service 
provision through independent deployment and expansion of infrastructure is 
approaching the limit point, the change of business model is imminent. As shown 
in Fig. 1.5, business models that encourage collaboration between MNOs and other 
market participants have emerged. 

Wireless networks need to adopt new partnerships and business models for 
different types of customers, which becomes a key asset underpinning verticals [2]. 
Here are five roles that have attracted attention in the new collaborative business 
model: 

• InPs, which are responsible for providing physical resources and infrastructure 
maintenance and update, while MNOs that interact with other MNOs but not 
directly with end users can also play the role of InPs. 

• Cloud InPs, which provides computing and storage resources and potential 
cloud services to third parties, including some platform services, such as 
Openstack provided by Linux and Elastic Compute Cloud provided by Amazon 
Web Services, Kubernetes provided by Google and Azure provided by Microsoft. 

• MVNOs, which lack network infrastructure and have limited capacity or cover-
age lease physical resources from existing MNOs/InPs.
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Fig. 1.5 The schematic diagram of traditional business model versus new collaborative business 
model 

• SPs, which provides services that run at optimal performance on the network 
belonging to the MNOs. High-data-consuming applications may prompt applica-
tion providers, such as Netflix and Hulu, to buy network resources from MNOs 
to encourage end users to use their services. 

• Vertical market participants, which leverage the network and cloud resources 
provided by MNOs/InPs and cloud InPs to provide multiple services to non-
telecom specific industries, such as factories, transportation, and healthcare. 

To extend coverage or capacity, multiple MNOs can combine their networks 
into a joint InP, leveraging hierarchical orchestration for real-time flexible resource 
management and sharing [1]. Based on the network sharing architecture proposed 
by 3GPP Release 14 [1], the authors in [22] proposed a network sharing architecture 
suitable for multi-tenant slicing. Based on the resource pooling technology, a group 
of co-existing MNOs is combined into a federated InP, and the resources of this 
federated InP is segmented to create a slice to provide E2E services for multi-
tenants. Although this architecture provides a solution to realize the cooperation 
and sharing between MNOs/InPs, the cooperation process is still faced with the 
problem of cooperation game between each other. The choice faced by MNOs 
is whether to deploy wireless network independently or form joint InP through 
resource pooling, which depends on the economic benefits obtained by these MNOs, 
and this economic benefit is reflected in whether joint InP can meet the service 
quality requirements of multi-tenant slicing. 

It is clear that the collaboration between MNOs needs to satisfy the requirements 
of end-to-end slices deployed on the collaboration network, taking into account 
the structural characteristics of each infrastructure network. Such collaboration can 
promote sustainable revenue for wireless networks and help operators overcome the
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dilemma of cost-revenue mismatch. Therefore, the research of collaboration strategy 
among multiple infrastructure networks is also of great significance, which lays a 
foundation for efficient management and quality assurance of end-to-end network 
slices. In addition, slices allocated to verticals can stretch across multiple admin-
istrative domains and occupy resources from different MNOs. A multi-domain 
network slicing orchestration architecture and federated resource management are 
required to address the challenges in multi-domain slice instantiation [20]. 

1.3.2 Dynamic Orchestration for Multi-Tenant Slicing 

For services in 6G scenarios, guaranteeing extreme quality of experience (QoE) 
continuously requires rapid adjustment of network parameters based on real-time 
monitoring of network status. In order to guarantee QoE and boost revenue, efficient 
sharing of the underlying infrastructure has stimulated the interest of the research 
community [4]. By establishing efficient network sharing schemes, multiple tenants 
which may own conflicting resource requirements obtain access to the different 
parts of the limited resources. As service providers, tenants rent resources to offer 
slice instances according to heterogeneous service requirements, which enhances 
the existent resource sharing flexibility. 

Creating customized slices for multiple tenants according to their preferences 
enables flexible and adaptive resource management [23]. Moreover, allowing 
tenants to customize the resource allocation for each slice can dynamically adapt to 
the changes in network environment caused by user mobility, time-varying channel 
conditions and so on. However, supporting more innovative services and satisfying 
increasingly-diverse user demands impose significant challenges for multi-tenant 
slicing, particularly in terms of dynamic slice orchestration. 

The first challenge is how to achieve real-time status observation of slices by 
depicting dynamic slice deployment and scalable resource utilization. Slice status 
information should be accurately obtained and quickly incorporated in decision-
making of resource allocation. Then, efficient resources planning is conducted based 
on current status information of slices, including reserving resources for slices and 
determining the placement of VNFs for differentiated slices. 

Considering that an E2E slice consists of a number of interconnected VNFs from 
RAN, core network, and transport network, combinatorial optimization of numerous 
resources is the second challenge. The differences in profit of providing multiple 
resources to different tenants need to be accounted for when maximizing long-
term revenue of InPs as network slice providers (NSPs). Striking a balance between 
the resources utilization of infrastructures and the profits of differentiated services 
provisioning is crucial for NSPs. 

Last but not least, quickly satisfying the dynamic demands of differentiated 
services is another challenge. Since the scale and rates of network flows keep 
changing, the resources allocated to slices need to be adjusted in time to cope with 
the dynamic user demands. Additionally, the growing number and types of slices
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result in high complexity of slice adaption. Trading off the cost of reconfiguring 
slices and the satisfaction of stringent service quality becomes harder for tenants as 
network slice customers (NSCs). 

Artificial intelligence (AI) saw rapid development during the past ten years and 
solved many pain points in different industries, such as healthcare, autonomous 
driving, smart manufacturing, etc. As one of the most promising AI tools, machine 
learning (ML) techniques have been widely applied in wireless communications 
[19]. Due to the uncertainty of service requirements, many model-free AI-based 
solutions are applied to jointly allocate multi-dimensional resources to slices [6]. 
Because resource allocation in wireless networks affects the QoE of services, 
various resource allocation methods have been studied over the past decades, 
including optimization, heuristic and game theoretic. As wireless networks become 
more complex, the static model-based algorithms will be inapplicable in the real 
dynamic network because of the long decision-making time and high computing 
burden. 

By iteratively learning from the reward feedback of environment, an optimal 
decision can be quickly achieved with ML methods compared to the conventional 
model-based optimization methods. Many researches adopt reinforcement learning 
(RL) based approach to manage resources involving both radio access part and core 
network part [13]. Owing to the capability of learning an optimal policy quickly, RL 
has been preferred for decision-making in the time-varying network environments 
and widely applied in solving many resource management problems, for instance, 
power control, spectrum management and computation resource management [19]. 
RL incorporates farsighted system evolution into its decision-making and updates 
decision strategies to reach optimal performance through feedback of the previous 
decisions. Moreover, RL has become an effective method to solve the decision-
making problem of network slicing in the uncertain and probabilistic environment 
[3]. As one of the most commonly adopted conventional RL algorithm, Q-learning 
suffers from slow convergence speed when the state space and action space are large. 
Deep reinforcement learning (DRL) algorithm which integrates deep neural network 
(DNN) with RL has been proposed by Google DeepMind, and the application of 
many advanced DRL algorithms has triggered tremendous research attention [9]. 

Based on deep Q-network, DRL as shown in Fig. 1.6 outperforms conventional 
RL because experience replay is used to increase the efficiency of learning and 
enhance the stability of DNN. After performing action selection, reward calculation 
and new state observation, the mini-batches of experience are sampled uniformly at 
random to feed into the neural network during the learning process. DNN which is 
used to approximate the Q-value function takes the current states as the input and 
outputs a set of Q-values for all of the state-action pairs. Instead of using Q-table 
to store Q-values in the Q-learning algorithm, the deep convolutional network is 
used to address the instability caused by the correlations. Experience replay memory 
randomizes over the data, thereby allowing for greater efficiency and breaking the 
strong correlations between the samples. Hence, DNN improves the convergence of 
Q-learning and enables the deep Q-learning (DQL) algorithm to solve the problems 
which have a high-dimensional state-action space.
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Fig. 1.6 An illustration of deep Q-learning 

For each tenant, when the traffic flow arrival/departure results in the degradation 
of slice’s service quality, individually deciding how to reallocate available resources 
is necessary. Owing that the traffic variation cannot be predicted without error, RL 
methods are also need to be applied in slice adaption decisions of slice orchestration 
architecture. However, the existing RL based resource allocation methods [13, 21] 
and the AI-assisted network architecture for network slicing [18] are inadequate to 
balance the capability of customizing resources for multiple tenants and maximizing 
revenues for multiple InPs. It is still very challenging to allocate resources across 
multiple domains and customize resources for each tenant simultaneously. 
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Chapter 2 
Efficient Management of Physical 
Infrastructure Networks 

2.1 Cooperation Among Multiple Infrastructure Operators 

The existing management architecture of network slicing mainly focuses on the 
core network, combining SDN and NFV technologies to implement core network 
slices [34]. However, ultra-dense networks (UDN) with dense small cells deployed 
at the access network side is becoming one of the development trends of wireless 
networks. How to improve the resource utilization at the access side in such dense 
deployment scenario has attracted much attention [44]. Based on the concept of 
flexible access network, the authors in [14] propose a fully programmable network 
slicing architecture characterized by RAN abstraction. This architecture can adjust 
the resource allocation strategy according to the requirements of RAN slices, which 
enables flexible and dynamic sharing of wireless resources, such as multiple RAN 
slices can share base stations (BSs) and antennas. With the maturity of core network 
slicing technology and the rapid development of RAN slicing, it is increasingly 
urgent to deploy and manage E2E network slices. 

In order to meet the requirements of various E2E services, the management archi-
tecture of network slicing needs to consider the deployment and implementation 
of E2E slices. Figure 2.1 shows the schematic diagram of E2E network slicing 
implementation. In the E2E management architecture of network slicing, users do 
not need to consider the selection of core network slices after selecting the RAN 
slices to be accessed. The management architecture provides E2E slices to select the 
RAN slices and the matching core network slices for the corresponding services. 
This E2E slicing technology covering access network, transmission network, and 
core network domain can more comprehensively meet service requirements, help 
to achieve rapid deployment of slicing and global on-demand resource scheduling, 
greatly shorten service response time, and effectively improve the quality of user 
service experience. 

In addition, wireless networks need to support vertical markets by catering 
to different types of new services. In order to reduce the cost and increase the 
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Fig. 2.1 The schematic diagram of E2E network slicing implementation 

revenue, multiple MNOs seek cooperation to build a joint infrastructure network. 
The implementation of network slicing will no longer be limited to a single 
infrastructure network which belongs to a single MNO. Existing network slicing 
management architectures, such as the NESMO framework [11], can automate 
network slicing design, deployment, configuration, activation, and lifecycle man-
agement across multiple domains. However, this framework is not suitable for 
dense deployment scenarios and does not consider collaboration among multiple 
infrastructure networks. Before creating a collaborative management architecture 
for network slicing, the requirements for network slicing management need to 
understood. According to the requirements of different industries and standards 
associations for network slicing, network slicing management requirements can be 
classified into the following aspects [11]: 

• Flexibility, which enables a MNO to dynamically manage and orchestrate the 
VNFs and virtual resources of network slices. Each network slice consists 
of a set of network functions and the resources to support the operation, 
decision-making, and configuration of these network functions. The network 
slicing management architecture should support E2E slice management to satisfy 
distinct requirements which may come from different vendors, carriers, or third 
parties. 

• Customization, which enables a MNO to create, operate, and manage network 
slices that support a variety of customized end-user services with different 
requirements for network characteristics in terms of mobility, billing, security, 
policy control, latency, and reliability. The slice management architecture should 
support the participation of multiple third parties with similar network character-
istics. 

• Simplification, which simplifies the logical architecture of mobile networks 
and reduces the complexity of network slicing operations. Considering that the 
requirement of flexibility adds complexity to the design and operation of network
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slicing, it is difficult to balance the complexity and simplicity to avoid increasing 
costs. 

• Exposure, which exposes network capabilities through an open application 
program interface, allowing third parties to create and manage network slices 
within the boundaries defined by MNOs. 

• Elasticity, which supports the elasticity of the network slice instance (NSI) in 
terms of capacity with minimal impact on the service of this slice or other slices. 

• Cloudification, which supports cloud computing technologies in network slice 
deployment. 

• Legacy support, which minimizes dependency between the network slicing 
management solution and Operational Support System/Business Support System 
(OSS/BSS) in order to support the legacy OSS/BSS systems. 

• Lifecycle management, which implements network slice lifecycle management 
and modifications to a network slice with a minimal impact to active subscriber 
services. 

• Automation, which supports an automated network slice design and deployment 
from a business service order. 

• Isolation, which avoids a fault or high resource usage of a slice to harm the 
stability or performance of other slices. 

• Multi-domain, which supports multi-domain architectures. 

For MNOs, there is a need to exploit new revenue resources without significantly 
increasing capital expenditure and operational expenditure (CAPEX/OPEX). The 
authors of [36] provide an overview of 3GPP standard evolution from network 
sharing to multi-tenant systems. They propose a multi-tenant network architecture 
to enable MVNOs and industry vertical market players to request and lease 
resources from InPs dynamically. In these researches, different slices are deployed 
and managed on a single infrastructure network. In order to break the traditional 
business model of a single infrastructure network ownership, MNOs are motivated 
to share their infrastructure networks and the available resources [41]. Thanks to 
network sharing strategies [2, 9], the potential energy and financial benefits spur 
MNOs in multi-operator environments to participate in the infrastructure network 
sharing. However, these strategies always focus on the spotlight of cellular networks 
considering the peak traffic demands. As a result, joint resources allocation among 
different InPs occurs on a small number of BSs and enables a large number of 
remaining unused infrastructure. Hence, for a joint venture InP formed by a set 
of MNOs, resources sharing need to be handled by a centralized network manager. 

Moreover, BSs are densely deployed for UDN, which requires a global vision for 
flexible management among BSs and efficient cooperation among infrastructures. A 
network slicing management framework for 5G UDN which provides a global view 
of resource management has been presented by us in [18]. However, the framework 
is suitable for the scenario of single infrastructure network. In order to reduce 
the CAPEX/OPEX in multi-tenant slicing, a cooperation strategy among multiple 
infrastructure networks is urged. The authors of [41] propose a novel scheme defined 
according to coalitional game theory for cooperation among different MNOs.
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However, their cooperation strategy focus on optimizing energy efficiency and do 
not take into account the demand of different slices and the structural characteristics 
of InPs. As far as we know, few researches have provided an efficient cooperation 
strategy for InPs to meet the QoS requirements of slices while considering the 
differences of infrastructure networks. 

2.1.1 Topological Characteristic Analysis 

In [19], we investigate cooperation among multiple infrastructure networks for 
multi-tenant slicing and propose an on-demand cooperation strategy from a complex 
network (CN) theory perspective. CN theory is usually used to analyze structural 
characteristics and predict dynamical behaviors of networked systems [6]. The study 
of CN theory has provided many measures of topological properties and effective 
ways to model the real-world networks. Here, CN theory is used to obtain the 
topological information of multiple infrastructure networks. Empirical studies have 
demonstrated that many real-life communication networks exhibit small-world and 
scale-free topological properties [27, 43]. Using CN theory to obtain the structural 
property and analyze the impact of topology on cooperation is reasonable and 
reliable. 

Hence, extensive simulations are performed on four typical complex network 
topologies to analyze the cooperation among different infrastructure networks. By 
considering the demand of slices and the structural differences among multiple 
infrastructure networks, the proposed cooperation strategy sets the rules for collab-
oration among the InPs in multi-tenant systems. Compared to the existing network 
slicing models, the on-demand cooperation allows InPs to significantly reduce costs 
independently while satisfying the demands of slices on the joint infrastructure 
network. 

In order to understand and predict the behavior of real-world networked systems 
such as the Internet, social networks, and biological networks, researchers of CN 
theory developed a variety of techniques and models [31]. Considering that many 
real-world networked systems can be modeled as sets of interconnected networks 
or networks with multiple types of connections, multiple complex networks as 
multilayer networks have attracted growing attention [5, 28]. To analyzed the 
impact of topological characteristic, infrastructure networks are represented by 
typical network models and the establishment of cooperative relationship is denoted 
by the creation of interconnections. According to the demand of reducing delay, 
betweenness centrality of nodes is introduced to obtain the topological information 
of infrastructure networks. The betweenness centrality quantifies how much a node 
is found between the path linking other pair of nodes. The betweenness centrality 
is defined as the fraction of shortest paths between any pair of nodes that travel 
through the node, which can be denoted by
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.bn =
∑

s /=n /=t

σst (n)

σst

. (2.1) 

In this equation, . σst is the total number of shortest paths from node s to node t and 
.σst (n) is the number of those paths that pass through node n. 

In multi-tenant systems, infrastructure networks spanning both RAN and the core 
network provide physical resources to support various use cases. For network slicing 
architecture, there is a MANO entity that translates use cases and service models 
into network slices by chaining network functions, mapping them to infrastructure 
resources, and configuring and monitoring each slice during its life cycle [15]. 
Since multiple InPs seeking coverage/capacity extension pool their networks into 
a joint venture InP, MANO is required to provide optimal cooperation approaches 
in order to meet the requirements of use cases. The optimal cooperation approaches 
determine where the sharing interactions should be created. 

Figure 2.2 shows the cooperation structure of infrastructure networks for multi-
tenant slicing. There are two InPs that own different networks, respectively, 
including RAN, core network, transport network, and part of cloud infrastructures. 
At first, tenants define the demand of slices and send it to NS manager and 
orchestrator. According to the demand, manager and orchestrator deploy slices 
which are the chains of VNFs in the joint infrastructure network. Considering that 
the deployment of slices is effected by the topology of infrastructure network, 
the creation of the interconnections should combine the demand of slices with 
the topology information. To effectively demonstrate the validation of on-demand 
cooperation, the demand of delay-critical slices, as the most versatile demand, is 
utilized in our simulations. 

Autonomous vehicle application, as a typical use case which requires extremely 
low latency, is used as an example scenario. For an autonomous vehicle to operate 
safely and effectively, the E2E latency perceived by the end user need to be 
minimized. E2E latency measures the duration between the transmission of a data 
packet from the source node to the destination node in the joint infrastructure 
network. Hence, in order to satisfy the delay-critical demand defined by tenants, the 
cooperation among infrastructure networks should effectively improve the number 
of the shortest paths in the joint infrastructure network and reduce the length of 
shortest paths between node pairs. Improving the number of the shortest paths 
provides more paths for packets to avoid congestion and reducing the length of 
shortest paths provides a decrease in transmission time. 

Since infrastructure networks provided by InPs have different topologies, we 
investigate the cooperation among infrastructure networks which are represented by 
different network models. Here note that the actual characteristics of infrastructure 
network topologies are not uniform and monotonous as the use cases for multi-
tenant slicing are various. Thus, considering the applicability and generality of 
our cooperation approach, four typical kinds of network topologies are chosen as 
simulation topologies.
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Fig. 2.2 The cooperation structure of infrastructure networks for multi-tenant slicing 

These four typical network models are Barabási-Albert (BA) scale-free network 
model [3], Watts-Strogatz (WS) small-world network model [42], Newman-Watts 
(NW) small-world network model [32], Erdös-Rényi (ER) random graph network 
model [7, 13]. Figure 2.3 shows an example of these four typical network models. 
The BA model, as an evolving network model, aims to reproduce the growth 
processes taking place in real networks based on two basic ingredients: growth and 
preferential attachment. The WS model is a method to construct graphs having both 
the small-world property and a high clustering coefficient. Since the WS algorithm 
may destroy the network connectivity during the rewiring process, NW algorithm 
modified the process from rewiring to adding. Hence, NW model has a higher edge 
density than WS model. The random network refers to the disordered nature of the 
arrangement of links between different nodes. The ER model can be extended in 
a variety of ways to make random graphs a better representation of real networks. 
Their generating principles are introduced as following. 

The BA modeling algorithm is as follows: 

• Growth: Starting from a connected network of small size . N0, introduce one new 
node to the existing network each time, and this new node is connected to ne 
existing nodes in the network simultaneously, where .1 ≤ ne ≤ N0.
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Fig. 2.3 An example of four typical network models. (a) BA scale-free network. (b) WS small-
world network. (c) NW small-world network. (d) ER random network 

• (Linear) Preferential Attachment: The above-referred incoming new node is 
simultaneously connected to each of the ne existing nodes, according to the 
following probability: for node u of degree . ku, .

∏
u = ku∑Nt

v=1 kv

, where . Nt denotes 

the total number of current existing nodes. The process of preferential attachment 
is terminated until the total number of nodes reaches the target value. 

A WS small-world network can be generated by the WS algorithm: 

• Start from a ring-shaped network with . N0 nodes, in which each node is connected 
to its 2K neighbors, K nodes on each side, where .K > 0 is a small integer. 

• For every pair of connected nodes in the ring-shaped network, rewire the edge 
in such a way that the beginning end of the edge is kept but the other end is 
disconnected with probability p and then reconnected it to a node randomly 
chosen from the network. 

The NW algorithm is as follows: 

• Start from a ring-shaped network with . N0 nodes, in which each node is connected 
to its 2K neighbors, where .K > 0 is an integer (usually small).
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• For every pair of originally unconnected nodes, with probability p .(0 < p ⪡ 1), 
add an edge to connect them. 

An ER random network is generated as follows: 

• Initialization: Start with N isolated nodes and N is the total number of nodes. 
• Pick up all possible pairs of nodes, once and once only, from the N given nodes, 

and connect each pair of nodes by an edge with probability .p ∈ (0, 1). 

The related parameters and their explanations are shown in the following. 

• . Si : the adjacency matrix of infrastructure network i, . i = 1, 2, 3, 4
• NI : the number of infrastructure networks, . NI ≥ 2
• . Sij : the adjacency matrix of interconnections between infrastructure network i 

and j , . i /= j

• . bi
n: the betweenness centrality of node n in infrastructure network i 

• . ϕi
n: the selection fitness of node n in infrastructure network i 

• . Ni : the number of nodes in infrastructure network i, . i = 1, 2, 3, 4
• . Nij : the number of interconnections between infrastructure network i and j , . i /=

j

• . Ci : the set of connectors in infrastructure network i 
• . Ni

c : the number of connectors in infrastructure network i 
• . Ci

n: the connector n in . Ci , . n = 1, 2, 3, 4, . . . , Ni
c

• o : the quota of interconnections for a connector 
• . enl : Binary variable. If an interconnection has been created between node n 

in infrastructure network i and node l in infrastructure network j , .enl = 1; 
otherwise, . enl = 0

2.1.2 On-Demand Cooperation Strategy 

To describe the process of on-demand cooperation strategy in detail, the description 
of steps is given in Algorithm 1. It contains two stages of establishing the 
interconnection structure, selecting nodes which are qualified for connectors, and 
creating interconnections between the pairs of connectors. These two stages are 
realized based on selection fitness and two-sided matching, which can be adapted to 
different demands by changing variables. 

Matching theory, also known as search and matching theory, provides mathe-
matically tractable solutions for problems in economics [35]. It has been used to 
describe the formation of mutually beneficial relationships, such as labor relations 
and other human relationships like marriage [16, 24]. Recently, matching theory 
has been used to solve the basic wireless resource management problem [26]. The 
concept called two-sided matching is used to optimally match resources and users 
given their individual objectives and learned information [17]. 

In the game-theoretic analysis of two-sided matching markets, the phrase two-
sided refers to two disjoint sets of agents, e.g., firms or workers. The term matching
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refers to the bilateral nature of exchange in these markets, e.g., the worker works 
for some firms, then that firm employs the worker. In the process of solving the 
two-sided matching problem between firms and workers, each firm and each worker 
starts by building its preference list based on some necessary information of the 
other set. For example, firms build their preferences over workers based on the 
skills and experience of workers. After setting up the preferences, proper matching 
algorithms must be developed to achieve the required system objectives such as 
maximizing the satisfaction degree between firms and workers. Since two-sided 
matching can overcome some limitations of game theory and optimization, we use 
it to describe the formation of interconnections between two different infrastructure 
networks. 

In the method of selecting connectors, the selection fitness is modeled as a 
power law function of the betweenness centrality b based on the consideration that 
relative importance of node in the transmission efficiency is growing rapidly with 
the increase of betweenness centrality. Hence, the selection fitness . ϕi

n for node n in 
the infrastructure network i is simply defined as 

.ϕi
n =

(
bi
n

)α

. (2.2) 

The parameter . α is a variable reflecting the extent of tendency for nodes with 
higher betweenness centrality to be selected as connectors, which has a great 
influence on the number of connectors. Equation (2.2) is used to preferentially select 
connectors for the creation of potential interconnections between the infrastructure 
network i and the others. A node which is more helpful to satisfy the demand has a 
higher . ϕi

n and receives a higher chance of having an interconnection as a connector. 

Algorithm 1 The on-demand cooperation algorithm 
Require: Si , i = 1, 2, 3, 4 
Ensure: Sij , i /= j 
1: Calculating the betweenness centrality bi 

n of each node according to Si . 
2: Calculating the selection fitness ϕi 

n of each node in infrastructure network i using Eq. (2.2). 
3: Selecting nodes with higher selection fitness ϕi 

n as connectors using Algorithm 2. 
4: With the number of interconnections Nij , matching two sets of connectors (Ci and Cj ) in  

infrastructure network i and j using two-sided matching. 
5: Placing these interconnections between Nij pairs of connectors. 
6: Updating the values of elements of Sij . 

Algorithm 2 provides a method of choosing a set of nodes to create interconnec-
tions, which should be beneficial for meeting the demand of slices. This method is 
based on the node-based structural characteristics of the infrastructure networks. 
Corresponding to specific demand of the slices, the method of nodes selection 
provides suitable selection criteria to select relatively optimal nodes as connectors to 
have interconnections. Then, the optimal location of creating interconnections need 
to be determined for each pair of infrastructure networks. Selecting the optimal pair
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of connectors for each interconnection is achieved with two-sided matching theory 
which provides a decision method to match connectors. 

A joint venture InP is the result of cooperation among NI  infrastructure 
networks. In this paper, multiple infrastructure networks are represented by four 
network models for analyzing the impact of different topologies on cooperation 
performance. Hence, .NI = 4 in our simulations and the interconnections are 
created among four networks. It should be noted that Algorithm 1 here is suitable for 
any values of NI , and the analysis of the simulations could be used as an efficient 
benchmark or reference. 

For these four network models .S1, S2, S3, S4, . S1 is a BA network, . S2 is a WS 
network, . S3 is a NW network, . S4 is a ER network. After calculating the selection 
fitness for each node in each infrastructure network, the selection of connectors 
is implemented by preferential picking. The algorithm for the implementation of 
preferential picking is introduced in Algorithm 2. 

Algorithm 2 The implementation algorithm of preferential picking 

Require: ϕi 
n 

Ensure: Ci 
1: Define ϕi 

o =
∑

n ϕ
i 
n for the infrastructure network i. 

2: Define an interval I i 
n for node n and place them end to end in sequence. 

I i 
n =

(∑n−1 

l=1 
ϕi 

l ,
∑n 

l=1 
ϕi 

l

)

and
∥∥I i 

n

∥∥ = ϕi 
n. 

3: Construct the interval
(
0, ϕi 

o

)
from Ni smaller, non-overlapping, continuous intervals.

(
0, ϕi 

o

)
=

⋃Ni 

n=1 
I i 
n 

. 
4: Generate random number ri in the interval

(
0, ϕi 

o

)

5: Identify the component intervals I i 
n in which r

i lie. 
6: Repeat step 4-5 for Ni 

10 times. Hence, Ni 
c ≤ Ni 

10 . 

We would like to caution here that the forms of all functions in the our method are 
an overly simple choice which is helpful to the final results, and different demands 
of slices might motivate a different forms of Eq. (2.2). For example, . ϕi

n might 
not only depend on betweenness centrality, but also other structural characteristics 
such as degree and clustering coefficient. Furthermore, Eq. (2.2) would contain two 
characteristics or even more and not just single characteristic as in current example. 
For the slices which require high computing resources and low congestion rate (e.g., 
massive machine-type communications), the selection fitness needs to consider both 
the capacity and the degree. 

After selecting the sets of connectors, the next step is to determine which pairs of 
connectors are suitable to create interconnections. Before creating interconnections 
between a pair of infrastructure networks, the number of interconnections should
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be a exact value. The number of interconnections, as a quantity that reflects the 
degree of cooperation, is influenced by many practical factors such as costs and 
facility performance. Hence, the number of interconnections between each pair of 
infrastructure networks is predetermined in our simulations. 

Given the number of interconnections, deciding the location of interconnections 
can be posed as a matching problem between pairs of connectors. The archetypal 
matching problem involving preferences is first introduced by David Gale and 
Lloyd Shapley in 1962 [16]. A matching in our model is essentially creating an 
interconnection between a pair of connectors. The main goal of matching is to 
optimally match connector pairs given their individual, often different, objectives 
and structural information. Depending on the scenario, each connector has a quota 
that defines the maximum number of connectors with which it can be matched. 
Each connector from infrastructure network i builds a ranking of the connectors 
from infrastructure network j using a preference relation. 

The concept of a preference represents the individual view of each connector in 
the other set of connectors, based on their node-based structural characteristics. In its 
basic form, a preference can simply be defined in terms of structural characteristics 
which are beneficial to meet the demand. However, a preference is more generic than 
structural characteristics in that it can incorporate additional qualitative measures 
extracted from the information available to connectors according to the features 
of particular actual scenarios. For example, the processing and storage capacity of 
connectors need to be observed if the demand of slice is low mobility and higher 
user data rate (e.g., enhanced mobile broadband). The basic solution concept for a 
matching problem is the so-called two-sided matching [21]. In order to solve two-
sided matching problems with preference information, the satisfaction degree . mi

nl

of connector n in infrastructure network i with connector l in infrastructure network 
j is defined as preference based on the betweenness centrality . b

j
l . 

Moreover, the satisfactions functions for each pair of infrastructure networks 
is defined based on the demand of slices and the effect of betweenness centrality 
on satisfactions is analyzed by means of a linear function. In order to make 
the relatively importance of connectors from different infrastructure networks 
comparable, they are placed on the same scale using a min-max transform. The 
satisfaction degree .mi

nl is defined as 

.mi
nl = γ1

⎡

⎢⎣
b

j
l − min

l

(
b

j
l

)

max
l

(
b

j
l

)
− min

l

(
b

j
l

)

⎤

⎥⎦ . (2.3) 

Similarly, we define the satisfaction degree .wj
nl of connector l in infrastructure 

network j with connector n in infrastructure network i based on the . bi
n. 

.w
j
nl = γ2

⎡

⎣
bi
n − min

n

(
bi
n

)

max
n

(
bi
n

) − min
n

(
bi
n

)

⎤

⎦ (2.4)
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In both Eqs. (2.3) and (2.4), . γ1 and . γ2 are variables reflecting the extent of 
tendency for connectors with higher betweenness centrality to have a higher sat-
isfaction degree. . γ1 denotes the impact extent of normalized betweenness centrality 
on the satisfaction degree . mi

nl , and . γ2 has the same meaning to . wj
nl . With the 

satisfaction degree .mi
nl and . w

j
nl , the matrix of preference between infrastructure 

network i and infrastructure network j can be denoted by 

.Pij =
[(

mi
nl, w

j
nl

)]

Ni
c×N

j
c

. (2.5) 

Actually, the functional forms of satisfaction degree .mi
nl and .wj

nl are not 
necessarily the same. Noticed that Eqs. (2.3) and (2.4) give a higher chance to 
place interconnections between connectors n and l whose values of betweenness 
centrality are higher and similar, but in general it is possible to use the other forms 
and variable parameters considering the diversity of actual situations as well, and 
the normalization function also can be replaced by the unit standards deviation, 
normalization to mean zero and others. 

Considering that the creation of interconnections should improve the trans-
mission efficiency, the aims of this two-sided matching are maximizing the sum 
of satisfactions and minimizing the differences of satisfactions for connectors. 
The solution of this two-sided matching problem is establishing a multi-objective 
optimization model. There are many techniques to deal with multiple objectives 
[23, 37, 40], in which the linear weighting method has been widely used [29]. For 
solving the model easily, the multi-objective model is normalized and transformed 
into single objective model due that the objectives are different in their scales. 

Therefore, the multi-objective optimization model is built as follows. 

.

max f1 = ∑Ni
c

n=1

∑N
j
c

l=1 mi
nl · enl

max f2 = ∑Ni
c

n=1

∑N
j
c

l=1 w
j
nl · enl

min f3 = ∑Ni
c

i=1

∑N
j
c

j=1

∣∣∣mi
nl − w

j
nl

∣∣∣ · enl

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑Ni
c

n=1 enl ≤ o,∀n

∑N
j
c

l=1 enl ≤ o,∀l

∑Ni
c

n=1

∑N
j
c

l=1 enl = Nij ,∀n, l

enl = 0, 1

. (2.6)
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In the above model, there are three objectives. The first objective function is to 
maximize the satisfaction degree of connectors in the infrastructure network i. The  
second objective function is to maximize the satisfaction degree of connectors in the 
infrastructure network j . That is, if the satisfaction degrees of a connector . Ci

n in the 

infrastructure network i and a connector . C
j
l in the infrastructure network j are very 

high, the possibility of matching . Ci
n and . Cj

l is high. The third objective function is 
to minimize the difference of the satisfaction degree between those two connectors. 

Aside from the objectives, the first constraint is to guarantee that each connector 
in the infrastructure network i creates interconnections with o connectors at most. 
In our simulations, the value of quota o is 2, which means that the number 
of interconnections belonging to a connector is under 2. Similarly, the second 
constraint is to guarantee the quota of each connector in the infrastructure network 
j . The third constraint is to guarantee that the total number of interconnections is 
equal to the preset value . Nij . In the last constraint, .enl = 0 represents that . Ci

n and 

. C
j
l are not matched, and .enl = 1 represents that they are matched, which means that 

an interconnection has been created between them. 
There are many techniques to deal with multiple objectives, in which the linear 

weighting method has been widely used. Multiple objectives are combined to single 
objective by the sum of weighted objectives, and we have 

.maxF = 1

2
(f1 + f2) − f3. (2.7) 

Considering that the three objectives in our model are different in their scales, we 
normalize .

1
2 (f1 + f2) and . f3 by defining .Rxy = (rnl)Ni

c×N
j
c
and .Txy = (tnl)Ni

c×N
j
c
. 

.

rnl = mi
nl+w

j
nl

2

tnl =
∣∣∣mi

nl − w
j
nl

∣∣∣
(2.8) 

and normalizing .Rxy and . Txy , 

.

r '
nl =

rnl−min

{
(rnl )

Ni
c×N

j
c

}

max

{
(rnl )

Ni
c×N

j
c

}
−min

{
(rnl )

Ni
c×N

j
c

}

t 'nl =
tnl−min

{
(tnl )

Ni
c×N

j
c

}

max

{
(tnl )

Ni
c×N

j
c

}
−min

{
(tnl )

Ni
c×N

j
c

}

. (2.9) 

Thus, we have the normalized matrices
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.

R'
xy = (

r '
nl

)
Ni

c×N
j
c

T '
xy = (

t 'nl

)
Ni

c×N
j
c

(2.10) 

with which the combined matrix of satisfaction degree .C'
xy = (

c'
nl

)
Ni

c×N
j
c
, . c'

nl =
r '
nl − t 'nl . Finally, the multi-objective optimization model is transformed into the 
single objective 

.maxF ' =
∑Ni

c

n=1

∑N
j
c

l=1
c'

nl · enl (2.11) 

and the traditional linear programming method is adopted to solve this model. 

2.2 Virtualization of Multi-Domain Infrastructures 

2.2.1 Multi-Layer Complex Network Model 

The rapid development of Internet and communication technology brings people 
into the “network era.” We can see all kinds of networks everywhere in our life, such 
as transportation network, power network, trade network, and so on. The network 
has penetrated into the surrounding of human beings. As an individual, each person 
is a component unit of various social network relations, and as a biological system, it 
is also the result of biochemical reaction network. Networks introduced in network 
science can be objects in Euclidean space, such as the Internet, highway or subway 
systems, and neural networks, or they can be entities defined in abstract space, 
such as networks of acquaintances and networks of collaboration among scientists. 
These networks gradually evolve into complex systems with complex relationships 
with the evolution process and scale expansion. The research on complex systems 
has attracted great interest of scholars. Initially, the study of networks was mainly 
a branch of discrete mathematics, namely graph theory. The upsurge of complex 
network research focused on the decade at the end of the twentieth century. The 
research on the irregularity, complexity and dynamic evolution behavior of network 
structure began to rise, and the focus of the research shifted from the analysis of 
small network structure to the large network system composed of thousands of 
nodes. At present, there are a large number of review articles [12, 22] and books 
on complex networks [8, 30] for reference. 

Complex network, as a high abstraction of a large number of real complex 
systems, has played a great role in promoting the research of real networks. In 
the research of complex network science, individuals in complex systems are 
regarded as nodes in complex networks, and the dependencies and interactions 
between individuals are regarded as connections between nodes. Based on this, a 
complex network which can abstractly represent the complex system is established
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to solve the specific key problems in the actual complex system from the perspective 
of network structure. From the social relationship between people [6], scientific 
collaboration networks [33], airport network [20], biological network [25], to the 
large-scale Internet and World Wide Web [1], complex network theory provides 
a large number of mathematical models and analytical conclusions [38] for  the  
study of the structural characteristics of real network systems [10] and the analysis 
of dynamic behavior problems [4]. Nowadays, the analysis method of complex 
network has been applied in various fields to describe the individual characteristics 
and the overall behavior of the actual complex system. 

The traditional method in complex network research is mainly a simple represen-
tation of the actual complex system. The components or basic units of each system 
are abstracted into a network node, and the interaction between each unit pair can 
be regarded as a connection with certain weight. However, because the interaction 
relationship between unit pairs in the actual system does not belong to the same 
type, simply using the connection of the same status to represent this relationship 
will cause the information in the system cannot be fully captured and even lead to 
the wrong judgment of the real problems. Therefore, with the in-depth study of the 
characteristics and behavior of traditional complex networks, researchers in the area 
of network science have been committed to study multilayer complex networks. 
Each layer of multilayer complex networks is abstracted with different behavior and 
attributes, which is contribute to solve the complex connection relationship between 
different entities in the single layer and make the relationship in the network more 
clearly visible. Therefore, it is widely used in various fields, such as transportation, 
power, computer, biology, and other fields. Compared with single-layer complex 
network, multilayer complex network can more accurately grasp the complexity 
of the actual network and analyze the dynamic behavior of different types of 
connections in the actual multilayer system. 

A simple model of multilayer complex network is shown in Fig. 2.4. According 
to the definition given in reference [5], a multilayer network can be denoted as . M =
(G, C) where . G is a family of (directed or undirected, weighted or unweighted) 
graphs .Gα= (Xα,Eα) called layers of . M and 

.C= {
Eαβ ⊆ Xα × Xβ;α, β ∈ {1, · · · ,M} , α /= β

}
(2.12) 

is the set of interconnections between nodes of different layers .Gα and . Gβ . The  
elements of . C are called crossed layers, and the elements of each . Eα are called 
intralayer connections of . M in contrast with the elements of each . Eαβ (α /= β)

that are called interlayer connections. A multilayer network model is schematically 
illustrated in Fig. 2.4. The colored layers . G1, . G2, and . G3 are the different subsets of 
the underlying layer . G0. The solid lines represent the intralayer links and the dotted 
lines represent the interlayer links (interconnections). It is noted that the interlayer 
links between the underlying layer and upper layers are not displayed entirely, and 
the interlayer links between the upper layers are also not displayed in this figure. 

Based on the universal model definition of multilayer complex networks, the 
description of the topological properties of multilayer complex networks has
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Fig. 2.4 The simple model of multilayer complex network 

evolved from the simple weighted combination of single-layer complex networks 
to the establishment of a unique description scheme of topological properties of 
multilayer complex networks. The solid research foundation and sufficient methods 
of multilayer complex network theory have important contributions to obtaining the 
structural property and analyzing the collaboration among slices. The realization of 
network slicing can be abstracted as the generation of a multilayer network with 
nodes and edges organized into multiple layers, where each layer can be described 
as a set of VNFs with some pattern of interconnections between them. 

2.2.2 Mathematical Description of Infrastructure Networks 

In the scenario of using a multilayer network model to describe network slicing, the 
mapping relationship between the underlying infrastructure network and slices can 
be denoted by interconnections between the underlying layer and the upper layers. 
The structure of interconnections determines the deployment of VNFs and depicts 
the resource competition among them, which influence the traffic performance 
of slices. The infrastructure network can be represented by the underlying layer 
. G0, while slices can be represented by .Gm,m = 1, 2, 3, · · · . The nodes of the 
underlying layer . G0 denote the physical standardized servers of the infrastructure 
network and the nodes of layers .Gm denote the VNFs of slices. Here only focuses 
the relationship between the infrastructure network and multiple slices, thus there 
are no interconnections between different slices, which is different from other 
multilayer network model.
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Hence, in order to distinguish the underlying layer from the upper layers, 
.NS = (P,V,L) is used to denote the slices. . P denotes the infrastructure network, 
. V denotes slices, and . L denotes the interconnections between the infrastructure 
network and slices. These interconnections reflect the mapping of VNFs in slices 
to the underlying physical servers. For network slicing in the single infrastructure 
network which is similar as the multilayer network in Fig. 2.4, .P = G0 and 
.V= {Gm,m = 1, 2, 3, · · · .}. Note that node . V9 in . G1 and its counterpart in . G2 are 
competing the resources of node . V9 in G. The total resources .Ball of layer . G0 can be 
divided into three parts . B1, . B2, and . B3 and be allocated to three layers, respectively. 

For the multi-tenant slicing in the joint infrastructure network which are formed 
by multiple different infrastructure networks, the representation of slicing can be 
denoted as .NS = (P, C,V,L) where . C represents the cooperation links between 
each pair of infrastructure networks. In this general expression, assuming that there 
are . NP InPs jointly providing physical resources through resource sharing in order 
to reduce CAPEX/OPEX, each InP owns the infrastructure network . Pβ , thus we 
have 

.P = {
Pβ;β ∈ {1, · · · , NP }} , (2.13) 

where .Pβ = (
PXβ, PEβ

)
. Considering that the physical nodes of the infrastructure 

network include the BSs of RAN, optical switches (OSs) of transport network and 
the core nodes (CNs) of core network, the physical nodes can be represented by 

.PXβ = PXBS
β ∪ PXOS

β ∪ PXCN
β . (2.14) 

The cooperation links between . Pβ and . P '
β can be denoted as 

.C = {
Eββ ' ⊆ PXβ × PXβ ' ; β, β ' ∈ {1, · · · , NP } , β /= β '} . (2.15) 

For slices deployed in the joint infrastructure network, 

.V = {Vα;α ∈ {1, · · · NV }} , (2.16) 

where .Vα = (V Xα, V Eα). Similar to the infrastructure network, slices are also 
composed of three domains, thus 

.V Xα = V XBS
α ∪ V XOS

α ∪ V XCN
α . (2.17) 

Hence, the interconnections between . NV slices and . NP infrastructure networks can 
be expressed by 

.L= {
Eβα ⊆ PXβ × V Xα; β ∈ {1, · · · , NP } , α ∈ {1, · · · , NV }} . (2.18)
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2.3 Federated Management Framework of Physical 
Resources 

2.3.1 Multi-Domain Slice Management Model 

Figure 2.5 shows the management model of multi-domain slices. A infrastruc-
ture network resource domain represents an administrative domain in a network 
belonging to a MNO/InP. The infrastructure resources are hardware and software 
components that can be found in a data center or a mobile network of the MNO/InP. 
There are some functions in this model that can be classified to network slice 
design components or multi-domain orchestrator components. Network slice design 
studio and network slice ordering in the network slice manager, and descriptor 
design function belong to network slice design components. Network slice life-
cycle management function, multi-domain deployment executor, network slice 
operations belong to multi-domain orchestrator components. In addition, there are 
two supporting functions: the network slice policy function (NPF) for policies 
management and the network slice database (NSLDB) for storing all information 
that is created and used by other functional blocks. The process engine manages 
and monitors the state of activities from order, design, and creation to termination 
of NSIs. 

Fig. 2.5 The management model of multi-domain slices
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The input of the network slice design studio is the network slice request, and 
the output is the network slicing descriptor. Network slice design studio provides 
tools and modeling primitives to a user for correctly defining and on-boarding the 
information needed to create a new network slice type. Network slice ordering 
provides users with templates for each network slice type. Network slice operations 
enable operators to monitor and interact with network slices. The network slice 
manager forward the network slice requests to the descriptor design function. 
The descriptor design function is able to build a NSI based on the network slice 
requests, create a customer-specific network slice descriptor, and verify it. The 
network slice manager controls the process of network slice design and orders a 
deployment of the NSI. The descriptor design function on-boards this network slice 
descriptor to the multi-domain deployment executor. The network slice descriptor 
contains all information needed to deploy, configure, activate, and operate a NSI 
during its life cycle. The multi-domain deployment executor extracts the resource 
domain descriptors, network function configuration data and workflows from the 
network slice descriptor and then sends the resource domain descriptors to the 
appropriate resource managers to deploy network functions and other resources. 
After successful deployment, configuration, and activation of NSI, the network slice 
manager gives the control over network slice lifecycle to network slice life-cycle 
management function which is responsible to resolve resource allocation conflicts 
between network slices. 

2.3.2 Federated Infrastructure Management Framework 

Based on the management model of multi-domain slices, the federated management 
framework of multi-domain infrastructures is shown in Fig. 2.6. The main funda-
mental components and functions include service broker plane [36], multi-domain 
service conductor plane, network slice orchestration plane, and multi-domain 
infrastructures. 

The service broker is responsible for handling incoming slice requests from 
tenants (e.g., verticals, MVNOs, and application providers). It collects business, 
policy, and administrative information by interacting with the OSS/BSS. A global 
service support repository is created with the abstracted service capability informa-
tion regarding different administrative domains collected by service broker. When a 
slice request arrives, service broker performs the admission control and negotiation 
with the requesting tenant considering the OSS/BSS policy and rules. 

Successful requests are forwarded to the multi-domain service conductor plane 
which is responsible for service orchestration and management across federated 
resources. It consists of two main building blocks, service conductor and cross-
domain slice coordinator. Service conductor decomposes the successful slice request 
toward different administrative domains and decides on the combination of domains 
according to the service requirements. It also instantiates a cross-domain slice 
coordinator for the newly allocated multi-domain NSI. The cross-domain slice
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Fig. 2.6 The federated management framework of multi-domain infrastructures 

coordinator monitors, manages, and controls the corresponding resources related 
with the federated NSI. 

The network slice orchestration plane interacts with the cross-domain slice 
coordinator. It allocates resources in the relative domains for the federated NSI 
and provides corresponding lifecycle management through the functional blocks 
including service management function, slice lifecycle management function, sub-
domain NFV MANO, and sub-domain SDN controller. The service management 
function analyzes the slice request received from the cross-domain slice coordinator 
and feeds back the service and performance capability information related with the 
underlying resources. In addition, the service management function identifies the 
RAN and core network functions and determines logical links characterized by 
bandwidth, delay, jitter, packet loss, and so on. The slice lifecycle management 
function identifies the appropriate network slice template and forms a logical 
network graph mapped in the underlying infrastructures. It is also responsible for 
the instantiation, run-time, and orchestration of a network slice subnet instance 
(NSSI). The sub-domain NFV MANO provides an abstracted view of the under-
lying infrastructure to the slice lifecycle management function and performs the 
instantiation and run-time operations of the corresponding VNF, computation, or 
storage slates. The sub-domain SDN controller provides the network connectivity 
and service chaining among the allocated VNFs. It also feeds the slice lifecycle 
management function with an abstracted network resource view and monitoring 
reports for assuring the desired service level agreement (SLA). 

In the multi-domain infrastructures, the physical resources consist of process-
ing, storage and network resources in the RAN domain, transport domain, and 
core network domain. The virtualization layer is responsible for abstracting the
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underlying hardware resources and decoupling VNFs from hardware. The virtual 
resources are the abstracted physical resources that VNFs are running directly 
on. These VNFs include control plane and data plane functions are deployed in 
the hardware of the infrastructures. With the federated management framework of 
multi-domain infrastructure, the operational procedures of multi-domain network 
slice configuration and modification are elaborated in [39]. 
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Chapter 3 
Intelligent Deployment and 
Orchestration of E2E Slices 

3.1 Service-Oriented Slice Deployment Policy 

Owing that different use case families have different demands on the multi-domain 
resources, the deployment of E2E slices should be service-oriented. In order 
to support a diverse set of use cases, the heterogeneous resources of multiple 
infrastructure networks need to be allocated dynamically. Besides, E2E slices 
need to be instantiated rapidly and should support cross-domain deployment. The 
deployment of E2E slices in essence is the allocation of virtual resources and the 
placement of VNFs. There are plentiful related researches on VNF placement, such 
as the algorithms proposed in [2, 11]. However, these algorithms are suitable for a 
single type of VNF chain request without considering diverse service requirements. 
In addition to the VNF placement problem, the virtual network embedding (VNE) 
problem [7] which focuses on the mapping from slices to the infrastructure networks 
has also been studied maturely in recent years. Nonetheless, little works in existing 
literature have been done on the deployment of E2E network slices. Therefore, 
we propose a service-oriented deployment policy of E2E network slices [5], 
improving the resource utilization by analyzing different features of use cases and 
the topological properties of infrastructure. 

3.1.1 The Deployment Model of E2E Slices 

In this section, we describe the mathematical model of network slicing including 
infrastructure network model, network slice request (NSR) model, and slice deploy-
ment model. 

The deployment of NS requires topological information of infrastructure net-
work including the structural characteristics of physical nodes, e.g., base stations 
(BS), optical switches (OS), core nodes (CON). The infrastructure network can 
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Table 3.1 A summary of parameters for E2E slice deployment 

Parameters Definitions 

.CCON
I

(
nCON

I

)
Computing resource of core node .nCON

I , .nCON
I ∈ NCON

I ; 

.CCON
R

(
nCON

R

)
Computing resource requirement of the virtual core node .nCON

R ∈ NCON
R ; 

.Bwl
R

(
ewl
R

)
Bandwidth requirement of the virtual wireless link .ewl

R ∈ Ewl
R ; 

.Bol
R

(
eol
R

)
Bandwidth requirement of the virtual optical link .eol

R ∈ Eol
R ; 

be abstracted as undirected weighted graph, which can be denoted as . GI =
(NI , EI , CI , BI ). Similar to some previous literatures, we only take into consider-
ation the capacity of nodes and bandwidth of links. . NI stands for the set of physical 
nodes, which can be partitioned into the set of base stations .NBS

I , the set of optical 
switches .NOS

I , and the set of core nodes .NCON
I , .NI = NBS

I ∪ NOS
I ∪ NCON

I . . EI

stands for the set of physical links including the wireless wave links .Ewl
I and wired 

optical links . Eol
I , .EI = Ewl

I ∪ Eol
I . 

.Ewl
I =

⋃

nBS
I ∈NBS

I

Ewl
I

(
nBS

I

)
, (3.1) 

where .Ewl
I

(
nBS

I

)
is the subset of wireless link . ewl

I responsible of connecting . nBS
I

and other nodes. . CI stands for the capacity of physical nodes, which includes 
BS wireless channel capacity .CBS

I and computing resource of core cloud .CCON
I , 

.CI = CBS
I ∪ CCON

I . . BI stands for the bandwidth set of physical links, including 
the available bandwidth set of wireless wave links .Bwl

I and wired optical links . Bol
I , 

.BI = Bwl
I ∪ Bol

I . 
In our model, the set of NSRs consists of three types of slices for three use case 

families, which can be denoted by .RNS , .RNS = Re ∪ Rm ∪ Ru. . Re represents 
eMBB slice, .Rm represents mMTC slice, and . Ru represents uRLLC slice. Each 
request is regarded as .GR = (NR,ER,CR,BR, TR) where .NR represents nodes 
of network slice, . ER represents links, . CR denotes capacity, . BR denotes bandwidth, 
and . TR is the duration of the NSR remaining in the infrastructure network. Thus, 
.GRe = (

NRe,ERe , CRe , BRe , TRe

)
is for request . Re, and similarly .GRm and . GRu

are for requests . Rm and . Ru, respectively. 
Slice deployment is a process in which nodes of slice requests are mapped onto 

substrate nodes and links are mapped onto substrate paths on the premise of meeting 
service demands of slices. The mapping process consists of two stages, the node 
mapping and the link mapping. The node mapping represents the placement of 
VNFs while the link mapping is chaining those VNFs. A node of NSR can only be 
mapped on a node of infrastructure network, and a node of infrastructure network 
can only host a node from the same of NSR. Table 3.1 is a summary of parameters 
that are used for the formulation of the mathematical model and the introduction of 
the decision variables, and Table 3.2 is a summary of variables.
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Table 3.2 A summary of variables for E2E slice deployment 

Variables Definitions 

.Cwl
I

(
ewl
I

)
Channel capacity of the wireless link . ewl

I , .ewl
I ∈ Ewl

I ; 

.Bwl
I

(
ewl
I

)
Bandwidth assigned to the wireless link . ewl

I ; 

.μnBS
R ,nBS

I
Binary variable, if .nBS

R of .GR is mapped to .nBS
I of . GI , .μnBS

R ,nBS
I

= 1; 
Otherwise, .μnBS

R ,nBS
I

= 0; 

.μnOS
R ,nOS

I
Binary variable, if .nOS

R of .GR is mapped to .nOS
I of . GI , .μnOS

R ,nOS
I

= 1; 
Otherwise, .μnOS

R ,nOS
I

= 0; 

.μnCON
R ,nCON

I
Binary variable, if .nCON

R of .GR is mapped to .nCON
I of . GI , 

.μnCON
R ,nCON

I
= 1; Otherwise, .μnCON

R ,nCON
I

= 0; 

.νewl
R ,ewl

I
Binary variable, if a virtual link . ewl

I of .GR traverse the physical wireless 
link . ewl

I , .νewl
R ,ewl

I
= 1; Otherwise, . ewl

I , .νewl
R ,ewl

I
= 0; 

.νeol
R ,eol

I
Binary variable, if a virtual link . eol

I of .GR traverse the physical optical link 
. eol

I , .νeol
R ,eol

I
= 1; Otherwise, . eol

I , .νeol
R ,eol

I
= 0; 

.ξnBS
R ,ewl

I
Binary variable, if .nBS

R of .GR is served by .ewl
I ∈ Ewl

I

(
nBS

R

)
, .ξnBS

R ,ewl
I

= 1; 
Otherwise, .ξnBS

R ,ewl
I

= 0; 

The deployment process of E2E slices consists of VNF placements and chaining 
VNFs. In order to achieve better resource efficiency and higher revenue of service 
provision, the topological properties of infrastructure networks are analyzed based 
on CN theory and combined in the VNF placement. The degree of a node measures 
the number of edges that connect to it, which reflects the level of influence. The node 
degree describes the number of its neighborhood nodes, which can be formulated as 

.di =
∑

j∈N

δij . (3.2) 

The parameter . δij takes the value 1 if node i and node j are directly connected, 
otherwise it takes the value 0. The betweenness centrality quantifies how much 
a node is found between the path linking other pair of nodes. This measure can 
describe the importance of a node with respect to the shortest path. The betweenness 
centrality is defined as the fraction of shortest paths between any pair of nodes that 
travel through the node, which can be denoted by 

.bi =
∑

s /=i /=t

σst (i)

σst

. (3.3) 

In this equation, . σst is the total number of shortest paths from node s to node t and 
.σst (i) is the number of those paths that pass through node i. 

Placing VNFs means to select the physical nodes of substrate network as host 
for the virtual nodes of NSRs under the condition of satisfying the capacity
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requirements. According to the literatures of VNE problem, the local resources for 
nodes are measured by 

.NR (i) = C (i) ·
∑

l∈s(i)

BW (l), (3.4) 

where .C (i) represents the capacity of node i, .s (i) represents the set of links that 
directly connected to the node i, .BW (l) represents the current available bandwidth 
of link l. The main shortcoming of this measurement is ignoring the topological 
characteristics of nodes. Hence, in the step of placing VNFs, we combine the 
degree and betweenness centrality of nodes to measure the importance of nodes 
in infrastructure network and slices. 

First, the degree and betweenness centrality of nodes are normalized. Consider-
ing that the degree of node is not exceed .N − 1 when the total number of nodes is 
N , the normalization of the degree can be expressed by 

.d '
i = di

N − 1
. (3.5) 

Similarly, the betweenness centrality of node can be normalized by using 

.b'
i = 2bi

(N − 1) (N − 2)
(3.6) 

because the maximum of .(N − 1) (N − 2)
/
2. In the case of reaching maximum, 

each node pair of the network has at least one shortest path that travel through the 
node. Based on these normalized metrics of nodes, the weighting parameters of node 
i can be given by . d

'
i+b'

i

2 . Therefore, combine the local resource and weighting of 
each node, the node importance of i can be given by 

.NI (i) = NR (i) ×
(

d '
i+b'

i

2

)
. (3.7) 

According to the node importance, we use graphical breadth-first-search (BFS) 
algorithm to sort nodes and map the virtual nodes to physical nodes based on BFS. 
The sorting algorithm of virtual nodes is listed in Algorithm 3. Based on the sorting 
algorithm, the node mapping algorithm is introduced in Algorithm 4. 

The procedure of creating paths that interconnect the VNFs placed nodes would 
be achieved on the basis of k-shortest paths (KSP) algorithm. KSP algorithm is used 
to select suitable physical paths in the premise of satisfying the bandwidth resource 
requirements. After removing the link paths that do not satisfy the requirements, 
Floyd algorithm is used to calculate the shortest path. More details are shown in 
Algorithm 5.
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Algorithm 3 The sorting algorithm for virtual nodes in NSRs 
Require: NR : the set of virtual nodes in NSR 
Ensure: N '

R : the sequence of sorted virtual nodes 
1: Calculating NI  value of each virtual node. 
2: Sorting the virtual nodes by NI  value in non-increasing order. 
3: Selecting the virtual node with highest NI  value as R. 
4: Using R as the root node, traverse the graph of NSR using BFS algorithm, and get the BFS 

tree T . 
5: Sorting the virtual nodes in each layer of T according to NI  value in non-increasing order. 
6: Return N '

R . 

Algorithm 4 The node mapping algorithm based on BFS 
Require: RNS : the arrived NSR 
Ensure: Mnode: the results of node mapping 
1: Sort virtual nodes with Algorithm 3. 
2: Sort physical nodes according to their NI  values in non-increasing order. 
3: for each virtual node do 
4: if it is root R then 
5: it is mapped into the physical node with the greatest value of NI . 
6: else 
7: find the parent node P of it. 
8: find the mapped physical node I for P . 
9: find the neighbor nodes of I as the candidate physical nodes C. 
10: choose one of C which owns the greatest value of NI  in the premise of satisfying the 

capacity requirements. 
11: end if 
12: return Mnode. 
13: end for 

Algorithm 5 The link mapping algorithm based on KSP 
Require: RNS : the arrived NSR 
Ensure: Mlink : the results of link mapping 
1: Sort the virtual links according to bandwidth in non-increasing order. 
2: for each virtual link l. do 
3: calculate the bandwidth requirement BW (l). 
4: remove the physical links that can not meet the bandwidth requirement. 
5: according to Mnode, find the mapped physical nodes of l. 
6: find the physical shortest path between these two physical nodes by using Floyd algorithm. 
7: return Mlink . 
8: end for 

3.1.2 Distinct Slice Deployment Algorithms 

The main objective of slice orchestration is minimizing the deployment cost on the 
premise of meeting slice requirements. Considering the differentiated demands of 
three use case families defined in ITU, three corresponding types of slices have 
their peculiar objectives in addition to the main objective. No matter which kind of 
slices are required, the ultimate goal is to take advantage of infrastructure resources
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efficiently. Hence, the main objective can be expressed by 

.min

⎡

⎣
∑

nR∈NR

CR (nR) · μnR,nI
+

∑

eR∈ER

BR (eR) · νeR,eI

⎤

⎦ . (3.8) 

The eMBB usage scenario covers a range of cases, including wide-area coverage 
and hotspot. For the hotspot case, i.e., for an area with high user density, very 
high traffic capacity is needed, while the requirement for mobility is low and user 
data rate is higher. This kind of slice does not require strict delay and plentiful 
resources. Hence, the deployment objective of eMBB slices should be maximizing 
the remaining resources of physical nodes, which can be represented by 

.max

⎡

⎣
∑

nI ∈NI

CI (nI ) −
∑

nR∈NR

CR (nR) · μnR,nI

⎤

⎦ . (3.9) 

The mMTC usage scenario is characterized by a very large number of connected 
devices typically transmitting a relatively low volume of non-delay sensitive data. 
This use case has plenty of connections, which results in the requirement of high 
computing resources and low congestion rate. Therefore, the deployment objective 
should be minimizing the usage of bandwidth on physical links. In other words, the 
remaining bandwidth on physical links should be maximized. Thus, the deployment 
objective of mMTC slice can be denoted as 

.max

⎡

⎣
∑

eI ∈EI

BI (eI ) −
∑

eR∈ER

BR (eR) · νeR,eI

⎤

⎦ . (3.10) 

The uRLLC usage scenario has stringent requirements for capabilities such as 
throughput, latency, and availability. Some examples include wireless control of 
industrial manufacturing, remote medical surgery, transportation safety, etc. The 
QoS guarantee of this use case is low latency, which causes that the deployment 
objective should be minimizing the delay of slices. We transfer delay time into the 
number of hops, so minimizing the delay means minimizing each physical path 
length. Hence, deployment objective of uRLLC slices is 

.min
∑

ewl
R ∈Ewl

R

νewl
R ,ewl

I
+

∑

eol
R ∈Eol

R

νeol
R ,eol

I
. (3.11) 

These objectives are subject to 

.

∑

nBS
R ∈NBS

R

μnBS
R ,nBS

I
= 1,∀nBS

I ∈ NBS
I . (3.12)
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.

∑

nBS
I ∈NBS

I

μnBS
R ,nBS

I
≤ 1,∀nBS

R ∈ NBS
R (3.13) 

Equation (3.12) ensures that each virtual BS only should be mapped to a physical 
BS. Equation (3.13) ensures that each physical BS only should undertake a virtual 
BS for each NSR. 

.

∑

ewl
I ∈Ewl

I

Bwl
I

(
ewl
I

)
≤ Bwl

I (3.14) 

.
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(
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I

)
Cwl

I

(
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I
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(
nBS

I

)
,∀nBS
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R (3.15) 

.
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R
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(
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(
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(
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R ,ewl
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I

(
ewl
I
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R

(
nBS

R

)
,∀nBS

R ∈ NBS
R .

(3.17) 

Equation (3.14) ensures that the bandwidth occupied by all the wireless channels 
should not exceed the total available bandwidth .Bwl

I for each BS. Equation (3.15) 
ensures that the channel capacity sum of wireless links in each BS should not exceed 
capacity of this BS allocated by the control plane. Equation (3.16) ensures that the 
capacity sum of all virtual BS undertaken in this BS should not exceed its allocated 
capacity. Equation (3.17) ensures that the allocated capacity for each virtual BS 
should not be less than its capacity requirement. 

.

∑

nOS
R ∈NOS

R

μnOS
R ,nOS

I
= 1,∀nOS

I ∈ NOS
I (3.18) 

.

∑

nOS
I ∈NOS

I

μnOS
R ,nOS

I
≤ 1,∀nOS

R ∈ NOS
R (3.19) 

Equation (3.18) ensures that each virtual OS only should be mapped to a physical 
OS. Equation (3.19) ensures that each physical OS only can undertake a virtual OS 
for each NSR. 

.

∑

nCON
R ∈NCON

R

μnCON
R ,nCON

I
= 1,∀nCON

I ∈ NCON
I (3.20)
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.

∑

nCON
I ∈NCON

I

μnCON
R ,nCON

I
≤ 1,∀nCON

R ∈ NCON
R (3.21) 
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. 
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I ∈NCON

I

μnCON
R ,nCON

I
· CCON

I

(
nCON

I

) ≥ CCON
R

(
nCON

R

)
,∀nCON

R ∈ NCON
R

(3.23) 

Equation (3.20) ensures that each virtual core nodes only should be mapped to 
a physical servers. Equation (3.21) ensures that each physical server only can 
undertake a virtual core node for each NSR. Equation (3.22) ensures that the 
computing resource of each physical server can satisfy the total requirement of 
all virtual core nodes mapped in it. Equation (3.23) ensures that the computing 
resource of selected physical server should not be less than the computing resource 
requirement of virtual core nodes. 

Three different deployment and orchestration strategies are provided to these 
three types of slices according to their objectives, respectively. After the arriving 
of NSRs, these requests are classified, then implemented by different mapping 
algorithms, respectively. Meanwhile, the resource efficiency (RE) and acceptance 
ratio (AR) of NSRs are calculated. Resource efficiency is defined as the revenues 
and cost ratio. The achieved revenues of accepting a NSR by the infrastructure 
network can be defined as the sum of nodes capacity and link bandwidth require-
ments of a NSR. And the cost can be defined as the sum of nodes capacity and link 
bandwidth resources of the infrastructure network. Hence, the resource efficiency 
can be formulated as follows: 

.RE =

∑

n∈NR

CR (n) + ∑

l∈ER

BR (l)

∑

n∈NR

CR (n) + ∑

l∈ER

BR (l) × hop (l)
, (3.24) 

where .CR (n) represents the capacity of node n and .BR (l) represents the bandwidth 
of link l, .hop (l) represents the mapping path length of link l. Furthermore, 
acceptance ratio is the ratio of the number of NSRs which have been successfully 
mapped and the total number. Hence, it can be formulated as 

.AR =
∑T

t=0 NUMacc
∑T

t=0 NUMarr

. (3.25) 

In the above formula, .NUMacc represents the number of NSRs that have been 
accepted while .NUMarr denotes the number of NSRs that have been arrived. 
Details are presented in Algorithm 6.
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Algorithm 6 The NSRs implementation algorithm 
Require: GI = (NI , EI , CI , BI ) and RNS  = Re ∪ Rm ∪ Ru 
Ensure: AR, RE, Mnode and Mlink 
1: while RNS /= ∅ do 
2: Calculating the resources of infrastructure network GI . 
3: if NSR is eMBB slice Re then 
4: deploy it using Algorithm 7. 
5: else if NSR is mMTC slice  Rm then 
6: deploy it using Algorithm 8. 
7: else 
8: deploy it using Algorithm 9. 
9: end if 
10: if Mnode and Mlink are not null then 
11: update the resources of infrastructure network GI . 
12: calculating resource efficiency RE. 
13: else if Mnode and Mlink are null then 
14: calculating acceptance ratio AR. 
15: end if 
16: end while 

In the deployment algorithm for eMBB slice, the virtual BSs are first sorted 
and mapped according to the node mapping algorithm (Algorithm 4). After 
mapping the virtual BSs, the virtual CONs are mapped similarly considering the 
computing resource requirements. Then, the mapping of virtual OSs are finished 
when searching the shortest paths between each BS-CON pair. Finally, the virtual 
links are mapped with the link mapping algorithm (Algorithm 5). Details are shown 
in Algorithm 7. 

Algorithm 7 Deployment algorithm A for eMBB slice 
Require: GI and Re 
Ensure: Mnode and Mlink 
1: sort the virtual nodes by Algorithm 3. 
2: do node mapping of BSs by Algorithm 4. 
3: do node mapping of CONs by Algorithm 4. 
4: do link mapping by Algorithm 5. 
5: do node mapping of OSs according to the link mapping. 
6: return the mapping results. 

In the deployment algorithm for mMTC slice, the virtual CONs are mapped 
firstly. Next, take these CONs as the source endpoints and find out the candidate BSs 
as the target endpoints. Then, we select the shortest path from the set of candidate 
paths between CON and candidate BSs to map the virtual link. Details are shown in 
Algorithm 8. 

In the deployment algorithm for uRLLC slice, we first find out the set of 
candidate BS-CON pairs and search all the possible routing paths between these 
candidate pairs as the candidate path set. According to the number of virtual links
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Algorithm 8 Deployment algorithm B for mMTC slice 
Require: GI and Rm 
Ensure: Mnode and Mlink 
1: sort the virtual nodes by Algorithm 3. 
2: do node mapping of CONs by Algorithm 4. 
3: select available BSs as candidate BSs. 
4: search the set of candidate paths between CON and candidate BSs. 
5: do link mapping based on candidate paths by Algorithm 5. 
6: do node mapping of OSs according to the link mapping. 
7: do node mapping of BSs. 
8: return the mapping results. 

of NSR, we select the shortest paths from the set of candidate paths to map the 
virtual links. Then we map the virtual BSs and CONs into the physical endpoints of 
the selected paths. Details are shown in Algorithm 9. 

Algorithm 9 Deployment algorithm C for uRLLC slice 
Require: GI and Ru 
Ensure: Mnode and Mlink 
1: sort the virtual nodes by Algorithm 3. 
2: select available BSs as candidate BSs. 
3: select available CONs as candidate CONs. 
4: search the set of candidate paths between candidate CON and candidate BS. 
5: do link mapping based on candidate paths by Algorithm 5. 
6: do node mapping of OSs according to the link mapping. 
7: do node mapping of BSs. 
8: do node mapping of CONs. 
9: return the mapping results. 

3.2 Real-Time Slice Orchestration Framework 

6G is expected to satisfy the dynamic and differentiated demands of users through 
real-time micro-management of multiple resources including communication, com-
puting and storage resources. As the enablers of network slicing, NFV decouples 
software and hardware by virtualizing network functions and running them on the 
virtual machines (VMs) while SDN architecture provides centralized control plane 
for the configuration of network resources. These techniques prompt a service-
based E2E wireless network architecture where VNFs of RANs and core network 
are placed as VMs deployed in data centers (DCs) of cloud InPs. The diverse 
demands of tenants can be satisfied through flexibly managing resources and 
efficiently orchestrating VNFs of slices. By involving tenants in VNE calculation, 
virtual networks could be provided in a tenant-driven manner with a trade-off
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between cost-effectiveness and time-efficiency. Since E2E slices require multiple 
resources, multiple domains administrated by different cloud InPs form a federated 
environment to jointly provide tenants with resources. 

E2E network slicing across multiple infrastructures has been discussed in the 
literature while MANO operations of slices in multiple administrative domains are 
also concern [15], as well as the life-cycle management operations. Through flexible 
slicing, heterogeneous resources of these cloud infrastructures can be utilized in a 
customized manner and the additional costs of the coalition can be reduced [17]. 
Besides, analyzing the profit of resources provisioning and monitoring the status 
of resource utilization are essential in dynamic real-time E2E slicing. Specifically, 
performing admission control of resource requests needs to consider the revenue of 
NSPs as well as the service requirements and reallocating resources across multiple 
domains requires a global view of slice deployment status. To handle massive 
requests of configuring and modifying E2E slices dynamically, RL methods are used 
in the real-time slice orchestration framework, improving the speed and accuracy of 
decision-making. 

3.2.1 Hierarchical Slice Orchestration Architecture 

Planning deployment location from a global view can effectively avoid resource 
competition caused by the increasing number of co-located VMs on the same 
server. Scheduling multi-dimensional resources in a comprehensive and balanced 
way can potentially increase resource efficiency and avoid resource waste and 
shortage. In order to improve the revenue of resource providers, managing multi-
domain resources centrally and allocating optimal amount resources to E2E slice 
instances are required. Given that traffic load variation of the slice might degrade 
QoE, the centralized management approach faces performance issues and limits the 
autonomy of the tenants. Hence, based on the MANO architecture for multi-domain 
slices in 5G [15], an AI-based hierarchical resource management framework shown 
in Fig. 3.1 is proposed to integrate intelligence in customized slicing for 6G use 
cases in the scenario of multi-InPs and multi-tenant. 

To meet dynamically evolving service quality requirements and support fine-
grained network decision optimization, the proposed framework introduces a global 
resource manager (GRM) to handle incoming differentiated resource requests from 
tenants, and multiple local resource manager (LRM) to deal with the demand 
changes in resource requirements for individual tenant. The deployment of GRM 
and LRMs enables two-layer customization of slices, which means that the 
resources are firstly allocated to each tenant according to the heterogeneous slice 
performance requirements, and then resource allocation to each slice is optimized 
and adjusted according to the real-time observation of demand changes. It is worth 
noting that the AI-based algorithms used in global resource allocation and local 
slice adaption can be different.
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Fig. 3.1 The AI-based hierarchical slice orchestration architecture 

The hierarchical approach can enable flexibility and scalability properties by 
distributing resource management to individual tenant. GRM maintains the overall 
control over the LRMs and delegates the concrete operations to each LRM. GRM is 
responsible for charging of slice owners and monitoring the LRMs while allocating 
federated resources across multiple domains. LRM performs slice adaption by 
adjusting the assigned resources to maintain service quality. Moreover, the LRMs 
not only provide each tenant the ability of resource customization but also have the 
distinguishing feature of transmitting the status of slices to the GRM. 

To handle with the traffic dynamics quickly, the status of slices which include 
the deployment location of VNFs and the condition of traffic flows passing through 
these VNFs are observed periodically. Monitoring slice deployment and resource 
utilization facilitates to maintain service quality and enhance resource efficiency. 
Observing the real-time status of E2E slices provides a reference for determining 
whether or not to perform resource adaption. To realize real-time resource moni-
toring and slice topology information updating in the scenario of multi-InPs and 
multi-tenant, both of the differentiated slices provided by multiple tenants and the 
joint infrastructure network which consists of multiple infrastructures are depicted. 
Specifically, the cooperation between these infrastructure networks and the mapping 
relationships between the physical servers and the VNFs deployed in these servers 
are precisely delineated.
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Fig. 3.2 The AI-enabled slice orchestration mechanism 

3.2.2 AI-Enabled Slice Orchestration Mechanism 

Figure 3.2 shows the procedure of customized slicing with the proposed AI-based 
management framework. After receiving the real-time slice requests from multiple 
tenants, the GRM deployed in the functional plane named the Service Broker 
performs admission control of these requests based on ML model. The NSPs make 
a trade-off between the resource requirements associated with these requests and 
the revenue achieved by providing required resources. Multi-dimensional resources 
are allocated to tenants with the objective of maximizing the long-term revenue of 
NSPs. For the DRL-based resource allocation performed in GRM, states are defined 
as the number of accepted requests belonging to different tenants, actions taken by 
each agent are accepting/rejecting the arrival slice requests and reward is related to 
slice utility. With the output of the DRL algorithm in GRM, slices are deployed and 
the status of slices are recorded periodically. 

Depending on perceived status, the current service quality can be measured 
and compared with its target quality requirements. The current service quality 
satisfaction reflects the gap with the target value. The target values regarded as the 
desired service quality should be defined as the level of service that the available 
resources of InPs can and should provide, thus they are preset and fed as input 
to the optimization problem of slice adaption. As the slice-level feedback, current 
service quality satisfaction is used to improve the performance of ML model and 
update the model with demand changes that could occur over time. When there 
are changes in slice requests, such as a sudden increase in resource requirements, 
the ML model is utilized to maintain service quality for admitted slices by micro-
managing resources.
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The motivation of performing resource adaption generates from the mismatch 
between available resources and the varying traffic demand in the slice. This 
mismatch might cause two kinds of issues, one is that available resources are 
exhausted and the other is that partial resources are idle. The former means unfair 
resource allocation resulting in the low data rate of newly accepted user, and the 
latter means that the revenue of tenant is declining. To avoid unbalanced distribution 
of available resources, i.e., some resources are under-utilized, some are over-
utilized, the allocated resource of each tenant should be adjusted to maximize the 
profits of available resources. After receiving the requests of adjusting resources 
for multiple slices, tenant makes decisions by weighing the cost and revenue of 
adjusting resources for each slice to ensure optimal resource efficiency. 

The LRM deployed in Service Conductor performs the DRL-based slice adap-
tion. States are tied to the current service quality satisfaction and actions denotes 
whether slice adaption is permitted. Reward is defined as the revenue obtained 
by adjusting resource minus the resource consumption cost and operational cost. 
The revenue is related to the amount of money paid by the service subscribers 
for guaranteeing service quality, which depends on the type of slice. The resource 
consumption cost represents the cost of providing more resources, such as the extra 
processing units required by the newly arrived traffic flows. The operational cost 
means the cost of performing reconfiguration, which includes the cost of service 
interruption caused by reallocating resources and migrating VNFs among physical 
servers. There is no doubt that DQL used in this chapter can be replaced by other 
advanced DQL-based algorithms to achieve better performance. 

3.3 Fast Slice Reconfiguration Solution 

As the demands of customized services vary dynamically over time, failing to satisfy 
changing resource requirements of slices might degrade the QoS and compromise 
the revenues of SPs. In order to maintain high revenue of SPs and high quality 
of services, it is necessary to meet the changing resource requirements of slices 
in a timely manner at a lower cost. In the dynamic environment, the parameters 
of resources slicing need to be updated and the slice reconfiguration must be 
necessary to avoid requests rejections [10]. There are two main challenges in 
achieving the goals of optimal slice reconfiguration and fast resources reallocation. 
First, from the perspective of maximizing the long-term revenue of SPs, real-time 
slice reconfiguration decisions should consider the cost and revenue of satisfying 
the additional resource requirements. Since the user demands are dynamic and 
uncertain, the ability to predict the increase in resource requirements for a particular 
type of slice is essential to the optimization of resource utilization [12]. Second, 
slice requests are diversified for different use cases and slices require multi-type 
resources including computing and storage resources. In addition, the infrastructure 
network consists of numerous DCs connected together, and the servers of DCs 
own computing and storage resources [12]. Thus, how to concurrently reallocate
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computing and storage resources effectively and rapidly without modeling the 
complex dynamic environment is another challenge [10]. 

To deal with the aforementioned challenges, an optimal and fast slice recon-
figuration (OFSR) framework is developed. A Markov renewal process (MRP) is 
introduced to predict the next change in resource requirements and the duration 
between changes based on the memory of past changes. With the prediction 
information, OFSR framework precalculates the revenue and cost of reconfiguring 
each slice. Instead of making decisions once a change occurs, the proposed 
prediction technique enables the SP to make decisions for different classes of 
slices periodically from the perspective of optimizing long-term revenue. Further, 
a Markov decision process (MDP) is used to model the jointly reallocation decision 
of computing and storage resources considering the uncertainty of resource require-
ments for diversified slices. To make the decisions of slice reconfiguration optimally 
and rapidly under the varying service demands, dueling deep Q-learning (DDQL) 
which has a single Q-network with two-stream Q-function, i.e., the state-value 
function and the advantage function, is adopted. Compared with the conventional 
Q-learning, the learning process of DDQL is speeded up by quickly identifying the 
best action without learning the effect of each action for each state [13]. 

Figure 3.3 shows the slice reconfiguration model, where there are three major 
players [3, 16]. InP is the owner of the network and provides physical resources. 
Tenants perceived as SPs request resources from InP to meet the service demands of 
End Users (EUs). SPs issue slice requests to InP after receiving the service demands 
of EUs, and the change of service demands will affect the resource requirements of 
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Fig. 3.3 The proposed framework of demand prediction based slice reconfiguration
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slices. Guaranteeing the service quality of slices requires rapid response to changes 
in resource requirements, which means a timely decision on whether to permit 
slice reconfiguration. Hence, MRP-based demand prediction is considered in our 
system model of slice reconfiguration where the history of changes in resources 
requirements of slices is recorded and the next change is predicted. It means that 
the changes in resource requirements of each slice request and when the changes 
occur are recorded to predict the requirements of increasing resources. According 
to the prediction, SPs make decisions by weighing the cost and revenue of slice 
reconfiguration against the resource availability. Depending on the decisions of SPs, 
InP obtains revenue through providing extra resources for the demand changes. 

In the slice reconfiguration model, there are two use cases provided by two 
different tenants separately, eMBB and uRLLC which own different characteristics 
in terms of SLA. The resource management and orchestration (RMO) block is 
responsible for managing virtual resources, orchestrating VNFs, and adjusting 
resource allocation to maintain the service quality of slices. After collecting slice 
requests, Demand Prediction component is in charge of analyzing the resource 
requirements and providing predicted information to Optimal Policy component. 
Then, Optimal Policy component makes decisions whether to do slice reconfigu-
ration. Algorithm component is used to calculate the optimal policy and observe 
the results after the decision execution. The observation is applied for the training 
process as explained in Section IV. Hence, Algorithm component has the ability to 
efficiently deal with the uncertainty of changes by constantly learning from previous 
experiences. Once the reconfiguration request of a slice is permitted, RMO block 
will initiate the procedure of reallocating resources and rerouting the traffic flows. 
The goal of this procedure can be to minimize the routing paths between VNFs 
or maximize the remaining bandwidth resources of links, which depend on the 
characteristics of the service delivered by the slice. In our future work, we will 
provide detailed policies for VNFs migration and routing path re-planning. 

3.3.1 A MRP Based Demand Prediction Model 

To provide E2E services, InP possess RAN and multiple DCs which provide 
diverse resources [6], e.g., computing and storage resources. Each slice consists 
of VNFs distributed geographically in standard universal servers of DCs, and 
physical network functions in RAN. When a slice request arrives, InP will provide 
RMO all information including the topology and resource availability. With these 
information, the orchestrator will deploy VNFs in the optimal servers and the 
manager will allocate resources to each VNF. As for the resource reallocation 
of heterogeneous slice requests in the dynamic and uncertain environment, the 
allocated resources can be changed with the scaling-in and scaling-out mechanisms, 
and even the placement of VNFs can be migrated among different servers. 

The infrastructure network is modeled as an undirected weighted graph 
.G(N,L,C,B), where . N is the physical node set, . L is the physical link set, .C
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is the capacity of nodes, and . B is the bandwidth of links. Specifically, the servers 
are regarded as physical nodes and the physical links are the connections between 
servers. Different VNFs of the same slice can be deployed on multiple physical 
nodes, and a physical node can host multiple VNFs of different slices. . C means 
a collection of computing and storage resources, and the maximum computing 
and storage resources of the infrastructure are represented by . Θ and . Ω units, 
respectively. Assuming that there are no restrictions in the bandwidth of links, 
which means that the bandwidth is always enough for demand changes. 

Assuming that there are K classes of slices, denoted by .K = {1, . . . , k, . . . , K}. 
Each slice of class k can be represented by .S

(
Nk,Lk,Ck,Bk

)
, where . Nk and . Lk

denote the sets of virtual nodes and links, respectively. VNFs of slices are regarded 
as the virtual nodes, thus the virtual nodes set is a subset of physical nodes. . Ck and 
. Bk , respectively, denote the capacity of virtual nodes and the bandwidth of virtual 
links. Assuming that the capacity of node n in a slice from class k contains . δk

n units 
of computing resources and . ωk

n units of storage resources. Hence, the total node 
capacity of slice can be denoted as 

.Ck =

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣∣Nk

∣
∣∣

∑

n=1

δk
n,

∣
∣∣Nk

∣
∣∣

∑

n=1

ωk
n

⎫
⎪⎪⎬

⎪⎪⎭
, n ∈ Nk, k ∈ K, (3.26) 

where .
∣∣Nk

∣∣ is the number of nodes in a slice from class k. And the bandwidth of 
link l is denoted as . βk

l , thus 

.Bk =

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣∣Lk

∣
∣∣

∑

l=1

βk
l

⎫
⎪⎪⎬

⎪⎪⎭
, l ∈ Lk, k ∈ K, (3.27) 

where .
∣∣Lk

∣∣ is the number of links in a slice from class k. Let  . qk denotes the 
number of slices from class k being served simultaneously. The following resource 
constraints guarantee that the allocated resources do not exceed the available 
resources of the infrastructure network: 

.

K∑

k=1

∣
∣∣Nk

∣
∣∣

∑

n=1

qk · δk
n ≤ Θ,

K∑

k=1

∣
∣∣Nk

∣
∣∣

∑

n=1

qk · ωk
n ≤ Ω. (3.28) 

MRP is applied to achieve an efficiently accurate prediction of slices’ resources 
evolution in the near future based on past resource consumption. An MRP is a 
two-dimensional stochastic process .(Xm, Tm)m≥0, and .(Xm)m≥0 is a Markov chain 
which represents the states successively visited [4]. If a stochastic process is an 
MRP, the semi-Markov kernel can be represented by
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.Qi,j (t) = P {Xm+1 = j, Tm+1 − Tm ≤ t |Xm = i } , (3.29) 

where . Xm represent the state after the mth transition, . Tm denotes the times at which 
the mth transitions occur. The sojourn time .Tm+1 − Tm in any state depends on both 
the current state and the next transition. 

.Qi,j (t) denotes the probability that the process makes a transition from current 
state i into next state j within t units of time [1]. Further, the kernel can be rewritten 
as .Qi,j (t) = Pi,jGi,j (t), when .t → ∞, .Pi,j = lim

t→∞ Qi,j (t). .Pi,j denotes the 

transition probability of states. .Gi,j (t) denotes the probability that the transition 
occurring in an amount of time t given that the process entered state i newly and 
will transfer to state j , 

.Gi,j (t) = P {Tm+1 − Tm ≤ t |Xm+1 = j,Xm = i } . (3.30) 

As suggested in [1], estimating the likelihood of future transitions within a certain 
time window is more effective than predicting the time at which a transition could 
occur. Hence, given .Qi,j (t), we calculate 

.Qi,j (t − Δt, t + Δt) = Qi,j (t + Δt) − Qi,j (t − Δt) , (3.31) 

where .Qi,j (t ± Δt) is the likelihood of making a transition from i to j within a 
time period t . The size of time window is . 2Δt , which is directly related to prediction 
accuracy. 

Commonly, given the transition probability . Pi,j , if  .Pi,o = max
j∈Фi

{
Pi,j

}
, where 

. Фi represents the set of possible states which can be transitioned from state i, 
state o is most likely to be the next state of state i. Hence, the outcome of . Pi,j

predictor is state o. Similarly, with the probability .Qi,j (t) defined in Eq. (3.29), the  
results of MRP predictor will be such that .Qi,o (t) = max

j∈Фi

{
Qi,j (t)

}
. Besides, the 

prediction accuracy can be improved by additionally considering the previous state, 
i.e., extending .Qi,j (t) to .Qh,i,j (t), which is represented by Eq. (3.32). 

.Qh,i,j (t) = P {Xm+1 = j, Tm+1 − Tm ≤ t |Xm = i, Xm−1 = h } . (3.32) 

The diagram of the MRP-based prediction procedure is shown in Fig. 3.4. 
The database holds the record of demand changes, which provides information to 
compute .Pi,j and .Gi,j (t). With the arrival of new changes, .Pi,j and .Gi,j (t) can 
be periodically updated. Then .Qi,j (t) is calculated and queried by the predictor to 
evaluate the probabilities. The inputs of the predictor include the current state i, the  
current sojurn time . tc of state i, and the time length . tl during which a transition 
is expected to occur. The output o is the next most likely state which occur at 
.tc + tl . It is worth noting that there are both increment and decrement in resource 
requirement of slices. The increment means that SPs need to decide whether to 
provide more resources and reallocate them in order to guarantee the service quality
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Fig. 3.4 MRP-based prediction procedure 

of the slices. The decrement means the departure of data flows, which requires no 
resource consumption and does not affect service quality of slices. We assume that 
no resources are released during the life cycle of the slice, and all resources of 
this slice are released simultaneously when the service terminates. Hence, only the 
increment can trigger the proposed reconfiguration framework to make decision of 
slice reconfiguration. 

Given the total remaining resources of the infrastructure network including . Λ
units of computing resources and . 𝚪 units of storage resources, .Λ ≤ Θ,𝚪 ≤ Ω, the  
predicted increment of resource requirements can be used to determine if there are 
sufficient resources for slice reconfiguration. At a particular time, node n in a slice 
from class k requires extra computing resources .Δδk

n, storage resources .Δωk
n, and 

link l requires extra bandwidth .Δβk
l . Let . p

k denotes the number of slices from class 
k being allowed to reconfigure simultaneously, .pk ≤ qk . The following resource 
constraints guarantee that the reallocated resources do not exceed the remaining 
resources, 

.

K∑

k=1

∣
∣
∣Nk

∣
∣
∣

∑

n=1

pk · Δδk
n ≤ Λ,

K∑

k=1

∣
∣
∣Nk

∣
∣
∣

∑

n=1

pk · Δωk
n ≤ 𝚪. (3.33) 

3.3.2 A DRL Based Slice Reconfiguration Policy 

In order to handle the upcoming extra resource requirements of different classes 
of slices, the proposed OFSR framework provides slices reconfiguration decisions 
according to the predicted results of the MRP-based prediction procedure. With 
the aim of maximizing the revenue of SPs with minimal reconfiguration cost, the 
revenue minus cost of slice reconfiguration is calculated as the basis for decision-
making. For SPs, the revenue is the increased user utility while the cost is additional 
resource consumption and service interruption caused by migrating VNFs and 
updating resources.
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Table 3.3 Notation of 
description for slice 
reconfiguration 

Symbol Description 

.ϕc
n Cost function of computing resource for node n 

.ϕs
n Cost function of storage resource for node n 

.ϕl Cost function of bandwidth resource for link l 

.σn User utility weight of node capacity 

.σl User utility weight of link bandwidth 

.θx Cost coefficient for updating resources of links 

.θy Cost coefficient for updating resources of VNFs 

.θz Cost coefficient for migrating VNFs 

.φu Resource cost of slice from class k 

.φv Service interruption cost of slice from class k 

.Uk User utility in slice from class k 

For each request of satisfying additional resource requirements, SPs estimate 
whether the locations of VNFs need to be migrated. Migrating VNFs tends to 
introduce higher reconfiguration overhead than only updating resources because of 
VNFs instantiation. Assuming that both of the signaling cost and the communication 
overhead are relatively low and negligible. Hence, the reconfiguration cost includes 
two parts, i.e., the service interruption caused by migrating VNFs and updating 
resources, the cost of offering more computing and storage resource to VNFs, 
and bandwidth resource to links. The reconfiguration description notations are 
summarized in Table 3.3. 

With the pricing scheme of resources in [19], the resource cost . φu is a function 
of the extra required resources .

(
Δδk

n,Δωk
n,Δβk

l

)
. The resource cost function can be 

presented as .ϕc
n, ϕ

s
n, ϕl , and thus we have Eq. (3.34). 

.

φu

(
Δδk

n,Δωk
n,Δβk

l

)= ∑

n∈Nk

ϕc
n

(
Δδk

n

)+
∑

n∈Nk

ϕs
n

(
Δωk

n

)+ ∑

l∈Lk

ϕl

(
Δβk

l

)
.

(3.34) 

The cost of service interruption is related to the time required for state transition, 
which is a function of the state difference of the links and VNFs before and after 
reconfiguring the slice. The state difference of links are reflected by variables . x and 
the state difference of VNFs include two cases, updating the resources of VNFs only, 
and migrating VNFs while updating the VNFs capacity. Updating the resources of 
VNFs is reflected by variables . y while migrating VNFs is reflected by variables . z. 
Hence, for the first case, 

.φv = θT
x · I (x − x0) + θT

y · I (y − y0) . (3.35) 

For the second case,
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.φv = θT
x · I (x − x0) + θT

y · I (y − y0) + θT
z · I (z − z0) , (3.36) 

where .(x0, y0, z0) are the states before reconfiguration, .θx, θy, θz are the cost 
coefficient and .I (·) is an indicator function, i.e., if .x /= 0, I (x) = 1; otherwise, 
.I (x) = 0. The change in bandwidth allocation of links .x − x0 accounts for the 
cost of control signaling used to change the routing path of data flows. The change 
in updating the resources of VNFs .y − y0 accounts for the cost of adjusting the 
capacity of VNFs while the change in migrating VNFs .z − z0 accounts for the cost 
of changing the schedule of VNFs. The reconfiguration cost coefficient depends on 
how many units of resources will be consumed to perform a single reconfiguration, 
which might be different on different platforms and vary with slice classes. Note that 
migrating VNFs requires the reconfiguration of the physical servers while adjusting 
the capacity of VNFs mainly involves the signaling overhead, thus migrating VNFs 
requires higher cost. 

The revenue of reconfiguring slice is defined as the user utility because SPs make 
profit by serving EUs. Higher utility means that a slice could make more profit, and 
more reconfigurations could be tolerated by the slice [18]. In this paper, the user 
utility . Uk in slice from class k is defined as the weighted sum of node capacity and 
link bandwidth. Hence, the increased user utility can be represented as 

.Uk =
∑

n∈Nk

σn

(
Δδk

n + Δωk
n

)
+
∑

l∈Lk

σl

(
Δβk

l

)
, (3.37) 

where . σn and . σl are the user utility weight of node capacity and link bandwidth, 
respectively. It is worth noting that both the cost and revenue of reconfiguring 
slices take into account the reallocation of bandwidth resources, which means that 
the proposed approach is also suitable for the scenario of constrained bandwidth. 
When bandwidth resources are limited, not only the VNFs placement and bandwidth 
resource occupancy should be perceived in real time but also the rerouting algorithm 
of traffic flows should be determined. 

For slice o from class k which has additional resource requirements, the net 
revenue from reconfiguration is defined as . rk

o , .r
k
o = Uk − φ. With the resource 

constraints defined in Eqs. (3.28) and (3.33), the objective of slice reconfiguration 
is to find the optimal decision which maximizes the increased user utility . Uk with 
minimal reconfiguration cost . φ, .φ = φu + φv . SPs tend to reconfiguring slices that 
have a positive net revenue in decision-making, and the optimization objective is 
denoted as .max

∑

k

∑

o

rk
o . To make the decisions optimally for reconfiguration of 

diversified slices, the MDP is recruited [9]. At any time, each decision relies on the 
current state and the decision turns into a completely new stochastic state at next 
time. Consequently, the reconfiguration issue is formulated as a MDP defined by a 
tuple .〈S,A,P,R〉, . S is the state space, . A is the action space, . P captures the state 
transition probabilities, and the state sojourn time and . R is the reward function.
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3.3.2.1 State Space 

Recall that the proposed OFSR framework works in a proactive fashion: it makes 
decisions mainly according to the current resource usage of diversified slices and 
the information about the upcoming extra resource requirements. The state space . S
can be defined as Eq. (3.38). 

.S Δ= {St } = (χoc, χre, χpr , χex

)
. (3.38) 

• .χoc indicates the resources occupy status of . qk slices from class k (.∀k ∈ K) in  
time step t . For slice o from class k, its resources occupy status can be defined as 
Eq. (3.39). 

• .χre indicates the remaining resources of all DCs in the infrastructure network, 
which can be denoted as Eq. (3.40). 

• .χpr indicates the predicted information of demand changes, which can be 
denoted as Eq. (3.41). If a slice o from class k will require more resources 
according to the output of the prediction procedure, .ck

o = 1, and if not, .ck
o = 0. 

Thus, let .Ok=
qk∑

o=1
ck
o denotes how many changes there are and then . pk ≤ Ok ≤

qk . 
• .χex indicates the extra resource requirements of . qk slices from class k (.∀k ∈ K) 

in time step t . For a slice o from class k, its extra resources requirements can be 
defined as Eq. (3.42). If no demand changes occur in the slice o from class k, the  
extra required resources .Δδk

o,n, .Δωk
o,n, and .Δβk

o,l are equal to 0. 

.χoc=
{[

δk
o,n, ω

k
o,n, β

k
o,l

]
, n ∈ Nk, l ∈ Lk, 1 ≤ o ≤ qk

}
(3.39) 

.χre= {[δn, ωn, βl] , n ∈ N, l ∈ L} (3.40) 

.χpr=
{[

ck
1, . . . , c

k
o, . . . , c

k
qk

]
, 1 ≤ o ≤ qk

}
(3.41) 

.χex=
{[

Δδk
o,n,Δωk

o,n,Δβk
o,l

]
, n ∈ Nk, l ∈ Lk, 1 ≤ o ≤ qk

}
. (3.42) 

3.3.2.2 Action Space 

At state . St , for each slice .ck
o = 1 , the SP determines whether to reconfigure this 

slice to maximize the long-term revenue. Let . ak
o denote the action to be taken at state 

. St , .ak
o = 1 if a slice o from class k with demand changes is reconfigured and . ak

o = 0
if this reconfiguration is not permitted. The state-dependent action space . A can be
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defined as Eq. (3.43). Hence, we also can obtain .pk =
Ok∑

o=1
ak
o from the action. 

.As
Δ= {as} =

{[
ak
1, . . . , a

k
o, . . . , ak

Ok

]
, 1 ≤ o ≤ Ok, k ∈ K

}
(3.43) 

3.3.2.3 State Transition Probability 

The transition to next state .St+1 is only determined by current state . St and action 
performed. And the information about the transition probability is difficult to get 
in the dynamic environment. The transition from . St to .St+1 with reward . rt when 
action . as is taken can be characterized by the conditional transition probability, 
.P (St+1, rt |St , as ). Thus, the transition probability function can be denoted as 
Eq. (3.44). 

.Pa
SS' = P

(
St+1 = S', rt |St = S, as

)
. (3.44) 

In this work, the transitions on .χpr and .χex can be derived from the database 
created in the MRP-based prediction method while the transitions on .χoc and 
.χre depend on the previous reconfiguration decisions. The optimal policy that 
maximizes the revenue of SPs is learned through the RL algorithm by interacting 
with the environment in a try-and-error fashion without exact state transition 
probability. 

3.3.2.4 Reward Function 

.r (St , as)=
K∑

k=1

Ok∑

o=1

rk
o ak

o (3.45) 

The reward in taking action as at state St is defined as Eq. (3.45). If slice o 
from class k is permitted to reconfigure, i.e., ak 

o = 1, the SP receives a reward 
rk 
o . Otherwise, if it is not permitted or there are no changes, the reward is equal to 
0. After making the reconfiguration decisions, the current state will transit to next 
state St+1. Based on the MDP model, the RL agent learns the best decision policy 
through maximizing the rewards in the interaction with its environment over time 
[14]. A decision policy π , i.e., reconfigure a slice or not, is made up of a series of 
consequent actions. The policy π (St , as) is a mapping from state space to action 
space S→ A, which is equal to the probability of taking action as conditioned on 
the current state St . 

According to Eq. (3.44), the policy function must satisfy
∑

as∈A 
π (St , as) = 1. 

The goal of RL is to learn an optimal policy to maximize the cumulative expected
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rewards. Thus, the long-term cumulative discounted reward starting from state St at 
time t can be formulated as Eq. (3.46), where γ ∈ (0, 1] is the discount factor to 
balance the importance of current rewards and the future rewards. Our objective is 
to find the optimal policy π∗ that maximizes the reward Rπ , i.e., π∗ = argmaxRπ 

π 
. 

The objects of reconfiguration obviously are slices that have already been deployed, 
thus dealing with new slices is not taken into consideration in this work. However, 
in the case of considering the arrival and departure of new slices or the case of 
considering more resource types and slice types, the above formulations can be 
straightforwardly extended by accommodating additional states to the state space 
of the current model. The action space will be kept the same and the rewards of the 
actions need to be reset in the problem formulations. 

.Rπ (St ) =
∞∑

τ=0

γ τ r (St , π (St )),∀St ∈ S (3.46) 

Because of the high complexity of the optimization problem and the uncertainty 
of changes in resource requirements, the DDQL algorithm is used in our proposed 
slice reconfiguration framework to deal with the large state space and multi-
dimension reconfiguration decisions. The classical Q-learning algorithm is one of 
the widely used RL technique, learns from its decisions, and adjusts its policy to 
converge to the optimal policy after a finite number of iterations [21]. It constructs 
a lookup table storing all state-action values, and the entry of this lookup table 
is initialized arbitrarily. To avoid getting stuck at non-optimal policies, ϵ-greedy 
algorithm is often used to select action. This algorithm introduces a parameter ϵ

which suggests for the agent in taking a random action with probability ϵ or taking 
the action a∗ that maximizes lookup table value with probability 1 − ϵ for each 
time step. After acquiring a new experience as a result of the chosen action, the Q-
learning algorithm updates the lookup table entry based on the updating rule denoted 
as Eq. (3.47). S' is the next state, a' is the action at S', and αr ∈ (0, 1] is the learning 
rate. 

.Q (S, a) := Q (S, a) + αr

[
r (S, a) +γ max

a' Q
(
S', a')− Q(S, a)

]
(3.47) 

Since the Q-learning algorithm fails in the convergence rate when the state 
space and action space are large, a deep Q-network Q (S, a; θi) with parameters 
(weights) θi at iteration i is usually used for the high-dimensional environment. 
Deep Q-learning (DQL) algorithm which is developed by Google DeepMind [8] 
integrates DNN with RL. When a neural network is used to represent Q-function, 
the performance might be unstable because that a small update of Q-values may 
significantly affect the policy and therefore the data distribution, and the correlations 
between the Q-values and the target values r (S, a) +γ max 

a' Q
(
S', a'). To address 

these instabilities, the experience replay mechanism is used in DQL to remove 
correlations in the observation sequence and smooth over changes in the data
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distribution. Additionally, the target Q-network is used to periodically update Q-
network so that the correlations between target values and estimated Q-values will 
be reduced. 

To perform the experience replay, the experiences et = (St , as, rt ,St+1) are 
stored at each time step t in a dataset Dt = {e1, e2, . . . , et }. During the learning 
process, the mini-batches of experience

(
S, a, r,S') ∼ U (D) will be sampled from 

the dataset to feed into the neural network. The DQL algorithm updates the neural 
network by optimizing the following loss function at iteration i: 

.Li (θi) = E(S,a,r,S')∼U(D)

[(
y

DQN
i − Q (S, a; θi)

)2]
(3.48) 

with 

.y
DQN
i = r + γ max

a' Q
(
S', a'; θ−

i

)
, (3.49) 

where θ− 
i is the network parameter used to compute the target at iteration i. The  

parameters of the target network Q
(
S', a'; θ− 

i

)
are freezed for a fixed number of 

interactions while the Q-network Q (S, a; θi) are updated by gradient descent. The 
gradient is defined as Eq. (3.50). 

. ∇θi
Li (θi) = E(S,a,r,S')∼U(D)

[(
y

DQN
i − Q(S, a; θi)

)
∇θi

Q (S, a; θi)
]

(3.50) 
Double Deep Q-learning (Double DQL) algorithm introduced to further improve 

the performance of DQL is the same, but with the target y DQN 
i replaced by y2DQN 

i . 

.y
2DQN
i = r + γQ

(
S', argmax

a'
Q
(
S', a'; θi

) ; θ−
i

)
(3.51) 

The key innovation is the usage of experience replay, which increases the 
efficiency of learning and enhances the stability of DNN. The agent of DQL with 
experience replay stores transitions that has been experienced for a period of time 
and reuses the minibatch data for many times to update the network parameters. In 
addition, experience replay alleviates the violation of independent and identically 
distributed assumption of training data, and uniform sampling from the dataset 
reduces the correlation among the samples used in the update. 

Although the DQL algorithm performs greater than the traditional RL algo-
rithms, there are still many literatures which focus on further improving the 
convergence speed and achieving higher stability. In this paper, the deep dueling 
network [20] is introduced in the proposed framework. Comparing to the standard 
neural networks, such as convolutional networks, the dueling architecture has 
two streams to estimate state values and action advantages separately instead of 
estimating the action-value function.
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ν 

Fig. 3.5 The architecture of the DDQL algorithm 

The two streams of fully connected layers are conducted to separately compute 
the value function and advantages function, one stream of fully connected layers 
in the dueling network outputs a scalar V (S; β) and the other stream outputs an 
|A|-dimensional vector G (S, a; α), which is shown in the Fig. 3.5. α and β are 
the parameters of the two streams of fully connected layers. With the definition of 
advantage function, the Q-function can be obtained by combining the two streams 
as follows: 

.Q (S, a;α, β) = V (S;β) + G (S, a;α) . (3.52) 

Note that Q (S, a;α, β) is only a parameterized estimate of the true Q-function. 
GivenQ,V, andG cannot be obtained uniquely. To address this issue, the advantage 
function estimator is forced to have zero advantage when choosing action, which 
means that the last module of the network implements the forward mapping: 

.Q (S, a;α, β) = V (S;β) +
(
G (S, a;α) − max

a'∈A
G
(
S, a';α

))
. (3.53) 

The max operator in Eq. (3.53) can be replaced with an average, thus an 
alternative module can be denoted as Eq. (3.55). Although Eq. (3.55) loses the 
original semantics of V and A, it increases the stability of the optimization [20]. 
Hence, the module of equation (3.55) is used in the deep dueling algorithm of 
the proposed OFSR framework. The details of the DDQL algorithm are shown in 
Algorithm 10. Compared with the static model-based algorithms which suffers from 
higher computational complexity, the computational complexity of Algorithm 10 is 
O
(
H

ϑ 
Nρ

)
. Hϑ denotes the number of hidden layers while Nρ denotes the number 

of neurons. The computational complexity of Algorithm 10 depends on the number 
of state and action sets involved in the learning process [13].
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Algorithm 10 Dueling deep Q-learning algorithm 
1: Initialize the replay memoryD, and the target network replacement frequency F−. 
2: Initialize the online network Q (S, a; α, β) with weight parameters α, β. 
3: Initialize the target network Q− (S, a; α−, β−) with weight parameters α−, β−. 
4: for episode e ∈ {1, 2, . . . , T  } do 
5: Choose an action a according to the ϵ-greedy algorithm. 
6: Take action a, and observe reward r and next state S'. 
7: Add

(
S, a, r,S') into the replay memory D. 

8: Select random mini-batches
(
S, aj , rj ,S') from the replay memoryD. 

9: Calculating Q-function by combining the value function and advantage function as 
Eq. (3.55). 

10: Set y2DQN 
j based on Eq. (3.51). 

y
2DQN 
j = rj + γQ−

(

S', argmax 
aj

'
Q− (S', aj

') ; α−, β−
)

(3.54) 

11: Perform the gradient descent step on
(
y
2DQN 
j − Q

(
S, aj ; α, β

))2 
. 

12: In every F− steps, reset Q−=Q. 
13: end for 

.Q (S, a;α, β) = V (S;β) +
(

G (S, a;α) − 1
|A|

∑

a'
G
(
S, a';α

)
)

. (3.55) 

In the proposed OFSR framework, we use the RMO block as the learner. Based 
on the state of the multi-type resources usage and the state of predicted resources 
increment for differentiated slices, optimal reconfiguration decisions for different 
classes of slices are obtained to achieve high long-term revenue of SPs. It should 
be pointed out that the initial deployment location of these running slice instances 
determine the state space, thus a learning process for a new policy will be initiated 
when the state space changes. 

Acknowledgments If you want to include acknowledgments of assistance and the like at the end 
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Chapter 4 
AI-Based Performance Enhancement for 
Multi-Tenant Slicing 

4.1 New Business Model for Multi-Tenant Slicing 

4.1.1 Resource Sharing Scenarios Among Tenants 

In the evolution process of wireless network, the explosive data traffic makes it 
urgent to improve network capacity, which results in dense deployment of base 
stations with small coverage, low power, and low cost [4]. The trend of network 
densification and the pursuit of high data rates prompt network operators to 
find new cost-efficient solutions to reduce CAPEX/OPEX costs. Network sharing 
which enables mobile operators to offer services with reduced costs by sharing 
network infrastructures was explored in the past and partially deployed. The 3GPP 
Services Working Group SA1 specified five main business scenarios for network 
sharing [24]: 

• Multiple core networks sharing a common RAN, where operators share RAN 
elements, but not the spectrum. 

• Operator collaboration to enhance coverage, where two or more operators 
with individual frequency licenses and respective RANs together provide cover-
age. 

• Sharing coverage in specific regions, where one operator provides shared 
coverage and other operators are allowed to use it in this area. 

• Common spectrum sharing, where the spectrum are shared by a number of 
operators. 

• Multiple RANs share a common core network, where multiple RANs belong-
ing to different operators share a common core network. 

In the evolution from network sharing to multi-tenancy, vertical industries and 
OTT providers trend to request network resources with customized capabilities form 
InPs to provide services. Based on the virtualization mechanisms and software-
based capabilities, the notion of network slicing is enhanced for supporting on-
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W. Guan, H. Zhang, Network Slicing for Future Wireless Communication, Wireless 
Networks, https://doi.org/10.1007/978-3-031-58229-5_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58229-5protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4
https://doi.org/10.1007/978-3-031-58229-5_4


66 4 AI-Based Performance Enhancement for Multi-Tenant Slicing

demand multi-tenant mobile network. Heterogeneous resources of infrastructure 
network can be shared by different tenants via network slicing, which offers 
significant opportunities for OPEX reduction and limits the cost increase in larger 
coalitions [34]. Some key technical challenges of realizing flexible multi-tenant 
slicing and dynamic QoS provision are listed here: 

• Self-organizing network function is responsible for self-configuration, self-
optimization, and self-healing of slices. Multi-tenancy brings challenges in 
automation of the sharing mechanisms and the joint resources optimization. 

• Service exposure function acts as SLA negotiation intermediary and is respon-
sible for network functionalities exposure. As for multi-tenant slicing, it is 
challenging to guarantee slice isolation for third parties protection and realize 
access authorization for MNOs/InPs safeguard. 

• Slice management and orchestration function support flexible RAN or Core 
network slicing and dynamic transport network slicing according to SLAs, 
carrying out VNFs allocation and mobility management. Multi-tenant slicing 
related challenges lie on satisfying the differentiated requirements of E2E slices, 
offering efficient management and on-demand orchestration of VNFs belonging 
to different slices. 

• E2E slicing bargaining function as a slice auctioneer between the network 
owners and the third parties performs bargaining SLAs with infrastructure 
owners, monitoring the allocated slices and trading for dynamic adaptation 
to variable requirements. In multi-tenant slicing, joint dynamic planning and 
negotiation of VNFs are challenging, especially for time-critical services. 

Enabling efficient sharing of mobile network resources is a key problem under-
lying multi-tenant slicing. Tenants as slice owners should own the capability 
of customizing resource allocation within their slices while guaranteeing slice 
isolation from one another. To the best of our knowledge, there is a vast literature 
addressing resource allocation problem of network slicing. Existing studies cover 
the orchestration of core network slicing [3, 18], resource scheduling of RAN 
slicing [14, 23], and cross-domain implementation of E2E slicing [7, 35]. However, 
few of existing dynamic resource allocation model focus on the differences in 
resource preferences of multiple tenants based on perceived congestion at resources. 
There already has some researches concerning the network slicing game aimed at 
optimizing the benefits of resource sharing among tenants. Authors in [5] analyze 
the efficiency and fairness of the resulting resource allocations and provide a 
dynamic resource sharing mechanism across slices. 

With the addition of more and more vertical industries, the number of tenants is 
increasing, and the types of slicing are gradually increasing. The resource sharing 
strategy for multi-tenant slicing needs to solve the following problems: 

• The state of the network becomes more complex. On the one hand, the number 
of users corresponding to multiple types of services is large and the types vary 
greatly, and the size, rate and change scale of network flows are different, so 
resource allocation needs to be adjusted in real time according to time-varying
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traffic demands [12]. On the other hand, real-time reconfiguration of network 
slices is not only the proportional increase or reduction of resources for the 
VNFs, but also the migration of VNFs [31], which often results in inefficient 
utilization of resources due to the lack of global cognition of physical resource 
usage, infrastructure network topology and other information. Therefore, how to 
obtain accurate network status information in time is essential in the process of 
slice resource allocation. 

• The demand of slices is hard to be satisfied in time. With the increase of 
the number of customized slices, it requires huge computational overhead and 
complexity to avoid conflict caused by resource competition while ensuring 
slice isolation. In addition, more and more services require strict E2E delay and 
bandwidth guarantee, which undoubtedly requires rapid and efficient response 
to demand changes and optimal resource scheduling strategies [19]. At the same 
time, the increase of slice types will also lead to more differences in the demand 
of heterogeneous resources in different domains, which undoubtedly intensifies 
the decision-making burden of centralized resource management. It is important 
to perceive the changing trend of service demand and deal with the uncertainty 
caused by real-time changes efficiently and quickly. 

• Joint optimization of heterogeneous resources becomes difficult. The partic-
ipation of vertical industries will lead to a more complex resource allocation 
scenario, and the game between different stakeholders will lead to more intense 
resource competition. Resource sharing with interest competition requires rea-
sonable resource pricing and trading strategies, which can be adjusted in time 
according to dynamic demand changes [2]. Distributed resource management is 
difficult to adapt to the hierarchical resource allocation system that InPs allocate 
resources to tenants and tenants allocate resources to users. It is necessary to 
take into account the global income while ensuring the local equity in the joint 
optimization of resources. 

In order to solve the above problems, as a key technology to realize AI, ML 
has become an important way to improve the efficiency of network resource 
management in the field of wireless communication with its advantages in solving 
complex problems in dynamic environment [29]. Many research institutions have 
begun to use ML-based methods to realize optimal slice resource allocation, making 
decisions quickly and in time. It is of great significance for the future development of 
mobile communication to explore AI-driven slice intelligent management, enhance 
the ability of automatic network management and resource optimization, and meet 
the needs of efficient operation in a complex networking environment. 

4.1.2 Collaborative Business Model for Multiple Tenants 

5G networks have been deployed commercially at the end of 2019 and researches 
on 6G networks are under way in several countries and organizations [37]. Network
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Fig. 4.1 The new collaborative business model of multi-tenant slicing 

slicing as a key technology in 5G/6G provides scalability and flexibility in resource 
allocation, enabling multiple tenants which have different service requirements to 
share the resources of the 5G/6G network infrastructure. Slicing makes possible the 
realization of multiple logical networks for multi-tenants on a single shared physical 
infrastructure [8]. The new collaborative business model of multi-tenant slicing 
is illustrated in Fig. 4.1, where different communication services are provided to 
multiple tenants via a number of slices. A large telco corporation acts as network 
operator which deploys slices over a heterogeneous infrastructure network. Mobile 
Virtual Network Operators (MVNOs) from vertical industries could leverage on 
slices provided by the network operator to create their services. End users which are 
consumers of diverse services could be a mobile phone, cars, or robots. 

Based on the above model, a multi-domain orchestration architecture across 
RAN and transport networks is proposed in [21] to realize network resource 
sharing toward multiple tenants. Network slices enable tenants which are also 
perceived as SPs to compete with each other using the same infrastructure. Many 
studies have focused on the problem of competitive multi-tenant cross-slice resource 
orchestration [5, 6]. For multi-tenant slicing, efficiently and holistically resource 
management methods are required while the isolation among slices needs to 
be guaranteed. On the one hand, dealing with the uncertain traffic condition of 
slices in dynamic environment, such as flow arrival/departure, means that slice 
reconfiguration should be executed in a timely manner. Making decision of resource 
allocation strongly depends on the current status of slices as well as their predicted 
demands. On the other hand, different tenants use slice instances to provide services 
with conflicting resource requirements, resulting in that providing isolation becomes 
hardly and costly. 

Given that the deployment of slices include the mapping of VNFs and the virtual 
links between VNFs, achieving slice isolation is often accompanied by the cost of 
reducing multiplexing gain and inefficient resource utilization. To ensure strict QoS,
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Fig. 4.2 The schematic illustration of resource competition among layers 

tenants as service providers should avoid the degradation of traffic performance 
of slices when the number of colocated VNFs is high. According to empirical 
studies, VNFs deployed as a VM on the same server co-exist with many other 
VMs, which will affect network performance when faced with bulk traffic load [9]. 
Especially, when the number of VMs increases to a certain extent, the stringent 
end-to-end latency of slices will be damaged. Hence, a comprehensive performance 
measurement and analysis is required to avoid the effect of resource competition. 

In order to analyze the impact of resource competition on traffic performance of 
network slices, a multilayer network model is used here to represent the deployment 
of multi-tenant slices in a large infrastructure network. As shown in Fig. 4.2, the  
multilayer network model consists of an underlying infrastructure network . G0 with 
N nodes and M upper layers, for each .m ∈ M , slice .Gm as the upper layer consists 
of . Nm nodes, .1 ≤ m ≤ M , .Nm ≤ N and .Nm = N ·Pm. The nodes of the underlying 
layer . G0 denote the physical standardized servers of the infrastructure network and 
the nodes of layers .Gm denote the VNFs of slices. . Pm is the nodal coverage of slice 
. Gm, which represents not only the density of nodes but also the overlap of nodes. 

Traffic flows belonging to slice .Gm occur on edges wholly within the specific 
layer, which can only be transferred within . Gm. Node i of .G0 can appear in 
many different layers, which means several slices will share the resources of the 
same physical node of . G0 through the interconnections, e.g., nodes 5 and 6 in 
Fig. 4.2. Layer . G1, layer . G2, and layer . G3 are three different slices deployed in the 
underlying infrastructure network . G0. Note that this topology is used to illustrate the 
generation process, and it is not involved in the dynamic analysis. In this schematic
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example, .N = 10 is the number of nodes in the underlying layer; .M = 3 is the 
number of slices. Nodes 5 and 6 exist in these three slices, which means that these 
three slices are competing for physical resources of node 5 and 6. 

This multilayer network model provides a clear global perspective for service 
providers to analyze the resource competition among slices, guiding the utilization 
of resources to satisfy the requirements of slices. 

4.2 Traffic Performance Analysis of Multiple Isolated Slices 

4.2.1 Traffic Model of Multiple Slice 

For accurate and convenient evaluation of traffic performance, the topology gen-
eration process of the underlying infrastructure network and slices are introduced. 
Since there is a trend of cloudifying the mobile network infrastructure and building 
federated cloud infrastructures [30], service providers deploy more regional DCs 
distributed geographically. VNFs of E2E slices are placed as VMs which are run on 
the physical DCs. DC which is more important in service delivery has a much higher 
probability to be connected by the new added DC. Considering that a forthcoming 
node has the tendency to connect itself to the nodes with large degrees in the growth 
of communication network, the algorithm of BA scale-free networks is adopted 
to generate the topology of the infrastructure network and slices. As one of the 
basic network structures of practical relevance, adopting BA growth model could 
intuitively show the feature that very few DCs have much higher utilization than 
others in the infrastructure network. 

The underlying network . G0 is generated according to the BA generating algo-
rithm, which are introduced in Chap. 2. After generating the underlying infrastruc-
ture network, each slice is generated via the following procedure: 

1. Given the degree .d (i) of node i in . G0, its selection fitness . φi is given by 

.φi = [d (i)]ε, ε ∈ (0, 1) , (4.1) 

where . ε is a parameter denoting the degree of preferential picking. 
2. Randomly select a node in G according to the . φi , and the possibility of 

selecting node i is .p (i), 

.p (i) = φi

N∑

k=1
φk

. (4.2) 

3. Randomly select its .Pm · d (i) neighbors. 
4. For each selected neighbor, repeat step 3 until the total number of selected 

nodes reaches . Nm.
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Besides, a degree-based resource allocation scheme is provided and two typical 
measures is defined to quantify the traffic performance. In order to simplify the 
implementation, here the resources are represented by the buffer size of nodes. 
Under the degree-based resource allocation scheme, the buffer size .B (i) for slice 
.Gm is allocated based on the total number of nodes . Nm in this layer. In other words, 
the scale of the slices decides the total amount of resources they owned. Hence, 

.Bm = (Nm)α

M∑

m=1
(Nm)α

· Ball, (4.3) 

where . Bm denotes the total resources in slice . Gm, that is the sum of buffer sizes of 
nodes in slice . Gm, and .α ∈ [0, 1] is a parameter which morphs the resource of slices 
from a uniform distribution to one dependent on the number of nodes in the slices. 
Since the nodes with higher degree play an important role in the transmission of 
traffic data packet, the buffer size of node i in slice .Gm can be allocated according 
to its intra-layer degree .km (i). It can be denoted as 

.Bm (i) = (km (i))β

Nm∑

i=1
(km (i))β

· Bm, (4.4) 

where .km (i) is the degree of node i in slice . Gm. .Bm (i) = 0 when node i does not 
exist in slice . Gm, and .β ∈ [0, 1] is a second strength parameter which is the same 
as . α. 

The traffic performance of slices is evaluated by the situation of data communica-
tion in these slices. Wireless network is a generic type of communication networks, 
but beyond that the E2E slices regarded as virtual E2E wireless networks cross 
three different domains, RAN, transport network, and core network. The data or 
information in slices can be presented as packets and transmitted through links 
between pairs of nodes under specific routing algorithm. 

In order to describe the dynamics of traffic data packets, the principles of traffic 
generation are provided. There are two types of nodes. Routers only store and 
forward packets; hosts can also generate packets. The density of hosts .ρ ∈ (0, 1) is 
the ratio of the number of hosts to the total number of nodes. Here, we set . ρ = 0.4
and randomly select hosts in each layer. The packets are operated as follows: 

1. Packet generation: at each time step, new packets are generated on the hosts. The 
generation rate is . λ, which means that the number of generated packets in each 
layer is . λ. 

2. Packet transmission: each previously generated packet can move freely along the 
shortest path toward its destination. At each time step, . δ packets are forwarded 
to the target neighbor of the node by one step. . δ is the transmission rate, we set 
.δ = 1 in our model for simple simulations.
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3. Transmission path changing: if the number of packets reaching target neighbor 
i is larger than its buffer size .Bm (i), the transmission path will be changed to 
a randomly chosen neighbor which has some buffer space, provided that such a 
neighbor exists. If all the neighboring nodes have full buffers, then the packet 
will remain at the original node. 

4. Packet released: packets will be released once they arrived their destination. 

The transmission protocol of packets within layers requires that packets are 
generated in hosts of the layer with destination addresses and are transferred by 
the routers one hop at a time toward their destinations by the shortest path. Each 
node in each layer has a buffer for storing packets and the buffer size is the result 
of allocating the limited capacities in the underlying network. Here the total buffer 
size of a node is considered as the resource of the underlying network, which are 
sliced by different layers in a particular way. For a fair comparison, the total buffer 
size of all nodes are kept the same in all simulations. With the same total resources, 
the traffic performance is analyzed under a degree-based resource allocation. 

To quantify the traffic performance of slices based on the multilayer network 
model, two measures are defined: (1) The ratio of arrived packets R, which is the 
ratio of the numbers of successfully arrived packets to the total generated packets. 
(2) The average travel time T of packets in a particular slice is the average latency 
between sending and receiving of packets. The ratio of arrived packets can be 
calculated with 

.Rm = NumGm

λ · tm
, (4.5) 

where . tm is the length of the time step. Since . λ is the number of generated packets 
in each time step, .λ · tm is the total number of generated packets. The average travel 
time T of layer .Gm is defined as 

.Tm = 1

NumGm
·
NumGm∑

p=1

(
tOUT
p − t IN

p

)
, (4.6) 

where .tOUT
p and .t IN

p are the time at which packet p enters the network and arrives 
at its destination, respectively. .NumGm is the total number of successfully arrived 
packets. 

4.2.2 Performance Analysis of Slice Traffic 

In this section, we present the numerical experiments to analyze the traffic perfor-
mance of slices using MATHEMATICA 11.0 and MATLAB 2015b. Each realization 
runs for 200 time steps and simulation under the same settings has been operated 
100 times independently to obtain the average. Besides, with the increasing of the
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packets generation rate, there are numerous packets needed to be transmitted in 
slices and the transmission state of each packet needs to be recorded and updated 
at every time step. Hence, the time required to get the results increases dramatically 
as the multilayer network model scales up. Most of our simulations are for the 
multilayer network which has three slices sharing the resources of the underlying 
infrastructure network. It is not only because the time and memory space of a laptop 
are limited but also the conclusions will remain the same when the number of slices 
is higher. 

Figures 4.3 and 4.4 show the behavior of R and T for different nodal coverage 
values and resource allocations. Here the numbers of nodes vary across the layers, 
which means that three different slices have different nodal coverage . Pm. The total 
number of physical nodes in the underlying infrastructure network is 20, layer 1 has 
5 nodes, layer 2 has 10 nodes, and layer 3 has 15 nodes, thus .P1 = 0.25, .P2 = 0.5, 
and .P3 = 0.75. Assuming that the total capacity of the underlying infrastructure 
network is 60, .Ball = 60. In order to eliminate the randomness and improve the 
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Fig. 4.3 The traffic performance of differentiated slices when . α = 1, β = 0
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Fig. 4.4 The traffic performance of differentiated slices when .α = 0, β = 1



74 4 AI-Based Performance Enhancement for Multi-Tenant Slicing

accuracy, the simulations have been operated 100 times independently and the 
average has been taken. Two typical cases of resource allocation are observed, 
.α = 1, β = 0 and .α = 0, β = 1. 

The parameter choice .α = 1, β = 0 means that the slice with greater density of 
nodes has more resources which is allocated equally and the buffer size of each node 
is the same value. By contrast, the choice .α = 0, β = 1 provides the same resources 
to each slice and these resources are allocated to a slice’s nodes according to the 
degrees of these nodes. In this case, the nodes with higher degree in the slice with 
lower nodal coverage have more resources. In Fig. 4.3, the ratio of arrived packets 
for the lowest packet generation rate (.λ = 2) is closing to 1, and the average travel 
time is 0, implying that all the packets can be transferred efficiently in each slice. As 
the packet generation rate is increased, each slice suffers from an increasing shortage 
of resources. The numbers of successfully arrived packets for each slice decreases 
rapidly and packets spend more time on travel. However, the rate of descent varies 
from slice to slice and the difference between slices also varies according to the 
differing resource allocations. 

As shown in Fig. 4.3a, b, R and T of three slices are close but layer . G2 has 
higher R and lower T . R of layer . G1 is lowest and T is highest while layer . G3 is 
somewhere between. The main reason is that the total resource of layer . G1 is least 
and the average path length of packet travel in layer . G3 is longest. Compared with 
layer . G1 and . G3, layer . G2 performs better in terms of R and T . It can be concluded 
that the impact of nodal coverage . Pm is smaller than resource allocation . α and . β
when all nodes have the same buffer size. In Fig. 4.4a, b, layer . G1 has highest R and 
lowest T obviously while R and T of layer . G2 are slightly better than layer . G3. In  
this case, nodes in layer . G1 are allocated more resource than the other two layers 
and important nodes in all layers have larger buffer size. 

Comparing these two typical cases, it can be observed that the better resource 
allocation method can improve the overall traffic performance in terms of the ratio 
of arrived packets and the average travel time. Since . α determines the total resources 
of slices and . β determines the effect of nodes degree on resource allocation, how to 
allocate the buffer size to nodes in different slices play a more important role. 

In order to understand the effect of resource allocation, the traffic behavior is 
investigated by varying . α and . β. Figure 4.5 shows the average travel time of packets 
in different slices versus various . α and . β. In Fig. 4.5a–i show the average travel 
time of layer 1,2,3, respectively, versus the resource allocation parameters . α and 
. β. .λ = 5 and other simulation parameters are the same as in Fig. 4.3. In order 
to analyze the impact of resource allocation further, the underlying infrastructure 
network is changed in two different ways: (1) using the same generation algorithm to 
generate a different set of edge, (2) replacing the generation algorithm of BA scale-
free network with the generation algorithm of Erdös-Renyi (ER) random network. 
For the ER random network, the probability of connecting each pair of nodes by an 
edge is set to 0.2, and the number of edges is almost equal to BA configuration. ER 
random network has the same number of nodes as the BA scale-free network. 

In Fig. 4.5a, the average travel time T increases obviously with . α but it looks 
pretty much the same for various . β. This is because the growth of . α will lead to
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Fig. 4.5 The effect of resource allocation parameters 

the reduction of total resources for layer . G1, and it takes more time to transfer 
the packets. In contrast, as a result of small nodal coverage, the increase in . β
does not have significant impacts. For layer . G2, changing . α and . β has an opposite 
impact. As shown in the Fig. 4.5b, reducing the value of . β can effectively reduce the 
transmission time. It means that packets can be transmitted faster with the degree-
based resource allocation method. Since .B2 = 1

3Ball for .α = 1 and .α = 0, changing 
. α from 0 to 1 has little effect. 

The results of increasing the total resources of layer . G3 and distributing the 
resources to nodes based on their degrees are shown in Fig. 4.5c. T for layer . G3 will 
be reduced when either . α is increased or . β is increased. Hence, it can be found that 
these two influencing factors have different impact on traffic performance for layers 
with different nodal coverage. The results are effected by the nodal coverage of 
slices and the number of slices. The result of the first change is shown in Fig. 4.5d– 
f. This shows that the effect of changing . α and . β is the same when the generation 
algorithm does not change.
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As shown in the Fig. 4.5g–i, the variation tendency of average travel time is 
basically the same, which means that the impact of changing . α and . β still remains 
unchanged. However, the average travel time is much higher than the BA algorithm 
when . β is higher for layer 2 (.Pm = 0.5) and layer 3 (.Pm = 0.75). Since the 
scale of layer 1 (.Pm = 0.25) is quite small, the average transmission path length 
of ER random network is shorter than BA scale-free network. Hence, in Fig. 4.5g, 
the average travel time is small when .α ≤ 0.4, β ≥ 0.4. It can be observed that 
the degree-based resource allocation method is more suitable when the underlying 
infrastructure network is a BA scale-free network. The reason is that the degree 
distribution of scale-free network is a power law, and a small number of nodes have 
high degree. The existence of these nodes can reduce the average transmission path 
length between any two nodes. Providing more resources to these node will shorten 
the average travel time efficiently. 

The level of congestion found at the node i in layer .Gm is denoted as 

.L
Gm

i (t) = q
Gm

i (t)

Bm (i) − q
Gm

i (t)
(4.7) 

.q
Gm

i (t) represents the number of packets arrived in node i at time t , and . Bm (i)

denotes the capacity of storing packets at node i. In order to analyze the effect of 
changing the nodal coverage and the number of slices, the ratio of congested nodes is 
counted when the time step is 200 and different slices have the same nodal coverage. 
It can be defined that node i in layer .Gm is a congested node when .L

Gm

i (200) ≥ 1. 
Figure 4.6 shows the ratio of congested nodes versus the nodal coverage of slices 

and the number of slices. The underlying network is a BA scale-free network. . α =
0.5, β = 0.5, λ = 5 and other simulation parameters are the same as in Fig. 4.3. 
Figure 4.6a is the result of how the congestion state of slices vary with M when the 
nodal coverage of slices (. Pm) is fixed. The ratio of congested nodes exhibits a faster 
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Fig. 4.6 The ratio of congested nodes
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increase when . Pm is 0.25 than it is 0.75 and 1. Most of nodes in layer . G2 and layer 
. G3 are already congested when M is small. It means that increasing the number of 
slices has a more significant impact when the value . Pm is less. 

Figure 4.6b shows that the ratio of congested nodes increases much faster with 
the number of slices when M is 3, 6, 9. By comparing these two figures, it can 
be observed that the resilience against congestion in the multilayer network model 
is more sensitive to the increase of . Pm than M . A higher value of M means that 
the total resources for each slice is decreasing. And a higher . Pm means that it is 
likely for more nodes in different slices to share the resources of common nodes in 
the underlying infrastructure network. Hence, a high value of . Pm will cause more 
severe congestion and an arbitrarily small change in . Pm can drive the multilayer 
network into a congested state. Thus, . Pm has a critical impact at these values. 

Network slicing is modeled by the multilayer model where traffic packets are 
generated and transmitted in the slices and the buffer sizes of nodes in the slices 
are perceived as the resources allocated according to the degree of nodes. The 
impact of packet generation rate . λ, the resource allocation parameters . α and 
. β, the number of slices M and the nodal coverage .Pm on the ratio of arrived 
packets R and the average travel time T are analyzed. The results show that a 
reasonable resource allocation method can improve the traffic performance, and 
the degree-based method is suitable when the underlying infrastructure network is 
a scale-free network. Moreover, adjusting the resource allocation parameters has 
different effects on slices because of different nodal coverage . Pm. However, the 
traffic performance on slices can be improved by increasing the total resources of 
slices and allocating more resources to nodes with higher degree. After obtaining the 
variation of the ratio of congested nodes when changing . M and . Pm, it is found that 
increasing . Pm has a deeper impact on triggering the congestion than increasing . M . 

4.3 Inter-Slice Resource Sharing and Competition 

4.3.1 Control Strategy for Avoiding Resource Competition 

The analysis in above section shows that a minor adjustment in the resource 
allocation parameters . α or . β can result in an increase in average travel time for 
slices. Increasing the total resources of a slice or allocating more resources to nodes 
of higher degree can reduce the average travel time for packets. It can be concluded 
that the hub nodes in the multilayer network model, as the top nodes ranked by 
degree, play a crucial role in causing congestion. Hence, a practical strategy of 
preventing the congestion is to selectively enhance the buffer capacity of a few hub 
nodes in the underlying infrastructure network. In practice, this strategy means that 
InPs increase computing resources of a few more important DCs to maximize global 
resource efficiency with capacity expansion methods. With the real-time status of 
slices and economic benefit analysis, the revenue of maintaining high service quality 
could be obtained by sacrificing small reinvestment cost.
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Giving more resources to a small set of hub nodes is effective but costly. Hence, 
the number of these top nodes .ntop and the increment of capacity need to be 
reasonable in order to achieve a trade-off. The buffer capacity of these top nodes 
can be increased by multiplying a factor .wcap ≥ 1. For example, the congestion 
can be prevented by increasing the buffer size of the top 2 hubs by 1.5 times when 
the total number of nodes in the underlying infrastructure network is 20 (2 out of 
20, 10%). Comparing the total capacity of the underlying infrastructure network, 
the enhanced buffer size is insignificant but it can reduce the average travel time 
drastically. 

Figure 4.7 shows the change of the average travel time for a slice when the buffer 
sizes of the top .ntop nodes are multiplied by the factor .wcap. After finding . ntop

nodes, the newly increased buffer size is allocated in the same way as before with 
the same . α and . β. Here we set  .α = 0, β = 1, and .λ = 10. There are 3 slices 
.M = 3 and they have the same nodal coverage .Pm = 0.5 (m = 1, 2, 3). There 
exists a region, the blue area, in the parameter space that represents a completely 
free state of traffic flows, with a clear boundary separating this region from the 
congestion regions, the red area. As shown in Fig. 4.7, neither too small values of 
.ntop nor small values of .wcap can efficiently reduce the travel time. It again shows 
that providing more resources to a select set of hubs can avoid the congestion state 
efficiently. 

According to Fig. 4.6, a small increase in the parameter .Pm can lead to a 
substantial increase of the congested nodes suggesting that the parameter . Pm can 
deliver a critical change in network congestion. A straightforward control strategy 
is to reduce the value of . Pm of these slices. Since the congestion can be triggered by 
these nodes shared by many slices, reducing the overlap between layers can suppress 
the congestion efficiently. However, this method will not be effective when . Pm is
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high enough (.Pm ≥ 0.6 in Fig. 4.6b). Also, this method is not practical in real 
communication networks because the structure of slices are predetermined. 

However, the scale of the underlying infrastructure network can be increased 
since many real multilayer networks are evolved by adding the nodes and con-
nections, such as a social network, the transportation network, and the urban 
infrastructure network. As for the cloud infrastructure of the wireless network, 
increasing its scale could be realized by cooperating with other infrastructure 
networks or deploying more DCs to form a federated environment. Since the 
underlying infrastructure network is a BA scale-free network, the scales of the 
underlying infrastructure network can be increased by increasing the total number of 
nodes with the generation algorithm in Sec. II. Then, the overlap between slices can 
be reduced while the numbers of nodes in these slices are kept. This action results 
in an increase in the ratio of arrived packets. However, this strategy has a limit that 
the cost of increasing the scale of the underlying infrastructure network outweigh 
the costs of increasing the buffer capacity of hubs. 

As shown in the Fig. 4.8, the ratio of arrived packets is increased rapidly when 
the underlying infrastructure network is scaled up. In this figure, the total number 
of nodes is increased from 20 to 60 step by adding 10 new nodes. Also, the total 
capacity is increased from 60 to 180 in order to ensure the average buffer size of 
each node is 3. Here we set .α = 0, β = 1, and .λ = 10. There are 3 layers . M = 3
and the numbers of nodes for layers are 5,10,15. Compared to layer 2 and 3, the 
ratio of arrived packets for layer 1 is doubled by adding 10 nodes. It means that this 
strategy can improve the performance dramatically for slices with relatively few 
nodes. Furthermore, for all three slices, the ratio of arrived packets increases slowly 
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when it is larger than 0.9. Hence, another limit of this strategy is that the increase 
in the ratio of arrived packets will stop when the underlying infrastructure network 
reaches its overall capacity (i.e., .N = 60). 

Based on the performance analysis of slice traffic, two different control strategies 
are proposed to improve the traffic performance, increasing the buffer capacity 
of hubs and increasing the scale of the underlying infrastructure network. The 
former reduces the average travel time by giving more resource to a small set 
of hub nodes. The latter improves the ratio of arrived packets by adding more 
physical servers to the underlying infrastructure network. In general, these two 
strategies reduce the possibility of service quality deterioration caused by resource 
competition from two aspects, respectively. The first strategy pays more attention 
to the impact of the several hub nodes on service quality, thus it costs less by 
expanding the capacity of these hub nodes. Oppositely, the second strategy focuses 
on the significance of overall available computing resources for improving service 
quality, thus the performance improvement is more remarkable. Furthermore, the 
effectiveness and limitations of these two strategies are estimated, which provide a 
good understanding of controlling the congestion and enhancing the resilience of NS 
in wireless networks. In addition, the analysis results could be used as a benchmark 
or reference to the analysis of other multilayer systems. 

Considering that the scales of many real world multilayer networked systems are 
ten times or a hundred times more than this model, it requires multiple processors 
with good performance to work at the same time. Besides, in order to reduce the 
complexity and time of processing real data, the underlying infrastructure network 
and the slices can be divided into multiple different parts according to certain 
methods. In future research, it will be better to find a suitable division method with a 
view to realizing the parallel processing of real data. Since minimizing transmission 
delay of data traffic can meet the stringent delay requirements of services and 
increase the benefits of service providers, the shortest path routing algorithm is 
adopted in the traffic generation model in this paper. In order to further analyze the 
impact of routing algorithms on traffic performance of slices, various differentiated 
routing algorithms should be selected for different types of services in the future. 
In addition, joint allocation of multiple types of resources will also be taken into 
account, including the capacity and delay of virtual links. 

4.3.2 Application of AI Techniques in Multi-Tenant Slicing 

The wireless communication system has been continuously evolving to provide 
ultra-fast speed, greater capacity, and ultra-low latency, supporting new applications. 
With the proliferation of smart devices, the expansion of network scale and the 
diversification of services, the mathematical formulations of existing algorithms 
become more complex and they are incapable of solving the problems in dynamic 
network environment.
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As an important enabling technology for AI, ML has been successfully applied 
in many areas, including computer vision, medical diagnosis, search engines, 
and speech recognition [15]. ML techniques which can be generally classified as 
supervised learning, unsupervised learning and RL gives computers the ability to 
learn without being explicitly programmed. In recent years, many efforts have 
been made to use ML in wireless communication, including resource management, 
networking and mobility management, and so on. The motivation of authors in 
current researches to adopt ML-based methods includes many aspects [29], for 
example, researches use ML to solve wireless problems with low complexity [1], 
model-free RL can help the resource scheduler make optimized decisions without a 
full knowledge of network information [10]. Moreover, signaling overhead can be 
reduced and better performance can be achieved with ML-based methods since they 
can learn an optimal decision with partial network information using deep neural 
network [22]. 

There already have many some literatures investigated the application of ML 
in network slicing. Authors in [20] use RL to allocate resources for RAN slices, 
obtaining better performance than the traditional optimization algorithm in the 
perspective of optimizing the benefits of InPs. [27] analyzes the advantages of 
using DRL algorithm to solve problems such as RAN slicing resource allocation, 
automatic selection of radio access technology, and mobile edge caching. Authors 
in [25] study the traffic forecasting of network slicing based on past information and 
admission control of slice requests from different tenants. Further, they proposed 
an online RL based algorithm for multi-class slice scheduling to improve resource 
utilization in [26]. Although these researches achieve optimal resource partitioning 
for slices belonging to different tenants with distinct requirements, it is still difficult 
to cope with the dynamic resource demand changes. 

In multi-tenant slicing, each tenant acts selfishly in order to compete with other 
tenants for limited resources. However, most of the optimization goals of existing 
resource allocation algorithms are short-term gains for a single tenant. In order to 
deal with the uncertainty of resource demand changes, authors in [33] use deep rein-
forcement learning to implement real-time fast resource allocation for multi-type 
slices. The multi-type slices belonging to different tenants have great differences 
in the heterogeneous resource requirements of the infrastructure network, and this 
difference changes dynamically with time, which will undoubtedly lead to the 
difficulty in solving the joint optimization problem of heterogeneous resources. 
[17] model the slicing resource management problem between multiple tenants with 
competing relationships as a stochastic game and propose an online solution based 
on DRL to approximate the optimal solution. 

As one of most important research directions of ML, RL is particularly suitable 
for decision-making in resource management of multi-tenant slicing. By combining 
deep learning introduced as a breakthrough technology with RL, both of the learning 
speed and performance are improved. Consequently, DRL has become an emerging 
tool to effectively address various problems in the areas of communications and 
networking [13]. The learning process of DRL is introduced in the Chap. 1 and the 
DRL-based slice orchestration is proposed in Chap. 3. Noticed that DRL algorithms
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consist of value-based methods and policy-based methods. Value-based DRL focus 
on estimating the value of different states or state-action pairs while policy-based 
DRL focus on directly learning the optimal policy–the strategy that maps states to 
actions to maximize cumulative rewards. Deep Q-Learning (DQL) as a value-based 
method is mostly used for the DRL related works in wireless communication. 

Due to the cross-domain deployment of slices, avoiding the damage of resource 
competition among different tenants in slice performance becomes challenging. 
The conventional DRL algorithms, such as Double DQL, Dueling DQL, are 
gradually unable to deal with the challenges brought by resource diversification, 
demand dynamics, and differentiation. Some newest DRL algorithms, such as 
Asynchronous Advantage Actor-Critic (A3C) DRL [16], deep deterministic policy 
gradient (DDPG) [11], and Multi-Agent DRL (MADRL) [36] are adopted in 
dynamic slicing. 

A3C includes two separate neural networks, actor network which learns the opti-
mal policy and critic network which estimates the value function. The architecture 
of A3C algorithm is shown in Fig. 4.9, combining the strengths of both actor-critic 
and advantage learning methods which focus on the relative value of actions rather 
than their absolute value. In A3C architecture, there are multiple parallel agents to 
explore the environment and learn the optimal policy, achieving faster learning and 
better performance. Global network as a public neural network model includes the 
functions of actor network and critic network. There are N worker below, and each 
worker has the same network structure as the public neural network. Each agent will 
interact with the environment independently to obtain empirical data. These parallel 
agents do not interfere with each other and run independently. After each agent 
interacts with its environment to obtain certain data, it calculates the gradient of the 
neural network loss function in its own thread. These gradients do not update the 
neural network in its own thread but update the public neural network. Compared 
with the DQL algorithm which uses a single agent and a single environment, the 
convergence speed of A3C is faster and its robustness is stronger. 

Considering that the DQL algorithm works only for discrete action spaces 
and discretizing continuous action space with many dimensions suffers from 
curse of dimensionality, DDPG as a model-free off-policy actor-critic algorithm 
is introduced. The DDPG architecture is shown in the Fig. 4.10, where the actor 
outputs a deterministic action rather than a probability distribution of the action. 
The critic evaluates the Q value of the state-action pair, not the V value. DDPG is 
suitable for solving the problem of continuous action space, but it can also solve the 
problem of discrete action space and discrete continuous mixed action space. 

The core of RL is trial and error, in which the agent iteratively optimizes based 
on the feedback obtained by interacting with the environment. When there are 
multiple agents interacting with the environment at the same time, the entire system 
becomes a multi-agent system. The architecture of MADRL algorithm is shown in 
the Fig. 4.11. Each agent is still following the goal of RL, which is to maximize 
the cumulative reward that can be obtained, and the change in the global state of 
the environment is related to the joint actions of all agents. When these agents 
interact with the environment and one another, we can observe them collaborate,
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coordinate, compete, or collectively learn to accomplish a particular task. The 
reward function of multiple agents is complex and the relationship between agents 
can be perceived as a random game. When the reward function of each agent is
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consistent, the relationship between agents is cooperative, and when the reward 
function is opposite, the relationship between agents is competitive. There are also 
strategies that neither compete nor cooperate, that is, mixed strategies. 

Compared with traditional DRL algorithms, these new algorithms are more 
adaptable to solving complex problems and can learn the optimal decision faster 
with better performance. Authors in [32] use A3C in jointly optimization of the 
densities of deployment and resource allocation for RAN slicing relying on control-
plane and user-Plane separation. Authors in [28] use MADRL to jointly solve the 
problems of network slicing and slice admission control. How to use these existing 
newest DRL algorithms and how to develop new DRL algorithms are essential to 
achieve automated and intelligent resource management in multi-tenant slicing. 
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Chapter 5 
Customized Slicing for Industrial 
Applications 

5.1 5G-Enabled New Industrial Scenarios 

New requirements of diverse use cases, in particular, for vertical industries, such 
as vehicle to everything, smart utilities, and Industry 4.0, are accelerating the 
maturity and commercialization of 5G wireless communication systems [11]. 
Historically, the Industrial Revolution critically hinges on the rapid development 
of communication technology (CT). 5G techniques support massive connectivity, 
high-rate data transmission, low latency, and high reliability, enabling some critical 
use cases of Industry 4.0 [27]. As more and more vertical industries join the business 
model of wireless systems, emerging applications in the industrial space are now 
creating new market opportunities to MNOs. Meanwhile, enabling real-time remote 
control and high-safety information exchange bring more challenges to wireless 
networking in industrial scenarios. 

Communication technology needs to form a joint force with industrial automa-
tion technology to realize the intelligent operation of industrial enterprises in all 
aspects of design, procurement, production, warehousing, logistics, operation, and 
sales. As the foundation of the industrial Internet, the network needs to have the 
ability to access massive devices, interworking of heterogeneous systems, end-to-
end deterministic transmission, and intelligent scheduling of network resources. 5G 
is the key enabling technology of the industrial Internet, and the industrial Internet is 
one of the important application scenarios of 5G. Here we summarized some typical 
use cases in industrial scenarios and analyzed the difference in requirements of these 
use cases, providing basis for customized resource scheduling in 5G-enabled new 
industrial scenarios. 
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5.1.1 Use Case Requirements and Smart Industry 

The industrial applications mainly related to the operation in three domains, data 
collection, storage and analysis in the information technology (IT) domains, the 
productive activities in the operation technology (OT) domains, and interconnection 
among a massive number of the existing industrial elements in the CT domain [27]. 
The communication networks (CT domain) are the key of realizing the interaction 
between the physical world (OT domain) and the digital world (IT domain), and 
CT-IT-OT (CIOT) collaboration is the foundation of Industry 4.0. 

According to the 5G Alliance for Connected Industries and Automation (5G-
ACIA) white paper [29], some new and evolved industrial use cases for Industry 
4.0. are described below. 

• AI-based quality inspection. This use case for optimizing product quality 
involves collecting vision information through high-definition industrial cam-
eras, using the AI-based algorithms to analyze the images or video received 
and detecting the quality of the products on production in near-real-time. The 
requirements of AI-based quality inspection include higher sensitivity, higher 
precision, and higher efficiency, which aims at achieving better performance than 
the traditional manual quality inspection and reducing the human cost.

• XR-aided industry manufacturing. This use case is built on the collaboration 
between humans and machines, using virtual reality, augmented reality, and 
mixed reality (XR) technologies to achieve flexible production. With the remote 
assistance and guidance, machines can perform repetitive tasks precisely and 
the safety of human workers can be ensured. XR-aided industry manufacturing 
requires ultra-low latency and high reliable communications between the sensors 
installed on the machines and the XR devices.

• Remote control and manipulation. This is an existing use case in 3GPP TR 
22.804 [1], where a remote control center or diagnostic system performs the 
required manipulation based on the periodic access to the huge volume of sensor 
data. In the evolved scenario, the main prerequisites for this use case are a device-
to-network endpoint latency of about 5 ms, high service reliability with an uplink 
speed of 3 to 8 Mbit/s for 1080 pixel images, and a remote control bit rate of 100 
kbps.

• Predictive monitoring and maintenance. This use case is expected to avoid the 
sudden failure of the production line by leveraging IoT sensor networks, machine 
learning algorithms, and big data analysis. Condition monitoring and predictive 
maintenance in the context of industrial production require greater efficiency for 
aggregating locally sensor data, reliable communications for video surveillance 
service, and quick offloading of heavy computations. 

The tight requirements of these use cases bring many challenges in realizing 
Industry 4.0, especially the challenges in the CT domain. First, due to the increase 
number of sensors and industrial devices, massive access to RAN brings challenge 
in improving the coverage and reducing energy consumption. Second, ensuring the
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high quality of information transmission in the 5G-enabled industrial Internet brings 
challenge in reducing the E2E latency and providing high reliability. Last but not 
least, diverse applications in the industrial scenario which have different properties 
and requirements of resources, which brings challenge in efficient slice manage-
ment. To deal with these challenges, many efforts have been devoted by academia 
and industry, such as the edge computing for delay-sensitive applications [15], 
reconfigurable intelligent surfaces for improving the channel conditions [7] and 
intelligent AI-based network slicing for reducing management costs [25]. However, 
most of the current researches in the area of 5G networks focus on the consumer 
Internet, which are difficult to meet the strict requirements of services in industrial 
Internet for network security, reliability, and certainty. 

Deploying 5G networks in the industrial scenario means that the traffic flows 
of diverse industrial applications will be delivered in the wireless domain. The 
management of wireless resources should match the differentiated characteristics of 
industrial traffic flows. The data flows of multiple industrial applications transmitted 
in the wireless domain can be classified into three different traffic classes according 
to 3GPP TR 22.804: sporadic burst traffic, periodic time-sensitive traffic, and non-
deterministic traffic. Some selected representative applications are summarized in 
Table 5.1 along with their requirements.

• Sporadic burst traffic (SBT) relates to applications such as emergency stops or 
failure alarms which are triggered when specific events or errors occur.

• Periodic time-sensitive traffic (PTT) which is generated periodically with a 
given deadline relates to most common industrial applications such as motion 
control and cooperative control.

• Non-deterministic traffic (NDT) is characteristic of applications such as soft-
ware updates or user interaction, which do not require delay guarantee. Moreover, 
eMBB traffic supported by the Base Station (BS) in industrial environment is also 
classified as non-deterministic traffic. 

Table 5.1 Typical traffic flows of industrial applications with requirements 

Traffic class Application Latency Reliability Data rate Payload 

Sporadic burst 
traffic 

Emergency stops . <4 ms  – – 40–250 
bytes 

Failure alarms . <50 ms – – 10–100 
bytes 

Periodic 
time-sensitive traffic 

Motion control 2 ms  99.99–99.9999 .(%) – 20 bytes 

Cooperative control 1 ms  99.999–99.99999 .(%) – 40–250 
bytes 

Non-deterministic 
traffic 

Software updates – – . >1 Mbps – 

User interaction – – . >5 Mbps –



90 5 Customized Slicing for Industrial Applications

The SBT can be generated at any point in time and the packets with a given 
payload should be successfully delivered before the latency deadline. The PTT is 
characterized by a transmission period in addition to the given payload and the 
latency deadline. The NDT only requires a number of RBs to achieve the data rate 
demand. 

5.1.2 Standards and Techniques of IEEE TSN and 5G ULL 

Although the Third Generation Partnership Project (3GPP) Releases 15 and 16 
standards have introduced the matured 5G technologies for enhanced Mobile 
Broadband (eMBB) communications, wireless networks are still required to incor-
porate with deterministic communications to support ultra-Reliable Low-Latency 
Communications (uRLLC) services, especially the time-critical applications in 
industrial environments. 

The standardization within IEEE 802.1 Time-Sensitive Networking (TSN) task 
group (TG) enables Ethernet to be a reliable real-time communication network 
which can simultaneously satisfy the demands of multiple time-critical applications 
as well as nontime-critical applications. The TSN standards define mechanisms 
about synchronization, bounded low latency, reliability, and resource management 
to provide deterministic services in many industries. Nasrallah et al. [19] provides 
a comprehensive up-to-date survey of the IEEE TSN standards, the Internet 
Engineering Task Force (IETF) Deterministic Networking (DetNet) standards, and 
the ULL research studies. 

As a collective name for a set of standards, TSN standards were started as 
IEEE 802.1 Audio Video Bridging (AVB) and are successfully deployed for various 
industrial applications nowadays. The set of TSN standards can be divided into 
different clusters according to the functionalities of them, i.e., synchronization, 
latency, reliability, and resource management. Since some standards contribute 
to more than one aspect, these clusters are not disjoint [17]. In this subsection, 
some core standards for critical communication are briefly revived, i.e., the clock 
synchronization capabilities of TSN (IEEE 802.1AS/ASrev), frame preemption of 
low-critical frames by high-critical frames (IEEE 802.1Qbu-2016), time-triggered 
(TT) communication (IEEE 802.1Qbv-2015), as well as traffic filtering and policing 
(IEEE P802.1Qci-2017). 

Time synchronization plays a crucial role for time-sensitive applications, thus 
a suite of clock synchronization protocols in IEEE 802.1AS is defined to ensure 
that end stations and bridges may synchronize their local clocks to each other. The 
main problems to be solved are determination of a synchronization hierarchy in 
the network, distribution of the time from the one or multiple grandmasters in the 
hierarchy to the rest of the network, and the measurement of link delays between 
devices. 

Frame preemption is introduced in IEEE 802.1Qbu to address the problem 
that the transmission of urgent frames is prevented by the ongoing transmission
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Fig. 5.1 The TAS in a TSN switch  

of noncritical frames. Preemption reduces the transmission delay of time-critical 
frames because the critical data can be transmitted directly without waiting for 
the transmission of the noncritical data. Note that preemption occurs only if the 
preempted traffic support preemption and the impact of preemption is acceptable. 

Except for the preemption mechanisms, the TT paradigm based on the clock 
synchronization protocols is also indispensable to the realization of deterministic 
communications. The core principle of TT communication is finding a feasible 
communication schedule which instructs the TSN end stations when to send which 
frames [26]. To realize this schedule, TSN adopts gate control list (GCL) in finding 
the right points in time when to enable and disable the transmission of TT and other 
traffic classes. 

Realizing TT transmissions is mainly thanks to IEEE 802.1Qbv Time-Aware 
Shaper (TAS) and the standards IEEE 802.1ASrev which defines a time synchro-
nization protocol. Figure 5.1 shows the TAS in a TSN switch. Instead of scheduling 
frame transmissions directly, TAS as a gate mechanism schedules the activation 
and deactivation of the traffic class queues which have different priorities. Traffic 
shaping comprises how frames are assigned to queues, and how and when frames 
are selected for transmission [17]. The point in time when to set the gate state of 
each queue into the open/closed state is decided by the GCL. A suite of clock 
synchronization protocols are defined such that end stations and bridges may 
synchronize their local clocks to each other. Losing synchronized time may result 
in transmission error. 

In TSN switch, the switching fabric identifies the frames based on the infor-
mation in the frame header. The buffered frames are distributed on multiple 
first-in-first-out queues based on the priority code point bits in the headers. Different 
traffic classes are isolated in separate queues and each queue is associated with a gate 
controlled by GCL. GCL indicates the open/close state for a certain time window 
and state changes are statically scheduled with respect to a synchronized time. The 
traffic classes are prioritized by TAS and the deterministic nature of TT traffic is
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guaranteed by finding a GCL, i.e., the points in time when to change the gate state 
for each queue. 

During queuing frames and transmission selection, traffic policing is done by 
ingress filtering, egress filtering, as well as flow metering. The IEEE 802.1Qci 
standard defines protocols and procedures to make filtering, policing, and queuing 
decisions. Queues with higher priority are served before queues with lower priority. 
It provides for quality of service protection and avoids the interference when 
multiple streams share the same switch egress queue by using stream identifier and 
priority. 

As a key technology of providing deterministic guarantees for Ethernet-based 
communications, TSN technology standardized in IEEE 802.1 is integrated in 5G 
System (5GS) to enable the simultaneous transmission of deterministic traffic and 
eMBB traffic [24]. In the 5G wireless context, the support of deterministic traffic 
has also been discussed, especially for traffic with deterministic end-to-end ULL 
requirements [19]. The DetNet working group (WG) focuses on layer 3 routed 
segments while the TSN TG focuses on layer 2 bridged networks. 

DetNet flows are specified by their QoS classes which are defined by he 
maximum and minimum end-to-end latency, and the packet loss probability require-
ments [9]. To guarantee the QoS of DetNet flows and ensure that the non-DetNet 
flows have no effect on DetNet flows, the DetNet flows are mainly divided into 
four types and each DetNet flow is identified based on the flow ID and DetNet 
Control Word. The time synchronization between DetNet capable network entities 
is ensured through various existing synchronization techniques, e.g., IEEE 802.1AS. 
To support minimal jitter, i.e., extremely low delay variations, DetNet specifies jitter 
reduction through sub-microsecond time synchronization and time-of-execution 
fields embedded within the application packets [9]. 

The DetNet WG mainly focused on flow management which specifies DetNet 
configuration model and resources distribution for DetNet flows, and flow integrity 
which protect DetNet flows against possible failures through packet replication and 
elimination function (PREF) and fault mitigation. Following the same principles 
used for IEEE TSN TG deterministic flows, DetNet flow control identifies the 
data and control plane solutions, and defines queuing, shaping, scheduling, and 
preemption principles to achieve deterministic bounded latency and packet loss. 
Current research studies in aspect of DetNet focus on the flow control and flow 
integrity. For industrial applications that require deterministic characteristics, the 
routing mechanisms [20] and the scheduling mechanisms [13] are proposed to 
enable determinacy. In addition to the IEEE and IETF standardization organizations, 
3GPP and ETSI also contribute to the development of 5G ULL standardization. 
Reducing the latency in the wireless access segment [18] and addressing ULL in 
the fronthaul [5], backhaul [14] attract many concerns in current 5G ULL research 
studies.
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5.2 QoS-Aware Traffic Scheduling Toward New 5G 
Capabilities 

Since most of industrial services need to be carried by a network with deterministic 
transmission and reliability guarantee, Time-Sensitive Network (TSN) has attracted 
extensive attention due to its delay determination, and forwarding capability and 
compatibility with Ethernet protocols. However, wired TSN cannot meet the 
extensive deployment needs of new devices such as massive sensors and AGVs in 
smart factories. Thus, the collaborative transmission of 5G and TSN has become 
an important foundation for realizing wireless industrial Internet and flexible 
manufacturing. Although the interaction between 5GS and TSN is already part of 
the 3GPP specifications, few researches focus on the QoS-aware traffic scheduling 
in 5G-TSN integration. Here we provide a brief review of three typical scenarios 
of 5G TSN integration and the QoS-aware traffic scheduling in 5G network slicing, 
aim at find an efficient solution of scheduling 5G traffic flows and time-critical traffic 
flows simultaneously in the scenarios of 5G TSN integration. 

5.2.1 Technical Directions of 5G TSN Integration 

According to 3GPP specifications, a set of new functionalities have been incorpo-
rated in 5GS architecture to connect TSN control plane with 5GS. There are three 
typical scenarios of integration between 5GS and TSN shown in Fig. 5.2, first is  
TSN over 5G uRLLC, second is 5GS as a TSN bridge entity, and the last one is 
using TSN in 5G Xhaul network (e.g., fronthaul, midhaul, and backhaul).

• TSN over 5G uRLLC. In this scenario, TSN and 5G network are deployed 
jointly. In other words, the original time-sensitive service system (such as 
industrial control network, vehicle network, etc.) is connected to the 5G system 
directly, and 5G uRLLC is used to increase the coverage distance of the TSN 
system. Multiple types of traffic flow are scheduled synergistically, and the 
quality of E2E service delivery are guaranteed by realizing the deterministic of 
transmission in segments. 
As shown in Fig. 5.2a, the entire service system can be regarded as a UE. It is 
needed to establish a mapping relationship between the traffic classification in 
TSN and the service type of the 5G network. At the same time, it is necessary 
to retain the relevant marks of the traffic configuration of TSN and strip the 
5G package after the remote transmission of the 5G network. After entering 
the cooperative service system, the deterministic transmission is still carried out 
following the way of scheduling the TSN traffic.

• 5GS as a TSN bridge entity. As described in 3GPP R16 23.501, the entire 5G 
network has been upgraded to carry the deterministic transmission of TSN traffic. 
In this scenario shown in Fig. 5.2b, 5GS can be regarded as a TSN bridge entity
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Fig. 5.2 Three typical scenarios of integration between 5GS and TSN 

which support TSN centralized architecture and time synchronization mecha-
nism. Moreover, accurate traffic scheduling is achieved by defining new QoS 
models (flow direction, cycle, burst arrival time), thus high quality simultaneous 
transmission of multi-type deterministic traffic between UE and UPF in 5GS is 
realized. 
Realizing this scenario depends on the support of three aspects of techniques. 
First is the integration of TSN and the air interface in 5G which is also 
named 5G New Radio (NR). The definition of time synchronization, latency 
and delay jitter should be added in uRLLC communication. Secondly, device-
side TSN translator (DS-TT) and network-side TSN translator (NW-TT) should 
be deployed, supporting mappings between UE and service systems for ports, 
protocol data units and QoS mechanisms, and TSN-related traffic scheduling
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features. Last is the ability to enable deterministic communication between UE 
and UE under the same UPF.

• TSN in 5G Xhaul network. In addition to 5G NR standards and new core 
network architecture, the reconstruction of 5G transport network (TN) which 
interconnects RAN and 5G core network is also an important research direction. 
The network functions (NFs) of RAN reside in the Central Unit (CU), Distributed 
Unit (DU). The different TN segments interconnecting these NFs and the other 
NFs of 5G core, which can be denoted as fronthaul, midhaul, and backhaul, 
respectively. 
Using TSN network to improve the quality of 5G TN is attracting the attentions 
of researchers [4]. TSN can be used to support internal 5G TN operations for 
the fronthaul, but also for the entire converged Xhaul network. Driving the large-
scale deployments of TSN-aware 5G TN relies on the outcome of the liaison 
activities between IEEE TSN and IETF DetNet. Notably, when the TSN network 
serving the Xhaul, supporting 5G traffic flows and other unpredefined traffic 
flows will increase the complexity of TSN network optimization. 

In the industrial scenario, the difficulty and key point of 5G TSN integration 
is how to achieve deterministic transmission on 5G network and ensure the SLA 
requirements of different traffic flows in the industrial Internet. Promoting the rapid 
and low-cost deployment of 5G BSs in the industrial Internet scenario requires to 
extend TSN capabilities over a wireless network. The 3GPP standardization body 
is continuously working on the evolution of 5G technologies, especially about the 
uRLLC. In order to support low-latency communication, 5G NR defines a flexible 
frame structure and mini-slot transmissions based on different numerologies [16], 
supporting mini-slots which comprise 2, 4, or 7 OFDM symbols. In mini-slot 
time scale, transmission can start immediately without needing to wait for slot 
boundaries, which enables quick delivery of low-latency payloads. 

To efficiently support both broadband and ultra-reliable low-latency com-
munications, the 3GPP standards body has proposed an innovative superposi-
tion/puncturing framework for multiplexing URLLC and eMBB traffic in 5G [2]. 
The NR numerology, mini-slot and the superposition/puncturing framework for 
joint eMBB and uRLLC traffic is shown in Fig. 5.3. In the puncturing framework, 
time is divided into slots and further subdivided into mini-slots. eMBB traffic is 
scheduled at the beginning of slots and share the bandwidth over the time-frequency 
plane. Once the uRLLC packet arrives, they can be immediately scheduled in the 
next mini-slot on top of the ongoing eMBB transmissions. Superposition refers 
that the BS chooses non-zero transmission powers for both eMBB and overlapping 
URLLC traffic. Puncturing means that only eMBB transmissions are allocated zero 
power when URLLC traffic is overlapped. 

Besides the mini-slot transmission, technologies of network slicing and edge 
computing in 5G are also interest future industrial applications. The 3GPP Release-
16 extends support to apply TSN in 5G, focusing on the major vertical area 
Industrial Internet of Things (IIoT). As a promising technique to accommodate 
diverse services for the IIoT, network slicing has been studied in a large number
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Fig. 5.3 NR numerology, mini-slot and the superposition/puncturing framework for joint eMBB 
and uRLLC traffic 

of current literature. Authors in [30] present an architecture of intelligent network 
slicing management for IIoT applications and summarize the existing works on 
network slicing for three IIoT applications, smart transportation, smart energy, and 
smart factory. By offloading data from IIoT cloud data centers to edge networks, 
edge computing applied in IIoT enables to improve performance of data processing, 
protect data security and privacy of enterprises, reduce the total task execution 
cost (including energy and delay). In [22], authors outline the research progress 
concerning edge computing in IIoT and introduce a reference architecture of edge 
computing in IIoT. 

5.2.2 QoS-Aware Traffic Scheduling in Network Slicing 

Integrating TSN functionalities in the 5GS is essential for the widespread deploy-
ment of 5G in the IIoT, and the “black box” approach that 5GS integrates with 
TSN as a logical bridge is a promising method to accelerate the deployment. In 
this approach, the core network and RAN procedures remain hidden from the TSN 
network, and TSN standards can be developed independently without having a 
strong coupling with 3GPP standardization efforts and timetables. Although the 
TSN translator functionality for both the user plane and the control plane enables 
the interoperation between TSN and 5GS, supporting the simultaneous transmission 
of TSN traffic and 5G traffic requires a QoS-aware traffic scheduling method for 5G 
RAN. It is challenging that optimizing radio resources utilization while satisfying 
the QoS demand of TSN traffic and 5G traffic. 

Network slicing enables the services with partially conflicting objectives to 
be accommodated efficiently within the same infrastructure network. A slice 
which contains multiple network functions and virtual resources can be created 
dynamically [6], scaled up or down with more or fewer resources [31], and
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reconfigured by adding or removing network functions [28]. At present, the dynamic 
management and orchestration of slices has been thoroughly investigated. Because 
of the uncertainty of radio channel, resource scheduling in RAN slicing faces greater 
challenges than core network slicing. Especially in the 5GS as a TSN logical bridge, 
partitioning radio resources for different type of slices needs to take into account the 
differentiated requirements of diverse TSN services and 5G services. 

Figure 5.4 shows the architecture of RAN slicing in 5GS exposed as a TSN 
logical bridge, where a fully centralized TSN network is considered. As described 
in IEEE 802.1Qcc, there are two key elements in the configuration models of TSN 
control plane, the Centralized Network Configuration (CNC) entity and the Central-
ized User Configuration (CUC) entity. CNC which has a complete knowledge of the 
network topology and all the data flows is responsible for configuring TSN features 
and performing operations required for frame preemption and TAS at the TSN 
bridge. CUC is responsible for discovering end stations, retrieving the capabilities 
of end stations and configuring TSN features in end stations. 

As shown in Fig. 5.4, TSN translation functionalities are embedded for both user 
and control planes inside the 5GS. In the user plane, NW-TT is deployed in the 
User Plane Function (UPF) and DS-TT is deployed in the User Equipment (UE). 
Both of them are used to perform QoS mappings, execute Per Stream Filtering 
and Policing (PSFP) functionality, and support hold and forward functionality. 
Application Function (AF) in the control plane interacts with the CNC entity and 
obtained PSFP information to achieve transmission reliability. The CNC entity 
sends the stream specification received from the CUC entity and the configuration 
information of 5G-TSN bridge to AF. Conversely, AF sends the feedback and 
reports flow QoS to the CNC. Moreover, NW-TT and DS-TT support the TSN time-
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domain grandmaster clock while the rest of the 5GS components like UE, gNB, etc., 
are synchronized with the 5GS grandmaster clock. 

In the BS of 5GS as TSN logical bridge, slice scheduler allocates physical 
resource blocks (PRBs) to different types of traffics, including nontime-critical 
traffic for eMBB users and time-critical traffic for uRLLC users in different time 
scales. Since slices need to conform to specific SLAs of different services, authors 
in [23] presented a utility-based inter-slice scheduling algorithm for three types of 
slices with specific QoS requirements. In order to satisfy the latency requirements 
of uRLLC slices while sharing radio resources with other types of slices, a two-
level medium access control (MAC) scheduling solution is utilized in [3]. First level 
is slice-specific scheduling, with which the virtualized resources, i.e., frequency 
bandwidth, are assigned to UEs. Second-level is assigning physical resources to UEs 
based on the results of the first level and performing inter-slice resource partition. To 
satisfy the heterogeneous requirements of the eMBB and uRLLC services, authors 
in [8] propose a DRL-based approach to efficiently allocate radio resources in 
two different time scales. Despite the effectiveness of these RAN slice scheduling 
approaches, slicing the radio resources in 5G-TSN integration is expected to be 
further explored. 

5.3 Customized RAN Slicing for 5G-TSN Integration 

As a crucial innovation in 5G, network slicing offers the ability of tailoring resources 
on demand, which guarantees traffic isolation and improves resource utilization. 
By customizing the resource allocation for different services, RAN slicing enables 
fine-scale resource sharing among different service providers [12]. To transmit 
deterministic traffic and eMBB traffic in the same RAN, a suitable RAN slicing 
method for the scenario of 5GS as a TSN bridge is required. The RAN slicing 
method proposed in [10] meets the delay demand of deterministic traffic through 
resource reservation and preemption. The preemption-based methods allow the 
time-critical traffic to interrupt ongoing nontime-critical transmissions, which is 
appropriate to the transmission of urgent frames [17]. In this section, an AI-enabled 
resource slicing method is introduced, guaranteeing the latency requirements of 
time-critical traffic based on the reasonable preemption. 

5.3.1 Deterministic Transmission in 5G-TSN 

Deterministic latency and high-reliability performance are the prerequisites of 
satisfying the requirements of various industrial applications. In a TSN network, 
nodes (e.g., switches and end stations) communicate with each other by transmitting 
a stream of frames from the sender to the listener. For each stream with specific 
information including the bounded latency and jitter, the data size and the period, it
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is assumed that the sender and receiver nodes as well as the routed communication 
path are known and given. In the classical approach, the sender node of a TT 
frame is configured with a scheduled transmission point in time which relates to 
a reference time established by a synchronization protocol. The TT switching is 
discussed previously, providing more capabilities for scheduling TT traffic. 

For the industrial scenario of 5G-TSN integration, diverse QoS requirements of 
time-critical and nontime-critical traffic flows on a wireless TSN BS need to be 
guaranteed simultaneously. Similar to multiplexing uRLLC and eMBB traffic in 
5G, supporting the coexistence of time-critical TSN traffic and nontime-critical 5G 
traffic in the 5G-TSN integration also need resource preemption. By puncturing 
any mini-slots of slots which has been allocated to nontime-critical 5G traffic, 
time-critical TSN traffic can be transmitted immediately. The wireless TSN BS 
allocates zero power to nontime-critical 5G traffic transmissions when time-critical 
TSN traffic is puncturing. The locations of TSN traffic puncturing can be used for 
nontime-critical users to decode transmissions. There will be some possible loss of 
rate caused by puncturing. 

Since not all nontime-critical users can tolerate the impair of resource pre-
emption, the nontime-critical traffic is classified into two types, non-preemptable 
traffic and preemptable traffic. Although resource preemption ensures the timely 
transmission of time-critical traffic, constantly high preemption is inefficient for 
the scenario where many time-critical applications are running in the industrial 
terminals. Hence, instead of using a solely preemption-based approach, restricting 
preemption and reserving resource for deterministic traffic achieve more efficient 
resource utilization [10]. Since over-provisioned reservation might result in more 
unused resources, finding an optimal resource allocation for each slot is of great 
concern. 

To realize the next generation industrial wireless communication, customized 
resource slicing is absolutely necessary to guarantee diverse QoS requirements of 
time-critical TSN traffic and nontime-critical 5G traffic flows on a wireless TSN 
BS. Partitioning the radio resources among RAN slices needs to consider not only 
the requirements in terms of data rate, reliability, and bounded latency but also the 
priority level and arrival time of traffic flows. Taking industrial wireless network as 
an example, the AI-based time-sensitive RAN slicing framework for 5GS as a TSN 
logical bridge is elaborated in Fig. 5.5. The integral architecture consists of three 
parts: physical infrastructure bearing the traffic transmission, scheduling process of 
multi-type traffic, service and application corresponding to the specific traffic. 

In the envisioned framework, the wired TSN segment includes a TSN switch and 
TSN end stations (e.g., controller and factory devices). DS-TT and NW-TT provide 
support for TSN ingress and egress ports, enabling the interoperation between TSN 
and 5GS. The wireless domain exhibits the user plane which carries user traffic 
exchanged between UE and gNB. A protocol data unit (PDU) session between the 
UE and the TSN switch is established to enable time synchronization and support 
connectivity to the TSN domain. 

In this framework, fog nodes with differing computation and storage capabilities 
are connected with each other and to the cloud. Based on the work in [21],
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Fig. 5.5 The AI-based time-sensitive RAN slicing framework 

some of the fog nodes can be used for the implementation of CUC and CNC, 
which performs complex computational tasks of deriving the schedules for TSN 
switch. Additionally, the fog nodes can be equipped with an AI-engine occupying 
partial computing and storage resources. AI-Engine which also can be deployed as 
an independent physical entity encapsulates diverse machine learning models for 
solving complex problems. An AI-engine which encapsulates diverse ML models 
is designed in the proposed framework to provide intelligent solutions for many 
use cases. For example, AI-engine provides DRL models to make optimal decisions 
for wireless resource allocation, supervised learning models to predict the changes 
of data traffic, object detection models to support intelligent applications in the 
edge [32]. 

The AI-engine is designed by us in [32] and the structure of AI-engine is 
shown in Fig. 5.6. In order to realize the flexible utilization of the AI-engine, a 
distributed deployment approach is adopted based on GPU virtualization. There are 
some distributed components of AI-engine deployed in the edge or the cloud to 
meet different requirements. Various AI algorithms are encapsulated in AI-engine 
to provide intelligent support for many scenarios, such as DRL algorithms that 
support life-cycle management of RAN slices, recurrent neural network (RNN) that 
enhances the capability of network data analytics function (NWDAF) in the core 
network, and Yolo that supports object detection in the edge cloud. The wireless 
communication system gains support from AI-engine through a common interface. 
The related parameters required for ML models are sent to AI-engine and the 
optimal decisions or analysis results are received. 

In 5G-TSN integration, how to realize time-aware scheduling for the time-critical 
traffic cross the wired and wireless domains, as well as allocate resource for TSN 
and 5G services with heterogeneous requirements is challenging. In the case of
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transmitting streams from controller to factory devices, the steps of scheduling 
process are illustrated in Fig. 5.5. 

(1) Once CUC received stream requests from end stations, the traffic characteristic 
parameters such as source-destination pair, period, payload, and deadline are 
obtained and communicated to CNC. AI-Engine is utilized to provide AI algo-
rithms for CNC to perform traffic analysis, including the traffic classification, 
flow prediction, and QoS extraction. After the traffic analysis, each traffic is 
uniquely identified with a priority level. 

(2) In the CNC, the communication schedule between the different streams is com-
puted. The configuration messages of all streams are originated and distributed 
to the TSN switch. According to the priority level and delay budget of flows, the 
frame transmission over the egress port in a TSN switch is controlled by traffic 
shaping as depicted before. To obtain appropriate time points for all streams, 
TSN switch is synchronized to network timing. 

(3) The schedule is useful for gNB and allows it to efficiently allocate resources 
to upcoming traffic flows in a real-time manner. DRL models encapsulated 
in AI-Engine are used for gNB to realize RAN slicing. RBs are assigned to 
different slices, carrying out the traffic transmission for both TSN services and 
5G services. AI-assisted resource scheduling approach is introduced in Sec. V 
to satisfy the heterogeneous requirements of SBT, PTT, NDT.
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(4) In order to achieve the performance target of time-sensitive traffic, results of 
wireless resource scheduling are feedback to dynamically change the priority 
level of upcoming traffic flows. Dynamic priority setting allows to change the 
priority level based on the waiting time or the transmission delay of a stream 
compared to the predefined threshold. Adjusting the schedule based on the 
network status is allowed, which prevents prolonged delays for low priority 
traffic and keeps the worst-case delay within prescribed limits. 

(5) To avoid the effect of wireless channel condition, hybrid automatic repeat 
request (HARQ) techniques and redundant traffic transmission are enabled to 
guarantee high reliability for periodic traffic. As a means of active redundancy, 
HARQ shortens duplicate frames and minimizes radio resource consumption, 
but the achievable latency is affected by waiting for the ACK from the receiver. 
On the contrary, passive redundancy is realized by transmitting different copies 
of the same frame through at least two disjoint paths. 

5.3.2 AI-Enabled Resource Slicing for 5G-TSN 

The current works in RAN slicing explored many approaches of resource scheduling 
and eMBB/uRLLC multiplexing based on assumptions of specific mathematical 
models. Due to the inaccuracy and the ever-increasing complexity of model-based 
approaches, model free AI-assisted solutions are studied in some researches. In the 
proposed RAN slicing framework, AI-engine provides some DRL-based algorithms 
to solve the real-time resource scheduling problem.To illustrate the AI-engine 
assisted radio resource management in 5GS as a TSN logical bridge, a DQL-based 
resource scheduling is introduced in this section. 

RAN slices are requested for both the traffic transmitted from the TSN translator 
and the local traffic in 5GS. As for the six applications mentioned in the Table 5.1, 
there will be three categories of slice requests, and each category includes two 
different slices serving users with the similar QoS requirements, respectively. 
These slice requests are different in latency requirements and data rate demand. 
Maximizing the resource utility while satisfying the distinct requirements of these 
slice requests is challenging. 

. Sn denotes a set of NDT slice requests. For each NDT slice request . si , to satisfy 
the demand of M users, the number of RBs allocated to . si can be denoted as 

.Zi =
M∑

u=1

⌈
Ri

Re
u

⌉
,∀si ∈ Sn, (5.1) 

where . Ri is the target transmission rate of slice request . si . .Re
u is the effective 

transmission rate or throughput that the user u will experience for each RB assigned, 
which is related with the Signal to Interference plus Noise Ratio (SINR) and the 
Block Error Rate (BLER). Each NDT slice is require to allocate . Zi RBs during the
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transmission window . Tw. Defining .Oi,t to represent the number of RBs allocated to 
NDT slice . si in slot t , thus we have 

.

Tw∑

t=1

Oi,t = Zi (5.2) 

.Sp denotes a set of PTT slice requests. For each PTT slice request . si , the  
transmission period is . T i

p and . bi bits of data need to be transmitted in . Di . Hence, 
the transmission rate is 

. Ri = bi

Di

and the number of RBs allocated to . si can be denoted as 

.Zi =
M∑

u=1

⌈
Ri

Re
u

⌉
,∀si ∈ Sp. (5.3) 

Each PTT slice is required to reserve . Zi RBs within the transmission window . T i
p. 

To ensure the delay requirements, the time slots of these RBs need to meet the 
conditions 

.

tz+Di−1∑

t=tz

Oi,t = Zi,∀tz ∈ T0, (5.4) 

where .T0 =
{
tz

∣∣tz = t0 + zT i
p,∀z ∈

{
0, 1, . . . ,

⌊
Tw

/
T i

p

⌋
− 1

}}
. . t0 represents the 

time of the first transmission of data and . tz represents the time when packet z 
is generated. This constraint guarantees that data can be transmitted within the 
deadline . Di . 

. Ss denotes a set of SBT slice requests. For each SBT slice request . si , . bi bits of 
data need to be transmitted within the delay . Di with reliability . Pr as the success 
rate. The data of SBT slice is generated in random, when the number of users is 
M , assuming that the packets generated by each user follow the Poisson distribution 
with exponential arrival time and . λ the average number of packets generated per 
second, then the average arrival time of packets is . 1

λ
, the probability of generating 

packets within the time interval .Tslot is .Pp = 1 − e(−Tslot λ), and the probability of 
packet loss is 

.Pm = 1 −
(

k − JPp

k

)M−1

, (5.5)
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where .J = 1
M

M∑
u=1

⌈
Ri

Re
u

⌉
. and reliability guarantee is .Pr ≥ 1 − Pm. The minimum 

number of RBs required to meet reliability requirements is k, and the number of 
RBs required to serve M users is 

.Zi = min

(
k,

M∑

u=1

⌈
Ri

Re
u

⌉)
,∀si ∈ Sn. (5.6) 

The data requested by the SBT slice needs to be satisfied within the delay . Di , so the  
condition for the time slots of . Zi RBs is 

.

l+Di−1∑

t=l

Oi,t = Zi,∀l ∈ [1, Tw] . (5.7) 

Based on the demand characteristics of these requests, the proposed multi-slice 
scheduler comprises three major steps: 

1. Due to the high-reliability requirements, resources are reserved for the slices that 
support the PTT firstly. 

2. Then, following the data rate demand of slices that support the NDT, the 
remaining resources are allocated to the preemptable slices and non-preemptable 
slices. 

3. Finally, the SBT preempts the resource allocated to the preemptable NDT slices 
on a mini-slot scale. 

For the downlink scheduling, the information of the incoming slice requests 
are obtained at the beginning of each allocation window. The number of RBs 
required by slices that support the NDT is decided by the data rate demand and 
the experienced throughput per assigned RB. Also, whether this slice supports 
resource preemption is known. Given the transmission period of the slices that 
support the PTT, the initial slot to transmit data is ascertained. The number of 
RBs required by these slices is decided by the payload and the latency deadline 
based on the experienced throughput per assigned RB. As we have no knowledge 
of whether or not and when the SBT will arrive within this allocation window, the 
resource requirements of the SBT are satisfied by preemption on the slices for the 
preemptable NDT. In 5G NR, each time slot is divided into a number of mini-slots 
and this article considers seven mini-slots within a time slot. Once the SBT arrives, 
the next mini-slot is scheduled for its transmission without waiting for the end of 
NDT transmissions. The number of subcarriers and mini-slots required by the SBT 
are decided by the payload and the latency deadline. 

Before three steps of the scheduling operation, a DRL-based algorithm is used to 
learn an optimal decision for scheduling request control. The RBs are allocated to 
slice requests that are successfully accepted and the allocation is maintained during 
the allocation window spanning multiple time slots. After receiving a slice request,
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Fig. 5.7 The illustration for DRL-based resource scheduling 

the slice manager needs to determine whether to allocate resources to this request. 
In order to maximize the resource benefit of the wireless TSN BS and use limited 
resources to realize more slices, a DRL model is adopted with its action space, state 
space and reward. As depicted in Fig. 5.7, the optimal actions are determined by 
deep neural network in response to the observed state and a reward is received for 
taking the good or bad action. The expected cumulative reward (i.e., Q-value) is used 
to incorporate farsighted system evolution into the decision-making and the decision 
strategies are updated through the feedback of previous decisions. Experience replay 
memory stores and samples historical rewards, actions, and state transitions into 
mini-batches, improving the training performance. 

The state space consists of the numbers of different types of PTT, NDT and 
SBT slices which are successfully accepted in the RAN, and it is denoted as 
.S= {st } , st = (nPT T , nP−NDT , nN−NDT , nSBT ), where . st is the state at time t , 
.nPT T is the number of accepted PTT slices, .nP−NDT is the number of preemptable 
NDT slices, .nN−NDT is the number of unpreemptable NDT slices and .nSBT is the 
number of SBT slices. The number of slices belonging to the same type is counted 
for each state. With the increase of slice types, the state space becomes larger. 

The action space denotes accepting/rejecting the incoming slice requests and the 
rejected requests need to wait for next allocation window, and it is represented by 
.A = {at } , at = {0, 1}, where . at is the action at time t . .at = 0 represents to reject 
the incoming slice requests while .at = 0 represents to accept the incoming slice 
request. 

The reward of accepting a slice request is defined as the utility U of accepting 
slice requests minus the preemption cost, which can be denoted as
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. r = α

nPT T∑

n=1

Un
PT T + β

nP−NDT∑

n=1

Un
P−NDT + β '

nN−NDT∑

n=1

Un
N−NDT

+ δ

nSBT∑

n=1

Un
SBT − CSBT . (5.8) 

. α, . β, . β ', and . δ are proportional to the priority of the slices, and C indicates the rate 
loss caused by resource preemption of SBT slices to users of preemptable NDT 
slices. The utility functions are defined particularly for different types of slices 
based on the priority [23]. Caused by resources preemption of SBT at the mini-slot 
timescale, there will be some possible loss of rate to NDT. Hence, the preemption 
cost is represented by the rate loss of the NDT users, which is a convex function of 
the fraction of preempted resources. 

There are three typical models for the rate loss associated with resource 
preemption [2].

• (1) Linear model: The rate loss of the preemptable NDT is directly proportional 
to the fraction of preempted resources.

• (2) Convex model: The rate loss is modeled through a convex function of the 
fraction of preempted resources.

• (3) Threshold model: The NDT users are unaffected by resource preemption 
until a threshold and they suffers complete loss when the threshold is exceeded. 

Here the similar convex model in [2] is utilized, the rate loss function of NDT 
user u when the channel state is in state s can be denoted by .hs

u(x) = eku(x−1), 

where . ku determines the sensitivity of an NDT user to the SBT user. .x = lsu
ms

u
, where 

.ms
u denotes the amount of resources allocated to the NDT user u and . lsu denotes 

the amount of resource that was preempted by the SBT from user u. By embedding 
the rate loss function in the formulation of reward, the proposed scheme achieves a 
trade-off between reducing rate loss for the preempted NDT and guaranteeing the 
low latency for the SBT. 

The intelligent algorithms for the resource scheduling and configuration opera-
tions are provided by the AI-engine. Except for the conventional DRL algorithm, the 
A3C, DDPG, MADRL algorithms mentioned in Chap. 4 and other advanced DRL 
algorithms can also be encapsulated in the AI-engine, supporting intelligent slicing 
for wireless TSN BS. 
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Chapter 6 
Conclusion and Future Works 

6.1 Conclusions 

As the development of 5G technologies enters a new stage, more and more vertical 
industries are deploying 5G systems to drive the application of emerging services. 
With the maturity of network slicing technologies, the differentiated demands of 
these emerging services can be satisfied by creating different type of slices on a com-
mon infrastructure network, reducing CAPEX/OPEX costs and improving resource 
utility. However, the addition of vertical industries brings challenges to multi-tenant 
network slicing. The complexity of heterogeneous resource management and E2E 
slices orchestration is increasing. Moreover, in most verticals, such as industrial 
Internet of Things scenarios, the number of ultra-low-latency and high-reliability 
service is gradually increasing, which requires customized resource allocation 
of network slices. To follow the trend of wireless networks from the consumer 
Internet to the industrial Internet, this book begins with the enabling technologies of 
network slicing, creates a new mode of cooperation between infrastructure networks 
for multi-tenant slicing, takes advantages of AI technologies, realizes the rapid 
deployment and orchestration of end-to-end slicing, enables intelligent control to 
avoid the service quality degradation of slices, and further proposes a customized 
slice management scheme which is suitable for industrial scenarios. 

The main work of this book is summarized as follows: 

1. Efficient management of physical infrastructure networks. 
Evolving from network sharing principles, mechanisms, and architectures to 
future on-demand multi-tenant systems, 5G networks need to provide resources 
for network slicing requests from multiple tenants. Therefore, the cooperation 
between multiple infrastructure networks with different structures needs to meet 
the requirements of multi-tenant slicing. However, the existing cooperation 
and sharing between infrastructure networks is only applicable to the scenario 
that data traffic request is peak. With the development of virtualization plat-
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form and cloud service platform, resource pooling technology will promote 
in-depth cooperation and sharing among infrastructure networks. Based on 
this, this chapter adopts the complex network theory to analyze topological 
characteristics of different infrastructure network and then propose a slice 
demand-oriented cooperation strategy between infrastructure networks based 
on two-side matching. With this cooperation strategy, a federated infrastructure 
network is formed to provide heterogeneous resources for cross-domain slices. In 
order to realize efficient resource allocation for these slices, the interconnections 
among infrastructure networks and the deployment mappings between slices 
and infrastructure networks are depicted by a multilayer model. Using this 
model, the management model of multi-domain slices is introduced, covering 
the whole process from receiving slice requests and releasing slice resources at 
the end of the slice life cycle. Following this model, the federated management 
framework of multi-domain infrastructure is described, supporting the cross-
domain deployment of slices from different tenants in multiple domains of 
the federated infrastructure network. The management methods for multi-tenant 
slicing in this chapter are the basis of the subsequent works on slice deployment, 
slice enhancement, and slice for industrial applications. 

2. Intelligent deployment and orchestration of E2E slices. 
Realizing multi-tenant slicing requires to deploy E2E slices rapidly on the 
federated infrastructure network, satisfying the differentiated requirements of 
slices on resources of different domains. The existing researches about the 
deployment and orchestration of slices mainly focus on core network slices or 
RAN slices separately, lacking the fast deployment strategies for E2E slices. 
Moreover, the dynamic change of service requirements are hard to be handled, 
which results in the widely application of AI technologies in network slicing. 
However, adopting AI in the life-cycle management of multi-domain slices is still 
challenging. This chapter first provides a service-oriented E2E slice deployment 
policy, supporting dedicated deployment for three typical slices according to 
their characteristics of service requirements. Two stages of deploying slices 
on infrastructure, VNF placements and chaining VNFs, are optimized for 
different types of slices with exclusive optimization goals, achieving better 
resource efficiency and higher revenue of service provision. In addition to the 
rapid deployment strategy of E2E slices, this chapter also introduces an AI-
based hierarchical resource management framework. On the one hand, this 
framework controls the admission of slice requests from different tenants through 
a global perspective, and on the other hand, it conducts local adjustments to the 
accepted slice requests as needed. Leveraging the DRL-based algorithms, this 
framework enables customized resource utilization for multi-tenant slicing by 
global resource allocation and local slice adaption. Following this framework, 
the AI-enabled slice orchestration mechanism is also illustrated in this chapter, 
improving resource efficiency while maintaining service quality for admitted 
slices. Moreover, an advanced DRL-based slice reconfiguration method is also 
introduced with the aim of realizing slice adaption at the lowest cost.
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3. AI-based performance enhancement for multi-tenant slicing. 
As more and more tenants join in the business model of network sharing, the 
number and types of slices deployed on the same federated infrastructure network 
increase. The resource competition among slices will affect the transmission 
performance of slices and threaten the quality of service. Therefore, it is required 
to analyze the relationship between transmission performance and resource 
allocation of slices, and enhancing the performance of data traffic transmission 
on slices through elastic resource management strategy is urgent. Using some 
advanced AI methods in performance enhancement for multi-tenant slicing is 
becoming a trend. In this chapter, the new collaboration business model for multi-
tenant slicing is presented and the problems existed in this model are listed. In 
order to tackle the problems caused by the resource competition among slices 
and realize dynamic QoS provision for multi-tenant slicing, traffic performance 
analysis of multiple isolated slices is performed. The multilayer complex network 
model is established, providing a clear global perspective for service providers 
to analyze the influence of the resource competition. Based on this multilayer 
model, data traffic of slices deployed in the same infrastructure network is also 
modeled, the effect of resource allocation parameters, the nodal coverage of 
slices and the number of slices on traffic performance is analyzed. Based on the 
analysis results, two efficient control strategies for avoiding resource competition 
among slices are proposed. Selectively increasing the resources of a few hub 
nodes in the infrastructure network or increasing the scale of the infrastructure 
network can effectively alleviate the congestion on the slices and improve 
the transmission performance. To better enforce these control strategies, three 
promising DRL algorithms, A3C DRL, DDPG, and MADRL, are introduced 
here. 

4. Customized slicing for industrial applications. 
As 5G enters the phase 2, services which require ultra-low delay and high 
reliability will be brought to wireless networks. New requirements of emerging 
applications in vertical industries, such as smart manufacturing in Industry 4.0, 
draw higher demand in 5G techniques. A growing number of industries are 
already deploying 5G systems in the industrial scenarios, creating new revenue 
opportunities and promoting the automation of industrial manufacturing. Since 
the 5G standards specified in 3GPP has added functions to support the integration 
of 5G and TSN, it is necessary to develop an appropriate approach of network 
slicing for 5G TSN integration. To realize customized slicing for 5G TSN 
integration, this chapter first introduces some emerging industrial use cases for 
Industry 4.0 and analyzes the requirements of these use cases. According to the 
characteristics of these use cases, the data traffic types of individual applications 
are classified into three categories, sporadic burst traffic, periodic time-sensitive 
traffic, and non-deterministic traffic. Then, the work on standardization within 
IEEE 802.1 TG is summarized, including the clock synchronization in IEEE 
802.1AS/ASrev, frame preemption in IEEE 802.1Qbu-2016, time-triggered (TT) 
communication in IEEE 802.1Qbv-2015, as well as traffic filtering and policing
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in IEEE P802.1Qci-2017. Also the work of DetNet WG which includes flow 
management and flow integrity is reviewed. Besides these efforts on deterministic 
communication, researches on the QoS-aware traffic scheduling toward 5GS as 
a logical TSN bridge also provide support for deterministic traffic transmission 
in 5GS. To enable the simultaneous transmission of time-critical and nontime-
critical traffic in 5GS as a logical TSN bridge, an AI-based time-sensitive 
RAN slicing framework is proposed in this chapter, deploying AI-engine in the 
fog node. AI algorithms encapsulated in the AI-engine are adopted, achieving 
intelligent resource slicing in 5G-TSN integration. 

6.2 Future Work 

With the development of wireless networks, the application scenarios in the future 
will be more diverse and complex. The demand for efficient utilization of network 
resources, user experience, and security guarantee will make the future work of 
wireless network slicing continue to develop and improve in the following several 
directions. 

1. Automative and intelligent management. In the future, the complexity of 
wireless network service requirements increases and users demand interac-
tive experience, which requires more precise network resource allocation and 
management. Although there are already some AI-based resource management 
frameworks for network slicing [2], the relatively long convergence time of ML 
methods undermines their usefulness. Besides convergence, the stochastic nature 
of the wireless network may require ongoing updates of the parameters and 
continuous adaption of ML methods. Therefore, developing feasible and scalable 
ML algorithms in automative and intelligent network management need more 
study and analysis. 

2. Flexible and adaptive slicing. Future wireless network slicing technology will 
evolve toward adaptability [3], where the configurations of cross-domain slices 
can be adjusted flexibly. The goals of resource slicing are still satisfying various 
service requirements and achieving efficient utilization of network resources in 
a real-time way. As user demands and network conditions are highly dynamic 
and uncertain, there are some efforts in the current literature to predict users’ 
behavior. However, correlating the evolutional tendency of demands to resource 
allocation in network slicing constitutes a challenging line of research, where the 
complexity of real-time slice adaption cannot be neglected. 

3. Security and privacy protection. With the widespread deployment of 5G 
networks in vertical industries, security and privacy protection become critical 
issues [1]. The future development direction will pay more attention to isolation 
among slices and secure communication, safeguarding the security of user data 
and privacy. It is essential to protect sensitive data and privacy information during 
the life cycle of network slicing, execute security updates and vulnerability fixes
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to multimodal devices in a timely manner. It is important to filter and check the 
type of data traffic based on AI technologies to prevent malicious traffic from 
entering the slice. 
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