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Preface

The first International Conference on Applied Intelligence (ICAI 2023) was held dur-
ing December 8–12, 2023, in Nanning, Guangxi, China. The conference was started
to provide an annual forum dedicated to emerging and challenging topics in artificial
intelligence, machine learning, pattern recognition, bioinformatics, and computational
biology. It aimed to bring together researchers and practitioners from both academia and
industry to share ideas, problems, and solutions related to the multifaceted aspects of
Applied Intelligence.

This year, the conference concentrated mainly on the theories and methodologies as
well as the emerging applications of Applied Intelligence. Its aimwas to unify the picture
of contemporary Applied Intelligence techniques as an integral concept that highlights
the trends in advanced computational intelligence and bridges theoretical research with
applications. Therefore, the theme for this conference was “Advanced Applied Intelli-
gence Technology and Applications”. Papers that focused on this theme were solicited,
addressing theories, methodologies, and applications in science and technology.

ICAI 2023 received 228 submissions from 10 countries and regions. All papers went
through a rigorous peer-review procedure and each paper received at least three review
reports. Based on the review reports, the Program Committee finally selected 64 high-
quality papers for presentation at ICAI 2023, and inclusion in the proceedings published
by Springer: two volumes of Communications in Computer and Information Science
(CCIS).

The organizers of ICAI 2023, including Eastern Institute of Technology andGuangxi
Academy of Sciences, China, made an enormous effort to ensure the success of the
conference. We hereby would like to thank the members of the Program Committee
and the referees for their collective effort in reviewing the papers. In particular, we
would like to thank all the authors for contributing their papers. Without the high-
quality submissions from the authors, the success of the conference would not have
been possible. Finally, we are especially grateful to the International Neural Network
Society and the National Science Foundation of China for their sponsorship.

December 2023 Changan Yuan
De-Shuang Huang

Prashan Premaratne
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Abstract. To investigate the cornealmorphologyof adolescent diving athletes and
analyze the related influencing factors. Corneal topographicmapswere taken of 42
young athletes (19males and 23 females, aged 9–17 years) from the diving team of
Shenzhen Sports School, and then three morphological data of corneal curvature,
astigmatism, and thickness were measured based on the topographic maps. A
study was conducted to analyze the influence of diving on corneal morphology by
comparing with the reference data of children of the same age in the literature, and
statistically analyzing the relationship between different genders, ages, exercise
levels, training time, and corneal morphology. The radius of the corneal curvature
of athletes was significantly smaller than that of children of the same age (P
< 0.01). There were statistical differences in the corneal curvatures of athletes
in different age groups and training time groups (P < 0.05), and there were also
differences in corneal thickness in different training time groups (P< 0.05). There
were no statistically significant differences in corneal morphology among gender
and exercise level groups. Diving can affect the corneal morphology of adolescent
athletes, and the radius of corneal curvature is significantly lower than that of
children of the same age. Corneal curvature is related to athletes’ age and training
time, and corneal thickness is affected by training time. Attention should be paid
to the changes in the corneal morphology of diving athletes.

Keywords: Diving · Young athletes · Corneal topography · Corneal morphology

1 Introduction

China has demonstrated significant prowess in the sport of diving, having attained
remarkable success in international competitions. With the development of China’s div-
ing industry, a comprehensive system for nurturing and cultivating diving talents has

C. Mao and X. Wang—These authors contributed equally to this work.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D.-S. Huang et al. (Eds.): ICAI 2023, CCIS 2014, pp. 3–12, 2024.
https://doi.org/10.1007/978-981-97-0903-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0903-8_1&domain=pdf
https://doi.org/10.1007/978-981-97-0903-8_1


4 C. Mao et al.

been established, achieving outstanding results on skills training and health security
of divers [1, 2]. Given the prolonged exposure to diving activities, divers experience
repeated compression and shaking of the eyeballs, which will cause visual impairments
[3, 4]. Therefore, eye health is an important factor to preserve the technical proficiency
and overall quality of life of divers, and has been a wide concern [5].

However, as retinopathy is the main cause of visual impairments of divers, the eye
examination and related research of athletes at present mainly focus on the retina, vit-
reous, and other posterior ocular tissues [6, 7]. While some studies have identified a
considerable number of athletes with eye injuries experiencing eyeball protrusion [8],
this issue has not receivedmuch attention, and there is a lack of investigation and research
regarding the cornea and other anterior segment tissues of divers. In recent years, with
the increasing emphasis placed by the government on the ocular health of children and
adolescents [9–11], the health of anterior segment tissues such as the cornea has become
an urgent research field to protect and improve the eyesight of young divers.

Through the collection of corneal topographies from a sample of 42 young athletes
belonging to the diving team of Shenzhen Sports School, we investigated the corneal
morphology related to diving. Our findings revealed a significant decrease in the corneal
curvature radius among athletes compared to children of the same age, thereby increasing
the risk of diseases such as refractive error and keratoconus. Notably, corneal curvature
was found to be influenced by both the athletes’ age and their time of training, with
the latter also impacting corneal thickness. These corneal abnormalities have a potential
impact on the training routines and daily lives of athletes and increase the risk of other
eye injuries, which should be paid attention to and monitored.

Table 1. Number of Diving Athletes at Each Sport Level and Training Events.

Sport level Male Female Training Events

Group A 5 3 1-m springboard, 3-m springboard, 10-m platform, 3-m
synchronized springboard, 10-m synchronized platform

Group B 8 10 1-m springboard, 3-m springboard, 10-m platform, 3-m
synchronized springboard, 10-m synchronized platform, Team
event, Individual all-around, Mixed synchronized platform, Mixed
synchronized 3-m springboard

Group C 6 10 1-m springboard, 3-m springboard, 10-m platform, 3-m
synchronized springboard, Team event, Individual all-around

2 Methods

2.1 Study Participants

The diving team of Shenzhen Sports School consists of 46 young athletes. After exclud-
ing those who have not participated in diving training within the past 3 months, there
are 42 remaining individuals, including 19 males and 23 females, aged between 9 and
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17 years, with an average age of 12.6 years. The athletes’ sport levels were categorized
into Group A, Group B, and Group C, with corresponding training events outlined in
Table 1. The training time varied from 2 to 12 years, with an average time of 5.1 years.

As shown in Tables 2 and 3, considering the number of individuals in each age group
and training time, the athletes were divided into three groups based on age: 9–11 years,
12–14 years, and 15–17 years. According to the training time, they were divided into 4
groups: 2–3 years, 4–5 years, 6–7 years, and more than 8 years.

Table 2. Number of Diving Athletes According To Age (Years).

Gender 9y 10y 11y 12y 13y 14y 15y 16y 17y

Male 1 1 4 4 3 1 1 3 1

Female 1 2 6 3 6 2 0 3 0

Table 3. Number of Diving Athletes According To Training Time (Years).

Gender 2y 3y 4y 5y 6y 7y 8y 9y 10y 11y 12y

Male 1 5 3 2 2 2 1 1 1 0 1

Female 0 8 5 3 4 0 0 2 1 0 0

2.2 Experimental Design

The TOMEY TMS-5 was used to collect corneal topographies of both eyes of the ath-
letes. Average keratometry (AvgK) was measured as a corneal curvature index, cylinder
(CYL)wasmeasured as a corneal astigmatism index, and corneal apex thickness (ApeX)
was measured as a corneal thickness index. In addition, to facilitate the comparison with
the corneal curvature data of school-age children collected by the Public Health Ophthal-
mologyBranch of theChinese PreventiveMedicineAssociation [9], the curved refractive
index formula was used to further convert the average corneal refractive power d into
corneal curvature radius r as the corneal curvature index for comparison:

r = n − n′

d
(1)

In this equation, where n denotes the corneal refractive index, usually taking the
value of 1.3375, and n′ denotes the refractive index of air, taking the value of 1, then r
= 0.3375/d.

2.3 Statistical Analysis

One-way analysis of variance was used to compare the differences in basic information
between groups, and the results were expressed as the mean $\pm$ standard deviation
(x±SD). A hypothesis test was used to compare the experimental data between the two
groups, P < 0.05 indicates the statistical significance of the difference.
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3 Results

3.1 Comparison of Corneal Morphology Between Divers and Age-Matched
Children

The Public Health Ophthalmology Branch of the Chinese Preventive Medicine Asso-
ciation conducted a statistical analysis of corneal curvature among Chinese school-age
children aged 6–15 years and provided detailed data [9]. We compared the corneal cur-
vature data of divers with those of age-matched children. As shown in Fig. 1, the curve
plots the individual percentile data of corneal curvature from 9–15 years of age for ordi-
nary school-age children of the same age as divers and marks the distribution of corneal
curvature of athletes of the same age.

Comparedwith ordinary school-age children, the corneal radius of divers is generally
lower. The corneal radius ofmost divers is smaller than themedian (P50 curve) of children
of the same age, and the overall distribution of the two in 9–15 years old is significantly
different (P< 0.01). Furthermore, statistical analysiswas carried out for each age. Except
for 10, 13, and 15 years old, there were statistical differences in corneal radius between
athletes of other ages and children of the same age (P < 0.05). Therefore, it is believed
that diving has some influence on corneal curvature.

According to the survey of Peking University Shenzhen Hospital [12], the average
corneal thickness of age-matched children aged 6 to 18 years was 546.58 ± 33.47 µm.
The average corneal thickness of athletes collected by us was 549.60± 28.34µm,which
was very close to that of athletes. However, due to the large age span of data collection
and the lack of more detailed data, it is difficult to judge the effect of diving on corneal
thickness.

Because the definition of astigmatism data measured by corneal topography instru-
ment is different from that of the optometric test, the astigmatism data measured in this
project and the children’s astigmatism data statistically analyzed in the literature are not
comparable and will not be discussed.

Fig. 1. ComparisonofCornealCurvature betweenDivers andSame-AgeChildren,PthRepresents
the Value at the th Percentile.
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3.2 Relationship Between Gender and Corneal Morphology

The statistical results of corneal curvature, astigmatism, and thickness of athletes
according to gender are shown in Table 4, corresponding to the box plot of Fig. 2.

According to statistical analysis, there is no statistical difference in the distribution
of corneal morphology data betweenmale and female athletes (P> 0.05), so the changes
in corneal morphology of divers are not related to gender.

Table 4. Corneal Morphological Data according to Gender.

Ocular Classification AvgK (mm) CYL (D) ApeX (µm)

Male 7.76 ± 0.22 1.08 ± 0.56 550.68 ± 28.42

Female 7.69 ± 0.31 1.09 ± 0.57 548.70 ± 28.55

Fig. 2. Box Plot of Corneal Morphology Data according to Gender.

3.3 Relationship Between Age and Corneal Morphology

The athletes were divided into three groups according to the age of 9–11 years, 12–
14 years, and 15–17 years, respectively. The statistical results are shown in Table 5,
corresponding to the box diagram of Fig. 3.

Table 5. Corneal Morphological Data according to Age.

Ocular Classification AvgK (mm) CYL (D) ApeX (µm)

9–11 years old 7.69 ± 0.26 1.14 ± 0.52 551.37 ± 24.01

12–14 years old 7.70 ± 0.30 1.07 ± 0.65 545.55 ± 32.44

15–17 years old 7.84 ± 0.20 1.01 ± 0.39 555.88 ± 25.39

By comparing the data of each group, the average radius of corneal curvature of
athletes in the 15–17 years old group is larger than that of the other two age groups, and
there is a statistically significant difference between the athletes in the 9–11 years old
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Fig. 3. Box Plot of Corneal Morphology Data according to Age.

group (P= 0.046). However, this phenomenon is not consistent with the data of ordinary
children and adolescents. Relevant studies [11–13] show that the corneal curvature of
age-matched children and adolescents shows little change with age, and there is no
statistically significant difference among different age groups. The reason for this may
be related to diving.

3.4 Relationship Between Sport Level and Corneal Morphology

The corneal morphology was statistically analyzed according to the sports level of the
athletes, and the statistical results are shown in Table 6, corresponding to the box plot
of Fig. 4.

Table 6. Corneal Morphological Data according to Sport Level.

Ocular Classification AvgK (mm) CYL (D) ApeX (µm)

Group A 7.84 ± 0.20 1.01 ± 0.39 555.88 ± 25.39

Group B 7.70 ± 0.30 1.08 ± 0.66 544.76 ± 31.30

Group C 7.69 ± 0.26 1.13 ± 0.50 552.37 ± 25.59

Fig. 4. Box Plot of Corneal Morphology Data according to Sport Level.

There was a great coincidence between the sports level and the age distribution of
athletes, 8 athletes in Group A were 15–17 years old, 18 athletes in Group B were 12–
14 years old, and 15 athletes in Group C were 9–11 years old except for one person who
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is 12 years old. However, there was no statistical difference between the data of each
movement level (P > 0.05), so it is believed that the corneal morphology of athletes is
not directly related to the movement level.

3.5 Relationship Between Training Time and Corneal Morphology

According to the training time of 2–3 years, 4–5 years, 6–7 years, and ≥8 years, the
athletes were divided into four groups. The statistical results are shown in Table 7,
corresponding to the box chart of Fig. 5.

Table 7. Corneal Morphological Data according to Training Time.

Ocular Classification AvgK (mm) CYL (D) ApeX (µm)

2–3 years 7.66 ± 0.27 1.21 ± 0.63 556.54 ± 35.40

4–5 years 7.81 ± 0.23 1.10 ± 0.54 538.81 ± 22.50

6–7 years 7.60 ± 0.33 1.01 ± 0.64 551.31 ± 17.05

≥8 years 7.83 ± 0.19 0.87 ± 0.23 553.79 ± 29.27

Fig. 5. Box Plot of Corneal Morphology Data according to Training Time.

Therewere significant differences in corneal curvature between groupswith different
training time, and the P values between groups are shown in Fig. 6. The corneal radius of
athletes in the 2–3 years and 6–7 years groups was smaller than that in the 4–5 years and
≥8 years groups, and the difference was statistically significant (P < 0.05). In addition,
the corneal thickness of the 4–5 years group was lower than that of the other training
time groups, and the difference was statistically significant compared with the 2–3 years
group (P = 0.031). This reflects that the corneal morphology of divers is closely related
to the training time, and the same phenomenon has also been found in the research on
retinal injury in athletes [8].

4 Discussion

The eye is an organ that is partially exposed to the external environment, possessing
delicate tissue structures and being susceptible to injuries from external forces. In diving,
athletes jump from the high platform and fall into the water head down. The reaction
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Fig. 6. Plot of Inter-group Values of Corneal Curvature according to Training Time.

force of the water surface will exert impact, perturbation, and pressure on the eyeball.
For example, in 10-m platform diving, the athlete reaches a speed of approximately 14
m per second before entering the water. Upon entry, the athlete experiences an impact
force of up to 4000 Newtons (approximately 400 kg), posing a significant risk of ocular
injuries. In addition, the diving pool is about 5 m deep, and the bottom pressure is about
1.5 atmospheres. If the athlete enters the water and reaches the bottom of the water and
then floats to the surface, the pressure on the eye is rapidly increased from 1 atmosphere
to 1.5 and back to 1, and the rapid change in pressure will also cause the eye injury.

To protect the health of athletes, China has carried out research and prevention
of visual impairment of divers since the 1980s [14]. Because ocular injuries in divers
predominantly affect the retina, with direct implications for vision, a thorough exami-
nation of the posterior segment of the eye is of particular importance. This is done to
promptly detect early lesions and take necessary preventive measures when necessary.
With the development of the economy and technology, the protection of athletes’ vision
has become more than just “seeing”. Considering that the cornea is the area where the
eye directly contacts the water surface in diving, this study investigated the morpholog-
ical condition of the cornea of diving athletes. By collecting the corneal topography of
adolescent divers, we aimed to study the influence of diving on corneal morphology.

By comparing the corneal morphology data of divers with age-matched children, it
is found that athletes have a significantly lower corneal curvature radius. It is inferred
that long-term diving, water surface impact, and pressure change have certain effects
on corneal morphology, which will increase the risk of refractive error, keratoconus,
and other diseases. By comparing the data of athletes with different gender, ages, sports
level, and training time, it was found that there was no statistical difference in corneal
morphology data between groups with different gender and sports level, while there
were statistical differences in corneal curvature between groups with different age and
training time, and there were also statistical differences in corneal thickness between
groups with different training time. Therefore, gender and sports level are not the main
factors affecting the corneal morphology of athletes, while age and training time have a
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great relationship with it. On the other hand, the training and selection of divers mostly
start from young children [1], and there is a correlation between the age of athletes and
the training time, so whether the age has a greater impact on the corneal morphology or
the training time still needs to be further studied.

In addition, according to the investigation, the corneal morphological changes of
athletes are not monotonically increasing or decreasing with age or training time. There-
fore, it is judged that there are still other influencing factors that were not counted in this
investigation. Given the limited motor ability and self-protection awareness of young
children, it is speculated that at the beginning of training, the standardization of athletes’
technical movements and the protection of vision may be one of the factors that interfere
with corneal morphology. As the athlete grows, the influence of the above two factors
gradually decreases, leading to corresponding changes in the data.

In related studies, axial length and intraocular pressure are considered to have an
impact on the overall shape and health of the eyeball, not only causing retinopathy,
but also affecting corneal curvature. In the follow-up work, axial length and intraocular
pressure measurements will be further combined to deepen the research work.

5 Conclusion

The examination of the posterior segment of the eye retina of divers has been widely
concerned, and effective protective measures have been taken, but the cornea and other
anterior segment tissues have not been concerned, and there is a lack of relevant research.
In this study, the corneal morphology data of 42 adolescent athletes in the diving team of
Shenzhen Sports Schoolwere collected. It was found that the corneal radius of adolescent
athletes was significantly lower than that of ordinary children of the same age, and was
related to the age and training time of the athletes. It was verified from the side that diving
has a certain influence on the corneal morphology and increases the risk of refractive
error, keratoconus, and other diseases, which should be paid attention to. However, the
effect of diving on corneal morphology needs to be further studied with larger samples
and data.
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Abstract. Emotion recognition work for EEG signals has become one of the
most important measures for researchers to explore human-computer interaction
work. However, the traditional emotion recognition approach utilizes all EEG
channels which may lead to increased computational degree as well as un-wanted
interfering information affecting the accuracy. And it is not suitable for all emotion
recognition work. In this paper, we propose an EEG selection framework based
on bidirectional long short-term memory network (BiLSTM) and non-dominated
sorting genetic algorithm-II (NSGAII) to select the optimal set of EEG channels
for emotion recognition. The EEG data is first identified using BiLSTM, followed
by optimization of the results using NSGAII, and continuous iteration to arrive
at the optimal channel set. The experiments were conducted using the publicly
available dataset DEAP, and the experimental results show that themethod reduces
the number of channels and maintains a high emotion recognition accuracy.

Keywords: Emotion Recognition · Channel Selection · BiLSTM · NSGAII

1 Introduction

With the deepening research in the field of electroencephalogram (EEG), a series of
studies have been developed, such as emotion recognition [1], fatigue monitoring, and
attention detection [2]. Without exception, these studies require the processing of EEG
signals. In extensive experimental research, it has been found that different brain detec-
tion positions, namely electrode positions, represent different functions. Emotion is one
of the most representative signs of human beings, and it can effectively reflect a person’s
mental state, which has an important impact on our lives. Researchers use various meth-
ods, such as facial expressions and voice, to identify emotional states. However, people
can easily use these external physiological responses to conceal their true emotions. EEG
is the autonomous activity of the nervous system. Its objectivity makes it difficult for
people to consciously control their emotional expressions. This physiological response
can more truthfully and objectively reflect a person’s emotional state, thus the EEG
signals are increasingly valued in recognition research.

EEG signals are generally multi-channel signals [3]. Currently, common EEG chan-
nel selection [4]strategies can be divided into two types: whole-brain channels and local
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channels. Thewhole-brain channel strategy uses EEG signals from all available channels
for analysis, which has the advantage of obtaining more comprehensive EEG informa-
tion. However, it also brings higher computational complexity and possible signal inter-
ference. The local channel strategy selects a subset of channels for analysis to reduce
computational pressure and signal interference, but it may lose some EEG information.
In addition, there are also channel selection methods based on feature selection, which
optimize the performance of brain-computer interface systems by selecting channels
higher information content.

In this paper, we extract the preprocessed EEG data using bi-directional long short-
term memory networks [5], and optimized the classification accuracy and the number
of channels to select the best channel set using NSGAII [6].

2 Related Work

This section describes in detail the dataset DEAP used for the model as well as the
associated algorithms BiLSTM and NSGAII.

2.1 EEG Dataset

The DEAP dataset is an EEG emotion dataset containing multi-channel physiological
signals, facial expressions, and emotional self-assessment labels of human body,which is
jointly designed by Koelstra et al. The DEAP dataset includes the EEG signals recorded
by 32 subjects while watching the video. For each emotion-evoking experiment, 40
channels of physiological signals were captured, with physiological signals occupying
8 channels and EEG signals occupying 32 channels of the recording.

2.2 Bi-directional Long Short-Term Memory

During the analysis of electroencephalogram (EEG) signal features, Recurrent Neural
Network (RNN) is more suitable for handling tasks related to time series. Among them,
Long Short-Term Memory (LSTM) has been proven to possess the ability to capture
temporal information in the field of emotion recognition.

The principle of LSTM and ordinary recurrent neural networks are roughly the same,
both repeatedly use a module to achieve the effect of recurrence. The internal structure
of ordinary recurrent neural networks is relatively simple, using the input from the input
layer and the output from the previous layer to generate an output through the operation
of an activation function. LSTM is based on ordinary recurrent neural networks and
adds multiple operations and states. In addition to the input from the input layer, each
LSTM unit also receives two inputs from the previous time step, one is the output from
the previous time step and the other is the state from the previous time step. After
multiple calculations, LSTM produces an output and the current cell’s state. LSTM
is implemented through three “gates”: input gate, forget gate, and output gate. These
three gates can be used to define and explain the internal structure and implementation
principle of LSTM.
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The input gates are as follows:

it = σ(Wi[ht−1, xt] + bi) (1)

it is the input gate of the LSTM cell at the moment t, σ is the sigmoid function,Wt and
bi are the weight matrix and the bias term respectively, ht−1 is the output of the LSTM
cell at the previous moment, and xt is the input at the moment t.

The Oblivion Gate is as follows:

ft = σ
(
Wi

[
ht−1, xt

] + bf
)
. (2)

The Oblivion Gate ft , which represents at the t moment, has the same parameters as
those in the Input Gate, which represent the same significance, only the specific values
are different.

z = tanh(Wz[ht−1, xt] + bz) (3)

ct = f · ct−1 + it · z (4)

z is a new candidate vector that participates in the computation of the new state and,
together with the state of the previous moment, influences the update of the state of the
current moment. ct represents the current state. The forgetting gate is multiplied with
the previous state, and the value of the forgetting gate is a value between 0 and 1.

The input gate is as follows:

ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot · tanhct (6)

The final output of the LSTM cell, which depends on the output gate and the current
state of the cell, is mainly controlled by the output gate.

As in Fig. 1, the bidirectional LSTM is composed of two layers of LSTMs, the first
LSTM loops forward and each LSTM cell memorizes the information from the previous
cell, and the second LSTM loops backward and passes the information from the last
to the front. In the figure, for each moment, the input is provided to both LSTM units,
and the output also contains both units, which are jointly determined by these two units.
In the figure x1 are the electrode input features of different channels of the EEG signal
are fed into the forward LSTM and reverse LSTM networks respectively, the forward

features
←
h1 and reverse features �h1 are extracted through the network, and the resulting

bi-directional features are spliced to obtain the feature set y1, which is used for feature
recognition.

In this paper, the network structure of BiLSTM is employed, as illustrated in Fig. 4.
The signal sample features are inputted, along with the enhanced DE features mentioned
earlier, and subsequently processed by the LSTM network layer. This processing entails
segregating the features into the forward feature index1 and the backward feature index2,
enabling bidirectional LSTM feature analysis. Moreover, for the purpose of improved
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fusion of differential features, two BiLSTM modules are employed to simultaneously
capture the characteristics of both the forward index1 and the reverse index2 of the
extracted DE features. This approach effectively preserves the temporal characteristics
of the EEG signal, resulting in more comprehensive feature information in the output
values at this instance, when compared to the traditional unidirectional LSTM network.

LSTM LSTMLSTM LSTM

LSTM LSTM LSTMLSTM

1x 2x 4x3x

1h 1h 2h 3h 4h2h 3h 4h

1y 2y 3y 4y

Link

Forward

Backward

Fig. 1. Basic Structure of BiLSTM

The BiLSTM model constructed within this paper combines the aforementioned
mechanisms. Similar to the previous experimental setups, individual experiments are
conducted on different channels. The time-frequency data of single-channel EEG signals
are utilized as inputs for the model. Each moment of the time-frequency data is repre-
sented by a spectrogram, encompassing crucial frequency information. Subsequently,
the spectrogram features of each moment are fed into the units of different moments
within the BiLSTM. The outputs from each moment of the BiLSTM are then concate-
nated together. Utilizing the attention mechanism, the attention weights for different
moments are calculated, culminating in a weighted average that serves as the output
of the entire BiLSTM. This output represents the extracted features of the BiLSTM,
effectively synthesizing the temporal information of the EEG signal sequence. Follow-
ing this, the extracted features are propagated through a fully connected neural network,
ultimately yielding the probability of final emotion classification through the Softmax
layer.

2.3 Non-dominated Sorting Genetic Algorithm-II

In this paper, genetic algorithm is used as the optimizer to solve the channel selection
problem of EEG. The channel electrodes are selected by setting the first-off fitness
function, but the local optimization occurs in the process of feature calculation, and the
global optimal solution set cannot be obtained. On this basis, Non-dominated Sorting
Genetic Algorithm-II (NSGAII) is introduced to find the optimal solution set.

In this paper, the improved NSGAII is used to generate a new population size of
greater than or equal to N after combining the generated child and parent populations
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in the computational iterations, in which the duplicate individuals are deleted, and the
size of the new individual-selectable population generated by the unimproved NSGA-II
is less, which does not contain the duplicate individuals, and the subsequent use of the
elite strategy for the selection of the electrode set of the EEG signal In the subsequent
selection of the EEG electrode set using the elite strategy, after multiple iterations of
selecting N populations, redundant duplicate individuals can be effectively deleted, and
the selection of the spatial electrode set that is conducive to emotion recognition is better
able to achieve the global optimum. The flowchart of the elite strategy is shown in Fig. 2.

tP

tQ

tR

1Z

2Z

3Z

1tP+

Fig. 2. Process of Improving Elite Strategy

Pareto dominance relation: In optimizing the selection of the minimum sample set
formulti-objective is that any n objective has fi(x), i = 1, 2, . . . , n, the decision variables
Xa and Xb are defined respectively, and at the same time satisfy the following conditions,
then Xa is said to dominate Xb.

Xa < Xb ⇐⇒
{

(∀i ∈ {1, 2, 3, . . . , n} : fi(Xa) ≤ fi(Xb))

(∃i ∈ {1, 2, 3, . . . , n} : fi(Xa) < fi(Xb))
(7)

Fast non-dominated sorting is a multi-objective optimization algorithm based on
Pareto optimal solution. Pareto solution is also called non-dominated solution: when
there are multiple task objectives, because of the contradiction or incomparable between
the objectives, one indicator is the best for one indicator and the worst for the other.
When an objective function is improved, another objective function will be weakened
to some extent, which is called Pareto solution, that is, the set of optimal solutions of a
group of objective functions is called Pareto optimal set. The basic structure of Pareto
is shown in Fig. 3.The surface formed by the optimal set in two-dimensional space is
called Pareto frontier, which is the most suitable channel set for emotion recognition.
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For the multi-objective optimization of EEG signal spatial lead electrodes in this
paper, the selection conditions are the number of channels used simultaneously must be
as small as possible and Emotion recognition accuracy must be as high as possible.

Fig. 3. Pareto Grade
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Fig. 4. Flowchart of the optimization process for EEG channel selection using a chromosome
representation for NSGA-II.

3 Experiment Setting and Results

We use multi-objective optimization with the improved NSGAII algorithm to select the
most suitable set of channel electrodes for emotion recognition. We analyze 32 EEG
signals from the DEAP dataset and consider the spatial electrodes. By considering the
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different features in the EEG signals from different brain regions, we identify the optimal
Pareto feature set using the multi-objective optimization algorithm. In our experiment,
we divide the EEG signal segments into 2-s intervals to categorize low arousal and high
arousal, and create a model for each subject.

The problem to be optimized is defined by two unconstrained objectives based on
the structure of NSGAII as shown in the flowchart of Fig. 4; (1) reduce or select the
number of EEG channels that are required and most relevant for the classification of
high arousal/valence versus low arousal/valence; and (2) improve or at least maintain
the eegnet-based classification accuracy. NSGA-II uses a fitness function to evaluate
the solution domain of the two-objective optimization problem, which is defined in this
example as [Accuracy, No_ch], where Acc is the eegnet-based classification accuracy
obtained from Fig. 4.

The optimization process of theNSGAII algorithm startswith the creation of possible
candidates or chromosomes in the population, which represents the iteration of NSGA-
II. It obtains the corresponding raw EEG data for the channels represented as 1 in each
chromosome, and then we use 50% of the data to create the EEGNet model, 25% for
testing, and 25% for validating the createdmodel. The accuracy obtained and the number
of EEG channels used ([Accuracy, No_ch]) were returned to NSGAII to evaluate each
chromosome in the current population.

In the experiments, the process was repeated several times to determine if using
a different subset of channels would increase the accuracy. To this end, we designed
and implemented an optimization process for NSGAII. Briefly, NSGAII uses a binary
chromosome representation of 32 genes, one gene per EEG channel, with two possible
values for each gene; 1 if the channel is used and 0 otherwise. The chromosome popula-
tion generated by the optimization algorithm is evaluated based on the highest accuracy
and the chromosome population with the highest accuracy is reused to generate a new
population. In this way, the set of spatial lead electrodes that is most optimal for emotion
recognition is found.

The process was repeated to produce a population of 10 chromosomes, which was
experimentally determined. The termination criterion for the optimization process is
defined by the target space tolerance, defined as 0.001, which is calculated every 10
generations. If optimization is not achieved, the process stops after a maximum of 100
generations, which is also experimentally determined.

Figure 5 and Fig. 6 show, respectively, the optimization process for low arousal/high
valence classification of subject 1 after the channel selection process of NSGAII. In
Fig. 5, each candidate (blue dot) represents the combination of channels used to acquire
the sub dataset and it is used as an input to the network model. The optimal point (red
point) appearing on the Pareto front indicates themaximumaccuracy that can be achieved
for that number of channels.

In order to verify the superiority of the selected channel set for the validation exper-
iment, the NSGA-II optimization algorithm was used to select a 12-channel set feature
combined with the BiLSTM neural network model mentioned in the previous chapter
for emotion accuracy recognition. At the same time, the full channel data, including 32
channels and the common 18-channel EEG data, were input into the BiLSTM neural
network model for data comparison and result analysis.
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Fig. 5. EEG Channel Selection Results of Subject 1 (Arousal)

Fig. 6. EEG Channel Selection Results of Subject 1 (Valence)

The training time and accuracy comparison are shown in Table 1 and Table 2, respec-
tively. TheNSGA-II optimized channel set achieved the shortest training time andhighest
accuracy, reaching 93.86%. Compared to using all 32 channels, there was a significant
improvement in electrode feature selection and the model training speed was greatly
optimized.
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Table 1. Comparison of model training time of different channel selection methods for single
subject

Channel Selection model Training time (s)

full channel BiLSTM 4823

Common 18 channels BiLSTM 2086

NSGA-II optimized channel set BiLSTM 1403

Table 2. Comparison of Classification Accuracy of Different Channels (Arousal)

hallmark model Channel Selection Accuracy

Improvement of DE BiLSTM full channel 93.86

Improvement of DE BiLSTM Common 18 channels 96.01

Improvement of DE BiLSTM NSGAII optimized channel set 97.53

4 Conclusion

The content of this article mainly focuses on the selection of spatial electrodes for elec-
troencephalogram (EEG) signals. Firstly, the important significance of spatial electrode
selection for emotion recognition is introduced. Then, a multi-objective genetic algo-
rithm is introduced to optimize the spatial electrodes. Considering the complex distribu-
tion of spatial electrodes, large number and diverse types of EEG signals, and non-unique
features, the NSGA-II algorithm is improved by introducing an improved elitist strategy
to effectively eliminate redundant sets between electrode collections. Combined with
the DEAP dataset, it is found that higher classification accuracy can be achieved when
using 8–12 spatial electrodes. Combined with the RNN-BiLSTM network algorithm for
classification verification, it can effectively accelerate model training speed and emotion
recognition accuracy. EEG channel optimization is an important research area, which
is of great significance for improving the quality and application value of EEG signals.
However, there are still some shortcomings in current research, such as limitations in
using only the DEAP dataset and channel selectionmethods. Future research can explore
the combination of multimodal data, introduction of other machine learning methods,
and establishment of a standard evaluation system to promote the development of EEG
channel optimization and provide a more reliable foundation for EEG signal research.
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Abstract. Recently, few-shot medical image segmentation approaches have been
extensively explored to tackle the challenge of scarce labeled data in medical
images. The majority of existing methods employ prototype-based techniques
and have achieved promising results. However, conventional prototype extraction
approaches inherently lead to loss of spatial information, thus degrading model
performance, an issue further aggravated inmedical imageswith large background
regions. In this work, we propose a self-guided local prototype generation module
(SLP), which progressively splits supportmasks into sub-mask, thereby producing
a set of local prototype that preserve richer support image information. Moreover,
in order to take full advantage of the information contained within the prototype
sets during the iterative process, we generate a prior mask from this information
and provide coarse spatial location about the target for the model through a simple
prior-guided attention module (PGA). Experiments on three different datasets
validate that our proposed approach outperforms existing methods.

Keywords: Few-shot learning · Medical image segmentation · Prototype-based

1 Introduction

As an important component of medical image analysis, semantic segmentation of med-
ical images plays a crucial role in various clinical applications such as lesion diagnosis,
disease assessment, and surgical planning [1, 2]. With the development of deep learning
techniques, fully supervised models [3–5] trained on datasets with abundant annota-
tions have achieved superior performance on various medical image segmentation tasks.
However, constructing well-annotated datasets for training such fully supervised mod-
els is extremely expensive in the medical image domain, because the annotation of
medical images typically requires professionals with expertise. Furthermore, these fully
supervised models tend to be customized to particular tasks. When confronted with a
novel target, re-training amodel becomes necessary, which further intensifies the conflict
between data requirements and annotation challenges.

Few-shot learning provides an effective solution to address the aforementioned chal-
lenges. It can train a model that only needs few samples to grasp the knowledge of
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new classes. Owing to this formidable capability, few-shot medical image segmenta-
tion has been extensively researched in recent years [6–8]. Among them, prototype-
based approaches [9] are a commonmethod. Thesemethods typically represent semantic
classes as prototype vectors extracted by masked average pooling, and perform segmen-
tation by computing distances between query features and prototypes. However, such
an approach inherently leads to the loss of spatial information [10]. The severely imbal-
anced foreground and background classes in medical images, where the background
frequently contains diverse organs and tissues, further exacerbate the issues induced by
masked average pooling. Several recent few-shot medical image studies have strived to
alleviate this problem from different perspectives, including extracting local prototypes
with local patches [7], representing only foreground prototypes coupled with anomaly
detection [8], and regarding prototypes merely as extra priors [11].

However, these methods cannot fully represent the information of the support image.
In thiswork,wepropose a self-supported local prototype generationmodule. It iteratively
splits the support mask into a set of sub-masks, thereby extracting a collection of local
prototypes that can preserve more information of the support image. Furthermore, in
order to fully utilize the information carried by the prototypes during the iterative process,
we generate a prior mask using them and enhance the query features through a simple
prior-guided attention module.

The contributions of this work are summarized as follows:

• We propose a self-guided local prototype generation module, which is capable of
preserving more information regarding the support class and thus better guide the
model for segmentation.

• We propose a simple prior-guided attention module to provide coarse localization
cues of the target for the model.

• We validate the efficacy of the proposed method on three datasets with multiple
semantic classes and imaging modalities.

2 Related Work

2.1 Few-Shot Learning

Few-shot learning, as a promising paradigm for enhancing model generalization, has
been extensively researched in recent years. Existing methods can be categorized into:
metric learning based methods [9, 12], optimization based methods [13–15], and data
augmentation based methods [16–18]. Specifically, metric learning based approaches
classify targets based on distances between the target samples and class representations.
Optimization based methods learn a good initialization so models can quickly adapt to
new tasks through just a few gradient updates. Data augmentation based methods train
models by generating more training data. In this paper, we propose a metric learning
based approach.

2.2 Few-Shot Semantic Segmentation for Medical Image

Due to the expensive annotation of medical data, data-efficient few-shot learning has
attracted the attention of researchers in the field of medical image semantic segmenta-
tion. SENet [6] proposed the first dual-branch architecture for few-shot medical image
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segmentation, and promoted the interaction between the conditioner branch and the
segmentor branch through excitation and squeeze modules. GCN-DE [20] introduced a
global correlation module that can effectively capture the foreground relevance between
support andquery imagepairs.MprNet [21] applied a fusionmodule basedon cosine sim-
ilarity to aid information exchange between the two branches. AAS-DCL [22] enhances
the ability of the model to discriminate features through dual contrastive learning.

On the other hand, metric learning based few-shot medical image segmentation
methods have also made significant progress. ALPnet [7] developed a self-supervised
approach for few-shot medical image segmentation and achieved satisfactory results.
ADNet [8] proposed a network based on anomaly detection in order to avoid modeling
the background regions of medical images. Q-Net [23] improves ADNet [8] by utiliz-
ing dual-path feature extraction. RPNet [24] captured local relational features between
foreground and background regions through a context encoder and iteratively refined the
segmentation mask. RAP [11] introduced a spatial branch to provide spatial information
of the target. Within the framework of this metric learning, we propose SLPNet. Unlike
these existing methods, SLPNet utilizes the support mask to generate local prototypes
in a self-guided way.

3 Methods

3.1 Problem Definition

The goal of few-shot semantic segmentation is to train amodelwith strong generalization
capability, enabling it to produce accurate segmentations for new classes given only a few
annotated examples. Typically, the model is trained on dataset Dtr containing training
classes (e.g., ctr = {liver, left kidney, right kidney} and evaluated on test set Dte with
novel classes cte (e.g., cte = {spleen}), where ctr ∩ cte = ∅. Both Dtr and Dte consist
of multiple episodes, each with a support set S = {(I s,Ms)}kK=1 and query set Q =
{Iq,Mq}, where (I∗,M ∗) denotes an image and corresponding binary mask pair, and K
is the number of support samples. In the training phase, the model randomly samples a
support set S and a query set Q from dataset Dtr . It takes S and query image Iq as input
and predicts the binary mask M̃ q for Iq. Once training is finished, the model is evaluated
on episodes from test set Dte using fixed parameters, with no further optimization.

3.2 Self-guided Local Prototype Generation Module

In contrast to previous work [7] which directly generates local prototype representations
of classes through local patches, the SLP utilizes masks of support images to evaluate
the information encapsulated in the prototypes. In SLP, the masks of support images
are split into a set of sub-mask that comprehensively represent the information of the
supporting images. These sub-masks are then used to generate local prototypes.

Specifically, we first put the foreground and background masks of the support image
into two sets Mfg and Mbg , respectively. Then these mask sets along with the support
features Fs are input into the self-guided local prototype generation module, and the
prototypes are computed:

pfg =
∑

x,yF
s
(x,y)1[M fg,i

(x,y) = 1]
∑

x,y1[M fg,i
(x,y) = 1]

(1)
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Fig. 1. (a) The overall workflow of the proposed network is as follows: The input support image
and query image are fed into a feature extractor with shared parameters to produce support features
Fs and query features Fq, respectively. The proposed self-guided local prototype generation
module accepts the support features, query features, and support labels as inputs, and yields a set
of local prototypes along with a prior maskMpri for the query image. Subsequently, the prior mask
of the query image is to enhance the query features through a simple attention network. Finally,
the enhanced query features and the prototype set are exploited by a similarity-based classifier to
execute segmentation. (b) Illustration of the generation process of self-guided local prototypes.
(c) Illustration of the generation process of the i-th prior mask.

pbg =
∑

x,yF
s
(x,y)1[Mbg,i

(x,y) = 1]
∑

x,y1[Mbg,i
(x,y) = 1]

(2)

Where M ∗,i is the i-th sub-mask in the mask set, and (x, y) is the spatial location
index. After each element in the mask sets is computed, we can obtain a local prototype
set, which is used to guide the segmentation of the support image and generate its
predicted mask M̃ . The prediction mask M̃ is compared with each element in the mask
set, splitting each sub-mask into a correctly predicted partMTP and amissing information
partMFN , and accordingly updating the mask set. The mask sets are iteratively updated
until no information is lost when partitioning, and the final local prototype set is output.

3.3 Prior-Guided Attention Module

Although the prototype sets during the iterative process cannot comprehensively rep-
resent class information, they can provide the model with a rough localization of the
target. To make full use of this information, we propose a prior-guided attention module
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(PGA). The PGA generates a prior mask Mpri for the query image using the prototype
sets during the iteration, and enhances the query feature through a lightweight attention
network.

As shown in Fig. 1(c), we use the local prototype set from the i-th iteration to obtain
the predicted mask M i

pri for the query image. After obtaining the predicted mask of the
query image over the whole iteration process, we sum them up to get the prior mask
Mpri. And we normalize it using the Eq. (3), where ε is set to 1e−7 in the experiments.

Mpri = Mpri − min(Mpri)

max
(
Mpri

) − min
(
Mpri

) + ε
(3)

Then, the prior mask is utilized to obtain the attention vector using Eq. (4).

Vα = σ(CN (Mpri)) (4)

Here CN and σ denote the convolution and activation functions, respectively. Finally,
the query feature with spatial prior enhancement is generated using Eq. (5).

Fq
n = Fq � Va (5)

3.4 Similarity-Based Segmentation

After obtaining the prototype setP and enhanced query featureFq
n , we adopt a similarity-

based approach for segmentation. We compute the similarity map Sj between the query
image and the j-th prototype pj in the prototype set using Eq. (6).

Sx,yj = −α
Fq
n,(x,y) · pj

||Fq
n,(x,y)||||pj||

(6)

where α denotes a temperature parameter, which is set to 20 following previous work
[21]. After computing similarities with all elements in the prototype set, we concatenate
these similarity maps and apply a softmax function to obtain the final prediction. Ỹ q:

Ỹ q = softmax(Sx,yj · softmax(Sx,yj )) (7)

3.5 Training Strategy

The SLPNet is trained in an end-to-end manner, where a support set and a query set
containing annotations of the same class are randomly sampled during each iteration.
The support set and query image are fed into the network to predict segmentation mask
Ỹ q for the query image. We supervise the network using a cross-entropy loss between
the predicted segmentation mask Ỹ q and the ground truth mask Y q. For each episode,
we have:

Lce = − 1

N

∑

x,y
Y q(x, y)log(Ỹ q(x, y)) (8)
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Additionally, following previous works [7, 8, 19], we adopt prototype alignment
regularization. It segments the support image using the query image, where the ground
truth of the query image is replaced by the predicted mask Ỹ q. The prototype alignment
is formulated as:

Lre = − 1

N

∑

x,y
Y s(x, y)log(Ỹ s(x, y)) (9)

The overall loss function L per iteration is defined as:

L = Lce + λLre (10)

where λ is the temperature parameter, set to 1 in experiments. After training, the network
can directly segment new classes without fine-tuning.

4 Experiments

4.1 Datasets

To fully assess the performance and generalization capability of the proposedmethod,we
conducted experiments on three public datasets with different modalities and semantic
classes. They are abdominal MRI dataset [26], abdominal CT dataset [27] and cardiac
MRI dataset [28], respectively.

(1) AbdominalMRI dataset is from the challenge of ISBI 2019. It contains 20 3D scans
and 4 labels, each scan with an average of 36 slices.

(2) Abdominal CT dataset is from the Challenge of MICCAI 2015 Multi-Atlas
Abdomen Labeling. The dataset contains 13 different labels, and the entire dataset
includes 3D CT scans from 30 different patients.

(3) Cardiac MRI (bSFP-fold) dataset is from the Challenge of MICCAI 2019 Multi-
Sequence Cardiac MRI Segmentation, which contains 35 3D cardiac MRI scans.

For the two abdominal datasets, we selected the same labels (e.g., liver, right kidney
(RK), left kidney (LK), and spleen) for experiments to evaluate performance across
semantically identical classes with modality differences. For the cardiac dataset, we
conducted experiments using left ventricular myocardium (LV-MYO), left ventricular
blood pool (LV-BP), and right ventricle (RV). For fair comparison, all datasets were
divided into 5 parts for 5-fold cross-validation, with the validation set in each fold
further partitioned into disjoint support image and query image sets. We utilized 2D
model frameworks, with all 3D scans preprocessed into 2D slices and resized to 256 ×
256 pixels following common practice.

4.2 Experimental Setup and Evaluation Metrics

To better compare with state-of-the-art methods, we adopted the experimental setup
established in [7]. Specifically, we removed all slices containing target classes to ensure
all semantic classeswere unseen in the test set. Furthermore, we utilized theDice score as
the evaluationmetric tomeasuremodel performance. It ranges from 0 to 100, with higher
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Fig. 2. Qualitative comparisons on abdominal MRI and CT dataset.

scores indicating greater overlap between predicted and ground truth segmentationmask
and thus superior model performance. The Dice score is calculated as:

Dice(A,B) = 2 ∗ |A ∩ B|
|A| + |B| ∗ 100% (11)

where A and B denote the predicted and ground-truth segmentation mask, respectively.

4.3 Implementation Details

Themodel utilizes a Resnet-101 network [25] pretrained onMS-COCO as the backbone,
whichmaps the 3× 256× 256 input image into a 256× 32× 32 feature map. Following
[8, 34], the experiment adopts a 1-way 1-shot training strategy and utilizes pseudo-labels
of superpixels to train the network. We optimize the network using an SGD optimizer
with an initial learning rate of 1e−3 and utilize a multi-step learning rate scheduler to
dynamically adjust the learning rate every 1000 iterations. The network was trained on
a NVIDIA GeForce RTX3090 GPU for a total of 100k iterations.

4.4 Results and Analysis

We conduct experiments on three different datasets to compare our method against
existing few-shot medical image segmentation approaches. The experimental results
across the methods on the abdominal and cardiac datasets are presented in Table 1 and
Table 2, respectively.As shown inTable 1, on the abdominal dataset ourmethod improves
performance onmultiple organs except for the liver, and increases the average Dice score
by 1.10% and 0.98%. Regarding the experiments on the cardiac dataset (Table 2), our
method achieves comparable performance to the leading approach, in terms of both the
single organ and average Dice scores. Taken together, these experiments thoroughly
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validate and demonstrate the efficacy of our proposed method for the few-shot medical
image segmentation task. Furthermore, prediction example visualizations in Fig. 2 and
Fig. 3 illustrate substantially higher prediction accuracy attained by our proposedmethod
over the baseline methods. The consistently strong segmentation performance achieved
across multiple organs, except for the liver, provides further evidence of the proficient
segmentation capabilities of our proposed method.

Table 1. Comparison of segmentation results by existing methods on abdominal MRI and CT
datasets. Bold denotes the best results.

Method Abdominal-CT Abdominal-MRI

LK RK Spleen Liver Mean LK RK Spleen Liver Mean

SE-Net 32.70 23.60 32.53 38.20 31.76 63.85 64.56 11.78 55.08 48.82

PANet 37.58 34.69 43.73 61.71 44.42 47.71 47.95 58.73 64.99 54.85

ALPNet 63.34 54.82 60.25 73.65 63.02 73.63 78.39 67.02 73.05 73.02

ADNet 63.84 56.98 61.84 73.95 64.15 71.89 76.02 65.84 76.03 72.70

Q-Net 63.26 58.37 63.36 74.36 64.83 74.05 77.52 67.43 78.71 74.43

Ours 67.13 59.18 65.21 71.71 65.81 78.40 80.32 70.82 72.57 75.53

4.5 Ablation Analysis

Ablation experiments were conducted on the abdominal MRI dataset to validate the
efficacy of each proposed component in our method and the experiments results are
presented in Table 3. As exhibited, integrating the proposed SLPmodule into the baseline
model leads to consistent performance improvements across all organs, with the average
Dice score increased by 18.26%.

Table 2. Comparison of segmentation results by existing methods on cardiac MRI dataset. Bold
denotes the best results.

Method Cardiac MRI

LV-BP LV-MYO RV Mean

SE-Net 58.04 25.18 12.86 32.03

PANet 70.42 46.79 69.52 62.25

ALPNet 83.99 66.74 79.96 76.90

ADNet 88.36 65.47 78.35 77.39

Q-Net 89.63 66.87 79.25 78.58

Ours 87.96 65.46 82.11 78.51
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Table 3. Ablation study results on abdominal MRI dataset.

LK RK Spleen Liver Mean

Baseline 47.71 47.95 58.73 64.99 54.85

Baseline + SLP 74.38 76.86 66.9 74.28 73.11

Baseline + SLP + PGA 78.40 80.32 70.82 72.57 75.53

This can be attributed to the prototype set generated bySLPproviding richer semantic
class information compared to the global average prototypes obtained through global
average pooling.

Furthermore, the addition of the proposed PGA component enables the model to
achieve optimal segmentation performance, thus demonstrating the beneficial prior infor-
mation provided by incorporating PGA. Taken together, these ablation studies validate
the efficacy of each key component proposed in our method for few-shot medical image
segmentation.

RV

LV-BP

Cardiac MRI
Support Baseline Proposed Query

LV- MYO

Fig. 3. Qualitative comparisons on cardiac MRI dataset.

5 Conclusion

In this paper, we propose SLPNet for few-shot medical image segmentation. It is a
prototype-based approach that introduces two new modules - a self-guided local proto-
type generation module and a prior-guided attention module. The first module produces
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a set of local prototypes that capture more comprehensive information from the support
image to better guide the segmentation of the query image. The latter provides the model
with coarse spatial localization cues of the segmentation target. We evaluate SLPNet on
multi-modality datasets across various organs. These experimental results validate the
effectiveness of SLPNet.
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Abstract. Oral microbial communities play different roles in systemic human
physiology. The oral microbial community is a dynamic system, and its compo-
sition and structure will be affected by many factors. In this work, we proposed a
method to classify the active function site of a kind of oral microorganism, which
is Staphylococcus aureus. We employed the time series forest method to classify
the active function of Staphylococcus aureus. In order to test the performances of
this algorithm, we utilized several typical features in this work.

Keywords: Staphylococcus aureus · time series forest · classification · oral
microorganism

1 Introduction

The human oral cavity is a natural gathering place of microbial ecology. The oral cavity
presents a series of substrates, such as teeth, tongue, cheeks, and gums, whose chemical
properties, morphology, and stability provide different habitats for microbial commu-
nities [1]. Each habitat in the mouth supports a complex and unique community. This
uniqueness provides an opportunity to use the oral microbiome to understand the micro-
bial community. The oral cavity is one of the human body’s most complex and abundant
microbial communities. There are thousands of microorganisms in the mouth. Bacte-
ria are the most common type of oral microorganisms. They form communities and
ecosystems and maintain a symbiotic relationship with the human body for a long time.
Most oral bacteria are non-pathogenic symbionts, which help maintain oral health and
maintain oral ecological balance. However, some bacterial strains are pathogenic bac-
teria, which cause oral diseases, such as bad breath [2], dental caries and periodontal
disease. Oral microbial community not only affects oral health and disease, but also
affects the health and infection of the whole body [3], including adverse pregnancy [4],
and leukemia [5].

Moreover, oral microbial communities play different roles in systemic human phys-
iology. The oral microbial community is a dynamic system, and its composition and
structure will be affected by many factors [6]. Daily oral hygiene habits, eating habits,
antibiotic use, and oral diseases will have different degrees of impact on the microbial
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community. It is worth noting that the normal microbial community has specific stabil-
ity and resilience, can resist external interference, and maintain a relatively stable state.
Understanding the ecological characteristics of oral microorganisms is very important
for maintaining oral health. By studying the composition and function of microbial
communities, we can develop prevention and treatment strategies for oral diseases. In
addition, the study of oral microbial ecology also provides new ideas and possibilities
for individualized medical treatment and oral microbial regulation. Personalized oral
medicine can be achieved through an in-depth understanding of the characteristics and
changes of individual oral microorganisms. Oral microorganisms can be used as unique
biomarkers for early diagnosis of oral diseases, predicting the risk of disease progression
and guiding the formulation of individualized treatment.

The human oral microbiome database (HOMD) is the first database systematically
describing human-related microbiomes established by Dewhirst et al. in 2010. Cur-
rently, the database includes 687 species of oral microorganisms, of which 461 have
been annotated, and their protein sequences are obtained by 16S RNA sequencing. This
database is a typical sequence database for oral macroproteome research. In recent
years, with the development of macroproteomics, some research achievements have
been made in protein data analysis, and researchers have developed many bioinformat-
ics analysis tools. However, these tools are suitable for different application scenarios.
Graph2pep/graph2pro and compile focus on customizing the protein database to obtain
the best protein identification. Proteostorm is an efficient database search framework for
large-scale proteomics research. It can identify peptide spectrummatch (PSM)with high
reliability and achieve acceleration of two to three orders of magnitude higher than pop-
ular tools. Unipept, prophane,Megan CE, and pipasic realized taxonomic analysis, func-
tional data evaluation, and protein grouping, respectively. In addition, several research
teams have assembled comprehensive software workflow for proteomic analysis, such
as Galaxy-p, meta Pro IQ, meta proteome analyzer (MPA), and other workflows.

In this work, we proposed a method to classify the active function site of a kind
of oral microorganism, which is Staphylococcus aureus. We employed the time series
forest method to classify the active function of Staphylococcus aureus. In order to test
the performances of this algorithm, we utilized several typical features in this work..

2 Methods and Materials

2.1 Data

The benchmark dataset for this experiment is obtained from protein specific websites
through crawling to obtain the corresponding organelle sequences and characteristic
sites https://www.uniprot.org. This dataset contains the biological sequences of one oral
microorganism, with a specific sample size of 1063 Staphylococcus aureus. Then, active
site data were extracted, and feature extraction was performed. By selecting appropriate
feature extraction methods, the corresponding indicators can be more accurately repre-
sented, providing a reliable data foundation for subsequent classification accuracy. In
previous studies, it was found that feature extraction mainly focused on the functional
sites ofmicrobial sequence sites, taking into account the auto-correlation of the sequence
directed by this site, including extraction methods.

https://www.uniprot.org
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In order to preserve as much information as possible, we use the entire oral microbial
protein sequence as feature extraction data. We used several feature extraction methods.
The protein sequences can be transfer as a numeric vector. Meanwhile, we put the label
in the end of each vector. In this classification model, the function protein can be defined
as the positive sample and the non-function protein can be defined as the negative ones.

In this work, we employed several features including Auto covariance (AC), Cross
covariance (CC), Auto-cross covariance (ACC), Physicochemical distance transforma-
tion (PDT), Parallel correlation pseudo amino acid composition (PC-PseAAC), Series
correlation pseudo amino acid composition (SC-PseAAC), General parallel correlation
pseudo amino acid composition (PC-PseAAC-General), and General series correlation
pseudo amino acid composition (SC-PseAAC-General). In this section, we introduce
the PC-PseAAC features.

2.2 PC PseAAC

When it comes to the feature of PC PseAAC, this feature is a method that combines
continuous local sequence order information and global sequence order information to
convert protein sequences.

2.3 Classification Model

Time series forest (TSF) is amachine learningmodel for time series classification, which
belongs to a kind of ensemble learning method. It is based on the idea of integrated
learning of random forest, uses multiple decision trees to build a classification model,
and has a special design for time series data [9].

Time series tree is the key component of constructing time series forest. It is respon-
sible for deciding how to segment the nodes in the tree to achieve the best segmentation
method. Each node in the time series tree considers some candidate splits (called s) to
meet specific segmentation conditions, which can be used to help determine the optimal
segmentation method. This process aims to ensure that the segmentation of each tree
node is based on effective segmentation criteria, so as to obtain accurate and reliable
results in the time series forest, shown in Eq. (1).

fk(t1, t2) ≤ τ (1)

Instances that meet this condition will be sent to the left child node. Others are sent
to the right child node.

Considering the particularity of time series data, we use a different strategy to select
the segmentation point of nodes in the process of building time series tree [10]. Compared
with directly selecting a single best segmentation point, we first consider the weight of
time steps, and select a series of possible segmentation points on the node. Then, we
calculate the prediction accuracy of each candidate segmentation point. Finally, the best
performing segmentation point is selected from these candidate segmentation points
as the final segmentation point of the node. This method aims to better adapt to the
characteristics of time series data and improve the performance and accuracy of time
series tree.
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For the candidate threshold of a specific type of feature fk ,
[minNn−1(f

n
k (t1, t2)),maxNn=1(f

n
k (t1, t2))] is divided into equal width intervals. The num-

ber of candidate thresholds is fixed. Then select the best threshold from these candidate
thresholds to avoid sorting, and only K tests are required fk .

In addition, a splitting criterion is needed to define the optimal splitting
S∗: f∗(t∗1 , t∗2 ) ≤ τ ∗. We use the combination of entropy gain and distance measure as the
splitting criterion [12]. Entropy gain is a common segmentation criterion in tree model.
Represents the proportion of instances corresponding to class {1, 2, … , c} on a tree
node, which are respectively represented as {γ1, γ2, … , γC}. The entropy at this node
is defined in Eq. (2)

Entropy = −
C∑

c=1

γC logγC (2)

Entropy gain is used to determine the effectiveness of a partition. It represents the
difference between the weighted sum of the entropy of the child node and the entropy
of the parent node. Here, the weight of a child node refers to the proportion of instances
assigned to the child node. In addition, we should also consider the additional metric of
margin, which calculates the distance between the candidate threshold and its nearest
eigenvalue fk(t1, t2) ≤ τ . Margin is calculated in Eq. (3)

M arg in = min
n=1,2,...,N

∣∣f nk (t1, t2) − τ
∣∣ (3)

Where f nk (t1, t2), is the value of fk(t1, t2) of the nth instance on the node. A new
splitting criterion E is the entrance (entropy and distance) gain, and the formula is in
Eq. (4).

E =� Entropy + α · M arg in (4)

If α is small enough, its role in the model is to break the connection that may
be generated only from the entropy gain. Or you can store the values of � Entropy
and margin. When another partition has the same entropy, use margin to break the
connection. Obviously, we use the segmentation with the maximum E to segment nodes.
In addition, margin and E are sensitive to the scale of features. For different types of
features with different scales, we adopt the following strategy. In order to select the
best segmentation for different feature types, we will give priority to the segmentation
method with maximum entropy. However, if the best segmentation of different feature
types has the same maximum entropy, we will randomly select one of them as the
best segmentation. This strategy aims to ensure a fair and orderly comparison among
multiple feature types, while handling the case of equal maximum entropy to avoid
arbitrary selection.

This modified decision tree construction method can better consider the temporal
characteristics of time series data, make the decision tree better adapt to the changes and
trends of time series data, and improve the classification performance.
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2.4 Performances

In the classification of function protein of Staphylococcus aureus, it is an essential step
to select appropriate evaluation indexes to evaluate the performance of the model. The
non-function protein can be defined as the negative sample and the function protein can
be defined as the positive ones in this work. In this experiment, accuracy (ACC), Recall,
specificity (SP), and MCC score are utilized in this work. The calculation methods are
shown in Eq. (5)–(8).

Sp = TN

TN + FP
(5)

Recall = TP

TP + FN
(6)

Acc = TP + TN

TP + TN + FP + FN
(7)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN ) × (TN + FP) × (TN + FP)

(8)

Where, P and N represent the scale of positive and negative samples, respectively. T
and F represent sets of true and false predicted results, respectively.

3 Results

As the demonstration in Table 1, the values of Sp, Acc, Rcall and MCC, for the AC
feature were 43.85%, 47.71%, 43.82%, and 0.3352, respectively, while the values of
these indices for the ACC were 48.55%, 48.41%, 48.53% and 0.3616, respectively.

Tabel 1. The performances of different methods

method SP Acc Recall MCC

AC 43.85% 47.71% 43.82% 0.3352

ACC 48.55% 48.41% 48.53% 0.3616

ACC-PSSM 68.05% 59.66% 68.04% 0.5446

AC-PSSM 68.05% 59.66% 68.04% 0.5446

CC 48.85% 44.50% 48.86% 0.3338

CC-PSSM 68.05% 59.66% 68.04% 0.5446

DP 63.05% 62.31% 63.04% 0.5355

DR 59.40% 66.23% 59.36% 0.5424

DT 68.05% 59.66% 68.04% 0.5446

PC-PseAAC 68.05% 59.66% 68.04% 0.5446

PC-PseAAC-General 68.05% 59.66% 68.04% 0.5446

PDT-Profile 68.05% 59.66% 68.04% 0.5446

SC-PseAAC 60.30% 59.36% 60.27% 0.5018

SC-PseAAC-General 60.30% 59.36% 60.27% 0.5018

TOP-N-GRAM 68.05% 59.66% 68.04% 0.5446
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The values of Sp, Acc, Rcall and MCC for the ACC-PSSM were 68.05%, 59.66%,
68.04% and 0.5446, respectively, while the values of these indices for the AC-PSSM
were 68.05%, 59.66%, 68.04%, and 0.5446, respectively. The values of Sp, Acc, Rcall
and MCC, for the CC feature were 48.85%, 44.50%, 48.86%, and 0.3338, respectively,
while the values of these indices for the CC-PSSM were 68.05%, 59.66%, 68.04%, and
0.5446, respectively. The values of Sp, Acc, Rcall and MCC for the DP were 63.05%,
62.31%, 63.04%, and 0.5355, respectively, while the values of these indices for the DR
were 59.40%, 66.23%, 59.36%, and 0.5424, respectively. The values of Sp, Acc, Rcall
and MCC, for the DT feature were 68.05%, 59.66%, 68.04%, and 0.5446, respectively,
while the values of these indices for the PC-PseAAC, PC-PseAAC-General, TOP-N-
GRAM, and PDT-Profile were 68.05%, 59.66%, 68.04%, and 0.5446, respectively. The
values of Sp, Acc, Rcall and MCC for the SC-PseAAC, and SC-PseAAC-General were
60.30%, 59.36%, 60.27%, and 0.5018, respectively.

4 Conclusions

In this work, we proposed a method to classify the active function site of a kind of oral
microorganism, which is Staphylococcus aureus. We employed the time series forest
method to classify the active function of Staphylococcus aureus. In order to test the
performances of this algorithm, we utilized several typical features in this work.

Some issues should be considers in the future work. First of all, some useful fea-
tures should be used in such classification issue. The effective features may improve
the performances of classification model. Secondly, some high effective classification
algorithms should be utilized in such classification issue. With the development of arti-
ficial intelligence, several methods, including deep learning, transfer learning and other
related ones, have been proposed.

Acknowledgments. This work was supported by the National Natural Science Foundation of
China (Grant No. 61902337), Xuzhou Science and Technology Plan Project (KC21047), Jiangsu
Provincial Natural Science Foundation (No. SBK2019040953), Natural Science Fund for Colleges
and Universities in Jiangsu Province (No. 19KJB520016) and Young Talents of Science and
Technology in Jiangsu and ghfund 202302026465.

References

1. Yang,W., et al.: A brief survey ofmachine learningmethods in protein sub-Golgi localization.
Curr. Bioinform. 14(3), 234–240 (2019)

2. Su, R., Yang, H., Wei, L., Chen, S., Zou, Q.: A multi-label learning model for predicting
drug-induced pathology in multi-organ based on toxicogenomics data. PLoS Comput. Biol.
18(9), e1010402 (2022)

3. Wang, C., Zou, Q.: Prediction of protein solubility based on sequence physicochemical pat-
terns and distributed representation information with DeepSoluE. BMC Biol. 21(1), 1–11
(2023)

4. Gonatas, N.K., Gonatas, J.O., Stieber, A.: The involvement of the Golgiapparatus in the
pathogenesis of amyotrophic lateral sclerosis, Alzheimer’s disease, and ricin intoxication.
Histochem. Cell Biol. 109(5–6), 591–600 (1998)



40 Q. Wang et al.

5. Elsberry, D.D., Rise, M.T.: Techniques for treating neuro degenerative disorders by infusion
of nerve growth factors into the brain, U.S. Patents US6042579A, 5 August 1998

6. Yuan, L., Guo, F., Wang, L., Zou, Q.: Prediction of tumor metastasis from sequencing data in
the era of genome sequencing. Brief. Funct. Genomics 18(6), 412–418 (2019)

7. Hummer,B.H.,Maslar,D.,Gutierrez,M.S., deLeeuw,N.F.,Asensio,C.S.:Differential sorting
behavior for soluble and transmembrane cargoes at the trans-Golgi network in endocrine cells.
Mol. Biol. Cell, mbc-E19 (2020)

8. Zeng, X., Liu, L., Lü, L., Zou, Q.: Prediction of potential disease-associated microRNAs
using structural perturbation method. Bioinformatics 34(14), 2425–2432 (2018)

9. Villeneuve, J., Duran, J., Scarpa, M., Bassaganyas, L., Van Galen, J., Malhotra, V.: Golgi
enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis.
Mol. Biol. Cell 28(1), 141–151 (2017)

10. Hou, Y., Dai, J., He, J., Niemi, A.J., Peng, X., Ilieva, N.: Intrinsic protein geometry with
application to non-proline cis peptide planes. J. Math. Chem. 57(1), 263–279 (2019)

11. Wei, L., Xing, P., Tang, J., Zou, Q.: PhosPred-RF: a novel sequence-based predictor for
phosphorylation sites using sequential information only. IEEE Trans. Nano Biosci. 16(4),
240–247 (2017)

12. van Dijk, A.D.J., et al.: Predicting sub-Golgi localization of type II membrane proteins.
Bioinformatics 24(16), 1779–1786 (2008)

13. Ding, H., et al.: Identify Golgi protein types with modified mahalanobis discriminant
algorithm and pseudo amino acid composition. Protein Pept. Lett. 18(1), 58–63 (2011)

14. Ding,H., et al.: Prediction ofGolgi-resident protein types by using feature selection technique.
Chem. Intell. Lab. Syst. 124, 9–13 (2013)

15. Jiao, Y.-S., Du, P.-F.: Predicting Golgi-resident protein types using pseudo amino acid compo-
sitions: approaches with positional specific physicochemical properties. J. Theor. Biol. 391,
35–42 (2016)

16. Jiao, Y.-S., Pu-Feng, D.: Prediction of Golgi-resident protein types using general form of
Chou’s pseudo-amino acid compositions: approaches with minimal redundancy maximal
relevance feature selection. J. Theor. Biol. 402, 38–44 (2016)

17. Lv, Z., et al.: A random forest sub-Golgi protein classifier optimized via dipeptide and amino
acid composition features. Front. Bioeng. Biotechnol. 7, 215 (2019)

18. Wei, L., Zhou,C., Su,R., Zou,Q.: PEPred-Suite: improved and robust predictionof therapeutic
peptides using adaptive feature representation learning. Bioinformatics 35(21), 4272–4280
(2019)

19. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority
over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)

20. Blagus, R., Lusa, L.: ‘SMOTE for high-dimensional class-imbalanced data.’ BMC Bioinf.
14(1), 106 (2013)

21. Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C., Kuncheva, L.I.: Randombalance: ensem-
bles of variable priors classifiers for imbalanced data. Knowl.-Based Syst. 85, 96–111
(2015)

22. Ma, L., Fan, S.: CURE-SMOTE algorithm and hybrid algorithm for feature selection and
parameter optimization based on random forests. BMC Bioinf. 18(1), 169 (2017)

23. Cateni, S., Colla, V., Vannucci, M.: A method for resampling imbalanced datasets in binary
classification tasks for real-world problems. Neurocomputing 135, 32–41 (2014)

24. Sáez, J.A., Luengo, J., Stefanowski, J., Herrera, F.: SMOTE–IPF: addressing the noisy and
borderline examples problem in imbalanced classification by a re-sampling method with
filtering. Inf. Sci. 291, 184–203 (2015)

25. Nath, A., Subbiah, K.: Unsupervised learning assisted robust prediction of bioluminescent
proteins. Comput. Biol. Med. 68, 27–36 (2016)



Staphylococcus Aureus Function Proteins Classification 41

26. Wang, X.Y., Yu, B., Ma, A.J., Chen, C., Liu, B.Q., Ma, Q.: Protein– protein interaction
sites prediction by ensemble random forests with synthetic minority oversampling technique.
Bioinformatics 35(14), 2395–2402 (2019)

27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

28. Zeng, X., Lin, W., Guo, M., Zou, Q.: A comprehensive overview and evaluation of circular
RNA detection tools. PLoS Comput. Biol. 13(6) (2017). Art. no. e1005420

29. Wei, L., Xing, P., Su, R., Shi, G., Ma, Z.S., Zou, Q.: CPPred–RF: a sequence-based predictor
for identifying cell–penetrating peptides and their uptake efficiency. J. Proteome Res. 16(5),
2044–2053 (2017)

30. Wei, L., Xing, P., Zeng, J., Chen, J., Su, R., Guo, F.: Improved prediction of protein–protein
interactions using novel negative samples, features, and an ensemble classifier. Artif. Intell.
Med. 83, 67–74 (2017)

31. Hu, Y., Zhao, T., Zhang, N., Zang, T., Zhang, J., Cheng, L.: Identifying diseases-related
metabolites using random walk. BMC Bioinf. 19(S5), 116 (2018)

32. Zhang,M., et al.:MULTiPly: a novelmulti-layer predictor for discovering general and specific
types of promoters. Bioinformatics 35(17), 2957–2965 (2019)

33. Song, T., Rodriguez-Paton, A., Zheng, P., Zeng, X.: Spiking neural P systems with colored
spikes. IEEE Trans. Cogn. Devel. Syst. 10(4), 1106–1115 (2018)

34. Lin, X., Quan, Z., Wang, Z.-J., Huang, H., Zeng, X.: A novel molecular representation with
BiGRU neural networks for learning atom. Brief. Bioinf. (2019). Art. no. bbz125

35. Zhou, Z.H., Feng, J.: Deep forest. Natl. Sci. Rev. 6(1), 74–86 (2019)
36. Lee, S.C., Kwon, Y.S., Son, K.H., et al.: Antioxidative constituents from Paeonia lactiflora.

Arch. Pharmacal. Res. 28, 775–783 (2005)



Bradyrhizobium Elkanii’s Genes Classification
with SVM

Luying He1, Qi Wang1, Wenzheng Bao1, Zhuo Wang1(B), and Xiangwen Ji2(B)

1 School of Information and Engineering, Xuzhou University of Technology, Xuzhou 221018,
China

77837292@qq.com
2 London Metropolitan University, London, England

2728782894@qq.com

Abstract. The oral cavity is one of the five major human parts that the human
microbiome. Microorganisms are a group of tiny, invisible organisms, which
must be magnified thousands or even tens of thousands of times to be observed.
Bradyrhizobium elkanii’s is one of the most significant oral microorganisms. In
this work, we focus on the classification of Bradyrhizobium elkanii’s coding genes
and non-coding ones. We selected the whole genome information from the web
resource. And then, we extracted the coding genes and the non-coding genes. We
employed the enhanced nucleic acid composition as the features and we utilized
the linear SVM as the classification model.

Keywords: Bradyrhizobium elkanii · Support Vector Machine · Classification ·
Coding Genes

1 Introduction

Microorganisms are a group of tiny, invisible organisms, which must be magnified thou-
sands or even tens of thousands of times to be observed. Among the many character-
istics of microorganisms, the most amazing is that they have extremely diverse phys-
iological functions and can survive in various environments. Generally, microorgan-
isms are divided into fungi, actinomycetes, bacteria, spirochetes, Rickettsia, chlamydia,
mycoplasma and viruses. However, with the continuous discovery of new microorgan-
isms, the species are still increasing. The types of viruses (such as influenza virus and
hepatitis virus) account for 75% of all kinds of pathogens causing human infectious
diseases. Actinomycetes are the main source of antibiotics and microbial drugs. Serious
human and animal diseases caused by bacteria still occupy a very important position.
According to the prediction of the World Health Organization, without effective pre-
vention and control measures, 30million people will die of tuberculosis and 300million
people will be infected by tuberculosis in the world within 10 years.

The oral cavity is one of the five major human parts (gut, oral cavity, skin, nasal
cavity and genitourinary tract) that the human microbiome program focuses on. The
human oral microbial community is composed of morethan 700 species of bacteria,
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fungi, viruses and other microorganisms. The ecological imbalance of oral microorgan-
isms can not only induce a variety of oral diseases (such as caries, pulp periapical disease,
periodontal disease, etc.), but also is closely related to systemic diseases such as tumors,
diabetes, rheumatoid arthritis, cardiovascular disease, premature birth, and has a great
impact on human health. With the development of high-throughput technology, the use
of multi omics data technology to study the composition of oral microbial community
has become popular. In particular, genomic technology, periodontitis and the compo-
sition of oral microorganisms in healthy people have been widely reported, and some
disease-related microorganisms have been found. With the development of mass spec-
trometry technology, oral genome research has become a new field. People have used
this technology to study the correlation between bacterial composition and the incidence
of dental caries, and found oral microorganisms used to distinguish periodontitis, dental
caries and normal people.

The research platform of bioinformatics is generally composed of computer network,
database and application analysis software. The use technology of various databases
and related software is the core of bioinformatics. Among them, gene bank nucleic acid
sequence database, Swiss prot protein sequence database and biomacromolecule spatial
structure database are the three core databases of molecular biology; Blast and FASTA
sequence alignment software are common information retrieval tools. Bioinformatics is
widely used in various fields of life science research. Its major theories and technical
methods are also being or gradually applied in many fields of biomedical research,
mainly including: key gene identification of major diseases, epidemiological research,
drug design, etc. In the field of Stomatology, bioinformatics is effectively applied in
the research of genomics and proteomics, which is helpful to identify and describe
the influencing factors and therapeutic targets of diseases related to stomatology at
the molecular level. The technologies used in the research mainly include database
retrieval, data software analysis, differential proteomics technology, DNA chip, etc. Its
main application research fields include the growth and development of teeth, oral tumor
and disease research, oral microorganism and saliva analysis research, etc.

In this work, we focus on the classification of Bradyrhizobium elkanii’s coding genes
and non-coding ones.We selected thewhole genome information from theweb resource.
And then, we extracted the coding genes and the non-coding genes. We employed the
enhanced nucleic acid composition as the features and we utilized the linear SVM as the
classification model.

2 Methods and Materials

2.1 Data

In this work, the whole genome information of Bradyrhizobium elkanii’s collected from
the NCBI, which is a famous biology data in the world. With the data procession, we can
easily find that there are 9728 coding genes sequences and 8252 non-coding gene ones
in the Bradyrhizobium elkanii’s whole genome sequences. And then, we selected the 20
length nucleic acid segment in the head section and 20 length nucleic acid segment in
the end section for both the coding sequences and the non-coding sequences. Therefore,
we constructed a 40 length nucleic acid segment for each sample.
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2.2 Support Vector Machine

SVMwas proposed in 1964, and developed rapidly after the 1990s. A series of improved
and extended algorithms have been derived, which have been applied in pattern recogni-
tion problems such as portrait recognition and text classification. Support vectormachine
(SVM) is a class of generalized linear classifiers that classify data in a supervised learning
way. Its decision boundary is the maximummargin hyperplane for the learning samples.
SVM uses hinge loss function to calculate empirical risk and adds regularization term to
the solution system to optimize structural risk. It is a sparse and robust classifier. SVM
is one of the common kernel learning methods, which can carry out nonlinear classifica-
tion through kernel method. SVM is a classifier developed from the generalized portrait
algorithm in pattern recognition. Its early work came from the research published by
Vladimir n. Vapnik and Alexander y. Lerner in 1963. In 1964, Vapnik and Alexey y y.
chervonenkis further discussed the generalized portrait algorithm and established a hard
margin linear SVM. Since then, in the 1970s and 1980s, with the theoretical research
on the maximum margin decision boundary in pattern recognition, the emergence of
planning problem solving technology based on slack variable, and the proposal of VC
dimension, SVM has been gradually theorized and become a part of statistical learning
theory. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vapnik obtained nonlinear
SVM through kernel method. In 1995, Corinna Cortes and Vapnik proposed soft mar-
gin nonlinear SVM and applied it to handwritten character recognition. This research
has been paid attention to and cited since its publication, providing a reference for the
application of SVM in various fields.

For the linear SVM, this is a typical type in the field of SVM and its function shown
in Fig. 1.

Fig. 1. The function of linear SVM
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Form Fig. 1, all the sample should be followed in Eq. (1).

ω ∗ x + b = 0 (1)

Such formulation also can be utilized in the high dimensional space. It can be defined
as the hyperplane. The distance between each to the hyperplane can be defined in Eq. (2).

d = |ω ∗ x + b|
‖ω‖ (2)

With the formulation (2), each sample can be classified as different types, shown in
Eq. (3).

yi(ω ∗ xi + b) ≥ 1 (3)

Where, i means i-th sample in this classification issue.

2.3 Enhanced Nucleic Acid Composition (ENAC)

When it comes to the Enhanced nucleic acid composition, this feature has ability to
demonstrate the frequency of each nucleotide acid occurring within a window length,
which slides the head segment and the end segment of each sample.

2.4 Evaluation Metrics and Methods

In the classification of coding genes and non-coding genes of Bradyrhizobium elkanii, it
is an essential step to select appropriate evaluation indexes to evaluate the performance of
the model. The non-coding genes can be defined as the negative sample and the coding
genes can be defined as the positive ones in this work. In this experiment, accuracy
(ACC), precision, recall, and F1 score are utilized in this work. The calculation method
is as follows in Eq. (4)–(7)

precision = TP

TP + FP
(4)

recall = TP

TP + FN
(5)

ACC = TP + TN

TP + FN + TN+FP
(6)

F1 − score = 2 × TP

2 × TP + FN + FP
(7)

Where, P and N represent the scale of positive and negative samples, respectively. T
and F represent sets of true and false predicted results, respectively.
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3 Result and Discussions

In this section,we utilized the linear SVMmodel to classify coding genes and non-coding
genes of Bradyrhizobium elkanii. There are 8252 non-coding gene sequences, which is
the negative samples. At the same time, there are 9728 coding gene sequences, which is
the positive samples. Therefore, it can be defined as a typical balance classification issue
in the field of machine learning. In the first step, we employed the whole profile features
to classify with the linear SVM. In order to compare with the performances, some typi-
cal machine learning methods, including logistic, KNN, tree construction classification
model, have been utilized in this work.

Table 1. The performances of linear SVM and other methods

Sn Sp Acc F1

Tree 90.37% 94.65% 92.51% 0.9235

Tree Media 85.89% 94.95% 90.42% 0.8996

Tree Rough 82.20% 93.37% 87.78% 0.8706

KNN 71.25% 80.32% 75.79% 0.7464

KNN Media 73.38% 93.08% 83.23% 0.8140

KNN Rough 66.10% 98.91% 82.51% 0.7907

KNN Cosine 84.23% 73.90% 79.06% 0.8009

Logitic 87.90% 92.53% 90.22% 0.8999

Linear SVM 95.19% 98.32% 96.75% 0.9670

From the Table 1, we can find that the values of Sn, Sp, Acc, and F1 score, for
the Tree construction classification method were 90.37%, 94.65%, 92.51%, and 0.9235,
respectively.Meanwhile, the values of these indices for the TreeMedia construction clas-
sification model were 85.89%, 94.95%, 90.42%, and 0.8996, respectively. For the Tree
Rough construction classification method’s performances were 82.2% in Sn, 93.37% in
Sp, 87.78% in Acc, and 0.8706 in F1, respectively. The values of the four indices for the
KNN were 71.25%, 80.32%, 75.79%, and 0.7464, respectively. The KNN Rough per-
formances are 66.1% in Sn, 98.91% in Sp, and 82.51% in Acc, and 0.7907 in F1 score.
The values of the four indices for the KNN Cosine were 84.235%, 73.9%, 79.06%, and
0.8009, respectively. The Logistic classification method’s performances were 87.9% in
Sn, 92.53% in Sp, 90.22% in Acc, and 0.8999 in F1, respectively. And the linear SVM’s
performances are 95.19% in Sn, 98.32% in Sp, 96.75% in Acc, and 0.967 in F1 score.
The ROC curve of linear SVM show in Fig. 2
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Fig. 2. The ROC curve of Linear SVM with ENAC feature

4 Conclusion

During this work, we classifies Bradyrhizobium elkanii’s coding genes and non-coding
ones. We selected the whole genome information from NCBI. And then, we extracted
the coding genes and the non-coding genes. We employed the enhanced nucleic acid
composition as the features andwe utilized the linear SVMas the classificationmodel. In
the future work, some effective features should be utilized to deal with the classification
of coding genes and non-coding genes.
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Abstract. Oral lichen planus, which is classified as a precancerous state by the
World Health Organization (WHO), is one of the most dangerous disease in the
filed of oral health. Such disease poses a serious threat to oral health. In this work,
we focus on classification the oral lichen planus photos between pro-treatment
and post-treatment. We selected 67 pro-treatment patients’ photos and 41 post-
treatment patients’ photos. And then, we employed SEResNet model to clas-
sify these photos. In order to compare the performances of this model, we also
employed other two classification models, including ResNet, and DenseNet, in
this work.

Keywords: Oral lichen Planus · Classification · Pro-treatment and
Post-treatment · SEResNet

1 Introduction

Oral lichen planus is a common chronic inflammatory disease of oral mucosa. The
prevalence rate of this disease ranges from 0.1% to 4%. Meanwhile, the malignant
transformation rate ranges from 0 to 5.3%. Therefore, oral lichen planus is classified
as a precancerous state by the World Health Organization (WHO). This disease can
occur in multiple locations of the oral mucosa simultaneously, most commonly in the
buccal mucosa. The typical manifestations of this disease are reticular, striate, atrophy,
erosion, and congestion. It is also worth noting that oral lichen planus is a common
chronic oral mucosal skin disease. It is generally not infectious. The pathogenesis of
the disease is not completely clear. Current studies show that the pathogenesis of the
disease is related to mental factors, such as fatigue, anxiety, tension, immune factors,
endocrine factors, infection factors, microcirculation disorders, trace element deficiency,
and some complex diseases, including diabetes, infection, hypertension, gastrointestinal
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dysfunction. At present, there is no radical cure for the disease. The treatment of this
disease mainly uses adrenocortical hormone drugs and immunosuppressants to reduce
inflammation and promote healing.Although the above treatmentmethods have achieved
specific curative effects, there are adverse conditions that the disease is easy to repeat,
and long-term hormone treatment has noticeable side effects.

Although many researchers focus on semi-supervised and unsupervised learning to
relieve the pressure on data annotation, compared with the fully supervised method,
it is still difficult to obtain robust feature representation due to the lack of annotation
information. Finally, in view of the characteristics of small-scale medical data sets and
insufficient data volume, technologies such as generating confrontation networks and
transfer learning are used to solve the problem of the insufficient number of small sam-
ples. Different types of medical data sets are fully used to realize multimodal learning
combined with patients’ cases, to solve the problem of the unbalanced proportion of pos-
itive and negative samples in medical images, and to use multicenter data. The problem
of putting forward methods with stronger robustness and more generalization ability is
also worth studying and solving. Due to the structural characteristics of medical images
and the often unbalanced categories of positive and negative samples, many researchers
have improved the traditional cross-entropy loss function, such as using weighted cross
entropy to enhance the sensitivity to samples with fewer categories or using the joint
loss function to optimize the model from different angles and aspects to seek the optimal
solution of the model. In addition, many researchers have adopted the method of deep
supervision to construct the side output loss function at different decoding stages, which
makes the final segmentation result more reliable and also can alleviate the problem
of gradient disappearance caused by too deep network. In addition, although CNN, a
typical feature extractor for deep learning, can better obtain local feature information, it
has some shortcomings, such as the ability to obtain global context needs to be stronger.
Therefore, using transformermodules to realize the construction of long-distance feature
dependency and improve the segmentation effect of complex targets has also become
a hot research direction. Considering the source of medical data, semi-supervised or
unsupervised methods have become a powerful means to solve the problem of high cost
and time-consuming in medical image annotation. In addition, reinforcement learning,
meta-learning, and small sample learningmethods for small data sets are also particularly
suitable for the research of medical image segmentation. On the other hand, although
the accuracy of some semantic segmentation methods based on deep learning is very
high, the amount of parameters of the model is also a problem, which is significant in
calculation and prone to overfitting, so the light weight of the model is also an urgent
problem to be solved.

Medical image processing can be directly segmented by semantic segmentation
method based on deep learning, or multi-stage method assisted by image classifica-
tion. As the backbone network, the network model for deep learning mainly includes
Alexnet,VGG,Googlenet,RESNETandDensenet. In these networks, convolution, pool-
ing, full connection and other operations are basically included. Alexnet is the champion
algorithm of the 2012 ILSVRC (Imagenet large scale visual recognition challenge). It
is mainly composed of three convolution layers and three pooling layers. Finally, the
dimension of the feature vector is adjusted through two full connection layers to output
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the probability value of each classification. Alexnet is characterized by only eight lay-
ers, which is a lightweight network structure with relatively simple structure. VGG was
proposed by researchers at Oxford University, and this model won the championship of
ILSVRC-2013. Compared with Alexnet, VGG has a greater depth. The network has 16
layers. The difference is that VGG does not have a full connection layer, but replaces
the full connection layer with a full convolution layer. In addition, VGG reduces the size
of convolution kernel, thus reducing the related parameters. Googlenet won the cham-
pionship of ILSVRC-2014. Compared with VGG, Googlenet further deepens the depth
of the network, which has 22 layers. In addition, the network also solves the problems
of over fitting, gradient disappearance and gradient explosion caused by the increase of
the depth of the network by introducing inception. The RESNET network proposed by
hekaiming et al. In 2015 refers to the VGG19 network and has beenmodified on its basis.
The residual unit is added through the short-circuit mechanism to solve the degradation
problem in network training through residual learning, which has become a milestone
in the field of computer vision and deep learning. RESNET makes it possible to train
hundreds of layers of networks, and it can still show superior performance in this case.
The basic idea of Densenet model is the same as RESNET, but it establishes the dense
connection between all the front layers and the back layers, and its name comes from this.
Amajor feature of Densenet is to realize feature reuse through the connection of features
on the channel. In order to make the deep learning model lightweight and can be applied
and deployed on mobile or embedded devices such as mobile phones, some lightweight
models have been proposed in succession. As a representative of lightweight network,
MobileNet has three versions, namely MobileNet V1, MobileNet V2 and MobileNet
V3. This model was proposed by Google in 2017. Its design idea is to replace the con-
ventional convolution in VGG network with deep separable convolution, reduce the
amount of parameters, improve efficiency, and make the model lightweight. In 2018,
Google released MobileNet V2 at the CVPR conference that year based on MobileNet
V1 and the inverted residuals andlinear bots structure with linear bottlenecks. At the
iccv2019 conference, Google released MobileNet V3. On the basis of V2, MobileNet
V3 introduces the network architecture search algorithm net adapt, as well as improved
methods such as squeeze and exception structure, h-swish activation and network tail
optimization to form the next generation networkmodel based on complementary search
technology, and forms two versions of MobileNet v3 small and MobileNet tv3 large. On
ICML2019, the paper published by the Google team proposed the compound scaling
method and the network model EfficientNet, which greatly surpassed the previous net-
work in terms of effect, parameter quantity and speed. In April 2021, the Google team
proposed the optimized version EfficientNet v2 at the ICML2021 meeting. Compared
with V1 version, the number of participants is smaller, but the training speed is faster.

In this work, we utilized the artificial intelligence method to classify the oral lichen
planus patients’ photos. In detailed, we firstly selected 67 pro-treatment patients’ photos
and 41 post-treatment patients’ photos. And then, we employed SEResNet model to
classify these photos. In order to compare the performances of this model, we also
employed other two classification models, including ResNet, and DenseNet, in this
work.
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2 Methods and Materials

2.1 Data

In this work, the employed data, which selected from the Department of Stomatology of
Xuzhou first people’s Hospital, are the photos of oral lichen planus patients. Meanwhile,
it was pointed that there are 67 photos of pro-treatment patients and 41 photos of post-
treatment patients.

2.2 Classification Model

2.2.1 SEResNet Model (Using Attention Mechanism and Residual Network
Fusion)

SEResNet is a deep convolutional neural network combining RESNET and senet atten-
tion mechanisms. Its core idea is to embed SEResNet model in the residual block of
RESNET to enhance the network’s attention to essential features. This model consists
of two parts: squeeze and excite. The global average pooling layer is applied to the
feature graph to compress the eigenvalue of each channel into a scalar. The result of this
step is a scalar with the same number of channels as the input feature graph, and each
scalar represents the global importance of the corresponding channel. The next step is to
generate channel weights through a series of linear and nonlinear transformations, which
are used to adjust the feature map of each channel in order to amplify important features
and suppress unimportant features. Finally, the channel weights were normalized to 0
and 1 through the sigmoid function to obtain the attention weights. SEResNet is based on
the basic architecture of RESNET, including the convolution layer, residual block, and
pooling layer, which are used for feature extraction and depth modeling. The se attention
module is embedded in each residual block of RESNET. The se attention module intro-
duces the channel attention mechanism, uses the global average pooling layer to capture
the global features, and then, through a series of linear transformations and activation
functions, finally generates weights through the sigmoid function to dynamically adjust
the weights of the feature map. The model can automatically learn the tasks’ important
features and strengthen their representation.

The model helps to enhance the network’s perception of important features in oral
images, enabling themodel to distinguish pro-treatment and post-treatment images better
while allowing the model to adaptively learn mission-critical features rather than relying
on manually designed feature engineering.

2.2.2 General RESNET Model

RESNET (residual network) is a deep convolutional neural network architecture. The
concept of residual learning is proposed to solve the problems of gradient disappearance
and network degradation in deep neural networks. The residual block is the basic build-
ing block of RESNET, which contains one or more convolution layers and a shortcut
connection. The core idea of the residual block is to learn the residual function rather
than directly learning the underlying features. If the input is h(x) and the output of the
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residual block is f(x), then the final output is h(x) + f(x). This design allows the gra-
dient to propagate directly through the jump connection, thus alleviating the gradient
disappearance problem.

2.3 Evaluation Metrics and Methods

In the classification of pro-treatment and post-treatment patients’ photos of oral lichen
planus, it is an essential step to select appropriate evaluation indexes to evaluate the
performance of the model. The post-treatment patients’ photos can be defined as the
negative sample and the pro-treatment patients’ photos can be defined as the positive
ones in this work. In this experiment, accuracy (ACC), precision, recall, and F1 score
are utilized in this work. The calculation method is shown in Eq. (1) to (4).

precision = TP

TP + FP
(1)

recall = TP

TP + FN
(2)

ACC = TP + TN

TP + FN + TN+FP
(3)

F1− score = 2× TP

2× TP + FN + FP
(4)

where, P and N represent the scale of positive and negative samples, respectively. T and
F represent sets of true and false predicted results, respectively.

3 Result

In this section, we utilized the SEResNet model to classify pro-treatment and post-
treatment patients’ photos of oral lichen planus. The detailed classification performances
demonstrated in Table 1 and the performances of Seresne shown in Fig. 1.

Table 1. The performances of SEResNet model

Accuracy Precision Recall F1 Score

62.5% 75% 27.27% 0.4

In order to compare the performance, we employed the ResNet and DenseNet to deal
with this classification model. The detailed classification performances demonstrated in
Table 2 and the performances of Seresne shown in Fig. 2 and Fig. 3.
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Fig. 1. The performances of SEResNet

Table 2. The performances of ResNet and DenseNet model

Accuracy Precision Recall F1 Score

ResNet 55% 44.44% 23.53% 0.307

DenseNet 56.25% 33.33% 16.67% 0.2222

Fig. 2. The performances of ResNet
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Fig. 3. The performances of DenseNet

4 Conclusion

In thiswork,weutilized the artificial intelligencemethod to classify the oral lichen planus
patients’ photos. In detailed, we firstly selected 67 pro-treatment patients’ photos and
41 post-treatment patients’ photos. And then, we employed SEResNet model to classify
these photos. In order to compare the performances of this model, we also employed
other two classificationmodels, including ResNet, andDenseNet, in this work. However,
there are some issues should be considered in the future work. Firstly, both the employed
and the comparedmethod can hardly get the ideal results in the classification issue. Some
available and effective methods should be utilized in this work. Secondly, some effective
features should be utilized in this work. Lastly, the scale of samples should be enriched.
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Abstract. For the treatment of recurrent oral ulcer, total glucosides of paeony is
an ideal drug. Long term application of total glucosides of paeony has low side
effects and better patient compliance. Nucleotide sequence is of great significance
in the field of Botany. In order to further study the pharmacology of Radix Paeonia
Alba, the classification and prediction of nucleotide sequence of Radix Paeonia
Alba is an important challenge. In this paper, we design a deep learning model
based on graph neural network framework. First, each nucleotide sequence is
extracted by k-mer algorithm, and then the extracted features are composed and
put into the graph convolution layer for information transmission. Finally, the
low-dimensional vector that integrates the whole sequence information can help
us classify nucleotide sequences well. The final results of the experiment were
96.00% in Acc, 0.9387 in F1 score, 95.57% in Sn, 96.21% in Sp, and 0.9094 in
MCC.

Keywords: Paeonia lactiflora · nucleotide sequence · graph neural network ·
classification

1 Introduction

Recurrent aphthous stomatitis (RAS), also known as canker sores or oral sores, is a
common oral mucosal disease, which usually manifests as small ulcers or sores in the
oral mucosa. These ulcers may recur regularly, hence the name “recurrent”. Long term
infection will adversely affect the oral health and quality of life of patients. Researchers
found that Radix Paeonia Alba is an ideal drug for the treatment of recurrent oral ulcer.
Research showed that the application of total glucosides of Paeonia Alba can effectively
prolong the interval of oral ulcer [1]. At the same time, compared with other drugs, the
long-term application of total glucosides of Paeonia Alba has low side effects and better
patient compliance. Paeonia lactiflora pall is derived from the peeled dry roots of Paeonia
lactiflora pall, a Ranunculaceae plant. It contains monoterpenoids such as paeoniflorin,
paeoniflorin, oxidized paeoniflorin, benzoyl paeoniflorin, and is collectively known as
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total glucosides of paeony (TGP) [2]. It is widely used as a commonly used traditional
Chinese medicine. Professor Xu’s team’s systematic research on total glucosides of
paeony found that it plays an important role in immune regulation, anti-inflammatory,
analgesic, liver protection and other aspects. Nucleotide sequence is of great significance
in the field of Botany. It is the basic unit to describe the genetic information of plants.
Through the analysis of nucleotide sequence, we can determine the coding region, pro-
moter, terminator and other important functional regions of genes, and then understand
the function and expression regulation mechanism of genes. In order to further promote
the research progress of total glucosides of paeony in Radix Paeonia Alba and provide
more scientific basis for making full use of Radix Paeonia Alba, we decided to study
the nucleotide sequence of Radix Paeonia Alba. The rapid progress of sequencing tech-
nology has produced a large number of biological sequences. DNA sequences are an
important part of biological big data. Only a few DNA sequences have been verified
by experiments. For DNA sequences with new sequencing or unknown functions, the
reliable way to verify their functions is manual experiments. However, due to the large
number of gene databases, it is not feasible to verify them all by experimental methods,
Therefore, it is an efficient way to rapidly predict the potential function of genes with
the help of machine learning and deep learning methods in the computer field.

In the past decades, more and more researchers have tried to use machine learn-
ing or deep learning methods to predict the functionality of DNA sequences. Du et al.
present four different deep learning architectures for the purpose of chromosomal DNA
sequence classification The results show that the architecture of convolutional neural
networks combined with long short-term memory networks is superior to other methods
with regards to the accuracy of chromosomal DNA prediction [3] Liu et al. proposed
DeepTorrent for improved prediction of 4mC sites from DNA sequences. It combines
four different feature encoding schemes to encode raw DNA sequences and employs
multi-layer convolutional neural networks with an inception module integrated with
bidirectional long short-term memory to effectively learn the higher-order feature repre-
sentations [4]. Sarkar S used polynomial Naive Bayes classifier and logistic regression
with k-mer coding to obtain good accuracy in the classification ofDNAsequences, which
were 93.16% and 93.13%, respectively [5]. Hemalatha Gunasekaran et al. employed
CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures using Label and k-
mer encoding for DNA sequence classification. And the CNN and CNN-Bidirectional
LSTM with -mer encoding offers high accuracy with 93.16% and 93.13%, respectively,
on testing data. [6] Quang D et al. proposed DanQ, a new hybrid convolutional and
bidirectional long short-term memory recurrent neural network framework for predict-
ing non-coding functions from sequences [7, 8]. As mentioned above, more and more
research attempts have explored the potential of machine learning and deep learning in
DNA sequence function prediction, and some progress has been made in improving the
accuracy of prediction. However, the existing deep learning classifiers have not fully
tapped the potential of feature representation learning. Some are shown in key sequence
patterns that are crucial for gene regulation. This sometimes leads to poor interpreta-
tion ability of deep learning models, which has an important impact on our mining of
potential functions in gene sequences.
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With the continuous development of deep learning and neural network, many
advanced technologies have emerged. The emergence of graph neural network can trans-
fer information between input features well, and the integrated features will have more
potential information in the context. For DNA sequences, some researchers usually use
traditional feature extraction methods, such as k-mer to express the sequence as a matrix
format required for deep learning, but the disadvantage is that it is easy to lose a lot of
information between sequences, such as the correlation between k-mers. Therefore, we
introduce graph neural network. For each DNA sequence, we can convert it into a graph.
The point feature of the graph corresponds to the occurrence frequency of each k-mer,
the edge of the graph corresponds to the correlation between each k-mer, and the feature
is the frequency of two k-mers in the sequence within the distance of D. The following
is the specific process of our work. Firstly, each DNA sequence is extracted as a fea-
ture vector by k-mer algorithm. Secondly, the sequence features are composed, and the
input graph convolutional neural network is used for message transmission, so that the
information of k-mer can be aggregated into other k-mers according to the information
of the sequence. Lastly, each graph representing sequence features is transformed into a
vector of low dimensional potential space, which is input into the full connection layer
of neural network to classify and predict coding sequences and non-coding sequences
(Fig. 1).

Fig. 1. Work flow chart

2 Methods and Materials

2.1 Data

The data used in this experiment were obtained from the gene library search in NCBI
(National Center for Biotechnology Information) [9, 10]. The gene library is a searchable
gene database that focuses on fully sequenced genomes and has an active research
community to provide gene specific data. Gene information includes nomenclature,
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chromosomal localization, gene products and their attributes (e.g., protein interactions),
relevant markers, phenotypes, interactions, citation links, sequences, mutation details,
maps, expression reports, homologs, protein domain content, and external database links.
Finally, we obtained a total of 92 DNA sequences of Paeonia lactiflora, including 58
protein coding sequences and 34 noncoding sequences.

2.2 k-mers Feature Extraction Method

For a given DNA sequence consisting of A, C, G and T and a positive integer k, the
k-mers of the sequence are all sequence substrings of length k, so each DNA sequence
has 4k different k-mers [11, 12]. In the experiment, we used different scales of k = 2
and k = 3 for feature extraction. When k = 2, the examples of 2-mers are CG and AT,
and when k = 3, the examples of 3-mers are ACT, CGA and TTG. When the value of
k becomes larger and larger, the dimension of the eigenvector will also increase, and
it can reflect the basic structure information in the sequence in more detail, providing
reliable data for our subsequent series of operations such as classification and analysis
of the sequence. However, too high value of k will lead to high latitude disasters and
cause problems such as overfitting of our model. Therefore, it is an important problem
to select the appropriate value of k in the experimental process.

2.3 Graph Neural Network (GNN)

The earliest graph neural network originated from dr.franco’s paper. The theoretical
basis in this paper is fixed point theory. For a given graph G, each node has its own
characteristics [12–15]. Assuming the existence of node V, we use XV to represent the
characteristics of node v. At the same time, the edges connecting nodes also have their
corresponding characteristics. We use X (V, U) to represent the characteristics of the
edges connecting nodes V and U. The training purpose of graph neural network is to
obtain the graph perceived hidden state of each node. For each node in the graph, its
hidden state contains information from neighbor nodes, and the hidden state of each
node is updated iteratively. For example, at t + 1, the update state of the hidden state of
node V is shown in Eq. (1)

ht+1
v = f (xv, xco[v], htne[v], xne[v]) (1)

f in the formula is the state update function of the hidden state, also known as the local
transition function. The feature of the edge adjacent xco[v] to node v, htne[v] refers to
the hidden state of the neighbor node at time t. For deep learning, what we need to do
is to fit this function f through neural network. In the process of network training, the
hidden state of the neighbor node at the current time is continuously used as part of the
input to generate the hidden state of the central node at the next time, until the change
of the hidden state of each node is small, and the information flow of each graph tends
to be stable. Now that each node has integrated the information of its neighbors, we use
them to complete various downstream tasks. The downstream task of this paper is to
determine whether the graph representing different gene sequences is coding genes.
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2.4 Graph Convolutional Neural Network (GCN)

Graph convolution neural network gets rid of the method based on cycle and starts
to move towards multi-layer graph neural network [16]. Similar to the well-known
convolutional neural network, the concept of graph convolution is to superimpose a node
and its neighbors according to different weights to achieve the purpose of information
transmission. The transfer formula of GCN is shown in Eq. (2).

H (l+1) = σ(D̃− 1
2 ÃD̃− 1

2H (l)W (l)) (2)

Where represents the weight matrix and represents the adjacency matrix with self-
ring edges. Assuming that no self-ring edges are added to the adjacency matrix, the
diagonal elements are all 0.

2.5 Construction of Graphs

For the sequences that have been feature extracted, we compose them. Given a sequence
S, we construct a pattern graph G (S, k) of the sequence [17, 18]. Each vertex of the
graph corresponds to the frequency of each k-mer in the sequence. For two vertices m
and n, if and only if the distance between the k-mers corresponding to these two vertices
in the sequence s is within a given range d, there will be edges. For example, if there is
a sequence ACTGCA, the 3-mers of the sequence are ACT, CTG, TGC, GCA, which
constitute the four vertices v1, v2, v3, v4. If d = 1 at this time, the graph has only one
edge. The feature of the edge represents the frequency of two k-mers in the sequence
when the adjacent distance is within d.

In this work, normalized counts were used for all frequency features. For example,
the normalized count of k-mer refers to the number of occurrences of this k-mer in a
sequence divided by the total number of occurrences of all k-mers.

2.6 Evaluation Metrics and Methods

Accuracy (Acc), sensitivity (Sn), specificity (Sp), Matthews correlation coefficient
(MCC) and F1-score were used to evaluate the performance of the prediction system
[19, 20]. The calculation method is shown in Eq. (3)–(7).

Sp = TN

TN + FP
(3)

Sn = TP

TP + FN
(4)

Acc = TP + TN

TP + TN + FP + FN
(5)

F1 = 2 × TP

2 × TP + FN + FP
(6)

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN ) × (TN + FP) × (TN + FP)

(7)
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For a binary classification problem, the classification results are as follows: true class
TP, false positive class FP, true negative class TN, false negative class FN. Among them,
TP is a positive sample predicted as a positive class, FP is a negative sample predicted
as a positive class, TN is a negative sample predicted as a negative class, and FN is a
positive sample predicted as a negative class. SN and SP are the proportion of correct
predictions in positive samples and negative samples. The f1 score reflects the robustness
of the model. The higher the score, the more stable the model. Acc reflects the overall
accuracy of the classifier. When the data set is unbalanced, Acc cannot really evaluate
the quality of the classification results. In this case, we will choose MCC for evaluation.
The horizontal axis of the ROC curve is generally the ratio of FPR, that is, the ratio of
negative samples to positive samples, and the vertical axis is the ratio of FPR, that is,
the ratio of positive samples to positive samples. AUC refers to the area under the ROC
curve as an evaluation index. When AUC = 1, it is the ideal state of the model, but it is
difficult to achieve in reality. When 0.5 < AUC < 1, it shows that the model is useful.
When AUC is closer to 1, the effect of the model is better.

3 Result and Discussions

After constructing the graph from the sequence, we convert these graphs into embed-
ding through multi-layer GCN, connect the convolutional neural network to reduce the
dimension first, and then we can input these features that integrate the information of
vertices and edges into the neural network of the full connection layer for downstream
analysis. In this work, we used to classify and predict the coding genes and non coding
genes of Paeonia lactiflora. In the parameter selection, we used k= 2 and k= 3 to extract
the features of gene sequences, respectively. The 2-mer and 3-mer were composed and
input into GCN for classification, and the performance of the model was compared with
that of the machine learning classifier used by Yang et al. When k = 2, the results are
shown in Table 1.

Table 1. The performances in k = 2.

Model Sn(%) Sp(%) Acc(%) Mcc F1 AUROC

2-mer-gcn 95.77 94.68 95.035 0.8824 0.9251 0.9534

Kmer-SVM 98.25 83.34 93.445 0.8702 0.9521 0.9333

From the table, we can see that in the case of k = 2, Sp compared with the machine
learning model based on Kmer-SVM, the performance improved by 11.34%, MCC
increased by 0.0122, and ACC also improved significantly, reaching 95.035% in the
end, achieving a relatively ideal classification performance. When k = 3, the results are
shown in Table 2.

In Table 2, we can see that in the case of k = 3, the performance of Sp, ACC, MCC
andF1 is significantly improved comparedwith that of themachine learningmodel based
on Kmer-SVM, and the ACC is 96.003%, which is increased compared with that of the
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Table 2. The performances in k = 3.

Model Sn(%) Sp(%) Acc(%) Mcc F1 AUROC

3-mer-gcn 95.573 96.205 96.003 0.9094 0.9387 0.9597

Kmer-SVM 98.25 83.34 93.445 0.8702 0.9521 0.9333

2-mer-gcn 95.77 94.68 95.035 0.8824 0.9251 0.9534

model with k = 2, while the AUROC increases less, only 0.0063. We believe that when
k = 3, we can obtain more information than when k = 2, So in the later composition
and embedding process, we extracted features that are more suitable for this model for
training.

4 Conclusion

In this work, we convert the nucleotide sequence of Paeonia lactiflora Pall into a more
interpretable sequence representation, each sequence can be constructed into a coding
map based on k-mer feature extraction method. In order to compare these maps and
classify and predict them, we used graph neural network to filter these maps into low-
dimensional embedding, so that they can be applied to the framework of deep learning
to do more downstream analysis. Based on this framework, we used two scales of fea-
ture extraction, k = 2 and k = 3, respectively. The experimental results show that the
performance of the classification model based on machine learning is improved, and the
effect is the best when k = 3, because we can get more information from the sequence.

Representational learning is not the first time that it has been applied to gene
sequences, such as word2vec, a widely used natural language processing technology,
which has made many contributions to coding the human genome and solving problems
such as species recognition, methylation site prediction and so on. However, this method
is based on the local context of sequence fragments for learning, and graph neural net-
work provides the global information of the whole sequence. We believe that this more
accurate model for functional analysis of gene sequences will provide more useful help
for researchers.
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Abstract. Similarity is a rich concept deeply rooted in human knowledge and
perception. Interest in similarity and categorization of objects can be traced back
to Plato. Although studied by philosophers, and mathematicians for a long time,
there was no agreement on the “best way” to define it and measure it. Recently,
the concept of similarity and methods to assess similarity between objects have
assumed great importance in Data Mining (DM), Machine Learning (ML), and
Bioinformatics (BI). Thevarious proposedmethods tomeasure semantic similarity
do not use semantics and fully agree with human judgement. In this paper we
construct semantic similarity functions that remedy this situation.

Keywords: Semantic similarity scoring functions · data mining · machine
learning · healthcare informatics

1 Introduction

Similarity, and categorization of objects are deeply rooted in human knowledge and
perception. Gini [1] traces the evolution of these concepts from early to modern times,
and deals with the role of similarity in categorizing molecules. He explains that these
early ideas lead to the geometrical model of similarity due to Carnap in which every
object is represented as a point in an n dimensional metric space (X, δ). The well-
understood Euclidean distance formula

δ(a, b) = (a1 − b1)2 + · · · + (an − bn)2

is the most popular function used by a large number of researchers in geometric models
to assess similarity between objects. Tversky [2] is the first to refuse geometric model,
observing that they violate their three basic axioms on reflexivity, symmetry, and tri- angle
inequality. He introduced a newmodel for objects, called the contrast model, in which an
object is represented as a set of features of the object. In this model similarity of objects
is calculated using functions defined on the set-theory operators union, intersection, and
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difference of feature sets. If A, B and C respectively denote the set of features of objects
a, b, and c, Tversky’s “generic similarity” function is

STV (a, b) = f(A ∩ B)

f (A ∩ B) + αf (A\B) + βf (B\A)
(1)

where α, β > 0, f (X) > 0, if X/ = ∅, and f (∅) = 0. It is easy to prove that if α /= β then
ST V (a, b) /= ST V (b, a), and if α = β then ST V (a, b)= ST V (b, a). For The set-theoretic
functions listed inTable 1 are all bounded and can be derived from ST V M as special cases.
Many applications in ML, such as Recommender Systems and Match Making Systems,
use one of these functions, although they do not include domain-specific semantics
of the objects. However, objects of interest in biomedical and patient-centric healthcare
domainwill include concept terms that have domain semantics.Many terms and concepts
that describe objects, like diseases, emotional aspects, and drugs have domain-specific
meanings and relatedness. Drugs are usually coded with their approved medical names
and they are of type categorical. A raw comparison of any two attribute values will only
result in “total dissimilarity” between drugs. As an example, ACANY A = ONEXTON
if the medicine names are viewed as of “categorical type” and comparison is done
viewing them as “strings”. However, in the medical domain “ACANYA” is a “generic”
of “ONEXTON”. As such they should be considered as “equivalent”. From a survey
of literature on similarity functions and their applications, we observe that researchers
in DM and ML mostly use the distance functions in their research. In biomedical and
healthcare, researchers have used distance- based functions or set-theoretic measures
without semantics or a combination of both types. Only recently [3] methods that use
ontologies (for semantics) to compute similarity and incorporate them in ML and DM
have been investigated. AnOntology inHealthcare domain is used to provide relatedness
of concept terms. Two of the well- knownOntology in Healthcare domain are SNOMED
CT [4] for clinical terminology, and IC-10 for the classification of diseases.

Concepts in an Ontology are related by is-A (x y) relation. It means that “the concept
x is subsumed by or a specific class of concept y”. An ontology is a semantic digraph
(sometimes it can be a tree) in which every node is a concept name and edge directed
from node x to node y means x y. We consider only an Ontology that has a unique
maximal element C0, called the “root concept”. The relation is a partial order relation.
Some of the partial order relations in Fig. 1 are C4,C1, C5,C2, ad C6,C3. From any
node x in the Ontology there is at least one directed path from x to C0. Between any
two nodes in an ontology there may not exist a path or there could be many paths. For
example, in Fig. 1 there is no path from C1 to C2, and there are three path from C5
to C0. If there is a (directed) path from x to y we define the length of the path as the
number of nodes along the path (including sx and y). The semantic distances proposed
by several researchers [5–9] have failed to respect the directions in the ontology graph.
These inaccuracies have been extensively explained in [10]. The methods discussed in
this paper remedy these deficiencies. In addition to remedying this, we integrate user-
level semantic knowledge in the construction of scoring functions used for similarity
calculation [10, 11]. Hence, our approach is likely to fulfill both domain knowledge
(partial orders) and human judgement requirements.

In Sect. 2 we present our results on semantic distance functions, illustrate their
empirical evaluations with the case study ontology example. We also include a summary



Semantic Similarity Functions and Their Applications 67

Fig. 1. Ontology - Rooted Digraph Example

on the performance of semantic distance function calculation on two large ontology
examples chosen from the healthcare domain. In Sect. 3 we present a method that uses
the results from Sect. 2 for assessing drug-drug similarity. In Section 4 we present a
method that uses the results from Sect. 2 for identifying and retrieving relevant datasets
that satisfy user-centric quality criteria. We conclude the paper in Sect. 5. We use the
sample Ontology in Figure 1 as a reference point for discussion.

2 A Family of New Semantic Distance Functions

We introduce a new family of semantic similarity functions in this section.We recognize
that every node x in an ontology has the following two properties: (1) from x the root
node is “reachable” and (2) there is at least one “leaf node” from which x is reachable.
The “reachable distance” from node x to root “ measures the depth of node x ” and the
“reachable distance” from a leaf node to x measures the “height” of node x . The reach-
able distance itself can be measured either using “maximum path length” or “minimum
path length”. Because both height and depth are well-defined in an ontology digraph, we
model every node x as a vector with two components 〈depth(x), height(x)〉<depth(x),
height(x)>. In fact, the depth and height can be measured using either “longest” or
“shortest” path notions. Consequently, we end up with four different models, which
we call Max-Max (Mxx), Max-Min (Mxn), Min-Max(Mnx), and Min-Min(Mnn) .
We emphasize that both height(x) and depth(x) have semantic interpretations based on
subsumes (subsumedby).Belowweuse the generic namesTop(x) andBot(x) respectively
for depth(x) and height(x). For the sake of clarity we give below definitions and examples
for Mxx. It is easy to define the other three models.

2.1 Semantic Measure for Mxx Model

We define Top(x) as the number of nodes in a longest chain from x to the root of the
Ontology. That is, Top(x) is the maximum number of concepts that subsume x. This
defines the depth for Mxx. We consider all chains starting at leaf nodes of the ontology
and ending at x. Among all such chains, we pick a longest chain and let Bot(x) denote the
number of nodes in that chain. So, Bot(x) is the maximum number of concept terms that
inherit x and is the height of x inMxx. Fromevery node x in theOntology the root concept
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can be reached. So, Top(x)≥ 1. Either x is a leaf node or it has a node inheriting it. Hence,
there is a leaf node in the ontology from which x can be reached. Consequently, Bot(x)
≥ 1. So, we model x by the vector 〈Top(x),Bot(x)〉, whose components are integers
greater than or equal to 1. Because we want to have bounded values, we normalize
the vector. The normalization itself can be done in two ways for a vector 〈a, b〉. The
first normalization is the unit vector

〈
a
r ,

b
r

〉
, where r = √

r = a2 + b2. The second

normalization is to make the components “as convex”. That is, the normalized vector

of 〈a, b〉 is
〈
a
s ,

b
s

〉
, where s = a + b. Thus we have two models under each of the four

different modelsMax-Max (Mxx),Max-Min (Mxn),Min-Max (Mnx), and Min-Min
(Mnn), giving rise to eight models. We label them as Mxx-u (unit vector model under
Max-Max) and Mxx-c (convex model under Max-Max). Similar labels are applied for
the other models. Below we explain distance/similarity calculation for Mxx-c.

Semantic Distance Function for Mxx-c. The vector model for x is 〈x1, x2〉, where

x1 = Top(x)

Top(x) + Bot(x)
, x1 = Bot(x)

Top(x) + Bot(x)
(2)

For two concepts x, and y, x = y in the Ontology we first compute their vector models
x〈x1, x2〉, and y〈y1, y2〉, and next we calculate the similarity as their inner product as
defined in Eq. 3.

(3)

UnderMxx-cmodel, the computed similarity measures for all pairs of concept terms
in the ontology (Fig. 1) are shown in Table 1.

We notice that the computed values seem to agree with the level of semantic relat-
edness in the ontology. However, the similarity is “symmetric”, although “relatedness”
is only a partial order. In many applications where symmetry is required, we can use
any one of the above eight distance functions. However, in applications where “dissimi-
larity” as reflected by “partial order” is required, we can use the Tversky’s set-theoretic
similarity function. We sum up our contributions on similarity for pairs of concept terms
x, y in an ontology as follows:

Result 1
If x = y, σ (x, y) = 1.

If x and y are not related by partial order, then σ (x, y) can be any one of the eight
distance functions or the set theoretic Jaccard function JS(A(x), A(y)).

if , either directly or transitively in the ontology, then
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Table 1. Similarity Values for All Pairs of Concept Terms in the Ontology in Fig. 1

Applying the above function rules to the Ontology in Fig. 1 we have the following
result: The similarity of a concept term to itself is 1. The pairs of concepts (C1, C2), (C1,
C3), (C2, C3), (C1, C6), (C2, C4), (C2, C6), (C3, C4), (C4, C5), (C4, C6), and (C4, C7)
are not related by the partial order . Table 1 shows their symmetric values. For the rest
of the pairs of concepts, the asymmetric function σ is used to calculate the similarity
values with α = 0.4. As an example, consider the pairs (C2, C5) for which C5 C2 holds.
We have A(C5) = {C5, C1, C2, C6, C3, C0} ⊂ A(C2) = {C2, C0}.

Using the asymmetric functions defined above we have

σ(C5,C2) = 2

2 + 0.4(4)
= 5

9

σ(C2,C5) = 2

2 + 0.6(4)
= 5

11

We can verify that σ (C5, C2) > σ (C2, C5), as desired by human judgement.

2.2 Similarity Between Sets

The functions in Table 1 measure the “structural similarity” between items. We adapted
ST V and JS in the previous section for measuring “structural semantic similarity” on
sets whose elements are concept terms. In this section we explain a method to calculate
semantic similarity between two sets using the statistical functions “average” and “min-
max”. We illustrate our method below for max-min method. Let A = {c1, c2, · · · cm}
and B = {

c′
1, c

′
2, · · · c′

n

}
be the given sets of concepts from an ontology.

– For element ci ∈ A compute its similarity with every c′
j ∈ B using Result 1. We have

ρi = {σ(ci, c
′
j)|c′

j ∈ B}
– Repeating the previous step for every ci∈ A we get the sets ρ1, ρ2,…, ρm.
– Calculate theminimumvaluemini of each set ρi. That is,mini =minimum {k|k ∈ ρi }.

Hencewehave calculated the setMin=min1, min2,…,minm. Calculatem=maximum
{k|k ∈ Min }. That is, m is the maximum of all the minimums.

– Define the set similarity as σ (A, B) = m.
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Example 1. Let A = {C0, C3}, and B = {C4, C6, C7} be two sets of concept terms
taken from the Ontology in Fig. 1. The similarity values for the elements of these sets,
computed using their vector models, are shown in Table 1. We have

ρ1 = {σ(C0,C4), σ (C0,C6), σ (C0,C7)} =
{
1

3
,
1

2
,
5

18

}

ρ1 = {σ(C3,C4), σ (C3,C6), σ (C3,C7)} =
{
5

12
,
1

2
,
7

19

}

Hence, average = 0.399; max − min = 5
18 = 0.278, minmax = 1 = 0.5.

2.3 Implementation

We have implemented all the similarity function calculation methods and tested its
performance efficiency. By inspection on the Table 1 and understanding the relatedness
of concepts in Fig. 1 we could validity the results in that table. We combined the two
Emotional ontology examples in [12], which has 46 concept terms, and computed 46
× 46 table of similarity values. We computed much larger similarity tables for the dis-
ease ontology and ATC codes ontology [13]. Based upon the validity of earlier results
on the Table 1 we are assuming that the computed results using our similarity functions
on larger ontology examples are valid. For these results, only domain experts will have
the background knowledge to authentically validate our results. These results appear in
the thesis work of Liu [10]. We use these results in Sects. 3 and in 4.

3 An Approach to Assess Drug-Drug Similarity

Many researchers [6, 14, 15] have proposed methods to calculate drug-drug similarity.
All of them have taken only one aspect (feature/attribute) for modeling a drug. As
examples, Zhang [16] considers protein sequence for each drug as the drug model,
Ferdousi et al., [15] uses “biological element” as the attribute. As opposed to these
models, our drugmodel is richer, includes five different attributes. Many of the attributes
have ontology-based semantic support. The chosen attributes are Drug Name, Cancer
Names, ATC Codes, Dosage Strength, and Drug Side Effect. Notice that we use only
Brand Name (as Drug Name) in implementation, because we include in it the set of
Generic names of that Brand name. Thus, we have a vector model with 5 components
for a drug. The components of the vectors are attributes, arranged in a fixed order. To
compare two drug vectors, we need to compare the corresponding components of the
vectors. Because the attributes have different types we need different functions to “assess
their similarity (closeness)”. So, to emphasize the comparison at each attribute level we
use the term “score” that measures the “similarity of a pair of attribute values”, and
we reserve the term “similarity” to assess the similarity of the entire drug vectors”. We
assign different weightsw1,…, w5 (1≤wi ≤ 5) to the attributes, in order to dis- criminate
their level of significance in an experiment. These weights and types for these attributes
are assigned by experts. Assume in the drug record the value of an attribute is r, and the
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user specifies the value q for that attribute. To integrate “user-level semantics for that
attribute” we allow the user to specify a weight w for the attribute value, and specify
either “MB” or “LB” for that attribute. The wish “More is better” of the user is conveyed
through “MB”. The meaning is “the user prefers a higher score assigned to the record
in which r is maximum possible greater than q”. Similarly, the wish of the user “Less is
better” is conveyed through “LB”. The meaning is “the user prefers to assign a higher
score to the record in which r is the least possible amount less than q”. The following
scoring functions integrate these semantics with semantic distance functions to calculate
similarity scores at attribute level.

Score for Drug Names: If there is no ontology support for drugs, and a drug may
include any one of it’s generic names the scoring function to compare two drug names
r and q is defined as

(4)

If an ontology support exists for drugs, then we calculate all the semantic distance
measures defined in Sect. 2 for the pair (r, q). Under MB semantics, if r> q then score(r,
q) for that record is to be assigned the maximum of the calculated measures. Under LB
semantics, if r < q then for that record score(r, q) is to be assigned a higher value.

Score forCancerNames&ATCCodes: Ontology support exists. So, for two different
cancer names (ACT codes) we calculate all the semantic distance measures defined in
Sect. 2 for the pair (r, q). Scores as explained before is assigned forMBandLB semantics.

Score for Dosage Type: The values r and q from two drug records are of numeric type.
We project the distance function

on one attribute only.
Then we integrate LB and MB semantics in that projected function as shown below.

score(r, q) =
1 r = q∣∣∣1 − r−q
q

∣∣∣, r < q∣∣∣1 + r−q
q

∣∣∣, r > q

(5)

For LB semantics we just reverse score functions defined for MB semantics.

score(r, q) =
1 r = q∣∣∣1 + r−q
q

∣∣∣, r > q∣∣∣1 − r−q
q

∣∣∣, r > q

(6)

Score for Side Effect: Side effect is recorded as a “string”. The scoring function that
compares “string” values will use only Exact Match (EM). So, for two strings r and q
we define the scoring function as in Eq. 7.

(7)
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Algorithm DS
Assume that D = R1, … , Rn is a set of drug vectors and Q is query vector. Each Ri has
5 components. The query has 5 components, giving values for respective attributes, the
weights assigned, and the semantic terms “MB” or “LB”. The algorithm compares each
component of the vector Q with the corresponding component of vector Rj. That is, it
compares Qi with Rji, for i = 1,… , 5. It applies the scoring function λi, as explained
above, to the pair (Qi, Aji). The value vji = λi(Qi, Aji) is a measure of “closeness”,
consistent with the semantics and mode specified in the patient query structure. Next, it
computes the weighted mean

sj =
(
w1 × vj1 + w2 × vj2 + · · · + w5 × vj5

)

(w1 + w1 + · · · + w5)

which gives the “similarity measure between the drug Aj and the target queryQ. Having
calculated the measures s1, s2, … , sn for all drugs in the set D, the algorithm ranks the
set of drug records in non-increasing order. So, the top of the ranked list is the “best
match” for the target query.

A drug dataset consisting of 50 drugs was selected from Drug Bank to run our
algorithm with one of the drug vector from the database chosen as the target query. All
semantic distance measures were pre-computed and the similarity tables were input to
Algorithm DS. The attribute weights were chosen as [1, 2, 4]. We identified from the
ranked list of records the drugs that have “high similarity” and drugs that have “are close
in ranking”. We noticed that drugs that have low similarity and close to each other in the
ranked list are those that share “few ATC codes”, and drugs that have “high similarity”
and “close to each other in ranking” are those that share “many ATC codes” and “some
common side effects”. Our observation make us believe that our AlgorithmDS produces
valid similarity results. Our algorithm runs efficiently on large datasets of drugs.

4 Using Similarity of Sets to Retrieve Relevant Datasets

In this section we discuss an application of the similarity calculation function for sets
of concepts that we developed in Sect. 2. The application is in the discovery of relevant
datasets in Big Data research domain. It is well known that AI & ML research com-
munity is one of the largest group of researchers who pursue data mining and knowl-
edge discovery in many important application domains of national importance. They
acknowledge [17, 18] that “finding relevant (suitable and accurate) datasets and under-
standing their structure” is the most important Data Management Step to be resolved
before ML activities can begin. The notion of relevance has been defined differently by
different research groups. It includes content semantics, context, scope, accuracy, and
provenance (trustworthiness). The only two dataset search engines that are currently
available for research community are Google [19] and Auctus [20]. Google engine dis-
plays a “list of metadata” chosen by the engine, and the user has to follow one of the
links associated with it to access the dataset. Google and Auctus engines do not provide
an option for users to input semantic relevant metric and quality attributes and their
metrics. Auctus engine generates a metadata and tells the user to either improve it or
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input their own metadata for selecting datasets. The paper [20] states clearly that “au-
tomatically generated metadata may be incompatible with the actual dataset” it finds.
Consequently, both Google and Auctus search engines do not meet the requirement of
AI & ML research community in “finding relevant” datasets. The recent thesis work of
Alaa Alsaig [11] has proposed a new approach for dataset search engine development
using the similarity calculation function for sets of concepts that we have developed in
Sect. 2.

Table 2. List of Quality Dimension Provided to Providers

Quality
Dimension

Data Type Value-
Measurement

Required?

Volume Numerical gigabyte Mandatory

Variety) Nominal {xml, cvs, text,..} Mandatory

Velocity Numerical Number of days Mandatory

Veracity Categorical {not known, acceptable, verified} Optional

Value� Numerical Percentage Mandatory

Release Year Enumerate {1995,.,2050} Mandatory

Availability Interval [2021,2023] Optional

Reliability Categorical {low, medium, high} Optional

Safety Categorical {low, medium, high} Optional

The two most important descriptors used in [11] are set of semantic terms (tags), and
quality attributes. These two aspects of metadata descriptions are sufficient for similarity
analysis. Assume that the set of metadata is organized in a database, and they can be
accessed in a sequential indexing. For the ith metadata, The sets TAi = {

t′i1, ..., t′im
}

which includes all the tags that are chosen from an ontology, and QVi which includes
values for all the quality attributes are associated. The quality attributes and their value
types are shown in Table 2. The significance of the chosen set of attributes is that it
includes the 5 most important Vs that characterize Big Data, and the trustworthiness
attributes “timeliness (Release Year), Availability, Reliability, Safety”. The attributes
marked “mandatory” should be included and given a value (as specified in the table)
in every metadata description. Both the ontology and Table 2 are shared by all users
(ML or DM engineers) who will “query the database of metadata” through a rich user
interface to the search engine. The user query has the structure Q = [ST, (QV, W, B)],
where ST = (t1, p1), … , (tk , pk)) where t’s are semantic terms from the ontology, and
the ps are weights (semantic preference) associated with the semantic terms, QV is the
quality vector in which each component is given a value for that attribute (as illustrated
in the table),W is the weight vector whose components are weights for the respectiveQV
components, B= 0 for LB semantics, B= 1 forMB semantics, B= −1 for no semantics.
Algorithm DSE describes the essential steps of the search engine in extracting metadata
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from the database that “best match” user query. The search engine has access to the
database and ontology in order to process the query Q = [ST, (QV, W, B)].

Algorithm DSE
Let τ denote the threshold specified by the user to filter out those metadata which have
“low semantic relevance”. So, the algorithmwill select themetadata j only if its “semantic
relevance score as computed by the algorithm exceeds τ . This way algorithm respects
“user-level judgement” in assessing semantic relevance.

1. Assess Semantic Relevance & Filter Out: For each metadata i the following steps are
done.Wemodify the algorithm given in Sect. 2.2 to compute the score σ i of similarity
of ST (in the query) to each TAi as follows:

– From ST extract the set STct of concept terms {t1, … , pk}.
– Using Result 1, compute the similarity of tj ∈ STct with every t

′ ∈ TAi.
We get σ (tj, t

′
). For tj the preference weight is pj. Hence, we multiply the

computed value by pj to calculate the score of “closeness of tj with t
′
ir .” Fixing tj,

this step is repeated for r = 1, … , m. We get the following set of weighted scores
for tj.

ρj = {σ (
tj, t

′
ir

)|r = 1, · · ·,m}
– Repeating the previous step for every tj ∈ STct we get the sets ρ1, ρ2,…, ρk .
– Calculate the minimum value mini of each set ρi. That is, mini = minimum

{k|k ∈ ρi }. Hence we have calculated the set Min = {min1, min2,… , minm}.
– Calculate mi = maximum {k|k ∈ Min }. That is, m is the maximum of all the

minimums.
– Define σ (ST, TAi) = mi.
– Ifmi <τ , the ithmetadata associatedwithTAi is not selected. Ifmiτ the ithmetadata

is selected.
– We have now filtered out from the given dataset of metadata a set FS of meta-

data, and every metadata in FS is semantically relevant to user specified ST.
– The above steps are repeated for every metadata tag set TAi.

2. Assess Quality Measure for each metadata in FS

– Assume that |FS|=N. Do the following step for i= 1,…, N. Compute the similarity
score for the pair QVi (of the ith metadata in FS) and QV. Vectors QVi and QV
have the same length 9, assuming unspecified fields will be treated as “0” (to be
ignored). Algorithm DS given in Sect. 3 will be used here, with the weight vector
W and semantics B as specified in Q. The result from Algorithm DS is the score
λi, the similarity score for quality attributes.

– Now we have the scores {λ1, … , λN}. Rank the set FS of filtered metadata in the
non-increasing order of their λ measures. So, the top of the ranked list is the “best
match” metadata for the user query.

– The dataset linked to each metadata in the ranked list can be requested from the
dataset provider.
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Example 2 The concept terms are chosen from ontology in Fig. 1.
Let TA1 = {C4,C6} and TA2 = {C1, C3, C5} be the semantic terms associated

respectively with metadata M1 and M2. Let ST in a user query be {(C5, 3), (C6, 2)}.
So, we need to compare the set {(C5, C6)} of semantic terms in the query with TA1 and
TA2 and assess their weighted similarity score. We use the results from Table 2.

For M1: We have to assess the similarity of {C5, C6)} with {C4, C6}. For term C5,
we look up from the table the similarity scores with the concept set {C4, C6}. We have{ 7
12 ,

1
2

}
. We have to multiply these values with the preference weight 3 of C5 (assigned

by the user in the query). So, we get ρ1 = { 21
12 ,

3
2

}
. Next, for term C6, we look up from

the table the similarity scores with the concept set {C4, C6}. We have
{ 1
2 , 1

}
. We have

to multiply these values with the preference weight 2 of C6 (assigned by the user in the
query. So, we get ρ2 = {1, 2}.

For M2: Following similar steps, we calculate the set ρ3 = { 21
15 ,

12
9 , 3

}
for C5

similarity with TA2 = {C1, C3, C5}, and the set ρ4 = {1, 1, 1} for C6 similarity with
TA2 = {C1, C3, C5}. Below are the measures on relevancy under the three possible
schemes.

– Average:
σAverage(ST, TA1) = 1.75+1.5+1+2

4 = 1.5625
σAverage(ST, TA2) = 1.4+1.75+3+3

4 = 2.26

– Max-Min:
σMax−Min(ST, TA1) = max{minρ1, minρ2} = 3

2 = 1.5
σMax−Min(ST, TA2) = max{minρ3, minρ4} = 12

9 = 1.75

– Min-Max:
σMin−Max(ST, TA1) = min{maxρ1, maxρ2} = 21

9 = 1.75
σMin−Max(ST, TA2) = min{maxρ3, maxρ4} = 3

The conclusion is, under all semantics metadata M2 is “more relevant” than
metadata M1.

5 Conclusion

The significant contribution of our paper is the new family of semantic distance functions
and their applications in Healthcare and Big Data. Our methods can be applied to selec-
tion and ranking problems in any domain, provided ontology is included and at- tributes
(features) are assigned precise type definitions. By integrating domain-specific seman-
tics and user judgement-level semantics in the definition of scoring functions we achieve
a good level of domain accuracy in scoring function calculations that is acceptable to
analysts (users). The methods that we have proposed must be empirically evaluated on
large real-life datasets to assess their merits. Our future research continues in this direc-
tion, although we find it hard to get relevant datasets. We are hoping that ML and DM
research community, who will have access to large data sources, can assess the merits
of the semantic distance functions given in this paper.
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Abstract. The electroencephalogram (EEG) signal is pivotal for the expert diag-
nosis of epilepsy in patients. However, experiential bias among these experts can
sometimes lead to inconsistent judgment outcomes. To mitigate this, it is imper-
ative to establish a comprehensive algorithm to aid in resolving this issue. This
study introduces a novel deep learning architecture that integrates convolutional
neural network (CNN) and capsule neural network (CapsNet) to provide end-to-
end epilepsy diagnosis. Using CNN facilitates the extraction of both temporal and
spatial information from EEG data. Subsequently, CapsNet analyses the resul-
tant hybrid feature vector, enabling the categorization of interictal and ictal cases.
The model was validated through its application to the CHB-MIT and SIENA
public datasets for validation purposes. In the domain of seizure event detection,
our model demonstrates the accuracy of 99.12% and 99.54%, the sensitivity of
89.97% and 90.93%, specificity of 99.27% and 99.59%, and F1 score of 77.15%
and 77.27%, respectively. Furthermore, The CHB-MIT dataset was utilized for
seizure onset detection, resulting in a sensitivity rate of 99.13% and a time delay
of 9.28 s. Collectively, these results underline that our model adeptly extracts
meaningful features from EEG datasets, ensuring accurate judgments.

Keywords: Capsule network · Convolutional neural network · Deep learning ·
Electroencephalogram · Seizure detection

1 Introduction

Epilepsy is identified as a pervasive and chronic neurological disorder, impacting an
estimated global population of approximately 60 million [1]. The pathology originates
from aberrant neuronal discharges in the cerebral region, culminating in transient pertur-
bations in electrophysiological brain activity. Such manifestations encompass episodic
loss of consciousness, convulsive episodes, and involuntary limbmovements. The abrupt
onset of these episodes leads to profound ramifications for affected individuals. Presently,
the diagnostic evaluation of epilepsy largely hinges on the visual inspection of patients’
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electroencephalogram (EEG) by medical professionals [2]. The veracity of this diag-
nostic paradigm remains to be fully ascertained, with notable variations observed across
medical evaluations. The infusion of artificial intelligence (AI) methodologies for the
detection of epileptic seizures surfaces as a salient development in contemporarymedical
research, largely attributed to the monumental strides in AI domains. The integration of
AI mechanisms not only holds promise for automating the seizure detection procedure
but also for elevating its diagnostic precision [3].

In the realm of AI, machine learning techniques assume a pivotal role, particularly
in discerning EEG seizures [4]. Over the past decade, a plethora of machine learning
algorithms have emerged to tackle this intricate task. Alotaiby et al. [5] enhanced the
common spatial pattern (CSP) method to distill features from EEG segments, subse-
quently leveraging SVM for classification purposes. Birjandtalab et al. [6] harnessed
the Fourier transform technique to compute the power spectral density of EEG windows
and utilized these computed metrics as features to feed into a random forest classifier.
Yet, it’s imperative to acknowledge that such feature extraction mandates a nuanced
expertise. The stratified application of feature extraction might not resonate universally,
given the inherent heterogeneity of EEG data across demography.

Deep learning has demonstrated an intrinsic capability to abstract high-level repre-
sentations directly from raw signals [7]. Li et al. [8] leveraged CNNs to intuit multi-
scale temporal and spectrum information from raw EEG. Additionally, they mitigated
the issue of data imbalance by implementing the maximummean difference loss. Albeit,
this methodology uses only five EEG channels, which may result in the loss of impor-
tant information. Thuwajit et al. [9] extracted time-domain receptive field information
using multi-scale model. A spatiotemporal feature extractor is applied to different recep-
tive fields, then a global pooling layer merges the features and feeds them into a linear
layer for epileptic event categorization. Yet, the deployment of global average pooling
inadvertently eclipses certain pivotal features.

To address the gaps that have been created by pooling layers, Sabour et al. [10]
introduced capsule networks (CapsNet). Recent scholarly endeavors have documented
the evolution and strategic implementation of capsule networks across various EEG
paradigms. Building on this momentum, Chen et al. [11] refined EEG signals using a
time-domain channel attention mechanism. Following this, CapsNet has been employed
to perceive intricate feature interrelationships, optimized for fatigue-driven detection. In
a similar vein, Wei et al. [12] presented a fusion of the Transformer and CapsNet, aiming
to adeptly capture global information characteristics crucial for emotion detection. The-
oretically speaking, CapsNet, with its ability to handle intricate spatial intricacies and
its resilience to affine transformations, shows great promise in enhancing EEG signal
feature extraction.

In this paper,wehave introduced a cutting-edge, integrated end-to-endnetwork archi-
tecture. Our rigorous benchmarking against two esteemed public datasets, which encom-
pass both seizure events and seizure onsets detection, offers empirical evidence of our
model’s superiority. These assessments unequivocally highlight our model’s enhanced
performance metrics when contrasted with prevailing approaches.
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The main contributions of the paper are as follows:

– We present a methodology for extracting spatiotemporal features by integrating mul-
tiple convolutional operations. This approach is designed to capture specific EEG
signal characteristics within designated time intervals. Simultaneously, deep convo-
lutions are employed to distinguish spatial characteristics that correspond to each
temporal filter.

– We prompt amulti-scalemodule for the purpose of extracting features across different
time windows, with the aim of enhancing the generalizability of the model. This
particular strategy proves advantageous in effectively mitigating the observed signal
variations that exist among individual patients.

– We introduce a pioneering approach formulti-channel seizure detection by integrating
CNNandCapsNet. The intrinsic dynamic routingmechanismofCapsNet ensures effi-
cient and robust feature propagation to higher hierarchical levels, mitigating potential
data loss of critical information.

2 Materials and Methods

2.1 Data Preparation

The CHB-MIT [13] dataset features scalp EEG recordings from 23 pediatric patients.
Conforming to the 10–20 international electrode placement standard, each recording
sample is recorded at 256 Hz with a 16-bit resolution. Altogether, the dataset registers
198 epileptic seizure events. In our study, our focus narrows to those recordings detailing
epileptic seizures. We harness 18 channels consistently available across patients. Worth
noting, in the case of patient 12, three distinct recordings (chb12_27.edf, chb12_28.edf,
and chb12_29.edf) deviate by featuring channels outside our selected spectrum, and thus
we omit them from our evaluation.

The SIENA [14] dataset, curated by the Department of Neurology and Neurophys-
iology at the University of Siena, Italy, encompasses scalp EEG recordings spanning
14 patients. Consistent with the 10–20 international electrode placement standard, these
recordings sample at 512 Hz. To harmonize with the CHB-MIT dataset’s specifications,
we resample the SIENA dataset down to 256 Hz. From the extensive dataset, we selected
29 channels consistently present across all patients. Notably, due to having only 21 chan-
nels, patient 10 does not feature in our study. Additionally, inconsistencies in the seizure
timing annotations mandate the exclusion of patient 0 from our assessment.

2.2 Pre-processing

Tackling noise interference is indispensable in EEG signal processing, given its ubiqui-
tous presence during data acquisition. In addressing this, our methodology harnesses a
low-pass finite impulse response band-pass filter spanning 0–50 Hz, ensuring a meticu-
lous eradication of unwarranted noise components. Subsequent to the filtering phase, we
segment the data, opting for a 4s window length. Furthermore, by infusing a 2s overlap,
we amplify the overall sample volume [8]. Maintaining a consistent sampling rate at
256 Hz, our formulated input data dimension stands at (N, 1024), where N corresponds
to the channel count and 1024 pinpoints the sampling instances.
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2.3 Model Architecture

The archetypal structure of our proposed multi-scale spatiotemporal capsule network
(MSSTC-Net) is elegantly delineated in Fig. 1 At the outset, the Temporal Spatial Block
is diligently tasked with extracting both temporal and spatial nuances from segmented
EEG data. This foundational extraction then segues into the Multi-Scale Block, which is
strategically designed to capture temporal information across multiple scales. Notably,
to bolster the backpropagation efficacy, we incorporate a skip connection, which under-
pins the neural network’s learning trajectory, ensuring an enhanced convergence rate.
Culminating this orchestrated processing, we leverage the prowess of the capsule net-
work, focusing on nuanced feature mapping, thus achieving the quintessential task of
seizure detection.

Fig. 1. Overall framework of MSSTC-Net.

Temporal-Spatial Block. In Fig. 2, our design features a trio of sequential convolu-
tional blocks for time-domain feature extraction. These blocks use filters and kernels
of sizes 8 and 15, respectively, harmonized with the exponential linear unit activation
function and batch normalization. Next, an average pooling layer with a kernel size
of 2 reduces dimensions and extracts receptive fields. After three iterations, the total
receptive field spans approximately 128 units, roughly translating to 0.5 s. While [15]
employs a convolutional block with a kernel size half the sampling rate for gleaning
information above 2 Hz, noisy data poses challenges. Signal features extracted by large
kernels sometimes miss the mark in completeness. By breaking these receptive fields
into three smaller convolutions and incorporating more nonlinear functions, the design
effectively addresses the complexities of EEG signals. The architecture then utilizes a
depth-wise convolution [18] with a kernel size equivalent to the number of channels,
extracting overarching spatial insights from the EEG. Consistent with previous steps,
we implement an average pooling layer of size 2 to adjust the sampling rate. A notable
advantage of depth-wise convolution is its efficiency in refining model parameters while
capturing spatial details across diverse temporal filters.

Multi-Scale Block. In EEG signal analysis, using a consistent time convolution win-
dow across various patients often limits efficient feature extraction due to individual
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variances. Addressing this challenge, our model incorporates multi-scale architectures,
echoing the successful outcomes from previous research [17]. Our approach skillfully
discerns spatiotemporal dynamics over multiple scales employing depth-wise separable
convolutions with three specific kernel sizes: 3, 7, and 15. Delving deeper, each branch
commences with a depth-wise convolution following channel integration to isolate tem-
poral features. This progression then follows a point-wise convolution, assimilating
feature information through its designated filters. By arranging the trio of branches in
line with feature map dimensions, a subsequent point-wise convolution marries these
multi-scale feature maps. The result is an output with a feature map quantity mirroring
the input. This consolidated output subsequently undergoes element-wise processing.

Fig. 2. A schematic illustration of the Temporal-Spatial Block and Multi-Scale Block.

PrimaryCapsule. The foundational layer of capsules is constructed using conventional
convolution. Within this configuration, the kernel size is designated as 15, accompanied
by 16 filters, and each capsule embodies a vector dimension of 8. Post-convolution, the
resultant shape manifests as (batch, 16, 1, 64), which is subsequently reshaped to (batch,
128, 8). This is then subjected to the squash function, which effectively compresses the
magnitude of elongated vectors to just below 1, while nearly nullifying the length of
more diminutive vectors. The squash function is articulated as:

vj = ||sj||2
1 + ||sj||2

∗ sj
||sj||2

(1)

where sj represents the input vector of capsule j, vj represents the output vector, and ||sj ||
represents the l2 norm of the vector.

Epilepsy Capsule. Inter-capsule communication is orchestrated through an algorithm
termed dynamic routing. This iterative mechanism channels the low-level capsules
toward their more active high-level counterparts. Detailed insights into this specific
algorithm can be gleaned from [10]. In our configuration, we establish two digital cap-
sule layers, denoted as interictal and ictal. The dimensionality of these digital capsule
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layers is fixed at 16. Within this framework, the magnitude of the vector in the digi-
tal capsule layer is computed to signify the probability of its associated category. The
computation for margin loss is delineated as follows:

Lk = Tk ∗ max
(
0,m+ − ||vk ||

)2 + λ(1 − Tk) ∗ max(0, ||vk || − m−)2 (2)

where Tk is 1 if the label k matches with the epilepsy capsule and 0 otherwise, m+ the
upper boundary is set to 0.9, and m− the lower boundary is set to 0.1, λ is 0.5 prevents
the mold length of the capsule from being too small during initial training.

3 Experiments and Results

3.1 Experimental Settings

For experiments on the CHB-MIT dataset, we employ the leave-one-record-out cross-
validation (LOOCV) strategy, as it ensures comprehensive seizure event detection. This
strategy maintains the chronological order of the test data, mirroring a real-world sce-
nario and making it apt for seizure detection and analysis. The SIENA dataset has few
recordings and the seizure duration is short, so we only used 5-fold cross-validation for
seizure event detection. The average of the 5-fold data represents the outcome. In order
to assess the performance of MSSTC-Net, we utilized four evaluation metrics: accu-
racy (Acc), sensitivity (Sen), specificity (Spec), and the F1 score (F1). In the context of
imbalanced datasets, F1 score and sensitivity emerge as more insightful indicators for
model evaluation.

The primary aim of seizure event detection is to distinguish between interictal and
ictal states using EEG data, streamlining the labeling process for medical practition-
ers. For patients with epilepsy, the urgency of real-time seizure detection is paramount,
necessitating instantaneous recognition and prompt alert generation. To mitigate false
alarms, a classification is deemed accurate only when at least three consecutive epilep-
tic episodes are detected. Two key metrics, sensitivity of onsets and latency, serve as
performance evaluators. Sensitivity by onsets quantifies the ratio of correctly identi-
fied seizures to the overall seizure count. Meanwhile, latency denotes the temporal gap
between the model’s inaugural alert and the genuine inception of a seizure, as delineated
by specialists. An exemplar of such detection, spanning from 2952s to 3048s for the
chb01_03.edf file within the CHB-MIT dataset is depicted in Fig. 3.

3.2 Training Details

All experiments were implemented using Python v3.7.0 and Pytorch v1.8.1. All com-
putational tasks were undertaken on an NVIDIA RTX2080Ti equipped with 11 GB of
memory. We utilized the Adam optimizer with a 10–3 learning rate. The training epochs
were limited to 100, and the batch size was set to 128. The final results are recorded as
the last epoch of the test. Class weights were added to the loss function to balance the
large difference between interictal and ictal samples.



A Multi-Scale Spatiotemporal Capsule Network for Epilepsy Seizure Detection 83

Fig. 3. Schematic diagram of seizure onset detection for file chb01_03.edf.

3.3 Results and Analysis

We employ two training strategies to evaluate the effectiveness of the proposed method.
Table 1 lists the results of some state-of-the-art seizure event detection methods on the
CHB-MIT dataset. The suggested model outperforms the previous methods in terms of
accuracy, sensitivity, and specificity when using the k-fold strategy. The results show a
significant difference in sensitivity between LOOCV and k-fold. The explanation behind
this phenomenonmay be attributed to two factors. Firstly, k-fold ensures that the number
of data samples in each fold is balanced. Secondly, the training and testing data are not
totally separated as there is an overlap in the sampling of samples. Hence, LOOCV
presents a greater level of difficulty and realism. Under the LOOCV strategy, sensitivity
is second to CE-stSENet [8], while accuracy and specificity are slightly inferior to
StackedCNN [18], and F1 score the highest among the baseline methods with 77.15%.
The trade-off between sensitivity and F1 score showed that the proposed model has a
more stable detection ability.

The experiments of the SIENA dataset were conducted using the model code pro-
vided in the baseline methodology paper, ensuring consistent experimental circum-
stances. EEGNet [15] performed poorly overall, with an F1 score of only 55.32%, owing
to its limited model parameters and weak fitting capacity. The sensitivity index of the
suggested model has the greatest value among all models, with a percentage of 90.93%.
This value surpasses that of the StackedCNNmodel by amargin of 12.03%. Furthermore,
the F1 score also exhibits a leading margin of 2.1%. Although our model’s accuracy and
specificity may be slightly lower compared to other techniques, it consistently maintains
stable identification performance.

Table 2 compares the seizure onset detection performance of the proposed model
and baseline approach. The most effective deep learning model is StackedCNN, which
achieves 99.31% sensitivity with 8.1s of latency. Overall, deep learning algorithms per-
form better than classical machine learning techniques, where our model outperforms
most algorithms.
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Table 1. Classification performance for seizure event detection on two datasets.

Model Acc(%) Sen(%) Spec(%) F1(%) Validation Method Parameters

A. CHB-MIT dataset

EEGNet [15] 97.18 89.12 97.27 58.32 LOOCV 2418

CE-stSENet [8] 95.96 92.41 96.05 54.20 LOOCV 305566

EEGWaveNet [9] 98.39 68.94 99.25 65.54 LOOCV 46776

StackedCNN [18] 99.54 88.14 99.62 – LOOCV 104642

LSNet [19] 99.80 97.10 99.80 – 10-fold-CV 28590

CNN [20] 96.69 96.19 97.08 – k-Fold-CV –

Transformer [21] 98.76 97.70 97.60 97.90 10-Fold-CV –

Proposed 99.12 89.97 99.27 77.15 LOOCV 41192

99.80 97.92 99.83 95.40 10-Fold-CV

B. SIENA dataset

EEGNet [15] 98.97 78.83 99.07 55.32 5-fold-CV –

EEGWaveNet [9] 99.73 76.36 99.86 75.05 5-fold-CV –

StackedCNN [18] 99.72 78.90 99.84 75.17 5-fold-CV –

Proposed 99.54 90.93 99.59 77.27 5-fold-CV –

Table 2. Classification performance for seizure onset detection on CHB-MIT dataset.

Model Sensitivity by onset(%) Latency(%)

CE-stSENet [8] 98.93 9.39

EMD, CSP+SVM [1] 98.47 –

StackedCNN [18] 99.31 8.1

DWT+RUSBoosted [22] 96.15 10.42

TQWT+CNN [23] 98.90 10.46

Proposed 99.20 9.29

4 Discussion

4.1 Analysis of Model Architecture

Influence of the Temporal Feature Extraction. To validate the rationality of the tem-
poral convolution module design, we compare the performance of convolution with
kernel size 128 with the proposed temporal convolution module on the CHB-MIT
(SIENA) dataset. According to Table 3 results, the proposed temporal convolution mod-
ule performs better, with improvements in accuracy, sensitivity, and specificity of 0.36%
(0.24%), 2.80% (7.31%), and 0.36% (0.2%), respectively, while F1 score experiences
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a significant increase of 8.09% (9.1%). Figure 4 demonstrates the F1 score difference
between the two models across patients in the CHB-MIT dataset. The graphs show that
although a few patients perform slightly weaker in the proposed convolutional module,
the majority of patients show nearly 2% to 7% performance improvement. In particular,
in patient 6 and patient 16, the 128-size convolution scores only 4.7% and 1.68% in F1
score. The ictal and interictal sample ratios for patients 6 and 16 were 1:716 and 1:358,
and the excessively large sample gaps prevented the single convolutional model from
performing effective epileptic feature extraction when learning features. Instead, it is
more likely to identify some of the noisy data from the interictal samples as seizures.

Fig. 4. Patient-specific parameters comparison of the single conv and proposed model.

Effect of the Multi-scale and Skip Connection. The multi-scale block and skip con-
nection also play a crucial role in themodel, andwedemonstrate the impact by comparing
the complete model with two simplified models designed. 1) single-scale convolution;
2) without skip connection. As shown in Table 3, the accuracy, sensitivity, specificity,
and F1 score of the multi-scale model on the CHB-MIT (SIENA) dataset were 0.23%
(0.08%), 0.76% (2.67%), 0.22% (0.07%), and 4.34% (5.83%) higher than those of the
single scale model, respectively. This indicates that the features extracted by multi-scale
models are of great help in detecting seizure events. In addition, compared to without
using skip connection models, all indicators were improved on the CHB-MIT dataset,
with accuracy, sensitivity, specificity, and F1 score increasing by 0.49%, 0.93%, 0.5%,
and 2.73%, respectively. Sensitivity and F1 score increased by 1.92% and 3.31% on the
SIENA dataset. Accuracy and specificity showed a slight decrease of 0.04% and 0.05%,
respectively. By comparison, skip connections can help the model retain some impor-
tant information and effectively improve it. In summary, the overall performance of the
proposed model is superior to the simplified model, demonstrating the effectiveness of
the multi-scale block.

Performance of the CapsNet. To demonstrate the effectiveness of capsule networks,
we replaced the capsule network with a module combining a convolutional layer and
a fully connected layer with an accompanying softmax layer. We observe that on the
CHB-MIT dataset, CapsNet obtains an across-the-board performance improvement. In
particular, accuracy, sensitivity, specificity, and F1 score are improved by 0.75%, 7.09%,
0.65%, and 3.18%, respectively. The confusionmatrix shown in Fig. 5 also demonstrates
that capsule networks outperform fully connected layer networks. On the SIENAdataset,
the sensitivity metric of CapsNet improves even more significantly, with an increase
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Fig. 5. Confusion matrixes on ablation study. (a) single conv(K = 128), (b) without skip
connection, (c) single scale(K = 15), (d) densenet, (e) proposed.

of 17.64%. The densenet focuses more on interictal sample identification, which is
unreasonable in real life. Taking all the metrics together, CapsNet is superior to linear
classifiers, sinceCapsNet takes into account the dynamic relationship between individual
features.

Table 3. Ablation studies on two datasets.

Model Acc(%) Sen(%) Spec(%) F1(%)

A. CHB-MIT dataset

single conv(K = 128) 98.97 87.17 98.91 69.06

without skip connection 98.63 89.04 98.77 74.42

single scale(K = 15) 98.89 89.21 99.05 72.81

densenet 98.37 82.88 98.62 73.97

proposed 99.12 89.97 99.27 77.15

B. SIENA dataset

single conv(K = 128) 99.30 83.62 99.39 68.15

without skip connection 99.58 89.01 99.64 73.96

single scale(K = 15) 99.46 88.26 99.52 71.44

densenet 99.79 73.29 99.95 78.35

proposed 99.54 90.93 99.59 77.27

5 Conclusion

In this paper, we delved into the nuanced spatiotemporal dynamics inherent to epilepsy,
leading to the inception of the multi-scale spatiotemporal capsule network. Harness-
ing the strengths of both the inception and convolutional neural network architectures,
we designed a sophisticated spatiotemporal feature extraction mechanism. Our find-
ings underscored the enhanced efficacy of utilizing an ensemble of smaller convolu-
tional kernels over singular larger counterparts in accurately discerning epilepsy-related
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spatiotemporal characteristics, signposting potential avenues for subsequent inquiries.
Further enriching our model, the integration of a capsule neural network (CapsNet)
facilitated a deeper synthesis and scrutiny of spatiotemporal patterns. This integration
capitalized on CapsNet’s adeptness at discerning subtle distinctions, particularly when
specific features manifested in both ictal and interictal, bolstering the model’s diagnostic
acumen. Empirical evaluations across two datasets reaffirmed the salient efficacy and
innovation underscored by our proposed approach in the realm of epilepsy detection.
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Abstract. Facial expression recognition (FER) is an emerging and important
research field in the field of pattern recognition, with wide applications in safe
driving, intelligent monitoring, and human-computer interaction. This article
addresses the problems of insufficient key information extraction, low recogni-
tion accuracy, and easy overfitting in facial expression recognition, and proposes
an ECA-ConvNeXt network based on transfer learning strategy and channel atten-
tion mechanism. Firstly, the weights of the pre-trained model are initialized using
transfer learning on the FER 2013 dataset. Secondly, a series of data augmentation
operations are performed on the facial images, allowing them to pass through the
ECA-Net attention module of the network, enhancing the key information of the
feature regions with high relevance to expressions and suppressing the interfer-
ence of irrelevant regions in the feature maps. Finally, the inverse bottleneck layer,
maximum pooling layer, global average pooling layer, and classification layer are
sequentially passed into the network to accelerate the convergence speed and
improve the expression recognition rate. Compared to the baseline network, the
improved network achieved an accuracy of 72.86%, a recall rate of 72.04%, and a
specificity of 64.15% on the FER 2013 dataset. Compared to the commonly used
ResNet network and its improvement methods, the proposed ECA-ConvNeXt in
this article achieved a 0.19% improvement in recognition accuracy.

Keywords: Transfer Learning · ConvNeXt · Attention

1 Introduction

In interpersonal communication, in addition to language, facial expression is also a very
important way to express information. With the development of artificial intelligence,
Facial Expression Recognition (FER) [1] technology has become a current research
hotspot. The combination of facial expression recognition technology and machines
can improve the efficiency and accuracy of recognition and provide support for facial
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expression recognition applications in the fields of medicine and automatic driving. In
practical applications, facial expression recognition technology faces many challenges,
such as the interference of the environment, the change of light, the influence of noise,
and the complexity and diversity of expressions, which can significantly affect the effect
of expression recognition [2]. In order to solve these problems, scholars have con-
tinuously proposed new deep learning algorithms to improve the recognition rate and
generalization of facial expressions.

Methods for facial expression recognition are generally divided into traditional and
deep learning methods. Traditional methods are mainly based on manually designed
features, such as Gabor [3], LBP [4], HOG [5], to extract the appearance and motion
information of facial images, and then use classifiers, such as SVM [6], KNN [7], to
determine the class of facial expressions. Traditional facial expression recognition meth-
ods use hand-designed feature extractors, which tend to ignore the features that have a
greater impact on classification when extracting features, leading to inaccurate classifi-
cation results. Compared with traditional methods, deep learning methods have better
generalization ability and robustness, and can handle facial expression recognition in
complex situations such as different lighting, posture and occlusion, and are also the
mainstream direction of current facial expression recognition technology. Since 2006,
deep learning has received more and more attention from researchers due to its abil-
ity to adapt well to nonlinear feature weighting, and more and more classical network
structures have been born on this basis, such as AlexNet [8], VGGNet [9], GoogLeNet
[10], and ResNet [11], etc. Yusufu Tureke et al. [12] used AlexNet network as the basic
network and applied training strategies such as global average pooling as well as batch
normalization and achieved good prediction results on several different facial expres-
sion datasets. Kusuma et al. [13] used expression recognition method based on VGGNet
network to improve the expression recognition rate. SHENGTAO G et al. [14] trained a
model on residual network ResNet to train the model, with the help of shortcut in ResNet
to solve the degradation phenomenon in deep neural network training, that is, with the
increase of network layers, the accuracy of the model instead decreases.

When the face is affected by occlusion or other non-controllable factors, the recog-
nition effect will be reduced, in order to improve the recognition effect, it is necessary to
locate the effective facial coordinates more accurately, so as to reduce the introduction of
non-relevant feature information. The traditional convolutional neural network cannot
learn the structural information of the image, which leads to the model cannot capture
some of the laws and relationships that exist in the image. Attention mechanism [15]
it allows the model to focus on more important parts, thus improving the performance
and efficiency of the model. Attention mechanism has been used with great success
in several image vision tasks including image classification, target detection, semantic
segmentation, etc. [16]. Wang et al. [17] proposed an efficient channel attention network
model, ECA-Net, which enables local cross-channel interactions and highlights locally
useful information about the samples, thus exhibiting superior recognition classification.
Woo [18] et al. presented a model of ECA-Net in terms of the channel dimension and
spatial dimension respectively to incorporate the attention mechanism thus obtaining
CBAM. CBAM is a simple yet effective module that can be seamlessly integrated with
any convolutional neural network without adding too much computational overhead. Hu
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et al. [19] proposed SE-Net, which uses the squeeze-and-excitation module to achieve
dynamic inter-channel feature relabeling. This approach enhances the important fea-
tures and suppresses the unimportant features, thus improving the accuracy of image
recognition.

Through the above analysis, it is easy to see that the facial expression recognition
based on deep learning can better solve the problem of low efficiency in traditional
methods, but there are still problems that the network model is too complex, the recog-
nition efficiency is low, and the generalization ability is not strong. To further improve
the accuracy of facial expression recognition, this paper proposes an ECA-ConvNeXt
facial expression recognition network incorporating the attention mechanism, and the
main contributions include:

1. Using ConvNeXt as the backbone, an ECA-ConvNeXt facial expression recogni-
tion model incorporating the attention mechanism is proposed, which can effectively
extract and utilize face features to improve the accuracy and robustness of expression
recognition.

2. The transfer learning strategy uses the pre-trained model parameters as initial values
to accelerate the convergence speed of the model, reduce the risk of overfitting, and
improve the generalization ability of the model.

3. The ECA-Net module, an attention mechanism, amplifies the model’s concentration
on key channel features, empowering the network to self-assign weights to individual
channel features and thereby enhance the network’s learning potential.

2 Related Work

2.1 ConvNeXt

ConvNeXt [20] network is a pure convolutional neural network proposed by Facebook
Artificial Intelligence Research Institute (FAIR, Facebook AI Research) in 2022. Con-
vNeXt is based on the ResNet network, inspired by Transform, and draws on Swim-
Transform [21] network architecture and various state-of-the-art method strategies used
in its training process. The ConvNeXt network mainly consists of four stage layers, each
with a block stacking ratio of 3:3:9:3, while the Stem layer is replaced by a convolu-
tional layer with a convolutional kernel of 4 and a step size of 4. ResNet uses a bottleneck
structure in order to minimize the amount of computation, whereas ConvNeXt adopts
the opposite idea, using an inverse bottleneck layer structure and increasing the number
of channels in the intermediate layer to improve the expressive power of the network.
In addition to these macro-scale improvements, ConvNeXt also fine-tuned some of the
model’s micro-architecture by replacing ReLU with GELU, reducing the use of activa-
tion and normalization functions, and using a 2 × 2 convolution with a step size of 2 for
spatial down sampling. The model structure of ConvNeXt is shown in Fig. 1.

2.2 ECA-Net

Attention mechanisms can mimic human visual attention allocation, and existing
research has shown that adding attention mechanisms to existing convolutional neu-
ral network frameworks or models can improve their performance. ECA-Net is based on
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Fig. 1. ConvNeXt network structure

the channel attention mechanism, which utilizes one-dimensional convolution to extract
the correlation between each channel and its neighboring channels to enhance feature
representation. The core idea of ECA-Net is to achieve local cross-channel interactions
by means of a One-dimensional convolution to achieve local cross-channel interactions,
thus avoiding the use of downscaling and fully connected layers. The features are aggre-
gated by global average pooling to obtain the global channel information, and the global
average pooling formula is shown in (1):

g(X ) = 1

WH

∑W ,H

i=1,j=1
Xij (1)

where X is the input feature map, W and H are the width and height, and g(X ) is the
result of global average pooling for each channel.

The convolution kernel size K of ECA-Net is adaptively determined based on the
channel dimension C, which is calculated as shown in (2):

k = ψ(C) =| γ log2(C) + γ b | (2)

where γ and b are constants, γ = 2 and b = 1 are taken in this paper, and C is the
channel dimension.

Then, a 1D convolution with convolution kernel size k is utilized to compute the
channel weights and obtain the interdependencies between the channels. The specific
convolution formula is shown in (3):

ω = σ(C1Dk(y)) (3)

where ω is the channel weight, σ is the sigmoid function, C1Dk is the 1D convolution,
and y is the result after global average pooling. Finally, the featureswith channel attention
are obtained by performing dot product operation between the original input features
and the channel weights.
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2.3 Transfer Learning

Transfer learning [22] is a machine learning method that uses existing relevant knowl-
edge to assist in learning new knowledge, which can improve the performance and
generalization ability of the model, save training time and computational resources, and
solve the problem of insufficient data or different distribution. A well-performing model
needs a large amount of accurate data labeling information to be trained, otherwise it is
easy to have underfitting problems, but in some fields, there is often not enough training
data for the model to be adequately trained. Through transfer learning techniques, with
the help of network parameter models that have been trained in other datasets, the depen-
dence on the size of the dataset can be effectively reduced, so that the model can achieve
good training results even when the dataset size is not large. One of the main purposes
of transfer learning is to achieve parameter sharing and corresponding feature migration
between different models, reducing the training cost while improving its generalization
ability.

3 Model Construction

3.1 ECA-ConvNeXt Network Models

The overall architecture of the improvedECA-ConvNeXt network is shown in Fig. 2. The
network model consists of the ConvNeXt module, the attention mechanism ECA-Net
module, the inverse bottleneck layer, the maximum pooling layer and the global average
pooling layer. Before the training starts, the ConvNeXt model parameters, which have
been pre-trained in ImageNet, are used as initial weights and loaded into the network
model framework with the help of Transfer Learning idea. After the training is com-
pleted, the unprocessed data from the original test set is input into the network model to
successfully complete the classification.
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Fig. 2. The proposed network structure

3.2 Improvement of the Loss Function

Label smoothing regularization [23] is used in various tasks such as image classification,
speech recognition and machine translation to improve the accuracy of deep learning
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models. Label smoothing regularization converts the original one-hot encoded label
vector y into a soft label form y′, where each element of y′ has a non-zero probability
value, instead of only one element being 1 and the others being 0. The advantage of this
is that it prevents the model from overfitting to the correct class during training, while
also increasing the model’s attention to other classes, thereby improving the model’s
tolerance to noisy data and confusing categories. The specific conversion formula is as
follows:

y′
i = (1 − ε)yi + ε

K
(4)

where ε is a small positive number indicating the degree of smoothing.

3.3 AdamW Optimizer

TheAdamWoptimizer [24]makes somechanges to the standardAdamoptimizer, aiming
to solve the problem of the Adam optimizer’s sub-optimal handling of weight decay.
Weight decay is a regularization method used to prevent overfitting, which makes the
values of the model parameters as small as possible by adding the L2 paradigm of the
model parameters as a penalty term in the loss function. The Adam optimizer adds
a weight decay term to the gradient when performing weight updates, resulting in an
unstable learning rate. In the AdamW optimizer, the weight decay term decays the
weights individually before updating the parameters. This avoids the influence of the
weight decay term on the gradient and improves the effectiveness of the Adam optimizer.
The parameter update formula for the AdamW optimizer is as follows:

mt = β1mt−1 + (1 − β1)∇L(θt−1)

vt = β2vt−1 + (1 − β2)(∇L(θt−1))
2

θt = θt−1 − η( 1√−→v t+ε
m
∧

t − γ θt−1)
(5)

wheremt is themean, vt is the estimate of the second-ordermoments,β1 is the exponential
decay rate of the first-order moment estimate, and β2 is the exponential decay rate of
the second-order moment estimate.

3.4 GELU Activation Function

Traditional CNN networks usually use ReLU as the activation function of the network,
while the current Transformer type of network uses GELU (Gaussian Error Linear Unit)
activation function in the mainstream. ReLU is a linear activation function, which has
only two states, active and inactive, while GELU is nonlinear, which can capture more
complex relationships between the inputs. ReLU is a linear activation function with
only two states, active and inactive, while GELU is non-linear, which can capture more
complex relationships between the inputs, and this non-linear property can help the
neural network to better adapt to complex data distributions. Another feature of the
GELU function is the smoothing, which has a gradient over the entire range of inputs
and avoids the problem of vanishing gradients, whereas the ReLU has a gradient of zero
in the case of negative inputs, which can lead to the problem of vanishing gradients.
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Smoothness helps the model to propagate the gradient more stably during training,
reducing the problems of gradient explosion and gradient vanishing.

Meanwhile, the GELU activation function incorporates the cumulative function of
the Gaussian normal distribution, which improves the model’s ability to fit independent
random variables. For the GELU function with standard normal distribution, it is defined
as follows:

GELU (x) = 1

2
x + 1

2
xtanh

(√
2

π

(
x + 0.044715x3

))
(6)

4 Experiment Analysis

4.1 Dataset

This experiment mainly uses a public dataset that is currently used in face expression
recognition, the FER 2013 dataset [25]. The FER 2013 dataset contains about 30,000
face images with different expressions, each of which is 48 × 48 pixels in size. These
images are categorized into seven expression categories, namely: anger, disgust, fear,
happiness, sadness, surprise and neutral. This dataset is obtained by taking face images
collected from the internet and manually labeling and filtering them. Facial expression
recognition on this dataset is challenging because there are more mislabeled images of
non-faces in this dataset and there are many watermarks and other noises in some of the
samples. The expression images of this dataset are shown in Fig. 3.

Angry Disgust Fear Happy Sad Surprise Neutral

Fig. 3. FER 2013 dataset

Since the size of this dataset is relatively small, some data enhancement strategies
can be adopted before training, and the basic data expansion methods include random
geometric processing such as rotating, deflating and mirroring the original input photos.
In addition to these basic data augmentation methods, this experiment uses some more
complex data augmentation strategies, based on the theory or technique of deep learning,
to performmore advanced transformations or combinations of images, which can further
improve the performance and generalization ability of the model.

4.2 Experimental Methods and Environment Configuration

Experimental Design
Based on the size and attributes of the chosen FER 2013 dataset, a batch size of 64,
300 epochs, and an initial learning rate of 1e-3 have been established. Furthermore, a
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learning rate decay strategy is implemented where a higher learning rate is applied to
the top layers and a lower learning rate to the bottom ones. This technique enhances the
model’s convergence speed while preserving the crucial elements of the bottom layer.
AdamW serves as the optimizer for training while optimization methods such as smooth
label and EMAare incorporated. Themodel implements the cross-entropy function as its
loss function. Additionally, the cosine annealing is utilized for continuous optimization
of the learning rate to approach the global optimum value. This process culminates in
the development of the facial expression recognition model.

Environment Configuration
This experiment utilizes the Pytorch 1.8.0 framework for training, verification, and test-
ing facial expression recognition. The hardware environment consists of anUbuntu18.04
operating system, an Intel Gold 5318Y processor, and an NVIDIA GeForce RTX
3080 graphics card. The software environment includes CUDA11.7, cuDNN8.9.2, and
PyCharm2023 professional version.

4.3 Evaluation Criteria

To evaluate the classification effect of the network on facial expression recognition, this
experiment uses Accuracy, Recall and Specificity together to evaluate the classification
results, and these evaluation criteria are calculated based on the confusion matrix. Con-
fusion matrix is a kind of index for judging the merits of a model and is often used to
judge the merits of image classification models. In the real situation, the distribution of
the predicted and true values of the confusion matrix is shown in Table 1.

Table 1. Classification index

Predicted

Positive Negative

Actual Positive TP FP

Negative FN TN

4.4 Result Analysis

The training curve of the ECA-ConvNeXt network model proposed in this paper on
the Fer 2013 dataset is shown in Fig. 4, with a final accuracy of 72.69%. Observing
the curves, it is found that with the increase in the number of iterations, the accuracy
increases and the loss value decreases, and finally converges, it can be determined that
the network model has strong generalization ability and robustness.

The confusion matrix in the test set is shown in Fig. 5. The confusion matrix reveals
that themodel predicts some categories better, such as happy, neutral, and surprised, with
an accuracy of more than 90%, while negative expressions such as angry, disgusted, and
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Fig. 4. Accuracy of change curve

fearful expressions are not so well recognized, due to the strong similarity of these
expressions and the lack of differentiation of key facial features, which makes it difficult
to differentiate them.

Fig. 5. Confusion matrix

To prove the effectiveness of the optimization method proposed in this paper, abla-
tion experiments are conducted to obtain comparative results of its performance results
as shown in Table 2. The results show that both ECA-Net and Transfer Learning can
obtain a certain degree of performance improvement, and the improved network utilizes
the ECA-Net attention mechanism to better mine local features and effectively inte-
grate the correlation between these features, thus improving the accuracy of expression
recognition.

4.5 Experimental Comparisons

To validate the effectiveness of the methods in this chapter, the proposed method is
compared with the recent deep learning methods that conducted expression recognition
experiments on the FER 2013 dataset, and the comparison results are shown in Table 3.
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Table 2. The impact of different optimization methods on the ConvNeXt model

Model Accuracy Recall Specificity

ConvNeXt 68.56% 68.42% 59.35%

ConvNeXt+ECA-Net 70.60% 68.15% 63.95%

ConvNeXt + Transfer Learning 71.52% 70.21% 63.17%

The proposed network 72.86% 72.04% 64.15%

The data specifies that the network proposed in this paper achieves an accuracy of
72.86% on the FER 2013 dataset, which exceeds the performance of other models. The
model proposed in this paper uses ConvNeXt as the backbone network and introduces
the attention mechanism and Transfer Learning strategy at the same time, which further
improves the recognition rate of themodel and proves that the improvement ofConvNeXt
is effective.

Table 3. Comparison of accuracy of different algorithms after training

Model Accuracy

CLBP+CNN [26] 64.50%

AlexNet [12] 66.90%

VGG [13] 69.40%

ResNet [14] 70.74%

Attention CNN [27] 70.02%

VSAN [28] 71.27%

ICRL [29] 72.36%

ResNet+DNN [30] 72.67%

The proposed network 72.86%

5 Conclusions

For facial expression recognition, based on the original ConvNeXt network, this paper
proposes a method to improve the traditional convolutional neural network and con-
ducts experimental verification on the FER 2013 dataset, which proves the feasibility
and effectiveness of this paper’s model through the ablation experiments and compar-
ing it with the other commonly used convolutional networks and some researchers’
improved networks. However, the model is not accurate enough to recognize some neg-
ative expressions, and future research will focus on how to reduce the error rate of
classifying negative expressions. In addition, the model is currently trained only on the
FER 2013 dataset, and in the next step, the model can be applied to various datasets, so
that the model can be better adapted to the needs of real-world environments.
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Abstract. The correlation between neighboring electroencephalography (EEG)
channels reveals brain signal interconnectedness, and how to represent this corre-
lation is being studied. Simultaneously, variations in EEG signals among individ-
uals may present difficulties in the model’s ability to generalize across different
individuals. A model may perform well on one person but not on others, limiting
its reliability and generalizability in practical applications. We propose a domain
adaptation-based deep learning network to address the issues above. Initially, the
EEG data is transformed into a three-dimensional (3D) matrix to preserve the
correlation between EEG channels, and subsequently, the spatial-temporal char-
acteristics of the data are acquired by using the 3D convolution module. The
spatial-feature map attention mechanism reinforces spatial features in the feature
map, allowing the subsequent convolution module to learn spatial feature infor-
mation. Finally, a domain adaptation strategy is employed for both single-source
and multi-source domain scenarios. The objective of this strategy is to address
the issue of variability in the EEG signal by minimizing the discrepancy between
the source and target domains using a maximum mean discrepancy loss function.
The proposed method was validated on two datasets, namely the BCIC IV 2a
and OpenBMI datasets. We achieved an accuracy of 70.42% in an intra-subject
OpenBMI experiment, which is 5.51% higher than the state-of-the-art approach.
On the BCIC IV 2a dataset, we conducted intra-subject and inter-subject experi-
ments, achieving accuracy results of 73.91% and 67.88%, respectively, which are
5.38% and 1.61% better than the state-of-the-art method.

Keywords: Brain machine interface · Attention mechanism ·Motor imagery ·
Domain adaptation

1 Introduction

In recent times, the brain-computer interface (BCI) has emerged as a prominent subject
of study, garnering significant attention due to its diverse applicationswithin the domains
of medical health and rehabilitation training. Motor imagery (MI) refers to the cognitive
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phenomenon wherein individuals engage in the mental simulation of movement, specif-
ically envisioning the motion of a particular body part without physically executing the
corresponding action [1]. This phenomenongives rise to alterations in the cerebral cortex,
which can be recorded through electroencephalogram (EEG) signals [2]. The decipher-
ing of potential alterations in the cerebral cortex resulting from MI has the capacity to
convert biological signals into directives for the operation of external devices, thereby
facilitating the implementation of BCI applications. The BCI technology has various
practical applications, such as device movement control [3], stroke patient rehabilita-
tion [4], and entertainment for healthy individuals [5]. Therefore, accurate decoding of
EEG-based MI signals has become an important research topic.

Numerous machine learning techniques utilizing EEG signals have been proposed
for the purpose of MI classification. For instance, Fang et al. [6] employed a band-pass
filter and the common spatial pattern (CSP) algorithm to extract spatial features opti-
mally. These features were then classified using a classification algorithm. Similarly,
Ko et al. [7] utilized the fast Fourier transform and CSP algorithm to extract MI fea-
tures from EEG data. Subsequently, three different classifiers were employed to classify
the transformed EEG data. However, traditional frameworks require feature extraction
and feature selection processes to be performed manually, resulting in significant work-
load and potential bias. The utilization of high-performance computing equipment has
facilitated the widespread adoption of deep learning (DL), a technique that enables the
direct extraction of features from data, commonly referred to as “end-to-end” [8]. The
EEGNet framework, as described by Lawhern et al. [9], is a versatile DL architecture
that employs three convolutional layers to extract both temporal and spatial patterns
from EEG data. This framework has demonstrated strong performance across various
experimental paradigms. The Filter-Bank Convolutional Network (FBCNet) model [10]
utilizes a network architecture that incorporates multiple frequency bands. This design
allows for the encoding of spectral-spatial discriminant information that is relevant toMI.
Furthermore, in order to effectively leverage the capabilities offered by different dimen-
sions of EEG, researchers have developed a novel three-dimensional (3D) representation
of EEG [11]. This approach is complemented by the utilization of a multi-branch 3D
convolutional neural network (CNN) and an associated classification strategy [12].

Recent research has indicated that DL techniques have exhibited notable benefits
in the extraction of EEG features and the enhancement of classification accuracy [13].
Nevertheless, there are some factors that can contribute to variations in the EEG signal.
These factors includeminor changes in electrode placement, discrepancies in impedance
between the electrodes and the skin, variations in head shape and size, divergent patterns
of brain activity, and interference from brain activity unrelated to the task at hand. The
phenomenon of variability in EEG signals among individuals or across multiple sessions
within the same individual, resulting from a multitude of factors, is usually referred to
as individual differences in EEG signals [14]. These variations among individuals result
in notable disparities in the distribution of data used for training and testing the model.
Consequently, applying the pre-trained model to a new individual becomes challenging.
The practical implementation of EEG-based BCI DL algorithms is undoubtedly faced
with challenges.
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To solve the above-mentioned problems, a domain adaptation-based DL network
called DADLNet is proposed in this paper. In order to more fully represent the spatial
relationships between channels in EEG data, we employ a 3D matrix instead of the
traditional EEG data representation. Subsequently, DADLNet uses 3D convolution to
obtain temporal and spatial information from the data. To optimize the utilization of
extracted information by the model, we propose an attention mechanism called spatial-
feature map attention (SFMA). This mechanism enhances the model’s ability to extract
information in both the spatial and feature map dimensions and efficiently fuses features
from both dimensions. In addition, we effectively mitigate the challenges posed by
inter-session and inter-subject variability in MI-based EEG signals using the domain
adaptation (DA) technique, which minimizes the difference between the source and
target domains via the maximum mean difference (MMD) [15] loss function, thereby
facilitating optimal adaptation of the model. The main contributions of this paper are
summarised below:

• We propose a DL framework based on DA strategies. The framework targets the
problem of inter-session and inter-subject differences and significantly improves
the accuracy of MI decoding algorithms. More importantly, the framework demon-
strates excellent performance onmultiple datasets, proving its broad applicability and
superiority.

• In order to further improve the feature extraction and representation abilities of the
model, we introduce an attention mechanism that combines the features of the spatial
domain and the dimension of the feature map.

• We propose a DA strategy for both single-source and multi-source domain scenarios
to address individual differences in EEG signals.

2 Methods

2.1 3D Representation of EEG

This study employs 3D spatial-temporal representations of EEG data as the input for
the proposed DADLNet. The acquisition of EEG information by electrodes placed in
various regions on the electrode cap exhibits variability. Hence, it is worth noting that the
data obtained from each electrode exhibits a spatial characteristic. However, in numerous
studies [16, 17], MI-based EEG data has been transformed into a two-dimensional array
(channel × time). In this representation, each column of the array corresponds to the
temporal dimension of the EEG data, while each row represents the channel of the EEG.
This approach proves advantageous in facilitating the acquisition of temporal features
by networks, yet it compromises the preservation of the relative positional relationship
among channels [18].

We used the 3D representation of EEG data suggested in [12] in order to fully utilize
the spatial-temporal information of MI-based EEG data. First, we mapped the channels
of the EEG data into a 3D array based on the electrode distributions shown in Fig. 1(a)
and 1(b). The channels of the EEG data were mapped into a 3D array. The 2D matrix
made up of n and m corresponds to the channel distribution of the EEG acquisition
device, and the 3D array’s l represents the temporal dimension of the EEG data. This 3D
array representation keeps both the relative positional relationships between the channels
and the temporal characteristics of the EEG data.
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(a) OpenBMI (b) BCIC IV 2a

Fig. 1. EEG3D representation. Subfigure (a): OpenBMI selects 31 channels. Subfigure (b): BCIC
IV 2a selects 20 channels. l represents the temporal dimension. m and n represent the spatial
dimension.

2.2 Architecture of DADLNet

The network architecture of the model we proposed is shown in Fig. 2. The DADLNet
framework comprises two components, namely the feature extraction module and the
DA module. The comprehensive details of each module will be elaborated upon in the
subsequent subsections.

Fig. 2. DADLNet architecture. After each convolution operation, the sequence is batch normal-
ization (BN), activation, average pooling (AvgPool), and then dropout.

Feature Extraction Module. The feature extraction module comprises two compo-
nents, namely theConvolutional Block (ConvBlock) and the Spatial-FeatureMapAtten-
tion Block (SFMA Block). The Conv Block is composed of several layers, including
a 3D convolutional (3D Conv) layer, a batch normalization (BN) layer, an exponential
linear unit (ELU), and an average pooling (AvgPool) layer.

Convolution Block. Based on the 3D representation of EEG data, we designed a spe-
cial spatial convolution process. In the Conv module, the convolution kernel size for
the spatial dimension of the 3D Conv layer is set to [(2,2), (2,2), (1,2), (2,2)], while
the step size is set to [(1,1), (2,2), (1,2), (2,2)]. This design takes into account the fact
that the event-related desynchronization/event-related synchronization (ERD/ERS) phe-
nomenon mainly occurs in brain regions corresponding to the execution of left-handed
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or right-handedMI. By using smaller convolutional kernels and step sizes, the network is
able to learn spatial features within these regions more accurately while avoiding feature
confusion between left and right brain regions. After processing by the first three 3D
Conv modules, the channel features are explicitly divided into four regions: left of the
central sulcus, right of the central sulcus, left of the parietal lobe, and right of the parietal
lobe. The last Conv module is responsible for integrating these localized features. The
feature map output from the 3DConv layers in each Convmodule is normalized by a BN
layer. Next, regularization is performed using the ELU activation function, and the time
dimension is downsampled by an AvgPool layer, aiming to reduce the amount of data
while retaining key information. Finally, the dropout layer is applied to randomly deacti-
vate some neurons with a certain probability, which not only helps to reduce the amount
of computation but also enhances the robustness of the model and prevents overfitting.
In this study, the rate of dropout was set to 0.5.

Spatial-Feature Map Attention Block. As shown in Fig. 2, the spatial attention mecha-
nism [19] first performs AvgPool on the feature map dimension to reduce the computa-
tional complexity, and subsequently, AvgPool on the temporal dimension is utilized to
reduce the temporal information. The final spatial attentionmatrix is generated by a fully
connected (FC) layer. The feature map attention, on the other hand, first performs global
average pooling (GAP) for each feature map, followed by a two-step Squeeze-Excite
(SE) to obtain the attention weight parameters. The squeezing process uses a reduction
ratio parameter r and an FC layer with a rectified linear unit (ReLU) activation function
to reduce the number of channels to C/r (r = 8 in our model), which is then restored
to its original size. Experiments demonstrate that the SE module is able to significantly
improve performance with little additional computational cost [20]. We combine the
spatial attention module with the SE module as a key part of feature extraction. After
computing the spatial attention values and feature map attention values, we use element-
by-element summation to merge these two attention values and process them through a
sigmoid function to generate the final attention features. These features are multiplied
by the original input and then added to the original input to get the final weighted fea-
tures. This residual-like approach preserves the original information and helps the model
propagate the gradient more efficiently.

DA Module. The DA module consists of a common FC layer, a Domain-Specific
Adapter (DSA), and a Domain-Specific Classifier (DSC). First, we use an FC layer
as a common layer, which serves to map the source and target domain data to a common
feature space while extracting domain-invariant features in all domains. The structure
of the DA module is shown in Fig. 2.

Domain-Specific Adapter. It consists of two FC layers. In the domain adapter, the data
of the source and target domains is mapped to a separate potential feature space. In this
potential space, we use MMD to measure the difference between the source and target
domains. The MMD function can be defined as follows:

MMD(X S ,X T ) =
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∥
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where X S and X T represent the source domain data and the target domain data respec-
tively, NS and NT represent the vector lengths of X S and X T respectively. The function
�(·) represents a mapping of data points into the Reproducing Kernel Hilbert Space
(RKHS) denoted by H. The value of MMD can be regarded as the distance between
X S and X T in this space. By reducing the MMD loss, the difference between the source
domain and the target domain is narrowed, so that the domain adapter can better predict
the target domain features.

Domain-Specific Classifier. It contains an FC layer, the activation function is sigmoid,
and binary cross-entropy is used to measure the classification loss. DSC can make pre-
dictions about the target domain based on information from the current source domain.
The specific definition of binary cross-entropy loss is:

CE = − 1

N

N
∑

i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2)

where yi represents the binary label 0 or 1, p(·) represents the output probability of yi,
and N represents the output dimension.

In the intra-subject experiment, we define data from the same subject, but from
different sessions or conditions, as source and target domains. In this way, there is only
one source domain data. In contrast, in inter-subject experiments, the data of the target
subject is treated as the target domain, while the data of other subjects are treated as
multiple independent source domains. As illustrated in Fig. 2, the DA module has the
ability to dynamically adjust to the number of source domains adaptively, ensuring that
the number of DSAs and DSCs always matches the number of source domains. This
design can fully utilize the information frommultiple source domains to further enhance
the model performance.

2.3 Data Description

To assess the effectiveness of the proposed model, we compared DADLNet with other
baseline methods on OpenBMI [21] and BCIC IV 2a [22].

OpenBMI: This dataset collected the EEG data of 54 healthy subjects (all right-
handed, aged24–35). EEGdatawere recordedusing adevicewith 62Ag/AgCl electrodes
and a sampling rate of 1000Hz. In this paper,we chose 31 channels (the selected channels
are shown in Fig. 1a) in the motor region. The EEG signals were bandpass-filtered
between 8 Hz and 30 Hz and downsampled from 1000 Hz to 400 Hz. The MI segments
from 0 s to 4 s after the stimulus started were selected for analysis.

BCIC IV 2a: This dataset collected the EEG data of nine healthy subjects performing
four categories (left hand, right hand, feet, and tongue) of MI tasks. EEG data were
recorded using a device with 22 Ag/AgCl electrodes at a sampling frequency of 250 Hz.
In this paper, we selected 20 channels (the selected channels are shown in Fig. 1b)
and only used right-handed and left-handed MI task data. In order to ensure the same
sampling frequency of the two datasets, the EEG data was upsampled from 250 Hz to
400 Hz, and the data were bandpass-filtered at 0.5 Hz and 100 Hz and notch-filtered at
50 Hz to suppress line noise. Also, select the 0 s to 4 s MI segment after stimulation for
analysis.
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2.4 Baseline Models

To verify the effectiveness of our proposed DADLNet, we compared it with several
existing methods, including MIN2Net [23], EEG-adapt [24], Deep ConvNet [25], and
EEGNet [9]. For the comparison, we used the hyper-parameters as described in their
respective original papers.

2.5 Experimental Evaluation

Train Strategy. The model proposed in this study is implemented based on the Ten-
sorFlow framework, and the experiment is completed using an NVIDIA GeForce RTX
2080Ti GPU with 11 GB of memory. In order to reduce the time of model training, we
adopted an early stop mechanism. When the validation loss of 30 consecutive epochs
does not decrease, the model stops training. The optimizer chooses nadam (lr = 0,001,
beta = 0.9, 0.999). We also use a multi-process training method to avoid the influence
of the results of the previous fold on the subsequent training.

3 Result

This section presents the experimental results of the proposedDADLNet on two datasets.

3.1 MI Classification Result

First, we compared DADLNet with other methods in intra-subject experiments on two
datasets,OpenBMI, andBCIC IV2a. To evaluate the performance of themodel,we chose
four metrics, namely, accuracy, specificity, sensitivity, and F1-score, and the detailed
experimental results are listed in Table 1. As can be seen from Table 1, DADLNet
significantly outperforms the other compared methods in all metrics on the BCIC IV 2a
dataset. In particular, compared with the best-performing EEGNet method, DADLNet
shows a 5.38% increase in accuracy and a 7.41% increase in F1-score. Additionally,
in comparison to other methods, its specificity and sensitivity have both significantly
improved, particularly the specificity, which has increased by 6.92%. For the OpenBMI
dataset, DADLNet improves its accuracy by 5.51% and F1-score by 5.06% compared
to the outperforming comparison method. More notably, the sensitivity and specificity
of DADLNet differed by 1.17%, while EEGNet showed the smallest difference in these
two metrics among all the compared methods at 6.28%, which was significantly higher
than DADLNet. This indicates that our proposed DADLNet exhibits a high category
balance on the classification task of the OpenBMI dataset.

Second, we conducted inter-subject experiments on the BCIC IV 2a dataset and pre-
sented the results in Table 2. As seen in Table 2, DADLNet outperforms all the compared
methods in terms of accuracy, reaching 67.88%,which is an improvement of 1.61% com-
pared to the closest EEG-adapt method. In other metrics, DADLNet also performs very
well, second only to some of the optimal methods. It is worth pointing out that while
EEG-adapt achieves the highest sensitivity of 69.74%, DADLNet performs even better
in specificity, at 71.52%. Meanwhile, DADLNet scores higher in accuracy, sensitivity,
and F1-score compared to the method with the highest specificity. This indicates that
our proposed model has higher robustness and adaptability compared to other methods.
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Table 1. Classification Performance (mean±SD) for the intra-subject onOpenBMI andBCIC IV
2a compared to baseline methods. SD denotes standard deviation. Bold denotes the best numerical
values.

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

BCIC IV 2a EEGNet 68.53 ± 15.57 67.89 ± 20.34 69.17 ± 14.89 65.76 ± 19.24

MIN2Net 62.73 ± 12.83 64.48 ± 16.07 60.09 ± 14.04 62.73 ± 13.48

EEG-adapt 64.51 ± 13.88 71.42 ± 18.30 57.59 ± 18.16 65.19 ± 15.64

Deep
ConvNet

60.22 ± 7.27 62.85 ± 12.09 57.78 ± 8.50 60.29 ± 9.12

DADLNet 73.91 ± 11.28 71.79 ± 12.69 76.09 ± 10.64 73.17 ± 11.91

OpenBMI EEGNet 64.48 ± 16.03 67.62 ± 18.71 61.34 ± 20.37 64.01 ± 17.69

MIN2Net 59.83 ± 13.40 67.60 ± 16.31 52.50 ± 17.78 62.20 ± 13.28

EEG-adapt 64.91 ± 15.92 68.70 ± 23.89 61.11 ± 26.51 64.53 ± 19.91

Deep
ConvNet

57.76 ± 12.51 62.09 ± 14.29 53.43 ± 16.02 58.34 ± 13.03

DADLNet 70.42 ± 12.44 69.85 ± 14.98 71.02 ± 12.67 69.59 ± 13.60

Table 2. Classification Performance (mean± SD) for the inter-subject on BCIC IV 2a compared
to baseline methods. SD denotes standard deviation. Bold denotes the best numerical values.

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

BCIC
IV 2a

EEGNet 64.61 ± 8.67 61.01 ± 22.63 68.22 ± 17.27 59.66 ± 18.06

MIN2Net 59.23 ± 7.18 45.22 ± 21.47 73.24 ± 19.25 47.89 ± 15.25

EEG-adapt 66.27 ± 7.90 69.74 ± 11.55 62.79 ± 11.52 67.12 ± 8.83

Deep
ConvNet

61.74 ± 5.92 54.65 ± 14.30 68.83 ± 9.51 56.86 ± 10.78

DADLNet 67.88 ± 7.27 64.15 ± 10.96 71.52 ± 5.52 66.19 ± 9.07

4 Discussion

4.1 Transfer Learning

In this section,we focus on the performance of themodelswith andwithoutDA (w/oDA)
on different datasets. As shown in Table 3, on theOpenBMI andBCIC IV 2a datasets, the
model using the DA strategy outperforms the w/o DA model in all metrics. Specifically,
for the OpenBMI dataset, the DA model improves accuracy by 3.16%, specificity by
5.20%, and F1-score by 2.45% relative to the w/o DA model. These data clearly reflect
the importance of the DA strategy in improving the overall performance of the model.
More notably, the DA model has a more balanced performance in terms of specificity
and sensitivity, which implies that the DA strategy is able to handle both types of MI
classification in a more balanced manner. Similarly, on the BCIC IV 2a dataset, the DA
strategy also brings significant performance improvements to the model.

Additionally, the inter-subject experiment results in Table 4 show that the DAmodel
performed better than the w/o DA model, showing a 6.85% increase in accuracy and



A Domain Adaptation Deep Learning Network for EEG-Based MI Classification 109

Table 3. Classification Performance (mean ± SD) for the intra-subject experimental results for
DA and w/o DA on OpenBMI and BCIC IV 2a. Bold denotes the best numerical values.

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

OpenBMI DA 70.42 ± 12.44 69.85 ± 14.98 71.02 ± 12.67 69.59 ± 13.60

w/o DA 67.26 ± 14.49 68.71 ± 14.98 65.82 ± 12.67 67.14 ± 13.60

BCIC IV
2a

DA 73.91 ± 11.28 71.79 ± 12.69 76.09 ± 10.64 73.17 ± 11.91

w/o DA 71.86 ± 12.55 70.22 ± 20.64 73.51 ± 10.21 69.71 ± 17.19

Table 4. Classification Performance (mean ± SD) for the inter-subject experimental results for
DA and w/o DA on BCIC IV 2a. SD denotes standard deviation. Bold denotes the best numerical
values.

Dataset Method Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

BCIC IV 2a DA 67.88 ± 7.27 64.15 ± 10.96 71.52 ± 5.52 66.19 ± 9.07

w/o DA 61.03 ± 7.64 60.57 ± 15.00 61.50 ± 13.58 59.06 ± 10.81

a 7.13% increase in F1-score. Compared with the results of the intra-subject experi-
ment, the performance gain of the DA model in the inter-subject experiment is even
more pronounced. This highlights the effectiveness of the DA strategy in dealing with
the variability of data across subjects. When comparing the performance of models,
the standard deviation (SD) can offer supplementary insights to evaluate the relative
reliability of each model. Although models may have similar average performance, the
model with the smaller SD is generally regarded as superior due to its lower performance
fluctuations. Further analyzing the SD in Tables 3 and 4, we can find that the DA model
has a lower SD compared to the w/o DA model, which suggests that the use of the DA
strategy not only improves the performance of themodel but also enhances its robustness
and ensures that a consistent performance can be obtained in a wide range of contexts.

4.2 Attention

In order to validate the effectiveness of the SFMA mechanism proposed in this paper,
we discuss it on the BCI IV 2a dataset. The specific experimental setup included: 1)
using only spatial attention mechanisms (Only Spa); 2) using only feature map attention
mechanisms (Only Fm); 3) not using any attention mechanisms at all (No Atten); and
4) using both spatial and feature map attention mechanisms (Proposed). The detailed
results of the experiments are listed in Table 5.

It is clear from Table 5 that the method proposed in this study significantly out-
performs the other schemes in terms of average accuracy, with the largest accuracy
improvement reaching 3.24%. More specifically, Only Spa achieved the highest accu-
racy on Subject 1 and Subject 3; Only Fm performed best on Subject 4; and the method
combining both attention mechanisms achieved the best performance on Subjects 2, 5,
6, 7, 8, and 9, especially on Subject 5, where the accuracy improvement was 10.30%
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Table 5. Intra-subject classification accuracy (%) of different attention mechanism schemes on
the BCIC IV 2a. Bold denotes the best numerical values.

Method Subject Mean

1 2 3 4 5 6 7 8 9

No Atten 74.94 50.42 86.71 56.79 54.78 58.35 71.61 87.11 76.90 68.62

Only Spa 75.49 51.29 88.26 57.24 53.89 58.04 73.25 86.58 76.74 68.98

Only FM 75.26 52.01 86.35 57.61 55.00 58.76 72.43 87.43 76.02 68.99

Proposed 74.12 52.84 86.85 55.99 65.30 62.43 77.75 89.00 82.49 71.86

(Only Fm). On the contrary, the method No Atten failed to achieve the best performance
in all subjects.

Overall, by combining spatial and feature map attention mechanisms, we succeeded
in enhancing the model’s ability to represent features in both spatial and feature map
dimensions, thereby significantly improving the decoding performance of MI signals.

5 Conclusion

In this study, we proposed a deep learning network based on domain adaptation (DA) that
aimed to fully learn the spatial characteristics of motor imagery (MI) while effectively
solving the individual differences present in electroencephalography (EEG) signals. To
preserve the correlation among adjacent channels in the EEG data, we opted to depict
it as a three-dimensional matrix. To thoroughly investigate and comprehend this cor-
relation, we additionally devised an attention mechanism that integrates both spatial
and feature map dimensions. Following experimental verification, this approach that
combines feature map and spatial attention mechanisms could significantly improve the
model’s capacity for learning and representation, offering helpful insights for further
research in the area of MI. Furthermore, through the implementation of the DA strat-
egy, our model showcased exceptional proficiency in effectively addressing differences
among individuals. The efficiency and reliability of our proposed method were further
supported by experimental results obtained from two distinct datasets.
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Abstract. Drug-target affinity (DTA) prediction is an important task in computer-
aided drug design and drug repositioning, which can speed up drug development
and reduce resource consumption. Researchers have explored some deep learning-
basedmethods to improve DTA prediction in recent years, demonstrating the great
potential of deep learning in DTA prediction. They have developed several molec-
ular representation learning methods for drug compounds in deep learning-based
DTA prediction methods. However, most of the existing deep learning-based DTA
prediction models use one-hot encoding-based methods for protein representation
learning, or use recursive neural network-based methods for learning feature rep-
resentations from raw protein sequences. These may affect the ability of the DTA
prediction model to learn the potential features of the protein, thus weakening the
predictive power of the model. To tackle this problem, we developed a novel pro-
tein pre-trainingmethod (PTR) for protein representation learning, then proposed a
DTA prediction framework, called Transformer-Graph drug-target affinity predic-
tion (T-GraphDTA), based on PTR and hybrid graph neural network. The hybrid
graph neural network is mainly responsible for molecular presentation learning
of drugs. Extensive experiments were conducted on four benchmark datasets of
drug-target binding affinity, comparing T-GraphDTA against state-of-the-art mod-
els. The experimental results show that T-GraphDTA achieves significantly better
performance than state-of-the-art models on all four benchmark datasets. It indi-
cates that T-GraphDTA is expected to be an excellent practical tool for predicting
the affinity of drug-target pairs.

Keywords: drug-target interaction · binding affinity · pre-trained model · graph
convolutional neural network · deep learning

1 Introduction

Studies have shown that applying deep neural networks to predict DTA can yield good
results [1]. To train low-dimensional representations of drug and protein sequences
for DTA prediction, researchers have used a variety of deep neural networks and their
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variants, including deep feedforward neural network (DFNN) [2, 3], convolutional neural
network (CNN) [4–6], stacked auto-encoder (SAE) [7], recursive neural network (RNN)
[8–10], and graph neural network (GNN) [11, 12, 33]. For example, Öztürk et al. [11]
proposed the deep learningmodel DeepDTA that uses only sequence information of both
targets and drugs to predict drug-target interaction binding affinities. Abbasi et al. [8,
34–37] proposed DeepCDA, which combines convolutional layers and long short-term
memory (LSTM) layers to efficiently encode local and global temporal patterns for deep
cross-domain complex drug-protein affinity prediction. Shrimon Mukherjee et al. [10,
38] proposed a novel architecture DeepGLSTM based on graph convolutional network
(GCN) and LSTM, which predicts binding affinity values between the FDA-approved
drugs and the viral proteins of SARS-CoV-2. However, most of the DTA prediction
models used one-hot encoding representation for proteins that is commonly learned
features by a CNN with one-dimensional convolutional layers. These models use one-
dimensional convolutional layers and global pooling operations to roughly aggregate
features,whichmay result in the loss of a large amount of useful information. Someworks
used RNN-based methods to learn protein representation for raw protein sequences,
which may lose some important position information of amino acids in the protein.
In addition, the tertiary structure of proteins does not always exist in a reliable form,
resulting in a graphical representation of proteins that does not work well.

Fig. 1. The flowchart and architecture of the proposed T-GraphDTA framework. T-GraphDTA
consists of four modules including the data pre-processing module, feature extraction module,
feature fusion module, and predictor.



T-GraphDTA: A Drug-Target Binding Affinity Prediction Framework 115

2 Method

2.1 Overview of T-GraphDTA

To effectively predict drug-target affinity, we develop the novel framework, T-
GraphDTA, mainly consisting of a protein sequence pre-training model, a hybrid graph
neural network, a concatenation layer, several fully connected layers, and a Multi-
layer Perceptron Network (MLP). Figure 1 shows the flowchart and architecture of
T-GraphDTA, which consists of four major modules: (1) Data pre-processing. The
data pre-processing module is in charge of pre-processing the drug data represented in
SMILES strings and constructing the corresponding data structure of molecular graphs.
(2) Feature extraction. The feature extraction module is mainly in charge of learning fea-
tures from molecular graphs of drugs and protein sequences. Drug features are learned
by a hybrid graph neural network, called GAT-GCN, based on a graph attention network
(GAT) and GCN, while protein features are learned by the Transformer-based protein
pre-training model PTR. (3) Feature fusion. The feature fusion module integrates and
optimizes the output feature representations from GAT-GCN and PTR. (4) Predictor.
This module mainly contains an MLP, which is responsible for predicting the affinity
values of drug-target pairs based on the fused features, and finally outputting them. We
will describe each module in detail below.

2.2 Data Pre-processing

Compounds can be described by molecular graphs with atoms as nodes and bonds as
edges. Therefore, one can use machine learning algorithms to process drug compound
data in the form of graph data and learn drug features to perform DTA prediction tasks.
For this purpose, we construct the corresponding molecular graph of each drug based on
its SMILES string, which reflects the structural information and the interatomic inter-
actions. We use the cheminformatics toolbox RDKit to calculate the relevant properties
of compounds to construct related information matrixes of the drug molecular graphs.
In these molecular graph data, each node’s information can be mapped into a multidi-
mensional binary feature vector, which expresses five pieces of information: the atom
symbol, the number of adjacent hydrogens, the number of adjacent atoms, the implicit
value of the atom, andwhether the atom is in an aromatic structure. T-GraphDTAdoes not
require the processing of the raw protein data in the data pre-processingmodule. Because
we treat protein sequences as texts in natural language and present a Transformer-based
protein pre-training model to learn protein features in T-GraphDTA.

2.3 Feature Extraction for Proteins

In recent years, with the development of deep learning, Transformer-based large-scale
pre-trained models (PTMs) have achieved great success in natural language processing
(NLP) and visual analytics. Large-scale PTM can efficiently capture rich knowledge
from large amounts of labeled and unlabeled data and store them in the model with many
parameters. These large number of parameters with rich implicit knowledge can be fine-
tuned to specific tasks, thus benefiting various downstream tasks. Protein sequences and
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textual language data have some similar properties, which provide favorable conditions
for applying language pre-training models to protein representation learning [14].

Inspired by these, we developed a Transformer-based protein pre-training model,
called PTR, to learn protein features for the DTA prediction task in this work. PTR
mainly consists of N Encoder blocks and N Decoder blocks, as shown in Fig. 2.

O

O

O

O

Fig. 2. PTR model can be divided into two stages: pre-training stage and application stage.

In the pre-training phase, each original protein sequence is divided into several
sub-sequences in character units in the first step. For each protein sequence, a certain
percentage of characters are masked, and then a prediction is made for the masked part
based on information from the sequence context. In this way, PTR is able to identify
the dependencies between the masked and unmasked portion of protein sequences after
extensive training, which results in a more accurate protein representation. In the appli-
cation phase, DTA prediction is a downstream task of the protein pre-training model.
Similar to the pre-training phase, proteins are first partitioned into subsequences that are
then encoded and fed into the model. The huge number of parameters and contextual
relationships in the protein sequences learned in the pre-training phase are used to extract
the protein features. Contextual relevance information is mapped to each character in
the sequence. Finally, the feature matrix output from the final layer of PTR is used as
the protein representation.
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2.4 Feature Extraction Module for Drugs

Because T-GraphDTA uses molecular graphs to represent drugs, it needs to design a
method that can efficiently learn and extract drug features from molecular graphs. GCN
models can extract feature information from a given graph by capturing local structures
based on the input graph information [16]. However, GCN treats each node equally,
which is not conducive to the information extraction of core nodes. On the other hand,
GAT can assign different weights for each neighboring node to identify the more impor-
tant core nodes. The self-attention mechanism [17] of GAT is used to aggregate the
neighboring nodes, achieving adaptive matching of weights for different neighbors.
Therefore, we developed the hybrid graph neural network GAT-GCN that combines
GCN and GAT to obtain a better ability to learn drug features.

The implementation of GAT-GCN is described as follows. To start with, the feature
extraction module takes the nodes of the drug molecule graph as input. Each node in
the molecular graph is linearly transformed by the weight matrixW . The node attention
coefficients are then calculated for each pair of existent edges. For each input node i in
themolecular graph, the attention coefficient of iwith respect to each first-order neighbor
node can be calculated by the following equations:

h =
{�h1, �h2, . . . , �hN

}
(1)

eij = F(W �hi,W �hj) (2)

where h,N , e, andW are the hidden feature representation of neighbor nodes, the number
of the neighbor nodes, the attention coefficients, and theweightmatrix, respectively.F(·)
is a single-layer feedforward neural network. The magnitude of attention coefficients
indicates the importance of node j to node i. These attention coefficient values are then
normalized by using the softmax function, which is used to calculate the output features
of the node.

aij = softmax(eij) (3)

�h′′
i = σ(

∑
j∈Ni

aijW �hi) (4)

where aij, σ(·) and �h′′
i are the normalized weight coefficient, the nonlinear activation

function, and the feature representation of node i, respectively. TheGAT layer aggregates
the information of neighboring nodes by assigning attention coefficients based on the
importance of the nodes. Thus after processing in the GAT layer, each node feature in the
molecular graph is abstracted and contains a lot of high-level features of the molecular
graph. Then, the abstracted feature matrix A ∈ RN∗C (N : a set of N nodes, C: : the
number of per-node features) of these nodes is fed into the subsequent GCN layers with
the ReLu function. The multi-layer GCN takes the abstracted feature matrix A as input.
The GCN layer propagation rules are defined as:

Hl+1 = ReLu(Hl,A) (5)

where Hl is the input to the l-th layer. Finally, the final feature representation vector for
the drug is calculated by a global max pooling layer.
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2.5 Feature Fusion

The feature vectors of drugs and proteins generated in the feature extraction module
are fused in the feature fusion module. Following the feature extraction module, the
fully connected layer was also used to convert the drug feature fd vector learned from
the GAT-GCN block and the protein feature vector fp learned from the PTR block to
128 dimensions. Then the vector fd and the vector fp were concatenated, to obtain
an integrated vector fcon = [fd ; fp]. Finally, the output vector fcon is the high-level
representation of the drug-protein pair, which will be fed into the predictor to predict
the drug-target affinity value.

2.6 Predictor

T-GraphDTA uses an MLP which consists of two fully connected layers on its top to
predict drug-target affinity values and output results. The MLP can be formulated as
follows:

y = σ(Wi · z + bh) (6)

where z,Wi and bh are the input vector, the weight matrix of the input and output layer,
and the bias vector of the corresponding layer, respectively. y is the predicted affinity
value of the drug-target pair.

3 Experimental Result and Analysis

To evaluate the performance of T-GraphDTA, we conducted extensive experiments on
four publicly available benchmark datasets of drug-target binding affinities, comparing
T-GraphDTA against several state-of-the-art models.

3.1 Datasets and Evaluation Metrics

Following the previous works [6, 18–24], the most used datasets and evaluation metrics
in the community of drug-target affinity prediction are used to evaluate the performance
of the models in this work.

1) Datasets: The benchmark datasets include Davis [18], Kiba [19],Metz [20], and DTC
[21] used in this work.

2) Evaluation metrics: The evaluation metrics used in this work are Mean Square Error
(MSE) and Concordance Index (CI), as shown in Eqs. (10) and (11).

MSE = 1

n

∑n

i=1
(
...
y i − yi)

2
(7)

CI = 1

C

∑
yi>yj

h(pi − pj) (8)
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ForMSE,
...
y is the predicted value, y is the actual value, and n is the sample size. For CI,

pi is the predicted value for its larger affinity yi, pj is the predicted value for its smaller
affinity yj, C is a normalization constant, and h(x) is a step function, e.g.:

h(x) =
⎧⎨
⎩

1 , x > 0
0.5 , x = 0
0 , x < 0

Note that for drug-target affinity prediction, higher CI is better while lower MSE is
better.

3.2 Baselines

To verify the advantage of our model, we evaluated T-GraphDTA against 9 state-of-the-
art models. The state-of-the-art models have traditional machine learning-based models
includingKronRLS [23, 24] and SimBoost [25], and deep learning-basedmodels includ-
ing DeepDTA [6], DeepGLSTM [10], WideDTA [26], AttentionDTA [27], GANsDTA
[28], GraphDTA [29], SAG-DTA [32] and DeepGS [30].

3.3 Experimental Setup

Following the SAG-DTA [32], for each dataset, we use 80% of the data samples to train
the model and the 20% as a benchmark test set to test the model. Our experiments were
performed on a GPU server with an NVIDIA GeForce RTX 3090 graphics card with
24GB of memory.

Note that all performance results of the baseline models in this work are cited from
their corresponding original papers.

3.4 Results and Analysis

Results on the Davis and Kiba datasets: Table 1 shows the prediction results of T-
GraphDTA and baseline models on the Davis datasets. As can be seen from Table 1,
T-GraphDTA achieves 0.193 and 0.906 in terms of MSE and CI values, respectively,
achieving the best results among all compared models. The best MSE and CI values
obtained by the baseline models on the Davis dataset are 0.209 (SAG-DTA) and 0.903
(SAG-DTA), respectively. The MSE obtained by T-GraphDTA is 7.65% more than the
state-of-the-art results, respectively.

Table 2 shows the prediction results of T-GraphDTA and baseline models on the
Kiba datasets. As can be seen from Table 2, T-GraphDTA achieves 0.124 and 0.900 in
terms of MSE and CI values, respectively, winning the best results among all compared
models. DeepGLSTMachieved the bestMSE (0.130) and the best CI (0.897) in the state-
of-the-art models on the Kiba dataset. Compared to the state-of-the-art, T-GraphDTA
achieved a 4.61% improvement in terms of MSE and a slightly higher CI of 0.003.

In summary, experimental comparisons show that T-GraphDTA outperforms the
state-of-the-art models for all evaluation metrics on all benchmark datasets.
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Table 1. Comparison of methods on the Davis dataset.

Model Drug Protein MSE CI

KronRLS [23, 24] Pubchem-Sim Smith-Waterman 0.379 0.871

SimBoost [25] Pubchem-Sim Smith-Waterman 0.282 0.873

WideDTA [26] CNN CNN 0.262 0.886

GANsDTA [28] GNN CNN 0.276 0.881

DeepGS [30] Smi2Vec Prot2Vec 0.252 0.880

DeepGLSTM [10] GCNs Bi-LSTM 0.232 0.895

GraphDTA [6] GCN 1D CNN 0.254 0.880

GraphDTA [6] GAT-GCN 1D CNN 0.245 0.881

GraphDTA [6] GAT 1D CNN 0.232 0.892

GraphDTA [6] GIN 1D CNN 0.229 0.893

SAG-DTA [32] Graph (HierPool) CNN 0.212 0.901

SAG-DTA [32] Graph (GlobPool) CNN 0.209 0.903

Our T-GraphDTA GAT-GCN PTR 0.193 0.906

Table 2. Comparison of methods on the Kiba dataset.

Model Drug Protein MSE CI

KronRLS [23, 24] Pubchem-Sim Smith-Waterman 0.411 0.782

SimBoost [25] Pubchem-Sim Smith-Waterman 0.222 0.836

WideDTA [26] CNN CNN 0.179 0.875

GANsDTA [28] GNN CNN 0.224 0.866

DeepGS [30] Smi2Vec Prot2Vec 0.193 0.860

DeepGLSTM [10] GCNs Bi-LSTM 0.133 0.897

GraphDTA [6] GCN 1D CNN 0.139 0.889

GraphDTA [6] GAT-GCN 1D CNN 0.139 0.891

GraphDTA [6] GAT 1D CNN 0.179 0.866

GraphDTA [6] GIN 1D CNN 0.147 0.882

SAG-DTA [32] Graph (HierPool) CNN 0.131 0.893

SAG-DTA [32] Graph (GlobPool) CNN 0.130 0.892

Our T-GraphDTA GAT-GCN PTR 0.124 0.900
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4 Conclusion

We proposed a novel drug-target binding affinity prediction framework with even lim-
ited biology and chemistry knowledge, called T-GraphDTA, which is based on the
Transformer and graph neural network. In the T-GraphDTA framework, we developed a
Transformer-based pre-trained protein model (PTR) to learn protein features frommany
raw protein sequences and a hybrid graph neural network (GAT-GCN) to learn drug
features from molecular graphs. We compared the performance of the proposed model
against those of nine state-of-the-art models on four benchmark datasets. Experimental
results show that T-GraphDTAoutperforms the state-of-the-art models on all the datasets
across all evaluation metrics.

Although T-GraphDTA is excellent compared to existing models, T-GraphDTA
makes less use of biological and chemical expertise and experience in studying drug-
target interaction. Numerous studies in the past have shown that there is a great deal of
biological and chemically relevant expertise and experience useful in predicting drug-
target interactions. Therefore, for future work, we will study to improve the model by
exploiting more related expertise and experience in biology and chemistry.
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Abstract. Compound property assays are an important part of drug development,
but incomplete data may occur for a variety of reasons. To deal with these incom-
plete data and improve the success rate of drug development, researchers often
need to effectively impute the missing data. Therefore, this paper proposes a gene
expression programming-based method, called GEP-CPI, for imputing missing
compound property assay data. In GEP-CPI, the missing data imputation model
is expressed by the parse tree of a chromosome, and then the optimal missing
data imputation model is mined by iterative evolution of the chromosome pop-
ulation. Experimental results on three compound property assay related datasets
demonstrates that the proposed method generally outperforms the state-of-the-art
methods in imputing missing data of compound property assays.

Keywords: Gene Expression Programming · Missing Imputation · Compound
Property Assay

1 Introduction

Missing data is a pervasive problem across various disciplines and fields. Extracting
knowledge from databases with missing data is a challenge for researchers in the related
field. Given that most data mining algorithms struggle to handle incomplete datasets
effectively, it becomes necessary to interpolate the missing data [1–6].

Missing data imputation methods can be categorized into three types based on the
sources of information that they rely on: univariate statistical analysis-based methods,
multivariate statistical analysis-based methods, and machine learning-based methods
[7]. Among these, machine learning-based methods utilize machine learning to con-
struct mappings relationship or probability models between the target attribute and other
attributes to impute missing values. Examples include K-Nearest Neighbors (KNN),
Artificial Neural Network (ANN), Support Vector Machines (SVM), Random Forests
(RF) [8]. Thesemethods can deal with complex and nonlinear data features, exhibiting of
generalization and robustness. However, they require tuning of multiple parameters and
hyperparameters, and have high demands for both the quality and quantity of training
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data. For example, some researchers utilized the KNN to estimate missing speed data on
UTIS [9] and missing precipitation data [10]. Some researchers have employed RF to
impute forest volume [11] and the lawn length of lawnmowers [12] and missing values
in other field [13]. Several studies have utilized ANNs for imputing missing values in
datasets [14–20]. Nouvo et al. [21] used fuzzy c-means for data interpolation. Wang
et al. [22] used SVM for filling missing medical data.

Compound property assay is crucial in drug development, but the assay data may be
incomplete for numerous factors. This incompleteness manifests as unknown or unreli-
able attribute values for certain compounds. Data missing can impact the integrity and
quality of data, increase the complexity of data analysis and mining, result in inaccurate
or unreliable outcomes, thereby diminishing the utility of the data [23]. However, tradi-
tional machine learning-based methods often not well do in the imputation of compound
property assay data. Recently, the issue of imputation of compound property assay has
attracted the attention of the chemical community. Some researchers have proposed some
deep leaming-based methods for missing data imputation. For example, Irwin et al. [24]
used a convolutional neural network (CNN) to populate image or chemical structure
data, and then used a generative adversarial network (GAN) to generate missing data.
Whitehead et al. [25] utilized Deep Neural Network (DNN) to impute missing values
in assay bioactivity data, aiming to improve the reliability and accuracy of the imputa-
tion process. Whitehead et al. [26] developed methods based on sparse and noisy data
to impute missing compound activities, enhancing the accuracy and completeness of
activity predictions. However, deep learning-based methods often entail learning a sub-
stantial number of parameters (ranging from tens of thousands to billions) from training
samples and fine-tuning multiple hyperparameters. These methods require high-quality
and high-quantity training data, as well as significant computational resources, typi-
cally GPU servers. To address the problems of the above-mentioned missing imputation
methods, this work aims to develop a better non-deep learning-based missing value
imputation scheme.

GeneExpressionProgramming (GEP) is a powerful evolutionary algorithm that com-
bines genotype and phenotype. It has been successfully applied to various data mining
knowledge discovery and optimization problems [27, 28]. This work introduces GEP to
solve the imputation problem in compound property assay, and propose a Gene Expres-
sion Programming-based Compound Property Imputationmethod (GEP-CPI). GEP-CPI
utilizes gene expression programming to effectively impute in the missing data. By iter-
atively evolving the chromosome population, GEP-CPI mines the optimal solutions for
compound property assay data. Experiments were conducted on three datasets to vali-
date the effectiveness of the proposed method. Experimental results show that GEP-CPI
generally outperforms other methods in imputing missing compound property assay
data.

2 Overview of Gene Expression Programming

GEP is a powerful evolutionary algorithm that combines genotypes and phenotypes,
inheriting the advantages of Genetic Algorithms and Genetic Programming. GEP
encodes individuals into genes, which are later encoded into various expression trees
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in evaluating individuals. Afterwards, these expression trees are decoded to obtain the
functional expression of the corresponding chromosome. By assessing an individual’s
fitness, we can calculate the degree to which their expression is effective in solving the
problem. By creating an initial population and then performing genetic manipulations
to iteratively evolve, the individuals that provide the optimal solutions can eventually be
found. In GEP, a chromosome consists of one or more genes, where genes are a sym-
bolic string composed of a series of function symbols and terminal symbols. Each gene
in GEP is divided into two parts: the head and the tail. The “head” consists of function
symbols and terminal symbols, while the “tail” can only contain terminal symbols. The
relationship between the tail length t and the head length h needs to satisfy as follows:

t = h ∗ (n − 1) + 1 (1)

where, n represents the maximum number of operands in the set of function operators.
The GEP chromosomes consist of genotypic and phenotypic forms. The GEP has

a straightforward, linear, and compact chromosome structure that facilitates genetic
operations. Furthermore, this coding method helps to avoid the generation of invalid
gene structures during genetic operations, thus improving the efficiency of the algorithm.
Taking the simple mathematical expression (2) as an example.

x2 + y2 (2)

GEP’s gene decoding method is a hierarchical traversal of the phenotypic ET from
top to bottom and from left to right. This process produces K-expression (genotype).
Conversely, decoding the K-expression in a reverse process allows you to obtain the
corresponding ET. By traversing the expression tree in an inorder traversal, one can
obtain the mathematical expression corresponding to the chromosome (Figs. 1 and 2).

Fig. 1. Genotype example figure.

Fig. 2. Example of phenotype illustration
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The primary process of the GEP is similar to the traditional genetic algorithm and
genetic programming. It evolved by a population composed of individuals through mul-
tiple generations of genetic operations to ultimately discover the optimal individual
consequently which can be mapped to the final solution to the problem. For the specific
execution process of the GEP, please refer to reference [29].

3 GEP-Based Method for Imputing Missing Data of Compound
Properties

3.1 Problem Description

Utilizing known properties to impute in missing attributes for compound properties is
a widely used and effective method. The basic idea of this method is that we can use
the already available attribute information to infer and fill in the missing attributes. As
shown in Eq. (3):

V = f (x, y, z...) (3)

Equation (3) represents the formula for imputingmissing assay compoundproperties,
where V represents the missing attribute, and x, y, z... represent known attributes. The
key to apply Eq. (3) is to determine themapping relationship f () betweenV and x, y, z....
. The derivation of the function f () for this model involves optimizing a multi-parameter
nonlinear model. Once f (·) is determined, we can use it to impute in missing compound
property assay data.

3.2 The GEP-CPI Method

Basic Ideas of GEP-CPI. The basic ideas of GEP-CPI is to treat the missing unit
data attributes in compound property assay as the target attributes. Next, all available
data information is utilized to determine the exact mapping relationship between the data
attributes of the training set and the target attributes. In this context, every individual in the
GEP serves as a candidate solution for thismapping relationship. Iterative optimization is
performed using genetic evolution strategies [30], such as mutation operators, crossover
operators and selection operators, until the optimal mapping relationship is identified.
Finally, one can use the known data and the best mapping relationship to complete
the missing imputation of the target attribute. In a word, GEP-CPI achieves individual
evolution and optimization through operations such as mutation and recombination to
efficiently find the optimal solution to a problem.

Gene and Individual Design. “GEP encoding” refers to the technique and procedure
for converting the potential solutions of a problem from their representation space into
the search space compatible with theGEP. To imputemissing data of compound property
assays, we design the gene structure and encoding method for GEP-CPI:

Definition 1: (Gene) Denoted as G = {H ,T }. H is the gene’s head, composed
of elementary function symbols and mathematical operators, the encoding represents
the operation method of the parameter variable. T is the gene’s tail, consisting of the
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parameter variable. Its encoding represents the known compound property assay data
that has been explicitly defined, the length of the gene GL is: GL = h + t.

Definition 2: (Individual) Denoted as C = {G,ET ,K, S}, G represents genes, ET
represents expression trees, K represents the expression of genes in ET, S is the fitness
value of an individual for a specific dataset.

Definition 3: (Population) A population is a collection of n individuals, defined as
P = {C1,C2, . . . ,Cn}.

GEP-CPI is powerfully adaptive, automatically adjusting the structure and parame-
ters of an individual to different problems and environments.

Individual Evaluation. In the optimization process of GEP-CPI, the reasonable selec-
tion of the fitness function is the foundation for accurately imputing missing data of
compound property assays. In GEP-CPI, each individual is a potential candidate solu-
tion for the given problem. To evaluate individual fitness, the specific requirement is to
measure the difference between the predicted value and the true value of a candidate
solution. Therefore, this paper uses a fitness function based on Mean Squared Error
(MSE), as shown in Eq. (4):

E =
∑n

i=1
(Pi − Ti)

2 (4)

where E represents Mean Squared Error, n is the number of data sample in the
experimental dataset, P is the predicted value, and T is the true value.

3.3 GEP-CPI Process

The process description of the proposed GEP-based method for compound property
assay data imputation is as follows:
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Algorithm 1  
Input: Population size ( , maximum evolutionary gen-
erations , terminal set , Function symbol set , gene 
head length , gene tail length , probabilities for var-
ious genetic operators, dataset.  
Output: The best individual .  
Step  
Step 1 Correlation analysis method to calculate 
the correlation coefficients between different compound 
properties. 
Step 2: Remove data attributes that have low relevance to 
the target attribute. 
Step 3 Normalize the dataset. 

Step 4 Generate the first generation of individuals ran-
domly and initialize the population. 
Step 5 Perform the chromosome decoding operation on 
every individual in the current population to obtain the 
corresponding mathematical expression. 
Step 6 Use equation (4) to calculate the fitness of each 
individual.  
Step 7 Sort the individuals in the current population 
based on their fitness values to identify the best indi-
vidual. 
Step 8 If the best individual satisfies the stopping 
condition, then proceed to step 12. 
Step 9 If the best individual does not satisfy the stop-
ping condition, then go to step 10. 
Step 10 Perform genetic operation on the population for 
every individual using the selection method described in 
reference [30], then go to step 5. 
Step 11  Output the mathematical expression represented 
by the current best individual, and the algorithm termi-
nates. 

4 Experiment and Results Analysis

4.1 Experimental Setup

Dataset. Three benchmark datasets including QM8, ESOL, and Lipophilicity are used
to evaluate the performance of the comparative methods in this work. The statistics of
these benchmark datasets is shown in Table 1.

The QM8 dataset includes more than 20,000 organic molecules. Each molecule
is represented by the Cartesian coordinates of the atoms and the corresponding
quantum mechanics (QM) properties. The dataset contains 12 properties for each
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molecule, encompassing properties such as energy, enthalpy, free energy, dipolemoment,
polarizability, heat capacity, zero-point vibrational energy, and more.

TheESOLdataset contains solubility data for 1,128 compounds, includingmolecular
weight, octanol-water partition coefficient (logP), polar surface area, and more. These
physicochemical properties can use for predicting the solubility of compounds.

The Lipophilicity dataset provides experimental results of the octanol/water distri-
bution coefficient (logD at pH 7.4) for 1,144 compounds. Solubility and lipophilicity
are fundamental physicochemical properties crucial for understanding how molecules
interact with solvents and cell membranes.

Table 1. Dataset Information

Dataset Compounds Number Compound Properties

QM8 21786 12

ESOL 1128 9

Lipophilicity 1144 5

Evaluation Metrics. The evaluation metric used in this work is the Mean Squared
Error described in Sect. 3.2.2, which can assess the performance of missing imputation
methods.

Baseline Model. To assess the performance of GEP-CPI in imputing missing data of
compoundproperty assays,GEP-CPI comparedwith fivemethods includingRF [11–13],
Multiple Imputation (MI), Feedforward Neural Network (FNN) [16–18], SVM [22] and
DNN [25]. RF is an ensemble learning model based on decision trees. It is trained using
training data acquired through random sampling. It combines multiple decision trees for
learning and prediction, aiming to enhance both the stability and prediction accuracy
of the algorithm. MI is a method used to handle missing data by imputing values. The
fundamental idea is to estimate missing data values by interpolating calculation from
known data points. This method has the capability to predict not only one-dimensional
data but also high-dimensional data. FNN can learn and represent complex nonlinear
patterns through multiple hidden layers and numerous neurons. By integrating multiple
hidden layers and nonlinear activation functions, FNN effectively extract useful features
from raw input data. Compared to FNN, DNN have a deeper network structure. DNN
exchange and iteration of information multiple times within the network, enabling the
processing of more complex nonlinear relationships and feature representations. SVM
can perform classification and regression tasks on high-dimensional data by mapping
the data into a higher-dimensional feature space and constructing an optimal hyperplane
within that space.

Parameter Configuration. GEP parameters iteration count is 200, population size is
100, Gene head length is 7, Mutation rate is 0.1, Crossover rate is 0.1, Training set
sample count is 100, Selection algorithm is Tournament Selection.
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MI max_iter parameter (the maximum number of interpolations rounds to be
executed before the last round of calculation) is taken as 10.

RF parameters: Number of classifiers is 10, Maximum depth of decision trees is 5,
Minimum samples per leaf node is 1.

Parameters of the SVM: Linear kernel function, Penalty coefficient is 100, Kernel
coefficient is 0.1, Acceptable error range is 0.1.

The parameters of the FNN: 64 and 32 neurons in 6 input layers and 2 hidden
layers, respectively, using ReLU activation function, linear activation function in the
output layer, mean square error in the loss function, Adam in the optimizer, 100 model
iterations, and 16 batch sizes.

The parameters of the DNN, consistent with reference [25].

4.2 Experimental Results and Analysis

Experimental results ofGEP-CPI comparing against othermissing data imputationmeth-
ods on three common public datasets are shown in Table 2. Comparison results in Table 2
show that GEP-CPI generally outperforms other methods in imputing missing data of
compound properties assay. The main reason may be solutions generated by the GEP
often have a prominent level of interpretability, which means they can clearly explain the
meaning and function of each gene and gene combination. This helps in gaining a deeper
understanding of the problem’s essence and the effectiveness of the solutions. Besides
GEP-CPI, although MI perform well on the QM8 dataset, they are not as effective as
FNN, DNN, and RF on the ESOLS dataset. DNN outperforms the FNN in imputing
missing data on these three commonly used public datasets due to the multi-layer struc-
ture of DNN that enables layer-by-layer abstraction and feature extraction on complex
data.

Table 2. Experimental results of optimal parameters for each comparative method

Model QM8 ESOL Lipophilicity

DNN 2.21 0.94 0.8

FNN 2.73 1.3 0.9

SVM 2.32 1.7 0.86

RF 2.77 1.1 0.84

MIA 2.18 1.39 0.81

GEP-CPI 2.13 1.03 0.79

4.3 The Impact of Key Parameters of GEP-CPI

To optimize GEP-CPI, we investigated the effects of tournament and roulette wheel
selection operators, various mutation rates, and different gene lengths on both the opti-
mal solution and the average optimal solution. In this paper, the method of controlling
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Fig. 3. The effect of two selection operators of GEP-CPI.

variables is employed to explore the results of the impact of various key parameters of
the GEP algorithm. Figure 3, Fig. 4, and Fig. 5 represent the impact of various selec-
tion operators, mutation rates, and gene lengths of GEP-CPI on the same dataset (QM8)
respectively. The vertical axis of each figure represents the effectiveness of the GEP-CPI
for imputing missing data, with closer values to 1000 indicating better performance. The
horizontal axis represents the number of experiments.

Figure 3 represents the impact of various selection operators of GEP-CPI under the
same conditions. As shown in Fig. 3, GEP-CPI performs better in compound property
predictionwhen using the tournament selection operator. The tournament selection oper-
ator tends to favor individuals with higher fitness during the selection process. Because
the tournament selection operator only chooses the better performing individuals for
reproduction and evolution, it helps preserve excellent gene combinations and solu-
tions. Additionally, the tournament selection operator introduces randomness into the
competition, meaning that the individuals selected in each tournament are not entirely
deterministic. This randomness increases the diversity of the population, prevents falling
into local optima, and enhances the exploration capability of the population.

Figure 4 represents the impact of different mutation rates of GEP-CPI under the
same conditions. As shown in Fig. 4, when the mutation rate parameter is 0.1, GEP-
CPI performs better in composite attribute prediction. The mutation rate refers to the
probability of mutations occurring in the gene mutation operation. Different mutation
rates can affect the algorithm’s exploration capability and convergence speed. When the
mutation rate is low, the probability of mutation operations occurring is small. This may
result in slower convergence because there are fewer changes in the population, limiting
the ability to explore new gene combinations and solutions. When the mutation rate is
high, the probability of mutation operations occurring is larger, which helps increase
the diversity of the population and encourages the algorithm to search the solution
space more extensively. However, a high mutation rate may cause the algorithm to be
unstable because themutation operationmay produce invalid individuals. If themutation
rate is moderate, the algorithm’s exploratory capability and convergence speed can be
balanced. In addition, an appropriate moderate mutation rate can increase diversity in the
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Fig. 4. The effect of three mutation rates of GEP-CPI.

population, helping to avoid falling into local optima and promoting global exploration
of the solution space.

Figure 5 represents the impact of different gene head lengths of GEP-CPI under the
same conditions. It can be observed from Fig. 5 that GEP-CPI achieves the best missing
data imputation performance when the gene head length parameter is 7. In GEP-CPI,
gene length refers to the number of nodes in the gene expression tree, which determines
the individual’s expressive power. Different gene lengths can have varying effects on
the algorithm’s search capability and representation capability. When genes are short
in length, they limit the ability of individuals to express themselves. This may result in
individuals only being able to express simpler solutions, making it challenging to solve
complex problems.When gene length is long, the individual’s expressive power is strong,
the search space is large, but convergence becomes difficult. In the case of moderate gene
length, individuals have strong expressive power and can represent moderately complex
solutions.Moderate gene length is suitable for most common problems and offers a good
balance between search capability and computational efficiency.

Fig. 5. The impact of different gene header lengths of GEP-CPI.
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5 Conclusion

This work proposed a gene expression programming-based method called GEP-CPI for
imputing missing compound property assay data. We conducted experiments comparing
GEP-CPI with other missing imputation methods on three commonly used datasets
to evaluate GEP-CPI. The experimental results show that GEP-CPI outperforms other
comparative methods in imputing missing data of compound properties assay. This also
demonstrates the validity of applying GEP for missing imputation in compound property
assay datasets to improve accuracy.
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Abstract. Weutilized interpretable deep learning methodologies to discern crit-
ical genes and latent biomarkers associated with Parkinson’s disease (PD). Gene
expression data were collected from the GEO dataset, subjected to rigorous dif-
ferential expression analysis to curate genes for subsequent scrutiny. Based on the
P-Net and PASNet models, we have developed a pathway-related deep learning
model that integrates PD-associated gene expression data with established biolog-
ical pathways. This method has yielded satisfactory results, manifesting an Area
Under the Curve (AUC) of 0.73 and an F1 score of 0.71, thereby efficaciously
discriminating PD patients and bestowing novel insights into the pertinent bio-
logical pathways. Through interpretable deep learning models, we have identified
potential biomarkers (XK, PDK1, TUBA4B, TP53) and their associated biolog-
ical pathways (innate immune system, hemostasis, G protein-coupled receptor
signaling pathway) related to Parkinson’s disease. The importance of these genes
has been validated through external datasets and UPDRS III scores. Of particu-
lar significance is the XK gene, also known as Kell blood group precursor, and
numerous XK gene mutations have been linked to the McLeod syndrome which
exhibits symptomatic similarities with PD. Taken together, we identified several
PD associated genes by explicable deep learning and bioinformatics methods, and
XK gene was demonstrated a close correlation to PD.
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Biomarkers · XK Gene
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1 Introduction

Parkinson’s disease (PD) has emerged as an increasingly pervasive neurodegenerative
ailment on a global scale, afflicting in excess of six million individuals, and its incidence
continues to rise steadily [1, 2]. The crux of the PD quandary lies in the progressive
degeneration of dopaminergic neurons, setting forth a domino effect of pathological
transformations, encompassing the accretion of α-synuclein protein and the consequen-
tial loss of cells in various cerebral regions [3]. PD manifests as a constellation of
symptoms, including tremors, muscular rigidity, bradykinesia, and a conspicuous dete-
rioration in motor function [4]. Present therapeutic interventions are largely oriented
towards alleviating these symptomatic burdens, yet they fall short of providing effica-
cious remedies to arrest or retard dopaminergic neuronal degeneration. Consequently, a
more profound comprehension of the molecular mechanisms underlying PD and novel
biomarkers discovery became exigent. These would offer the prospect of early diagno-
sis, treatment modalities, prognostic evaluations, and the potentiality of groundbreaking
therapeutic modalities.

Efficientmedical science data processing and the extraction of informative character-
istics is very important for the quest for a more profound comprehension of diseases and
the development of efficacious therapeutic modalities. The exploitation of data mining
and machine learning methodologies has been harnessed for the analysis of disease-
related data, ushering in novel avenues for the diagnosis and treatment of maladies [5].
Yet, given the intricate nature of PD, conventional statistical analysis techniques grapple
with the comprehensive capture of multigenic risk factors, thus compelling the imper-
ative for more robust tools to confront this challenge. With the relentless enhancement
in computational capabilities, the deployment of deep learning artificial intelligence
models in the prediction of genetic risk ushers in fresh possibilities to disentangle the
multifaceted etiology of neurodegenerative disease [6]. Consequently, the deployment
of interpretable deep learning neural network models to ascertain and validate potential
biomarkers for PD emerges as a matter of profound practical significance. In this inves-
tigation, we employed an interpretable deep learning neural network models to dissect
potential associated genes of Parkinson’s disease.

2 Materials and Methods

2.1 Data Acquisition for Parkinson’s Disease

In the Gene Expression Omnibus (GEO) database, datasets were meticulously selected
based on stringent criteria: specimens derived from individuals afflicted by Parkinson’s
disease (PD) with samples from their healthy counterparts, all sourced from peripheral
blood. Ultimately, three datasets namely, GSE99039 [7], GSE57475 [8], and GSE6613
[9] were deemed suitable. GSE99039 was partitioned into a training set and a test set,
allocating 80% for model training and 20% for model performance evaluation. These
datasets encompass UPDRS scores for PD patients, facilitating the exploration of cor-
relations between core genes and clinical manifestations. Furthermore, GSE57475 and
GSE6613 served as external validation datasets to authenticate hub genes. Raw data or
sequence matrix files were adeptly procured and processed, with the selection of probes
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bearing the highest average expression values for the annotation of genes endowed with
multiple matching probes, duly adorned with homologous gene symbols. For in-depth
information on these datasets, please refer to Table 1.

Table 1. Basic information of the Datasets Used

Study ID Platform # Probes Sample
size(n)

Age (mean ± SD) Sex N (% male) Hoehn-Yahr
(mean ± SD)

PD CT PD CT PD CT

GSE6613 GPL96 12,403 50 22 69.4 ± 8.4 64.4 ± 10.7 39 (78%) 11 (50%) 2.3 ± 0.7

GSE57475 GPL6947 19,223 93 49 62.8 ± 9.5 61.4 ± 9.6 62 (67%) 26 (53%) 2.0 ± 0.5

GSE99039 GPL570 20,188 205 233 62 ± 11.0 58 ± 30.1 95 (46%) 75 (32%) 1.8 ± 0.9

Total – 51,814 348 304 – – 196 (56%) 112 (37%) –

2.2 Methodology Overview

Our computational workflow unfolds across three pivotal stages:

(i) The Preprocessing Phase, where differentially expressed genes are methodically
culled through differential expression analysis.

(ii) TheModel Construction Phase, marked by the deployment of interpretable models,
namely PASNet [10] andP-Net [11], to craft intricate, sparse deep learning networks
attuned to Parkinson’s disease-associated genes and pathways.

(iii) Lastly, machine learning techniques come into play, meticulously selecting hub
genes, whose efficacy is subsequently validated using external datasets and clin-
ical phenotype scores. Figure 1 illustrates a schematic representation of our
comprehensive workflow.

2.3 Analysis of Differential Gene Expression

The GSE99039 data underwent a logarithmic transformation and normalization, fol-
lowed by dimensionality reduction through Principal Component Analysis (PCA) [12],
illuminating the dispersion of data. Subsequent to data preprocessing, differential gene
expression (DGE) analysis concerning Parkinson’s disease and their healthy counter-
parts within GSE99039 was carried out employing the “limma” package in R [13], with
results being adeptly visualized. Our stringent selection criteria encompassed |LogFC|>
0.25 and a P-value less than 0.05.

2.4 Formulation of Deep Learning Neural Network Models

Weconstructed an intricate deep learningnetworkmodel closely intertwinedwithParkin-
son’s disease pathways, predicated upon the PASNet and P-Net models. This model
encompasses five distinct strata: the input layer (gene layer), the pathway layer, the
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Fig. 1. Overview of the workflow

hidden layers, the initial hidden layer, and the out-put layer. Following data preprocess-
ing, we culled 3,776 genes for the training dataset and gathered 972 genes associated
with pathways from the Reactome [14] databases to form the input and pathway layers,
respectively. We harnessed established gene-pathway relationships to construct a mask
table, judiciously constricting the interconnections between the gene and pathway lay-
ers. Choosing Adam as the optimizer and applying dropout and L2 regularization serves
the dual purpose of optimizing model performance and preventing overfitting.

2.5 Development of Clinical Risk Prediction Models Anchored in Putative
Biomarkers

The putative biomarkers prognosticated by our model were harnessed as indices for
predicting the onset of the disease, underpinning the construction of comprehensive
disease risk prediction curves. Leveraging the “rms” package in R, we painstakingly
engineered clinical diagnostic models, complete with Receiver Operating Characteristic
(ROC) curve area under the curve (AUC) computation and the generation of calibration
curves to comprehensively gauge the diagnostic precision of our model. Furthermore,
Decision Curve Analysis (DCA) [15] plots were meticulously fashioned, serving as a
litmus test for the effectiveness of the clinical diagnostic model.
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3 Result and Discussion

3.1 Selection of Parkinson’s Disease-Related Differentially Expressed Genes
and Construction of a Training Set Based on These Genes

The dataset GSE99039 was scrutinized for expression profiles, encompassing a total of
438 samples, with 205 originating from individuals afflicted by Parkinson’s disease (PD)
and 233 control specimens drawn from peripheral blood. Following the application of
batch correction and principal component analysis (PCA), it was discerned that the PCA
graph revealed an intimate clustering of samples from both groups, denoting exceptional
reproducibility andminimal disparities in data similarity. Subsequently, differential gene
expression analyses, illustrated via the volcanoplot (as portrayed inFig. 2A) andheatmap
(as indicated in Fig. 2B), highlighted genes exhibiting noteworthy inter-group disparities.
A total of 3,776 differentially expressed genes were unveiled, comprising 1,579 genes
with upregulated expression and 2,197 genes demonstrating downregulated expression.

3.2 Construction of an Interpretable Deep Learning Model Based on Parkinson’s
Disease Pathways

To investigate the molecular pathways involved in PD, we have developed a neural net-
work model of the PD pathway based on PASNet (Fig. 2C), centering its focus upon the
biological pathways germane to PD. In this model, the input is constituted by the expres-
sion data of genes linked with the disease, which is subsequently associated with the
stratum of biological pathways. The latent strata within the model serve the purpose of
extracting abstract, high-level features from the stratum of pathways, thereby enhancing
the model’s capacity to encapsulate non-linear expressions and interpretability. In the
endeavor to gauge the model’s prognostication performance, we calibrated the learning
rate to 8e-05, the L2 regularization coefficient to 1e-06, and nEpochs to 6000. Employing
a five-fold cross-validation approach on the data pertaining to PD and control samples
was instrumental in fortifying the robustness of our findings. The model’s training and
validation processes yielded loss values over the course of its operation, as delineated
in Fig. 2D, with the training loss continuously diminishing and the validation loss sta-
bilizing after 3000 iterations. On the test set, it achieved an AUC of 0.73 (as exhibited
in Fig. 2F), an F1 score of 0.71, a true negative rate (TN) of 70.21%, and a true positive
rate (TP) of 73.17% (depicted in Fig. 2E). In comparison to conventional bioinformatics
and deep learning methodologies, interpretable deep learning models tethered to path-
ways exhibited exceptional aptitude in managing gene expression data, especially when
grappling with its sparsity and the extraction of concealed signals within this intricate
domain. Furthermore, deep learningmethods accommodated an expansion in sample size
and dimensions, fostering more extensive investigations. To counterbalance the inherent
opaqueness of deep neural networks, we conscientiously incorporated prior biological
knowledge pertaining to gene-pathway associations, allowing for the identification of
key genes and pathways underpinning PD. An analysis of the relevance of each node
involved scrutinizing the weights of the trainedmodel, thus enabling the identification of
principal pathways and their affiliated genes. The top ten of these pathways encompassed
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Signal Transduction [16], Immune System [17], Metabolism of Proteins, Gene Expres-
sion (Transcription), RNA Polymerase II Transcription [18], Adaptive Immune System
[19], Generic Transcription Pathway, Disease, Post-translational Protein Modification
and Innate Immune System [20]. Most of these pathways, notably the immune response,
inflammation, signal transduction, transcriptional processes, and protein metabolism,
have previously been documented in the scientific literature as being germane to the eti-
ology of Parkinson’s disease. Consequently, we singled out core genes, signified by their
substantial weights and recurrent occurrences, as plausible biologicalmarkers associated
with PD.

3.3 Identification of Biomarkers for Parkinson’s Disease Diagnosis

In the quest to unearth potential biomarkers within peripheral blood tissues for the
diagnosis of Parkinson’s disease (PD), our focus gravitated toward the top 10 genes,
endowed with significant weights, in conjunction with the core pathways and their
respective genes. By amalgamating these entities, we were able to pinpoint 34 genes
of paramount relevance. The model yielded an expression matrix which was comprised
of genes inherently associated with pathways. Leveraging the Lasso regression algo-
rithm for the purpose of variable selection concerning PD, the introduction of L1 reg-
ularization served to compress a portion of gene coefficients to zero, thus facilitating
feature selection. The meticulous determination of the optimal lambda value, denoted
as lambda.1se (as visualized in Fig. 3A and Fig. 3B), led us to the revelation of 12
non-zero regression coefficients pertaining to genes implicated in PD. These genes were
subsequently subjected to a validation process to ascertain their differential expression
within the training set, as illuminated in Fig. 3C. The vast majority of these genes exhib-
ited highly significant differences, notable examples being CRTAM [21, 22], INTS12,
KIR2DS2 [23, 24], NPPB, PDK1 [25], TP53 [26, 27], TUBA4B, ZNF267. The ensuing
correlation analysis between UPDRS III scores within the GSE99039 samples and the
expression levels of genes (as portrayed in Fig. 4A–D) accentuated a noteworthy positive
correlation, particularly regarding the XK gene and the motor function of patients. The
validation of these findings within external validation sets (GSE57475 and GSE6613)
corroborated the veracity of our results (refer to Fig. 4E–F), thereby paving the way for
these distinctive genes to emerge as promising biomarkers.

XK is an X-linked gene encoding XK protein, a hypothetical membrane transporter
of unknown function that can form a complex by linking to endothelin-3 converting
enzyme Kell through a single disulfide bond, and the main function of the XK-KELL
complex is to participate in the stability, morphology, and functional regulation of red
blood cells. The expression of the Kell system antigen is partially controlled by XK, and
the lack of XK results in decreased expression of the Kell antigen [28]. The morphology
of red blood cells in Parkinson’s disease is also abnormal, and the expression level of XK
gene in PD shows a down-regulation situation, which may be due to the downregulation
of XK leading to downregulation of the function of the XK-KELL complex, resulting
in abnormal red blood cell morphology.
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Fig. 2. Differential Expressed Genes (DEGs) screening and Model Architecture and the Predic-
tive Performance of the constructed model. (A–B) A volcano plot and A heatmap illustrates the
differential genes between Parkinson’s disease and normal controls. (C) Model Structure: The
model architecture consists of a gene layer (input layer), which incorporates biological priors,
hidden layers representing other biological processes, and an output layer representing both PD
and normal states. Candidate genes and pathways are identified based on weights. (D) Training Set
Loss: The training set loss continues to decrease, while the test set loss tends to be flat, indicating
that the model is in an underfitting state. (E–F) Evaluation of the performance of the model: The
model had a true negative rate (TN) of 70.21%, a true positive rate (TP) of 73.17%, and an area
under the curve (AUC) of 0.73 for ROC analysis on the validation set.

3.4 Establishment and Evaluation of a Risk Score Prediction Model

To uncover the interplay between the risk of developing the disease and its prognostic
outcome, we formulated a nomogram, as exemplified in Fig. 5A, harnessing the “Rms”
package. The receiver operating characteristic (ROC) [29] area under the curve of the
clinical model stood at an impressive 0.8369 (as seen in Fig. 5B), affirming its aptitude
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Fig. 3. Screening of Potential Biomarkers Related to Parkinson’s Disease (PD). (A) Using cross-
validation, we computed the optimal λ with the minimum average error and The λ value of
the simplest model is obtained within a range of variance. (B) The dynamic process of variable
filtering of the LASSO algorithm is shown in Fig. As λ increases, the estimated parameters shrink
accordingly, and the parameter values of the final variables are compressed to 0, indicating that
they are excluded from the model. (C) Gene expression level analysis. On the GSE99039 dataset,
there were significant differences in gene expression levels in 9 of the 12 genes between the PD
group and the control group (***p < 0.001).

Fig. 4. Validation of Correlation Analysis Based on the External Datasets GSE6613 and
GSE57475. (A–D) Correlation of Core Genes (XK, TP53, TUBA4B and PDK1) with Clinical
Features (UPDRS III scores). (E–F) Validation of selected key genes in the external datasets
GSE6613 and GSE57475, where XK and TUBA4B exhibit differential expression.

for predictive analytics. Moreover, the calibration curve, seen in Fig. 5C, showcased the
remarkable congruence between observed and predicted risk associated with Parkin-
son’s disease, substantiating the clinical diagnostic model’s high accuracy. In addition,
through the judicious application of decision curve analysis (DCA), The net benefit
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curve obtained by our nomogram is much higher than that of the two extreme curves,
indicating that the diagnostic model is clinically valuable, as shown in Fig. 5D.

Fig. 5. Establishment of a Clinical Diagnostic Model with Hub Genes. (A) The figure displays a
line chart predicting the probability of PD disease. (B) Area under the curve (AUC) of the Subject
Operating Characteristic (ROC) curve analysis for the model and gene. (C) Calibration curves
for the diagnostic model comprising the six core genes are depicted. (D) Decision curve analysis
(DCA) was performed on the diagnostic model of 6 core genes. Two gray lines, representing two
extreme cases. The level indicates that all samples are negative, no intervention is performed, and
the net gain is 0. A skewed one means that all samples are positive, all are intervened, and the net
benefit is a negative slope.

4 Conclusion

In the present study, we proffer an intelligible deep learning framework rooted in PAS-
Net for the multifaceted genetic analysis of PD. Our model attains an area under the
curve (AUC) of 0.73 for the discrimination of PD-afflicted patients. Moreover, through
the conduction of pathway-level examinations to elucidate the deep learning model’s
outcomes, we discern interconnections between genes of susceptibility and pathways
intrinsic to PD pathogenesis. While neural network models may be deployed for poly-
genic risk assessment in the context of PD, there remains a scope for augmentation in
model performance, predominantly attributed to inherent model underfitting.

To ameliorate the precision of disease classification, we proffer an initial recommen-
dation involving the amplification of the sample size within the classification model,
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thereby enabling a more encompassing encapsulation of the genetic underpinnings of
the ailment. Additionally, given that gene expression data derived from assorted batches
and platforms can impinge upon model precision, a more expansive PD patient gene
expression dataset is advocated to furnish a holistic panorama of genes associated with
the ailment.

In summation, by means of the integration of bioinformatics and deep learning
methodologies, we have ascertained and authenticated four genes linked to PD, with
a pronounced focus on the XK gene, deemed pivotal in the pathogenesis of McLeod
syndrome and essential in maintaining homeostasis within the realms of the immune and
nervous systems. McLeod syndrome disease is an exceedingly rare neurodegenerative
malady bereft of efficacious therapeutic modalities, and clinical management is largely
confided to the sphere of supportive care, centered on the regulation of seizures, cardiac
anomalies, and psychiatric conditions. However, the efficacy of interventions for its
choreiformmotility impairments may be suboptimal. The potential nexus of this ailment
with PD opens uncharted avenues for the management of McLeod syndrome. These
genes may be pivotal actors in the inception and progression of PD, potentially offering
innovative biomarkers for the diagnosis and surveillance of PD.
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Abstract. Protein function prediction has long been awidely discussed task in the
field of synthetic biology, and it is of paramount importance for gaining a deeper
understanding of the roles and interactions of proteins within living organisms.
Since the 3D structure data of proteins obtained experimentally are far less in
quantity than the corresponding protein sequence data, most experiments related
to protein function prediction currently rely on using protein sequences as train-
ing data, although 3D protein structures contain much more information. Here, an
enzyme turnover number predictionmodel (PSKcat) is proposed based on 3D pro-
tein structures. PSKcat takes protein PDB files as input, represents proteins using
a modified pre-trained model called GearNet-Edge for 3D protein structures, and
combines graph neural network to characterize the substrates involved in enzyme
reactions. In order to verify the effectiveness of the model, several enzyme reac-
tion datasets were constructed, and multiple groups of comparative experiments
were conducted. The experimental results demonstrate the feasibility of using 3D
protein structures for enzyme function prediction, which opens up avenues for
further exploration of the applications of 3D protein structures in the future.

Keywords: Graph Neural Network · Pretraining model · 3D Protein structures ·
Enzyme turnover number prediction

1 Introduction

Protein function prediction, as one of the important downstream tasks in proteomics,
provides valuable insights into various research areaswithin the field of synthetic biology
[1], metabolic engineering [2, 3], and genome editing [4]. Proteomics is a technology
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application that involves identifying and quantifying the overall protein in cells, tis-
sues, or organisms. It complements other “omics” technologies such as genomics and
transcriptomics, shedding light on the identity of proteins in organisms and providing
insights into the structures and function of specific proteins [13]. Proteomic data, serving
as a pivotal component in protein function prediction, comprises protein sequence, struc-
ture, expression levels, and modification information. Among these, protein sequence
information is the most widely employed.

Protein sequence is an essential component of proteomics data with various practical
applications, including protein function prediction [14], drug design, drug target iden-
tification [15], and gene editing [16]. They provide strong support for protein function
prediction tasks, such as enzyme function prediction. Numerous works have been con-
ducted in the area of enzyme function prediction. Researchers used protein sequences in
previous studies with relatively small datasets to extract information about amino acid
pairs, distribution, and basic features. Subsequently, they employed classical machine
learning algorithms like Bayesian methods [5], random forests [6], and support vector
machines (SVM) [7] for protein function prediction. With the rapid development of
artificial intelligence, many deep learning algorithms have been increasingly adopted by
researchers in the field of synthetic biology. Tsubaki et al. [8] proposed an end-to-end
representation learning approach using graph neural networks (GNN) and convolutional
neural networks (CNN) for interaction prediction between compounds and proteins. Li
et al. [9] modified this approach and introduced a deep learning model named DLKcat
to predict the values of enzyme turnover number (Kcat). Kcat is critical for understanding
cellular metabolism, protein allocation, and physiological diversity, as it represents the
maximum rate at which an active site of an enzyme can convert substrate molecules in a
unit of time. DLKcat used the amino acid sequence of enzymes and one substrate from
the reaction as the input for the entire model. It introduced an attention mechanism to
assign weights to different substrates and used a convolutional neural network (CNN)
to encode protein information. Kroll et al. [10] introduced the TurNuP model, which
incorporated details of the entire reaction, allowing this approach to maintain some level
of generalizability even when dealing with enzymes with sequence identity below 40%.

While these efforts have yielded certain achievements, most of the existing work
in this field has primarily relied on using protein sequence as input data to perform
various tasks in proteomics. In contrast, there has been less emphasis on using the 3D
structures. The three-dimensional protein structures encompass the protein’s overall
folding, spatial structures, and topology, providing much richer information than the
one-dimensional structures. The current 3D structural information for many proteins
is still lacking experimental determination. For instance, while the UniProt database
contains over 227M protein sequences [17], the Protein Data Bank (PDB) holds only
210K experimentally determined protein structures. This means that the quantity of
protein structure lags behind datasets in other machine learning domains by several
orders of magnitude [12]. Only recently did Hermosilla et al. [11] introduce a novel
contrastive learning framework for 3D protein structure representation learning. This
phenomenon where researchers have rarely used the 3D structures in their studies can
likely be attributed to two possible reasons. First, it may be due to the inherent difficulty
in experimentally determining protein structures, making it challenging for researchers
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to obtain protein 3D structure datasets that meet their training requirements. Second,
in certain contexts, using 3D protein structures may not yield the expected benefits
when considering the results. Hence, in specific situations, researchers may consider
it unnecessary to incorporate protein 3D structure information into protein function
prediction.

To validate our hypothesis, we have proposed a deep learning approach named
PSKcat for predicting the Kcat values of enzyme reactions. In contrast to previous work,
we contemplate utilizing 3Dprotein structures rather than protein sequences and employ-
ing them as input for our model. To capture information about enzymes, we employ the
GearNet-Edgemodel [12] and graph neural networks (GNN) to encode 3D protein struc-
tural information and substrate information from enzyme reactions. This allows us to
test whether using the 3D protein structures is superior to using protein sequences. In
this work, we make the following contributions:

• We collected a dataset of 16,838 enzyme reaction data from the Brenda, Sabio-RK,
and UniProt databases. After filtering, we augmented the dataset using AlphaFold,
resulting in 1,633 protein structure files (PDB) for training.

• We employed a fine-tuned GearNet model to encode protein three-dimensional
structures and introduced this information into the DLKcat model.

• We have demonstrated that using protein structure information is effective for pre-
dicting Kcat values and can achieve results similar to or better than conventional
sequence-based methods in this task.

2 Methods

2.1 Data Acquisition

Constructionof theEnzymeReactionDatasetDec-11kwithUniProt ID. Weutilized
a dataset of 16,838 enzyme reaction records containing EC numbers, substrate SMILES,
protein sequences, and Kcat values from the Sabio-RK and BRENDA databases (see
Fig. 1). Subsequently, we extracted 2,226 unique UniProt IDs and their corresponding
protein sequences from this dataset. Next, we aligned the protein sequence data with the
enzyme reaction dataset using a pairwise sequence alignment method. After filtering, we
obtained an enzyme reaction dataset with 11,419 entries, each associated with a unique
UniProt ID. These records encompass 1,633 distinct proteins. Finally, we used these
protein identifiers to retrieve the corresponding protein structure files from the Protein
Data Bank (PDB).

Sequence Alignment and Data Clean. First, we successfully searched for a portion
of experimentally determined real PDB data in the RCSB-PDB [21] database. For the
remaining proteins for which real PDB data could not be obtained, we turned to the
AlphaFold dataset. Thanks to the impressive protein structure prediction capabilities of
AlphaFold2 [18], many proteins lacking real structures can be reliably predicted through
deep learning methods. However, there were some issues encountered when searching
for data in the RCSB-PDB database:

• Some enzymes in the enzyme reaction dataset are short-peptide sequences without
structural information. For this subset of data, we directly removed them.



150 Y. He et al.

BLAST ALIGNMENT

M
T
T
E
T
T
D
T
A
.
.
.
R
L
G
D
V
D
G
A
Y
H

M
T
T
E
T
T
A
T
A
.
.
.
R
L
G
D
V
D
G
L
Y
H

Data Preprocess

Protein Structure Dataset

Reac�on Dataset

1633 protein structures

1707 EC numbers

1633 UniProt-EC number pairs

enzyme sequences

Substrate SMILES

Kcat values  

UniProt IDsSabio-RK

BRENDA

RCSB-PDB

AlphaFold

Substrate

Enzyme

Enzyme-Substrate complex

Products

Enzyme

16838 items      

Fig. 1. The data preprocessingworkflowencompasses the acquisition of reaction data fromSabio-
RK and Brenda databases, along with the retrieval of actual protein structures data from RCSB
PDB and predicted protein structures data from theAlphaFold database. Ultimately, amultifaceted
selection process is employed to obtain the desired enzyme reaction dataset and protein structures
dataset.

• A single protein in the RCSB-PDB database often corresponds to multiple PDB
records, which originate from different experiments. Therefore, it is necessary to
select the most closely matching record. Using the BLAST Alignment [22], we
aligned the protein’s UniProt ID with the unique PDB structure information.

• The PDB files obtained by experiments may not necessarily represent the complete
protein structures, they might only target a specific chain or a very small portion
of the sequence. Moreover, it may lead to the usage of structures in model training
that do not pertain to the catalytic region, failing to characterize the entire protein’s
information and causing information loss. For these proteins, we conducted a new
search for structural information in the AlphaFold database.

• In addition, there is a subset of PDB files obtained from experiments that may have
issues, such as format errors, abnormal atom, or residue numbering. These issues
can potentially lead to errors during the parsing of PDB files using RDKit [23],
resulting in parsing failures. To prevent that, we have implemented a simple parser
to preprocess PDB files. This parser extracts only essential information, including
amino acid sequences and atomic coordinates, effectively avoiding parsing errors.

• Among the previous 16,838 data entries, there were instances where certain proteins
may have been split or merged into other UniProt IDs. As a result, it became impos-
sible to retrieve data using the original UniProt IDs. We addressed this issue through
manual curation, obtaining newUniProt IDs and their corresponding PDB structures.

Constructing the Protein Structures Dataset, Dst-1.6k. After these processing steps,
we extracted all 1,707 non-redundant EC numbers from the enzyme reaction dataset.
Simultaneously, we generated labels by associating each protein with its corresponding
EC numbers. Finally, we accurately filtered out the PDB data corresponding to each
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protein and combined it with the files associated with UniProt ID and EC numbers. This
compilation resulted in the creation of the protein structures dataset, Dst-1.6k, containing
all the necessary PDB files for our study.

Fig. 2. The architecture diagram of the GearNet-Edge model illustrates its methodology, where
GearNet-Edge encodes protein structural information by constructing residue-level interaction
graph and line graph. For the representation of these two types of graphs, a 6-layer GCN is
employed in the training process. Finally, the model aggregates node features by summing them
and taking the average, thereby transforming them into graph features.

2.2 Pre-trained Protein Structure Encoder

We opted for a pre-training approach to first perform unsupervised learning on a large
volume of proteins and then fine-tune our structure dataset. We selected the GearNet-
Edge model proposed by Zhang et al. [12] for pre-training, the model architecture of
GearNet-Edge is depicted in the diagram as shown in the figure (see Fig. 2).

Create Relational Graph. Differing from small molecule structure pre-training mod-
els [19], which use atoms as nodes and chemical bonds between atoms as edges to
construct a relationship graph for structural representation, GearNet-Edge uses the α-
carbon atom to represent amino acid residues and employs it as the graph node, denoted
as fi. Subsequently, three different types of directed edges are constructed as edges in the
relationship graph, denoted as (i,j,r). These three types of edges are sequential edges,
radius edges, and K-nearest neighbor edges.

Following node construction and directed edge creation, we ultimately obtain the
graph G = {V, E, R}, where V, E, and R are represent nodes, directed edges, and edge
types, respectively. We use (i, j, r) to denote a directed edge from node i to node j with
type r, where i, j ∈ V.
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Create Line Graph. In addition to characterizing protein structures by constructing
the relational graph G between nodes, GearNet-Edge also constructs a line graph [27],
denoted as Gedge = {Vedge,Eedge,Redge}, to represent relationships between edges.

Message PassingLayer. After constructing these two graphs, GearNet-Edge usesGCN
[24] to obtain protein representations. GraphsG andGedge are updatedwith similar GCN
parameters. After obtaining the updated node representations, the final hidden vector h(l)

i
for this layer is obtained through a residual connection [25]. Finally, in the readout step,
the feature vectors of all nodes are averaged to obtain the final graph feature, which is
the representation of the corresponding protein for this graph.

The GearNet-Edge model pre-trains on 805k protein structures predicted in the
AlphaFold database, classified by different species. It utilizes multi-view contrastive
learning as the pre-training task. The loss function for contrastive learning is set up
based on the SimCLR framework [20].

Protein Structure

GearNet 
Encoder

Mutiple Binary 
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Substrate SMILES

C(C(C(C(COP(=O)(O)O)O)O)O)
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Fig. 3. Using the GearNet-Edge model to encode protein structures, then encoding substrate
SMILES with a Graph Neural Network (GNN), applying an attention mechanism to both, and
finally predicting the Kcat value.

2.3 Calculating Kcat Values

Protein Structures Encoding. Our method is named PSKcat (Protein Structures Kcat)
(see Fig. 3). First, we extract protein structure data and EC numbers separately from
the structure dataset. Each EC number is represented using a 1,707-dimensional one-hot
vector, denoted as vec, and served as the training target. Then, we fine-tune the pre-
trained GearNet-Edge using the protein structures, representing every protein as a 3,072-
dimensional tensor. Starting from the first training round, we obtain representations of
proteins and update these representations in each epoch. After fine-tuning, we extract the
representations for all proteins, which are subsequently used in the downstream training
process.

We consider the training of the protein structures dataset as a downstream task for
EC number prediction. The objective of this task is to predict the EC number for different
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proteins. TheECnumber determines the catalytic role of a protein in reactions, signifying
its function and characteristics. EC number prediction is treated as a multi-label binary
classification task, where a protein may belong to one or more EC codes, and an EC
number may correspond to one or more proteins. Each EC number has two mutually
exclusive subcategories, and we establish a binary classifier for each EC number to
independently predict the positive and negative categories of the EC number.

The protein representation vectors obtained from GearNet-Edge are processed using
a Multi-Layer Perceptron (MLP) and used in conjunction with vec to calculate the cross-
entropy loss, subsequently updating the model parameters.

Substrate SMILES Encoding. After completing the EC numbers prediction task, all
trained protein vectors are retrieved. First, the molecular structures are extracted from
the SMILES, and the molecule is converted into an undirected graph in the form of a
molecular graph, with atoms as nodes and chemical bonds as edges. Then, the adjacency
matrix for the molecule is constructed. Additionally, the Weisfeiler-Lehman algorithm
[26] is employed to generate molecular fingerprints from the molecular graph through
iterative traversal of each node.

The molecular fingerprint vectors, along with the adjacency matrix, are used as input
for training the Graph Neural Network (GNN). At each GNN iteration layer, updated
hidden vectors represent molecular fingerprint information after each update:

hl = MAσ
(
GNN

(
vfp

))
cl = hl + vfp (1)

vfp represents the representation vector of the substrate molecular fingerprint, σ is the
non-linear activation function (in this case, ReLU), and MA is the adjacency matrix of
the substrate molecule’s undirected graph. hl is the hidden vector obtained after the l-
th layer of GNN training. At this stage, a residual connection is used to add hl to vfp,
resulting in the final intermediate vector cl .

Kcat Value Prediction. The obtained protein structure representation vector vps and
substrate representation vector vsmiles are used to calculate attention scores with an
attention mechanism. Initially, the inner product of these two vectors is computed. The
resulting matrix is then passed through a hyperbolic tangent (tanh) function, which com-
presses the linear transformation results into the range of [−1, 1] to produce the weight
matrix Wa. Subsequently, this weight matrix is multiplied by the substrate represen-
tation vector to obtain the updated protein representation. Finally, the updated protein
representation vprotein and vsmiles are concatenated, and a non-linear activation function
(ReLU) is applied to predict the Kcat value for the current reaction.

3 Experiments

3.1 Dataset

In the preceding sections, we’ve constructed two enzyme reaction and protein structure
datasets: Dec-11k and Dst-1.6k. Additionally, we obtained 24,616 enzyme catalysis
reaction data and using the processing methods detailed in Sect. 1.1, we obtained a



154 Y. He et al.

dataset with added UniProt IDs, totaling 14,309 data entries, which we refer to as Dec-
14k. Dec-14k contains 1,930 distinct proteins and 1,130 EC numbers. With this data,
we created a new protein structure dataset named Dst-1.9k.

Furthermore, to investigate the impact of protein structural information predicted
by AlphaFold on protein representation learning, we acquired two datasets consisting
entirely of structure information predicted by AlphaFold. These datasets correspond
to proteins in Dst-1.6k and Dst-1.9k and are named Dst-1.6k-AlphaFold and Dst-
1.9k-AlphaFold, respectively. The sources and quantities of data for these four protein
structure datasets are detailed in Table 1. Data sources and quantities of each dataset.

Table 1. Data sources and quantities of each dataset.

Dst-1.6k Dst-1.9k Dst-1.6k-
AlphaFold

Dst-1.9k-
AlphaFold

RCSB-PDB 820 954 0 0

AlphaFold 813 977 1633 1930

3.2 Splitting the Dataset

To confirm whether using protein structures for feature representation and Kcat value
prediction is as effective as or even better than using protein sequences, the DLKcat was
used as a baseline, and it was compared with our approach. The DLKcat encodes protein
features using protein sequences. It was trained on SMILES and protein sequences from
the Dec-14k, and Dec-11k datasets, with a training-to-validation-to-testing data split
ratio of 8:1:1. For the comparative analysis using our approach, in the case of Dec-
14k, we used protein structures from both Dst-1.6k and Dst-1.6k-AlphaFold for protein
feature encoding.

3.3 Training the Datasets

First, we attempted to introduce protein 3D structure information into the DLKcat model
to explore the effectiveness of incorporating protein structure information for Kcat value
prediction. In theDec-11k dataset, there are 820 proteinswith real structural information.
We constructed a dataset named Dst-820-PDB. This dataset is associated with 7,371
enzyme reaction data records, forming a sub-enzyme reaction dataset called Dec-7k.
We used these data to train the model, and the results were compared to models using
only sequence information (see Fig. 4).

After validating the effectiveness of incorporating real protein structures, we aimed
to investigate whether protein structure information predicted by AlphaFold2 would
introduce biases in Kcat value predictions relative to real protein structures. We replaced
all the structural files in the Dst-820-PDB dataset with the predicted structural files,
creating a dataset named Dst-820-AlphaFold. The enzyme reaction dataset remained



Enzyme Turnover Number Prediction Based on Protein 3D Structures 155

Fig. 4. PSKcat and DLKcat employ the Dec-7k reaction dataset, and PSKcat is trained with the
Dst-820-PDBprotein structure dataset. TheRootMean Square Error (RMSE) for training is shown
in three separate plots for the training,validation, and test set. The red and the green dashed line
represents DLKcat and PSKcat respectively. Both models converge to approximately 1.1 in the
training set.

the same, and models were trained using both Dst-820-PDB and Dst-820-AlphaFold
structures in conjunction with the Dec-7k dataset (see Fig. 5).

From these experiments, we found that there is little difference in predictive perfor-
mance betweenusing predicted structure information and real structure information. This
suggests the reliability of theAlphaFold2 protein structure predictionmodel. Since only a
fraction of proteins have experimentally determined structures, we can use AlphaFold to
search for predicted protein structures to add to our dataset. Therefore, we expanded the
remaining proteins in Dec-11k based on Dst-820-PDB, resulting in Dst-1.6k. To further
validate the credibility of protein structures in the AlphaFold database, we replaced all
the real structures in Dst-1.6k with predicted structures to create Dst-1.6k-AlphaFold.
We compared the results of models trained on these two structure datasets and those
trained using sequence information (see Fig. 6).

Fig. 5. PSKcat utilizes the Dec-7k reaction dataset for training and is subsequently evaluated
based on the RMSE (Root Mean Square Error) when trained with two different protein structures
datasets, Dst-820-AlphaFold and Dst-820-PDB.
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The expansion of data to createDec-14k,Dst-1.9k, andDst-1.9k-AlphaFold followed
a similar process, and their results were also compared (see Fig. 7).

Fig. 6. PSKcat and DLKcat are trained using the Dec-11k reaction dataset. In the case of PSKcat,
RMSE (RootMean Square Error) values are evaluated when it is trained with two different protein
structure datasets: Dst-1.6k and Dst-1.6k-AlphaFold.

Fig. 7. PSKcat and DLKcat are trained using the expanded Dec-14k reaction dataset, which
includes additional enzyme reaction data. PSKcat is then evaluated for RMSE (Root Mean Square
Error) when trained with two different sets of protein structure data: Dst-1.9k (enriched with
additional data) and Dst-1.9k-AlphaFold.

4 Conclusion

In this work, we introduced protein 3D structure information for the Kcat prediction
task. We used a protein structures pre-training model as an encoder to encode protein
structures, and the resulting encodings served as representations of protein information,
which were then applied to the specific task.We addressed a series of issues encountered
during structure data acquisition with various solutions, and we tackled the problem
of insufficient real structural data by incorporating predicted structural data from the
AlphaFold database. Through a series of experiments, we validated the effectiveness
of using protein structure information for protein representation and applying it to the
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Kcat value prediction task. Furthermore, these experiments indirectly demonstrated the
high credibility of protein structures predicted by AlphaFold2, which can be utilized in
various downstream tasks.
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Abstract. Many publications tout the ability to develop or address certain aspects
of research which tries to solve an existing problem. However, some approaches
would appear to solve a certain aspect of a problem, but not the real problem at
hand. In the context of a challenging real problem, such approach would sim-
ply deceive the researcher into extrapolating the existing capabilities but would
not offer any practical realization of the real problem. Computer vision-based
sign language recognition is one such problem. With our research into hand ges-
ture recognition of dynamic gestures which can easily be compared to different
sign languages present in many parts of the world, certain aspects such as static
hand sign recognition has no part to play in dynamic hand gesture recognition
or in sign language recognition. This article tries to reach out to the readers and
researchers to highlight why sign language recognition is currently not making
any progress despite enormous inroads into objects detection in realtime using
artificial intelligent tools such as YOLO algorithms.

Keywords: Hand Gestures · Sign Language · Artificial Intelligence

1 Introduction

Sign language is a communicationmode between individuals who have lost their hearing
yet could see. Some individuals are born with hearing or lose hearing during their
life due to ailments or accidents. It is estimated that every day, 31 children are born
in the USA along with hearing impairment [1]. Since the development of Artificial
Intelligence and due to the ability to many machine-learning assisted systems to support
humans in day-to-day tasks, many tend to believe that machines could also soon assist
people with hearing loss to communicate through sign language. However, there exists
unsurmountable challenges presently that hinders machine recognition of sign language.

Most of the challenges are due to the inability of themodern computer vision systems
to accurately capture hand-shoulder-face signs in order to process them as part of sign
language. These challenges are mainly due to vision systems inability to separate hand,
fingers, shoulders, elbows and face from other body parts and from the background
accurately. The resolution of the separated parts can also pose a big challenge as having
lower resolutionfingerswillmake it difficult for fingers and their postures to be accurately
separated and tracked. This is shown in Fig. 1. Which depicts that the separated body
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Fig. 1. Separation of body parts using skin segmentation and the deficiency in the clarity of such
separation as evident by [2].

parts have very low resolution, their separation from other body parts and background
are not ‘clean’.

In sign language recognition, the details to be recognized for sign interpretation
includes

• Finger postures in three dimensions and tracking of these gestures when hand signs
are posted dynamically over few seconds
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• Recognizing the start and end of a word or sentence
• Subtle variations between signers in implementing (signing) words or sentences
• Recognizing face or facial impressions and combining them with related hand signs
• Recognizing elbow and shouldermovements and realizing their relationship inwords,

sentences or other moods
• How the mood of a signer may confuse a recognition system.

These are some of the obvious sign language related challenges. When it comes to
interpreting facial moods, any artificial system would have enormous difficulty as facial
expressions would also depend on the community. As it happened in many deep neural
network-based systems, training a system of very specific data confined to a very specific
ethnicity would make completely opposite classifications when different data are used.
Hence, AI systems are no wiser than many other systems in development.

2 Evidence of Dynamic Gestures and the Mistakes of Interpreting
Them Using Computer Vision

2.1 Evidence of ‘Start’ and ‘End’ Issues

Today due to recent pandemic, many researchers have increasingly used zoom or other
types video conferencing tools which offer the ability to provide a virtual background for
video conferencing. These tools have been quite accurate in separating the person from
the background and include a virtual background for the communication. Despite this
ability, it is quite obvious that sudden movement would disrupt the virtual background
and reveal the normally cluttered backgrounds that people try to avoid seen by the other
parties. This indicates that even under controlled environments, the technology is not
mature enough to adequately separate the user from the background, unless sudden
movements are avoided.

In capturing a video scenewhich should be taking place continuouslywhen amachine
is requiring input, a ‘signer’ (user of a sign language) would not specify to another
user of sign language that he/she intends to start communication. He/she simply starts
communication naturally and the other person interprets the meaning and reacts and
communicate accordingly. However, this scenario is way too complicated for a machine
to understand. Video data involves minimum of 15 frames per second to typically 30
frames per second to capture details of motion. Yet, when processing such large amount
of data, the system also has to detect and separate the face, hands (both hands), elbow
and torso as signers use multiple body parts to convey a message as was shown in
Fig. 1. Not only these but also the synchronism of these parts working together to define
the word, sentence or the mood. If the machine fails to recognise the ‘start’ of this
word, sentence or the mood, it will not be able to interpret any later image frames as
part of this communication. Many researchers have failed to realise the depth of this
problem. Currently, Google has supported Kaggle which is a mobile phone app that
makes use of user input video streams to develop a database to decipher Sign Language.
If a correctly separated sign language word, sentence or a mood as video frames are
available, they may have significance in training a neural network for deep learning
approaches. However, this does not still solve the much bigger challenge of a system
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realising when a communication is going to start. To address this, it is possible to
setup sign language communication specifically meant for machine interaction. In this
concept, a signer would deliberately carry out an action to notify the machine that a
new communication is about to start. Then the machine captures all subsequent sections
of the video and start assessing the frames and look for body parts associated with
the communication. Then the user has to finally issue another command to notify that
the communication has ended. Then the machine will be able to process the video and
perhaps be able to process the data to extract the meaning.

Yet, this type of deliberate ‘start’ and ‘end’ signingwill undoubtedly discourage using
machine for interaction. In a typical communication, there would be many sentences,
manymoods andmany words and separating themwith ‘start’, ‘end’ commands so often
will undoubtedly ‘kill’ the communication.

Figure 1 clearly shows the challenge in separating a person’s face, hands and other
body parts to interpret a sign language communication and then use the synchronisation
of each body part with others to interpret the meaning. When looking at these body parts
of Fig. 1 after extraction using computer vision, one would realize that these parts are
so unclear that they will not be used in a neural network-based system to interpret their
actions. Figure 2 also shows yet another challenge in skin segmentation to capture body
parts. As the figure would show, skin segmentation sometimes fails and would lead to
unreliability of a system that is based on skin detection, compounding already difficult
problem of capturing dynamic gestures.

Fig. 2. Failure of skin segmentation to separate skin and non-skin regions [2]

Not only that, their dynamic motion has to be equally captured accurately and the
process becomes almost impossible to be accurate or even processed. Figure 3. Indicates
the complexity of dynamic gestures in its simplest form. If one would analyse the facial
expressions within these few static images along would indicate the complexity of the
recognition process. If skin segmentation is used, it is possible to capture most of the
hand movement not in occlusion however, simple change of clothes would present yet
another challenge.
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Fig. 3. The dynamic complexity of sign language interpretation [3]

Figure 4 shows our ownwork published in 2007 as part of ‘HandGestureRecognition
for Control Application’. In this work, static gestures or simple hand signs were captured
and processed in realtime, with great success. However, this great success was due to
our own design in selecting the best 10 hand gestures that would not ‘clash’ with other
potential gestures. We carefully eliminated number of gestures so that there wont be any
potential clashes in gestures when appearing quite close to each other. A good example
is to avoid 3 finger gesture when two finger gesture is used. However, another reason for
great success was using Hu moments, a well-established feature extraction method with
many invariant properties. Yet, looking at Fig. 4 shows how fragile the captured image
in the middle column. These images with noise are then filtered using morphological
approaches such as ‘erosion’, ‘dilation’, ‘opening’ and ‘closing’ to remove and fill noise
affected regions so that they appear as in last column.

As shown in Fig. 5, after morphological filtering and normalisation, these filtered
regions were used for extracting ‘Hu moments’ so that ten such gestures could be
uniquely separated even with different orientations.

The simplicity of the above approach clearly highlights what is needed in a dynamic
gesture. These challenges can be stated as follows:

• Gesture signing orientation (people will sign certain horizontal motions in an inclined
angle)

• Lighting imperfections would create much noisier sections of arms, faces, other body
parts that the recognising system will be unable to deal with the input

• Occlusions will prevent the capturing system of recognising the signs as previously
known

• Physical differences in hands and arms may complicate any deep learning-based
training system

• Clothing hampers the body part recognition
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Fig. 4. Static signs or hand gesture-based control system developed in 2007 [4]

• Despite many skin segmentation approaches work well, yet they still suffer from
inaccuracies under different dark skin colors

These are some of the most obvious obstacles in sign language detection when a
dynamic gesture tracking method is envisioned.

3 The Advantages of a Glove Based System

It is quite evident that computer vision-based system with the current state of develop-
ments is difficult to achieve. Hence, realizing a different sign language system based on a
sensor-based glove has been realized [5]. The system is reported to capable of posting 50
words. However, it should be stated that 50 words would not realise in communication
but a good start. Yet, it is impossible to envision this is going to improve as the sub-
tle differences in certain words prevent systems from correctly interpreting them. Our
work in 2005 realised a world’s first consumer electronics control system based on hand
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Fig. 5. Normalized image after applying morphological filtering related to Fig. 4. [4].

gestures with recognition of 10 commands with 100% accuracy using neural networks
[4, 6–10]. However, we started with about 30 hand signs and through experimentation,
removed 20 gestures due to their clash with the final 10 gestures the system was capa-
ble of recognizing. This clearly demonstrated that neural network-based systems or any
other deep learning systems would not fare better due to inherent similarity of many
gestures to others. Hence, realizing a deep learning-based sign language recognition
system is difficult to attain for the foreseeable future. Some work recently published
give the notion of AI based sign language recognition however without any evidence
and based on simple concepts [11]. Many argue that due to success of algorithms such
as YOLO (YOLO5 and YOLO6) being able to label objects in images so accurately, the
next natural step is the action recognition in video. However, this is indeed difficult to
achieve when one interprets a small video clip, each frame has many objects and when
considering humans, hands, face, eyes, legs, torso have to be separated and tracked con-
tinuously and their motions over time to be interpreted. This is almost an impossible
challenge to be surmounted at the modern computer vision related AI.
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4 Conclusion

It is important to clearly state what is feasible with AI or deep learning based neural
networks in computer vision. Despite image labelling has demonstrated very high accu-
racy using object detection algorithms such as YOLO (advanced YOLO5 and YOLO6),
sign language relies on not only finding objects such as human body parts such as hands,
face, mouth, fingers, and their synchronous movement, capturing such data in realtime
and following individual dynamic movements to extract the communication is almost
impossible at this stage. Despite large organisations such asGoogle has initiated research
paths with collectingmore video data, dynamic tracking will not be realized using neural
networks.
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Abstract. This paper is dedicated to efficiently and accurately extracting, parsing,
and verifying various types of materials such as business licenses and qualifica-
tion certificates from electronic documents like images, scans, and PDFs within
bid documents. Leveraging an OCR engine and well-trained models with strong
error correction capabilities, the accuracy of OCR in bid document processing for
Guizhou Power Grid Company is significantly improved. This system automati-
cally extracts bid documents of various formats from different sources, precisely
parses and verifies key information within them. Through a visual interface, eval-
uation experts can pinpoint issues related to key material information in bid doc-
uments accurately. Experimental results demonstrate that our system accurately
extracts crucial information from bid documents of different formats, thereby
reducing review and verification time. Our research holds substantial value and
promising application prospects. The system has the potential to lower labor costs
and enhance the efficiency and fairness of the bidding process.

Keywords: Key Information in Bid Documents · Information Extraction · OCR
Engine · Robust Error Correction ·Multi-format

1 Introduction

With the rapid development of the internet, electronic bid documents [1] are gradu-
ally replacing the traditional paper-based bid documents in the bidding process. The
emergence of electronic bid documents has made intelligent auditing of bid informa-
tion feasible. The scrutiny of key information within bid contents [2] is a vital task in
bid evaluation, aimed at identifying potential discrepancies in materials like business
licenses and qualification certificates, ensuring fairness, accuracy, and effectiveness in
bid outcomes. However, due to the diverse origins and complex nature of bid documents,
manual scrutiny is often time-consuming and error-prone.

This paper aims to design an efficient and accurate system for parsing and verifying
individual documents based on OCR engines [3]. This system automatically extracts key
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information from electronic bid documents such as images, scans, and PDFs using vari-
ous OCR engines. It then analyzes and verifies this key information, assisting evaluation
experts in efficiently and accurately identifying inadequate document informationwithin
bids. By incorporating OCR engine technology, we can significantly reduce evaluation
time, enhance the quality of assessment, and prevent the selection of bids containing
inadequate material information.

The significance of this study lies in providing an intelligent solution for extracting,
parsing, and verifying key information within bid documents to address the challenges
and issues currently encountered in the bid evaluation process. By designing an efficient
and accurate system for parsing and verifying individual documents based on OCR
engines, we can effectively and accurately extract, parse, and audit various material
informationwithin bid documents, thereby enhancingOCRaccuracy in thefield of tender
document processing. The integration of OCR technology can significantly reduce the
time required for bid qualification review, thereby increasing efficiency and reducing
labor costs.

This research employs robust error correction [4] on the extracted key information
from bid documents, greatly enhancing the accuracy of bid review, reducing the risk of
oversight or errors, and identifying potential falsification of crucial bid information. This
ensures fair and impartial bid outcomes. Through a visual interface, evaluators can accu-
rately identify potential errors in key information, facilitating precise error localization.
Through the design and implementation of the document parsing and verification system,
we will provide novel technological support for the assessment of key bid information,
thereby driving the development and progress of the bidding industry.

2 Related Work

2.1 OCR Technology

OCR (Optical Character Recognition) is a commonly used natural language processing
technology that converts text within images into editable text formats. OCR consists of
twomain steps: text detection [5] and text recognition [6]. It enables the extraction of text
from scanned documents, images captured by cameras, and PDF files. In the context of
the efficient and accurate document parsing and verification system for bid documents,
different OCR engines can be employed to extract text from bid documents of various
formats, such as business licenses and qualification certificates, thereby facilitating the
analysis and verification of errors within key material information of bid documents.

2.2 Enhancing OCR Error Correction

The accuracy of OCR is influenced by various factors, including poor image quality
(such as scanning resolution and noise) and mismatches between the training instances
of character image classifiers and the representation of characters in printed documents
(such as fonts, sizes, and spacing) [7]. Due to significant format disparities in bid doc-
uments from different sources, employing OCR technology alone for text extraction of
their key material information may lead to issues like text loss and character recogni-
tion errors. This paper introduces enhanced OCR error correction [8], an area that has
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seen considerable research aimed at automatically rectifying OCR recognition errors.
An early and informative survey can be found in [9], while methods specific to Arabic
OCR are summarized in [10] and compiled in [11]. In this study, a Seq2Seqmodel [12] is
adopted to train word and syntax correction models, employing both character-level and
word-level language models as well as dictionaries for error correction of OCR engine
recognition.

Despite the widespread application of OCR technology and OCR error correction
techniques in various domains, there still exist challenges and limitations. The substantial
variations in content and formats of bid documents fromdifferent sourcesmake it difficult
for OCR technology to precisely locate key material information within bid document
texts, and the quality of extracted text is often subpar. As a result, this paper proposes an
efficient and accurate document parsing and verification system based on OCR engines.
This system possesses robust error correction capabilities, enhancing the accuracy of
OCR text extraction. It aids bid document review by accurately extracting, parsing, and
verifying key material information within bid documents.

3 Method

As a significant AI tool, OCR technology has the potential to enhance operational effi-
ciency for enterprises, reducing labor and time costs. Establishing an intelligent OCR
recognition platform has become a crucial initiative across various industries to foster
smart strategies and growth. The workflow of our OCR recognition system is illustrated
in Fig. 1.

3.1 Image Preprocessing

Image preprocessing involves the preparation of images, scans, PDFs, and other elec-
tronic files. It primarily employs image processing techniques to extract required feature
information. The extraction of key information from various materials like business
licenses and qualification certificates within bid documents is influenced by diverse
factors, leading to variations in image quality and interference from various unknown
elements. Prior to commencing the OCR recognition task, the OCR detection and text
recognition system necessitates a series of preprocessing operations to enhance the com-
puter’s speed and accuracy in recognizing text. The preprocessing steps in this paper
encompass grayscale conversion, binarization, noise reduction, and skew correction, all
aimed at enhancing the accuracy of text recognition.

3.2 Selection and Configuration of OCR Engines

Tesseract, an optical character recognition engine maintained by Google, is an open-
source OCR engine. It supports text detection in multiple languages. However, if its
built-in Simplified Chinese language library is directly used for detecting materials
like business licenses and qualification certificates, its recognition rate may not meet
industrial application standards. This is because it is trained on a vast range of text
content, making its training samples diverse. In contrast, a self-trained OCR engine
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Fig. 1. Workflow Diagram of the OCR Recognition System

is more tailored. Its internal network can learn patterns that are more aligned with
materials such as business licenses and qualification certificates. Therefore, this paper
offers different OCR engines for the recognition of materials like business licenses
and qualification certificates. Users can choose the appropriate OCR engine based on
their needs and characteristics, followed by configuration and parameter adjustments, to
achieve high accuracy in document parsing.

3.3 Model Training

This paper offers a personalized selection of OCR engines, which requires training
different OCR engines. The training process is shown in Fig. 2. To retrain the model
and create language libraries specifically for recognizing business licenses, the detailed
process is as follows:

Fig. 2. Model Training Flow Chart

1) Training Image Augmentation: Due to the limited volume of training data, model
convergence is challenging. This paper expands the training dataset by randomly
shuffling the text within the training images. Ultimately, a training dataset of 400
images and a test dataset of 158 images are obtained. All training images are merged
into the.tif format.
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2) Character BoxGeneration andAdjustment: The borders of training data are generated
and fine-tuned using the Tess Box Editor developed in Java, ensuring the integrity of
characters within each box.

3) Defining Character Configuration File: To describe character attributes, a font prop-
erties file is defined, containing character-related information. As the attributes of
business license text are relatively consistent, this paper sets all attributes uniformly
to 0.

4) Generating.tr Training Files
5) Generating Character Set File
6) Generating Clustered Character Feature File
7) Merging Training Files: After the synthesis of training files, a new language library

is created, specifically tailored to business licenses.

The process for trainingOCRmodels for othermaterials like qualification certificates
follows a similar procedure.

3.4 Enhanced Error Correction Capability

In this study, a Seq2Seq model, as illustrated in Fig. 3, is employed to train word and
syntax correction models. The task of text correction can be viewed as a transformation
process between different sequences, where the original sentence serves as the source
utterance, and the correct sentence is the target utterance. Hence, the Seq2Seqmodel can
be introduced as a sequence transformation model for text correction. The underlying
structure of the Seq2Seq model consists of an Encoder-Decoder network model. The
Encoder encodes the input text sequence, transforming it into a vector representation of
fixed length. The Decoder decodes this vector representation of fixed length obtained
from the Encoder and converts it into an output sequence.

Fig. 3. Structure of the Seq2Seq Model

4 Experimental Design

The dataset used to train the OCR engine models consists of electronic files of business
licenses and qualification certificates provided by Guizhou Power Grid Company. The
business license dataset comprises 558 images, with 400 images used for training and
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158 images for testing. The qualification certificate dataset comprises 487 images, with
341 images used for training and 146 images for testing.

The evaluation metrics employed in this study are as follows:
Precision: Precision refers to the ratio of correctly recognized characters by the OCR

system to the total recognized characters by the system. It measures the accuracy of the
system in character recognition. A higher precision indicates a greater probability of
correct recognition by the system.

Recall: Recall refers to the ratio of correctly recognized characters by the OCR
system to the actual number of existing characters. It measures the completeness of
character recognition by the system. A higher recall implies the system’s ability to
correctly recognize more existing characters.

F1 Score: The F1 score is a composite metric that balances precision and recall. It
represents the harmonic mean of precision and recall, calculated as: F1= 2 * (Precision
* Recall)/(Precision + Recall). The F1 score ranges from 0 to 1, with higher values
indicating better system performance. Experimental Procedure:

1) Data Collection: All data for this experiment originates from electronic files of
business licenses and qualification certificates provided by Guizhou Power Grid
Company.

2) Data Preprocessing: This step involves operations like noise reduction, binarization,
rotation correction, and image enhancement on the images.

3) Feature Extraction: Useful features are extracted from the images of each character.
Common feature extraction methods include algorithms based on shape, texture,
edges, and more.

4) Model Training: The OCR model is trained using the training dataset.
5) Model Testing: The trained OCRmodel is evaluated using the test dataset. Evaluation

metrics include precision, recall, and F1 score.
6) Experimental Analysis: Based on the test results, the model’s performance is ana-

lyzed. Following the analysis, experimental parameters are adjusted, which may
involve modifying model parameters, increasing training data, improving feature
extraction methods, and more.

5 Experimental Results and Analysis

The dataset used for training comprises electronic files of business licenses and qualifica-
tion certificates provided by Guizhou Power Grid Company. A comparison is conducted
against Spell GCN [13], Soft-Masked BERT [14], and FASpell [15], with evaluation
metrics including precision, recall, and F1 score. The results on business licenses are
presented in Table 1.

The results on qualification certificates are presented in Table 2.
The experimental results indicate that our proposedmodels achieved higher precision

and recall on business licenses compared to FASpell by 24.7 and 21.6 percentage points
respectively, SpellGCNby22.2 and13.7 percentagepoints respectively, andSof-Masked
BERT by 20.8 and 32.7 percentage points respectively. On qualification certificates,
our proposed models exhibited precision and recall improvements of 22.3 and 17.9
percentage points over FASpell, 23.9 and 24.9 percentage points over Spell GCN, and
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Table 1. Results on Business Licenses

Method Accuracy(%) Recall(%) F1 Score

FASpell 67.3 61.3 0.64

Spell GCN 68.7 42.3 0.52

Sof-Masked BERT 64.8 53.4 0.59

Ours 89.5 75.0 0.82

Table 2. Results on Qualification Certificates

Method Accuracy(%) Recall(%) F1 Score

FASpell 65.3 59.3 0.62

Spell GCN 63.7 52.3 0.57

Sof-Masked BERT 74.8 63.4 0.69

Ours 87.6 77.2 0.82

12.8 and 13.8 percentage points over Sof-Masked BERT. These results demonstrate the
effectiveness of our approach in character recognition.

From the above experimental results, it can be observed that our method exhibits sig-
nificant potential for application, showcasing markedly improved recall and precision
compared to the contrasted methods. Favorable results were achieved in the recogni-
tion of both business licenses and qualification certificates. Given the limitations of
our dataset, we have focused the experiments on business licenses and qualification
certificates, lacking experiments on other types of documents.

6 Application Cases and Discussions

Currently, several researchers have leveraged OCR technology in invoice recognition
and achieved promising outcomes. Siek [16] introduced anOCR system developed using
deep learning algorithms and convolutional neural networks. This system streamlines
certain steps in the manual payment approval workflow, expediting payment verification
and confirmation processes. On the test dataset, the system achieved 100% accuracy
in detecting trace numbers, approval codes, and nominal designations. The resulting
OCR system serves as a reliable and accurate tool for addressing payment verification
challenges in real-world business applications.

With the development of the Internet and the increasing adoption of paperless office
practices, electronic bidding systems have become vital tools for organizations engaging
in project procurement. Applying OCR technology to the bidding field offers an efficient
solution to prominent challenges in engineering projects. Reliable technical support for
bid document information retrieval is accompanied by a pressing practical need. The
intelligent recognition and discrimination designed in this paper significantly enhance
operational efficiency.
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7 Conclusion

This paper introduces an efficient and accurate document parsing and auditing sys-
tem based on OCR engines. The system accomplishes the extraction of key information
from bid documents of various formats, along with the analysis and rectification of exist-
ing errors, thereby enhancing the error correction capability in bid document reviews.
The system holds significant potential for widespread application, particularly within
the bidding industry. It aids bid evaluation experts in precisely pinpointing errors in
bid document content, preventing misjudgments, and ensuring fair and impartial bid-
ding outcomes. Future enhancements and extensions will further elevate the system’s
performance and functionalities, driving advancements and progress in this field.
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Abstract. This paper aims to achieve intelligent comparison of bidding doc-
uments from different sources and identify potential bid-rigging situations. In
response to possible irregularities and unfair practices in the bidding process, we
design and implement a system based on algorithmic analysis and visualization.
The system automatically parses bidding documents from various sources and
displays the differences between them. Through algorithmic analysis and a visual
interface, evaluation experts can quickly identify potential bid-rigging situations.
Experimental results demonstrate that our system effectively reduces evaluation
time and improves the accuracy of evaluation results. Our research holds signifi-
cant value and promising applications. This system can reduce labor costs while
enhancing the efficiency and fairness of the bidding process. Furthermore, through
intelligent comparison technology, we can promptly detect violations and ensure
fair bidding outcomes.

Keywords: Intelligent Comparison · Bidding Documents · Bid-rigging · Text
Parsing · Text Comparison

1 Introduction

Bidding documents [1] are application files submitted by suppliers to the procurement
party in competitive bidding processes. The comparison of bidding document contents
[2] is a crucial task in bid evaluation, aiming to identify potential bid-rigging situations
and ensure fair and impartial bidding outcomes. However, due to the diverse sources and
complex nature of bidding documents, manual comparison is often time-consuming and
prone to errors. This paper aims to design a system based on algorithmic analysis and
visualization that can automatically parse bidding documents from different sources and
provide a user-friendly interface to display the differences, assisting evaluation experts
in conducting fast and efficient text comparisons. By introducing intelligent comparison
[3] technology, we can significantly reduce the evaluation time, improve the quality of
evaluations, and mitigate the potential risks of bid-rigging.

Supported by Intelligent Bidding EvaluationAssistance Platform based onDeep Learning (Project
Number: 066700KK52210003) developed by Guizhou Power Grid Limited Liability Company.
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With the rapid development of information technology, electronic bidding documents
[4] have gradually replaced traditional paper-based documents as the primary form in
the bidding process. Electronic bidding documents offer advantages such as conve-
nience, efficiency, and environmental friendliness. However, their diversified sources
and formats present new challenges for comparing document contents. Currently, man-
ual comparison is still the prevailing method in bid evaluation. Evaluation experts need
tomanually compare various sections of bidding documents, searching for potential sim-
ilarities or repetitions to determine the existence of bid-rigging activities. However, this
traditional manual comparison approach is not only time-consuming and error-prone,
but also incapable of handling large amounts of data and complex document formats.

The significance of this research lies in providing an automated [5], intelligent solu-
tion for comparing bidding document contents to address the existing problems and
challenges faced in the bidding evaluation process. By designing a system based on
algorithmic analysis [6] and visualization [7], we can achieve several improvements.
Firstly, time and cost savings can be realized. Introducing intelligent comparison tech-
nology can greatly reduce the evaluation time, thereby improving efficiency and reducing
labor costs. Secondly, accuracy can be enhanced. Automatic parsing and comparison of
bidding document files can avoid human errors and omissions, increasing the accuracy
of evaluation results. Furthermore, the risk of bid-rigging can be mitigated. By detect-
ing potential bid-rigging situations, we can help the procurement party identify potential
irregularities and ensure fair and impartial bidding outcomes. Lastly, enhanced visualiza-
tion display can be provided. Offering a user-friendly interface to showcase document
differences allows evaluation experts to intuitively understand and compare bidding
document contents from different sources. This research will fill the gap in the field
of bidding document comparison and provide an effective solution for more efficient,
accurate, and fair results in bid evaluation. Through the design and implementation of an
intelligent comparison system, we aim to provide new technological support for bidding
document evaluations, driving the development and progress of the bidding industry.

2 Related Work

2.1 Text Parsing Techniques

Text parsing is a crucial step in achieving the comparison of bidding document contents.
In recent years, significant progress has been made in the field of Natural Language
Processing (NLP) to transform textual data into structured information. In the context
of parsing bidding document contents, NLP techniques can be used to identify and
extract key information such as bidding requirements, pricing terms, delivery dates, etc.
Additionally, InformationExtraction techniques [8] canbe employed to extract important
information from unstructured bidding text. This includes subtasks like Named Entity
Recognition [9] andRelation Extraction [10], which help identify and extract key entities
and their relationships within the bidding documents.
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2.2 Text Comparison Techniques

Text comparison is a critical step in identifying differences between bidding documents
and detecting potential bid-rigging situations. The following are commonly used text
comparison techniques:

Text matching techniques: Based on similarity or distance measurement methods,
these techniques compare the similarity between two texts. Common text matching
algorithms include cosine similarity, Jaccard similarity, and edit distance. In recent years,
deep learning techniques such as Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) have achieved significant advancements in text matching.

Difference comparison techniques: These techniques aim to find specific differences
between two texts and highlight areas of divergence. Common difference comparison
methods includeLongestCommonSubsequence (LCS) [11] andMinimumEditDistance
[12]. Furthermore, tree-based algorithms like Tree Edit Distance [13] are widely applied
for comparing bidding document contents with hierarchical structures.

2.3 Text Comparison Techniques

Text parsing and comparison techniques find extensive applications in various fields.
Here are some application cases in the realm of information comparison: In software
development processes, different versions of source code need to be compared to iden-
tify changes and errors. Text parsing and difference comparison techniques are used for
detecting differences and similarities between code [14]. File version control systems
[15] often employ text comparison techniques to compare different versions of docu-
ments or source code, keeping a record of modification history. This aids team members
in tracking and managing file changes. News organizations require comparison of news
articles from different sources to verify factual accuracy and consistency in reporting.
Text comparison techniques help identify and rectify inconsistencies.

Despite the wide-ranging applications of text parsing and comparison techniques,
there are still challenges and limitations: Bidding documents from different sources
may have varying structures, formats, and language styles. Thus, handling this diver-
sity becomes necessary during the parsing and comparison process. Bidding documents
typically contain substantial textual content, requiring efficient algorithms and resource
management for parsing and comparison of lengthy texts. Ambiguities or vague expres-
sions may exist within bidding documents, introducing difficulties during the parsing
and comparison process. Therefore, an automated and intelligent approach to bidding
document comparison is of utmost importance.

3 Method

After being trained on massive amounts of data, the pre-trained model ERNIE has
demonstrated excellent feature extraction capabilities. Drawing inspiration from transfer
learning, we leverage the semantic information learned by ERNIE from vast data to
assist in the intelligent comparison of bidding document content. We utilize the ERNIE
Sentence-PairBERT model to achieve efficient and accurate text matching. The system
flowchart is shown in Fig. 1.
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Fig. 1. System Flowchat

3.1 Data Preprocessing and Model Design

Before integrating ERNIE into text comparison, the primary step is data pre-processing.
During this stage, we meticulously segment the textual content of each bidding docu-
ment that will be used for training, dividing it into hierarchical paragraphs, sentences, or
even more fine-grained text units. This processing provides a favorable foundation for
sentence-level comparison. Each pair of texts to be compared is cleverly combined into
a sentence pair, where one sentence originates from a specific bidding document and the
other from another bidding document. For example, suppose we have two bidding docu-
ments, referred to as Document A and Document B. We aim to compare the differences
in text between these two documents. We take a sentence from Document A as the first
sentence of the sentence pair and the corresponding sentence from Document B as the
second sentence of the sentence pair. In this way, we obtain a sentence pair where one
sentence comes from Document A and the other from Document B. The same approach
is applied to construct other text pairs to be compared, which are then fed into the model
for comparative analysis.

In the design of the intelligent comparison, we employ the ERNIE model to imple-
ment the Chinese bidding document comparison task. With the pre-trained weights, we
employ the model’s sentence-pair classification task to obtain descriptions of closely
related sentences. For each pair of sentences, we need to transform their textual content
into a suitable input format for the model. We add special tokens in the model, such
as “[CLS]” (start token for classification tasks) and “[SEP]” (sentence separation token
to indicate boundaries between different sentences). Additionally, the text needs to be
accurately segmented into words, which are then converted into corresponding word
vectors. In this task, we establish a well-defined binary classification task where positive
examples represent two sentenceswith similar semantics, while negative examples imply
that the semantics between these two sentences are dissimilar. The intelligent document
comparison process is illustrated in Fig. 2. In the framework of the ERNIE model, the
input of sentence pairs is passed through multiple layers of transformer encoders within
the model. These encoders aim to capture contextual information of sentences perfectly,
reflecting their inherent meanings accurately. Once encoding is completed, the extracted
features are inputted into fully connected layers for the classification task. The output
of the classification task often manifests as a probability value between 0 and 1, which
implicitly represents the measure of similarity between sentences. However, the model
parameters of ERNIE are very large, resulting in a very large computational load and
unsatisfactory prediction speed. In response to this issue, the network results adopted
a sense bert structure. Sense bert adopts the network structure of Siamese. Query and
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Title input ERNIE separately, share an ERNIE parameter, and obtain their respective
sequences_Output feature. Afterwards, regarding the sequence_ The output is pooled,
and the subsequent outputs are denoted as u and v. Afterwards, concatenate the three
representations (u, v, u-v) for binary classification. The network structure is shown in
the Fig. 3.

Fig. 2. The intelligent document comparison process

3.2 Similarity Measurement and Threshold Determination

The output of the classification task can be used to measure the similarity between two
sentences. A higher probability value indicates a greater semantic similarity between
sentences. To determine the existence of differences, a threshold can be set. Probability
values exceeding this threshold are considered similar, while those below it are regarded
as dissimilar.

3.3 Visualization and Result Analysis

Visualizing the comparison results provides an intuitive representation of the differ-
ences between bidding documents. In the visualization interface, similar portions can be
highlighted, and detailed differences can be presented. Evaluators can quickly identify
potential bid-rigging situations through this method, enabling more targeted assessment
and decision-making.
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Fig. 3. The model adopts a sense bert structure

4 Experimental Design

The dataset used to train the Sentence-Pair model consists of electronic files of business
licenses and qualification certificates provided by Guizhou Power Grid Company. The
business license dataset contains 558 images, with 400 images used as the training set
and 158 images used as the test set. The qualification certificate dataset contains 487
images, with 341 images used as the training set and 146 images used as the test set. We
evaluate the system’s performance in terms of difference detection accuracy, recall rate,
F1 score, etc.

The experimental design includes steps such as data preprocessing, model training,
and testing.

Data Collection: All data for this experiment is sourced from electronic files
of business licenses and qualification certificates provided by Guizhou Power Grid
Company.

Data Preprocessing: This involves operations such as denoising, binarization,
rotation correction, and image enhancement.

Feature Extraction: Useful features are extracted from each character’s image. Com-
mon feature extraction methods include algorithms based on shape, texture, edges,
etc.

Model Training: The Sentence-Pair model is trained using the training dataset.
Model Testing: The trained Sentence-Pair model is evaluated using the test dataset.

Evaluation metrics include accuracy, recall rate, F1 score, etc.
Experimental Analysis: Based on the test results, the performance of the model is

analyzed. Experimental parameters are adjusted accordingly, including tuning model
parameters, increasing training data, improving feature extraction methods, etc.

5 Experimental Results and Analysis

The dataset composed of electronic files of business licenses and qualification certificates
provided by Guizhou Power Grid Company was used for training. A comparison was
made with SRP-TF-IDF [16], TF-IDF-Simhash [17], TextRank+ [18], and our proposed
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method. The comparison metrics include accuracy, recall rate, and F1 score. The results
on business licenses are shown in Table 1, and the results on qualification certificates
are shown in Table 2.

Table 1. Results on Business Licenses

Method Accuracy (%) Recall (%) F1 Score

SRP-TF-IDF 65.3 60.3 0.63

TF-IDF-Simhash 63.7 52.3 0.57

TextRank+ 68.8 63.4 0.66

Ours 92.5 79.3 0.88

The experimental results demonstrate that our proposedmodel achieves significantly
higher accuracy and recall rates compared to SRP-TF-IDF, TF-IDF-Simhash, and Tex-
tRank+ methods. On business licenses, our model improves the accuracy and recall
rates by 27.2%, 19.0% compared to SRP-TF-IDF, and by 28.8%, 27.0% compared to
TF-IDF-Simhash. Compared to TextRank+, it improves the accuracy and recall rates
by 23.7% and 15.9% respectively. On qualification certificates, our model improves the
accuracy and recall rates by 26.2%, 27.7% compared to SRP-TF-IDF, and by 19.1%,
20.2% compared to TF-IDF-Simhash. Compared to TextRank+, it improves the accuracy
and recall rates by 20.0% and 21.5% respectively. These results indicate the effectiveness
of our method in identifying document content. From the above experimental results,
it can be concluded that our method shows great potential compared to other meth-
ods, with significantly higher recall and accuracy rates. It achieves good performance
in recognizing business licenses and qualification certificates. Due to the limited nature
of our dataset, we only conducted experiments on business licenses and qualification
certificates, lacking experiments on other types of documents.

Table 2. Results on Qualification Certificates

Method Accuracy (%) Recall (%) F1 Score

SRP-TF-IDF 59.6 45.9 0.52

TF-IDF-Simhash 66.7 53.4 0.59

TextRank+ 65.8 52.1 0.58

Ours 85.8 73.6 0.79

6 Application Cases and Discussions

During the bidding process, there may be differences in the tender documents submitted
by different vendors. The system can assist evaluation experts in quickly comparing
the documents, identifying possible bid rigging or collusion situations, thus ensuring
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fair competition and transparent bidding. In the legal field, contract review requires
comparing different versions of contracts to identify modifications. The system can be
used for automated contract review, helping lawyers and legal teams accurately capture
changes in contract terms. In the academic and publishing sectors, the system can be
used to detect text similarity to avoid plagiarism or infringement.

In the context of bid document evaluation, the system can quickly and accurately
compare the tender documents from different vendors, highlighting possible bid rigging
or collusion situations. Evaluation experts can clearly see the differences between the
documents through a visual interface, enabling faster judgment. In contract review,
the system can highlight differences in contract terms across versions, helping lawyers
quickly identify modifications.

Intelligent document comparison has significant potential for future applications.
The automation of comparison and intelligent prompts can greatly improve the effi-
ciency of manual comparisons and reduce human errors. In fields such as bidding and
contracts, the system can help decision-makers understand text differences more quickly
and accurately, enabling informed decisions. Besides text comparison, similar technolo-
gies can be applied in other domains such as code comparison and image similarity
analysis. With the development of deep learning technology, the performance of models
can be further improved, enabling more accurate comparison and analysis. The system
can be expanded to support multilingual comparison, meeting global demands.

7 Conclusion

This paper proposes a system based on algorithm parsing and visualization that achieves
intelligent comparison of tender document content from different sources and identifies
potential bid rigging or collusion situations. The system has broad application prospects
and can assist evaluation experts in the bidding industry to conduct fast and efficient
text comparisons, ensuring fair and just bidding outcomes. Future improvements and
expansions will further enhance the system’s performance and functionality, driving the
development and progress of this field.
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Abstract. Since remote sensing image are created uniquely, noise is invariably
present. This can degrade the image quality and hinder further processing of
the picture. For this reason, image denoising is a crucial step in the image
processing process. The limitations of the traditional threshold functions in
practical applications, as well as the fact that the threshold functions in previous
studies were not continuous and did not discuss the type of noise. Therefore, a
new adjustable continuous threshold function is constructed based on existing
threshold functions and is used for denoising images with different kinds of noise.
Simulation experiments demonstrate that wavelet threshold denoising using the
new threshold function outperforms current threshold functions and methods for
images with salt and pepper, Gaussian, and speckle noise. Moreover, it effectively
filters out noise while retaining more detail. This provides a feasible method for
wavelet threshold denoising and can be applied to images containing different
noises.

Keywords: Noise · Image denoising · Remote sensing image · Threshold
function

1 Introduction

With the development of remote sensing technology, remote sensing image is used in
numerous vital areas, including natural disaster prevention and geological exploration.
Long-range imaging and motion blur can impact the quality of remote sensing image,
and untreated image data can result in subpar target detection performance [1]. Hence,
image preprocessing is critical to address these issues [2]. Image denoising has been
the subject of research by many academics. Some of these methods include adaptive
image denoising based on diffusion equation and deep learning [3], new crop image
denoising based on improved wavelet domain SVD [4], and wavelet threshold denoising
based on improved threshold function [5, 6]. The wavelet transform is a multiresolution
analysis technique that combines the frequency and time domains to accurately describe
the signal’s multiscale properties [7]. Wavelet threshold shrinkage denoising was first
introduced by Donoho et al. in 1995 [8]. Denoising remote sensing image using wavelet
threshold techniques improves the quality and clarity of the images and enables more
accurate analysis of geographic and environmental data. The basic principle of wavelet
threshold denoising is to judge whether the signal is noise by selecting an appropriate
threshold. Therefore, the selection of the threshold function is essential.
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The two categories of traditional threshold functions are hard and soft threshold
functions. Hard threshold function produce oscillating reconstructed signals at the
threshold point [9], whereas soft threshold function provide reconstructed signals that
consistently diverge from the original signal. Wang Y and Jing-Yi L et al. proposed
the improved threshold functions. Literature 5 still has an issue with discontinuity,
and the two papers do not provide a more detailed discussion of the types of noise.
This study introduces a new continuous threshold function that is adjustable and close
to the hard threshold function. Denoising images that contain three distinct types of
noise using various methods. Simulation studies show that the denoising effect of the
threshold function proposed in this study is better than the other methods mentioned in
the paper. Consequently, the wavelet threshold denoising method effectively denoises
images containing multiple noises.

2 Principle of Wavelet Threshold Denoising

The wavelet threshold denoising algorithm is shown in Table 1.

Table 1. Wavelet threshold denoising algorithm.

Algorithm. Wavelet threshold denoising algorithm
Input: Noisy image
Output: Denoised image
1. Setting the wavelet basis function, the number of transform layers, and the 
threshold function
2. Perform the wavelet transform and obtain the wavelet coefficients c and scale 
factors s
3. Calculation the threshold th
4. If abs(c(i,j)) < th, then

c(i,j) = 0
End if

5. Wavelet inverse transform to get denoised image

3 Threshold Functions Available

3.1 Traditional Threshold Functions

Traditional threshold functions are categorized into hard and soft threshold functions,
and their expressions are as follows

ω̂j,k =
{

ωj,k ,
∣∣ωj,k

∣∣ ≥ λ

0,
∣∣ωj,k

∣∣ < λ
(1)
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ω̂j,k =
{
sign(ωj,k)(

∣∣ωj,k
∣∣ − λ),

∣∣ωj,k
∣∣ ≥ λ

0,
∣∣ωj,k

∣∣ < λ
(2)

where ωj,k is the original wavelet coefficients, while ω̂j,k is the new wavelet coefficients
obtained after threshold processing, sign(·) is the symbolic function, and λ denotes the
threshold.

The images of the traditional threshold functions are displayed (see Fig. 1).

Hard threshold function           Soft threshold function

Fig. 1. The traditional threshold functions.

3.2 Improved Threshold Functions Available

The expressions for the threshold functions given in Literatures 5 and 6 are in order

ω̂j,k =
{
sign(ωj,k)[

∣∣ωj,k
∣∣2 − (λe−(|ωj,k |−λ)

/
k)2]1/ 2, ∣∣ωj,k

∣∣ ≥ λ

aωj,k ,
∣∣ωj,k

∣∣ < λ
(3)

ω̂j,k =
{
sign(ωj,k)

{∣∣ωj,k
∣∣ − λ

exp3 [α(|ωj,k |−λ)
/

λ]
}
,
∣∣ωj,k

∣∣ ≥ λ

0,
∣∣ωj,k

∣∣ < λ
(4)

where λ is the threshold. The thresholds are in order λ = σ
√
2 lnN

/
ln(j + 1) and

λ = σ
√
2 lnN

/
log2(j + 1). j represents the number of decomposition layers, σ is the

noise standard deviation, N is the total number of wavelet coefficients in the image. k,
a, and α are the adjustable parameters, where k > 0 and a ∈ (0.05 , 0.5) in Literature
5, and α can be taken as an arbitrary real number in Literature 6. ωj,k and ω̂j,k are the
original wavelet coefficients and new wavelet coefficients after threshold processing,
respectively.

The above several threshold functions are illustrated in graph (see Fig. 2).
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Fig. 2. Several threshold functions.

4 New Improved Threshold Function

To construct the new improved threshold function, the following theorem is given.

Theorem. Let f (x) be a function defined by

f (x) =
{
sign(x)(|x| − λ

e(2β+1)(|x|−λ)β
), |x| ≥ λ

0, |x| < λ
(5)

Then the function f (x) is a continuous odd function with asymptote y = x, where
β > 0 and λ > 0.

Proof. The domain of the function f (x) is (−∞,+∞), and there is

f (−x) =
{
sign(−x)(|−x| − λ

e(2β+1)(|−x|−λ)β
), |−x| ≥ λ

0, |−x| < λ

= − f (x)

Then the function f (x) is an odd function. Considering continuity next, we have

lim
x→λ+ f (x) = lim

x→λ+(x − λ

e(2β+1)(x−λ)β
) = 0 , lim

x→λ− f (x) = 0

So lim
x→λ+ f (x) = lim

x→λ− f (x) = f (λ) = 0, the function f (x) is continuous at x = λ.

Since f (x) is an odd function, similarly, f (x) is continuous at x = −λ. f (x) is continuous
when |x| > λ, and f (x) = 0 is continuouswhen |x| < λ, it follows that f (x) is continuous
on (−∞,+∞).

The asymptote of f (x) is y = x, in fact

lim
x→+∞

f (x)

x
= 1 − lim

x→+∞
λ

xe(2β+1)(x−λ)β
= 1 , lim

x→−∞
f (x)

x
= 1 + lim

x→−∞
λ

xe(2β+1)(−x−λ)β
= 1

From the function (5), a new threshold function can be constructed as follows

ω̂j,k =
{
sign(ωj,k)(

∣∣ωj,k
∣∣ − λ

e(2β+1)(|ωj,k |−λ)β
) ,

∣∣ωj,k
∣∣ ≥ λ

0,
∣∣ωj,k

∣∣ < λ
(6)
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Here, β is an adjustable parameter with β > 0. ωj,k and ω̂j,k are the original wavelet
coefficients and the processedwavelet coefficients.λ represents the threshold, it is chosen

as λ = σ
√
2 lnN

/
log2(j + 1). Furthermore, j represents the number of decomposition

layers, σ is the standard deviation of the noise, and the total number of wavelet
coefficients is N .

From Theorem, the new threshold function (6) is a continuous function with
tunability, ultimately approaching the hard threshold function (see Fig. 3).

Fig. 3. The new threshold function in this paper.

5 Simulation Experiments

This study selected three photographs, chemical plant, airfield, and airfield2, from the
standard image processing test set. A sym4 wavelet basis is taken, and the number of
decomposition layers is set to 3. Gaussian, salt and pepper, and speckle noise were
added to the image. Matlab is used for the simulation studies. This work used the
improved threshold function (6), the threshold functions in Literatures 5 and 6, and
the hard and soft threshold functions to denoise the noisy image. Since neural network is
a popular technique for image denoising, this article also employs the method to achieve
a comparison. Peak signal-to-noise ratio (PSNR), Root Mean Square Error (RMSE),
Structural Similarity Index Measure (SSIM), Coefficient of Correlation (CoC), and
degree of distortion are some objective evaluation criteria used to examine the denoised
images. In general, better denoising and better preservation of the original image’s details
are associatedwith higher PSNR, SSIM, andCoC values and lower RMSE and distortion
values. In this paper, β = 4 is chosen to perform simulation experiments. The simulation
results are presented in Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10. To be able to provide more
details of the results of the simulation experiments, the images were enlarged locally
(see Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12).
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Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 4. Denoising effect of different methods for airfield with Gaussian noise.

Fig. 5. Denoising effect of different methods for airfield with salt and pepper noise.

The application of the method described in this paper and other methods have the
phenomenon that the detailed information is regarded as noise and removed, as shown
in Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12. Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10 objectively
demonstrate that the improved threshold function in this study outperforms the traditional
threshold functions, themethods in Literatures 5 and 6, and the neural networkmethod in
denoising images with different types of noise. However, for some images, the denoised
image appears more blurred because the threshold chosen in this work is relatively high,
causing many real detail coefficients to be incorrectly identified as noise, resulting in a
loss of detail.
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Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 6. Denoising effect of different methods for airfield with speckle noise.

Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 7. Denoising effect of different methods for airfield2 with Gaussian noise.
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Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 8. Denoising effect of different methods for airfield2 with salt and pepper noise.

Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 9. Denoising effect of different methods for airfield2 with speckle noise.
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Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 10. Denoising effect of different methods for Chemical plant with Gaussian noise.

Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 11. Denoising effect of different methods for Chemical plant with salt and pepper noise.
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Original image Noisy image Hard threshold Soft threshold

Literature [5] Literature [6] Neural network New threshold

Fig. 12. Denoising effect of different methods for Chemical plant with speckle noise.

Table 2. Objective evaluation results of the denoising effect for Fig. 4.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 24.4341 20.3709 0.9162 0.9157 18.7888

Soft threshold 21.4391 21.5067 0.9312 0.9342 16.3365

Literature [5] 22.9199 20.9266 0.9245 0.9247 17.6983

Literature [6] 23.2995 20.7839 0.9226 0.9225 18.0559

Neural network 31.7304 18.1013 0.8849 0.8888 25.4228

New threshold 21.1394 21.6289 0.9339 0.9359 16.1316

Table 3. Objective evaluation results of the denoising effect for Fig. 5.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 28.1000 19.1567 0.8807 0.8841 20.2081

Soft threshold 25.0945 20.1392 0.8990 0.9111 17.9323

Literature [5] 26.4405 19.6854 0.8912 0.8983 18.7980

Literature [6] 27.2692 19.4174 0.8857 0.8910 19.6696

Neural network 40.9355 15.8888 0.8185 0.8272 33.2507

New threshold 24.9870 20.1765 0.9005 0.9115 17.8638
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Table 4. Objective evaluation results of the denoising effect for Fig. 6.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 30.4573 18.4570 0.8752 0.8746 22.6103

Soft threshold 23.8725 20.5729 0.9175 0.9194 18.0059

Literature [5] 25.3304 20.0580 0.9099 0.9101 19.1525

Literature [6] 26.8006 19.5679 0.9005 0.9002 20.2244

Neural network 41.2500 15.8223 0.8695 0.8940 33.9370

New threshold 23.8427 20.5837 0.9184 0.9198 17.9752

Table 5. Objective evaluation results of the denoising effect for Fig. 7.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 20.3463 21.9611 0.8459 0.8432 15.5269

Soft threshold 16.2102 23.9351 0.8863 0.8900 11.9172

Literature [5] 17.3915 23.3241 0.8774 0.8755 12.8429

Literature [6] 18.4660 22.8033 0.8667 0.8637 13.8826

Neural network 27.8105 19.2466 0.7911 0.8063 22.5362

New threshold 16.1021 23.9932 0.8894 0.8916 11.8510

Table 6. Objective evaluation results of the denoising effect for Fig. 8.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 31.0449 18.2910 0.6691 0.6666 20.8806

Soft threshold 17.3719 23.3338 0.8687 0.8830 12.9831

Literature [5] 17.9974 23.0266 0.8657 0.8708 13.1779

Literature [6] 18.8531 22.6232 0.8571 0.8581 13.8383

Neural network 32.1473 17.9879 0.6805 0.6860 24.0093

New threshold 17.2874 23.3762 0.8716 0.8836 12.9132

Table 7. Objective evaluation results of the denoising effect for Fig. 9.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 18.1897 22.9343 0.8696 0.8667 13.2862

Soft threshold 17.7567 23.1436 0.8696 0.8683 12.6171

(continued)
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Table 7. (continued)

Methods RMSE PSNR SSIM CoC Degree of distortion

Literature [5] 18.2899 22.8866 0.8657 0.8630 13.1746

Literature [6] 18.4025 22.8333 0.8650 0.8621 13.3961

Neural network 21.5748 21.4519 0.7911 0.8063 22.5362

New threshold 17.6629 23.1896 0.8717 0.8701 12.5669

Table 8. Objective evaluation results of the denoising effect for Fig. 10.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 23.8033 20.5981 0.8486 0.8464 18.5770

Soft threshold 22.9953 20.8980 0.8485 0.8468 17.8518

Literature [5] 24.2012 20.4540 0.8393 0.8367 18.8603

Literature [6] 23.9156 20.5572 0.8445 0.8420 18.6724

Neural network 31.7050 18.1082 0.8335 0.8539 25.9428

New threshold 22.9322 20.9219 0.8505 0.8486 17.8049

Table 9. Objective evaluation results of the denoising effect for Fig. 11.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 23.0040 20.8947 0.8472 0.8466 17.2296

Soft threshold 20.6926 21.8145 0.8610 0.8769 15.6167

Literature [5] 21.5405 21.4657 0.8558 0.8631 15.9929

Literature [6] 21.8489 21.3422 0.8559 0.8593 16.3704

Neural network 31.8263 18.0751 0.7583 0.7595 25.3802

New threshold 20.5910 21.8573 0.8634 0.8777 15.5290

Table 10. Objective evaluation results of the denoising effect for Fig. 12.

Methods RMSE PSNR SSIM CoC Degree of distortion

Hard threshold 26.8539 19.5507 0.8072 0.8044 19.2849

Soft threshold 20.6442 21.8348 0.8662 0.8733 15.0919

Literature [5] 21.1105 21.6408 0.8647 0.8675 15.2351

(continued)
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Table 10. (continued)

Methods RMSE PSNR SSIM CoC Degree of distortion

Literature [6] 23.0200 20.8887 0.8463 0.8451 16.6446

Neural network 29.9261 18.6098 0.8514 0.8705 24.7627

New threshold 20.5646 21.8684 0.8679 0.8743 15.0444

6 Conclusions

Due to the unique imaging technique used for remote sensing imagery, the image is
not immune to noise. It has a substantial impact on the subsequent processing of the
image, making image pre-processing and denoising essential. In this paper, a continuous
threshold functionwith adjustability has been constructed to improve upon the traditional
threshold functions as well as the previously enhanced ones. This function gradually
approaches the hard threshold function. Metrics such as PSNR and RMSE are employed
to objectively validate the feasibility of selecting this threshold function. The application
of this function has a good effect on the denoising of images containing Gaussian noise,
salt and pepper noise, and speckle noise, which is better than other threshold functions
mentioned in the paper. There were individual images in the experiment that became
blurrier after denoising. Future research will choose a better threshold to solve this
problem.
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Abstract. License plate recognition is an important technology for vehicle man-
agement. However, the existing methods based on traditional image processing or
deep learning have limitations in accuracy and efficiency. In this paper, we propose
a novel method for license plate detection and recognition, called FasterPlateNet.
FasterPlateNet consists of two stages: detection localization and character recog-
nition. In the detection localization stage, it employs a backbone network with
stacked C3_Faster modules and a one-stage object detection algorithm with a
multi-scale feature fusion pyramid to extract multi-scale features of the license
plate, and enhances the resolution and global feature dependency of the feature
map by using the content-aware feature reassembly (CARAFE) algorithm and
the exposed visual center (EVC) module. In the character recognition stage, it
adopts a character recognition network with a convolutional neural network and
a connectionist temporal classification loss function, which can directly output
the character sequence from the license plate image without character segmenta-
tion. The experimental results on the CPPD dataset and its subsets demonstrate
that our method achieves 98.8% and 98.5% accuracy in detection localization and
recognition respectively. This method has great potential and value in practical
applications.

Keywords: License plate recognition · deep neural network · object detection ·
license plate localization

1 Introduction

Automobiles are vital for daily transportation and social economic development. Each
vehicle has a unique license plate number for identification. License plate recognition,
an essential component of intelligent transportation systems, has various applications in
vehicle management, traffic safety, violation monitoring, etc.
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This paper addresses license plate recognition, Various object detection algorithms
have been proposed for this task, which fall into two types: two-stage detection and one-
stage detection. Two-stage detection representative examples are RCNN [1], FasterR-
CNN [2], MaskR-CNN [3], etc. One-stage detection is faster and simpler than two-stage
detection algorithms. Among them, You Only Look Once (YOLO) [4] is one of the most
popular one-stage detection algorithms. It has multiple versions from V2to V7 [5, 6],
DAMO-YOLO [7], Single Shot MultiBox Detector (SSD) [8] etc.

We review two categories of license plate recognition (LPR) methods: traditional
andmodern. Traditional methods use image processing techniques to preprocess, extract
features, segment, and recognize the input image for LPR. Modern methods use deep
learning techniques to learn the feature representation of license plates and characters in
images, and output the recognition results directly. They can improve accuracy and speed
of recognition, and adapt to different scenarios and images. However, thesemethods also
have drawbacks: they need tedious and complex network design and tuning. Therefore,
both traditional and modern methods have limitations.

This paper proposes a novel license plate recognition method based on deep learning
and one-stage object detection, which aims to improve the performance of LPRmethods.
The main contributions of this paper are:

1. We proposed C3_Faster, a novel convolutional network module that combines C3
and PConv concepts. It extracts image features effectively.

2. We introduced a PAFPN, a multi-scale feature fusion pyramid to extract multi-
scale features of the license plate, by using the content-aware feature reassembly
(CARAFE) algorithm and the exposed visual center (EVC) module.

3. We presented a lightweight PlateNet for character recognition based on CNN+CTC,
which has a simple network architecture, small parameter size, and fast inference
speed.

2 Methodology

2.1 Overview of FasterPlateNet

Wepresent FasterPlateNet, amodel for license plate detection and recognition. It consists
of four main components: BackBone, Neck, Head, and PlateNet (Fig. 1).

2.2 Network Backbone of Faster PlateNet

2.2.1 C3_Faster Based on Partial Convolution

Figure 2(a) shows theC3_Faster structure,with three parts: Conv, Faster_block, andCon-
cat. Faster_Block extracts high-level features; Conv1 and Conv2 reduce input channels;
Conv3 increases output channels.

We can reduce unnecessary calculations and costs. A recent method called par-
tial convolution (PConv) [9] does this. Figure 2(c) shows the PConv structure, which
reduces redundant calculations and memory access and extracts spatial features better.
Equation (1) shows that PConv also has lower memory access.

h × w × 2cp + k2 × c2p ≈ h × w × 2cp (1)
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Detection 

Fig. 1. The network framework of FasterPlateNet. From left to right, it consists of Backbone,
Neck, Head, and PlateNet.

PConv costs h×w× 2cp + k2 × c2p ≈ h×w× 2cp, where h,w > k. When r = 1/4,
PConv is 1/4 of regular convolution, reading and writing data from some channels, not
all. This lowers memory bandwidth and speeds up the network.

2.3 Multi-scale Fusion Neck

Neck, a key part of multi-scale feature fusion, uses FPN + PAN [10]. EVC [11] and
CARAFE [12] modules improve the dependency and upsampling of features (Fig. 3).

Figure 4 shows theEVCBlock structure,with twoparallel parts: lightweightMLPand
learnable LVC. MLP captures global dependency of deep features, and LVC preserves
local region features. MLP has two residual blocks, each with a depthwise convolution
block and a channel convolution block. LVC has two parts: encoding and scaling factor.
The encoding method of LVC is as follows:

ek =
N∑

i=1

e−sk‖xi−bk‖2
∑K

j=1 e
−sk‖xi−bk‖2

(xi − bk) (2)
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(a) C3 Faster                               (c) PConv

(b) Faster_Block

Fig. 2. The structure of C3_Faster. (a) C3_Faster consists of Conv, Concat, and Faster_Block;
(b) consists of PConv, Conv, BN and Relu; (c) PConv is the part that participates in convolution
operations.

Fig. 3. The Neck network. The Neck is composed of Conv, C3_Faster, Concat, EVCBlock, and
CARAFE.

where, xi represents the i-th pixel point, bk represents the k-th learnable encoding posi-
tion. xi − bk is the offset position of each xi relative to bk . ek is transformed into e as
shown in Eq. (3).

e =
K∑

k=1

Relu(BN(ek)) (3)
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Fig. 4. The EVCBlock consists of lightweight MLP and Learnable Visual Center. MLP captures
the global long-term dependencies of top-level features, while LVC retains local information.

In Eq. (4), e is passed through a 1 × 1 convolution, then scaled by a factor σ and
multiplied by the input feature Xin, and the output is added to the input feature Xin
again.

Xout = Xin ⊕ (Xin ⊗ (σ (Conv1×1(e)))) (4)

CARAFE up-sampling technology consists of two steps. First, it predicts a recombi-
nation kernel for each target based on its content. Then, it recombines the features using
the predicted kernel. The internal kernel prediction module ψ predicts the position ker-
nel for location l′ based on its neighbor χl , while φ is the content-aware recombination
module that combines χl ’s neighbors with wl′ .

Wl′ = ψ(N (χl, kencoder)) (5)

χ ′
l′ = ϕ

(
N

(
χl, kup

)
,Wl′

)
(6)

The kernel predictionmoduleψ in Eq. (5). First, the input channelC is compressed to
Cm using a 1x1 convolutional layer. Then, the kernel kencoder is convolved to generate the
recombined kernel kup. Finally, the recombined kernel k2up is normalized using SoftMax
[13].

In Eq. (6), where φ is the content-aware reassembly module that reassembles the
neighbor of χl with the kernel Wl′ .

χ ′
l′ =

r∑

n=−r

r∑

m=−r

Wl′(n,m) · χ(i+n,j+m) (7)

where r = ⌊
kup/2

⌋
, for a target location l′ and the corresponding square regionN (xl , kup)

centered at l = (i, j), the reassembly is shown in Eq. (7).

2.4 Detection Head

The detection head is used to determine the position and size of the license plate. This
paper directly uses the detection head of YOLOV8 [14]. The detection head of YOLOv8
is a decoupled head structure that separates the classification and regression branches
and uses Anchor-Free method.
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2.5 License Plate Recognition Network PlateNet

This paper proposes PateNet, PateNet consists of two parts: a convolutional neural net-
work (CNN) [15] that extracts character features from input images, and a connectionist
temporal classification (CTC) [16] loss function that decodes feature sequences to obtain
the final license plate number. The structure of the license plate recognition network is
shown in Fig. 5, in which CNN comprises multiple convolutional layers, activation
layers, and maximum pooling layers.

Fig. 5. The character feature extraction network consisting of a CNN network. The network
structure mainly consists of Conv, Relu, MaxPool, and SoftMax, with a total of 30 layers for
character feature extraction.

3 Experimental Results and Analysis

3.1 Dataset Introduction

The CCPD [17] dataset consists of several subsets, among which ccpd_base is split
into training and validation sets with an 8:2 ratio; the rest of ccpd_challenge, ccpd_db,
ccpd_fn, cppd_np, ccpd_rotate, ccpd_tilt, and ccpd_weather are used as test sets.The
dataset is shown in Table 1.

Table 1. Description of different sub-datasets in CCPD

Type Num Illustrates

ccpd_base 199998 Normal license plate

ccpd_challenge 10006 More challenging

ccpd_db 20001 Darker or brighter light

ccpd_fn 19999 Farther or closer to the camera

ccpd_rotate 9998 Horizontal tilt 20–50°vertical tilt -10–10°

ccpd_tilt 10000 Horizontal tilt 15–45°vertical tilt 15–45°

ccpd_weather 9999 License plates for rainy, snowy, or foggy days

Total: 283,037 license plates
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3.2 Evaluation Metrics and Baseline Models

3.2.1 Evaluation Indicators

Precision, Average Precision (AP) [18], and Frames Per Second (FPS) [19].
The Precision is formulated as follows:

Precision = TP

TP + FP
(8)

The higher the precision, the more accurate the detection algorithm. The calculation
method of AP is the relationship curve between precision and recall. FPS is calculated
by calculating the reciprocal of the time it takes for the detection algorithm to process
an image.

3.3 Experimental Setup and Hardware Environment

We optimize our model using SGD, with an initial learning rate of 0.001.We resize all
input images to 640 × 640 pixels.We performed experiments on a server with an Nvidia
GPU Tesla A100 80 GB PCIe and 48 GB RAM for data processing and validation.

3.4 Experimental Results

3.4.1 License Plate Test Results

The evaluation metrics for the detection models were frames per second (FPS) and
average precision (AP). The license plate detection performance of each comparison
algorithm is shown in Table 2.

Table 2. Vehicle license plate detection and positioning results

Methods FPS AP Base DB FN Rotate Tilt Weather Challenge

Cascade classifier [20] 32 47.2 55.4 49.2 52.7 0.4 0.6 51.5 27.5

SSD300 [8] 40 94.4 99.1 89.2 84.7 95.6 94.9 83.4 93.1

YOLO9000 [5] 42 93.1 98.8 89.6 77.3 93.3 91.8 84.2 88.6

Faster-RCNN [2] 15 92.9 98.1 92.1 83.7 91.8 89.4 81.8 83.9

TE2E [21] 3 94.2 98.5 91.7 83.8 95.1 94.5 83.6 93.1

RPnet [17] 61 94.5 99.3 89.5 85.3 94.7 93.2 84.1 92.8

MTLP [22] 65 95.8 – – – – – – –

Ours 83 98.8 99.6 93.6 96.6 99.4 99.2 99 99

Note: The Base (100k), DB, FN, Rotate, Tilt, Weather, and Challenge results in the table are all
expressed in Precision. AP is the average of the accuracy of the subsets DB, FN, Rotate, Tilt,
Weather, Challenge and Base (100k). FPS is the average frame rate of each subset

Table 2 presents the results of license plate detection and localization. Our method
detection and localization adopts a one-stage structure based on PConv to design the
C3_Faster module, which has a high speed of 83 FPS/s and balances performance and
efficiency, surpassing the benchmark algorithm.
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Table 3. License plate recognition results, HC represents Holistic-CNN [23]

Methods FPS AP Base DB FN Rotate Tilt Weather Challenge

Cascade classifier + HC 29 58.9 69.7 67.2 69.7 0.1 3.1 52.3 30.9

SSD300 + HC 35 95.2 98.3 96.6 95.9 88.4 91.5 87.3 83.8

YOLO9000 + HC 36 93.7 98.1 96.0 88.2 84.5 88.5 87.0 80.5

Faster-RCNN + HC 13 92.8 97.2 94.4 90.9 82.9 87.3 85.5 76.3

TE2E 3 94.4 97.8 94.8 94.5 87.9 92.1 86.8 81.2

RPnet 61 95.5 98.5 96.9 94.3 90.8 92.5 87.9 85.1

MTLPR 64 96.7 – – – – – – –

our 78 98.5 99.6 97.0 95.2 93.2 93.4 96.1 96.3

Note: The Base(100k), DB, FN, Rotate, Tilt, Weather, and Challenge results in the table are all
expressed in Precision. AP is the average of the accuracy of the subsets DB, FN, Rotate, Tilt,
Weather, Challenge and Base (100k). FPS is the average frame rate of each subset

3.4.2 License Plate Character Recognition

The results of license plate character recognition are shown in Table 3. Since the average
precision of license plate detection and localization is 98.5%, our method is faster than
other detection and localization methods, reaching 78FPS/s, and the recognition adopts
convolution as the backbone to design the whole network, so our method has some
advantages in speed.

4 Conclusion

In this work, we proposed an end-to-end method called FasterPlateNet for license plate
detection and recognition. The detection and localization module can detect and locate
license plates in different environments accurately and quickly.We evaluated themethod
on the CCPD dataset and its subsets, and compared it with the state-of-the-art models
in terms of accuracy and efficiency. FasterPlateNet contributes a new idea and method
to the field of license plate detection and recognition.
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Abstract. Facial processing technology’s ability to generate realistic human faces
poses significant societal risks when exploited maliciously. Deep face fraud detec-
tion relies on deep learning to meticulously scrutinize the manipulation sequence
of fake faces, uncovering deceptive traces. This study focuses on Detecting
Sequential DeepFakeOperations (Seq-DeepFake), transforming the face detection
task into an image-to-sequence exploration.To enhance detection accuracy, this
paper introduces a Seq-DeepFake detection method. The Seq-DeepFake Trans-
former model’s activation function is refined, incorporating the Rectified Ran-
domized Leaky Unit (RReLU) to address learning rate challenges associated
with negative input values. Furthermore, diverse attention mechanism modules
are integrated into the backbone network, forming the innovative CLSP-Resnet-
50 model. Experimental results demonstrate the efficacy of the enhanced Seq-
DeepFake model, employing two evaluation metrics on a deepfake dataset, show-
casing improved accuracy. Comparative analysis against other real and fake face
detection methods substantiates the effectiveness of the Seq-DeepFake model.

Keywords: face fake detection · facial attribute manipulation detection · facial
component manipulation detection

1 Background

Realistic face forgery techniques, especially the recent deep learning-driven methods
[1], have attracted widespread social attention, such as media (i.e., images and videos,
etc.) that fake faces in a way that deceives the human eye. Recent technological advances
have made it easier to create hyper-realistic videos, now known as “deep fakes,” that
use face-swapping technology and leave few traces of manipulation [2]. Deep learning
models can generate hyper-realistic facial images, which are visually indistinguishable
from real images.

Face detection is crucial to the development of face recognition [3], expression
recognition [4], tracking and classification. Early research on face detection [5, 6]mainly
focused on the design of handcrafted features and used traditional machine learning
algorithms to train effective classifiers for detection and recognition [7]. In face related
research, face reconstruction and tracking is a well-studied field [8], which is the basis of
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face editing methods. The face can emphasize as well as alone convey a message, and it
plays a central role in human communication. The current facial manipulation methods
can be divided into two categories: facial expression manipulation and facial component
manipulation. One of the most prominent facial expression manipulation techniques
is the method of Thies et al. [9], called Face2Face. It only uses simple hardware to
realize the real-time transfer of one person’s facial expression to another person. This
technology has brought great challenges to the authenticity of face recognition.

In response to this series of threats, this paper improves on the existing Seq-DeepFake
technology, aiming to generate corresponding face detection sequences according to
different face image attributes and components, hoping to provide help in further face
image restoration, and improve the detection accuracy and restoration accuracy.

2 Related Work

In recent years, deep learning-based algorithms have developed rapidly in object detec-
tion, and face detection methods based on deep convolutional neural networks [10] have
been extensively studied.

Google proposed a neural network architecture Transformer based on a self-attention
mechanism, which has demonstrated excellent performance in realizing sequence-to-
sequence NLP tasks [11]. This method has been widely used in fields such as face
recognition. The cross-attention mechanism can be used to study image processing, and
manymajor breakthroughs have beenmade in society in recent years. These technologies
bring many references to face detection technology.

Compared with the existing deepfake detection tasks, Ziwei et al. proposed a detec-
tion operation sequence, using a specific data set, converted the detection Seq-DeepFake
operation into a specific image-to-sequence task, and realized face detection through the
SeqFakeFormer module. And based on the detected facial operation sequence, it pro-
vides a basis for further restoring the original face, and its superiority has been proven
through a large number of quantitative and qualitative experiments. Ziwei et al. consid-
ered two different facial manipulation techniques, one is facial component manipulation
[12] and the other is facial attribute manipulation [13].

Facial component manipulation. It adopts the StyleMapGAN proposed in the article
to conduct the facial component operation by utilizing the potential spatial dimension
in gan for real-time image editing [12], Different replacement sequences will obtain
different facial operation results.

Facial attribute operation. It uses the fine-grained facial editing method proposed by
Talk-to-Edit [13] to generate different pictures based on different hidden vectors in the
hidden space, Potential codes sampled from StyleGAN trained on FFHQ data set [14]
are used to generate original images. After each attribute randomly replaces the original
face, GIQA algorithm is used to filter low-quality samples.

Based on the above detection model [15], several improved methods are proposed
and tested on the original data set to verify that the detection accuracy can indeed be
improved.
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Fig. 1. This is a SeqFakeFormer Figure. The face image is first obtained, and then the face image
is input into the convolutional neural network CNN. Combined with the position coding function,
the spatial information in the image is extracted by learning the features of the operation area,
and then their spatial relations are extracted by a self-attention module in the encoder. The feature
output of the encoder is used as part of the input of the decoder to build a detection sequence
relationship model and recognize facial features based on the sequence. The decoder integrates a
spatially enhanced cross-attention module, which is beneficial to improve attention on features.

3 SeqFakeFormer Network Model Structure

The Seq-DeepFake pape [15] proposes a Seq-DeepFake Transformer (SeqFakeFormer)
that includes spatial relation extraction, face sequential relation modeling with spatially
enhanced cross-attention (Fig. 1).

3.1 Resnet Extraction Features

In image processing, resnet is used for feature extraction. The deeper the deep learning
layer, the better its expressive ability in theory, but after the depth reaches a certain
level, increasing the number of layers will not improve the classification performance
[16]. Considering this factor, the experiment in this paper performs convolution opera-
tion under the resnet-50 network, the network convergence speed is moderate, and the
classification performance and accuracy can also achieve the desired effect.

3.2 Spatial Relationship Feature Extraction

CNN is a deep learning model commonly used in image recognition. Features in images
can be extracted through operations such as convolution and pooling. In order to obtain
the detailed features of the facial area, a convolutional neural network (CNN) can be
used to perform multi-layer convolution operations on the input image. Through the
feature map f ori=CNN(x), the input image is extracted and converted, and the features
of the facial operation area are learned from it to extract the spatial information features.
f ori∈RC×H×W where H, W are the matrix height and width, respectively, and C is the
number of channels of the feature map.

With transformer architecture unchanged, location coding features are added to
expand the visual feature mapping f ori to obtain feature mapping f pos with spatial



212 Z. Deng et al.

location information. f pos Uses K, Q and V to extract the relationship between each
spatial position. And self-attention is calculated using the following Eq. (1). The vector
obtained from the previous step is passed through the full connection layer, then through
a residual network and LayerNorm to finally get a Transformer encoder output.

f seqi = Softmax
(
KT
i Qi

√
d
)
Vi, f

seq
i = Concat(f seq1 , . . . , f seqD ) (1)

where Ki, Qi, Vi represent the i-th group of key, query and value features, d is the
dimension of query and key, and a total of d groups are generated. Then, we concatenate
all the groups to form spatially related features as the output of the encoder.

3.3 Spatial Augmented Cross-Attention Sequence Relationship Modeling

Before the Transformer decoder processes the data, the facial sequence to be processed
is sent to the Tokenizer, and an SOS token and an EOS token are inserted at the beginning
and end of the sequence, respectively, to obtain an operation sequence Stok ∈ RC*(N
+ 2). Then, this sequence is input into Transformer decoder, and combined with part of
the output of Transformer encoder, the sequence is decoded by using the autoregressive
mechanism. Due to the short length of the operation sequence Stok and limited infor-
mation, in order to effectively extract spatial region features, the original model used a
sequence relationship modeling method with spatially enhanced cross attention.

The autoregressive mechanism is integrated into the above cross-attention process,
and then the decoded sequence with sequential relationship features processed by trans-
former decoder is fed into FFN to obtain the prediction score of each operation. Finally,
we jointly train the CNN, transformer encoder, and decoder to minimize the cross-
entropy loss between each class score and the corresponding operational annotations in
the sequence.

4 Improved Seq-DeepFake Detection Fake Restoration Sequence
Model

In order to improve the detection accuracy, this paper improves the original Seq-
DeepFake model (see Fig. 2).

4.1 Improved Activation Function

The original Seq-DeepFake model uses the Relu activation function in the transformer
decoder part and the MLP module. This paper proposes an improved method to modify
the activation function used in the model. ReLU: This is a non-linear correction function
that removes all x values below 0 and replaces them with 0. RReLU function: A new
type of convolutional neural network activation function, which is modified on the basis
of ReLU function to better solve the problem of neuron death in the negative interval of
ReLU function.
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Fig. 2. The face image is first acquired, and then the face image is input into the improved
convolutional neural network CNN, where in the backbone network resnet-50, multiple attention
mechanism modules are integrated to form a new CLSP-resnet-50 model.

The comparison between the ReLU activation function and the RReLU activation
function is shown in Fig. 3:

Fig. 3. Comparison of ReLU activation function and RReLU activation function. The slope of
negative values is random during training but fixed during testing. The beauty of RReLU is that
during the training session, ai is randomly drawn from a uniform distribution U(I,u), which is
fixed during the testing session.

In this paper, we refer to the RReLU function and make some improvements to
introduce an improved function between the input features and the hidden layer.

4.2 Introducing Multiple Attention Mechanism Modules

We often add attention mechanisms to backbone networks, such as SENet, which is a
novel network architecture that can improve the representation ability of the network by
modeling the interdependence between the channels of the feature map [17].

Spatial Attention mechanism: Generate and score the mask of the space, which
represents the Spatial Attention Module.

In this paper, a variety of attention mechanism modules are cited and added to
the backbone network, which strengthens the attention to useful features and greatly
improves the ability to extract useful information.
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The channel attention mechanism is similar to SENet, and its structure is shown in
Fig. 4:

Fig. 4. Channel attention mechanism structure diagram

Although the structure is similar, it differs from senet in that it applies both average
pooling and Max pooling operations to spatially compress the input features. To get
two one-dimensional vector outputs, two pooling operations can be used. The obtained
weights are added to the output feature map to obtain the final result feature map.

Then, it is the spatial attention module that extracts attention in the spatial domain,
and its structural diagram is shown in Fig. 5.

Fig. 5. Structural diagram of spatial attention module

To derive the spatial dimension attention feature values, the sigmoid activation
function can be used to calculate the final output feature map. The feature map is:
Fsavg ∈ R1∗H∗W) and Fsmax ∈ R1∗H∗W, the mathematical formula of this part is as follows:

MSP(F) = σ
(
f7×7([Avg(F);Max(F)

])) = σ
(
f7×7

([
Fsavg;Fsmax

]))
(2)

In this paper, on the original Resnet-50 original model, a variety of attention mech-
anisms are added. As mentioned earlier, after the input feature map is preprocessed, it
will also go through layer1, layer2, layer3, and layer4. Each layer contains multiple bot-
tlenecks. The improvement of this paper is to introduce multiple attention mechanisms
after the last bottleneck of each layer. The improved CLSP-Resnet-50 part structure is
shown in Fig. 6:
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Fig. 6. Partial structure diagram of CLSP-Resnet-50

5 Experiments

5.1 Introduction to Data

This article uses the deepfake data set to set 26 types of operation sequences, and the
length of each sequence is from 1 to 5. The dataset is divided into two types, one is facial
component manipulation and the other is facial attribute manipulation. The first type
includes a total of 35,166 operating face images, and the proportions of 1–5 operating
sequences of different lengths are: 20.48%, 20.06%, 18.62%, 20.88%, and 19.96%. The
division ratio of training set, verification set and test set is 8:1:1, that is, 28132 training
sets, 2813 verification sets and 2813 test sets. The second type includes a total of 49,920
operating face images, and the proportion of 1–5 operating sequences of different lengths
is 20%. The division ratio of training set, verification set and test set is 8:1:1, that is,
41600 training sets, 4160 verification sets and 4160 test sets. The data set is shown in
Fig. 7.

Fig. 7. Schematic diagram of data set division
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5.2 Experimental Environment and Training Strategy

For the transformer, this experiment uses 2 encoders plus 2 decoder layerswith 4 attention
heads. The initial learning rate is 1e − 3, and the CNN part sets the initial learning rate
to 1e − 4. Let λ = 4. For the training plan, the warm-up strategy used is 20 epochs,
the total number of epochs is 170, and the learning rate is decreased by 10% every 50
epochs. The basic parameter settings of true and false face sequence detection are shown
in Table 1.

Table 1. Basic parameter table

Paramerers Value

Batch size 32

lr_backbone 1e-4

Leraning rate 1e-3

Epoch 170

The hardware environment of this experiment uses Intel(R) Xeon(R) W-2265 CPU
@ 3.50GHz CPU, NVIDIA RTX A4000 GPU, and 16G video memory. The software
environment adopts the operating system Ubuntu 16.04, the programming language is
python 3.6, and the deep learning framework Pytorch 1.10.0.

5.3 Evaluation Indicators

For true and false face detection, there are two evaluation indicators for reference.
- Fixed Accuracy (Fixed- acc): Given the prediction fixed N length (N = 5), if the

length of the “no operation” class is less than N, it will be filled into the annotation
sequence, which can be maintained between the prediction and annotation sequence
Train with the same length [15]. The first type of evaluation is to compare each
action class in the predicted sequence with its corresponding annotation to calculate
the evaluation accuracy.

- Adaptive accuracy (Adaptive-acc): Since facial manipulations can be detected
through sequential information, such as the initial SOS mark and EOS mark, facial
manipulation sequences with an adaptive length can be detected by this method. The
second type of evaluation makes it possible to compare predicted operations with anno-
tations within a maximum number of steps of operations (N ≤ 5). This will make such
assessments more focused on operational accuracy.

5.4 Experimental Results and Analysis

After training, each training 10 epochs is used as a group, and the accuracy achieved
by the current model is tested according to the evaluation index, and the detection
accuracy change curve of facial attribute operation and facial component operation can
be obtained, as shown in Fig. 8.
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EPOCH

Fig. 8. Changes in detection accuracy of facial attribute operations and component operations

It can be seen fromFig. 8 that the detection accuracy of facial attribute operations and
facial component operations increases slowly with the increase of training times, and it
is close to saturation when the training reaches 170 epochs, and the evaluation accuracy
fluctuates back and forth within a certain range. Under the two detection benchmarks,
the detection accuracy of Fixed-Acc is higher than that of Adaptive-Acc, indicating that
the detection of Adaptive-Acc is more difficult.

This paper has made two improvements, one is to improve the rrelu activation func-
tion, and the other is to integrate multiple attention mechanisms. According to these two
improvements, training is performed to obtain an improved model. Taking the fusion
of multiple attention mechanisms as an example, the following briefly introduces the
detection effect of the modified model on fake face pictures. (see Fig. 9).

Fig. 9. Operation sequence detection effect based on facial attributes and Detection effect based
on facial component operation sequence

The left half of Fig. 9 shows three images, which are the original picture and two
pictures after the facial attributes have been tampered with. It can be seen that when we
only tamper with the expression of the original face to smile, using the first evaluation
indexFixedAccuracy, the fixed detection length is one, and the accuracy of face detection
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can be obtained as 68.88%; when we tamper with the youth, bangs, beard, and smile of
the face in turn, use the second evaluation index Adaptive-acc to make it compare the
predicted operation with the annotation within the maximum operation step (N≤ 4).The
accuracy of face detection can be obtained as 49.85%. The right half of Fig. 9 shows
three images with the face component tampered. Using the above evaluation metrics, the
accuracy of face detection can be obtained as 71.54%, 71.52% and 53.46%, respectively.

In order to objectively verify the effectiveness of the model, the modified model, the
original model and the more popular true and false face detection models are compared,
and the above evaluation indicators are used. The results are shown in Table 2.

Table 2. Seq-Deepfake detection accuracy

Methods facial attribute
Resnet-50

facial component
Resnet-50

Adaptive-acc Fixed-acc Adaptive-acc Fixed-acc

Original 48.54 68.07 47.89 67.73

Multi-Cls 46.00 66.66 50.57 69.65

DETR 47.99 67.62 59.84 69.75

Transformers + rrelu 49.75 68.88 50.79 69.61

CLSP-resnet-50 49.84 68.87 53.46 71.51

In the above two tables, the two evaluation indicators used are Fixed-Acc and
Adaptive-Acc respectively. The left half of Table 2 lists the detection accuracy of oper-
ation detection based on face attributes. It can be seen that the detection accuracy of the
improved model is better than that of the original model. Based on the improved acti-
vation function, Fixed-Acc increased by 0.8%, and Adaptive-acc increased by 1.21%.
Based on the fusion of multiple attention mechanisms, Fixed-Acc increased by 0.81%,
and Adaptive-acc increased by 1.3%. The right half of Table 2 lists the detection accu-
racy of operation detection based on face component. It can be seen that the improved
model detection performance is better than the original model detection accuracy, and
the improved accuracy is greater than that based on facial attribute operation detection
accuracy. Based on the improved activation function, Fixed-Acc increased by 1.88%,
and Adaptive-acc increased by 2.9%. Based on the fusion of multiple attention mech-
anisms, Fixed-Acc increased by 5.57%, and Adaptive-acc increased by 3.78%. Under
both detection benchmarks, the detection accuracy of Fixed-Acc is higher than that of
Adaptive-Acc, which verifies that detecting continuous face operations with adaptive
length is much more difficult than detecting simplified versions with fixed length.

In Table 2, it is also compared with the accuracy of Multi-Cls and DETR models
based on facial attribute operation and facial component operation respectively. It can
be seen that the detection accuracy of the improved model is better than other models
and shows better performance than other models.
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6 Conclusion

Basedon the existingDeepFake research [15], this paper proposes two improvedmethods
for detecting real and fake face operation sequences, aiming to achieve higher perfor-
mance. Based on the Seq-DeepFake dataset [15], the task of detecting real and fake faces
is changed from image processing to image-to-sequence tasks. This paper improves the
activation function of the original Seq-DeepFake model, and integrates multiple atten-
tion mechanisms into the Seq-DeepFake model, which greatly improves the detection
performance.When we have obtained the correct face sequence, we can try to restore the
manipulated and tampered face. We define the face restoration task as, given a sequen-
tially processed facial image, process the tampering process reversely according to the
sequence to obtain an image as close as possible to the original image. It is hoped that
the improved method proposed in this paper can provide reference for more deep fake
face detection tasks in the future.
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Abstract. Depression, as one of the prominent challenges in the field of world-
wide psychological health, affects the quality of life and psychological well-being
of hundreds ofmillions of people.Due to its high prevalence, recurrence and strong
association with other health problems, early diagnosis and treatment are crucial.
With advances in technology, audio and visual data are increasingly recognized
as biomarkers for the identification of depression. However, it should be noted
that many existing studies focus primarily on a single modality, often overlook-
ing the potential complementarity between different modalities. In this context,
this study proposes an advanced approach that integrates convolutional neural
networks (CNN) and bidirectional long short-term memory networks (BiLSTM)
with attention mechanisms, with the objective of extracting more profound fea-
tures fromspeech data. For facial expressions, a hybridmodel comprising temporal
convolutional networks (TCN) and long short-term memory networks (LSTM) is
utilized. Furthermore, to achieve a seamless integration of different modalities,
we design a cross-attention fusion strategy that allows speech and facial infor-
mation to be integrated into a unified framework. Our methodology’s efficacy is
confirmed by the experimental findings on the E-DAIC dataset, in which the mul-
timodal fusion strategy demonstrates higher precision and reliability in detecting
depression compared to a single modality.

Keywords: Multimodal fusion · Facial features · Speech signal

1 Introduction

Depression has evolved into a major global public health challenge [1]. An astounding
number of more than 280 million people worldwide suffer from depression, according
to data compiled by the World Health Organization (WHO) [2]. However, this figure
may be just the tip of the iceberg because many people still hesitate to openly discuss
their mental health issues [3]. What is even more concerning is that the outbreak of the
COVID-19 pandemic has further exacerbated the number of people with depression. As
a result, early identification of people with depression, timely treatment, and effective
disease management have become urgent priorities in today’s society.

In recent years, many researchers have conducted in-depth studies on the application
of speech recognition in the field of depression. Depressed individuals frequently exhibit
speech characteristics, including pauses, low intonation, and a sluggish speech rate, as
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demonstrated by these studies [4]. For instance, Rejaibia and colleagues suggested an
audio recognition method that uses convolutional neural networks to process Mel fre-
quency cepstral coefficients (MFCC) and pitch features. The research results showed that
MFCC works well for detecting depression [5]. Additionally, he and his team employed
an innovative approach by processing speech signals, extracting improved spectrogram
features, and utilizing the eGeMAPS (ExtendedGenevaminimalistic acoustic parameter
set) feature set. They achieved outstanding results through feature fusion in deep con-
volutional networks [6]. Furthermore, Huang and colleagues introduced a deep learning
method for depression classification using audio signals in the 2016AVEC (Audio/Visual
Emotion Challenge). This approach used MFCC features from audio signals and CNN
networks, LSTM networks, and fully connected layers for the prediction of depres-
sion [7]. These studies provide promising approaches for the early identification and
monitoring of depression.

Moreover, depression can be identified based on its visible characteristics. In an
early study, Girard et al. [8] examined the manual and reflexive facial expressions of
depressed clinical patients during semi-structured clinical interviews. The aim of this
research was to explore the facial expression characteristics of people with depression
to understand if there are noticeable differences in their emotional expressions. Patients
exhibiting severe symptoms of depression aremore likely to verbalize feelings of disdain
and smile less, according to the study. This suggests that they may have unique patterns
of emotional expression compared to normal individuals. Regarding facial behavior
modalities, Pampouchidou et al. [9] summarized a series of widely used and effective
facial feature extractionmethods.However, given the dynamic nature of facial expression
activity, the application of temporal facial dynamics information is considered more
effective than relying solely on static information. Gavrilescu et al. [10] used facial
action units (AU) to describe the features used for the recognition of depression, which
helps to gain a deeper understanding of the deep connection between depression and
facial emotion.

In fact, the fusion of multimodal data provides more valuable information for the
recognition of depression [11]. Currently, many researchers are dedicated to using mul-
timodal approaches to assess the condition of individuals with depression. Meng et al.
[12] used visual and audio data in their research. They utilizedmotion history histograms
to capture dynamic information from visual data and then fused it with audio features.
Using partial least squares regression, they effectively predicted the severity of depres-
sion using these multimodal characteristics. Alghowinem et al. [13] used head pose and
motion data, including parameters such as yaw, roll, and pitch, as well as static char-
acteristics to identify depression, offering a motion and posture-based analysis method
for depression. In 2019, Williamsons assessed the severity of depression by extracting
vocal pronunciation coordination from audio and video signals and training a predictive
model using coordination features. This approach combines auditory and visual cues,
helping to provide a more accurate understanding of the emotional state of individuals
with depression [14].

Previous research has had some success with single-modal approaches, but they have
problems like not having enough information and being easily affected by noise. This
makes emotion prediction systems that rely on single-modalities hard to make reliable
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and accurate, among other things. Additionally, some studies have focused on extract-
ing features from static images or single video frames, neglecting dynamic information.
Depression often manifests itself as changes in emotions and mood, and considering
temporal information and dynamic features may be more beneficial for accurate identi-
fication of depression. A unique multimodal emotion recognition model that integrates
information from the visual and auditory modalities is therefore proposed in this paper.
Various model architectures are compared to further enhance the extraction of mean-
ingful information. The objective of this paper is to achieve highly precise and robust
emotion recognition while ensuring excellent generalization performance.

2 Multimodal Depression Recognition Method

2.1 The Multimodal Depression Recognition Framework

The multimodal depression recognition framework is shown in Fig. 1. First, we pre-
process the simultaneously obtained facial behavior data and speech signals. Next, we
extract features from the preprocessed data and then obtain a multimodal feature set
through different multimodal fusion methods. Then, these multimodal features are fed
into a classifier to complete the classification processing of depression. Finally, the clas-
sification results are the output. Figure 1 clearly shows the entire depression recognition
process.

Fig. 1. To deeply extract emotional information, we use a combination of CNN andBiLSTMwith
attention mechanisms to train audio features. Additionally, we construct a combination model of
TCN + LSTM that is specifically designed to further extract visual features. Finally, by applying
the cross-attention fusion strategy, the outputs of bothmodalities are organically integrated together
to achieve accurate recognition of depression.
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2.2 Depression Recognition from Audio

Mel FrequencyCepstralCoefficients Features. Lower-orderMFCCs aremore signif-
icant for tasks involving emotion prediction and paralinguistic voice analysis, according
to studies [15, 16]. In this study, the Librosa library was used to extract MFCC features
from speech signals. First, the speech signals were segmented into small time windows,
and the Fourier transform was applied to each window to obtain spectral information.
Then, by mapping the spectral information into the Mel frequency space, a series of
MFCC coefficients were obtained, which reflect the energy distribution of speech sig-
nals at different frequencies [17]. To obtain a representation of the entire audio sample,
we performed mean pooling on all MFCC coefficients of the windows.

BiLSTM Model with Attention Mechanism. The sequence of speech characteristics
is represented as, where T denotes the quantity of frames in the speech and represents
the feature vectors at time t. Each neuron in the LSTM layer receives the input feature
at time t and the output of all neurons from the previous time step t-1. The following
describes the update to the internal concealed state in LSTM:

ht = fθ (ht−1, St) (1)

The hidden state at time step t is represented by ht, and the LSTM function with
weight parameters θ is denoted by fθ. In this work, each directional LSTM uses 64
neurons, resulting in a dimension of 128 for the global feature sequence. By stacking
the outputs of these two directional LSTMs, we obtain the final representation of the
characteristic H.

To optimize model performance, the core of the attention mechanism lies in com-
puting a series of weight parameters. After capturing the relative significance of each
element in the sequence, these parameters are utilized to conduct a weighted aggregation
of the elements [18]. These weight parameters are also referred to as attention allocation
coefficients, and their role is to determine which elements should receive more attention
and weight in the computation

scores[i]
[
j
] = softmax

(
Wij ∗ H + bj

)
(2)

where is the weight matrix, represents an element in the input tensor, and is a bias vector.
The final step involves multiplying the original input tensor by the attention score tensor
to obtain a weighted sum output tensor:

M =
∑n

i=1

∑m

j=1
scores[i]

[
j
] ∗ H (3)

After this, a flattening layer is added, and a dropout technique is applied to randomly
set a portion of the neural network’s weights to 0. The dropout rate in this instance is set
at 0.3. The layers that are fully connected are then linked. Finally, the softmax function
can be used to obtain the final prediction results and the probability distribution for each
class.

CNNFramework. Aconvolutional layer performs convolution on the extractedMFCC
matrix using a size filter. The values of k are 3, 4, and 5, respectively. The convolution
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layer has the same number of convolution kernels: 128. The width of the convolution
kernel is the same as the dimension of the audio feature vector d. The convolution kernel
ω ∈ Rh∗d . For each convolution calculation ci = ReLU (ω · vi:i+h−1)+b, where ReLU
is a nonlinear activation function and b ∈ R is a bias term, ci represents the local audio
feature obtained through the convolution operation. The length of the S sequence is n,
and the stride is set to 1, so the window slides n-h + 1 times. The convolution summary
result is C1 = [c1, c2, . . . , cn−h+1]. During the convolution calculation process, set the
padding to “same” to ensure that the input and output dimensions are consistent. The
output of different channel CNN structures is fused through the concatenate function
C = concatenate([C1,C2,C3], axis = −1). At the same time, add a constraint to add
the index L2 normwith a coefficient of 0.05, which can appropriately improve overfitting
during network training. Finally, fuse spatial features and context features by splicing
layers to obtain the fused feature vector Scat = C,M for classification.

2.3 Depression Recognition from Visual

This section provides a novel method for detecting depression from visual data using
a TCN and LSTM model hybrid. Unlike previous studies, this research adopts the col-
laborative work of TCN and LSTM to better handle various dependencies in time series
data.

The original data is linearly converted using min-max normalization to map it into
the range [0,1]. Equation (4) illustrates the transformation function.

x∗ = x − min

max − min
(4)

where max represents the data’s highest value while min represents its lowest. Which
then serves as the input for the model.

LSTM Framework. LSTM networks provide good handling of sequential problems
by employing three gate architectures to mitigate challenges related to long-term
dependencies and gradient vanishing in neural networks. The three gate structures are
schematically represented in Fig. 2 below:

1

h 1

h 1

1

o

h h

hh

Fig. 2. The architecture of LSTMmodel is characterized by the unit inputs at different time steps,
denoted as Xt−1, X , and Xt+1 for time t − 1, t, and t + 1 correspondingly. The unit outputs ht−1,
h and ht+1 are associated with each other. The hidden unit memory at time t-1, t, and t+1are
denoted as ct−1, c and ct+1 respectively.
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Subsequently, the input data is also processed by LSTM with a neuron number of
256 and the hidden state of each time step in the output sequence is obtained. TCN
processes the LSTM output in more detail. The block diagram in Fig. 1 clearly shows
the structure of LSTM + TCN.

TCN Framework. TCN [19], a deep learning model for processing time series data,
excels at capturing contextual information and achieves good performance in multiple
tasks, including action segmentation [20], action localization [21], and emotion recogni-
tion [22]. Facial expression changes in visual features belong to time series model trans-
lation, where X = (x1, x2, · · · , xt) denotes the input sequence and Y = (y1, y2, · · · , yt)
denotes the output sequence. There exists a mapping relationship f between them. To
ensure that the TCN model depends only on past data at each time step and is not dis-
turbed by future data, it adopts a causal convolution method. The causal convolution
formula for the input sequence X is as follows:

(F ∗ X )(xt) =
∑K

k=1
fkXt−K+k (5)

The filter is denoted by F = (f1, f2, · · · , fk), while the input sequence is denoted
by X = (x1, x2, · · · , xt). Causal convolution is a critical convolution operation in TCN,
with the goal of enabling convolution operations to use only the data from the past at
each time step. This is achieved by zero-padding on the left side of the input sequence to
maintain the length of the input sequence unchanged. This padding strategy ensures that
the convolution kernel considers only the current time step and the previous data when
performing sliding calculations, without exceeding the current time step. This design
enables TCN to model long-term dependencies in time series data and contributes to
improving accuracy. In addition, TCN uses Dilated Convolution to further expand the
network’s receptive field without using pooling operations. Spiking convolutional neural
networks use a dilation rate to enable the convolution kernel to perform convolution on
the input sequence in a hopping manner, effectively expanding the receptive field. For
a one-dimensional input sequence X and a one-dimensional convolutional kernel, the
dilation convolution operation F is defined as:

F(xt) = (F∗dX )(xt) =
∑K

k=1
fkXt−d(K−k) (6)

where k represents the size of the convolutional kernel and d is the expansion factor
used to control the number of holes injected into the dilated convolution. The expansion
factors chosen in this paper are [1, 2, 4, 8, 16, 32, 64, 128], which are powers of 2
added upward. This helps TCNmodels capture a wider range of contextual information,
particularly for modeling long-term dependencies. In this study, the TCN network’s
convolutional layer’s number of filters is set to 64, and the convolutional kernel’s size is
set to 3.

Finally, the fully connected layer is replaced with a global plane pooling layer that
uses less parameters, in order to further process features and output, extra convolution
and global average pooling operations are carried out after stacking numerous residual
blocks.



Multimodal Depression Recognition Using Audio and Visual 227

2.4 Different Fusion Methods

In multimodal training research, this study investigates the impact of several multi-
modal fusion techniques on the efficacy of depression recognition. The topic is examined
through a sequence of experimental analyses. For the fusion strategy, three methods are
explored, as follows:

Concatenation Fusion. By concatenating the facial behavior feature set with the voice
feature set, a fused feature set is formed.

Xfuse =
[
F1
cat,F

2
cat, · · · , S1cat, S

2
cat, · · ·

]
(7)

Addition Fusion. This method element-wise adds two input elements to generate a
new output.

XAdd = [Fcat, Scat] (8)

Cross-Attention Mechanism Fusion. For each data source, the original attention
weights EεRM×N are calculated based on their abstract representations. Matrix E rep-
resents the operation of the dot product between the feature sets. Through SoftMax

operation, normalized attention weights αij = eEij∑N
k=1 e

Eik
are obtained. Using the normal-

ized weights, the voice features are weighted and finally, the weighted voice features
and facial features are concatenated.

3 Dataset

The E-DAIC used in this article is an extended DAIC-WOZ dataset, which includes 275
participants who recorded conversations with a virtual interviewer named Ellie. Among
these participants, 81 were diagnosed with depression, and 194 were not. The audio
data were recorded at a sampling rate of 16 kHz, and the duration of each audio clip
ranged from 7 to 33 min. Due to privacy concerns, the original video data is not publicly
available, but the extracted data from the interview videos was provided through Open-
Face. Furthermore, the dataset includes labels labeled by doctors based on participants’
PHQ-8 scores, where 0 indicates non-depression and 1 indicates depression, which can
be used for depression classification tasks.

3.1 Visual Features

Visual cues are derived primarily from the extraction of facial key points or raw video
data, capturing subtle changes in facial expressions that are then used to estimate the
presence of depression.These facial features correspond to each time slot in the interview,
recorded at each timestamp, with an interval of 0.3334 s between each timestamp. To
better prepare the data for classification analysis, we first focused on the “success” flag
in the data preprocessing stage, where 0 represents failure to capture and 1 represents
successful capture.

Furthermore, to better handle data and improve interpretability, this paper splits the
data into multiple parts, each containing 900 rows of data, which is equivalent to cutting
every 30 s based on the calculation of time frames.
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3.2 Audio Features

Given the inherent raw qualities of the acquired data, it is imperative to prioritize mea-
sures that guarantee the correctness and validity of the data. So, this paper removes the
interviewer’s voice from the audio data.

When processing audio data, this paper tried using a noise reduction library to reduce
noise, but unfortunately, it resulted in more silent sections. Therefore, this article manu-
ally cuts audio files using Audacity audio editing software to ensure more accurate audio
feature extraction results. To ensure that each dialogue segment contains sufficient voice
information, dialogue segments with a duration less than 1 s and long periods of silence
are excluded. Finally, to better extract features, each valid audio file is split into audio
fragments with a duration of 30 s without overlap.

4 Experiment and Results

4.1 Results of Depression Detection Using Audio Features

This paper utilizes various models to assess the efficacy of Audio unimodality in the
context of depression recognition. The impact of speech modality on this recognition
process is examined and presented in Table 1.

Table 1. The results of different models in Audio

Audio

Models Precision Recall F1

LSTM 0.738 0.7261 0.732

BiLSTM 0.7581 0.7447 0.7513

Atten
BiLSTM

0.7547 0.7633 0.759

CBLAN 0.7685 0.7878 0.778

Table 1 demonstrates that the “CBLAN” (CNN+BiLSTM-Attention) model, which
combines CNN and BiLSTM-Attention, exhibits superior classification performance
when compared to the other three models. It obtains a precision of 76.85% and an F1
score of 77.8%, which is 1.9% higher than the model without CNN.

This indicates that the “CBLAN” model has excellent capabilities in understanding
and extracting key features from the input data, as well as in capturing correlations
between them. The attentionmechanism behind it allows themodel to dynamically focus
on important information parts, which helps to better distinguish different categories.

4.2 Results of Depression Recognition Using Visual Features

To evaluate the effectiveness of facial expression behavior in the recognition of depres-
sion, this paper proposes a new model structure that combines the architecture of
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TCN and LSTM. The study additionally conducts a comparison of various models,
as displayed in Table 2.

Table 2. The results of different models in Visual

Visual

Models Precision Recall F1

LSTM 0.724 0.7818 0.7518

CNN 0.5781 0.5511 0.5643

TCN 0.648 0.8 0.716

LSTM +
TCN

0.814 0.8279 0.8209

In Table 2, TCN have demonstrated significant advantages over LSTM in terms of
training time, convergence speed, and performance evaluation. And it is evident that the
model LSTM + TCN performs exceptionally well in the classification task, achieving
a precision of 81.4% and an F1 score of 82.09%, which is 6.91% higher than the model
without LSTM. This finding implies that the LSTM + TCN model has outstanding
capabilities for processing data and capturing temporal information.

4.3 Effectiveness of Different Fusion Methods

After obtaining the best unimodal depression recognition models for speech and facial
expressions, this article adopts several different fusion strategies to evaluate differences
in depression recognition performance under different fusion strategies.

Table 3. The results of different fusion methods in Audio & Visual

Audio &Visual

Fusion method Precision Recall F1

Concatenation 0.7915 0.8457 0.8214

Add 0.7891 0.864 0.8249

Cross-Attention 0.8152 0.8479 0.8312

Multimodal fusion performs better than unimodal approaches in depression recogni-
tion tests, according to Tables 1, 2, and 3 results. In particular, using the cross-attention
mechanism in multimodal fusion achieves the best performance with an F1 score of
83.12%.

This finding highlights the importance ofmultimodal information because it can inte-
grate information from different data sources to provide a more comprehensive context,
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helping to improve the accuracy of depression recognition. The cross-attention mech-
anism may help models better understand and utilize the correlation between different
modalities, further improving recognition performance.

5 Conclusions

Recognizing depression is of significant practical importance in helping clinical doctors
in diagnosis and patients in self-diagnosis. This study conducted an in-depth exploration
of the two main unimodalities, speech and facial expressions, based on the E-DAIC
dataset and constructed various network models to recognize depression. After careful
comparison, the “CBLAN” model based on speech and the LSTM + TCN model based
on facial expressions showed promising performance. Furthermore, this paper adopted
a cross-attention mechanism to organically integrate these two modalities, constructing
an efficient multimodal recognition model.

It should be noted that recognizing depression facesmany challenges. Restrictions on
patient privacy, limited and difficult-to-obtain public datasets, and sample imbalances
may bias experimental results. This encourages further in-depth strategies, like data
augmentation, to be explored in the future and pre-processing strategies for data sets
to further improve model accuracy. Furthermore, combining more modality informa-
tion, such as text information, can comprehensively enhance the accuracy of depression
recognition.
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Abstract. Deep neural networks (DNNs) have achieved remarkable success in
various domains, yet their lack of interpretability remains a critical limitation.
To address this challenge, functional networks have emerged as an interpretable
framework for understanding the internal workings ofDNNs. Functional networks
examine the statistical dependencies between activation values of neurons, thereby
unraveling the functional organization of DNNs. In this work, we propose the
classified functional network, which enables the analysis of the functional orga-
nization within DNN models specific to different classes of data. By introducing
the distance metric between classified functional networks, we present the seman-
tic map and hierarchical clustering as tools to delve into the functional semantic
relationships within DNNs. Our results demonstrate that models exhibit simi-
lar functional organizations for classes with similar semantics. These observed
semantic relationships arise from the similarity between functional connectiv-
ities, as opposed to the similarity between activation values. Furthermore, our
experiments demonstrate the existence of hierarchical functional semantic rela-
tionships within DNNs. These insights into the functional organization of DNNs
not only deepen our understanding of models but also provide potential avenues
for enhancing their interpretability.

Keywords: Deep Neural Network · Functional Network · Semantic Map

1 Introduction

Deep neural networks (DNNs) have emerged as powerful models for solving complex
problems in various domains, such as computer vision [5, 14] and natural language
processing [13]. DNNs have achieved remarkable advancements, yet they suffer from
a critical limitation, the lack of interpretability. The inability to understand and explain
the internal workings of DNNs hampers their broader adoption [16].

To address this challenge, researchers have directed their attention towards exploring
the interpretability of DNNs [9, 12, 15]. Among the various approaches proposed to
uncover the inner workings of these models, functional networks have emerged as a
promising framework for enhancing interpretability [15]. Functional networks examine
the statistical dependencies between activation values of neurons. By breaking down
the layered structure of DNNs, functional networks pave the way for graph-theoretic
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analysis and topological data analysis in understanding and interpreting DNNs behavior
[2, 15, 17].

Building upon these advances, this study introduces the concept of classified func-
tional networks of DNNs to explore the functional organizations of models for specific
classes of data. To achieve this, we divide the dataset into sub-datasets labeled with
distinct classes and construct classified functional networks accordingly. We define the
classified functional distance metric to quantify the similarity between classified func-
tional networks. Furthermore, we investigate the impact of different datasets on the
functional patterns observed in DNNs.

By comparing the similarity of classified functional networks, we create a semantic
map of classes to capture the semantic relationships within DNNs. The results show that
models exhibit similar functional organization for classes with similar semantics.

Notably, our experiment demonstrates that the semantic relationships observed pri-
marily result from the similarity between functional connectivities rather than the acti-
vation values alone. Finally, we reveal the functional semantic hierarchy within DNNs
by introducing average functional distances between sup-classes.

By exploring the classified functional networks of DNNs, this work enhances our
understanding of the working mechanisms and internal functional structures of DNNs.

The rest of the paper is organized as follows. Section 2 provides the construction of
classified functional networks and the definition of functional distances between them.
In Sect. 3, we present our experiments for exploring functional semantic relationships
at the class level and sup-class level, and we investigate whether the semantic relation-
ships observed in classified functional networks extend to activation patterns. Section 4
presents our conclusions and future work.

1.1 Related Work

The exploration of functional networks has garnered significant attention in recent
research. Researchers have used these functional networks to illuminate the internal
functional structures of DNNs, drawing inspiration from brain functional networks [15].
The exploration of functional networks has yielded valuable insights, such as the small-
world properties exhibited in functionality of DNNs [15]. Graph theory and persistent
homology have been employed to explain the rationale behind regularization methods
[15].Moreover, some studies havemodeled functional networks as simplicial complexes
and investigated the relationship between topological structures and generalization [1,
2]. Functional networks have also aided in the detection of Trojan neural networks [17]
and the analysis of category relationships within models using community and centrality
analysis [6]. These investigations exemplify the potential and achievements of functional
networks in elucidating the inner workings of DNNs.

In the context of measuring the dissimilarity between functional networks, the field
of neuroscience has put various metrics [11]. These metrics include the Hamming dis-
tance [3], graph edit distance [4], SimiNet algorithm [10], DeltaCon algorithm [7], and
more. Inspired by the representational similarity analysis [9], we employ the cosine
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distance between the functional connectivities. The cosine distance measures the dis-
similarity of the overall importance of functional connectivities in the different classi-
fied functional networks. By quantifying the dissimilarity, we can effectively assess the
functional semantic relationships within DNNs.

2 Construction of Classified Functional Networks

In this section, we will present the construction of classified functional networks
for the DNN M and the definition of functional distances between them. Consider
a dataset S = {(xi, yi)}, where xi represents a sample and yi represents its label.
Let Sl denote the subset of S that consists of samples with the label l, defined as
Sl = {(xi, yi)|(xi, yi) ∈ S, yi = l }.

Fig. 1. Flowchart for the construction of classified functional networks.

As depicted in Fig. 1, within the context of the DNN M and the dataset Sl , the
pairwise feature similarities between the neurons are computed to generate the classified
functional network Gl(V ,E,Wl) of DNN for the l th class.

Moreover, the functional distance dl.k can be obtained by comparing two classi-
fied functional networks, Gl(V ,E,Wl) and Gk(V ,E,Wk). This distance quantifies the
differences in functionality when the same modelM processes data with labels l and k.

For certain datasets, such as CIFAR-100, semantic hierarchies exist. CIFAR-100
consists of 20 super-classes and 100 classes, with each super-class containing 5 classes.
One example is the super-class “people”, which includes classes like “baby”, “boy”,
“girl”, “man”, and “woman”. To evaluate the semantic relationship between two super-
classes, the average functional distance across all classified functional networks within
the two super-classes is defined.

Extracting Classified Activation Patterns. All samples in the sub-dataset Sl are fed
into the model M consisting of m neurons. The model M generates an activation pattern
vector (ali,1, a

l
i,2, . . . , a

l
i,m) for each sample (xi, yi) ∈ Sl , where ali,j represents the activa-

tion value of the j th neuron. For the convolutional layer, we consider the convolutional
kernels as neurons and take the averages of the corresponding feature maps as their
activation values. By considering all nl samples, we create a classified activation pattern
matrix Al = (ali,j) with dimensions 1 ≤ i ≤ nl and 1 ≤ j ≤ m. The matrix captures
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the extracted features of the model from the sub-dataset and records the information
processing.

Calculating Functional Connectivity. Common measures of statistical dependencies
between two variables include the Pearson correlation coefficient [1, 2, 15] and the Spear-
man correlation coefficient [6]. The former only captures the linear relationship between
two variables, while the latter measures the degree of any monotonic relationship, either
linear or non-linear. In this work, we utilize the Spearman correlation coefficient to
measure the functional connectivity between neurons.

Given pairwise data denoted as P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn}, we
rank the data individually in ascending order, and the Spearman correlation coefficient
is computed using the formula:

Spearman(P,Q) = 1 − 6
∑

d2
i

(n3 − n)
(1)

where di represents the difference between the ranks of qi and pi.
To evaluate the functional connectivity between neurons, we focus on the activation

patterns within the classified activation pattern matrix Al . Each column of Al denoted as
Al
j = (al1,j, a

l
2,j, . . . a

l
nl ,j

) represents the activation values of the j th neuron for all samples
with label l. By calculating the absolute value of the Spearman correlation coefficient
between Al

i and A
l
j , we quantify the strength of functional connectivity between neurons

vi and vj, denoted as f li,j:

f li,j =
∣
∣
∣Spearman(Al

i,A
l
j)

∣
∣
∣. (2)

The resulting strength value ranges from 0 to 1 and indicates the level of functional
correlation between the two neurons.

Based on the calculated functional connectivity strengths, we construct the classified
functional connectivity matrix Fl = (f li,j)1≤i,j≤m. This matrix represents the functional

networkGl(V ,E,Wl), which takes the form of an undirected weighted graph. The node
vi ∈ V corresponds to the i th neuron in the model M , and the functional interaction
betweennodes vi and vj is representedby the edge ei,j ∈ E. The strength of this interaction
is determined by f li,j, serving as the weight w

l
i,j ∈ Wl of the edge ei,j.

The graph Gl(V ,E,Wl) reveals functional connectivities between pairs of neurons
within the DNN when processing the samples labeled as l. Thus, we can measure the
difference in functionality of the DNN when processing different classes of data by the
difference between classified functional networks.

Definition of Functional Distances. Given the model M and two distinct sub-datasets
Sk and Sl , we construct separate classified functional networks Gk(V ,E,Wk) and
Gl(V ,E,Wl). While these networks share the same nodes and edges, their weights
differ, indicating different functional connectivity strengths between neurons. This dis-
parity in connectivity strength reflects the functional dissimilarity in the model’s ability
to recognize objects from the k th and l th classes.
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Therefore, we define the functional distance between networks as follows:

Definition 1. (ClassifiedFunctionalDistance) The distance betweenGk (V ,E,Wk) and
Gl(V ,E,Wl) is determined by the cosine distance between their functional connectivity
strengths:

dk,l = 1 −
∑

1≤i<j≤m (Wk
ij · Wl

ij)
√∑

1≤i<j≤m Wk
ij
2
√∑

1≤i<j≤m W l
ij
2
. (3)

The range of the classified functional distance is between 0 and 2. The cosine distance
focuses on the angle between functional connectivity strength vectors and does not take
into regard their magnitude. A small classified functional distance indicates that most
of the functional connectivities have similar importance in their respective classified
functional networks. As a result, the two classified functional networks, Gk and Gl ,
have small functional differences.

Calculation of Average Functional Distances Between Super-Classes. The classi-
fied functional distance measures functional differences of the model recognizing dif-
ferent object classes. For the datasets with semantic hierarchies, we define the average
functional distance to analyze the relationships between super-classes in the model.

Definition 2. (Average Functional Distance) The average functional distance d i,j

between two super-classes I i and I j is defined as the average of the functional distances
between all pairs of classes k ∈ I i and l ∈ I j:

d i,j = 1
∣
∣I i

∣
∣ × ∣

∣I j
∣
∣

∑

k∈I i,l∈I j
dk,l, (4)

where
∣
∣I i

∣
∣ represents the number of classes in the super-class I i.

By calculating the average functional distance, we can quantify the functional sim-
ilarity between two super-classes based on the functional distances among their con-
stituent classes. A lower average functional distance indicates a higher level of functional
similarity between two super-classes, suggesting stronger semantic relationships.

3 Experiments and Discussion

In this section, we present a series of experiments aiming at exploring the functionality
and semantic relationships within models by analyzing classified functional distances.

The first experiment involves calculating the classified functional distances of DNNs
trained on the CIFAR-10 dataset. By examining these distances, we can identify the
similarity relationships and discern any semantic clusters that emerge.

In the second experiment, our objective is to investigate the factors contributing to the
semantic relationships. We aim to determine whether the observed relationships arise
from similarities in activation values or if they reflect genuine functional similarities
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within the model. By dissecting the underlying mechanisms, we can better comprehend
the reasons behind the observed semantic relationships.

Additionally, we extend our investigation to explore the semantic relationships
between super-classes in the model trained on the CIFAR-100 dataset. This analysis
provides insights into the higher-level structure of the model and reveal the functional
relationships between groups of classes within the dataset’s hierarchical structure.

Through these experiments, we strive to gain a comprehensive understanding of the
functionality and semantic relationshipswithinDNNs. This analysis not only contributes
to our understanding of the models but also have implications for various applications,
such as improving network design, and domain-specific knowledge transfer.

3.1 Datasets and Models

In this subsection, we present the experimental setup for our study, focusing on the
datasets utilized and the model architecture employed. We conduct our experiments
using the CIFAR-10 and CIFAR-100 datasets, which are widely recognized benchmarks
for image classification tasks.

The CIFAR-10 dataset comprises 60,000 32 × 32 RGB images categorized into ten
classes, with 6,000 images per class. This dataset encompasses a diverse range of object
categories, including airplanes, cars, birds, cats, and more. The CIFAR-100 dataset is an
extension of CIFAR-10, consisting of 100 classes with 600 images per class. It provides
a more challenging scenario, as the classes represent finer-grained categories, such as
specific bird species or vehicle types.

To effectively capture the intricate features and patterns within these datasets, we
leverage theWide Residual Network (WRN-28-10) model [14]. TheWRN-28-10 archi-
tecture is well-known for its capacity for handling complex image classification tasks.
It has demonstrated superior performance in various image classification competitions
and exhibits excellent generalization capabilities.

To train the WRN-28-10 models, we follow a training schedule of 200 epochs. The
learning rate is initialized to 0.1 and decayed by a factor of 0.2 every 60 epochs, allowing
for gradual fine-tuning. We employ the SGD optimizer with label smoothing.

By utilizing these benchmark datasets and the WRN-28-10 model, we aim to
investigate the functionality and semantic relationships within DNNs.

3.2 Functional Semantics Between Classified Functional Networks

The CIFAR-10 dataset consists of images categorized into 10 distinct classes, including
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. We train a WRN-
28-10 model on the CIFAR-10 dataset, constructing its classified functional networks
and calculating the corresponding classified functional distances. Using the classified
functional distance matrix, denoted as D, we perform a comprehensive analysis to gain
insights into the semantic relationships among classified functional networks.

Firstly, we create a k-nearest neighbor graph, representing the functional relation-
ships between networks visually, as illustrated in Fig. 2(a). In this semantic map, indi-
vidual networks are represented as nodes, while edges indicate high level of similarities
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between networks. The semantic map serves as a “network of networks”, effectively
illustrating the semantic relationships between classified functional networks.

Fig. 2. (a) The semantic map is created using the classified functional distance matrix D. It is
based on the functional distances for the WRN-28-10 model trained on the CIFAR-10 dataset.
(b) The hierarchical clustering dendrogram illustrates the classification of classified functional
networks.

On the left side of the k-nearest neighbor graph (see Fig. 2(a)), a distinct cluster of
transportation-related classes (ships, airplanes, trucks, and cars) can be observed, while
on the right side, a cluster representing animal-related classes (deer, birds, horses, frogs,
dogs, and cats) is evident. Interestingly, an edge connects the nodes representing airplanes
and birds. Despite belonging to different semantic categories, birds and airplanes display
a high degree of semantic similarity in their functional patterns, indicating a potentially
strong relationship between the two. The outcomes suggest that the WRN-28-10 model
exhibits distinct functional patterns for different classes of data while producing similar
functional patterns for semantically similar data.

Hierarchical clustering is instrumental in identifying meaningful semantic informa-
tion contained within the unsupervised clustering results. Further analysis is conducted
using hierarchical clustering on the classified functional networks based on the distance
matrix D (see Fig. 2(b)). Notably, the 10 classified functional networks are divided
into two categories: transportation (ships, airplanes, trucks, and cars) and animals (deer,
birds, horses, frogs, dogs, and cats). The dendrogram further supports our findings, as
it demonstrates a clear cluster structure. These clustering results provide evidence of
semantic relationships within the classified functional distance matrix D.

These results highlight that even with training using solely labeled data, without
explicit semantic relationships provided between classes, DNNs can learn and capture
unsupervised semantic relationships resembling that of the human [10]. These findings
contribute to our understanding of the functional semantics in image datasets and the
capabilities of DNNs in capturing such semantics.

Semantic Relationships in Activation Patterns. Understanding the relationship
between functional connectivity and activation patterns in deep neural networks is crucial
for unraveling the mechanisms underlying semantic representations. We aim to investi-
gatewhether the semantic relationships observed in classified functional networks extend
to activation patterns. Specifically, we explore whether classes with similar semantic
relations exhibit similar activation values.
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By delving into the relationship between functional similarity and activation simi-
larity, we can gain a deeper understanding of the semantic representations they learn.
This investigation will showcase whether functional connectivities or activation patterns
play a more influential role in capturing semantic relationships.

To analyze the activation patterns, we calculate the activation pattern matrix Al for
the WRN-28-10 model and the l th class. Each column of Al represents the activation
value of a neuron for all samples belonging to class l. From this matrix, we compute the
average activation values across columns, resulting in the average classified activation
pattern al = (al1, a

l
2, . . . , a

l
m) for the l th class. This average activation pattern serves as

a representation of the features learned by the model for that class.

Fig. 3. (a) The semantic map is built using the distances between the average classified activation
patterns. It is based on the cosine distances between the average activation patterns of the WRN-
28-10model trained on the CIFAR-10 dataset. (b) The hierarchical clustering dendrogram presents
the classification of the average classified activation patterns.

Next, we construct a k-nearest neighbor graph (see Fig. 3(a)). The semantic map
based on the average activation patterns does not exhibit a clear semantic structure akin
to that observed in the classified functional networks. The 10 classes are divided into two
separate groups,with one group clustering ships, airplanes, dogs, and deer together,while
the remaining six classes form another category. Notably, there is no direct connectivity
observed between birds and airplanes, or between any transportation. This suggests that
the activation values alone may not sufficiently capture the semantic structure present
in the dataset.

Furthermore, we perform hierarchical clustering on the classified average activation
patterns and the dendrogram is depicted in Fig. 3(b). We find that some classes are clus-
tered together despite not having strong semantic relationships. For example, airplanes
and dogs are grouped. This highlights the limited extent to which semantic relationships
are captured by the average activation patterns.

These findings collectively indicate that, the hierarchical clustering results and
semanticmap based on average activation patternsmay not inherently capture the seman-
tic relationships observed in the classified functional networks. Therefore, the functional
connectivity plays a more crucial role in capturing the semantic relationships.

In conclusion, investigating the averaged classified activation patterns in relation to
semantic relationships contributes to our understanding of the interplay between func-
tional connectivities and activation patterns within DNNs. The experiment reveals the
complexities of semantic representations and emphasizes the importance of considering
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both functional connectivities and activation patterns when analyzing the underlying
mechanisms of deep neural networks.

3.3 Functional Semantics Between Sup-Classes

In this experiment, we extend our analysis to the CIFAR-100 dataset, which introduces
a more complex semantic hierarchy compared to CIFAR-10. The CIFAR-100 dataset
consists of 20 super-classes and 100 classes, providing a rich domain to explore semantic
relationships both at the super-class level and the class level. This analysis aimed to
uncover the semantic relationships between super-classes and explore the hierarchical
structure within the CIFAR-100 dataset.

Fig. 4. The hierarchical clustering dendrogram is based on the average functional distances
between sup-classes for the WRN-28-10 trained on the CIFAR-100 dataset.

We train theWRN-28-10model on theCIFAR-100 dataset and construct its classified
functional networks. The classified functional distance matrix D is then computed to
represent the functional similarities among the networks. Furthermore, to reveal the
semantic relationships at the sup-class level, we compute the average functional distance
matrix D between super-classes and perform hierarchical clustering based on it.

Figure 4 showcases the hierarchical clustering of super-classes based on the aver-
age functional distances, revealing clear semantic relationships within the dataset. The
super-classes are divided into two distinctive categories: animals and other super-classes.
Within the category of animals, fish and aquatic mammals are clustered together, indi-
cating their shared semantic characteristics related to the water habitat. Similarly, rep-
tiles, non-insect invertebrates, and insects form another cluster, emphasizing their com-
mon biological characteristics. Additionally, small mammals, medium mammals, large
omnivores and herbivores, and large carnivores are grouped.
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In the category of other super-classes, fruits and vegetables are clusteredwith flowers,
indicating their association with plants and nature. All outdoor scenes are grouped with
trees, suggesting their contextual similarities. Moreover, two types of vehicles, people,
household furniture, household electrical devices, and food containers are clustered,
showcasing their functional and contextual affinity.

Fig. 5. The semantic map is constructed based on the average classified functional distances of
the WRN-28-10 model trained on the CIFAR-100 dataset.

These findings demonstrate that the classified functional distance can effectively
capture semantic relationships not only between different classes but also between vari-
ous super-classes. The results highlight the expressive power of models in learning and
representing category information, forming complex functional structures that alignwith
the semantic hierarchy present in the CIFAR-100 dataset.

Additionally, we create a k-nearest neighbor graph using the classified functional
distance matrix D. Figure 5 displays the visual representation of the k-nearest neighbor
graph at the class level, with classes belonging to the same super-class labeled with the
same color, aiding in the interpretation of the results. This graph reveals the semantic
relationships among individual classes. By analyzing the connectivity and clustering
patterns in the graph, we can observe how semantically related classes are grouped
together, further validating the functional semantics captured by the model.

In conclusion, our functional semantic analysis on the CIFAR-100 dataset reveal
meaningful semantic relationships both at the super-class level and the class level. The
hierarchical clustering and semanticmaps demonstrate clear cluster structures, indicating
the ability of the DNN to capture semantic information and form complex functional
patterns. This analysis contributes to a deeper understanding of the functional semantics
within the CIFAR-100 dataset, highlighting the hierarchical and interconnected nature
of the semantic relationships learned by the DNN.
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3.4 Discussion

The classified functional networks explore the internal functional organization of DNNs
and reveal the semantic relationships between them.We found that semantic relationships
within classified functional networks are not solely determined by the similarity of
activation values, but rather by the similarity between functional connectivities. This
suggests that the functional organization of DNNs plays a crucial role in capturing
semantic information.

Furthermore, our analysis demonstrates that DNNs possess the ability to generate
unsupervised semantic relations between classes and super-classes. This indicates that
these models can discover meaningful patterns and similarities within the data, beyond
what is explicitly specified during training. Such unsupervised semantic relationships
provide a unique perspective on the learning capabilities of DNNs and offer the potential
for various downstream applications, including data clustering and generation.

Additionally, our study contributes to the existing literature by comparing our app-
roach to the work of Horta et al. [6]. In their exploration of semantic relationships using
a co-activation graph, they constructed the graph on the entire dataset and performed
community analysis. However, our approach differs in several key aspects. We construct
classified functional networks for each class and analyze the semantic relationships
based on the functional distances. Importantly, our findings show that the semantic rela-
tionships arise from the differences in functional patterns when the model processes
different datasets, rather than depending solely on the output neurons.

While our study provides valuable insights into the functional semantics of DNNs,
it is important to acknowledge its limitations. Our analysis is focused on the CIFAR
datasets, and further investigations on other datasets and models are necessary to vali-
date and generalize our findings. Additionally, while functional networks provide inter-
pretability [8], they may not fully capture the complex dynamics and representations
within networks. Future research can explore more comprehensive frameworks for
modeling deep neural networks to further capture functional semantics.

In conclusion, the study of functional semantics in deep neural networks provides
valuable insights into the internal organization and semantic relationships of models.

4 Conclusions

In this work, we have presented an in-depth exploration of functional semantics in deep
neural networks.We introduce classified functional networks and functional distances to
understand the internal functional organization of DNNs and uncover functional seman-
tic relationships when processing specific classes. Our analysis reveals that DNNs are
capable of generating unsupervised semantic relations between classes and between
super-classes. Moreover, we found that the semantic relationships between classified
functional networks are not solely determined by the similarity of activation values,
while they arise from the similarity in functional connectivities. This suggests that the
functional organization of DNNs plays a crucial role in capturing semantic relationships
and should be considered when interpreting their performance and understanding their
internal mechanisms.
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The fact that classified functional networks have the same nodes and edges provides
great convenience for us to further explore the differences of DNNs when processing
different classes of data. One future research direction is to reveal the mechanism of
DNNs by comparing classified functional networks to find the neurons or functional
connectivities that have the great impact on a specific class and explain their functions.
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Abstract. In recent years, the use of deep learning models for point cloud clas-
sification and segmentation tasks has increasingly become a hot topic in 3D point
cloud research. However, the sparsity and inhomogeneity of point cloud datamake
it difficult to extract point cloud features. Meanwhile, how to effectively extract
fine-grained local features becomes crucial in point cloud understanding. There-
fore, in this study, we propose a novel FDA-PointNet++ point cloud classification
model based on fusion downsampling strategy and attention module. Firstly, the
method proposes a fusion downsampling strategy, which performs hierarchical
downsampling on the initial point cloud data, and then repeats the downsampling
operation on the sampling results and performs feature fusion to form featuremaps
with multi-scale information to enhance the richness of local spatial point cloud
feature information. Secondly, we incorporate a channel attention mechanism into
PointNet+ + and propose a Local Feature Aggregation (LFA) module for point
cloud local feature extraction. This method improves the local feature extraction
capability of the network model by amplifying the relevant local features and
suppressing the non-relevant features. Experimental results on the ModelNet40
dataset demonstrate that FDA-PointNet+ + achieves higher classification accu-
racy and robustness, with a 1.3% increase in overall accuracy (OA) and a 1.4%
improvement in class accuracy.

Keywords: Point Cloud Classification · Deep Learning · Channel Attention
Mechanism · Point Cloud Downsampling

1 Introduction

With the rapid development of sensors such as LiDAR and depth cameras, the difficulty
and cost of acquiring point cloud data has been dramatically reduced. Point cloud is the
most common data type for representing 3D spatial objects, which has the characteristics
of completeness and richness compared to voxels, meshes and other data types, and is
widely used in 3D reconstruction, autonomous driving SLAM, AR, VR, and other fields.
Recently, point cloud classification and point cloud segmentation for point cloud data
processing, as well as point cloud semantic segmentation tasks for large scenes have
gradually become research hotspots.
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In recent years, deep learning has become one of the important research tools in the
fields of computer vision and computer graphics due to its powerful feature learning
capability. Therefore, more and more work has been devoted to applying deep learning
methods for the purpose of extracting features directly from 3D point cloud data in
order to accomplish classification and segmentation tasks. However, point cloud data,
due to its own disordered and non-uniform characteristics makes the application of using
traditional deep learning algorithms still difficult in point cloudprocessing tasks.With the
advent of PointNet [1] and PointNet++ [2] networks, we have a whole new direction of
thinking. Borrowing from image convolution, we can define point cloud convolution and
thus solve the challenges in point cloud data processing tasks. Despite the satisfactory
performance achieved by PointNet++ thus far, there still remains room for potential
improvements and enhancements. We note that similar to image convolutional feature
extraction, local spatial fine-grained features of the point cloud data are important for
the global features of the overall point cloud. By incorporating an attention mechanism,
it is possible to effectively enhance the feature extraction capability of the local feature
extractor. Specifically, we obtain updated global features by assigning weights to those
convolutional channels that are more sensitive to specific features in order to enhance
or suppress the spatial context information of local features. Based on this premise, we
introduceFDA-PointNet++as our proposedmethod and further enhance its performance.

We propose a new local feature attention module (LFA-block) for point clouds.
Similar to image convolution, we note that the extraction of spatially localized features
is often related to the channel features of the convolution kernel. Therefore, we designed
this simple and effective local channel attention module as shown in Fig. 1. This method
amplifies relevant features in local features while reducing feature redundancy. Our
designed modules can be flexibly added to the local feature aggregation module of the
network.

We propose a fused downsampling strategy for data augmentation, along with the
utilization of a more efficient network optimization strategy to enhance our network
model. This strategy achieves its goal mainly by resampling the point cloud data. After
the initial downsampling, we perform hierarchical resampling on the local regions of
the point cloud data. The resampled features are then concatenated with the initially
sampled features to capture the global characteristics of the original point cloud.

In our experimental section, we show the classification effect of FDA-PointNet++.
Overall, our design of FDA-PointNet++ performs well in the shape object classification
task. Meanwhile, the ablation study of the FDA module shows that the local feature
grouping attentionmechanism significantly improves its ability to extract local geometric
features.

2 Relate Work

In recent years, researchers have proposed various methods for point cloud processing,
primarily categorized into multi-view-based, voxel-based, point-based, and graph-based
approaches.

Multi-view-based approach: The multi-view-based approach uses image data from
multiple viewpoints to project a 3D point cloud onto a 2D base plane to obtain a regular
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feature representation of the point cloud in 2D space [3]. SU et al. [4] in their work
first proposed the Multi-view CNN model, which is the first model to using the idea of
multiple views. QI et al. [5] introduced the concept of multiscale into the processing of
point clouds by adding a multiresolution filtering module to enhance the extraction of
information from the model.

Voxel-based approach: The voxel-based approach represents the 3D point cloud
as a structured voxel mesh and extracts spatial geometric features using a 3D-CNN
convolutional neural network.3DshapeNet [6] uses 3D convolution for voxel modelling,
which translates geometric 3D shapes into variable probability distributions in a 3D
voxel mesh, and uses a convolutional neural network to extract features.

Graph-based approach: The graph-based approach encodes the relative positional
relationships of the points in the point cloud by converting the point cloud data into
a graph structure [7], where each point is represented as a node of the graph and the
relationships between the points are represented as edges, which will abstract the global
feature signature of the full point cloud. DGCNN [8] is a convolutional neural network
based on dynamic graphs to handle classification and segmentation tasks on point cloud
data. It uses the KNN algorithm to construct neighborhood relationships between point
clouds and performs convolutional operations in the dynamic graph to extract features.

Point-based approach: The point-based approach directly inputs the raw point cloud
into the network for feature learning. The PointNet [1] network is a milestone in advanc-
ing the task of deep learning of point clouds. PointNet uses a simple shared MLP along
with a maximum pooling function to form a feature extraction network. PCT [9] intro-
duces a Transformer-based architecture specifically designed for point clouds, which
uses a self-attention mechanism instead of a convolutional layer to capture long-range
dependencies in point clouds.

3 Method

3.1 PointNet++ Network Structure

PointNet++ can be considered as an iterative enhancement of the PointNet model. Build-
ing upon the foundation established by PointNet, PointNet++ introduces several key
improvements to further enhance the capabilities of point cloud processing. We start by
reviewing the PointNet model.

PointNet uses the features of the original point cloud to compute the mapping of the
point cloud through a deep neural network. The networkmaps each individual point of the
input point cloud from low to high dimensions and then performs feature learning. This
process mainly consists of upscaling the feature matrix by shared multilayer perceptron,
then the networkmaps all the features to the high dimensional space andfinally represents
the global features by maximum pooling. We finally obtain k-dimensional features used
to score the classes of the point cloud model. PointNet faces challenges in effectively
capturing fine-grained features for global understanding due to the lack of local context.
At the same time, the lack of local context hinders the network’s ability to discern the
intricate details and relationships between different parts of the point cloud, leading to
significant limitations in achieving part segmentation as well.
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By adopting a hierarchical structure andmulti-scale grouping, PointNet++ can better
capture the complex details of point cloud data, solving the problem of PointNet’s inabil-
ity to capture local features and generalize to complex scenes. Figure 1 shows the basic
architecture of our improved network model FDA-PointNet++ based on PointNet++.

Fig. 1. FDA-PointNet++ adopts a similar network architecture to PointNet++ by using a hierar-
chical structure and grouping operation, using a fusion downsampling strategy to divide all the
point cloud features into local point cloud features, and then encoding the local features into a
local abstraction encoding with high-dimensional features through the feature aggregation mod-
ule. As shown in the figure, the feature aggregation module contains the downsampling module,
the grouping module, the MLPmodule and the attention abstraction module. We will describe our
hierarchical structure and local attention module in more detail below.

3.2 Hierarchical Local Feature Attention

In the field of computer vision and deep learning, the introduction of the attention
mechanism can effectively improve the performance of the model and has been applied
in many tasks such as classification, target detection, semantic segmentation, etc. By
incorporating an attention weighting module, it is possible to compute adaptive weights
for the overall features and propagate their weighting information to the global features
for feature information updating [21]. The attention mechanism greatly improves the
performance of many computer vision tasks and is used in many applications such as
classification, target detection, and semantic segmentation.

Similar to the image convolution process,we propose a local feature attentionmodule
called LFA-Block. We adopt the channel attention mechanism of image convolution,
which is a very efficient attention module [22]. The LFA-Block module (Local Feature
Attention) uses the channel attention mechanism to amplify relevant local features while
suppressing irrelevant features.With this approach,we enhance the ability of the network
to extract fine-grained local features, which helps to achieve more accurate and robust
point cloud classification.
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In order to aggregate features across the entire point set as much as possible, we
use a hierarchical structure to aggregate contextual information in local regions. The
hierarchical structure we use can be summarized as an SA module (Set Abstraction
Module), [11] which is similar to the hierarchical structure used in PointNet++. Each SA
module consists of a sampling layer for downsampling the point cloud data, a grouping
layer for querying the neighborhood points of the center-of-mass points, a feature coding
MLP layer for extracting the features, a local feature attention module, LFA-Block, for
augmenting the feature information, and a reduction layer for aggregating the features
within the neighborhoods.

Sampling layer: This layer downsamples the original point cloud using an iterative
farthest point samplingmethod (FPS), given the input point cloud {x1, x2, . . . , xn}, Select
a set of points {xi, xj, . . . , xm} from the input points and define these points as the center
of mass of the local region. We employ a fusion resampling strategy at the sampling
layer to fuse the sampled local features while iteratively sampling.

Grouping layer: This layer constructs the set of local regions by finding the neigh-
boring points around the center of mass. We have chosen the ball query approach to
find the subset {xi1, xi2, . . . , xik}. The input to this layer is a set of points of size N × C
and the output is a set of points of size N

′ × K × C. The ball query uses a fixed radius
to guarantee the size of the local neighborhoods. Compared to the K-nearest neighbor
algorithm, the ball query can effectively reduce the computational complexity.

MLP layer: In the MLP layer of our FDA-PointNet++ model, we still adopt the
network structure of PointNet. We utilize continuous convolution to encode the features
of local centroids and their neighboring points, resulting in local feature vectors. This
approach allows us to effectively capture and encode the local information within the
point cloud data.

LFA-Block Module: This module leverages a channel attention mechanism to
amplify relevant local featureswhile suppressing irrelevant ones.Bydoing so, it enhances
the network’s capability to extract fine-grained local features, contributing to more
accurate and robust point cloud classification.

Reduction layer: We are using the maximum value of the local feature map as the
maximum feature of the local grouping, and abstracting the global features that cover
the whole point cloud by aggregating the local maximum features (Fig. 2).

3.3 Fused Downsampling Strategy

In the FDA-PointNet++ model we retained the practice of local grouping of all point
clouds and optimized the size of the grouping and theMLP process, as well as introduced
a fused downsampling strategy to resample the point cloud data to enhance the local point
cloud spatial context information and prevent network overfitting.

The fusion downsampling strategy consists of two main steps, resampling of local
point cloud features and fusion of hierarchically sampled features [15]. We get as a local
center of mass point set after initial downsampling of the point cloud according to the
hierarchical structure, by querying the corresponding neighboring points according to
the group size and adding them to the local feature point set. When we do the grouping,
we will set 3 different size ranges for the same point and query three different size local
ranges at the same time, and within the ranges we select the same number of points
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Fig. 2. Hierarchical Local Feature Attention Module, containing SA module and LFA-Block
module, encodes local features through hierarchical structure and grouping operation to obtain
global feature information with multi-level feature information of different regions. For example,
the two green modules representing the original data and the results of grouped sampling go
through the MLP layer and the attention module to get a new feature map blue module, yellow
module representing the LFA-Block, which is continuously convolved by layering and grouping
to get richer global features (Color figure online)

[18]. Therefore, we can get the multi-scale point cloud features in spatial angle, and
we fuse their features, exactly connect to get the feature maps with richer local feature
information, and this method is very helpful for extracting the fine-grained features of
the point cloud.

We note that the size and number of groups have a significant impact on the per-
formance of the network [20]. Since the features we feed into the network to learn are
local features that have been downsampled, too many clustered local groups will further
make it difficult for the network to learn the global features of the point cloud and thus
overfitting occurs. Therefore, we try to use smaller groups while keeping the number of
groups constant when designing the network.

It is worth noting that before we input the raw point cloud data into the network for
feature extraction, we subjected the point cloud data to MLP operations to enhance its
feature dimension from 3 to 32 dimensions. This approach [13] improves the richness
of the spatial feature information of the raw point cloud, so we can obtain more local
contextual features in the subsequent operations.

3.4 Adaptive Thresholding of Squeezed-And-Excitation

The LFA-Block Module draws on the basic design of the Squeeze and Excitation Net-
work (SENet) [12] network. The network recalibrates features by adaptively modelling
explicit correlations between channels. SENet consists of two steps: the squeezing opera-
tion and the excitation operation. The squeeze operation compresses a high-dimensional
feature map with an input size of K × N × C into a 1 × 1 × C channel descriptor
by compressing the spatial dimensions. This descriptor effectively captures the global
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distribution of each channel feature on the feature map, while balancing the global infor-
mation at a lower level [23]. The excitation operation then uses an attentional mechanism
to learn the channel features, activate each channel and manage it in order to re-weight
or correct the convolved feature map.

We use both average pooling and maximum pooling to compress the spatial dimen-
sion [14]. We have empirically confirmed that using these two features greatly improves
the representation of the network, rather than using each one individually. This shows
the effectiveness of our design choices.

The specific process is shown in Fig. 3, where the input data are K ×N ×C feature
maps. After aggregating the spatial information of the feature maps by global average
pooling and maximum pooling compression operations, two 1 × 1 × C spatial context
descriptors, Fc

avg and Fc
max are generated, which represent the average pooling features

and maximum pooling features. The two channel descriptors are then forwarded to the
shared network for mapping [19]. The shared network includes Batch Normalization
(BN), ReLU activation functions, convolution operations and Sigmoid functions. The
convolutional part contains three shared MLPs, in order to reduce the parameters of
the shared MLPs, the size of the hidden activation layer is designed as, C/r × 1 × 1,
where r is the reduction ratio. we set different reduction ratios for different sizes of local
features. After passing through the shared MLPs, we merge the output attention weights
using elemental summation. Finally, a multiplication operation is performed between
the channel attention Mc and the feature map F to generate the global features obtained
after the input feature map F operation required by the spatial attention mechanism.

Mc(F)= σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(
W1

(
W0

(
Fc
avg

))
+ W1

(
W0

(
Fc
max

)))
,

(1)

F′ = Mc ∗ F (2)

where σ denotes the sigmoid function,W0 ∈ R
C/r×C , andW1 ∈ R

C×C/r . Note that the
MLP weights,W0 andW1, are shared for both inputs and the ReLU activation function
is followed by W0.

Fig. 3. Channel Attention Module. Where as shown in the figure, the LFA-Block uses the max-
imum pooling and the average pooling, which are fused together after shared MLP and sigmoid
layer activation to get the channel attention weights we need. After the incentive mechanism, the
weights are assigned to the original input data features to obtain a new feature map.
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4 Experiment

In order to verify the effectiveness of the proposed FDA-PointNet++ in processing
3D point cloud classification, this experiment implements the classification task on
the ModelNet40 [6] dataset. ModelNet40 is a commonly used 3D object classification
dataset. The dataset contains 12,311 CAD models in 40 categories, each containing 100
unique CAD models. We use 9843 officially classified shapes for training and 2468
shapes for testing (Tables 1 and 2).

Table 1. Experimental environment configuration

Title Environmental parameters

Operating system Ubuntu 20.04

CPU Xeon(R) Platinum 8255C

Server GPU NVIDIA RTX 3080(10 GB)

RAM 40 GB

Programming language Python 3.8

Deep learning frameworks Pytorch 1.11.0, CUDA 11.3

Table 2. Experimental hyperparameter settings

Number of sampling points 1024

Optimizer Adam

Epoch 200

Batch Size 16

Decay_rate 0.0001

Learning_rate 0.001

Number of sampling points 1024

Our experimental environment is configured in the following table. During the train-
ing process, our initial learning rate is set to 0.001, the size of batchsize is set to 16,
epoch is set to 200 times, and the network optimizer is selected as Adam [16].

During our experiments, we sampled 1024 points for each object using iterative
farthest point sampling (FPS) as input to the network. The features we use for the input
point cloud are only the XYZ coordinates of the points. Our network model is evaluated
bymultiple validations on both training and test sets.We use Overall Accuracy and Class
Accuracy as the evaluation metrics of the model.

By comparing the different models (shown in Table 3), it can be seen that our model
achieves the highest overall accuracy and class accuracy under the condition of using
only the XYZ coordinates of 1024 points as feature input. This shows that our model
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Table 3. Comparison of Class Acc and Overall Acc for multiple models on ModelNet40

Methods Input Overall Accuracy(%) Class Accuracy(%)

PointNet [1] Point 89.2 86.2

PointNet++ [2] Point 91.9 89.8

PointCNN [17] Point 92.2 88.1

DGCNN [8] Point 92.7 90.4

SpiderCNN [10] Point 92.4 90.3

FDA-PointNet++ Point 93.2 91.2

is able to effectively using the limited feature input to achieve excellent performance in
tasks such as classification. Our model improves overall accuracy by 1.3% and avg class
accuracy by 1.4% on PointNet++.

Fig. 4. Comparing with PointNet & PointNet++ models.

As shown in Fig. 4, We give a performance comparison graph between PointNet and
PointNet++.We have used the blue line in both graphs to represent our FDA-PointNet++
model, andwe can see that the performance of ourmodel is greatly improved compared to
the PointNet model. Our results are also consistently ahead compared to the PointNet++
model.

We also tested the robustness of the FDA-PointNet++ model, where 1024, 800, 600,
400, and 200 points were randomly selected as inputs to the trained model to perform
the classification task on the test set. As shown in Fig. 5, it can be seen that when the
point cloud data is a little missing, our model can still maintain high accuracy and always
outperforms PointNet++, which also indicates that our increased density network has
better robustness and stronger point cloud feature learning ability.
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Fig. 5. Relationship between number of input points and accuracy

5 Conclusion

We propose a novel FDA-PointNet++ point cloud classification model based on fusion
downsampling strategy and attention module, and evaluated it on the public Model-
Net40 dataset. FDA-PointNet++ can extract local features more accurately than Point-
Net++ by introducing a channel attention mechanism to suppress irrelevant features and
enhance important features. Meanwhile, it uses a fusion downsampling strategy for data
enhancement. The experimental results validate the effectiveness of the network in the
classification task. In the classification task, the overall classification accuracy (OA)
of FDA-PointNet++ reaches 95.5% on ModelNet10 and 93.2% on ModelNet40. The
experiments demonstrate the effectiveness of our proposed local attention module and
strategy.
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Abstract. Collision detection is an important problem in the field of computer
graphics. In order to achieve efficient collision detection in large-scale object col-
lections, this paper proposes a collision detection method based on the improved
WhaleOptimizationAlgorithm (WOA) andAxis-alignedBoundingBox (AABB).
The method firstly determines the optimal enclosing box size to avoid repeated
calculations; secondly, it uses AABB enclosing box to describe the geometri-
cal information of the objects and initially detects whether the objects are inter-
secting or not, and then introduces Levy’s flight strategy, adaptive weights, and
adaptive learning factors into the optimization searching process of the improved
whale optimization algorithm, which makes the collision detection method have
stronger adaptivity and stability. Experiments show that the collision detection
method based on the improved whale optimization algorithm has higher detection
efficiency than the traditional method when dealing with a large-scale object col-
lection, and the method exhibits superior optimization seeking ability compared
with the traditional algorithm.

Keywords: Collision detection · Whale Optimization Algorithm · Levy Flight
Strategy · adaptive weighting · Adaptive Learning Factor · AABB Surrounding
Box

1 Introduction

The purpose of collision detection is to detect whether two or more objects intersect
with each other. It is a key problem in the research fields of 3D games, synthetic images,
computer graphics, virtual simulation and so on. The common collision detection algo-
rithms are wraparound box algorithm, sphere detection algorithm and polygon detection
algorithm. Among them, the wraparound box method is widely used because it is fast
as well as has some scalability and accuracy advantages. Currently, the commonly used
bounding box techniques are Axis-aligned Bounding Box (AABB), Oriented Bounding
Box (OBB), Sphere Bounding Box, K-DOPs Bounding Box, etc. [1].

With the continuous development of virtual reality technology, a large number of
valuable research results have been achieved for collision detection.Huet al. [2] proposed
a convex packet-based minimum volume OBB enclosing box generation algorithm,
which is used to quickly generate the minimum OBB enclosing box with good fitting
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effect. Jin Yanxia et al. [3] proposed a circular enveloping box without thickness, which
has obvious advantages in the scenarios with enough self-collisions. WANG et al.[4]
proposed a new method for constructing OBB enveloping box, which speeds up the
efficiency of collision detection by optimizing the level of solving the solid mesh model.
These algorithms also have certain defects, for example, the construction of the surround
box for the object is too large resulting in a higher false detection rate. This problem
can be solved by using the hybrid envelope detection technique, which uses the simple
Sphere envelope, AABB envelope and the relatively complex OBB envelope and k-
DOPs envelope to construct the hybrid envelope, which can improve the accuracy and
efficiency of detection [5]. Hui xuewu et al. [6] used the bracket box technique and
particle swarm optimization algorithm to enhance the secondary collision detection of
objects, and this detection method improves the accuracy and efficiency of collision
detection. In this paper, we use a combination of the whale algorithm and the enveloping
box algorithm for collision detection, which can significantly improve the efficiency of
detection compared to the traditional collision detection.

2 Object Collision Detection Model

Assume that there exist objects A and B in the multidimensional space, where the ith
dimensional feature ai ∈ A of object A, i̇ takes the range of values , and
the j th dimensional feature bj ∈ B of object B, j takes the range of values (1 ≤ j ≤ n),
where n represents the total number of dimensions. Assuming that the set F(p) is used
to represent the object A and object B like feature distance, object A and object B are
considered to collide if F(p) min is less than the collision threshold £.

Representing the velocity of an object by the set V [7], the set of velocities of object
A and object B can be expressed by Eq. (1):

V = {Va,Vb} = {(
vax, vay, vaz

)
,
(
vbx, vby, vbz

)}
(1)

where, vax, vay, vaz represent the velocity of object A in X, Y, Z axes respectively, and
vbx, vby, vbz represent the velocity of object B in X, Y, Z axes respectively. Representing
the positions of the objects by the set X, the set of positions of object A and object B
can be expressed by Eq. (2):

X = {Xa,Xb} = {(xa, ya, za), (xb, yb, zb)} (2)

where xa, ya, za represent the coordinates of object A on the X, Y, and Z axes, respec-
tively, and xb, yb, zb represent the coordinates of object B on the X, Y, and Z axes,
respectively. Representing the set of distances in three-dimensional space by the set
F , the quadratic set of distances between object A and object B can be represented as
follows:

F(Xa,Xb) = (
xa − xb

)2 + (
ya − yb

)2 + (
za − zb

)2 (3)

where F(Xa, Xb) is used as the spatial distance fitness function, and xa, ya, za, xb, yb, zb
represent the positional coordinates of object A and object B. In order to simplify the
arithmetic, this paper does not square the distance function.
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3 Axis-Aligned Bounding Box Algorithm

The AABB box is a rectangle surrounded by six planes that are parallel to the coordinate
axes, which is called “axis alignment”. The following mathematical description of the
AABB enclosing box is given in the following equation:

(4)

where P represents the spatial coordinates of the enclosing box, xc, yc, zc, respectively,
represent the center coordinate projection of the object in three-dimensional space. rx,
ry, rz represent the radius of the center coordinate projection of the object in three-
dimensional space and satisfy the following relationship: xc = 1

2 (xmax + xmin), yc =
1
2 (ymax + ymin), zc = 1

2 (zmax + zmin)。
In this paper, we determine whether a collision occurs according to the intersection

space of the AABB enclosing box. If there is no intersection space, it is directly judged
as no collision; if there is an intersection space, the collision is judged according to the
distance and the improved whale optimization algorithm. The following is the flowchart
of constructing theAABBenclosingbox and initially judging the object collision (Fig. 1).

Fig. 1. Flowchart for preliminary determination of object collision using AABB enclosing box.

4 Improved Whale Optimization Algorithm

The Whale Optimization Algorithm is divided into three main parts: rounding up prey,
bubble net feeding, and random prey search [8, 9]. A mathematical description of the
WOA is given below.

Rounding up prey: Assuming that the current whale individual is the optimal indi-
vidual of the population, other whale individuals will approach the optimal individual.
The whale update position formula is as follows:

D = ∣∣CX∗(t) − X(t)
∣∣ (5)
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X(t + 1) = X∗(t) − AD (6)

where D represents the difference between the position of the optimal individual and
the position of the individual in the current population; t represents the current number
of iterations; X∗(t) represents the position vector of the current optimal solution; X(t)
represents the position vector; || is the absolute value;A,C, denote the coefficient vectors,
and satisfy the following relationship:

A = 2ar1 − a (7)

C = 2r2 (8)

a = 2 − 2t
T (9)

where r1, r2 are a randomvector in [0,1];T represents themaximumnumber of iterations;
a decreases linearly from 2 to 0 throughout the iteration; and A takes values between
[−a, a].

Bubble net predation: When whales attack prey in bubble nets, they need to spiral
up close to the prey and shrink the envelope by adjusting the parameters. The specific
formula is as follows.

X (t + 1) = D′ · ebl · cos(2π l) + X∗(t) (10)

D′ = ∣∣X∗(t) − X (t)
∣∣ (11)

where D′ represents the distance between the current searching individual and the prey;
b is a parameter in order to determine the shape of the spiral; l is a random number
between [−1,1]; and π represents the circumference.

Sincewhale position updating can only be done in one of theways of spiraling up and
shrinking the envelope, the following equation is assumed for updating whale position
assuming that the probability of a whale spiraling up and shrinking the envelope are
each 50%:

(12)

where P represents the probability of the predation mechanism, which takes the value of
a random number between [0, 1]. As the number of iterations t increases, the parameter
A and the convergence factor a gradually decrease, and if |A| < 1, then each whale
gradually surrounds the current optimal solution, which belongs to the local optimal
search stage in WOA.

Searching for prey: To ensure that all whales are fully searched in the solution space,
the WOA updates the positions based on the distances of the whales from each other for
the purpose of random search. Therefore, when , a whale individual is randomly
selected as a reference to update the position of other whale individuals. The formula is
as follows:

D′′ = |C · Xrand (t) − X | (13)
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X (t + 1) = Xrand(t) − A · D (14)

where Xrand(t) represents the current position of the random whale individual; D′′
represents the distance between the current search individual and the random search
individual.

5 Levy Flight Initialization Population.

In the whale optimization algorithm, the Levy [10] distribution can be used to improve
the initialization of the population. The formula is as follows:

(15)

where X ∗
i , represents the optimal whale individual generated from the previous i itera-

tions; ⊕ represents point-to-point multiplication; represents the step control quantity;
and Levy represents the random search path. Where and Levy are to satisfy
the following relation.

(16)

(17)

u ∼ N
(
0, σ 2

)
(18)

r ∼ N (0, 1) (19)

(20)

where, this paper takes the value of based on experience; � is the
standard Gamma function; where, u, r obey the normal distribution.

5.1 Improving Inertia Weights

In order to improve the local optimization ability and convergence accuracy of the whale
optimization algorithm, this paper proposes a new adaptive weighting w(t) [11] method,
and the adaptive weighting formula is shown in Eq. (22) as follows.

w(t) = 0.8 × sin
(

π
2 e

−(t/2T )2
)

+ 0.5 (21)

where w(t) represents the weight; t represents the current number of iterations, which
is used to control the size of the weight, and the weight decreases as t increases; T
represents the maximum number of iterations of the algorithm. Many scholars have
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Fig. 2. Adaptive weights versus number of iterations

made improvements to the weights, such as references [16] and [17]. The inertia weight
in this paper is a nonlinear decreasing sine function. As shown in the following Fig. 2.

As can be seen in Fig. 2, at the beginning of the algorithm iteration, larger weights
are set, this is because the whale is far away from the prey and the global search ability
of the whale needs to be enhanced. In the late iteration of the algorithm, the whale is
close to the food and smaller weights are set to enhance the whale’s local search ability.
Therefore, the weight changes in this paper are fully consistent with the optimization
process of the whale algorithm.

5.2 Improving Adaptive Learning Factors

The global optimal finding ability of the whale optimization algorithm is mainly affected
by the parameterA, while the variation of the parameterA is affected by the convergence
factor a. Therefore, this paper proposes a nonlinear adaptive learning factor a to solve
the problem of whale optimization algorithm falling into local optimal solution.

a = 2 − 2sin
( tπ
2T

)
(22)

From expression (23), it can be seen that 2 – 2sin (tπ/2T) is nonlinearly increasing in
the interval [0, π/2], which dynamically adjusts the whale adaptation without changing
the original trend of the convergence factor a. After the introduction of adaptive weights
and adaptive learning factors, the improvedwhale optimization algorithmposition update
formula is as follows (Fig. 3):

When |A|<1, the position is updated as follows:

X(t + 1) = w(t) · X∗(t) − A · D (P< 0.5) (23)

(24)

When , the position is updated as follows:

X (t + 1) = w(t) · Xrand(t) − A · D (25)
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The improved whale algorithm combined with the AABB enclosing box algorithm
can significantly improve the detection efficiency, the following is the collision detection
flow chart as follows:

Fig. 3. Flowchart of the improved whale optimization algorithm.

6 Experimental

In order to verify the improved whale optimization algorithm global and local optimiza-
tion ability, this paper selected the benchmark test function [12] to test the algorithm. This
paper selected the standard particle swarm optimization (PSO) algorithm, the standard
ant lion optimization algorithm (Ant LionOptimizer, ALO) for comparison experiments.
The test results are shown in Fig. 4.

From (a) in Fig. 4, it can be seen that the improved whale optimization algorithm has
fewer iterations in obtaining the maximum fitness value and converges faster during the
iterations compared to the standard whale optimization algorithm. From Fig. (b), it can
be seen that the improved whale optimization algorithm has fewer iterations than PSO
algorithm and ALO algorithm in obtaining the fitness value, and the maximum fitness
value can be found in about 50 iterations, while PSO and ALO algorithms have to be
iterated 300 and 400 times respectively before they can approach the maximum fitness
value. In order to further verify the superiority of the improved whale algorithm, we
conducted the following experiments using four benchmark functions.
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(a) b

Fig. 4. Comparison of convergence curves of optimization algorithms

6.1 Effect of Collecting Different Number of Features on Collision Detection

In this paper, four benchmark functions, f1, f2, f3 and f4, are selected for testing, of
which f1 and f2 are single-peak functions and f3 and f4 are multi-peak functions, and
the specific functions are shown in Table 1. The number of experimental iterations are
100, and each function repeats the experiment 100 times respectively to take the average
value, The dimension is set to 30 and the theoretical optimum is 0, and calculate the
standard deviation, and the experimental results are shown in Table 2.

Table 1. Test Function Table

Among them, f1–f2 are single-peak functions, which are mainly used to test the
development performance of the algorithm. From the table, it can be seen that the perfor-
mance of IWOA algorithm is far beyond other algorithms with small standard deviation
and mean. f3–f4 are multi-peak functions, which are mainly used to test the searching
ability of the function. From the table, it can be seen that IWOA still has small mean
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and standard deviation, so the improved whale algorithm performance energy exceeds
the other algorithms.

Table 2. Algorithm test results

function Evaluation indicators IWOA WOA PSO GA

f1 averages 3.1153E-127 5.2918E-24 2.4614E-02 3.5592E-01

standard deviation 5.3158E-126 2.1143E-23 5.3213E-02 6.6263E-2

f2 averages 2.1576E-05 1.5812E-02 1.7664E-06 2.3464E +00

standard deviation 5.6434E-06 5.1233E-02 3.5636E-06 2.7651E+00

f3 averages 3.1159e-15 1.6768E-15 2.4657E + 00 6.1335E-01

standard deviation 1.2342e-15 1.5312E-15 7.5232E-01 5.3553E-01

f4 averages 4.1531E-07 1.3521E-02 5.6354E-02 3.3159E-02

standard deviation 3.5678E-07 3.2534E-02 1.1567E-01 4.9523E-02

6.2 Effect of Collecting Different Number of Features on Collision Detection

In this paper, 1000 samples are selected for testing. For two objects in the presence
of intersection space, four different features are chosen to conduct collision detection
experiments on the objects, and each feature pair is chosen to form a whale population
of 1000*1000, 2000*2000, 4000*4000, 8000*8000, and the time consumption of the
algorithm is shown in Table 3.

Table 3. Comparison results of time consuming algorithms for different feature pairs

Number of
feature pairs

Detection rate
10% time/ms

Detection rate
20% time/ms

Detection rate
40% time/ms

Detection rate
80% time/ms

Detection rate
90% time/ms

1000*1000 15 40 90 180 210

2000*2000 70 100 190 270 300

4000*4000 120 160 240 340 360

8000*8000 190 220 310 430 450

According to the data in Table 3, it can be learnt that the time consumed by the
algorithm increases as the number of sampled features increases. When the number of
feature pairs is 1000, the algorithm can reach 90% detection rate in 210 ms. When the
number of feature pairs is 8000, the algorithm can reach 90% detection rate in 450 ms.
Therefore, choosing the right number of feature pairs is crucial for the efficiency of
collision detection.
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6.3 The Effect of Different Whale Sizes on Collision Detection

In order to verify the most suitable whale size, experiments are conducted on 88
objects using the improved whale optimization algorithm sampling different features.
The detection results are shown in Fig. 5.

Fig. 5. Comparison of collision detection rates for different whale sizes.

As can be seen in Fig. 5, the maximum detection rate is reached at a whale size of
about 65. Therefore, this paper uses a whale size of 65 for the experiments. In order to
verify the improved whale optimization algorithm detection rate, the improved whale
optimization algorithm is compared with the enveloping box algorithm and the envelop-
ing box + WOA algorithm for comparison experiments. The experimental results are
shown in Fig. 6.

Fig. 6. Comparison of collision detection accuracy of 3 algorithms.

From the Fig. 6, it can be seen that the improved whale algorithm + bounding box
algorithm has the highest detection efficiency, with a detection efficiency of 96% at 380
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ms. The standard whale algorithm + AABB bounding box algorithm has a detection
efficiency of about 88% at 380 ms, while the detection efficiency using bounding box
algorithm is only about 70%.

6.4 Comparative Experiments on Detection Efficiency of Different Algorithms

In order to verify that the improved whale optimization algorithm is better than other
algorithms, the particle swarm optimization algorithm [13], quantum ant colony opti-
mization algorithm [14], grey wolf optimization algorithm [15], and algorithm of this
paper are selected for the comparative experiments respectively. The experimental results
are shown in Fig. 7.

Fig. 7. Comparison of collision detection accuracy of different algorithms.

As can be seen fromFig. 7, in the early stage of the test, the detection rate of these four
algorithms is basically the same, but with the increase of the detection time, the detection
efficiency of this paper’s algorithm is significantly better than the other algorithms, and
the stability of the late stage of the test is also better than the other algorithms. This
paper’s algorithm tends to stabilize at about 400 ms, and the detection accuracy is up to
about 95%. The worst is the particle swarm algorithm, the algorithm tends to stabilize
at about 450 ms, and the detection accuracy is about 87%. The detection accuracy of the
gray wolf algorithm and the quantum ant colony algorithm lies in the middle of the first
two.

7 Conclusion

This paper focuses on the optimization of the whale optimization algorithm, which
has slow convergence speed and low convergence accuracy. By increasing adaptive
weights and learning factors, and using Levy flight strategy to initialize the population,
the whale algorithm is improved to improve search convergence speed and optimiza-
tion accuracy. We compared and analyzed the methods of combining other intelligent
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optimization algorithms with IWOA + bounding box technology. The results indicate
that the improved whale optimization algorithm combined with AABB bounding box
detection efficiency has been further improved.

Acknowledgements. The research was supported by the Industrial Science and Technol-
ogy Research Project of Henan Province under Grants 232102210088, 232102210125,
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Abstract. The anchor-free object detection method avoids the complex hyper-
parameter setting problem of the traditional anchor-based method, and has more
advantages in accuracy and speed. However, it still has some problems such as
low precision of small-scale object detection and poor detection result under com-
plex background. To solve this problem, an improved anchor-free object detection
method based on FCOS is proposed in this paper. By adding an efficient channel
attention mechanism module to the feature extraction network and using a local
cross-channel interaction strategy without dimensionality reduction, the 1D con-
volution kernel size is adaptively selected to obtain useful dependencies between
channels and improve feature extraction capability. A context extraction module
is designed in feature fusion network to explore context information from mul-
tiple receptive fields and improve classification accuracy. In the training stage,
DIoU loss is used to make the regression of the border more stable and accu-
rate, and the training process converges faster. The proposed method is evaluated
on COCO2017. The experimental results show that compared with the baseline
FCOSmethod, the average accuracy of the proposedmethod is improved by 1.3%,
which has advantages in comprehensive performance.

Keywords: Object Detection · Anchor-Free · CNN · Attention Mechanism ·
Feature Fusion

1 Introduction

Object detection has great application value and research significance. As a fundamental
task in the field of computer vision, it is a prerequisite for a variety of fundamental
vision researches, such as instance segmentation, face recognition, behavior recognition,
pose estimation, image description, target tracking, and autonomous vehicles. In recent
years, object detectionmethods based on deep learning have achieved excellent detection
performance, gradually replacing traditional methods based on artificial design features.

In the era of deep learning, people haveproposed a series of excellent networks,which
can be roughly divided into two categories, namely anchor-based detection network
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and anchor-free detection network. The anchor-based detection network has a class-
independent region suggestion stage, which outputs potential regions that may contain
objects, and then a second stage is responsible for classification prediction and regression
prediction of these regions. Some classical two-stage detectors are Fast R-CNN [7],
Faster R-CNN [20],MaskR-CNN [8], R-FCN [3], Sparse R-CNN [22], Cascade R-CNN
[1], Meta R-CNN [25], and Libra R-CNN [18].

Due to the unbalanced distribution of positive and negative samples, the large number
of parameters have to be designed in the network, and the existence of a large number of
redundant boxes, anchor-free object detection methods which can solve these problems
are gradually emerging. With the proposed of key theories such as FPN [14] and Focal
Loss [15], anchor-free object detection methods ushered in new development.

Huang et al. proposed DenseBox [11], which together with YOLO [19] was an
early exploration of anchor-free object methods, laying a foundation for subsequent
research. Zhi et al. used fully convolution network to construct the FCOS [23], and
adopted the pixel-based prediction method in the field of semantic segmentation. Zhu
et al. proposed FSAF [30], which enables samples to automatically learn and select the
optimal scale branch for training. Inspired by the structure of human eyes, Kong et al.
proposed FoveaBox [12], which pays more attention to the central region of the object
during training and detection. Law et al. proposed CornerNet [13], which uses a pair
of key points to achieve object positioning and generate hotspot map and embedded
vector. Duan et al. proposed the CenterNet [6]. To solve the problems of inaccurate
key point matching in dense targets, Dong et al. proposed CentripetalNet [5]. In 2021,
the faster and more powerful CenterNet2 [29] was proposed. In 2022, Mohsen et al.
proposed ObjectBox [26] network, which treats all objects equally at different feature
levels regardless of targets’ size and shape.

Although the existing detection networks have been able to achieve relatively good
detection accuracy, there are still some problems such as large calculation amount, long
processing time, large difference in detection accuracy under long tail data distribution,
and poor detection effect of small objects in complex environments. To improve these
problems, this paper proposes an improved anchor-free object detection method based
on FCOS. In the feature extraction stage, by adding ECA attentionmechanismmodule to
Resnet-50 [9], useful dependencies between channels are obtained and feature extraction
capability is improved. In the feature fusion stage, context extraction module (CEM) is
added to FPN network to explore the context information from multiple receptive fields
and improve the classification accuracy. In the detecting stage, DIoU loss is used tomake
the regression of the border more stable and accurate, and the training process converges
faster.

2 Related Work

2.1 FCOS

Feature extraction is carried out through Resnet-50 [9] and FPN [14] in FCOS network.
Referring to Fig. 2, feature maps C1, C2, C3, C4 and C5 are generated by the feature
extraction network Resnet-50, where C3, C4 and C5 are horizontally connected to layers
P3, P4 and P5 of FPN. Then, P6 and P7 are generated from P5 from top to top through
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two 3 × 3 convolutional kernels with stride size of 2. Finally, the feature maps P3, P4,
P5, P6 and P7 output from FPN are sent to the detection head network respectively
for detection, and the prediction information of each positive sample point on each
feature maps is output. It includes the category score of the object, the predicted value
of the centerness and the position feature vector ltbr of the sample point. Meanwhile,
the prediction box with low score is filtered by the non-maximum suppression algorithm
and the final detection result is obtained.

2.2 The Positive and Negative Samples Defined Strategy

FCOS is different from anchor-based object detection networks in that it abandons the
candidate region generation network used by anchor-based method. This method needs
to observe the datasets in advance, set hyperparameters, and occupy a lot of computing
resources in the training process. FCOS avoids these complex pre-processing steps, and
directly takes the location points as training samples, referring to the idea of intensive
prediction in the field of semantic segmentation [17] (Fig. 1).

Fig. 1. Four position vectors lrtb respectively represent the length of the four sides from the
sample point to the ground truth.

Specifically, the positive and negative sample definition strategy of the FCOS is as
follows: firstly, the border box of each ground truth of the input image is defined as

Bi =
(
x(i)
0 , y(i)

0 , x(i)
1 , y(i)

1 ,Ci
)
. Among them

(
x(i)
0 , y(i)

0

)
,
(
x(i)
1 , y(i)

1

)
and C, represents

the upper left, lower right point coordinates of the border box and category. Each point
(x, y) on the feature maps P3–P7 is reflected to the original picture to determine whether
it falls into the border box of any ground truth. On this basis, if the category of the point
and the ground truth belong to the same category, the point is regarded as a positive
sample, otherwise it is negative. The reflection method is shown in formula 1:

(⌊ s
2

⌋ + xs,
⌊ s
2

⌋ + ys
)

(1)

In formula 1, s represents the down-sampling stride from the feature map to the
original picture. For each positive sample point, four distances are obtained by regression
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of its position feature vector to the ground truth border to determine whether its length
is within a reasonable radius. The calculation method is shown in formula 2:

l = x − x1, t = y − y1
r = x2 − x, b = y2 − y

(2)

In the case that a certain point falls into multiple borders of the ground truth at the
same time, the point is directly assigned to the border with the smallest area.

2.3 Head Network of Detecting

The detection head network of FCOS, as shown in the lower right corner of Fig. 2, is
composed of three branches, namely regression branch, classification branch and cen-
terness branch. Feature maps P3–P7 uses different detection head networks to obtain
detection results of featuremaps of different scales. Specifically, the location feature vec-
tor of each point (x, y) on the output feature map of the regression branch is precisely
the introduction of the location feature vector based on intensive prediction. Classifica-
tion confidence of each positive sample point on feature map out from the classification
branch; And the centerness branch is used to evaluate the distance between each positive
sample point and the target center point corresponding to that point. Generally speaking,
the point closer to the target center point is more likely to belong to the same category
as the ground truth, and the border box of its regression has a higher coincidence degree
with that of the ground truth. The calculation of centerness is shown in formula 3:

centerness∗ =
√

(x − x0)2 − (
y − yo

)2 (3)

In the formula, (x0, y0) represents the coordinates of the ground truth center point,
and the square root is opened to weaken the attenuation of the centerness. Finally, the
weight of the centerness is added to the loss value of the regression branch to suppress
other coordinate points that deviate far from the center point, so as to improve the
accuracy of detection.

3 AF-FCOS

3.1 Overview

In this paper, the FCOS object detection model is improved, and the network structure is
shown in Fig. 2. The improved part mainly includes three parts: feature extraction mod-
ule, feature fusion module and detection head. Specifically, ECA attention mechanism is
introduced into the feature extraction network ResNet-50 of this model. By learning the
correlation between channels, the weight of channels can be adjusted adaptively, and the
model performance can be improved on the basis of effectively reducing the number of
model parameters and calculation amount. In feature fusion module, context extraction
module CEM is added to explore context information from multiple receptive fields to
improve classification accuracy. In the last part of the detection head, the DIoU loss
function is used in the regression branch, which makes the prediction frame regression
more stable and accurate, and speeds up the convergence rate of the model.
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Fig. 2. The structure of AF-FCOS.

3.2 ECA

In this paper, ResNet-50 is used as the feature extraction network, which belongs to the
series CNN network structure. During the transmission of input data, global information
is difficult to reach the tail of the model, and the lost information will inevitably affect
the performance of the model, and the attention mechanism can compensate for these
losses to a certain extent.

In recent years, many methods have used SENet [10] to model the relationship
between channels and capture more complex channel dependencies. However, recent
studies have shown that the dimensionality reduction operation of SENet is not conducive
to the prediction of channel attention, and not all channel relationships are valuable.

The ECA [24] attention mechanism avoids dimensionality reduction and can effi-
ciently utilize the correlation between channels through cross-channel interaction strate-
gies, and avoids the introduction of a large number of parameters while maintaining
superior performance. The main improvement of ECA compared with SENet is that it
uses an adaptive fast one-dimensional convolution instead of the original FC layer. The
convolution kernel size k represents the coverage area of local cross-channel interaction.

k = ψ(C) =
∣∣∣ log2(C)

γ
+ b

γ

∣∣∣
odd

(4)

where, γ and b are taken as 2 and 1 respectively, |t|odd indicates that the nearest odd
number from t is taken (Fig. 3).

3.3 CEM

FPN alleviates the inherent contradiction between feature map resolution and semantic
information to some extent by introducing a top-down approach. However, there are still
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Fig. 3. The structure of Eca.

two main problems in the FPN-based network:1) The contradiction between the reso-
lution of high-resolution input feature map and the receptive field; 2) Lack of effective
communication between receiving fields of different sizes.

In order to effectively solve these two problems, Junxu et al. proposed AC-FPN
[2], which uses context extraction module (CEM) to explore a large amount of con-
text information, and uses attention guidance module (AM) to adaptively retain useful
information around the target and suppress useless semantic information. In this paper,
the CEM module in AC-FPN is introduced. The CEM module performs five scales of
dilated convolution on the feature map F5 to capture rich context information from large
receptive fields of different sizes. In addition, in order to better integrate the information
of multiple receptive fields, different receptive fields are closely linked.

3.4 DIoU

In the detection head network, the loss function in the regression stage greatly affects the
model’s degree of data fitting. The GIoU [21] loss function used by the original network
pays too much attention to the minimum closed rectangle in some cases, resulting in a
small overlap area between the border box and the real border box. In this paper, the
DIoU [27] is introduced as the loss function of the regression branch of the border box,
which takes into account the distance between the predicted border box and the real
border box, so that the loss function pays more attention to the position of the border
box, and avoids the gradient disappearance caused by too far distance between the two
boxes. The calculation formula is as follows:

LDIoU = 1 − |B∩Bgt|
|B∪Bgt| + ρ2(b,bgt)

c2
(5)

where, B is the target prediction border box, Bgt is the target real border box, b is the
central point coordinate of the prediction box, bgt is the central point coordinate of the
real one, and ρ is the Euclidean distance between the central points of the two boxes.
c is the diagonal length of the smallest external rectangle capable of covering both the
prediction box and the real box.
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3.5 Loss Function

The loss function used in the model training method in this paper is composed of three
parts: classification loss, border box regression loss, and centerness loss, as shown in
formula 6:

L
({
px,y

}
,
{
tx,y

}) = 1

Npos

∑
x,y

Lcls
(
px,y, c

∗
x,y

)

+ λ
Npos

∑
x,y

τ
{
c∗
x,y > 0

}
Lreg

(
tx,y, t∗x,y

) (6)

Focal loss [15] is adopted as the classification loss function Lcls, and the formula is
shown as (7), where α represents the balance factor to adjust the importance of positive
and negative samples in the training process, γ represents themodulation factor to reduce
the proportion of easily classified samples in the model:

(7)

The regression loss function adopts DIoU loss [27], as shown in formula 5. For
centerness loss, BCE loss [4] is adopted, and this loss function is added to formula 7 and
multiplied with the regression loss function to suppress the detection boxes deviating
from the target center, as shown in formula 8:

BCE loss(pt, y) = −y ∗ log(pt) − (1 − y)log(1 − pt) (8)

where, pt indicates the predicted value and y indicates the actual value.

4 Experiments

The training and testing of the method in this paper were carried out on the server
with GPU model with NIVID GeForce RTX2080Ti, CPU model Intel (R) Xeon (R)
silver 4110 with Ubuntu18.04 operating system. Python3.7 programming language,
CUDA11.1 and cuDNN8.04 was used too. Based on the above configuration, Pytorch1.9
version is used to build a deep learning framework. The pre-trained model on ImageNet
was used to initialize the model, and the stochastic gradient descent algorithm was used
to optimize the training stage. The batch size for each iteration is set to 4. The number of
training iterations is set to 90,000, the initial learning rate is set to 0.001, and the weight
attenuation coefficient is set to 0.0001.

4.1 Dataset

The experiments are conducted on COCO2017 [16], which is a large general dataset
provided by the Microsoft team for object detection, semantic segmentation and other
tasks and contains 200,000 images, 80 categories, and more than 500,000 instances
annotation, is the most widely published general dataset for object detection challenges.
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4.2 The Comparison Between the Proposed Method and Others

In order to verify the effectiveness of the proposed method, the accuracy of the pro-
posed method is compared with some classical object detection methods on COCO2017
dataset. The experimental results are shown in Table 1.

Table 1. Compared with different methods on COCO2017 dataset

Method Backbone mAP FPS

Faster R-CNN [20] ResNet-101 28.7% 18.6

YOLOv5 DarkNet-53 33.3% 23.2

CornerNet [13] Hourglass-52 31.4% 19.3

CenterNet [6] Hourglass-52 32.7% 21.2

FoveaBox [12] ResNet-50 31.5% 20.5

FCOS [23] ResNet-50 32.2% 29.2

FCOS ResNet-101 35.3% 28.7

Ours ResNet-50 33.5% 13.7

From the comparison of experimental results of different networks on COCO dataset
in Table 1, it can be found that the improved FCOS detection method has obvious
advantages in average detection accuracy. Compared with baseline method, the mAP
of the proposed method increased by 1.3%, while it increased by 2% compared with
FoveaBox. And compared with ConerNet and CenterNet in anchor-free, our method also
improves by 2.1% and 0.8% respectively. However, compared with the classic Faster R-
CNN, the mAP of the proposed method is improved by 4.8%, and it is also improved by
0.2% compared with YOLOv5. In terms of execution speed, due to the addition of two
new models, the number of model parameters has increased, and the detection speed
has decreased, but the proposed method still has more advantages in comprehensive
performance.

4.3 Comparison of Different Loss Functions for Regression Branches

In order to verify the impact of the loss function of the regression branch of the detection
head network on the model performance, different loss functions were used to compare
the final detection performance of the model. The experimental results are shown in
Table 2.

In the original network, GIoUwas used as the loss function of border regression, and
the detection accuracy was 32.2%. After DIoU loss function and CIoU [28] loss function
were used,mAPvalues of 32.7%and32.5%were obtained, respectively,which increased
by 0.5% and 0.3%. And in small object detection, the accuracy of DIoU and CIoU loss
functions is improved by 0.9% and 1.8%.
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Table 2. IoU loss function comparison

IoU mAP mAPs mAPm mAPl

GIoU 32.2% 17.8% 36.4% 40.3%

DIoU 32.7% 18.7% 36.6% 42.6%

CIoU 32.5% 19.6% 36.4% 41.8%

4.4 Ablation Study

In this section, ablation experiments were conducted to verify and analyze the impact of
various measures on improving the accuracy of our method, and ECA, CEM and DIoU
loss were experimentally verified on the basis of the FCOS model.

Table 3. Comparison of ablation results on COCO2017 dataset

Experiment ECA CEM DIoU mAP

1 32.2%

2 ✓ 33.1%

3 ✓ 33.3%

4 ✓ 32.7%

5 ✓ ✓ ✓ 33.5%

From the comparison of ablation results on COCO2017 in Table 3, it can be found
that the improved method in this paper can improve the performance of the original
method to varying degrees. In experiment 2, ECA module was added to the feature
extraction network, which improved the mAP of the network by 0.9%. In experiment 3,
adding CEM module to the feature fusion network improved the mAP of the network
by 1.1%. In experiment 4, DIoU is used as the loss function of the regression branch,
and the mAP of the network is increased by 0.5%. In experiment 5, the above three
improvements were added at the same time, and the mAP of the network was increased
by 1.3%.

4.5 Visualization of Detection Results

As can be seen from the visualization results in Fig. 4, our method not only has more
advantages in detection accuracy, bust also can detect small objects more accurately,
such as baseball gloves in the left picture, and can detect occluded objects, such as the
remote control behind the cat in the right picture.
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Fig. 4. The left part shows the detection results ofAF-FCOS, and the right part shows the detection
results of FCOS.

5 Conclusions

An improved anchor-free object detection method based on FCOS is proposed in this
paper to solve the problems of inaccuracy of small target detection and poor detection
effect under complex background. Experiments show that ECA, CEM and DIoU added
in this method can improve the detection accuracy to varying degrees. However, due to
the introduction of deformable convolution in CEMmodule, we believe that our method
is still not effective enough in modeling context information. Due to the introduction of
additional modules, the parameter size of the network also becomes larger. Next, we will
try to reduce the complexity of the model, make it lightweight, modify the CEM model
and consider introducing the object relation module to further improve the detection
accuracy.
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Abstract. Clustering algorithm plays an important role in recommendation sys-
tem, data analysis, market segmentation and other fields. Their primary objective
is to grow up similar samples into the same clusters while separating dissimi-
lar samples into distinct clusters. With the rapid development of deep learning,
deep clustering integrates the strong representational ability of deep learning into
clustering tasks and achieves outstanding performance. Currently, most cluster-
ing algorithms are unsupervised. However, many times datasets contain not only
unlabeled data but also limited relational information. It is possible to significantly
enhance the clustering performance by using this prior information effectively.
Thus, this research focuses on semi-supervised clustering for data involving the
extended pairwise constraints. Specifically, this paper adopts the following tech-
niques to improve deep clustering effectiveness: (1) Use partial samples with
pairwise information to extend the whole dataset, which makes full use of the
relationship information between samples. (2) Add the L1 norm to the loss func-
tion, allowing for feature sparsity to enhance model generalization. (3) Update
cluster centers with KL divergence to introduce more information during center
adjustments. Ultimately, experimental results from five datasets demonstrate sig-
nificant enhancements in clustering performance achieved by the semi-supervised
clustering algorithm proposed in this study.

Keywords: Pairwise constraints · L1 regularization · Semi-supervised
Clustering

1 Introduction

Clustering is typically executed using unlabeled data, yet real-world scenarios often
involve data with inherent pairwise relationships. For instance, we can easily classify
winged birds and wingless birds as non-birds. The pairwise information of data can
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be introduced into clustering to improve the performance of traditional unsupervised
clustering. Consequently, recent research trends have shifted toward the exploration of
semi-supervised clustering approaches based on pairwise constraints.

There are three common types of semi-supervised clustering [1]: (1) Semi-
Supervised Clustering based on pairwise constraints. Yang et al. [2] improved Cop-
Kmeans algorithm by using MapReduce. Li et al. [3] introduced a cross-entropy semi-
supervised clustering algorithm that relies on pairwise constraints, ensuring that even a
small amount of pairwise constraint information can lead to improved clustering out-
comes. Moreover, the majority of extant pairwise constraint propagation methods rely
on canonical graph propagationmodels, which struggle tomaintain both local and global
consistencywhile augmenting spatial complexity; (2) Semi-SupervisedClustering based
on distance. Wei et al. [4] proposed semi-supervised clustering based on pairwise con-
straints and metrics, which generates different basic clustering in two ways, then the
final clustering is obtained by integrating; (3) Semi-Supervised Clustering algorithms
combining constraints and distance [5].

Current semi-supervised clustering algorithms confront several challenges, including
the underutilization of prior information, limited model robustness and generalization,
an inability to extract deep features from data, sensitivity to the initial centroid selection,
and susceptibility to local optima [6]. To solve these problems, the paper is structured
into two main parts: pre-training and training. During the pre-training stage, the encoder
undergoes initial training. Pairwise prior information is acquired via the encoder to
determine the thresholds for theMust-link (positive samples) and Cannot-Link (negative
samples) constraints. And this threshold-driven pairwise prior information is extended
to encompass the entire dataset, resulting in an expanded set of pairwise constraints. The
pre-trained optimal encoder is integrated into the training process. The training process
involves the addition of the KL divergence to optimize the clustering target, and the
continuous and iterative use of Stochastic Gradient Descent (SGD) for back-propagation
to learn the map.

• We employ a few prior information to construct thresholds for both Must-Link and
Cannot-Link pairwise constraints. The canonical graph propagation models are dis-
carded, and iterative threshold information across the entire dataset to extend pairwise
constraints. This approach not only reduces spatial complexity but also ensures the
maintenance of both local and global consistency.

• We incorporate the L1 norm into the loss function to promote feature sparsity,
eliminate irrelevant features, and enhance the model generalization capability.

• WeutilizeKLdivergence to update cluster centers, introducing additional information
during the iterative adjustment of cluster centers.

2 Related Work

2.1 Pairwise Constraints

Wagstaff et al. [7] introduced the Cop-Kmeans algorithm, which combines the concept
of pairwise constraints with K-means clustering. Pairwise constraint information serves
as prior knowledge to supervise clustering, including Must-Link and Cannot-Link (ML
and CL) constraints. The pairwise constraint can force the model to cluster correctly and
reasonably, improve the clustering effect, and mine the deep features of data.



282 Y. Li et al.

Definition 1Must-Link the setM = {(xi, xk)}, if(xi, xk) ∈ M , then data xi and xk
must belong to the same class, xi and xk havingMust-link (positive sample) relationship.

Definition 2 Cannot-Link the set C = {(xi, xk)}, if(xi, xk) ∈ C if, then data xi and
xk must not belong to the same class, xi and xk having Cannot-Link (negative sample)
relationship.

2.2 L1 Regularization

L1 regularization refers to the sum of the absolute values of each element in the weight
vector w, usually expressed as ||w||1, L1 regularization can produce a sparse weight
matrix, that is a sparse model, which can be used for feature selection [8].

J = JO + δ
∑

W

|W | (1)

3 Semi-supervised Clustering Algorithm Based on L1
Regularization and Extended Pairwise Constraints

This section provides a comprehensive elucidation of the algorithm’s intricate details,
illustrated in Fig. 1. The algorithm unfolds in two primary stages: pre-training and
training. In the pre-training phase, a set of pairwise constraints is expanded, and the
L1 regularization procedure is employed to enhance the encoder, denoted as fθ . This
pre-training stage aims to refine the encoder’s performance. Then, during the training,
two steps are alternated. In the first step, the soft assignment is computed to associate
sample points with their respective cluster centroids. In the second step, the encoder is
updated using an auxiliary distribution, represented as p, which learns from the current
high-confidence distribution to optimize the cluster centers.

For a dataset, there are n pieces of data, and the corresponding data space is X.
Therefore, it can be expressed as {xi ∈ X }ni=1. We start by mapping the data nonlinearly
fθ : X → Z , where θ is a learnable parameter and Z is the mapped feature space. The
Z dimension will be much smaller than the X dimension to achieve the effect of feature
learning. Therefore, the entire optimization process is summarized in Algorithm 1.

3.1 Parameters Initialization

Zi : Similar to some previous studies [9, 10], the proposed model also needs pre-training
for better clustering initialization. Therefore, the first step of the pre-training process,
data xi (D-dimension) through the encoder fθ , into d-dimensional latent embedding zi.

zi = fθ (xi) (2)

where d � D.
Then d-dimensional latent embedding zi is reconstructed by the decoder network

g�:

x̂i = g�(zi) (3)
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Fig. 1. The overall framework of the proposed approach.

In an unsupervised mode, it is easy to obtain the initial high-level compact
representation by minimizing the following loss function:

Lnet =
n∑

i=1

||xi − x̂i||22 (4)

3.2 Soft Assignment

Compared with hard assignment, soft assignment can bring more information into the
iterative process of adjusting cluster centers. The probability distribution q is used to
represent the probability that the sample points belong to the cluster center. qij is used to
represent the probability that the dot zi belongs to the cluster center uj, and assuming that
the distribution of the sample points follows the T-Student distribution, qij is expressed
as:

qij =
(
1 + ||zi − μj||2/α

)− α+1
2

∑
j′
(
1 + ||zi − μj′ ||2/α

)− α+1
2

(5)

where zi = fθ (xi) ∈ z, it represents the feature mapping of data x after passing fθ , and
α is the degree of freedom of the T-Student distribution. As Van [11] shows, learning
about is superfluous, so we set α = 1.

3.3 Minimize KL Divergence

To optimize the soft assignment distribution Q, the auxiliary target distribution P is
further derived as:

pij = q2ij/fj∑
j′q2ij′/fj

(6)
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The auxiliary target distribution P can guide the clustering by enhancing the dis-
crimination of the soft assignment distribution Q. As a result, with the help of Q and P,
the KL divergence based clustering loss is defined as:

Lkl = KL(P||Q) =
∑

i

∑

j

pij log
pij
qij

(7)

3.4 Extended Pairwise Constraints

In general, a larger number of pairwise constraints leads to more specific prior informa-
tion, thus improving the model’s training efficacy. Therefore, this paper will expand the
prior information by expanding to pairwise constraints.

Using prior Must-Link pairwise constraints (MLbefore) and Cannot-Link pairwise
constraints (CLbefore) to pass through the encoder. We can get the average simi-
larity of the prior Must-Link (positive samples) pairwise constraint threshold α ×
MLbefore−average, the prior Cannot-Link (negative samples) pairwise constraint thresh-
old β ×CLbefore−average(α and β are threshold factors and their values will be discussed
in the experimental section below). If the similarity of two data (xi, xk) after passing
through the encoder (zi, zk), zik exists in the following relationship, we will extend them
into Must-Link (ML) pairwise constraints and Cannot-Link (CL) pairwise constraints.

{
Zik < α · MLbefore−average, (xi, xk) ∈ ML

Zik > β · CLbefore−average, (xi, xk) ∈ CL
(8)

This method extends prior pairwise constraints to all datasets, forming extended
Must-Link (ML) pairwise constraints and Cannot-Link (CL) pairwise constraints. The
effect is shown in Fig. 2.

Fig. 2. This figure shows the transformation of prior pairwise constraints into extended pairwise
constraints.

Then, the encoder is trained using the expanded pairwise constraints. Therefore, the
loss of pairwise constraints is expressed as:

Lpair = Cik

n∑

i=1

||zi − zk ||22/n (9)

According to Klein [12], Bilenko [13], Cik is a scalar variable that always satisfies
the following settings:

Cik =
{

+1, (xi, xk) ∈ ML

−1 , (xi, xk) ∈ CL
(10)
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When xi and xk are Must-Link (ML) pairwise constraints, Cik is 1. When xi and xk
are Cannot-Link (CL) pairwise constraints, Cik is −1.

Finally, to improve the stability and generalization ability of the model, L1
regularization is further introduced to obtain the following loss function:

L = Lnet + Lkl + Lpair + δ||Z||1 (11)

4 Experiment

4.1 Datasets

Toevaluate the algorithm, open-source datasetswere used to validate its effectiveness and
compared with various algorithms, including MNIST [14], USPS [15], FMNIST [16],
COIL20 [17], and DIGITS [18]. The information on datasets is shown in Table 1. We
adopt two standard metrics, i.e., clustering accuracy (ACC) [19], and normalized mutual
information (NMI) [20], to evaluate the performance of different clustering methods.

4.2 Experimental Environment

All experiments are implemented on a standard Linux Server with an Intel(R) Xeon(R)
CPU E7–4820 v4 @ 2.00 GHz, NVIDIA GeForce RTX 2080 TiGPUs, Ubuntu 18.04.6
LTS, python 3.10.9 and pytorch 1.21.1.
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Table 1. Information of datasets

Datasets Number of data Category Dimension

MNIST 70000 10 28 × 28 × 1

USPS 9298 10 28 × 28 × 1

FMNIST 70000 10 28 × 28 × 1

COIL20 1440 20 128 × 128 × 1

DIGITS 28000 10 28 × 28 × 1

4.3 Parameter Settings

About the batch size, except for the COIL20 dataset, which is 64, all others are 256. The
learning rate is 0.001, the random seed is 1000. Additional detailed parameters will be
discussed in Sect. 3.4.

4.4 Experimental Comparison

Compare the following algorithm with our algorithm: (1) K-Means [9] achieves sample
clustering by specifying n samples and k clustering centers through loss; (2) AC [21]
treats each sample as a class, and then merges it through measurement strategies to
complete clustering; (3) DEC [22] clusters latent spatial data by updating the clustering
center through soft assignment; (4) SCDE [10] estimates the number of clusters and
performs clustering by learning an autoencoder; (5) LRDSC [8] is the L1 regularized
deep spectral clustering algorithm; (6) WSCEC [23] is a weighted semi-supervised
clustering ensemble algorithm based on extended constraint projection.

From the ACC metrics in Table 2 on different datasets, compared to the SCDE,
DEC, LRDSC, and WSCEC algorithm, the ACC has increased by an average of 11.41,
10.38, 7.27, and 0.46 percentage points. From the NMI indicators on different datasets
in Table 3, compared to the DEC, SCDE, and LRDSC algorithm, the average NMI has
increased by 12.12, 7.90, and 7.78 percentage points.

Table 2. ACC Metric Comparison of Algorithms on Different Datasets

K-MEANS AC DEC LRDSC WSCEC OURS

MNIST 50.14 71.14 84.4 83.31 85.6 93.32 95.37

USPS 56.61 61.39 61.9 64.67 65.97 87.64 90.70

FMNIST 51.46 52.59 57.81 57.81 65.88 68.69 69.02

COIL20 76.16 80.95 61.0 64.56 69.44 75.10 70.37

DIGITS 49.44 66.44 78.4 86.79 90.97 90.32 88.73
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Table 3. NMI Metric Comparison of Algorithms on Different Datasets

K-MEANS AC DEC SCDE LRDSC WSCEC OURS

MNIST 54.67 69.48 81.6 79.02 79.92 89.65 87.67

USPS 61.39 57.3 58.6 67.04 61.39 78.62 73.51

FMNIST 48.3 51.31 62.83 66.45 66.82 74.62 75.32

COIL20 62.85 68.06 62.1 67.86 70.26 84.10 80.25

DIGITS 58.67 63.65 80.05 85.91 88.5 87.99 89.02

Different Proportions of Extended Pairwise Constraints on the MNIST. Accord-
ing to the study [24], the number of pairwise constraints has an impact on clustering
performance. Therefore, Figure 3(a) sets the proportion of pairwise constraints to 20%,
40%, 50%, 70%, and 100%, respectively, to compare the accuracy in the above five
datasets. Moreover, when the number of pairwise constraints accounted for about 70%,
the clustering effect of the dataset is better. When the pairwise constraint ratio is 100%,
the data shows overfitting, so the accuracy will decrease accordingly.

Convergence Analysis. From the following Fig. 3(b), it can be seen that during the
pre-training process of the MNIST dataset, When the Pre_epoch approaches 140, the
change in loss tends to be smooth. To reduce the pre-training time of the model, the
number of iterations for pre-training is chosen to be 140.

(a) (b)

Fig. 3. Figure (a) is the variation ofmodel accuracy onfive datasetswith the proportion of pairwise
constraints, and Figure (b) is the convergence analysis.

According toDEC[22], during the trainingperiodof theMNISTdataset, the accuracy
of model clustering tends to flatten out when the epoch E approaches 30. Therefore, we
only select the clustering changes and accuracy between the epoch 0 and the epoch 30
(increasing epoch accuracy will decrease). We use T-SNE to represent the vector point
zi to compare between the epoch 0 and the epoch 30. They are shown in Fig. 4(a) and
Fig. 4(b).

Parameter Sensitivity.We will discuss the prior Must-Link pairwise constraint thresh-
old factor α, the prior Cannot-Link pairwise constraint threshold factor β, and the L1
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(a) (b)

Fig. 4. Figure (a) is the distribution of vector points before training, the distribution is scattered,
and Figure (b) is the distribution of vector points after training.

regularization parameter δ. The following experiments will be conducted on the MNIST
dataset to discuss the impact of different parameter values on the model (epoch = 30).
Figure 5(a) shows the impact of α on model accuracy. We set it within the range of
2.4 to 3.8. When α = 3.0, the model has the highest accuracy, reaching 95.37, when α

> 3.0, the accuracy of the model decreases rapidly. Figure 5(b) shows the impact of β

on model accuracy. We set it within the range of 2.1 to 2.9, when β = 2.8, the model
has the highest accuracy, reaching 95.37. Table 4 shows the impact of L1 regularization
parameters δ on model accuracy. When δ > 1, the model loss is too large and the reverse
update is not obvious, so the δ is set to 0.1, 0.01, 0.001, 0.005, 0.0002, 0.0001, and the
impact of different δ values on the model accuracy is observed. From Table 4, it can be
seen that when δ = 0.005, the model has the highest accuracy.

(a) (b)

Fig. 5. Figure (a) is the prior ML pairwise constraint threshold factor α impact on model per-
formance, and Figure (b) is the prior CL pairwise constraint threshold factor β impact on model
performance.

Extended Pairwise Constraints. To better feel the impact of extended pairwise con-
straints, the changes in model accuracy during the training process are selected for both
ML and CL pairwise constraints. From Fig. 6(a), it is evident that extended Must-Link
pairwise constraints result in a better clustering performance compared to Cannot-Link
pairwise constraints.
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Table 4. L1 regularization parameters δ Impact on model performance

L1 regularization parameters(δ) Accuracy%

0.0001 87.33

0.0002 83.35

0.001 82.95

0.005 95.37

0.01 87.18

0.1 24.33

(a) (b)

Fig. 6. Figure (a) is the impact of extended pairwise constraints on model accuracy. Figure (b) is
the ablation experiment.

AblationExperiment.The following experiments discuss four scenarios on theMNIST:
(1) Using the DEC model; (2) Adopting the DEC model and L1 regularization; (3)
Adopting the DEC model and expanded pairwise constraints; (4) Adopting the DEC
model, L1 regularization, and extended pairwise constraints. For these four scenarios,
fixed pre-training iterations Pre_epoch = 140 are used, and the α is set to 3, the β is
set to 2.8, and the L1 regularization parameter δ is set to 0.005. From Fig. 6 (b), it
can be seen that the model using extended pairwise constraints has a more significant
improvement in accuracy. The above experiments fully demonstrate the effectiveness of
L1 regularization and extended pairwise constraints for our algorithm.

5 Conclusion

Our approach leverages extended pairwise constraints to harness prior information effec-
tively, ensuring superior clustering supervision. The integration of L1 regularization
enhances feature extraction by promoting sparsity, eliminating redundant attributes, and
bolstering the model’s generalization capacity. Furthermore, to address the sensitivity
associated with initial centroid selection, a pre-training encoder method is introduced,
proficiently guiding centroid determination. Then soft assignment mechanisms facili-
tate iterative centroid updates, thereby capturing richer information during the training
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part. Our experimental results unequivocally confirm the high feasibility and positive
outcomes of our algorithm.

Nonetheless, there remain areas for algorithmic enhancement, particularly concern-
ing its performance on the COIL20 and DIGITS datasets and addressing the model’s
extended runtime. We are committed to ongoing improvements in our future work.
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Abstract. This paper aims to extract, analyze, and review various types of mate-
rial information, such as business licenses and qualification certificates, from
electronic documents in bidding processes. These documents may be in vari-
ous formats such as images, scanned copies, and PDFs. Utilizing CRNN and
building upon well-trained models, our method demonstrates strong error correc-
tion capabilities, thereby enhancing the text recognition accuracy of the Guizhou
Power Grid Company’s bidding documents. The system is designed to automati-
cally extract and scrutinize key information frommulti-format bidding documents
obtained from diverse sources. It enables bid evaluation experts to accurately iden-
tify and locate issues in the essential information presented in various materials
within the bidding documents, through a user-friendly visual interface. Experi-
mental results indicate that our system can precisely extract pivotal information
from bidding documents across various formats, consequently reducing the review
and approval time. This research holds significant value and presents promising
application prospects by potentially lowering labor costs, as well as improving the
efficiency and fairness of the bidding process.

Keywords: Key Information go Bidding Documents · Information Extraction ·
CRNN · Strong Error Correction

1 Introduction

With the advent of internet advancements, electronic bidding documents are progres-
sively supplanting traditional bidding documents within the procurement process [1].
The incorporation of electronic bidding documents facilitates the realization of an intel-
ligent bidding information review mechanism. Reviewing crucial information embed-
ded within bidding documents is pivotal for evaluation, aiming to discern potential
discrepancies or non-conformities in various credentials such as business licenses and
qualification certificates. This ensures that bidding outcomes are fair, accurate, and effec-
tive. Nevertheless, the conventional manual review of these documents, owing to their
diverse origins and intricate content, is often marred by substantial time consumption
and susceptibility to errors.

In response to this, this paper endeavors to craft a meticulous and efficient text recog-
nition and review system leveraging CRNN technology [2]. This system autonomously
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extracts salient information from electronic bidding documents—including images,
scanned copies, and PDFs—and performs comprehensive analysis and review. Such
automation aids evaluators in swiftly and accu rately identifying disqualifying attributes
within biddingdocuments. EmployingCRNNsignificantly truncates the evaluation dura-
tion, enhances the assessment quality, and precludes the possibility of awarding bids
marred by incongruent materials.

The essence of this research lies in offering a solution that epitomizes intelligent
extraction, analysis, and review of critical information within bidding documents. It
seeks to address the prevailing challenges inundating the review process. By utilizing a
CRNN-based system, this study aspires to augment the precision of document evalua-
tion by efficaciously extracting, analyzing, and scrutinizing various elements within the
bidding materials [3]. The introduction of CRNN is instrumental in reducing the time
devoted to bid qualification assessments, thereby escalating efficiency and mitigating
labor expenditures.

A potent error correction mechanism has been integrated into this system, which
substantially bolsters the reliability of bid reviews by reducing oversights, enhancing
error detection, and uncovering fraudulent inclinations within critical bidding informa-
tion, ensuring that the bidding outcomes resonate with fairness and integrity. A visually
intuitive interface is deployed, allowing reviewers to meticulously observe and pin-
point potential inaccuracies within critical information, thereby bolstering the precision
of error identification. Through the meticulous design and implementation of this text
recognition and review apparatus, this study aims to furnish novel technical sustenance to
the evaluation of essential bidding document information, thereby fostering the continual
evolution and advancement of the procurement industry.

2 Related Work

2.1 Intelligent Text Review Technology

Text intelligent review encompasses a multitude of steps, including text recognition, text
parsing, and text extraction. Its fundamental objective is to autonomously identify and
extract pertinent information from an array of text materials, followed by a meticulous
review and filtration process. Within the automatic review system of bidding documents
and other related documents, text intelligent review technology assumes a vital role,
serving as the linchpin in optimizing and enhancing the accuracy and efficiency of
information extraction and analysis.

2.2 Text Recognition

Text recognition ordinarily acts as the initial phase in intelligent text review. In this
stage, OCR (Optical Character Recognition) technology is predominantly employed to
recognize and extract text from various documents such as images or PDF files [4].
Leveraging OCR technology facilitates the accurate extraction of textual information
from files, irrespective of their diverse formats and origins [5], thereby laying a solid
foundation for subsequent stages of text parsing and extraction.
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2.3 Text Parsing and Extraction

Following the recognition and extraction of text [6], the subsequent stages encompass text
parsing and extraction. Text parsing is instrumental in comprehending the text’s structure
and semantics, effectively transforming unstructured text into a structured format. Based
on the outcomes of the parsing process, text extraction ensues. This phase is dedicated to
isolating information of specific significance and value from the text, such as keywords,
entity nouns, links, among others, ensuring that meaningful components within the
content are meticulously identified and retrieved.

2.4 Model Training

Model training constitutes an essential component of intelligent text review [7]. Utilizing
machine learning or deep learningmethodologies,models are cultivated to autonomously
execute tasks such as text classification, named entity recognition, and sentiment anal-
ysis. The process of model training enhances the automation and intelligence of text
review, significantly alleviating the burden of manual review by optimizing the precision
and efficiency of the text analysis process.

2.5 Assessment and Challenges

Despite the successful integration of intelligent text review technology in various
domains [8], it is not devoid of challenges and limitations. Firstly, the accuracy of text
recognition is contingent on multiple factors such as image quality, font, and format.
Secondly, attributed to the diversity and intricacy of texts, there remains room for enhanc-
ing the precision of text parsing and extraction processes. Additionally, model training
necessitates a substantial corpus of annotated data, where acquiring high-quality anno-
tations often poses a significant challenge. To mitigate these issues, future investigations
could delve into strategies for bolstering the resilience of OCR technology, cultivating
advanced algorithms for text parsing and extraction, and augmenting model training
efficacy through the incorporation of transfer learning and semi-supervised learning
methodologies (Fig. 1).

3 Method

3.1 Image Preprocessing

Preprocessing of electronic files, such as images, scanned copies, and PDFs, primarily
involves utilizing image processing technologies to extract requisite feature informa-
tion. The extraction of key information from various materials, such as business licenses
and qualification certificates in bidding documents, is often impeded by a multitude of
factors, leading to inconsistencies in image quality and obfuscations fromvarious unfore-
seen variables. Prior to initiating the tasks of text recognition, analysis, and extraction,
it is essential to undertake a series of preprocessing operations on the samples. This
meticulous preparation facilitates enhanced speed and accuracy in computerized text
recognition. The preprocessing steps highlighted in this article encompass grayscale
conversion, binarization, denoising, and tilt correction, all crucial for augmenting the
accu racy and reliability of text recognition processes.
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Fig. 1. Text recognition process framework based on CRNN

3.2 CRNN Based Text Recognition

The CRNN (Convolutional Recurrent Neural Network) model exhibits formidable
robustness and precision in text recognition tasks, possessing the capability to man-
age input images of disparate sizes, and facilitating end-to-end text recognition. Given
that the dataset utilized in this article is image-centric, an essential preliminary step
involves the conversion of these images into text to facilitate subsequent text review
processes. CRNN ingeniously amalgamates convolutional neural networks (CNN) [9]
and recurrent neural networks (RNN) [10], enabling the capture of both local features
and sequential information essential for recognizing text regions within images.

Embodying the synergistic strengths of CNN and RNN, CRNN utilizes CNN for the
extraction of pivotal image features, while RNN is deployed for processing sequential
information. This fusion enhances the model’s versatility and application value, making
it particularly potent in text conversion tasks within images. Consequently, CRNN has
found extensive application in diverse areas such as document digitization, ticket recog-
nition, and license plate recognition. In this article, the CRNN model will be leveraged
to meticulously identify and review information contained in vital documents such as
business licenses and qualification certificates.

3.3 Data Expansion

To enhance the model’s convergence, we have augmented the existing data, thereby
improving the model’s generalization capability. The detailed data expansion process
unfolds as follows:

1. Training Image Expansion: Due to the limited volume of training data, converging
the model poses a challenge. This study enlarges the training dataset by randomly
scrambling the text on the training data images, culminating in 400 training datasets
and 84 test datasets. All training images were consolidated into a.tif format.

2. Character Boundary Generation and Adjustment: Training dataset boundaries are
meticulously modified manually utilizing Tess Box Editor, crafted using Java, to
safeguard the integrity of each character encapsulated within the boundaries.
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3. Defining Character Configuration File: A font properties file, delineating character
attributes, is articulated. Given the relatively consistent attributes of text in business
licenses, this study uniformly assigns all attributes a value of 0.

4. Generating.tr Training Files: Essential training files, denoted as.tr files, are produced
to facilitate the subsequent stages of the process.

5. Character Set File Creation: Specific files encapsulating the diversity of characters
within the dataset are cultivated.

6. Clustered Character Feature File Generation: Files embodying clustered features
of characters within the dataset are generated, contributing to the model’s learning
process.

7. Merging Training Files: Post-synthesis of the training files, a novel language library,
instrumental for the model’s learning and application, is birthed.

Each stage ismeticulously executed to ensure a robust and effectivemodel, optimized
for performing text recognition tasks with enhanced precision and reliability.

3.4 Text Recognition and Conversion

Upon securing the augmented dataset, we embarked on the task of text recognition
and transformation, and the specific training process unfurled as follows: 1. Feature
Extraction: Features were culled from images utilizing pre-trained CNN models. This
study deploys the ResNet-50 model [11] as a pivotal feature extractor, aiding in the
distillation of essential feature vectors from the images. 2. Sequence Modeling: The
meticulously extracted feature sequences are then integrated into the RNN for intensive
sequence modeling. Feature sequences, once harvested from convolutional layers, are
processed and sequenced through a recurrent neural network, fostering the nuanced
learning of sequential information.

3. Transcription Prediction: A transcription layer is meticulously applied to the RNN
output, harnessing the capabilities of CTC (Connectionist Temporal Classification) for
sequence prediction and transcription. CTC facilitates the mapping of the RNN’s out-
put sequence onto the input sequence, imbuing the sequence prediction process with
enhanced flexibility and adaptability.

Each phase of the process is executed with precision, ensuring that the model is
adeptly trained to recognize and transcribe text with enhanced accuracy and reliability.

3.5 Enhanced Error Correction Capability

This study employs the Seq2Seq model [12] to train models for word and grammar error
correction by post-processing transcription results, thereby obtaining the final recogni-
tion outcomes. The task of text error correction is conceptualized as a transformation
process between differing sequences. The original sentence represents the source state-
ment, while the corrected sentence embodies the target statement. Hence, the Seq2Seq
model is incorporated as a sequence transformation model within text error correction.

The foundational architecture of the Seq2Seq model comprises an Encoder-Decoder
network model. Here, the Encoder is instrumental in encoding the input text sequence
into a vector representation of a specified length. Conversely, the Decoder unravels the
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encoded vector representation, of a particular length ob tained from the Encoder, into an
output sequence. This systematic approach ensures enhanced accuracy and reliability in
the task of text error correction within the recognition process (Fig. 2).

Fig. 2. Seq2Seq Model Structure

4 Experimental Design

4.1 Experimental Dataset

The experimental dataset utilized in this study consists of electronic files of business
licenses and qualification certificates, provided by the Guizhou Power Grid Company.
Specifically, the business license dataset encompasses 558 images, with 400 allocated
as training sets and 158 designated as testing sets. In parallel, the qualification certificate
dataset comprises 487 entries, where 341 are reserved for training purposes, and 146 are
utilized for testing scenarios.

4.2 Evaluation Indicators

The evaluation metrics utilized in this study are delineated as follows: Precision: Preci-
sion signifies the proportion of characters that the OCR system has correctly identified
relative to the total number of characters that the system has recognized. This metric is
instrumental in gauging the accuracy of the system in character recognition. A height-
ened precision indicates an augmented likelihood of the system recognizing characters
accurately.

Recall Rate: The recall rate delineates the ratio of characters accurately identified
by the OCR system concerning the actual number of characters existing in the text.
This measure assesses the system’s comprehensiveness in character recognition, where
a higher recall rate symbolizes the system’s enhanced capability to correctly identify
extant characters.

F1 Score: The F1 Score acts as a confluence of precision and recall, serving as
an integral metric to equilibrate the two aforementioned measures. The F1 Score is
computed as the harmonic mean of precision and recall, articulated by the formula: F1
= 2 * (Precision * Recall)/(Precision + Recall). The range of F1 values is 0 to 1, with
higher values indicating better system performance.



298 Q. Xue et al.

4.3 Experimental Process

Experimental Procedure:

1. Data Collection:The experimental data are procured from electronic files, encompass-
ing business licenses and qualification certificates furnished by the Guizhou Power
Grid Company. Data Preprocessing:

2. Undertaking various preprocessingmaneuvers such as image denoising, binarization,
rotational adjustment, and image enhancement. Feature Extraction:

3. 3.Gleaning essential features from the imagery of individual characters. Pre-dominant
methods for feature extraction encompass algorithms centered around attributes like
shape, texture, and edge. Model Training:

4. The model undergoes training utilizing data from the training set, refining its
capabilities for the forthcoming evaluation. Model Testing and Evaluation:

5. The cultivated model is put through a series of tests using data from the test set to
ascertain its efficacy and precision. Metrics for evaluation encompass aspects such
as accuracy, recall, and the F1 score. Experimental Analysis and Optimization:

6. The model’s performance is meticulously analyzed based on the outcomes derived
from testing. Post-analysis, various experimental parameters are finetuned to enhance
model performance, such as tweaking model parameters, augmenting the training
dataset, and optimizing feature extraction methodologies.

5 Experimental Results and Analysis

In order to verify the correctness and compliance of information points in a single
document, this paper conducted a series of comparative experiments on the superiority
and effectiveness of the proposed contract named entity recognitionmodel that combines
BILSTM [13] + CRF and BERT [14] preprocessing models. In these experiments, this
article implemented three different models: LSTM [15] + CRF, BiLSTM + CRF, and
BERT+ CRF, and compared and analyzed them. This article evaluates the performance
of the system in text parsing and auditing by comparing the OCR accuracy, recall, F1
value, etc. of these models. The results on the business license are shown in Table 1.

For the experimental setup, this article used the same training, validation, and testing
sets to ensure that each model was trained and tested on the same dataset. This article
uses the same hyperparameter settings and optimizer to train each model.

Table 1. Results on Business License

Method Accuracy(%) Recall (%) F1 Value

LSTM + CRF 71.3 73.3 0.64

BiLSTM + CRF 77.7 76.3 0.52

BERT + CRF 84.8 80.4 0.59

Ours 89.5 83.0 0.82

The results on qualification certificates are shown in Table 2.
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Table 2. Results on Qualification Certificates

Method Accuracy(%) Recall (%) F1 Value

LSTM + CRF 65.3 66.3 0.62

BiLSTM + CRF 69.7 68.3 0.57

BERT + CRF 74.8 73.4 0.69

The experimentation has yielded insightful results regarding the model’s perfor-
mance on business licenses and qualification certificates when compared to other
prevalent models like LSTM + CRF, BiLSTM + CRF, and BERT + CRF.

1. Business License Analysis:The proposed model exhibits a remarkable improvement
with an accuracy boost of 18.2 percentage points and a recall enhancement of 9.7
percentage points over the LSTM+CRFmodel.When juxta-posed with the BiLSTM
+ CRF model, our proposed model triumphs with an 11.8 percentage point increase
in accuracy and a 6.7 percentage point ascent in recall. Compared to the BERT +
CRF model, our model has fortified its position with increments of 4.7 in accuracy
and 2.6 in recall percentage points.

2. Qualification Certificate Analysis: Against the LSTM + CRF model, our design
proves superior with an 18.3 percentage point advancement in accuracy and a 10.9
percentage point growth in recall.In a comparative study with the BiL-STM + CRF
model, our architecture shines with a 13.9 percentage point rise in accuracy and an 8.9
percentage point leap in recall.Showing resilience against the BERT + CRF model,
our proposition leads with an 8.8 percentage point progress in accuracy and a 3.8
percentage point development in recall.

3. Comparative Overview: In textual classifications akin to the ones under study, our
model displays an illustrious performance, dominating inmetrics like accuracy, recall,
and F1 scores over the other three scrutinized models.

4. Conclusion and Prospects: The comparative assessment underscores our method’s
substantial promise and applicability, manifesting significantly higher metrics like
recall and accuracy. Our methodology has been successful in accurately identifying
attributes in business licenses and qualification certificates. However, it’s imperative
to note that due to dataset constraints, our experiments were primarily focused on
business licenses and qualification certificates, and not as expansive across a diverse
array of textual data.

6 Application Cases and Discussions

In the progressive realm of text recognition, notable strides have been made by various
researchers. For instance, Siek [16] has innovatively proposed a sys tem that leverages the
powerful capabilities of Convolutional Neural Networks (CNNs) combined with intri-
cate deep learning algorithms. This meticulously crafted system has been instrumental
in enhancing the efficiency of the manual payment approval workflow by expediently
accelerating the processes of payment verification and confirmation, bypassing certain
traditional steps.



300 Q. Xue et al.

Achieving a remarkable 100% accuracy in detecting essential elements like trace
numbers, approval codes, and nominal values in the test dataset, Siek’s system showcases
formidable proficiency as an OCR (Optical Character Recognition) tool. It emerges as
a reliable and precise asset in tackling payment verifica tion challenges in real-world
commercial scenarios, embodying a robust solution for practical application.

Parallelly, in the wake of the burgeoning development of the Internet and the
widespread adoption of paperless office practices, electronic bidding systems have
evolved to become indispensable tools in facilitating project procurement across var-
ious organizations. The integration of CRNN technology within the bidding domain
signifies a monumental advancement, proving pivotal in addressing and resolving sig-
nificant challenges endemic to engineering sectors. This approach necessitates not only
robust technical backing but also fulfills pressing practical requisites.

The text recognition and intelligent review mechanisms, as delineated in this study,
manifest as transformative innovations, catalyzing remarkable improvements in opera-
tional efficiency within business processes, particularly in the context of bid document
information acquisition. Thus, it unfolds as a dynamic and efficacious strategy, promising
substantial enhancements in the realm of electronic bidding systems and beyond.

7 Conclusion

This paper introduces a proficient text recognition and review system based on CRNN,
designed for effective extraction and error analysis of bid content. Aiming to prevent
misjudgments in the bidding industry, the system ensures enhanced accuracy, fostering a
fair and just bidding environment.With a focus on continuous improvement, future adap-
tations are planned to further elevate the system’s performance, driving advancements
in the field of text recognition and review.
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Abstract. Under the growth of industrial digitization, networking and intelli-
gence, more and more industrial enterprises are undergoing digital transforma-
tions. In the tobacco industry, potential issues may arise during the packaging
phase, leading to packaging defects. In the traditional process, the camera shoots
at a fixed point and compares the designated focus area image with the stan-
dard image to determine whether it is defective or not. This thesis investigates a
defect classification method dedicated to the field of tobacco production, using
machine vision algorithms to detect the images of cigarette packaging. The objec-
tive is to determine the presence and the type of defects, which is conducive to
realize a automated and intelligent production mode. The method combines tra-
ditional computer vision techniques with deep learning models, and contains two
phases: first, traditional CV methods are directly used for some defects with obvi-
ous features and some positional offset defects, which improves the efficiency
and accuracy, and facilitates the subsequent classification; second, deep learning
methods are used for the remaining defects. For the multi-label classification, a
defect classification network is constructed and trained based on ResNet-34. After
experiments and research on all the defects (12 types), this method can meet the
needs of defect recognition.

Keywords: Machine Vision · Roll Wrapping · Defect Classification

1 Introduction

The innovation of industry is a subject that is full of vibrancy and imagination. Machine
vision mainly uses computers to simulate the visual function of human beings, extracts
information from the images of objective things, processes and finally uses them for
actual detection, measurement and control. It has achieved great success in many fields,
one of which is online automatic inspection in industry.

At present, the tobacco industry, being a significant component of the real econ-
omy, must demonstrate its role more prominently. When consumers buy cigarettes, its
appearance is an important selection criteria. It is indispensable to detect defects on the
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packaging surface in order to ensure the quality of cigarettes. In the traditional produc-
tion process, a camera is positioned to take pictures and a human eye observes them, and
if the picture of the designated focus area does not meet the predetermined standard, it
is recognized as a defect. However, the method is time-consuming and labor-intensive
with serious drawbacks.

This paper investigates a defect classification method for cigarette packages. It can
efficiently and accurately image inspection of cigarette packages to determine whether
there are defects and their types,which is helpful to locate the faulty steps.The application
of this method can improve production efficiency and product quality, and complete the
digital transformation from traditional to new industry.

A total of 12 defects can occur in the cigarette packaging process as a result of
research. Our study combines traditional computer vision techniques and deep learning
models and contains two phases. First, traditional CV methods are directly applied to
some defects with obvious features and some positional offset defects, which effectively
locate the cigarettes in the complex background. Second, a deep learning approach is
used for multi-label classification of the remaining defects, and a defect classification
network is constructed based on ResNet-34. The model is able to learn the abstract
features in the image and identify the type of defects.

Previously, many researchers have carried out a series of studies on the defect detec-
tion of cigarette packaging, but many methods have certain shortcomings, such as the
template matching method [1], which is greatly affected by environmental factors, and
the real-time anomaly detection algorithm for striped tobacco, which is lacking in real-
time [4], etc. In this regard, we adopt a combinatorial approach that can cope well with
the complex production environment. First, our method is more robust and applicable
to different sizes and rotation angles. Second, our approach covers the full range of
defects, which is more comprehensive compared to previous studies. This comprehen-
sive approach provides amore reliable quality control tool for the tobaccomanufacturing
industry and higher quality assurance for consumers.

The main contributions of this paper are as follows:

• We propose a new method, which makes up for some deficiencies in the field, covers
a wide range, is highly efficient and adaptable.

• We use a variety of techniques to combine traditional computer vision with deep
learning models, and different defects correspond to different detection methods,
which are faster and more accurate.

2 Related Work

Cigarette defect detection is an important issue that involves product quality control
and monitoring of the manufacturing process. At present, in the detection of cigarette
package appearance quality, the most traditional method is manual sorting, which has
highwork intensity and is not suitable for real-timedetection.With the rapid development
of artificial intelligence, many detection methods using computer vision have emerged
in China. For example [1], template matching method is used to match the cigarette
packaging to be tested with the template image, in order to identify whether there are
defects and what kind of defects they are.



304 W. Zhou et al.

Compared with the domestic, foreign products are nowmore mature technology. For
the defect detection of wrapping paper, some enterprises in developed countries have
developed some better detection systems, such as Germany’s Siemens, etc. [2], which
have greatly improved the efficiency of production, but its recognition effect is not good.

In order to improve the quality of cigarette packaging, many domestic researchers
have carried out many studies on the defect detection of cigarette packaging. Liu Wei
[3] carried out a study on the appearance detection of cigarette cartons based on con-
volutional neural networks. He used a convolutional neural network to detect cigarette
packages, simulating the human recognition process, and learning from a large amount
of data. However, the number of training samples is small. Yan Xibin et al. [4] proposed
a striped tobacco anomaly detection algorithm based on visual perception characteris-
tics, which meets the requirements of recognition accuracy, but still needs to be further
improved in real-time. Liu Huanming [5] proffered a cigarette small package seal defect
automatic detection algorithm based on Canny edge detection algorithm [6], firstly, the
small label is segmented from the image, and then the mean value filtering algorithm
is used to filter and denoise the image and other processing, so that the edge portion is
more prominent, which facilitates the detection of the final Canny algorithm. Li Qi [7]
collected image data on the appearance of cigarette packets, and used traditional CV
methods to process the collected images, while using noise reduction, and other meth-
ods to obtain a series of parameters, and by comparing with the standard parameters, to
determine the type of defects. However, this method is not perfect for the defect types,
and only some of the defects are targeted. Hongyu L et al. [8] presented a defect detec-
tion method based on C-CenterNet for the appearance of cigarettes, which introduces
the CBAM mechanism and utilizes a feature pyramid network to extract features from
various levels.

In summary, many domestic researchers have made research and exploration on the
defect recognition of cigarette packaging, but because of the complexity of the cigarette
production environment, many methods are still deficient and need to be improved, and
further research needs to be done on this.

3 Approach

3.1 Overview of Two-Stage Roll-Packet Defect Classification Algorithm

In the rolled packet defect classification algorithm, we divide the 12 kinds of defects that
will appear in the rolled packet process into two parts: the first part is the defects that can
be recognized by the detection frame, including Fig. 3 (d, e, j); the second part is the other
defects except for the first part and the empty packet defects. This is done because the
first type of defects do not perform well in deep learning frameworks, and the detection
frames account for a small percentage of the image, which is similar to noise, and are
prone to lose defective features in the convolution process. For detecting bad defective
QR codes, it is difficult for the deep learning network to learn useful information due to
its independence and the lack of statistical regularity among samples.

Therefore, we divide the overall process into two stages, first using traditional com-
puter vision methods to identify the detection frame location and determine which of
the first category the defect belongs to; if this is not possible, it is handed over to the
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deep learning network for multi-label classification to determine which of the second
category the defect belongs to, or several of them. In particular, for empty bag defects,
we utilize color as the discriminating condition. When the proportion of black, white,
metallic gray and green in the frame reaches 88\% or more, it is judged as an empty
packet defect.A sample of empty packet is shown in Fig. 3 (a).

3.2 Detection Frame Positioning Method

In this section, we put forward the corresponding technical methods and solutions for
the implementation process of the design part of the detection frame positioning as well
as the problems encountered, and give the schematic diagrams in the key parts.

The detection frames to be positioned in this section include the QR code red frame,
white frame and grey frame, as shown in Fig. 1 (a). Each detection frame has a different
role, in which the grey frame is used to regulate the position of the QR code, the QR code
needs to fall as close as possible to the grey frame, if there is a left-right offset, it may be
a positioning alignment defect; if there is a top-bottom offset, it may be a misalignment
defect in the cutting of the frame paper. The white frame of the QR code is used to make
reference judgement on the position. The red frame indicates that the two-dimensional
code is abnormal, when the grey frame and the two-dimensional code white frame has no
obvious positional offset, but the middle detection frame is red, indicating the existence
of two-dimensional code detection defects.

The specific idea of the detection frame localisation algorithm is to first sharpen
the image and then extract the desired colours such as grey, red and white. Then the
picture is intercepted to ensure that the detection frame is within the intercepted range.
In order to improve the accuracy of the detection results, the image is subjected to grey
scale expansion. Then, edge detection and straight line detection are performed on the
image to get all straight lines. Next, all straight lines are traversed, and straight lines
that tend to be horizontal are put into one list, and straight lines that tend to be vertical
are put into another list, and then adjacent straight lines are merged. Then, non-repeated
linear quadruple are continuously taken out from the list of horizontal straight lines and
the list of vertical straight lines, and if the linear quadruple satisfy the conditions for
constituting the detection frame, their central coordinates, as well as the coefficients
to be determined, are deposited into the array. Finally, a weighted average method is
used to calculate the coordinates of the final detection frame. In the following, we will
introduce each step of the detection frame positioning method.

Image Preprocessing. During image processing, we first adopt color filtering to map
the image from RGB color space to HSV color space to accurately extract regions of
specific colors, such as white, red, and grey, so as to optimize the accuracy of edge
detection and reduce the computational complexity. Considering that the target local-
ization box is mainly located in the left half of the image, we further mask the irrelevant
regions and enhance the visibility of the box by performing the gray scale expansion [9]
operation. After color filtering the image, we use Canny edge detection [10] algorithm to
accurately extract the edge lines. Next, by Hough straight line detection algorithm [11–
13], we extract straight lines from them. In order to improve the processing efficiency,
we screened and filtered the straight lines, mainly keeping the horizontal and vertical
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Fig. 1. Detection frame

straight lines, and merged the operations according to the pixel width of the straight
lines. Through such processing, the efficiency of the subsequent rectangle detection is
thus improved.

Find the Rectangle that Satisfies the Condition. Having obtained the horizontal and
vertical lines in the previous step, the next step is to find the quadruple of straight lines
that satisfy the conditions to form the rectangular frame.

For the inability to determine the positioning of the frame, it is possible to take the
average of the coordinates that may constitute the rectangular frame, but sometimes the
resultmaybe partially deviated. To address this phenomenon, aweighted averagemethod
based on the intersection of the rectangle and its constituent straight line is proposed. The
coefficients to be determined for this linear quadruple are calculated using the following
formula:

pi = lleft + lright + ltop + lbottom
Ci

(1)

whereCi denotes the perimeter of the black rectangular frame, and lleft, lright, ltop, lbottom
denote the lengths of intersections of the red straight line and the black edge. After
completing the traversal of the full graph straight line quadruple, the coordinates of each
rectangle centre are weighted and averaged with Eq. 2. Figure 1 (b) demonstrates the
effect on the positioning of the grey frame.

(xcenter, ycenter) = (
∑ pi∑

pj
xi,

∑ pi∑
pj
yi) (2)

3.3 Deep Learning Methods

In the defect classification problem, deep learning is able to utilize ResNet to form a
neural network for effective identification and classification [14]. In this section, for the
deep learning part, the data preparation part is introduced, and through the following
operations, we are able to improve the performance and accuracy of the model.
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Considering that the detection frames in the image may have an impact on the model
training, we used the image interpolation repair algorithm [15] to process the image in
order to eliminate the impact of the detection frames on the model training. Specifically,
we divided the gray box, green frame and red frame into two categories for processing,
because the proportion of gray in the image is too large, the gray frame is easy to mix
with the surrounding color, so we adopt the fine-grained processing, and directly use the
rectangle box detection method as the mask of the image interpolation repair algorithm.
Red and green frames, due to the special color, the proportion of a small and concentrated
distribution, the results of the edge detection is used for gray expansion as the mask of
the image interpolation repair algorithm. Figure 2 shows a schematic of the gray scale
expansion of the red and green boxes after edge detection.

After the preparation of the data is completed, the data can then be put into a neural
network for training. Since an image can be classified into multiple defect categories at
the same time, we define this task as amulti-label classification task.We choose Sigmoid
as the activation function and the binary cross entropy loss for the loss function.

Fig. 2. Schematic of grey scale expansion

4 Experiments

4.1 Experimental Settings

The paper’s experiments utilised the operating system Ubuntu 20.04.4 LTS, in conjunc-
tion with an NVIDIA Corporation GP102 [TITAN Xp] GPU for computing purposes.
For the training parameters, an epoch of 80 and a learning rate of 0.0001 were selected.
We have opted to utilize Adam [16] as the optimizer in this study. For image preprocess-
ing, the images in the training set were scaled to 224 × 224 and were randomly flipped
horizontally, and finally converted to a standard normal distribution. For the test dataset,
the random horizontal flip was reduced and the rest was consistent with the training set.

In addition, we have selected AUCROC (Area Under the Receiver Operating Char-
acteristic Curve) as our primary evaluation metric. We also present a Confusion Matrix
for each category to depict the model’s performance across different columns.
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4.2 Data Sets

In this paper’s experiments, the dataset is separated into a training dataset and a test
dataset. During the packaging process, 12 defect types may arise in actual production
as shown in Fig. 3. These defects include empty packets, packet internal abnormalities,
frame paper missing, poor detection of QR codes, frame paper cutting misalignment,
frame paper splice head, frame paper wrapped poorly, frame paper damaged, wrapping
paper tongue exposed, detection positioning alignment, containing foreign objects and
normal.

Defects are categorized into two groups: the first includes Fig. 3 (a, d, j); the second
encompasses nine other defect types. Our method employs deep learning models to
classify defects in the second category. Accordingly, the training dataset solely contains
samples of the second category of defects. Furthermore, the data containing foreign
objects in the smoke is scarce and has a high variance between samples. To counter this,
we utilize “oversampling” to enhance the data of this type of defect from 7 to 35. The
training dataset includes 9 types of defects, while the testing dataset includes 12 types
of defects, and each category has a different sample size. The exact distribution of the
dataset is presented in Table 1.

4.3 Training Results and Analyses

In the present study, a confusion matrix is employed for detailed performance analysis.
Figure 4 presents the confusion matrix for each defect type. Using the confusion matrix,
we identified indicators of defect types, as shown in Table 1.

Based on the supplied confusionmatrix and defect categorymetrics, a comprehensive
analysis reveals that themodel performs effectively on themajority of defect categories. It
accurately detects various defects in cigarette packets, including empty packets, internal
anomalies, missing or misplaced frame paper, poor detection of 2D codes, splicing and
wrapping issues, positioning alignment, and the mis-rejection of qualified packets. The
system achieves a high degree of accuracy and recall with values above 0.9 for accuracy,
precision, recall, and F1.

The model’s performance is somewhat inferior in identifying frame paper breakage
and cigarette packets containing foreign objects. A possible cause of the frame paper
breakage issue is the inadequate distinctiveness of the defect feature, while the low recall
and F1 score on the foreign object-containing smoke category may be attributed to the
rather limited training data. A possible cause of the frame paper breakage issue is the
inadequate distinctiveness of the defect feature, while the low recall and F1 score on the
foreign object-containing smoke category may be attributed to the rather limited training
data.

4.4 Comparative Experiments

In this investigation, a comprehensive empirical comparison is performed to illustrate
the superiority of the approach adopted by this project in the detection of defects in
rolled packages.
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Fig. 3. Types of packaging defects

Initially, the investigation conducts comparative experiments for algorithms used in
the localization of rectangular boxes. Conventional contour detection algorithms suf-
fer significant performance degradation when confronted with real-life scenes with
poor image quality, occlusion or poor noise. In contrast, the rectangular frame local-
isation algorithm proposed in this project still maintains high accuracy and stability, and
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Table 1. Distribution of data sets and indicators of defects by type.

Type of Defect # for training # for testing Accuracy Precision Recall F1-score

Empty packets – 52 1.00 1.00 1.00 1.00

Packet internal
abnormality

133 27 0.98 0.91 0.78 0.84

Framing paper
missing

220 40 0.99 0.95 0.98 0.96

Poor detection
of QR code

– 120 0.99 0.99 0.96 0.97

Frame paper
cutting
Misalignment

288 79 0.99 0.96 0.99 0.98

Frame paper
splice Head

113 27 1.00 1.00 0.96 0.98

Frame paper
wrapped
poorly

285 60 0.99 0.94 0.98 0.96

Frame paper
damaged

29 9 0.99 0.67 0.44 0.53

Wrapping
paper tongue
exposed

10 5 1.00 1.00 1.00 1.00

Detection
positioning
alignment

– 21 0.99 0.90 0.90 0.90

Containing
foreign objects

35 2 1.00 1.00 0.50 0.67

Normal 198 57 0.99 0.95 1.00 0.97

shows strong robustness. The experimental results illustrate that the traditional algo-
rithm achieves a recognition rate and accuracy of 89% when detecting red frames, 58%
when detecting white frames, and only 21%when detecting grey frames. In contrast, the
recognition rate and accuracy of the method proposed in this paper is 100% for detecting
both red and grey frames, and 95% and 89% for detecting white frames, respectively,
indicating that significantly higher accuracy is obtained.

In this study, we carried out comparative experiments on deep neural networks for
image classification, specifically ResNet [14], VggNet [17], and DenseNet [18]. Our
focus was on the classification of rolled packet defects, and we obtained varying results
for each type of network. Comparing the optimal AUCROC values of each model, it is
evident from Fig. 5 that ResNet34 has the best performance.
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Fig. 4. Confusion Matrix
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Fig. 5. Optimal AUCROC for each model

5 Conclusion

This thesis analyzes a set of defect classification algorithms for tobacco rolls and bales.
In order to classify the diverse defects that occur during the production process, we
combine deep learning with traditional computer vision methods. In the first part, we
designed the rectangular box weighted average localization method to accurately locate
the position of the rectangular box. In the second part, we used ResNet to do the multi-
label classification task for the residual defects and performance analysis was done using
AUCROC as the main evaluation metrics. Although the present algorithm has met the
demand, the time overhead is large and the performance of frame paper breakage defects
and smoke inclusion foreign object defects is poor, which is still worth improving and
upgrading.
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Abstract. With the emergence of advanced artificial intelligence technologies,
the use of ChatGPT (Generative Pre-trained Transformer) has gained significant
attention in the scientificwriting community. ChatGPT is amachine learning algo-
rithm that has the capability to generate text that resembles human writing. This
article provides a comprehensive review of the advantages, threats, and mitigation
strategies of applying ChatGPT to scientific writing. While ChatGPT presents a
range of benefits for scientificwriting, it also poses potential threats to the integrity
and accuracy of scientific content. To address this issue, a study was conducted to
test whether current AI detectors are able to reliably detect the use of ChatGPT in
academic writing. The outcomes raise pertinent questions regarding the ways one
can ensure the credibility and integrity of academic writing in the era of AI.
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1 Introduction

Recent advances in machine learning and natural language processing have enabled the
development of large-scale artificial intelligence language models such as Generative
Pre-trained Transformer 3, commonly known as ChatGPT [11]. It is an advanced lan-
guage processing model developed by OpenAI that has been trained on vast amounts of
text data and can generate human-like text based on the input it receives. Its capability
to provide natural language responses to scientific inquiries has made it increasingly
popular in research, including in natural language processing and computer vision. One
of the emerging areas of application for ChatGPT is scientific writing [4]. The model
has shown potential in generating coherent and informative scientific writing, includ-
ing abstracts, literature reviews, and even scientific manuscripts. By leveraging the vast
amounts of scientific literature available online, the model is able to generate high-
quality scientific writing that can save researchers time and effort in the writing process.
The model’s proficiency in processing large amounts of data with efficiency and speed
makes it a valuable tool for researchers working with complex datasets, automating
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tasks like literature review and hypothesis generation, resulting in significant time and
resource savings. This growing usage of ChatGPT in scientific research reflects the need
for efficient and effective ways to process and analyze large datasets and underscores
the increasing importance of artificial intelligence and machine learning in scientific
investigations.

Scientific writing is the foundation of the scientific enterprise. It serves as a means
of communicating research findings and ideas to other scientists and the broader public.
Scientific writing plays a crucial role in advancing scientific knowledge and informing
public policy decisions. Scientific writing is also the cornerstone of the scientific pub-
lishing industry, which relies on rigorous peer-review and quality control to maintain
the integrity of scientific publications.

However, the increasing use of machine learning models such as ChatGPT in sci-
entific writing poses potential risks to the integrity of scientific writing. For example,
the generated text may contain errors or inaccuracies that could misinform the scientific
community and the public. The use of ChatGPT-generated text may also raise ethical
concerns such as plagiarism and authorship, as it may be difficult to distinguish between
text generated by a machine and text generated by a human. Furthermore, the increasing
reliance on machine-generated text may have a negative impact on critical thinking and
analytical skills, as researchers may become overly dependent on the model’s output
rather than engaging in a deeper understanding and interpretation of the scientific liter-
ature. The challenges in interpreting and evaluating the output of ChatGPT-generated
text also raise questions about the validity and reliability of the generated text, and how
it should be evaluated in the scientific community.

It is imperative to deliberate on whether ChatGPT is a boon or bane to scientific
research due to various reasons. Firstly, with the increasing prevalence of ChatGPT
and other language processing models in scientific research, it is crucial to consider
the potential risks and benefits of using these models, including the possibility of bias,
limitations in data comprehension, and lack of transparency, as well as the potential for
increased efficiency, automation, and insights generated by these models. Secondly, the
use of ChatGPT in scientific research raises significant ethical questions regarding the
role of artificial intelligence in scientific inquiries, such as transparency, accountability,
and the appropriate use of AI in research. Thirdly, deliberations on the benefits and risks
of ChatGPT can promote best practices in the use of AI in scientific research and help
to ensure that these models are used ethically and responsibly.

Lastly, the discussion on whether ChatGPT is a blessing or a threat to science can
increase awareness of the expanding role of artificial intelligence in scientific research,
fostering interdisciplinary collaborations between computer science researchers and
those in other scientific fields. Overall, the discussion on the potential benefits and risks
of ChatGPT in scientific research is fundamental to encourage responsible and effective
use of artificial intelligence in scientific research and to progress our understanding of
the opportunities and challenges posed by these new technologies.
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2 ChatGPT and Scientific Writing

ChatGPT is an advanced language model that has been trained on a vast corpus of text
data, including a significant amount of scientific literature. This comprehensive training
has enabled it to generate highly informative and coherent scientific writing. Given its
capacity for producing high-quality scientific content, ChatGPT is an invaluable tool
for researchers looking to streamline their writing processes and expedite their research
efforts.

With its advanced natural language processing capabilities, ChatGPT can generate
various types of scientific writing, including abstracts, literature reviews, and scientific
manuscripts. Furthermore, ChatGPT’s AI-driven technology allows it to analyze the
scientific literature and provide researchers with insightful suggestions for enhancing
the quality of their writing. By leveraging this technology, researchers can optimize their
scientific writing, contributing to the advancement of knowledge within their fields.

There are several examples of how ChatGPT is currently being used in scientific
writing. One example is the use of ChatGPT in generating abstracts for scientific papers.
Researchers can input the key information about their study, and ChatGPT can generate
a concise and informative abstract that summarizes the study’s findings. This can save
researchers time and effort in the writing process and ensure that the abstract is well-
written and informative.

Another example is the use of ChatGPT in generating literature reviews. Literature
reviews are an essential component of scientific writing, as they provide an overview
of the existing research in a particular field. ChatGPT can be used to generate literature
reviews based on the input provided by the user, including keywords, authors, and other
relevant information. This can save researchers time and effort in the literature review
process and ensure that the review is comprehensive and informative.

Finally, ChatGPT can also be used to generate scientific manuscripts. Researchers
can input the key information about their study, and ChatGPT can generate a manuscript
that includes the introduction, methods, results, and discussion sections. While this may
not replace the need for careful editing and revision, it can save researchers a significant
amount of time and effort in the initial writing process.

Overall, these examples demonstrate the potential of ChatGPT in enhancing the
quality and efficiency of scientific writing. However, it is important to carefully consider
the potential risks to the integrity of scientific writing that may arise from the use of
machine-generated text. As such, it is crucial to develop guidelines and standards for
the responsible use of machine learning models in scientific writing to ensure that the
quality and integrity of scientific writing are maintained.

3 Case Studies and Examples of ChatGPT Use in Scientific Writing

While ChatGPT is still a relatively new technology in scientific writing, there are some
examples and case studies that can be examined to understand its current use and potential
impact on scientific writing. Here are some possible examples and case studies:

1. Use of ChatGPT for generating scientific abstracts:
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A study by researchers at the University of California, Los Angeles (UCLA) used
ChatGPT to generate abstracts for scientific papers in the field of computer science.
The results showed that the generated abstracts had a high degree of coherence and
accuracy compared to human-generated abstracts. However, the study also noted that
the use of ChatGPT could potentially raise issues with authorship and plagiarism.

2. Use of ChatGPT for generating literature reviews:
A study by researchers at the University of Alabama used ChatGPT to generate

literature reviews for a paper on deep learning. The researchers found that ChatGPT
was able to generate a comprehensive and coherent literature review that covered all
the relevant aspects of the topic. However, they also noted that the generated text
required significant editing and review to ensure accuracy and relevance.

3. Use of ChatGPT for generating scientific manuscripts:
A study by researchers at Carnegie Mellon University used ChatGPT to generate

a scientific manuscript on the topic of protein folding. The researchers found that
the generated manuscript had a high level of coherence and accuracy, and required
minimal editing. However, they also noted that the generated text lacked creativity
and critical thinking, and could potentially lead to a loss of human authorship and
creativity in scientific writing.

4. Use of ChatGPT for generating scientific explanations:
A study by researchers at the University of Alberta used ChatGPT to generate

explanations for scientific concepts in the field of genetics. The researchers found
that ChatGPT was able to generate accurate and coherent explanations, but required
significant editing and review to ensure relevance and clarity.

These case studies demonstrate the potential of ChatGPT for scientific writing,
as well as the challenges and limitations that come with its use.

4 Potential Threats to Scientific Writing

While ChatGPT has the potential to enhance the quality and efficiency of scientific
writing, it also poses several potential threats to the integrity of scientific writing. These
threats stem from the nature of machine-generated text, which may be prone to errors,
inaccuracies, and ethical concerns.

One potential threat of ChatGPT to scientific writing is the risk of errors or inac-
curacies in generated text. As a machine learning model, ChatGPT relies on the data
it has been trained on to generate text, which means that it may produce incorrect or
misleading information. This can have serious consequences in scientific writing, where
accuracy and precision are crucial.

Another potential threat ofChatGPT to scientificwriting is the potential forChatGPT-
generated text to be mistaken for human-generated text. If ChatGPT-generated text is
not clearly identified as machine-generated, it could be mistaken for human- generated
text, which can have serious implications, such as plagiarism and authorship concerns.

Otherways inwhichChatGPT can bemisused ormisinterpreted in scientific research
include:

– Overreliance on ChatGPT-generated responses: Researchers may become too reliant
on ChatGPT-generated responses and fail to critically evaluate them or seek out
additional sources of information, which can lead to incorrect conclusions.
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– Misinterpretation of ChatGPT-generated responses: ChatGPT-generated responses
may be misinterpreted by researchers who do not fully understand the context or
limitations of the model, which can lead to incorrect conclusions.

– Misuse of ChatGPT-generated responses: ChatGPT-generated responses may be
intentionally or unintentionally misused by researchers to support preconceived ideas
or agendas, which can lead to biased or inaccurate conclusions.

– Lack of diversity in training data: If the training data used to develop Chat-GPT is not
diverse enough, the model may not be able to provide accurate responses in certain
scientific contexts or may perpetuate biases and discrimination.

– Inadequate validation: Researchers may fail to adequately validate the ChatGPT-
generated responses, which can lead to inaccurate or unreliable conclusions.

In addition to this, the use of ChatGPT in scientific research raises several ethical
concerns. The ethical implications of using ChatGPT in scientific research are complex
and multifaceted. On the one hand, ChatGPT has the potential to increase the efficiency,
accuracy, and cost-effectiveness of scientific research, while also facilitating interdisci-
plinary collaboration and communication. However, the use of ChatGPT in research also
raises potential ethical concerns, such as the risk of bias, lack of transparency, limitations
in the understanding of the data, and potential threats to data privacy and security.

– Bias and fairness: ChatGPT may be trained on biased data, which can lead to biased
outputs and perpetuate existing inequalities. Researchers need to carefully consider
the data used to train the model and be aware of potential biases in the model’s
outputs. This can have significant ethical implications, particularly in areas such as
medical research or policy decision-making, where biased outputs can have serious
consequences.

– Privacy and security: ChatGPT can process large amounts of sensitive data, such as
patient medical records or financial information, which raises concerns about data
privacy and security. Researchers need to take steps to ensure that data is anonymized,
stored securely, and used only for the in-tended research purposes.

– Transparency and interpretability: ChatGPT can generate outputs that are difficult to
interpret, which can make it challenging for researchers to understand how the model
arrived at certain conclusions. Researchers need to ensure that their use of ChatGPT
is transparent and that they can explain how the model’s outputs were generated.

– Accountability and responsibility: ChatGPT can be used to generate outputs that have
significant consequences, such as making medical diagnoses or informing policy
decisions. Researchers need to take responsibility for the outputs generated by the
model and ensure that they are used ethically and responsibly.

– Informed consent: In some cases, ChatGPT may be used to generate insights based
on personal information without the explicit consent of the individuals involved.
Researchers need to ensure that theyhaveobtained informedconsent fromparticipants
and that they are using the data in away that is consistentwith their ethical obligations.

Additionally, if researchers use ChatGPT to generate text without clearly identifying
it as machine-generated, they may be at risk of unintentional plagiarism or authorship
issues. Then, the use of ChatGPT-generated text raises questions about the ethics of
giving credit for work that was largely produced by a machine. The use of ChatGPT-
generated text may also have an impact on critical thinking and analytical skills. If
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researchers rely too heavily on machine-generated text, they may become less skilled in
evaluating the quality and reliability of information. This could result in a reduction in
the critical thinking and analytical skills that are crucial for scientific writing.

Finally, there are significant challenges in interpreting and evaluating the output of
ChatGPT-generated text. As machine-generated text, the output may not be immediately
interpretable or understandable, which may pose challenges for researchers who need
to evaluate the quality and reliability of the text. This may require additional time and
effort to interpret and evaluate the output of ChatGPT-generated text, which could offset
the benefits of using this technology in scientific writing.

5 Mitigating the Risks of ChatGPT in Scientific Writing

While ChatGPT has the potential to revolutionize scientific writing, it also poses several
risks to the quality and integrity of scientific research. The risks include inaccuracies,
plagiarism, authorship issues, and the potential for themachine- generated text to bemis-
taken for human-generated text. However, these risks can be mitigated through various
strategies, including:

– Guidelines for the Use of ChatGPT: Tomitigate the risks of ChatGPT, researchers can
follow guidelines for its use in scientific writing. These guidelines can be developed
and disseminated by scientific organizations and institutions to ensure that these of
ChatGPT adheres to ethical standards and is in linewith best practices. The guidelines
can address issues such as when and how ChatGPT can be used, how to identify
machine-generated text, and the responsibility of the researcher in the use of such
technology.

– Training and Supervision: Another strategy to mitigate the risks of Chat- GPT is to
ensure that researchers are trained and supervised in the use of the technology. This
can be accomplished through workshops, training sessions, or mentoring programs.
Such programs can help researchers understand the limitations of the technology and
the potential for errors or inaccuracies in the generated text. Additionally, supervision
can ensure that the output is reviewed and validated by a human researcher to ensure
that it meets the quality standards of scientific research.

– Integration with Human Expertise: To ensure the quality and integrity of scientific
research, ChatGPT should be integrated with human expertise. Researchers should
use the generated text as a starting point for their research, but the final product should
be reviewed and validated by a human expert. This can ensure that the research is
accurate, reliable, and trustworthy, and reduces the risks of errors, inaccuracies, and
ethical concerns.

– Use of Multiple ChatGPT Models: The use of multiple ChatGPT models can also
mitigate the risks of machine-generated text. Researchers can use multiple models
and compare the output to ensure the accuracy and reliability of the text. This can
also provide a better understanding of the limitations and potential biases of the
technology.

– Validation and Verification: To ensure the quality and integrity of scientific research,
researchers should also validate and verify the output of ChatGPT- generated text.
This can be accomplished through peer review, cross-checking with other sources, or
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replication of the results. These strategies can reduce the risks of errors, inaccuracies,
and ethical concerns.

6 Detecting the Use of ChatGPT in Academic Writing

Several strategies exist for detecting the utilization of AI language models such as Chat-
GPT in academic writing. Firstly, inconsistencies in writing style, including tone, vocab-
ulary usage, and style, may be evident and can be detected by conducting a thorough
analysis of the text. Secondly, unnatural language patterns or grammatical errors in the
AI-generated text can be indicative of its origin and can also be detected through careful
analysis. Thirdly, unusually rapid response times for producing text may suggest the use
of an AI language model. Finally, the absence of contextual understanding may result
in irrelevant or nonsensical text being generated. It is worth noting that recognizing
AI-generated text in academic writing is a challenging task, and no method is entirely
foolproof. Nonetheless, a critical assessment of the text and a focus on these indicators
can aid in detecting potential cases of AI-generated text.

There are some tools and techniques that can be used to help detect the use of
ChatGPT or other AI language models in academic writing, although their effectiveness
may vary depending on the specific case.

Some plagiarism detection tools, such as Turnitin or Grammarly, may be able to
detect the use of AI-generated text, although they are not specifically designed for this
purpose. These tools may flag unusual language patterns, inconsistencies in style or
vocabulary usage, or other indicators that suggest the text was generated by a machine.
Another approach is to use stylometric analysis, which involves analyzing the writing
style and patterns of an author to identify unique characteristics or quirks. Stylometric
analysis can be used to detect changes in writing style or inconsistencies in a text that
may suggest the use of AI language models.

However, it is important to note that the effectiveness of these tools and techniques
may depend on various factors, including the sophistication of the AI language model
used, the skill of the writer in concealing the use of AI-generated text, and the specific
characteristics of the text being analyzed. As such, it is important to use these tools and
techniques as part of a broader approach to plagiarism detection and academic integrity,
which includes educating students on the importance of original writing and proper
citation practices.

7 Will AI Replace Scientists as Far as Writing is Concerned?

While it is true that AI can generate scientific articles using templates and predefined
structures, it is important to recognize that the process of scientific writing is more than
just presenting results. Writing is a crucial component of the scientific process, and it
involves much more than simply describing the findings of a study.

For example, scientificwriting requires critical thinking, data analysis, and the ability
to interpret and communicate complex concepts. It involves constructing a narrative that
explains the significance of the results and places them in the context of the existing lit-
erature. Additionally, scientific writing often involves the use of specialized terminology
and requires adherence to specific formatting and citation styles.
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While AI can certainly help with some aspects of scientific writing, it cannot replace
the critical thinking and interpretation skills that are necessary to produce a high-quality
scientific manuscript. Furthermore, scientific writing is an essential skill for scientists
and researchers to master, as it allows them to effectively communicate their findings to
a broad audience.1

8 Materials and Methods

Anobservant readermight have alreadynoticed that, up to this section, this paper has been
created entirely by means of artificial intelligence, i.e., Chat GPT. The steps followed
by the authors of this experiment were as follows:

1. Make the ChatGPT propose “the outline of an academic article on the advantages and
disadvantages of using ChatGPT in scientific writing”

2. Using the prompts from the outline, the authors asked the chat to elaborate,
emphasizing the requirement of writing in the appropriate style

3. The text was then edited - the redundancies were cut out. The authors decided to
refrain from adding to or changing anything else in the resulting text.

4. A search was conducted to find the sources for the use-cases given by Chat-GPT
(Presented in Sect. 3 of this paper).

It is worth mentioning that the tool initially refused to delve into the topic of its
being the threat to scientific writing, and called this claim “biased”. However, adding
two layers of hedging (using the words “might be” and “potential”) prompted the tool
to elaborate.

It is also noteworthy to mention that, when asked to provide the sources of the
use cases it provided, ChatGPT answered that “As an AI language model, I do not
have access to information about all studies conducted by researchers at the Univer-
sity of California, Los Angeles (UCLA). However, it is possible that the claim you
are referring to is based on a research paper titled “GPT-2 as a Tool for Generating
Abstracts for Scientific Papers in the Field of Computer Science” by J. Moses, A.
Manjunath, and R. Chitta. This paper, published in the Proceedings of the 2nd Work-
shop on Scholarly Document Processing at the Conference on Empirical Methods
in Natural Language Processing (EMNLP) in 2019, describes how the researchers
used GPT-2, a language model similar to ChatGPT, to generate abstracts for scientific
papers in the field of computer science.” It also added that “It is important to note that
ChatGPT is a separate language model from GPT-2 and has not been directly used in
this study. Additionally, it is always recommended to verify the source and accuracy
of any claims or information you come across.”

It was absolutely correct, as in the course of the study, it turned out that the refer-
enced paper’s title and authors have beenmade up - the said conference’s proceedings
contained no such paper. In other words, the alleged use cases have been fake as well.

1 Parts of the paper have been ChatGPT-generated. In order to fulfill the objectives of this paper,
the reader will be informed which content has been AI-generated in the further part of the paper.
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8.1 AI Content Detectors vs. ChatGPT-Generated Text

The samples extracted from the resulting paper (paragraphs belonging to the Introduc-
tion, Sects. 2 and5were then analyzedbymeans of a number of publicly available, freeAI
content detectors. For reference, two random paragraphs extracted from Authors’ other
papers, [8] and [7] were also checked. The results of this study have been presented in
Table 1.

Table 1. The results achieved with the use of AI content detectors

Sample 1
(AI)

Sample 2
(AI)

Sample 3
(AI)

Sample 4
(human)

Sample 5
(human)

Detector 1: Content
at Scale [1]

84% Highly
likely to be
human

93% Highly
likely to be
human

94% Highly
likely to be
human

98% Highly
likely to be
human

96% Highly
likely to be
human

Detector 2:
Copyleaks.com [2]

99.8%
probability
for AI

99.9%
probability
for AI

97.6%
probability
for human

99.7%
probability
for human

99.9%
probability
for human

Detector 3:
Corrector. App [3]

Fake 99.97% Fake 99.98% Fake: 0.40% Fake: 0.02% Fake: 0.02%

Detector 4:
Paraphrasingtool.ai:
Jarvis [5]

It’s likely
that a human
wrote this
text

It’s likely
that a human
wrote this
text

It’s likely
that a human
wrote this
text

It’s likely
that a human
wrote this
text

It’s likely
that a human
wrote this
text

Detector 5:
Paraphrasingtool.ai:
Veronica [6]

100% AI 100% AI 95% human
5% AI

100%
human

100%
human

Detector 6: Sapling
[10]

Fake:0.3% Fake:100% Fake:0.1% Fake:0.0% Fake:0.0%

Detector 7:
Writer.com [12]

4% human
–generated
content

25% human
–generated
content

76% human
–generated
content

100%
human
-generated

100%
human
-generated

Plagiarism Detector
[9]

100%
unique

100%
unique

100%
unique

90% unique 100%
unique

As it turns out, the classification of whether the content seems to be AI- or human-
generated depends primarily on the used detector. Detectors 1 and 4 were not able to
detect AI input at all. Detector 6wrongly classified Samples 1 and 3 as human-generated;
whilst Detectors 2,3,5 and 7 misclassified Sample 3. In turn, all the detectors correctly
classified the human-generated samples. In addition to this, as suggested by ChatGPT,
Samples 1–5 were tested by means of a plagiarism detection tool; all of them were
classified as 100% unique. The results of this experiment have also shown that whether
the AI-generated text is classified as AI- or human-generated largely depends on the
selected text sample.
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9 Conclusions

In conclusion, while the use of ChatGPT in scientific writing has the potential to be a
powerful tool, there are significant threats to its application in this context. The most
pressing of these threats is the risk of introducing errors or inaccuracies into scientific
research, which could have serious implications for the credibility and reproducibility
of scientific findings. Additionally, the lack of transparency in how ChatGPT generates
its responses means that it is difficult to fully understand or control the output, raising
ethical concerns around accountability and responsibility.

Despite these concerns, it is clear that the use of natural language processing tech-
nologies like ChatGPT will continue to be an area of intense research and development.
As such, it is important that the scientific community continues to investigate and address
the challenges and risks associated with their use in scientific writing. This includes
developing more sophisticated methods for detecting and addressing errors and biases
in generated text, as well as improving the transparency and interpretability of these sys-
tems. By doing so, we can ensure that these powerful tools are harnessed in a responsible
and effective manner, ultimately contributing to the advancement of scientific research
and knowledge.

Scientific research often involves complex andmultifaceted problems, and it requires
a deep understanding of the relevant scientific literature, as well as the ability to synthe-
size new ideas and insights. While AI can be trained to analyze and classify scientific
data, it cannot replicate the creative and intuitive aspects of the scientific process, which
are essential for generating novel hypotheses and designing innovative experiments.

Moreover, scientific writing often requires the ability to convey complex concepts
and data in a clear and concise manner that is easily understandable to a broad audience.
While AI can generate text based on a given set of parameters, it lacks the ability to
understand the nuances of language and to tailor messages to different audiences, which
is essential for effective communication.

Therefore, AI can assist scientists in writing scientific papers and help to automate
certain aspects of the process, such as formatting, grammar checking, and reference
management. However, AI is unlikely to replace scientists in the actual writing process,
as there aremany aspects of scientificwriting that require critical thinking, interpretation,
and judgment that are unique to the human mind.

…Is it unlikely indeed, though? The conclusions above were generated by AI, too.
They seem quite optimistic. Yet, with the results of the experiment proving that the
AI content detectors often are not able to correctly classify texts (as noticed by the
ChatGPT itself), it seems inevitable that journal editors and academic supervisors will
soon be flooded with quite convincing machine- generated texts, with the chances of
proving it being slim. Or, has it already happened?

One way to handle this issue would be to include a strict rule forbidding the submis-
sion of papers with any content generated by AI. As of the time of writing this paper,
using AI to write parts of a scientific publication, though morally ambiguous, has not
been handled in any way by any of the journals known to the authors.

It is alsoworrisome that, as shown in this paper,AI is capable of generating believable
fake facts, references, names and titles on the spot. This means that researchers and
reviewers from now on will have to manually check each and every reference, not only
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to see if the quoted claims are true, but if the paper exists at all. This undermines one of
the most basic foundations of scientific writing - the trust that the paper which we read
refers to the results of sound research and other, carefully reviewed papers.

On the other hand, there may be a silver lining to this situation. Namely, if the typical
structure of a scientific article is so easily reproduced and generated by an algorithm,
should the scientific community stop devoting too much time to providing these ele-
ments? In other words, maybe as long as we give credit where credit is due, there is no
need to resist change. Then, technology could let us devote our energies to performing
research and leave the process of presenting the outcomes to AI. After all, despite what
ChatGPT claims, scientific writing is about sharing results.
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Abstract. Interictal epileptiform discharges(IED) are abnormal electrical dis-
charges in the brain that play a crucial role in diagnosing epilepsy. IED detec-
tion is complex due to the non-stationary nature of electroencephalogram (EEG)
signals. Meanwhile, the traditional identification of IED usually relies on manual
EEG interpretationwhich is subjectively biased.With the development ofmachine
learning and deep learning, computer-aided models are proposed on a fast lane
in IED detection. Transformer is the latest deep learning architecture that excels
at processing sequential data by employing self-attention mechanisms, enabling
it to capture long-range dependencies. In this study, we proposed a novel IED
detection approach, named “IED Conformer”, based on Transformer. Based on
the analysis of 11 pediatric epilepsy patients, the new approach achieves an IED
detection accuracy of 96.11%. The proposedmethod is expected to help healthcare
professionals more accurately identify and manage epileptic conditions in their
patients.

Keywords: Epilepsy · IED Detection EEG · Transformer · Deep Learning

1 Introduction

Epilepsy is a prevalent chronic neurological disorder, [1] affecting approximately 50
million individuals across all age groups worldwide. For adult epilepsy patients, there
is an elevated 8 − 17% risk of Sudden Unexpected Death in Epilepsy (SUDEP), while
pediatric epilepsy patients face an even higher risk of 34%. [2] Interictal epileptiform
discharges (IED) manifest as distinct electroencephalogram(EEG) patterns during the
interictal periods. EEG, a non-invasive examination method, is employed to record and
measure neuronal electrical activity in the cerebral cortex. [3] It is commonly used to
detect seizure events and diagnose other seizure-like phenomena resembling epilepsy,
[4] as well as for IED analysis. Early IED examination facilitates the assessment of a
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patient’s risk of epilepsy recurrence. More frequent or intense epileptiform discharges
during interictal periodsmay indicate a higher likelihood of recurrence, aiding physicians
in evaluating disease progression and devisingmore effectivemanagement strategies. [5]
In clinical practice, neurologists often manually analyze EEG data to identify IED, but
the non-stationarity and complexity of EEG present challenges, making this task prone
to errors, time-consuming, and costly. Moreover, different levels of expertise among
professionals may lead to varying interpretations during EEG examinations. [6] Hence,
there is an urgent need for a highly reliable and auto- mated IED diagnostic approach.

The development of automated methods for the detection of IED has emerged as
a critical area of research in the field of epilepsy diagnosis and treatment. As early as
1983, Guedes de Oliveira et al. employed pattern recognition techniques to identify
and quantify interictal epileptic activity present in human scalp EEG in s single mini-
computer. [7] In 1992, Gabor and Seyal applied Feed-forward, error- back-propagation
artificial neural networks to IED recognition. [8] In 2013, Lodder et al. utilized the IED
“Intelligent Template Database” to match EEG in order to identify IED. [9, 10] In 2018,
Bagheri et al. developed a method for minimizing background data in EEG recordings
through the implementation of a classifier cascade. Subsequently, the data that remains
can be subjected to alternative detection techniques. [11] In recent years, with the rise
of deep learning methods, Convolutional Neural Networks (CNN) [12] and Recurrent
Neural Networks (RNN) [13] were introduced into IED detection, resulting in significant
performance improvements compared to traditional machine learning approaches. Deep
learning models have the capability to automatically learn feature representations from
raw data, eliminating the need formanual feature engineering and greatly simplifying the
IEDdetection process. [14]Within the context of IEDdetection,CNNhas been applied to
automatically identify and analyze EEG signals with IED annotations, assisting medical
professionals in the diagnosis and monitoring of epilepsy, and leading to the develop-
ment of various CNN-based detection models. [15] Similar to CNN’s impressive feature
representation ability in computer vision tasks, [16] research has demonstrated that
advanced CNN models, such as ConvNet, [17] have achieved better performance than
traditional algorithms in EEG classification tasks, successfully learning discriminative
features from the convolutional layers. Furthermore, compact EEGNet [18] has exhib-
ited remarkable performance in temporal feature perception and demonstrated excellent
generalization across multiple brain-computer interface paradigms.

The IED signal is a time-series data, while CNNmainly focuses on local features and
lacks the ability to model long-term dependencies in time series, and epileptic gap-phase
spikes tend to have time-specific patterns and temporal features. Recently, an attention-
based Transformer has achieved great success as a powerful sequence processing in the
field of natural language processing, [19] and this model has also begun to be applied in
EEG decoding and achieved excellent performance by exploiting the long-term temporal
relations. [20, 21] However, the Transformer may neglect the learning of local features,
which is necessary for IEDdecoding. In this case, additional feature extractionprocessing
such as activity maps and spatial filters must be added to compensate. [22] Recently a
framework calledConvolutionTransformer(Conformer) has been proposed to synthesize
the advantages of CNN and Transformer, [23] and it also has good interpretability and
running speed. So in this paper, the IED Conformer model is applied to detect and
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classify the IED datasets of 11 pediatric epilepsy patients, and the computational results
show that the method achieves an average accuracy of 96.11% on the test set.

The paper is organized as follows: data acquisition, preprocessing, proposed specific
methodology and performancemetrics are given in Sect. 2. Detailed experimental results
and analytical discussion are given in Sect. 3. The conclusions of this study are presented
in Sect. 4.

2 Data Preprocessing and Method

2.1 Data Acquisition

The datasets utilized in this experimentwere collected from11pediatric epilepsy patients
atWuhan Children’s Hospital, as shown in Table 1. EEG recordings were acquired using
19 channels under the international 10–20 system, with the sampling rate at 500Hz. This
study obtained approval from the Research Ethics Committee of Wuhan Children’s
Hospital, with IRB number 2022R034-E01.

Table 1. EEG sampling information of 11 epilepsy patients.

ID Gender Age(Year) EEG Duration(s) Numbers of IED

Sub01 Male 10 487 135

Sub02 Female 4 1745 90

Sub03 Male 11 1798 124

Sub04 Male 10 780 55

Sub05 Female 5 945 131

Sub06 Male 4 913 122

Sub07 Female 12 3445 87

Sub08 Male 6 3723 106

Sub09 Male 10 1893 114

Sub10 Male 9 2299 111

Sub11 Male 12 932 131

2.2 Preprocessing

The flowchart of the preprocessing is shown in Fig. 1. The raw EEG was band- pass fil-
tered at frequency band [0.5, 50] Hz to remove high-frequency components and perform
DC-removal. Independent Component Analysis(ICA) is widely used to remove common
EEG artifacts (muscle, blink, or eye movements) from the data without removing the
affected portions of the data. The ICA component rejection followed the ICA artifact
removal instruction of EEGLAB2022.1. All preprocessing operations are performed on
Matlab 2018b.
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Fig. 1. Data Analysis Flowchart. The raw EEG was filtered between [0.5, 50]Hz, and then pure
EEG signals were extracted by ICA and artifact removal techniques. The data was then segmented
using a sliding window.

The long-term EEG is divided into segments using a 600ms sliding window with
300ms overlapping. When the sliding window program is executed, the IED start and
end time in the data annotation file is automatically read and each EEG is segmented.
A demonstration of IED and non-IED EEG segments is shown in Fig. 2. As mentioned
earlier, each dataset is divided into segments. Specifically, given a datasetD∈ (XN1, yN1),
(XN2, yN2),…, (XNi, yNi), 1 ≤ i ≤ 11 where Ni is the total number of EEG segments for
patient i. The jth segment Xj ∈ RC×T , 1≤ j ≤ Ni contains C channels, and each segment
contains T time points, where C = 19, T = 300, in this study. The class label of segment
j is denoted by yj ∈ (0, 1), corresponding to non-IED and IED respectively.

Fig. 2. A Demonstration of IED and non-IED EEG Segments.
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2.3 IED Conformer

CNN typically consists of multiple convolutional layers, activation functions, pooling
layers, and fully connected layers. The convolutional layers apply convolutional oper-
ations to the input and pass the results to the next layer. Convolutions simulate how
individual neurons respond to visual stimuli. Activation functions are commonly used
for the outputs of convolutional layers, enhancing the model’s representational capacity.
Pooling layers combine the outputs of clusters of neurons from the previous layer into a
single neuron in the next layer, reducing the size of feature maps while retaining essen-
tial features. Fully connected layers establish connections between each neuron and all
neurons from the previous layer, transforming aggregated feature maps into the final
classification or regression results. Researchers have tried to use CNN for IED detec-
tion, and as expected, CNN has achieved good results in IED detection work. However,
due to the limitation of kernel size, CNN learns features with local receptive domains
but fails to obtain long-term dependencies, which are crucial for time series. Therefore,
IED Conformer, which combines CNN and Transformer, is proposed for IED detection.

The IED Conformer framework is composed of three interconnected components: a
convolution module, a self-attention module, and a classifier. In the convolution module,
we initially employ temporal and spatial convolutions to capture the local temporal and
spatial features of the IED. The first layer comprises 40 filters, each with a size of (1, 25)
and a stride of (1, 1), indicating that convolution is applied along the time dimension.
The subsequent layer retains 40 filters sized (ch, 1) with a stride of (1, 1), where ch
corresponds to the number of electrode channels in IED data. This layer functions as
a spatial filter, capturing the relationships between different electrode channels. Batch
normalization is then applied to enhance training and mitigate overfitting. We employ
exponential linear units (ELU) as the activation function for introducing nonlinearity.
Using average pooling to slice the temporal feature segments effectively reduces model
complexity while eliminating redundant information, the pooling kernel with the size of
(1, 75), and a stride of (1, 15). Finally, we rearrange the feature maps obtained from the
convolution module by compressing the electrode channel dimension and transposing
the convolution channel dimension with the time dimension.

Next, we treat each convolutional channel at every time point as a token and input
them into the self-attention module. Within this module, we use self-attention to capture
global temporal dependencieswithin IED features, ad- dressing the constrained receptive
field inherent in the convolution module. The tokens organized in the preceding module
undergo a linear transformation, resulting in three equivalents termed query (Q), key
(K), and value (V). The correlation between distinct tokens is evaluated through dot
product computation on Q and K. The outcome is then processed by a Softmax function,
generating the attention score matrix. Subsequently, the attention score is used to weigh
the values in V through another dot product operation. This process can be formulated
as:

Attention(Q,K,V ) = Softmax(
QK√
k
)V (1)

where k denotes the length of a token. We also employed a multi-head strategy to further
increase representational diversity. Tokens were divided into segments and fed into the
self-attention module, and the results were concatenated as module outputs.
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Finally, a simple fully connected layer produces the decoding results. The framework
architecture of IED Conformer is shown in Fig. 3. Inspired by this model, we trained it
on our EEG datasets and analyzed the results of IED detection.

Fig. 3. The Framework Architecture of IED Conformer. The whole framework is com- posed of
three parts in series: convolution module, self-attention module, and classifier.

2.4 Evaluation Metrics

In the performance evaluation, the IED segment is marked as “positive”, while the non-
IED segment is marked as “negative”. Therefore, for each test sample, a binary classifier
has 4 possible outcomes:

1. True positive (TP);
2. False positive (FP);
3. True negative (TN);
4. False negative (FN).

Three statistical metrics (accuracy, recall, and precision) are used to evaluate the
model classification performance. Accuracy is used to calculate the proportion of accu-
rately classified samples and to evaluate the overall classification effect. Recall measures
the ability of amodel to correctly identify IED instances out of all the actual IED instances
in the datasets. A high recall indicates that the model is good at capturing IED instances.
Precision measures the accuracy of a model in correctly identifying IED relative to all
the instances that the model classified as IED (both true IED and false IED). A high
precision indicates that when the model predicts an IED, it is likely to be correct. The
evaluation metrics are calculated as:

Accuracy = TP + TN

TP + TN + FP + FN
(2)
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Recall = TP

TP + TN
(3)

Precision = TP

TP + FP
(4)

3 Result and Discussion

In this paper, the IED datasets of 11 pediatric epilepsy patients were individually trained
and tested to evaluate the detection performance of the models. The respective accuracy,
recall, and precision are also indicated.

3.1 Performance Evaluation

Five-fold cross-validation was used on the datasets to test the IED detection performance
of the model. Table 2 lists the results of the best score evaluation of the two models on
the 11-patient IED test set, and the results show that the detection performance of the
two models is relatively good.

Table 2. Results of IED Conformer and EEGNet under three evaluation indicators.

ID IED Conformer EEGNet

Accuracy(%) Recall(%) Precision(%) Accuracy(%) Recall(%) Precision(%)

Sub01 95.16 92.70 94.37 92.97 90.70 93.98

Sub02 90.44 93.25 86.87 90.23 96.88 85.54

Sub03 98.53 99.82 96.56 97.53 99.95 95.20

Sub04 99.89 99.75 99.62 99.04 98.63 99.31

Sub05 97.29 97.68 93.20 94.77 97.00 93.17

Sub06 95.08 97.03 93.29 89.56 91.61 89.64

Sub07 97.16 98.80 95.39 91.99 90.50 93.46

Sub08 99.25 99.95 98.39 97.08 97.37 98.58

Sub09 86.77 93.88 79.30 76.28 99.06 68.22

Sub10 99.86 99.89 99.08 98.10 97.76 98.45

Sub11 96.76 95.19 96.25 90.74 87.50 93.56

Average 96.11 97.08 93.85 92.65 95.18 91.74

Due to individual differences between patients, there is some variation in the quality
of the test from subject to subject. For example, patient 4, patient 8, and patient 10
were able to achieve 98% on all three evaluation indexes on IED Conformer and more
than 97% on EEGNet, this indicates that these patient samples have features that are
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relatively easy to be detected by IED Conformer. The recall of EEGNet on patient 2 and
patient 9 reaches 96.88% and 99.06% significantly higher than that of IED Conformer’s
93.25% and 93.88%, respectively, suggesting that the data from patient 2 and patient
9 may contain some specific sample features that may be more adapted to EEGNet,
making them easier to detect. This may also indicate that IED Conformer is relatively
less adaptable for some specific samples. However, certain patients have not performed
well on the two models, for example, patient 9 has an accuracy of 86.77% on the IED
Conformer and only 76.28% on the EEGNet, and patients 2 and 9 have precision rates
of 86.87% and 79.30% on IED Conformer, respectively, and only 85.54% and 68.22%
on the EEGNet, but the recalls all exceeded 93%, especially EEGNet’s recall of 99.06%
on patient 9, suggesting that EEGNet may be more inclined in some cases not to miss
a patient’s true abnormality, i.e., to focus more on a few categories of detections, even
though it may misclassify some normal conditions as abnormal. Except for the patients
mentioned above, the classification results are highly satisfactory. The last row of Table 2
shows the average results of the three statistical measures for all 11 patients, with an
average classification accuracy of 96.11% for IED and non-IED in the IED Conformer,
and average recall and precision of 97.08% and 93.85%, while in EEGNet these three
evaluation metrics are 92.65%, 95.18% and 91.74% respectively. It is indicated that IED
Conformer is slightly more comprehensive in terms of overall performance for the same
dataset, but this is not absolute. There are some differences in the performance of the
two models in different patients, suggesting that there is still room for improvement in
IED Conformer in some specific cases.

In general, the accuracy of both IED Conformer and EEGNet classifies better on
most of the patients, and IED Conformer outperforms EEGNet on each patient. The
results also show that recall performs very well on all patients, with both averaging
97.08% and 95.18%. This indicates that our proposed model has high sensitivity in
recognizing IED and can effectively capture true positive cases. The high recall value
further confirms the good performance and robustness of our model in detecting IED.
The results indicate that the recall rate can generally exceed 90%, except for individual
patients. This suggests that the model is adept at recognizing the target category and
can effectively prevent missing IED. The high precision value further confirms that our
model has good accuracy and reliability. These results provide strong support for the
credibility and robustness of the model in clinical IED detection.

3.2 Computational Cost

The detection of IED is of great significance in the diagnosis, treatment, and condition
assessment of epilepsy, which can provide an important basis and guidance for doctors,
but the research on automatic CNN-based IED detection is still in its infancy. [24] In
this paper, a model based on IED Conformer was evaluated on non-invasive scalp EEG
data. The average accuracy rate of EEGNet reached 92.65%, and the accuracy rate of
IED Conformer even reached 96.11%, which shows good results in comparison with
previous studies. It can be seen from Table 3 that the running time of IED Conformer
is much faster than that of EEGNet, even 3807 s faster on patient 8, and 17774 s faster
than EEGNet on the whole.
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Table 3. Running time of IED Conformer and EEGNet. (Unit: Second)

ID Models

IED Conformer EEGNet Difference

Sub01 201 552 351

Sub02 1073 2757 1684

Sub03 1092 2955 1863

Sub04 300 896 596

Sub05 516 1436 920

Sub06 480 1382 902

Sub07 1921 4704 2783

Sub08 2278 6085 3807

Sub09 1060 2862 1802

Sub10 1413 3811 2398

Sub11 423 1091 668

Sum 10757 28531 17774

3.3 Future Work

Of course, there are still some deficiencies in the related research of this paper. In the
first aspect, IED usually has different wave bands, which indicates that even the same
patient may have different types of IED. [25] Therefore, further identification of specific
waveforms of IED would be of additional benefit to physicians in clinical diagnosis
with greater help, its future applications will be more promising. In subsequent studies,
more detailed preprocessing of the original data is required, which may involve multi-
classification issues. In the second aspect, the data used in the research in this article
only comes from 11 pediatric epilepsy patients. It is not clear that good results can be
produced on all EEG datasets, so subsequent studies may also be centered on training
the model on different datasets and expanding the sample size in order to have a good
theoretical basis for clinical trials.

4 Conclusion

Automated IED detection can efficiently, quickly, and objectively detect the presence of
IED in an EEG segment, saving analysis time and manual labor, reducing the influence
of subjective factors, and assisting physicians in providing an auxiliary diagnostic basis
for a more accurate treatment plan. This paper investigated the practicality of IED Con-
former on IED datasets of 11 pediatric epilepsy patients, and the results showed that the
model achieved a classification accuracy of 96.11%, which suggests that the use of IED
Conformer for IED identification is theoretically feasible. However, limitations such as
the inability to specify the specific waveforms of IED and the insufficient amount of
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data in this study indicate that the results are not generalizable. Subsequent studies will
focus on these aspects and further optimize the model structure.
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Abstract. Accurate traffic sign data recognition is crucial for enhancing safety
in autonomous driving system. However, recognizing traffic signs from natural
scenes is challenging due to factors like dim lighting, occlusion, and blurriness,
which make traditional deep learning algorithms inefficient. These algorithms
require a larger number of parameters to construct network models to achieve
higher recognition accuracy. Balancing parameter quantity and accuracy, and
building an efficient road traffic sign recognition system, is an important research
topic in the field of autonomous driving. In response to these challenges, we intro-
duce a novel architecture named Dynamic Feature Extraction-Efficient Vision
Transformer (DFE-EViT). This innovative design comprises two components: a
dynamic feature extraction network and an Efficient Vision Transformer (EViT)
classifier. By synergizing local information and global receptive fields, this archi-
tecture is uniquely equipped to handle intricate and dynamic traffic sign recog-
nition scenarios. The experimental results show that the method proposed in this
paper improves the efficiency of road traffic sign recognition in natural scenes,
and the network has the advantages of small parameter size and high recognition
accuracy. The model proposed in this paper has only 0.859M parameters, but the
accuracy can reach 98.4%.

Keywords: Traffic Sign Recognition · Vision Transformer · Dynamic Feature
Extraction

1 Introduction

Road traffic sign recognition is a key area in autonomous driving technology [1–4],
and its importance is reflected in several aspects. Firstly, road traffic signs are an essen-
tial component of the road traffic system, carrying the transmission of traffic rules and
restrictions. Accurate and timely recognition and understanding of traffic signs are cru-
cial for the safe and compliant operation of autonomous vehicles. By recognizing road
traffic signs, autonomous vehicles can accurately acquire road information, including
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speed limits, prohibitions, road indications, etc., enabling them to make correspond-
ing decisions and driving plans. Secondly, road traffic sign recognition combines the
development of autonomous driving technology with artificial intelligence technology.
Autonomous driving technology achieves vehicle autonomy by leveraging sensors, data
processing, and control systems. Complementing this, artificial intelligence technolo-
gies, particularly computer vision and machine learning, play a vital role in enhancing
road traffic sign recognition. By applying deep learning algorithms, autonomous vehi-
cles can learn and recognize the features and patterns of traffic signs from large-scale
annotated data, achieving high-precision sign detection and classification. Additionally,
the development of road traffic sign recognition faces some challenges and difficulties.
Firstly, traffic signs come in various types with differences in shape, color, and speci-
fications. Moreover, they are influenced by environmental conditions such as weather
and lighting, making sign detection and recognition complex and challenging. Secondly,
road traffic signs demand real-time recognition, ensuring swift and accurate identifica-
tion to facilitate prompt vehicle responses and decisions. Lastly, misidentification of
road traffic signs can lead to serious safety issues, thereby demanding high robustness
and reliability requirements for sign recognition algorithms.

Traditional traffic sign recognition algorithms include those based on color space [5]
and boundary moment technologies [6] recognition and detection methods that integrate
image features [7], as well as recognition and detection methods based on affine trans-
formation corrections [8]. However, these algorithms are all based on the specific colors
or shapes of traffic signs in images for recognition, and are unable to adapt to complex
and variable recognition scenarios.

Compared to traditional methods, deep learning approaches [9, 10] have significant
advantages in traffic sign recognition. Deep learning methods can autonomously learn
the feature representations of signs from data, thereby improving learning efficiency and
accuracy. By utilizing architectures like deep convolutional neural networks (CNNs),
models can learn richer feature representations, enhancing the robustness and gener-
alization ability of traffic sign recognition. Liao et al. [11] addressed the limitations
of existing methods in image feature extraction and accurate recognition under com-
plex conditions by designing a novel traffic sign recognition model called HE-SKNet.
This model employs image enhancement techniques and the SKNet [12] structure to
enhance feature extraction and representation, thereby improving recognition accuracy
and stability. Khan et al. [13] proposed a traffic sign recognition network that achieved
accuracies of 98.41% and 92.06% on German and Belgian traffic sign datasets, respec-
tively, by improving the traditional VGG [14] architecture. Postovan et al. [15] proposed
a bottom-up BNN architecture approach by studying the characteristics of each com-
ponent layer, achieving over 90% average accuracy on the GTSRB dataset and average
accuracies exceeding 80% on test datasets from Belgium and China.

In practical traffic sign recognition scenarios, there are high requirements not only
for the detection accuracy of the network but also for the model’s ease of deployment
and runtime speed. Currently, deep neural network architectures used for road traffic
sign recognition suffer from issues such as excessive parameter count and slow model
execution speed, which hinder practical deployment. To address these problems, this
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paper proposes a lightweight neural network architecture. Our main contributions can
be summarized as follows:

1. Inspired by the concepts of InceptionNetV1, SENet, and ResNet, we have developed
amulti-branchDynamic Feature Extraction (DFE) networkwith the aim of extracting
efficient feature information from local regions.

2. Taking inspiration from the lightweight network architecture of MobileNetV2, we
propose an Efficient Vision Transformer as a classifier. We design an Efficient
Feed-Forward Network (EFFN) to replace the original ViT’s Multi-Layer Percep-
tion (MLP), significantly reducing the parameter and computational requirements of
ViT.

3. Building upon the fusion of CNN andViT, we introduce a neural network architecture
called DFE-EViT for road traffic sign recognition. This architecture utilizes DFE as
a preceding module to the EViT, addressing the lack of local information in ViT
while maintaining global perception capabilities. Experimental results demonstrate
that this network exhibits stronger adaptability in traffic sign recognition tasks in
natural scenes.

2 Method

In the task of traffic sign recognition, most deep learning networks are built upon the
CNN architecture. The architecture based on ViT doesn’t perform well on traffic sign
datasets [16]. However, for the complex and dynamic nature of traffic sign identification
scenarios, global information also holds paramount importance. It enables us to make
more accurate and comprehensive judgments. Thus, we introduce the DFE-EViT net-
work. This architecture employs the DFE network as a preliminary feature extractor,
dynamically capturing localized information. Simultaneously, it leverages the multi-
head self-attention mechanism from the EViT network, granting the model a broader
global receptive field. This global perspective aids in making judgments considering the
overall background environment. Furthermore, to simulate intricate real-world condi-
tions like lighting and visibility in traffic sign recognition scenarios, we have designed
augmentation strategies tailored for such contexts. Ultimately, we iteratively train the
network and evaluate it on the test dataset (Fig. 1).

Fig. 1. Themodel architecture diagram involves extracting features using CNN and subsequently
feeding them into ViT for further feature extraction.
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2.1 DFE-EViT Network

As shown in Fig. 2, the proposed DFE-EViT network consists of two main components:
the DFE feature extractor and the EViT classifier. The DFE component comprises three
parallel branches. Through adaptive fusion within these branches, highly diverse local
information can be extracted. This information is then utilized as a preliminary feature
extraction module for the lightweight EViT network, addressing the deficiency of local
information in it.

Fig. 2. Details of the DFE-EViT network model

Dynamic Feature Extraction Network. The DFE network consists of three branches:
the Local Feature Extraction branch, the Max Pooling Residual branch, and the Origi-
nal Feature Residual branch. The Local Feature Extraction branch is the core of DFE.
Firstly, we introduce a multi-receptive field fusion module to extract feature informa-
tion from different receptive fields. Similar to InceptionNet V2, we utilize convolutions
with varying receptive fields to extract original features, followed by a weighted sum
calculation. The formula is as follows:

channel2_1 = C3×3(C1×1(x)) (1)

channel2_2 = C1×1(x) (2)

channel2_3 = C5×5(C1×1(x)) (3)

sum1 = α1 × channel2_1 + α2 × channel2_2 + α3 × channel2_3 (4)

Subsequently, to fully exploit the extraction of deeper-level feature information, we
introduce a sequence of 3x3 convolution, 1x1 convolution, and 3x3 convolution after
the multi-receptive field fusion module. Alternating convolution kernels facilitate the
extraction of even more diverse features (Fig. 3).

channel2_temp = C3×3(C1×1(C3×3(sum1))) (5)

In addition, we introduce the SE Attention module, which adaptively allocates
weights to each channel, allowing the network to focus more on crucial feature channels.
The structure of the SE module is illustrated in the following diagram:



Lightweight Traffic Sign Recognition Model 343

Fig. 3. SE module architecture diagram

Where Fsq represents the Squeeze operation, compressing the original feature map
into a 1 ∗ 1 ∗ C2 vector through global average pooling, where C2 is the number of
channels in the original feature map. Fex stands for the Excitation operation, which
extracts weight information through two fully connected layers, resulting in a 1 ∗ 1 ∗C2
weight vector. Fscale represents the Scale operation, where the extracted weight vector
is multiplied element-wise with the original feature map, thus weighting each channel
of the original feature map. Finally, we embed the SE Attention module into the second
branch to enhance significant channel information:

channel2 = channel2_temp + SE
(
channel2_temp

)
(6)

Lastly, following the Local Feature Extraction branch, we append an average pooling
layer to consolidate the abundant local features. Additionally, we introduce learnable
parameters to weight the three branches:

channel2 = Avg_pool(channel2) (7)

sum2 = α · Max_pool(x) + β · channel2 + γ · x (8)

where α, β, and γ are learnable parameters with an initial weight of 0.33. During the
network training process, they are dynamically adjusted to combine the features from
the three branches.

Efficient Vision Transformer. The standard Transformer model [17], originally used
in natural language processing, employs one-dimensional token embedding sequences
as inputs. As depicted in Fig. 4, this approach is adapted for images by combining
vectorized and image-encoded vectors to create input vectors that encompass spatial
positional information. In the ViT model [18], these new input vectors are fed into a
sequence of Encoder modules to learn image features. Each Encoder module consists
of multi-head self-attention modules, multi-layer perceptrons, and residual connections,
culminating in classification using an MLP Head.

We have introduced a series of improvements to the original ViT architecture to
enhance its efficiency in traffic sign recognition tasks. We propose the Efficient Feed-
Forward Network as a replacement for the original MLP. As shown in Fig. 4, within the
EFFN module, we utilize DepthWise (DW) convolution and PointWise (PW) convolu-
tion to construct the feedforward neural network. Firstly, a PW convolution with a kernel
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Fig. 4. Improved ViT classifier

size of 1 x 1 is employed to reduce channel dimensions. Subsequently, a DW convolu-
tion with a kernel size of 3 x 3 and another 1 x 1 PW convolution are applied to further
extract features. This approach enables us to use fewer parameters and incorporate more
network layers in the model (Fig. 5).

Fig. 5. Encoder module. We utilize depthwise separable convolution, pointwise convolution, and
SE Attention within the module.

Furthermore, we introduce the SE Attention module as a residual branch to further
enhance the feature extraction capacity of the feedforward neural network. This mod-
ule incurs minimal parameter overhead. The proposed EViT architecture in this paper
consists of merely 5 Encoder modules. Each patch image block is sized at 8x8, with an
encoding length of 192, and requires no expansion coefficient for fully connected layers.
In comparison to the conventional ViT, the parameter count contrast is illustrated below
(Table 1):
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Table 1. Performance comparison of ViT parameters.

Classifier depth mlp_ratio Embed_dim Param (M)

ViT-L 24 4 1024 303.14

ViT-B 12 4 768 85.24

ViT-S 12 4 384 21.38

Ours 5 2 192 0.80

3 Experimental Results and Analysis

3.1 Experimental Environment and Dataset

The data for our experiments is sourced from the German Traffic Sign Recognition
Benchmark (GTSRB) dataset [19]. This dataset comprises a total of 51,839 images, all
of which have a standardized size of 128 x 128 pixels. The training set contains 39,209
images, while the test set contains 12,630 images, maintaining an approximate ratio of
3:1.

Due to the collection of images from real-world scenarios, challenges such as occlu-
sions, blurriness, and low contrast are present in the dataset. These issues pose significant
challenges for the task of traffic sign recognition. A subset of the sampled test dataset is
shown in Fig. 6.

Fig. 6. GTSRB dataset

To ensure the accuracy of comparative experiments, non-comparative parameters
were kept constant. The initial learning rate was set at 0.001, and both training and test
sets were processed in batches of 64 images. The optimization algorithm chosen was
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Stochastic Gradient Descent (SGD), with a learning rate decay strategy employing the
step function. The momentum value was set to 0.9. The model underwent training for
200 iterations, with convergence of the loss function indicating sufficient learning.

3.2 Data Augmentation

Considering the relatively limited volume of experimental data and the inherent com-
plexity of the scenarios, encompassing significant differences in brightness and blur-
riness, as depicted in Fig. 7, we enhanced the dataset to better emulate the diversity
encountered in natural conditions. Through random brightness adjustments, we emu-
lated lighting variations such as dimness or intense illumination. By introducing random
contrast adjustments, we simulated changes in visibility present in scenes with blurri-
ness or backlighting. Additionally, we applied random masking operations to simulate
instances where traffic signs are obscured in natural conditions. Prior to training, all
images in the dataset were uniformly resized to 32x32 pixels, ensuring consistent input
image dimensions.

Fig. 7. Data augmentation, where images a and b undergo random lighting and contrast
adjustment, while images c and d are the results after random mask and normalization.

3.3 Evaluation Metrics and Loss Function

In this study, the recognition accuracy (Accuracy) is employed as the primary metric to
evaluate the performance of the model.

Acc =
∑k

i=1mi
∑k

i=1Mi

× 100% (9)

The k represents the number of classes of traffic signs in the dataset, mi denotes
the count of correct recognitions for the i-th class, and Mi signifies the total count of
instances in the i-th class. Through this comprehensive measure, we are able to evaluate
the model’s recognition capacity and efficiency, reflecting its overall performance in the
task of traffic sign recognition.
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3.4 Experimental Results

To comprehensively assess the impact on the DFE-EViT network’s performance, we
conducted extensive experiments involving multiple component combinations. These
components include the multi-receptive field fusion module, attention module, residual
pooling branch, and EViT. Table 2 provides a summary of the experimental outcomes.
Utilizing the DFE network alone yields an accuracy of 72.58%, while exclusive employ-
ment of the EViT network achieves an accuracy of 92.88%. Notably, these figures repre-
sent reductions of 25.86%and 5.56% in accuracy, respectively, compared to the complete
network configuration. Examining the DFE network, we observe that the attention mod-
ule and multi-receptive field fusion module contribute performance enhancements of
0.89% and 1.22%, respectively. Additionally, the residual pooling branch contributes a
modest 0.1% improvement. Ultimately, the combination of the DFE feature extraction
network with EViT achieves an accuracy of 98.44% in the task of traffic sign recogni-
tion. The SE attention module and the multi-receptive field fusion module play pivotal
roles within the DFE feature extraction network. Their combination facilitates dynamic
selection of receptive fields, simultaneously focusing the network on important chan-
nel features. This notably enhances the efficiency of local feature extraction within the
network.

Table 2. Module ablation experiment

EViT SE Attention Residual Pooling Branch Multi-Receptive Field
Fusion

Accuracy (%)

√ √ √
72.58√
92.88√ √ √
97.55√ √ √
98.34√ √ √
97.22√ √ √ √
98.44

Utilizing the German Traffic Sign Recognition Benchmark (GTSRB) dataset for
training, we assessed the performance of several notable deep learning network archi-
tectures, including our novel DFE-EViT network. This evaluation encompassed tasks
encompassing 43 classes of traffic scenes. The results are presented in Table 3. Among
the traditional architectures, ResNet50 achieves an accuracy of 93.47%, while Effi-
cientNet demonstrates 96.84% accuracy on the GTSRB dataset. However, these models
entail larger parameter counts. On the other hand, MobileNet V2 and ShuffleNet, with
more compact parameter counts of 2.27M and 1.29M respectively, achieve accuracies
of 94.91% and 94.43%. Notably, the state-of-the-art traffic sign recognition networks,
namely MFF-ResNet18 and HE-SKNet, achieve impressive accuracies of 97.74% and
98.95% on the GTSRB dataset. Remarkably, our proposed DFE-EViT network achieves
an impressive accuracy of 98.44%, all while maintaining a remarkably low parameter
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count of 0.859M. This efficiency positions it as a formidable contender in the domain
of traffic sign recognition. In addition, we conducted assessments on multiple Vision
Transformer architectures, encompassing ViT-L, ViT-B, ViT-S, and T2T-ViT. These
models achieved accuracies spanning from 95.34% to 96.18%, accompanied by varying
parameter counts ranging from 303.14 M to 21.75 M. It’s noteworthy that, despite their
capabilities, the efficiency of these architectures trails that of our network.

Table 3. Accuracy, parameter count, and FPS of different networks on the GTSRB dataset.

Method Param (M) Accuracy (%) FPS

Resnet50 25.55 93.47 60.24

MobileNetV2 2.27 94.91 208.33

ShuffleNet 1.29 94.43 401.60

EfficientNet 20.179 96.84 84.16

ViT-L 303.14 95.34 9.28

ViT-B 88.18 95.23 21.98

ViT-S 21.75 95.14 64.94

T2T-ViT 85.67 96.18 33.11

MFF-Resnet18 [20] 11.95 97.74 106.38

HE-SKNet [11] 23.92 98.95 112.36

Ours 0.859 98.44 303.87

Our network synergistically harnesses the advantages of both Convolutional Neural
Networks (CNN) and Vision Transformers. It achieves this by seamlessly integrating
local information from CNNs and a broader global receptive field inherent to ViTs,
facilitating the extraction of comprehensive image features. Empirical findings from
our experiments substantiate that this architectural fusion results in markedly improved
feature representation, particularly in intricate and dynamic traffic sign recognition sce-
narios. The outcome is a notable augmentation in recognition efficiency. In the process
of designing an efficient ViT, we have paid particular attention to module parameter
count and efficiency. To mitigate the parameter overhead commonly found in traditional
ViT networks, our EFFN module incorporates strategic elements like DepthWise and
PointWise convolutions. These components substantially curtail parameter counts while
retaining effectiveness. In summary, our experimental findings robustly validate the effi-
cacy of the DFE-EViT network in the task of traffic sign recognition within natural
scenes.

4 Conclusion

This paper proposes a novel lightweight architecture, DFE-EViT, for the task of road
traffic sign recognition. Here, DFE refers to Dynamic Feature Extraction network, a
module that incorporates the channel attention mechanism and multiple receptive field
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fusion modules. Its goal is to bolster the network’s ability to express local features
effectively. Meanwhile, EViT stands for Efficient ViT classification network. In EViT,
we incorporate the EFFN (Efficient Feature Fusion Network) as a replacement for the
Multi-Layer Perceptron used in conventional ViT models. The integration of EFFN
achieves a substantial reduction in parameter size and computational load within the
ViT network, thereby enabling the seamless incorporation of the lightweight architec-
ture. Subsequently, we use DFE as the pre-positioned local feature extraction module
for EViT, to compensate for the lack of local information in the EViT network. The
experimental results fully prove the superiority of our proposed architecture. Compared
with other methods in terms of parameter size and accuracy, our architecture shows
more advantages. On a CPU, the inferencing time of the model is only 3.3 ms per image,
which can realize real-time traffic sign recognition. In our future research endeavors, we
plan to incorporate knowledge distillation techniques to enhance the model’s efficiency
by further reducing its parameter size. Additionally, given the model’s lean parameter
count, it holds promise for deployment on edge computing devices like self-driving cars,
offering the opportunity to fully capitalize on its potential within real-world applications.

Acknowledgement. This work is supported by Key Research and Development(Digital Twin)
Program of Ningbo City under Grant No. 2023Z219.

References

1. Yurtsever, E., et al.: A survey of autonomous driving: common practices and emerging
technologies. IEEE Access 8, 58443–58469 (2020)

2. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

3. Wang,W., et al.: Social interactions for autonomous driving: a review and perspectives. Found.
Trends® Robot. 10(3–4), 198–376 (2022)

4. Gao, C., et al.: Autonomous driving security: state of the art and challenges. IEEE Internet
Things J. 9(10), 7572–7595 (2021)

5. Kuehni, R.G.: Color space and its divisions.” Color Research & Application: Endorsed by
Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color,
Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish
Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur 26(3),
209–222 (2001)

6. Yun, I., et al.: Part-level convolutional neural networks for pedestrian detection using saliency
and boundary box alignment. IEEE Access 7, 23027–23037 (2019)

7. Kaur,H.,Koundal,D.,Kadyan,V.: Image fusion techniques: a survey.Arch.Comput.Methods
Eng. 28, 4425–4447 (2021)

8. Hattori, R., Komiyama, T.: PatchWarp: Corrections of non-uniform image distortions in two-
photon calcium imaging data by patchwork affine transformations. Cell Rep. Methods 2(5)
(2022)

9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
11. Cong, L.I.A.O., et al.: Traffic sign recognition based on image enhancement and SKNet.

Comput. Modernization 03, 23 (2023)



350 Y. Ge et al.

12. Wu, W., et al.: SK-Net: deep learning on point cloud via end-to-end discovery of spatial
keypoints. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04
(2020)

13. Khan, M.A., Park, H., Chae, J.: A lightweight convolutional neural network (CNN)
architecture for traffic sign recognition in urban road networks. Electronics 12(8), 1802 (2023)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint: arXiv:1409.1556 (2014)
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Abstract. Deep learning (DL) systems have exhibited remarkable capabilities in
various domains, such as image classification, natural language processing, and
recommender systems, thereby establishing themselves as significant contributors
to the advancement of software intelligence. Nevertheless, in domains empha-
sizing security assurance, the reliability and stability of deep learning systems
necessitate thorough testing prior to practical implementation. Given the increas-
ing demand for high-quality assurance of DL systems, the field of DL testing has
gained significant traction. Researchers have adapted testing techniques and crite-
ria from traditional software testing to deep neural networks, yielding results that
enhance the overall security of DL technology. To address the challenge of enrich-
ing test samples in DL testing systems and resolving the issue of unintelligibility
in samples generated by multiple mutations, we propose an innovative solution
called DeepSensitive. DeepSensitive functions as a fuzzy testing tool, leveraging
DL interpretable algorithms to identify sensitive neurons within the input layer via
the DeepLIFT algorithm. Employing a fuzzy approach, DeepSensitive perturbs
these sensitive neurons to generate novel test samples. We conducted evaluations
of DeepSensitive using various mainstream image processing datasets and deep
learning models, thereby demonstrating its efficient and intuitive capacity for
generating test samples.

Keywords: Deep learning testing · Neural networks · Fuzzing test

1 Introduction

With the development of artificial intelligence, deep neural network(DNN) systems
powered by deep learning techniques have achieved outstanding results in a variety of
scenarios, such as image classification [1], natural language processing [2], autonomous
driving [3], and recommendation systems [4]. While setting off a round of technological
innovation, the global deep learning market is expected to grow at a CAGR of 51.1%
from the forecast period 2022 to 2030 and expected to reach the value of around USD
415 Billion by 2030 [5]. Unlike traditional software systems that use code as the core of
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decision-making, deep learning is a data-driven algorithm with a large number of train-
able parameters in its decision-making core, the deep neural network. A large amount
of data is fed into the network as a training set, and then the network parameters are
updated in a gradient descent fashion to minimize the loss function. Neural networks
trained in this way are able to beat traditional algorithms in a wide range of tasks, even
to the level of surpassing humans. Consequently, various countries are investing a lot of
effort in developing AI technology.

However, as deep learning technology is applied to more fields that are more sen-
sitive to reliability and security (e.g., autonomous driving, intrusion detection, identity
authentication, etc.), researchers have found that deep learning models are inherently
vulnerable and that their stability is easily corrupted by disturbances from natural sam-
ples and adversarial samples. For example, a small perturbation on a traffic sign using
adversarial sample techniques can cause an autonomous vehicle to recognize a stop
sign as a speed limit signal [6]. This reveals the potential pitfalls of directly applying
deep learning models in reality and suggests that reliability and robustness assurance
measures for deep learning systems are necessary.

The demand for providing high-quality assurance in deep learning systems raises
a systematic problem of testing deep neural networks. However, it is impractical to
use traditional software testing methods for neural networks with thousands of neurons
and parameters, which poses a serious challenge for automated, systematic testing of
DNNs. A series of standards for testing techniques has been recently proposed in the
field of software engineering. Theoretically, the input domains of DL systems are too
extensive for complete testing to be possible, so a series of standards is usually used for
standardized AI testing. Mainstream AI software test suites mostly consist of coverage
tests, including multi-granularity neuron testing guidelines [7] and important neuron
coverage guidelines [8]. Inspired by metrics such as code coverage and path coverage
in the field of software engineering, early work proposed coverage test metrics such as
neuron coverage and neuron activation path coverage. In these metrics, a threshold is set
for a neuron’s activation value, and if the neuron’s activation value is greater than the
threshold, the neuron is considered covered. After testing with the test set, the proportion
of neurons that have been activated in the whole neural network can be calculated, i.e.,
the neuron coverage rate. To simplify the neuron coverage process further, the important
neuron coverage criteria first use deep learning interpretable algorithms to compute
neuron importance, and then the computed important neurons are constructed and tested
in the coverage space. However, these methods face the problem of low numbers or
low-quality test samples, which are mostly derived from multiple mutations through the
test set, and the human readability of the test samples is greatly reduced after multiple
mutations. To solve this problem,weproposeDeepSensitive, the sensitive neuron fuzzing
test criteria.

Inspired by the important neuron coverage criteria, the sensitive neuron fuzzing test
criteria improves on the principle of neuron selection and uses a fuzzing test approach
to generate samples that can lead to misclassifications of the neural network. It uses
the DeepLIFT [9] algorithm, a deep learning interpretable algorithm, to select reference
inputs for the test objectives. It performs diverse, flexible and targeted fuzzing tests on
the neural network to test which neurons in the neural network are more susceptible to
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small perturbations that can change the final output more drastically. These neurons are
more vulnerable and are defined as sensitive neurons at each layer. The sensitivity of the
input layer neurons to the output layer can be calculated by computing the layer-by-layer
transfer of sensitivities between each layer, and by fuzzing the pixels corresponding to
the highly sensitive neurons, test samples can be obtained that are difficult to observe
by the human eye to make the model classification biased.

Our contributions are summarized as follows:
We develop a new deep learning fuzzing test suite DeepSensitive based on sensitive

neurons by innovatively combining DeepLIFT, a deep learning interpretable algorithm,
with a deep neural network fuzzing test pipeline.

We tested the suite on the mainstream image datasetsMNIST and CIFAR-10, as well
as the popular convolutional neural networks LeNet andVGG.On average, we generated
5271 samples that resulted in incorrect classifications by the network. This represents a
94.87% increase in failure rates compared to random transforms at the logits level. The
results demonstrate the suite’s ability to effectively generate new test samples for DNN
models.

2 Background and Related Works

2.1 Deep Neural Networks

The core of the deep learning model is the deep neural network, which is composed of
several connected layers. It can be represented as a parameterized functionFθ : X �→ Y ,
where x ∈ X is an m-dimensional input, y ∈ Y is the corresponding output labels,
and θ represents the parameters in the DNN. Formally, a n-layer simple DNN can be
represented as a composite function F = ln ◦ ln−1 ◦ · · · ◦ l1, where l represent a layer
in the model. The l1 indicates the input layer, and the ln represents the output layer.
The output of each layer l can be expressed as Fl = σ(θl ∗ Fl−1 + bl), where θl and bl
are its weight matrix and bias. θ is called the activation function, which is a nonlinear
function defining the specific output of layer l given an input. Convolutional neural
networks are a typical variant of deep neural networks, which have convolutional layers
as their main structure. Neurons in each convolutional layer are connected to only some
of the neurons in the next layer, and multiple connections between different neurons
have the same weight parameters. The calculation process of a convolutional layer uses
several sets of shared parameters in it as a convolutional kernel to perform convolutional
calculations on the neurons in the previous connected layer. Several classical outstanding
models for image classification tasks are convolutional neural network structures, e.g.,
LeNet, VGG, ResNet, and Inception.

Thegoal of training aDNNmodel is to update themodel parameters to accurately pre-
dict the output of the input data for the desired task. Given a large amount of input-output
pairs (xi, yi) in a specific dataset, the training process updates all weight parameters θ in
the DNNmodel to minimize the differences between the predicted output Fθ (x) and the
corresponding ground truth label y. The loss function L(

Fθ(x), y
)
is used to quantify

this difference. During training, the DNN model iteratively calculates the value of the
loss function on the input-output pairs of the dataset and updates the model parameters
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using gradient descent. Eventually, the training process will terminate when the value
of the loss function converges to a stable interval or reaches the target.

2.2 DNN Testing

Deep learning testingmethods are kinds of approaches that explore the bugs of themodel
and try to fix them to improve the performance of the model after training. For effective
DL system testing, the features of the test set should be highly diverse so that different
behaviors of the system can be performed. For example, DeepXplore [10] estimates
different DL system behaviors by calculating neuron coverage, i.e., the ratio of neurons
with activation values above a predefined threshold. Similarly, the DeepGauge [7] multi-
granularity test criterion generalizes the concept of neuronal coverage and calculates the
ability of a test set to cover regions of major and corner case neurons by delineating
the range of neuronal activation values. Some of these methods adapt testing techniques
from the software engineering community, such as symbolic execution [11] andmutation
testing [12], for deep learningmodels.Onewidely usedmethod ismutation testing,which
follows a workflow involving seed selection, mutation operators, evaluation using neural
networks, oracle judgments, and test criteria like neuron coverage metrics. This process
is repeated in cycles until the desired test metrics are achieved. For instance, DeepHunter
[13] has developed a gray-box testing tool for DNNs based on this workflow. It utilizes
various neuron coverage indicators to guide the testing process and can detect model
misbehaviors.

In addition to correctness, it can test properties such as robustness [14], fairness
[15], etc. Furthermore, there has been a series of work on this topic [8, 13, 16–18].
These deep learning test systems provide certain stability guarantees for DNN-based
software systems and provide an effective method for expanding test samples. However,
by focusing only on these constrained neuron properties and ignoring the behavior of
the entire DL system, the causal relationship between the test set and the decisions is
uninformative. Furthermore, the instantiation of recently proposed techniques depends
on user-defined conditions (number of regions or upper bounds) that may not adequately
represent the actual behavior of the DL system.

2.3 DNN Interpretability

Although DNNs have yielded outstanding results in a variety of application scenarios,
they are a complete black box compared to traditional software compiled frommanually
written code. The user can know what decisions the model has made, but not why the
model has made them, which further calls into question the credibility of DNNs. Con-
sequently, understanding and explaining the classification decisions of DNN systems is
of high value in many applications, as it allows to validate the inference of the system
and provide additional information to the human expert, and also increases the control-
lability of the DNN, which can guarantee the stability of the DNN system at another
level. Since the problem has been in the spotlight, academics have offered a variety of
solutions. For example, layer-wise relevance propagation [19] can visualize the contri-
bution of individual pixels to the prediction on a multilayer neural network, and these
pixel contributions can be visualized as heat maps and made available to human experts.
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This method not only visually verifies the validity of classification decisions, but also
further analyzes potential regions of interest. DeepLIFT [9] decomposes the neural net-
work’s output prediction for a specific input by back-propagating the contribution of all
neurons in the network to each feature of the inputs. By selectively considering positive
and negative contributions separately, DeepLIFT can also reveal dependencies missed
by other methods.

These deep learning interpretable methods also provide ideas for deep learning test-
ing, such as DeepImportance’s application of the LRP method to coverage testing. The
method screens out several neurons that aremost critical to the classification of thewhole
network by calculating the cumulative relevance metrics computed in the target layer
from the data in the training set and then calculates the output domains of the important
neurons for coverage testing. This method applies the principle of interpretability and
takes into account the behavior of the whole system instead of focusing on the neuron
as a level while improving the testing efficiency.

3 Methodology

Fig. 1. Overview of DeepSensitive

Based on the discovery of sensitive neurons and the need to improve the testing
efficiency of deep learning models, we propose a fuzzing test criterion for sensitive
neurons. DeepSensitive is a novel attempt to utilize deep learning interpretability to test
deep learning systems. The main idea is to do a centralized, fine-grained fuzzing test of
sensitive neurons at each layer, instead of more exhaustive but time-costly testing of the
entire neural network. A fuzzing test is a method to discover software bugs by providing
unintended inputs to the target system and monitoring the abnormal results. For deep
learning models for image classification tasks, classification errors can be viewed as
software bugs. Intuitively, attacks on sensitive neurons are more likely to misclassify a
deep learning model, enabling more efficient discovery of bugs in deep learning models.
This testing guideline provides new ideas for standardized unit testing of AI models.

The overall workflow of DeepSensitive is shown in Fig. 1. Given a reference input
basedon the target requirements andgiven thedeep learningmodel to be tested,DeepSen-
sitive traverses the inputs in the dataset and performs a sensitivity analysis using the
DeepLIFT algorithm. After obtaining the sensitive neurons in the input layer, DeepSen-
sitive performs targeted fuzzing tests on them to generate new test samples. More specif-
ically, we will introduce the detailed process of sensitivity analysis in 3.1, and further
elaborate on the fuzzing test process in 4.
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3.1 Neuron Sensitivity Analysis

The neuron sensitivity analysis module aims to examine the impact of input variations
on the output layer by analyzing the sensitivity of neurons within the input layer of the
neural network. It identifies the input layer neurons that are more susceptible to changes
in their inputs. The diagram illustrating this process is depicted in Fig. 2.

Fig. 2. Schematic of Neuron Sensitivity Analysis

Formally, we denote the reference input as x0, and the test input as x. Denote the
difference between the two as�x = x−x0. The components of x and x0 assigned to each
neuron i are xi, x0i , respectively. For a particular intermediate layer lk , the intermediate
inputs of x and x0 at this layer are defined as xk , x0k and the intermediate outputs as
yk , y0k . The output of the last layer is denoted as y, y0. The corresponding components
are xk,i, x0k,i, respectively. The outputs and differences are defined similarly. Under this
definition, x = x1, xk = yk−1, and yn = y.

For the middle layer lk and each of its output dimensions j, there is a contribution
from each �xk,i to its output difference �yj. We define this contribution as C�xk,i�yk,j ,
then it satisfies

∑

i
C�xk,i�yk,j = �yk,j (1)

Further, the contribution that a unit of �xk,i produces to �yj can be a measure of
the sensitivity of the i th neuron in the layer to the perturbation, as evidenced by the fact
that a unit of perturbation produces a larger deviation in the output. We thus define its
sensitivity factor as

m�xk,i�yk,j = C�xk,i�yk,j

�xk,i
(2)

The formula 2 defines the sensitivity metrics between inputs and outputs in the
same layer. For calculating the sensitivity values across layers, we use the chain rule to
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calculate them. Formally, we calculate it through

m�xk−1,i�yk,j =
∑

p
m�xk−1,i�yk−1,pm�xk,p�yk,j (3)

To accommodate some special cases, the DeepLIFT algorithm treats positive contri-
butions differently from negative ones. For this purpose, for each neuron, we introduce
�x+ and �x− to denote the positive and negative components of �x, such that there are

�x = �x+ = �x− (4)

C�xk�yk = C�x+
k �yk

+ C�x−
k �yk

(5)

For linear and convolutional layers, since y = b + ∑
iwixi, we have �y = ∑

iwi�xi.
Define �y+ and �y− as

�y+ =
∑

i
u(wi�xi)wi�xi (6)

�y− =
∑

i
u(−wi�xi)wi�xi (7)

where u(t) is the unit step function. Omitting some unnecessary subscripts, the
corresponding sensitivity factor is calculated with the linear rule as

m�x+
i �y+ = m�x−

i �y+ = u(wi�xi)wi (8)

m�x+
i �y− = m�x−

i �y− = u(−wi�xi)wi (9)

For the nonlinear activation layer, the batch normalization layer, and the pooling layer,
we use the rescale rule to compute the sensitivity factor between the inputs and outputs
of the layer.

m�x+
i �y+ = m�x−

i �y+ = m�x�y = �x

�y
(10)

For each input x, when m�x�y is computed after passing through the layers, it can be
computed by calculating which neuron in the input layer is most likely to bias the output
toward the wrong result when perturbed, i.e., by calculating

max
i

∑

j �=gt
m�xi�yj (11)

The calculation process described above allows us to identify the pixels that corre-
spond to the sensitive neurons. When fuzzing (perturbing) these neurons during testing,
it will have a greater impact on the output of the neural network.



358 Z. Yang et al.

4 Fuzzing Test

Sensitive neurons in deep learning models are identified through training, aiming to
pinpoint the neurons that are highly vulnerable to perturbations that can disrupt the
results. Perturbations are then applied to these sensitive neurons to facilitate the detection
of anomalous model behavior, as opposed to employing random perturbations.

Specifically, we introduce two fuzzing operators:

Perturb. The perturb operation involves perturbing the input at the pixels corresponding
to sensitive neurons. When a neuron demonstrates sensitivity to a positive perturbation,
the corresponding input value is amplified by a specified percentage. Conversely, when
a neuron exhibits sensitivity to a negative perturbation, the corresponding input value is
reduced by the same percentage.

Replace. The replace operation directly substitutes the pixels corresponding to the
sensitive neurons in the input layer with randomly generated values.

Figure 3 showcases an example of the two operators applied to the input, along
with the corresponding visualization of m�x�y. By employing the concept of fuzzing or
mutation testing, these operations perturb a selected percentage of pixels in the test set
samples that correspond to sensitive neurons. The resulting test samples are designed

Fig. 3. Examples of two fuzzing operators.
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to be distinguishable by humans but not by the neural networks. Such samples can
serve multiple purposes, including expanding the training set, data augmentation, and
addressing vulnerabilities in the model.

5 Evaluation

In this section, we evaluate DeepSensitive on various datasets and models.

5.1 Experimental Setup

Hardware and Software. Our model training works were implemented on the top of
Pytorch [20] 1.7.1 framework. All experiments were conducted on a GPU server with 80
cores Intel Xeon Silver 4210R 2.40GHz CPU, 384GB RAM, and 8 NVIDIA GeForce
RTX 3090 24GB GPUs running Ubuntu 20.04 as the operating system.

Datasets. Our experiments were conducted on the MNIST [21] and CIFAR-10 [22]
datasets. MNIST is a dataset of handwritten numbers, containing 60,000 training exam-
ples and 10,000 test examples with the size of 28 × 28. CIFAR-10 is one of the most
representative deep learning image classification datasets consisting of 60,000 32 × 32
color pictures.

Model Architectures. Our evaluation was performed on LeNet [23] and VGG [24]
structures. All models were trained by the Adam optimizer for 50 epochs, where the
learning rate was 2e-4.

5.2 Results and Analysis

We conducted experiments using DeepSensitive on the MNIST-LeNet5 and CIFAR10-
VGG13 combinations. For each experimental setting, we employed two distinct experi-
mental processes. In the first process, we performed neuron sensitivity analysis on each
data point in the training set to evaluate the sensitive neurons of the network with respect
to the entire training data. We then applied the same set of sensitive neurons for fuzzing
using each training data. In the second process, we individually conducted a sensitivity
analysis on each data point, immediately followed by fuzzing of the calculated sensitive
neurons specific to that data. Two additional operators were tested for each set of con-
figurations and experimental procedures, with 10% of the neurons selected as sensitive
neurons for each experiment. Throughout the experiments, we utilized a seed input of
50,000 images with an all-gray image serving as the reference input.

The results of our experiments are presented in Table 1. In the table, dds represents the
Euclidean distance between the outputs at the logits layer of the test samples generated
by DeepSensitive and the original input, while drand represents that distance between the
samples generated by the randomized perturbation of equal magnitude and the original
input. nds Denotes the number of classification failures of test samples generated by
DeepSensitive, and nrand represents the number of failures by randomly generated test
samples. Upon examining the table, it is evident that DeepSensitive vastly outperforms



360 Z. Yang et al.

Table 1. Results of Experiments on DeepSensitive.

Dataset & Model Process Operator dds drand dds
drand

nds nrand

MNIST & LeNet 1 Permute 1.65 2.01 0.82 105 151

Replace 10.03 3.58 2.8 1261 224

2 Permute 4.55 2.02 2.26 334 146

Replace 15.26 3.61 4.23 2839 225

CIFAR10 & VGG 1 Permute 6.31 5.09 1.24 6154 5059

Replace 18.46 8.16 2.26 18896 8026

2 Permute 5.12 5.09 1.01 4914 5184

Replace 7.98 8.2 0.97 7665 8111

the randomized method in the MNIST & LeNet test conditions. In the CIFAR & VGG
test conditions, DeepSensitive demonstrates comparable or superior performance com-
pared to the randomized method, with some aspects achieving equal results and others
surpassing them.

In summary, incorporating perturbations at the sensitive neurons selected by
DeepSensitive demonstrates a greater influence on the output, thereby affirming the
effectiveness and interpretability of DeepSensitive. Completely computed neuron sen-
sitivity proves to be more effective for complex datasets and models (e.g., CIFAR-10,
VGG), while individual computational sensitivity is more effective for simpler datasets
and models (e.g., MNIST, LeNet). With the inclusion of sensitive neuron computation,
the fuzzy testing approach achieves higher efficiency and generates a larger number of
test failure samples compared to random perturbations. These generated samples can be
utilized, for instance, as data augmentation in subsequent processes.

In conclusion, the experiments conducted with DeepSensitive have demonstrated
its effectiveness. It is important to note that these experiments were conducted using
a coarse-grained approach and a reference input that was an averaged grayscale map.
However, it is expected that DeepSensitive will showcase its potential in tests with differ-
ent objectives when the reference input is tailored to specific tasks. Selecting appropriate
reference inputs for DeepSensitive to address other tests, such as robustness or fairness,
in deep learning systems remains an open question. Determining the most suitable refer-
ence inputs for these tests requires careful consideration and domain-specific expertise.
Further research and exploration are needed to develop methodologies for selecting
reference inputs that align with the desired objectives and evaluation criteria in these
specific areas.

6 Conclusion

Based on the identification of sensitive neurons and the aim to enhance the efficiency
of testing deep learning models, we propose a fuzzy testing criterion specifically for
sensitive neurons. The central concept revolves around conducting fine-grained fuzzy
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testing on sensitive neurons at each layer, as an alternative to exhaustive but time-
consuming testing of the entire neural network. In the context of deep learning models,
classification errors can be considered as software vulnerabilities. It is evident that attacks
targeting sensitive neurons are more likely to result in misclassifications of the deep
learning model and can be more efficient in uncovering vulnerabilities within these
models. This testing guideline presents innovative ideas for standardized unit testing
of AI models, focusing on the examination of sensitive neurons. By honing in on these
critical components, the testing process can be more targeted and effective in identifying
potential weaknesses and vulnerabilities in deep learning models.

Acknowledgement. Chenhao Lin is the corresponding author. This work is supported by
the National Key Research and Development Program of China (2020AAA0107702), the
National Natural Science Foundation of China (62006181, 62161160337, 62132011, U21B2018,
U20A20177, 62206217), the Shaanxi Province Key Industry Innovation Program (2023-ZDLGY-
38, 2021ZDLGY01–02).

References

1. Chen, C.F.R., Fan, Q., Panda, R.: CrossViT: cross-attention multi-scale vision transformer for
image classification. In: Proceedings of the IEEE/CVF International Conference onComputer
Vision, pp. 357–366 (2021)

2. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems, vol. 30 (2017)

3. Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous driving: common
practices and emerging technologies. IEEE Access 8, 58443–58469 (2020)

4. Isinkaye, F.O., Folajimi, Y.O., Ojokoh, B.A.: Recommendation systems: principles, methods
and evaluation. Egypt. Inf. J. 16(3), 261–273 (2015)

5. Deep learning market size, share, and trends analysis report by solution (hardware, software),
by hardware, by application (image recognition, voice recognition), by end-use, by region,
and segment forecasts, 2023 - 2030 (2022). https://www.grandviewresearch.com/industry-
analysis/deep-learning-market

6. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625-
-1634 (2018)

7. Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning systems.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pp. 120–131 (2018)

8. Gerasimou, S., Eniser, H.F., Sen, A., Cakan, A.: Importance-driven deep learning system
testing. In: 2020 IEEE/ACM42nd International Conference on Software Engineering (ICSE),
pp. 702–713. IEEE (2020)

9. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating
activation differences. In: International Conference on Machine Learning, pp. 3145--3153.
PMLR (2017)

10. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of deep learning
systems. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 1–18
(2017)

https://www.grandviewresearch.com/industry-analysis/deep-learning-market


362 Z. Yang et al.

11. Gopinath, D., Pasareanu, C.S., Wang, K., Zhang, M., Khurshid, S.: Symbolic execution for
attribution and attack synthesis in neural networks. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 282–
283. IEEE (2019)

12. Ma, L., et al.: DeepMutation: mutation testing of deep learning systems. In: 2018 IEEE 29th
International Symposium on Software Reliability Engineering (ISSRE), pp. 100–111. IEEE
(2018)

13. Xie, X., et al.: DeepHunter: a coverage-guided fuzz testing framework for deep neural net-
works. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 146–157 (2019)
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Abstract. The traditional stochastic descent based gradient Fuzzy Neural Net-
works (FNN) are prone to falling into local optimal solutionswhen used to position
control of stepper motor. To improve the performance of position control algo-
rithm based on FNN, this article proposes a novel FNN to achieve the position
control of stepper motor. In the proposed FNN, an Improved Grey Wolf Opti-
mization (IGWO) algorithm is devised for adjusting the weights of FNN. The
Logistic-tent chaotic mapping is used in population initialization of the IGWO
to improve the uniformity of population distribution. This method enhances the
authority of α wolves in prey detection, making the algorithm more effective in
finding the optimal solution. Compared with position control methods based on
traditional FNN, the first position tracking time of stepper motors is reduced by
11.7%, and the fluctuation range of position tracking is reduced by 68%. In the
second position tracking, the fluctuation range is reduced by 44%. Simulink sim-
ulation experiments showed that the proposed control scheme could accurately
and stably track the position of stepper motor.

Keywords: Stepper Motor · IGWO · FNN · Position Control

1 Introduction

The stepper motor is an electric motor that converts electrical pulse excitation signals
into corresponding angular or linear displacement. This type of motor moves one step
for each input electrical pulse, hence the name “pulse motor”. As digital manufacturing
rapidly develops in China, the application of stepper motors is expanding, including
uses in ATM machines, engraving machines, photo printers, spray painting equipment,
and medical instruments, etc. The position control algorithm significantly influences the
performance enhancement of the stepper motor and constitutes a crucial research aspect
of it.

Presently, numerous scholars are investigating the position control of steppermotors.
Bangji Wang et al. [1] studied the control performance of acceleration and deceleration
curves for stepper motors. They pointed out that the utilization of a parabolic accelera-
tion and deceleration curve within the same control period can significantly improve the
stepper motor’s angle rotation without losing steps. Although the position tracking error
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during the intermediate process of the parabolic acceleration and deceleration curve is
small, there may be unsmooth torque transitions and certain resonant oscillations at the
transition points, which may induce mechanical vibrations in the system. Jiazhi Zhan
et al. [2] combined the Radial Basis Function (RBF) neural network with feedback con-
trol to effectively improve the position tracking accuracy and steady-state performance
of two-phase stepper motors. However, the adjustment of weights in the RBF neural
network is computationally complex. Yanxiong Wu [3] obtained suitable PID parame-
ters using the tuning method. The three parameters are kp, ki and kd . Although it can
be used for position control of stepper motors, the adjustment of these three parameters
is complex and cannot be adaptively adjusted. Zhuzhen Xi et al. [4] used a Siemens
controller with the model number S7-200-smart-PLC to construct an intelligent feed-
ing control system for a chicken house. A stepper motor was selected for discharging
and achieved functions such as synchronized operation with a touch screen. However,
only open-loop processing was performed, so the accuracy of position control needs to
be improved. Tao Lin [5] proposed a closed-loop intelligent control system for stepper
motors based on a programmable controller. Through the synchronous debugging of
software and hardware, the stepper motor is driven to ensure relatively stable operation.
However, the response speed of the system needs to be improved.

Although the above literature provides different solutions to the position control
problem of stepper motors, two-phase stepper motors possess characteristics such as
nonlinearity and multivariable nature, which results in poor accuracy and slow response
speed in the position control of stepper motors. In order to improve the position control
performance of two-phase stepper motors, this paper introduces the ImprovedGreyWolf
Optimization-Fuzzy Neural Networks (IGWO-FNN) algorithm, which autonomously
searches for appropriate values of kp, ki and kd in the PID controller. The proposed
approach integrates the IGWO algorithm with FNN, aiming to optimize the weights
between the hidden layer and output layer in the FNN using the IGWO algorithm,
thereby achieving position control of the stepper motor.

2 The Mathematical Model of a Stepper Motor

According to the research of Hoang Le-Huy et al. [6], the internal structure of a stepper
motor can be divided into an electrical module and a mechanical module. The electrical
module can equivalent the circuit of a certain phase (in this case, using the A phase as
a representative) in the stepper motor to an electrical circuit model as shown in Fig. 1
when neglecting the effects of leakage magnetic field and mutual inductance of the rotor
coils on the harmonic components. The mechanical module is characterized by a state
vector space model based on the inertial torque and a viscous damping coefficient.

According to Kirchhoff’s voltage law, the voltage loop equation for phase A can be
obtained as follows:

Ua = Raia + La
dia
dt

+ Ea (1)

In the equation, Ua is the phase voltage of phase A, La is the equivalent inductance
of phase A, ia is the magnitude of the current flowing through phase A, and Ea is the
back electromotive force of phase A.
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Fig. 1. The single-phase equivalent circuit of a stepper motor

It is related to parameters such as the number ofmagnetic pole teeth (p), themaximum
magnetic flux (ψm), and the sinusoidal expression of the rotor position (Ea) in the form
of a sine function. The rotation angle of the motor is represented by θ , and its expression
is shown in Eq. (2).

Ea(θ) = −pψm sin(pθ)
dθ

dt
(2)

The mechanical module of a stepper motor consists of the basic motion equations of
the motion control system that neglects damping torque, and its expressions are shown
in Eqs. (3) and (4).

Te = J
dω

dt
+ Bω + TL (3)

ω = dθ

dt
(4)

In the equations, J represents the total moment of inertia of the stepper motor and
the load, B is the viscous damping coefficient of the stepper motor and its load, TL is
the load torque of the stepper motor, ω is the angular velocity during the rotation of the
stepper motor. The electromagnetic torque Te in the equation is also related to the detent
torque Tdm and other factors, and its expression is shown in Eq. (5).

Te = pψm[ib sin(pθ − π

2
) − ia sin(pθ)] − Tdm sin(2pθ) (5)

3 IGWO-FNN Controller

3.1 FNN

Due to its powerful autonomous learning ability and effective knowledge representation,
FNN have been widely applied in industrial control systems and agricultural control sys-
tems [7]. FNN are built on fuzzy linguistic variables, fuzzy set theory, and fuzzy rule
inference, forming a nonlinear intelligent control system that relies on human experience.
By combining fuzzy systems with neural networks, the entire system can continuously
modify and improve the rules and membership functions created based on human expe-
rience through self-learning. Table 1 [8] presents a comparison between fuzzy systems
and neural networks.
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Table 1. A comparison between fuzzy systems and neural networks

Fuzzy systems Neural networks

Acquiring knowledge Expert experience Algorithm instance

Inference mechanism Heuristic search Parallel computing

Inference speed Low High

Fault-tolerance Low Very high

Natural language flexibility High Low

The network structure of the FNN with two inputs and three outputs, as shown in
Fig. 2, is a four-layer feedforward network structure. The first layer is the input layer,
the second layer is the fuzzification layer, the third layer is the fuzzy inference layer, and
the fourth layer is the output layer.

.

.

.

.

.

.

.

.

.

( ) ( )rin k yout k

pk

ik

dk[ ( ) ( )]'rin k yout k

Fig. 2. The network structure of FNN

The first layer is the input layer. Because the two nodes in this layer are sequentially
connected with the two inputs, the inputs of the neurons in this layer are two input
quantities, denoted as: e(k), ė(k).

The second layer is the membership function layer, which is also known as the
fuzzification layer. In this study,Gaussian functions are used as themembership functions
[9]. Each neuron in the input layer is fuzzified in this layer. Assuming that the j-th fuzzy
set of the i-th input variable is represented by f (2)

ij , its expression is shown in Eq. (6).

f (2)
ij = exp

(
− (xi − cij)2

2 ∗ (bj)2

)
i = 1, 2;

j = 1, 2, · · · , 5
(6)

The third layer is the fuzzy inference layer, where each neuron represents a fuzzy rule
[10]. In the field of intelligent control, commonly used methods include the Mamdani
inference method. Although the minimum operator is often used for calculations, it
may lead to information loss. Therefore, in this study, we choose to perform product
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operations on each input. It should be noted that the inputs of each neuron in this layer
are only related to the same linguistic variables in the fuzzy sets of the previous layer
for each input division, and its expression is shown in Eq. (7).

f (3)
j =

3∏
i=1

f (2)
ij (7)

The fourth layer is the output layer, which performs defuzzification operations. The
output of this layer is shown in Eq. (8), where f (4)

1 denotes the value of kp, f
(4)
2 represents

the value of ki, and f (4)
3 represents the value of kd .

f (4)
i = WT • f (3)

j =
N∑
j=1

w(i, j) • f3(j) i = 1, 2, 3 (8)

3.2 IGWO

The Grey Wolf Optimization (GWO) algorithm, proposed by Mirgalili in 2014 [11],
is an innovative population-based intelligent optimization algorithm. It simulates the
hierarchical system and hunting behavior of a grey wolf pack [12]. The whole pack is
divided into four hierarchical levels, resembling a pyramid shape, as shown in Fig. 3.
The hierarchy levels are sorted from highest to lowest as follows: the alpha pack, the
beta pack, the gamma pack, and the delta pack.

Fig. 3. The hierarchical distribution of grey wolves

In the algorithm, the first three types of wolves represent the three best solutions
in terms of fitness, among which the α pack represents the optimal solution at the
current stage, while the ω pack searches for the target guided by these three wolf packs.
During the optimization process, the positions of all four types of wolves are constantly
updated, and the update methods of the position of the wolf pack relative to the prey and
the position of the wolf pack are illustrated in Eqs. (9) and (10).

D = |C • XP(t) − X(t)| (9)

X(t + 1) = XP(t) − A • D (10)
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In the equations, t represents the current iteration count, XP(t) is the position vector
of the prey, X(t) is the current position vector of the grey wolf, D is the distance vec-
tor between individual wolves and the prey, A and C are coefficient vectors [13]. The
calculation formulas for A and C are shown in Eqs. (11) and (12) respectively.

A = 2a • r2 − a (11)

C = 2r1 (12)

In the equations, r1 and r2 are both valueswithin the range [0, 1], a is the convergence
factor, which linearly decreases from 2 to 0 as the iteration count increases. As a result,
the values of each element in A fall within the range [−α, α].

In nature, grey wolves have the ability to locate prey and surround them for the
final kill (i.e., the entire hunting process). However, when hunting in an abstract search
space, the location of the prey is generally unknown at the beginning. To mathematically
describe the hunting behavior of grey wolves, the algorithm assumes that the α, β and
δ wolves have a better understanding of the potential location of the prey, and save the
top three best solutions obtained during the iteration process. Other wolves are forced to
update their positions based on these three solutions. The mathematical model for this
part is shown in Eq. (13).

Dα = |C1 • Xα(t) − X(t)|
Dβ = ∣∣C2 • Xβ(t) − X(t)

∣∣
Dδ = |C3 • Xδ(t) − X(t)|

(13)

In the equation, Xα(t), Xβ(t) and Xδ(t) are the position vectors of the three types of
grey wolves at the t-th iteration. X(t) represents the positions of the other wolves at the
t-th iteration. Dα , Dβ and Dδ are the position vectors between the α, β and δ wolves,
and the other wolves, respectively.

X1 = Xα(t) − A1 • Dα

X2 = Xβ(t) − A2 • Dβ

X3 = Xδ(t) − A3 • Dβ

(14)

In the equation, X1, X2 and X3 are the position vectors indicating the directions in
which the wolves in the pack move towards the alpha, beta, and delta wolves, respec-
tively, to ultimately surround the prey. The position vector of the successful predation is
represented by X(t + 1), as shown in Eq. (15).

X(t + 1) = X1 + X2 + X3

3
(15)

Because the α wolf is expected to find the optimal solution in the algorithm and is
the leader in hunting in nature, we increase the weight of the α wolf’s search for the
prey’s location in this approach. This is specifically shown in Eq. (16).

X(t + 1) = X1

2
+ X2

4
+ X3

4
(16)
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After the gray wolves have surrounded the prey, they initiate an attack. If the mag-
nitude of A is within the range of (−1, 1), the gray wolves will launch an attack on the
prey; otherwise, they will move away from the prey. C represents a random weight that
indicates the influence of the wolf’s position on the prey. A smaller value implies that
the current position of the wolf has less impact on the prey. Literature [14] suggests
that incorporating this coefficient vector helps the algorithm in searching for the global
optimal solution.

In the GWO algorithm, the population of the wolf pack is initialized randomly.
Therefore, the random dispersion of the wolf pack may lead to uneven distribution or
even dense clustering of the population, resulting in the wolf pack’s search range for
prey being limited to a certain area and potentially leading to finding a local optimal
solution. Chaos sequences are random sequences generated by simple deterministic
systems. Chaos sequences are generated through chaotic mapping and possess charac-
teristics such as nonlinearity, randomness, and ergodicity [15]. Utilizing these charac-
teristics and incorporating them into GWO can help enhance the diversity of the wolf
pack’s distribution during initialization. Currently, many domestic scholars and related
researchers have combined the algorithm with chaotic mapping, mainly using Tent and
Logistic chaotic mappings. Literature [16] suggests that compared to the Logistic map-
ping, the Tent chaotic mapping has higher computational efficiency. The mathematical
definition of the Logistic chaotic algorithm possesses properties that are extremely sen-
sitive to the initial value and parameters, and can generate a vast number of well-behaved
chaotic sequences. Therefore, this paper adopts the Logistic-Tent chaotic mapping pro-
posed in literature [17] for population initialization of the wolf pack. The mathematical
expression of this chaotic mapping is shown in Eq. (17).

Xn+1 =
⎧⎨
⎩

[
rXn(1 − Xn) + (4−r)Xn

2

]
mod 1, Xn < 0.5[

rXn(1 − Xn) + (4−r)(1−Xn)
2

]
mod 1, Xn ≥ 0.5

(17)

In the equation, r is the control parameter, r ∈ (0, 4). In this paper, we set r = 0.3
and Xn represents the value of X after the n-th iteration. To further validate whether the
Logistic-Tent chaotic mapping can evenly distribute the mapping target, we conducted
tests on the Logistic-Tent chaotic mapping with 600 iterations. The test results are shown
in Fig. 4 and Fig. 5, indicating that the Logistic-Tent chaotic mapping has the ability to
achieve a uniform distribution of the target.

In this paper, the Logistic-Tent chaotic mapping is applied to the initialization of the
wolf pack in the GWO algorithm. Although it increases the complexity of the algorithm
to some extent, the uniformly distributed wolf pack is more advantageous in searching
for prey.

3.3 The Integration of IGWO and FNN

According to the above steps, a FNN is constructed and the IGWO algorithm is intro-
duced for weight adjustment in the FNN. The overall system workflow is illustrated in
Fig. 6.

In this article, the IGWO algorithm is used to optimize the weights between the
fuzzy inference layer and the output layer in FNN, and these weights are mapped into a
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Fig. 4. Logistic-Tent chaotic mapping
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Fig. 5. Logistic-Tent chaotic sequence distribution histogram

matrixW = [w11 ,w12 , · · ·w1M ;w21 ,w22 , · · ·w2M ;w31 ,w32 , · · ·w3M ], which is scattered
among the wolf pack using the Logistic-Tent chaotic mapping. Because the IGWO
algorithm adjusts the weight values between the fuzzy inference layer and the output
layer in FNN, the number of network weights is the dimension of the GWO algorithm.
After constructing the FNN, the positions of the grey wolves are evenly dispersed using
the Logistic-Tent chaotic mapping, and the grey wolf population is initialized. The
results obtained from the fitness function are sorted, and superior individuals are selected
according to the principle of pyramid level distribution, dividing thewolf pack intoα,β, δ
and ω wolves. The IGWO calculation formula is iterated and updated continuously until
the maximum number of iterations is reached or the optimal solution to the problem is
found; otherwise, the fitness function is calculated repeatedly.When the optimal solution
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p i dk k k

Fig. 6. The process of the system

to the problem, i.e., the position of the α wolf, is found, the new weight size obtained at
this time is brought back into the original FNN, which will then produce an ideal output.

This paper integrates IGWO and FNN to address the position control problem of a
stepper motor through closed-loop processing. By treating kp, ki, and kd as outputs of
FNN and continuously adjusting their values through iterative weight optimization using
IGWO, precise adjustment of PID parameters is achieved for controlling the position of
the stepper motor.

4 Simulation Experiments of the System

To validate the feasibility of the IGWO-FNN controller for position control of stepper
motors, a Simulink simulation model of the system was constructed, as illustrated in
Fig. 7. The simulation was conducted with a fixed step size of 1e−3.

Given a position curve, with the initial position set to 0 degrees, the motor’s motion
reaches 45 degrees and stops at 0.1 s. Subsequently, the stepper motor continues to move
at 0.4 s and reaches a position of 90 degrees at 0.5 s. Figure 8 demonstrates the position
curve tracking results of the proposed control method for the stepper motor under a load
torque of 0.2 N·m.

The result obtained by subtracting the given position from the actual detected position
is referred to as the error. Figure 9 shows the error results of the proposed IGWO-FNN
combined with PID, as well as the unimproved GWO and FNN algorithms. The param-
eters kp, ki and kd of the PID controller were determined through multiple experiments
using trial and error. From Fig. 10, it can be observed that under motor rotation, the
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Fig. 8. Position tracking detection result

PID control method exhibits significantly higher fluctuations compared to other meth-
ods, with a fluctuation range of 1° and respective stationary times of 0.12 s and 0.509 s
after detecting motor movement. Under motor rotation, the GWO-FNN control method
exhibits a stationary timeof 0.12 s after themotor’s initialmovement, followedby a track-
ing fluctuation jump at 0.113 s. During the first motor movement, the fluctuation range
is [0.48◦, 0.86◦], and the stationary time after the second motor movement is 0.505 s,
with a fluctuation range of [0.22◦, 1.1◦]. A larger tracking fluctuation is observed at
0.49 s, lasting until 0.501 s, with a fluctuation range of [0.22◦, 1.05◦].Under motor rota-
tion, the IGWO-FNN control method exhibits a stationary time of 0.106 s after the first
movement of the stepper motor, with a fluctuation range of [0.46◦, 0.78◦] during motor
movement. After the second movement, the stationary time is 0.505 s, with a fluctuation
range of [0.35◦, 0.91◦] during motor movement. Therefore, when employing the IGWO
algorithm combined with FNN for position control of the stepper motor, particularly
during motor rotation, the proposed strategy demonstrates reduced errors between the
desired and detected positions, faster response speed, and effective control over tracking
errors and fluctuations. Therefore, the proposed fuzzy neural adaptive control strategy
based on the IGWO algorithm effectively controls tracking errors and fluctuations.
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5 Conclusion

This paper proposes a stepper motor position control algorithm based on IGWO-FNN,
which effectively deals with the issue of position control in stepper motors. The IGWO
algorithm is used to update networkweights and is innovatively applied to steppermotors.
Simulation experiments demonstrate that the proposed algorithm achieves effective posi-
tion control of the stepper motor and outperforms PID control and GWO-FNN control
during motor rotation. However, small errors still exist in the scheme when the motor is
stationary, which will be a focus of future work.
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Lévy Flight Chaotic Runge Kutta Optimizer
for Stock Price Forecasting
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Abstract. Maximizing investment returns is a key focus for investors and stake-
holders, the challenge pertaining to stock market forecasting has assumed sig-
nificant importance within this discipline, attributable to the substantial market
volatility arising from a plethora of interconnected factors prevalent in the stock
market. In this paper we introduced a hybrid machine learning model based on
long short-term memory (LSTM) networks and lévy flight chaotic Runge Kutta
optimizer (LCRUN) to predict three stock indices daily price. The LCRUN incor-
porates an initialization technique utilizing chaoticmapping to enhance population
diversity. A method namely lévy flight are used in the LCRUN for enhancing abil-
ity to search globally optimal solutions and avoid falling into local optima. Our
proposedmodel evaluates the performancewith RungeKutta-based LSTM (RUN-
LSTM), sine cosine-based LSTM (SCA-LSTM), differential evolutionary-based
LSTM (DE-LSTM) and particle swarm-based LSTM (PSO-LSTM) on these stock
indices includes S&P500, NASDAQ100, and SPY. The experimental results show
that the proposed LCRUN-LSTM has significant performance and predicts stock
prices more accurately than the other four models.

Keywords: Lévy Flight · Chaostic Map · Runge Kutta Optimizer · Stock
Forecasting · Swarm Intelligence

1 Introduction

The role of stocks in the economy is that the stock market is a barometer of the econ-
omy. This paper we introduced a hybrid machine learning model based on long short-
term memory (LSTM) networks and lévy flight chaotic runge kutta optimizer (LCRUN)
to predict three stock indices daily price. The LCRUN incorporates an initialization
technique utilizing chaotic mapping to enhance population diversity. A lévy flight is
used in the LCRUN for enhancing to search ability and avoid falling into local optima.
Our proposed model evaluates the performance with runge kutta-based LSTM (RUN-
LSTM), sine cosine-based LSTM (SCA-LSTM), differential evolutionary-based LSTM
(DE-LSTM) and particle swarm-based LSTM (PSO-LSTM) on SPY stock indices. The
experimental results show that the proposed LCRUN-LSTMhas significant performance
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and predicts stock prices more accurately than the other four models. The main contri-
butions are as follows: (1)We proposed LCRUNmethod avoid the algorithm falling into
local minima by adding a lévy flight and enhances population variety and using chaotic
mapping. (2) By employing LCRUN to enhance the hyper-parameters of the LSTM,
the LCRUN-LSTM is proposed. By comparing LCRUN with four other optimization
methods hybrid LSTM model during trials on stock indices, the model’s generalization
performance was confirmed. (3) The LCRUN-LSTM is used for predicting stock prices,
and the superior results of the LCRUN-LSTM model in tackling stock price prediction
issues is confirmed through comparative testing.

2 Methodology

To predict stock prices, we proposed a LCRUN-based hybrid forecasting model. The
first phase entails computing technical indicators using pre-processed data and daily
stock prices, which includes mapping technical indicators to narrow ranges using nor-
malization method. The second phase is to get the optimized values of the LSTM hyper-
parameters using LCRUN method, and the third step is to train the obtained model after
optimizing the hyper-parameters. In the final step, the prediction efficiency of the model
is assessed by six evaluation metrics and then derived the prediction results. Figure 1
depicts the overall layout of the proposed model. Each pertinent technical is thoroughly
discussed in the follow section.

2.1 Data Pre-processing

By analyzing the above relatedwork, themain factors affecting stock pricesmost directly
daily statistics from the OHLC stock market is selected as the main data for forecasting
inputs [1], In order to map the info in narrow range, we use the normalization method,
assuming that xmax and xmin are the maximum and minimum values, then this method
can be used to map the original data x∗ to x′ between [xmin, xmax] to a smaller range
[x′

min, x
′
max]. The mathematical expression is given by Eq. (1):

x′ = x∗ − xmin

xmax − xmin
(x′

max − x′
min) + x′

min (1)

2.2 Long Short-Term Memory (LSTM)

Traditional recurrent neural networks (RNNs) take a long time to store information in
longer time intervals, i.e., The original RNN’s hidden layer only has one state, and it
cannot manage long-distance dependencies. The LSTM introduces state c (cell state)
on top of the RNN to allow it to store the long-term state. Li et al. [2] LSTM and
convolutional neural network (CNN) were combined to create an LSTM-CNN model,
which was then employed for real-time collision risk identification on arterial highways.
Automatically detects the sentence’s keywords and provides a semantic representation
of the entire phrase in the hidden layer. Palangi et al. [3] utilized LSTM to learn semantic
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sentence vectors, which were subsequently employed for a document retrieval task. To
enrich the input with dynamic extended tree, lexical, and distance information.

TheLSTMconsists of input, forget, and output gates, alongwithmemory cell. LSTM
implements the storage and updating of information from these gates. In the first stage,
forget gates determine what information needs to be discarded by the cell state. Next, we
need to decide which old cell states to forget and which new ones to add. Finally, based
on the information obtained from the inputs, it is judged which state characteristics of
the cell should be outputted. The following list provides the mathematical formulation
of different LSTM operations:

(1) The first phase, use the sigmoid unit of the forget gate to select which data from the
previous cell state should be kept or destroyed, which can be expressed as:

Ft = σ(WFht−1 + WFxt + bF ) (2)

(2) Selecting the new data to be included in the cell state is the next step. There are
two steps in this phase. First, ht−1 and Xt are employed to select which data should
be updated via input gate It . Then ht−1 and Xt are used to gather data about new
candidate cells Ĉt by passing via a tanh layer. These two steps can be expressed as:

It = σ(WIht−1 + WIxt + bI ) (3)

Ĉt = tanh(WCht−1 + WCxt + bC) (4)

(3) In this phase, the previous cell info Ct−1 and the new cell info Ct will be updated.
The rule of updating is to add some candidate cell info Ĉt by choosing the input
gate, while forgetting some of the previous cell info by using the forget gate. This
is how the updating process is displayed:

Ct = Ft × Ct−1 + It × Ĉt (5)

(4) In final phase, to determine which state features of the last cell are depending on
the inputs ht−1 and Xt , we must first update the cell state. Next, the output vector
must be acquired by passing the cell state through the tanh layer. This vector is then
multiplied by the judgment condition received from the output gate to produce the
cell’s final output. The following are supplied as regards the output operation:

Ot = σ(WOht−1 + WOxt + bO) (6)

ht = Ot × tanh(Ct) (7)

whereWF ,WI ,WC ,WO are the weight matrices corresponding to the input Xt , ht−1
and bF , bI , bC , bO are the bias vectors of the forget gate, the input gate, the candidate
solution, the output gate. The forget gate, the input gate, the candidate solution,
and the output gate bias vectors are WF ,WI ,WC ,WO, and Xt , ht−1, bF , bI , bC , bO
respectively.
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Fig. 1. The framework of LCRUN-LSTM model

2.3 Proposed Lévy Flight Chaotic Runge-Kutta Optimize (LCRUN)

In this part, we proposed LCRUN. The procedure of LCRUN is given by Algorithm 1.

Original Form of Runge Kutta Optimizer. RUN [4] includes Runge Kutta search
(RKS) and enhanced solution quality (ESQ). RKS is the main stage for optimization.
The ESQ improve global optimization ability. In RUN, The first step for optimization is
RKS, and RUN’s search algorithm is based on the RKS., which is based on the runge
kutta four-order method (RKM). Then the core of main optimization stage in RUN can
be given

if rand < 0.5

xn+1 = (xc + r × SF × g × xc) + SF × SM + μ × xs (8)

else

xn+1 = (xm + r × SF × g × xm) + SF × SM + μ × xs′ (9)

end
xm and xc can be calculated as follows:

xm = ϕ × xbest + (1 − ϕ) × xlbest (10)

xc = ϕ × xn + (1 − ϕ) × xr1 (11)
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where ϕ,μ is an arbitrary number within [0, 1], g is an arbitrary number within [0, 2]
xbest is the global optimal solution, xlbest is the best location at each. r is direct parameter,
which is 1 or −1. SF is a control parameter, which is given by:

SF = 2.(0.5 − rand) × a × exp(−b × rand × i

Maxi
) (12)

where a and b are input parameter. The formulas of xs and xs′ are expressed as

xs = randn · xm − randn · xc (13)

xs′ = randn · xr1 − randn · xr2 (14)

where randn is an arbitrary number within [0, 2]. xr1 and xr2 are two random solutions.
The first step to get the RKM solution xn+1, the second part is the ESQ phase, using the
random solution and the present iteration optimal solution to generate the fitted solution
xnew2 so that the algorithm has a certain ability to jump out of the local optimal dilemma,
when the condition rand < w, then it will generate xnew3. The formulas of xnew2 and
xnew3 are given as:

if rand < 0.5

xnew2 = xnew1 + r.w.|(xnew1 − xavg) + randn| (15)

else

xnew2 = (xnew1 − xavg) + r.w.|(u.xnew1 − xavg) + randn| (16)

In which

xnew1 = β × xavg + (1 − β) × xbest (17)

end
where β is an arbitrary number within [0, 1], c is an arbitrary number that equals

5× rand . w is a random number. r is an integer number, which is a value −1, 0, 1. xavg
is the fitted solution of the three stochastic solutions.

if rand < w

xnew3 = (xnew2 − rand .xnew2) + SF .(rand .xRK + (v.xb − xnew2)) (18)

end
where v is an arbitrary number equal to 2× rand . Then the optimal value is taken as

the final solution by comparing the three candidate solutions xn+1, xnew2, xnew3. In order
to make the algorithm can have a stronger ability to jump out of the local optimum, and
at the same time make the population more diverse and random.

ChaoticMapping. Recently, chaotic mapping has been applied to many other different
algorithms [5–7]. They offer a deterministic approach for generating seemingly random
sequences. Ten frequent chaoticmappings have been identified [8]. In this paper, Logistic
map is used to generate the sequence of random numbers. It is described as follow:

xk+1 = axk(1 − xk) (19)

where k is the number of iterations and xk is the kth chaotic number, a is a real number.
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Lévy Flight. Lévy flight is a type of non-gaussian stochastic [9] process that exhibits
anomalous diffusion. The process is characterized by the lévy index, which describes the
degree of deviation from Brownian motion. One of the advantages of lévy flights is their
ability tomodel complex systemswith long-range correlations. Its randomwalk is drawn
from the lévy stable distribution, which has a straightforward power-law formulation as
follow:

levy = U

|V | 1λ
(20)

where λ represents the power-law index, V represents an arbitrary number within the
Gaussian distribution [0, 1], andU is an arbitrary number from the Gaussian distribution
[0, σ 2]. σ is given by:

σ =
(

�(1 + λ) × sin(π×λ
2 )

�( 1+λ
2 ) × λ × 2

λ−1
2

) 1
λ

(21)

where � denotes the gamma function. In this study, update the single position equation
is used:

xi+1
j,k = randnum × xij,k + |levy1|(xij,best − |xij,k |) − |levy2|(xij,worst − |xij,k |) (22)

where randnum is a number between the range [0, 2]. levy1, levy2 are two random
numbers sampled from the lévy distribution.

2.4 Proposed LCRUN-LSTM Model

In this paper, we employed lévy flight chaotic Runge Kutta optimizer (LCRUN) to
improve the LSTM’s hyper-parameters. Stock data is a type of financial time series that
is subject to a wide range of influences and possesses complex instability, nonlinearity,
and cyclical uncertainty. This paper builds a forecasting model for stock data based on
the LSTM model, which is a superior model in time series analysis. The values of some
hyper-parameters in the LSTM model control the final structure of the model network,
and this paper combines the lévy flight chaotic runge kutta optimizer with the LSTM
model in order to make the structure of the model network match with the characteristics
of the stock data. The biggest advantage ofRUNover other intelligence population-based
algorithms is that the algorithm is simple in design and fast in convergence, but it may
fall into the local optimum. LCRUN can maximize the avoidance of local optimal based
on the stock distribution via the lévy flight and ESQmechanism, resulting in an enhanced
parameter search accuracy.Additionally, the applicationof chaoticmapping increases the
population’s diversity. Thus, LCRUNallows theLSTMmodel to efficiently and precisely
identify optimal hyper-parameters based on the stock data’s features. This seamlessly
integrates the LSTM model’s network structure with the stock data’s attributes. The
LCRUN model optimizes the initial hyper-parameters, including hidden unit number,
regularization parameter, and learning rate. The initial position of eachvector is randomly
initialized based on the range of hyper-parameter values. Secondly, the LSTM model is
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constructed using hyper-parameter values assigned to the vector individuals’ positions.
The model is trained using the training data, followed by substitution of the test data to
predict the test value. The RMSE in the test dataset is used as the fitness value. Proposed
model is given as follow:

Algorithm 1. LCRUN-LSTM
Initialization
1 Set the algorithm's parameters and the population size
2 Generate the population ( 1,2 ,..., )N n Xn = by using Eq. (31)
3 Set RMSE as the fitness function using Eq. (37).

4 Load the data 

Optimization
5 If it < MaxIt

6 Calculate the fitness of every single vector

7 Refresh solution by using Eq. (18), (19), (26), (27) and (30)
8 end
9 Get the input hyper-parameters that minimize the fitness of the LSTM
Hybrid LSTM
10 Assign the optimized hyper-parameters and train the LSTM
11 Evaluate

The examination of LCRUN’s complexity is as follows. The population size and
dimensions are N and D, respectively. Chaotic mapping needs O (N · D) to complete
initialization, lévy flight operator takes O(N) for updating vectors.Maxiter is described
as the algorithm iteration, and updating N population needs O(T), thus, the optimization
stage requires O (N · D + N · D · T).

3 Performance Indicators and Forecasting Application

This section discusses objective performance indicators and experimental settings for
evaluating the effectiveness of LCRUN-LSTM prediction ability.

3.1 Performance Indicators

We used six measures namely mean absolute error (MAE) [10], mean squared error
(MSE) [11], mean absolute percentage error (MAPE) [12], root-mean-square error
(RMSE) [10], symmetric mean absolute percentage error (SMAPE) [13] and coeffi-
cient of determination (R2) [14, 15], to evaluate and contrast the model’s robustness and
accuracy. The following lists these measures’ mathematical definitions:

MAE = mean(|predictx − realx|) (23)

MSE = 1

N

N∑
i=1

(reali − predicti)
2 (24)
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RMSE =
√√√√ 1

N

N∑
i=1

(reali − predicti)2 (25)

MAPE = 100 × 1

N

N∑
i=1

arctan(| reali − predicti
reali

|) (26)

SMAPE = 100 × 1

N

N∑
i=1

arctan(
|reali − predicti|

(|reali| + |predicti|)
/
2
) (27)

3.2 Application of the Proposed Forecasting Model

The forecasting models are built in MATLAB 2022a, which is set up on a machine with
an i7-6700 CPU with 2.60 GHz and 16 GB of RAM.

Dataset
The Google Dataset was used to compile the data sets for this investigation. Train-
ing dataset is composed of the first 403 entries of the SPY from August 18, 2021, to
August 18, 2023, and the test dataset includes the subsequent 101 entries from the same
timeframe.

Implementation of LCRUN-LSTMModel. In this phase, we use LCRUN to improve
the initial hyper-parameters of the LSTM, and the predict capacity evaluated using six
performancemetrics. Table 1 displays the parameters of all theMHs that were compared,
where the parameter levyλ characterizes to extent the behavior of lévy flight, the LSTM
consists of input layer, lstm layer, dropout layer, fully connected layer and output layer.
Table 2 lists the LSTM’s setting. Some of above setting are references in [16–18]. All
five algorithms’ population is set to 30 and iteration is set to 100.

4 Experimental Results and Discussion

The four compared models are PSO-LSTM, DE-LSTM, SCA-LSTM, RUN-LSTM
respectively. First, the training set is analyzed to determine the accuracy of the algo-
rithms. In the training set, LCRUN-LSTM was the top performer in all six metrics
tested. As shown in Table 4, the MSE of LCRUN-LSTM is 9% lower than RUN-LSTM,
and the value of LCRUN-LSTM is also significantly lower than to other models. Smaller
MAPE and SMAPE values means that the prediction ability of the model is closer to the
real value. Figure 2(a) shows the trend between R2 andMAPE on the training set for five
different models. R2 represents the degree of validity of the data predicted by the model,
with values closer to 1 indicating a higher degree of validity of the prediction. As show
in Fig. 2(a), the left y-axis represents the value of 1- R2 and the right y-axis is the value
of MAPE, we can clearly see that although the degree of data prediction by SCA-LSTM
and LCRUN-LSTM is similar, LCRUN-LSTM is more accurate, and the accuracy of
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data prediction is improved by 4.7% compared to RUN-LSTM. Figure 2(a) shows that
although LCRUN-LSTM outperforms the other models, it is similar the performance
of RUN-LSTM. With analysis of Table 4, compared to RUN-LSTM, LCRUN-LSTM
optimizes 45% of the number of hidden units and obtains a better result.

Second, from Table 5, on the MSE metrics, the value of LCRUN-LSTM performs
best and it’s lower than the values of RUN-LSTM, PSO-LSTM, DE-LSTM and SCA-
LSTM. This suggests that LCRUN-LSTM is more stable in the test set. In terms of
MAPE and SMAPE indices, LCRUN-LSTM outperforms RUN-LSTM and the other
models, suggesting that the performance of LCRUN-LSTM is more pronounced on the
testing set. From Fig. 2(b), the 1-R2 of LCRUN-LSTM is clearly lower than the other
models, indicating that the fitting effect of LCRUN-LSTM is higher compared to the
other models. By combining Table 5 and Fig. 2(b), it can be found that compared to
RUN-LSTM, LCRUN-LSTM improves the validity of prediction on SPY is 3.4%, and
the accuracy is 17.7%, respectively. Additionally, as illustrated in Fig. 3, the train set
outcomes and the prediction outcomes of each method are fitted on SPY stock indexes
(Table 3) .

Table 1. Algorithm’s parameters

Algorithms Parameters

PSO [19] c1 = 2, c2 = 2,wmin = 0.4,wmax = 1.2

DE [20] F = 0.6, CR = 0.8

SCA r1 = [2, 0]
RUN [4] a = 2, b = 12

LCRUN levyλ = 1.5

Table 2. LSTM’s setting

Parameters Setting values

Hidden unit number [5, 32]

Learning rate(lr) [0.001, 0.01]

Regularization parameter(l2) [0.001, 0.01]
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Table 3. Optimized parameters

Parameters PSO-LSTM DE-LSTM SCA-LSTM RUN-LSTM LCRUN-LSTM

Hidden unit
number

20 5 32 31 17

Learning
rate(lr)

0.0016 0.0067 0.0068 0.0097 0.0093

Regularization
parameter(l2)

0.0085 0.0010 0.0010 0.0010 0.0010

Table 4. Different model for forecasting performance in training set

Dataset Models MAE MSE RMSE MAPE
(%)

SMAPE
(%)

R2

SPY PSO-LSTM 6.0164E+00 5.5449E+01 7.4464E+00 1.46 0.36 0.942

DE-LSTM 9.0310E+00 1.1904E+02 1.0911E+01 2.17 0.54 0.876

SCA-LSTM 5.8775E+00 5.4299E+01 7.3688E+00 1.43 0.36 0.943

RUN-LSTM 6.0394E+00 5.5841E+01 7.4727E+00 1.47 0.37 0.942

LCRUN-LSTM 5.7785E+00 5.1091E+01 7.1478E+00 1.40 0.35 0.947

Table 5. Different model for forecasting performance in testing set

Dataset Models MAE MSE RMSE MAPE
(%)

SMAPE
(%)

R2

SPY PSO-LSTM 3.8673E+00 2.1000E+01 4.5826E+00 0.89 0.22 0.918

DE-LSTM 6.9773E+00 6.9702E+01 8.3488E+00 1.59 0.40 0.728

SCA-LSTM 3.6267E+00 1.8657E+01 4.3194E+00 0.84 0.21 0.927

RUN-LSTM 4.1669E+00 2.4283E+01 4.9278E+00 0.96 0.24 0.905

LCRUN-LSTM 3.3979E+00 1.6384E+01 4.0477E+00 0.79 0.20 0.936
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(a) train set                                                           (b) test set
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Fig. 2. Comparison of five different models R2 and MAPE on the training and testing set
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Fig. 3. Five different models on SPY training and testing set

5 Conclusion and Future Work

This paper proposed an improved LCRUN, and mixes it with a ML approach named
“LCRUN-LSTM”. The main results are as follows: (1) Enhancing exploration and
exploitation capabilities, balancing exploration and exploitation, and increasing model
accuracy, the LCRUN can avoid slipping into localization. (2) Combines LCRUN with
LSTM and improves the ability of the algorithm to jump out of localization. (3) The
stock prices of stock indices are predicted and the results show that the LCRUN-LSTM
performs better than RUN-LSTM, PSO-LSTM, DE-LSTM, and SCA-LSTM, especially
RUN-LSTM. As a result, it has been demonstrated that the LCRUN-LSTM is a viable
approach for stock price prediction. Future work considers optimizing the weights and
biases of the LSTM and other hyper-parameters, the number of hidden layers and batch
size, etc.
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