
Jimmy Nassif · Joe Tekli · Marc Kamradt

Synthetic 
Data
Revolutionizing the Industrial 
Metaverse



Synthetic Data



Jimmy Nassif • Joe Tekli • Marc Kamradt

Synthetic Data
Revolutionizing the Industrial Metaverse



ISBN 978-3-031-47559-7    ISBN 978-3-031-47560-3 (eBook)
https://doi.org/10.1007/978-3-031-47560-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Jimmy Nassif
Chief Technology Officer (CTO) 
Idealworks GmbH
Munich, Germany

Marc Kamradt
Founder of SORDI.ai
Munich, Germany

Joe Tekli
Associate Professor  
Lebanese American University
Byblos, Lebanon

https://doi.org/10.1007/978-3-031-47560-3


v

Foreword by Rev Lebaredian

For decades, computer scientists attempted and failed to develop computer vision 
algorithms that could reliably identify what is inside an image—telling us whether 
an image contains a cat or a dog. Most had given up hope that we would solve this 
problem in our lifetime. That was until the invention of AlexNet ignited the Big 
Bang of modern Artificial Intelligence. In 2012, Alex Krishevsky, Ilya Sutskever 
and Geoffrey Hinton had managed to take an idea that had its origin in the 1940s—
Neural Networks—and apply it to the large amount of data available thanks to the 
Internet—the ImageNet database—with an extraordinary amount of compute read-
ily available to any video gamer—NVIDIA’s GPUs. AlexNet smashed all previous 
records in the ImageNet challenge, and within a few years, neural network-based 
algorithms evolved to achieve superhuman abilities in classification and computer 
vision. The method by which we develop the most advanced algorithms and soft-
ware had fundamentally changed forever. Up until that moment, developing 
advanced software simply required an intelligent human, a small computer, a text 
editor and a compiler. AlexNet showed us that algorithms that were out of reach to 
humans were now possible. We could now write software that can write software—
algorithms we are incapable of writing directly. The catch is that we need large 
amounts of the right data combined with enormous amounts of compute. The admis-
sion price into the AI game is data and compute.

Creatures such as humans are born into the world without a true understanding 
of their new surroundings. Human babies learn how to see and perceive the world 
through life experience. Babies learn how to perceive shapes, depth, color, sound, 
scents and taste. They learn how to identify their parents and siblings using all of 
their senses over a period of time. They also learn the rules of our world—otherwise 
known as physics—by conducting specialized experiments. Babies test the world 
by throwing glasses and utensils off the dinner table, breaking their toys and spilling 
liquids. They do this repeatedly until they develop an intuitive understanding of 
the rules.

AIs learn in precisely the same way. We feed them life experience—another way 
of saying data—during the training process. We teach them how to see, how to 
perceive and how best to manipulate the world around them by giving them millions 
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of experiences. Unfortunately, it’s impractical and in many cases unethical to have 
our AIs learn and gain these experiences in our world. We can’t afford to allow our 
self-driving cars or industrial robots to learn how to drive and operate heavy machin-
ery in the real world. It will take too long for them to gain the experience they need 
on the job; and in the process, they can cause too much harm as student drivers and 
heavy machine operators.

The solution to this problem is simulation. If we can construct digital worlds 
that are indistinguishable from the real world—worlds that look, sound, feel and 
behave exactly like our real world—we can generate an unlimited amount of life 
experience for our AIs. The more compute we throw at the simulation, the more life 
experience we can generate in the same amount of wall-clock time in the real world. 
AIs are free to learn without any risk of harm inside these simulations. They can 
learn to drive cars in simulations where they experience children running into the 
middle of the street, millions of times in varied lighting and weather conditions, 
without any harm coming to children in the real world. The data we generate in 
these simulations come with perfect labeling—labels that are impossible to gather 
accurately from the real world.

It turns out that the computing technology that sparked modern AI were origi-
nally and primarily designed for simulating virtual worlds. This of course is the 
programmable GPUs initially developed for powering 3D computer graphics and 
rendering for interactive video games. Modern video games are in essence, simula-
tions of fantastic virtual worlds. The most advanced video games approach the real 
world in complexity and physical accuracy.

There’s a beautiful duality to 3D computer graphics and computer vision. 3D 
computer graphics is a function that transforms a structured description of a 3D 
world into images over time—a simulation of what a camera sensor would experi-
ence in that world. Computer vision is the inverse of this function; transforming 
images over time into a structured representation of the 3D world. The AIs that will 
be the most impactful and valuable to human-kind will be the ones that can under-
stand our real world and operate within it. To create these AIs, we must first model 
the real world and simulate it to generate the life experience for them. Once our AIs 
achieve proficiency in understanding and manipulating worlds, they will then assist 
us in designing efficient, sustainable and delightful virtual worlds—worlds that will 
act as the blueprints for what we choose to build in our real world.

Inevitably, industries will use these virtual worlds to optimize their plans, 
designs, factory floors, robotics systems and logistics operations; long before pro-
duction starts in the physical world. This is at the heart of the NVIDIA Omniverse 
platform for building and operating industrial metaverse simulations. Cloud com-
puting, AI and simulation technologies are converging, giving industries the super-
power of planning and optimizing their factories in digital worlds—turning 
real-world problems into software problems. Manufacturing companies will use 
these superpowers to increase throughput, maximize quality, optimizing resource 
consumption and greatly reduce time-to-market—all while achieving challenging 
sustainability goals.

Foreword by Rev Lebaredian
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This book has arrived at just the right time. Every industry now understands that 
AI will fundamentally change how we design and build everything, but very few 
understand what is needed to create the specialized AIs. This book examines how 
multimedia data and digital images in particular are inputs into the creation of fully 
virtualized worlds in the form of digital twin factories and fully digitalized indus-
trial assets. It relies on practical use cases from the automotive and manufacturing 
industries and their digitalization technologies based on the SORDI dataset. With 
this book, you will understand the nature of data and its unique value for AI. You 
will learn how to capture, structure and generate data essential for AI in order to 
build the industrial metaverse.

Jimmy Nassif, Chief Technology Officer at Idealworks and co-Founder of 
SORDI.ai, is a key contributor to the successful adoption of NVIDIA Omniverse at 
BMW Group. In this book, Jimmy provides his unique experience and insights on 
how to leverage synthetic data to build the industrial digital twins of tomorrow. Joe 
Tekli, Computer Engineering Professor at the Lebanese American University, has 
supported the BMW Group for many years as external lead collaborator. He pro-
vides his academic perspective, adding breadth and depth in describing state-of-the- 
art digitalization technologies and building the SORDI dataset. Marc Kamradt, 
Head of BMW Group TechOffice and cofounder of SORDI.ai, completes the book 
with a look at the ongoing and future digitization activities enabled by the genera-
tion and use of synthetic data, and the trends driving the industrial world today.

Rev Lebaredian
Vice President 
Omniverse & Simulation Technology at NVIDIA 
Santa Clara, CA, USA 
 

Foreword by Rev Lebaredian
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Foreword by Dr. Dirk Dreher

Industrial production networks involve high levels of industrialization experience 
and skills in terms of product knowledge and product integration. State-of-the-art 
production facilities are geared toward lean manufacturing, sustainability, and digi-
talization. Cutting-edge industrial processes aim at maximizing levels of digitaliza-
tion, flexibility, and automation, in order to serving fast-changing markets and 
customer needs, while simultaneously minimizing resource consumption. On a 
journey of a transformation to adapt to future challenges, there is a need for a cul-
ture of continuous improvement and agility to shape a “lean, green and digital” 
production. These concepts are at the core of BMW Group’s “iFactory”. “Lean” 
aims at achieving high efficiency, precision, and flexibility. “Green” aims at system-
izing production with minimum resource usage. “Digital” aims at using cutting 
edge digitalization technologies including artificial intelligence (AI), big data pro-
cessing, and virtualization, to improve planning, execution, problem solving, and 
product quality.

According to its Next Level Mobility report for 2022, BMW Group’s iFactory 
aims at digitalizing not only the next-generation BMW automobiles, but more 
importantly the company’s internal processes and operations, pioneering the next- 
generation digital company. The creation of digital worlds, in the form of Digital 
Twins simulated in the metaverse, harnessing billions of data points and 3D visual-
izations of a factory provides an intuitive way into production data. A suite of digital 
tools, connecting to this Digital Twin, will drive a digital transformation and a data- 
driven and learning organization. From the virtualization of the internal structures 
and processes of a factory, to virtualizing the manufactured products, the benefits of 
digitalization span all industrial stakeholders. Providing transparency to the man-
agement and delivering virtual design, monitoring, tracking, and forecast capabili-
ties for engineers, the digital worlds of the metaverse are transforming the way we 
are manufacturing in the twenty-first century. Multiple data sources are offered 
from a Digital Twin to the work organization for fast problem solving and to reach 
operational excellence. Furthermore, digitalization affords high flexibility and cus-
tomization for clients.
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Nonetheless, yoking the power of digitalization goes beyond individual digitali-
zation elements such as vision cameras, the deployment of a computer vision model 
infrastructure, the purchase of Cloud resources, or the development of a virtual 
simulation of the factory floor. Industries with a thorough digitalization strategy 
focus on developing digital skills at all levels of a company on the one hand. On the 
other hand, digital champions are taking a holistic, data-centric approach that uses 
real and increasingly synthetic data. In particular, the generation and use of syn-
thetic data opens up new opportunities in numerous areas and will play a key role in 
the development of AI applications.

This book addresses industrial digitalization and the usage of state-of-the-art 
digitalization technologies to create full-fledged virtual factories of the future. It 
describes BMW Group’s Synthetic Object Recognition Dataset for Industry 
(SORDI), as one of the main catalysts for creating the next-generation “robot gym”: 
training robots in the virtual world to prepare them to execute in the physical world. 
The first section provides a background of the origins and evolution of record keep-
ing, and the introduction of industrial multimedia data. It describes the transition 
from simple digitization of data toward a full digital transformation of industrial 
processes. The following section introduces the concept of a Digital Twin and how 
to make it work to benefit a modern factory. It describes how the Digital Twin is 
controlled, automated, and how the generation of synthetic data to be used for train-
ing automated robotic systems is created. The Digital Twin is viewed as a “robot 
gym”, training virtual robotic twins using synthetic data in order to allow their real- 
world counterparts to work and execute their tasks in the real world. Different chal-
lenges and responsibilities that arise with the introduction and usage of new 
digitalization technologies and their impact on industry are also addressed, includ-
ing changes in jobs, wages, talents, and the carbon footprint.

This book offers a fresh and modern look at today’s digital industry, specifically 
focusing on using artificial data in smart manufacturing and the industrial meta-
verse. It’s authored by three individuals with extensive knowledge in the field. 
Jimmy Nassif, who is the Chief Technology Officer at Idealworks and co-founder of 
SORDI.ai, played a key role in incorporating NVIDIA Omniverse at BMW Group. 
He shares his exceptional expertise and insights on utilizing artificial data to create 
advanced digital versions of industrial elements. Joining him is Joe Tekli, Computer 
Engineering Professor at the Lebanese American University, who has been a long- 
standing collaborator for BMW Group. Tekli brings an academic perspective that 
dives into cutting-edge digitalization technologies and the development of the 
SORDI dataset. Furthermore, Marc Kamradt, the Head of BMW Group TechOffice 
and co-founder of SORDI.ai, explores future digitalization efforts driven by the 
generation and application of artificial data. He also provides valuable insight into 
ongoing digitization efforts that leverage AI capabilities such as creating realistic 
virtual worlds through tools like Omniverse, while also addressing current trends, 
shaping modern-day businesses worldwide.

Foreword by Dr. Dirk Dreher
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This manuscript is undeniably outstanding and poised to serve as a concise guide 
for innovative pioneers of the twenty-first-century tech industry.

Dirk Dreher
Chief Executive Officer 
BMW Hams Hall Motoren GmbH 
Coleshill, UK  

Foreword by Dr. Dirk Dreher
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Preface

The industrial world is at the verge of a new manufacturing movement – that of full- 
fledged digitalization and the industrial metaverse. Digitalization is one of the top 
challenges of modern industries of this decade. From AI and IoT, to Mixed Reality, 
Digital Twins, and ultimately the Metaverse, the integration and smart usage of digi-
talization technologies is bound to fuel the growth of industry and the optimization 
of its processes. During the last iteration of NVIDIA’s GTC conference in March 
2023, BMW Group announced the expansion of its usage of NVIDIA Omniverse 
across its production network around the world, officially opening the automaker’s 
first entirely virtual factory powered by Omniverse. Omniverse is the zenith of more 
than 25 years of NVIDIA graphics, computing, AI, and simulation technologies, 
which allows industries to plan and optimize their manufacturing projects entirely 
virtually. We are talking about virtualizing the whole thing: from the smallest bolt 
and cutter, to the largest conveyor belt and assembly floor, all the way through the 
manufacturing and logistics robots and operators in between. This allows manufac-
turing companies to reach production quicker, while optimizing resource consump-
tion, improving time-to-market, and enabling improved sustainability.

These are few of the main ideas and concepts described in this book, which 
focuses on the impact of digitalization and digital transformation technologies on 
the Industry 4.0 and smart factories, how the factory of tomorrow can be designed, 
built, and run virtually as a digital twin likeness of its real-world counterpart, before 
the physical structure is actually erected. It highlights the main digitalization tech-
nologies that have stimulated the Industry 4.0, how these technologies work and 
integrate with each other, and how they are shaping the industry of the future. It 
describes how digital images are used to create fully virtualized worlds in the form 
of digital twin factories and fully virtualized industrial layouts. It uses BMW 
Group’s latest SORDI dataset (Synthetic Object Recognition Dataset for Industry), 
i.e., the largest industrial images dataset to-date and its applications at BMW Group, 
as one of the main explanatory scenarios throughout the book. It also emphasizes 
the need for synthetic data to train advanced deep learning computer vision models, 
and how such datasets will help create the “robot gym” of the future: training robots 
on synthetic images to prepare them to function in the real world.



xiv

Writing this book would not have been possible without the hard work of the 
research and development teams at IdealWorks and BMW Group TechOffice, with 
the support of the Lebanese American University’s School of Engineering, whose 
engineers, developers, and graduate/senior students have been successfully collabo-
rating for many years on the development of many of the industrial digitalization 
solutions mentioned in the book. We are also profoundly grateful to Rev Lebaredian, 
Vice President, Omniverse & Simulation Technology at NVIDIA, USA, and Dr. 
Dirk Dreher, Managing Director BMW Hams Hall Motoren GmbH at BMW Group, 
Germany, for agreeing to review our book and for endorsing it through their elo-
quent and powerful forewords. We are sincerely grateful and extremely proud to 
have their support. We also like to extend our deepest gratitude to the experts and 
colleagues who volunteered to review our book, providing us with constructive 
comments on how to improve its content and organization: Pr. Raphael Couturier, 
Ph.D., Head of the AND team, University of Franche-Comté, Belfort, France; Jibran 
Jahshan, vice President, Software, NVIDIA Corporation, USA; Dr. Christian 
Imgrund, Ph.D., Senior Advisor and former BMW Manager for planning and pro-
duction, Munich, Germany; Pr. Yannis Manolopoulos, Professor in the Department 
of Informatics, Aristotle University of Thessaloniki, Data Science & Engineering 
Laboratory, Thessaloniki, Greece; Marco Prueglmeier, Founder Noyes Technologies, 
Senior Logistics Advisor and former BMW Executive Manager for logistics, 
Munich, Germany; Dr. Bechara Al Bouna, Ph.D., Owner and Chief Executive 
Officer of InMind.ai, Beirut, Lebanon; and Dr. Boulos Al Asmar, Ph.D., Senior Vice 
President of Engineering, Idealworks GmbH, Munich, Germany.

The authors believe this book will benefit industry stakeholders and managers, 
and technology enthusiasts, providing them with a comprehensive, well structured, 
and easy-to-read introduction and description of the world and future of industrial 
digitalization. The authors’ collective own opinion is reflected throughout the con-
tent presented in this book. We hope that the unified presentation of industrial digi-
talization in this book will contribute to strengthen further development and research 
on the subject matter.

Munich, Germany Jimmy Nassif 
Byblos, Lebanon Joe Tekli
Munich, Germany Marc Kamradt

Preface
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Abstract

• The book concentrates on the impact of digitalization and digital transformation 
technologies on the Industry 4.0 and smart factories, how the factory of tomor-
row can be designed, built, and run virtually as a digital twin likeness of its real- 
world counterpart, before the physical structure is actually erected.

• It highlights the main digitalization technologies that have stimulated the Industry 
4.0, how these technologies work and integrate with each other, and how they are 
shaping the industry of the future.

• It examines how multimedia data and digital images in particular are being lever-
aged to create fully virtualized worlds in the form of digital twin factories and 
fully virtualized industrial assets. It uses BMW Group’s latest SORDI dataset 
(Synthetic Object Recognition Dataset for Industry), i.e., the largest industrial 
images dataset to-date and its applications at BMW Group, as one of the main 
explanatory scenarios throughout the book.

• It discusses the need of synthetic data to train advanced deep learning computer 
vision models, and how such datasets will help create the “robot gym” of the 
future: training robots on synthetic images to prepare them to function in the 
real world.
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Chapter 1
Welcome to the Age of Data

For the past few decades, data has become increasingly available in digital format, 
especially on the Web, considered as the largest multimedia database to date. Its 
applications include video-on-demand systems, video conferencing, medical 
imaging, on-line encyclopedias, cartography, image retrieval, among others. State 
of the art storage, indexing, and retrieval capabilities have made it possible to 
efficiently process huge amounts of data, and have transformed data into the most 
valuable corporate resource – the new oil of the twenty-first century [12]. With the 
exception of Saudi Aramco ranking at #1, the four tech titans – Apple, Microsoft, 
Alphabet (Google and YouTube’s parent company), and Amazon remain unri-
valled as the top most valuable companies in the world in 2022 [35]. Their profits 
are rising, collectively recording staggering revenues accumulating over $264.7bn 
in net profit in the last quarter of 2021 [35]. Few of us can not survive without 
Google’s search engine, Microsoft’s office tools, Amazon’s one-day delivery, or 
YouTube’s videos. What is even more fascinating is that many of these firms pro-
vide most of their services for free, or so it seems: users pay in effect by sharing 
more data. According to the former CEO of Google Eric Schmidt, humankind 
generated 5 exabytes of data from the dawn of civilization until 2003 [45]. Today, 
our best approximations suggest that around 2.5 quintillion bytes of data are pro-
duced every day – that’s 2.5 followed by an astounding 18 zeros [41]. Undoubtedly, 
there are genuine concerns about how these tech giants are using our data and 
whether they are exploiting what they know about us. Yet there is also no denying 
of the potential and the positive impact that data is having on the world, from 
improved healthcare, to creating new jobs, creating online communities, cutting 
back on pollution and energy waste, to automotive vehicles, smart homes, and 
smart city management.

Big data has also been a prime driver of smart industries with many new oppor-
tunities in logistics, manufacturing, and production. Data from various indus-
trial equipment and manufacturing devices equipped with dedicated sensors and 
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controllers, is regularly generated and ingested into smart industrial systems to 
provide real-time response from the physical world, such as dynamic supply 
chain scheduling [38], production plant management, predictive maintenance 
[5], as well as diagnosis, prognosis and anomaly detection in the industrial pipe-
line [53, 54]. Another major source of industrial data is databases and data 
repositories including data logs and historical records of the industry’s past and 
ongoing operations. Compared with the dynamic data streamed from sensor-
enabled devices which allow monitoring the current status of an industrial pro-
cess, database records are processed offline to generate detailed analytics that 
allow long-term performance prediction and enhancement in industrial opera-
tions such as improved project planning [50], manufacturing network design 
[18], and critical anomaly prediction [23]. Both historical data and real-time 
streaming data can be integrated to train AI (artificial intelligence) models to 
generate useful insights, predict future events, and simulate real-world indus-
trial scenarios in virtual environments. Using state of the art digital transforma-
tion technologies, the smart factory of tomorrow can be designed, built, and run 
virtually as a digital twin likeness of its real-world counterpart, before the phys-
ical structure is actually erected. This will allow the factory managers and deci-
sion makers to gain more insights on the functioning of the factory and its 
complex and interrelated systems, in order to make better decisions when build-
ing the actual physical structure.

***

But how did we reach the age of data? How did we go from stone tablets, 
paper scrolls, and the Epic of Gilgamesh, to silicone chips, the cloud, and the 
Internet of Things? How can we handle multimedia industrial data? And what 
are the main prospects and the key challenges of big data in building smart 
industries?

***

We attempt to answer these questions in this chapter and in the remainder of 
this book…

1.1  Origins and Evolution of Record Keeping

The Pyramid Texts, dating back to 2400–2300 BC, are regarded as the oldest known 
ancient texts, consisting of funerary religious transcripts carved onto the subterra-
nean stone walls of the Egyptian Pyramids at Saqqara on the Giza plateau [24]. The 
Epic of Galgamesh, written on clay tablets somewhere between 2100–1200 BC, is 
regarded as the earliest surviving piece of literature, consisting of an epic poem 
from ancient Mesopotamia. The Code of Hammurabi in Babylon (1792  BC), 
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Table 1.1 Sample legal cases covered in the Code of Hammurabi [44]

Legal area Codes of law

Offences against the 
administration of law

If any one ensnare another, putting a ban upon him, but he can not prove 
it, then he that ensnared him shall be put to death (#1)
If any one bring an accusation of any crime before the elders, and does 
not prove what he has charged, he shall, if it be a capital offense charged, 
be put to death (#3)

Property offenses If any one break a hole into a house (break in to steal), he shall be put to 
death before that hole and be buried (# 21)
22. If any one is committing a robbery and is caught, then he shall be put 
to death (#22)

Commerce If a merchant entrust money to an agent (broker) for some investment, 
and the broker suffer a loss in the place to which he goes, he shall make 
good the capital to the merchant (# 102)
If a merchant gives an agent corn, wool, oil, or any other goods to 
transport, the agent shall give a receipt for the amount, and compensate 
the merchant therefor. Then he shall obtain a receipt form the merchant 
for the money that he gives the merchant (#104)

Assault If a man puts out the eye of another man, his eye shall be put out. [an eye 
for an eye] (#196)
If he breaks another man’s bone, his bone shall be broken (#197)

Professional men If a builder builds a house for some one, even though he has not yet 
completed it; if then the walls seem toppling, the builder must make the 
walls solid from his own means (#233)
If a sailor wreck any one’s ship, but saves it, he shall pay the half of its 
value in money (238)

written on Basalt rock, includes statements that govern the handling and keeping of 
records and property (cf. Table 1.1). Business and commercial records have also 
been recorded as far back as 3000 BC in ancient Sumeria, where receipts in the form 
of clay tablets that were exchanged and then stored for record keeping [31]. 
Babylonian loan records have been found from the eighteenth century BC [34]. 
Similar records were also recovered in ancient Assyria, India, and China dating 
back to around 2000–1500  BC.  Later, in ancient Greece and during the Roman 
Empire, loan records were stored on papyrus and paper scrolls and stored in tem-
ples. Tally sticks were later introduced in medieval Europe, where a stick was 
marked with notches and then split lengthways. The two halves bear the same 
notches and each party to the transaction received one half of the stick as proof. The 
sticks were then stored for future reference and claims. The tally stick was used by 
the British government for managing taxes, until the early nineteenth century, where 
the last tally stick stores were ordered for destruction by burning, and were replaced 
with paper [31]. Paper, and in earlier times papyrus and vellum, were progressively 
used through the centuries to record all sorts of data, from religious texts and litera-
ture, to transactions, contracts, bills, and business deals. Often, the records were 
signed and sometimes sealed in wax with the marks of the stakeholders involved. As 
computers came into commercial use in the twentieth century, businesses began to 
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computerize their systems – which required the conversion of the real-world paper 
records into a representation that computers could understand.

1.1.1  The Advent of Digital Computers

Since the 1950s when digital data came to being, computer systems and computing 
technologies and their applications have evolved drastically. In 1950, the first gen-
eration electronic computer SEAC1 was created in the USA [43]. Compared with its 
revolutionary predecessors like ENIAC2 and the German Z3,3 SEAC was arguably 
the first fully operation digital computer that adopted the, now ubiquitous, von 
Neumann architecture scheme (cf. Fig.  1.1). That same year, Russell Kirsch, an 
American engineer at the National Bureau of Standards, used a rotating drum scan-
ner and photomultiplier connected to SEAC to create the first digital image from a 
photo of his infant son (cf. Fig. 1.2) [2, 13]. The image was stored in the SEAC 
memory by an electronic staticizer and was viewed via a cathode ray oscilloscope 
[26]. The ethereal black-and-white photo only measured 176x176 

1 Standards Eastern Automatic Computer.
2 Electronic Numerical Integrator and Computer was the first programmable, electronic, and gen-
eral-purpose digital computer, completed in 1945. Dedicated at the University of Pennsylvania and 
accepted by U.S. Army Ordnance Corps in 1946, its first program was a study of the feasibility of 
the thermonuclear weapon.
3 Z3 was a German electromechanical computer designed by German civil engineer and pioneering 
computer scientist Konrad Zuse in 1938. Completed in 1941, it was the world’s first working pro-
grammable and fully automatic computer.

Fig. 1.1 The von Neumann computer architecture scheme, widely adopted in most computer sys-
tems since the 1950s [14]
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Fig. 1.2 The first digitally 
scanned image of Russel 
Kirch’s three-month-old 
son Walden, 1957 [40]

Fig. 1.3 Data entry in the 1950s [1]

pixels  – compared with today’s multicolored megapixel digital photos. But it 
became the point of origin for all computer imaging to follow, and it was dubbed in 
2003 by Life magazine as one of “the 100 photographs that changed the world”. 
Despite the early breakthroughs of the 1950s, digital storage space remained 
extremely limited well into the 1960s, where business information was still mostly 
on paper. People and input-output devices like punched cards were needed to trans-
late data from paper into a digital format that computers can process (cf. Fig. 1.3). 
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Fig. 1.4 Shipping a 5 MB IBM disk drive in 1956 [22]

Data records were stored on paper punched cards, which were also used for input 
(scanning the holes in the cards) and output (punching holes in blank cards). Human 
operators typed the content of the paper records onto cards, so the computer could 
read and consume the information. In the late 1960s, magnetic tape and conse-
quently disk drive storage gradually replaced punched cards in large computer sys-
tems. With the advent of disk storage (Fig. 1.4), the ability to access data directly 
and speedily became a possibility, as individual portions of a disk are addressable 
programmatically. Prior to the existence of disks, most data processing took place 
in batches where data was processed sequentially following the order it was stored 
in on punched cards or on magnetic tape. Disk drive technology enabled random 
data access.

1.1.2  The Advent of Corporate Database Systems

In the late 1960s, early database systems were developed to manage data stored on 
disk that could be randomly accessed and updated. Prior to databases, data was 
stored and managed in files which could only be accessed sequentially.4 Two of the 
most common database structures used were the network model (e.g., CODASYL) 

4 File systems are still used today in certain applications, such as managing data in operating sys-
tems (e.g., New Technology File System/NTFS with Microsoft Windows, and Apple File System/
AFS with MacOS).
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and the hierarchical model (e.g., IMS) [31]. Before storing data in the database, a 
data design phase was performed by data administrators to transform the business 
data, still on paper in that era, into hierarchical or network models. In the 1970s, the 
vastly popular relational database model was introduced [7], which continues to 
dominate business systems in the twenty-first century. Yet data was still mostly 
paper based in the 1970s and 1980s and had to be transformed, often by scanners or 
operators re-typing forms, to be stored in databases. This meant the data had to be 
re-structured and re-organized following the principles of database systems. Also, 
databases usually stored any piece of information exactly once – the latest version 
only, making it difficult to perform audits and historical analyses. This was mostly 
emphasized in the so-called relational (or SQL) database model, which remains the 
most widely used legacy database model used by many big corporations to-date 
(e.g., industries, banks, universities, etc.). For example, a sales receipt would be 
deconstructed into its constituent pieces including: client data, supplier data, pur-
chase order, purchased items, etc. where each piece is stored in its own structure (or 
so-called table). All constituent tables would be connected together using well 
defined joins to acquire the original sales receipt data. This ensures that multiple 
receipts by the same client from the same supplier purchasing the same items would 
only hold the client, supplier, and item data only once, without needless repetitions 
and duplications. Putting things into perspective, there was a dire need to save in 
storage space due to the huge prices of disk storage back then. At the time, a popular 
disk storage device was the 3330 model 11 which stored 200 MBs and whose price 
ranged from $74,000 to $87,000 (in 1970s USD) [42]. In other words, 1 MB of disk 
storage cost around $160 (in 1970s USD), the equivalent of thousands of dollars in 
2022 [31]. Yet this would prove extremely limiting later on with the rise of artificial 
intelligence techniques which rely on the historical data for training and prediction. 
Another issue with database solutions is the lack of security information associated 
with stakeholder signature and authentication seals. For example, storing a collec-
tion of receipts in a database required storing the data itself in a database system, 
and scanning the original paper receipts, and storing their signatures or seals in a 
separate document system for authentication purposes. Modern business processes 
were also increasingly requiring the data to be kept for a certain number of years, 
especially for claims in the case of disputes. Hence, a new category of software 
systems called Enterprise Content Management (ECM) was developed in the early 
1990s to store digital images of paper records. In other words, if an exact copy of 
the real-world paper document was needed, separate database and ECM systems 
were put in place to do the job, causing the same data to be stored more than once.

1.1.3  From Data Warehousing to Big Data

As processing power and storage memory increased in the late 1980s and 1990s, 
coupled with a sharp decrease in cost, companies could afford to gather and analyze 
large amounts of historical business data, such as sales, manufacturing, and 
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employment records. Data warehouses were introduced as a special type of data-
bases with simple data representations designed for intuitive and high-performance 
retrieval [25]. The initial database paradigm of having well-structured data repre-
sentations in order to minimize storage space started slowly shifting toward more 
loosely coupled data representations. So-called “denormalized” schemas become 
more and more popular for data warehousing. A denormalized schema allows the 
data to be represented as a whole, similarly to its original representation, versus 
breaking it down into smaller pieces the way legacy databases usually do it [48, 49]. 
For example, a sales receipt would be stored as one big data record, instead of 
breaking it down into client data, supplier data, purchase order, purchased items, 
etc. All the latter fields would be acceded through the receipt itself, where the client, 
supplier, and item data would be duplicated and repeated in every receipt. This 
would allow different branches or departments of a company, or different compa-
nies who produce different kinds of receipts, to easily aggregate and mine all their 
sales receipts data together, since every sales receipt is self-contained and complete 
regardless of its constituent items and inner structure. As a result, the late 1990s and 
2000s saw more and more legacy database systems connected with each other and 
distributed over multiple computer system and networks, using denormalized and 
loosely structured data warehouse architectures. In the 2010s, loosely structured 
and denormalized databases – so-called NoSQL (referring to the well-structured 
legacy SQL databases), saw increased usage, implemented following parallel, 
sparse, distributed, and multi-dimensional architectures. This new generation of 
databases (like MongoDB, Apache HBase, and Appache Cassandra) were designed 
for scalability to very large data volumes and for distribution over hundreds of thou-
sands of computer systems. Their main intention is optimization for efficient and 
scalable data access, such that a single read operation can retrieve all fields that 
belong to a logical business record. For instance, the column NoSQL database 
Cassandra is used to store event data of automation controller [17], the document 
NoSQL database MongoDB is used to store machine data [47], and time-series 
databases (TSDB) are receiving growing attention in handling sensor data [9]. 
Nowadays, loosely structured NoSQL databases, coupled with unlimited cloud stor-
age and computing resources, are paving the way to the handling of big data and 
real-time multimedia Web applications.

1.2  Handling Multimedia Industrial Data

The realization of the Internet of Things (IoT) vision of collaborative cyber-physical 
systems, where physical machines and software agents meaningfully and intelli-
gently manipulate and exchange information and services without human interac-
tion, remains in its early stages. Nonetheless, it is currently unfolding in the 
industrial world, especially in smart manufacturing which is defined by NIST5 as a 

5 National Institute of Standards and Technology.
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completely integrated, collaborative manufacturing digital ecosystem that responds 
in real-time to meet changing demands and conditions in the factory, in the supply 
network and in customer needs [29, 39]. Yet a major problem facing autonomous 
and collaborative data processing in smart manufacturing and industrial applica-
tions is the nature of shared multimedia data sources, which often exist in loosely 
distributed environments, with unstructured and heterogeneous contents, created by 
different users (e.g., terminals, sensors, and agents), developed by different vendors, 
with different profiles, formatted following different standards, and using different 
interfaces or protocols. Add to the above the need to respond to real-time changes 
from the factory, from the supply chain, and from the marketplace, where legacy 
software solutions lack the needed sensory data (e.g., scalar measurements, images, 
and videos) to notice changes inside and outside of these connected systems.

1.2.1  Industrial Multimedia Data

Industrial data can be broadly classified into three main categories according to 
media types: signal sensing data, tabular and text data, and image and video data. 
Signal sensing data contains data collected by sensors, actuators, and controllers, 
including audio data by sound sensors, motion data by infrared optical motion sen-
sors, and trajectory data by sensors in IoT. Tabular and text data contains data stored 
in both tabular form, free-text form, and semi-structured form. Tabular data consists 
of structured information with well-defined attributes and properties like sales 
records, product parameters, and production logs and spreadsheets, etc. Free-text 
data does not share a predefined structure and consist of floating textual content like 
user complaints and suggestions. Semi-structured data consists of free-form text 
that is marked-up and interlaced with elements and attributes, like product descrip-
tions and maintenance record descriptions. More recently, the application of photo-
graphic camera equipment in industry and manufacturing has been generating huge 
amounts of images and video data, which are used to monitor the operations in 
factories and supply chains, and to check the quality of products. Video data, when 
extracted by frame, can also be considered as image data. Therefore, methods for 
handling both kinds of data share many commonalities to a certain extent.

1.2.2  Dynamics of Industrial Data

A key enabler of smart industrial applications is the acquisition of timely and com-
prehensive data describing the industrial process at hand. Here we distinguish 
between data-at-rest and data-in-motion which need to be handled differently. Data- 
at- rest consists of inactive and historical information stored in spreadsheets, data-
bases, and data repositories. This kind of data is primarily utilized to predict and 
infer long-term data patterns, which are useful in many industrial applications like 
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performance prediction in product planning [50], manufacturing system design 
[18], and critical event detection [23] like product failure or manufacturing process 
overload. Data-in-motion describes the active data generated on-the-fly by sensors, 
actuators, and controllers. This can represent up to 95% of all data generated in a 
smart manufacturing scenario [51]. This data is constantly generated and ingested 
into the system to produce a real-time response from the environment. Both data-at- 
rest and data-in-motion are needed to train and maintain machine learning models 
and monitor real time condition information such as continuous system diagnosis, 
prognosis [15], maintenance, communication and collaboration [30] with other 
related systems.

1.2.3  Processing Multimedia Data

Traditionally, the analysis of industrial data, namely visual data including images 
and videos, has required human intervention especially during annotation and 
model training. These tasks are labor-intensive and the balance between efficiency 
and accuracy is not easy to maintain. Yet with the improvement of computing power 
and GPU6 performance, the analysis and processing of images and videos have 
become more convenient and have established an emerging research direction in 
manufacturing multimedia data. Here, we distinguish between two types of data 
processing models in industrial applications: i) batch processing which is adapted 
for data-at-rest, and ii) stream processing which is adapted for data-in-motion. 
Using batch processing, the data is first collected in a database or data repository 
over a period of time, and it is subsequently fed into the processor module for analy-
sis. In other words, we collect a batch of information, and then we process it. Using 
stream processing, data is acquired and fed into the processor module on-the-fly, 
piece-by-piece, as it is being collected from the sensors and actuators, where the 
processing is done gradually in real-time. Coupled with the rise and integrated 
usage of big data, cloud computing, and artificial intelligence technologies in recent 
years have made it possible to process continuous streams and large datasets of 
image and video data more efficiently and effectively.

1.2.4  Need for Synthetic Industrial Data

In addition to processing the real data captured from the physical world, leading 
manufacturing companies like BMW Group have highlighted the need to generate 
synthetic image and video data through digital simulation and digital twin technolo-
gies, for use in virtual reality (VR) and augmented reality (AR) applications. A digi-
tal twin refers to the creation of a digital simulation of a given physical system (e.g., 

6 Graphical Processing Unit.
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Fig. 1.5 Extracts of the SORDI dataset: (a) First SORDI asset: Smart Transport Robot (iw.hub), 
and (b) Snapshot of the digital twin environment of the BMW factory at Regensburg

creating a digital twin of a physical supply chain or a car manufacturing plan). The 
digital twin visualization system requires synthetic visual assets that simulate and 
match their physical counterparts. These assets span from creating a 3D point cloud 
visualization of a tiny bolt (i.e., the first digital asset in BMW’s synthetic industrial 
assets dataset called SORDI7), to digitizing the whole BMW Regensburg plant 
including its approx. 45,000 square meter work area and more than 35 object classes 
and approx. 1500 instances labeled in the factory (e.g., pallets, stands, forklifts, and 
automatic mobile robots or AMRs, cf. Fig. 1.5). More importantly, the synthetic 
data can be used for augmenting the real data, in order to train more accurate 
machine learning and computer visions models that operate in both the real (physi-
cal) and virtual (digital twin) worlds (e.g., training robots to perceive and under-
stand their visual surroundings, e.g. locating and identifying specific objects in 
a scene).

1.3  From Digitization to Digitalization 
and Digital Transformation

Digital transformation is the process of using digital technologies to enhance the 
performance of new or existing processes and customer experiences in order to 
meet business variations and market constraints [21]. Digital transformation is 
being quickly embraced in industry and manufacturing, either in a wholesale 
approach or following a piece-by-piece implementation where new digital technol-
ogies are incrementally integrated to change different aspects of industrial pro-
cesses. Here, it is important to distinguish between digitization, digitalization, and 

7 Synthetic Object Recognition Dataset of Industry (SORDI), www.sordi.ai. SORDI is described in 
detail in Chap. 6.

1.3 From Digitization to Digitalization and Digital Transformation

http://www.sordi.ai


12

their relationship with digital transformation. Digitization refers to taking analogue 
information and converting it into digital data and documents that can be stored, 
processed, and exchanged by computer systems. The information itself is not 
changed nor optimized: it is simply encoded in digital format [10]. Digitalization 
uses digital technologies and digital data to transform business and industrial pro-
cesses and provide openings for new business opportunities and new income, evalu-
ating, re-engineering, and re-imagining the way business and industrial practices 
are done [20]. Digitalization falls under the larger umbrella of digital transforma-
tion, which impact in industry is extensive and often includes improvements in 
safety, quality, throughput, efficiency, revenue, and sustainability, while reducing 
manufacturing costs to remain competitive in the marketplace [9].

1.3.1  No Turning Back on Digital Transformation

The impact of digital transformation is massive, and what’s most important is that 
there is no turning back: this transformation must happen to keep-up with growing 
customer needs and fierce competition. It is referred to as the digital die-off reality 
[32] and can be used to predict a company’s persistence or extinction. Companies who 
do not follow the digital transformation path will probably be left struggling with 
revenue, dealing with unproductive people, using outdated equipment, legacy soft-
ware, and outmoded processes [55]. Nonetheless, success in these transformations is 
not straightforward. Process transformations are usually hard for a large company, and 
digital transformations are no exception, and might prove to be even harder, with less 
than a 30% success rate according to McKinsey [8]. In 2019, despite $1.3 trillion 
invested in transformation initiatives, more than 70% of the said initiatives did not 
reach their set goals, even when executed by big companies like Ford Motor Company, 
General Electric, and Procter & Gamble [27]. Various reasons can be speculated 
behind such failed transformations, ranging from the absence of a clear strategy, to the 
lack of well-defined goals, lack of the needed human in the loop and material 
resources, and failing to emphasise the customer’s requirements and needs at the cen-
ter of the digital transformation exercise [27]. However, many companies with suc-
cessful digital transformation stories focused around developing tailored employee 
service-based solutions, adaptable digital work platforms, and smart manufacturing 
solutions, among others, have shown improved stock prices and impressive growth 
rates, including a 258% growth within 5 years for Microsoft, a 203% growth within 
7 years for Hasbro, and 69% growth within 2 years for NIKE [37].

1.3.2  Emerging Digital Technologies

Various emergent digital technologies have allowed the reimagining of many indus-
tries. Digital data is becoming increasingly available from a wide range of opera-
tional activities using digital devices, i.e., sensors, act accessing and data-processing 
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technologies in everyday objects and partaking in daily operations; we refer to the 
network connecting such devices as the Internet of Things (IoT), considered as a 
foundational digital transformation tool. The IoT integrates various data-accessing 
and data-processing technologies in cyberspace to perceive real-time changes from 
the real world using digital sensory tools [4]. With 61% of enterprises showing 
some level of IoT maturity, the usage of data collected from digitally transformed 
industries and businesses is showing high rates of success [16]. The digital technol-
ogy infrastructure provided by IoT is promoting the realization of industrial Cyber- 
Physical Systems (CPS), integrated physical and engineering systems which are 
monitored, controlled, coordinated, and integrated with computing and communica-
tion systems [33]. In turn, the integration of IoT with CPS is promoting the develop-
ment of so-called digital twins: virtual replicas of physical entities (e.g., a virtual 
bolt) or entire physical systems (e.g., a virtual factory) that take real-world data 
about the physical entity as input and produces simulations or predictions through 
real-time replication, communication, convergence, and self-evolution [19]. With 
the integration of IoT, CPS, and Digital Twin technologies, massive amounts of data 
will be generated by these systems and will have to go through the digital data pro-
cessing pipeline, including data collection, storage, aggregation, analysis, and shar-
ing, in order to eventually provide decision support and data prediction functionality. 
This in turn requires powerful processing capabilities as well as sophisticated and 
smart algorithms to deal with the different challenges of industrial big data, which 
can be handled through dedicated cloud computing and artificial intelligence solu-
tions respectively.

1.4  The Trinity of Big Data, Cloud Computing, 
and Artificial Intelligence

1.4.1  Industrial Big Data

As fashionable as it may seem, while the label “big data” seems innovative, yet 
companies have been collecting time series data from factory floors and field assets 
for decades. Industrial big data originating from Internet-connected automation 
equipment and plant floor machinery has prominent and perceptible business value 
for companies looking to augment and transform data into knowledge and smart 
insights that produce more business value and improved plant performance. 
However, much of this data remains unexploited, stuck in separate supervisory con-
trol and data acquisition (SCADA) systems that are often inaccessible and unavail-
able to blend with other relevant business data in order to produce meaningful 
knowledge and insights. And while factory managers and maintenance employees 
have long analyzed data from specific plant floor assets, mostly with spreadsheets, 
this was seldom done with wide business transformation in mind. This is fast chang-
ing with the huge possibilities provided by emergent digital technologies and 
advances in edge and cloud computing, artificial intelligence and machine learning 
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analytics. Such technologies allow manufacturers to transform segregated data and 
systems into dynamic and smart industrial processes and tasks that can be fully or 
partly automated and optimized in almost real-time. This allows improving and 
optimizing operations and performance, including reducing maintenance costs, 
increasing product quality, allowing near-zero downtime, and introducing new rev-
enue streams through new services [46].

1.4.2  Data Processing Using Cloud Computing

With the increasing number of sensors, controllers, and other industrial devices con-
nected to the Internet, legacy centralized data processing servers become easily 
overwhelmed with the sheer size of the collected data. Hence, there is an increasing 
need to move added computing power closer to the sensors, i.e., closer to the edge 
of the network where data is generated. Bringing computational power capabilities 
to the edge of the network, e.g., on the factory floor, on the conveyor belt, or at a 
remote solar energy generation site, allows efficient processing of real-time data 
about the situation and performance of the industrial component without the legacy 
latency problems that take place when transmitting data to a central processing 
server for monitoring, analysis, and automation. Cloud computing on the edge of 
the network, also referred to as edge computing, becomes of central importance 
when high-bandwidth connectivity is not constantly available, such as in rural areas 
or in distant factory sites. Handling part of the data processing on the edge nodes of 
the network alleviates the data processing tasks to be executed on the inner cloud 
nodes, empowering the latter to undertake the heavier data crunching analytics and 
prediction tasks. Edge computing also introduces new use cases such as real-time 
quality management and predictive maintenance of the edge nodes. In these situa-
tions, factory floor equipment and industrial components are recurrently monitored 
and analyzed at the edge, allowing corrective actions like diagnostic checks and 
initiating maintenance tasks. Companies often devise their own edge and cloud 
computing solutions that are catered to their needs, where inner cloud nodes usually 
deliver added storage space, data aggregation from the edge nodes (e.g., combining 
data from the factory plant controllers, conveyor belts sensors, vision sensors), com-
putation scalability, and data analytics functionality on the aggregate cloud data.

1.4.3  Data Analytics and Prediction Using 
Artificial Intelligence

Following big data acquisition and procession, the data needs to be crunched and 
mined for useful analytics and insights, possibly in real-time, to allow smart deci-
sion making and initiate corrective measures when needed. Data analytics allows 
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industries to change from reaction to prevention, predicting the behaviors of various 
industrial systems accurately, and devising actions plans accordingly. In the manu-
facturing domain for instance, production costs can be predicted by training dedi-
cated artificial intelligence (AI) algorithms – namely data mining, machine learning, 
and regression analysis models – on big historical production data [6]. Such algo-
rithms are used to generate analytics allowing to evaluate and predict production 
pipeline performance [6], scheduling of proactive measures when outages occur 
[36], post-production product performance [50], as well as energy consumption, 
carbon footprint, and other relevant industrial KPIs [52]. AI-based analytics solu-
tions can extract useful information that industry managers need to make better 
decisions. In practice, it is often challenging for decision makers to apply their 
experience and knowledge in new and changing circumstances. Their experience 
was obtained under the previous circumstance, which may be different from the 
current one, hence their knowledge may be out of date. With AI-based analytics 
tools, industry managers and decision makers can analyze historical data, discover 
new knowledge, and collect useful and actionable insights to make data- driven deci-
sions [9]. Yet major challenges face the usage of AI-based analytics solutions in 
industry, including the availability of sizable and reliable data, as well as the avail-
ability of computation resources and time, especially on the edge of the network – at 
the level of the sensors and controllers – in order to perform real-time analytics for 
streaming data.

1.4.4  Challenges with Industrial Big Data

To apply big data technologies in industrial applications successfully, it is essential to 
assess the usage of big data technologies in industry from the following three perspec-
tives: industrial data, big data technologies, and data applications in industry. First, 
industrial data empowers modern companies to adopt new data-driven strategies, 
allowing the transition from legacy industrial practices to modern digitized ones. Yet, 
it is impossible to consider one big data solution to fit all industrial use cases since 
different circumstances present different data issues (data types, data formats, and 
data sources) and require dedicated solutions to handle. Second, we need to better 
understand the similarities and differences between industrial big data and typical big 
data on the Web. The 5Vs characters of big data are widely recognized as challenges, 
such as volume (data size), velocity (ingesting or processing big data in streams or 
batches, in real time or non-real time), variety (dealing with complex big data formats, 
schemas, semantic models and information), value (analyzing data to deliver added-
value to some events), and veracity (validate data consistency and trustworthiness) 
[11]. In general, these big data technologies are intended to address some Vs of big 
data. Hence, their capabilities need to be carefully studied and analyzed to know 
which Vs are addressed with industrial big data. Thirdly, gaps of data applications in 
manufacturing need to be identified by reviewing the capabilities of the traditional 
manufacturing systems and big data analysis. Since much traditional manufacturing 
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software has been widely used in enterprises, the big data produced by such legacy 
software can be fed back to the modern AI-driven big data ecosystems for analytics 
and innovative applications such as prediction, optimization, monitoring, simulation, 
and virtualization [9]. Hence, these application gaps between legacy systems and 
modern data-driven solutions need to be carefully evaluated to develop adequate digi-
talization strategies. In summary, knowing the data requirements of manufacturing 
applications, understanding the capabilities of big data tools, and identifying the gaps 
between legacy systems and modern technological capabilities, will help define future 
directions and new ideas for innovative digital transformation processes and smart 
industry applications, generating significant economic opportunities through industry 
digitalization.

1.5  The Contribution of BMW Group’s Open Source APIs

The BMW Group develops and publishes a range of AI-based algorithms and soft-
ware tools on an open source platform: github.com/BMW- InnovationLab. These 
algorithms are part of various applications in production and logistics that focus on 
automated image recognition and image tagging. They intend to relieve production 
line and logistic pipeline employees of monotonous tasks such as checking whether 
a warming triangle is placed in the right location in the trunk of the automobile. This 
task is currently executed by a camera and a computer vision software that processes 
the camera’s streaming images on-the-fly and detects deviations from the expected 
norm [3]. BMW Group is sharing parts of their innovative software for image recog-
nition that has been tried and tested in various real and simulated industrial applica-
tions, aiming to create a larger community around the technology. This allows BMW 
Group to receive support and benefit from the community’s feedback in order to 
further develop the software and its use cases, while focusing on implementing more 
sophisticated AI-based applications in production and logistics. Users of the algo-
rithms and tools are guaranteed anonymity. Errors in the algorithms can be identified 
quickly, with automated functions from the platform operator providing support if 
necessary. In terms of quality assurance, the BMW Group checks all incoming user 
suggestions before they are used in production tools or shared with the community. 
This allows the initial AI models and their training data to remain intact, pending 
expert intervention and approval from BMW Group. Users can also decide whether 
to make their models and data available and accessible to the community, whether to 
make them accessible to specific stakeholders only like suppliers and industry part-
ners, or whether to keep them private for personal usage and development.

This initiative is part of BMW Group’s vision to engage in full-fledged digitaliz-
ing, aiming to simulate its entire production process using its Synthetic Object 
Recognition Dataset of Industry (SORDI, www.sordi.ai), coupled with different AI 
tools to control robots and industrial machines, and simulate human workers’ 
behavior in the digital twin [28]. Selected algorithms are available online on the 
open source platform: github.com/BMW- InnovationLab.
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Chapter 2
Industrial Evolution Toward the Age 
of Imagination

The fourth industrial revolution, i.e., Industry 4.0, is stimulating industries to mod-
ify and upgrade their business models from a seller’s market to a buyer’s market. 
This means that products and processes need to be personalized according to the 
client’s needs, delivered in a short period, while achieving similar or lesser costs as 
seen in mass production [1]. To achieve the anticipated outcomes, industries are 
capitalizing on new digitalization technologies that promote manufacturing flexibil-
ity and automate decision-making processes [2, 3]. From Artificial Intelligence (AI) 
and Mixed Reality (MR), to Cyber-Physical Systems, the Internet of Things (IoT), 
Cloud Computing, and Big Data Analytics, the onset of the Industry 4.0 is gradually 
altering the workforce skill sets needed at almost all levels of industry. While early 
technological revolutions focused on the transformation of materials and energy, 
including water, steam, combustion, and electricity, the current paradigm empha-
sizes the transformation of information. Less than 1% of the world’s information 
was in digital format in the late 1980s, surpassing more than 99.9% by 2022. 
Moving forward, Web data statistics show that every 2.5 to 3 years, humanity is 
producing more information in digital format than since the beginning of human 
civilization [4]. In this context, the Industry 4.0 also focuses on smart software that 
can efficiently process digital information and automate its conversion into useful 
insights and actionable knowledge. This, in turn, is laying the foundation for an 
upcoming Industry 5.0, where robotic support and human labor work together in 
continuous cooperation and the human component is considered as the “Centre of 
the Universe” [5].

***

Then again, how did we reach the fourth industrial revolution? How are we headed 
to the fifth industrial revolution? What are the prominent digitalization and smart 
technologies that have stimulated this evolution?

***

We attempt to answer these questions in this chapter and in the remainder of 
this book…
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2.1  From the Industrial Age to the Information 
and Imagination Ages

Through the course of history, there have been regular advancements in the pursuit 
of improved and faster production. Among the steady evolution in the industrial 
progress curve, a few outstanding bends have led to unprecedented enhancements in 
industrial processes, transformation of various production aspects, and most impor-
tantly lasting improvements on humanity’s overall quality of life [6]. More impor-
tantly, history has taught us thus far that there is not turning back. Failure to 
accommodate and embrace new technologies in due time has caused major eco-
nomic complications to industries and has rendered them obsolete (e.g., from manu-
facturing horse wagons to producing combustion engine cars in the 1920s, and from 
combustion engines to producing hybrid electric vehicles in the early 2020s). We 
refer to these outstanding bends in the industrial progress curve as the “industrial 
revolutions”.

2.1.1  The First and Second Industrial Revolutions

The first industrial revolution (1760–1850) essentially had a mechanical theme, revolv-
ing around the usage of coal and the creation of mechanical tools made from iron for 
agriculture, textile looms, and steam-powered locomotives for transportation [7]. This 
transition to mechanical manufacturing processes took place primarily in England, 
continental Europe, and the United States, where many of the technological innova-
tions were of British origin [8].This contributed to Great Britain’s rise to become the 
world’s leading commercial nation by the late 1700s, creating a global trading empire 
from North America and the Caribbean to the Middle East and the Indian ocean. The 
first industrial revolution manifested a major turning point in human history, compa-
rable only to the embracing of agriculture and the shift from nomadic to sedentary 
lifestyle 4000 years earlier [9]. Average income and population began to show unparal-
leled and continued growth, where the standard of living for the general population in 
the Western world began to improve steadily for the first time in history [10].

The second industrial revolution (1880–1973) saw the upgrade of raw materials from 
iron to steel, and the upgrade of energy sources from coal to refined crude oil. With the 
advent of electricity, the electrification of cities and industries became a norm. Steam 
engines were gradually replaced by internal combustion engines, culminating with the 
booming of the automotive industry in the early twentieth century, marked by a transi-
tion of technological leadership from Britain to the United States and Germany. Giant 
industrial firms started taking form – joining the world’s stock markets – like U.S. Steel, 
General Electric, Standard Oil and Bayer AG. The Toyota Production System (TMS) 
was introduced to organize manufacturing and logistics for the automobile manufac-
turer, aiming for seamless production according to a lean manufacturing process to 
reduce time from manufacturer to clients while minimizing inconsistencies and waste. 
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This entailed performing special trainings for the human workforce to switch jobs seam-
lessly within the manufacturing pipeline in order to adapt to the clients’ demands and 
compensate for the gaps [6]. In the meantime, following the creation of the dual-sided 
through-hole Printed Circuit Board (PCB) design in 1947 [6], the first (Bipolar Junction) 
Transistor (i.e., BJT) was conceived in 1948 ushering-in the era of integrated electronics 
and paving the way for the third industrial revolution.

2.1.2  The Third Industrial Revolution and the Age 
of Information

The third industrial revolution, also known as the digital revolution, highlights the 
shift from mechanical and analogue electronic technology toward digital electronics 
which started in the second half of the twentieth century. It is characterized by the 
production and increased adoption of digital computer systems and digital record- 
keeping tools, coined with digital computing and communication technologies of 
that period. Essential to this revolution, is the large scale production and extensive 
usage of digital logic, Metal Oxide Semi-conductor (MOS) transistors, integrated 
circuit (IC) chips, and their derivative technologies, including microprocessors, 
digital cellular phones, and the Internet network infrastructure [11]. These techno-
logical innovations have also transformed traditional production and business pro-
cesses. Computerized assembly lines and terminals were introduced in major 
factories, coupled with the reduction in size of enormous electrical circuits and their 
gradual replacement with electronic circuitry. Multiple initiatives were launched to 
set-up smart industries, transforming the traditional industrial workflow to adopt 
digitalized designs with smart and interconnected flow lines [12].

Software applications and operating systems also made a gradual entry into the 
market, leading to a new software development market segment. Computer-aided 
design software was introduced in the automotive industry in the early 1960s, when 
IBM delivered its Design Automated by Computer (DAC-1) software for General 
Motors, to design consumer cars. DAC-1 was run on an IBM 7090 mainframe com-
puter with a dedicated graphics console, where users could draw with a light pen, 
creating, rotating, and manipulating car images and designs [13] (cf. Fig. 2.1). With 
the proliferation of personal computers in the 1980s, the software product segment 
brought about a demand for user data in an effort to provide more personalized 
services and experiences. This helped launch the so-called Information Age (also 
known as the Computer Age, or the Digital Age), a period that started in the early 
1960s, with a rapid shift from legacy industries, as known during the (first and sec-
ond) industrial revolutions, to an economy focused on information technology [14]. 
Industry gradually became more information-intensive while less labor- and capital- 
intensive, motivating workers to become more productive as the value of their labor 
decreased [15]. This also marked a shift in the nature of the workforce, emphasizing 
the need for more technical and design innovation skills to keep-up with the increas-
ing demands and sophistication of the new computerized industry.
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Fig. 2.1 DAC-1 running on an IBM 7090 mainframe console [18]

The early 1990s also saw the commercialization of digital networking with the emer-
gence of Internet Service Providers (ISPs). The spread of free information from the Web 
disrupted the global market dynamics. The Web gradually featured online shopping 
among other Web-based software applications, highlighting the need for new and 
adapted logistics. Pizza Hut was the first to jump-in on the Web online shops’ band-
wagon, and Intershop AG, a German commerce company in 1995 became the online 
retail goods shopping platform, followed by Amazon and eBay in the same year [6]. The 
era of Internet-based services had just started. Many logistics firms started delivering 
on-demand and gradually transformed into more online services. In 1998, Google was 
launched as one of the first website indexing services. Instead of memorizing the Web 
addresses of online shops (in the form of Uniform Resource Locators or URLs), Web 
search engines like Google allow users to easily locate Web addresses using the simple 
keyword search paradigm [16]. Advertising companies also took advantage of this 
trend, benefiting from the huge cyberspace coverage provided by the Web as an open 
announcement and promotional area. In the early 2000s, more explorations into the 
usefulness of the Internet conveyed one of the key technological concepts of the fourth 
industrial revolution: the Internet to control hardware. This concept was dubbed the 
Internet of Things (or IoT) by Kevin Ashton, executive director of Auto-ID Center1 [17].

1 The Auto-ID Labs network (initially founded as Auto-ID Center) is a research group in the field 
of networked radio-frequency identification (RFID) and emerging sensing technologies. It consists 
of multiple research universities who initiated the design the architecture for the IoT, and laid much 
of the groundwork for the standardization of RFID technology and the introduction of the 
Electronic Product Code (EPC). It continues to research the evolution and application of RFID 
systems, as well as other disruptive IoT technologies.

2 Industrial Evolution Toward the Age of Imagination



25

2.1.3  The Forth Industrial Revolution Unfolding

The Internet of Things (IoT) is considered as the first pillar of the forth industrial 
revolution (Industry 4.0). The realization of the IoT vision requires the integration 
of technologies from various domains to merge and create novel manufacturing 
processes. Its principal goal is to enable the reception of sensor data from the pro-
duction floor and generate remote commands accordingly. This technology concept 
is gradually making it into the market as an e-service for transmitting user sensory 
data and acquiring user feedback efficiently and securely to control power outlets 
and appliances of smart homes. In parallel, the automotive industry has been embed-
ding sensor data components of their own to provide innovative features in cars. 
With more IoT applications and the increased user pool came more sensor data, 
which – along with social Web data from platforms like Facebook, YouTube and 
Twitter, would usher in the second key force of the Industry 4.0: Big Data. 
Meanwhile, the work on automating certain tasks has been advancing in the aca-
demic sector with numerous Machine Learning (ML) algorithms designed to solve 
specific problems. Artificial Intelligence (AI): the third major pillar of the forth 
industrial revolution, which was first investigated toward the beginning of the cold 
war, started gaining unprecedented traction in the 2010s with the development of 
deep learning neural networks to perform sophisticated computer vision tasks that 
rival human intelligence. This came hand-in-hand with the increased availability of 
data processing capabilities, providing powerful computing platforms that allowed 
the efficient training and execution of these deep neural models. In addition to pow-
erful processor architectures, Cloud Computing is considered as the forth pillar of 
the Industry 4.0, providing enterprise opportunities centered around the provision of 
high computing resources to clients who could not afford them but requited them for 
a certain period of time, on-lease following a pay-as-you-go model, for faster and 
more complex data computations tasks.

The digitalization of industrial production processes, which had started with the 
third industrial revolution, now has the opportunity to be completely controlled via 
software. The control systems of PLCs (Programmable Logic Controllers) and the 
SCADA (Supervisory Control and Data Acquisition) systems, which had been 
developed since the 1970s, are currently undergoing complete digitalization [6]. In 
addition, pervasive technologies like Augmented Reality (AR), Virtual Reality 
(VR), and Digital Twins are attempting to achieve higher levels of integration of 
cyber–physical and visual enhancements, allowing users to interact with their envi-
ronment in a pervasive, smarter, and more informed way. These technologies allow 
users to augment their physical reality (e.g., providing indications and guidance to 
workers in a factory, highlighting the locations of tools, pinpointing danger zones, 
etc.) and replicate it in a virtual world (e.g., producing a complete virtual replica of 
a factory in of the form of a digital twin), helping in simulation, design, navigation, 
optimization, and prediction, among other information-hungry and visual data 
crunching tasks. Today, state of the art SCADA systems allow the entire distributed 
chains of industrial production units to be managed digitally and remotely from 
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around the world, and to be automatically controlled using AI-enabled processes 
acting on statistically analyzed big data analytics generated from both the real envi-
ronment and its synthetic virtual replicas. In summary, the forth industrial revolu-
tion is currently unfolding, and its technologies highlight a battery of variables and 
parameters that need addressing and stabilization. While computer-based automa-
tion is solving many problems and optimizing many processes, nonetheless, it has 
also introduces major challenges regarding the coordination and collaboration with 
non-computerized systems, i.e., the human labor force. The many computerized 
terminals and robots replacing humans in industry are ushering-in a future where 
humans and computer systems seamlessly collaborate to achieve common tasks, 
also referred to as the fifth industrial revolution.

2.1.4  The Fifth Industrial Revolution Toward the Age 
of Imagination

The goal of the fifth industrial revolution (Industry 5.0) is to establish an industrial 
system where collaborative robotics (co-bots) and human employees work together 
in harmony, and where production is highly tailored for the consumers’ needs with 
every component of the product having maximum customizability [19]. This 
requires technical advancements at both hardware and software levels, assuming 
that the Industry 4.0 has been successfully realized. The fifths revolution foresees 
advancement in various aspects, from intelligent manufacturing, to advanced robot-
ics, medical healthcare, and the overall improvement of quality of life. With big data 
being gradually incorporated into AI-enabled manufacturing, production units 
would be able to perform analytics automation: pre-ordering input resources from 
suppliers, keeping inventory, and managing the supply and demand cycle based on 
consumer demands. Accordingly, a fiscal evolution could follow where automated 
production unites would be considered as open civil services and would be run as 
enterprises employing maintenance personnel only [6]. Industrial bots would have 
all sorts of sensors and actuators and the needed on-board processing power to 
behave autonomously for long periods of time. Modular bots would have the capa-
bility to interface with various standardized components based on industry require-
ments. This allows producing compound bots, by integrating multiple modular 
ones, in order to handle special jobs for specific uses cases (e.g., carrying a heavy 
load might require the combination of multiple modular forklift bots to get the job 
done, then the individual forklift bots go their separate ways). Human workers 
would also experience the world with artificially enhanced sensory modules capable 
of enhancement sensations (e.g., using AI-enabled AR glasses to improve vision on 
the factory floor, by recognizing objects and tools, pinpointing zones of interest to 
the individual worker, and providing augmented tutorial trainings to the worker to 
complete certain tasks). Also, workers would utilize smart tools allowing more pre-
cision in executing their tasks (e.g., using smart gloves, connected with the AR-based 
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and AI-enabled systems, to smooth-out the worker’s hand movements, reduce quiv-
ering, delimit movement within certain boundaries, and guide the worker in achiev-
ing critical tasks).

AI and machine learning would handle most of the repetitive and labor-intensive 
tasks, allowing employees to focus more on creativity and imagination as the pri-
mary makers of economic value. In this regard, Industry 5.0 will help usher-in the 
so-called Age of Imagination, where the rise of immersive reality through combined 
AI and mixed reality (MR) technologies promise to increase the value of “imagina-
tion work” performed by designers, engineers, and skilled workers. Building on the 
realization of the Age of Information where the focus was on large-scale data pro-
cessing and data crunching analytics, the Age of Imagination is characterized by 
intuition and creative thinking to create new user experiences and values. Whether 
it be creating new industrial processes to optimize production, creating new medical 
procedures to improve medical surgery, or inventing new processes focused on 
alternative energy sources, the rise of immersive reality would allow designers and 
engineers to imagine new solutions, implement them in the virtual world, test them 
in the virtual world, and simulate their impact and sustainability before ever deploy-
ing them in the real world.

Yet while it sounds extremely exciting from a technical perspective, the Industry 
5.0 might also introduce some non-technical challenges in human society that need 
to be addressed.

2.2  With Great Technologies Comes Great Responsibility

2.2.1  Transforming Jobs and Creating New Opportunities

Automation and digitization through computer-based solutions have widely resulted 
in increased productivity in manufacturing [20], however, Industry 4.0 solutions 
have also been coupled with human labor loss. In the USA for instance, the number 
of employees with manufacturing jobs fell from around 17.5 million to 11.5 million 
from 1972 to 2010, while manufacturing value rose by 270% [21]. Although it ini-
tially appeared that job loss in the industrial sector might be partly counterbalanced 
by the rapid growth of jobs in information technology, yet the recession of March 
2001 foretold a sharp drop in the number of jobs in the sector. This pattern of 
decrease in jobs would continue until 2003 [21], yet data from the past 140 years 
has shown that, overall, technology creates more jobs than it destroys [22]. A study 
by the Deloitte consultancy on the relationship between jobs and the rise of technol-
ogy for England and Wales going back to 1971 shows that technology has gradually 
taken over hard, dull, and dangerous jobs, which have been counterbalanced by 
rapid growth in the caring (healthcare and social care), creative, technology, and 
business sectors. For instance, back in 1971, 6.6% of the labor force in Britain were 
worked in the agricultural sector – in 2015, this has fallen to 0.2%, a 95% decrease 
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in numbers. During the same time period, there has been a 909% increase in nursing 
auxiliaries, 580% increase in education assistants, and 183% increase in community 
workers, among others [22]. In this context, the World Economic Forum estimates 
that by 2025, technology will produce more than 12 million more jobs than it 
destroys [23], a sign that automation and digitalization will have a positive impact 
on the work force and on society.

Yet job creation is not the whole shebang. Equally important is what employees 
can earn for working those new tech jobs. Do wages rise or fall owing to automation 
and digitalization? Conventional economics teach us that wages are controlled by 
supply and demand. When jobs need special skills, wages tend to rise since fewer 
people meet the demand for these skills. Wages also rise when employees are rare 
since there are fewer workers available to supply the needed employment. In other 
words, highly skilled and tech-savvy workers will probably find more job opportu-
nities and demand higher wages, compared with their tech illiterate counterparts. 
Take idealworks for instance, the wholly owned subsidiary of BMW Group devel-
oping AI-enabled logistics solutions. In recent years, the company’s autonomous 
transport bots have become more and more visible in multiple BMW Group plants 
and at additional customers from different industries. Yet skeptics have raised legiti-
mate concerns about the job losses of transportation employees and jobs in the 
logistics supply chain in general. Idealworks response: train for and embark on new 
jobs created by the smart transport logistics industry, like fleet coordination techni-
cians, robot support operators, computer specialists, robotics engineers, and soft-
ware engineers. “We started back in 2020 with only 9 founding employees from 
BMW Group, and now we have grown along with our tech supply and support 
partners to a labor force of more than 100 engineers, technicians, operators, and 
business officers. Numbers show that we are a job creating company!” says Jimmy 
Nassif, CTO of IDEALWorks GmbH.

2.2.2  Technology Can Also Reduce Wages

Despite the positive prospects highlighted previously, yet we should add a word of 
caution: automated systems and robots may sometimes dampen wages and reduce 
job opportunities. In a recent study published by the American Economic Association 
[24], the authors found that employees displaced from their jobs due to digitaliza-
tion and automation are oftentimes required to contend with other employees for 
whatever job positions are left. For instance, clerical employees who have been 
replaced by automation may subsequently seek employment in sectors that have not 
been automated, say retail work. Their entry into the retail sector causes wages in 
this sector to drop as clerical and retail workers challenge one another for employ-
ment [25]. A study by Ashley Nunes of the Harvard Business Review in [25] typi-
cally describes this phenomenon. She provides two descriptive cases of the 
disruptive impact of adopting new technologies. The first case related to aviation. 
During the initial days of commercial flying in the early tenth century, night pilots 
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commanded higher salaries than day pilots since flying at night was considered to 
be more dangerous, requiring special skills that were in short supply. Yet as advanced 
and digitized air traffic control systems become more reliable and cockpit displays 
became more precise, the risk associated with night flying lessened, along with the 
necessity of special skills. This eventually led to the elimination of the skills-based 
wage difference for pilots. Another case described by Nunes is that of taxi drivers in 
London. They used to ask for a substantial wage premium due to the difficulty of 
navigating London. They needed to acquire comprehensive mastery of the street 
maps of the city and few drivers could acquire such knowledge. Yet when Uber 
started equipping its drivers with powerful smart phone applications that offer turn- 
by- turn instructions on how to navigate the streets, it eliminated the need for spe-
cialized knowledge, and led to reduced taxi driver wages. Nonetheless, it also 
opened many new job opportunities in the form of Uber drivers.

2.2.3  Need to Integrate New Technologies with Caution

The upcoming Industry 5.0 will focus on collaboration between humans and robots, 
especially in the industrial sector. Robots will most likely occupy the repetitive and 
dangerous tasks while knowledge-intensive and creative tasks are handled by 
humans, together with the responsibility to supervise and monitor the automated 
robots for maintenance and quality assurance [6]. In other words, new digitalization 
and automation technologies will not eliminate the need for human labor, it will 
rather modify the type of work needed. After all, autonomous does not mean human-
less [25]. The communications, transportation, commerce, and manufacturing sec-
tors will be first and most affected [26]. The so-called Age of Imagination will 
leverage new digitalization technologies to allow for enhanced design and innova-
tion. Prototypes and factories will be developed and tested virtually using mixed 
reality and digital twin technologies. Worker performance will be predicted, and the 
impact of automation robots will be measured way before building the physical fac-
tory or the physical prototype. This is the case of BMW Group’s Regensburg factory 
which was virtualized completely from scratch (cf. Fig. 2.2). This allowed BMW 
logistics engineers to study the factory’s work plans, and optimize its processes, 
implementing, testing, and improving their thoughts in the virtual environment with 
minimal cost and human labor. Here, the new digitalization technologies are not 
replacing the BMW Group factory worker, but are rather augmenting the factory 
with symbiotic assistive technologies allowing to optimize the workers perfor-
mance. In this context, issues that might arise from new technologies can be resolved 
if technological advancements are designed to be human-centric [27]. Developing 
new digitalization and automation technologies while paying notice to the human- 
centric factor promises to mitigate the repercussions of adopting those technologies, 
while focusing on enhancing and transforming human labor versus replacing it. 
Also, new technologies need to be carefully scrutinized before integration in indus-
try. Executives need to wisely evaluate the potential and the limitations of existing 
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Fig. 2.2 Snapshot of the digital twin environment rendering of the BMW factory at Regensburg

technologies. What is the technology good for? What can’t the technology do? What 
is the cost and the impact of the technology once integrated in industry? Are the cost 
and the impact of technology acceptable to stakeholders, including business owners 
and workers? Executives need to ask themselves these questions when making stra-
tegic technology integration decisions [25] to optimize the usage of tech solutions 
while keeping them under close control and continuous monitoring.

References

1. A. Ciortea, et al., Industry 4.0: Repurposing Manufacturing Lines on the Fly with Multi-agent 
Systems for the Web of Things. 17th International Conference on Autonomous Agents and 
Multiagent Systems (AAMAS), 2018. pp. 813–822

2. H. Lasi et al., Industry 4.0. Bus. Inf. Syst. Eng. 6, 239–242 (2014)
3. B. Motyl et al., How will change the future engineers’ skills in the Industry 4.0 framework? A 

questionnaire survey. Procedia Manuf 11, 1501–1509 (2017)
4. M. Hilbert, Digital technology and social change: the digital transformation of society from 

a historical perspective. Dialogues Clin. Neurosci. 22, 2 (2020) https://www.tandfonline.com/
doi/full/10.31887/DCNS.2020.22.2/mhilbert

5. V. Martynov, et  al., Information Technology as the Basis for Transformation into a Digital 
Society and Industry 5.0. Proceedings of the 2019 IEEE International Conference Quality 
Management, Transport and Information Security, Information Technologies IT and QM and 
IS, 2019. https://doi.org/10.1109/ITQMIS.2019.8928305

6. A. Duggal et al., A sequential roadmap to Industry 6.0: exploring future manufacturing trends. 
IET Commun., 2022. 16:521–531

7. Britannica, Industrial Revolution: Definition, History, Dates, Summary, and Facts. Britannica. 
Accessed June 2023. https://www.britannica.com/event/Industrial- Revolution

8. A. Wrigley, Reconsidering the industrial revolution: England and Wales. J. Interdiscip. Hist. 
49(01), 9–42 (2018)

2 Industrial Evolution Toward the Age of Imagination

https://www.tandfonline.com/doi/full/10.31887/DCNS.2020.22.2/mhilbert
https://www.tandfonline.com/doi/full/10.31887/DCNS.2020.22.2/mhilbert
https://doi.org/10.1109/ITQMIS.2019.8928305
https://www.britannica.com/event/Industrial-Revolution


31

9. D. North, R. Thomas, The first economic revolution. Econ. Hist. Rev. 30(2), 229–230 (1977) 
Wiley on behalf of the Economic History Society

10. R.  Lucas, Lectures on economic growth (Harvard University Press, Cambridge, 2002), 
pp. 109–110

11. I. Bojanova, The digital revolution: what’s on the horizon? IT Prof. 16(1), 8–12 (2014)
12. D. Zakoldaev et al., Modernization stages of the Industry 3.0 company and projection route for 

the Industry 4.0 virtual factory. IOP Conf. Ser. Mater. Sci. Eng. 537(3), 1–6 (2019)
13. Computer History Museum (CHM), Computerizing Car Design: The DAC-1. Accessed 

in June 2023. https://www.computerhistory.org/revolution/computer- graphics- music- and- 
art/15/215#:~:text=In%20the%20late%201950s%2C%20the,for%20General%20Motors%20
in%201964

14. M. Castells, The Information Age: Economy, Society and Culture (Blackwell, Oxford, 1996) 
ISBN 978-0631215943

15. A. Cooper et al., Initial human and financial capital as predictors of new venture performance. 
J. Bus. Ventur. 9(5), 371–395 (1994)

16. J. Tekli et al., Combining offline and on-the-fly disambiguation to perform semantic-aware 
XML querying. Comput. Sci. Inf. Syst. 20(1), 423–457 (2023)

17. Postscapes, Internet of Things (IoT) History. 2019. https://www.postscapes.com/iot- history/
18. C. Tales, Twitter, 2023. https://twitter.com/computertales/status/863626667910197248
19. German Federal Ministry of Education and Research (BMBF), Industrie 4.0. 2016. https://

www.bmbf.de/de/zukunftsprojektindustrie- 4- 0- 848.html
20. V. Potocan et al., Society 5.0: balancing of Industry 4.0, economic advancement and social 

problems. Kybernetes 50, 794–811 (2020)
21. F.  Smith, Job Losses and Productivity Gains. Wayback Machine  – Competitive Enterprise 

Institute, 2010. https://cei.org/blog/job- losses- and- productivity- gains/
22. K.  Allen, Technology Has Created More Jobs That It Has Destroyed, Says 140 Years 

Data Census. The Gardian, 2015. https://www.theguardian.com/business/2015/aug/17/
technology- created- more- jobs- than- destroyed- 140- years- data- census

23. M.  Kande, M.  Sonmez, Don’t Fear AI.  It Will Lead to Long-Term Job Growth. 
World Economic Forum, 2020. https://www.weforum.org/agenda/2020/10/
dont- fear- ai- it- will- lead- to- long- term- job- growth/

24. D.  Acemoglu, P.  Restrepo, Automation and New Tasks: How Technology Displaces and 
Reinstates Labor. American Economic Association, 2019. https://www.aeaweb.org/
articles?id=10.1257/jep.33.2.3

25. A. Nunes, Automation doesn’t just create or destroy jobs — it transforms them. Harv. Bus. Rev. (2021) 
https://hbr.org/2021/11/automation- doesnt- just- create- or- destroy- jobs- it- transforms- them

26. D.  Paschek, et  al., Industry 5.0: The Expected Impact of Next Industrial Revolution. 
International Conference on Management Knowledge & Learning, 2019. https://ideas.repec.
org/h/tkp/mklp19/125- 132.html

27. F. Longo et al., Value-oriented and ethical technology engineering in Industry 5.0: a human- 
centric perspective for the design of the factory of the future. Appl. Sci. 10(12), 1–25 (2020)

References

https://www.computerhistory.org/revolution/computer-graphics-music-and-art/15/215#:~:text=In the late 1950s, the,for General Motors in 1964
https://www.computerhistory.org/revolution/computer-graphics-music-and-art/15/215#:~:text=In the late 1950s, the,for General Motors in 1964
https://www.computerhistory.org/revolution/computer-graphics-music-and-art/15/215#:~:text=In the late 1950s, the,for General Motors in 1964
https://www.postscapes.com/iot-history/
https://twitter.com/computertales/status/863626667910197248
https://www.bmbf.de/de/zukunftsprojektindustrie-4-0-848.html
https://www.bmbf.de/de/zukunftsprojektindustrie-4-0-848.html
https://cei.org/blog/job-losses-and-productivity-gains/
https://www.theguardian.com/business/2015/aug/17/technology-created-more-jobs-than-destroyed-140-years-data-census
https://www.theguardian.com/business/2015/aug/17/technology-created-more-jobs-than-destroyed-140-years-data-census
https://www.weforum.org/agenda/2020/10/dont-fear-ai-it-will-lead-to-long-term-job-growth/
https://www.weforum.org/agenda/2020/10/dont-fear-ai-it-will-lead-to-long-term-job-growth/
https://www.aeaweb.org/articles?id=10.1257/jep.33.2.3
https://www.aeaweb.org/articles?id=10.1257/jep.33.2.3
https://hbr.org/2021/11/automation-doesnt-just-create-or-destroy-jobs-it-transforms-them
https://ideas.repec.org/h/tkp/mklp19/125-132.html
https://ideas.repec.org/h/tkp/mklp19/125-132.html


33© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Nassif et al., Synthetic Data, https://doi.org/10.1007/978-3-031-47560-3_3

Chapter 3
Background and Technologies

Artificial Intelligence (AI), Mixed Reality (MR), Cyber-Physical Systems, the 
Internet of Things (IoT), Cloud Computing, Big Data Analytics, and the Digital 
Twin paradigm are some of the main technologies that have ushered in the fourth 
industrial revolution and that are stimulating the fifth industrial revolution. They 
range from smart software that can efficiently process digital information and auto-
mate its conversion into useful insights, to predictive and immersive tools that allow 
robots and humans to work together in continuous cooperation and synchronization, 
realizing the vision of the industrial metaverse.

***

What are these prominent digitalization and smart technologies about? What prob-
lems and use cases do they address? How do they work? And how do they shape the 
industry of the future?

***

We attempt to answer these questions in this chapter and in the remainder of 
this book…

3.1  Artificial Intelligence

Artificial intelligence (AI) is a field of study bridging computer science and com-
puter engineering, aiming to simulate biological intelligence and create intelligent 
entities capable of perceiving their environment and making decisions to maximize 
their chances of achieving the desired goal, given time constraints and restrictions 
in processing resources, while resisting noise and uncertainty, making decisions 
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based on incomplete, inaccurate, or partially incorrect data [121]. Creating syn-
thetic intelligence comes down to combining and integrating a number of technolo-
gies and techniques from different fields, including search and planning, knowledge 
representation, natural language processing, machine learning, social intelligence, 
and generative computing.

3.1.1  Search, Planning, and Motion

Search agents allow solving a problem intelligently by searching for the best solution 
in a space of many possible solutions. This requires producing an abstract mathemati-
cal representation of the environment called the state space (i.e., the set of states an 
agent can find itself in), identifying the set of actions an agent can undertake to change 
states called the transition model, identifying the agent’s goal (i.e., the state it needs to 
reach representing the solution to the problem being formulated), and identifying the 
agent’s utility function to evaluate the quality of a solution. The agent is supposed to 
reach an optimal solution, i.e., the most cost effective solution under given constraints. 
Typical applications of search agents include intelligent navigation systems (e.g., car 
navigation using GPS, robot navigation within a factory plan), planning and scheduling 
(e.g. from logistics and mission planning [38, 66] to health monitoring and meal plan 
recommendation [125, 126]), gaming and simulation (e.g., bot chess players, maze and 
puzzle solvers [110, 121]). Search-based solutions like SLAM (Simultaneous 
Localization And Mapping) are at the core of motion planning, environment planning, 
localization, and navigation solutions for robotics and assistive systems and applica-
tions [136], such as automating the movement of ground robots inside a factory, coor-
dinating the movement of drones in remote natural areas to perform air pollution 
monitoring, gas leakage detection, and power grid failure, prompting quick actions 
accordingly to minimize damage to the environment.

3.1.2  Knowledge Representation

Many of the tasks that machines are expected to handle require knowledge about 
their environment and the world they operate in. AI needs to represent objects, cat-
egories, actions, events, their properties and relationships. This allows associating 
the available information with well-defined meaning, to be analysed and processed 
by machines [111]. This includes machine-readable environment, climate, and 
weather ontologies, such as ENVO: an expressive semantic graph which helps 
humans and machines understand environmental entities of all kinds, from micro-
scopic to intergalactic scales [156], Also in the Natural Language Processing (NLP) 
and Information Retrieval (IR) fields, linguistic knowledge bases (such as WordNet 
[98], Roget’s thesaurus [155], and Yago [67]) provide a framework for organizing 
words/expressions into a semantic space [140]. A linguistic knowledge base is 
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usually represented as a semantic network made of a set of entities representing 
semantic concepts or groups of words/expressions, and a set of links between the 
entities, representing semantic relationships (synonymy, hyponymy, etc.). They pro-
vide ready-made sources of information about word senses to be exploited in vari-
ous language processing tasks including content analysis [133], sense disambiguation 
[139], document classification [137], image semantization [124], multimedia meta-
data clustering [123], and collective knowledge management.

3.1.3  Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field intersecting linguis-
tics, computer science, and artificial intelligence, concerned with understanding and 
generating human language using techniques from knowledge representation, seman-
tic/statistical analyses, and machine learning, in order to allow human- machine com-
munication and interaction. Applications of NLP include information retrieval, text 
miming, lexical and semantic analysis, contextualization, semantic inference, and 
machine translation, e.g., [57]. The ultimate goal of NLP is to allow a computer to 
understand the meaning of human text and speech, and allow it to interact with the 
human correspondent accordingly. In the past few years, spoken dialogue system 
interfaces have gained increasing attention, with examples including Apple’s Siri, 
Google Assistant, Microsoft’s Cortana, Amazon’s Alexa, and numerous other prod-
ucts. Most existing solutions utilize deep learning models, where recurrent neural 
networks (RNNs) have been successfully adapted to dialogue systems through 
encoder-decoder architectures [95, 148]. More recently, OpenAI’s ChatGPT took the 
world by storm, at the next generation generative transformer-based model. Compared 
with Siri and Google Assistant which are virtual assistants that respond to natural 
language commands to perform tasks (e.g., control Apple devices, or search for infor-
mation on the Web), ChatGPT is a full- fledged chat bot designed to perform human-
like conversations and solve problems through textual conversations. Having reached 
human-like accuracy levels, dialogue systems are being increasingly investigated in 
different fields including industry and manufacturing, where NLP helps automatically 
analyze notes and texts in manufacturing and client records [70]: extracting useful 
insights from these texts, and performing human-like conversations with employees 
and clients allows improving manufacturing processes and customer service.

3.1.4  Machine Learning

Machine Learning (ML) Refers to the science of getting computers to perform  
tasks without being plainly programmed for those tasks, where they evolve their 
own behaviours based on empirical and historical data from sensors or data 
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repositories [100]. ML aims to automatically recognize complex patterns and make 
intelligent decisions by learning from and comparing with previous experiences. It 
allows solving pattern detection and recognition problems, including face recogni-
tion, speech recognition, and object recognition [121]. Industrial applications of 
ML include performing obstacle detection for transport robots in a factory plant, 
recognizing objects and workers’ faces in a plant, detecting energy emission reduc-
tions, CO2 emissions, and air quality monitoring. ML can also help to lessen the 
frequency of incidents occurring in a factory, by detecting and recognizing patterns 
and changes in the data, identifying faults in real-time, and adjusting automated 
decisions accordingly to ensure that such incidents have minimum effects on the 
factory and the damage they cause [108]. We describe and categorize machine- 
learning algorithms in more detail in the following section.

3.1.5  Social Intelligence

Refers to the usage of machine-readable knowledge, ML, and language processing to 
detect and recognize sentiment and emotion patterns in human speech and behaviour, 
and react accordingly (emotional robots, robotic assistants, chat bots, etc.) [2, 42]. At 
the core of social intelligence are sentiment analysis tools which analyze words, text, 
and speech extracts provided by users, and attempt to classify them under different 
sentiment categories, such as: positive, negative, or neutral emotions. Affect analysis 
can be viewed as a more fine-grained approach of sentiment analysis, which involves 
more specific classes of affective emotions such as: happiness, sadness, surprise, and 
anger, etc. Many sentiment analysis approaches utilize ML techniques applied on 
corpus-based statistics in order to match textual or speech patterns with sentiments 
represented as labeled categories, e.g., [1, 53]. Other techniques utilize knowledge-
based solutions, e.g., [52, 147], in order to match target words with seed words in a 
sentiment lexicon (e.g., List of Emotional Words – LEW [49], or WordNet Affect – 
WNA [146]), by evaluating their semantic similarity or distance in a reference lexical 
knowledge base (e.g., WordNet [98]). Most methods usually produce sentiment labels 
(e.g., joy, surprise), while evaluating sentiment intensity (valence) scores (e.g., 20% 
joy, 35% surprise). Such solutions are central in developing robot assistants and co-
bots in factories which display human like behavior, and are capable of recognizing 
the emotional states of human employees in order to adapt their communication and 
interaction accordingly. Such methods can also be used to perform client feedback 
analysis [46, 145] (automated analysis of customer opinions on purchased products), 
blog and social media sentiment analysis [43, 157] (analyzing bloggers’ reviews in 
web forms regarding certain products, topics, events, or people).
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3.1.6  Evolutionary and Generative Computing

In addition to searching, decision making, noise resistance, and learning, a truly intelli-
gent system should be able to create and pursue its own goals, to persist without (human) 
assistance, for a long time, and to expand its knowledge beyond predefined constraints. 
This is where evolutionarily and generative computing comes to play. Inspired by the 
Darwinian Theory of Evolution, genetic algorithms are the most famous form of evolu-
tionary computing, mimicking genetic processes that nature uses to produce new solu-
tions from existing ones, where the new solutions supposedly surpass their existing 
predecessors’ quality (referred to as solution fitness). Genetic algorithms are probabilis-
tic optimization algorithms using concepts of Natural Selection and Genetic Inheritance. 
A genetic algorithm maintains a population of candidate solutions for the problem and 
makes it evolve by iteratively applying a set of stochastic operators. These operators 
include selection: replicating the most successful solutions found in a population at a 
rate proportional to their relative quality (fitness), recombination: (crossover) decom-
posing two distinct solutions and then randomly mixes their parts to form novel solu-
tions, and mutation: randomly perturbing a candidate solution by including controlled 
errors. Recently, Generative Adversarial Networks (GANs) have been receiving increas-
ing attention as a new family of Machine Learning (ML) algorithms designed to gener-
ate new data or solutions based on existing ones. Given an initial population of data 
items, referred to as training set, GANs learn to generate new data with the same statis-
tics as the training set. For instance, a GAN trained on photographs of items in a factory 
can generate new photographs of the same items that look seemingly authentic to human 
observers, having many realistic characteristics, albeit with new properties encoded in 
the GANs’ generative model. This is especially useful when creating a virtual environ-
ment or a digital twin representing a factory plant for instance, where items in the virtual 
world are created synthetically to mimic their real counterparts, albeit with special simu-
lated properties that are induced by the virtual environment designer to study different 
aspects of the factory production process.

While originally designed to perform generative computing, GANs have also 
proven useful in different ML scenarios, including supervised, semi-supervised, and 
reinforcement learning (cf. Sect. 3.2) (Fig. 3.1).

3.2  Machine Learning

3.2.1  Supervised Learning

Supervised learning is subcategory of Machine Learning (ML) that uses labeled 
datasets to train algorithms to categorize or predict the labels of new data. Labelled 
data – also referred to as training data, consist of data points/objects with associated 
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Fig. 3.1 Comparing supervised learning and unsupervised learning (a) Supervised learning. (b) 
Unsupervised learning. (Adapted from [91])

labels – referred to as target labels, target categories, or target classes. More for-
mally, a dataset of labelled data can be represented as a set of pairs {(X1, y1), … (Xn, 
yn)} where each pair (Xi, yi) represents a data point Xi as a feature vector in a feature 
space, and a label yi associated with Xi [103]. For instance, Xi could represent the 
color histogram feature vector describing the image of a forklift, and yi could be the 
label “forklift” associated with it. The labels provide linguistic and qualitative 
descriptions of the otherwise purely mathematical and scalar feature vectors [8]. 
Supervised learning can also be performed in the form of numerical regression: 
given a set of scalar data point samples, trying to produce a function that generates 
the outputs from the inputs [6]. Given a large set of labelled data (e.g., a large set of 
labelled images of “forklifts”), the purpose of supervised learning is to learn a func-
tion that associates the target labels with new incoming unlabeled data (e.g., given 
a new image of an industrial truck, the supervised learning algorithm needs to 
decide whether it will be categorized as “forklift” or not). The latter is referred to as 
binary classification: deciding whether one single label is achieved or not. This can 
be extended to perform multi-class classification where the labeled dataset consists 
of data points associated with different labels, where each data point has one single 
label only and thus belongs to one single class (e.g., an industrial truck can either be 
a “forklift” or a “transport truck”, not both at the same time). Certain application 
scenarios might also require multi-label classification which assigns more than one 
label to the same data point (e.g., an industrial truck can be labelled as “forklift”, 
“electric vehicle”, and “smart bot” simultaneously, describing an smart electric 
forklift robot). Multi-class classification can be considered as a special case of 
multi-label classification, where the highest membership class is only kept, and the 
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other lower-membership classes are disregarded. Supervised learning algorithms 
analyze the labelled training data and produce an inferred function, which can be 
used for mapping new data [121]. An optimal scenario allows the algorithm to cor-
rectly determine the target label(s) for new unseen data points. This requires the 
learning algorithm to train by generalizing from the training data to handle unseen 
data points which is not always an easy task [6]. Here, we distinguish between para-
metric learners which require setting some parameters during training and execu-
tion, like the number of layers and the number of cells per layer in an Artificial 
Neural Network (ANN). Tuning a set of fixed size parameters simplifies the learn-
ing process, since parametric assumptions remain independent of the number and 
nature of the training data. Yet a set of fixed size parameters would also limit what 
can be learned by the ML algorithm, which tends to limit its expressiveness [121]. 
Parametric learners include ANNs, Bayesian Networks, and Logistic Regression 
models, among others. On the other hand, non-parametric learners are mostly data 
dependent and require setting fewer parameters. They are mostly free to learn any 
functional form from the training data, regardless of specific parametric choices. 
Nonetheless, they are usually slower to train since they need to consider all the 
labelled data without parameter simplifications, and they are usually prone to over-
fitting [6]. Non-parametric learners include K-nearest neighbors, support vector 
machine, decision tree, and random forest, among others.

3.2.2  Unsupervised Learning

Different from supervised learning, unsupervised learning uses unlabeled data. It 
aims at finding hidden patterns or structures within the unlabeled data. This is usu-
ally performed with the absence of target data labels or knowledge about the labels’ 
existence. In other words, unsupervised learning is conducted without the need for 
labelled training data, learning without external intervention [62]. Data clustering is 
the most common form of unsupervised learning, where unlabeled input data points/
objects are automatically organized into so-called clusters of similar or related 
objects, such that different clusters describe relatively different or unrelated objects. 
Data clustering algorithms can be organized in three main categories: (i) partitional, 
(ii) hierarchical, and (iii) other methods. Partitional clustering algorithms attempt to 
divide data objects into non-overlapping subsets, i.e., the clusters, such that each 
data object is in exactly one cluster, by maximizing intra-cluster similarity and min-
imizing inter-cluster similarity. K-means [68] is one of the most popular algorithms 
in this category and attempts to recursively minimize the distance between objects 
in a cluster and a special object designated as the center of the cluster (computed as 
the average between all objects in the cluster). The clusters are re-computed and 
adjusted recursively until reaching convergence (where the cluster centers remain 
unchanged). Hierarchical clustering algorithms generate a set of nested clusters 
organized in a hierarchy, called dendrogram, where the root node of the dendrogram 
represents the whole dataset and each leaf node represents an individual data object. 
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The cluster hierarchy is produced based on the similarity between individual data 
objects/clusters. Agglomerative hierarchical clustering for instance starts with each 
object forming its own cluster, and then finds the best pair to merge into a new clus-
ter, recursively repeating this process until all clusters are fused together. Hierarchical 
clustering algorithms usually produce better results compared with their partitional 
counterparts, yet they are usually more computationally complex (they usually 
required quadratic time, compared with many partitional algorithms like k-means 
which are of average linear complexity). Also, partitional and hierarchical algo-
rithms tend to break down large clusters into smaller (more homogeneous) ones 
which might not be always favorable from the user/application’s side [141] . Other 
clustering approaches which are designed to produce contiguous, time-sensitive, or 
irregular clusters include incremental, density-based, spectral, and fuzzy clustering 
algorithms [60, 158].

3.2.3  Semi-supervised Learning

Semi-supervised learning is a type of ML that deals with a small amount of labeled data 
and a large amount of unlabeled data during training. The main premise of semi- 
supervised learning is that some labelled training data is available, yet it is not enough to 
train the ML algorithm. Hence, there is a need to extend the small training dataset by 
labelling part of the unlabeled data and integrating it into the labelled training dataset, 
providing additional training pairs sufficient to train the ML algorithm. One famous 
semi-supervised learning approach is bootstrapping [14, 99], which uses the labelled 
data to train one or more lean ML models that are simple enough to train on the available 
training data. For instance, consider a small set of labelled images showing the faces of 
registered clients for a certain retail shop, where the images are labelled according to 
gender: “male” and “female”, in order to promote the shop’s merchandise accordingly. 
Given that the labelled dataset of facial images is not enough to train the initial gender 
classification model, simple classifiers can be defined to process simple facial features 
separately, e.g., a simple classifier to distinguish gender according to the position of the 
eyes, another classifier to process the shape of the eyes, and other classifiers to process 
the size of the eyes, the shape of the hair, the position of the eye brows, etc. Training 
simpler classifiers to process simpler features might prove effective with the small train-
ing dataset. Once trained, the unlabeled input data (e.g., unlabeled client facial images) 
are run through the simple models. For each unlabeled data object, if the simple classi-
fier concur on the same output label, then the label is associated with the input data to 
form a labelled pair, and the pair is added to the training dataset. Otherwise, the input 
data object is dismissed. This process is repeated on the unlabeled dataset until enough 
data objects have been labelled by the simple classifiers and the size of the augmented 
training dataset is large enough to train the initial ML algorithm. Other semi-supervised 
learning approaches include graph regularization methods [81, 159] which build mod-
els based on similarity graphs, where nodes in the graphs represent data objects and 
edges in the graph represent data similarity. A regularization constraint is applied on the 
graph so that unlabeled nodes which are similar enough according to the graph share 
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similar labels. Another approach is structural learning [96, 153] which uses unlabeled 
data to generate a new reduced-complexity hypothesis space by exploiting regularities 
in the feature space via unlabeled data. In other words, the initial feature space is trans-
formed into a new one where more unlabeled data can be easily labelled through exist-
ing semi-supervised approaches such as bootstrapping or graph regularization described 
above. This is conducted with the expectation that the transformed feature space allows 
to produce a good and large enough augmented training set for the initial ML model.

3.2.4  Reinforcement Learning

Reinforcement learning is subcategory of ML where algorithms are designed to 
reward desired behaviours and punish undesired behaviours. They assign positive 
values to the desired actions to encourage the ML algorithm, and negative values to 
undesired behaviours. This allows the model to seek long-term and maximum over-
all reward to achieve an optimal solution [27] . The long-term goals help prevent the 
ML algorithm from delaying on lesser goals. With time, the model learns to avoid 
the negative values and seek the positive ones. This mirrors processes that appear in 
animal psychology. For example, biological brains seem programmed to interpret 
signals such as pain and hunger as negative reinforcements, and interpret pleasure 
and food intake as positive reinforcements. Smart animals like apes, dogs, and 
humans learn to engage in behaviors that optimize these rewards. A typical rein-
forcement learning model is modelled as a Markov Decision Process (MDP) which 
interacts with its environment in discrete time steps [72, 128]. At each periodic time 
stamp, the model receives the current state and the reward associated with it. It then 
chooses an action from the set of available actions, which is afterward sent to the 
environment. The environment moves to a new state and the reward associated 
where the state transition is computed. The goal of the model is to learn a function 
which maximizes the overall aggregate reward as the model transits from one state 
to another, until reaching its final state(s) or until its operation is terminated.

3.2.5  Deep Learning

Deep Learning (DL) is a category of Machine Learning (ML) models based on 
multi-layered Artificial Neural Networks (ANNs) which are inspired by neural 
structures in biological systems, albeit with many differences in terms of elemen-
tary cell representations, network architectures, and dynamics. A biological neuron 
(cf. Fig. 3.2a) is a cell consisting of a cellular body and a nucleus. The cellular body 
contains ramifications: dendrites through which electro-chemical stimuli are trans-
mitted to the neuron, and an axon through which the neuron’s electro-chemical 
response signal is transmitted. At a given time, the neuron receives input stimuli 
from its neighboring neurons, processes the received signals within the cellular 
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Fig. 3.2c Sample ANN representation. (a) Individual neuron, (b) Indivitual cell model, (c) Two- 
layered ANN model

body/nucleus, and produces or not an output response given the intensity and fre-
quency of the input stimuli and the sensitivity of the neuron’s cellular body. The 
latter is formally referred to as the neuron’s activation function. ANNs attempt to 
simulate the latter behavior mathematically (cf. Fig. 3.2b), connecting multiple neu-
ral cells together in specific ways to produce a neural network (cf. Fig. 3.2c).

DL models use multilayered neural network architectures. The term “deep” usu-
ally refers to the large number of internal layers within the neural network. 
Traditional ANNs typically contain 2–3 layers while deep networks can encompass 
as many as 150 layers. DL models are trained by using large sets of labeled data and 
utilize neural network architectures that learn features directly from the data with-
out the need for manual feature extraction [94]. A famous deep neural network is 
known as Convolutional Neural Network (CNN) which uses 2D convolutional lay-
ers, making it well suited to processing 2D data, such as the images’ pixel matrices 
(cf. Fig. 3.3). CNNs extract features directly from images through a sequence of 
convolution layers performing “end-to-end” learning, compared with typical ML 
algorithms where the process starts with relevant features being manually extracted 
from images (cf. Fig. 3.4). Other famous DL algorithms include Recurrent Neural 
Network (RNN) where the output from certain cells of the output layer feeds back 
to the hidden layer(s), allowing dynamic temporal behavior for a time sequence. 
The cells’ internal states serve as short-term memory to process sequences of inputs, 
useful in tasks such as unsegmented handwriting recognition and speech recogni-
tion. Transformer models and GANs (Generative Adversarial Networks) are also 
receiving attention in various application domains, especially in linguistics to per-
form machine translation and speech synthesis in conversational systems [95]. 
However, we note that DL algorithms are more computationally complex and typi-
cally require huge amounts of labelled data (at least a few thousand data instances) 
to perform automatic feature extraction and achieve acceptable learning rates, com-
pared with ML algorithms which are relatively less computationally complex and 
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Fig. 3.3 Sample CNN with many convolutional layers, reported from [94]

Fig. 3.4 Comparing the ML approach (right) with the DL approach (left), reported from [94]. (a) 
Typical machine learning process. (b) Deep learning process

require relatively less training data (unsupervised learners like decision trees can 
achieve acceptable results with hundreds of labeled data instances [112]). Running 
DL algorithms often required specialized hardware like Graphical Processing Units 
(GPUs) and powerful Solid State Drive (SSD) memory cards.

3.3  Computer Vision

Computer Vision (CV) is a subfield of machine learning that trains computers to 
interpret and gain high-level understanding from visual data [104]. It seeks to auto-
mate tasks that the human visual system can do, ranging over the automatic extrac-
tion, analysis, and understanding of useful information from single images or 
temporal sequences of images, i.e., videos [131]. It involves the development of a 
theoretical and algorithmic basis to achieve automatic visual understanding. The 
visual data can take many forms, such as individual scenes, views from multiple 
cameras, or multi-dimensional data from a medical scanner. “Visual understanding” 
in this context means transforming the visual input into numerical or symbolic 
information, providing descriptions of the world that lead to appropriate actions or 
decisions by computer systems. CV solutions are application-dependent: they can 
be used as standalone solutions that solve a specific problem (e.g., scene reconstruc-
tion, 3D scene modelling, object detection, event detection, video tracking, 3D pose 
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estimation, and image restoration [4, 5]), or as part of a larger system including 
other subsystems for control of mechanical actuators, sensors, and information 
databases [104].

A typical CV pipeline consists of six main steps. First, image acquisition allows 
acquiring a digital image representation from one or several image sensors, includ-
ing different types of light-sensitive cameras, range sensors, ultrasonic sensors, and 
tomography devices in medical applications. The resulting digital image representa-
tion depends on the type of sensor, and can range from a typical pixelated 2D image, 
a 3D volume, or a temporal image sequence (i.e., a video). The pixel values usually 
represent light intensity in one or several spectral bands forming gray-scale or color 
images, and can also represent other measures such as depth, absorption of sonic 
waves, or reflectance of electromagnetic waves [34]. Second, image pre-processing 
is usually applied to improve the digital image representation, including re- sampling, 
noise reduction, contrast enhancement, light enhancement, and multi-scaling to 
enhance image structures at locally appropriate scales [34]. Third, feature extrac-
tion allows extracting appropriate image features, including colors, lines, edges, 
localized interest points, as well as more sophisticated features related to texture, 
shape, and motion (we will cover image feature representation in more detail in 
Chap. 4 of the book). Forth, image segmentation is sometimes used alongside fea-
ture extraction to identify which regions of the image are more relevant for further 
processing. This can result in identifying regions containing specific objects of 
interest, decomposing an image into a nested scene structure including foreground, 
background, object groups, and salient object parts [13]. Segmentation can also be 
applied to videos, decomposing a video into a series of per-frame foreground and 
background masks, while maintaining the video’s temporal continuity [87]. Fifth, 
high-level processing is conducted on the extracted image features, to perform a 
high-level application-specific task ranging over scene reconstruction and estima-
tion of specific parameters such as object pose or object size, classifying a detected 
object or event into different categories, and comparing and combining different 
views of the same object. Sixth, the decision making phase allows making the deci-
sion needed for the application, such as pass or fail on automatic inspection (e.g., 
detecting visual defects in manufactured products, classifying the type of damage), 
match or no match in recognition applications (e.g., recognizing specific defects in 
products, recognizing employees’ faces), and flag for further human review (espe-
cially in medical and security recognition applications, such as flagging a suspi-
cious tumor-like shape in an organ tissue [80], or flagging suspicious items at an 
airport [160]).

3.4  Graphics Rendering

Graphics rendering is the process of generating a realistic or non-realistic image 
from a 2D or 3D model using a dedicated computer software. Models are first 
defined as wireframe sketches in a virtual scene containing geometry, viewpoint, 
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Fig. 3.5 Sample renders based on synthetic assets from SORDI (https://www.sordi.ai) (left), and 
visualizing BMW Group’s Regensburg production line (right) using NVIDIA’s Omniverse engine. 
(a) Render of idealworks’ iw.hub. (b) Render of BMW Group’s Regensburg production line

texture, lighting, and shading information describing the scene. The data contained 
in the virtual scene is then passed to a rendering software which adds a battery of 
rendering features including textures, lights, shadows, reflections, transparency, 
refraction, and motion blur, among others [55, 114], to be processed and output as a 
digital image representation. Powerful rendering software include Unity,1 Blender,2 
NVIDIA Omniverse,3 and Adobe Substance 3D,4 among others. The resulting image 
is referred to as the render and represents a complete image that the intended viewer 
can see (cf. Fig. 3.5).

Different rendering techniques have been developed in the past few decades. The 
ideal rendering technique would process every pixel in the scene, which is unfeasi-
ble and would require a huge amount of processing time. Rasterization for instance 
produces a high-level representation of the image where specific objects are identi-
fied and processed as so-called primitives. Instead of performing a pixel-by-pixel 
rendering, rasterization using scanline rendering follows a primitive-by-primitive 
approach, looping through the primitives, determining which pixels they affect, and 
modifying those pixels accordingly [114]. Another rendering technique is ray cast-
ing which evaluates the scene as perceived from a certain point of view, and calcu-
lates the perceived image from the point of view outward, line by line as if casting 
rays out from the point of view. It calculates the ray of light from the object to the 
point of view, considering that the light ray follows a straight path [55]. Another 
calculation is made of the angle of incidence of light rays from the light source(s), 
considering the source(s)’ intensities. A third rendering technique is ray tracing 
which is similar to ray casting, but uses more advanced optical simulations like 
Monte Carlo methods [93] to obtain more realistic results at a significantly faster 
pace. More recently, neural rendering has been used to construct 3D models from 
2D images using ANNs [142], collecting images from multiple angles of an object 

1 https://unity.com/.
2 https://www.blender.org/.
3 https://www.nvidia.com/en-us/omniverse/.
4 https://www.substance3d.com/.
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and mashing them into a 3D model. This can be computationally intensive and 
might require pre-rendering the images offline and then using them when needed. 
Nonetheless, real-time rendering is sometimes required for 3D game videos and 
mixed reality simulation environments that need to dynamically create scenes and 
adapt to the user behavior on-the-fly. In such applications, 3D hardware accelerators 
can improve real-time rendering by using the graphics processor on the video card 
(GPU) instead of consuming valued CPU resources [142].

3.5  3D Scanning

3D scanning is the process of examining a real-world object or environment to col-
lect data on its shape and appearance. The data is collected in the form of a polygon 
mesh or a point cloud, and is processed to extrapolate the shape of the object and 
construct a digital 3D model of it. The 3D model is then processed for graphics 
rendering as described in the previous section. Different from regular cameras, 3D 
scanners collect distance information about the surfaces within its field of view, 
describing the distance to the surface at each pixel in the produced image. Various 
types of 3D scanners exist, including optical, acoustic, radar, and laser. In industrial 
settings, 3D laser scanning has been recently used to capture production facilities’ 
spatial properties in order to produce so-called Virtual Factory Layouts (VFLs) [86]. 
The 3D laser scanner sends out laser beams that reflect back when they hit objects, 
at which point the distance the laser beam has travelled is measured [76]. 
Measurements are stored as points with XYZ-coordinates relative to the scanner- 
position, creating a cloud of points that visualizes the scanned environment. The 
point clouds’ density depends on the laser scanners’ performance and the set resolu-
tion [33]. The 3D laser scanner can generally rotate 360 degrees around its vertical 
axis and 300–320 degrees around its horizontal axis, giving a large field of view. In 
addition, many 3D laser scanners have digital single-lens reflex cameras that can 
capture images and map them to the point cloud [39]. This provides each point a 
particular color producing a more genuine representation of the real environment. 
Several scans of large areas and several sides of an object can be captured sepa-
rately, and then merged together to form a large point cloud [16]. Computer- 
generated (synthetic) objects can be imported into the point cloud, to help realize 
more sophisticated virtual environments [86].

To make the point cloud more easily editable, the list of points in 3D space can 
be transformed into a solid model using 3D modelling techniques such as voxeliza-
tion and high-level 3D object representations. Voxelization is easily understood 
when compared with pixels of 2D images. The word pixel originates from words 
picture and element – similarly, the word voxel originates from volume and element. 
Raster images are represented as 2D grids where each cell in the grid is called a 
pixel and can be addressed by its (x, y) coordinates – similarly, voxels represent 
cells in a 3D grid where the value of a voxel is accessible through its (x, y, z) coor-
dinates. The structured nature of a voxel representation makes it easy to adapt 2D 
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Fig. 3.6 Generating SORDI 3D point cloud assets using NVIDIA Kaolin

Fig. 3.7 Virtual factory layout of BMW Group’s Regensburg plant, using point cloud-based high- 
level 3D object representations

object recognition methods to 3D space; most notably 3D convolutions. 
Convolutional Neural Networks (CNNs) are probably the single most powerful 
methods in 2D computer vision and usually outperform other methods in the field. 
The success of CNN on 2D images encouraged researchers to apply the same tech-
nique on voxel representations. However, voxel representations add processing 
overhead to convert 3D point clouds into voxels before using voxel-based computer 
vision methods, and might require hand-crafted features to encode the content of a 
voxel (e.g., dealing with multiple points located within the same voxel, choosing 
voxel size/resolution).

More recently, high-level representations like scene graphs have been increas-
ingly used to encode and group geometric shapes into hierarchical structures, show-
ing the benefits of 3D scene reconstruction using object detection in point clouds. 
For instance, BMW Group and idealworks have adopted Pixar’s Universal Scene 
Descriptor (USD) standard in generating their SORDI dataset 3D assets (cf. 
Fig.  3.6). USD is also adopted by NVIDIA in their latest virtualization engine 
Omniverse, which is used by BMW Group and idealworks to develop full-fledged 
Virtual Factory Layouts (VFLs) using SORDI (cf. Fig. 3.7). High-level representa-
tions introduces the concept of 3D objects and are not just a collection of points or 
voxels. This conceptual idea simplifies many otherwise complicated operations, 
including object and scene detection, recognition, translation, cropping, scaling, 
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Fig. 3.8 3D point cloud manipulation: selection, and cropping, and filtering of point cloud layers 
(based on BMW Group’s Regensburg plant VFL model)

and rotation (cf. Fig. 3.8). In addition, high-level 3D representations can be more 
efficiently rendered and used for physics and motion simulation, which are crucial 
operations for manipulating VFLs.

3.6  Immersive Technologies

Visualization for replacement in smart manufacturing [161] consists in presenting 
complex and precarious work scenarios in a Virtual Factory Layout (VFL) where 
people can train, learn new skills, and practice in a safe and informative environ-
ment. This requires 3D scanning and graphics rendering to create the VFL and its 
visual structures, coined with the usage of immersive technologies to bring the vir-
tual environment to life and simulate the behavior of its internal and external com-
ponents. Immersive technologies refer to software and hardware solutions that blur 
the boundaries between the physical world and the simulated one [58]. These can be 
classified under Virtual Reality (VR) and Augmenter Reality (AR).

3.6.1  Virtual Reality

Virtual reality (VR) is a set of technologies that enable users to immersively experi-
ence a fantasy world beyond the realm of reality [18]. Various VR technologies have 
been developed over the past years, including different display, interactions, and 
tracking solutions. Display technologies come in a variety of modalities and sizes, 
aiming to deliver different kinds of information to the human senses, including 
sight, hearing, and touch. Visual displays come in different shapes and configura-
tions, e.g., a single large projection screen (i.e., Powerwall [120]), multiple con-
nected projection screens (i.e., CAVE [31]), stereo-capable monitors with desktop 
tracking (e.g., INL VR [40]), and head-mounted displays (e.g., Oculus Rift [24] and 
HTC Hive [151], cf. Fig. 3.9). Audio displays stand for headphones, a single speaker, 
or a full surround sound system. Sound localization makes it possible to simulate 

3 Background and Technologies



49

Samsung Gear (a)

Playstation VR (PSVR) (f)LG (e)HTC Vive (d)

a b

Moverio BT200 (k)Meta (h)Hololens (g)

Oculus (c)Cardboard (b)

Fig. 3.9 Sample VR head mounted systems (a) NASA’s 1990 legacy VIEW VR system [107]. (b) 
Sample VR head mounted displays

sound moving or coming from a location within a virtual environment [18]. 
Interaction with a virtual environment is of central importance in VR. In this con-
text, different kinds of tracking systems using a diversity of mediums (e.g., optical, 
magnetic, ultrasonic, and inertial) enable the position and orientation of human 
users and physical objects to be calculated within a physical space in real time. This 
is particularly important when calculating the correct viewing perspective for the 
user [18]. Coined with gesture recognition software, tracking systems allow natural 
body movements to be translated into functional interaction techniques [101] . 
Handheld controllers allow users to navigate and manipulate objects in the virtual 
world [23]. To improve interactions, haptic devices provide force feedback through 
physical manipulators, allowing a better understanding of how objects in a virtual 
environment interact with each other [82]. Other kinds of feedback such as vibra-
tion, wind, temperature, and pressure, can also be integrated in the virtual environ-
ment given the proper feedback devices [18]. In one simple word, VR is all about 
illusion [63], where user experience is of central importance. VR solutions should 
convince users that they feel physically located within the virtual world [18]. 
Generating a sense of presence sets VR apart from other digitalization technologies 
[22]. As the renowned illusionist Harry Houdini stated: “What the eyes see and the 
ears hear, the mind believes.”

VR has been increasingly used to improve various activities in smart industries, 
and has introduced the concept of virtual manufacturing (VM). VM is a VR solution 
that allows generating information about the structure, status, and behavior of a 
manufacturing system similarly to a real manufacturing environment [69] . It offers 
a modeling and simulation platform to simulate the production of products and the 
building of assembly lines, along with their associated manufacturing processes 
[63]. For instance, BMW Group uses the NVIDIA Omniverse platform to simulate 
its entire production process with photo-realistic details using its SORDI dataset, 
including physical properties like gravity and different materials [78]. The VR 
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environment is coupled with different artificial intelligence (AI) tools, including a 
battery of supervised, unsupervised, and reinforcement learning algorithms to con-
trol robots and industrial machines, and simulate human workers’ behavior on the 
virtual factory floor. NVIDIA CEO Jensen Huang recurrently discussed BMW’s use 
of Omniverse during his keynotes at the company’s annual GTC conference in April 
2021–2023: “NVIDIA, initially known for its gaming platforms and graphics chips, 
has broadened its scope to training AI-based programs for industrial applications 
including automotive manufacturing and medical imaging” [78].

3.6.2  Augmented Reality

Augmented reality (AR) is a variation of VR where virtual objects are overlaid on 
the real environment [9], allowing virtual and real objects to coexist together and 
interact with each other in real-time in the real environment [26]. While VR creates 
a virtual environment and attempts to trick human users’ senses to experience it in 
a realistic way, differently, AR integrates virtual objects into a real three dimen-
sional environment to augment it while allowing a seamless experience for the 
users. To make sure that the overlapping of virtual objects is consistent, AR systems 
estimate the virtual objects’ orientation and position in real time. This can be done 
in different ways, such as using specified markers in the real environment, identified 
by cameras and matched against predefined patterns [75]. More recently, marker- 
less techniques have been introduced, namely Natural Feature Tracking (NFT) and 
Simultaneous Localization And Mapping (SLAM). NFT-based solutions utilize 
computer vision models to detect certain representative points representing natural 
features in the real-time video images [48]. Visual feature tracking algorithms are 
then used to produce accurate motion estimates and compute the virtual objects’ 
pose accordingly [48]. SLAM-based solutions consist in building a probabilistic 
feature map of the real environment, in real-time, in the form of a 3D point cloud, 
and then determines the AR navigation paths as a pre-scanning process. The 3D 
point cloud live tracking has improved over time, especially after commercial sen-
sors became capable of detecting environment structure information, using tech-
nologies such as structured light, wireless dosimeters, and X-ray propagation [20, 
89]. 3D objects constructed based on data from the sensors are compared with the 
predefined virtual models to estimate the virtual objects’ poses [11].

AR solutions can be categorized according the devices being used. For instance, 
head mounted displays including googles and helmets can be organized in two 
groups: optical see-through and video see-through [9]. With optical see-through 
solutions, a half-transparent mirror permits users to see the real world and reflect 
virtual information into the user’s eyes, combining the real and virtual objects 
accordingly [109]. With video see-through solutions, the real world is digitized pre-
viously, allowing the digital models to be merged with the real environment before 
being shown as an opaque display [10]. Another category of AR solutions uses 
mobile screens, such as smart phones and tables, to display virtual objects, where a 
coupled camera captures the real environment while a dedicated computer device 
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renders the virtual image and projects in onto the screen [109]. Some solutions have 
introduced spatial augmented reality (SAR), using projectors to project the virtual 
information directly onto the real objects, simplifying user interaction with the vir-
tual object [10]. AR can also be augmented with VR functionality, making the vir-
tual assets more tangible so that they can interact with the user. The latter is usually 
referred to as mixed reality (MR), compared with typical AR which mainly focuses 
on projecting the virtual elements into the real environment. MR solutions allow 
virtual objects to be rotated, scaled, or explored in different ways. This is especially 
useful in logistics for instance, where a packaging planner can place virtual compo-
nents in a real pallet or container, using finger gestures to adjust their size and try 
positioning them in different directions [115].

From an industrial perspective, AR promotes an improved collaboration among 
designers and technicians, and enhances the handling and availability of data [25]. 
Its industrial applications range over manual product assembly, robot programming 
and operations, maintenance, process monitoring, training, process simulation, 
quality inspection, picking process, operational setup ergonomics and safety [26]. 
AR solutions can provide work instructions to employees on how to execute a cer-
tain activity. Instructions can be generated automatically by a procedural or machine 
learning software agent, or they can be provided by a remote human expert – reduc-
ing the need for on-site expert presence [26]. AR can also improve employees’ 
safety on the factory floor, especially when involving human-robot interactions 
[26], by emphasizing robot movements and danger zones, and delineating the safe 
zone as a virtual overlay on top of the real video images.

3.7  Robotics

Robotics includes the design, building, maneuver, and usage of robots [85]. It is an 
interdisciplinary branch of computer science and computer, electrical, and mechani-
cal engineering that develops machines to assist or replace humans, and imitate 
human behavior [121]. Various robotics solutions are deployed and utilized today in 
different contexts and scenarios, namely in smart industries and manufacturing pro-
cesses, where they are proving essential in performing delicate tasks (e.g., fabricat-
ing, building, cutting, and painting material with extreme precision) and operating 
in dangerous environments (e.g., dealing with hazardous industrial materials, work-
ing in high heat, underwater, or in space). Robots come in different sizes, shapes, 
and forms, from humanoids who are made to resemble humans in appearance and 
simulate human behavior, to industrial robots and cobots. Industrial robots typically 
appear in the form of robotic arms or grippers and are mainly involved in the 
machining and assembly of products, hidden behind safety barriers to protect 
employees [115]. In contract, collaborative robots or cobots are design to work with 
humans and complement them in the production or logistics process. Cobots are 
designed for safety: they are generally made of flexible material and are usually 
smaller in size compared with their heavy weight industrial counterparts (cf. 
Fig. 3.10).
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Fig. 3.10 Industrial robotic arm in BMW Group’ US plant in Spartanburg, South Carolina [21] (a) 
and (b) Collaborative robot (cobot) in BMW Group’s Leipzig plant, Germany [44]

Human-machine collaboration through software agents and cobots is at the cen-
ter of the Industry 5.0, where machines help humans extend their craftsmanship and 
analytical skills to deliver higher quality products and services. Allowing seamless 
collaboration between humans and machines is not an easy task, and requires a huge 
amount of planning, training, and testing, in order to achieve a useful and safe col-
laboration [115]. Autonomous Mobile Robots (AMR) are another king of robots 
consisting of a driverless transport of materials and goods within warehouses and 
factory floors. They come in different shapes and sizes, from robots that replace the 
forklift truck and move pallets independently, to pulling trailers with a tractor (cf. 
Fig. 3.5). They move around using a battery of cameras and sensors for navigation 
and obstacle avoidance. More recent systems like the idealworks iw.hub produce 
complete 3D scans of their environment creating their own virtual navigation maps 
accordingly. Iw.hubs utilize NVIDIA Isaac SDK and the Robot Operating System 
(ROS) – an open-source robotics middleware suite for robot software development. 
Initially developed at the AI laboratory at Stanford [3], ROS provides a set of tools 
for low-level device control, messaging between processes, and integration with 
outside libraries to allow real-time computing, navigation, and decision making. 
Another example of a robotics programming platform is NVIDIA’s Isaac SDK, 
which is designed for optimal performance on NVIDIA’s Jetson boards and GPUs. 
Frameworks like ROS and Isaac SDK, coined with modular designs, and simpler 
programming and visual simulations tools, are paving the way toward a large-scale 
adoption of robotics systems in industry, transforming factories into automated 
cyber-physical systems.

3.8  Cyber-Physical Systems

The new generation of smart manufacturing systems consist of the collaborative 
integration of humans, physical systems, and cyber systems [84]. Humans are the 
creators, managers, and users of the physical system, the physical system is the 
 factory or industry providing the manufacturing process, and the cyber system is  
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the software layer allowing to analyze, calculate, and control the manufacturing 
process [41]. The term Cyber-Physical System (CPS) was first introduced by the US 
National Science Foundation (NSF) around 2006, describing a smart physical sys-
tem controlled and monitored by an intelligent cyber system [154]. Hardware and 
software components in a CPS are genuinely intertwined, and interact with each 
other at different spatial and temporal scales, with different behavioral modalities, 
according to their context [47]. A CPS is technically designed as a network of inter-
acting robotic and sensor elements with physical input and output instead of a stand-
alone device [71]. A nice example of such a system is the Distributed Robot Garden 
at MIT5 where a group of robots tend a garden of plants, combining distributed 
sensing (each plant is equipped with a sensor monitoring its status), navigation, 
manipulation and wireless networking [37]. Other examples include smart grid, 
autonomous automobile systems, industrial control systems, and medical monitor-
ing systems, among others [122]. Note that the integration of hardware and software 
components in manufacturing is not new. The term Computer Integrated 
Manufacturing Systems (CIMS) has been used to describe the integrated manufac-
turing system that combines physical processes with computing [154]. Nonetheless, 
early CIMSs adopted centralized control schemes limited inside of the factory floor, 
and suffered from the lack context-awareness, flexibility, and self-configuration 
[154]. New digitalization technologies like the Internet of Things (IoT), sensor net-
works, and Radio-Frequency Identification (RFID), coined with Artificial 
Intelligence (AI) and Machine Learning (ML) algorithms, provide advanced and 
unprecedented monitoring and control capabilities of real-word processes, which 
were not available with legacy CIMSs.

A CPS connects the physical world with the cyber space using a communication 
network (cf. Fig. 3.11). The physical world refers to the physical objects, processes, 
or the environment to be monitored or controlled (such as a factory plant, or a sup-
ply chain). The cyber space refers to the next generation information infrastructure, 
including services, applications, and decision-making software agents, which we 
refer to as the Intelligent Web (described in the following Sect. 2.11). The commu-
nication network refers to intermediate network components which allow commu-
nication and information exchange between the physical world and its cyber space 
counterpart. The Internet provides many mature network technologies such as IP/
TCP, XML/JSON, access control, network link, publish/subscribe model, among 
others. However, the realization of full-fledged CPSs requires new technologies 
such as mobile node localization, semantic analysis of heterogeneous data, sensor 
network coverage, and mass data transmission, which can be provided through the 
well anticipated Intelligent Web (i.e., the software layer of the IoT, cf. Sect. 2.11).

CPSs represent a central opportunity area and a major source of competitive 
advantage for the innovation economy in the twenty-first century [154], and have 
attracted wide attention from the industry, academia, and governments [83]. The 
United States’ NSF has provided enormous funds to promote research and innova-
tion on CPS, highlighting its huge potential impact on US national interests [92]. 

5 Massachusetts Institute of Technology.
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Fig. 3.11 Abstract overview of a CPS [154]

The European Commission has also promoted CPS-related research in its Horizon 
2020–30 programs [113]. The United States’ President’s Council of Advisors on 
Science and Technology reports recommend CPS as one of the six transformative 
civil technologies driving American economic growth, and consider it as a core 
opportunity area and source of competitive advantage for the US [29]. We will fur-
ther discuss industry empowered CPSs and their usage in smart manufacturing in 
Chap. 3 of this book.

3.9  Evolution of the Web Toward Collective Knowledge 
and Intelligence

Starting in the 1990s, the digitization of business records coincided with the 
commercial success of the Web. This presented a major change in how data 
records are represented in the early twenty-first century. In the early 1990s, 
many Internet- based projects were in development. These include HTML 
(Hypertext Markup Language) which codes the graphical design and contents of 
Web pages (HTML documents), where the content is accessed through a so-
called “browser”: a general purpose viewer of Web pages (e.g., Google Chrome, 
Microsoft Edge). Developments also include HTTP (Hypertext Transfer 
Protocol): a protocol to retrieve and modify Web pages, as well as URIs 
(Universal Resource Identifiers): providing a universal addressing scheme used 
to locate Web pages. In this context, it is important to distinguish between two 
concepts which are often confused together: the Internet and Web. On the one 
hand, the Internet is a network of networks originally developed as a US 
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Fig. 3.12 Evolution of the Web

military project in the 1970s, extended to general public use since the mid- 1980s, 
and consisting of a set of protocols and standards managing computer connec-
tivity such as TCP (Transport Control Protocol), IP (Internet Protocol), etc. On 
the other hand, the Word Wide Web is a software that allows information sharing 
across a network: namely the Internet. It provides the software platform includ-
ing a user-friendly interface to access data shared on the Internet, based on the 
concepts of hypertext (hypermedia) and URIs linking information with hyper-
links, such as with HTML document links where information is uniquely identi-
fied using URIs.

3.9.1  From Static to Intelligent Web

The Web has known a fast evolution: going from the Web 1.0, known as Web of 
Documents where users are merely consumers of static information, to the more 
dynamic Web 2.0, known as social or collaborative Web where users produce and 
consume information simultaneously, and entering the more sophisticated Web 3.0, 
known as the Semantic Web by giving information a well-defined meaning so that 
it becomes more easily accessible by human users and automated processes. 
Fostering service intelligence and atomicity (the ability of autonomous services to 
interact automatically), remains one of the most upcoming challenges of the 
Semantic Web. This promotes the dawn of a new era: the Intelligent Web (or Web 
4.0), known at the physical layer as the Internet of Things (IoT), an extension of the 
Semantic Web where (physical/software) objects and services autonomously inter-
act in a multimedia virtual environment, provided with embedded communication 
capabilities, common semantics and addressing schemes, promoting the concept of 
Digital Web Ecosystems where everywhere (human and software) agents collabo-
rate, interact, compete, and evolve autonomously in order to automatically solve 
complex and dynamic problems (cf. Fig.  3.12). The Intelligent Web extends the 
concept of cooperation from User-User with the Social Web (2.0) and User-Machine 
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with the Semantic Web (3.0) to Machine-Machine interaction, where machines do 
not simply interact with humans but rather interact with each other based not only 
on a simple exchange of data but rather on an exchange of semantically meaningful 
information, i.e., knowledge that is well understood by machines. It promotes the 
vision of digital ecosystems where human and software agents collaborate, interact, 
compete, and evolve autonomously in order to automatically solve complex and 
dynamic problems. While we are currently in the middle of the Semantic Web era, 
yet we are steadily moving toward the Intelligent Web era, especially in relatively 
controlled environments like smart manufacturing and digitalized industrial 
applications.

3.9.2  From Big Data to Collective Knowledge

The Semantic Web vision aims at associating machine-readable semantic descrip-
tions to Web data, using two major technological breakthroughs: (i) knowledge 
bases (such as taxonomies and/or ontologies [15, 118]), which provide predefined 
semantic information references (similarly to dictionaries for human users) to 
allow the identification and extraction of semantic meaning from raw data, and (ii) 
dedicated data representation technologies (namely RDF/S for linked data descrip-
tion [77], OWL for ontology definition [35], and SPARQL for semantic data 
manipulation and querying [116]). These technologies are extensible, interopera-
ble, and platform-independent [36], aiming to improve data modeling, annotation, 
manipulation, search and integration, and thus allowing intelligent information 
retrieval on the Web, which is at the core of the Semantic Web. Yet, developing 
service intelligence and atomicity, i.e., the ability of software agents and services 
to interact and sustain themselves automatically, without human interaction, 
remains one of the most upcoming challenges of the Semantic Web. In addition, 
Semantic Web technologies and social networking services are promoting a new 
form of collaboration: nowadays, it is common for Web users to contribute their 
multimedia data and knowledge to the community, allowing the editing and 
manipulation of such public knowledge in a collaborative environment (e.g., 
Wikis, blogs, Foursquare,6 Google Latitude,7 etc.). As a result, the Web is becom-
ing more than a distributed container of (raw and/or semantic) multimedia data, 
but is increasingly harnessing collective knowledge, viewed as the combination of 
all known data, information, and meta- data concerning a given (set of) concept(s), 
fact(s), user(s), or processes (s), as well as the semantic links between them [7]. 
Hence, software agents (and/or intelligent terminals) are expected to automati-
cally analyze and handle large collections of multimedia data with their contents, 

6 Location-based social website for mobile devices (http://Foursquare.com).
7 Location-aware mobile application allowing users to view their contacts geographic locations 
(www.google.com/latitude). Note that Google Latitude is being recently retired, transforming 
most of its services to Google+.
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links and transactions, using the sum of their respective intelligence and knowl-
edge, in order to improve data accessibility, management, and exchange between 
people and computers. Also, agents (terminals) in the Intelligent Web vision are 
expected to guaranty autonomous data/services sustainability and evolution, e.g., 
predicting future events that might affect the data/services, and acting therefore in 
order to preserve or update them accordingly.

Collective knowledge management has been addressed from different perspec-
tives in different application scenarios, including Web-related and smart industry 
applications. For example, collaborative social tagging of Web resources is viewed 
as an attempt of acquisition and sharing of so-called collective knowledge concern-
ing a given community. Wikis have also become popular tools for collaboration on 
the Web among many vibrant online communities promoting CK extraction and 
representation. Hence, extracting and handling collective knowledge requires intel-
ligent Web terminals (agents) which are not only capable of understanding and 
meaningfully processing information (using SW technologies), but which are also 
capable of thoroughly collaborating and even “reasoning” together, as a collective, 
to produce and handle common collective knowledge, leading to more sophisticated 
(intelligent) services, as well as achieving the ultimate goal: collective intelligence, 
where Web agents are able to automatically sustain themselves and evolve without 
direct human intervention.

3.9.3  Toward Collective Intelligence

An Intelligent Web (IoT) terminal is viewed as a cyber-physical entity having a 
software agent capable of handling IoT technologies in order to enhance collabora-
tion between humans and machines. Yet, individual intelligence needs to be coordi-
nated in order to enhance its own capabilities as well as the capabilities of its 
surrounding entities. In this perspective, collective intelligence will emerge, which 
consists in effectively mobilizing the skills of a group of agents in a digital ecosys-
tem to emerge and handle the collective knowledge from all agents. The new form 
of collective knowledge will be automatically aggregated and recombined to create 
new knowledge, new rules, and/or new ways of learning what individual agents of 
the ecosystem cannot do individually. For instance, knowledge recommendation 
methods can be developed to identify from the large pool of maintained collective 
knowledge, the pieces of knowledge and data contents which are required by an 
agent (human user or automated process), based on explicit needs, past experiences, 
profile, and preferences. In addition to knowledge exchange and manipulation, as 
Intelligent Web (IoT) terminals move and interact within their environment, events 
will be automatically generated (e.g., service requested from provider, action per-
formed by client, at a certain location, etc.). These events need to be subsequently 
enhanced with relevant knowledge in order to describe the context in which each 
event happened (such as why a thing was observed at a location, or how and why it 
interacted with another thing) and act accordingly. This highlights the need for 
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innovation to automatically interpret events and processes related to Web terminals 
(agents) in given contexts, adding semantic annotations and predicting what will 
happen, and what precautionary measures could be taken to optimize data/services 
sustainability and evolution. Such issues can be handled through the use of artificial 
intelligence and machine learning, as digital ecosystems will likely solve problems 
by evolving solutions, e.g., starting with a current set of semantically-rich events 
(i.e., a set of solutions), and then iteratively learning from them through supervised, 
unsupervised, and reinforcement learning processes to produce enhanced and more 
useful solutions over time.

3.10  IoT Technologies and Semantic Interoperability

3.10.1  Internet of Things

The Internet of Things (IoT) underlines the concept of a network of networks, link-
ing public/private infrastructures, dynamically extended by connection points con-
sisting of the “things” (terminals) connecting to one another. Enhanced processing 
capabilities and always-on connectivity, will make terminals gain a central role in 
communications: terminals (deemed henceforth intelligent) will be able to form 
bridges between existing network structures thus extending the overall infrastruc-
ture capacity [138]. In this context, developments in network technologies such as 
RFID (Radio Frequency Identification), short-range wireless technologies, and sen-
sor networks, coupled with enhancements in network addressing techniques, such 
as IPv6 to expand address space, become critical to the IoT, allowing to connect 
more objects in the physical/virtual worlds. Yet, scalability and cross platform com-
patibility between varied networked systems remain an open problem. Network 
technologies need to offer solutions that allow ubiquitous access, i.e., connecting 
any terminal to the network, which will require dedicated network protocol transla-
tion gateways (defining the correspondences between varied network and commu-
nication protocols), compared with today’s IP (Internet Protocol) which only allows 
end-to-end communication between devices without any midway protocol transla-
tion. Here, improvements in wireless and sensor communication protocols (from 
direct transmission and minimum transmission energy [143], to multi-hop routing, 
multi-path routing, and cluster-based routing [150]) can be utilized to improve scal-
ability and robustness for dynamic networks, reducing the amount of information 
that must be transmitted between terminals (e.g., integrating data fusion within the 
routing protocol [45]) in order to improve connectivity. Also, safeguarding effective 
and ubiquitous connectivity for terminals requires extensive terminal design efforts 
covering: (i) mobility, allowing occasional or continuous mobility of terminals in 
the selected environment, (ii) resources, and energy efficiency, since the terminals’ 
resources availability might vary from limited (e.g., with sensor terminals) to unlim-
ited (e.g., with Cloud computing systems), (iii) supporting various communication 
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modalities, ranging over electromagnetic communication (radio frequency), to opti-
cal, acoustic, as well as inductive and capacitive coupled communications, and (iv) 
supporting various network topologies, such as single hop, star, multi-hop, mesh 
and/or multitier. Yet, the sheer diversity of terminals which will be supported stipu-
lates that no single hardware or software platform can hope to support the whole 
design space [61]. Thus, heterogeneous systems and interoperability need to be 
addressed.

3.10.2  Semantic Interoperability

In this context, semantic interoperability becomes a vital requirement: allowing smart 
terminals and sensors to communicate “meaningfully” with each other, exchanging 
data (knowledge) and processes (services) despite the heterogeneous nature of the 
underlying information structures and communication protocols. Luckily, the issue of 
semantic interoperability has been at the center stage of Semantic Web (SW)-related 
studies, introducing standard data representation and manipulation technologies (e.g., 
XML, RDF, OWL, and SPARQL) to simplify information and knowledge inter-
change. It has also been investigated in related domains, namely Service Oriented 
Architectures (SOA), aiming to improve communication and information exchange 
between heterogeneous service providers and requestors [105]. Service requestors/
providers in SOA are generally dynamic, operating on the “publish-find-bind” para-
digm principle, where services are dynamically added and described (published) in a 
service registry. The service descriptions are then used to search (find) and associate 
(bind) the service to the service requestor. The problem of semantic interoperability is 
more severe in such dynamic situations due to the lack of predefined relationships 
between the requestors/providers [61]. On one hand, the development of shared infor-
mation models using SW technologies (e.g., shared RDF or OWL reference ontolo-
gies defining common semantics following the SW vision) can improve semantic 
interoperability among the participant terminals and sensors [79]. Nevertheless, the 
problems with this approach remain: (i) the complexity of producing a universal 
ontology (encompassing all semantic descriptions concerning all possible terminals 
and processes), and (ii) semantic rigidity, underscoring the difficulty in updating or 
extending the reference ontology once it is defined (in order to handle new terminals, 
new processes, and new information [51]). We note that there is an ongoing work cur-
rently conducted by W3C Semantic Sensor Network Incubator Group aiming to pro-
vide an ontological representation of a sensor network to order to solve these 
problems.8 On the other hand, semantic interoperability can be achieved by producing 
appropriate semantic mediators (translators) at each terminal’s end, to allow the con-
version to the information (knowledge) format which the terminal understands. A 
combination of context independent shared information models can be utilized (using 

8 http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/; https://www.w3.org/TR/vocab-ssn-ext/
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SW data representation technologies such as RDF and OWL), coined with context 
specific information specialization approaches (using SW data manipulation technol-
ogies such as SPARQL) to achieve semantic interoperability [162]. This semantic 
mediation approach avoids imposing a unique information model (e.g., a unique refer-
ence ontology) that has to be agreed and adopted by everybody, thus allowing intelli-
gent Web terminals (agents) to select the formats best suited for their needs, while still 
being able to interact and use services offered by other terminals [162]. Yet, defining 
semantic mediators for each IoT terminal and smart sensor does not seem feasible in 
practice and remains an open issue. Hence one can predict that a certain compromise 
between shared semantic references and semantic mediators can be made.

3.11  Cloud and Edge Computing

Cloud computing is a dynamic computing model where a large pool of systems and 
machines are connected through a network to provide a scalable infrastructure for 
applications, computation, content storage and delivery [73]. It allows on-demand 
provisioning of (potentially unlimited) computational resources as a utility, where 
computing resources are offered as a metered service similar to a physical public 
utility like electricity, water, natural gas, or the telephone network (cf. Fig. 3.13a). 
Cloud computing enables a computing system to acquire or release computing 
resources on demand in a manner that is (virtually) transparent to the user. It relies 
on the underlying concepts of utility computing: the combination of computing 
resources as a metered service in a way similar to a physical public utility, scalabil-
ity: the ability of a computing system to grow relatively easily in response to 
increased demand, elasticity: The ability of a system to dynamically acquire or 
release compute resources on-demand, and high availability: systems designed such 
that the loss of any one component of a system will not result in system failure [65]. 

Fig. 3.13 Cloud computing overall architecture (a) and integration with IoT (b). (a) Cloud com-
puting overall architecture. (b) Conceptual IoT framework with cloud computing at the center [59]
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A consumer can acquire services from: (i) a full computer infrastructure (raw pro-
cessing capabilities) – i.e., Infrastructure as a Service (IaaS), (ii) a software platform 
(operating and/or development systems) – i.e., Platform as a Service (PaaS), or (iii) 
turnkey applications (ready to use software solutions) – i.e., Software as a Service 
(SaaS) [74]. IaaS allows the provisioning of resources necessary to build an applica-
tion environment from scratch, e.g., servers (computing capacity), connections (net-
working capacity), and memory (storage capacity), to run, maintain and distribute 
Information Technology (IT) resources more efficiently and cost-effectively com-
pared with traditional IT infrastructure delivery models. Sample IaaS solutions 
include Amazon Web Services (AWS), VMWare, 3Tera, and XCalibre. While IaaS 
solutions allow a high degree of infrastructure flexibility, yet they are usually com-
plex to work with, and likely require some specialized expertise to make them work 
[73]. PaaS for application deployment on top of an IaaS cloud allows the building 
and delivery of web applications and services including application design, applica-
tion development, testing and hosting, database management, application version-
ing, and multi-tenant architectures, among others. Some PaaS examples include 
Google Cloud (Python), Heroku (Ruby and Rails), AWS, Elastic, Beanstalk, and 
Microsoft Azure Pipelines. PaaS allow straightforward application development 
and deployment with little effort, and a large degree of scalability as the applications 
are cloud-based, and they do not require for systems administrators as they are part 
of the service itself. Nonetheless, PaaS services might come with restrictions or 
trade-offs especially with a pre-existing application to be ported to the PaaS: the 
application might require special libraries, tools, operating system requirements, 
etc., which are not available on the PaaS of choice, requiring to code around these 
issues to deploy on the PaaS which is not always optimal [65]. SaaS provides a 
software delivery model via application hosting on the Cloud. It pre-dates the cloud 
with Web application hosting solutions. In that regard, SaaS is rather concerned 
with server hosting management, allowing a higher degree of Quality of Service 
(QoS) control and management. Famous SaaS solutions include Google Workspace, 
Salesforce, Pipedrive, and Microsoft Office 365. Note that SaaS is not the ultimate 
goal of cloud computing which focuses primarily on IaaS and PaaS models, yet it 
provides an important and useful functionality [74].

More recently, cloud computing has shown great promise in establishing flex-
ible IoT platforms, allowing to receive data from a network of pervasive sensors, 
analyzing and processing the data starting from the edge nodes, moving in toward 
the inner nodes of the cloud, and providing easy to understand Web based visual-
izations, where the sensing and processing work in the background hidden from 
the user. Here, we can emphasize edge computing as a disturbed computing model 
that brings data processing closer to the data sources, i.e., performing part of the 
data processing (including data cleaning, filtering, and sometimes data transfor-
mation), before transmitting the data to the inner nodes of the cloud. Edge com-
puting aims at improving response time and reducing bandwidth consumption 
over the network, while exploiting the available resources at the edge nodes. Edge 
computing is usually regarded as a specific cloud computing architecture or a 
network topology emphasizing location-sensitive distributing computing [97]. 
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Cloud computing can serve as middleware between IoT and sensor network infra-
structures on the one hand, and software applications on the other hand (cf. 
Fig. 3.13b). Sensing service providers can join the network and offer their data 
using a storage cloud, analytic tool developers can provide their software tools, 
artificial intelligence experts can provide their data mining and machine learning 
tools useful in transforming information to knowledge, and computer graphics 
designers can offer a variety of visualization tools [59]. Cloud computing can 
offer these services as Infrastructures, Platforms, or Software, where the data gen-
erated, knowledge created, tools used, and the product visualizations disappear 
into the cloud, thus allowing to tap the full potential of the IoT in many applica-
tion domains [88] . The IoT application specific cloud framework should be able 
to provide support for (i) reading data streams either from sensors directly or fetch 
the data from databases, (ii) easy expression of data analysis logic as functions/
operators that process data streams in a transparent and scalable manner on Cloud 
infrastructures, and (iii) if any events of interest are detected, outcomes should be 
passed to output streams which are connected to a visualization program [59]. 
Using such frameworks, the developers of IoT applications are able to utilize 
cloud computing services without getting bugged down with the individual cre-
ation, handling, and scalability of individual applications [88].

3.12  Big Data and Data Analytics

Big data underlines massive and complex data sets, of different data-types and data 
formats, generated through the use of different devices, and managed by different 
organizations and companies through advanced architectural solutions [65]. Big 
data is often characterized by the so-called 5Vs model: Volume, Velocity, Variety, 
Veracity, and Value. Volume refers to the huge amount of data generated from differ-
ent sources, ranging over manufacturing, financial services, healthcare, and social 
media and entertainment, among others. The International Data Corporation (IDC) 
reports that manufacturing had the largest share of data in 2018 (i.e., 3585 Exabyte) 
and will have a 30% annual growth rate between 2018 and 2025 (the second highest 
growth rate behind healthcare data’s 36% growth) [117]. Variety refers to the differ-
ent types of data collected via sensors, smartphones, or social networks. Data types 
include video, image, text, audio, and data logs, in either structured, unstructured, 
or semi-structured format. Note that most industrial data recordings in recent years 
comes in semi-structured format like JSON, XML, image, video, and audio meta- 
data descriptions, while fewer data is reported in structured tabular forms like rela-
tional databases or spreadsheets [149]. Velocity underlines the speed of data transfer, 
resulting from the introduction of new data collections, re-usage of archived data, 
and the arrival of streamed data from multiple sources [19]. Veracity underlines the 
quality of the data that is collected, which depends on certain factors like the reli-
ability and quality of the source the data is collected from, the quality of the 
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processes following which the data is collected, and the way the data will be utilized 
[32]. The veracity of a user’s data underlines how reliable and significant the data 
really is for the user [90]. Value underlines the process of discovering value form the 
data, in the form of extracted insights, semantics, knowledge, and analytics [30]. 
Issues of the 5Vs become more intertwined as more industries generate big data, 
where the same or different types of data come from the same or different devices 
with various sampling frequencies, formats, and precision levels, which makes it 
challenging to extract value-added insights [32]. A larger number of big data tools 
have been developed for industry, including Apache Hadoop-based sensor data 
management framework for could manufacturing [12], Cloud-Based Design 
Manufacturing (CBDM) model [152], and fog-computing based framework to 
monitor machine health in cyber-manufacturing [106]. The authors in [32] highlight 
some of the differences between handling big data in manufacturing and handling 
big data on the Web. Industrial data is produced and supported by various industrial 
vendors and associations such as manufacturers of actuators, meters, sensors, con-
trollers, and software companies. Manufacturers use different hardware interfaces, 
communication protocols, manufacturing processes, machine-readable languages, 
and semantic definitions [32]. In contrast, most data on the Web is based on natural 
languages, is represented using some Web standards or standard-like representa-
tions, and is thus easier to be exchanged without the difficulties associated with 
multiple interfaces and protocols. Moreover, manufacturing systems have well 
defined objectives, intricate and sophisticated functions, and are meticulously spe-
cialized for specific application scenarios. In comparison, social media data for 
instance is much looser in its definition, aim, and scope, where big data tools collect 
and store time series data from millions of customers who follow each other online 
to report trending events. In industrial applications, time series data is collected 
from multiple sources, integrated, and analyzed to explain and predict the specific 
states of manufacturing entities [32]. For instance, the sensor data collected from an 
industrial auto-part gripper machine is used to reflect the state of the machine and 
can be developed to produce a virtual simulation model of the machine, predicting 
its behavior and performing preventive maintenance.

Industrial big data analytics refers to analyzing and interpreting big industrial 
data, potentially in near-real-time, in order to drive intelligent insights and initiate 
closed-loop corrective actions [132]. Recent data analytics tools are mostly 
AI-powered using a battery of machine learning algorithms, designed to find pat-
terns in huge time series for industrial use cases such as predictive maintenance, 
real-time quality control, and scenario testing for root cause analysis [132]. For 
instance, the streaming computation engine Spark is becoming a popular tool com-
pare with its traditional Hadoop MapReduce batching engine counterpart [32]. In 
fact, batch processing is not able to provide real-time analytics response such as real 
time monitoring, dynamic scheduling and planning on systems of workshop floor 
(such as with Supervisory Control And Data Acquisition –SCADA, systems). In 
this context, Microbatching and streaming engines (like Spark, Storm, Flink) can 
provide real-time big data analytics of streaming data [106]. Spark makes use of 
batching and streaming to replace the MapReduce engine. Furthermore, compared 

3.12 Big Data and Data Analytics



64

with Storm and Flink, Spark has more powerful analytics tools such as SparkSQL, 
Spark R, GraphX, and MLlib [32]. However, Storm and Flink typically outperform 
Spark in real-time processing performance, and are usually utilized together with 
Spark for more powerful computation functionality [32]. Apache Beam provides a 
uniform abstraction layer to run these real-time engines together at the execution 
layer [56]. While the latter engines are still at their early usage stages in industry, 
further research needs to be done in order to better identify the big data issues that 
are of specific importance in manufacturing, compared with the capabilities of 
existing big data tools, and the main components required to design new and more 
sophisticated big data solutions for industry.

3.13  Digital Twin and Digital Thread

A digital twin is a virtual and real-time resemblance of a physical process, product, or 
service occurring in the real world [64]. It can be viewed as a digital mirror, sibling, 
or simply a twin of a physical system [83]. The concept of digital twin initially came 
from the aerospace field to analyze and predict the behavior and performance of air-
craft systems, namely NASA (US National Aeronautics and Space Agency) space-
craft and space shuttles [54]. It can represent the performance, operations, environment, 
geometry, and resource states of a system or product based on the continuously col-
lected data and real-time updates from its real-world counterpart. A digital twin allows 
real-time interaction and convergence between the physical space and the cyber space 
[135]. This is especially useful in manufacturing where digital twins are increasingly 
used to model digital factories that mirror their real- world counterparts (such as the 
BMW Regensburg factory, cf. Fig. 3.5). A digital twin can be decoupled into three 
main parts: (i) the 3-D model, (ii) the mathematical model, and (iii) the rule model. 
The 3-D model should look exactly like the physical system, and is produced using 
3D scanning and graphics rendering techniques discussed previously in this chapter. 
In an industrial setting, the 3D model often represents a Virtual Factory Layout (VFL) 
which allows to replicate a physical factory’s geometry in the virtual environment. 
The mathematical model allows representing the mechanisms, kinetics, and laws of 
physics (gravity, humidity material erosion, etc.) related to the physical system, and is 
usually run on powerful simulation engines like Unity 3D and NVIDIA Omniverse 
(e.g., the latter is currently adopted by BMW Group in developing its Regensburg 
plant and the related digital twin projects). Several methods can be used for mathe-
matical modeling, which we broadly categorize as knowledge-driven and data-driven. 
On the one hand, knowledge- driven solutions use kinetics and data with some system 
assumptions represented by human experts or software agents in well-defined knowl-
edge bases or ontologies. Proper inference mechanisms are defined to extract the 
needed knowledge and utilize it in describing the system’s behavior. On the other 
hand, data-driven solutions use Artificial Intelligence (AI) methods to learn and con-
sequently model the systems’ laws and characteristics. Dedicated Machine Learning 
(ML) algorithms are used to mine the available data from the physical system in order 
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to learn the needed rules and patterns to build its digital counterpart [83]. The rule 
model defines the interactions from users and allows to represent and control the 
behavior of the digital twin in coordination with its physical counterpart. This is 
achieved through the IoT and sensor network infrastructure that is set-up in the real-
world, using it to connect with the Cyber-Physical System (CPS) that governs the 
functioning of the physical system, in order to enable a full digitalization and virtual-
ization of the physical system and its environment.

As modern products become more complex and increasingly personalized, compa-
nies are struggling to respond in a timely fashion to the market demand, albeit with 
assured quality and competitive costs. In this context, USAF Global Science and 
Technology Vision Task Force recently introduced the concept of digital thread, as a 
data-driven architecture that links together information generated across the product 
lifecycle, providing a data exchange and communication platform for a company’s 
products at any point in time during the product’s lifecycle [144]. In other words, the 
digital thread handles the massive data flow that will be generated from the production 
line, ranging over the processes of data collection, storage, aggregation, analysis, and 
exchange, in order to provide timely information to manufacturers and clients [32]. The 
digital thread can help reduce holding and operational cost on machines, transport, and 
warehousing by providing timely information on idle and faulty equipment. It can also 
help identify potential production problems and improve production efficiency by 
selecting appropriate maintenance time schedules [134]. The digital thread provides 
data that can be shared among manufacturers, suppliers, and customers, allowing to 
identify the best suppliers and top clients, while providing flexibility in adapting prod-
uct design and manufacturing according to available supplies and customer preferences 
[102]. The latter requires real-time interaction between manufacturers, suppliers, and 
clients, which can be provided through an IoT enabled Cyber-Physical System (CPS) 
industry model, or preferably through a fully digitized digital twin model. Note that 
while digital threads can be implemented with legacy CPSs [130], nonetheless, their 
impact and potential is most perceived when integrated with digital twins [32].

3.14  Toward the Industrial Metaverse

There has been increasing commotion and excitement recently about the industrial 
metaverse, with initiatives like BMW’s fully digitized Regensburg plant before 
building the physical facility [50], Mercedes Benz’s MO360 Data Platform connect-
ing its car manufacturing plants to the Microsoft Cloud to improve predictability 
across its digital production and supply chain [28], and Boeing’s digital twin devel-
opment model to design its airplanes – allowing to achieve up to 40% improvement 
in first-time quality of the parts and systems it uses to manufacture commercial and 
military airplanes [17]. According to Boeing CEO Dennis Muilenburg, “this model 
is going to be the biggest driver of production efficiency improvements for the 
world’s largest airplane maker over the next decade” [17].

***
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But what is the industrial metaverse exactly? Is it another fancy name for digital 
twin? Or is it a digital twin empowered with a digital thread?

***

While digital twins and digital threads are central to this new paradigm, yet the 
digital metaverse has “a much larger scale with increasing complexity by creating 
digital twins of entire systems such as factories, airports, cargo terminals, or cit-
ies—not just digital twins of individual machines or devices that we have seen so 
far”, as expressed by Thierry Klein, president of Bell Labs at Nokia [119]. Also, the 
industrial metaverse promises an immersive experience, using Virtual Reality (VR) 
and Augmented Reality (AR) to provide immersive user interaction, environment 
sensing, and operational feedback, allowing users to switch between the physical 
factory represented as a Cyber-Physical System (CPS) and the virtual factory repre-
sented as a digital twin, in a seamless way as they are identical replicas of each 
other. While the digital twin provides a virtual mirror of the physical system, using 
VR and AR technologies allow for an improved and immersive experience within 
the digital twin and outside of it, allowing to blur the boundaries between the real 
physical processes and their digital counterparts.

In other words, the industrial metaverse can be seen as a culmination of the inte-
gration of multiple maturing digitalization technologies, ranging over digital twins, 
IoT, VR, AR, and AI, which aims to fuel the growth of industry and the optimization 
of its operations [119]. More specifically, the industrial metaverse paradigm prom-
ises to enhance visibility, flexibility, planning, and risk management, which would 
improve production line and supply chain resiliency and risk mitigation [127]. This 
will help manufacturers innovate in more efficient and streamlined ways, by virtu-
ally designing, developing, and testing industrial processes and remote solutions. 
Optimizing industrial designs through the metaverse paradigm would also help pro-
mote sustainable development, by dabbling with and integrating innovative pro-
cesses to reduce emissions and natural resource consumption and incorporate 
sustainable materials into products, while meeting the customers’ needs [127]. The 
industrial metaverse can be realized by integrating digital Information Technology 
(IT) with physical Operation Technology (OT), to make real-time data-driven deci-
sions and create new products and services. It will integrate IoT-based sensor 
streams of real time OT data for continuous analysis to monitor production quality, 
process performance, equipment effectiveness, and quality of service. The data can 
be stored and analyzed through dedicated cloud computing platforms to extract his-
torical patterns and identify future trends, providing the needed analytics and 
insights and combining them with the operational digital twin in order to simulate 
potential scenarios, identify possible future opportunities, and prevent potential set-
backs. Digital twins will provide different ways to visualize and interact with the 
data, products, and processes, and their associated real-time telemetry [127]. Certain 
digital twins can focus on emphasizing the relationship between IT and OT to 
improve efficiency and resiliency, while other twins can be designed to build and 
test new products, studying their performance and simulating their impacts using 
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dedicated machine learning algorithms (e.g., encoder-decoder models, sequence-to- 
sequence models), before they are pushed into physical production [28] . AI-tools 
can also be used to automate and improve part of the interaction with clients and 
employees, using advance Natural Language Processing (NLP) models and chat 
bots to assist users in daily routine tasks. Coupled with VR and AR technology, the 
metaverse will provide its users with an immersive collaboration experience helping 
both customers and frontier workers improve their work effectiveness, efficiently, 
safety, and overall experience [129].

By the end of this decade, the industrial metaverse is expected to be a multitrillion- 
dollar market [129]. More importantly, it can be one of the greatest forces to drive 
both sustainability and the digital transformation of businesses and industries. It 
will make innovation easier, progress quicker, time to market lesser, while reducing 
waste and natural resource consumption [129]. It also promises to develop improved 
and more personalized products by allowing clients and workers to explore more 
alternative designs in shorter time and at significantly lower costs. It can also allow 
an easier integration of recycling and circular economy principles into the design 
process, investigating more efficient ways of production [129]. Nonetheless, this 
next stage of digitalization will also be a challenge for most companies. Yet, this is 
an inevitable challenge that will need to be addressed sooner rather than later, pro-
viding an opportunity to build and cultivate a virtual world that will help solve real- 
world problems. As mentioned in our first chapter, history taught us there is no 
turning back on technology. This is especially true with the industrial metaverse 
movement that is about to transform all of our industries. Manufacturers will have 
to choose: either lead the way, or be dragged behind and get swept away by the 
industrial metaverse current…
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Chapter 4
How Visual Data Is Revolutionizing 
the Industry World

Gathering industrial data and applying it to advance products, processes, and services 
is nothing new. Customer surveys, sales reports, query logs, and other types of data 
have long been used to pinpoint problems and inform business strategies accordingly 
[1]. Images and video data have also been used throughout the manufacturing process, 
from product design, production, testing, and deployment, to customer feedback. 
Legacy Computer Aided Design (CAD) tools help designers create their product 
designs, refine their appearance, and provide the needed design schematics to launch 
them into production. Monitoring sensors and cameras provide scalar and visual feed-
back on the production, testing, and deployment phases of the products, allowing to 
identify product defects, verify machining processes, and check equipment installa-
tions [2]. Nonetheless, the problem of legacy systems predating the Industry 4.0 is they 
were often slow to provide useful insights, and the sample data sizes that were col-
lected were often two small to ensure data accuracy and infer useful insights [1]. Also, 
early solutions dealing with image and video data focused on two dimensional data, 
and were limited by computer processing capabilities and visualization methods [2].

Nowadays, the amount of the multimedia data generated by digitalized busi-
nesses is unparalleled and is increasingly reaching record highs, as more sensors 
and IoT (Internet of Things) terminals are deployed in the workplace, as more pow-
erful GPU-enabled (Graphical Processing Unit) computer systems and Cloud com-
puting services become available to store and process large quantities of multimedia 
data, as recent AR (Augmenter Reality) and VR (Virtual Reality) solutions allow 
immersive three dimensional visualizations of products and processes, and as digi-
tal twins create virtual models of complete manufacturing plants blurring the bound-
aries between the virtual model and its real counterpart. It is those organizations that 
are embracing digitalization that stand a chance to gain a competitive edge [1].

Industry 4.0 technologies have placed digital multimedia data at the center of organi-
zations of all sizes and across many industries. Nonetheless, harnessing the power of 
digitalization goes beyond investing in the right technologies and equipment. It is not 
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enough to set-up a camera system, deploy an IoT infrastructure, purchase Cloud 
resources, or develop a digital twin of the factory floor. Businesses without a complete 
data strategy will have a lot of difficulty making sense of the huge influx of multime-
dia data, and risk falling behind their better-prepared competitors.

***

How is digitalization transforming industrial applications and methods? How are 
visual and multimedia data leveraged to improve industrial processes?

***

We attempt to answer these questions in this chapter and in the remainder of 
this book…

4.1  Industrial Production Process

Industry 4.0 digitalization technologies allow production machinery and equipment 
to generate massive quantities of data on a continuing basis, with the purposes of 
creating new values for both manufacturer and customers [3]. Industrial data is usu-
ally characterized by its multimedia nature, including signal sensing data, tabular 
and text data, and image and video data. The data needs to be processed automati-
cally, providing users with interactive ways to facilitate useful pattern identification 
and valuable information exploration. This enables human-in-the-loop decision- 
making through the different phases of the industrial process, ranging over design, 
production, testing, training, and service provision.

4.1.1  Design Phase

The design phase is a creative thinking process during which designers create and 
refine the appearance, function, and performance of a product based on market 
demand [4]. Modern design tasks are becoming increasingly more intricate, includ-
ing different kinds of standards and criteria that modern products need to comply 
with, and more demanding user requirements that products and services need to 
fulfil. In this context, digitalization can help alleviate the complexity of the design 
task by enabling so-called data-driven CAD (Computer Aided Design) [5]: provid-
ing the designer with design-related data to guide the design process through com-
puter software. The digital representation of the product in the virtual world will 
show the designers’ expectations and simulate the designs’ physical constraints 
from the physical world. This will help designers cross-examine their designs’ con-
straints in both virtual and physical worlds and adjust them accordingly [6]. Design- 
related data helps explore the constraint associations between different criteria (be 
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it performance-, security-, reliability-, availability-, usability-, visual appeal- or 
esthetics-related, among others), while verifying the functional requirements of the 
design prototype [7]. Yet design constraints do not always match, and are often 
times contradicting. For instance, designing the most visually appealing sports car 
does not always result in the most practical designs, or the best performing designs, 
since some compromise might be made on behalf of practicality and performance, 
for the sake of the car chassis’ visual appeal. To help alleviate this problem, recent 
multi-view CAD solutions have been recently utilized in various industries, e.g., 
[8–10], to allow considering multiple criteria and providing multifaceted visualiza-
tions, including product, worker, and production line perspectives (cf. Fig.  4.1). 
Combined with automatic evaluation algorithms, modern CAD solutions allow 
designers to interactively and iteratively change and adjust the proposed product 
design, in the hopes of fulfilling the required design criteria.

Recently, the introduction and increased affordability of 3D printing has changed 
CAD solutions from producing effective designs to performing rapid prototyping. 
3D printing allows converting the digital model generated by CAD software into 
solid samples that can be studied physically, and can even be directly applied to 
product manufacturing [11]. This can significantly bring down costs and can sim-
plify the transition to the production phase [4].

4.1.2  Production Phase

The production phase transforms product designs from conceptual models and their 
visualizations, into physical implementations. Production usually occupies the larg-
est share of production costs in the manufacturing life cycle [4]. It is mainly con-
cerned with the formulation and management of the production process, aiming to 
maximize production efficiency and minimize production costs. Yet achieving the 
latter goals is easier said than done, especially with the intricacies of production 
processes. In this context, digitalized and interconnected modern production lines in 
the form of Cyber Physical Systems (CPSs) and more recently digital twins, provide 
a vast amount of data that helps alleviate the complexity of the production phase 
while optimizing its performance and cost. Digitalized production line provides 
real-time data to monitor the production process and track the status of the produced 
product (cf. Fig. 4.2). They allow real-time interaction with the production workers 
for onsite troubleshooting, and provide production managers with valuable insights 
through the recording and post processing of historical production data which can 
be data-mined offline using dedicated Machine Learning (ML) and data analytics 
tools for process improvement and innovation.

On the one hand, real-time production data analysis allow production workers to 
observe and monitor the production process as it unfolds, using live data captured 
from the production line. This allows evaluating the operation status of the produc-
tion line components and the status of the products being manufactured, in order to 
handle abnormal situations in a timely way [14]. The real-time monitoring of 
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Fig. 4.1 Sample CAD visuals reported from [4]. (a). Structural design of a plastic brake lever 
product comparing the mechanical stress performances of different brake lever designs [9]. (b). 
Material characteristics visualizations [10]. (c). Helping designers understand the structural char-
acteristics of different materials to select the one most fitting the product requirements [10]. (d). 
Production environment design allowing planners to identify schedule uncertainties and work–
space conflicts in the virtual layout [8]

production lines is performed through a continuous data stream produced by the IoT 
infrastructure that is built within the factory’s CPS. On the other hand, historical 
data analysis aims at extracting hidden patterns within the recorded production data, 
and discovering useful insights from historical data trends, in order to facilitate 
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Fig. 4.2 Sample visual monitoring tools reported from [4]. (a). Assembly line performance moni-
toring and troubleshooting [12]. (b). CPS bottleneck exploration allowing user-guided examina-
tion of bottleneck steps and overloaded devices [13]

production process optimization and management innovation [4]. With the help of 
advanced visual analytics, data is provided to the process managers, providing inter-
active functions to allow human-computer collaborative intelligent analysis of the 
data [15] (e.g., filtering, transforming, zooming, clustering, classifying, and extrap-
olating the data to acquire useful insights).

4.1.3  Testing Phase

Testing is the process that measures and evaluates the functions and performance 
levels of products and processes [16]. It aims to assure that the products are manu-
factured according to established standards, while fulfilling the user requirements 
and preferences. Testing usually relies on well-defined protocols as well as lessons 
learned from previous tests to guide the evaluation process. The testing phase is 
arguably the most data hungry phase in the entire manufacturing process, since it 
involves the processing and crunching of huge amounts of data according to the 
adopted test protocol and experiments. Also, testing often requires multiple sets of 
experimental runs with different input parameters to verify the range of product 
parameters and their suitability, generating multidimensional and multivalued test-
ing data results which are not easy to process by humans [17]. In this context, 
AI-enabled data analytics and visualization tools like Tableau,1 Microsoft PowerBI,2 
and Apache Spark3 can be used to process and make sense of the data and present it 

1 https://www.tableau.com/
2 https://powerbi.microsoft.com/
3 https://spark.apache.org/

4.1 Industrial Production Process

https://www.tableau.com/
https://powerbi.microsoft.com/
https://spark.apache.org/


80

in a useful way to the human experts. Test automation tools like Junit,4 GoogleTest,5 
and Eggplant6 can be utilized to automate the experimental evaluation process, 
allowing to implement full test protocols and test cases in coding, and execute repet-
itive tests in an automated way, feeding their results to the data analytics tools for 
processing and visualization. In addition to scalar data, product testing can also 
produce unstructured data like texts and images. In this context, dedicated Natural 
Language Processing (NLP) and computer vision solutions can be used to make 
sense of the results. For instance, the authors in [18] train a dedicated object model 
to recognize structural defects in glass fiber-reinforced polymers (e.g., fiber break-
age and fiber pull-out, cf. Fig. 4.3b). In [20], the authors utilize an NLP-based solu-
tion to process millions of text messaged captured by in-automobile communication 
network testing. They develop an anomaly detection algorithm to identify possible 
communication network anomalies, and then apply various visualization to high-
light the communication nodes associated with those abnormalities, thus helping 
test engineers to achieve anomaly root cause reasoning. Recently, test engineers at 
idealworks have designed and implemented a battery of automated test protocols to 
evaluate the behavior of their iw.hub transport robots. The protocols are imple-
mented to run on the robots’ digital twins in the virtual environment, allowing to 
simulate different settings and constraints to measure and evaluate their perfor-
mance (cf. Fig. 4.3a).

4.1.4  Training Phase

The training phase consists in providing the worker with the needed training skills 
to participate in the production process, and to provide the client with the needed 
skills to use the products once delivered. In this context, Virtual Reality (VR), 
Augmented Reality (AR), and digital twin technologies have been gaining increase 
popularity in multiple industrial sectors, providing realistic trainings which could 
improve employees’ work performance and clients’ experience. These so-called 
immersive technologies allow presenting complex and dangerous work scenarios in 
a virtual or augmented world, where people can train, learn new skills, and practice 
in a safe and informative environment. They can also help people retain what they 
learned, and provide them with an enhanced learning experience [21]. Leading 
organizations in the automotive, manufacturing, avionics, and logistics sectors are 
increasingly adopting immersive technologies to improve their learner experience 
[22]. BMW Group is a great example of immersive training, where employees are 
trained virtually in design and prototyping, setting-up Virtual Factory Layouts 
(VFLs) and performing their training scenarios in realistic digital twin 

4 https://junit.org/junit5/
5 http://google.github.io/googletest/
6 https://www.eggplantsoftware.com/
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Fig. 4.3 Sample test data use cases (b and c are reported from [4]). (a). Sample run of an auto-
mated test for idealworks’ iw.hub digital twin. (b). Identifying and recognize structural defects in 
glass fiber-reinforced polymers [18]. (c). Streamline flow visualization for the analysis of automo-
tive exhaust, showing the gas flow direction within the exhaust system [19]

environments [23]. Dedicated training courses are offered to work on the assembly 
line, to train customer service employees, and to train safety managers [24]. On the 
other side of the Atlantic, engineers at Boeing and Ford Motor Company utilize 
physical props to enhance ergonomic evaluations and trainings (cf. Fig.  4.4a). 
Physical props are attached with smaller tracking markers to carefully align them 
with their digital twin counterparts in the virtual environment [25]. Human subjects 
train in the virtual world, by interacting with the physical props in the real world, 
providing them with an augmented sense of realism. The medical community has 
also made impressive strides in using immersive technologies as a training platform 
to expose beginner medical professionals to high-risk and difficult procedures [27]. 
For instance, the Children’s Hospital Los Angeles use AI-powered VR simulations 
to train their medical students for emergency pediatric trauma situations [26] (cf. 
Fig. 4.4b). The hospital which spends around half a million dollars each year train-
ing doctors with practice models [28], is using immersive technologies to make its 
training program more efficient, while allowing medical students to practice more 
regularly in realistic conditions and learn based on existing cases re-created in the 
virtual world, while implementing unexpected scenarios to keep the students on 
their toes during the training [28].

4.1 Industrial Production Process
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Fig. 4.4 Sample simulation and training systems for automotive (a) and medical (b) applications. 
(a). VR head mounted unit in front of a virtual environment for driver visibility simulation and 
training from Ford Motor Company [25]. (b). VR system for emergency pediatric trauma simula-
tion and training at Children’s Hospital Los Angeles [26]

Immersive technologies are specifically useful when performing high-risk train-
ing, in which learners put others at risk or are themselves at risk as they learn new 
tasks, such as pilots who learn to fly, or doctors who learn complex surgeries. 
Learning simulations and immersive training lowers those risks [21]. This is per-
fectly expressed by Allan Cook, managing director of Deloitte Consulting LLP: “If 
it’s too difficult, too expensive or too dangerous to do the training in the real world, 
immersive training is a good fit”. Immersive technologies also allow training for 
high-complexity scenarios that are difficult to recreate in the real world, such as 
pilots training for a plane crash, or doctors training for different kinds of medical 
emergencies in the operating room [21].

4.1.5  Service Phase

In the service phase of the production process, companies continue to track the 
product usage and users’ experience even after the product leaves the production 
plant. Service data usually include information on flaws in product quality or 
defects in product design. Analyzing and mining such data is significant for com-
panies to improve their after-sale service strategies and refine their product design 
and manufacturing, while maintaining good relationships with their clients [4]. 
This is specifically useful with high-tech consumer products like automobiles, 
mobile phones, and electronics which usually produce a large number of small 
faults that can only be discovered during usage [4]. A digital twin representation of 
the high-tech product would continuously monitor its behavior in the physical 
world, while predicting its remaining life, failure, and potential errors in the virtual 
world [29]. The concept of continuously monitoring a product during the service 
phased came initially from the airspace field, with the US Air Force Research 
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Laboratory developing digital twins to monitor the fatigue levels of US military 
aircraft [30]. Specific digital twin models were designed to monitor specific parts 
of the aircraft like detecting and monitoring the damages and faults in wing and 
chassis structure. The customer data, received in the form of reviews on the pur-
chased products, can also be processed for sentiment analysis [31], topic extraction 
[32], and event mining [33], in order to better evaluate their satisfaction with cer-
tain products and take customer support actions accordingly (e.g., suggesting free 
support, or offering product replacements or refunds). For instance, the authors in 
[34] process automobile maintenance and repairing service reports to study the 
impact of different car usage habits on the service life of automobiles. This allows 
the automotive company to adjust and promote proper safety guidelines for its 
customers [4]. The authors in [35] introduce a visual approach to explore the tem-
poral developments of car faults based on their maintenance data, in order to per-
form predictive maintenance and prevent critical failures.

4.2  Industrial Application Use Cases

4.2.1  Visibility

One of the mainstream use cases of using visual data in industry is evaluating the 
visibility of a person or a vision-enabled robot agent in a particular situation or given 
a particular posture. Cases in this category aim to answer the following questions 
[25]: “What can I see? What is blocking my visibility?” Evaluating the visibility of a 
stationary (non-moving) agent can be done using computer vision algorithms run on 
a stationary computer system. However, evaluating the visibility of a moving agent 
is more intricate, given the dynamicity of its surrounding environment [25]. Also, in 
the case of digital twin solutions, vision needs to be simultaneously evaluated in both 
the real world and in the virtual world, which adds another layer of complexity. For 
instance, many automotive manufacturers use VR (Virtual Reality) or AR (Augmented 
Reality) solutions to evaluate the visibility of drivers in newly designed autos (cf. 
Fig.  4.4a). In this context, the key to successful applications of visualization and 
visual analysis in the automotive industry is the industry’s leading digitalization pro-
cesses and data collection and support environments [4]. Digital renders and digital 
twins of the newest car models allow to evaluate the autos’ properties, including the 
driver’s front and rear visibility (cf. Fig.  4.5a). Engineers at the General Motors 
Design Lab study the influence of veiling glare from the instrument panels on the 
driver’s windscreen and side window, calculating and rendering light reflections 
using dedicated algorithms [25]. This is especially important to better understand 
how the instrument panel affects driver visibility during night driving [36].

4.2 Industrial Application Use Cases
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Fig. 4.5 Sample digital twin auto models. (a). High-resolution rendering of a Ford Mustang auto 
[25]. (b). A user checking the door handle location of a large tractor at Case New Holland [25]

4.2.2  Ergonomics

Another important use case is the person’s interaction with the environment. 
Immersive technologies and digital twins are being increasingly used to evaluate the 
impact of physical tasks and the work environment on human workers. The question 
here is [25]: “How’s someone going to posture themselves to do this task”. Through 
its digital twin factory models, BMW Group’s ergonomics engineers attempt to 
define the design criteria needed to optimize assembly line efficiency while mini-
mizing worker effort. Using haptic feedback sensors and AR gloves, the engineers 
can estimate the forces needed to assemble certain parts of the car, and insert bolts 
and studs given different worker postures. The same immersive tools allow feed-
back to be obtained from the workers in the physical plant, which in turn feeds into 
the digital twin. At Case New Holland VR laboratories [37], ergonomics engineers 
use a power-wall display to evaluate the reachability of door handles in a vehicle 
buck. Their aim is to provide designs that allow drivers of many heights and strength 
to conformably reach the door handles and use them effectively (cf. Fig. 4.5b).

4.2.3  Packaging

Packaging concerns enfolding or placing tools or products in convenient locations 
or settings to prepare for their deployment, storage, transportation, sale, or usage 
[38]. In industrial settings, engineers often need to consider multiple packaging 
options to decide on the most convenient solution for the task at hand. Instead of 
physically implementing multiple packaging options which is labor intensive and 
costly, immersive technologies allow considering such options in the virtual world 
using VR, and superimposing them on the real world using AR, allowing the engi-
neers and users to walk through the different possible scenarios to make sure they 
have a convenient solution. VR gives users a sense of space within the virtual world, 
while AR superimposes the virtual design on the real environment providing a sense 
of space within the real world. Whether it be a manufacturing plant floor, the interior 
of a car, a large room, or a small cockpit, packaging allows placing controls and 
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tools at reasonable locations to best support the considered tasks [25]. For instance, 
BMW Group’s uses its digital twin factory models to plan the organization of its 
large plant spaces, and help decide on the best placement of each component within 
the plant, from the assembly conveyor belt, to the supply storage pallets, trollies, 
and everything in between (cf. Fig. 3.6). Similarly, engineers at PSA Peugeot 
Citroen use a three-sided cave VR environment to examine the possible placements 
of controls and instruments inside auto designs, to optimize interior car design and 
driver experience [39].

4.2.4  Realism

Developments in high-resolution graphics rendering and immersive technologies 
have improved so much that it is now possible to evaluate an object’s look and feel 
interactively in a virtual environment. Improvements in lighting and material proper-
ties enable a near realistic product virtualization. Powerful rendering software include 
Unity,7 Blender,8 and NVIDIA Omniverse,9 among others. NVIDIA’s Omniverse is 
currently used by BMW Group and idealworks to develop photo-realistic tools, 
objects, machines, and full-fledged Virtual Factory Layouts (VFLs) as part of the 
SORDI dataset (cf. Figs. 4.6 and 4.7). Realism is of central importance when it comes 

7 https://unity.com/
8 https://www.blender.org/
9 https://www.nvidia.com/en-us/omniverse/

Fig. 4.6 Snapshot of the tools and supplies’ packaging at the BMW factory digital twin at 
Regensburg
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Fig. 4.7 Snapshot of BMW factory’s digital twin at Regensburg, made of SORDI assets rendered 
using NVIDIA’s Omniverse

to user experience, providing engineers, workers, and managers with a realistic look 
and feel of the virtual factory through its digital twin. It is essential to view geometry 
at real scale to understand the impact of problems or gaps of a digitized object, prod-
uct or tool’s form, function, and integration within its environment [40].

4.2.5  Storytelling

Many of the examples mentioned up until now have focused on the design of a par-
ticular object or product. Nonetheless, state of the art image rendering and digitali-
zation technologies can also be used to tell stories in which an object or product is 
the central character. This is a core functionality of digital twins, where digitalized 
objects or products live their lives within the virtual world, in synchronization with 
their real counterparts in the physical world. The digital twin allows moving back-
ward in time to view and study the object’s state and behavior at a past timestamp. 
One can also fast-forward into the future, using trained deep learning and generative 
models to predict the object or product’s state and behavior in the future [41, 42]. 
Design engineers can also preprogram specific scenarios to be executed through the 
virtual environment, in order to assess and evaluate an object or product’s state and 
behavior within specific contexts [25].
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Chapter 5
Digital Images – The Bread and Butter 
of Computer Vision

The forth industrial revolution expresses a significant change in industry practices 
where state of the art digitalization technologies are bridging the gap between the 
physical and digital worlds, to allow improved productivity and services. In this 
context, manufacturing companies are increasingly using deep learning and com-
puter vision solutions for product inspection, quality assurance, workplace safety, 
and factory automation through robotic vision [1]. For instance, a specific challenge 
that is of major importance to the BMW Group’s Logistics department is the quality 
assurance of items delivered to the supply chain, and from the supply chain to the 
manufacturing plant. The department needs to make sure that (i) items acquired 
from external suppliers match the required specifications, and (ii) items that are 
delivered from the internal supply chain to the manufacturing plant remain in an 
acceptable state that matches the required specifications. In other words, the depart-
ment is responsible for the quality of the items, starting from their acquisition from 
external suppliers, until their delivery to the manufacturing plant. To address this 
challenge, different processes are put in place, including manual check by human 
technicians, and automated checks by computer vision solutions. Another very 
important usage of computer vision in manufacturing is for automating quality 
inspection during the production process. Here, computer vision systems are trained 
to execute consistent quality checks according to industry standards to overcome 
variations across different human inspectors which might be subjective or inconsis-
tent at times. Computer vision solutions also promote lean manufacturing, attempt-
ing to maximize productivity while minimizing waste by providing a visual 
data-driven approach to help in decision making.

***

At the core of computer vision lie digital images that allow the creation of visual 
data environments. Computer vision algorithms aim at identifying and recognizing 
salient objects or events in digital images, thus extracting useful information from 
digital images to perform automatic visual understanding.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47560-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-47560-3_5


90

In this context, how are digital images represented? What is the difference between 
feature-based and deep learning based computer vision solutions? Why is there a 
growing need for synthetic digital images in industry?

***.
We attempt to answer these questions in this chapter and in the remainder of 

this book…

5.1  Image Representation

Unlike classic image processing from a fixed database where each image is treated as 
an independent entity [2], image processing and computer vision on the supply chain 
and on the production pipeline in industry deals with integrated image items, includ-
ing the images themselves as well as specification descriptions of the items. This is 
similar to images on the Web, where each image is contained within its host webpage 
which could underline a great deal of relevant information about the image itself [3]. 
Therefore, similarity to Web images, digital images in supply chain and manufactur-
ing can be described not only by their visual features, but also by their textual speci-
fication descriptions and their related Web information in an integrated IoT (Internet 
of Things) setting, which are exploited to allow more effective processing.

In this context, we address digital image representation from different perspec-
tives, ranging over low-level visual features, to textual features, joint word-image 
modeling, and 3D CAD processing.

5.1.1  Raster Images Versus Vector Images

Digital images can be organized in two main groups: (i) raster images, consisting of a 
set of pixels; and (ii) vector images made of geometric objects such as circles, trian-
gles, rectangles, and polylines, etc. On the one hand, most existing approaches in the 
literature focus on the processing of raster images, e.g., [4, 5], which are produced by 
digital photo-taking cameras, and are capable of representing complex pictures having 
a variation of colors and shapes. On the other hand, vector images are becoming more 
popular in several application areas requiring the manipulation of small-size, resolu-
tion-independent, and simple images made of basic lines and shapes. These applica-
tions range over: industrial design applications (product and machine design using 
Computer Aided Design – CAD – solutions) [6], medical image annotation (adding 
basic shapes on top of medical images to identify organ tissues and tumors) [7, 8], 
geographic map annotation (highlighting special places and destinations on a map) [9, 
10], and manipulating graph charts and simplifying accessibility to data and geomet-
ric shapes (producing simplified contour-based images to simplify data accessibility 
and navigation) [11, 12]. While the advantages and the practical applications of vector 
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graphics highlight the importance of this category of images, e.g., [13, 14], yet, most 
existing image retrieval systems process vector images similarity to raster images 
[15], regardless of the properties offered by the former. This underlines two major 
challenges [16]: (i) undergoing expensive low-level feature selection and extraction, 
while disregarding the readily available geometric object features which can be 
extracted much more efficiently, and (ii) handling low-level features which are size 
and resolution dependent and which can affect retrieval quality, in contrast with vector 
graphics’ features which are both resolution and size independent.

5.1.2  Low-Level Visual Features

Visual feature representation is the basis for content-based image processing and 
computer vision. A typical content-based system views each image as a collection 
of low-level visual features, and evaluates the relevance between images w.r.t.1 their 
feature similarity [17]. Visual features can be grouped in three main categories: (i) 
color, (ii) texture, and (iii) shape. Color descriptors are used to represent the colors 
present in an image. Different color spaces exist in the literature such as CIE XYZ 
which attempts to generate a color model based on human eye color perception. 
Other color spaces include CIE RGB and CIELAB [2, 17]. Numerous color descrip-
tors have also been proposed including color moments, color histogram, color 
coherence vector, color correlogram, etc. [18, 19]. The MPEG-7 multimedia meta-
data description standard has integrated more descriptors such as dominant color, 
scalable color, and color layout [20]. The use of color features usually depends on 
the nature of the images at hand. For example, for images which do not have an 
overall homogeneous color, the average or dominant color descriptors might not be 
very useful. On the other hand, domain knowledge such as color variance and color 
distribution over all images can be exploited to dynamically assign weights to image 
pixels [21], allowing to better compute color features. Color descriptors are most 
commonly used since they are comparatively simpler to process (compared with 
texture and shape features) and produce good enough results [2]. Texture descrip-
tors are intended to capture the granularity and repetitive patterns of surfaces within 
in an image. They are usually made of spectral features, such as Gabor filtering [22] 
and wavelet transform [23], as well as statistical features such as the Wold features 
[24] and Tamura descriptors [25] (which are used in MPEG-7). Nevertheless, tex-
ture features are not as frequently used as their color counterparts, since they are 
more straightforwardly affected by image distortions and noise [17], and have been 
proven less effective on images where textures are not very structured and homoge-
neous (e.g., pictures of natural scenery) [26]. In [27], the authors propose a com-
bined descriptor called Color Texture Moments (CTM), to integrate both color and 
texture characteristics in a compact form (using color moments and a Fourier 

1 With respect to.
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transform based texture representation). Experimental results in [27] underline 
CTM’s good performance w.r.t. its classic texture counterparts. Shape descriptors 
allow detecting different shapes and small salient objects in an image, and have 
been shown to be useful in many applications (especially when dealing with images 
of synthetic and man-made objects [17]). Shape descriptors include aspect ratio, 
circularity, consecutive boundary segments, Fourier descriptors, etc. [28]. MPEG-7 
has adopted three main descriptors: 3-D shape descriptor derived from 3-D meshes 
of shape surface, region-based descriptor derived from Zernik moments, and the 
contour- based descriptor derived from the curvature scale space [20]. However, 
compared with color and texture, shape features are not so well defined and are not 
as commonly used [17], and remain relatively marginalized in many systems, e.g., 
[18, 21, 29].

5.1.3  High-Level Text-Based Features

While low-level visual features have been proven effective in content-based image 
processing [17], it is argued that the meaning (i.e., the semantics) of an image 
remains hardly self-evident [2]. Images which visual features are very similar to the 
query image may be very different from the query in terms of user interpretation and 
intended meaning. That is because human observers do not classically perceive an 
image in terms of pixel distributions, color patches, or surface features, but rather 
evaluate images at a higher semantic level, using lexical concepts (e.g., words or 
expressions) describing salient visual concepts in the image [30, 31]. Hence, a dedi-
cated set of descriptors have been used to describe images on the Web, often referred 
to as: high-level features [2, 32], designating the textual content of the image. 
Textual descriptors include tags: which describe who and how many objects are 
found in a given picture, location: label (name or coordinates) of place where an 
image was taken, which can be utilized to allow geo-address comparison (using a 
geo-referenced ontology assigning geographic coordinates with place names [33]), 
caption: title of the image which is usually the most descriptive user-provided tex-
tual feature, providing a direct clue to the meaning and context of the image, com-
ments: allowing a much greater variation of textual descriptions compared with the 
previous features, and they are especially useful when captions have not been pro-
vided by the user (publisher). The textual descriptors are then processed for feature 
representation, including word, phrase, sentence, and document level representa-
tions. These span over lexical form (origin of the term), semantic meaning (concept 
in a reference dictionary), part-of-speech tags (grammar category of the term), 
n-gram (word associations), syntactic structure (parse tree), and statistical features 
(e.g., contextual and co-occurrence term frequencies) [34, 35]. The features are sub-
sequently represented as (one or multiple) high-level feature vector(s), where vector 
weights are computed using legacy term scoring methods developed in information 
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retrieval.2 While high-level features attempt to describe the semantics of the image 
(e.g., who, where, what, etc.) [17], however, their semantic descriptiveness hinges 
on on the quality of the nearby text portraying the meaning of the image.

Few recent methods have proposed expanding and enriching the textual descrip-
tions of images, using techniques such as probabilistic image tagging (using the 
tagging logs to infer new tags, e.g., [36, 37]), and semi-supervised image labelling 
based on visual and Web contents (training various machine learning models to 
annotate new images based on a training image set with predefined labels, e.g., [38, 
39]). While promising, yet the latter techniques require training data and training 
time, which are not always available.

5.1.4  Joint Word-Image Modeling

Word embeddings have lately proven to be a significant tool for the representation 
of word meanings in large text corpora. Their effectiveness relies on the distribu-
tional hypothesis that words occurring in the same context carry similar semantic 
information. As a result, few solutions have been developed to learn object and 
region embeddings from an image corpora. Word embeddings involve so-called 
implicit semantics (a.k.a. latent semantics) inferred from the statistical analysis of 
image tag names/labels in large corpora, following the basic idea that: documents 
(images) which have many labels in common are semantically closer than ones with 
fewer node labels in common [40]. Implicit concepts are synthetic concepts gener-
ated by extracting latent relationships between terms in a document or image collec-
tion, or by calculating probabilities of encountering terms, where the generated 
concepts do not necessarily align with any human-interpretable concept [41]. This 
is different from conventional concept-based semantic analysis, which utilizes 
explicit concepts representing real-life entities/notions defined following human 
perception (e.g., concepts defined within a conventional/non-conventional diction-
ary or knowledge base like WordNet or Wikipedia) [42]. For instance, the authors in 
[43, 44] study the co-occurrence of both visual and textual features using Latent 
Semantic Analysis (LSA) to produce a combined vectored data representation of 
both modalities. They extend the LSA to higher order to become applicable to more 
than two observable variables (visual and textual), and utilize cross-modal depen-
dencies learned from corpora of tagged images to approximate the join distribution 
of the two variables. In [45], the authors adapt LSA and word2vec’s skipgram and 
Contiguous Bag Of Words (CBOW) models to generate embeddings from object 
co-occurrences in images and subregions, and show that the produced embeddings 
improve typical object classification models by an average 3-to-4.5% top 1 

2 The standard TF-IDF (Term Frequency – Inverse Document Frequency) approach (or one of its 
variants) from the vector space model [183] is usually used, describing the number of times a term 
appears in a high-level feature (TF) compared with the number of times it appears in all entries of 
the feature (IDF).
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accuracy. In [46], the authors introduce a Dual Path Recurrent Neural Network 
(DP-RNN) which processes images and sentences symmetrically by a deep learning 
model. Given an input image-text pair, the model reorders the image objects based 
on the positions of their most related words in the text. Similarity to extracting the 
hidden features from word embeddings, the model leverages the RNN to extract 
high-level object features from the reordered object inputs, producing similar repre-
sentations in describing semantically related objects. The proposed approach pro-
duces state- of- the-art retrieval quality results compared with typical image retrieval 
techniques.

5.1.5  Multi-dimensional Image Feature Indexing

Multi-dimensional image indexing has also been investigated as a solution to com-
bine and improve the representation of multiple image features, in order to allow 
faster access, processing, and retrieval. Most existing solutions fall into three main 
categories: (i) tree-based indexing, (ii) hashing-based indexing, and (iii) visual 
words based indexing. Tree-based indexing solutions sequentially partition the 
image search space and form hierarchical tree structures. The inner-nodes represent 
groups (clusters) of images or image regions, and the leaf nodes represent the 
images or the regions that are indexed. Image or region partitioning is conducted 
using dedicated image clustering algorithms, e.g., k-means and hierarchical k-means 
used for region-based cluster indexing in [47, 48]. Hash-based indexing solutions 
project image features from high dimensions to low dimensions using hash func-
tions. Various approaches have been proposed, including Locality Sensitive Hashing 
(LSH) [49] build a family of spectral hashing functions where the probability of 
collision is higher for images that are close to each compared with those which are 
separate in the reduced dimensional space. Visual words based indexing solutions 
extract the local features from images, and quantize them into their closest visual 
words (codebook) based on a pre-learned training set [50, 51]. Then, a visual word- 
based vector is generated and is represented as an inverted file to allow for fast 
identification of images containing the visual word entries, and then fast feature 
processing and similarity computation.

5.1.6  3D CAD Processing

Digitizing a real-world environment, like a BMW factory plant, requires 3D digital 
imaging, so-called 3D Computer Aided Design (CAD) processing. This means that 
the first step in creating a digital twin factory is to produce an accurate 3D scene 
with 3D models that can be used to run simulations. The process starts by doing a 
3D scan of the factory using advanced Lidar sensors, producing a point cloud rep-
resentation of the different objects in the scene. Although the resulting point cloud 
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Fig. 5.1 3D CAD image processing [52]. (a) 3D CAD. (b) Mesh. (c) Point Cloud. (d) Voxel

is a 3D representation of the plant, yet it cannot be used for simulations because it 
is simply a collection of points in the 3D space. In order to do any kind of useful 
simulation, the 3D representation must introduce the concepts of objects and rela-
tionships between different objects, which cannot be achieved with a point cloud 
representation. This requires transforming the point cloud representation into a 3D 
scene made of 3D models, which is achieved in two stages [52]: (i) mesh file con-
version, and (ii) voxel and point cloud transformation (cf. Fig. 5.1). First, the col-
lected 3D CAD is transformed into a mesh file. Mesh files denote the shapes of 3D 
CAD models in multiple triangles and store triangular information as face and node 
information. Tools like FreeCAD (2020) [53] can be used to automate the mesh file 
conversion process. After converting to a mesh file, a 3D grid is constructed using 
the maximum and minimum values of the triangle’s node coordinates (x, y, z) to 
convert mesh-to-voxel. They are divided into voxel grid sizes. In a split 3D grid, a 
voxel is formed in that grid when the triangle of the mesh file intersects in the grid 
[54]. Third, the number of output points is produced to convert mesh-to-point cloud. 
Then, a weighted random sampling method is used to select triangles in the 3D 
mesh by n points. Within each randomly selected triangle, one point in a random 
coordinate is generated using the triangle’s center of gravity method. Mesh is lastly 
transformed to point cloud after repeating this point-generation process multiple 
times [55].

5.2  Need for Synthetic Images

5.2.1  Shift in Computer Vision Paradigms

Computer vision tasks are traditionally achieved following a 2-steps process: (i) 
applying a hand-crafted feature extraction algorithm [56] according to the features 
described in the Sect. 5.1, followed by (ii) training a traditional Machine Learning 
(ML) model on the extracted features [57]. In the last 10 years, Deep Learning (DL) 
techniques have increasingly surpassed their traditional 2-step process counterparts 
in terms of both accuracy and inference time [58, 59]. Although these DL models 
learn to extract relevant features from input images in an end-to-end manner, 
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training them needs capturing, storing, and labelling large amounts of images in 
comparison to traditional ML approaches [60]. More specifically, the acquisition of 
large image datasets, mainly in industrial settings (e.g., factories) is becoming 
increasingly challenging and critical due to the following reasons [61]. First, exces-
sive human effort is needed for manual image capture, image preprocessing (e.g. 
cropping, filtering out noisy images) and image annotation (e.g. bounding boxes 
and pixel-wise segmentation). Second, these tasks and more specifically image 
annotation, are extremely prone to errors and are highly subjective. For example, 
target objects can be incorrectly annotated according to the human annotator’s 
knowledge and experiences, especially when it comes to overlapped and close 
objects or to similar but different scale assets [62]. Third, capturing images inside 
industrial locations and factories plants can be difficult due to limited access for 
security (e.g. innovation and high security areas), privacy [63] (e.g. human workers 
along the assembly lines), or safety reasons (e.g. painting or assembly lines, etc.).

5.2.2  Need for Synthetic Images

Synthetic image generation can tackle the above challenges while acquiring a large 
image dataset with the required properties, e.g., multi-modal captures for various 
scene conditions, lighting, resolution, and object obfuscation ratio, among others 
[64]. Image modality refers to the method in which an image is captured or gener-
ated, where each modality represents a different type of information, e.g. bounding 
box image, segmentation, depth, etc. [61]. Using a graphics rendering tool such as 
NVIDIA’s Omniverse, Blender, Unreal, or Unity, it is possible to control every 
aspect that affects the image, ranging over lighting, camera position, assets distribu-
tion and animation, and noise, among others. Also, renderers automatically generate 
numerous image and object annotations based on the selected modalities [65]. 
Nonetheless, synthetic image generation highlights one main challenge: the “reality 
gap”, i.e., the difference between real and synthetic images [66, 67]. The objective 
of synthetic image generation is to reduce the reality gap, such that DL models 
trained on the synthetic data can be straightforwardly applied on real images while 
maintaining high accuracy results, without the need to train them on actual real 
images which are oftentimes unavailable or insufficient.

5.3  Computer Vision Datasets

Multiple computer vision datasets have been developed recently and have been used 
in many fields. We categorize them under (i) general purpose image datasets, (ii) 
industrial image datasets, and (iii) general purpose synthetic image datasets, and 
(iv) industrial synthetic image datasets.
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5.3.1  General Purpose Image Datasets

CIFAR-100 [68] and MS COCO [69] are well known general purpose computer 
vision datasets. The CIFAR-10 dataset is made of 60 k 32 × 32 color images orga-
nized in 10 classes, with 6000 images per class. It is divided into 50 k of training 
images and 10 k of test images. MS COCO consists of more than 200,000 images 
covering more that 90 asset classes of daily life facilities, various fauna and flora, as 
well as transportation means. ImageNet [70] is another common image database 
described according to the WordNet hierarchy with over 100,000 synsets, and an 
average of 1000 images per synset. A synset in Wordnet stands for a semantic con-
cept describing a set of synonymous terms and their definition. The concepts are 
connected together through multiple types of semantic relationships like hypernym, 
hyponym, meronym, among others [71]. For instance, synset car includes synony-
mous terms car, auto, automobile, is connected to concept vehicle through an inher-
itance/isA relationship (car-isA-vehicle), and is connected to concept engine 
through a meronym/partOf relationship (car-hasA-engine). Altogether, ImageNet 
provides tens of millions of well sorted images organized according to the WordNet 
semantic network. Nonetheless, ImageNet does not seem to be easily scalable any-
more since it was human-annotated over multiple years by different groups of peo-
ple, resulting in many inconsistencies in labelling, where different class labels for 
the same object class [72]. Also, ImageNet does not comply with the recent data 
privacy and security policies [73], namely not revealing human faces. This is very 
important in commercial and industrial applications where people’s identities need 
to be kept private during image processing and object recognition. To handle this 
problem, the creators of ImageNet are reproducing the dataset by running multiple 
object detection and image processing scripts allowing to obscure sensitive infor-
mation like people’s faces, geographic sign texts, store names, etc. This is not an 
easy task and requires manual effort and supervision to maintain the overall usabil-
ity and effectiveness of the previous dataset version [74].

5.3.2  Industrial Image Datasets

Many industrial image datasets have been developed and utilized for specific indus-
trial applications. For instance, the authors in [75] describe an industrial image data-
set dedicated for casting manufacturing products. Casting is a manufacturing 
process in which a warm liquid material is poured into a mold, containing a hollow 
cavity of the desired shape, where the liquid metal is allowed to cool down to solid-
ify. The dataset includes 7348 images of 300 × 300 pixels top views of the submers-
ible pump impeller (cf. samples in Fig.  5.2a). Two classes are considered: (i) 
defective object and (ii) normal object, making this dataset well suited for building 
binary classifiers [75]. Another industrial dataset is GC10-DET [76], sometimes 
referred to as the Defect dataset. It consists of 3570 gray-scale images describing 
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Fig. 5.2 Samples from real industrial image datasets. (a) Sample images from the pump impeller 
Casting dataset [75]. (b) Sample images from the GC10-DET metal surfaces dataset [76]. (c) 
Sample images from ITD industrial tools dataset [80]. (d) Sample images from MVTec_ITODD 
industrial objects dataset [82]

ten different types of metal surface defects (e.g., punching, weld line, crescent gap, 
water spot, oil spot, among others, cf. samples in Fig. 5.2b). Distinguishing between 
such types of defects is of central important in the steel production industry, and can 
significantly contribute to preventing malfunction, as well as identifying defects on 
a variety of essential materials found in factories and processing plants. The authors 
in [77] introduce the MCuePush dataset consisting of 1243 real images describing 
magnetic tile defects. The images are labelled according to 6 defect categories (i.e., 
blowhole, crack, fray, break, uneven, and defect_free). In [78], the authors describe 
SDNET2018, a dataset of 56,000 images labeled as cracked and non-cracked con-
crete bridge decks, walls, and pavements, where cracks are as narrow as 0.06 mm 
and as wide as 25 mm. The dataset includes artifacts like shadows, surface rough-
ness, scaling, edges, holes, and background debris, making the recognition task 
more challenging. Another recent dataset for solar cell defect detection is described 
in [79], consisting of 2624 images of functional and defective solar cell surfaces 
where the defective class covers a variety of defect types (e.g., material defect finger 
interruptions, microcrack, etc.). While the above mentioned datasets are interesting 
in their own respect and application use case, nonetheless, we remark that they con-
sider very specific and narrow industrial applications.
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Differently from the above, the authors in [80] describe a more comprehensive 
Industrial Tool Dataset (ITD) to detect different shaped tools that are found in dif-
ferent manufacturing industries. The dataset consists of 11,000 images manually 
labelled by mechanical engineers according to 8 categories (adhesive tools, fastener 
tools, protection tools, cutting tools, etc., cf. Fig.  5.2c). The dataset focuses on 
small-size assets found on a tool shell or on a workshop table. In a comparable 
study, the authors in [81] describe the Logistics Objects in Context dataset (LOCO), 
describing logistics specific objects such as pallets, pallet trucks, forklifts and small 
pallet loaders. The dataset consists of 5593 images manually annotated, where peo-
ple’s faces are pixelated when they occur to preserve their identities. According to 
the authors in [81], using different cameras and recording methods resulted in many 
blurry images that require additional data cleaning and image post-processing 
before performing object recognition.

Differently from the above mentioned datasets which are made of typical 2D 
raster images, the MVTec Industrial 3D Object Detection Dataset (MVTec ITODD) 
[82] is designed for object detection and pose estimation in 2D and 3D space. It 
consists of 3500 labeled images of industrial objects categorized under 28 object 
classes (e.g., cap, filter, fuse, screw, handle, etc., cf. Fig. 5.2d). The authors use a 
multi-shot, wide-baseline 3D stereo sensor, providing a range (Z) image, X and Y 
images, as well as a grayscale image with the same viewpoint as the range image. 
The sensor uses multiple random projected patterns and reconstructs the scene 
using a space-time stereo approach with an accuracy of around 100 μm. The authors 
use three high-resolution cameras (≈ 8 MP, f = 50 mm) to capture the images.

5.3.3  General Purpose Synthetic Image Datasets

Various synthetic datasets have been recently developed in order to augment real 
data when training deep learning computer vision models. For instance, the 
SYNTHIA dataset [83] consists of 213,400 synthetic images (1280 × 980 pixels) of 
urban images generated based on random snapshots and video frame sequences. 
The images are automatically labelled according to 13 classes (e.g., building, road, 
sidewalk, fence, pedestrian, etc.) in urban driving scenarios with changing seasons, 
weather conditions, and lighting conditions (cf. Fig. 5.3a). Annotation is conducted 
using pixel-level segmentation, using a dedicated Fully Convolutional Network 
(CNN) model [84] to perform the segmentation task. The authors train various deep 
learning models using (i) real data only, (ii) SYNTHIA synthetic data only, (iii) both 
real and SYNTHIA synthetic data. While the accuracy of the models trained on real 
data surpasses those trained on synthetic data, nonetheless, the difference in accu-
racy levels is not drastic and ranges between 5%-to-8% on average. According to 
the authors in [83], this shows that training on SYNTHIA produces good enough 
results to perform urban object recognition. In addition, and most importantly, mod-
els trained on both real and synthetic data combined, produce maximum accuracy 
levels, with an average increase of 0.5%–5% compared with training on real data 
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Fig. 5.3 Samples from general-purpose synthetic image datasets. (a) Samples images from the 
SYNTHIA urban driving dataset [83]. (b) Sample images from the FAT household objects 
dataset [87]

only. Another general purpose synthetic dataset is SIDOD [85], consisting of 
144,000 pairs of stereo images, using 18 camera views from 3 virtual scenarios with 
randomly selected household items from the Yale-CMU-Berkeley (YCB) daily life 
dataset [86]. SIDOD images are generated using NVIDIA’s Deep Learning Data 
Synthesizer (NDDS) [87], which is built on top of the Unreal Engine. It renders 
images with a high frame rate, including multiple features such as: depth, stereo, 
full rotation, 3D pose, occlusion, segmentation, and flying distractors. It is intended 
for object detection, pose estimation, and tracking applications. SIDOD’s main 
scene assets and distractors are randomized at each frame instead of capturing a 
random YCB asset during its falling animation in a static virtual environment or 
background. However, SIDOD includes assets found in households such as bowl 
and tomato soup can, making it unsuitable for industrial applications. Another simi-
lar dataset is FAT [87] consisting of 60,000 synthetic images of household objects 
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including 21 categories from the YCB dataset (e.g., banana, powder drill, mug, 
bowl, etc.) [86]. For each image, the authors provide the 3D poses, per-pixel class 
segmentation, and 2D/3D bounding box coordinates for their contained object mod-
els. The object models are combined with backgrounds of complex composition and 
high graphical quality to produce photorealistic images (cf. Fig. 5.3b). While the 
above datasets provide high quality synthetic images, nonetheless, they target gen-
eral purpose objects and scenarios (i.e., urban driving with SYNTHIA, and house-
hold objects with SIDOD and FAT), making them unsuitable for industrial 
applications.

5.3.4  Industrial Synthetic Image Datasets

Few synthetic datasets exist to date for generating industrial images. The most nota-
ble is T-LESS [88] consisting of 10,000 3D synthetic images categorized under 30 
industry-relevant objects (consisting of different kinds of light switches, light bulb 
connectors, and electric connectors, cf. Fig. 5.4). Each object is represented by two 
3D models: the first one is created using CAD (Computer Aided Design), and the 
second one is semi-automatically reconstructed from RGB-D (Depth) images using 
fast fusion [89], a volumetric 3D reconstruction system. The objects show symme-
tries and mutual similarities in shape or size, where some of the objects are parts of 
others. T-LESS synthetic images vary from simple to complex scenes with multiple 
instances and a high amount of occlusions and clutter. T-LESS image scenes are 
exported as one single mesh without annotations, in spite of the benefits 3D scan-
ning in providing highly realistic meshes. Hence, each object must be scanned inde-
pendently and merged within the scene to re-construct the synthetic image, which is 
a significantly time-consuming process [61]. The authors in [88] report their datas-
et’s performance in performing 6D pose estimation and deduce that there is signifi-
cant room for improvement, especially in cases with significant object occlusion.

Fig. 5.4 Samples from the T-LESS industrial synthetic image dataset [88]. (a) Sample 3D CAD 
object models from T-LESS. (b) Sample images from the T-LESS dataset
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Fig. 5.5 Samples rendered images of KLT boxes generated according to the approach in [81]. (a) 
Sample 3D object models of KLT boxes. (b) For each rendered image (a), the system automatically 
generates bounding boxes (b), panoptic segmentation masks (c), as well as depth maps (d)

To ensure the scalability of their synthetic dataset, the authors in [81] put forward an 
automated pipeline for synthetic image generation of industrial objects using Blender. 
The pipeline consists of three main phases. First, a background is composed of many 
random 3D objects as well as a background image to fill the void gap between the 
objects. Second, target objects and object-alike distractors are randomly placed within 
the camera view. Third, lighting and camera are added randomly using a Mixed-
Lighting Illumination (MLI) approach: combining global and local light sources to 
automatically create a diverse illumination of the scene. The authors randomize the 
number, type, location, rotation and material of target objects. In addition, the authors 
make use of Object Relation Modelling (ORM) to apply predefined relations between 
target objects when placing them in 3D space. To do so, they manually create relation 
files by recording the relative translation and rotation of one target object to another 
before the image is generated. This spatial relation can later be randomly applied dur-
ing foreground generation. If an intersection is detected when applying a relation, the 
related object is deleted. Experimental results in [81] show that considering object rela-
tions through ORM increases object detection accuracy when applied on real images. 
The authors evaluate their pipeline by detecting differently sized KLT boxes in real 
images, and show that that real image-based detectors outperform their proposed syn-
thetic image based detectors (cf. Fig. 5.5). The authors state that their generation pipe-
line, in its current form, highly depends on full randomization, where additional effort 
is needed to analyze Blender’s capabilities as a synthetic image generation system, and 
improving their pipeline to minimize the domain gap between synthetic and real images.

***

Going back to the challenges faced by BMW Group’s Logistics department: (i) the 
need to verify that items acquired from external suppliers match the required specifica-
tions, and (ii) the need to verify that items delivered from the internal supply chain to 
the manufacturing plant remain in an acceptable state and match the required specifica-
tions; none of the mentioned datasets can be straightforwardly used to address the 
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aforementioned challenges. This highlights the need for a full- ledged industrial syn-
thetic objects dataset that is easily extensible and scalable, using a state of the art graph-
ics rendering environment that can generate photorealist images where objects share 
realistic properties that parallel their real-world counterparts. This is where BMW 
Group’s SORDI (Synthetic Object Recognition Dataset for Industries) comes into play, 
designed for smart robot object detection and recognition in industries and manufac-
turing plants. SORDI uses the powerful NVIDIA Omniverse engine to create realistic 
visual patterns and illumination, while simulating the objects’ physical properties such 
as weight, surface texture, extreme lighting, and drag. We describe SORDI’s creation 
pipeline, assets, and their properties in the following chapter of this book.
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Chapter 6
Creating SORDI: The Largest Synthetic 
Dataset for Industries

Smart robots in industrial settings and factories are increasingly performing differ-
ent kinds of tasks, in coordination and collaboration with human workers, in order 
to improve industrial processes and boost manufacturing performance. As described 
in the previous chapters of this book, human-machine collaboration through robots 
and software agents is at the center of the Industry 5.0, where machines help humans 
extend their craftsmanship and analytical skills to deliver higher quality products 
and services. Nonetheless, providing seamless collaboration between humans and 
machines is not an easy task, and requires a huge amount of planning, training, and 
testing, to attain a useful and safe collaboration [1]. A typical scenario is that of 
Idealworks’s iw.hub, an Autonomous Mobile Robot (AMR) designed to allow driv-
erless transport of materials and goods within warehouses and factory floors. It 
moves around using a battery of cameras and sensors for navigation and obstacle 
avoidance. To achieve these tasks, Computer Vision (CV) allows the iw.hub robots 
to observe, monitor, recognize, and meaningfully understand their surroundings, 
e.g. detecting and recognizing specific objects in a scene, in order to perform spe-
cific actions, collision avoidance, and path rerouting accordingly. These CV tasks 
can be achieved after training deep learning (DL) models on large annotated datas-
ets. In industrial settings, obtaining and labelling such datasets is challenging 
because it is time-consuming, prone to human error, and limited by several privacy 
and security regulations. As a result, BMW Group and Idealworks have jointly 
developed a Synthetic Object Recognition Dataset for Industries (i.e., SORDI), the 
largest synthetic industrial dataset of its kind. Created using NVIDIA’s Omniverse, 
SORDI consists of more than 100 industrial assets in 35 scenarios and more than 
1,000,000 photo-realistic rendered images that are annotated with accurate pixel- 
level bounding boxes. For evaluation purposes, multiple object recognition models 
were trained with synthetic data to infer on real images captured inside a factory. 
Accuracy values higher than 80% were reported for most of the considered assets, 
highlighting the potential of the dataset and its practicality.

***

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47560-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-47560-3_6
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How is SORDI built? How are the material designed? How are the images and 
scenes generated? How is the dataset used for object recognition?

***

We attempt to answer these questions in this chapter of the book…

6.1  Universal Scene Description

The SORDI image dataset generation is inspired by Pixar Animation Studios’ core 
graphics and rendering pipeline [2]. It allows rendering realistic and complex cine-
matic scenes using the Universal Scene Description (USD) framework. To put things 
into perspective, scientific visualization traditionally utilized simple rendering tech-
niques such as Gouraud [3] or Phong [4] shaded polygons or ray sampled transfer 
functions for volume rendering [2], in order to transform and represent complex 
numerical data into images or animations. However, new and powerful hardware like 
NVIDIA’s Jetson boards and GPUs, with their dedicated Isaak SDKs, have enabled the 
use of more computationally-heavy rendering techniques to allow for high interactivity 
with complex visual data. Recently, Pixar put forward its Universal Scene Description 
(USD) [5], an open source framework that serves as the core of Pixar Animation 
Studio’s graphics and rendering pipeline, to allow for easy interchange of elemental 
assets, models (i.e., groups of assets), or animations. Different from other rendering 
packages, USD enables the grouping and organization of any large number of assets 
into virtual sets, scenes, and shots. These can be easily exchanged between applica-
tions, using a central API to edit them as overrides. USD provides a rich toolset for 
reading, writing, editing, and speedily previewing 3D geometry and shading. USD also 
provides a high-performance OpenGL1 based application to preview the generated files 
[6], which can be easily read and edited in their raw ASCII for binary formats (cf. 
Fig. 6.1). USD has been widely adopted across a wide variety of digital content cre-
ation tools (including Maya, Houdini, and Katana with Blender and 3DMax support 
under development) and game engines such as Unity, Unreal Engine, and NVIDIA’s 
Omniverse. As such, it makes an attractive target to bridge the gap between scientific 
data and tools for cinematic visualization. Also, since USD’s core scene graph and 
composition engine are not tied to any specific visualization format, USD can be 
extended in a maintainable way to encode and compose data in different domains [2], 
namely in different industrial settings such as BMW Group’s logistic, supply chain, 
and manufacturing scenarios. When producing SORDI, separate teams at BMW Group 
and Idealworks worked on specific areas and scenarios, where every team was respon-
sible for delivering, updating, maintaining, and exchanging their complex assets or 
materials (cf. Fig. 6.2). These assets were then assembled to construct more complex 
parent scenes that matched their real environment counterparts (cf. Fig. 6.3).

1 https://www.opengl.org/
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det Morro "World
{

def Mesh "mesh_0"
{

float3[] extent.timesamples = (
1: [(-0.5, -0.5, -0.5), (0.5, 0.5, 0.5)],
int[] facellertexCounts.timesamples = {
1: [4, 4, 4, 4, 4, 4],
int[] facevertexlndices.timesamples = f
1: [1, 5, 4, 0, 2, 6, 5, 1, 3, 7, 6,2, 0, 4, 7, 3, 2,1, 
0, 3,5, 6,7, 4],
point3f[] points.timesamples =(
1: [(-0.5, -0.5, -0.5), (0.5, -0.5,-0.5),(0.5, -0.5, 
0.5),(-0.5,-0.5,0.5),
(-0.5, 0.5, -0.5), (0.5, 0.5,-0.5),(0.5, 0.5,0.5), (-
0.5, 0.5, 0.5)],
color3f[] primvars:displayColor (
interpolation = ''vertex"
color3f[] primvars:displayColor.timesamples =
1: [(1, 0, 0), (1, 0.5, 0), (1, 1, 0), (0, 1, 0), (0, 1, 
1), (0, 0, 1), (1, 0, 1), (1, 0.5, 1)],
}

}
}

Fig. 6.1 USD sample ASCII file (left) and the geometry it describes (right) [2]

Fig. 6.2 Sample SORDI assets: (a) Cabinet (b) Stillage (c) KLT (Kleinladungstrager) Box. (d) 
Jack (e) Pallet (f) Fire Extinguisher (g) AMR (Autonomous Mobile Robot), and (e) Dolly

6.2  3D Mesh Modeling

As mentioned previous, USD is an open-source framework with wide industry 
adoption. It is supported by companies such as Autodesk, Apple, Blender, and 
NVIDIA. More specifically, NVIDIA’s Omniverse enables live collaborations 
between different applications, e.g. 3DsMax, Unreal, etc., that support exporting 
renders in the USD format. Therefore, as an advantage, it is not necessary to re-
model existing 3D assets, e.g., whole factories, machines, and robots that have 
already been modeled in one of the aforementioned digital content creation soft-
ware. In the case of SORDI, various BMW Group and Idealworks teams used 3D 
mesh modeling to capture BMW industrial assets from different points of view and 

6.2 3D Mesh Modeling
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Fig. 6.3 Complex scenes content generation based on real industrial scenarios, comparing the real 
photo captures (a and c) with their SORDI synthetic replicas in NVIDIA’s Omniverse (b and d). 
(a). Real capture. (b). Synthetic replicas based on images from a. (c). Real captures. (d). Synthetic 
replicas based on images from c

re-modeled them using Blender. 3D scanning is performed to collect data on the 
shape and appearance of every asset. Different from regular cameras, 3D scanners 
collect distance information about the surfaces within its field of view, describing 
the distance to the surface at each pixel in the produced image. The data is collected 
in the form of a polygon mesh point cloud, and is processed to extrapolate the shape 
of the object and construct a digital 3D model of it. The 3D model is then processed 
for graphics rendering as described in the following section. The teams at BMW 
Group and Idealworks used 3D laser scanning, which sends out laser beams that 
reflect back when they hit objects, at which point the distance the laser beam has 
travelled is measured [7]. Measurements are stored as points with xyz-coordinates 
relative to the scanner-position, creating a cloud of points that visualizes the scanned 
environment. The point clouds’ density depends on the laser scanners’ performance 
and the set resolution [8]. Several scans of large areas and several sides of every 
asset were captured separately, and then merged together to form a large point cloud 
(cf. Fig. 6.4). Computer-generated objects are also imported into the point cloud, to 
help realize more realistic and complete BMW virtual environments.

6 Creating SORDI: The Largest Synthetic Dataset for Industries
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Fig. 6.4 Virtual factory layout of BMW Group’s Regensburg plant, using point cloud-based 3D 
object representations

6.3  Material Design

Inspired by the real asset surfaces and textures, the 3D modeling team optimized 
manual photorealistic parametric materials using Substance 3D Suite.2 The 
Substance 3D Modeler allows creating 3D models based on vector graphics and 
mathematical shapes. The Substance 3D Sampler allows extracting textures from 
real-life pictures and transforming them into photorealistic materials, 3D objects, 
and rendering environments. The Substance 3D Designer allows manipulating the 
3D model and its superimposed textures to create seamless materials, patterns, fil-
ters, and environment lights with a huge battery of variations according to the 
designer’s needs. Materials (or textures) are the images that are applied to the dif-
ferent surfaces of a 3D object to give the object a more realistic look and feel [9]. 
Applying materials on a 3D object is a step referred to as texturing, which is a 
central step toward 3D image rendering. It allows providing each 3D surface with 
the color and pattern properties needed to visually describe the material the object 
is made of [10]. In other words, texturing a 3D object makes it look like it’s made 
out of plastic, metal, wood, or any other material. Substance 3D also provides a 
large library of assets and textures, including around 9000 materials with visually 
customizable parameters for different purposes and styles [11]. Here, we distin-
guish between two types of materials: (i) fully procedural, and (ii) scan-based. On 
the one hand, fully procedural materials are designed exclusively virtually created 
with procedural tools like Substance 3D Designer [9]. They are fully parametric and 
offer the highest level of flexibility as everything in them is potentially customiz-
able. These assets have the most exposed parameters that can be controlled by the 
user. Their file sizes are usually limited to a few kilobytes and allow to generate 
high-resolution renders given their mathematical nature. On the other hand, 

2 https://www.substance3d.com/
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scan-based materials consists of textures that have been essentially captured by a 
material scanner or camera. This provides realism in capturing the details of the 
real-world material, providing an authentic reproduction of reality. Nonetheless, 
scan-based materials are usually more constrained than their procedural counter-
parts, since they are bounded by realism. In the case of SORDI, the pros of both 
procedural and scan-based materials are leveraged by using the Image-to-Material 
AI tools provided by Substance Alchemist [12], in order synthesize and generate 
real-life inspired materials. A battery of parameters describing color, roughness, 
metallicity, patterns, and surface relief, are fine-tuned to generate realistic industrial 
factory assets, while allowing controlled parameter variation to create randomized 
assets and environments.

6.4  Scene Rendering and Data Cleaning

As discussed in Chap. 3, different rendering techniques have been developed in the 
past years, including rasterization, ray casting, and more recently ray tracing (cf. 
Chap. 3, Sect. 3.4). In the case of SORDI, assets are rendered using ray tracing [13], 
due to its higher image fidelity compared with its counterparts. In practice, legacy 
global illumination algorithms are not suited for industrial locations and factories, 
since objects in factories and warehouses are typically lit by many fluorescent tube 
lights and there is much indirect lighting due to bright walls. In contrast, ray tracing 
allows diffused lighting, by tracing a path from an imaginary eye through each pixel 
in a virtual scene, and computing the color of each individual object visible through 
it. Every ray is evaluated for intersection with other objects in the scene, allowing 
the algorithm to estimate the incoming light at the point of intersection with the 
nearest object, examine the material (texture) properties of the object, and aggregate 
these two pieces of information together to compute the resulting color of the pixel. 
While it may seem awkward to send light rays away from the camera, rather than 
into it as actual light does in the real world, yet doing so is much more efficient 
computationally. Given that the great majority of light rays from a certain light 
source do not make it directly into the viewer’s eye, a “forward” simulation can 
squander a huge amount of computation on light paths that are seldom recorded 
[14]. Hence, the idea behind ray tracing is to consider that a certain light ray inter-
sects the view frame, and after a maximum number of reflections or a ray traveling 
a certain distance without intersection, the ray terminates its travel path and the 
pixel’s value is updated [14]. Nonetheless, rendering remains a computationally 
intensive task, especially when dealing with complex scenes and large numbers of 
assets. A possible solution is to pre-render the images offline and then using them 
when needed. Yet real-time rendering is sometimes required for mixed reality simu-
lation environments such as industrial simulations that need to dynamically create 
scenes and adapt to the workers’ and robots’ behaviors on-the-fly. In such applica-
tions, 3D hardware accelerators can improve real-time rendering by using the 
graphics processor on the video card (GPU) instead of consuming valued CPU 
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resources [15]. In the case of SORDI, two 24 GB RTX 3090 multi-GPU systems 
were used to execute the rendering on NVIDIA’s Omniverse platform [16].

To build virtual factory layouts using SORDI, synthetic assets were added to 
synthetically generated scenes by mapping their usage in a factory or in a ware-
house. Some scenes contain single assets (cf. Fig. 6.5, 1–4) or several assets (cf. 
Fig. 6.5, 5–8). Each asset might also have either one instance (cf. Fig. 6.5, a1, b2, 
c2, b3, c3, a4) or multiple instances (cf. Fig. 6.5, b1, c1, d1) in a scene. More assets 
(e.g., whiteboards, industrial racks, office desks, electrical boxes, etc.) are added to 
the scenes to ensure randomness while capturing images from different angles. 

Fig. 6.5 Synthetic images containing various scenes of different industrial scenarios

6.4 Scene Rendering and Data Cleaning
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While one of the main advantages of synthetic image generation is the ability to 
automatically obtain accurate annotations, yet these annotations are sometimes 
over-accurate to the pixel level where each image pixel is annotated [16]. As a 
result, small bounding boxes for far away objects, small objects, or hidden objects 
are generated on top of the rendered scenes. Yet this produced another problem: 
reducing the training accuracy of the object recognition model, especially when 
bounding boxes encompass completely hidden objects or extremely small objects. 
As a result, labels of completely hidden objects or barely visible objects were 
removed from SORDI, preserving only those clearly distinguishable objects. 
Additionally, generating larger numbers of synthetic images in a small random 
space, eventually led to similarities among the synthetic images. Hence, an algo-
rithm was implemented to (i) hash each image into an 8 × 8 monochrome thumb-
nail, (ii) measure the similarity between two hashes based on the Manhattan distance 
between the image’s representative low-level features, and (iii) remove the images 
whose distance is below a predefined threshold [16].

6.5  Dataset Description

SORDI currently consists of more than 100 industrial assets (cf. Fig. 6.2) organized 
in a layered taxonomy,3 including parent-child inheritance (IsA) relationships con-
necting related asset classes. It currently includes more than 1,000,000 images, 
automatically captured in 35 different scenes as presented in Fig.  6.5. The first 
scenes contain single asset scenarios, with a possibility of having multiple instances 
per image. The rest of the scenes are associated with factory and warehouse similar 
representations with numerous assets and instances. The camera position and rota-
tion are randomized for every image, rendered in 720p resolution. Also, we apply 
transformation domain randomization by varying x and y axis position and z axis 
rotation for some of the annotated assets. As a result, SORDI’s one million syntheti-
cally generated images have more than 6.5 million instances where each image 
contains on average 2 assets and 7 instances [16]. Note that the assets are not dis-
tributed in an equal manner due to their different sizes and usage. As shown in 
Fig. 6.6.a, the most common assets are pallets (21.25%), dollies (19.50%), and KLT 
boxes (16.01%), since they act as containers or holders in a factory or in a ware-
house. Numerous KLT boxes can be found in a single scene, due to their small size 
and usage, hence the high number of instances in Fig. 6.6b. Concerning the other 
assets (e.g., STR in Fig. 6.5a7), each one of them is available in around 8.65% of the 
complete dataset. Besides, 45.12% of the dataset consists of single asset captures. It 
is possible to have multiple instances of the same asset in the same image (cf. 
Table 6.1). Yet, less than 6.29% of the images include more than 5 assets each.

3 https://sordi.ai/tree
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Fig. 6.6 Snapshots of SORDI dataset object and instance statistics [16]. (a). Object statistics. (b). 
Instance statistics

Table 6.1 Percentage of different asset occurrences in a single capture [16]

Occurrence 1 2 3 4 5 6 7 8

Percentage 45.12% 32.14% 14.72% 10.72% 4.25% 0.53% 0.43% 1.08%

6.6  Usage for Object Recognition

As mentioned previously, the SORDI dataset is primarily designed to train deep 
learning (DL) computer vision (CV) models to perform object recognition on real 
images. Early experiments focused on single class object recognition models. For 
each object recognition model, 3000 labelled SORDI images were randomly select-
ing as a training set, and 300 real images were captured in a BMW plant and anno-
tated manually to form the test set. The manually annotated bounding boxes were 
considered as the ground truth labels throughout the evaluation process. Transfer 
learning was employed based on the following DL object recognition model archi-
tectures: FRCNN Resnet-50 [17], FRCNN Resnet-101 [18], SSD Inception and 
SSD Mobilenet [19]. All pre-trained model weights were based on the COCO data-
set [20]. Experiments were conducted on Tesla V100-SMX2-16GB GPUs, with the 
training and evaluation codes made available online.4 The DL models were evalu-
ated by reporting the percentage of correct predictions over the entire test set (cf. 
Eq. 6.1).

 
Accyracy �

�
� � �

� �����
TP TN

TP TN FP FN  
(6.1)

4 https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI
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Table 6.2 Accuracy levels of different object detection models [1]

Assets
Cabinet Stillage KLT box Jack Pallet Fire Ext. STR Dolly

FRCNN Resnet-50 0.4948 0.887 0.539 0.966 0.42 0.905 0.795 0.806
Resnet-101 0.7784 0.878 0.562 1 0.495 1 0.787 0.74

SSD Inception 0.9585 0.582 0.285 0.867 0.273 0.714 0.794 0.5
Mobilenet 0.9482 0.763 0.076 1 0.5 0.84 0.603 0.529

where TP and TN represents the number of correct predictions (i.e., true positives 
and true negatives), while FP and FN represent the number of incorrect predictions 
(false positives and false negatives). Accuracy is maximized with a maximum num-
ber of correct predictions and a minimum number of incorrect predictions. Results 
were promising, achieving 100% accuracy for the jack and the fire extinguisher 
assets using the FRCNN Resnet-101 architecture, and > 95% accuracy circa for the 
cabinet asset using both SSD-based models (cf. Table 6.2). FRCNN Resnet-50 per-
formed best when detecting stillages, STRs, and dollies achieving accuracies of 
88.70, 79.50, and 80.60% respectively. Nonetheless, lower accuracies were also 
achieved with other assets like pallet (50.00%) and KLT box (56.20%). One possible 
explanation is that the pallet and KTL box assets (cf. Fig. 6.2) are not characterized 
by a unique texture, shape, dimension, or location, and they are usually either stacked 
or sided next to each other in factories and in warehouses (cf. Fig. 6.3). As a result, 
the object recognition models did not perform well when a group of KLT boxes or 
pallets were indistinctively grouped together or shelved on top of each other without 
any clear separation [16]. This would require improvement by producing more 
scenes with domain randomizations to further generalize the dataset. More object 
classes also need to be added, to distinguish between different kinds of pallets and 
KLTs, in order to improve object recognition performance while describing more 
realistic scenarios. Generative networks for image generation and data augmentation 
can be utilized to decrease the reality gap between real and synthetic images. To sup-
port the latter extensions and updates, an automated pipeline for synthetic image 
generation and rendering is being developed as part of the ongoing improvements on 
SORDI, which we further describe in the remaining chapters of this book.

6.7  BMW Group GitHub

As part of its SORDI and digital twin initiatives, the BMW Group TechOffice in 
Munich maintains a battery of github repositories describing and publishing the 
office’s activities in collaboration with its academic and industry partners, namely 
Idealworks. The repositories describe the team’s activities around physics-based 
synthetic data generation to produce the SORDI assets [21], SORDI assets evalua-
tion interface [22], synthetic data cleaning [23] and selection [24], visual object 
labelling [25], object recognition deep model training [26], and visual data anony-
mization [27], among others.

6 Creating SORDI: The Largest Synthetic Dataset for Industries
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Fig. 6.7 Sample snapshot images from the TechOffice digital twin including empty areas or irrel-
evant objects that are not useful for certain image classification or object recognition tasks

For instance, the synthetic data generation repository [21] provides an API that 
allows generating physics-based synthetic datasets the likes of SORDI, with just a 
few clicks specifying user input preferences. The AI evaluation repository [22] 
allows evaluating a trained CV model and acquiring general information and evalu-
ation metrics with little configuration. The user provides a labeled dataset that is 
used as ground truth to assess the model, and an inference API that is used to infer 
on the selected dataset. Users can utilize one of the inference APIs provided by the 
TechOffice [28]. The BMW Labeltool Lite [25] can be used to label the dataset, 
where the images and their labels are used directly for evaluation. The evaluation 
GUI supports both object recognition and image classification. The synthetic data 
cleaning repository [23] allows cleaning image annotations with little to no configu-
ration from the end user. It takes into consideration depth information, occlusions, 
and small bounding box inconsistencies that can be automatically corrected [29]. 
The image data selection repository [24] provides functions to select relevant 
images in a dataset. Selection is based on disregarding empty areas and irrelevant 
objects in the images (cf. Fig. 6.7). The TensorFlow training GUI repository [26] 
allows users to easily train a state-of-the-art DL model with little to no configuration 
needed. Users provide their labeled datasets and start the training process right 
away, while monitoring the process with TensorBoard. Users can also test their 
models with the TechOffice built-in inference REST API. The data cleaning reposi-
tory [23] provides a dynamic approach to assess image quality for cleaning, based 
on dedicated image quality metrics including: (i) distribution threshold and (ii) den-
sity threshold. The motivation is to achieve high asset distribution so the image is 
not empty, and to have low asset density in order to avoid unwanted overlappings. 
Given the importance of data privacy and individuals’ anonymity in industrial set-
tings, the BMW anonymization tool [27] allows localizing and obfuscating (i.e., 
hiding) sensitive information in images and videos in order to preserve the individu-
als’ anonymity. The tool is agnostic in terms of localization techniques, and sup-
ports semantic segmentation [30] and object recognition [31]. We further describe 
some of the latter tools and APIs in the last chapter of this book (cf. Chap. 8) high-
lighting the latest improvements and additions to SORDI.

6.7 BMW Group GitHub
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Chapter 7
Toward an Industrial Robot Gym

Factories represent industrial facilities made of several buildings occupied with differ-
ent kinds of machines and robots, where workers produce or assemble manufactured 
items by operating different machines and working in tandem with the robots at the 
plant. Complex and expensive equipment, procedures, and transformation processes 
are often involved in manufacturing plants. Also, dangerous conditions may be 
required to operate different kinds of factories, including high voltage, high tempera-
ture, high pressure, high gas concentration, among other perilous situations. Hence, it 
is of central importance to understand how a manufacturing plant works, including its 
regular operations and the irregular situations that may arise, in order to better design 
and operate the plant with optimal safety, efficiency, and productivity conditions. This 
is where digital twins come into play and become of utmost importance. Modern 
factories are modeled as Cyber Physical Systems (CPS), including a smart physical 
system (i.e., the robotic machinery and infrastructure) controlled and monitored by an 
intelligent cyber system (i.e., the control software) [1]. Hardware and software com-
ponents in a CPS are closely entwined, as a network of interacting robotic and sensor 
elements with physical input and output [2]. The digital twin represents an exact vir-
tual copy of the factory or the CPS, including simulations of both their hardware and 
software components, allowing to simulate all their functionalities in a virtual simula-
tion environment. Given the enormous, complex, and critical infrastructure involved 
in a factory, and given the difficulty of shutting a factory down or modifying its behav-
ior to acquire a better understanding of its inner workings, the factory’s digital twin 
becomes the next best alternative. It provides engineers with a virtual playground to 
test, change, revamp, reimagine, fast forward, and forecast the behavior of a plant in a 
completely virtualized environment, with zero impact or danger to its real counterpart. 
The digital twin can provide visualized information and interactive operations, while 
ensuring the security of the equipment and the safety of the human workers [3]. More 
specifically, the digital twin is viewed as a “robot gym”, training virtual robotic twins 
using synthetic data in order to allow their physical counterparts to work and execute 
their tasks in the real world.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47560-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-47560-3_7
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***

In this context, how do we build a digital twin and how do we make it work to 
benefit a modern factory? How can we provide quality assurance in the virtual 
world? How can we use synthetic data to train virtual robot twins?

***

We attempt to answer these questions in this chapter of the book.

7.1  Creating a Digital Mockup of the Factory

A digital twin is a virtual representation, also called a mirror, an avatar, or simply a 
twin of a physical system [4]. A digital twin consists of multiple integrated and 
interacting modules, including: (i) a system architecture identifying the main com-
ponents making up the digital twin solution, (ii) a 3D model (i.e., a Virtual Factory 
Layout, or VFL) that is an accurate likeness of the physical system created with 3D 
modeling technologies, (iii) a mathematical model that governs the mechanisms, 
kinetics, and data properties of the physical system, and (iv) a rule-based model that 
allows user interactions and describes the dynamicity of the digital twin in corre-
spondence with its physical counterpart. In the following, we further describe the 
latter components toward creating the digital twin of a factory.

7.1.1  System Architecture

Multiple system architectures can be considered when developing a digital twin 
solution. In the following, we describe a typical layered architecture that is suitable 
for the remote operations of the digital twin, which is especially useful in the con-
text of digitalized factories. Remote operations mean the digital twin of the factory 
can be experienced by users remotely from the comfort of their offices or homes, 
through typical Web browsers or mobile applications, without having to connect 
directly to the computer server or to the cloud server machines hosting the digital 
twin. Figure 7.1 shows a sample design of a multi-layered architecture of a Web- 
enabled digital twin factory.

To enable remote operations of the digital twin, a layered architecture has been 
proposed regarding the perspective of use, deployment, and control [3]. The digital 
twin is run on dedicate cloud servers, where multiple twins can be designed to gov-
ern multiple aspects of the factory (e.g., multiple collaborating and integrated digi-
tal twins can be designed to govern each of the factory’s main systems, including 
power supply, supply chain, assembly, etc., similarly to the collaboration and inte-
gration between their physical counterparts). Dedicated controllers ensure the data 
flow between the digital twins and their physical counterparts, which are essential 
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Fig. 7.1 Layered architecture of a Web/mobile-based digital twin plant [3]

to maintain synchronization among the virtual and physical systems. Users can 
access the digital twin from their personal computers, tablets, or mobile phones 
using Web/mobile renderings allowing to experience the digital twin with main-
stream web browsers or mobile applications. Duplicate copies of the digital twin 
can be deployed on several servers to increase accessibility and allow different 
kinds or renderings (e.g., high-definition, lower-definition, simplified functionality, 
etc.) that are suitable for different kinds of users (e.g., engineers, managers, 
academics).

7.1.2  3D Model

3D models are used to create VFLs as virtual representations that are as similar as 
possible to their physical counterparts. In industrial settings, 3D laser scanning is 
usually utilized to capture the spatial properties of a factory. The 3D laser scanner 
measurements are stored as points with XYZ-coordinates relative to the scanner- 
position, creating a point cloud that visualizes the scanned environment [5]. To 
make the point cloud more easily editable, the list of points in 3D space can be 
transformed into a solid model using 3D modelling techniques such as voxelization 
and high-level 3D object representations. In this context, scene graphs have been 
increasingly used to encode and group geometric shapes into hierarchical struc-
tures, showing the benefits of 3D scene reconstruction using object detection in 
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Fig. 7.2 Real photo snapshots (a, c) versus photo realistic VFL snapshots (b, d) of BMW Group’s 
Regensburg plant, mimicking the real plant using SORDI high-level 3D objects. (a). Real photo 
snapshots [6]. (b). Photo realistic 3D model renderings

point clouds (cf. Chap. 3). For instance, BMW Group and idealworks have adopted 
Pixar’s Universal Scene Descriptor (USD) standard in generating their SORDI data-
set 3D assets (cf. Fig. 7.2). USD is also adopted by NVIDIA in their virtualization 
engine Omniverse, which is used by BMW Group and idealworks to develop VFLs 
using SORDI. High-level representations introduces the concept of 3D objects and 
are not just a collection of points or voxels. This conceptual idea simplifies many 
otherwise complicated operations, including object and scene detection, recogni-
tion, translation, cropping, scaling, and rotation. In addition, high-level 3D repre-
sentations are more easily rendered for visualization and manipulation on different 
platforms (e.g., personal computer, Web browser, mobile phone), as well as for 
physics and motion simulation, which are central operations for interacting with, 
manipulating, and controlling VFLs.

7.1.3  Mathematical Model

VFL models only resemble their physical model counterparts in appearance. 
However, to build a digital twin, the properties and dynamic behaviors of the physi-
cal factory need to be considered and simulated in the virtual environment, so that 
the behavior and animation of the 3D objects within the VFL resemble and match 
the dynamics of their real word mirrors. Here, the mathematical models differ in 
functionality, complexity and sophistication, from one object to the other, and from 
one factory to the other. For instance, the mathematical models of static physical 

7 Toward an Industrial Robot Gym



125

objects like pallets and KLTs will basically govern their physical properties like 3D 
volume occupancy, weight, and material deterioration. The models of dynamic 
objects like transport robots and forklifts will govern their physical properties as 
well as their dynamic behaviors, including mobility, object detection, collision 
avoidance, and smart navigation within the plant floor, among other dynamic func-
tionalities. The models of collections of objects or systems of objects, like the power 
supply system in a plant, or the conveyor belt system, consist of the integration of 
multiple underlying mathematical models governing the behavior of each object 
within the system, in addition to a system model that handles the coordination 
among the underlying object models and governs the properties and the behaviors 
of the system as a whole. Mathematical models usually include control algorithms 
involving dedicated procedures to ensure the physical and dynamic properties are 
achieved. For instance, techniques such as affine non-linear control [7], hierarchical 
model predictive control [8], and active disturbance rejection control [9] can be 
used to control large power plants [3] (cf. Fig. 7.3). In addition, state of the art con-
trol algorithms include machine learning models like deep learning and reinforce-
ment learning to process big data including live data feeds and historical data 
records [10], in order to perform different operation scheduling, planning, mainte-
nance, and forecasting tasks (e.g., forecasting the needed materials on the supply 
chain, or planning the optimal paths for a fleet of transport robots navigating the 
plant floor).

Fig. 7.3 Sample control, interaction, and rule models for a digital twin simulating a plant [3]. (a). 
Sample control algorithm diagram for a plant. (b). Motion control through user interaction. (c). 
Sample control block diagram between digital twin and physical system. (d). Sample rule model
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Fig. 7.4 Using AR in BMW Group’s iX5 Pilot Plant in Munich [11]

7.1.4  Rule Model

The rule model allows combining the control algorithm with the VFL to create a 
dynamic and interactive digital twin (cf. Fig. 7.3d). The interfacing and merging of the 
VFL with the control algorithm allows activating the virtual avatar that is the VFL by 
animating its behavior according to data coming from the physical system (e.g., the 
physical factory). In turn, the digital twin will also generate and process data according 
its mathematical model, where the data will be sent back to the physical system for 
feedback and adjustment if needed. Users can interact with both the physical system and 
its digital twin, by interfacing with the physical equipment in the real world and their 
virtual counterparts through the virtual renderings (cf. Fig. 7.3b). When interactions are 
done in the physical world, the data is fed back to the digital twin for real-time monitor-
ing and control. The physical system can also send control commands, allowing to 
reconfigure system parameters as needed. As shown in Fig. 7.3c, the output of the physi-
cal system serves as one of the inputs of the digital twin, and the generated output of the 
digital twin controller acts as another input [3]. When interactions are done with the 
digital twin in the virtual environment, they are used for simulation, optimization, and 
forecasting. To achieve the perfect mapping with the physical system, the output of the 
digital twin should first converge to the optimal output, and then the optimal configura-
tion can be fed to the physical system through the local controllers [3]. The digital twin 
configurations can also be fed back to the physical environment using Augmented 
Reality (AR) to allow for a double user interaction: (i) interacting with the real world 
through the user’s physical presence in the factory, and (ii) interacting with the digital 
twin that is visually superimposed on top of the real world through AR visualizations 
and interactions with the virtual factory (cf. Fig. 7.4).

7.2  Augmented Digital Twin

Combined with the digital twin, Augmented Reality (AR) allows a higher level of 
interaction with both the virtual factory and its physical counterpart. It allows to 
visually superimpose parts of the digital twin on top of the real factory 
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environment, allowing users to interact with the digital twin through its real word 
augmentation, and allowing for an improved interaction within the real factory 
environment by adding the superimposed visual information acquired from its 
digital counterpart [12]. In other words, AR allows to integrate the physical part 
and the virtual part of the factory in an intuitive, comprehensive, and adaptive 
way: different kinds of visualizations can be used at different times and in differ-
ent places of the factory floor, to cater for different users’ needs (e.g., electric 
engineers would prefer to see certain visualizations of the factory floor emphasiz-
ing electric circuitry and power flow, compared with manufacturing engineers or 
managers who would seek other kinds of logistic visualizations). Users can take 
advantage of the augmented data to perform more efficient decision-making and 
allow higher levels of machine control [13]. The combination of digital twin with 
AR, producing a so-called augmented digital twin, not only improves the effi-
ciency and effectiveness of the manufacturing process, but also brings the user’s 
experience in interacting with both the physical factory and its virtual counterpart 
to a completely different level.

7.2.1  Combining Physical and Virtual Parts

The digital twin provides real-time data and integrates it with historical data to 
provide more useful information to the system, allowing the system to self-
evolve and improve itself. Depending on the properties of the digital twin data, 
its visualization using AR requires the following components [13]: physical 
part, virtual part, calibration process, augmented process, and control process. 
The physical part includes the physical objects in the real world, it can be a 
part, a product, a machine, or even the entire factory. All the data acquisition 
devices and sensors are also considered part of the physical part. The physical 
part makes up the founding layer, from which the other parts are aiming to 
analyze, utilize, and update the information [13, 14]. The virtual part consists 
of the VFL as well as all the real-time data collected from sensors, data acquisi-
tion devices, machines, and inputs from humans interacting with the digital 
twin. In addition, the historical data stored in the servers are also treated as part 
of the virtual part.

7.2.2  AR Calibration Process

In order to achieve an intuitive and accurate AR visualization of the digital 
twin, the 3D models in the VFL need to be faultlessly aligned with the physical 
part. This requires a delicate calibration process to accurately integrate the two 
parts together [15]. There are many calibration methods in AR, the most com-
monly used is the binary marker tracking method [16]. A binary marker is 
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placed in the physical world where the AR devices can visualize and recognize 
it. A geometric object (usually a sphere or a cube) is designed in the virtual 
environment to align with the binary marker in the physical world. When the 
geometric object is perfectly aligned with the binary marker through the user’s 
view, the calibration process is accurately done, allowing the virtual world to 
correctly aligning with the physical world where the VFL’s 3D models are pre-
cisely overlaid onto their physical counterparts [16, 17]. More recently, marker-
less techniques have been introduced, namely Natural Feature Tracking (NFT) 
[18] and Simultaneous Localization And Mapping (SLAM) [19]. NFT-based 
solutions utilize computer vision models to detect representative points describ-
ing natural features in real-time video images [20]. Visual feature tracking 
algorithms are then used to produce accurate motion estimates and compute the 
virtual objects’ pose accordingly [20]. An NFT-based solution has been recently 
developed to provide outdoor AR capability for users inside of a moving vehi-
cle [21]. It continuously matches natural visual features from the camera 
against a prebuilt database of interior vehicle scenes, and combines pose esti-
mation from both the vehicle navigation system and wearable sensors inside 
the vehicle. SLAM- based solutions consist in building a probabilistic feature 
map of the real environment in the form of a 3D point cloud, and then deter-
mines the AR navigation paths as a pre-scanning process. 3D objects con-
structed based on data from the sensors are compared with the predefined 
virtual models to estimate the virtual objects’ poses [22].

7.2.3  AR Data Augmentation and Control

AR data augmentation consists in providing an adapted AR visualization of the 
digital twin data to users through AR devices. The AR device receives data from 
the virtual part and the corresponding calibration results, and then presents them 
to the users. This process does not merely display the entire virtual part directly 
onto the AR device. Different physical environments and objects, different input 
commands from users, and different AR devices entail different augmented pro-
cesses to display different virtual objects on the AR devices [23]. For different 
machines and different users in the factory, the augmented process will display 
different information and virtual objects accordingly. With this filtering process, 
the digital twin data can be more understandable and useful to the users. Once 
the data is augmented and presented to the users, the control process allows the 
users to interact with both the physical part and the virtual part of the digital 
twin through AR. Users can control the physical part directly through the AR 
device by providing commands and inputs into the control process. This allows 
establishing a closed-loop control to improve and update of digital twin data, 
and continuously display the improved and updated data onto the AR devices 
[13, 15].
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7.3  Virtual Quality Assurance

The quality of a digital twin can be evaluated according to three classification areas 
[24]: (i) Level of Development (LoD), (ii) Level of Accuracy (LoA), and (iii) Level 
of Recognizability (LoR, cf. Table 7.1).

7.3.1  Level of Development

LoD addresses the reliability of the digital twin models: which features they include, 
and what purposes they are designed for [25]. To ensure that a virtual object is used 
for its exact purpose, its purpose needs to be mapped to the functionalities that the 
object should perform. The description of a virtual object’s functionalities can be 
organized under three main categories: (i) knowledge transfer and idea sharing, (ii) 
layout design and management, and (iii) simulations [26, 27]. The latter functional-
ity groups include specific sub-areas. For instance, knowledge transfer can range 
from general static layout descriptions to specific dynamic object and machine 
designs [24]. Layout management can include new functionalities targeting new 
factories, or changes in the functionalities of existing factories that are adapted or 
repurposed to serve new factory designs. Simulations range over data/object/mate-
rial flow, 2D movement, 3D movement, and robot simulation [28]. This variation in 
functionalities and purposes entails different requirements for defining them. For 
instance, most knowledge transfer functionalities aim at providing realistic virtual 
representations of the physical world as a means of communication, allowing to 
share knowledge about the physical system from and within the virtual world. This 
requires accurate and realistic VFLs that capture the look and feel of the real factory. 
Achieving layout management functionalities would require measurable metrics 
that users can employ to measure the distance between virtual objects in the VFL in 
order to allow their proper rearrangement [29]. This requires the objects’ volume 
coverage areas and corners to be accurately defined allowing the user to easily 
choose areas and corners to measure between. Also, the user needs to move and 
displace objects in order to visualize how the new layout would look like. This 
means the virtual objects should be easily moveable in the virtual space [24]. 
Making an object moveable means it is created and located as its own separate part 

Table 7.1 Features included in the classification of LoD, LoA, and LoR [24]

Level of development Level of accuracy Level of recognizability

Moveable objects Very coarse Object name
Measureable footprint Coarse 2D area
Measureable 2D distances Medium 3D block
Measureable 3D distances Fine Color
Object kinematics Very fine Shapes and features
Material flow

7.3 Virtual Quality Assurance



130

inside the VFL so that it can be rearranged in relation with its surrounding objects. 
As for creating simulations of the objects or the whole production system, 3D 
motion studies are required to describe how the use of the LoDs can help define the 
requirements for specific simulation purposes [28]. For instance, 3D motion can be 
defined as a dynamic environment where an operator or a robot can be inserted into 
[24]. It requires 3D measurability of all virtual objects related to a potential operator 
or robot task, as well as surrounding objects that might interfere with the operations 
of the target object or system. 3D measurability allows measuring the required 
movement distances for objects and tasks, which can be compared against move-
ment distances in the real world [26, 28].

7.3.2  Level of Accuracy

LoA emphases tolerances: how much a virtual object can differ within a certain 
tolerance, +/− levels of accuracy, compared with its real world counterpart [24]. 
Accuracy levels can be described using scalars (∈ [0, 100]%) or quantified into 
crisp linguistic categories (e.g., coarse, medium, fine) where the level of granularity 
depends on the users’ preference and application scenarios. When performing lay-
out management for instance, users need to know the accuracy of the outer dimen-
sions of the objects they wish to align, otherwise users will not know what the VFL 
is valid for [28]. When simulating 3D robot movements for instance, a certain level 
of accuracy is required to make correct assumptions of the time required for the 
movements. Lower accuracy levels would entail lesser certainty levels in the robot’s 
movements, and thus lesser trustworthiness in the digital twin’s ability to simulate 
the robot’s behavior. Tolerance measures can be defined based on existing tools 
such as IS0-2768 and USIBD LoA [30], and they can be combined with manufac-
turing documentation tools such as surface profile tolerances [31].

7.3.3  Level of Recognizability

For a VFL to fulfil its purpose, it is a necessity that the user of the layout under-
stands what it illustrates. Since the experience and knowledge of users differ based 
on their profiles and experiences, the requirements on the layouts would also differ 
accordingly. Production engineers well familiarized with the factory’s facilities can 
easily recognize objects by quickly looking at them, while other persons less famil-
iar with the factory (e.g., engineers or technicians working in different fields, busi-
ness personnel, consultants) may require more time or additional shapes or features, 
and sometimes even descriptive texts to recognize the objects [24]. LoR allows to 
support users, by helping VFL modelers with visual aids from the real world, 
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allowing them to reconstruct the virtual objects with as much authenticity as possi-
ble, and to show the VFL end-users what kind of visual recognizability they can 
expect from the model [29]. The LoR features in Table 7.1 are pieces of information 
that can make an object more recognizable. Reference models of frequently occur-
ring objects such as material racks, pallets, KLTs, etc., could be described by a 
couple of pictures and an added text describing how the model relates to the chosen 
features. This will provide both the project initiator and the VFL modeler with what 
to expect in terms of recognizability of an object [24].

Fig. 7.5 shows individual objects and groups of objects represented as block and 
shape models used for layout management. Fig.  7.5a, b represent the iw.hub 
Autonomous Mobile Robot (AMR) represented as a colored 3D block and as a 
group of specific shapes resembling the real robot respectively. In a transport navi-
gation scenario, the block representation in Fig. 7.5a would be enough to define and 
recognize the robot, and its distinctive color would allow distinguishing it from 
other moving robots and mapping it with its source and destination locations by 
color coding them with the same AMR color in the VFL.  The representation in 
Fig. 7.5b provides a realistic representation of the AMR allowing its recognition in 
a full-fledged realistic rendering of the virtual factory plant. The example in Fig. 7.5c 
provides a 3D block representation of the factory plant, at different layers of detail, 
which is suited for a user well familiarized with the factory layout and who wants to 
make changes to it (e.g., to improve it, to incorporate a new compartment into it, to 
define a new supply chain pipeline that feeds into it, etc.).

Fig. 7.5 Examples of LoR 3D block (a, c) and object shape (b) features. (a). 3D block model with 
blue color. (b). Model including specific shapes and features to describe the iw.hub robot. (c). 
Sample VFL for layout management [32]
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7.3.4  Combining all Three Areas

While the individual classification areas are important in their own regard, yet 
each of them separately says little about the overall reliability and quality assur-
ance of the digital twin solution. All three classification areas need to be combined 
in order to acquire a better assessment of what the digital twin can be used for and 
what is required by its users [24]. Without evaluating the recognizability of a vir-
tual object, it is difficult to determine what is required by the user to understand 
the object. Also, the accuracy levels of the object and environment representations 
are required to assess the validity of the measures obtained from the VFL. As for 
its development, if the VFL does not have the features needed to fulfil the purpose 
of the digital twin, the latter’s purpose will not be achieved. Combining the three 
classification areas can be defined once in a digital twin project, i.e., for the whole 
virtual factory, or different combinations can be considered for separate parts or 
separate objects of the virtual factory. Different combinations can be used for dif-
ferent purposes in the digital twin. For instance, 3D motion studies might be per-
formed on an object or on a production line, whereas the rest of the VFL is only 
used for visual layout purposes. It could therefore be suitable to have general 
project requirements for a layout management task (cf. Fig.  7.5c) whereas the 
specific objects or lines have requirements combined with dedicated 3D motion 
studies. Nevertheless, depending on the amount of different applications of the 
digital twin, it might be wise to limit each project to a manageable amount of 
variations. Otherwise, the time gained from not overdeveloping the models can be 
lost in additional time for defining and keeping track of all the requirements and 
all the combination variations [24].

7.4  The Case of Iw.hub – BMW Group’s AMR

Iw.hub is BMW Group’s next generation AMR, aiming to increase the flexibil-
ity and efficiency of intra-logistic processes in the manufacturing plant. 
Developed by Idealworks, iw.hub is powered by state-of-the-art software and 
hardware that can plan the optimal route to efficiently execute material flows, 
while dynamically avoiding obstacles and other vehicles and safely operating 
around humans. Iw.hub is a digital twin enabled and trained robot, allowing for 
adaptive navigation and training in the virtual world, to efficiently and effec-
tively anticipate, recognize, and adjust to changes in the real environment 
accordingly. For instance, changing a supply line or updating the location of a 
materials’ depo position in the real plant will be anticipated in the digital twin, 
where the iw.hub is retrained to consider the new locations and constraints, 
before deploying it in the real factory.
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7.4.1  Difficulties in Manufacturing Environments

The intricacy of manufacturing environments is chiefly due to their heterogeneity: 
they include stationary and moving objects, humans and machines, as well as autono-
mous and non-autonomous vehicles. For AMRs, things are even more complicated 
due to the difficulty of establishing predefined paths or a traffic rulebook that regulates 
the traffic within the factory. Although existing AMRs are usually equipped with the 
needed hardware and software to operate safely without human supervision, nonethe-
less, their behavior typically demonstrates a lack of smoothness due to their shortness 
in cognition abilities [33]. Figure 7.6 depicts some operational drawbacks encoun-
tered on a shop floor case study reported from [33]. In the convoy driving situation in 
Fig. 7.6a for instance, a desired behavior for the rear robot is to mimic the behavioral 
pattern of the front robot, without attempting to overtake, since the latter has an antici-
pated insight and thus has a more reliable judgment. In Fig. 7.6b, the field of view of 
the autonomous robot is lacking because of proximity. The autonomous robot needs 
to perceive the loaded forklift while approaching, and to deduce potential collision of 
loads in order to increase separation distance. In Fig. 7.6c, overtaking an obstacle on 
a two-way aisle might lead to a bottleneck with oncoming traffic. A more suited 

Fig. 7.6 Sample cases highlighting difficulties encountered with AMRs deployed in an automo-
bile manufacturing plant [33]. (a). Convoy driving. (b). Hyperopic perception. (c). Oncoming traf-
fic with long obstacle
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behavior in this use case is to avoid overtaking long obstacles. The above motivating 
use cases highlight the need to make AMRs more aware of their surrounding situation, 
to allow for improved and increased functional autonomy.

7.4.2  Improving Situational Awareness

To address the difficulties described above, researchers from BMW Group and 
Idealworkds have developed the first situational awareness framework titled 
AWARE [33], specifically designed to augment AMRs in automobile manufactur-
ing plants with situational awareness capabilities. It consist of a Knowledge Base 
(KB) representation, a set of rules, and a decision module. The AMR’s observations 
or data streams are represented using a timestamp-based temporal RDF KB [34]. 
The decision module uses a set of rules to reason over the observations and the pri-
ors in order to adapt the behavior of the robot. The framework can be easily extended 
to support other applications of autonomous vehicles by adapting the KB and add-
ing more rules to cover the application domain. Most importantly, the proposed 
solution is designed to be integrated within BMW Group’s digital twin framework, 
where the iw.hub is trained in the virtual plant, before it’s deployed in the physical 
plant (cf. Fig. 7.9).

7.4.3  Knowledge Base

A snapshot of the AWARE KB is shown in Fig.  7.7 [33, 35]. It includes time- 
invariant instances, such as instances of class Decision (e.g., pause and adjustSafe-
tyRange) and instances of class Procedure (e.g., such as object detection models 
like YOLO [36] or DetectNet [37]). Also, instances of class OperationalArea and 
class ConstraintZone are time-invariant. OperationalArea describes parts of the fac-
tory with a particular functionality such as aisles or drop-off areas, while the class 
ConstraintZone refers to delimited surfaces in the plant where specific behavioral 
regulations apply such as zones with limited speed or limited capacity zones. The 
AWARE KB also includes time-variant instances characterized by a timestamp, 
which describe processed data from different intrinsic and extrinsic sensor streams. 
Data extracted from the AMR’s internal state and its surrounding neighborhood is 
inserted into the KB as instances of class Observation. An example of two instances 
from class Observation is shown in Fig. 7.7. One observation is concerned with one 
feature of interest only. Numerous observations can be associated with the same 
timestamp. If multiple features of interest appear concurrently, such as multiple 
detections occurring within a single frame, an observation is created for each of 
them independently [33, 35].
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Fig. 7.7 Snapshot of the AWARE KB describing two robot observations

7.4.4  Assumptions and Rules

Different from road traffic, the functioning of AMRs in closed environments is not 
standardized by an established code of conduct. No published standard regulates 
traffic within the factory floor, such as intersections, right of way, or rules on when 
an AMR is supposed to yield way. Current AMRs usually perform the right of way 
allocation task following a first come first served approach, or following an it fits I 
pass policy. To improve on the latter, a set of behavioral rules were introduced to 
govern the behavior of AMRs deployed in a manufacturing environment [33], com-
pared with the safety regulations put forward for driverless vehicles [38, 39]. The 
so-called AWARE rules are derived based on a set of assumptions to address the 
observed challenges and difficulties. We report some of the assumptions below [33] 
(cf. Table 7.2):

• The behavioral rules are not considered as safety rules; instead, they are 
designed to ensure timely and orderly operations of the smart factory, where 
humans, manned vehicles, and AMRs function in alignment.

• Situational awareness is not a control system; instead, it is a guidance system 
facilitating the behavior of AMRs. In the absence of guidance, the AMR is sup-
posed to proceed as indicated by its state machine.
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Table 7.2 Subset of AWARE rules written in SWIRL [33]

Convoy driving
Observation(?obs) ^ madeBySensor(?obs; camera)
^ hasF eatureOfInterest(?obs; ?obj) ^ AMR(?obj)
^ ObjectOfFocus(?obj) ^ TransitW ayObstacle(?obj)
^ hasTimeStamp(?obs; ?time) ^ TemporalEntity(?time)
! hasDecision(?time; stop)
Overtaking tugger train with oncoming traffic
Observation(?obs) ^ madeBySensor(?obs; camera)
^ hasF eatureOfInterest(?obs; ?obj) ^ Tugger(?obj)
^ ObjectOfFocus(?obj) ^ hasTimeStamp(?obs; ?time)
^ TemporalEntity(?time)
! hasDecision(?time; stop)
Hyperopic perception
isLoaded(ego, True) ^ Observation(?obs)
^ madeBySensor(?obs; camera) ^ hasF eatureOfInterest(?obs; 
?obj)
^ Forklif t(?obj) ^ ObjectOfFocus(?obj)
^ hasTimeStamp(?obs; ?time) ^ TemporalEntity(?time)
! hasDecision(?time; increaseSafetyRange)

• The AMR has always lower priority of way facing manned vehicles. This is due 
to the reduced agility of AMRs compared to manned vehicles.

• AMRs interact with each other following right of way rules similar to road traffic 
rules. That requires the ability for AMRs to recognize other AMRs and differenti-
ate them from manned vehicles.

• All AMRs deployed in the same operations environment are expected to follow 
the same traffic rules.

• All AMRs deployed in the same operations environment are expected to have the 
same priors on the environment. Priors examples are intersections, driveway 
side, main and secondary aisles.

• AMRs cannot communicate between each others. To the best of our knowledge, 
no standard has been published to enforce lateral communication between 
AMRs. AWARE identifies unsolvable congestions and notifies the cloud master 
controller. Such standardized vehicle-to-vehicle communication is needed to 
guarantee complete autonomy.

7.4.5  Framework Architecture

The iw.hub decision making system is built on top of the AWARE KB and is 
enriched by the behavioral rules discussed above. Reasoning over the statements in 
the KB, the iw.hub adapts its behavior and avoids different bottleneck situations by 
applying the inferred decisions such as pause or increaseSafetyRange. An architec-
ture diagram of the framework is shown in Fig. 7.8. We briefly describe the main 
components below [33]:
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Fig. 7.8 Iw.hub’s simplified AWARE guidance module architecture [33]

• Component Handler: It is the data extraction module, adapting the frame rate 
of data streams, and safeguarding the data alignment and its timestamps.

• Insight Engine: It is the data processing component, performing real-time data 
analysis. Data measurements extracted by components handler is structured 
according to the AWARE KB, before being processed by the insight engine (e.g., 
images captured by the camera are fed to a trained neural network for object 
detection).

• Knowledge Acquisition: It applies masks on the processed data to narrow down 
the insights to the area of focus, which varies with every sensor (e.g., for a cam-
era sensor for example, the detected objects are filtered out following a trape-
zium of interest [40]).

• Perception Engine: It handles data input and data retrieval into and from the 
KB, by managing a time window of observations in memory.

• Reasoner: Also referred to as the decision module, it automatically checks the 
behavioral rules to trigger the ones that match the current instantiated state upon 
knowledge insertion. Depending on the observations in the target time window, 
the inferred guidance is sent to the control system to adapt the robot’s behavior 
according to the perceived environment.

7.4.6  Using SORDI for Virtual Training in the Robot Gym

Reputable industry robotics solutions, including path planning and navigation, task 
planning, and manipulation problems, among others, utilize traditional optimization 
approaches. In contract, iw.hub’s AWARE framework integrates semantic reasoning 
within the robot guidance system, to allow for increased behavior adaptability and 
avoiding bottlenecks when used on the factory floor. Nonetheless, for the designed 
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process to work properly, the robot needs to acquire advanced reasoning and under-
standing capabilities to allow for sophisticated knowledge acquisition and usage. 
This is challenging for modalities like images where low-level pixels data need to 
be interpreted into real world concepts [33]: to recognize encountered agents 
through computer vision, a labeled dataset of all possible assets on the factory floor 
is required, similarly to existing benchmarks for autonomous driving vehicles [41]. 
Such a dataset is rarely available and is difficult to acquire in industrial settings, for 
many reasons discussed previously (cf. Chap. 5, Section 5.2), namely: (i) need for 
manual human effort to capture, preprocess, annotate, and filter the images, which 
is not always available, (ii) human object annotation is subjective and is prone to 
errors, and iii) capturing images inside industrial locations and factories plants can 
be difficult due to limited access for security. This is where SORDI and BMW 
Group’s digital twins come into play. SORDI provides a huge source of industrial 
assets that can be leveraged to train iw.hub and other robots in the virtual plant, so 
that it can perform its tasks correctly in the physical plant (cf. Fig.  7.9). Using 
NVIDIA’s Omniverse to build their digital twins, BMW Group and Idealworks con-
tinuously train their iw.hub virtual robots, allowing them to adapt to planned changes 
in the environment, additions of new industrial assets, and adoption of new proto-
cols, without affecting the work of the physical plant. As soon as a planned change 
or process is announced or anticipated, it can be first simulated in the factory’s digi-
tal twin, using the needed SORDI assets to populate the VFL. The iw.hub fleet then 
is retrained accordingly, allowing them to update their AWARE knowledge reason-
ing accordingly. The object detection models are also trained in the virtual factory, 
to recognize and detect SORDI assets encountered in manufacturing plants. 
Consequently, the knowledge and reasoning gained from the virtual plant, i.e., 
which is used as the iw.hub’s “robot gym”, is processed and used to autonomously 
run iw.hub in the physical plant.

Fig. 7.9 Retraining (a) and simulation testing (b) of a virtual iw.hub robot, before deploying the 
retrained guidance system on the physical robot to execute in the physical plant. (a). Retraining of 
a virtual iw.hub to pick up and drag a synthetic blue dolly from SORDI. (b). Simulation of the 
retrained virtual iw.hub in the virtual factory populated with SORDI assets

7 Toward an Industrial Robot Gym
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7.5  Is the Digital Twin Worth It?

Despite the advantages of having a digital twin for the iw-hub AMR, and despite the 
improvements, enhancements, and excitement that the BMW Group digital twins 
are bringing to the automotive manufacturing environment, nonetheless, one always 
needs to take a step back and evaluate the pros and cons of every decision and every 
technical choice. This is part of the job of industry leaders: helping their teams avoid 
coming to agreement on technical or technological choices too quickly. Every now 
and then, leaders need to be slow in making decisions because of a need to think 
things over in a logical, analytical, and objective way, and offer measured, dispas-
sionate and critical analyses regarding all aspects of the team’s operations. This 
needs to happen at times of crucial decision making in order to consider competing 
proposals and suggest alternative ideas to any solution that is being used or being 
considered by their teams, including the development of digital twins in the context 
of BMW Group’s digitalization strategy. This is also referred to as the tenth man 
strategy: every team of ten persons should have at least one person, i.e., the tenth 
man, doubting common ideas and suggesting alternatives. It is also referred to as the 
devils’ advocate strategy which is adopted by the Vatican during the process of can-
onization (i.e., no matter how compelling the evidence is in support of canonization, 
there should always be a team of clergy taking the role of the devil’s advocate and 
advocating against canonization). In this context, let’s try to play the devil’s advo-
cate and advocate against digital twins. Here, we ask ourselves the following ques-
tions: Should digital twins be developed for all industrial and manufacturing 
projects to achieve digitalization? When are digital twins not worthwhile?

As mentioned in the previous chapters of this book, we have provided plenty of 
arguments, examples, and practical use case examples from our experience at BMW 
Group and Idealworks, and based on our expertise in the automotive logistics, 
robotics, and intelligent data processing sectors, in support for the development of 
and investment in digital twins as a means to achieve the digitalization of a factory. 
Playing the devil’s advocate, we can safely state that not all projects are suited for 
digital twins. For retrofit projects which are simple enough or mature enough, it 
might be sufficient to use traditional design, implementation, and evaluation tech-
niques in the physical world, without the need to produce a virtual replica of the 
project. The effort overhead needed to set-up, 3D scan, design, virtualize, imple-
ment, test, and post-work the digital twin can add more engineering hours than the 
traditional approach when it comes to small-scale and well known projects. Here, it 
is important to emphasize that producing a good quality and useful digital twin is a 
time consuming and resource consuming process: it takes a lot of time, a lot of man- 
power, and a lot of resources to build a full-fledged digital twin for a large and 
complex system like an automotive factory. A testimony to this are the huge invest-
ments and large-scale collaborations that BMW Group is establishing through its 
iFactory vision [42], in collaboration with tech giants like NVIDIA and Microsoft 
[43, 44]. In this context, we believe some sort of value-complexity onset should be 
established allowing industry leaders to make an informed decision of whether to 
pursue a digital twin initiative or not for a given project.

7.5 Is the Digital Twin Worth It?
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Chapter 8
What Is Next with SORDI

While industry digitalization relies on a battery of AI-enabled digital transformation 
technologies, nonetheless, big data can be safely considered as the chief and indis-
pensable enabler of modern industries. Smart industrial equipment and manufactur-
ing robots are continuously ingesting and generating tons of data from and into the 
digitalized factory to perform all sorts of AI-enabled tasks. Visual data in the form 
of images and videos is required to train Deep Learning (DL) and Computer Vision 
(CV) models to perform object detection and recognition tasks for industrial robots 
on the factory floor and in the digital twin environment. Yet training DL and CV 
models require largescale industrial datasets, which are oftentimes unavailable due 
to the huge amount of time and resource needed to capture and manually label the 
data, as well as the limited access to manufacturing locations due to various security 
and privacy regulations. To address this problem, BMW Group, Microsoft, NVIDIA, 
and Idealworks have jointly developed the Synthetic Object Recognition Dataset for 
Industries (i.e., SORDI), the largest industrial dataset of its kind, in order to fuel 
BMW Group’s “robot gym”. SORDI allows training the robots’ CV software in the 
virtual world before they execute in the real world, enabling Transfer Learning (TL) 
between the digital twin environment and the physical factory. The robot gym stands 
for the factory’s digital twin, built using synthetic SORDI assets used to train the 
object recognition models. The physical plant is where robots execute the object 
recognition models already trained in the digital twin, in order to recognize objects 
from real images taken in the real factory. In the final chapter of this book, we 
describe the challenges and next development steps with SORDI to perform effec-
tive and efficient object recognition and TL.  We discuss the integration of real- 
world assets and third party assets into SORDI to make it more realistic. We discuss 
the so-called reality gap between real and synthetic assets, and describe different 
solutions to breach the gap and bring synthetic images and environments closer to 
their real counterparts. We discuss the augmentation and partial automation of real 
data capture, and the integration of both real and synthetic datasets to perform  
DL model training. We also highlight the impact of using SORDI in smart 
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manufacturing and logistics applications in order to reduce the industry’s carbon 
footprint, and allow for more sustainable production pipelines.

***

What is next for SORDI? How can we make SORDI more realistic, and its usage 
more practical? How can SORDI help the manufacturing process become more 
sustainable and help reduce its carbon footprint?

***

We attempt to answer these questions in the final chapter of this book...

8.1  Reality Gap

8.1.1  In the Beginning, There Was SORDI

Looking back at the field of CV for the past couple of years, one can clearly realize 
that DL models, namely Deep Convolutional Neural Networks (DCNNs) have been 
performing increasingly well on large public image datasets such as ImageNet [1] 
or MS COCO [2]. Having touched human-level performance in image classifica-
tion, the main focus of CV research has gradually shifted toward object recognition, 
leading to the development of DL models such as faster Region-CNN (faster 
R-CNN) [3], Single Shot multi-box detector (SSD) [4], and You Only Look Once 
(YOLO) [5]. Even though these models are outperforming the traditional CV-based 
methods by a significant margin, their applications in industrial and robotic systems 
have many challenges. DL-based object recognition models require serious training 
on sufficiently large datasets, where the data is domain-specific depending on the 
industrial setting, and where the data is expertly labeled to reflect the target objects 
within the images. Nonetheless, as stated in previous chapters, collecting large 
industrial image datasets faces many hurdles, namely: (i) it requires a huge amount 
of resources and time to capture, pre-process, filter, and label the images, (ii) it is 
prone to human error and subjectivity during manual annotation, (iii) it is limited by 
several privacy and security regulations, as well as restricted access and maneuver-
ability inside industrial locations and factories. To address the above challenges, 
BMW Group, Microsoft, NVIDIA, and Idealworks have jointly developed the 
Synthetic Object Recognition Dataset for Industries (i.e., SORDI), to allow TL 
between the virtual simulation environment and the real world. Sim-to-Real transfer 
is a special case of TL, where the source domain is the virtual simulation of the real 
world, while the target domain is the physical reality itself [6]. In this case, the vir-
tual simulation consists of the factory’s digital twin built using synthetic SORDI 
assets used to train the object recognition models. The real world consists of the 
physical factory floor where robots execute the object recognition models already 
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trained in the digital twin, in order to recognize objects from real images taken in 
the real factory. In other words, SORDI is providing the data to run our virtual robot 
gym, to train the robots’ CV software before they execute in the real world.

Hence the more realistic SORDI is, the better the quality of our robot gym, which 
begs the following questions: How can we make SORDI more realistic, and its 
usage more practical? How can we bridge the gap between the digital twin simula-
tion training and the model’s execution in the physical world, so that the training 
feels as realistic as possible?

In CV, the reality gap, also referred to as the domain gap, underlines the differ-
ence in performance between DL models trained on synthetic images versus models 
trained on real images. This stems from the complexity of the real-world: even if we 
consider controlled domains such as industrial and manufacturing environments, 
the real-world oftentimes includes a huge number of various combinations of envi-
ronmental and behavioral factors, with prevalent events and rare events that are hard 
to reproduce in the synthesized simulation environment. The reality gap can be 
divided into two kings of gaps [7]: (i) visual, and (ii) content gap.

8.1.2  Visual Gap

The visual gap represents the appearance or perceptual difference between a syn-
thetic image and a real image, including factors such as the image quality, colors, 
realism (namely with respect to the quality of the rendering system compared with 
a real camera sensor), in addition to the assets’ shapes, materials, and details within 
the image. More specifically, the visual gap can be divided into [7]: (i) textures and 
materials, and (ii) lighting. A texture defines a mesh’s appearance and details, e.g., 
scratches, patterns, colors, bumps, etc., which affect the realistic look of an image 
or an asset. A material determines the physical property of the surface, e.g., reflec-
tivity, roughness, metallic, transmission, transparency, etc. To generalize the DL 
model and allow for effective TL, the texture and material properties need to be 
fine-tuned in order to match, as much as possible, the properties of real images [8]. 
Here, randomization can be used to allow for high-tolerance low-overfitting models 
which can detect a larger variation of the same assets through different sensors and 
under different environmental conditions (e.g., the same industrial asset viewed in 
different places of the factory floor and at different timeslots would look differently, 
depending on its position among its surrounding assets and environment, e.g., partly 
visible, positioned on a high-reflection surface, dimmed lighting, etc., cf. Figs. 8.1 
and 8.2). Lighting consists of randomizing the physical light control parameters 
such as the light color, temperature, intensity, and directions. Additionally, the light 
and material components are interdependent and can impact each other. The proper-
ties of the material can cause a surface to reflect or absorb certain wavelengths of 
light, while the lighting conditions can change the asset’s surface appearance of the 
material, resulting in various realistic and complex combinations [7].

8.1 Reality Gap
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Fig. 8.1 Structured domain randomization of three types of KLT load carriers from SORDI [7]

Fig. 8.2 Mixture of domain randomization components from a static camera viewport using 
SORDI assets [7]

8.1.3  Content Gap

The content gap represents the differences in the diversity, distribution, composi-
tion, placement, and behavior of assets or objects between the virtual environment 
and the real world [7]. In other words, the content gap is related to scene composi-
tion, i.e., how the virtual scene is similar to the real world in terms of the assets’ 
physical positions, functionalities, and behaviors [9]. Generating synthetic images 
from a single scene with static assets might lead to model overfitting, without gen-
eralizing to the real-world. Here, data randomization provides a possible solution, 
transforming virtual scenes from static into dynamic environments where assets are 
generated, shown, or hidden at different positions of the 3D scene, following physi-
cal, logical, and semantic constraints inspired from the real world [6, 7]. For 
instance, Structured Domain Randomization (SDR) [9] is a type of domain random-
ization that takes into account the structure and context of the scene, according to 
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the probability distributions of surrounding assets and environmental constraints. In 
this way, SDR-generated images allow the object recognition model to take the 
context around an object into consideration when performing the detection task (cf. 
Fig. 8.1). More specifically, the authors in [7] distinguish between (i) visibility ran-
domization and (ii) transformation randomization. Visibility randomization follows 
a symmetric Bernoulli distribution for visualizing the asset or hiding it in the 3D 
space of the virtual scene. Transformation randomization represents an asset’s 
transform settings consisting of position, rotation, and scale properties. It manipu-
lates an assets’ position along the x, y, and z axes, 3D rotates it around its pivot 
point, and changes its size in all dimensions respectively. Randomizing the position 
and rotation properties allows placing the object in a demarcated area at different 
orientations. Nevertheless, it is important to consider the objects’ physical proper-
ties when spawning or replacing assets to avoid asset collisions or floating solids for 
example [7]. As a result, by combining different randomization components in a 
single scene, the same camera viewport is capable of rendering distinct and various 
images as shown in Fig. 8.2. We further describe domain randomization in more 
detail in Sect. 8.4.

8.2  Transfer Learning: A Promising Solution 
to the Reality Gap

A promising solution to address the reality gap is to perform Transfer Learning 
(TL), i.e., by transferring knowledge between domains or tasks. In a nutshell, TL 
is Machine Learning (ML) approach that aims at using knowledge gained from 
solving one task to solve another related task [10]. For instance, knowledge 
acquired while learning to recognize automobile parts can be used when attempt-
ing to recognize truck parts. In the latter example, we refer to the automobile parts 
as the source domain, and the truck parts as the target domain. Learning to recog-
nize the source domain is conducted using typical ML (e.g., the domain of values 
consist of the automobile part images, associated with automobile part labels). 
Learning to recognize the target domain can also be performed using typical 
ML. Nonetheless, the main premise of TL suggests there is not enough data to train 
the target domain. Hence, the need to make use of the source domain learning in 
order to improve the target domain learning [11]. For instance, considering there 
are not enough labelled images of truck parts to perform ML on this target domain, 
TL provides a solution by using the models learned from the source domain, e.g., 
the automobile parts, in order to label truck parts. The source and target domains 
can share similar data (e.g., automobiles and trucks have similar shapes and sizes) 
and can share similar labels (e.g., automobile and truck parts belong to similar 
categories). TL aims to exploit the similarities between the source and target 
domains and labels, to help improve the learning of the target domain through the 
learning of the source domain [12].

8.2 Transfer Learning: A Promising Solution to the Reality Gap
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In this context, simulation-to-real (sim-to-real) is a special case of TL where the 
source domain is a virtual simulation of the real world, i.e., synthetic data from the 
digital twin, while the target domain is the physical reality itself [6, 13]. Sim-to-real 
suggests the ML model be trained on synthetic data from the digital twin, given that 
amount of labeled synthetic data is enough to perform the learning task and achieve 
acceptable accuracy levels. In the context of BMW Group and Idealworks’ use cases, 
synthetic SORDI images are utilized within the digital twin factory to train BMW’s 
virtual robots, including the virtual iw.hub AMR. This allows omitting a huge amount 
of time from performing real image capture from the physical factory floor. Since the 
BMW digital twins and their SORDI assets are modelled in the image of their physi-
cal counterparts and closely resemble them, this means the learning performed in the 
digital twin can be easily transferred to the physical factory while maintaining accept-
able quality levels. Nonetheless, if the virtual domain is different from the physical 
world, the model learned in the virtual domain will perform poorly when transferred 
to the real domain [10]. This phenomenon of performance loss from the virtual 
domain to the real domain is also referred to as the reality gap [13]. Two approaches 
can be used to reduce this gap [6]: (i) domain adaptation and (ii) domain randomiza-
tion, which we describe in the following section.

8.3  Domain Adaptation

Domain adaptation aims at transforming the source domain into the target domain, 
or transforming both domains into a common domain, in order to boost the perfor-
mance of TL and help reduce the reality gap [7, 14]. It allows a ML model trained 
with samples from a source domain to generalize to a target domain [14]. In the 
context of sim-to-real object recognition, it consists in generating photo-realistic 
images for the training dataset: the more the synthetic images resemble the real 
ones, the more the difference between the source (digital twin) and target (real 
world) domains is reduced, and therefore, the more the performance on real images 
is enhanced [6, 14]. An important amount of work has been achieved on domain 
adaptation, particularly for computer vision applications and more specifically for 
object recognition, e.g., [14–16]. Existing solutions can be roughly grouped in two 
main categories: (i) feature-level adaptation, and (ii) pixel-level adaptation. Feature- 
level domain adaptation focuses on learning domain-invariant features, either by 
learning a transformation of fixed or pre-computed features between the source and 
the target domains [17, 18], or by learning a domain-invariant feature extractor, usu-
ally represented by a Convolutional Neural Network (CNN) [19, 20]. Recent empir-
ical evaluations have shown that the domain-invariant CNN-based approach usually 
provides improved results on a number of classification tasks, e.g., [21, 22]. 
Domain-invariance can be achieved by optimizing domain-level similarity metrics 
like maximum mean discrepancy [19], or by optimizing the response of an adver-
sarially trained domain discriminator [22]. Pixel-level domain adaptation emphases 
on re-stylizing images from the source domain to make them look more like images 
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from the target domain [23, 24]. Most methods in this category are based on image- 
conditioned Variational AutoEncoders (VAE) [25] or Generative Adversarial 
Networks (GANs) [26]. An original solution in [14] attempts to combine both 
feature- level and pixel-level domain adaptation for sim-to-real TL: given an initial 
set of synthetic images, the authors use a dedicated GAN model to produce adapted 
images that look more realistic. They consequently use the trained generator from 
the GAN model as a fixed module that adapts the synthetic visual input, while per-
forming feature-level domain adaptation on extracted features that account for both 
the transferred images and the synthetic input. The authors in [14] focus on the 
robot grasping task as their application scenario, and show that, by using synthetic 
data and domain adaptation, their combined solution allows to reduce the number of 
real-world samples needed to achieve a given level of performance using only ran-
domly generated simulated images.

8.4  Domain Randomization

Domain randomization [8, 27] is another approach to reduce the reality gap, by 
introducing variability and adding artificial noise to the synthetic training images. 
The main premise behind randomization is that the real world can be considered as 
just another random instance of the virtual simulation environment [6]. Achieving 
high variability in the synthetic images can be attained by using random camera and 
object positions, changing the lighting source and lighting conditions, and using 
non-realistic textures [7, 27]. The BMW Group TechOffice has recently adopted a 
domain randomization based approach into expand the usage of the SORDI dataset 
[7, 28], combining: (i) scene randomization, and (ii) camera randomization.

8.4.1  Scene Randomization

In order to scale the SORDI-based image generation pipeline to meet the need of 
industrial use cases, three levels of scene randomization are considered. The first 
level consists of creating a library of randomized composed assets, based on visibil-
ity randomization components to create various combinations between linked assets 
such as stacked KLTs as shown in Fig. 8.1, or different shapes, textures, and behav-
iors for the stillage assets, etc. Subsequently, the composed assets are placed in the 
scene by applying x and y position randomization and yaw rotation randomization 
within the scene’s predefined subarea. The z-axis randomization is initially disre-
garded to consider the physical gravity parameter. This allows avoiding floating and 
colliding assets and preserving the scene content’s realism [7]. The second level of 
randomization targets the walls, the ground, and the ceiling’s materials and textures 
to simulate the background variability. The third level of randomization targets the 
light sources color, intensity, and rotation as shown in Fig. 8.2.

8.4 Domain Randomization



150

8.4.2  Camera Randomization

The camera is also a critical asset within the scene to display the virtual environ-
ment. Given its usage in a 3D environment, the camera system has 3D characteris-
tics including visibility, position, and rotation. Accordingly, the camera movement 
and behavior in the scene affect the data capture. In this context, four main types of 
data capture are considered [7]: (i) Static Capture (SC), (ii) Full Capture 
Randomization (FCR), (iii) Constrained Capture Randomization (CCR), and iv) 
Sequential Capture (SeC). CS consists in fixing the camera at a static position and 
rotation. In this scenario, scene randomization is mandatory, otherwise, the same 
image is rendered at every frame. FCR consists in randomizing both the camera’s 
source and the target points at any point in the scene’s room. This allows diversify-
ing the camera viewports and angle shots (e.g. high and low angles, tilted and point 
of view, long and close shots, aerial shots, etc.). On the one hand, randomizing the 
camera target only will be like a person standing in the same position looking 
around. On the other hand, randomizing the camera source only results in blind 
areas since it focuses on the same spot all the time. Therefore with FCS, the camera 
can be placed anywhere in the 3D scene, and can be looking at any point in the 
scene. CCR is similar to the FCR but omits camera capture from or at specific areas 
in complex and dense scenes. SeC stipulates that the camera is placed and follows a 
well-defined path to imitate the point of view of transportation robots (like the 
iw.hub). The TechOffice team uses NVIDIA GPUs to render visually realistic 
images out of the dense scenes produced for the BMW digital twins (cf. Fig. 8.2), 
where Isaac Sim cooperates with Omniverse to generate accurate annotations using 
2D tight bounding boxes.

8.5  Real Image Obfuscation

Taking a step back from synthetic image generation and virtual environment ran-
domization, we can safely state that all is not lost when it comes to creating larger 
real datasets! While using synthetic data is providing a viable solution to counter the 
lack of real industrial datasets, nonetheless, we can highlight a few promising direc-
tions to facilitate the creation of larger real datasets. Capturing real images from the 
factory floor might contain sensitive information such as individuals’ faces, work-
ers’ belongings, or nametags. Due to privacy and security regulations, companies 
must guarantee a level of anonymization that prevents identifying the data subjects, 
by taking into account all the means likely to be used for identification [29]. In this 
context, several asset or region obfuscation techniques can be used to hide or remove 
sensitive information, including pixelation (also known as mosaicking) [30], blur-
ring (Gaussian/motion) [31], and masking [32] (c.f. Fig. 8.3).
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Fig. 8.3 Obfuscation techniques left to right: (a) Original clear image, (b) pixelated image (4×), 
(c) Gaussian blurred Image, (d) motion blurred and (e) masking by adding random black pixels [33]

8.5.1  Obfuscation Techniques

Obfuscation consists in altering or removing features from the images to hide sensi-
tive information while keeping as much of the visual features as possible for the 
image to remain suitable for processing [33]. Pixelating, also referred to as mosaick-
ing, is one of the earliest obfuscation techniques. The sensitive information to be 
obfuscated is divided into a square grid, i.e., a pixel box, where each pixel box is 
assigned one single color after averaging the values of the grouped pixels in it [30]. 
The size of the pixel box can be modified depending on the needed level of privacy. 
The larger the box, the more pixels will be averaged together, and the higher the 
level of privacy [33]. Though the size of the image stays the same, pixelating reduces 
the obfuscated region’s resolution [34]. For instance, downscaling an image by a 
factor of four is equivalent to applying a pixel box of size 4 × 4 (c.f. Fig. 8.3b).

Blurring is another kind of degradation technique that can be utilized for obfus-
cation. It can be generated by a Gaussian kernel or via a camera motion effect, i.e., 
a motion blur. Gaussian like blur kernel is used extensively as an obfuscation tech-
nique [30], removing details from an image by applying a Gaussian kernel. A 
motion blur modifies the details of an image by generating the effect of a synthetic 
camera motion blur [31]. The level of blurriness is affected by the length and by the 
angle of the synthesized motion [33] (c.f. Fig. 8.3c, d).

Masking eliminates details from an image by replacing the original pixels by 
black pixels [32]. The masking technique can have numerous derivatives depending 
chiefly on the color intensity and location of the modified pixels. For example, if a 
person’s face is considered sensitive, pixels can be modified around the eyes and 
mouth or at random points of the face [29]. The level of privacy depends on the 
amount, location, and color intensity of the altered pixels[33]. In Fig. 8.3e, random 
black pixels are considered around the entire face.
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8.5.2  Lack of Privacy Guarantees

Existing obfuscation techniques in the context of images do not come with formal 
provable privacy guarantees [35]. To our knowledge, several evaluation frameworks 
have been proposed in the literature to experimentally evaluate the quality of obfus-
cation techniques applied on images and videos. Some frameworks rely on human 
observers [36] whereas others use quantitative metrics, namely structural similarity 
metrics [37] (e.g., Structural Similarity Index Measure – SSIM) [38], Peak Signal to 
Noise Ratio  – PSNR [39], Structure Natural Measure  – SNM [40], etc.). These 
evaluations usually consider (i) the efficiency of the privacy enhancement, (ii) the 
biometric utility preserved after privacy enhancement, or (iii) the robustness to 
attempts to reverse the obfuscation techniques [35]. Yet, despite the efforts to evalu-
ate the quality of obfuscation techniques, evaluations remain empirical with no for-
mal provable privacy guarantees. This may be related to the computational nature of 
obfuscation techniques. As described previously, obfuscation solutions attempt to 
change or remove certain features from the image to hide sensitive information. 
Nonetheless, the visual features that remain post-obfuscation can still be used to 
identify or reconstruct the obfuscated sensitive information using so-called obfusca-
tion attacks [41]. The latter can be categorized as (i) recognition- based attacks and 
(ii) restoration-based attacks. Recognition-based attacks, e.g., [34, 42], rupture the 
images’ privacy and anonymity by training learning-based algorithms to perform 
recognition tasks on obfuscated information. Restoration- based attacks, e.g., [43, 
44], de-anonymize privacy-protected images by trying to restore and reconstruct the 
original features of the obfuscated information. Restoration and Recognition-based 
(R&R) attacks combine both techniques in order to recognize restored features of 
the obfuscated information [33, 34]. Several studies showed that DL-based solu-
tions overtake traditional learning-based approaches for image restoration and rec-
ognition tasks, e.g., [45, 46]. Hence, from a privacy perspective, DL-based 
techniques are chosen as robust recognition-based and restoration-based attacks 
[47, 48].

8.5.3  Obfuscation Under Privacy Attacks

To address the privacy risks associated with obfuscation, a team of engineers from 
BMW Group and its research partners have designed a quantitative recommenda-
tion framework that evaluates the robustness of image obfuscation techniques and 
recommends the most resilient obfuscation solution against DL-assisted attacks 
[33]. In an initial attempt, the team assume that the background knowledge of the 
adversary comprises the obfuscation technique and its hyper-parameters, and sug-
gest performing restoration-based attacks [33]. In a subsequent extension of the 
work, the team embeds and adapts a three-components adversary DL model inspired 
from [49] to perform facial image obfuscation (cf. Fig. 8.4). Several threat levels are 
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Fig. 8.4 Video snapshots from the BMW Group TechOffice Anonymization API that localizes and 
obfuscated sensitive information to preserve the BMW Group workers’ identity on the factory floor

Threat Levels
Adversary’s Components Level 1 Level 2 Level 3

Goal Identify/Recover the identity of
obfuscated faces

Knowledge External 
Knowledge Public datasets � � �

Background 
knowledge

Obfuscation technique � � �
Obfuscation technique’s hyper-parameters � � �

Identities present in the target dataset � � �
Capabilities DL-assisted

Attacks
Restoration-based attack � � �
Recognition-based attack � � �

Restoration and Recognition-based attach � � �

Table 8.1 Comparing the adversary’s capabilities and knowledge with respect to the three threat 
levels [33]

defined with regard to the adversary’s background knowledge which constitutes the 
obfuscation technique employed, its hyper-parameters, and the identities present in 
the target dataset. As stated previously, there is no a standardized evaluation meth-
odology nor a defined model for adversaries when evaluating the robustness of 
image obfuscation [35], and more specifically face obfuscation techniques. Hence, 
several attacking scenarios are considered to explore new aspects of the adversary 
when evaluating the robustness of image face obfuscation, including restoration- 
based, recognition-based, and R&R-based attacks (cf. Table 8.1). The adversary’s 
goal is to recover the identity of the obfuscated faces while its capabilities (i.e., 
restoration-based, recognition-based, or R&R-based attacks) depend heavily on its 
background knowledge (consisting of the obfuscation technique used and the iden-
tities present in the target dataset). Three threat levels are considered and mapped 
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against the adversary’s background knowledge, inspired by Shannon’s Maxim.1 
Level 1 assumes the adversary is aware of the obfuscation technique used to obfus-
cate the target dataset along with its hyper-parameters. Level 2 assumes the adver-
sary is aware of the identities present in the target dataset and of the obfuscation 
technique used along with its hyper-parameters. Level 3 assumes the adversary is 
aware of the identities present in the target dataset and of the obfuscation technique 
used but not of its hyper-parameters. A battery of experiments is conducted on a 
publicly available celebrity faces dataset [50]. A first set of experiments implements 
and evaluates the recommendation framework by considering four adversaries in 
Level 1 against four obfuscation techniques (e.g. pixelating, Gaussian blur, motion 
blur, and masking). A second set of experiments demonstrates how the adversary’s 
attacking capabilities vary and scale with its knowledge in Level 2 and how it 
increases the potential risk of breaching the identities of blurred face images. A 
third set of experiments evaluates the possible privacy breaches and the attack range 
of an adversary in Level 3 against face images blurred with different kernels. The 
team was able to successfully re-identify 692 anonymized individuals out of 854 
(81%) when simulating the strongest adversary, where the widest attack range was 
achieved when the training dataset of recognition-based attacks was prepared with 
a high-resolution blurring kernel of (37,37) [33].

8.5.4  Ongoing Directions

The TechOffice research team has been focused on processing people’s faces 
because they are the most revealing in the context of images taken in industrial 
environments. Nonetheless, other visual features such as a person’s name tag, pos-
ture, or personal belongings can be identifying and considered as sensitive informa-
tion. Also, the present work limits the adversary’s background knowledge to the 
identities present in the target dataset, allowing to mine images for each known 
identity and perform a DL-assisted attack to recognize and re-identify the identity 
of the obfuscated face images. Other scenarios can also be considered where the 
adversary’s background knowledge can be limited to quasi-identifying information 
such as the individual’s race or gender only. In that case, the adversary can perform 
DL-assisted attacks to recognize the gender or the race of the target individual [51] 
instead of recognizing the full identity of the person. This might lead to potential 
privacy breaches when linked to other data sources (e.g., identity disclosure via 
linking attacks [35]). Another ongoing direction is the investigation of different 
image classification solutions for identity recognition to trick, ruin, or corrupt DL 
models [33]. The team is investigating approaches that rely on designing adversarial 
examples by perturbing the query image at the inference phase either physically 

1 “The enemy knows the system”, i.e., “one ought to design systems under the assumption that the 
enemy will immediately gain full familiarity with them”.
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(e.g. the target individual wears special accessories, e.g. glasses or hats [52]) or 
quantitatively (small perturbations are added on a pixel-level which are not visible 
to the human visual system [53]). The team is also experimenting with Intel’s 
OpenVINO toolkit to accelerate and improve the model’s efficiently when running 
the solution in online [54].

8.6  Facilitating Real Image Labelling

Another direction to facilitate the capture of larger real datasets concerns reducing 
the time needed by humans to annotate the captured images. After capturing the raw 
images and performing obfuscation to hide or remove the sensitive information, the 
images need to be annotated to highlight their contained assets. In order to perform 
annotation, the first step consists in locating the salient objects in the image, which 
is usually performed by superimposing bounding boxes over the objects’ Region of 
Interest (RoI). The latter are subsequently annotated, and the labels are used to train 
the DL models for object recognition and other CV tasks. Here, multiple challenges 
arise. First, accurately labeling real image datasets requires excessive human effort 
and a considerable amount of time. Also, the object annotation process is highly 
prone to human error. Target objects might be wrongly labeled when a human anno-
tator is biased to label one side of the target object. In addition, after the whole 
dataset has been labeled, the RoI of the target object might change because of indus-
trial circumstances (e.g., certain objects change locations on the factory floor). In 
these cases, all labels need to be re-adjusted, resulting in unexpected delays and 
extra costs. In this context, many research efforts have focused at reducing the label-
ing time and avoiding crowdsourcing techniques by developing methods that are 
less time consuming than manual labeling. Most existing methods attempt to gener-
ate bounding-boxes around the target object, e.g., [55, 56]. Yet, to our knowledge, 
no attempts have been made in the literature to correct or refine inaccurate bound-
ing boxes.

8.6.1  Bounding Box Automated Refinement

A team from BMW Group’s TechOffice and Idealworks, in collaboration with 
research partners from academia, has addressed the bounding box refinement prob-
lem, aiming at enhancing the accuracy of existing bounding boxes. This allows 
obtaining better quality annotations to be used for training DL-based object recog-
nition models, while reducing the time and effort for human intervention to manu-
ally correct the bounding boxes. For this purpose, the team has developed BAR 
(Bounding-box Automated Refinement), a Reinforcement Learning (RL) agent that 
learns from human examples to correct inaccurate annotations [57]. Instead of man-
ually labeling new images to increase the dataset size, human effort is limited to 
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correcting inaccurate annotations. After learning to find an optimal strategy to cor-
rect the bounding boxes based on their usage with the training images, BAR applies 
its knowledge on new images. Two approaches are considered to train BAR: an 
offline approach using RL in which the agent is trained by batches, and an online 
approach using Contextual Bandits (CB) in which the agent is re-trained after every 
new image. The advantages and limitations of both approaches have been assessed 
with different initializations, i.e. methods that generate initial bounding boxes. 
Results show for all initializations, at least one of the two approaches successfully 
improves the annotations, with an increase in Intersection-over-Union (IoU) with 
the ground-truths of up to 0.28, and a decrease in human intervention by 30–82%. 
BAR provides an online execution mode that improves some initializations with the 
advantage of real-time suggestions of new bounding boxes. BAR also provides an 
offline execution mode that produces more accurate bounding boxes and annota-
tions, when tested with five different initializations, improving over state-of-the art 
solutions while reducing human effort.

8.6.2  Dynamics of Bounding Box Refinement

A practical example is shown in Fig. 8.5. Every image contains exactly one anno-
tated target object whose bounding box is represented by its upper-left corner (xmin, 
ymin) and its lower-right corner (xmax, ymax). This bounding box is considered 
inaccurate if its IoU with the ground truth is below a certain threshold, denoted by 
β. Given an image and an inaccurate bounding box enclosing the target object, the 
goal of the agent is to correct the bounding box as shown in Fig. 8.5. The agent 
achieves this goal by executing a series of actions that modify the position and 

Fig. 8.5 BAR agent workflow during the testing phase (given an image and an inaccurate bound-
ing box surrounding the target object, BAR chooses the path {up,up,left}) [57]
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Table 8.2 Set of translation actions adopted in BAR [57]

Action Corresponding equations Action Corresponding equations

Up xmin− c1 × height
xmax − c1 × height

Wider ymin − c2 × width
ymax + c2 × width

Down xmin + c1 × height
xmax + c1 × height

Taller xmin − c2 × height
xmax + c2 × height

Left ymin − c1 × width
ymax − c1 × width

Fatter xmin + c2 × height
xmax − c2 × height

Right ymin + c1 × width
ymax + c1 × width

Thinner ymin + c2 × width
ymax − c2 × width

aspect-ratio of the bounding box. This series of actions corresponds to an episode 
that ends with the final correction of the agent [57]. The dynamics of an episode are 
as follows [57]: At time step 0, the bounding box is given a weak initialization, i.e. 
a method that generates inaccurate bounding boxes. At time step 1, the agent per-
forms an action and determines the quality of the new bounding box based on its 
IoU with the ground-truth. If the IoU is below β, the agent needs to modify the 
bounding box in the next time step; otherwise, the agent stops and the episode ter-
minates. The length of an episode is limited in number of actions to prevent cases 
where the agent fails to converge to an accurate bounding box. During an episode, 
the agent is allowed to either move according to a set of predefined translation 
actions listed in Table  8.2, or to end the episode by choosing the stop action. 
Table 8.2 reports the equations according to which each of the translation actions 
changes the corners of the bounding box, where c1 is the percentile of the box’s 
current dimensions (width or height) that is added to or removed from its coordi-
nates. Given the goal of the agent and the dynamics of an episode, the bounding box 
correction problem can be formulated as a Sequential Decision Making Problem 
(SDMP), specifically, an episodic RL problem [57]. The agent interacts with the 
environment to learn a policy that determines the optimal path to change an initial 
inaccurate bounding box into an accurate one. The path is composed of a list of 
translation actions T, and a terminal action E that ends the correction. The task of 
the agent for the path TE is therefore to find: (i) the optimal actions T that modify 
the bounding box, and (ii) the step at which to end the episode when an accurate 
b-box is reached [57].

8.6.3  BMW LabelTool Lite

The general process of image annotation starts by locating the salient objects in the 
image using bounding boxes, and then associating labels with each bounding box 
describing the semantics of its contained object. In this context, the team at BMW 
Group and Idealworks has developed the BMW LabelTool lite, an easy to use image 
data annotation tool with little to no configuration needed [58]. While BAR helps 
adjust the bounding boxes to prepare for annotation, LabelTool lite completes BAR 
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Fig. 8.6 Snapshot of the BMW LabelTool lite interface

by helping reduce the effort and time needed by humans to label the bounding boxes 
(cf. Fig. 8.6). The lite version of the tool allows users to easily deploy the solution 
and start labeling their images for state-of-the-art DL training purposes with a dock-
erized implementation solution. Users can also directly use the labels provided by 
the LabelTool lite to train with the TechOffice’s Yolo and Tensorflow Training GUI 
repositories [59]. Moreover, it is possible to connect a pre-trained or a custom- 
trained model to the LabelTool lite. This functionality allows accelerating the label-
ing process whereby the connected model can be actively used to suggest appropriate 
labels for each image. The tool offers different options that allow comfortable navi-
gation through the data set while labeling (e.g., navigate to the next image in the 
data set – “>”, navigate to the previous image in the data set – “<”, navigate to the 
next image that has no bounding boxes – “>>”, navigate to a particular image by 
inputting the image number directly, and navigate to any image by clicking or drag-
ging the cursor on the scroll line).

In addition to the above mentioned features, the LabelTool lite offers zoom-in 
and zoom-out functionality for the images, increase and decrease of brightness for 
the images, new images can be uploaded to the data set, image attributes (name and 
resolution) can be displayed for each image, and images can be deleted (one at a 
time) along with the corresponding bounding boxes. The tool also offers a variety of 
functionalities for bounding box creation including resizing the boxes after cre-
ation, moving the boxes via simple drag and drop functionality, copying the boxes 
and pasting them as needed, setting them to fill or unfill as needed, and controlling 
the line thickness of the bounding boxes according to the user’s preferences.
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8.6.4  Ongoing Directions

The current BAR framework is designed to process single object images, and can be 
applicable to multiple objects per image as long as they do not overlap. An ongoing 
direction focuses on extending the current framework to handle overlapping objects. 
Since human intervention through correction is an important factor in training, this 
task can be formulated in an active learning setting in which the agent asks for 
human feedback while training when it is uncertain [57]. This can also help in 
reducing the effect of noisy data provided by human annotators. Another direction 
is to introduce a dynamic version of BAR which chooses to use either Reinforcement 
Learning (RL) or Contextual Bandits (CB) methods depending on the use-case and 
image structural similarity of the dataset. Furthermore, the team is investigating 
real-life measurements on a sample population of human annotators to obtain a bet-
ter measure of the human intervention being saved. Using a continuous rather than 
a fixed parameter for translation actions would also allow BAR to better adapt to 
different types of initializations independently from parameter tuning [57].

8.7  Mixing Real and Synthetic Datasets

Going back to the main motivation behind the creation of SORDI, most existing real 
image industrial datasets are small and insufficient for CV and object recognition 
training. Hence the need to supplement the real data with synthetic data while guar-
anteeing a minimal reality gap between both real and synthetic domains. In this 
context, multiple solutions are being investigated to mix real and synthetic datasets 
in order to train their object recognition models [60]. The team aims at better under-
standing how mixing multi-domain datasets can affect the object recognition task. 
Experiments are currently concentrated on the load carrier (KLT) box (cf. Fig. 8.7), 

Fig. 8.7 Real and synthetic KLT box image assets. (a). Real KLT box. (b). Synthetic KLT box 
from SORDI
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Fig. 8.8 Different domain KLT box training and testing datasets [60]

a modular and ergonomic industrial asset that is easy to use and store. Despite its 
effectiveness, this asset is hard to detect accurately since it appears in intricate varia-
tions on the factory floor (cf. Fig. 8.8). The team is gradually mixing datasets from 
several domains, acquiring real-captured images using cameras deployed on the 
factory floor, and generating the corresponding synthetic images from the 
TechOffice’s digital twin implemented using NVIDIA’s Omniverse. The team is 
studying the efficient mix of images from different domains including a source 
domain obtained from any related dataset, and a target domain related to the robot’s 
application domain with the purpose of training the object recognition model 
accordingly. Experiments are performed with different combinations and ratios of 
source and destination domains (real images R, colored synthetic images S, and 
white synthetic images W) and evaluated on multiple datasets (both real and syn-
thetic domains) as shown in Fig. 8.9.

8.7.1  Real Data Acquisition

High-resolution (1080p) videos are recorded at a rate of 30 frames per second (fps), 
while moving around KLT boxes that are placed in different rooms, on different 
surfaces, and in multiple light conditions (e.g., perfect indoor lighting, curtain shad-
ows, backlight, outdoor lighting only, etc.). Every video contains low-angle and 
top-shot viewports taken from far to near distances of the KLTs. The best frames are 
extracted from the videos, by dividing the video into equal batches, and selecting 
from each batch the sharpest frame with the lowest Laplacian filter metric [60]. 
Instead of hand annotating all real images from scratch, the annotations are inferred 
using existing pre-trained KLT object recognition models and the predicted bound-
ing boxes are fine-tuned automatically as described in Sect. 8.6. Images are consid-
ered for each training dataset divided as follows: for each ratio r of the source or 
domain, (1 – r) is considered for the target domain data where r and (1 – r) ratios of 
images are uniformly selected from both domains respectively. Afterward, the 
domains are mixed and shuffled to compose a single hybrid dataset [60].
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Fig. 8.9 Bounding box predictions using R  +  S, R  +  W, and S  +  W models at different mix 
ratio [60]

8.7.2  Model Training

Initial experiments are performed with a total of 7, 500 training images, gradually 
combining two domains images by a step ratio equal to 0.1, from 0 to 1, where 0 indi-
cates a dataset of 7500 images from the target domain while 1 refers to a 100% images 
from the source domain. Multiple TL models are considered, including TensorFlow2’s 
FRCNN Resnet-50, FRCNN Resnet-101, SSD MobileNet v2, FPNLite, and SSD effi-
cientNet d1 detection models pre-trained on the Microsoft COCO dataset [2]. Multiple 
hybrid datasets are considered, including real and plain color synthetic (R + S), real 
and white color synthetic (R + W), and plain color and white color synthetic (S + W, 
cf. Fig. 8.9). The trained models are evaluated on both (i) real images: 850 images 
with different distributions (R), including top shot images (T) from different cameras, 
and (ii) synthetic images: 850 colored images (S) and 850 white-shaded images (W) 
in the digital twin virtual environment. Considering the KLT object recognition prob-
lem, Average Precision (AP) results summarized in Table 8.3 show that hybrid datas-
ets comprising 20–30% of images similar to the test domain allow achieving nearly 
maximum detection accuracy with AP > 90%.

This work is currently being extended to support other challenging logistic assets 
(e.g., stillage, dolly, jack, and AMR). Also, new randomizations are currently being 
developed, including textures, occlusions, light and camera parameters, post- 
processing filters, and augmentations, etc. New directions including image com-
pressions (e.g., lossy and lossless), and data augmentations (e.g., context and 
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Table 8.3 AP@0.7 gradual evaluation of FRCNN Resnet-50 models trained on mixed domain 
datasets [60]

Ratio R + S:R R + W:R R + S:T R + W:T S + R:S S + W:S R + W:W S + W:W R + S:R + S

0.00 84.77 18.29 73.24 0.00 5.49 0.59 45.07 44.24 71.30

0.10 88.68 89.61 87.29 43.97 45.33 53.93 42.49 44.17 73.61

0.20 89.24 89.61 82.75 62.48 50.59 55.82 42.74 44.18 74.20

0.30 89.69 89.89 87.07 59.03 52.80 55.87 41.91 43.67 73.29

0.40 89.84 90.71 80.11 71.13 55.14 56.94 40.69 43.04 73.51

0.50 90.78 90.71 87.88 61.83 54.41 56.64 39.69 42.95 72.20

0.60 90.88 90.75 86.98 72.96 56.81 57.76 38.66 41.96 72.58

0.70 90.71 90.70 91.02 73.37 57.25 57.01 37.73 41.99 70.87

0.80 90.87 90.45 88.23 65.00 58.60 58.19 34.91 40.44 70.25

0.90 90.40 90.54 84.23 71.07 58.33 58.04 31.52 37.44 66.79

1.00 90.74 90.93 78.42 75.53 58.14 58.85 1.37 0.00 54.68

Fig. 8.10 Different material degradation and context augmentation simulations using SORDI. (a). 
Material degradation parameter variation. (b). Context augmentation and variation of KLT asse

neighborhood), material degradation (e.g., age and degradation), asset dynamicity 
(according to physical properties, e.g., weight and surface drag) and different repre-
sentation modalities (e.g., color and texture) are currently being investigated to opti-
mize the hybrid training pipeline and minimize the dataset size while maintaining 
good quality levels (cf. Fig. 8.10).
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8.8  Toward Green Manufacturing

Unleashing the power of synthetic assets through SORDI! Promoting the usage of AI 
and CV through synthetic and hybrid datasets! Promoting AI-enabled robotics auto-
mation on the factory floor! Helping develop BMW Group’s next generation immersive 
digital factories! The latter summarize some of the latest technological breakthroughs 
that are pioneered by BMW Group’s TechOffice, NVIDIA, Microsoft, and Idealworks, 
and their industrial and academic partners. But there is more to this success story… 
Digitalization is at the center of BMW Group’s iFactory vision [61]: a revolutionary 
strategy for the automotive production of the future… The TechOffice and Iealworks’ 
technological breakthroughs are right smack in the middle of the iFactory vision! In 
promoting the BMW iFactory model, BMW Group is redefining the future orientation 
of its plants and is putting forth new standards in climate protection and competitive-
ness with flexible, efficient, sustainable and digital manufacturing technologies [62]. 
The iFactory vision is focused on three main areas [62]: (i) Lean, (ii) Green, and (iii) 
Digital. Lean production stands for efficient and highly flexible production, which 
makes processes more capable of integration and more variable. This will result in 
greater agility, leaner processes, and more- competitive structures. Green production 
stands for using the latest technologies to promote resource-saving and circular indus-
try. Digital production stands for using the latest digitalization technologies from virtu-
alization, AI, and data processing to digitalize the automotive supply chain and 
production pipelines. In this context, we view digital production as the main pillar that 
will help realize its lean and green counterparts. Milan Nedeljković, member of the 
Board of Management for Production at BMW Group, expressed it eloquently: “The 
BMW iFactory delivers – on our desire, as a member of society, to support climate 
protection and sustainability. We are using digitalization to make this happen – while 
remaining absolutely competitive” [61]. In fact, BMW Group has set itself a firm goal 
for 2030 throughout its entire production chain: to reduce CO2 emissions by at least 
40%, starting from acquiring the raw material, to the supply chain, production and use 
phases, all the way to recycling [63]. This is a central step, in line with the ambitious 
objective of the Paris Climate Agreement that commits BMW Group to the goal of total 
climate neutrality by latest 2050 [63]. Digitalization and sustainability are complemen-
tary and intertwined steps that are central toward achieving a full- fledged circular econ-
omy, according to BMW Group’s corporate strategies [64], especially when digital 
innovations are developed into effective use cases for production [61]. Whether it be 
designing new tools and machines, creating new industrial processes to optimize pro-
duction, or inventing new processes focused on alternative energy sources, the push 
toward full-fledged factory digitalization through immersive digital twins and synthetic 
assets would allow engineers and designers to imagine new solutions, implement them 
in the virtual factory, test them on the digital twin’s virtual factory floor, and simulate 
their impact and sustainability before ever deploying them in the physical plant. “With 
digitalization, we are achieving a new dimension of data consistency throughout the 
value chain and across all process chains… Data science, AI, and virtualization are 
making the BMW iFactory digital. We are at home in the digital world – and the digital 
world is at home in the iFactory” said Nedeljković in his 2022 interview about the 
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iFactory [61]. This is equally emphasized by Oliver Zipse, BMW Group’s Chairman of 
the Board of Management who sums it up powerfully [64]: “Our digitalization push 
comes at exactly the right time… We are gearing our entire production networks toward 
e-mobility, and the NEUE KLASSE. Our plants are becoming the BMW iFactory”.
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