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Preface

1 To Students

You are about to embark on a fascinating journey through theoretical com-
puter science. The word theoretical may make the material sound intimi-
dating, hard, and boring. Historically, there have been good reasons for a
computer science student to feel that way. The primary reason is that for-
mal languages and automata theory has been taught as a pencil-and-paper
course. Students have been asked to design machines and grammars – which
are essentially programs – on paper and then write theorems about their
properties. Indeed, this goes against the grain of your training and expertise.
After all, when you design a program, you implement it and get immediate
feedback from an interpreter or compiler and from testing. This is impossible
if a pencil-and-paper design is never implemented.

Why is implementation being discussed in a theoretical computer science
textbook? Quite simply, formal languages and automata theory is about pro-
gramming. Machines and grammars are representations of programs using
an API. As such, they can and ought to be implemented. Once testing pro-
vides you with confidence that the program works, then you can reason for-
mally about it and write theorems. This textbook, therefore, is based on
programming and explores practical applications of theoretical concepts. In
the process, you shall become a better programmer and learn the limitations
of what can and cannot be done with a given API. This naturally culminates
in discovering problems that can be solved efficiently, problems for which no
efficient solution is known, and problems that cannot be solved. In no small
sense, this journey takes you to the very limits of what is possible.

Programs are written in a domain-specific language embedded in Racket
called FSM (Functional State Machines). FSM allows you to implement the
machines and the grammars you design. You may test your designs and visu-
alize the execution of machines. In this manner, you may debug your designs

vii



viii Preface

before submitting for grading and before writing a proof. Furthermore, you
may implement the algorithms you design as part of your constructive proofs.
If you do not know what a constructive proof is, do not worry. We shall learn
about them.

In addition to making you a better programmer, this textbook ought to
expand your mind. It ought to help you distinguish when a problem can
and cannot be solved. Consider, for example, the problem of determining if
for a given program, P, and its input, w, P halts on w. This would be an
incredibly useful program to write because it would tell us if P ends or goes
into an infinite recursion or loop. Can such a problem be solved and a program
written for it? We shall discover the answer to this and many other problems
through the pages of this textbook. Let us get started!

2 To Instructors

This textbook is intended as an introduction to formal languages and au-
tomata theory for upper-level undergraduates or beginning graduate stu-
dents. It contains the traditional mathematical development employed when
you and I took our first computational theory course. It is also quite different
from such a course. Machines, grammars, and algorithms developed as part
of a constructive proof are intended to be rendered as a program. Encourage
your students to implement and test their designs before writing a proof. As
we know, sometimes a student’s design may be difficult to understand and/or
have mistakes that lead them to be marked down. By rendering their ma-
chines, grammars, and constructive algorithms as proofs, this problem ought
to be mitigated and provide a framework to discuss the design of a solution
with a student.

In addition to formal reasoning about languages, students are also en-
gaged in formal reasoning about the machines and grammars they design. To
this end, for example, they are encouraged to implement invariant predicates
for the states of machines. The FSM visualization tool allows students and
instructors to see if the state invariants hold during machine execution. If ma-
chines are tested and state invariants are validated, then it is easier to prove
that machine, M, for a language L accepts a word w if and only if w .∈ L and
rejects w if and only if w ./∈ L. Indeed, this is something that neither you nor I
did in our theory courses. Keep in mind that just like in programming, those
that take the time to write invariants tend to write bug-free machines. It is
time well-invested given that it will reduce frustration with grading (for both
you and your students) and it will make your students better programmers.

Although formal proofs are an integral part of this textbook, they are
only presented when they are elucidating. In other words, we do not want to
burden students with proving the obvious nor with low-level details that drive
them away from the big picture. In this spirit, many low-level inductive proofs
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are left as exercises and may be assigned if you feel that your students need
more practice developing formal arguments. This is not to say that hand-
waving is acceptable in lieu of formal reasoning. Students ought to develop
formal reasoning skills.

Although you and I spent time drawing machines in our automata theory
courses, there is no need for students using this textbook to do so. Let FSM
worry about rendering the graphical representation of machines. Also, use
FSM to walk through the execution of a machine. This may be done using a
control view or a (traditional) graph-based view. Either view may be used to
validate state invariants during execution. Feel free to use the view you are
most comfortable with despite the textbook tending to use the control view.

Although there may be a learning curve for using FSM, have fun with the
material and make it fun for your students. Encourage implementation and
experimentation. Experience has taught me that computer science students
are less frustrated and become more engaged when allowed to program. I
hope you have a similar experience!

3 FSM

3.1 Installing

3.1.1 DrRacket

To program in FSM, you will need Racket and its IDE known as DrRacket.
You may download it as a package from:

https://download.racket-lang.org/

After installing DrRacket, go to the Language menu and click on Choose
Language. . ., or simply use Ctrl-L. A pop-up window will appear. Choose
The Racket Language and click on OK. This tells DrRacket that you will be
programming using Racket syntax.

Click on Run, and you will see the basic DrRacket interface. There are
two windows. The top window is called the definitions window, and this is
where programs are written. The bottom window is the interactions window,
and this is where values are printed and where the programmer may interface
with her program.

3.1.2 FSM

FSM is a domain-specific language embedded in Racket that requires
a software package called GraphViz. GraphViz is an open-source graph
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visualization software. The FSM visualization tool uses it to render a graph-
based view of state machines. A description of GraphViz may be found at:

https://graphviz.org/about/

There is no need for you to learn how to program using GraphViz. The nec-
essary programming is implemented as part of FSM. Instructions for down-
loading and installing GraphViz are found at:

https://graphviz.org/download/

After installing DrRacket and GraphViz, you must install FSM as a pack-
age in Racket. The needed files may be found at:

https://github.com/morazanm/fsm

To install the package using DrRacket, go to the File menu and click on
Package Manager. . .. For Package Source, type the above url followed by
.git as follows:

https://github.com/morazanm/fsm.git

Click on Install. When the package finishes installing, you may close the
package manager window. You now have access to all the programming con-
structs that are defined by FSM.

3.2 Writing FSM Programs

FSM provides and allows a programmer to build and test regular expres-
sions, state machines, and grammars. In addition, it may be used to render a
graphical representation of a state machine and to visualize the execution of
state machines. It inherits its syntax and many programming constructs from
Racket. This means that you may write FSM programs using anything avail-
able in Racket. An overview of the required syntax is discussed in Chap. 1.

The following is a quick example of an FSM program:

#lang fsm

(define AB (concat-regexp (singleton-regexp "a")
(singleton-regexp "b")))

(check-equal? (printable-regexp AB) "ab")

This program builds a regular expression for "a" and another regular expres-
sion for "b" and defines a variable AB to store the regular expression for "a"
concatenated with "b". The last line in a program is a unit test. It tests that
converting AB into printable form produces the string "ab".
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3.3 Bug Reporting

We are constantly trying to improve FSM. Although we hope there are none,
it is practically inevitable that you may discover a bug in FSM. Kindly report
bugs at:

https://morazanm.github.io/fsm/

At the top right-hand, there is a link for bug reports.
When reporting a bug, fill in as much information as possible including a

description of the bug, the steps to reproduce it, and the operating system
used. You may include screenshots and attach an FSM file with the code that
generates the bug. Keep in mind that this tool is to report FSM bugs and not
to seek help debugging your programs nor to seek help on class assignments.
Discuss class assignments with your instructor.

4 The Parts of the Book

The book is divided into four parts that build on each other. Part I reviews
fundamental concepts. It introduces programming in FSM and reviews pro-
gram design. In addition, it reviews essential mathematical background on
sets, relations, and reasoning about infinite sets. This part of the book ends
with an overview of different proof techniques including those using formal
logic, mathematical induction, the pigeonhole principle, contradiction, and
diagonalization. Recall that this textbook aims to make your programming
experience relevant as you advance. This part of the book might surprise you
by using proof techniques in conjunction with programming.

Part II starts the study of formal languages and automata theory in earnest
with regular languages. It first introduces regular expressions and shows how
they are used to write programs that generate words in a regular language.
Applications of regular expressions are discussed, and programming a pass-
word generator is explored in detail. A fascinating discovery made is the
role of nondeterminism in computing. That is, nondeterminism is a language
feature in FSM much like integers are a language feature in your favorite pro-
gramming language. Given that regular expressions generate words, it is only
natural to ask how can a machine recognize words in a regular language. This
leads to the study of deterministic and nondeterministic finite-state machines.
We see that nondeterminism may also be used to recognize the members of
a language. In addition, a new notation to generate regular languages, called
regular grammars, and a theorem used to prove that a language is not regular
are presented.

Part III starts the exploration of languages that are not regular with
context-free languages. It starts with context-free grammars and pushdown
automata to generate and recognize context-free languages. Their equivalence
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is discussed as well as properties of context-free languages. This discussion
includes a theorem used to prove that a language is not context-free. This
part ends with a discussion of deterministic pushdown automata and illus-
trates why these automatons are fundamentally different from nondetermin-
istic pushdown automata.

Part V marks the culmination of our studies by exploring languages that
are not context-free, known as context-sensitive languages. It starts by dis-
cussing the most powerful automaton known to mankind: the Turing machine.
It explores the versatility of Turing machines by illustrating how to com-
pose them. That is, it illustrates using auxiliary Turing machines much like
you use auxiliary functions or methods. The discussion explores attempts to
strengthen Turing machines (i.e., create more powerful Turing machines). Al-
though all such attempts have failed to date, useful abstractions have emerged
from these failed attempts that make the design, implementation, validation,
and verification of Turing machines easier. It is likely refreshing to see that
computer scientists can learn from failures – a discipline that is not known to
publish negative results nor lessons from failed approaches. Our study then
moves to grammars for context-sensitive languages, and their equivalence
with Turing machines is explored. This part ends with two chapters that
explore the (current?) limitations of mankind. We first study the Church-
Turing thesis and define the word algorithm. This leads to the exploration
of problems that we can postulate but cannot solve. The book ends with
a brief chapter introducing complexity theory and explores the question of
determining if a solution to a problem is practical.

5 Acknowledgments

This book is the product of work done by many bright computer scientists
throughout my professional development dating back to my years as an under-
graduate computer science student. Some of these bright computer scientists
inspired me to look for a better way to teach formal languages and automata
theory, while others enthusiastically embraced my view and contributed to
making FSM a reality. As an undergraduate and graduate student, I disliked
the delivery of all my automata theory and formal languages courses. I found
the material fascinating – even exciting – but as a computer science student,
I did not understand why everything was theoretical and why it made sense
to get lower marks for trivial mistakes that would have easily been revealed
using a programming language to implement and test my designs. I thank
all my formal languages and automata theory professors for inspiring me to
promise myself I would find a better delivery if I ever became a computer
science professor. You, the reader, will now judge how well my efforts have
achieved the fulfillment of that promise. I think you are in for a treat – a



5 Acknowledgments xiii

programming-based formal languages and automata theory course is some-
thing I dreamed about as a student.

As a researcher specializing in programming languages, I realized that
any programming-based approach to formal languages and automata the-
ory required a domain-specific language – a tool my instructors never had.
Without a doubt, my work builds on the work of PLT headed by Matthias
Felleisen. Their work developing a programming-languages programming lan-
guage, Racket, has made the realization of my vision practical and easier.
For this, I thank my friend Matthias and my friends in PLT – all of whom
have always happily discussed with me how to teach computer science.

I must thank my Ph.D. advisor, Douglas Troeger, for helping me realize as
a graduate student that state-based machines may be verified much like we
verify programs. The challenge, of course, is that students had to verify with-
out being able to validate. From this rose my idea for a visualization tool in
which we can observe if the design role of states holds during a computation.

My most heartfelt thank you is for my research assistants that bought
into my vision and selflessly gave (and continue to give) themselves to the
development of FSM. Among my former students, I must express my deepest
gratitude to Joshua M. Schappel (Josh), Josephine A. Des Rosiers (Josie),
and Rosario Antunez (Charito). Josh has guided, with inspiration and en-
thusiasm, the implementation of the FSM visualization tool. Josie brought to
fruition FSM’s sensible error-messaging system. Charito was there at FSM’s
very own big bang working long hours to get the language off the ground. I
also thank my other former research students for actively contributing, using,
and suggesting improvements to FSM including Shamil Dzhatdoyev and Sachin
Mahashabde (Sach). Finally, I must also extend a heartfelt thank you to my
current research students. Oliwia Kempinski is extending FSM with compu-
tation graphs, and Tijana Minic (Tiksi) is adding machine-transformation
visualization tools. Their work will soon be integrated into FSM. As a whole,
this group of students joined me because they wanted to change the world
and make a positive contribution. I believe we have done so! .♥

South Orange, NJ, USA Marco T. Morazán



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 To Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
2 To Instructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
3 FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

3.1 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
3.2 Writing FSM Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
3.3 Bug Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

4 The Parts of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Part I Fundamental Concepts

1 Introduction to FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6 FSM Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

6.1 Boilerplate Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.2 Value Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.3 Primitive Functions and Application Expressions . . . . . 4
6.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6.5 List Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.6 Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.7 Defining Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.8 Functions as Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.9 For Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.10 Writing Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.11 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

xv



xvi Contents

7 Designing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.1 The Design Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Scaling a Binary Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 FSM Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1 FSM Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 FSM Data Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Essential Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Some Fundamental Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10 Automata Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11 Essential Mathematical Background . . . . . . . . . . . . . . . . . . . . . . 26

11.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11.2 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.3 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.4 Countable and Uncountable . . . . . . . . . . . . . . . . . . . . . . . 36

3 Types of Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12 Formal Logic Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13 Mathematical Induction Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13.1 Computing n2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
13.2 Computing n! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

14 Pigeonhole Principle Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15 Proofs by Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
16 Diagonalization Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Part II Regular Languages

4 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
17 Defining Languages Using Union and Concatenation . . . . . . . 64

17.1 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
17.2 Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
17.3 Regular Expression Selectors and Predicates . . . . . . . . . 66
17.4 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

18 Programming with Regular Expressions . . . . . . . . . . . . . . . . . . . 68
18.1 All Words Ending with an a . . . . . . . . . . . . . . . . . . . . . . . 68
18.2 Binary Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

19 Generating Words in the Language Defined by a Regular
Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
19.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
19.2 Signature, Purpose, and Function Header . . . . . . . . . . . 75
19.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
19.4 Function Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
19.5 Running the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents xvii

20 Regular Expression Applications . . . . . . . . . . . . . . . . . . . . . . . . . 78
20.1 Data Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
20.2 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
20.3 Function Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
20.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20.5 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20.6 Running the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Deterministic Finite-State Machines . . . . . . . . . . . . . . . . . . . . . 87
21 Deterministic Finite-State Machine Definition . . . . . . . . . . . . . 88

21.1 The dfa Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
21.2 FSM Machine Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
21.3 FSM Machine Testers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
21.4 FSM Machine Visualization . . . . . . . . . . . . . . . . . . . . . . . . 93

22 A First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
22.1 Designing the Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
22.2 Writing dfa State Invariant Predicates . . . . . . . . . . . . . . 99
22.3 Proving L(NO-ABAA) = L . . . . . . . . . . . . . . . . . . . . . . . . . . 104

23 A Design Recipe for State Machines . . . . . . . . . . . . . . . . . . . . . . 108
24 The State Machine Design Recipe in Action . . . . . . . . . . . . . . . 110

24.1 Name and Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
24.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
24.3 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
24.4 The Transition Function . . . . . . . . . . . . . . . . . . . . . . . . . . 111
24.5 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . 112
24.6 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 113
24.7 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

25 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
25.1 Finding a Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
25.2 Generalizing Pattern Detection . . . . . . . . . . . . . . . . . . . . 123

6 Nondeterministic Finite-State Machines . . . . . . . . . . . . . . . . . 133
26 Nondeterministic Finite-State Machines . . . . . . . . . . . . . . . . . . . 134
27 Designing an ndfa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

27.1 Name, Alphabet, and Tests . . . . . . . . . . . . . . . . . . . . . . . . 139
27.2 Design Idea and Conditions . . . . . . . . . . . . . . . . . . . . . . . 139
27.3 Transition Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
27.4 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . 140
27.5 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 141
27.6 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

28 Equivalence of dfa and ndfa . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
28.1 Building a dfa from an ndfa . . . . . . . . . . . . . . . . . . . . . . 147
28.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
28.3 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

29 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



xviii Contents

7 Finite-State Automatons and Regular Expressions . . . . . . . 167
30 Closure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

30.1 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
30.2 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
30.3 Kleene Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
30.4 Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
30.5 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

31 Equivalence of Finite-State Machines
and Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
31.1 Creating an ndfa from a Regular Expression . . . . . . . . . 189
31.2 Creating a Regular Expression from an ndfa . . . . . . . . . 193

8 Regular Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
32 Regular Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
33 The Design Recipe for Grammars . . . . . . . . . . . . . . . . . . . . . . . . 212
34 The Design Recipe in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

34.1 Grammar Name and Alphabet . . . . . . . . . . . . . . . . . . . . . 213
34.2 Syntactic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
34.3 The Production Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
34.4 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
34.5 Grammar Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 215
34.6 Run the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

35 Regular Grammars and Regular Languages . . . . . . . . . . . . . . . 217
35.1 Constructing a Regular Grammar from a dfa . . . . . . . . 217
35.2 Constructing an ndfa from a Regular Grammar . . . . . . 222

9 Languages That Are Not Regular . . . . . . . . . . . . . . . . . . . . . . . . 233
36 The Pumping Theorem for Regular Languages . . . . . . . . . . . . . 235
37 Proving a Language Is Not Regular . . . . . . . . . . . . . . . . . . . . . . 236

37.1 Using the Pumping Theorem
for Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

37.2 Using Closure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Part III Context-Free Languages

10 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
38 Context-Free Grammar Definition . . . . . . . . . . . . . . . . . . . . . . . . 246
39 L = {anbn | n≥0} Is a Context-Free Language . . . . . . . . . . . . 247

39.1 Steps 1 and 2: Name, Alphabet, and Syntactic
Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

39.2 Step 3: The Production Rules . . . . . . . . . . . . . . . . . . . . . . 247
39.3 Step 4: Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
39.4 Steps 5 and 6: Implementation and Testing . . . . . . . . . . 249



Contents xix

40 Practice Designing a cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
40.1 Steps 1 and 2: Name, Alphabet, and Syntactic

Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
40.2 Step 3: The Production Rules . . . . . . . . . . . . . . . . . . . . . . 250
40.3 Step 4: Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
40.4 Steps 5 and 6: Implementation and Testing . . . . . . . . . . 252

41 All Regular Languages Are Context-Free . . . . . . . . . . . . . . . . . . 254
42 Parse Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

42.1 Similar Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
42.2 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

11 Pushdown Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
43 Pushdown Automata Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 264
44 A pda for L = anbn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

44.1 Name and Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
44.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
44.3 Conditions and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
44.4 The Transition Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
44.5 Machine Implementation and Testing . . . . . . . . . . . . . . . 269
44.6 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 270
44.7 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

45 A pda for L = {wcwR | w∈(a b)*} . . . . . . . . . . . . . . . . . . . . . . 273
45.1 Name and Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
45.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
45.3 Conditions and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
45.4 The Transition Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
45.5 Machine Implementation and Testing . . . . . . . . . . . . . . . 275
45.6 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 276
45.7 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

46 ndfas and pdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
46.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
46.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

12 Equivalence of pdas and cfgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
47 Building a pda from a cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

47.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
47.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
47.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

48 Building a cfg from a pda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
48.1 Simple pda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
48.2 Building a cfg from a Simple pda . . . . . . . . . . . . . . . . . . 298



xx Contents

13 Properties of Context-Free Languages . . . . . . . . . . . . . . . . . . . 307
49 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

49.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
49.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
49.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

50 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
50.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
50.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
50.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

51 Kleene Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
51.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
51.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
51.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

52 The Pumping Theorem for Context-Free Languages . . . . . . . . 313
52.1 Yield Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
52.2 The Pumping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
52.3 Applying the Pumping Theorem for Context-Free

Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
53 Context-Free Languages Are Not Closed Under Intersection

nor Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
54 Intersection of a Context-Free Language and a Regular

Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
54.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
54.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
54.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

14 Deterministic PDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
55 A Deterministic pda for wcwR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

55.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
55.2 Name, Alphabets, and Unit Tests . . . . . . . . . . . . . . . . . . 326
55.3 Condition, States, Transition Function, and

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
55.4 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 328
55.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

56 A Deterministic pda for L = {ambncp| m�=n ∧ m,n,p>0} . . . 330
56.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
56.2 Name, Alphabets, and Unit Tests . . . . . . . . . . . . . . . . . . 331
56.3 Conditions, States, Transition Function, and

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
56.4 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 337
56.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

57 Are All Context-Free Languages Deterministic? . . . . . . . . . . . . 342



Contents xxi

58 Closure Properties of Deterministic
Context-Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
58.1 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
58.2 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Part IV Context-Sensitive Languages

15 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
59 Turing Machine Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
60 A Turing Machine for L = a∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

60.1 Name, Alphabet, and Tests . . . . . . . . . . . . . . . . . . . . . . . . 353
60.2 Conditions and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
60.3 Transition Function, Implementation, and Testing . . . . 354
60.4 Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
60.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

61 Nondeterministic Turing Machines . . . . . . . . . . . . . . . . . . . . . . . 359
61.1 Name, Alphabet, and Tests . . . . . . . . . . . . . . . . . . . . . . . . 360
61.2 Conditions and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
61.3 Transition Function, Implementation, and Testing . . . . 361
61.4 Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
61.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

62 Turing Machines Decide Regular Languages . . . . . . . . . . . . . . . 368
62.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
62.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
62.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

63 A Turing Machine for anbncn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
63.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
63.2 Name, Alphabet, and Tests . . . . . . . . . . . . . . . . . . . . . . . . 373
63.3 Conditions and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
63.4 Transition Function, Implementation, and Testing . . . . 377
63.5 State Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 381
63.6 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

64 The Turing Tar-Pit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

16 Turing Machine Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
65 Simple Common Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

65.1 Move Right Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
65.2 Move Left Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
65.3 Halt Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
65.4 Machines That Write to the Tape . . . . . . . . . . . . . . . . . . 400

66 Composing Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
66.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
66.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
66.3 Transition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
66.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402



xxii Contents

67 A Programmed Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . . 404
67.1 Moving the Head Right n Times . . . . . . . . . . . . . . . . . . . 404
67.2 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
67.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
67.4 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
67.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

68 The Universal Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
68.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
68.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

69 Computing with Turing Machines . . . . . . . . . . . . . . . . . . . . . . . . 416
69.1 f(a b) = a + b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
69.2 copy(w) = w BLANK w . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

17 Turing Machine Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
70 The Multitape Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 434
71 L = {w | w Has Equal Number of as, bs, and cs} . . . . . . . . . . 436

71.1 Name, Alphabet, and Precondition . . . . . . . . . . . . . . . . . 436
71.2 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
71.3 Conditions and States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
71.4 Transition Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
71.5 Machine Implementation and Testing . . . . . . . . . . . . . . . 441
71.6 Invariant Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
71.7 Visualizing mttms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
71.8 Proving L(EQABC) = L . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

72 tm and mttm Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
72.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
72.2 Proof Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

73 Turing Machines and Pushdown Automata: Programming
Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

74 Other Turing Machine Extensions . . . . . . . . . . . . . . . . . . . . . . . . 464
74.1 Multiple Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
74.2 Two-Way Infinite Input Tape . . . . . . . . . . . . . . . . . . . . . . 465

18 Context-Sensitive Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
75 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
76 A csg for L = anbncn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

76.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
76.2 Name, Alphabet, and Syntactic Categories . . . . . . . . . . 471
76.3 Production Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
76.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
76.5 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . 475



Contents xxiii

77 A csg for Adding Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
77.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
77.2 Name, Alphabet, and Syntactic Categories . . . . . . . . . . 475
77.3 Production Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
77.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
77.5 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . 477

78 Equivalence of csgs and tms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

19 Church-Turing Thesis and Undecidability . . . . . . . . . . . . . . . . 483
79 The Halting Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
80 Reduction Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
81 Undecidable Problems About Turing Machines . . . . . . . . . . . . 488

81.1 M Halts on EMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
81.2 There Exists a Word for Which M Halts . . . . . . . . . . . . . 489
81.3 Does M Ever Reach Q Given w? . . . . . . . . . . . . . . . . . . . 490

82 Undecidable Problems About Grammars . . . . . . . . . . . . . . . . . . 491
82.1 Determine if w Is in the Language of a Grammar . . . . . 491
82.2 Is L(G) Empty? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

20 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
83 Equivalence of Deterministic and Nondeterministic Turing

Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
83.1 Design Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
83.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

84 Does Solvable Mean a Practical Solution? . . . . . . . . . . . . . . . . . 500
85 The Class P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

85.1 Defining Practical Solutions . . . . . . . . . . . . . . . . . . . . . . . 501
85.2 Closure Under Complement . . . . . . . . . . . . . . . . . . . . . . . 502

86 The 2-Satisfiability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
86.1 Representing Input Formulae . . . . . . . . . . . . . . . . . . . . . . 504
86.2 Parsing Input Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
86.3 The Formula Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
86.4 The 2-Satisfiability Solver . . . . . . . . . . . . . . . . . . . . . . . . . 508
86.5 The Solver Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

87 A Language Not in P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
88 The Class NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
89 The Boolean Satisfiability Problem Is in NP . . . . . . . . . . . . . . 518
90 Unsolved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Part V Epilogue

21 Where to Go from Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523



Part I

Fundamental Concepts



Chapter 1

Introduction to FSM

Historically, formal languages and automata theory courses have been theo-
retical pencil-and-paper courses. Students design algorithms in theory (i.e.,
without implementing them) and write theorems based on the algorithms
they design. If there is a bug in the algorithm, then it is commonly the case
(especially among students) that the bug is not discovered and there is, of
course, also a bug in the proof of a theorem. This truly goes against the grain
of a computer science education. As a computer science student, you have
been trained to design and implement algorithms. Unit testing and runtime
bugs give you immediate feedback on your implementation providing the op-
portunity to make corrections before submitting work for grading. This is
rather difficult to do if algorithms are only designed and never implemented.

This textbook takes a novel approach. It complements pencil-and-paper
artifacts (e.g., like writing a proof) with programming. It uses a domain-
specific language called FSM (Functional State Machines). FSM provides
readers of this textbook with the ability to design, program, test, and debug
algorithms before writing theorems or submitting for grading. This brings to
bear your training and experience as a student of computer science.

To start, let us learn the basics of FSM syntax. If you have previously
programmed in Racket (or any programming language in the Lisp family),
then you are already mostly familiar with the basics of FSM syntax.

6 FSM Syntax

6.1 Boilerplate Code

To write FSM programs, the first line in every program must be:

#lang fsm

© The Author(s), under exclusive license to Springer Nature
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This line informs DrRacket that the programming language used is FSM. In
addition to FSM primitives, this language provides the testing facilities from
rackunit. You may search DrRacket’s Help Desk for rackunit to learn
about the facilities provided to write unit tests. Throughout this book, a
program is never complete without unit tests.

6.2 Value Expressions

All programs are written using expressions. Racket includes primitive val-
ues such as numbers, symbols, Booleans, and strings. All of these are also
expressions. They evaluate to the constant that they represent. For example,
type this program in DrRacket’s definitions window:

#lang fsm

"I love FSM!"

42

'mom
#t

This program consist of four expressions. The first is a string. All strings go
inside quotes. The second is a number. The third is a symbol. One or more
alphanumeric symbols with no spaces preceded by ' is a symbol. The fourth
is a Boolean. In this case, it is the value true. The value false is denoted by
#f. Boolean values may also be written as #true and #false. Running the
program produces the following result in the interactions window:

"I love FSM!"

42

'mom
#t

Each expression is evaluated and its value returned. In this example, the
returned values are printed in DrRacket’s interactions window.

6.3 Primitive Functions and Application Expressions

There is a plethora of functions provided by FSM – just the set of Racket

functions is too big to exhaustively cover here. Primitive functions include
arithmetic, Boolean, string, and symbol operators. When unsure if a function
exists in FSM, you can search for it by going to the Help menu and then the
Help Desk.

Function applications are always written inside parenthesis in prefix nota-
tion:

( <function> <expression>∗ )
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To apply a function, put, inside parenthesis, an expression for the function
(e.g., the function’s name) followed by the arguments.1 Type (+ 1 2 3) at
the prompt in the interactions window, and hit return. The expression is
evaluated, and its value is printed before returning the prompt:

> (+ 1 2 3)

6

The following is the result of evaluating an expression to test if 'a is equal
to 'b:

> (eq? 'a 'b)
#f

Remember that inside parenthesis, the function always goes first followed by
the arguments, if any, separated by at least one blank space.

6.4 Lists

Lists are primitive values in FSM. The constructor for a list is cons, and it
takes as input two arguments: the first element of the list and the rest of the
list. The second argument to cons must be a list. The empty list is denoted
by '() or null. For instance, the following builds a list with two strings:

> (cons "Hello" (cons "world!" '()))
'("Hello" "world!")

Function composition (as the nested cons above) are common practice in
FSM.

The selector functions for lists are first and rest (a.k.a. car and cdr).
The following is an interaction extracting the first element of a list:

> (first (cons 1 (cons 10 '())))
1

The value 1 is returned because 1 is the first element of the list given to
first. This is an interaction for extracting the rest of a list:

> (rest (cons #t (cons "hi" '())))
'("hi")

The list containing only "hi" is returned because that is the rest of the list
given to rest. Here, the quote, ', is not indicating that the value returned is
a symbol. When a quote appears before an opening parenthesis, it indicates
that the value is a list. In this manner, a function application, like (f x), is
easily distinguished from the list, '(f x), containing f and x.

1 Observe that one or more blank spaces (not a comma) separate arguments.
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There are several useful list-manipulating functions like:

(empty? L): evaluates to #t if L is empty and

#f otherwise (same as null?)

(length L): evaluates to the number of elements in L

(append L1 L2): evaluates to a list that starts with the

elements of L1 and ends with the

elements of L2

(remove-duplicates L): evaluates to a list with any repetitions

in L removed

(last L): evaluates to the last element of L

There are many more useful list-manipulating functions. You are referred to
the Help Desk to search for functions you need and may already be part of
FSM.

6.5 List Abbreviations

Building lists using cons can be tedious. For every list element, cons must
be typed. Imagine doing that for a list with 20 elements. To avoid all this
repetitive typing, there are three shorthand list constructors: ', list, and `.

A quoted list has the elements listed inside parenthesis preceded by a '.
For example, the following expression evaluates to a list with the digits 1, 2,
and 3:

'(1 2 3)) = (cons 1 (cons 2 (cons 3 '())))

Using a quoted list eliminates the need to repeatedly write cons to construct
a list. It is important to note that nothing after the quote (inside the paren-
thesis) is evaluated. That means all the listed elements are literal values in
the constructed list. This is important because there can be no expressions
that need to be evaluated inside the parenthesis.

To create a list with the values of evaluated expressions, we may use list.
The number of arguments is arbitrary. If no arguments are provided, list
returns '(). The following are sample expressions using list:

(list) = '()

(list (+ 3 4) (list) #f) = (cons 7 (cons '() (cons #f '())))

Use list when you want all the expressions to be evaluated.
The third shorthand is a quasiquoted list. A quasiquoted list is a combi-

nation of ' and list. Instead of preceding the opening parentheses with a
', it is preceded with `. The ` indicates that some subexpression inside the
parenthesis may have to be evaluated. To indicate that an expression needs to
be evaluated, it must be preceded by a ,. If there are no expressions preceded
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by a comma inside the parenthesis, then ` and ' yield the same value when
evaluated. To illustrate the use of quasiquote, consider the following code:

`((+ 3 4) ,(+ 3 4)) = (list '(+ 3 4) 7)

It is important to keep in mind that only the expressions preceded by a
comma are evaluated.

6.6 Conditional Expressions

In order for a program to make a decision, conditional expressions are
needed. In FSM, there are two types of conditional expressions available: if-
expressions and cond-expressions. An if-expression is best used when there
is a binary decision to be made (i.e., there are only two conditions). The
syntax for an if-expression is:

(if <expression> <expression> <expression>)

The first expression is the condition that is tested. That is, it is an expression
that evaluates to a Boolean. If the condition evaluates to true, then the second
expression, called the then-expression, is evaluated to obtain the value of the
if-expression. Otherwise, the evaluation of the third expression, called the
else-expression, is evaluated to determine the value of the if-expression. For
instance, consider the following expressions:

(if (odd? x) 1 0)

(if (or (< x -5) (> x 5))

(f x)

(error (format "Invalid value for x: �s" x)))

The first expression evaluates to 1 if x is odd and evaluates to 0 if x is
even. The second expression evaluates to the value of (f x) if .|x.| > 5 and
throws an error otherwise. An error is thrown using error that takes an
input a string for the error message. In the example above, the given input
to error is formatted by substituting the i.th .�s with the value of the i.th

expression after the string. In the example above, the only (i.e., the first) .�s
is substituted with the value of x (i.e., the value of the first expression after
the string).

A cond-expression is best used when there are more than two conditions.
For the purposes of this textbook, the syntax for a cond-expression is:

( cond [ <expression> <expression> ]+

[ else <expression>] )

A cond-expression has zero or more cond-stanzas followed by an else-stanza.
A cond-stanza consists of two expressions inside square brackets. The first
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is a condition, and the second, when evaluated, is the value of the cond-
expression when the condition holds. The else-stanza has a single expression
for the default value of the cond-expression. Stanzas are processed from top
to bottom. If the condition for a stanza evaluates to true, then the stanza’s
second expression is evaluated to obtain the cond-expression’s value. If the
condition for a stanza evaluates to false, then the next stanza is processed.
If all the conditions evaluate to false, then the cond-expression’s value is the
default value. For example, consider the following expression:

(cond [(= x 0) 0]

[(< x 0) (* -1 x)]

[else x])

Assuming x is a number, when this expression is evaluated, it returns the
absolute value of x.

6.7 Defining Local Variables

There are two types of expressions for defining local variables: let and let*.
The syntax for a let-expression is:

(let [(<identifier> <expression>)∗] <expression>)

A let-expression has zero or more local definitions inside square brackets.
Each definition has an identifier and an expression inside parenthesis. The
identifier is the name of the local variable declared, and the expression, when
evaluated, provides the value of the variable. The expression after the let-
expression’s declarations is the body. The evaluation of the body is the value
of the let-expression. The local variables declared are only valid in the body
and shadow any previous declaration or definition. For example, consider the
following expression:

(let [(x 5)]

(let [(x 2)

(y (+ x x))]

(* x y)))

This let-expression declares a local variable x as 5. Its body is a let-
expression. The inner let-expression declares two local variables: x as 2 and
y as the sum of x and x. The value of y is 10 because the x in scope is the
one that is 5 (the x that is 2 is only valid in the body). The value of the let,
(* 2 10), is 20 (the outer x is shadowed by the inner x).

The syntax for a let*-expression is:

(let* [(<identifier> <expression>)∗] <expression>)

A let*-expression has zero or more local definitions inside square brackets
and a body. The evaluation of the body is the value of the let*-expression.
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The local variables are valid in any subsequent local variable declaration
and in the body. A local declaration shadows any previous declaration or
definition. For example, consider the following expression:

(let [(x 5)]

(let* [(x 2)

(y (+ x x))]

(* x y)))

In this expression, the value of y is 4 because the declaration of x as 2 is in
scope. Therefore, the value of the expression is 8. In contrast, consider the
following expression:

(let [(x 5)]

(let* [(y (+ x x))

(x 2)]

(* x y)))

The value of this expression is 20, because the x in scope is the one declared
as 5.

6.8 Functions as Values

In FSM, functions are first-class values. This means that a function is a value
just like numbers and strings are values. Among other things, this provides
us with the power to provide functions as arguments to other functions and
to return a function as the value of evaluating a function.

6.8.1 Lambda Expressions

To create a function value, use a λ-expression. The syntax for a λ-expression
is:

( lambda ( <identifier>∗ ) <expression> )

or

( λ ( <identifier>∗ ) <expression> )

To type .λ in DrRacket, use Ctrl-.\. These equivalent expressions create a
nameless function that has as zero or more parameters corresponding to the
given identifiers. The expression is the body of the function. When the created
function is given the appropriate arguments, the body is evaluated to return
the value of the function. Consider, for example, the following λ-expression
s:

(λ (x) (* 5 x))

(λ (l1 l2) (append (rest l1) l2))
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The first creates a function that has a parameter x and that multiples x

by 5. The second creates a function with two parameters, l1 and l2, and
that appends the rest of the first given list and the second given list. It
is important to note that functions created using a λ-expression may not
be recursive because they are nameless. There is no way to call a function
recursively unless it has a name. Use a λ-expression when a new function is
needed, the function is not recursive, and the function is only needed once.

6.8.2 Higher-Order Functions

Higher-order (or abstract) functions have as input at least one function. They
provide programmers with powerful abstractions that make their code more
elegant, easier to understand, and more concise. Two abstract functions ex-
tensively used in this textbook are map and filter.

The function map takes as input a function, x .→ y, and a, (listof x),
list of x values. It applies the given function to every element in the given
list and returns a list of the results:

(map f (list x0 x0 . . . xn−1)) = (list (f x0) (f x1) . . . (f xn−1))

The following expressions are examples of map in practice:

(map add1 '(1 2 3))

(map (λ (x) (* 3 x)) '(7 8 9))

The evaluation of the first expression applies add1 to every element of the
given list and returns '(2 3 4). The second expression’s evaluation applies
a function that triples its input to every element of the given list and returns
'(21 24 27).

The function filter takes as input a predicate, x .→ Boolean, and a,
(listof x), list of x values. It applies the given predicate to all the elements
of the given list and returns a list of the elements that satisfy the predicate.
For instance, consider the following expressions:

(filter even? '(1 2 3 4 5 6))

(filter (λ (x) (= (remainder x 5) 0)) '(1 2 25 3 10 7))

The first expression evaluates to, '(2 4 6), a list containing the even ele-
ments in the given list. The second expression evaluates to, '(25 10), a list
containing the multiples of 5 in the given list.

There are other very useful higher-order functions defined for program-
mers. These include, for example, andmap, ormap, foldl, and foldr. You
are strongly encouraged to search for these in the Help Desk and become
familiar with them.
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6.9 For Loops

A recursive function makes recursive calls explicit in the code. Loops, as you
are likely to know, make recursive calls implicit. There are two types of for-
loops that we may use in FSM: for and for*. Each has a keyword identifying
the type of loop, one or more comprehension clauses, and an expression for
the loop’s body. A comprehension clause declares a variable for the sequence
of values to iterate over. For each iteration step, the variable takes on the
next value in the sequence. The difference between a for-loop and a for*-
loop is the scope of comprehension variables. In a for-loop, the scope is the
body of the for-loop. In a for*-loop, the scope is all the following variable
definitions and the body of the for*-loop.

For each value a comprehension variable takes on, the body of the loop
is evaluated. The type of loop used defines how the values obtained from
evaluating the loop’s body are combined. There are 12 types of loops:

for/list, for*/list creates a list of all the values
for/and, for*/and ands all the values
for/or, for*/or ors all the values
for/sum, for*/sum adds all the values
for/product, for*/product multiplies all the values
for/string, for*/string appends all the strings

The body of the loop must always evaluate to a value of the expected type.
Otherwise, an error is thrown. For example, the body of a for/string must
always evaluate to a string, and the body of a for/and must always evaluate
to a Boolean.

To illustrate the use of a for-loop, consider the following expression:

(for/list ([v1 '(1 2 3)] [v2 '(4 5 6)])

(* v1 v2))

The loop traverses both lists at the same time with v1 taking the values 1,
2, and 3 and v2 taking on the values of 4, 5, and 6. The list produced is:

(list (* 1 4) (* 2 5) (* 3 6))

In contrast, consider using a for*-loop:

(for*/list ([v1 '(1 2 3)] [v2 '(4 5 6)])

(* v1 v2))

For every value, v1, in the first comprehension, the values in the second
comprehension are traversed. The list produced is:

(list (* 1 4) (* 1 5) (* 1 6) (* 2 4) (* 2 5)

(* 2 6) (* 3 4) (* 3 5) (* 3 6))
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Finally, a for-loop stops when the end of any sequence is reached. Whatever
remains of the other sequences is ignored. For example, consider the following
expression:

(for/list ([v1 '(1 2)] [v2 '(4 5 6 7 8 9)])

(* v1 v2))

The elements of the comprehensions are traversed until the elements of the
first are finished. The elements '(6 7 8 9) from the second comprehension are
not traversed. The resulting list is:

(list (* 1 4) (* 2 5))

6.10 Writing Unit Tests

A program is never considered complete without unit tests. To write unit
tests, we mostly use rackunit’s check-equal?. For the purposes of this
textbook, the required syntax is:

(check-equal? <expression> <expression>)

The first expression is the value you are testing. It usually is the result of a
function call. The second expression is the expected value. If all tests pass
after running a program, no report is generated. If tests fail, then a report
for each failed test is generated in DrRacket’s interactions window.

Consider, for example, running the following program:

#lang fsm

(check-equal? (= 6 6) #t)

(check-equal? (* (+ 2 3) (/ 20 2)) 50)

(check-equal? (string-length "FSM") 4)

The result in the interactions window is:

.

The first two tests are successful, and no report is generated for them.
The third test fails, and a failure report is generated. It includes the test,
check-equal?, that fails and the name of the file, testing-example.rkt,
containing, 7:0, the line number and the position within the line of the failed
test; the value, 3, returned by the first expression in the test; and the value,
4, of the second expression in the test. It is straightforward to see why the
test failed: the length of "FSM" is not 4 but 3.
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6.11 Definitions

In order for a programming language to be useful, it must allow programmers
to design and define their own functions. Definitions in FSM are made using
the following syntax:

( define <identifier> <expression> )

( define ( <id> <id>∗ )

( define ( <id> <id>∗ ) <expr>+ )∗

<expr>+ )

The first form is used to define constants. The definition of a constant consists
of an identifier (i.e., a variable name) and an expression for the value of
the constant. The second form is used to define named functions. A named
function definition first has, inside parenthesis, an identifier for the name of
the function followed by zero or more identifiers for the parameters. This is
called the function header. The function header is followed by zero or more
local function definitions. The local function definitions, if any, are followed
by one or more expressions (typically one in this textbook) for the body of
the function. For the purposes of this textbook, the value of a function is
obtained by substituting the values of the parameters in the body of the
function and evaluating the resulting expression. This model of evaluation is
only valid if you are disciplined enough to not use assignment statements.
Consider the following program:

#lang fsm

(define X 220)

(define Y -10)

;; number number → number

;; Purpose: Compute f(a, b) = 2a + b

(define (f a b) (+ (* 2 a) b))

(check-equal? (f 0 0) 0)

(check-equal? (f X Y) 430)

This program defines to constants: X as 220 and Y as -10. In addition, it defines
a function called f. As comments, it states the signature and the purpose
of the function.2 The function takes as input two numbers and returns a
number. It has two parameters, a and b, in accordance with the signature.
There are no local function definitions. The function’s body doubles a and
adds b to this value. The tests validate that the proper value is computed. It
is worth noting that the function definition syntax above is syntactic sugar
to eliminate explicitly typing a λ-expression. The definition of f above is
exactly the same as this desugared definition:

2 Anything after a ; on a single line is a comment.
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(define f (λ (a b) (+ (* 2 a) b)))

This should not be too surprising. Recall that in FSM functions are first-class
values. You may use the sugared or the desugared syntax to define functions.

Named functions may be recursive. For example, this is a function to count
the number times a given x value occurs in a given list:

;; X (listof X) → number

;; Purpose: Count the number of times the given value

;; occurs in the given list

(define (count-occurrences x L)

(cond [(empty? L) 0]

[(equal? x (first L))

(add1 (count-occurrences x (rest L)))]

[else (count-occurrences x (rest L))]))

(check-equal? (count-occurrences "hi" '()) 0)

(check-equal? (count-occurrences ' x '(a b x g x h)) 2)

(check-equal? (count-occurrences '(1 2)

'((w q) (9 -3) (1 2)))

1)

(check-equal? (count-occurrences #f '(#t #t #t)) 0)

By using the higher-order function foldl, the need to explicitly write the
recursion may be eliminated. A function to update the value of an accumu-
lator and the initial value of the accumulator are needed to use foldl. We
need a function that adds one to the accumulator when a list element is equal
to x and that adds nothing to the accumulator otherwise. The program for
count-occurrences may be refactored as follows:

;; X (listof X) → number

;; Purpose: Count the number of times the given value

;; occurs in the given list

(define (count-occurrences x L)

(foldl

;; X natnum → natnum

;; Purpose: Return the new value of the accumulator

;; for the given X value

(λ (an-x acc) (if (equal? x an-x) (add1 acc) acc))

0

L))

(check-equal? (count-occurrences "hi" '()) 0)

(check-equal? (count-occurrences ' x '(a b x g x h)) 2)

(check-equal? (count-occurrences '(1 2)

'((w q) (9 -3) (1 2)))

1)

(check-equal? (count-occurrences #f '(#t #t #t)) 0)
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Fig. 1 The general design recipe for functions
1. Outline the representation of values.
2. Outline the computation.
3. Write the function’s signature and purpose.
4. Write the function’s header.
5. Write unit tests.
6. Write the function’s body.
7. Run the tests and, if necessary, redesign.

The function given as input to foldl takes as input a value of type X, for an
element of L, and, for the accumulator value, a natural number. It returns
a natural number for the number of occurrences. The body is a conditional
expression that returns the accumulator’s new value. If a list element, an-x,
is equal to x, then the new value of the accumulator is the accumulator plus
one. Otherwise, it is the accumulator. The initial value of the accumulator is
0, and the list that foldl traverses is L. When foldl finishes traversing the
list, it returns the value of the accumulator.

7 Designing Functions

7.1 The Design Recipe

There are steps you may follow to systematically design and implement func-
tions. These steps assist you in going from a problem statement to a well-
designed and tested program. They ought to help eliminate much of the guess
work students engage in to write programs. This does not mean that trial and
error is eradicated from the programming process. Instead, it means that de-
signs are tried, not random code, until a satisfactory solution to the problem
is found.

Figure 1 displays the general steps for function design and implemen-
tation. The first step asks the programmer to define the data types that
need to be manipulated. The second step asks to outline how the problem
is solved. The third step requires developing and writing as comments the
function’s signature and purpose. In the fourth step, the function’s header is
written. The number of parameters must correspond to the number of input
types in the signature. Once the function header is written, the fifth step
requires writing unit tests. In general, it is wise to write unit tests before de-
veloping the function’s body because writing tests may provide insights into
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the expression needed for the body. For the sixth step, the function’s body
is developed. Finally, step 7 has programmers run the tests and redesign if
any tests fail. Redesign, in this context, means checking and improving the
answers developed for each step of the design recipe.

7.2 Scaling a Binary Tree

To illustrate the design recipe in action, let us develop a function to scale a
binary tree of numbers. We shall do so showing the results of each step of
the design recipe.

7.2.1 Representation

A binary tree of numbers may be empty, a leaf, or an interior node with a
number and two subtrees. A representation must be defined because binary
trees of numbers are not a defined type in FSM. Observe that according to the
description, there are three subtypes. This means that a data definition with
three subtypes is needed. We can define a binary tree of numbers as follows:

;; A binary tree of numbers, (btof number), is either:

;; 1. '()
;; 2. number

;; 3. (list number (btof number) (btof number))

The first subtype represents the empty binary tree of numbers. The second
subtype represents a leaf in a binary tree of numbers. The third represents
an interior node as a list with three elements: a number and two binary trees
of numbers.

Clearly defining the data to manipulate is important because it provides
insights into the shape of a function. That is, the structure of the data suggests
the structure of a function to process the data. A data definition with sub-
types suggests that a conditional expression is needed to distinguish among
the subtypes. The number of conditions equals the number of subtypes. The
solution for each subtype is designed one at a time and independent of the
other subtypes. The solution’s structure for a given subtype is suggested by
the structure of the subtype. Figure 2 displays the template for functions on
a binary tree of numbers. The signature outlines that at least one input must
be a (btof number). This fact is captured by the function header that has a
parameter, a-bt, for a binary tree of numbers. The function template’s body
is a cond-expression with three stanzas – one for each subtype. If the given
binary tree is '(), there is no structure to suggest the solution’s structure
(ergo, the . . . in the first stanza). If the given binary tree is a number, then it
is a leaf. This suggests that the solution requires calling a function to process
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Fig. 2 The template for functions on a binary tree of numbers
;; Template for Functions on a Binary Tree of Numbers
;;; (btof number) . . . → . . .

;;; Purpose: . . .

;(define (f-on-bt a-bt . . .)
; (cond [(empty? a-bt) . . .]
; [(number? a-bt) . . .(f-on-number a-bt). . .]
; [else . . .(f-on-number (first a-bt)). . .
; . . .(f-on-bt (second a-bt)). . .
; . . .(f-on-bt (third a-bt)). . .]))
;
;;; Tests
;(check-equals? (f-on-bt empty . . .) . . .)
;(check-equals? (f-on-bt number . . .) . . .)
;(check-equals? (f-on-bt (list number . . . . . .) . . .) . . .)

...

a number. If the given binary tree is not empty and is not a leaf, then it is
an interior node. This suggest that the solution is obtained by processing a
number and the two subtrees. Observe that the two subtrees are the same
type of data as the given input and, therefore, are processed that same way.
In general, a self-reference in a data definition means a recursive call in the
function template. A binary tree of numbers has two self-references, and,
therefore, the function template has two recursive calls. Finally, at a mini-
mum, there needs to be one test for each subtype. This is reflected by the
three explicit tests in the function template. Take a moment to appreciate
what has been achieved. The function template is your road map for code
development. More often than not, coding means specializing the function
template for the problem being solved.

7.2.2 Design Idea

Ask yourself how the given binary tree of numbers may be scaled. Reason
about each subtype independently. If the given binary tree is empty, then
there is nothing to scale, and the resulting tree is empty. If the given binary
tree is a leaf, the function template suggests calling a function on a number.
To scale a leaf, it is multiplied by the given scalar. That is, the number-
processing function * is called with the given binary tree and the scalar. If the
given binary tree is an interior node, the function template suggests calling a
number-processing function for the root value and recursively processing the
two subtrees. This means calling * with the root value and the given scalar,
making a recursive call with the left subtree and the scalar, and making a
recursive call with the right subtree and the scalar.
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7.2.3 Signature, Purpose, and Function Header

The function needs as input a (btof number) and a number and returns a
(btof number). The purpose is to scale the given binary tree by the given
scalar. The signature, purpose statement, and function header are:

;; (btof number) number → (btof number)

;; Purpose: Scale the given (btof number) by the

;; given scalar

(define (scale-bt a-bt k)

Observe that the number of parameters equals the number of inputs defined
by the signature.

7.2.4 Tests

The tests validate that the function works for each of the subtypes. The tests
are:

;; Tests

;; empty bt tests

(check-equal? (scale-bt '() 10) '())
;; leaf bt tests

(check-equal? (scale-bt -50 2) -100)

(check-equal? (scale-bt 40 8) 320)

;; interior node bt tests

(check-equal? (scale-bt (list 10 '() (list -8 -4 '())) -2)

(list -20 '() (list 16 8 '())))
(check-equal? (scale-bt (list 0

(list 1 2 3)

(list 4

(list 5 '() '())
(list 6 7 8)))

3)

(list 0

(list 3 6 9)

(list 12

(list 15 '() '())
(list 18 21 24))))

You are strongly encouraged to thoroughly test your functions. Write tests
for valid inputs that you or others may suspect break your code. In this
manner, you and the readers of your code can feel cautiously optimistic that
the code works. You should certainly not limit yourself to one test for each
subtype that has variety.
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7.2.5 Function Body

The function body is obtained by specializing the conditional in the function
template:

(cond [(empty? a-bt) a-bt]

[(number? a-bt) (* k a-bt)]

[else (list (* k (first a-bt))

(scale-bt (second a-bt) k)

(scale-bt (third a-bt) k))])

Observe that the solution implemented for each subtype adheres to the design
idea.

7.2.6 Running the Tests

The complete program is displayed in Fig. 3. Run the program and make sure
all the tests pass.

Being disciplined about following the steps of the design recipe is an ef-
fective way to organize your thoughts. In addition, it provides a framework
for discussing your design with your instructor and your colleagues. It may
take time to develop such discipline, but it is time well-invested. You, your
instructors, and your school/professional colleagues will always be grateful
for well-designed, well-documented, and thoroughly tested programs.

1 Design and implement a recursive function to insert in the right place
a number in a sorted list of numbers. Make sure to follow all the steps
of the design recipe.

2 Design and implement a function to find the longest string in a list
of strings. Make sure to follow all the steps of the design recipe.

3 Design and implement a function that takes as input two natural
numbers greater than or equal to 2, a and b, and that returns the
greatest common divisor of the two given numbers. Make sure to follow
all the steps of the design recipe.

4 Design and implement a function that merges to sorted lists of num-
bers into one sorted list of numbers. Make sure to follow all the steps
of the design recipe.

5 Design and implement a function that takes as input a natural number
and that returns the sum of the natural numbers in [0..n]. Make sure
to follow all the steps of the design recipe.
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Fig. 3 A program to scale a binary tree of numbers
#lang fsm

;; (btof number) number → (btof number)
;; Purpose: Scale the given (btof number) by the given scalar
(define (scale-bt a-bt k)

(cond [(empty? a-bt) a-bt]
[(number? a-bt) (* k a-bt)]
[else (list (* k (first a-bt))

(scale-bt (second a-bt) k)
(scale-bt (third a-bt) k))]))

;; Tests
(check-equal? (scale-bt () 10) ())
(check-equal? (scale-bt -50 2) -100)
(check-equal? (scale-bt 40 8) 320)
(check-equal? (scale-bt (list 10 () (list -8 -4 ())) -2)

(list -20 () (list 16 8 ())))
(check-equal? (scale-bt (list 0

(list 1 2 3)
(list 4

(list 5 () ())
(list 6 7 8)))

3)
(list 0

(list 3 6 9)
(list 12

(list 15 () ())
(list 18 21 24))))

6 Design and implement a function using ormap to determine if any
number in a list of numbers is prime. Make sure to follow all the steps
of the design recipe.

7 Design and implement a function using filter to extract the strings
with a length greater than 5 from a list of strings. Make sure to follow
all the steps of the design recipe.

8 Design and implement a function using map to add a blank to the
front of every string in a list of strings. Make sure to follow all the steps
of the design recipe.

9 Design and implement a function that takes as input a list of numbers
and a number, i, and that using foldr extracts all the numbers in the
list less than or equal to i. Make sure to follow all the steps of the
design recipe.
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10 Design and implement a nonrecursive function that takes as input a
list of numbers and that returns a list of the even numbers in the given
list doubled. Make sure to follow all the steps of the design recipe.

8 FSM Basics

FSM is designed for the automata theory and formal languages classroom.
Such a course revolves around state machines to carry out computations
(e.g., determining if a given word is in a given language) and grammars to
generate the words in a given language. You shall learn more about these
as you progress in this textbook. This section presents constants and data
definitions that you ought to be aware of as you begin. Do not worry if you
do not perfectly understand what everything is the first time you read this
section. The presentation here is just to start getting you familiar with terms
this textbook uses.

8.1 FSM Constants

There are two constants that are useful to know before writing FSM programs:

BLANK Denotes a blank space in an input tape
EMP Denotes the empty word (i.e., a word of length 0)

8.2 FSM Data Definitions

The following are some important FSM data definitions:

alphabet A list of lowercase symbols of length 1 not including EMP.
word A nonempty (listof symbol) from an alphabet.
nts A set of nonterminal symbols. Each nonterminal symbol is denoted by

an uppercase English letter: [A..Z].
state machine A state machine is either:

• A deterministic finite automaton (dfa)
• A nondeterministic finite automaton (ndfa)
• A pushdown automaton (pda)
• A Turing machine (tm)
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• A Turing machine language recognizer (tm-language-recognizer)
• A multitape Turing machine (mttm)
• A multitape Turing machine language recognizer
(mttm-language-recognizer)

grammar A grammar is either:

• A regular grammar (rg)
• A context-free grammar (cfg)
• A context-sensitive grammar (csg)



Chapter 2

Essential Background

You are embarking on a journey to explore some of the most fundamental
questions in computer science and, perhaps surprisingly to you, in nature.
Take a moment to look around, and you find computation everywhere. Why
is computation so ubiquitous? The most basic answer to that question is
because problem-solving is essential for life and to our lives. People make
a living calculating the price of goods, predicting the price of stocks, and
making a family budget. Doctors take as input symptoms and blood work
results to formulate a treatment. Evolution decides which traits are desirable
in future generations. Modern mRNA vaccines program the immune system to
produce antibodies for a specific virus. Indeed, in human life and for human
life, we find computation everywhere.

9 Some Fundamental Questions

You may naturally wonder what some of the fundamental questions of com-
puter science and, ergo, nature are. Perhaps, the most obvious one is: what is
an algorithm? This may seem like a silly question to an advanced computer
science student because in all likelihood, you have implemented algorithms
in most of your courses. Ask around in your classroom for a definition for an
algorithm. More likely than not, you will get an array of different answers.
You can think of this question in a different manner. If you know what an al-
gorithm is, then can you explain what is not an algorithm? We shall explore
models of computation that allow us to formally define what “algorithm”
means.

Another fundamental question we may naturally ask is: what can be com-
puted? Put differently, is there an algorithm to solve every problem that can
be posed? There’s that word algorithm again, but let us try to address the
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importance of this question. If at a job you are given a problem specification
and are asked to implement a solution in the form of a program, how do you
know such a development is feasible? If the problem cannot be solved, then
it is utter nonsense (and a monumental waste of time) to try to solve the
problem. We need to be aware of how to prove that a problem is unsolvable.
Proving that a problem is solvable is, in principle, fairly easy. You present a
solution in the form of a program (never mind the program may be difficult to
write). Proving that a problem is unsolvable requires a deeper understanding
of what an algorithm is and a reduction proof – a proof technique that we
shall study.

A third fundamental question is: when is an algorithm practical? In past
courses, you may have studied polynomial time and exponential time algo-
rithms. In general, polynomial time algorithms are those that are considered
practical, that is, they run in a feasible amount of time. Exponential time
algorithms are not considered practical because they may take an unfeasible
amount of time to run. An algorithm that takes hundreds of years to compute
an answer is clearly not practical. Are there characteristics that define these
sets of algorithms?

10 Automata Theory

Automata theory is concerned with the mathematical properties of computa-
tion models. It helps us understand what can and cannot be computed with
a given model. You may think of this as programming using an API. Given an
API, there are problems that may be solved with it, and there are problems
that cannot be solved with it.

For instance, consider the following mathematical functions:

g(x) = g(x+1)

f(x, y) = 42

The value of f(0, 50) is clearly 42. We also have that the value of f(0,

g(8)) is 42. Can you implement these functions as a program? In Java, you
may attempt to write methods that looks like this:

int g(int x)

{ return(g(x++)); }

int f(int x, int y)

{ return(42); }

void main(String[] args)

{
System.out.println(f(10, 15));

System.out.println(f(10, g(8)));

}
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When you run the program, 42 is printed for the first call to f. Unfortunately,
the second call to f goes into an infinite recursion, and the program bombs.
In Haskell, the functions may be implemented as follows:

g:: Int -> Int

g x = g x+1

f:: Int -> Int -> Int

f x y = 42

main :: IO ()

main = do

print(f 10 15)

print(f 10 (g 8))

In Haskell, both calls to f print 42, and the program exits without an error.
If you are not familiar with Haskell, you may be asking yourself what is
going on. The difference is the model of computation Java and Haskell

use. Java implements the most common model of evaluation among modern
programming languages. It is called eager evaluation – all arguments are
evaluated before a function call is made. Therefore, evaluating f(10, g(8))

causes the Java program to go to into an infinite recursion and abnormally
terminate. In contrast, Haskell implements a model called lazy evaluation
– function calls are made before arguments are evaluated, and an argument
is evaluated only if necessary. This is why evaluating f 10 (g 8) returns 42
– (g 8) is never evaluated, and the program terminates normally. You now
have a concrete example that illustrates why understanding the computation
model is important.

Our study of computation models shall focus on the recognition and the
generation of language elements. A language is a set of words over a given
alphabet. A word is an ordered collection of alphabet elements, read left to
right, that may contain repetitions. The number of words in a language may
be finite or infinite. For example, the following defines the language containing
all words of length less than or equal to 2 over the alphabet (a b):

LT4 = {ε a b aa ab ba bb}
Given that the language is finite, it suffices to list its elements. We denote
the empty word (the word with zero alphabet elements) as .ε. This word has
length zero. In contrast, bb has length 2.

The following defines the infinite language for all strings that end with an
a over (a b):

ENDA = {w | w ends with an a}
In this definition, a set former is used. This is necessary because it is im-
possible to list all the elements of the language. You may read the definition
as stating that the language ENDA is equal to the set of words made from zero
or more as and bs that end with an a.
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The computation needed to determine if a word, w, is a member of a lan-
guage L is performed by a finite-state machine (aka a finite-state automaton).
These theoretical machines have led to efficient algorithms to determine if a
pattern is found in a strand of DNA or in a block of text. The computations
needed to generate a word w that is a member of a language L are done using
a grammar. The study of grammars has led to the development of parsers, in-
terpreters, and compilers for programming languages and to natural language
processing. You should dispel any misconception that the study of automata
theory and formal languages has no practical applications relevant to the life
of a problem-solver and programmer.

11 Essential Mathematical Background

11.1 Sets

A set is a collection of items without repetitions. These are used, for example,
to represent alphabets and languages. For instance, an alphabet, Σ, may be
defined to be a set of alphabetic characters, and a language may be defined
as a set of words formed by the characters in Σ:

Σ = {a b c}

L = {w | w ∈ Σ∗ ∧ w has an even length}
The above definitions state that Σ is the alphabet containing a, b, and c and
that L is the set of words formed using zero or more elements of Σ that have
an even length. The .

*, called Kleene star, stands for zero or more elements
of the set. A .

+ stands for one or more elements of the set. Throughout this
book, Σ is used to represent an alphabet. The symbol ∧ means and. It is
opportune at this time to note that the symbol ∨ means or.

11.1.1 Set Notation

Finite sets are specified by listing their elements inside curly braces like in
the definition above for. Infinite sets are represented using a set former. A
set former specifies the conditions that must hold in order for an element to
be a member of a set. In general, set formers are written as follows:

{w | P(w)}
This means that w is a member of the set if the predicate P holds. In the
definition for L above, we have that:

P(w) = w ∈ Σ∗ ∧ w’s length is even
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1 Let Σ = {a b}. Define the set of all words of length less than or equal
to 5.

2 Let Σ = {a b}. Define the set of all words that contain an even
number of bs.

3 Define the set of all even integers. Make sure to define the alphabet
for this language.

If every element of A is a member of B, then A is a subset of B. We denote
this as:

A ⊆ B

If every element of A is a member of B and not all elements of B are in A,
then A is a proper subset of B. We denote this as:

A ⊂ B

For example, consider the following sets for Σ = (a b):

STA = {w | w starts with an a}
SEA = {w | w starts or ends with an a}

We have that STA .⊂ SEA because:

• Every word that starts with an a is also a word that starts or ends with
an a

• There are words that start with a b and end with an a in SEA

We say that two sets are equal, A = B, if and only if A .⊆ B and B .⊆ A.
That is, every element of A is a member of B, and every element of B is a
member of A.

11.2 Set Operations

Sets may be combined to create new sets. This is done through set

operations. You may think of a set operation as a function on one or more
sets. There are six basic set operations: union, intersection, difference, com-
plement, cross product, and power set. For the discussion below, assume that
Σ = (a b).

The union of two sets, A and B, is a set that contains all the elements of A
and all the elements of B. We denote the union of two sets as follows:

A ∪ B = {x| x ∈ A ∨ x ∈ B}
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For instance, consider the following sets:

A = {w| w starts with an a}
B = {w| w starts with an b}

We have that:

A ∪ B = {w | w starts with an a ∨ w starts with an b}

4 Is A .∪ B = Σ.
∗? Why or why not?

The intersection of two sets, A and B, is a set that contains all the elements
that A and B have in common. We denote the intersection of two sets as
follows:

A ∩ B = {x| x ∈ A ∧ x ∈ B}
For instance, once again, consider the following sets:

A = {w| w starts with an a}
B = {w| w starts with an b}

We have that:

A ∩ B = {w | w starts with an a ∧ w starts with an b}
= ∅

The intersection of A and B is the empty set because there are no words that
start with both an a and a b. We say that two sets whose intersection is
empty are mutually exclusive. In contrast, consider the following two sets:

C = {ε a aa aaa aaaa aaaaa aaaaaa}
D = {w| w ∈ a∗ ∧ w has an even number of a}

The intersection of these two sets is:

C ∩ D = {ε aa aaaa aaaaaa}
It contains only the words that have an even number of as that are members
of both sets.

The difference of two sets, A and B, is the set that contains all the elements
of A that are not in B:

A - B = {w | w ∈ A ∧ w /∈ B}
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Once again, consider the sets C and D defined above. We have that:

D - C = {w | w ∈ a∗ ∧ w has an even number of a ∧ |w| ≥ 8}

C - D = ∅
Here, |w| denotes the length of w. If all the strings of as of length less than
or equal to 6 are removed from D, then all the strings of as with a length
greater than or equal to 8 remain. C - D is the empty set because all the
words in C are in D.

The complement of a set, A, is denoted Ā. It contains all possible words
built using the elements of Σ that are not in A. We may specify it as follows:

Ā = Σ∗ - A

Σ.
∗ is the language of all words that may be built using the elements of Σ.

The difference of this language and A is the language containing all the strings
not in A. For instance, consider the following language:

M = {w | w has exactly two b}
The complement of M is:

M̄ = Σ∗ - M = {w | the number of b in w is not two}
The cross product of two languages, A and B, is the set of all pairs such

that the first element is a member of A and the second element is a member
of B:

A × B = {(a b) | a ∈ a ∧ b ∈ B}
Consider the following sets:

E = {x y z}

F = {0 1}

N = {n | n is a natural number}
The symbol .N denotes the set of natural numbers, that is, the set of integers
greater than or equal to zero. We have that:

E × F = {(x 0) (y 0) (z 0) (x 1) (y 1) (z 1)}
What is .N×N? It is impossible to write out the elements of the set because
the set is infinite. Therefore, we must use a set former to define it. If you
think about it carefully, the pairs in this set are the integer points in the first
quadrant of a two-dimensional Cartesian plane including the points on the
vertical and horizontal axes. Therefore, we may write:

N × N = {(x y) | x,y ∈ N ∧ x ≥ 0 ∧ y ≥ 0)}
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Observe that when we write a definition, we must be very precise and leave
no room for ambiguity. It would be incorrect to write:

N × N = {(x y) | x ≥ 0 ∧ y ≥ 0)}
This is incorrect because it does not precisely specify that x and y must be
natural numbers.

The power set of a set A, .2A, is the complete set of subsets of A, that is, the
union of the subsets that have zero elements of A, that have one element of A,
that have two elements of A, and so on until the subset that has n elements
of A where n = |A| (the number of elements in A). Consider the following
languages:

EMPTY = {}

SET1 = {r e a}
We can observe that the power set of each is:

2EMPTY = {{}}

2SET1 = {{r e a} {r e} {r a} {r} {e a} {e} {a} {}}
The power set of EMPTY only contains itself because the empty set has no
elements. The power set of SET1 contains all the subsets of sizes 0–3. It is
difficult to write a set form for .2A. The good news is that there is an alternative
way to specify a set. A constructor may be written. That is, an algorithm
may be implemented to build the power set of A. As a computer scientist or
programmer, this approach is likely to appeal to you. Consider an arbitrary
a .∈ A. An arbitrary element of .2A either contains or does not contain a. This
suggests an algorithm to compute .2A. If A = {}, then the power set is {{}}.
If A .�= {}, compute the power set of A - {a}. Call this set P. The power set
is obtained by the union of P and the set obtained from adding a to every set
in P. Following the steps of the design recipe yields the program3 displayed
in Fig. 4.

11.2.1 Set Laws

Laws may be thought of provable rules that reveal properties of sets. They
may be used to prove further properties (i.e., theorems) about sets. The
laws are usually organized in six categories: idempotency, commutativity,
associativity, distributivity, absorption, and De Morgan’s laws.

The idempotent laws state that the union and the intersection of a set, A,
with itself are A:

A ∪ A = A

A ∩ A = A

3 #.| and .|# are used to write multiline comments.
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Fig. 4 A function to compute the power set of a set
#lang fsm

#|
Data Definitions

A list of X, lox, is either:
1. ()
2. (cons X lox)

A set of X, setx, is a (listof X)
|#

;; Sample setx
(define EMPTY-SET ())
(define SET1 (r e a))

;; setx → (listof setx)
;; Purpose: Return the power set of the given set
(define (powerSet A)

(cond [(null? A) (list ())]
[else
(let ((rest (powerSet (cdr A))))

(append
(map (lambda (x) (cons (car A) x)) rest)
rest))]))

(check-equal? (powerSet EMPTY-SET) (()))
(check-equal? (powerSet SET1)

((r e a) (r e) (r a) (r) (e a) (e) (a) ()))

Let us prove the first.

Theorem 1 A .∪ A = A

Proof We shall prove that:
(a) A .∪ A .⊆ A
(b) A .⊆ A .∪ A

(a) Assume x is an arbitrary element in A .∪ A. This means that x .∈ A or x
.∈ A. Hence, x .∈ A. Therefore, we may conclude that A .∪ A .⊆ A.

(b) Assume that x is an arbitrary element in A. This means that x .∈ A .∪ A.
Therefore, we may conclude that A .⊆ A .∪ A.

Therefore, the following implication holds:
A .∪ A .⊆ A ∧ A .⊆ A .∪ A .⇒ A = A .∪ A. �

5 Prove that A .∩ A = A.
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The commutative laws are:

A ∪ B = B ∪ A

A ∩ B = B ∩ A

Let us prove the second.

Theorem 2 A .∩ B = B .∩ A

Proof We shall prove that:
(a) A .∩ B .⊆ B .∩ A
(b) B .∩ A .⊆ A .∩ B

(a) Assume x is an arbitrary element in A .∩ B. This means that x .∈ A and
x .∈ B. Hence, x .∈ B .∩ A. Thus, we may conclude that A .∩ B .⊆ B .∩ A.

(b) Assume that x is an arbitrary element in B .∩ A. This means that x .∈ B
and x .∈ A. This means that x .∈ B and x .∈ A. Hence, x .∈ A .∩ B. Thus, we
may conclude that B .∩ A .⊆ A .∩ B.

Therefore, the following implication holds:
A .∩ B .⊆ B .∩ A ∧ B .∩ A .⊆ A .∩ B .⇒ A .∩ B = B .∩ A. �

6 Prove that A .∪ B = B .∪ A.

The associative laws are:

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

Let us prove the first.

Theorem 3 (A .∪ B) .∪ C = A .∪ (B .∪ C)

Proof We shall prove that:
(a) (A .∪ B) .∪ C .⊆ A .∪ (B .∪ C)
(b) A .∪ (B .∪ C) .⊆ (A .∪ B) .∪ C

(a) Assume x is an arbitrary element of (A .∪ B) .∪ C. This means that:

x ∈ (A ∪ B) ∨ x ∈ C

⇒ x ∈ A ∨ x ∈ B ∨ x ∈ C

⇒ x ∈ A ∪ (B ∪ C)

Thus, we may conclude that (A .∪ B) .∪ C .⊆ A .∪ (B .∪ C).
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(b) Assume x is an arbitrary element of A .∪ (B .∪ C). This means that:

x ∈ A ∨ x ∈ (B ∪ C)

⇒ x ∈ A ∨ x ∈ B ∨ x ∈ C

⇒ x ∈ (A ∪ B) ∪ C

Thus, we may conclude that A .∪ (B .∪ C) .⊆ (A .∪ B) .∪ C.

Therefore, the following implication holds:

(A ∪ B) ∪ C ⊆ A ∪ (B ∪ C)

∧ A ∪ (B ∪ C) ⊆ (A ∪ B) ∪ C

⇒
(A ∪ B) ∪ C = A ∪ (B ∪ C).

�

7 Prove that (A .∩ B) .∪ C = (A .∪ C) .∩ ((B .∪ C).

The absorption laws are:

(A ∪ B) ∩ A = A

(A ∩ B) ∪ A = A

Let us prove the first.

Theorem 4 (A .∪ B) .∩ A = A

Proof We shall prove that:
(a) (A .∪ B) .∩ A .⊆ A
(b) A .⊆ (A .∪ B) .∩ A

(a) Assume x is an arbitrary element of (A .∪ B) .∩ A. This means that:

x ∈ (A ∪ B) ∧ x ∈ A

Therefore, we may conclude that (A .∪ B) .∩ A .⊆ A.

(b) Assume x is an arbitrary element of A. This means that:

x ∈ (A ∪ B) ⇒ x ∈ (A ∪ B) ∩ A

Therefore, we may conclude that A .⊆ (A .∪ B) .∩ A.

Thus, the following implication holds:

(A ∪ B) ∩ A ⊆ A ∧ A ⊆ (A ∪ B) ∩ A

⇒
(A ∪ B) ∩ A = A.

�
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8 Prove that (A .∩ B) .∪ A = A.

De Morgan’s laws are:

A - (B ∪ C) = (A - B) ∩ (A - C)

A - (B ∩ C) = (A - B) ∪ (A - C)

Let us prove the first.

Theorem 5 A - (B .∪ C) = (A - B) .∩ (A - C)

Proof We shall prove that:
(a) A - (B .∪ C) .⊆ (A - B) .∩ (A - C)

(b) (A - B) .∩ (A - C) .⊆ A - (B .∪ C)

(a) Assume x is an arbitrary element of A - (B .∪ C). This means that:

x ∈ A ∧ x /∈ B ∧ x /∈ C

⇒ x ∈ (A - B) ∧ x ∈ (A - C)

Therefore, we may conclude that A - (B .∪ C) .⊆ (A - B) .∩ (A - C).

(b) Assume x is an arbitrary element of (A - B) .∩ (A - C). This means
that:

x ∈ (A - B) ∧ x ∈ (A - C)

⇒ x ∈ A ∧ x /∈ B ∧ x /∈ C

⇒ x /∈ (B ∪ C)

⇒ x ∈ A - (B ∪ C)

Therefore, we may conclude that (A - B) .∩ (A - C) .⊆ A - (B .∪ C).

Thus, the following implication holds:

A - (B ∪ C) ⊆ (A - B) ∩ (A - C)

∧ (A - B) ∩ (A - C) ⊆ A - (B ∪ C)

⇒
A - (B ∪ C) = (A - B) ∩ (A - C).

�

9 Prove that A - (B .∪ C) = (A - B) .∩ (A - C).
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11.3 Relations and Functions

Relations associate an element of the domain (the input set) with an element
of the range (the output set). For instance, the binary relational operator .≥
has as its domain pairs (or tuples) of real numbers and has as its range the
Booleans (i.e., true and false). Relations define a language (or if you like a
set). The members of such a language are the elements that are related. The
language defined by .≥ may be specified as follows:

GEQ = {(x y) | x, y ∈ R ∧ x ≥ y}
The above states that x and y are real numbers and that x is greater than
or equal to y. (31 7) and (8 4), for example, are members of GEQ. (21 55)

and (-8 40) are not members of GEQ. If (a b) is a member of a relation,
then we say that a and b are related and it is denoted by aRb.

A special type of relation is called a function. A function is a binary
relation that associates a member from its domain with a unique member
from its range. More formally, a function, f, from a set A to a set B, defines a
language of ordered pairs, (a b), such that there is exactly one ordered pair
for every element of A. For instance, consider the following sets:

NAMES = {w | w is a first name}

PASSP = {p | p is a person with a single passport}
The relation that maps a person with a single passport to a first name is
specified as follows:

R1 = {(p n) | p ∈ PASSP ∧ n ∈ NAMES}
R.1 is a function because every single passport holder has a first name. On the
other hand, consider this relation:

R2 = {(n p) | p ∈ PASSP ∧ n ∈ NAMES}
R.2 is not a function because more than one person with a single passport may
have the same first name. Take note that the elements of a relation are not
sets. They are ordered pairs. That is, (p n) is not the same (n p).

We say that a function, f, is one-to-one if for any distinct a and b, f(a)
.�= f(b). For instance, consider the following sets:

STATES = {s | s is a state in the USA}

STCAPS = {c | c is a state capital in the USA}
The following is a one-to-one function:

R3 = {(c s) | c ∈ STCAPS ∧ s ∈ STATES}
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This is a one-to-one function because every state capital is the capital of
a different state. We say that a function, f, is onto if each element in the
range is mapped to by at least one element in the domain. R.3 is onto because
every state has a state capital. Finally, a function is a bijection if it is both
one-to-one and onto. R.3 is a bijection because it is both one-to-one and onto.

11.4 Countable and Uncountable

As you can imagine, the study of formal languages involves infinite sets. We
must be careful about how we reason about infinite sets. At an intuitive level,
an infinite set is different from a finite set because all the members of the
infinite set cannot be listed in a finite amount of time. If you understand this
observation, then it is easy to see that the size or cardinality of a finite set is
less than the cardinality of an infinite set.

Two sets, A and B, have the same cardinality, |A| and |B|, if there is a
bijection between A and B. The existence of such a bijection informs us that
the sets are equinumerous. The concept of equinumerous is slippery when it
comes to infinite sets. Intuitively, it is easy to believe that the cardinality
of two infinite sets is the same. After all, both sets have a never-ending
number of elements. That is, they have the same size. Does this mean that
all infinite sets are equinumerous? It turns out that the answer is no. In other
words, there exist infinite sets, |C| and |D|, such that a bijection between
them does not exist. To intuitively understand this, consider the set of real
numbers, .R, and, .Z, the set of integers. Both sets are infinite, but they are not
equinumerous. That is, they do not have the same cardinality. How can we
prove this? It is tempting to say that .Z .⊂ .R and, therefore, there are more real
numbers than integers. Thus, .Z and .R do not have the same cardinality and
are not equinumerous. This, however, is fallacious reasoning. It says nothing
about whether or not there exists a bijection between .Z and .R. We need to
argue that a bijection does not exist. We shall hold off on this argument until
we learn about diagonalization proofs in the next chapter.

We can now formally define a finite set. A set, A, is finite if it is equinu-
merous with the first n elements of .N. We say that n is the cardinality of A.
For example, consider:

A = {f o r {m a l}}
There is a bijection, g, between A and {0 1 2 3}:

g(0) = f g(1) = o

g(2) = r g(3) = {m a l}
The |A| is 4, and A is, therefore, finite.

A set is infinite if it is not finite. The sets .R, .N, and .Z are infinite. There
is no bijection between the elements of these sets and the first n elements of
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.N. Are any of these sets equinumerous? .N and .Z are equinumerous. Observe
that despite .N .⊂ .Z, these sets are equinumerous. The following is a bijection,
.N → .Z, between these two sets:

.f(n) =

{
n
2 if n is even

−n+1
2 if n is odd

10 Consider the following sets:

S1 = {x | x is an even integer}
S2 = {x | x is an integer}

Do they have the same cardinality?

11 Consider the following sets:

S1 = {x | x is the square of an integer}
S2 = {x | x is the cube of an integer}

Do they have the same cardinality?

A set is countably infinite if it is equinumerous with .N. Intuitively, this
means that a program may be written to print out the members of the set.
The program, of course, will run forever, but if you wait long enough, any
arbitrary element of the set will eventually be printed.

.N is countably infinite. The FSM program to print the natural numbers
is displayed in Fig. 5. The function print-natnums takes no arguments and
returns (void) (because it is only called for the effect of printing to the
screen). It calls a local auxiliary function, printer, with 0 to print the natural
numbers starting at 0. This function traverses the natural numbers starting
with the given natural number. If the given natural number is positive infinity
(i.e., +inf.0), the function halts and returns (void). Otherwise, it prints
the given natural number and recursively processes the next natural number.
Given enough time and memory, a call to print-natnums, (print-natnums),
runs forever, but eventually it will print any arbitrary natural number.

A set is countable if it is finite or it is countably infinite. A set is un-
countable if it is not countable. Intuitively, a set is uncountable if a program
that eventually prints any arbitrary element cannot be written. To demon-
strate that a set is countable, it suffices to write a program to print its
elements guaranteeing that eventually any arbitrary element is eventually
printed. Sometimes, this requires careful design and creativity. For instance,
consider the following sets:
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Fig. 5 A program to print the natural numbers
#lang fsm

;; → (void)
;; Purpose: Print the natural numbers
(define (print-natnums)

;; natnum → (void)
;; Purpose: Print the natural numbers starting with
;; the given natural number
(define (printer n)

(if (= n +inf.0)
(void)
(begin

(displayln n)
(printer (add1 n)))))

(printer 0))

EVENNATS = {2n | n ∈ N}
MULTSOF3 = {3n | n ∈ N}

A∗ = {w | w ∈ a∗}
BIGSET = EVENNATS ∪ MULTSOF3 ∪ A∗

Is BIGSET countable? We can observe that EVENNATS, MULTSOF3, and A.* are
countable. The proof is displayed in Fig. 6.4 To prove that BIGSET is count-
able, we need a program to print its elements. A possible design prints the
even natural numbers, then the multiples of 3, and then the elements of a.*

as follows:

;; → (void)

;; Purpose: Print the elements of BIGSET

(define (print-bigset)

(begin

(print-even-natnums)

(print-mults3)

(print-a*)))

Unfortunately, this design does not work. Only the elements of the even
natural numbers are ever printed. The multiples of 3 and the elements of A.*

are never printed. Therefore, the above program fails to prove that BIGSET
is countable. We need to return to the design table or argue that BIGSET is
uncountable.

A dovetailing strategy yields a different design. The idea is to smoothly fit
together printing members of all three sets before moving forward with the

4 The evaluation of (build-list n (.λ (i) #.\a)) produces a list with n a characters. The
function list->string converts a list of characters into a string.
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Fig. 6 Printing even natural numbers, multiples of 3, and a.* elements
#lang fsm

;; → (void)
;; Purpose: Print the even natural numbers
(define (print-even-natnums)

(define (printer n)
;; natnum → (void)
;; Purpose: Print the multiples of 2 starting with the
;; multiple of 2 for the given natural number
(if (= n +inf.0)

(void)
(begin

(displayln (* 2 n))
(printer (add1 n)))))

(printer 0))

;; → (void)
;; Purpose: Print the multiples of 3
(define (print-mults3)

;; natnum → (void)
;; Purpose: Print the multiples of 3 starting with the
;; multiple of 3 for the given natural number
(define (printer n)

(if (= n +inf.0)
(void)
(begin

(displayln (* 3 n))
(printer (add1 n)))))

(printer 0))

;; → (void)
;; Purpose: Print the elements of a*
(define (print-a*)

;; natnum → (void)
;; Purpose: Print words of a’s starting with the word
;; with the given number of a’s
(define (printer n)

(if (= n +inf.0)
(void)
(begin

(displayln (list->string (build-list n (λ (i) #\a))))
(printer (add1 n)))))

(printer 0))

next element of any set. Recall that all three sets are countable. This means
that each set is equinumerous with .N and, therefore, there is a bijection from
the natural numbers to the member of each set. This suggests the program
can print an element of each set as it traverses the natural numbers. Given a
natural number, n, print the n.th element of EVENNATS, of MULTS3, and of A.*,
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and then continue traversing the natural numbers. The result of this design
is:

;; → (void)

;; Purpose: Print the elements of BIGSET

(define (print-bigset)

;; natnum → (void)

;; Purpose: Print the elements of EVENNATS, MULTS3, and

;; A* starting with the elements indexed by

;; the given natural number

(define (printer n)

(if (= n +inf.0)

(void)

(begin

(displayln (* 2 n))

(displayln (* 3 n))

(displayln

(list->string (build-list n (λ (i) #\a))))
(printer (add1 n)))))

(printer 0))

It is clear that eventually any arbitrary element of BIGSET is printed by the
above program. Thus, we may conclude the BIGSET is countable.

Dovetailing is a powerful design technique. Consider the set of integer
points, (x, y), in a two-dimensional Cartesian plane. Is this set countable?
We can observe that there are four quadrants. An initial attempt to develop
an algorithm to print all the integer points may suggest printing the points in
the first quadrant, then in the second quadrant, then in the third quadrant,
and finally in the fourth quadrant. Unfortunately, such a design fails because
the points in each quadrant are infinite. Therefore, if possible, the points in
the first quadrant are printed, but none of the points in other quadrants are
ever printed. If this set is countable, we need a different design. The set of
integer points is infinite, and you ought to consider dovetailing. We need to
progressively print the points in each of the four quadrants. How can this be
done? We can think of the Cartesian plane consisting of incrementally bigger
squares outlined by integer points defined by their distance from the origin.
The first square contains the points that vary either on the x or on the y

only by 0 (i.e., only the origin). The second square contains the points that
vary either on the x or on the y only by 1. The third square contains the
points that vary either on the x or on the y only by 2. The process continues
in this manner until the distance used to define the square reaches positive
infinity. How can the points be printed using this design? Figure 7 displays
an ordering to print all the integer points. The algorithm starts by printing
the origin. The blue arrows illustrate the order in which to print the points.
Following the blue arrows dovetails around all four quadrants printing the
integer points that outline increasingly lager squares. It is not difficult to
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Fig. 7 Dovetailing to print the integer pairs in a 2D Cartesian plane

x axis

y axis

see that eventually any arbitrary integer point is printed. In essence, the
integer points of a square in all four quadrants are printed before moving
onto increasing the length of the square by 1. This algorithm proves that the
set of integer points is countable.

12 Prove that the set of integer points in the first quadrant is countable.

13 Prove that the set of finite subsets of .N is countable.

14 Prove that A = {1 2 3 4 5} is countable.

15 Consider the following alphabet:

Σ = {a b}
Prove that Σ.

* is countable.

16 Prove that the union of a countably infinite number of countably
infinite sets is countable.

17 Design and implement a function to print the integer pairs in a 2D
Cartesian plane.



Chapter 3

Types of Proofs

A proof is an argument that establishes that a hypothesis is true. It uses
assumptions to reach a conclusion. Developing a proof can be challenging.
There are, however, some fundamental proof techniques that can help guide
the process. There are formal logic proofs, mathematical induction proofs, pi-
geonhole principle proofs, proofs by contradiction, and diagonalization proofs.
This is not an exhaustive list of the types of proofs that exist, but it is the list
of proof types you need to be aware of to successfully navigate this textbook.
Do not worry if you are not an expert at writing proofs. You shall learn as
you progress through this textbook.

When developing a proof, it is important to precisely state the assumptions
and state the conclusion (the statement you want to prove). Failing to do so is
tantamount to writing a function without knowing its inputs and its purpose.
Writing precise statements takes practice, and you ought to be patient with
yourself as you learn.

12 Formal Logic Proofs

Logic may be defined as the study of (correct) reasoning. Formal logic is
based on inferences that can be proven to always be true. For the purposes of
this textbook, we are mostly interested in proving conjunctions, disjunctions,
implications, and equivalences.

A conjunction that is true means that all input statements are true. It is
denoted using .∧ between the statements. For example, for two statements, A
and B, their conjunction is A .∧ B. It is read as A and B. If we know that A and
B are true, then we may conclude that A .∧ B is true. An arbitrary statement,
of course, may or may not be true. What is the value of a conjunction when
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one of its inputs is false? The following is the truth table for .∧ with two input
statements:

.

A B A ∧ B

False False False
False True False

True False False

True True True

The table informs us that a conjunction is true only when all its input state-
ments are true. Otherwise, it is false. This means that if we wish to prove a
conjunction true, we must demonstrate that the input statements are true.
For instance, consider proving the following conjunction:

28 + 2 + 1 = 31 ∧ 2 * 3 + 4 = 10

We must prove that 28 + 2 + 1 = 31 is true and that 2 * 3 + 2 = 10 is
true. To prove an equality is true, we can make both sides of the equality the
same without moving elements from one side of the = to the other side.5 To
achieve this, we can work with the left-hand sides as follows:

28 + 2 + 1 = 31 ∧ 2 * 3 + 4 = 10

30 + 1 = 31 ∧ 6 + 4 = 10

31 = 31 ∧ 10 = 10

Clearly, 31 = 31 is true and 10 = 10 is true. Thus, we may conclude that
the conjunction above holds (i.e., it is true).

1 Prove the following:

1. 3 * 5 + 7 * 8 .�= 100 .∧ .
60 + 6

3
= 22

2. A .∧ A = A
3. A .∧ (9 * 9 = 91) = False

A disjunction that is true means that any of its input statements are
true. It is denoted using .∨ between the statements. For example, for two
statements, A and B, their disjunction is A .∨ B. It is read as A or B. The
following is the truth table for .∨ with two input statements:

.

A B A ∨ B
False False False

False True True

True False True
True True True

5 Remember that the rules of algebra are only valid if we know that both sides of the
equality are the same value.
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The table informs us that a disjunction is true if any of its input statements
are true. Otherwise, it is false. This means that if we wish to prove a disjunc-
tion true, we must demonstrate that at least one of its input statements is
true. For instance, consider proving the following disjunction:

7 + 1 + 3 > 20 ∨ -2 * 2 + 4 ≥ 0 ∨ x ≥ x + x + x

We must prove that one of the statements is true. We can simplify the in-
equalities as follows:

7 + 1 + 3 > 20 ∨ -2 * 2 + 4 ≥ 0 ∨ x ≥ x + x + x

8 + 3 > 20 ∨ -4 + 4 ≥ 0 ∨ x ≥ x + 2x

11 > 20 ∨ 0 ≥ 0 ∨ x ≥ 3x

Clearly, 0 .≥ 0. Therefore, we may conclude that the disjunction holds.

2 Prove the following:

1. 3 * 5 + 7 * 8 .�= 100 .∨ .
60 + 6

3
= 22

2. A .∨ (A .∧ A) = A
3. A .∨ (9 * 9 = 81) = True

An important logical statement that we must know how to prove is an
implication: A .⇒ B. It is read as A implies B. A is called the antecedent, and
B is called the consequent. It states that if A is true, then B is also true. The
truth table for implication is:

.

A B A ⇒ B

False False True

False True True

True False False
True True True

This table informs us that to prove that an implication is true, we must
prove that when the antecedent is true, then the consequent is also true. If
this is achieved, then the third line of the truth table does not occur, and the
implication is always true. Observe that if the antecedent is false, then the
value of the consequent does not matter because the implication is always
true. Therefore, to prove an implication holds, we assume the antecedent
is true and demonstrate that the consequent is true. For instance, consider
proving the following implication:

3x - 9 ≥ 0 ⇒ x ≥ 3



46 3 Types of Proofs

Assume that 3x - 9 .≥ 0 is true. We must show that x .≥ 3 is true. Given
that we have assumed that the antecedent is true, we are free to manipulate
it (e.g., using algebra):

3x - 9 ≥ 0 ⇒ x ≥ 3

3x ≥ 9 ⇒ x ≥ 3

x ≥ 3 ⇒ x ≥ 3

Clearly, if x .≥ 3 is true on the left-hand side of the implication, it is also
true on the right-hand side of the implication. Therefore, we may conclude
that the implication holds.

3 Prove that x is a multiple of 31 greater than 0 .⇒ x .> 10.

4 Prove that A .⊆ B .⇒ A .∩ C .⊆ B.

5 Prove that if .|x - 5.| .> 0, then x .> 5 .∨ x .< -5.

6 Prove that 3 = 4 .⇒ 10 = 10.

7 Prove that x .< y .∧ y .< z .⇒ x .< z.

Another important logical statement that we must know how to prove is
logical equivalence: A .⇔ B. It is read as A is equivalent to B. It is shorthand
notation for the conjunction of two implications:

A ⇒ B ∧ B ⇒ A

The truth table for logical equivalence is:

.

A B A ⇔ B

False False True

False True False

True False False
True True True

A logical equivalence holds when both input statements have the same value.
To prove that an equivalence holds, we must eliminate the possibility that
lines 2 and 3 in the table above can occur with the given statements. Observe
that if A .⇒ B holds, then the input statements cannot satisfy line 3 in the
table above. Similarly, if B .⇒ A holds, then the input statements cannot
satisfy line 2 in the table above. Therefore, the table informs us (as you might
have suspected) proving logical equivalence requires proving two implications.
Each requires an independent and separate proof.

For instance, consider proving the following equivalence for a natural num-
ber x:

x is a square ⇔ √
x∈ N
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We must prove that:

1. x is a square .⇒ .
√
x .∈ N

2. .
√
x ∈ N ⇒ x is a square

To prove the first implication, we assume x is a square and show that
.
√
x ∈ N:

x is a square ⇒ x = k * k, k ∈ N

⇒ √
x = k

⇒ √
x ∈ N

The above chain of implications proves that the first implication holds. For
the second implication, assume .

√
x ∈ N is true, and show that x is a

square:
√
x ∈ N ⇒ x = k * k

⇒ x = k2

The above chain of implications establishes that x is a square. Given that
we have established both implications, we may conclude that the equivalence
holds.

8 Prove that A .⇒ B .⇔ .¬A .∨ B, where .¬A is the negation of A (if A
is false, then .¬A is true, and if A is true, then .¬A is false).

9 Prove that x.∈ N is a cube .⇔ 3
√
x ∈ N.

10 Prove that w .∈ L1 .∧ w .∈ L2 .⇔ L1 .∩ L2 .�= ∅.

Finally, we may use universal and existential quantification. Universal
quantification states that for all members of a set, some predicate holds.
For instance, we may define a set as follows:

M4 = {n | n ∈ N ∧ n is a multiple of 4}
We can make statements about all the members of M4 such as:

∀ n ∈ M4 n = 2k, where k ∈ N

This states that all elements in M4 are even. To prove a statement using
universal quantification, we must argue that the statement is true for an
arbitrary member of the set. Let us prove the above statement:

Let x be an arbitrary member of M4.

x ∈ M4 ⇒ x = 4h

⇒ x = 2*2*h

⇒ x = 2k, where k = 2h
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The chain of implications establish that x is an even number. Given that x
is an arbitrary element of M4, we may conclude that all elements of M4 are
even.

Existential quantification states that there exists a member of the set for
which a predicate holds. For example, we may make the following statement:

∃ n ∈ M4 n is a multiple of 5

This statement says that there exists an element of M4 that is a multiple of 5.
To prove a statement using existential quantification, we must demonstrate
that a specific member of the set satisfies the predicate. Let us prove the
statement above:

Let x = 20.

x = 20 ⇒ x = 4 * 5

⇒ x ∈ M4 ∧ x is a multiple of 5

The implications establish that 20 is a member of M4 and that it is a multiple
of 5. This means that the statement above holds. There is at least one value
n for which the predicate holds.

13 Mathematical Induction Proofs

Formally, we define the set of natural numbers, .N, as follows:

A natural number is either:

1. 0

2. n + 1, where n ∈ N

In essence, the definition states that 0 is a natural number and that .n ∈ N ⇒
n+1 ∈ N. We say that 0 is a base instance of .N. That is, it is a value known to
be in the set. A set, of course, may have more than one base value. Values that
are not base values (let us call them inductive values) must be constructed
from other elements in the set. The following chain of implications establishes
that 5 is a natural number:

0 ∈ N ⇒ 1 ∈ N

⇒ 2 ∈ N

⇒ 3 ∈ N

⇒ 4 ∈ N

⇒ 5 ∈ N

Consider proving that a predicate (or statement) is true for all the natural
numbers. What is required? The definition of a natural number defines two
subtypes: the base instance and inductive instances. This suggests that such
a proof must have two parts. The first part establishes that the predicate
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holds for the base value (i.e., 0). This is called the base case (of the proof).
The second part must establish that the predicate holds for the inductive
instances. This is called the inductive step. The second part, however, requires
special care. We cannot exhaustively prove the predicate for all inductive
instances:

Prove P(1) holds

Prove P(2) holds

Prove P(3) holds

Prove P(4) holds
...

Clearly, we would never finish a proof because the natural numbers are in-
finite. What can we do? We must rely on the implication suggested by the
data definition:

n ∈ N ⇒ n + 1 ∈ N

What does this suggest? It suggests that we must show the following impli-
cation holds:

P(n) holds ⇒ P(n+1) holds

The good news is that we know how to prove an implication. In this case,
we assume P(n) holds, and we must show that P(n+1) holds. P(n) is called
the inductive hypothesis. This is the principle of mathematical induction. We
may summarize it as follows:

1. Prove the base case.
2. The inductive step:

a. State, P(k), the inductive hypothesis.
b. State, P(k+1), what must be proven.
c. Assume P(k) is true and prove P(k+1).

It is important to note that the inductive hypothesis is not valid just for k.
It is valid for all values in [0..k].

13.1 Computing n2

The FSM program displayed in Fig. 8 is a function that takes as input a
natural number n and that returns n.2. Its body is a conditional expression
that tests if n is 0. If so, it returns 0. Otherwise, it returns the sum of the
next odd number, 2n - 1, and the result of recursively processing n - 1.
If you run the program, the unit tests pass. Do you believe it works for all
natural numbers?
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Fig. 8 A function to compute n2

#lang fsm

;; natnum → natnum
;; Purpose: Compute the square of the given natnum
(define (square n)

(if (= n 0)
0
(+ (sub1 (* 2 n)) (square (sub1 n)))))

;; Tests
(check-equal? (square 0) 0)
(check-equal? (square 5) 25)
(check-equal? (square 100) 10000)

We can develop a proof by induction to establish that the function square

works for all natural numbers (assuming we have enough memory to carry
out the computation). We start by stating what we wish to prove:

Theorem 1 (square n) returns n.2.

The next step is to establish the base case:

Proof
Base Case: n = 0

If n = 0, then (square n) = (square 0) returns 0 = 0.2 = n.2. �
Having established the basis for our proof, we develop the inductive step:

Proof
Inductive Step:

Assume: (square k) returns k.2, for n = k .≥ 0.

Show that: (square (add1 k)) returns (add1 k).2.

k .≥ 0 .⇒ (add1 k) .> 0
.⇒ (square k+1) returns (+ (sub1 (* 2 (add1 k))) (square k))

.⇒ (square k+1) returns (+ (sub1 (+ (* 2 k) 2)) k.2)

.⇒ (square k+1) returns (+ (+ (* 2 k) 1)) k.2)

.⇒ (square k+1) returns (add1 k).2 �
The inductive hypothesis assumes that the function works for a valid input
greater than or equal to 0. We must prove that the function works for k + 1.
The chain of implications start by observing that k + 1 is greater than 0. This
means the function returns the value of the else-branch of its conditional. This
value is k.2 + 2k + 1 = (k + 1).2. Thus, we may conclude that the function
works for all natural numbers.
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Fig. 9 A function to compute n!
#lang fsm

;; natnum → natnum
;; Purpose: Compute n!
(define (fact n)

;; natnum natnum → natnum
;; Purpose: Compute the factorial of the given natural number
;; Accumulator Invariant
;; accum = Πn

i=j+1 i
(define (helper j accum)

(if (= j 0)
accum
(helper (sub1 j) (* j accum))))

(helper n 1))

(check-equal? (fact 0) 1)
(check-equal? (fact 5) 120)
(check-equal? (fact 10) 3628800)

13.2 Computing n!

The FSM program displayed in Fig. 9 computes the factorial of a natural
number, n, using accumulative recursion. The function fact takes as input a
natural number, and its body calls the local auxiliary function helper. The
function helper takes as input two natural numbers and returns a natural
number. It computes the factorial of the first given number using an accumu-
lator (the second given number). These inputs, respectively, start at n and 1.
If the first given number, j, is 0, the accumulator, accum, is returned. Oth-
erwise, j - 1 is recursively processed with the product of j and accum as
the new value of the accumulator. If you run the program, all the unit tests
pass. This gives us cautious optimism that the program works. However, do
you believe it works for all natural numbers?

Proving that this program works for all natural numbers hinges on proving
that the accumulator invariant, accum = Πn

i=j+1i, holds every time helper

is called. Note that:

Πn
i=1 i = 1 * 2 * 3 * . . . * n-1 * n

How do we know that proving the accumulator invariant holds for every call
to helper suffices to establish program correctness? Consider when helper

halts. This occurs when j = 0. If the invariant holds, we have:

j = 0 ∧ accum = Πn
i=j+1 i

⇒ accum = Πn
i=0+1 i

⇒ accum = Πn
i=1 i

⇒ accum = n!

Thus, if the invariant holds every time helper is called, n! is returned.
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Fig. 10 Proof that the accumulator invariant holds when helper is called

Theorem 2 accum = Πn
i=j+1i holds very time helper is called

Proof
Base Case: n = 1
If helper is only called once then according to the code it must be the case that j = 0
and accum = 1. This means that:

Πn
i=j+1i = Π0

i=1i

= 1
= accum

Therefore, the invariant holds for the base case.
Inductive Step
Assume: accum = Πn

i=j+1i holds for n = k ≥ 1 calls to helper
We must show: accum = Πn

i=ji holds for k+1 calls to helper

The only way a (k + 1)th call is made is if k  = 0.
This means that the condition in the code is false and the value returned is:

(helper (sub1 j) (* j accum))
= (helper (sub1 j) (* j Πn

i=j+1i)), by inductive hypothesis
= (helper (sub1 j) Πn

i=ji)
Note that we precisely know the values helper is given for the k + 1 call. Observe that
in the k + 1 call the parameter j takes the value of j - 1. j - 1, however, has not been
processed. This means that in our last statement above every j must be substituted with
j + 1 to reflect the last value processed in relation to the new value of j. This yields:

(helper j Πn
i=j+1i)

Therefore, the invariant holds for the k + 1 call. �

To prove the invariant always holds, we develop a proof by induction on
the number of times helper is called. The proof is displayed in Fig. 10. It is
noteworthy that the base case is n = 1 (not 0), because when fact is called,
the minimum number of times helper is called is 1. To clarify the end of the
inductive step, carefully consider the transition from the k.th call to the (k

+ 1).th call to helper. For the k.th call, the invariant is expressed in terms
of the value of j. The value of j changes to j-1 when control is transferred
to the (k + 1).th call. The value that was called j in the k.th call is j+1

in the (k+1).th call. For example, assume that for the k.th call, j is 5. The
invariant is expressed in terms of the current value of j (i.e., 5). That is, the
validity of the invariant depends on 5. For the (k + 1).th call, j becomes 4.
The validity of the invariant, however, still depends on 5. That is, in the (k

+ 1).th call, the validity of the invariant depends on j + 1 (i.e., 5).
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11 Prove that the following FSM program computes the sum of the first
n natural numbers:

#lang fsm

;; natnum → natnum

;; Purpose: Compute the sum of the first n natural

;; numbers

(define (sum-natnums n)

(if (= n 0)

0

(+ n (sum-natnums (sub1 n)))))

(check-equal? (sum-natnums 0) 0)

(check-equal? (sum-natnums 5) 15)

(check-equal? (sum-natnums 20) 210)

12 The Fibonacci numbers are defined as follows:

A Fibonacci number is either:

1. 0

2. 1

3. the sum of the 2 previous Fibonacci numbers

Prove that the following FSM program computes the nth Fibonacci
number:

#lang fsm

;; natnum → natnum

;; Purpose: Compute the nth Fibonacci number

(define (fib n)

(if (< n 2)

n

(+ (fib (sub1 n)) (fib (- n 2)))))

(check-equal? (fib 0) 0)

(check-equal? (fib 1) 1)

(check-equal? (fib 5) 5)

(check-equal? (fib 10) 55)

13 An interval is a set of numbers defined as follows:

An interval is two integers, low and high, such that

it is either:

1. empty (i.e., low > high)

2. [[low..high-1]..high]
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The data definition states that an interval is empty when low .>
high. [5..4], for example, is an empty interval. When an interval is
not empty, it consists of the subinterval [low..high-1] and high. The
nonempty interval [12..20] = the numbers in [12..19] .∪ {20}.

Prove that the following FSM program computes the sum of the
integers in the given interval:

#lang fsm

;; natnum → natnum

;; Purpose: Compute the sum of the integers in the

;; given interval

(define (sum-interval low high)

;; integer integer → integer

;; Purpose: Compute the sum of the integers in

;; [low..k]

;; Accumulator Invariant

;; acc = Σ
high
i=k+1 i

(define (helper k acc)

(if (< k low)

acc

(helper (sub1 k) (+ k acc))))

(helper high 0))

(check-equal? (sum-interval 5 4) 0)

(check-equal? (sum-interval 1 3) 6)

(check-equal? (sum-interval -4 2) -7)

14 Pigeonhole Principle Proofs

Imagine that in a colony of pigeons, you have 50 pigeons and 45 pigeonholes.
Clearly, it is impossible to place each pigeon in its own pigeonhole. Some pi-
geons will have to share a pigeonhole – an uncomfortable fate for the unlucky
pigeons. Observe that a one-to-one function from the set of pigeons to the
set of pigeonholes does not exists. This observation leads to the pigeonhole
principle.

Theorem 2 A and B are finite sets .∧ |A| .> |B| .⇒ .� a one-to-one function
from A to B.

The symbol .� denotes the existential quantifier does not exist.
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We shall prove the theorem by induction on n = |B|.

Proof
Base Case: n = 0 (i.e., B = .∅)
There is no function from A to B, because nothing can be mapped to elements
of B. If there is no function from A to B, then there is no one-to-one function
from A to B.
Inductive Step
Assume: f: A .→ B is not a one-to-one function such that |A| .> |B|, |B| .≤
n, and n .≥ 0.
We must show: f: A .→ B is not a one-to-one function such that |A| .> |B|

.= n+1.

Observe that A has at least two elements because n+1 .> 0. Pick two distinct
arbitrary elements, a and b, from A. If f(a) .= f(b), then f is not one-to-one
(because two distinct elements of A map to the same element in B). If f(a)
.�= f(b), suppose that a is the only element mapped to f(a). Consider the
sets A' = A - {a} and B' = B - {f(a)} and a function f' such that .∀ x .∈
A' f'(x) = f(x). The inductive hypothesis applies because |B'| = n and
|A'| .> |B'|. This means that there are two distinct elements in A' that are
mapped by f' to the same element of B'. Given that f agrees with f' on all
elements, it follows that f is not one-to-one. �

The pigeonhole principle may be a rather simple fact, but it is incredi-
bly versatile. It has been used in a great number of proofs. We present a
straightforward application of the pigeonhole principle.

Theorem 3 Let G be a graph with n nodes. Any path with n edges has a
repeated node.

Proof Every edge connects two nodes (not necessarily distinct nodes). This
means that n edges connect n+1 nodes. By the pigeonhole principle, there is
no one-to-one function from the nodes in the path (the pigeons) to the nodes
in the graph (the pigeonholes). Therefore, we may conclude that there is at
least one node repeated in the path. �

14 Prove that in a room with 367 people, there is at least one pair of
persons with the same birthday.

15 Prove that in a room with n .> 1 people that may shake hands with
each other, there is always a pair of persons that shake hands with the
same number of people.

16 Prove that for every 27-word sequence in this textbook, at least 2
words start with the same letter.
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15 Proofs by Contradiction

A proof by contradiction proves that a statement holds by showing that as-
suming that the statement is false is absurd. That is, it leads to a contradic-
tion. It is also known as reductio ad absurdum. It is based on the observation
that a statement cannot be both true and false. That is, a statement, S, and
its contradiction, .¬S, cannot both be true. A proof by contradiction estab-
lishes that the negation of a statement leads to such a contradiction. That
is, assuming S is false leads to concluding that a statement A, which we know
to be false, is true. This means that our assumption must be wrong and,
therefore, S must be true. As an illustrative example, we prove that .

√
2 is an

irrational number.

Theorem 4 .
√
2 is an irrational number.

Proof
Assume .

√
2 is a rational number.

If .
√
2 is rational, then it can be expressed as a fraction, .

a
b , in lowest terms

for a,b .∈ Z. Observe that at least one of a and b must be odd. Consider:
.
a
b = .

√
2

.
a2

b2 = 2
.a2 = 2.b2

This means that .a2 is even. Observe that this also means that a is even be-
cause a * a must be divisible by 2 (if a were odd, then a * a would not be
divisible by 2).

Given that a is even and .
a
b is in lowest terms, b must be odd (otherwise,

a and b have 2 as a common factor).

Observe that .a2 is a multiple of 4:
.a2 = .a ∗ a

= .2j ∗ 2j
= .4j2

This means that 2.b2 is a multiple of 4. We observe that b must be even given
that if it were odd, b could equal 3 which means 2.b2 is not a multiple of 4
(i.e., 2(3).2 = 18 which is not a multiple of 4).

It is impossible, however, for b to be both odd and even. Therefore, our
assumption cannot be true, and we may conclude that .

√
2 is an irrational

number. �
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Fig. 11 The diagonal set of a relation
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17 Prove by contradiction that the sum of two even numbers is always
even.

18 Prove by contradiction that there are no values x and y such that
24y + 12z = 1. Hint : If you assume that two such values exist, then
you may use algebra.

16 Diagonalization Proofs

A binary relation on a set A may be visualized as a matrix whose rows and
columns are labeled with the elements of A. If i is related to j, then the
entry in row i and column j contains an x. Figure 11 is the visualization of a
binary relation on A = {a b c d e f g}. We can observe, for example, that
a is related to a and c, that e is only related to d, and that f is not related
to c, d, f, and g.

The main diagonal of the binary relation visualization defines two sets:
those elements that are related to themselves and those elements that are
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not related to themselves. We may formally define these sets for a relation R

as follows:

D = {a | (a, a) ∈ R}

D̂ = {a | (a, a) /∈ R}
We refer to D as the diagonal set and D̂ as the complement of the diagonal
set. In Fig. 11, the main diagonal is highlighted with a dashed oval. We have
that the diagonal and the complement of the diagonal sets are:

D = {a c g}

D̂ = {b d e f}
The diagonalization principle states that D̂ is not equal to any row in the

visualization. In other words, if R.a is the set of elements a is related to, then
D̂ .�= R.a. You can visually confirm that D̂ for the relation in Fig. 11 is different
from every row (i.e., different from R.a–R.g).

The diagonalization principle is used as part of a proof by contradiction.
A statement is assumed to be true, and diagonalization is used to develop
a contradiction. To illustrate diagonalization in practice, we shall prove that
the real numbers in (0..1) are uncountable. We shall use a well-known fact
for computer scientists: every real number in (0..1) may be written as a
binary number of infinite length.

Theorem 5 The set of real numbers in (0..1) is uncountable.

Proof
Assume the set of real numbers in (0..1) is countable.

This means there exists a program to print these numbers that eventually
prints any arbitrary binary digit of any real number in (0..1). The printing
of these real numbers looks as follows:

1. .0 0 0 1 0 1 1 . . .
2. .1 1 0 1 0 0 0 . . .
3. .0 1 0 0 0 0 0 . . .
4. .0 1 1 0 0 0 1 . . .
5. .0 0 0 0 1 1 0 . . .
6. .1 1 1 1 1 1 1 . . .
7. .1 1 0 0 0 0 0 . . .

...

Observe that the binary digits form a matrix. Consider the real number rep-
resented by D̂. D̂ cannot ever equal an arbitrary row i in the matrix of printed
numbers because their i.th bits differ. This means that the real number rep-
resented by D̂ is never printed. This contradicts the assumption made that
the set of real numbers in (0..1) is countable and, therefore, the set of real
numbers in (0..1) is uncountable. �
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Recall that in the previous chapter, we tabled the discussion on whether
or not .R and .Z are equinumerous. Observe that the proof above means that
there is no bijection between .N and .R (also see problem 20). That is, .N and
.R are not equinumerous. We know from the previous chapter that .N and .Z

are equinumerous. Therefore, there does not exist a bijection between .R and
.Z meaning that these sets are not equinumerous.

19 Prove that 2.N is uncountable.

20 Prove that .R is uncountable.

21 Prove that if .|A.| = .∞, then 2.A is uncountable.



Part II

Regular Languages



Chapter 4

Regular Expressions

In everyday life, we think of English as a language that consists of a set of
words. Each word is a string of juxtaposed letters found in the Roman alpha-
bet: [a..z]. As a computer science student and reader of this textbook, you
are familiar with other languages. For example, you are familiar with vari-
ous programming languages, and you are familiar with the binary language.
The words of the binary language, for example, are binary numbers. Each
binary number is a finite number of juxtaposed elements found in the binary
alphabet: {0 1}.

Defining English words as strings is, of course, a representation choice.
Recall, for example, that in FSM a word is represented as a list of alphabet
elements. Consider three different representations of the word cat:

English: "cat"

FSM: '(c a t)

Binary: 011000110110000101110100

In binary, the word cat is obtained by juxtaposing the ascii code for each of
its letters. The representations of cat are different, but the same concept is
being represented. That is, the representation does not change the meaning.
A language, therefore, may be represented as a set of strings, a set of lists,
or a set of binary numbers. Regardless of the representation, the same words
in the English language are represented.

Languages are represented using a finite representation. If a language is
finite, listing all the words in the language is a finite representation. Many
interesting languages, however, are not finite. That is, they contain an infi-
nite number of words. A finite representation for infinite languages is needed
because all the words in an infinite language cannot be listed. A finite rep-
resentation for a language must be written using a finite number of symbols
and must be different from the representation used for any other language. If
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Σ is an alphabet used to write the finite representations of languages, then all
possible finite language representations are defined as Σ*. This means that
the language of finite language representations is countably infinite (they can
be printed in alphabetical order like the words in a complete English dic-
tionary). 2Σ

*

, however, is uncountable. So, there are a countable number of
finite language representations and an uncountable number of languages to
represent. Therefore, a finite representation for each language does not exist.
The best that we can achieve is to develop a finite representation of some
interesting languages. As long as a representation is finite, the majority of
languages cannot be represented.

17 Defining Languages Using Union and Concatenation

17.1 Constructors

We start by considering languages formed by the union or the concatenation
of words in two (not necessarily distinct) languages. Such languages may be
finitely represented using regular expressions. A regular expression, over an
alphabet Σ, is an FSM type instance:

1. (empty-regexp)

2. (singleton-regexp "a"), where a∈Σ
3. (union-regexp r1 r2), where r1 and r2 are regular

expressions

4. (concat-regexp r1 r2), where r1 and r2 are regular

expressions

5. (kleenestar-regexp r), where r is a regular expression

Each regular expression subtype is built using a distinct constructor. The
language of a regular expression, r, is denoted by L(r). It contains all the
words that can be generated with r. A language that is described by a regular
expression is called a regular language.

The first regular expression describes the following language:

L((empty-regexp)) = {EMP}
That is, it is a language that only contains the empty word.

The constructor singleton-regexp is used to build a regular expression
for any element in Σ. It takes as input a string representing an element in
Σ. A singleton regular expression describes the following language:

L((singleton-regexp "a")) = {a}
That is, it is the language that only contains a.

If r1 and r2 are regular expressions, then a regular expression for L(r1)
∪ L(r2) is built using union-regexp. It describes the following language:

L((union-regexp r1 r2)) = {w | w∈L(r1) ∨ w∈L(r2)}
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That is, it represents the language that contains all the words in L(r1) and
all the words in L(r2).

If r1 and r2 are regular expressions, then concat-regexp builds a regular
expression for L(r1)L(r2). It describes the following language:

L((concat-regexp r1 r2)) = {w1w2 | w1∈L(r1) ∧ w2∈L(r2)}
That is, it is the language that contains all words constructed by concatenat-
ing a word in L(r1) and a word in L(r2).

If r is a regular expression, then a regular expression for zero or more con-
catenations of words in L(r) is built using kleenestar-regexp. It represents
the following language:

L((kleenestar-regexp r)) =

{{EMP} ∪ {w1w2 . . . wn | w1,w2, . . .,wn ∈L(r) ∧ n ≥ 1}}
That is, it is the language that contains all words constructed by concatenat-
ing zero or more words in L(r). Nothing else is a regular expression.6

17.2 Error Messages

FSM provides informative error messages to help you overcome the misuse of
constructors. When a constructor is misused, an error is thrown. This is a
sampling of FSM error messages for misuse of regular expression constructors:

.

> (union-regexp 2 (singleton-regexp w))
the input to the regexp #(struct:singleton-regexp w)
must be a string
> (union-regexp (empty-regexp) 3)
3 must be a regexp to be a valid second input to
union-regexp #(struct:empty-regexp) 3
> (concat-regexp 3 (empty-regexp))
3 must be a regexp to be a valid first input to
concat-regexp 3 #(struct:empty-regexp)
> (kleenestar-regexp "A U B")
"A U B" must be a regexp to be a valid input to
kleenestar-regexp
> (singleton-regexp 1)
the input to the regexp #(struct:singleton-regexp 1)
must be a string

6 In a future chapter, we shall discover the need for one more regular expression
variety: one to describe the empty language.
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17.3 Regular Expression Selectors and Predicates

The constructors for each regular expression subtype have been discussed. To
process a regular expression, however, we need to know the selector functions
to access its components, and we need predicates to distinguish between reg-
ular expression subtypes. The FSM selector functions for regular expressions
are:

singleton-regexp-a: Extracts the embedded string
kleenestar-regexp-r1: Extracts the embedded regular expression
union-regexp-r1: Extracts the first embedded regular expression
union-regexp-r2: Extracts the second embedded regular expression
concat-regexp-r1: Extracts the first embedded regular expression
concat-regexp-r2: Extracts the second embedded regular expression

The following predicates are defined to distinguish among the regular ex-
pression subtypes:

empty-regexp? singleton-regexp? kleenestar-regexp?

union-regexp? concat-regexp?

Each selector and predicate consumes a regular expression. The predicates
return a Boolean. They return true if the input is a regular expression of
the subtype tested. Otherwise, they return false. The selectors return a reg-
ular expression used to build an instance of a regular expression except
singleton-regexp-a that returns the string used to build the regular ex-
pression instance.

Armed with the constructors, selectors, and predicates for regular expres-
sions, we can write a template for functions on a regular expression:

;; regexp . . . → . . .
;; Purpose: . . .
(define (f-on-regexp rexp . . .)
(cond [(empty-regexp? rexp) . . .]

[(singleton-regexp? rexp)

. . .(f-on-string (singleton-regexp-a rexp)). . .]
[(kleenestar-regexp? rexp)

. . .(f-on-regexp (kleenestar-regexp-r1 rexp)). . .]
[(union-regexp? rexp)

. . .(f-on-regexp (union-regexp-r1 rexp)). . .

. . .(f-on-regexp (union-regexp-r2 rexp)). . .]
[else . . .(f-on-regexp (concat-regexp-r1 rexp)). . .

. . .(f-on-regexp (concat-regexp-r2 rexp)). . .]))

The function template reflects the structure of regular expressions. That is,
it puts forth the use of structural recursion to process a regular expression.
It suggests processing the embedded string for a singleton regular expres-
sion. For a Kleene star regular expression, it suggests recursively processing
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the embedded regular expression. Finally, for union and concatenation reg-
ular expressions, it suggests recursively processing both embedded regular
expressions.

17.4 Observers

A regular expression describes how a word in its language is generated. That
is, it describes a generating algorithm. Unlike most algorithms you have stud-
ied, a regular expression may describe a nondeterministic algorithm. That is,
it may describe an algorithm whose result is not fully predictable. FSM, how-
ever, does not burden programmers with implementing nondeterminism. It
provides functions that allow you to generate words from a given type of
regular expression. These are briefly outlined as follows:

(pick-regexp r): Nondeterministically returns a nested sub-regexp from the
given union-regexp. This includes any nested union-regexps in a chain
of union-regexps. For example, if the union-regexp is:

(union-regexp r1 (union-regexp r2 (union-regexp r3 r4)))

the selected regexp may be any of r1–r4.
(pick-reps n): Nondeterministically generates a natural number in [0..n].

Consult the FSM documentation in DrRacket for more detailed descriptions.
For convenience, FSM also provides the following function to generate a word
from a singleton-regexp:

(convert-singleton r): Converts the given singleton-regexp

to a word of length 1 containing r’s nested symbol or number.

Finally, FSM provides an observer for a printable version of a regular ex-
pression. By printable, interpret a string fit for humans to read. The following
table outlines the printable forms of regular expressions:

Regular expression Printable form
(empty-regexp) the value of EMP

(singleton-regexp a) " a"

(union-regexp r1 r2) (string-append (printable-regexp r1)
"U"
(printable-regexp r2))

(concat-regexp r1 r2) (string-append (printable-regexp r1)
(printable-regexp r2))

(kleenestar-regexp r) (string-append (printable-regexp r1) "*")

The FSM function printable-regexp returns a string representing the reg-
ular expression it is given as input. The following interactions illustrate how
printable-regexp works:
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> (printable-regexp (empty-regexp))

"ε"
> (printable-regexp (singleton-regexp "z"))

"z"

> (printable-regexp (union-regexp

(singleton-regexp "z")

(union-regexp

(singleton-regexp "1")

(singleton-regexp "q"))))

"(z U (1 U q))"

> (printable-regexp (concat-regexp (singleton-regexp "i")

(singleton-regexp "i")))

"ii"

> (printable-regexp (kleenestar-regexp

(concat-regexp

(singleton-regexp "a")

(singleton-regexp "b"))))

"(ab)∗"

18 Programming with Regular Expressions

Regular expressions are values in FSM. As such, you may design their compu-
tation using a top-down or a bottom-up divide-and-conquer approach. The
idea is to define a regular expression by parts. Just like a program is com-
posed of one or more functions or methods, a regular expression is composed
of one or more regular expressions. In this section, we explore how to design
and write regular expressions.

18.1 All Words Ending with an a

We can now build a finite representation for some infinite languages. For
example, consider the following language over Σ = {a b}:

L = {w | w ends with an a}
Can we program a regular expression for L?We shall follow a top-down design.
Every word in L must have at least one a at the end. Before the last a, there
can be an arbitrary number of as and bs. Assuming a regular expression can
be developed for both parts, the regular expression for L that concatenates
the languages for each part may be written as follows:

(define ENDS-WITH-A (concat-regexp AUB* A))



18 Programming with Regular Expressions 69

Fig. 12 The FSM program for L = {w | w ends with an a}
#lang fsm

(define A (singleton-regexp "a"))

(define B (singleton-regexp "b"))

(define AUB (union-regexp A B))

(define AUB* (kleenestar-regexp AUB))

(define ENDS-WITH-A (concat-regexp AUB* A))

(check-equal? (printable-regexp ENDS-WITH-A) "(a U b)*a")

The regular expression A must represent a. This is defined as follows:

(define A (singleton-regexp "a"))

AUB* must represent an arbitrary number of elements. This suggests defining
a kleenestar-regexp. This may be done as follows:

(define AUB* (kleenestar-regexp AUB))

AUB represents a choice between a word in L(A) and a word in L(B). Having
a choice suggests defining a union-regexp:

(define AUB (union-regexp A B))

Finally, B represents the singleton regular expression for "b". This is done as
follows:

(define B (singleton-regexp "b"))

The complete program for a regular expression for L is displayed in Fig. 12.

18.2 Binary Numbers

Consider the following language:

BIN-NUMS = {w | w is a binary number without leading zeroes}
Although the above definition may sound clear, it is lacking. It does not
provide any details about the structure of the binary numbers in the lan-
guage nor any indication on how to build such numbers. We shall attempt
to formally define BIN-NUMS using a regular expression using a bottom-up
divide-and-conquer approach.
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Fig. 13 A program defining binary numbers without leading zeroes
#lang fsm

(define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

(define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

(define STARTS1 (concat-regexp ONE 0U1*))

(define BIN-NUMS (union-regexp ZERO STARTS1))

(check-equal? (printable-regexp BIN-NUMS) "(0 U 1(0 U 1)*)")

18.2.1 Implementing a Regular Expression

Based on the problem statement, the following observations are made:

1. Σ = {0 1}.
2. The minimum length of a binary number is 1.
3. A binary number with a length greater than 1 cannot start with

0.

The second observation informs us that the empty regular expression is not
part of the language. The third observation informs us that there are two
subtypes of binary numbers in the set: 0 and those starting with 1 followed
by an arbitrary number of 0s and 1s.

The simplest regular expressions needed are for the elements of Σ. These
are all singleton regular expressions:

(define ZERO (singleton-regexp "0"))

(define ONE (singleton-regexp "1"))

An arbitrary number of 0s and 1s may be represented using a union and a
Kleene star regular expression:

(define 0U1* (kleenestar-regexp (union-regexp ZERO ONE)))

With the above definition, a regular expression for 1 followed by an arbitrary
number of 0s and 1s is:

(define STARTS1 (concat-regexp ONE 0U1*))

Finally, BIN-NUMS may be implemented by a union regular expression to
provide a choice among the subtypes:

(define BIN-NUMS (union-regexp ZERO STARTS1))

Figure 13 displays the complete program to define BIN-NUMS. When you run
the program, the test passes.
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1 Implement a regular expression for the language that contains all
words that start with one or more as and end with a b.

2 Let Σ = {a b}. Implement a regular expression for the language that
contains all words that have three bs.

3 Let Σ = {a b}. Implement a regular expression for the language that
contains all words of even length.

4 Let Σ = {0 1}. Implement a regular expression for the language that
contains all words that have a single 1.

5 Implement a regular expression for the language that contains all
words that represent the nonnegative integers.

6 Let Σ = {a b}. Implement a regular expression for the language that
contains all words that have a length less than or equal to 3.

18.2.2 Generating BIN-NUMS Words

Compare the two formulations for BIN-NUMS:

BIN-NUMS = {w | w is a binary number without leading zeroes}

BIN-NUMS = (0 ∪ 1(0 ∪ 1)∗)

Which do you believe is more useful? The truth is that both are useful. The
first provides a quick understanding of what the language BIN-NUMS repre-
sents. It lacks, however, any description for constructing words in BIN-NUMS.
In this regard, the second formulation is more useful. It describes an algorithm
for constructing binary numbers without leading zeroes. Either generate 0 or
generate 1 followed by an arbitrary number of 0s and 1s.

This means that a function to generate a random word in BIN-NUMS can
and ought to be implemented. We shall follow the steps of the design recipe
to write this program. To simplify the discussion, the maximum word length
shall have a default value of 10. We allow, however, for the user to define the
default maximum length through an optional parameter. Optional arguments
are accumulated in a list whose name appears after a . in the function header.
Based on this design idea, the next steps of the design recipe are outlined as
follows:
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;; [natnum>0] → word

;; Purpose: Generate a binary number without leading

;; zeroes

(define (generate-bn . n)

(define MAX-KS-REPS (if (null? n) 10 (first n)))
...

. . .)

Observe that the list of optional arguments is called n. The signature specifies
that an optional (in square brackets) natural number greater than 0 may be
given as input. The function returns a word that according to the purpose
statement is a binary number without unnecessary leading zeroes.

We are unable to write tests using check-equals? because words are
generated from regular expressions that require a nondeterministic choice to
be made. Specifically, a union-regexp requires a sub-regexp to be chosen,
and a kleene-star-regexp requires the number of repetitions to be chosen.
To validate such a function, we use property-based testing. That is, we shall
test that the generated words have the expected properties. To write tests,
we use rackunit’s check-pred. check-pred requires a predicate to test and
input for the predicate. If the predicate holds, the test passes. If the predicate
does not hold, then the test fails, and a failed test report is generated. Any
word, w, generated by generate-bn must have the following properties:

1. w is a list (i.e., it cannot be EMP).
2. 1 ≤ (length w).
3. w is '(0) or (first w) is 1.
4. w only contains 0s and 1s.

To test that a generated word represents a binary number, we ignore the
length limit. Following the steps of the design recipe yields the following
predicate:

;; word → Boolean

;; Purpose: Test if the given word is in L(BIN-NUMS)

(define (is-bin-nums? w)

(and (list? w)

(<= 1 (length w))

(or (equal? w '(0)) (= (first w) 1))

(andmap (λ (bit) (or (= bit 0) (= bit 1))) w)))

(check-equal? (is-bin-nums? '()) #f)

(check-equal? (is-bin-nums? '(0 0 0 1 1 0 1 0)) #f)

(check-equal? (is-bin-nums? '(0)) #t)

(check-equal? (is-bin-nums? '(1 0 0 1 0 1 1)) #t)

(check-equal? (is-bin-nums? '(1 1 1 0 1 0 0 0 1 1 0 1)) #t)
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This predicate is used to write the tests for generate-bn. Anything returned
by generate-bn must satisfy is-bin-nums?. The tests are:

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn))

(check-pred is-bin-nums? (generate-bn 10))

(check-pred is-bin-nums? (generate-bn 25))

(check-pred is-bin-nums? (generate-bn 5))

Although the tests all look the same, they are not the same test. Recall
that (generate-bn) is nondeterministic (i.e., the output value cannot be
predicted). Therefore, each test above is for a different word (not necessarily
distinct) returned by generate-bn.

BIN-NUMS is used in generate-bn’s body to generate valid binary numbers.
The task of generating these is delegated to an auxiliary function as follows:

(gen-word BIN-NUMS)

As you may have already realized, gen-word must be able to process
any regexp subtype that is part of the BIN-NUMS: singleton-regexp,
concat-regexp, union-regexp, and kleenestar-regexp. The template for
a function on a regexp is specialized. To process a singleton-regexp,
convert-singleton is used. To process a concat-regexp, a word is gen-
erated using each embedded regexp, and they are appended. To process a
union-regexp, a recursive call is made with one of the sub-regexps non-
deterministically chosen by pick-regexp. To process a kleenestar-regexp,
the number of binary numbers to generate is nondeterministically chosen us-
ing pick-reps. A list containing that number of binary numbers is generated
and flattened. The result of this design, including locally defining gen-word,
is displayed in Fig. 14.

7 Based on a regular expression, design and write a function to generate
a word that starts with one or more as and ends with a b.

8 Based on a regular expression, design and write a function to generate
a word that represents a natural number.

19 Generating Words in the Language Defined by a
Regular Expression

The development of generate-bn confirms that a regular expression, r, de-
scribes a construction algorithm for words in L(r). This suggests that there
is an algorithm to generate an arbitrary word in the language of an arbitrary



74 4 Regular Expressions

Fig. 14 A program to generate words in BIN-NUMS
#lang fsm

;; [natnum>0] → word
;; Purpose: Generate a binary number without leading zeroes,
;; unless its 0, of length <= MAX-LENGTH
(define (generate-bn . n)

(define MAX-KS-REPS (if (null? n) 10 (first n)))

;; regexp → word
;; Purpose: Generate a word representing a valid binary number,
;; such that the number of Kleene star repetitions is
;; in [0..MAX-KS-REPS]
(define (gen-word r)

(cond [(singleton-regexp? r) (convert-singleton r)]
[(concat-regexp? r)
(let [(w1 (gen-word (concat-regexp-r1 r)))

(w2 (gen-word (concat-regexp-r2 r)))]
(append w1 w2))]

[(union-regexp? r) (gen-word (pick-regexp r))]
[(kleenestar-regexp? r)
(flatten (build-list

(pick-reps MAX-KS-REPS)
(λ (i)

(gen-word (kleenestar-regexp-r1 r)))))]))
(gen-word BIN-NUMS))

;; Tests
;; word → Boolean
;; Purpose: Test if the given word is a BIN-NUMS)
(define (is-bin-nums? w)

(and (list? w)
(<= 1 (length w))
(or (equal? w (0)) (= (first w) 1))
(andmap (λ (bit) (or (= bit 0) (= bit 1))) w)))

(check-equal? (is-bin-nums? ()) #f)
(check-equal? (is-bin-nums? (0 0 0 1 1 0 1 0)) #f)
(check-equal? (is-bin-nums? (0)) #t)
(check-equal? (is-bin-nums? (1 0 0 1 0 1 1)) #t)
(check-equal? (is-bin-nums? (1 1 1 0 1 0 0 0 1 1 0 1)) #t)

(check-pred is-bin-nums? (generate-bn))
(check-pred is-bin-nums? (generate-bn))
(check-pred is-bin-nums? (generate-bn 10))
(check-pred is-bin-nums? (generate-bn 25))
(check-pred is-bin-nums? (generate-bn 5))
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regular expression. As such, we ought to implement it. Given that regular
expressions are native in FSM, it is a good choice for implementing such an
algorithm.

19.1 Design Idea

The function takes as input a regular expression and an optional natural
number for the maximum number of Kleene star repetitions. It returns a
word. A constant, MAX-KLEENESTAR-REPS, is locally defined for the maximum
number of Kleene star repetitions. If the optional natural number is not
provided, the default value of the constant is arbitrarily defined to be 20.
Building on our experience generating binary numbers, we shall also have a
local function, say generate, to generate a word.

As suggested by the function template to process a regexp, generatemust
distinguish among the regular expression subtypes to generate the word. If
the input is the empty regular expression, then the only word that may be
generated is, EMP, the empty word. If given a singleton regular expression,
then convert-singleton is used to generate a word of length 1 from the
embedded string.

To process a Kleene star regular expression, a list of words is generated
using the embedded regexp. The length of the list is nondeterministically
chosen using pick-reps. Once generated, the list of words is filtered for
empty words and flattened. If the resulting list is empty, then EMP is returned.
Otherwise, the resulting list is returned.

To process a union regular expression, pick-regexp is used to nondeter-
ministically select one of the expressions in the union. A recursive call is made
with the selected regular expression to generate the word.

To process a concat-regexp, a word is generated using each of the em-
bedded regular expressions. If both generated words are EMP, then EMP is
returned. If either word is EMP, then the other word is returned. Otherwise,
the two generated words are appended and returned.

19.2 Signature, Purpose, and Function Header

The signature, purpose statement, and function header collectively provide
documentation that explains to any reader of the code what the function is
expected to do. The next steps of the design recipe are satisfied as follows:
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;; regexp [natnum] → word

;; Purpose: Generate a random word in the language

;; of the given regexp such that the number

;; of repetitions generated from a Kleene

;; star regular expression does not exceed

;; (max 20 reps).

(define (gen-word rexp . reps)

Observe that, once again, the optional argument is captured in a list (in this
case, named reps).

19.3 Tests

To simplify the development of tests, we use ENDS-WITH-A from Sect. 18.1 and
BIN-NUMS from Sect. 18.2.2. Given that we are designing a nondeterministic
function, property-based testing is employed. This means we must design and
implement a predicate for words ending with an a just like is-bin-nums? is
designed for BIN-NUMS. If the given word is a list and has a length greater than
or equal to 1 and its last element is an a, then it is a word in L(ENDS-WITH-A).
Following the steps of the design recipe yields this predicate:

;; word → Boolean

;; Purpose: Test if the given word is in ENDS-WITH-A

(define (is-ends-with-a? w)

(and (list? w) (>= (length w) 1) (eq? (last w) 'a)))

(check-equal? (is-ends-with-a? '(a)) #t)

(check-equal? (is-ends-with-a? '(b b a)) #t)

(check-equal? (is-ends-with-a? '(a b b a b a)) #t)

(check-equal? (is-ends-with-a? '()) #f)

(check-equal? (is-ends-with-a? '(b b b)) #f)

(check-equal? (is-ends-with-a? '(a a a a b)) #f)

The tests for gen-word are:

(check-pred is-bin-nums? (gen-word BIN-NUMS))

(check-pred is-bin-nums? (gen-word BIN-NUMS))

(check-pred is-bin-nums? (gen-word BIN-NUMS))

(check-pred is-bin-nums? (gen-word BIN-NUMS 30))

(check-pred is-bin-nums? (gen-word BIN-NUMS 50))

(check-pred is-ends-with-a? (gen-word ENDS-WITH-A))

(check-pred is-ends-with-a? (gen-word ENDS-WITH-A))

(check-pred is-ends-with-a? (gen-word ENDS-WITH-A 18))

(check-pred is-ends-with-a? (gen-word ENDS-WITH-A 7))
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Recall that each test is different because gen-word is a nondeterministic
function that may produce a different result given the same input.

19.4 Function Body

The next step of the design requires writing the function’s body. This is done
by specializing the cond-expression in the template for functions on a regular
expression. We independently present the design of each stanza.

For the empty regular expression, the only word that can be generated is
EMP. The corresponding stanza is:

[(empty-regexp? rexp) EMP]

For a singleton-regexp, a word is generated using convert-singleton:

[(singleton-regexp? rexp) (convert-singleton rexp)]

For a kleenestar-regexp, the length of the word is nondeterministically
chosen using pick-reps. A list of words of the chosen length, generated using
the embedded regular expression, is filtered to remove all EMPs and flattened.
If the flattened list is empty, then EMP is returned. Otherwise, the flattened
list is returned. The required code is:

[(kleenestar-regexp? rexp)

(let*

[(reps (pick-reps MAX-KLEENESTAR-REPS))

(low (flatten

(filter

(λ (w) (not (eq? w EMP)))

(build-list

reps

(lambda (i)

(gen-word (kleenestar-regexp-r1 rexp)))))))]

(if (empty? low) EMP low))]

For a union regular expression, a word is generated by nondeterministically
picking a regular expression from the options in the union and making a
recursive call with the maximum number of repetitions:

[(union-regexp? rexp) (gen-word (pick-regexp rexp))]

For a concatenation regular expression, two words are generated using
each embedded regular expression. The words are examined as described
in the design idea to return the generated word. The default stanza of the
conditional is:
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[else

(let [(w1 (gen-word (concat-regexp-r1 rexp)))

(w2 (gen-word (concat-regexp-r2 rexp)))]

(cond [(and (eq? w1 EMP) (eq? w2 EMP)) EMP]

[(eq? w1 EMP) w2]

[(eq? w2 EMP) w1]

[else (append w1 w2)]))]

19.5 Running the Tests

Make sure that all the tests pass. If any tests fail, correct the errors by making
sure you have followed all the steps of the design recipe as presented.

Take time to appreciate what has been achieved. A regular expression,
simultaneously, is a description of, L, a regular language and a description of
a construction algorithm for the words in L. That is, a construction algorithm
specifies a language. Indeed, a construction algorithm is an elegant way of
describing a language.

The function designed is so versatile that it is part of FSM. In FSM, it
is called gen-regexp-word. This primitive nondeterministically generates a
word in the language of the regexp that it is given as input. You may read
its full description using DrRacket’s Help Desk (under the Help tab).

9 LetΣ = {a b}. Use gen-regexp-word to generate words with a num-
ber of as that is divisible by 3.

20 Regular Expression Applications

Regular expressions capture a pattern for the construction of languages. As
such, regular expressions are easily found in many areas of computer science
and, indeed, in life. It is important to note that the term regular expres-
sion is used differently in different domains. That is, a regular expression is
not always defined as in this chapter. Generally, they all have union, con-
catenation, and Kleene star operations. They, however, also include other
operations. These other operations may provide the ability to describe lan-
guages that are not regular. The syntax, of course, also varies. Consider, for
example, the following Perl code snippet:

$foo =� m/fsm/
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This expression evaluates to true if $foo contains fsm. Put differently, it
evaluates to true if $foo’s value is a word in the following language:

L = {w | x' ,y'∈Σ∗ ∧ w = x' fsmy' }
Clearly, L is a regular language. Regular expressions in Perl, however, are
powerful enough to match languages that are not regular. Therefore, when
speaking about regular expressions, it is important to be precise. In this
textbook, we always mean regular expressions as defined in this chapter.

Regular expressions may be used to describe data such as internet ad-
dresses, proteins, decimal numbers, and patterns to search for in text among
others. To illustrate the use of regular expressions, we explore the problem
of generating passwords. As always, we follow the steps of the design recipe
to write a password-generating function.

20.1 Data Definitions

A password is a string that:

• Has length ≥ 10
• Includes at least one lowercase letter
• Includes at least one uppercase letter
• Includes at least one special character: $, &, !, and *

Based on this definition, the sets for lowercase letters, uppercase letters, and
special characters are defined as follows:

(define lowers '(a b c d e f g h i j k l m n o p q

r s t u v w x y z))

(define uppers '(A B C D E F G H I J K L M N O P Q

R S T U V W X Y Z))

(define spcls '($ & ! *))

The corresponding sets of regular expressions are defined as:

(define lc (map

(λ (lcl) (singleton-regexp (symbol->string lcl)))

lowers))

(define uc (map

(λ (ucl) (singleton-regexp (symbol->string ucl)))

uppers))

(define spc (map

(λ (sc) (singleton-regexp (symbol->string sc)))

spcls))

Each set is traversed using map. The function given to map converts a symbol
into a string and then creates a singleton regular expression.

How is a password defined? To create passwords, we need a regular ex-
pression. Once a word representing a valid password is generated, it can be
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transformed into a string. The order in which lowercase letters, uppercase
letters, and special characters appear is arbitrary. There must be, however,
an, L, lowercase letter; a, U, uppercase letter; and a, S, special character.
There are six different orderings these required elements may appear in:

L U S U L S S U L

L S U U S L S L U

Before and after each required element, there may be an arbitrary number
lowercase letters, uppercase letters, and special characters. A union regular
expression is needed for the lowercase letters, for the uppercase letters, for the
special characters, and for the arbitrary characters that may appear between
required characters. A union regular expression is used because it provides
the ability to choose any element. These may be defined as follows:

(define LOWER (create-union-regexp lc))

(define UPPER (create-union-regexp uc))

(define SPCHS (create-union-regexp spc))

(define ARBTRY (kleenestar-regexp

(union-regexp LOWER

(union-regexp UPPER SPCHS))))

The creation of a chain of union regular expressions is delegated to an auxil-
iary function (to be designed and implemented). It is now possible to define
a regular expression for each of the six orderings of required elements:

(define LUS (concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp

UPPER

(concat-regexp

ARBTRY

(concat-regexp SPCHS ARBTRY)))))))

(define LSU (concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp

SPCHS

(concat-regexp

ARBTRY

(concat-regexp UPPER ARBTRY)))))))



20 Regular Expression Applications 81

(define SLU (concat-regexp

ARBTRY

(concat-regexp

SPCHS

(concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp UPPER ARBTRY)))))))

(define SUL (concat-regexp

ARBTRY

(concat-regexp

SPCHS

(concat-regexp

ARBTRY

(concat-regexp

UPPER

(concat-regexp

ARBTRY

(concat-regexp LOWER ARBTRY)))))))

(define USL (concat-regexp

ARBTRY

(concat-regexp

UPPER

(concat-regexp

ARBTRY

(concat-regexp

SPCHS

(concat-regexp

ARBTRY

(concat-regexp LOWER ARBTRY)))))))

(define ULS (concat-regexp

ARBTRY

(concat-regexp

UPPER

(concat-regexp

ARBTRY

(concat-regexp

LOWER

(concat-regexp

ARBTRY

(concat-regexp SPCHS ARBTRY)))))))
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The language of passwords is a word in any of the languages defined for the
different orderings of required elements. It is defined using a union regular
expression:

(define PASSWD (union-regexp

LUS

(union-regexp

LSU

(union-regexp

SLU

(union-regexp

SUL

(union-regexp USL ULS))))))

20.2 Design Idea

The constructor for a password takes no input and returns a string. A poten-
tial new password is locally defined. A word is generated by applying FSM’s
gen-regexp-word to PASSWD and then converting the generated word to a
string. If the length of the string is greater than or equal to 10, then it is
returned as the generated password. Otherwise, a new word is generated.

Finally, in order to prevent generated passwords from getting unwieldy
long, gen-regexp-word is given 5 as the maximum number of repetitions for
a Kleene star regular expression. This value is arbitrary, and you may feel
free to adjust it.

20.3 Function Definition

Following the steps of the design recipe yields the following function defini-
tion:

;; → string

;; Purpose: Generate a valid password

(define (generate-password)

(let [(new-passwd (passwd->string

(gen-regexp-word PASSWD 5)))]

(if (>= (string-length new-passwd) 10)

new-passwd

(generate-password))))

We shall design and implement the auxiliary function, passwd->string,
after completing the design of the function above.
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20.4 Tests

Given that the function is nondeterministic, property-based testing is used.
For this, a predicate that takes as input a string that may represent a pass-
word is needed. The given string is converted into a list of symbols. This
list must have a length of at least 10 and contain at least one element from
each of the following: lowers, uppers, and spcls. Following the steps of the
design recipe yields:

;; string → Boolean

;; Purpose: Test if the given string is a valid password

(define (is-passwd? p)

(let [(los (str->los p))]

(and (>= (length los) 10)

(ormap (λ (c) (member c los)) lowers)

(ormap (λ (c) (member c los)) uppers)

(ormap (λ (c) (member c los)) spcls))))

Converting the password to a list is delegated to an auxiliary function.
Sample tests using check-pred are:

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

(check-pred is-passwd? (generate-password))

These are not five repetitions of the same test because generate-password

is nondeterministic.

20.5 Auxiliary Functions

Three auxiliary functions are needed: create-union-regexp, str->los, and
passwd->string. The function create-union-regexp takes as input a list
of regular expressions and returns a union regular expression. If the length
of the given list is less than 2, an error is thrown because at least two regular
expressions are needed for the union of regular expressions. If the given list
only has two elements, then a union regular expression is constructed with
the two regular expressions in the list. If the given list has a length greater
than to 2, then a union regular expression is constructed with the first reg-
ular expression in the list and the union regular expression obtained from
recursively processing the rest of the list. Following the steps of the design
recipe yields:
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;; (listof regexp) → union-regexp

;; Purpose: Create a union-regexp using the given list

;; of regular expressions

(define (create-union-regexp L)

(cond [(< (length L) 2)

(error "create-union-regexp: list too short")]

[(empty? (rest (rest L)))

(union-regexp (first L) (second L))]

[else

(union-regexp (first L)

(create-union-regexp (rest L)))]))

;; Tests

(check-equal?

(create-union-regexp (list (first lc) (first uc)))

(union-regexp (singleton-regexp "a")

(singleton-regexp "A")))

(check-equal?

(create-union-regexp

(list (first lc) (fourth uc) (third spc)))

(union-regexp (singleton-regexp "a")

(union-regexp (singleton-regexp "D")

(singleton-regexp "!"))))

The function str->los takes as input a string and returns a list of symbols.
The given string is converted to a list of characters. Each character in the
resulting list is converted to a symbol using map. The function given to map

consumes a character and first converts the character into a string and then
converts the string into a symbol. Following the steps of the design recipe
yields:

;; string → (listof symbol)

;; Purpose: Convert the given string to a list of symbols

(define (str->los str)

(map (λ (c) (string->symbol (string c)))

(string->list str)))

;; Tests

(check-equal? (str->los "") '())
(check-equal? (str->los "a!Cop") '(a ! C o p))

Finally, the function passwd->string converts a given word representing
a password into a string. First, the given word is traversed using map. The
function given to map converts a symbol into a character by transforming the
symbol into a string, transforming the string into a list of characters, and
finally taking the first (and only) element in the list of characters. Second,



20 Regular Expression Applications 85

the list of characters produced by map is converted into a string. The steps
of the design recipe produce:

;; word → string

;; Purpose: Convert the given password to a string

(define (passwd->string passwd)

(list->string

(map (λ (s)

(first (string->list (symbol->string s))))

passwd)))

;;Tests

(check-equal? (passwd->string '(a j h B ! ! y y t c))

"ajhB!!yytc")

(check-equal? (passwd->string '($ u t q x ! J i n * K C))

"$utqx!Jin*KC")

20.6 Running the Tests

Run the program and make sure all the tests pass. In addition, generate a
few passwords. These are sample passwords generated:

> (generate-password)

"*j$xL!&CjMK"
> (generate-password)

"&$&*u&lBK&G*$&U!E!"
> (generate-password)

"!$*D!&$F!f!"
> (generate-password)

"$!*!eOY$!!*$$"
> (generate-password)

"$!bG&O&U&&!"
> (generate-password)

*xm!!**yIT"

The passwords generated appear fairly robust. It is unlikely that anyone
would be able to guess any of them.

10 A DNA sequence may be represented as a word that contains the
order in which an arbitrary number of the four bases appear. The bases
are adenine (A), guanine (G), cytosine (C), and thymine (T). Define a
regular expression for DNA sequences, and implement a function to
generate a DNA sequence represented as a list.
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11 Define a regular expression for real numbers, and implement a func-
tion to generate a real number.

12 A user is a random word generated from letters in the Roman alpha-
bet and from the digits that starts with a letter. A domain is a random
word generated from letters in the Roman alphabet followed by either
.com, .edu, or .net. Consider the following definition for the language
of email addresses:

L = {u@d | u is a user ∧ d is a domain}
Define a regular expression for email addresses, and implement a func-
tion to generate an email address.

13 Let Σ = {a b}. Define a regular expression for Σ*, and implement
a function to generate a word in Σ*.

14 Let Σ = {a b}. Define a regular expression, and implement a func-
tion to generate a word in the language for:

L = {w | w starts and ends with the same letter}



Chapter 5

Deterministic Finite-State Machines

Regular expressions define how to generate words in a regular language. Given
a word, however, how can we decide if it is a member of a language? For this,
it is desirable to have some type of device or machine that takes as input a
word and returns 'accept if the given word is in the language and 'reject
if the given word is not in the language. In essence, we need a model of a
computer to determine if a word is part of a language.

How should such a machine operate? Analyzing how words in the language
of a regular expression are generated can provide some insight. Consider how
a word is generated for the following regular expression:

(concat-regexp

(union-regexp (singleton-regexp "a")

(singleton-regexp "b"))

(concat-regexp (kleenestar-regexp (singleton-regexp "a"))

(singleton-regexp "b")))

Word generation traverses the structure of the regular expression. First, an a

or a b is generated. Second, an arbitrary number of as are generated. Third,
a b is generated. If you think about it, the elements of a word are generated
from left to right. This suggests that a word may be traversed from left to
right to determine if it is in a language. We do not know if such a strategy
will work. It is, nonetheless, plausible that it may work.

What should a machine that determines language membership look like?
Clearly, it needs an input mechanism such as a tape where the input word is
written. It needs a head to read an element from the tape and move right to
the next symbol, if any, in the word. Finally, it needs a control mechanism
that changes the state of the machine as the word is read. For instance, for
the language of the regular expression above, the machine starts in a state
where nothing has been read. After reading an a or b, it moves to state that
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Fig. 15 A visualization of the finite-state automaton model

a a a a a b – –
. . .

•
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E

F

G

H

Input Tape

Control

Head

means that the initial symbol in the word matched what is expected for word
membership.

Figure 15 displays a visual representation of the proposed machine. At
the top, there is an input tape with the word '(a a a a a b). The tape is
of infinite length to the right. Each symbol in the word occupies one tape
position. The placement of a word on the tape always starts with the tape’s
first position. At the bottom, there is a control module with eight states
denoted by capital letters from A through H. In general, the number of states a
machine may have is arbitrary. The arrow inside the control module indicates
that state the machine is in. In Fig. 15, the machine is in state F. Finally,
the head that reads from the tape is denoted by an arrow from the control
module to an input tape position. The head is always over the next symbol to
be read. Everything after the head has not been read. Everything before the
head has been read. In Fig. 15, '(a a a a) has been read, '(a b) has not
been read, and a is the next symbol to be read. The operational semantics
of the machine is straightforward. Every time the head reads a symbol, it
moves to the right. Based on a read symbol, the current state of the machine,
and the transition rules of the machine, the control module moves to a (not
necessarily different) state. The machine stops when the first blank (denoted
by an underscore in Fig. 15) after the input is read. If the machine stops in
a state that is an accepting state, then the machine accepts (i.e., the given
word is in the language). Otherwise, it rejects (i.e., the given word is not in
the language).

21 Deterministic Finite-State Machine Definition

To embark in the study of mathematical models of computers and algorithms,
it is necessary to formally define machines. In this manner, we can precisely
reason about them and write theorems about their properties. The machine
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outlined above is called a finite-state automaton (or finite-state machine). It
is a (very) restricted model of a computer. Like a modern computer, it has
a CPU and can read input. It is restricted model in two important ways. The
first is that it is only capable of accepting or rejecting words. That is, it is
a language recognition machine. The second is that it has no memory other
than what exists in the processing module. For example, it can remember the
state that it is in but cannot remember the input read.

21.1 The dfa Constructor

We shall start our study of machine models by defining a deterministic finite-
state automaton. A dfa is a type in FSM defined as follows:

A deterministic finite-state automaton, dfa, is a

(make-dfa S Σ s F δ ['no-dead])

The inputs to the constructor are defined as follows:

S: A list of states. Each state is denoted by a symbol that represents a capital
letter in the Roman alphabet.

.Σ: A list of symbols or digits. Each symbol represents a lowercase letter in
the Roman alphabet.

s: The starting state. It must be a member of S.
F: A list of final (i.e., accepting) states. Each state must be a member of S.
.δ: A transition function. Each transition, .δ(q, a) = r, uniquely determines

the state the machine moves to. Each transition is represented as a list
with three elements: the from-state, the symbol read by the head, and
the to-state. The two states must be in S, and the symbol read must be
in .Σ.

Given that .δ is a function, it must contain a transition for every element in
S .× .Σ. In this regard, the constructor offers some flexibility. The constructor
automatically adds a dead state, ds (denoted by the FSM constant DEAD),
and any missing transitions. For any missing transition, the added transition
moves the machine to the dead state. Transitions on the dead state go to the
dead state. Sometimes, it is desirable (e.g., when you have written out the
complete transition function or when visualizing a machine) to not add the
dead state and the missing transitions. To inhibit the addition of the dead
state, the optional argument 'no-dead may be given to the constructor.

A computation for a dfa, M, is denoted by a list of configurations that
M traverses to consume the input word. A configuration is a two-list that
has the unconsumed part of the input word and the state of the machine.
For instance, the configuration of the automaton in Fig. 15 is ((a b) F). A
transition made (or step taken) by the machine is denoted using .�. C.i .� C.j
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is valid for M if and only if M can move from C.i to C.j using a single transition.
Zero or more moves by M is denoted using .�∗. C.i .�∗ C.j is valid for M if and
only if M can move from C.i to C.j using zero or more transitions. A word, w,
is accepted by M if the following is a valid computation:

(w s) � ˆ∗ ('() q), where q∈F
That is, M must entirely consume w and end in a final state. The language
accepted by M, L(M), is the set of all strings accepted by M.

Consider the following dfa:

;; L(M) = ab*

(define M (make-dfa `(S F ,DEAD)

'(a b)

'S
'(F)
`((S a F)

(S b ,DEAD)

(F a ,DEAD)

(F b F)

(,DEAD a ,DEAD)

(,DEAD b ,DEAD))

'no-dead))

The language of this machine are all words that start with an a followed
by an arbitrary number of bs. The addition of the dead state is suppressed
because the transition function is fully specified (i.e., there is a transition
rule for each member of (`(S F ,DEAD) .× '(a b))). To determine if '(a b

b b).∈L(M), we examine the computation performed:

((a b b b) S) � ((b b b) F) � ((b b) F) � ((b) F) � (() F)

Observe that '(a b b b) is entirely consumed and M ends in a final state.
Therefore, '(a b b b).∈L(M).

21.2 FSM Machine Observers

FSM provides generic observers for all machine types. That is, these observers
may be used with all state machines built with any FSM machine constructor.
The observers for machine components are described as follows:

(sm-states m): Returns the states of the given machine
(sm-sigma m): Returns the alphabet of the given machine
(sm-rules m): Returns the transition relation of the given machine
(sm-start m): Returns the start state of the given machine
(sm-finals m): Returns the final states of the given machine
(sm-type m): Returns a symbol denoting the machine type
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In addition, FSM provides two observers to apply a state machine to a
word:

(sm-apply m w [n]): Applies the given machine to the given word. It re-
turns either 'accept or 'reject. The optional natural number, n, is only
used to indicate the starting position of the head for a Turing machine.

(sm-showtransitions m w [n]): Applies the given machine to the given
word. It returns a list for the computation performed. The optional nat-
ural number, n, is only used to indicate the starting position of the head
for a Turing machine.

To illustrate the use of the application observers, we use M defined above.
Consider the following interactions:

> (sm-apply M '(a b b b))

'accept
> (sm-apply M '(a b b b a a b))

'reject

The first informs us that '(a b b b) is in L(M). The second informs us that
'(a b b b a a b) is not in L(M). Let us look at the computation performed
for each:

> (sm-showtransitions M '(a b b b))

'(((a b b b) S) ((b b b) F) ((b b) F) ((b) F) (() F) accept)

> (sm-showtransitions M '(a b b b a a b))

'(((a b b b a a b) S)

((b b b a a b) F)

((b b a a b) F)

((b a a b) F)

((a a b) F)

((a b) ds)

((b) ds)

(() ds)

reject)

The first is the computation developed by hand above. The second shows the
computation performed to conclude that '(a b b b a a b)./∈L(M). Observe
that after reading the second a, the machine transitions to the dead state and
remains there until the entire input word is consumed. The machine rejects
because it halts in a non-final state.

21.3 FSM Machine Testers

In addition to the observers, FSM provides machine testers. The testers gen-
erate random words to test machines. The testers are:
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(sm-test m [n]): Applies m to 100 randomly generated words and returns
a list of the results. The optional natural number specifies the number of
tests to perform.

(sm-sameresult? m1 m2 w): Applies the two given machines, m1 and m2, to,
w, the given word and tests if the same result is obtained.

(sm-testequiv? m1 m2 [n]): Applies the 2 given machines, m1 and m2, to
the same 100 randomly generated words and tests if they produce the
same results. If they do, true is returned. Otherwise, a list of the words
for which the results differ is returned. The optional natural number
specifies the number of words to test.

Using M, consider the following interaction that specifies testing ten words:

> (sm-test M 10)

'(((a a a a b b b) reject)

((a b) accept)

(() reject)

((b b b a a) reject)

((a a b b a b a b b) reject)

((a b a a a) reject)

((a b a a b b) reject)

((b a b a a) reject)

((a b b b b) accept)

((a a b b a b b) reject))

Observe that only two words tested are in L(M): '(a b) and '(a b b b b).
The other words are not in the language. A visual inspection of the results
allows you to verify that the accepted words start with an a and then have
an arbitrary number of bs. The rejected words do not. This ought to give you
cautious optimism that M is correctly implemented.

To illustrate the use of same-result?, we define the following dfa:

;; L(M2) = abb*

(define M2 (make-dfa `(S A F ,DEAD)

'(a b)

'S
'(F)
`((S a A)

(S b ,DEAD)

(A a ,DEAD)

(A b F)

(F a ,DEAD)

(F b F)))

Consider the following interactions:

> (sm-sameresult? M M2 '(a b b))

#t

> (sm-sameresult? M M2 '(a))
#f
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The first test informs us that M and M2 yield the same result for '(a b b).
The second test informs us that M and M2 yield different results for '(a) and,
therefore, L(M) .�= L(M2).

To illustrate the use of same-testequiv?, consider the following interac-
tions:

> (sm-testequiv? M M2)

'((a))
> (sm-testequiv? M M2 5)

'((a))
> (sm-testequiv? M M2 5)

#t

The first tests if M and M2 produce the same result on 100 randomly generated
words. The results inform us that for '(a), the results differ. This makes sense
because '(a).∈L(M) and '(a)./∈L(M2). The second only performs tests using
five randomly generated words and yields the same result. The third also only
tests five randomly generated words but returns true suggesting that L(M)

= L(M2). How do the second and third interactions make sense? Recall that
the tested words are randomly generated. The second interaction generated
'(a), while the third did not. This is why testing can only give us cautious
optimism over what is being tested. If we want certainty, we need a proof.

21.4 FSM Machine Visualization

FSM provides machine rendering and machine execution visualization. The
visualization primitives are:

(sm-graph m): Returns a transition diagram rendered as a directed graph
for the given machine.

(sm-visualize m ) [(s p).∗]) : Starts the FSM visualization tool for the
given machine. The optional two-lists contain a state of the given machine
and a predicate invariant (we will soon discuss this in more detail).

A machine’s transition diagram is useful to visualize the states and the
transition relation as a whole. For instance, for M (defined above), (sm-graph
M) returns:

.
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Fig. 16 Visualization of the dfa M

(a) Control View

(b) Graph View

The starting state is denoted in a green circle. Final states are denoted in
double black circles. The arrows between states denote the transitions. The
labels on the arrows denote the element read from the input tape. For exam-
ple, (S a F) is denoted by the arrow from S to F with the label a. If there is
more than one transition between any two states (not necessarily distinct),
a single arrow is rendered with the consumed element for each transition
separated by a comma. For instance, the transitions (,DEAD a ,DEAD) and
(,DEAD b ,DEAD) are denoted by the edge from ds to ds with the label b, a.

Typing (sm-visualize M) launches the FSM visualization tool. If M is
successfully built, a pop-up window informs you of it, and you may close it.
A machine may be visualized in two views, control view and graph view, as
displayed in Fig. 16. The default is control view as displayed in Fig. 16a. In
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either view, the right column allows for machine editing (e.g., adding states
and transitions). If you edit the machine in the visualizer, you must hit the
Run button in the left column. A pop-up window informs you if the edited
machine was or was not successfully built. If successfully built, you may
enter a word and simulate the execution of the machine. Otherwise, consult
the interactions window for error messages. The left column allows you to
enter an input word, run the machine, step through a computation, generate
the FSM code for the machine visualized, and list the machine’s alphabet(s).
An input word is entered seven characters at a time separated by a space
and clicking ADD. Longer words are entered adding the rest of the word in the
same manner. To clear the input tape (and presumably enter a new word),
click on the CLEAR button. Every time a word is entered, the RUN button
must be clicked. The arrow buttons, .← and .→, are used to step through a
computation, respectively, backward and forward one transition at a time.
To generate the code of a machine edited in the visualization tool, regardless
of whether it builds or not, click on GEN CODE. A pop-up window informs you
where the file is saved. At the top of the visualizer is the input tape, and
at the bottom are the machine’s transitions. In the center (for either view),
there are three circular buttons. The top one takes you the FSM homepage,
the middle button is to vary colors for those that suffer from some type of
color blindness, and the bottom button is to switch between control view and
graph view.

In control view, as displayed in Fig. 16a, the center contains the machine’s
states around a center point. The starting state is enclosed in a green circle,
and final states are enclosed in double red circles. All other states are not
encircled. When RUN is clicked, an arrow appears pointing to the starting
state. Stepping through the computation fades out the consumed part of the
word on the input tape, highlights the last rule used in the list of rules, draws
a dashed line from the previous state to the center, and redraws the arrow
to point to the current state. For instance, Fig. 17a displays the state of M

after one transition. The machine is in state F; the previous state is S; the
consumed input is a; the unconsumed input is b b b b b b; the last rule
used, (S a F), is highlighted; and the label on the arrow, a, is the last input
symbol consumed.

In graph view, as displayed in Fig. 16b, the machine is visualized as ren-
dered by sm-graph. Stepping through the computation also fades out the
consumed part of the word on the input tape and highlights the last rule
used in the list of rules. The arrow denoting the last rule used is highlighted
in blue. For instance, Fig. 17b displays the state of M after one transition. The
highlighted last transition moved the machine from S to F consuming an a.
It is the same machine state as the one displayed in Fig. 17a.
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Fig. 17 Visualization of the dfa M after one step

(a) Control view

(b) Graph view

22 A First Example

22.1 Designing the Machine

Assume .Σ = {a b}. Consider implementing a dfa for the following language:

L = {w | w does not contain abaa}
We shall call our dfa NO-ABAA and its alphabet is, as the problem assumes, .Σ
= {a b}. The expected behavior of the machine is illustrated by the following
tests:
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(check-equal? (sm-apply NO-ABAA '()) 'accept)
(check-equal? (sm-apply NO-ABAA '(a a b a b b)) 'accept)
(check-equal?

(sm-apply NO-ABAA '(a b b a a a b b b a b b a a b))

'accept)
(check-equal? (sm-apply NO-ABAA '(a b a a))

'reject)
(check-equal? (sm-apply NO-ABAA '(a b a b a a b a))

'reject)
(check-equal?

(sm-apply NO-ABAA '(a b a b b b a a b a a b b))

'reject)

We need to define the conditions that must be tracked as an input word
is consumed. In this example, we need to track how much of the prohibited
pattern, '(a b a a), has been detected. The pattern has length four. This
means there are five conditions to track:

nothing detected

a has been detected

ab has been detected

aba has been detected

abaa has been detected

Each condition is associated with a state. The first condition must be the
starting state because nothing in the prohibited pattern has been detected.
The first four conditions define a final state because the prohibited pattern
has not been detected. It is perfectly fine for the starting state to also be a
final state. The final condition does not define a final state because it means
the prohibited pattern is detected. The meaning of each state may be refined
and documented in a program as follows:

;; L = {w | w does not contain abaa}
;; States

;; S: nothing detected, start and final state

;; A: a has been detected, final state

;; B: ab has been detected, final state

;; C: aba has been detected, final state

;; R: abaa has been detected

A transition function needs to be defined. Given the current state of the
machine and the symbol read from the input tape, it must move the machine
to state that is consistent with the state definitions above. If the machine is
in state S and an a is read, it moves to state A because this may be the first
a in the prohibited pattern. If the machine is in state S and a b is read, it
remains in state S because nothing in the prohibited pattern is detected. We
may write the transition rules for S as follows:
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Fig. 18 The dfa implementation and transition diagram for NO-ABAA
(define NO-ABAA

(make-dfa
(S A B C R)
(a b)
S
(S A B C)
((S a A) (S b S)
(A a A) (A b B)
(B a C) (B b S)
(C a R) (C b B)
(R a R) (R b R))

no-dead))

(a) Machine implementation (b) Transition diagram

(S a A)

(S b S)

If the machine is in state A and an a is read, it remains in state A because the
a read may be the first in the prohibited pattern. If the machine is in state
A and a b is read, it moves to state B because ab has been detected. We may
write the transition rules for A as follows:

(A a A)

(A b B)

If the machine is in state B and an a is read, it moves to state C because
aba is detected. If the machine is in state B and a b is read, it moves to
state S because none of the prohibited pattern is detected. We may write the
transition rules for B as follows:

(B a C)

(B b S)

If the machine is in state C and an a is read, it moves to state R because
abaa is detected. If the machine is in state C and a b is read, it moves to
state B because the last two elements read, ab, may be the beginning of the
prohibited pattern. We may write the transition rules for C as follows:

(C a R)

(C b B)

Finally, if the machine is in state R, then the input word contains the prohib-
ited pattern, and the machine ought to remain in R as it reads the remaining
part of the word. We may write the transition rules for R as follows:

(R a R)

(R b R)
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The dfa implementation and transition diagram are displayed in Fig. 18.
The constructor is signaled not to add a dead state because the transition
function is fully specified. It is easy to visually verify that the transition
function in Fig. 18a corresponds to the edges in the transition diagram in
Fig. 18b. This machine can now be tested by running the unit tests and
using sm-test. Once cautiously optimistic, after thorough testing, that the
machine is correct, we must prove that L = L(NO-ABBA). To achieve this,
first a predicate invariant is written in FSM for each state of NO-ABBA.

22.2 Writing dfa State Invariant Predicates

A dfa invariant predicate for a state, F, takes as input the consumed input,
ci, and determines if ci satisfies the meaning of being in F. In addition,
when developing a state invariant, always keep in mind that an invariant
for a final state must establish that ci is in the language of the machine
and for a non-final state must establish that ci is not in the language of
the machine. To make writing state invariant predicates easier for NO-ABAA,
define the prohibited pattern as follows:

(define PROHIBITED-PATTERN '(a b a a))

To start, let us reason about NO-ABAA’s R state. According to our design, R
means that the prohibited pattern has been detected. What does this mean
in terms of ci? It means that ci has a minimum length of 4 and contains
PROHIBITED-PATTERN. Observe that the second condition alone suffices to
determine that the machine is in the correct state. Assuming the given word’s
length is at least 4, and following the steps of the design recipe, we arrive at
the following state invariant predicate for R:

;; word → Boolean

;; Purpose: Determine if the consumed input contains

;; PROHIBITED-PATTERN

;; Assume: |ci| >= 4

(define (R-INV ci) (contains? ci PROHIBITED-PATTERN))

;; Tests for R-INV

(check-equal? (R-INV '(a)) #f)

(check-equal? (R-INV '(a b)) #f)

(check-equal? (R-INV '(a b a)) #f)

(check-equal? (R-INV '(a b a a)) #t)

(check-equal? (R-INV '(a a b b a b a a b b a)) #t)

The job of determining if the consumed input contains the prohibited pattern
is delegated to an auxiliary function. This auxiliary predicate traverses the
given word searching for the given pattern. It takes as input two words, w
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and pattern, and returns a Boolean. There are three conditions it must
distinguish. If the length of w is less than the length of pattern, it returns
#f because w does not contain pattern. If the first .|pattern.| symbols in w

equal pattern, then it returns #t because w contains pattern. Otherwise, it
recursively determines if the rest of w contains pattern. Following the steps
of the design recipe yields:

;; word word → Boolean

;; Purpose: Determine if the second given word appears in

;; the first given word

(define (contains? w pattern)

(cond [(< (length w) (length pattern)) #f]

[(equal? (take w (length pattern)) pattern) #t]

[else (contains? (rest w) pattern)]))

;; Tests for contains?

(check-equal? (contains? '() PROHIBITED-PATTERN) #f)

(check-equal? (contains? '(a b b a a) PROHIBITED-PATTERN)

#f)

(check-equal? (contains? '(b b b a b a b b a b a)

PROHIBITED-PATTERN)

#f)

(check-equal? (contains? '(a b a a)

PROHIBITED-PATTERN)

#t)

(check-equal? (contains? '(a b b b a b a a a)

PROHIBITED-PATTERN)

#t)

(check-equal? (contains? '(a b a b a a a b a a b)

PROHIBITED-PATTERN)

#t)

The function take requires as input a list, L, and a natural number, n, and
returns a list with the first n elements of L.

What must be true about ci if NO-ABAA is in state C? From our design,
we know that the ci must end with '(a b a) and that C is a final state.
This means that ci’s minimum length is 3 and that ci does not contain the
prohibited pattern. Observe that these conditions suffice to establish that the
machine is in the correct state. C’s invariant predicate is written assuming
ci’s minimum length is 3. It determines if ci ends with '(a b a) and if
it does not contain the prohibited pattern. Following the steps of the design
recipe yields:
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;; word → Boolean

;; Purpose: Determine if the given word ends with aba

;; and does not contain PROHIBITED-PATTERN

;; Assume: |word| >= 3

(define (C-INV ci)

(and (equal? (drop ci (- (length ci) 3)) '(a b a))

(not (contains? ci PROHIBITED-PATTERN))))

;; Tests for C-INV

(check-equal? (C-INV '(a b a)) #t)

(check-equal? (C-INV '(a b a b b a a b a b a)) #t)

(check-equal? (C-INV '(a b b)) #f)

(check-equal? (C-INV '(a b b a b a a b a)) #f)

Observe that, once again, the assumption is made explicit. This helps any
readers of the code understand its design. For example, it explains why the
unit tests do not test words of length less than 3. The function drop takes
as input a list, L, and a natural number, n, and returns a list that is L after
removing L’s first n elements.

What does it mean for the machine to be in state B? Our design states
that B is a final state and that '(a b) has been detected. This means that
ci’s minimum length is 2. In addition, ci must end with (a b) and cannot
contain the prohibited pattern. These conditions suffice to establish that the
machine is in the correct state. Following the steps of the design recipe leads
to:

;; word → Boolean

;; Purpose: Determine if the given word ends with ab

;; and does not contain PROHIBITED-PATTERN

;; Assume: |word| >= 2

(define (B-INV ci)

(and (equal? (drop ci (- (length ci) 2)) '(a b))

(not (contains? ci PROHIBITED-PATTERN))))

;; Tests for B-INV

(check-equal? (B-INV '(a b)) #t)

(check-equal? (B-INV '(a a b)) #t)

(check-equal? (B-INV '(a b b b a b a b)) #t)

(check-equal? (B-INV '(a a b a a)) #f)

(check-equal? (B-INV '(a b a)) #f)

(check-equal? (B-INV '(a b a b a b a)) #f)

(check-equal? (B-INV '(a b b b a b a a b b a)) #f)

What does it mean for the machine to be in state A? Based on our design,
ci must end with a and not contain the prohibited pattern. Note that these
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conditions do not suffice to establish that the machine is in the correct state.
This follows from observing that both conditions are true for any consumed
input that takes the machine to C. Therefore, this invariant predicate must
also guarantee that ci does not end with '(a b a). How can ci not ending
with '(a b a) be determined? This is determined by testing if .|ci.| < 3 or if
.|ci.| .≥ 3 and ci does not end with '(a b a). The steps of the design recipe
lead to:

;; word → Boolean

;; Purpose: Determine if the consumed input

;; ends with a, does not contain

;; the prohibited input, and does

;; not end with aba.

;; Assume: |word| > 0

(define (A-INV ci)

(and (equal? (drop ci (sub1 (length ci))) '(a))
(not (contains? ci PROHIBITED-PATTERN))

(or (< (length ci) 3)

(not (equal? (drop ci (- (length ci) 3))

'(a b a))))))

;; Tests for A-INV

(check-equal? (A-INV '(b)) #f)

(check-equal? (A-INV '(a b)) #f)

(check-equal? (A-INV '(a b a)) #f)

(check-equal? (A-INV '(a b a a b a a b)) #f)

(check-equal? (A-INV '(a)) #t)

(check-equal? (A-INV '(a a)) #t)

(check-equal? (A-INV '(b b a)) #t)

(check-equal? (A-INV '(a b b a b a b b a)) #t)

The second branch of the or-expression is only evaluated if the expression in
the first branch is #f. That is, it is only evaluated if .|ci.| ≥ 3.

Finally, what does it mean for the machine to be in state S? Our design
informs us that ci cannot end with a nonempty prefix of the prohibited
pattern7 (i.e., none of the prohibited pattern is detected) and that it is the
start and a final state. We can conclude that machine is in the correct state if
ci = '(). What if ci .�= '()? In this case, ci cannot contain the prohibited
pattern and must end with a b. Observe that these conditions do not suffice
to establish that the machine is in the correct state because they also hold
for any consumed input that takes the machine to state B. Therefore, this
invariant predicate must also establish that ci does not end with '(a b).
How is this determined? It is determined by testing if .|ci.| = 1 or if .|ci.| > 1
and ci does not end in (a b). These observations and the steps of the design
recipe produce:

7 Recall that w is a prefix of w. Do not confuse prefix with proper prefix.
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;; word → Boolean

;; Purpose: Determine if NO-ABAA should be in S

(define (S-INV ci)

(or (= (length ci) 0)

(and (not (contains? ci PROHIBITED-PATTERN))

(eq? (last ci) 'b)
(or (= (length ci) 1)

(not (equal? (drop ci (- (length ci) 2))

'(a b)))))))

;; Tests for S-INV

(check-equal? (S-INV '()) #t)

(check-equal? (S-INV '(b)) #t)

(check-equal? (S-INV '(b b)) #t)

(check-equal? (S-INV '(a b b)) #t)

(check-equal? (S-INV '(b a b b a b a b b)) #t)

(check-equal? (S-INV '(a)) #f)

(check-equal? (S-INV '(a b)) #f)

(check-equal? (S-INV '(a b a)) #f)

(check-equal? (S-INV '(a b a a)) #f)

(check-equal? (S-INV '(a b b b b a b a a b b)) #f)

(check-equal? (S-INV '(a a b b b b a b a b b a b a)) #f)

Once state invariant predicates are written, validate them by running the
unit tests and visualizing machine execution. The syntax to visualize NO-ABAA
with its invariants is:

(sm-visualize NO-ABAA

(list 'S S-INV) (list 'A A-INV)

(list 'B B-INV) (list 'C C-INV)

(list 'R R-INV))

Figure 19 displays a visualization image for NO-ABAA with invariants in control
view. You can observe that the arrow is green. This means that the invariant
for the machine’s current state holds. If the invariant does not hold, then the
arrow turns red. If a state invariant has a bug and returns a value that is
not a Boolean, the arrow turns yellow. In state diagram view, the states are,
respectively, shaded green, red, and yellow.

You can step backward and forward through a computation to validate
your state invariant predicates. Do so for several different inputs. This is
important because it may help you discover bugs in your machine or in your
state invariants. If there is a bug, of course, it needs to be corrected before
attempting to prove that the machine is correct.

It is also important to note that not all invariants need to be provided to
the visualizer. This allows for piecemeal development and validation of state
invariant predicates. For instance, run the visualizer this way:

(sm-visualize NO-ABAA (S S-INV) (R R-INV))
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Fig. 19 Visualizing NO-ABAA with invariant predicates

For S and R, the arrow will change color and remain black for all other states.

22.3 Proving L(NO-ABAA) = L

It is not enough to design a machine and validate its state invariants. We
must prove that the machine correctly decides language membership for an
arbitrary word. Assume that a dfa, M, is designed for a language L. The
proof that L = L(M) is done in two steps for an arbitrary word, w, such that
w.∈(sm-sigma M).*:

1. Prove the state invariants hold when M is applied to w.
2. Prove that if invariants hold when M is applied to w, then L = L(M).

The first is done by induction on the number of transitions performed by M.
The second uses the invariants to prove:

w∈L ⇔ w∈L(M) ∧ w/∈L ⇔ w/∈L(M)
Let us prove that L(NO-ABAA)=L. Let M = NO-ABAA, S=(sm-states M),

s=(sm-start M), .Σ=(sm-sigma M), w.∈ .Σ∗, and ci = the consumed input
(i.e., the consumed part of w).

22.3.1 Proving Invariants Hold for NO-ABAA

Theorem 1 State invariants hold when NO-ABAA is applied to w.
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Proof
Proof by induction on n = the number of steps M performs to consume w.

Base Case: n = 0
If n is 0, then the consumed input must be '(). Clearly, S-INV holds because
(= (length ci) 0).
Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.

If n=k+1, then the consumed input cannot be '() given that the machine
must have consumed at least one symbol. Therefore, we can state that ci=xa
such that |ci|=k+1, x∈Σ∗ and a∈Σ. M’s computation to consume ci has k+1
steps:

(ci s) = (xa s) �k (a r) � ('() q), where r,q∈S �
That is, M consumes x in k steps and reaches some state r. Then in one step,
it consumes a to reach q. Given that |x|=k, the inductive hypothesis informs
us that the state invariants hold when x is consumed by M. We must show
that the state invariants hold for the k+1 transition into q.

Consider every transition independently:

(S a A): By inductive hypothesis, S-INV holds. Consuming a means that:

• The consumed input ends with a.
• The consumed input does not contain the prohibited pattern because
S-INV guarantees the consumed input before the consumed a does not
contain the prohibited pattern and ends with a b. This means that after
consuming a, the consumed input does not end with the prohibited pat-
tern. Therefore, the consumed input (including the newly consumed a)
does not contain the prohibited pattern.

• The consumed input does not end with '(a b a) for the following rea-
sons:

– If the length of the consumed input is less than 3, then it does not
end with '(a b a).

– If the length of the consumed input is greater than or equal to 3,
then it does not end with '(a b a) because S-INV guarantees that
the consumed input before the a does not end with '(a b).

Therefore, we may conclude that A-INV holds after the machine consumes
the a.
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(S b S): By inductive hypothesis, S-INV holds. Consuming b means that:

• The consumed input ends with b.
• The consumed input does not contain the prohibited pattern because the
S-INV guarantees that anything before the consumed b does not contain
the prohibited pattern and the prohibited pattern does not end with b.

• If the consumed input before the consumed b is '(), then the length of
the consumed input is 1 and does not end with '(a b).

• If the consumed input before the consumed b is not '(), then the con-
sumed input does not end with '(a b) because the S-INV guarantees
that the consumed input before consuming b ends with b.

Therefore, we can conclude that S-INV holds after the machine consumes the
b.

(A a A): By inductive hypothesis, A-INV holds. Consuming a means that:

• The consumed input ends with a.
• The consumed input does not contain the prohibited pattern because A-
INV guarantees that the consumed input before the consumed a does not
contain the prohibited pattern and does not end with '(a b a).

• If the length of the consumed input is less than 3, then it does not end
with '(a b a).

• If the length of the consumed input is greater than or equal to 3, then
it does not end with '(a b a) because A-INV guarantees that the input
before the consumed a ends with a.

Therefore, we may conclude that A-INV holds when the machine consumes
the a.

(A b B): By inductive hypothesis, A-INV holds. Consuming b means that:

• The consumed input ends with '(a b) because A-INV guarantees that
the consumed input before the consumed b ends with a.

• The consumed input does not contain the prohibited pattern because A-
INV guarantees that the consumed input before the consumed b does not
contain the prohibited pattern and the prohibited pattern does not end
with b.

Therefore, we may conclude that B-INV holds when the machine consumes
the b.

(B a C): By inductive hypothesis, B-INV holds. Consuming a means that:

• The consumed input ends with '(a b a) because B-INV guarantees that
the consumed input before the consumed a ends with '(a b).

• B-INV guarantees that the consumed input before the consumed a does
not contain the prohibited pattern and ends with '(a b). This means



22 A First Example 107

that the consumed input does not contain the prohibited pattern because
it is not contained before the a consumed and the prohibited pattern does
not end with '(a b a).

Therefore, we may conclude that C-INV holds when the machine consumes
the b.

(B b S): By inductive hypothesis, B-INV holds. Consuming b means that:

• The consumed input ends with b.
• B-INV guarantees that the consumed input before the consumed b does
not contain the prohibited pattern. Consuming b means that the con-
sumed input does not end with the prohibited pattern. Therefore, the
consumed input does not contain the prohibited pattern.

• B-INV guarantees that the consumed input ends with '(a b). This
means that after consuming b, the consumed input does not end with
'(a b).

Therefore, we may conclude that S-INV holds when the machine consumes
the b.

(C a R): By inductive hypothesis, C-INV holds. Consuming a means that
the consumed input ends with '(a b a a) because C-INV guarantees that
the consumed input before the consumed a ends with '(a b a). Observe
that '(a b a) and a form the prohibited pattern. Therefore, we may con-
clude that R-INV holds when the machine consumes a.

(C b B): By inductive hypothesis, C-INV holds. Consuming b means that:

• The consumed input ends with '(a b) because C-INV guarantees that
the consumed input before consuming b ends with '(a b a).

• The consumed input does not contain the prohibited pattern because C-
INV guarantees that the consumed input before the consuming b does
not contain the prohibited pattern and the prohibited pattern does not
end with b. �

Therefore, we may conclude that B-INV holds when the machine consumes
the b.

(R a R): By inductive hypothesis, R-INV holds. R-INV guarantees that the
consumed input before consuming a contains the prohibited pattern. Con-
suming ameans that the consumed input still contains the prohibited pattern.
Therefore, we may conclude that R-INV holds when the machine consumes a.

(R b R): By inductive hypothesis, R-INV holds. R-INV guarantees that the
consumed input before the consumed b contains the prohibited pattern. Con-
suming bmeans that the consumed input still contains the prohibited pattern.
Therefore, we may conclude that R-INV holds when the machine consumes b.
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22.3.2 Proving L(NO-ABAA) = L

The proof that L(NO-ABAA) = L is divided into two pieces called lemmas:

1. w.∈L .⇔ w.∈L(M)
2. w./∈L .⇔ w./∈L(M)

Lemma 1 w.∈L .⇔ w.∈L(M)

Proof
(.⇒) Assume w.∈L.

w.∈L means that w does not contain '(a b a a). Given that state invariants
always hold, M cannot consume w and halt in R. This means that M must
halt in S, A, B, or C. These are final states and, therefore, w.∈L(M).

(.⇐) Assume w.∈L(M).

w.∈L(M) means that M halts in S, A, B, or C. The invariants for these states
inform us that w does not contain '(a b a a). Therefore, w.∈L. �

Lemma 2 w./∈L .⇔ w./∈L(M)

Proof
(.⇒) Assume w./∈L.

w./∈L means that w contains '(a b a a). The state invariants inform us that
M must halt in R when it consumes w. R is not a final state of M. Therefore,
w./∈L(M).

(.⇐) Assume w./∈L(M).

The state invariants inform us that M halts in R when M consumes w. This
means that w contains '(a b a a). Therefore, w./∈L. �

Theorem 2 L(NO-ABAA) = L

Proof
Lemmas 1 and 2 establish the theorem. �

23 A Design Recipe for State Machines

Based on NO-ABAA’s development, a design recipe for state machines is out-
lined in Fig. 20. The design recipe presents guiding steps to follow for the
development of state machines (including state machines not yet discussed).
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Fig. 20 Design recipe for state machines
To design and implement a state machine, M, for a language L:

1. Name the machine and specify alphabets
2. Write unit tests
3. Identify conditions that must be tracked as input is consumed, associate a state with

each condition, and determine the start and final states.
4. Formulate the transition relation
5. Implement the machine
6. Test the machine using unit tests and random testing
7. Design, implement, and test an invariant predicate for each state
8. Prove L = L(M)

Step 1 asks you to pick a descriptive name for the machine and to define the
needed alphabets (e.g., a dfa’s input alphabet).

Step 2 asks for the development of unit tests. Write tests for words that
are rejected and for words that are accepted. The tests ought to be thorough.
Testing a comprehensive set of words is important to make sure all possible
characteristics of word in the language and words not in the language are
correctly processed. Remember that thorough testing leads to cautious opti-
mism about the correctness of your design and implementation. In addition,
it helps readers of your code understand the machine’s expected behavior.

Step 3 asks for the conditions that must be tracked as the machine con-
sumes a word. Associate each condition with a state. Each condition describes
properties of the consumed input. Be as specific as possible because it will
make other steps in the design recipe easier. Clearly annotate the start and
final/accepting states.

Step 4, based on the result of step 3, asks for the development of the
transition relation. In the case of a dfa, for example, this relation must be
a function. Develop each transition assuming that the condition describing
the source state holds and that the action(s) taken by the machine make the
conditions of the destination state hold. For instance, consider developing
a transition for a dfa. Given a state, A, and an input alphabet, a, assume
that the conditions A represents hold and formulate the conditions that hold
after consuming a. If the conditions that hold after consuming a are state
B’s conditions, then the needed transition is (A a B). If the conditions that
hold do not satisfy the conditions of any state, then you either discovered
the need for a new state, or the conditions represented by a state need to be
refined.

Steps 5 and 6 ask for the machine’s implementation and the running of
unit and random tests. The machine is implemented by defining a variable
for the name selected in step 1 and using an FSM machine constructor (e.g.,
make-dfa). Random testing may be done using sm-test.

Step 7 asks for the development of state invariant predicates. A state
invariant predicate takes as input the varying elements, like the consumed
input, and verifies that the conditions the state represents hold.
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Step 8 asks for the development of a proof demonstrating that the ma-
chine’s language, L(M), is the same as the language, L, the machine is de-
signed to decide. This is done by first proving by induction that the state
invariants hold when an arbitrary word is processed. This proof is then used
to prove that L = L(M).

24 The State Machine Design Recipe in Action

To illustrate the machine design recipe in action, consider designing and
implementing a dfa for the following language:

L = {w | w∈{a b}∗ ∧ w has an even number of a

and an odd number of b}
L contains all words made of an arbitrary number of as and bs such that the
number of as is even and the number of bs is odd. The following subsections
outline the results for each step of the design recipe.

24.1 Name and Alphabet

Every word must have an even number of as and bs and must only contain
as and bs. The machine name and input alphabet are defined as:

;; Name: EVEN-A-ODD-B

;;

;; Σ: '(a b)

24.2 Unit Tests

The tests cover words of different lengths such that some have an even number
of as and an odd number of bs and some do not:

;; Tests for EVEN-A-ODD-B

(check-equal? (sm-apply EVEN-A-ODD-B '()) 'reject)
(check-equal? (sm-apply EVEN-A-ODD-B '(a b b a)) 'reject)
(check-equal? (sm-apply EVEN-A-ODD-B '(b a b b a a))

'reject)
(check-equal? (sm-apply EVEN-A-ODD-B '(a b)) 'reject)
(check-equal? (sm-apply EVEN-A-ODD-B '(a b b b b))

'reject)
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(check-equal? (sm-apply EVEN-A-ODD-B '(b a b b a a b))

'reject)
(check-equal? (sm-apply EVEN-A-ODD-B '(b)) 'accept)
(check-equal? (sm-apply EVEN-A-ODD-B '(a a b)) 'accept)
(check-equal? (sm-apply EVEN-A-ODD-B '(a a a b a b b))

'accept)

24.3 States

As a word is processed, the consumed input may contain:

1. An even number of a and an even number of b
2. An odd number of a and an odd number of b
3. An even number of a and an odd number of b
4. An odd number of a and an even number of b

When processing starts, the consumed input has 0 as and 0 bs. That is, the
consumed input has an even number of as and an even number of bs. This
means that the state that captures this condition must be the starting state.
The state that represents that the consumed input has an even number of
as and an odd number of bs must be the only final state. The states may be
documented as follows:

;; States

;; S: even number of a and even number of b, start state

;; M: odd number of a and odd number of b

;; N: even number of a and odd number of b, final state

;; P: odd number of a and even number of b

24.4 The Transition Function

If the consumed input has an even number of as and an even number of bs,
then after consuming an a, the consumed input has an odd number of as and
an even number of bs, and after consuming a b, the consumed input has an
even number of as and an odd number of bs. This means that the following
are needed transitions in EVEN-A-ODD-B:

(S a P)

(S b N)

If the consumed input has an odd number of as and an odd number of
bs, then after consuming an a, the consumed input has an even number of
as and an odd number of bs, and after consuming a b, the consumed input



112 5 Deterministic Finite-State Machines

Fig. 21 EVEN-A-ODD-B’s transition diagram

has an odd number of as and an even number of bs. This means that the
following are needed transitions in EVEN-A-ODD-B:

(M a N)

(M b P)

If the consumed input has an even number of as and an odd number of
bs, then after consuming an a, the consumed input has an odd number of
as and an odd number of bs, and after consuming a b, the consumed input
has an even number of as and an even number of bs. This means that the
following are needed transitions in EVEN-A-ODD-B:

(N a M)

(N b S)

If the consumed input has an odd number of as and an even number of
bs, then after consuming an a, the consumed input has an even number of
as and an even number of bs, and after consuming a b, the consumed input
has an odd number of as and an odd number of bs. This means that the
following are needed transitions in EVEN-A-ODD-B:

(P a S)

(P b M)

Observe that for every state, there is exactly one transition for every al-
phabet member. Thus, a transition function is fully defined.

24.5 Implementation and Testing

EVEN-A-ODD-B is implemented as follows:

(define EVEN-A-ODD-B (make-dfa '(S M N P)

'(a b)

'S
'(N)
'((S a P)

(S b N)

(M a N)
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(M b P)

(N a M)

(N b S)

(P a S)

(P b M))

'no-dead))

The EVEN-A-ODD-B’s transition diagram is displayed in Fig. 21.
Running the program results in all unit tests passing. To further test

EVEN-A-ODD-B, use sm-test. A sample of random tests is:

> (sm-test EVEN-A-ODD-B 20)

'(((b a a a) reject)

((a a b a a b b) accept)

((b b a) reject)

((a b a) accept)

(() reject)

((a a a a) reject)

((b b b a a b b) accept)

((b b b a b a b) accept)

((b a b a a b b b) reject)

((b b b b) reject)

((a b) reject)

((a b b b b b a) accept)

((b a a a b) reject)

((b a a a a) accept)

((b b b a b a a) reject)

((b b b a b) reject)

((a a) reject)

((a b b b a a b b) reject)

((a) reject)

((b a b b a a a b b) accept))

A visual inspection of the results confirms that all test results are correct.

24.6 State Invariant Predicates

A state invariant must establish that the conditions the state represents hold
and that the machine should not be in any other state. For a dfa, a state
invariant takes in the consumed input and returns a Boolean.

For S, the state invariant predicate must establish that the consumed input
has an even number of as and an even number of bs. Observe this suffices to
establish that the machine should not be in any other state. Following the
steps of the design recipe yields the following predicate:
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;; word → Boolean

;; Purpose: Determine if given word has an even number

;; of a and an even number of b

(define (S-INV ci)

(and (even? (length (filter (λ (s) (eq? s 'a)) ci)))

(even? (length (filter (λ (s) (eq? s 'b)) ci)))))

;; Tests for S-INV

(check-equal? (S-INV '(a)) #f)

(check-equal? (S-INV '(a b b b a)) #f)

(check-equal? (S-INV '()) #t)

(check-equal? (S-INV '(a a b b)) #t)

For M, the state invariant predicate must establish that the consumed input
has an odd number of as and an odd number of bs. Observe this suffices to
establish that the machine should not be in any other state. Following the
steps of the design recipe yields the following predicate:

;; word → Boolean

;; Purpose: Determine if given word has an odd number

;; of a and an odd number of b

(define (M-INV ci)

(and (odd? (length (filter (λ (s) (eq? s 'a)) ci)))

(odd? (length (filter (λ (s) (eq? s 'b)) ci)))))

;; Tests for M-INV

(check-equal? (M-INV '(a)) #f)

(check-equal? (M-INV '(a b b b a)) #f)

(check-equal? (M-INV '(a b b b a a b)) #f)

(check-equal? (M-INV '(b a)) #t)

(check-equal? (M-INV '(b a a b a b)) #t)

For N, the state invariant predicate must establish that the consumed input
has an even number of as and an odd number of bs. Observe this suffices to
establish that the machine should not be in any other state. Following the
steps of the design recipe yields the following predicate:

;; word → Boolean

;; Purpose: Determine if given word has an even number

;; of a and an odd number of b

(define (N-INV ci)

(and (even? (length (filter (λ (s) (eq? s 'a)) ci)))

(odd? (length (filter (λ (s) (eq? s 'b)) ci)))))

;; Tests for N-INV

(check-equal? (N-INV '()) #f)

(check-equal? (N-INV '(a b a b a)) #f)
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(check-equal? (N-INV '(a b b a a b)) #f)

(check-equal? (N-INV '(b a a)) #t)

(check-equal? (N-INV '(a b a a b a b b b)) #t)

For P, the state invariant predicate must establish that the consumed input
has an odd number of as and an even number of bs. Observe this suffices to
establish that the machine should not be in any other state. Following the
steps of the design recipe yields the following predicate:

;; word → Boolean

;; Purpose: Determine if given word has an odd number

;; of a and an even number of b

(define (P-INV ci)

(and (odd? (length (filter (λ (s) (eq? s 'a)) ci)))

(even? (length (filter (λ (s) (eq? s 'b)) ci)))))

;; Tests for P-INV

(check-equal? (P-INV '()) #f)

(check-equal? (P-INV '(a b)) #f)

(check-equal? (P-INV '(a b b a a b a)) #f)

(check-equal? (P-INV '(b a b)) #t)

(check-equal? (P-INV '(a b a a b b b)) #t)

24.7 Correctness Proof

For the required proofs, we use the following notation:

M = EVEN-A-ODD-B

Σ = (sm-sigma M)

F = (sm-finals M)

w ∈ Σ∗

ci = the consumed input

24.7.1 Proof That Invariants Hold

Theorem 3 The state invariants hold when M is applied to w.

Proof
Proof by induction on the number of transitions, n, M makes to consume w.

Base Case: n = 0
If n is 0, then the consumed input is '(), and M is in S. This means the
consumed input has an even number of as and an even number of bs (0 of
each). Therefore, S-INV holds.
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Inductive Step:
Assume: State invariants hold for n = k.
Show: State invariants hold for n = k+1.

If n=k+1, then the consumed input cannot be '() given that the machine
must have consumed at least one symbol. Therefore, we can state that ci=xa
such that |ci|=k+1, x∈Σ∗ and a∈Σ. M’s computation to consume ci has k+1
steps:

(xa s) �k (a r) � ('() q), where r,q∈S �
Given that |x|=k, the inductive hypothesis informs us that the state invari-
ants hold when x is consumed by M. We must show that the state invariants
hold for the k+1 transition into q. That is, we must show that for every
transition, the invariant holds for the state transitioned into. Consider every
transition independently:

(S a P): Assume S-INV holds. Consuming an a means ci has an odd number
of as and an even number bs. Therefore, P-INV holds.

(S b N): Assume S-INV holds. Consuming a b means ci has an even number
of as and an odd number bs. Therefore, N-INV holds.

(M a N): Assume M-INV holds. Consuming an a means ci has an even num-
ber of as and an odd number bs. Therefore, N-INV holds.

(M b P): Assume M-INV holds. Consuming an b means ci has an odd num-
ber of as and an even number bs. Therefore, P-INV holds.

(N a M): Assume N-INV holds. Consuming an a means ci has an odd number
of as and an odd number bs. Therefore, M-INV holds.

(N b S): Assume N-INV holds. Consuming an b means ci has an even num-
ber of as and an even number bs. Therefore, S-INV holds.

(P a S): Assume P-INV holds. Consuming an a means ci has an even num-
ber of as and an even number bs. Therefore, S-INV holds.

(P b M): Assume P-INV holds. Consuming an b means ci has an odd number
of as and an odd number bs. Therefore, M-INV holds.
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24.7.2 Proof the L = L(EVEN-A-ODD-B)

The proof that L(EVEN-A-ODD-B) = L is divided into two lemmas (i.e., two
parts):

1. w.∈L .⇔ w.∈L(M)
2. w./∈L .⇔ w./∈L(M)

Lemma 3 w.∈L .⇔ w.∈L(M)

Proof
(.⇒) Assume w.∈L.

w.∈L means that w has an even number of as and an odd number of bs. The
proof that state invariants hold when w is consumed means that M can only
halt in N, which is a final state. Therefore, w.∈L(M).

(.⇐) Assume w.∈L(M).

w.∈L(M) means that M halts in N. N’s invariant guarantees that w has an
even number of as and an odd number of bs. Therefore, w.∈L. �
Lemma 4 w./∈L .⇔ w./∈L(M)

Proof
(.⇒) Assume w./∈L.

w./∈L means that w does not have an even number of as and an odd number
of bs. Given that the state invariants always hold, M does not halt in N after
consuming w. Since N is the only final state, we have that w./∈L(M).

(.⇐) Assume w./∈L(M).

M does not halt in N (the only final state). Given that the state invariants
always hold, this means that w does not have an even number of as and an
odd number of bs. Therefore, w./∈L.

Theorem 4 L = L(EVEN-A-ODD-B)

Proof
Lemmas 3 and 4 establish the theorem. �

1 Let .Σ = {a b}. Design and implement a dfa for the following lan-
guage:

L = {w | w has an even number of b}
Follow all the steps of the design recipe for state machines.
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2 Let .Σ = {a b}. Design and implement a dfa for the following lan-
guage:

L = {w | w does not have two consecutive a}
Follow all the steps of the design recipe for state machines.

3 Let .Σ = {a b}. Design and implement a dfa for the following lan-
guage:

L = {w | w has an even number of a and an even number of b}
Follow all the steps of the design recipe for state machines.

4 Let M be a dfa. When is '() in L(M)? Prove your answer.

5 Let .Σ = {a b c}. Design and implement a dfa for the following
language:

L = {w | there is a single Σ element not in w}
Follow all the steps of the design recipe for state machines.

6 Let .Σ = {x a e i o u}. Design and implement a dfa for the fol-
lowing language:

L = {w | each vowel occurs once and the vowels occur in

alphabetical order}
Follow all the steps of the design recipe for state machines.

7 Design and implement a dfa for the following language:

L = {w | w represents a proper binary number}
Follow all the steps of the design recipe for state machines. Remember
that a proper nonzero binary number does not have leading zeroes.

8 Let .Σ = {a b}. Design and implement a dfa for the following lan-
guage:

L = {w | w does not have two consecutive elements that

are the same}
Follow all the steps of the design recipe for state machines.

9 Let .Σ = {a b}. Design and implement a dfa for the following lan-
guage:

L = {w | w has more than two a}
Follow all the steps of the design recipe for state machines.
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10 Design and implement a dfa for the following language:

L = {w | w represents a proper even binary number}
Follow all the steps of the design recipe for state machines. Remember
that a proper nonzero binary number does not have leading zeroes.

11 Let .Σ = {a b}. Design and implement a dfa for the following
language:

L = {w | w∈Σ∗}
Follow all the steps of the design recipe for state machines.

12 Let .Σ = {a b}. Design and implement a dfa for the following
language:

L = {w | w at least two a and two b}
Follow all the steps of the design recipe for state machines.

13 Let .Σ = {a b}. Design and implement a dfa for the following
language:

L = {w | w has an odd number of a and ends with a b}
Follow all the steps of the design recipe for state machines.

14 Let .Σ = {a b}. Design and implement a dfa for the following
language:

L = {w | w’s even positions are a}
For .|w.| = n, the positions are in [0..n-1]. For example, '(a a a b a

b).∈L and '(a a b b a)./∈L. Follow all the steps of the design recipe for
state machines.

15 Let .Σ = {a b}. Design and implement a dfa for the following
language:

L = {w | |w|≤4}
Follow all the steps of the design recipe for state machines.

16 Let .Σ = {a b}. Design and implement a dfa for the following
language:

L = ∅

Follow all the steps of the design recipe for state machines.
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17 Mr. Hacker claims to have designed his own version of
EVEN-A-ODD-B:
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His claim is highly suspicious because all he has done is add states
that are unreachable from the start state. Design and implement a dfa

constructor that takes as input a dfa, M, and that returns the dfa, M',
obtained by removing the unreachable states from M. Prove that L(M)
= L(M'). Why is it important to remove unreachable states?

25 Applications

There are many practical applications that dfas are well-suited to perform.
In the field of programming languages, for example, dfa s may be used to
recognize tokens. Imagine that in some programming language, an assignment
statement is written as follows:

index ::= 2 * upper

Such an expression must first be parsed to create a parse tree that may then
be used by an interpreter or a compiler. Part of parsing is tokenization: the
process of identifying the elements (or, if you like, the words) in a program or
statement. The above statement would result in five tokens like the following:

identifier assignment number * identifier
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How are can the elements of each token type be determined? A dfa may be
defined to recognize each token type. The dfa that accepts a given program
element defines the token type.

Another application dfas are well-suited for the implementation of sequen-
tial circuits. For example, a traffic light changes color every time it reads a
clock tick repeatedly moving from red to green to yellow and back to red.
The following state diagram represents a traffic light:

.

Every time a clock tick, t, is read, the machine changes state. R, Y, and G

represent, respectively, the red, the yellow, and the green light is on.

25.1 Finding a Pattern

One of the best known applications of dfas is finding a pattern (or lack
of a pattern) in a word. For instance, in Fig. 18, NO-ABAA was developed
to determine if a word lacks the pattern '(a b a a). Finding a pattern
is a common operation that you perform, for example, every time you use
Ctrl-F to search for a word in a text document. You may ask yourself why
should anyone care because designing and implementing NO-ABAA required the
implementation of the contains? function. Clearly, as done in all NO-ABAA’s
state invariant predicates, to detect that the prohibited pattern is not found,
you can simply use:

(not (contains? ci PROHIBITED-PATTERN))

Why go through all the “trouble” of designing NO-ABAA when designing and
using contains? suffices? This is, indeed, a good question that deserves a
scientific answer.

To answer this question, we compare the worst time performance of the
two designs. For the comparison to be fair, NO-ABAA’s transition function is
transformed into a conditional expression used by a function to consume the
given word. That is, we eliminate the overhead introduced by using sm-apply.
The word-consuming function, consume, takes as input a state and a word
to consume. Each stanza in the conditional expression, other than the first,
corresponds to a transition rule in NO-ABAA. If the given word is empty, then
the given state is examined. If it is a final state, true is returned. Otherwise,
false is returned. If the given word is not empty, then a transition rule is
simulated. For instance, '(S a A) is simulated, when the given state is 'S
and the first word element is 'a, by recursively calling consume with 'A and
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Fig. 22 The function to determine if a word does not contain '(a b a a)

;; word → Boolean
;; Purpose: Determine if the given word does not contain abaa
(define (contains-no-abaa? w)

(define FINALS (S A B C))

;; state word → Boolean
;; Purpose: Determine if the given word does not contain abaa
(define (consume s w)

(cond [(empty? w) (if (member s FINALS) #t #f)]
[(and (eq? s S) (eq? a (first w))) (consume A (rest w))]
[(and (eq? s S) (eq? b (first w))) (consume S (rest w))]
[(and (eq? s A) (eq? a (first w))) (consume A (rest w))]
[(and (eq? s A) (eq? b (first w))) (consume B (rest w))]
[(and (eq? s B) (eq? a (first w))) (consume C (rest w))]
[(and (eq? s B) (eq? b (first w))) (consume S (rest w))]
[(and (eq? s C) (eq? a (first w))) (consume R (rest w))]
[(and (eq? s C) (eq? b (first w))) (consume B (rest w))]
[(and (eq? s R) (eq? a (first w))) (consume R (rest w))]
[else (consume R (rest w))]))

(consume S w))

;; Tests for contains?
(check-equal? (contains-no-abaa? ()) #t)
(check-equal? (contains-no-abaa? (a b b a a)) #t)
(check-equal? (contains-no-abaa? (b b b a b a b b a b a)) #t)
(check-equal? (contains-no-abaa? (a b a a)) #f)
(check-equal? (contains-no-abaa? (a b b b a b a a a)) #f)
(check-equal? (contains-no-abaa? (a b a b a a a b a a b)) #f)

the rest of the given word. The function to determine if a given word does
not contain '(a b a a) calls consume with NO-ABAA's starting state and the
given word. The result of this transformation is displayed in Fig. 22. Observe
that the unit tests are written using the same words used to test contains?
with PROHIBITED-PATTERN.

It is now fair to compare the two implementation strategies. To do so, we
use words for contains?’s worst case and best case. The worst case is when
the given word does not contain '(a b a a) and contains? must traverse
the whole word. The best case is when '(a b a a) is at the given word’s
beginning and contains? does not need to traverse the given word beyond
its first four elements. In comparison, contains-no-abaa always traverses
the given word in its entirety. The following testing words for contains?

worst case and best case are defined:

(define WORST-CASE (build-list 100000 (λ (i) 'a)))

(define BEST-CASE (append '(a b a a)

(build-list 100000 (λ (i) 'a))))
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To measure execution time, use time, which takes as input an expression to
evaluate, as follows:

(define T1 (time (contains? WORST-CASE PROHIBITED-PATTERN)))

(define T2 (time (contains-no-abaa? WORST-CASE)))

(define T3 (time (contains? BEST-CASE PROHIBITED-PATTERN)))

(define T4 (time (contains-no-abaa? BEST-CASE)))

Variables are only defined to prevent the results of the function calls from
being printed to the interactions window. The time function prints in the
interactions window the CPU time, the real time, and the garbage collection
time in milliseconds. The results obtained from running the experiments are:8

cpu time: 7109 real time: 7202 gc time: 46

cpu time: 0 real time: 6 gc time: 0

cpu time: 0 real time: 0 gc time: 0

cpu time: 15 real time: 11 gc time: 0

Look at the CPU time. In contains?’s worst-case scenario,
contains-no-abaa? is by far superior: approximately 7 seconds versus 0
seconds. In contains?’s best-case scenario, the CPU times are virtually in-
distinguishable: 15 milliseconds is closer to 0 seconds than to 1 second (or
half a second). Clearly, going through all the “trouble” of designing NO-ABAA

has paid off. This is why you ought to care about designing deterministic
finite-state machines.

25.2 Generalizing Pattern Detection

As computer scientists, it is clearly unrealistic (and undesirable) to spend
our time designing a dfa for every search pattern possible given an alphabet.
After all, the set of patterns is (countably) infinite. This means that the dfa
creating process must be automated. If such a function can be written, it
needs as input the pattern and the input alphabet, and it returns a dfa to
determine if a word contains the given pattern.

25.2.1 Design Idea

Given a pattern, patt, and an alphabet, sigma, the dfa built needs .|patt.|+1
states. These states form the dfa’s backbone and lead from the starting to
the final state consuming the pattern. For instance, the dfa backbone for the
pattern '(a b b a b c) has the following structure:

8 Timing data may vary from one execution to the next and from one computer to
another.
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.

This, of course, is not the complete dfa because it is missing the transitions
for when the next symbol in a given word does not match the next symbol
in the pattern. For example, if the machine is in state E and the next symbol
in the input word is not c, what state should the machine move to?

When a symbol does not match, the function contains? always moves to
the next symbol and tries to start matching the pattern from the beginning.
For example, assume the input word looks as follows:

. . . a b b a b b a . . .

The function contains? determines that the first six symbols do not match
the pattern and repeats the process starting with the next symbol in the
input word:

. . . b b a b b a . . .

Observe that this approach is wasteful. That is, it does not exploit the knowl-
edge accumulated, mainly, that the last three symbols of the six symbols
compared in the input word match the first three symbols of the pattern. A
dfa cannot read the first six symbols and then (wastefully) go back in the
tape to try to find a match starting with the first b in the input word. Instead,
it must decide what state to move to after reading the first six symbols.

Reason about what the states mean (i.e., their invariant properties). For
the machine’s backbone above, we can state:

S Nothing in the pattern has been matched.
A a has been matched.
B ab has been matched.
C abb has been matched.
D abba has been matched.
E abbab has been matched.
F abbabc has been matched.

What state should the machine be in after reading '(a b b a b b)? Observe
that the longest suffix of the read input that matches the beginning of the
pattern is '(a b b). Therefore, the machine needs to move to state C.

How are the transition rules computed? We say that the part of the pattern
matched for each state represents the core prefix of the state. For each state,
it is the word matched in the state’s invariant property. For B, the core prefix
is '(a b), and for E, the core prefix is '(a b b a b). We use core prefixes
to compute the transitions needed for each state. Assume the states are kept
in a list such that the states appear from left to right (i.e., in the direction
of the arrows in the backbone). For the backbone above, states = '(S A

B C D E F). Let us compute the transitions out of E. The core prefix for E
informs us that '(a b b a b) are the last five input symbols read. The next
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input symbol may be a, b, or c. For each, we need to identify the longest
suffix that matches the pattern’s beginning. For a, we have:

Last 6 symbols of consumed input: '(a b b a b a)

To find the longest matching suffix, compare successively shorter suffixes of
the consumed input with the pattern’s beginning until a match is found or
the suffix is empty. This search is outlined as follows:

Pattern: '(a b b a b c)

Suffix: '(a b b a b a) → does not match

'(b b a b a) → does not match

'(b a b a) → does not match

'(a b a) → does not match

'(b a) → does not match

'(a) → match

The longest matching suffix with the pattern’s beginning is a. This is A’s
core prefix. This means that the machine must transition to A. The needed
transition is (E a A). Let us repeat this process for b:

Pattern: '(a b b a b c)

Suffix: '(a b b a b b) → does not match

'(b b a b b) → does not match

'(b a b b) → does not match

'(a b b) → match

The longest matching suffix with the pattern’s beginning is C’s core prefix.
The machine needs to transition to C, and the needed transition is (E b C).
Finally, let us repeat the process for c:

Pattern: '(a b b a b c)

Suffix: '(a b b a b c) → match

The longest matching suffix with the pattern’s beginning is F’s core prefix.
Therefore, the needed transition is (E c F).

Have you noticed the pattern for the destination state in each of the com-
puted transition rules? It is always (list-ref states (length lsuffix)),
where lsuffix is the longest matching suffix. Using our example, it is illus-
trated as follows:

(list-ref states (length '(a))) = A

(list-ref states (length '(a b b))) = C

(list-ref states (length '(a b b a b c))) = F

Based on our design idea, we proceed to implement the needed functions.
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25.2.2 The contains-pattern? Predicate

The predicate to determine if a pattern appears in a given word takes as
input two words and an input alphabet. We assume that the given words
are strictly composed of an arbitrary number of elements from the given
alphabet. It builds the dfa to detect the given pattern is present in the given
word using the given alphabet. It then applies the built dfa to the given word
to return the appropriate Boolean. Following the steps of the design recipe
for functions yields:

;; word word alphabet → Boolean

;; Purpose: Determine if the given first word is in

;; the given second word

;; Assume: Given words in sigma∗

(define (contains-pattern? patt text sigma)

(let [(M (build-pattern-dfa patt sigma))]

(eq? (sm-apply M text) 'accept)))

;; Tests for contains-pattern?

(check-equal? (contains-pattern? '(a b b a b c) '() '(a b c))

#f)

(check-equal?

(contains-pattern?

'(a b b a b c) '(a b c a a a b b a b b c b a a b) '(a b c))

#f)

(check-equal?

(contains-pattern? '(a b b a b c) '(a b b a b c) '(a b c))

#t)

(check-equal?

(contains-pattern? '(a b b a b c)

'(a a b b a b a b b a b c a c c c c)

'(a b c))

#t)

(check-equal? (contains-pattern? '(b a a) '() '(a b)) #f)

(check-equal? (contains-pattern? '(b a a)

'(a b a b a b b a b b c b a b)

'(a b))

#f)

(check-equal? (contains-pattern? '(b a a)

'(b a a)

'(a b))

#t)
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(check-equal? (contains-pattern? '(b a a)

'(a a b b a b a b b a a b a)

'(a b))

#t)

25.2.3 The build-pattern-dfa Constructor

For a given pattern, patt, and a given input alphabet, sigma, the goal is to
build a dfa for the following language:

L = {w | w contains patt}
The constructor needs to:

1. Generate the states for the new dfa

2. Compute the core prefix for each state
3. Compute the transitions for the new dfa

Once these are computed, a new dfa is constructed and returned.
We choose to define the first state in the list of generated states as the

starting state and the last state generated as the final state. To generate a
state, the FSM function generate-symbol is used. It takes as input a seed
symbol that the generated symbol shall start with and a nonempty list of
symbols (including the seed) that the generated symbol may not equal.

The generation of the core prefixes may be done so as to correspond with
the list of generated states. That is, the first prefix is for the first state, the
second prefix is for the second state, and so on. This requires building a list of
length one greater than the length of the pattern. For each natural number,
i, in [0..(sub1 (length patt))], the core prefix for the i.ith state is given
by taking the first i elements of the pattern.

To generate the transition function, the needed transitions for each state,
s, may be generated using the states, the input alphabet, the core prefix
for s, and the pattern. All the generated rules are appended to define the
transition function for the new dfa.

Following the steps of the design recipe for functions produces the con-
structor displayed in Fig. 23. To generate the states and the core prefixes,
build-list is used to build a list of the right length according to the de-
sign idea above. The generation of the transitions for a state and its core
prefix is left to an auxiliary function. The new dfa is constructed using the
generated states, the given alphabet, the first generated state as the starting
state, the last generated state as the only final state, and the transitions gen-
erated by the auxiliary function. Given that a transition function is computed,
'no-dead is given as an argument to make-dfa to suppress the addition of
a dead state. Finally, to test the new constructor, two dfas are constructed
and used in the tests in conjunction with sm-apply.
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Fig. 23 The dfa constructor to detect a pattern in a given word
;; word alphabet → dfa
;; Purpose: Build a dfa for L = all words that contain the

nrettapnevig;;
(define (build-pattern-dfa patt sigma)

(let* [(sts (build-list (add1 (length patt))
(λ (n) (generate-symbol A (A)))))

(core-prefixes (build-list (add1 (length patt))
(λ (i) (take patt i))))

(deltas (append-map
(λ (s cp)

(gen-state-trans s sts sigma cp patt))
sts
core-prefixes))]

(make-dfa sts
sigma
(first sts)
(list (last sts))
deltas
no-dead)))

;; Tests for build-pattern-dfa
(define M (build-pattern-dfa (a b b a) (a b)))
(define N (build-pattern-dfa (a d) (a b c d)))

(check-equal? (sm-apply M ()) reject)
(check-equal? (sm-apply M (a a b b b a)) reject)
(check-equal? (sm-apply M (b b b a a a b b)) reject)
(check-equal? (sm-apply M (a b b a)) accept)
(check-equal? (sm-apply M (b b a a a b b a b b a)) accept)
(check-equal? (sm-apply M (a b b b a b b a)) accept)

(check-equal? (sm-apply N ()) reject)
(check-equal? (sm-apply N (a b c d a b c c)) reject)
(check-equal? (sm-apply N (c c b a b d)) reject)
(check-equal? (sm-apply N (a d)) accept)
(check-equal? (sm-apply N (b c a a d c c b)) accept)
(check-equal? (sm-apply N (c d b c a d c a d)) accept)

25.2.4 The gen-state-trans Function

The function to generate the transitions for a state requires a state, the list
of states, the input alphabet, the given state’s core prefix, and the pattern
for the new dfa to match. For each element of the given input alphabet,
a transition is generated using the given state, a word that starts with the
given core prefix and ends with the alphabet element (i.e., the last elements
read), the pattern, the states (any of which may be transitioned to), and the
last element read from the tape (i.e., the alphabet element). The generation
of the rule is left to an auxiliary function that traverses the last elements
read to find the longest suffix that matches the beginning of the pattern. The
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alphabet element (i.e., the last element) must be provided to the auxiliary
function because when nothing is matched, the needed transition generated
takes the machine to the starting state consuming the given alphabet element.

Following the steps of the design recipe for functions leads to:

;; state (listof state) alphabet word word → (listof dfa-rule)

;; Purpose: Generate failed match transitions for the

;; given state

(define (gen-state-trans s states sigma cp patt)

(map (λ (a)

(gen-state-tran s (append cp (list a)) patt states a))

sigma))

;; Tests for gen-state-trans

(check-equal?

(gen-state-trans 'E
'(S A B C D E F)

'(a b c)

'(a b b a b)

'(a b b a b c))

'((E a A) (E b C) (E c F)))

(check-equal?

(gen-state-trans 'S
'(S A B C D E F)

'(a b c)

'()
'(a b b a b c))

'((S a A) (S b S) (S c S)))

(check-equal?

(gen-state-trans 'S '(S A F) '(a b) '() '(a b))

'((S a A) (S b S)))

(check-equal?

(gen-state-trans 'A '(S A F) '(a b) '(a) '(a b))

'((A a A) (A b F)))

(check-equal?

(gen-state-trans 'F '(S A F) '(a b) '(a b) '(a b))

'((F a F) (F b F)))

Observe that the tests display all the transitions out of the given state that
are needed. There is one rule for each element of the input alphabet. Doing
this for each state guarantees that the result is a transition function.

The function to generate a dfa-rule for a given state and a given word
to match traverses the word to match. If the given word is empty, then a
transition from the given state to the starting state that consumes the given
last element read is generated. If the length of what is to be matched is longer
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than the pattern, then a match with a prefix of the pattern is not possible.
Remember that the word to match is formed by adding a symbol to the end
of the state’s core prefix. This means that the new dfa, when executed, will
be in its final state and, therefore, the transition must be to the final state
(i.e., the given state or equivalently the last state in the given list of states).
If the word to match is equal to the front of the pattern, then, as per the
design idea, the needed transition is to the state indexed by the length of
the word to match. If these three conditions fail, then the rest of the word
to match is recursively processed to determine the needed transition. The
following function is obtained by following the steps of the design recipe for
functions:

;; word word word (listof state) symbol → dfa-rule

;; Purpose: Generate dfa rule for given state and given word

;; to match in the given pattern

(define (gen-state-tran s to-match patt states last-read)

(cond [(empty? to-match) (list s last-read (first states))]

[(> (length to-match) (length patt))

(list s last-read s)]

[(equal? to-match (take patt (length to-match)))

(list s

(last to-match)

(list-ref states (length to-match)))]

[else (gen-state-tran s

(rest to-match)

patt

states

last-read)]))

;; Tests for gen-state-tran

(check-equal?

(gen-state-tran

'C '(a b b b) '(a b b a b c) '(S A B C D E F) 'b)
'(C b S))

(check-equal?

(gen-state-tran

'S '(b) '(a b b a b c) '(S A B C D E F) 'b)
'(S b S))

(check-equal?

(gen-state-tran

'S '(a) '(a b b a b c) '(S A B C D E F) 'a)
'(S a A))

(check-equal?

(gen-state-tran

'D '(a b b a c) '(a b b a b c) '(S A B C D E F) 'c)
'(D c S))
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(check-equal?

(gen-state-tran

'E '(a b b a b b) '(a b b a b c) '(S A B C D E F) 'b)
'(E b C))

This completes the design of a predicate to determine if a pattern occurs in
a word. Run the program and make sure all the tests pass. This algorithm is
the basis for the efficient and widely implemented Knuth-Morris-Pratt (KMP)
algorithm. The KMP algorithm is a string matching algorithm that looks for
occurrences of a string (i.e., a pattern) in a block of text (i.e., a word). Given
that most programming languages do not have a dfa type like FSM, the KMP
algorithm represents the dfa differently. It uses a vector of indices into the
pattern to represent where matching ought to continue when the next element
in the text does not match the next element in the pattern (i.e., equivalent
to the transitions that move to a state closer to the starting state in the dfa
built in our implementation). You are strongly encouraged to review the KMP
algorithm.

18 Define and implement a dfa for a traffic light.

19 Design and implement a predicate to determine if a given pattern
does not occur in a given word for a given alphabet.

20 In computational biology, DNA is a chain of complementary nu-
cleotide bases. The bases are adenine (A), cytosine (C), guanine (G),
and thymine (T). Under normal circumstances, A pairs with T, and C

pairs with G. We say that a DNA chain is normal if all pairs are formed
as outlined. For example, consider the following DNA strands:

AT AT GC CG TA

CG AT TA TG AT GC

The first is normal because A and T only pair with each other and C

and G only pair with each other. The second is not normal because it
contains TG.

Design and implement a dfa-based program to determine if a given
DNA strand is normal. Hint : You need to represent all possible pairing
of bases as elements in an input alphabet. For example, AT and TA may
be represented as a, and TG and GT may be represented as z. With such
a mapping, any input DNA strand may be transformed into a word
using your alphabet symbols.



Chapter 6

Nondeterministic Finite-State
Machines

We have seen that a dfa can decide a language (i.e., determine if a word is or
is not in a language) whose words are built using concatenation and Kleene
star. Consider, for example, the following transition diagram for a dfa:

.

If you think about it, a transition in a dfa represents concatenating an al-
phabet symbol, and a loop is concatenating a value generated by a Kleene
star – the loop may be entered 0 or more times. The language of the machine
above is a(ab).∗b. This is not a proof, but intuitively it appears that if it
is generated by concatenation or Kleene star, then it can be decided by a
dfa.

What about deciding a regular language that requires union? When there
is a union, words are generated by randomly selecting a branch in the union
of regular expressions. For instance, consider the following language:

L = ab∗ ∪ aa∗ ∪ ε

There are three types of words that may be generated. It is not difficult to
build a dfa for the language represented by each regular expression choice in
the union:
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.

It is difficult, however, to see how L can be decided by a dfa. When started,
the dfa would have to arbitrarily choose which type of word to decide without
reading any of the input. This is impossible for a dfa to do because it has
a transition function. A dfa always carries out the same computation given
the same input. It cannot arbitrarily choose how to carry out a computation.

26 Nondeterministic Finite-State Machines

A new model of a computer is needed, one that allows a machine to change
state in a manner that is not fully determined by the transition relation. When
the machine has a choice, it nondeterministically chooses which transition (or
transitions as we shall see) to use. For instance, a finite-state machine for L
may look as follows:

.

When the machine above starts, without reading anything from the tape, it
nondeterministically decides how to process the input. It processes it as a
word that may or may not be either in {.ε}, in aa.*, or in ab.*. Observe that
there are two new characteristics:

• A nondeterministic machine may change state without consuming any-
thing from the input using one or more ε-transitions such as (S .ε F).

• From a given state, there may be more than one transition on a given
alphabet element like (S a B) and (S a A).



26 Nondeterministic Finite-State Machines 135

This means that the transition relation is no longer a function. That is, given
the same input, the machine may potentially carry out one of several different
computations. Processing '(a b b), for example, can be potentially be done
in three different ways:

((a b b) S) � ((a b b) F)

((a b b) S) � ((b b) B)

((a b b) S) � ((b b) A) � ((b) A) � (() A)

The first two computations would reject '(a b b) because the machine does
not halt in a final state with the input empty. The third computation accepts
'(a b b) because the machine halts in a final state with the input empty.
Based on this, is '(a b b) in L or not? We say that a word is in the language
of a nondeterministic finite-state machine if there is at least one potential
computation that leads to accept. If there are no potential computations that
lead to accept, then the input word is not in the language of the machine.
This means that '(a b b) is in the language of the machine. You may ask
yourself how can this possibly work. How can the machine determine which
computation to carry out? You may assume that if the input word is in the
machine’s language, then the machine can sense which is the computation
that leads to accept. For every nondeterministic choice made during such a
computation, the machine can sense which is the correct transition to use.
Machines with such “intuition” sound very powerful, no?

Formally, a nondeterministic finite-state automaton, ndfa, is defined as
follows:

A nondeterministic finite-state automaton, ndfa, is a

(make-ndfa K Σ S F δ)

That is, an ndfa is a type in FSM. The inputs to this constructor are the same
as for make-dfa except for δ. Here, δ is a transition relation, not a function,
that may have ε-transitions and multiple transitions from a state on the same
alphabet element. An ndfa (transition) rule is defined as follows:

(Q a R), where Q,R∈K ∧ a∈{Σ ∪ {ε}}
Given a configuration (m r), where m.∈ Σ∗ and r.∈K, the machine may have
no transitions it may follow and halts or may move to one of several different
configurations because of ε-transitions or multiple transitions from r on the
same alphabet element. A word, w, is accepted by an ndfa, N, if there exists
a computation such that:

(w s) �∗ (() f), where f∈F
It does not matter if there are transitions, consuming all or part of w, that do
not lead to accept or if there are multiple computations that lead to accept.
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Fig. 24 An ndfa for L = {.ε} .∪ aa.∗ .∪ ab.∗

#lang fsm

;; L = {ε} ∪ aa* ∪ ab*
(define LNDFA (make-ndfa (S A B F)

(a b)
S
(A B F)
((S a A)
(S a B)
(S ,EMP F)
(A b A)
(B a B))))

;; Tests for LNDFA
(check-equal? (sm-apply LNDFA (a b a)) reject)
(check-equal? (sm-apply LNDFA (b b b b b)) reject)
(check-equal? (sm-apply LNDFA (a b b b b a a a)) reject)
(check-equal? (sm-apply LNDFA ()) accept)
(check-equal? (sm-apply LNDFA (a)) accept)
(check-equal? (sm-apply LNDFA (a a a a)) accept)
(check-equal? (sm-apply LNDFA (a b b)) accept)

A word is in the language of N if there is at least one computation that leads
to accept. Finally, the language of N, L(N), is all the words accepted by N.

A natural question to ask is how does an ndfa choose which nondeter-
ministic transition to make. For instance, consider the following transition
rules:

(P a Q) (P a R) (R EMP T)

When in state P and reading an a, the ndfa has a nondeterministic choice
to make. Does it move to Q or to R? When in R, does the machine stay
in R or does it move to T without consuming any input? The answers to
these questions are the same. When faced with a nondeterministic choice,
an ndfa only makes transitions that lead to accept. If no such transition is
possible, then the machine halts and decides to accept or reject as outlined
above. We shall not concern ourselves with how a nondeterministic machine
knows if making a nondeterministic transition will lead to accept. This is
the power of nondeterministic machines. All we need to understand is that a
nondeterministic machine only makes nondeterministic transitions that lead
to accept. If none of the potential computations lead to accept, the machine
senses it and rejects.

An immediate observation that can be made is that a dfa is an ndfa. It is
an ndfa that has no ε-transitions and that has exactly one transition out of
a state for each element of the alphabet. That is, a dfa is a finite-state au-
tomaton that does not use nondeterminism. Clearly, not every ndfa is a dfa.

To illustrate the use of the constructor, Fig. 24 displays the implementation
of an ndfa for L. Observe that the only transitions listed are those that are
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Fig. 25 An ndfa with explicit dead-state transitions for L
;; L = ε U aa* U ab*
(define LNDFA (make-ndfa (S A B F ,DEAD)

(a b)
S
(A B F)
((S a A)
(S a B)
(S ,EMP F)
(A b A)
(B a B)
(S b ,DEAD)
(A a ,DEAD)
(B b ,DEAD)
(F a ,DEAD)
(F b ,DEAD))))

(a) Implementation.

(b) Transition diagram.

on a path to an accepting state. The tests are written in the same manner as
done for a dfa using sm-apply. As with a dfa, random testing is done using
sm-test:

> (sm-test LNDFA 10)

'(((b b b a a a a a) reject)

((a a b b b a) reject)

((b b a a a a a a b) reject)

((a a b) reject)

((a a b a b a b b a) reject)

((a a a a) accept)

((a b) accept)

((b a a a a) reject)

(() accept)

((a b a a b a a) reject))

It is not uncommon at the beginning to feel uncomfortable with missing
transitions. You may ask yourself, what does the LNDFA do if it is in state S

and the next input symbol is b? There are two equivalent ways to think about
this. The first is, as mentioned earlier, the machine halts and, in this case,
rejects because all the input is not consumed. The second is to understand
that the transitions to the dead state are implicit. Under such a view, the
machine moves to the dead state, consumes the rest of the input, and rejects
(because the dead state is not a final state). You are, of course, always free
not to use the shorthand notation and always explicitly include transitions
to the dead state as displayed in Fig. 25. Most programmers eventually prefer
the shorthand notation for creating an ndfa.
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27 Designing an ndfa

Designing an ndfa can prove easier than designing a dfa, but care must be
taken when reasoning about the machine. When an input symbol is processed,
the machine may end in more than one state. Consider, for example, the
following ndfa:

.

What state does the machine move to if it is in S and consumes an a? Due to
nondeterminism, there is no way we can actually know. We do know, however,
the possible states the machine can be in are not completely random. After
consuming an a, the machine can be in S, in A, or in any state reachable by
only following ε-transitions out of S or A. Specifically, after consuming the a,
the machine may end in S, A, or B. As a designer of ndfas, this is important
to understand because the design must guarantee that the state invariant
holds for any state in a computation that leads to accept after a transition
that requires reading from the tape is followed.

To aid us in reasoning about ndfas, we define the empties of a state R,
E(R), as follows:

E(R) = {{R} ∪ {P | ((ε R) �∗ (ε P))}}
That is, E(R) contains R and all states reachable from R by only following
ε-transitions. Returning to the sample ndfa above, we have that:

E(S) = {S A B}
E(A) = {A B}
E(B) = {B}

This means that when a transition is made into a state, R, after reading an
input element, we must prove the state invariants hold for every state in E(R)

in a computation that leads to accept. For instance, for (S a S), we must
prove state invariants for S if only (S a S) is used, for S and A if only (S a

S) and (S EMP A) are used, and for B if only (S a S), (S EMP A), and (A

EMP B) are used.
To illustrate designing an ndfa, assume that the input alphabet is {a b

c} and that the language that the machine decides is:

L = {w | a/∈w ∨ b/∈w ∨ c/∈w}
The following subsections outline the results obtained for each step of the
design recipe for state machines.
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27.1 Name, Alphabet, and Tests

The machine must accept all words and only the words that have at
least one alphabet member missing. A descriptive name for the ndfa is
AT-LEAST-ONE-MISSING. The input alphabet is {a b c}.

The following tests illustrate the expected behavior:

;; Tests for AT-LEAST-ONE-MISSING

(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(a b c)) 'reject)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(b b a b c b a))

'reject)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(b a c)) 'reject)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '()) 'accept)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(a)) 'accept)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(b)) 'accept)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(c)) 'accept)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(c c a a))

'accept)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(b b c b b b))

'accept)
(check-equal? (sm-apply AT-LEAST-ONE-MISSING '(a a a b b b))

'accept)

Observe that words that contain all three symbols in the input alphabet are
rejected and those that do not are accepted.

27.2 Design Idea and Conditions

The machine nondeterministically decides to process the word as if a is miss-
ing, as if b is missing, or as if c is missing. As the word is processed, the con-
sumed input, ci, must satisfy one of the four conditions: nothing is consumed,
or for each x.∈(sm-sigma AT-LEAST-ONE-MISSING), x./∈ci. This means four
states are needed and these are documented in the program as follows:

;; States

;; S: the consumed input is empty, starting state

;; A: the consumed input does not contain a, final state

;; B: the consumed input does not contain b, final state

;; C: the consumed input does not contain c, final state
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27.3 Transition Relation

From the starting state, S, the machine nondeterministically moves to either
A, B, or C. In A, it processes an arbitrary number of bs or cs. In B, it processes
an arbitrary number of as or cs. In C, it processes an arbitrary number of as
or bs. The transition relation is:

`((S ,EMP A)

(S ,EMP B)

(S ,EMP C)

(A b A)

(A c A)

(B a B)

(B c B)

(C a C)

(C b C))

27.4 Implementation and Testing

Using the results for the previous steps of the design recipe for state machines,
the machine is implemented as follows:

(define AT-LEAST-ONE-MISSING (make-ndfa '(S A B C)

'(a b c)

'S
'(A B C)

`((S ,EMP A)

(S ,EMP B)

(S ,EMP C)

(A b A)

(A c A)

(B a B)

(B c B)

(C a C)

(C b C))))

Run the machine, and make sure that all the unit tests pass. In addition,
use sm-test to validate that the machine works correctly.
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27.5 State Invariant Predicates

The invariant state predicate for S must determine if the consumed input
is empty. Following the steps of the design recipe for functions yields the
following predicate:

;; word → Boolean

;; Purpose: Determine if the given word is empty

(define (S-INV ci) (empty? ci))

;; Test for S-INV

(check-equal? (S-INV '()) #t)

(check-equal? (S-INV ’(a b)) #f)

The invariant state predicate for A must determine if the consumed input
does not contain an a. Following the steps of the design recipe for functions
yields the following predicate:

;; word → Boolean

;; Purpose: Determine if the given word does not contain a

(define (A-INV ci) (empty? (filter (λ (a) (eq? a 'a)) ci)))

;; Test for A-INV

(check-equal? (A-INV '(a)) #f)

(check-equal? (A-INV '(a c b)) #f)

(check-equal? (A-INV '(c c b a b)) #f)

(check-equal? (A-INV '(b)) #t)

(check-equal? (A-INV '(c c b c b)) #t)

(check-equal? (A-INV '()) #t)

The invariant state predicate for B must determine if the consumed input
does not contain a b. Following the steps of the design recipe for functions
yields the following predicate:

;; word → Boolean

;; Purpose: Determine if the given word does not contain b

(define (B-INV ci) (empty? (filter (λ (a) (eq? a 'b)) ci)))

;; Test for B-INV

(check-equal? (B-INV '(b)) #f)

(check-equal? (B-INV '(a c b)) #f)

(check-equal? (B-INV '(a a b a b)) #f)

(check-equal? (B-INV '(c)) #t)

(check-equal? (B-INV '(c c a c c a a a)) #t)

(check-equal? (B-INV '()) #t)

The invariant state predicate for C must determine if the consumed input
does not contain a c. Following the steps of the design recipe for functions
yields the following predicate:
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Fig. 26 Visualizations for AT-LEAST-ONE-MISSING

(a)Input word in language. (b)Input word not in language.

;; word → Boolean

;; Purpose: Determine if the given word does not contain c

(define (C-INV ci) (empty? (filter (λ (a) (eq? a 'c)) ci)))

;; Test for C-INV

(check-equal? (C-INV '(c)) #f)

(check-equal? (C-INV '(a b c b)) #f)

(check-equal? (C-INV '(c c b a b)) #f)

(check-equal? (C-INV '(b)) #t)

(check-equal? (C-INV '(b b a a b a a a)) #t)

(check-equal? (C-INV '()) #t)

Validate AT-LEAST-ONE-MISSING’s design by running it in the FSM visu-
alization tool with the invariant state predicates:

(sm-visualize AT-LEAST-ONE-MISSING

(list 'S S-INV)

(list 'A A-INV)

(list 'B B-INV)

(list 'C C-INV))

For input words in L(AT-LEAST-ONE-MISSING), the visualization tool traces
one, of possibly many, paths that lead to accept. Observe how the initial
transition from S is always to a correct state as illustrated in Fig. 26a. This is
expected because an ndfa always makes a move to a state that leads to accept
when the input word is in the machine’s language. The arrow also changes
color to indicate whether that state invariant holds. For input words not in
L(AT-LEAST-ONE-MISSING), the visualization tool opens a pop-up window
informing you that the input is rejected as illustrated in Fig. 26b. This is
because none of the possible computations lead to accept. To visualize all such
paths to validate that the input word is not in the machine’s language gets
unwieldy quickly and is impractical to visualize. It is worth noting that this
is also the reason why show-transitions only returns 'reject when given
a word that is not in the language of the given nondeterministic machine.



27 Designing an ndfa 143

27.6 Correctness

27.6.1 Proving State Invariants Hold

Recall how to prove that a state invariant holds after a dfa transition using
the following rule:

(R a Q)

It is assumed that the consumed input satisfies R’s invariant, and it is shown
that adding a to the consumed input satisfies Q’s invariant. By consuming a,
the consumed input becomes longer. For an ndfa, we follow the same basic
approach, but we need to be aware that a may be .ε and, therefore, if such
is the case, the consumed input does not become longer. This means that
we must show that R’s invariant implies the invariant for every state in E(R)

that can lead to accept.
Why are we only concerned with nondeterministic transitions that may

lead to an accept? Recall that an ndfa never makes a nondeterministic tran-
sition unless it furthers a computation that leads to an accept. Therefore,
the nondeterministic choices not made do not concern us. This means that to
establish correctness, we only need to reason about nondeterministic transi-
tions that can lead to accept. Nondeterministic transitions that cannot lead
to an accept are never made and, thus, not part of any computation.

We shall simplify how the proof is written by suppressing the “boiler-
plate” parts of the proof by induction on the number of transitions made
to consume the input word. We shall use this abbreviated strategy to write
the proof for all state invariants holding during a computation that leads to
an accept performed by AT-LEAST-ONE-MISSING. It is assumed that readers
of this textbook now understand that, in essence, the proof argues that the
starting state’s invariant must hold when no input has been consumed and
that the state invariant for a state transitioned into must hold assuming the
previous state’s invariant holds.

Assume:

• M=AT-LEAST-ONE-MISSING

• w.∈(sm-sigma M).*

• F=(sm-finals M)

• ci is the consumed input

Theorem 1 The state invariants hold when M is applied to w.

For the base case, we must show that S-INV holds before making any
transitions. For the inductive step, we must show that the invariant for the
state transitioned into holds.
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Proof

When M starts, S-INV holds because ci = '(). This establishes the base case.

Proof invariants hold after each transition:

(S .ε A): By inductive hypothesis, S-INV holds. This means ci = '(). Using
this transition adds nothing to ci and, therefore, ci = .ε after using this rule.
A-INV holds because ci contains zero as.

(S .ε B): By inductive hypothesis, S-INV holds. This means ci = '(). Using
this transition adds nothing to ci and, therefore, ci = .ε after using this rule.
B-INV holds because ci contains zero bs.

(S .ε C): By inductive hypothesis, S-INV holds. This means ci = '(). Using
this transition adds nothing to ci and, therefore, ci = .ε after using this rule.
C-INV holds because ci contains zero cs.

(A b A): By inductive hypothesis, A-INV holds. A-INV guarantees that the
consumed input does not contain an a. Consuming a b means that the con-
sumed input remains without an a. Therefore, A-INV holds after the transi-
tion.

(A c A): By inductive hypothesis, A-INV holds. A-INV guarantees that the
consumed input does not contain an a. Consuming a c means that the con-
sumed input remains without an a. Therefore, A-INV holds after the transi-
tion.

(B a B): By inductive hypothesis, B-INV holds. B-INV guarantees that the
consumed input does not contain a b. Consuming an a means that the con-
sumed input remains without a b. Therefore, B-INV holds after the transition.

(B c B): By inductive hypothesis, B-INV holds. B-INV guarantees that the
consumed input does not contain a b. Consuming a c means that the con-
sumed input remains without a b. Therefore, B-INV holds after the transition.

(C a C): By inductive hypothesis, C-INV holds. C-INV guarantees that the
consumed input does not contain a c. Consuming an a means that the con-
sumed input remains without a c. Therefore, C-INV holds after the transition.

(C b C): By inductive hypothesis, C-INV holds. C-INV guarantees that the
consumed input does not contain a c. Consuming a b means that the con-
sumed input remains without a c. Therefore, C-INV holds after the transition.

This establishes the inductive step. �
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27.6.2 L = L(AT-LEAST-ONE-MISSING)

Lemma 1 w∈L ⇔ w∈L(M)

Proof
(⇒) Assume w∈L.

w∈L means that w does not contain, at least, an a, a b, or a c. Given that the
state invariants always hold, this means M consumes all its input in either A,
B, or C. Since A,B,C∈F, w∈L(M).

(⇐) Assume w∈L(M).

w∈L(M) means that M consumes all its input and halts in A, B, or C. Given
that the state invariants always hold, we may conclude that w is missing a,
b, or c. Therefore, w∈L. �

Lemma 2 w/∈L ⇔ w/∈L(M)

Proof
(⇒) Assume w/∈L.

w/∈L means that w has at least one a, one b, and one c. Given that state
invariants always hold, M cannot halt in A, B, or C after consuming w. Since
it cannot halt in a final state after consuming w, w/∈L(M).

(⇐) Assume w/∈L(M).

w/∈L(M) means that M does not halt in a final state consuming all of w.
Given that the state invariants always hold, w must have at least one a, one
b, and one c. Thus, w/∈L. �

Theorem 2 L = L(AT-LEAST-ONE-MISSING).

Proof
Lemmas 1 and 4 establish the theorem. �

1 Design and implement a dfa for L(AT-LEAST-ONE-MISSING). Follow
all the steps of the design recipe for state machines.

2 Design and implement an ndfa for:

(ab)∗b∗ ∪ ab∗

Follow all the steps of the design recipe for state machines.
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3 Design and implement an ndfa for:

L = {w | w∈aa∗ ∨ w∈ab∗}
Follow all the steps of the design recipe for state machines.

4 Let Σ ={a b c}. Design and implement an ndfa for:

L = {w | w is missing exactly 1 of the elements in Σ}
Follow all the steps of the design recipe for state machines.

5 Let Σ ={a b}. Design and implement an ndfa with only three states
for:

L = {w | w ends with bb}
Follow all the steps of the design recipe for state machines.

28 Equivalence of dfa and ndfa

Designing ndfas can be much simpler than designing a dfa. This makes ndfas
a valuable design tool for a problem-solver. However, it comes at a cost. How
can an ndfa be implemented as a function that does not build a machine
(as done in Sect. 25.1 for NO-ABAA)? It is difficult to see how to translate
an ndfa in FSM into a function in a programming language that does not
have an ndfa type. The difficulty arises in implementing nondeterminism.
How is the right transition always made? A deterministic program cannot
make a nondeterministic choice and guarantee that given the same input,
the same computation is carried out. A deterministic program would have
to simulate all possible computations and determine if any leads to accept.
Such a simulation may be implemented by performing a breadth-first search
of all possible computations. If a configuration is found that is in a final
state with empty input, then accept. If there are no configurations left to
explore, then reject. The key to understanding if such a design works is to
realize that a configuration is never explored more than once. Therefore, if
an accept configuration is not found, then eventually the configurations to
explore become empty.

The fact that a deterministic function may be written to simulate an ndfa

raises an intriguing question: Does endowing a finite-state machine with non-
determinism give us more computational power? That is, is there anything
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an ndfa can do that a dfa cannot do? To simulate an ndfa a dfa needs
to simulate all computations of the ndfa simultaneously. At first glance, this
may sound like preposterous. After all, a dfa cannot be in multiple states at
the same time. This is certainly true, but do we need a dfa to be in multiple
states at the same time? Consider an ndfa, N = (make-ndfa S .Σ s F .δ),
making a transition out of state P on a.∈ Σ. There can be several transition
rules out of P on a:

(P a R1)
...

(P a Rn)

After consuming a, what states can N be in? Consider the rule that moves to
N to R.i. N can be in any state in E(R.i). That is, N may be in R.i or any state
reachable from R.i using only ε-transitions. This means that N may be in any
of the following states:

E(R1) ∪ E(R2) ∪ . . . ∪ E(Rn)

Observe that the above is an element in .2S. Let us call it Z. Think of Z as a
super state for a dfa that represents all the states N may be in. To simulate
all possible computations that may be performed by N, a dfa transitions
between super states. After consuming all the input, it accepts if it is in a
super state that contains a final state in N. Otherwise, it rejects.

It is necessary to show how such a dfa, M, is constructed and to show that
L(M) = L(N). Showing how to build something (like a dfa) and showing that
the construction is correct (like L(M) = L(N)) is called a constructive proof. A
constructive proof has a construction algorithm and a proof of its correctness.

28.1 Building a dfa from an ndfa

Let N = (make-ndfa S .Σ s F .δ). Building a dfa from N hinges on com-
puting a transition function between super states for a dfa and encoding
each super state as a dfa state. If both the transition function and the en-
coding for super states are developed, then the dfa is constructed as fol-
lows:

(make-dfa <encoding of super states>

Σ
<encoding of E(s)>

<encoding of super states that contain f∈F>
<transition function between encoded super states>)
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Fig. 27 An ndfa for L = (aba .∪ ab).*

(define ND
(make-ndfa

(S A B C D E)
(a b)
S
(S)
((S a A)
(S a B)
(A b C)
(B b D)
(C a E)
(D ,EMP S)
(E ,EMP S))))

(a) Implementation.

(b) Transition diagram.

To compute the transition function, each known super state, P, must be
processed. At the beginning, the only known super state is E(s). For each
state, p.∈P, each alphabet element, a, is processed to compute, possibly new,
super states. The union of the super states obtained from processing a for
each p.∈P is the super state the dfa moves to from P on an a. For instance,
let P = {p.1 p.2 p.3}, and let (p.1 a r),(p.1 a s),(p.3 a t).∈δ. On an a, from
p.1, N may transition to any state in E(r).∪E(s); from p.2, N may transition
nowhere; and from p.3, N may transition to any state in E(t). Therefore, we
may describe a transition in the dfa as follows:

((p1 p2 p3) a (E(r) ∪ E(s)∪ E(t)))

That is, the dfa transitions from super state P on an a to a super state Q,
where Q = (E(r) .∪ E(s) .∪ E(t)).

Once the transition function between super states has been computed,
it is a straightforward matter to extract the super states and generate FSM

symbols to encode them. This encoding is then used to create the states, the
starting state, the final states, and the rules for use with make-dfa.

To illustrate the proposed constructor, consider the ndfa displayed in
Fig. 27 (in the interest of brevity, tests are omitted in Fig. 27a). First, the
empties for each state are computed. The following table displays the results:

State E(state)

S (S)

A (A)

B (B)

C (C)

D (D S)

E (E S)
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Use the transition diagram displayed in Fig. 27b to verify the empties of each
state are properly computed.

Second, the super state transition function is computed. It is helpful to
use the transition diagram for this step. The process starts with the only
known super state, E(S), which is the start super state for the dfa. For each
element, a, of the alphabet, take the union of the states that can be reached
from the states in E(S) by first consuming a. E(S) only contains S, and, thus,
the following transitions are obtained:

((S) a (A B))

((S) b ())

Observe that two new needed super states have been discovered. The process
is repeated for each unprocessed super state. Let us continue with (A B).
Both A and B can go nowhere on an a. On a b, from A, the machine can
transition to C, and from B, the machine can transition to D and by an ε-
transition to S. The needed super state transitions are:

((A B) a ())

((A B) b (C D S))

Observe that there are two unprocessed super states: () and (C D S). Let
us continue with the first. From the empty super state, only itself may be
reached. Thus, the needed transitions are:

(() a ())

(() b ())

The process continues with the (C D S) super state. From C after consuming
an a, the machine can transition to E or S. In D, a cannot be consumed, and,
therefore, nothing is reachable. From S after consuming an a, both A and B

are reachable. From C, D, and S on a b, nothing is reachable. The needed dfa

transitions are:

((C D S) a (E S A B))

((C D S) b ())

The process continues with (E S A B) super state. From E on an a, nothing is
reachable. From S after consuming an a, we have that A and B are reachable.
Both A and B can go nowhere on an a. On a b, nothing is reachable from E

and S, C is reachable from A, and D and S are reachable from B. The needed
super state dfa transitions are:

((E S A B) a (A B))

((E S A B) b (C D S))
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There are no more super states to process. This means that the super state
transition function has been computed. The following table summarizes the
super state transition function:

Super State a b

(S) (A B) ()

(A B) () (C D S)

(C D S) (E S A B) ()

(E S A B) (A B) (C D S)

() () ()

To build a dfa, the super states must be mapped to FSM states. The
following table is one such encoding:

Super state dfa state

(S) S

(A B) A

(C D S) B

(E S A B) C

() DEAD

Observe that S, B, and C are final states in the dfa because the super state
they represent contains the only final state in ND.

The work done allows for the construction of the dfa displayed in Fig. 28.
The tests validate that the deterministic and nondeterministic implementa-
tions decide the same language. The second check-equal? uses FSM’s prim-
itive, ndfa->dfa, to transform an ndfa to a dfa and validates that FSM’s
transformation and the dfa developed are equivalent.

28.2 Implementation

To implement the proposed constructor, clear data definitions for the in-
formation manipulated are needed. The implementation presented uses the
following data definitions:
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Fig. 28 A dfa for L = (aba .∪ ab).*

(define D
(make-dfa (S A B C ,DEAD)

(a b)
S
(S B C)
((S a A)
(S b ,DEAD)
(A a ,DEAD)
(A b B)
(B a C)
(B b ,DEAD)
(C a A)
(C b B)
(,DEAD a ,DEAD)
(,DEAD b ,DEAD))))

;; Tests for D
(check-equal?

(sm-testequiv? D ND 500)
#t)

(check-equal?
(sm-testequiv? (ndfa->dfa ND)

D
500)

#t)

(a) Implementation.

(b) Transition diagram.

;; Data Definitions

;;

;; An ndfa transition rule, ndfa-rule, is a

;; (list state symbol state)

;;

;; A super state, ss, is a (listof state)

;;

;; A super state dfa rule, ss-dfa-rule, is a

;; (list ss symbol ss)

;;

;; An empties table, emps-tbl, is a

;; (listof (list state ss))

;;

;; A super state name table, ss-name-table, is a

;; (listof (list ss state))
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Fig. 29 The main function to convert an ndfa to a dfa
;; ndfa → dfa
;; Purpose: Convert the given ndfa to an equivalent dfa
(define (ndfa2dfa M)

(if (eq? (sm-type M) dfa)
M
(convert (sm-states M)

(sm-sigma M)
(sm-start M)
(sm-finals M)
(sm-rules M))))

;; Tests for ndfa2dfa
(define M (ndfa2dfa AT-LEAST-ONE-MISSING))
(check-equal? (sm-testequiv? AT-LEAST-ONE-MISSING M 500) #t)
(check-equal? (sm-testequiv? M (ndfa->dfa AT-LEAST-ONE-MISSING) 500) #t)

(define N (ndfa2dfa ND))
(check-equal? (sm-testequiv? ND N 500) #t)
(check-equal? (sm-testequiv? N (ndfa->dfa ND) 500) #t)

28.2.1 Main Function: ndfa2dfa

The main function, ndfa2dfa, tests if the given machine is a dfa. If so, it
returns it given that no transformation is needed. Otherwise, a converting
function is called with the components of the given ndfa. Following the steps
of the design recipe for functions yields the code displayed in Fig. 29.

To test the function, two (previously defined) ndfas are converted to dfas.
The dfas are tested for equivalence with their nondeterministic counterparts
and with the dfas obtained using FSM’s ndfa->dfa.

28.2.2 The convert Function

The convert function takes as input the components of an ndfa. To build a
dfa, it computes the following values:

1. The empties table
2. The super state dfa rules
3. The super state name table

An auxiliary function, compute-empties-tbl, that takes as input the
given states and the given rules is used to compute the empties table.
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Fig. 30 The convert implementation
;; (listof state) alphabet state (listof state) (listof ndfa-rule) → dfa
;; Purpose: Create a dfa from the given ndfa components
(define (convert states sigma start finals rules)

(let* [(empties (compute-empties-tbl states rules))
(ss-dfa-rules
(compute-ss-dfa-rules (list (extract-empties start empties))

sigma
empties
rules
()))

(super-states (remove-duplicates
(append-map (λ (r) (list (first r) (third r)))

ss-dfa-rules)))
(ss-name-tbl (compute-ss-name-tbl super-states))]

(make-dfa (map (λ (ss) (second (assoc ss ss-name-tbl)))
super-states)

sigma
(second (assoc (first super-states) ss-name-tbl))
(map (λ (ss) (second (assoc ss ss-name-tbl)))

(filter (λ (ss) (ormap (λ (s) (member s finals)) ss))
super-states))

(map (λ (r) (list (second (assoc (first r) ss-name-tbl))
(second r)
(second (assoc (third r) ss-name-tbl))))

ss-dfa-rules)
no-dead)))

;; Tests for convert
(check-equal?

(sm-testequiv? (convert (S A B) (a b) S (A B) ((S a A)
(S a B)
(A a A)
(B b B)))

(make-ndfa (S A B) (a b) S (A B) ((S a A)
(S a B)
(A a A)
(B b B)))

500)
#t)

(check-equal?
(sm-testequiv? (convert (S A) (a b) S (S A) ((S a S)

(S a A)
(A b A)
(A a A)))

(make-ndfa (S A) (a b) S (S A) ((S a S)
(S a A)
(A b A)
(A a A)))

500)
#t)



154 6 Nondeterministic Finite-State Machines

Computing the super state dfa rules is also delegated to an auxiliary
function. The auxiliary function performs a breadth-first search using two
accumulators, the given alphabet, the empties table, and the given rules. The
first accumulator is for the super states that must still be visited. Initially, this
accumulator only contains one super state: the empties of the given starting
state. This value is extracted from the empties table entry for the given state
using the following function:

;; state emps-tbl → ss

;; Purpose: Extract the empties of the given state

;; Assume: Given state is in the given list of states

(define (extract-empties st empties)

(second (first (filter (λ (e) (eq? (first e) st))

empties))))

;; Tests for extract-empties

(check-equal? (extract-empties 'A '((S (S B))

(F (F))

(A (A C D))

(C (C))

(D (D))))

'(A C D))

(check-equal? (extract-empties 'Z '((Z (Z S))

(S ())))

'(Z S))

The second accumulator is for the already visited super states. Initially, this
accumulator is the empty list. Given that the first super state processed is
the one for start, the first super state dfa rule is a rule for the starting super
state.

Computing the super state name table requires processing the super states
and is delegated to an auxiliary function. Given that the super states are
needed several times to construct the dfa, these are locally defined. They are
computed by extracting all instances of a super state in the super state dfa

rules and removing duplicates. Given that the first rule is from the starting
super state, the first state in the list of super states is the starting super
state.

The dfa is constructed with the following arguments for the constructor:

States: The list of states obtained from removing duplicates from the map-
ping of all instances of a super state in the super state dfa rules to a
state using the super state name table.

Alphabet: The given alphabet.
Start State: The mapping of the starting super state (the first in the list of

super states) to its dfa state using the super state name table.
Final States: The mapping of all super states that contain a given final state

to their dfa states using the super state name table.
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Fig. 31 The function to compute the empties table
;; (listof state) rules → emps-tbl
;; Purpose: Compute empties table for all given states
(define (compute-empties-tbl states rules)

;; state (listof state) (listof ndfa-rule) → (listof ndfa-rule)
;; Purpose: Extract empty transitions to non-generated states for the
;; given state
(define (get-e-trans state gen-states rules)

(filter (λ (r) (and (eq? (first r) state)
(eq? (second r) EMP)
(not (member (third r) gen-states))))

rules))
;; (listof state) (listof ndfa-rules) (listof state) → (listof state)
;; Purpose: Compute the empties for the states left to explore in the first
;; given (listof state)
;; Accumulator Invariants:
;; to-search = unvisited states reachable by consuming no input
;; visited = visited states reachable by consuming no input
(define (compute-empties to-search rules visited)

(if (empty? to-search)
visited
(let* [(curr (first to-search))

(curr-e-rules
(get-e-trans curr (append to-search visited) rules))]

(compute-empties (append (rest to-search) (map third curr-e-rules))
rules
(cons curr visited)))))

(map (λ (st) (list st (compute-empties (list st) rules ()))) states))
;; Tests for compute-empties-tbl
(check-equal? (compute-empties-tbl (X Y Z) ((X ,EMP Y) (Y a Z) (Z ,EMP X)))

((X (Y X)) (Y (Y)) (Z (Y X Z))))
(check-equal?

(compute-empties-tbl (W X Y Z)
((W ,EMP X) (X ,EMP Y) (Y a Z) (Z ,EMP Y) (Z b Z)))

((W (Y X W)) (X (Y X)) (Y (Y)) (Z (Y Z))))

Transition Function: The super state dfa rules with each state mapped to
their dfa state using the super state name table.

'no-dead: This indicates to make-dfa not to add a dead state. This is safe
to do because ss-dfa-rules is a function between super states.

The result of this design is displayed in Fig. 30. The tests are written to
validate the equivalence of an ndfa and the conversion obtained from its
components. The assoc function takes as input a value (e.g., a super state)
and a table (e.g., the super state name table) and returns the table entry
whose first element matches the given value.
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28.2.3 Computing the Empties Table

To compute the empties table, the set of states and the transition rules of an
ndfa are received as input. The table is created by mapping a function that
creates a table entry for the given states. The mapped function computes the
empties for a state. The computation of the empties for a state is delegated
to an auxiliary function that performs a breadth-first search through the
given rules and consumes the accumulator value for the states to visit, the
given rules, and the accumulator value for the visited states. Initially, the
first accumulator only contains the state being processed, and the second
accumulator value is empty.

The function to compute the empties of state, compute-empties, is
designed using generative recursion with two accumulators to perform a
breadth-first search for states through ε-transitions. If there are no more
states to visit, then the accumulator for the visited states contains all the
states reachable by ε-transitions and is returned. Otherwise, the first un-
visited state’s ε-transitions to states that are not in the visited list nor the
unvisited list are extracted from the given rules. In this manner, a state is
never visited more than once. The search recursively continues with the list
obtained by adding the third element of the extracted rules to the rest of
the states to visit, the given rules, and the list obtained by adding the first
unvisited state to the accumulator for the visited states.

To extract the needed ε-transitions, get-e-trans, consumes the state to
process, the list of generated states (i.e., the states to visit and already vis-
ited), and the rules to search. It filters the list of states to return the rules
that go from the given state consuming no input to a state that has not been
generated.

The result of this design is displayed in Fig. 31. The tests are purposely
left small enough to easily illustrate to any reader of the code the expected
behavior of the function.

28.2.4 Computing the Super State Transition Function

To compute the super state transition function, a breadth-first search rooted
at the super states that still need to be explored is performed to identify
transition rules. There are two accumulators: one for the super states left to
explore and one for the super states already explored. If there are no states
left to explore, the empty list is returned because the search for super state
dfa rules is done. Otherwise, the first unexplored super state, curr-ss, is pro-
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Fig. 32 Function to compute the super state transition function
;; (listof ss) alphabet emps-tbl (listof ndfa-rule) (listof ss)
;; → (listof ss-dfa-rule)
;; Purpose: Compute the super state dfa rules
;; Accumulator Invariants:
;; ssts = the super states explored
;; to-search-ssts = the super states that must still be explored
(define (compute-ss-dfa-rules to-search-ssts sigma empties rules ssts)

...
(if (empty? to-search-ssts)

()
(let* [(curr-ss (first to-search-ssts))

(reachables (find-reachables curr-ss sigma rules empties))
(to-super-states
(build-list (length sigma) (λ (i) (get-reachable i reachables))))

(new-rules (map (λ (sst a) (list curr-ss a sst))
to-super-states
sigma))]

(append
new-rules
(compute-ss-dfa-rules

(append (rest to-search-ssts)
(filter (λ (ss)

(not (member ss (append to-search-ssts ssts))))
to-super-states))

sigma
empties
rules
(cons curr-ss ssts))))))

cessed. The set of reachable states for every state in the curr-ss, consuming
every element of the alphabet, is computed. For instance, if the curr-ss is
'(A B C) and the alphabet is '(a b), then the reachable states have the
following structure:

(((reachable from A on a) (reachable from A on b))

((reachable from B on a) (reachable from B on b))

((reachable from C on a) (reachable from C on b)))

There are three sublists in the list: one for each state in curr-ss. Each sublist
has a list of states that are reachable for each element of the alphabet. From
this, the super states to transition into, to-super-states, are computed.
For instance, the super state reachable on an a is formed by all the states
reachable on an a from A, B, and C (without repetitions). The dfa transition
rules are generated by simultaneously traversing to-super-states and the
alphabet. Assuming a is the current alphabet element and sst is the current
element of to-super-states during such a traversal, then a super state dfa
rule of the following form is created: (curr-ss a sst). Finally, the super
state dfa rules generated are appended with the result of recursively pro-
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cessing a new accumulator for unexplored super states containing the rest of
the said accumulator and any new super states generated for the new rules,
the same alphabet, the same empties table, the same list of ndfa rules, and a
new accumulator for explored states obtained by adding curr-ss. The out-
line of this design is displayed in Fig. 32. This is the bulk of what is needed to
compute the super state dfa transition function. We proceed next to discuss
the implementation of the auxiliary functions (that ought to go where the
vertical dots are in Fig. 32).

To find the reachable super states from a given super state, a function
is mapped onto the super state to process its states. The mapped function
takes as input a state and computes the reachable super states from the given
state using the given alphabet, rules, and empties table. It is implemented as
follows:

;; ss alphabet (listof ndfa-rule) emps-tbl

;; → (listof (listof ss))

;; Purpose: Compute reachable super states from given

;; super state

(define (find-reachables ss sigma rules empties)

(map (λ (st)

(find-reachables-from-st st sigma rules empties))

ss))

The auxiliary function to find the reachable super states from a state maps a
function onto the alphabet. This function takes as input an alphabet element
and calls an auxiliary function to find the reachable super state from the
given state and the given alphabet element. It is implemented as follows:

;; state alphabet (listof ndfa-rule) emps-tbl → (listof ss)

;; Purpose: Find the reachable super state from the given state

;; for each element of the given alphabet

(define (find-reachables-from-st st sigma rules empties)

(map (λ (a)

(find-reachables-from-st-on-a st a rules empties))

sigma))

The function to find the reachable super states from a given state and a
given alphabet element extracts all the rules for the given state on the given
alphabet element. The third element of these rules are all the reachable states
by consuming the single alphabet element. The empties of each of these states
are appended, and duplicates are removed to obtain the reachable super state.
The function is implemented as follows:
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;; state symbol (listof ndfa-rule) emps-tbl → ss

;; Purpose: Find the reachable super state from the given state

;; and the given alphabet element

(define (find-reachables-from-st-on-a st a rules empties)

(let* [(rls (filter

(λ (r)

(and (eq? (first r) st) (eq? (second r) a)))

rules))

(to-states (map third rls))]

(remove-duplicates

(append-map (λ (st) (extract-empties st empties))

to-states))))

Finally, to construct a super state from the i.th super state in each sublist
of a (listof (listof super-state)), each sublist is referenced at i, and
the results are appended. The needed super state is obtained by removing
duplicates. The function is implemented as follows:

;; natnum (listof (listof ss)) → (listof ss)

;; Purpose: Return ss of ith (listof state) in each given

;; list element

(define (get-reachable i reachables)

(remove-duplicates (append-map

(λ (reached) (list-ref reached i))

reachables)))

28.2.5 Computing the Super State Name Table

To create the super state name table, a function is mapped to the given list
of super states. This function creates a table entry for the given super state.
If the given super state is empty, then its entry contains FSM’s DEAD state.
For a nonempty super state, an FSM symbol is generated. The function is
implemented as follows:

;; (listof ss) → ss-name-tbl

;; Purpose: Create a table for ss names

(define (compute-ss-name-tbl super-states)

(map (λ (ss)

(if (empty? ss)

(list ss DEAD)

(list ss (generate-symbol 'Z '(Z)))))
super-states))
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;; Tests for compute-ss-name-tbl

(check-pred (lambda (tbl)

(and (list? tbl)

(andmap (λ (e) (= (length e) 2)) tbl)

(andmap (λ (e) (andmap symbol? (first e)))

tbl)

(andmap (λ (e) (symbol? (second e))) tbl)))

(compute-ss-name-tbl '()))

(check-pred (lambda (tbl)

(and (list? tbl)

(andmap (λ (e) (= (length e) 2)) tbl)

(andmap (λ (e) (andmap symbol? (first e)))

tbl)

(andmap (λ (e) (symbol? (second e))) tbl)))

(compute-ss-name-tbl '((A B) (A B C) () (C))))

Given that FSM symbol generation is done randomly, model checking is used
to test the function. Each table generated must be a list of entries. Each entry
must be a list of length 2. In addition, each entry must have a super state as
its first element and a symbol as its second element.

This completes the design and implementation of the function to convert
an ndfa to an equivalent dfa. Run the tests and make sure they all pass.

28.3 Correctness Proof

After validating the construction algorithm through testing, it is necessary to
prove that the algorithm is correct. To prove algorithm correctness, assume
all functions work properly. Based on this assumption, we need to prove that
the language of the given ndfa is the same as the language of the computed
dfa. The proof is tightly coupled with the construction of the dfa. More
formally, let:

ND = (make-ndfa S Σ A F δ)

D = (make-dfa S' Σ A' F' δ'). where

S' = the states computed in convert

A' = the starting state computed in convert

F' = the final states computed in convert

δ' = the transition function computed in convert

We need to prove L(ND) = L(D).
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28.3.1 Proof That D Simulates All ND Computations and Vice
Versa

To prove that the languages are the same, we first need to prove that every
computation possible with ND may be carried out by D and vice versa. To this
end, we prove the following theorem by induction on .|w.|.

Theorem 3 (w Q) �∗
.ND (() P) .⇔ (w Q') �∗

.D (() P'), where Q' = E(Q)
.∧ P.∈P'.

Proof
(.⇒) Assume (w Q) �∗

.ND (() P).

Base Case: .|w.| = 0
.|w.| = 0 .⇒ w = ()

By assumption, (() Q) �∗
.ND (() P). This means that P.∈E(Q).

By construction of D, P.∈Q'. This means that ND’s computation is carried
out as follows by D:

(() Q') � (() Q')

This establishes the base case.

Inductive Step:

Assume: (w Q) �∗
.ND (() P) .⇒ (w Q') �∗

.D (() P'), where Q' = E(Q) .∧
P.∈P', for .|w.|=k.
Show: (w Q) �∗

.ND (() P) .⇒ (w Q') �∗
.D (() P'), where Q' = E(Q) .∧ P.∈P',

for .|w.|=k+1.

.|w.|=k+1 .⇒ w=(xa), where x.∈ Σ∗ and a.∈ Σ.

To prove the implication, assume ((xa) Q) �∗
ND (() P).

This means that ND’s computation is:

(xa Q) �∗
.ND ((a) R) �.ND (() T) �∗

.ND (() P)

That is, consuming x takes ND from Q to some intermediate state R. From
R on an a, ND goes to T. Then by ε-transitions, ND gets to P.



162 6 Nondeterministic Finite-State Machines

By inductive hypothesis:

((xa) Q') �∗
.D ((a) R'), where R.∈R'.

Observe that (R a T) .∈ δ and P .∈ E(T). Let P' be E(T). By construction
of D, this means that the following is D’s computation:

((xa) Q') �∗
.D ((a) R') �.D (() P'), where P.∈P'.

Clearly, we have that (w Q') �∗
.D (() P'), where P.∈P'. This completes the

proof of the implication.

(.⇐) Assume: (w Q') �∗
.D (() P'), where Q' = E(Q) .∧ P.∈P', for .|w.|=k+1.

Base Case: .|w.| = 0
.|w.| = 0 .⇒ w = ()

By assumption, Q' = P' because D is deterministic. This means that
P.∈E(Q).

By construction of D:

(() Q) �∗
.ND (() P)

This establishes the base case.

Inductive Step:

Assume: (w Q') �∗
.D (() P') .⇒ (w Q) �∗

.ND (() P),
where Q' = E(Q) .∧ P.∈P', for .|w.|=k.

Show: (w Q') �∗
.D (() P') .⇒ (w Q) �∗

.ND (() P),
where Q' = E(Q) .∧ P.∈P', for .|w.|=k+1.

.|w.|=k+1 .⇒ w=(xa), where x.∈ Σ∗ and a.∈ Σ.

To prove the implication, assume (w Q') �∗
.D (() P'), where Q' = E(Q) .∧

P.∈P', for .|w.|=k+1.

This means that D’s computation is:

((xa) Q') �∗
.D ((a) R') �.D (() P')
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By construction of D, the above means:

((xa) Q) �∗
.ND ((a) R) �.ND (() T) �∗

.ND (() P), where R.∈R' and
P.∈E(T)=P'.
This completes the proof of the theorem. �

We can now prove that the two machines decide the same language.

28.3.2 L(ND) = L(D) Proof

As ought to be expected by now, the proof that L(ND) = L(D) is divided into
two lemmas: one for words that are in the language of both machines and
another for words that are not in the language of both machines.

Lemma 3 w.∈L(ND) .⇔ w.∈L(D)

Proof (.⇒) Assume w.∈L(ND).

This means that:

(w S) �∗
.ND (() P), where P.∈F.

By Theorem 3, we have that:

(w S') �∗
.D (() P'), where P.∈P'.

By construction of D, P'.∈F'. Thus, w.∈L(D).

(.⇐) Assume w.∈L(D).

This means that:

(w S') �∗
.D (() P'), where P'.∈F'.

By Theorem 3 and construction of D, we have that:

(w S) �∗
.ND (() P), where P.∈F and P.∈P'.

Thus, w.∈L(ND). �

Lemma 4 w./∈L(ND) .⇔ w./∈L(D)

Proof (.⇒) Assume w./∈L(ND).
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This means that for all ND computations:

(w S) �∗
.ND (() P), where P./∈F.

By Theorem 3, we have that:

(w S') �∗
.D (() P'), where P.∈P'.

By construction of D, P'./∈F'. Thus, w./∈L(D).

(.⇐) Assume w./∈L(D).

This means that:

(w S') �∗
.D (() P'), where P'./∈F'.

By Theorem 3 and construction of D, we have that:

(w S) �∗
.ND (() P), where P./∈F and P.∈P'.

Thus, w./∈L(ND). �

The two lemmas lead to the sought theorem:

Theorem 4 L(ND) = L(D)

Proof
Lemmas 3 and 4 establish the theorem. �

29 Concluding Remarks

It is a remarkable result that endowing dfas with nondeterminism yields no
extra computational power. At its beginning, this chapter states that it is
difficult to see how the following language can be decided by a dfa:

L = ab∗ ∪ aa∗ ∪ ε

Indeed, it was not easy to see. Now, however, it ought to be clear that there
is a dfa that can decide L. To obtain such a dfa, design an ndfa for L, and
convert it to a dfa.

Does this mean that ndfas are worthless? For a computer scientist, the an-
swer is clearly no. Although ndfas do not provide more computational power,
they do make the design process easier. That is, they are a useful abstrac-
tion programmers may use to design solutions using a dfa. You may ponder
about this as follows. Can everything you do with your favorite higher-level
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programming language be done in assembly? Clearly, the answer is yes. That
is, the higher-level programming language does not offer any additional com-
putational power. Nonetheless, you choose not to program in assembly and
prefer a higher-level language. Why? The higher-level programming language
offers abstractions that make problem-solving and programming easier. Such
is the case for ndfas.

6 Prove that any ndfa may be implemented with a single final state.

7 Converting AT-LEAST-ONE-MISSING to a dfa yields a machine, DM,
with the following transition diagram:

.

b

Z-3434703

Z-3434701 Z-3434704 Z-3434705

Z-3434702 Z-3434706

Z-3434707

b

c

c

a

a

a
a

a

b

c

c, b, a

c, a

b, a

c, b

ds

b

c

c

b

Prove that L(AT-LEAST-ONE-MISSING) = L(DM).

8 Attempt to directly prove by induction on .|w.| that L(ND) = L(D).
What goes wrong with this approach?



Chapter 7

Finite-State Automatons and Regular
Expressions

Our study of finite-state automatons, deterministic or nondeterministic, has
suggested that the languages they decide are the same as the regular lan-
guages. We have seen dfa examples that read concatenated symbols or that
loop to read a collection of concatenated symbols an arbitrary number of
times. This suggests that the languages they decide may be closed under
concatenation and Kleene star. We have seen ndfa examples that suggest
the languages they decide are closed under union. It is striking that these are
operations used by regular expressions to define a language.

30 Closure Properties

If the languages decided by finite-state automatons are the regular languages,
then they must be closed under concatenation, union, and Kleene star. That
is, we ought to be able to combine the languages decided by finite-state au-
tomatons, like regular expressions are combined, using concatenation, union,
and Kleene star to create machines for bigger languages.

Such an ability would provide programmers with a new set of constructors
to create finite-state automatons, thus, simplifying the amount of work a
programmer must do to create “complex” finite-state automatons. We shall
prove the following theorem establishing closure properties for the languages
decided by finite-state automatons:

Theorem 1 The languages decided by finite-state automatons are closed un-
der:

(a) Union
(b) Concatenation
(c) Kleene star
(d) Complement
(e) Intersection

© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024
M. T. Morazán, Programming-Based Formal Languages
and Automata Theory, Texts in Computer Science,
https://doi.org/10.1007/978-3-031-43973-5 7

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43973-5protect unhbox voidb@x kern .06emvbox {hrule width.3em}7&domain=pdf
https://doi.org/10.1007/978-3-031-43973-5_7
https://doi.org/10.1007/978-3-031-43973-5_7
https://doi.org/10.1007/978-3-031-43973-5_7
https://doi.org/10.1007/978-3-031-43973-5_7
https://doi.org/10.1007/978-3-031-43973-5_7
https://doi.org/10.1007/978-3-031-43973-5_7
https://doi.org/10.1007/978-3-031-43973-5_7


168 7 Finite-State Automatons and Regular Expressions

Proof The proof is divided into five theorems, Theorems 2 to 6, below. They
are all proven using a constructive proof. �

To test the constructors, the following machines are defined:

;; L = ab*

(define ab* (make-ndfa '(S A)

'(a b)

'S
'(A)
'((S a A)

(A b A))))

;; L = a(a U ab)b*

(define a-aUb-b* (make-ndfa '(Z H B C D F)

'(a b)

'Z
'(F)
`((Z a H)

(Z a B)

(H a D)

(D ,EMP F)

(B a C)

(C b F)

(F b F))))

;; L = aab*

(define aab* (make-ndfa '(W X Y)

'(a b)

'W
'(Y)
'((W a X)

(X a Y)

(Y b Y))))

;; L = a*

(define a* (make-dfa '(S D)

'(a b)

'S
'(S)
'((S a S)

(S b D)

(D a D)

(D b D))

'no-dead))
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Fig. 33 Construction algorithm for L = L(M) ∪ L(N)
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30.1 Union

30.1.1 Construction Algorithm

Let the following be the two machines that decide the languages to union:

M = (make-ndfa SM ΣM A FM δM)

N = (make-ndfa SN ΣN R FN δN)

We need to construct an ndfa that decides L = L(M) .∪ L(N). The construc-
tion algorithm may be visualized as displayed in Fig. 33. Without loss of
generality, assume that (sm-states M) .∩ (sm-states N) = .∅. A starting
state, S, for the union machine is created such that it is not in (sm-states

M) nor in (sm-states N). The union machine nondeterministically decides
to go to M’s starting state or N’s starting state. After that, the union machine
simulates the machine whose starting state it moved to. Given that either
M or N may be simulated, the union machine needs the alphabets, the final
states, and the rules of both.

The construction algorithm is implemented as displayed in Fig. 34. It
assumes that the given machines do not have a state with the same name.
The components of the union machine are computed first. A new start state
is generated such that it is not a state in the union of the states of the
given machines. The union’s machine alphabet is computed by appending
the alphabets of both given machines and removing duplicates. The states of
the new machine are obtained by adding the new starting state to the union of
the states of both given machines. The union machine’s final states contains
the final states of the given machines. The rules for the union machine include
the rules of both given machines and the empty transition rules from the new
start state to the start states of the given machines.
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Fig. 34 The implementation of the union of two ndfas
;; ndfa ndfa → ndfa
;; Purpose: Construct ndfa for the union of the languages of the
;; given ndfas
;; Assume: The intersection of the states of the given machines is empty
(define (union-fsa M N)

(let* [(new-start (generate-symbol
S (append (sm-states M) (sm-states N))))

(new-sigma (remove-duplicates
(append (sm-sigma M) (sm-sigma N))))

(new-states (cons new-start
(append (sm-states M) (sm-states N))))

(new-finals (append (sm-finals M) (sm-finals N)))
(new-rules (append (list (list new-start EMP (sm-start M))

(list new-start EMP (sm-start N)))
(sm-rules M)
(sm-rules N)))]

(make-ndfa new-states new-sigma new-start new-finals new-rules)))

;; Tests for union-fsa
(define ab*Ua-aUb-b* (union-fsa ab* a-aUb-b*))
(define ab*Uaab* (union-fsa ab* aab*))

(check-equal? (sm-apply ab*Ua-aUb-b* ()) reject)
(check-equal? (sm-apply ab*Ua-aUb-b* (a a a a)) reject)
(check-equal? (sm-apply ab*Ua-aUb-b* (a b)) accept)
(check-equal? (sm-apply ab*Ua-aUb-b* (a a b b)) accept)
(check-equal? (sm-testequiv? ab*Ua-aUb-b* (sm-union ab* ab*Ua-aUb-b*))

#t)

(check-equal? (sm-apply ab*Uaab* (a a a)) reject)
(check-equal? (sm-apply ab*Uaab* (b a b a)) reject)
(check-equal? (sm-apply ab*Uaab* (a b b)) accept)
(check-equal? (sm-apply ab*Uaab* (a a b)) accept)
(check-equal? (sm-apply ab*Uaab* (a b b b b)) accept)
(check-equal? (sm-testequiv? ab*Uaab* (sm-union ab* aab*)) #t)

For testing, two ndfas are created using the new constructor. The con-
structor is tested by illustrating the expected behavior using words that are
not and that are in L(M) .∪ L(N). In addition, the equivalence of the created
union machines and the machines obtained using FSM’s sm-union is tested.

30.1.2 Algorithm Correctness Proof

Define three machines as follows:

M = (make-ndfa S Σ Z F δ)
N = (make-ndfa S' Σ' Z' F' δ')
U = (union-fsa M N) = (make-ndfa S'' Σ'' Z'' F'' δ'')
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Let L = L(M) .∪ L(N). We proceed to prove that L = L(U).

Lemma 1 w.∈L .⇔ w.∈L(U)

Proof

(.⇒) We need to show that w.∈L .⇒ w.∈L(U).

Assume w.∈L. This means that w.∈L(M) or w.∈L(N). By construction, U non-
deterministically correctly chooses to simulate M or to simulate N. Thus,
w.∈L(U).

(.⇐) We need to show that w.∈L(U) .⇒ w.∈L.

Assume w.∈L(U). This means that there is a computation that consumes w
such that:

(w Z'') �∗
U (() K), where K.∈F''

By U’s construction, either M or N is simulated, and U’s final states are the
final states of M and N. This means w.∈L(M) or w.∈L(N). Thus, w.∈L. �

Lemma 2 w./∈L .⇔ w./∈L(U)

Proof

(.⇒) We need to show that w./∈L .⇒ w./∈L(U).

Assume w./∈L. This means that w./∈L(M) and w./∈L(N). By U’s construction,
F'' = F.∪F', and all possible computations of U on w never reach a state in
F''. Thus, w./∈L(U).

(.⇐) We need to show that w./∈L(U) .⇒ w./∈L.

Assume w./∈L(U). This means that all possible computations on w are de-
scribed as follows:

(w Z'') �∗
U (() K), where K./∈F''

By U’s construction, either M or N is simulated, and F'' = F.∪F'. This
means w./∈L(M) and w./∈L(N). Thus, w./∈L. �

Theorem 2 The languages accepted by finite-state machines are closed under
union.

Proof The theorem is established by Lemmas 1 and 2. �
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1 The union constructor assumes that the intersection of the states of
the given machines is empty. Why is this assumption necessary? What
may go wrong if this intersection is not empty? Carefully justify your
answer.

2 If M is an ndfa that decides L(M) and N is an ndfa that decides
L(N) and either has unreachable states, then (union-fsa M N) also has
unreachable states. Redesign union-fsa so that the returned machine
does not have unreachable states.

3 A famous hacker claims that the following is a more efficient imple-
mentation for union-fsa:

;; ndfa ndfa → ndfa

;; Purpose: Construct ndfa for the union of the languages of

;; the given ndfas

;; Assume: The intersection of the states of the given

;; machines is empty

(define (union-fsa M N)

(let* [(new-start (sm-start M))

(new-sigma (remove-duplicates

(append (sm-sigma M) (sm-sigma N))))

(new-states (append (sm-states M) (sm-states N)))

(new-finals (append (sm-finals M) (sm-finals N)))

(new-rules (cons (list new-start EMP (sm-start N))

(append (sm-rules M)

(sm-rules N))))]

(make-ndfa new-states

new-sigma

new-start

new-finals

new-rules)))

Is the famous hacker correct? Carefully, justify your answer.

4 Define and implement a constructor that takes as input 3 ndfas and
returns a machine for the union of the languages decided by the given
machines. Prove the correctness of your construction algorithm.



30 Closure Properties 173

Fig. 35 Construction algorithm for L = L(M) ◦ L(N)
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30.2 Concatenation

Let the following be the two machines that decide the languages to concate-
nate:

M = (make-ndfa SM ΣM A FM δM)

N = (make-ndfa SN ΣN R FN δN)

We need to construct an ndfa that decides L = L(M) .◦ L(N). Every word
must start with w.∈L(M) and end with x.∈L(N). Without loss of generality,
assume that S.M∩S.N=.∅. The construction algorithm may be visualized as
displayed in Fig. 35. The constructed machine first simulates M. From every
final state in F.M , the constructed machine can reach the R through an ε-
transition. From there, it simulates N. For this, the constructed machine needs
S.M∪S.N as its sets of states, ΣM ∪ΣN as its alphabet, A as its starting state,
F.N as its set of final states, and all the rules of M and N along with the
ε-transitions from every final state in F.M to R as its set of rules.

30.2.1 Implementation

The construction algorithm is implemented as displayed in Fig. 36. The com-
ponents of the concatenation machine are computed first. The concatenation
machine’s alphabet is computed by appending the alphabets of both given
machines and removing duplicates. The states of the new machine are ob-
tained by appending the states of both given machines. The rules for the
concatenation machine include the rules of both given machines and the new
ε-transitions rules. The latter are computed by mapping a function to the
first given machine’s final states. The mapped function creates an ndfa rule
using the given final state, EMP, and the starting state of the second given
machine.

For testing, two ndfas are created using the new constructor. The con-
structor is tested by illustrating the expected behavior using words that are
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Fig. 36 The implementation of the concatenation of two ndfas
;; ndfa ndfa → ndfa
;; Purpose: Construct ndfa for the concatenation of the languages of the
;; given ndfas
;; Assume: The intersection of the states of the given machines is empty
(define (concat-fsa M N)

(let* [(new-start (sm-start M))
(new-sigma (remove-duplicates (append (sm-sigma M) (sm-sigma N))))
(new-states (append (sm-states M) (sm-states N)))
(new-finals (sm-finals N))
(new-rules (append (sm-rules M)

(sm-rules N)
(map (λ (f) (list f EMP (sm-start N)))

(sm-finals M))))]
(make-ndfa new-states new-sigma new-start new-finals new-rules)))

;; Tests for concat-fsa
(define ab*-o-a-aUb-b* (concat-fsa ab* a-aUb-b*))
(define ab*-o-aab* (concat-fsa ab* aab*))

(check-equal? (sm-apply ab*-o-a-aUb-b* ()) reject)
(check-equal? (sm-apply ab*-o-a-aUb-b* (b b b)) reject)
(check-equal? (sm-apply ab*-o-a-aUb-b* (a a b a b)) reject)
(check-equal? (sm-apply ab*-o-a-aUb-b* (a b a a b)) accept)
(check-equal? (sm-apply ab*-o-a-aUb-b* (a b b b a a)) accept)
(check-equal? (sm-testequiv? ab*-o-a-aUb-b* (sm-concat ab* a-aUb-b*)) #t)

(check-equal? (sm-apply ab*-o-aab* ()) reject)
(check-equal? (sm-apply ab*-o-aab* (a b a)) reject)
(check-equal? (sm-apply ab*-o-aab* (a a b b a a)) reject)
(check-equal? (sm-apply ab*-o-aab* (a b b a a b b)) accept)
(check-equal? (sm-apply ab*-o-aab* (a a a)) accept)
(check-equal? (sm-testequiv? ab*-o-aab* (sm-concat ab* aab*)) #t)

not and that are in L(M) .◦ L(N). In addition, the equivalence of the created
concatenation machines and the machines obtained using FSM’s sm-concat

is tested.

30.2.2 Algorithm Correctness Proof

Define three machines as follows:

M = (make-ndfa S Σ Z F δ)
N = (make-ndfa S' Σ' Z' F' δ')
U = (concat-fsa M N) = (make-ndfa S'' Σ'' Z'' F'' δ'')

Let L = L(M) .◦ L(N). We proceed to prove that L = L(U).
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Lemma 3 w.∈L .⇔ w.∈L(U)
Proof

(.⇒) We need to show that w.∈L .⇒ w.∈L(U).

Assume w.∈L. This means w = xy, where x.∈L(M) and y.∈L(N). By construc-
tion of U, the following is a valid computation:

(xy S'') �∗
U (y R) � (y Z') �∗

U (() T), where R.∈F and T.∈F'.

By construction of U, F'' = F'. Therefore, w.∈L(U).

(.⇐) We need to show that w.∈L(U) .⇒ w.∈L.

Assume w.∈L(U). By construction of U, this means that for w = xy, the fol-
lowing computation is valid:

(xy S'') �∗
U (y R) � (y Z') �∗

U (() T), where R.∈F and T.∈F'.

This implies that x.∈L(M) and y.∈L(N). Thus, w.∈L. �
Lemma 4 w./∈L .⇔ w./∈L(U)
Proof

(.⇒) We need to show that w./∈L .⇒ w./∈L(U).

Assume w./∈L. This means w .�= xy, where x.∈L(M) and y.∈L(N). By construc-
tion, all possible computations of U on w either do not reach a final state
by consuming w or do not consume all of w. In both cases, w is rejected.
Therefore, w./∈L(U).

(.⇐) We need to show that w./∈L(U) .⇒ w./∈L.

Assume w./∈L(U). By construction, this means that w is rejected because U
consumes w and does not reach a final state or U is unable to consume w.
This implies that w cannot be written as xy, where x.∈L(M) and y.∈L(N).
Thus, w./∈L. �
Theorem 3 The languages accepted by finite-state machines are closed con-
catenation.

Proof The theorem is established by Lemmas 3 and 4. �

5 The concatenation constructor assumes that the intersection of the
states of the given machines is empty. Why is this assumption neces-
sary? What may go wrong if this intersection is not empty? Carefully
justify your answer.
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6 If M is an ndfa that decides L(M) and N is an ndfa that decides L(N),
then:

L(M)=∅ ⇒ (concat-fsa M N) = N

L(N)=∅ ⇒ (concat-fsa M N) = M

Redesign concat-fsa so that a new machine is not constructed when
the language decided by either input machine is empty.

7 A famous computer science professor claims that concat-fsa may
also be implemented as follows:

;; ndfa ndfa → ndfa

;; Purpose: Construct ndfa for the concatenation of the

;; languages of the given ndfas

;; Assume: The intersection of the states of the given

;; machines is empty

(define (concat-fsa M N)

(let* [(new-start (sm-start M))

(new-sigma (remove-duplicates (append (sm-sigma M)

(sm-sigma N))))

(new-final (generate-symbol 'F (list 'F)))
(new-states (cons new-final (append (sm-states M)

(sm-states N))))

(new-finals (list new-final)

(new-rules (append (sm-rules M)

(sm-rules N)

(map (λ (f)

(list f EMP (sm-start N)))

(sm-finals M))))

(map (λ (f)

(list f EMP new-final))

(sm-finals N))))]

(make-ndfa new-states

new-sigma

new-start

new-finals

new-rules)))

Is the famous professor correct? Prove or disprove the famous professor.
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Fig. 37 Construction algorithm for L = L(M)∗
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8 Define and implement a concatenation constructor with the following
signature:

ndfa ndfa → dfa

30.3 Kleene Star

Let the following be the machine that decides the language to be Kleene
starred:

M = (make-ndfa S Σ A F δ)

We need to construct an ndfa that decides L = L(M).*. Recall that this means
that L contains all words formed by concatenating zero or more words in L(M).

The construction algorithm may be visualized as displayed in Fig. 37.
Given that .ε must be accepted by the constructed machine, a new state, Z,
is generated that is both the start state and a final state. To the transitions,
rules of M ε-transitions are added from Z to S and from every state in F to
Z. The ε-transitions from the final states to Z implement loops that allow for
another word in L(M) to be concatenated.

30.3.1 Implementation

As outlined by the design idea, to construct an ndfa for L(M).*, a new start
state is generated, and the given ndfa’s alphabet is used. The set of states
and the set of final states are obtained by adding the new start state, respec-
tively, to the given ndfa’s states and final states. Finally, the set of rules is
obtained by adding to the given ndfa’s rules the ε-transition from the new
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Fig. 38 The Kleene star constructor implementation
;; ndfa → ndfa
;; Purpose: Construct ndfa for the Kleene star of given ndfa’s language
(define (kstar-fsa M)

(let* [(new-start (generate-symbol K (sm-states M)))
(new-sigma (sm-sigma M))
(new-states (cons new-start (sm-states M)))
(new-finals (cons new-start (sm-finals M)))
(new-rules (cons (list new-start EMP (sm-start M))

(append (sm-rules M)
(map (λ (f) (list f EMP new-start))

(sm-finals M)))))]
(make-ndfa new-states new-sigma new-start new-finals new-rules)))

;; Tests for kstar-fsa
(define a-aUb-b*-* (kstar-fsa a-aUb-b*))
(define ab*-* (kstar-fsa ab*))

(check-equal? (sm-apply a-aUb-b*-* (b b b)) reject)
(check-equal? (sm-apply a-aUb-b*-* (a b a b a a a a)) reject)
(check-equal? (sm-apply a-aUb-b*-* ()) accept)
(check-equal? (sm-apply a-aUb-b*-* (a a a a b b b b)) accept)
(check-equal? (sm-apply a-aUb-b*-* (a a b a a b b a a)) accept)
(check-equal? (sm-testequiv? a-aUb-b*-* (sm-kleenestar a-aUb-b*)) #t)

(check-equal? (sm-apply ab*-* (b)) reject)
(check-equal? (sm-apply ab*-* (b b b)) reject)
(check-equal? (sm-apply ab*-* ()) accept)
(check-equal? (sm-apply ab*-* (a a a a)) accept)
(check-equal? (sm-apply ab*-* (a b a b b a b b b)) accept)
(check-equal? (sm-testequiv? ab*-* (sm-kleenestar ab*)) #t)

start state to the given machine’s start state and the ε-transitions from the
given ndfa’s final states to the new start state. These ε-transitions are com-
puted by mapping a function to the given ndfa’s final states. The mapped
function creates an ndfa rule using the given state, EMP, and the new start
state. The implementation of this design idea is displayed in Fig. 38.

Tests are written using two machines created with the constructor. The
tests illustrate the expected behavior of the constructed machine with con-
crete words and test the equivalence of the constructed machines with the
machines obtained from using FSM’s sm-kleenestar constructor.

30.3.2 Algorithm Correctness Proof

Define two machines as follows:

M = (make-ndfa S Σ Z F δ)
U = (kstar-fsa M) = (make-ndfa S' Σ' Z' F' δ')
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Let L = L(M).*. We proceed to prove that L = L(U).

Lemma 5 w.∈L .⇔ w.∈L(U)

Proof

(.⇒) We need to show that w.∈L .⇒ w.∈L(U).

Assume w.∈L. This means that w = w.1w.2. . .w.n, where w.i ∈L(M). By con-
struction of U, the following is a computation on w:

((w.1w.2. . .w.n S') �∗
U ((w.2. . .w.n) Y.1) �∗

U ((. . .w.n) Y.2) �∗
U (() Y.n), where

Y.i ∈F'

Therefore, w.∈L(U).

(.⇐) We need to show that w.∈L(U) .⇒ w.∈L.

Assume w.∈L(U). This means that w = w.1w.2. . .w.n such that:

((w.1. . .w.n) S') �∗
U ((w.2. . .w.n) Y.1) �∗

U ((w.3. . .w.n) Y.2). . .((w.n) Y.n−1) �∗
U

(() Y.n), where Y.i ∈F'.

By construction of U, F' contains S' and F. This means that w is the con-
catenation of zero or more words in L(M). Thus, w.∈L. �

Lemma 6 w./∈L .⇔ w./∈L(U)

Proof

(.⇒) We need to show that w./∈L .⇒ w./∈L(U).

Assume w./∈L. This means that w .�= w.1w.2. . .w.n, where w.i ∈L(M). By con-
struction of U, the processing of w can occur in two ways. The first, w is
consumed and U does not end in a final state. The second, w cannot be com-
pletely consumed. In both cases, w is rejected. Thus, w./∈L(U).

(.⇐) We need to show that w./∈L(U) .⇒ w./∈L.

Assume w./∈L(U). This means that w .�= w.1w.2. . .w.n such that:

((w.1. . .w.n) S') �∗
U ((w.2. . .w.n) Y.1) �∗

U ((w.3. . .w.n) Y.2). . .((w.n) Y.n−1) �∗
U

(() Y.n), where Y.n ∈F'.
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By construction of U, F' contains S' and F. This means that w is not the
concatenation of zero or more words in L(M). Thus, w./∈L. �

Theorem 4 The languages accepted by finite-state machines are closed under
Kleene star.

Proof The theorem is established by Lemmas 5 and 6. �

9 A computer whiz claims to have a better implementation for
kstar-fsa:

;; ndfa → ndfa

;; Purpose: Construct ndfa for the Kleene star of given

;; ndfa’s language

(define (kstar-fsa M)

(let* [(new-start (sm-start M))

(new-sigma (sm-sigma M))

(new-states (sm-states M))

(new-finals (if (member new-start (sm-finals M))

(sm-finals M)

(cons new-start (sm-finals M))))

(new-rules (append (sm-rules M)

(map (λ (f) (list f EMP new-start))

(sm-finals M)))))]

(make-ndfa new-states

new-sigma

new-start

new-finals

new-rules)))

Is the computer whiz correct? Prove or disprove the claim made.

10 An up and coming computer science Ph.D. student claims that for
kstar-fsa, the ε-transitions out of the final states can move the ma-
chine to the starting state of the given machine instead of the new start-
ing state generated. Is she correct? Redesign kstar-fsa to use this new
design, and prove that the new construction algorithm is correct.

11 Define and implement a Kleene star constructor with the following
signature:

ndfa → dfa
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30.4 Complement

Let M be a dfa. The complement of L(M) is defined as follows:

L̄(M) = {w | w/∈L(M)}
That is, the complement of L(M) is the language that contains all words not in
L(M). How can a machine for L̄(M) be constructed? The constructed machine
must accept when M rejects and must reject when M accepts. Given that M is
a dfa, this suggests inverting the roles of M’s states. That is, M’s final states
are not final states in the constructed machine, and all other states in M are
final states. For instance, consider the transition diagram for the dfa whose
language is L = a.*:

.

Reversing the roles of the states yields:

.

Indeed, reversing the roles of the states produces a dfa that accepts all string
not in L.

To construct the complement dfa, only new final states need to be com-
puted. Everything else remains unchanged. The new final states are all the
states that are not final in the given dfa.

30.4.1 Implementation

The implementation of the complement constructor is displayed in Fig. 39.
To compute the new final states, the states of the given dfa are filtered. The
states that are not final states are kept as final states for the complement
dfa. All other components of the given dfa are directly used to construct the
complement dfa.

To test the complement constructor, two machines are constructed. The
first is constructed for the sample dfa a* defined at the beginning of this
chapter. The second is the dfa for the language of words containing an even
number of as and an odd number of bs defined in Sect. 24.5. For both,
the tests illustrate the expected behavior of the complement machine with
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Fig. 39 The complement constructor implementation
;; dfa → dfa
;; Purpose: Construct a dfa for the complement of given dfa’s language
(define (complement-fsa M)

(let* [(new-finals (filter (λ (s) (not (member s (sm-finals M))))
(sm-states M)))]

(make-dfa (sm-states M)
(sm-sigma M)
(sm-start M)
new-finals
(sm-rules M)
no-dead)))

;; Tests for complement-fsa
(define not-a* (complement-fsa a*))
(define not-EVEN-A-ODD-B (complement-fsa EVEN-A-ODD-B))

(check-equal? (sm-apply not-a* ()) reject)
(check-equal? (sm-apply not-a* (a a a)) reject)
(check-equal? (sm-apply not-a* (a a b)) accept)
(check-equal? (sm-apply not-a* (b b a a b)) accept)
(check-equal? (sm-testequiv? not-a* (sm-complement a*)) #t)

(check-equal? (sm-apply not-EVEN-A-ODD-B (b)) reject)
(check-equal? (sm-apply not-EVEN-A-ODD-B (a a b)) reject)
(check-equal? (sm-apply not-EVEN-A-ODD-B (b b a b a)) reject)
(check-equal? (sm-apply not-EVEN-A-ODD-B ()) accept)
(check-equal? (sm-apply not-EVEN-A-ODD-B (b b a a)) accept)
(check-equal? (sm-apply not-EVEN-A-ODD-B (a a b b a b)) accept)
(check-equal? (sm-testequiv? not-EVEN-A-ODD-B

(sm-complement EVEN-A-ODD-B))
#t)

concrete words and test for equivalence with the machine obtained using
FSM’s (sm-complement).

30.4.2 Algorithm Correctness Proof

Define two machines as follows:

M = (make-dfa S Σ Z F δ)
U = (complement-fsa M) = (make-ndfa S Σ Z F' δ)

Let L = L̄(M). We proceed to prove that L = L(U).
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Lemma 7 w.∈L .⇔ w./∈L(U)
Proof

(.⇒) We need to show that w.∈L .⇒ w./∈L(U).

Assume w.∈L. Given that M is a dfa, the following is the computation per-
formed on w:

((w) S) �∗
.M (() Q), where Q.∈F.

By construction of U, Q./∈F', and M performs the same computation moving
from S to Q by consuming w. Therefore, w./∈L(U).

(.⇐) We need to show that w./∈L(U) .⇒ w.∈L.

Assume w./∈L(U). This means that U performs the following computation on
w:

((w) S) �∗
U (() Q), where Q./∈F'.

By construction of U, Q.∈F, and M performs the same computation moving
from S to Q by consuming w. Thus, w.∈L. �
Lemma 8 w./∈L .⇔ w.∈L(U)
Proof

(.⇒) We need to show that w./∈L .⇒ w.∈L(U).

Assume w./∈L. Given that M is a dfa, the following is the computation it
performs on w:

((w) S) �∗
.M (() Q), where Q./∈F.

By construction of U, Q.∈F', and U performs the same computation moving
from S to Q by consuming w. Therefore, w.∈L(U).

(.⇐) We need to show that w.∈L(U) .⇒ w./∈L.

Assume w.∈L(U). This means that U performs the following computation on
w:

((w) S) �∗
U (() Q), where Q.∈F'.

By construction of U, Q./∈F, and M performs the same computation moving
from S to Q by consuming w. Thus, w./∈L. �
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Theorem 5 The languages accepted by finite-state machines are closed under
complement.

Proof The theorem is established by Lemmas 7 and 8. �

12 The signature for complement-fsa requires as input a dfa. Why?
What may go wrong if the input is an ndfa? Justify your answer.

13 In complement-fsa’s body, the optional argument 'no-dead is pro-
vided to make-dfa. Why is this a good idea?

14 Computationally speaking, is (complement-fsa (complement-fsa

M)) = M? Justify your answer.

30.5 Intersection

Let the following be the two machines that decide the languages whose in-
tersection is needed:

M = (make-ndfa SM ΣM A FM δM)

N = (make-ndfa SN ΣN R FN δN)

We need to construct an ndfa that accepts and only accepts the words in
L(M).∩L(N), that is, an ndfa that only accepts the words that are both in
L(M) and in L(N). How is the intersection of two sets computed? Let Σ be
an alphabet. Consider the following facts from set theory:

Σ∗ - B = {w | w∈ Σ∗ ∧ w/∈B}
Σ∗ - A = {w | w∈ Σ∗ ∧ w/∈A}

The first defines all possible words in Σ.
∗ that are not in B. The second defines

all possible words in Σ.
∗ that are not in A. Consider the union of these two

sets:

{Σ∗ - B} ∪ {Σ∗ - A} = {w | w/∈A ∧ w/∈B}
What words are not contained in this union? It is exactly the elements that
are in both A and B. Thus, we may define the language for the machine we
wish to implement as follows:

L(M)∩L(N) = Σ∗ - {{Σ∗ - L(M)} ∪ {Σ∗ - L(N)}}
= Σ∗ - {L̄(M) ∪ L̄(N)}
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Fig. 40 The intersection constructor implementation
;; ndfa ndfa → ndfa
;; Purpose: Construct an ndfa for the intersection of the languages of the
;; given ndfas
(define (intersect-fsa M N)

(let* [(notM (sm-rename-states (list DEAD) (sm-complement (ndfa->dfa M))))
(notN (sm-rename-states (list DEAD) (sm-complement (ndfa->dfa N))))]

(complement-fsa (ndfa->dfa (sm-union notM notN)))))

;; Tests for intersect-fsa
(define ab*-intersect-a-aUb-b* (intersect-fsa ab* a-aUb-b*))
(define a-aUb-b*-intersect-EVEN-A-ODD-B (intersect-fsa a-aUb-b*

EVEN-A-ODD-B))

(check-equal? (sm-apply ab*-intersect-a-aUb-b* ()) reject)
(check-equal? (sm-apply ab*-intersect-a-aUb-b* (a b b a)) reject)
(check-equal? (sm-apply ab*-intersect-a-aUb-b* (a b)) reject)
(check-equal? (sm-testequiv? ab*-intersect-a-aUb-b*

(sm-intersection ab* a-aUb-b*))
#t)

(check-equal? (sm-apply a-aUb-b*-intersect-EVEN-A-ODD-B ()) reject)
(check-equal? (sm-apply a-aUb-b*-intersect-EVEN-A-ODD-B (b b)) reject)
(check-equal? (sm-apply a-aUb-b*-intersect-EVEN-A-ODD-B (a a b b)) reject)
(check-equal? (sm-apply a-aUb-b*-intersect-EVEN-A-ODD-B (a a b)) accept)
(check-equal? (sm-apply a-aUb-b*-intersect-EVEN-A-ODD-B (a a b b b)) accept)
(check-equal? (sm-testequiv? a-aUb-b*-intersect-EVEN-A-ODD-B

(sm-intersection a-aUb-b* EVEN-A-ODD-B))
#t)

This means that the intersection machine is a machine for the complement
of a machine for the union of the complement of M and the complement of N.

30.5.1 Implementation

We have a theoretical result that suggests how to implement the constructor:

L(M)∩L(N) = Σ∗ - {L̄(M) ∪ L̄(N)}
According to the above equation, it suffices to complement M and N, union
the two complement machines, and, finally, complement the obtained union
machine. The following expression captures this idea:

(sm-complement (sm-union (sm-complement M)

(sm-complement N)))
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Should this expression be packaged as the body of the intersection construc-
tor? Answering this question requires carefully considering the API that is
used. The first issue that arises is that the complement operation requires
that the given machine be a dfa. M and N may be ndfas. This means that
any machine that is an ndfa must be converted to a dfa. This means that
the expression above must be refactored to:

(sm-complement (sm-union (sm-complement (ndfa->dfa M))

(sm-complement (ndfa->dfa N))))

Can this expression be the body of the needed constructor? To answer this
question, we must think carefully about what ndfa->dfa, sm-complement,
and sm-union assume and do. Recall that the process of converting an ndfa

to a dfa may introduce FSM’s dead state, DEAD, as the state representing the
empty super state. This means that both M and N may have DEAD as a state.
This is not a problem for sm-complement. Is it a problem for sm-union?
Recall that constructing an ndfa for union assumes that the intersection of
the states of the given machines is empty and, therefore, to compute the
union of the states, all that is required is to append the list of states for
each given machine. This raises a problem with the expression above. The
complement of M and the complement of N may have a state name, DEAD, in
common. This means that after appending the states for union, the resulting
list may have a repeated state. As you may already know, FSM will not allow
you to build a state machine with a list of states that contains a repetition.
This means that the expression above must be further refactored. How can
we guarantee that two machines do not share a name state? Perhaps, the
easiest way to achieve this is to use FSM’s sm-rename-states to rename all
the states of a given machine. This function takes as input a list of states
that cannot appear in the renamed machine and the machine to rename. In
this case, we do not want DEAD to be a state in the given machine. We can,
therefore, refactor the above expression to:

(sm-complement

(sm-union

(sm-rename-states (list DEAD)

(sm-complement (ndfa->dfa M)))

(sm-rename-states (list DEAD)

(sm-complement (ndfa->dfa N)))))

In this form, a union machine may be constructed, and its complement may
also be constructed.

The implementation of the intersection constructor is displayed in Fig. 40.
To make the code more readable, the two complement machines are locally
defined. To test the constructor, two intersect machines are constructed. The
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second machine is constructed using EVEN-A-ODD-B defined in Sect. 24.5.
Observe that for the first machine, there are no tests with concrete words
that lead to an accept. This is because the intersection of the two languages
is empty and, therefore, the constructed machine does not have final state
reachable from its start state. Both intersection machines are tested for equal-
ity with the machine obtained using FSM’s sm-intersection.

30.5.2 Algorithm Correctness Proof

Define three machines as follows:

M = (make-ndfa S Σ Z F δ)
N = (make-ndfa S' Σ' Z' F' δ')
U = (intersect-fsa M N) = (make-ndfa S'' Σ'' Z'' F'' δ'')

Let L = L(M) .∩ L(N). We proceed to prove that L = L(U).

Lemma 9 w.∈L .⇔ w.∈L(U)

Proof

(.⇒) We need to show that w.∈L .⇒ w.∈L(U).

Assume w.∈L. This means that w.∈L(M) and w.∈L(N). Therefore,
w.∈(Σ.

∗ - {L̄(M) .∪ L̄(N)}). By construction of U, w.∈L(U).

(.⇐) We need to show that w.∈L(U) .⇒ w.∈L.

Assume w.∈L(U). By U’s construction, w.∈(Σ.
∗ - {L̄(M) .∪ L̄(N)}). Therefore,

w.∈L(M) and w.∈L(N). Thus, w.∈L. �

Lemma 10 w./∈L .⇔ w./∈L(U)

Proof

(.⇒) We need to show that w./∈L .⇒ w./∈L(U).

Assume w./∈L. This means that w./∈L(M) or w./∈L(N). Therefore,
w./∈(Σ.

∗ - {L̄(M) .∪ L̄(N)}). By construction of U, w./∈L(U).

(.⇐) We need to show that w./∈L(U) .⇒ w./∈L.

Assume w./∈L(U). By U’s construction, w./∈(Σ.
∗ - {L̄(M) .∪ L̄(N)}). Therefore,

w./∈L(M) or w./∈L(N). Thus, w./∈L. �
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Theorem 6 The languages decided by finite-state automatons are closed un-
der intersection.

Proof The theorem is established by Lemmas 9 and 10. �

15 An alternative design for intersect-dfa has the constructor con-
sume two dfa, M and N, and return a dfa. The returned dfa simulates
both given dfas simultaneously. This is achieved by having the states of
the returned dfa represent super states: (A B), where A.∈(sm-states
M) and B.∈(sm-states N). In essence, the returned dfa transitions be-
tween states that represent super states. After consuming a word, if the
machine ends in a state that represents two final states (one for each
given machine), the machine accepts. This design is akin to the design
chosen to transform a ndfa to a dfa. Design, implement, and prove
correct an intersection constructor using this design idea.

16 Let M = (make-dfa S Σ Z F δ). Consider the following language:

PREFIX = {x | w∈L(M) ∧ w=xa ∧ x∈ Σ∗ ∧ a∈{Σ ∪ {ε}}}
Design, implement, and prove correct a PREFIX constructor for an ar-
bitrary M.

31 Equivalence of Finite-State Machines and Regular
Expressions

Recall that a regular language is generated by a regular expression using
empty, the members of the alphabet, concatenation, union, and Kleene star.
Figure 1 gives us good reason to believe that finite-state machines decide
regular languages. That is, they decide if a word is or is not in a regular
language.

We may also ponder if every language that is decided by a finite-state ma-
chine is regular. That is, we may ask ourselves if there is a regular expression
for the language decided by a finite-state machine.

Our goal in this section is to prove both of these, thus, establishing the
equivalence of finite-state machines and regular expressions.
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31.1 Creating an ndfa from a Regular Expression

We start by proving that there is a finite-state machine that decides the
language of a regular expression. To prove this, a construction algorithm is
presented to transform a regular expression into an ndfa.

Before proceeding to proving a theorem for this, it is useful to think about
the structure of a regular expression. A regular expression may be thought
of as a tree (specifically, as a binary tree). The empty regular expression and
the singleton regular expressions are leaves. That is, they have no subtrees
(i.e., contain no regular expressions). The concatenation, union, and Kleene
star regular expressions are interior nodes (i.e., contain one or two regular
expressions). Consider, for example, the regular expression for ab .∪ bb.*. It
has the following binary tree structure:

.

union-regexp

concat-regexp

singleton-regexp a singleton-regexp b

concat-regexp

singleton-regexp b kleenestar-regexp

singleton-regexp b

This is important because it suggests that a regular expression may be pro-
cessed using structural recursion. Therefore, a construction algorithm to build
an ndfa from a regular expression may be designed using structural recursion
on a binary tree.

31.1.1 Construction Algorithm

To build an ndfa, a regular expression, e, and the language’s alphabet, Σ,
are needed. The subtype of the given regular expression is determined, and
the appropriate ndfa is constructed. If the subtype is an empty regular ex-
pression, then an ndfa that only accepts empty is returned. If the subtype is
a singleton regular expression for x.∈Σ, then an ndfa that only accepts x is
returned. These are the base cases for the recursion.

Now, we move to the recursive cases. If the subtype is a union regular
expression, then Theorem 2 is used. That is, ndfas for the contained regular
expressions are recursively constructed, and a machine that unions them is
constructed. If the subtype is a concatenation regular expression, then The-
orem 3 is used. That is, ndfas for the contained regular expressions are re-
cursively constructed, and a machine that concatenates them is constructed.
Finally, if the subtype is a Kleene star regular expression, then Theorem 4
is used. That is, an ndfa for the contained regular expression is recursively
constructed, and from it, a Kleene star machine is constructed.
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Fig. 41 The constructor to build an ndfa from a regular expression
;; regexp alphabet → ndfa
;; Purpose: Build an ndfa for the given regexp
(define (regexp->ndfa e sigma)

(let* [(simple-tbl (map (λ (a)
(let [(S (generate-symbol S (S)))

(A (generate-symbol A (A)))]
(list a (make-ndfa (list S A)

sigma
S
(list A)
(list (list S a A))))))

(cons EMP sigma)))]
(cond [(empty-regexp? e) (second (assoc EMP simple-tbl))]

[(singleton-regexp? e)
(second (assoc (string->symbol (singleton-regexp-a e))

simple-tbl))]
[(concat-regexp? e)
(concat-fsa (regexp->ndfa (concat-regexp-r1 e) sigma)

(regexp->ndfa (concat-regexp-r2 e) sigma))]
[(union-regexp? e)
(union-fsa (regexp->ndfa (union-regexp-r1 e) sigma)

(regexp->ndfa (union-regexp-r2 e) sigma))]
[else (kstar-fsa (regexp->ndfa (kleenestar-regexp-r1 e) sigma))])))

31.1.2 Implementation

The constructor’s implementation is displayed in Fig. 41. It takes as input a
regular expression, e, and the alphabet, sigma, for the language generated by
the given regular expression. Locally, a table for simple ndfas is computed. A
function that creates a table entry is mapped to EMP and the given alphabet.
Each table entry associates the given symbol with an ndfa that only accepts
the given symbol. Each ndfa has only two states: a starting state and a final
state. Each state is randomly generated, and the machine constructed has
a single transition from the starting state on the given symbol to the final
state.

The function employs structural recursion and dispatches on the given
regular expression’s type. If the given regular expression is for empty or a
singleton, then the ndfa associated with it is extracted from the computed
table. If it is a concatenation regular expression, then ndfas for the contained
regular expressions are recursively created, and an ndfa is constructed using
concat-fsa from Fig. 36. If it is a union regular expression, then ndfas
for the contained regular expressions are recursively created, and an ndfa

is constructed using union-fsa from Fig. 34. If it is a Kleene star regular
expression, then an ndfa for the contained regular expression is recursively
created, and an ndfa is constructed using ksstar-fsa from Fig. 38.
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Fig. 42 The tests for regexp->ndfa
;; Tests for reg-exp->ndfa
(define e (empty-regexp))
(define a (singleton-regexp "a"))
(define b (singleton-regexp "b"))
(define ab (concat-regexp a b))
(define aa (concat-regexp a a))
(define abUe (union-regexp ab e))
(define abUaa (union-regexp ab aa))
(define aa-* (kleenestar-regexp aa))
(define abUaa-* (kleenestar-regexp abUaa))

(define Me (regexp->ndfa e (a b)))
(define Ma (regexp->ndfa a (a b)))
(define Mb (regexp->ndfa b (a b)))
(define Mab (regexp->ndfa ab (a b)))
(define Maa (regexp->ndfa aa (a b)))
(define MabUMe (regexp->ndfa abUe (a b)))
(define MabUaa (regexp->ndfa abUaa (a b)))
(define Maa-* (regexp->ndfa aa-* (a b)))
(define MabUaa-* (regexp->ndfa abUaa-* (a b)))

(check-equal? (sm-apply Me (a)) reject)
(check-equal? (sm-apply Me ()) accept)
(check-equal? (sm-apply Ma (b)) reject)
(check-equal? (sm-apply Ma (a)) accept)
(check-equal? (sm-apply Mab ()) reject)
(check-equal? (sm-apply Mab (a b)) accept)
(check-equal? (sm-apply Maa (b a a)) reject)
(check-equal? (sm-apply Maa (a a)) accept)
(check-equal? (sm-apply MabUMe (a b a a)) reject)
(check-equal? (sm-apply MabUMe (b b)) reject)
(check-equal? (sm-apply MabUMe ()) accept)
(check-equal? (sm-apply MabUMe (a b)) accept)
(check-equal? (sm-apply MabUaa (a b b b)) reject)
(check-equal? (sm-apply MabUaa (b a b)) reject)
(check-equal? (sm-apply MabUaa (a a)) accept)
(check-equal? (sm-apply MabUaa (a b)) accept)
(check-equal? (sm-apply Maa-* (a b)) reject)
(check-equal? (sm-apply Maa-* (a a a)) reject)
(check-equal? (sm-apply Maa-* (a a)) accept)
(check-equal? (sm-apply Maa-* (a a a a a a)) accept)
(check-equal? (sm-apply MabUaa-* (a b a)) reject)
(check-equal? (sm-apply MabUaa-* (b b b b)) reject)
(check-equal? (sm-apply MabUaa-* ()) accept)
(check-equal? (sm-apply MabUaa-* (a a a a a b)) accept)

To test the constructor, sample regular expressions are defined and con-
verted to finite-state machines. Each test applies a constructed machine to a
word and illustrates the expected behavior. The tests are displayed in Fig. 42.
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Run the tests and make sure they all pass. Take time to appreciate the
elegance of regexp->ndfa. It is concise and very readable. It builds on theo-
rems previously proven which leads to delegating ndfa building to auxiliary
functions and, thus, allowing us to focus this function to the transformation
steps required.

31.1.3 Correctness Proof

To establish correctness, we shall argue the correctness of the implemen-
tation. That is, we shall prove that regexp->ndfa is correct. Given that
regexp->ndfa uses structural recursion on a binary tree, the proof is by in-
duction on the height of the binary tree. In addition, it builds on closure
properties for the languages decided by finite-state automatons as outlined
in Fig. 1.

Theorem 7 L is a regular language .⇒ L is decided by a finite-state machine.

Proof

Assume L is regular. This means that there is a regular expression, R, that
defines L. Let Σ be the alphabet for the language of R. We prove by induc-
tion on the height of R that (regexp->ndfa R Σ) builds an ndfa for L.

Base Case: h = 0

If h is zero, then R must be an empty or a singleton regular expression. If R
is the empty regular expression, the (regexp->ndfa R Σ) returns an ndfa

that only accepts EMP. If R is (singleton-regexp a), then (regexp->ndfa

R Σ) returns an ndfa that only accepts a, where a.∈Σ. This establishes the
base case.

Inductive Step:
Assume: (regexp->ndfa R Σ) returns an ndfa that decides L for h = k.
Show: (regexp->ndfa R Σ) returns an ndfa that decides L for h = k+1.

h .≥ 0 .⇒ h+1 .≥ 1. This means that R is a union, a concatenation, or a
Kleene star regular expression. We analyze each regular expression subtype
independently:

(union-regexp S T)

(regexp->ndfa R Σ) returns

(union-fsa (regexp->ndfa (union-regexp-r1 e) sigma)

(regexp->ndfa (union-regexp-r2 e) sigma))
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Observe that (union-regexp-r1 e)’s and (union-regexp-r2 e)’s height is
at most k. By inductive hypothesis, therefore, the recursive calls return ndfas
for the language of each. By Fig. 2, union-fsa returns an ndfa for the union
of these two languages.

(concat-regexp S T)

(regexp->ndfa R Σ) returns

(concat-fsa (regexp->ndfa (concat-regexp-r1 e) sigma)

(regexp->ndfa (concat-regexp-r2 e) sigma))

Observe that (concat-regexp-r1 e)’s and (concat-regexp-r2 e)’s height
is at most k. By inductive hypothesis, therefore, the recursive calls return
ndfas for the language of each. By Fig. 3, concat-fsa returns an ndfa for
the concatenation of these two languages.

(kleenestar-regexp S)

(regexp->ndfa R Σ) returns

(kstar-fsa (regexp->ndfa (kleenestar-regexp-r1 e) sigma))

Observe that (kleenestar-regexp-r1 e)’s height is at most k. By inductive
hypothesis, therefore, the recursive call returns an ndfa, N, for its language.
By Fig. 4, kstar-fsa returns an ndfa for the language containing the con-
catenation of an arbitrary number of words in L(N).

31.2 Creating a Regular Expression from an ndfa

To create a regular expression for the language of an ndfa, a regular expres-
sion is needed that generates all words that take the given machine from
its start state to any its final states. This means that a regular expression is
needed from any state, Q, to any state, R, that is reachable from Q in the tran-
sition diagram of the machine. Consider, for example, the following portion
of an ndfa:

.
Q R

a

R is reachable from Q, and, therefore, a regular expression is needed for the
part of the word that takes the machine from Q to R. In this case, Q and R are
neighbors, and a singleton regular expression is needed for the rule (Q a R):

(singleton-regexp "a")
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There can be more than one transition from Q to R as in the following machine
snippet:

.
Q R

a,b

In this case, there are two transitions from Q to R: (Q a R) and (Q b R).
The machine can move from Q to R on a a or on a b. A regular expression,
therefore, must be able to generate either an a or a b. The following is the
needed regular expression:

(union-regexp (singleton-regexp "a")

(singleton-regexp "b"))

Now, consider the case when there are more than two connected nodes as
in the following machine snippet:

.
Q R S

a,b a,c

There are four transitions: (Q a R), (Q b R), (R a S), and (R c S). Ob-
serve that S is reachable from Q. Therefore, a regular expression is needed
to generate the part of the word that is consumed when the machine moves
from Q to S. We already know how to deal with the transitions from Q to R

and from R to S. Let us substitute the appropriate regular expressions in the
diagram above:

.
Q R S

a ∪ b a ∪ c

To get from Q to S, the word must contain an a or b concatenated with an
a or c. The R state may be ripped out, along with the transitions into and
out of it, and substituted with a transition from Q to S that concatenates the
regular expression into R and the regular expression out of R. The result is
visualized as follows:

.
Q S

(a ∪ b)(a ∪ c)

That is, the needed regular expression for the part of the word that takes the
machine from Q to R is:

(concat-regexp (union-regexp (singleton-regexp a)

(singleton-regexp b))

(union-regexp (singleton-regexp a)

(singleton-regexp c))
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The intermediate node R may have an loop on it. That is, there is a tran-
sition from R to R as in the following machine snippet:

.
Q R S

b a

ab

In this case, to rip out the intermediate state, a regular expression is needed
that can generate the part of the word that takes the machine from Q to
R, then generates zero or more times the part of the word that takes the
machine from R to R, and finally generates the part of the word that takes
the machine from R to S. Clearly, to generate a part of a word zero or more
times, a Kleene star regular expression is needed. The result of ripping out R
may be visualized as follows:

.
Q S

b(ab)∗a

That is, the needed regular expression is:

(concat-regexp

(singleton-regexp "b")

(concat-regexp

(kleenestar-regexp

(concat-regexp (singleton-regexp "a")

(singleton-regexp "b")))

(singleton-regexp "a")))

The above analysis suggests an algorithm to transform an ndfa into a reg-
ular expression. Given an ndfa, the goal is to construct a regular expression
for all transition diagram paths from the start state to all reachable final
states. To do so, a directed graph is created, and all the given machine’s
states are ripped out. The initial directed graph has all the machine’s states
as nodes, and the edges are labeled with a regular expression for what is
consumed by a transition between two states. In addition, the initial directed
graph has two extra nodes representing a new start state and a new and only
final state. There is an ε-transition from the new start state to the machine’s
start state, and there are ε-transitions from every machine final state to the
new final state. The process starts by collapsing multiple edges between two
nodes into one labeled with a union regular expression. At each step, this
graph is collapsed by ripping out a node representing a machine state. Rip-
ping out a state may result in multiple edges between nodes, and these are
collapsed before moving on to the next node to rip out. After all machine
states are ripped out, the graph has been collapsed to two states (the new
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start state and the new final state) with a single edge between them. The
label on that edge is the regular expression for the machine’s language.

To rip out a state, S, the graph’s edges are partitioned into four subsets:

not-s-edges The list of edges that are not into nor out of S

into-s-edges The list of non-loop edges that are into S

outof-s-edges The list of non-loop edges that are out of S

self-edges The list of self-loop edges on S

A new graph is constructed using not-s-edges, and the new edges are cre-
ated using the other three sets of edges. If S has a self-loop, new edges are
created for each incoming edge using the outgoing edges. Each new edge is
from the start node of the incoming node to the destination node of an outgo-
ing edge. The edge’s label is a concatenation regular expression for the label
of the incoming edge, the Kleene star of the self-loop label, and the label of
an outgoing edge. If S does not have a self-loop, new edges are also created
for each incoming edge using the outgoing edges. Each new edge is from the
start node of the incoming node to the destination node of an outgoing edge.
The edge’s label is a concatenation regular expression for the label of the
incoming edge and the label of an outgoing edge.

To illustrate the construction algorithm, consider transforming the follow-
ing ndfa:

.

The initial graph constructed is:

.

Z S A

B

C

F
ε a ∪ b

b

a

a

b

ε

ε
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The edges between S and A are substituted with an edge with a union regular
expression. To collapse the graph, at each step, a node representing a machine
state is ripped out. The order in which they are ripped out does not matter.
Let us start by ripping out C. C has a self-loop, the only into edge is (A b

C), and the only outgoing edge is (C ε F). Ripping out C, therefore, results
in a single new edge from A to F with ba.∗ as its label.9 The resulting graph
is:

.

Z S A

B

F
ε a ∪ b

a

b

ε

ba∗

Let us now rip out B. To remove this node, the edges (A a B), (B b B), and
(B .ε F) need to be collapsed. Collapsing these results in two edges, (A ba.∗

F) and (A ab.∗ F), from A to F that must be collapsed into one. The resulting
graph is:

.
Z S A F

ε a ∪ b ba∗ ∪ ab∗

Next, let us rip out S. The edges (Z .ε S) and (S a.∪b A) are collapsed into
an edge from Z to A. The resulting graph is:

.
Z A F

a ∪ b ba∗ ∪ ab∗

The only node left to be ripped out is A. It does not have a self-loop and a
single incoming edge from Z and a single outgoing edge to F. Therefore, these
edges are collapsed into an edge from Z to F by concatenating their labels.
The resulting graph is:

.
Z F

(a ∪ b)(ba∗ ∪ ab∗)

The label on the only remaining edge represents the regular expression for
the language of the given machine. The regular expression is:

9 ba.∗ε = ba.∗.
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(concat-regexp

(union-regexp (singleton-regexp "a")

(singleton-regexp "b"))

(union-regexp

(concat-regexp

(singleton-regexp "b")

(kleenestar-regexp (singleton-regexp "a")))

(concat-regexp

(singleton-regexp "a")

(kleenestar-regexp (singleton-regexp "b")))))

The discussion so far has assumed that the language of the given machine,
M, is not empty. That is, L(M) .�= .∅. If the language of the given machine
is empty, then the collapsed graph will have no edges. This is a problem
because there is no regular expression for generating no words. To address this
problem, FSM introduces a new regular expression constructor, null-regexp,
to represent a language with no words.

31.2.1 Implementation

The transformation from a ndfa to a regular expression requires the creation
of a directed graph. A directed graph is defined and documented as follows:

;; Data Definitions

;;

;; A node is a symbol

;;

;; An edge, (list node regexp node), has a beginning

;; node, a regular expression for its label, and

;; destination node.

;;

;; A directed graph, dgraph, is a (listof edge)

That is, a directed graph is a list of edges, and an edge is a list with three
elements: a node, a regular expression, and a node, where node is a symbol.
To test the constructor, EVEN-A-ODD-B from Sect. 24.5 and the following
machines are used:
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Fig. 43 The constructor for a regular expression from an ndfa
;; ndfa → regexp
;; Purpose: Create a regexp from the given ndfa
;; Assume: The transition diagram of the given machine is a connected
;; directed graph
(define (ndfa2regexp m)

(let* [(new-start (generate-symbol S (sm-states m)))
(new-final (generate-symbol F (sm-states m)))
(init-dgraph (make-dgraph

(cons (list new-start EMP (sm-start m))
(append (map (λ (f) (list f EMP new-final))

(sm-finals m))
(sm-rules m)))))

(collapsed-dgraph
(rip-out-nodes (sm-states m) (remove-multiple-edges init-dgraph)))]

(if (empty? collapsed-dgraph)
(null-regexp)
(simplify-regexp (second (first collapsed-dgraph))))))

;; Tests for ndfa2regexp
(check-equal? (printable-regexp (ndfa2regexp EMPTY))

"()")
(check-equal? (printable-regexp (ndfa2regexp b*))

"b*")
(check-equal? (printable-regexp (ndfa2regexp ab*Uaa*))

"(b U a)(ab* U ba*)")
(check-equal?
(printable-regexp (ndfa2regexp EVEN-A-ODD-B))
"((ba U ab)(aa U bb)*(ab U ba) U (aa U bb))*((ba U ab)(aa U bb)*a U b)")

;; L =

(define EMPTY (make-ndfa '(S) '(a b) 'S '() '()))

;; L = ab* U ba*

(define aUb-ba*Uab*

(make-ndfa

'(S A B C)

'(a b)

'S
'(B C)

'((S a A) (S b A) (A a B) (A b C) (B b B) (C a C))))

;; L = b*

(define b* (make-ndfa `(,DEAD S A)

'(a b)

'S
'(A)
`((S ,EMP A) (S a ,DEAD) (A b A))))
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Fig. 44 The constructor for the initial directed graph
;; (listof ndfa-rule) → dgraph
;; Purpose: Create a dgraph from the given ndfa
(define (make-dgraph lor)

(map (λ (r) (if (eq? (second r) EMP)
(list (first r) (empty-regexp) (third r))
(list (first r)

(singleton-regexp (symbol->string (second r)))
(third r))))

lor))

;; Tests for make-dgraph
(check-equal? (make-dgraph ()) ())

(check-equal?
(make-dgraph ((S ,EMP A) (S a ,DEAD) (A b A)))
(list (list S (empty-regexp) A)

(list S (singleton-regexp "a") ds)
(list A (singleton-regexp "b") A)))

(check-equal?
(make-dgraph ((S a A) (S b A) (A a B) (A b C) (B b B) (C a C)))
(list (list S (singleton-regexp "a") A)

(list S (singleton-regexp "b") A)
(list A (singleton-regexp "a") B)
(list A (singleton-regexp "b") C)
(list B (singleton-regexp "b") B)
(list C (singleton-regexp "a") C)))

The constructor takes as input an ndfa, m, and returns a regular expres-
sion. It generates and locally defines the names for two new states. It cre-
ates and locally defines the initial directed graph from m’s rules, the new
ε-transition from the new starting state to m’s starting state, and the new
ε-transitions from m’s final states to the new final state. It then creates and
locally defines the collapsed graph by collapsing multiple edges between states
and ripping out m’s state from the initial graph. The collapsed graph is tested
to determine if it is empty. If so, a null regular expression is returned because
m’s language is empty. Otherwise, the regular expression in its only edge is
simplified and returned. The implementation of this design is displayed in
Fig. 43. The tests use the testing machines mentioned above. To make each
test more readable, a machine is transformed, and the resulting regular ex-
pression is converted to a string that is tested. All but the last test are fairly
straightforward to visually verify as producing the right regular expression.
For the last test, observe that the first part of the regular expression (up to
and including the second Kleene star) produces an even number of as and
an even number of bs. Such a partial word is concatenated with the result of
the rest of the regular expression that always produces an even number of as
and an odd number of bs. Thus, it produces a word with an even number of
as and an odd number of bs.
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Fig. 45 The function to collapse multiple edges between nodes
;; dgraph → dgraph
;; Purpose: Collapse multiple edges between nodes
;; Accumulator Invariant: g = the unprocessed graph
(define (remove-multiple-edges g)

(if (empty? g)
()

(let* [(curr-edge (first g))
(from-state (first curr-edge))
(to-state (third curr-edge))
(to-collapse (filter (λ (e) (and (eq? (first e) from-state)

(eq? (third e) to-state)))
g))

(remaining-g (filter (λ (e) (not (member e to-collapse))) g))]
(cons (list from-state (collapse-edges to-collapse) to-state)

(remove-multiple-edges remaining-g)))))

;; Tests for remove-multiple-edges
(check-equal? () ())
(check-equal?
(remove-multiple-edges ((S ,(singleton-regexp "a") A)

(S ,(singleton-regexp "b") A)
(A ,(singleton-regexp "a") A)))

((S
,(union-regexp (singleton-regexp "a") (singleton-regexp "b"))
A)

(A ,(singleton-regexp "a") A)))

The constructor for the initial dgraph takes as input a list of ndfa rules
and returns a dgraph. It maps a function onto the given list of rules. This
mapped function produces an edge for the given rule. It examines the con-
sumed element in the given rule to decide if the edge’s regular expression
ought to be an empty or a singleton regular expression. The result of this
design is displayed in Fig. 44.

The function remove-multiple-edges collapses multiple edges between
nodes. It takes as input a dgraph and returns a dgraph. The input is an ac-
cumulator for an unprocessed graph. It divides the edges in the given dgraph

in two: those that are between the same nodes as the given dgraph’s first
edge and those that are not. A new graph is created from a collapsed new
edge for the first set of edges and recursively processing the graph that only
contains the second set of edges. The result of this design is displayed in
Fig. 45. The function to collapse edges takes as input a list of edges that
are all between the same nodes and returns a union regular expression. The
function recursively process the given list of edges and may be implemented
as follows:
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Fig. 46 The function to rip out an arbitrary number of states
;; (listof node) dgraph → dgraph
;; Purpose: Rip out the given nodes from the given graph
;; Assume: Given nodes in given graph and g has no multiple edges
;; between nodes
(define (rip-out-nodes lon g)

(foldr (λ (s g) (rip-out-node s g)) g lon))

;; Tests for rip-out-nodes
(check-equal? (rip-out-nodes () ((S ,(singleton-regexp "a") A)

(A ,(singleton-regexp "b") B)))
((S ,(singleton-regexp "a") A)
(A ,(singleton-regexp "b") B)))

(check-equal?
(rip-out-nodes (A B) ((S ,(singleton-regexp "a") A)

(A ,(singleton-regexp "b") B)
(B ,(singleton-regexp "b") C)))

((S
,(concat-regexp (singleton-regexp "a")

(concat-regexp (singleton-regexp "b")
(singleton-regexp "b")))

C)))

;; (listof edge) → regexp

;; Purpose: Collapse the given edges into a regexp

(define (collapse-edges loe)

(cond [(empty? loe) '()]
[(empty? (rest loe)) (second (first loe))]

[else (union-regexp (second (first loe))

(collapse-edges (rest loe)))]))

;; Tests for collapse-edges

(check-equal? (collapse-edges '()) '())
(check-equal? (collapse-edges `((S ,(singleton-regexp "a") S)))

(singleton-regexp "a"))

(check-equal?

(collapse-edges `((A ,(singleton-regexp "a") A)

(A ,(singleton-regexp "b") A)

(A ,(empty-regexp) A)))

(union-regexp (singleton-regexp "a")

(union-regexp (singleton-regexp "b")

(empty-regexp))))

The function to rip out an arbitrary number of nodes from a graph assumes
all the given nodes are in the given graph. It traverses the given list of nodes
using foldr. The accumulator represents a graph. Initially, the accumulator
is the given graph. For each node, a new a new graph is computed by ripping
out the node from the accumulator. This graph becomes the new value of the
accumulator to process the next node. The result of this design is displayed
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Fig. 47 The function to rip out a node
;; node dgraph → dgraph
;; Purpose: Rip out given state from given graph
(define (rip-out-node n g)

;(define d (displayln (format "removing: ˜s\n from: ˜s\n" s g)))
(let* [(non (filter (λ (r) (and (not (eq? (third r) n))

(not (eq? (first r) n))))
g))

(into-n (filter (λ (r) (and (eq? (third r) n)
(not (eq? (first r) n))))

g))
(outof-n (filter (λ (r) (and (eq? (first r) n)

(not (eq? (third r) n))))
g))

(self-edges (filter (λ (r) (and (eq? (first r) n)
(eq? (third r) n)))

g))]
(remove-multiple-edges
(append
non
(if (not (empty? self-edges))

(let [(self-edge (first self-edges))]
(append-map
(λ (into-edge)
(map (λ (outof-edge)

(list (first into-edge)
(concat-regexp
(second into-edge)
(concat-regexp
(kleenestar-regexp (second self-edge))
(second outof-edge)))

(third outof-edge)))
outof-n))

into-n))
(append-map (λ (into-edge)

(map (λ (outof-edge)
(list (first into-edge)

(concat-regexp (second into-edge)
(second outof-edge))

(third outof-edge)))
outof-n))

into-n))))))

in Fig. 46. The first test illustrates that the given graph is returned when
there are no nodes to remove. The second test illustrates the graph returned
when there are nodes to remove.

The function to rip out a given node from a given graph assumes the given
node is in the given graph. It partitions the edges in four: edges that do not
contain the given node, edges into the given node that are not self-loops,
edges out of the given node that are not self-loops, and edges that are a self-
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Fig. 48 The tests for the function to rip out a node
;; Tests for rip-out-node
(check-equal?
(rip-out-node

A
((S ,(singleton-regexp "a") A) (A ,(singleton-regexp "b") B)))
((S ,(concat-regexp (singleton-regexp "a") (singleton-regexp "b")) B)))

(check-equal?
(rip-out-node

C
((S ,(singleton-regexp "a") A) (S ,(singleton-regexp "b") B)
(A ,(singleton-regexp "a") C) (B ,(singleton-regexp "b") C)
(C ,(singleton-regexp "a") D) (C ,(singleton-regexp "b") E)))

((S ,(singleton-regexp "a") A)
(S ,(singleton-regexp "b") B)
(A ,(concat-regexp (singleton-regexp "a") (singleton-regexp "a")) D)
(A ,(concat-regexp (singleton-regexp "a") (singleton-regexp "b")) E)
(B ,(concat-regexp (singleton-regexp "b") (singleton-regexp "a")) D)
(B ,(concat-regexp (singleton-regexp "b") (singleton-regexp "b")) E)))

loop. The self-edges are examined to determine if they are empty or not. If
there is a self-edge, then for each out-edge, oe, the into-edges are traversed.
For each into-edge, ie, a new edge is created using ie’s starting node and
oe’s destination node. Then the new edge’s label is a concatenation regular
expression for ie’s regular expression, a Kleene star regular expression for the
self-loop’s regular expression, and oe’s regular expression. If there is not a self-
edge, then for each out-edge, oe, the into-edges are traversed. For each into-
edge, ie, a new edge is created using ie’s starting node and oe’s destination
node. Then the new edge’s label is a concatenation regular expression for
ie’s regular expression and oe’s regular expression. The implementation of
this design is displayed in Fig. 47. The tests for this function are displayed in
Fig. 48. The first test illustrates ripping out of a node with a single incoming
edge and a single outgoing edge. The second test illustrates ripping out a
node with multiple incoming and outgoing edges.

31.2.2 Correctness Proof

The proof of correctness requires proving that all functions return the ex-
pected value. To prove that each function is correct, assume that the auxiliary
functions are correct. We start with the main function.

Theorem 8 (ndfa2regexp m) returns a regular expression for L(m).

Proof
New start and final states are generated. To m’s rules, ε-transitions are added
from the new start state to m’s start state and from each of m’s final states to
the new final state. By assumption, make-dgraph creates the correct initial
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directed graph. Multiple edges between any pair of nodes are removed by
remove-multiple-edges, and all the nodes that represent a state in m are
ripped out by rip-out-nodes to create the collapsed graph. Observe that
the graph meets the assumptions made by rip-out-nodes. These auxiliary
functions, by assuming their correctness, return the correct graph for their
given input. The collapsed graph is examined to test if it is empty. If so,
(null-regexp) is returned. This is correct because L(m) is empty. Otherwise,
the only edge’s regular expression is returned. This is correct because this
regular expression can generate words on all paths from the new start state
to the new final state in the initial directed graph. �

We proceed to argue the correctness of rip-out-nodes.

Theorem 9 (rip-out-nodes lon g) returns a dgraph resulting from removing
the given nodes from the given graph.

Proof
By assumption, all the given nodes are in the given graph, and the given
graph does not have multiple edges between nodes. The given list of nodes
is traversed using foldr to rip out one node at a time from the given graph.
Initially, foldr’s accumulator is the given graph. For each node, foldr creates
a new graph by ripping out the next node using rip-out-node. Observe that
the graph returned by rip-out-node satisfies the assumptions made by this
function. Therefore, the returned graph may be input to rip-out-node. This
auxiliary function, by assumption, is correct. Thus, rip-out-nodes returns
the correct directed graph after ripping out all the given nodes. �

Next, argue for the correctness of rip-out-node.

Theorem 10 (rip-out-node n g) returns a dgraph resulting from removing
the given node from the given dgraph.

Proof
By assumption, the given node is in the given graph. The given graph is
filtered four times to extract four mutually exclusive sets of rules:

non The set of edges that are not into nor out of n. The graph is properly
filtered given that only edges that do not have n as a starting node and
do not have n as a destination node are extracted.

into-n The set of edges into n. The graph is properly filtered given that
only edges that do not have n as a starting node and do have n as a
destination node are extracted.

outof-n The set of edges out of n. The graph is properly filtered given that
only edges that have n as a starting node and do not have n as a desti-
nation node are extracted.

self-edges The set of edges that are self-loops on n. The graph is properly
filtered given that only edges that have n as a starting node and have n
as a destination node are extracted.
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Observe that there can only be at most one self-loop on n because by as-
sumption, the graph does not have multiple edges between nodes. If there is
a self-loop on n, then new edges are created using into-n, self-edges, and
outof-n. For each edge, i, in into-n, a new edge is created using each edge,
o, in outof-n that has the following form:

(starting state of i

(concat-regexp

regular expression in i

(concat-regexp

(kleenestar-regexp regular expression in only self-edge )

regular expression in o ))

destination state of o )

This is correct because the regular expression can generate all words that
take the machine from the state represented by the starting node of i to the
destination state of o. If there is no self-loop on n, then new edges are created
using into-n and outof-n. For each edge, i, in into-n, a new edge is created
using each edge, o, in outof-n that has the following form:

(starting state of i

(concat-regexp

regular expression in i

regular expression in o )

destination state of o )

This is correct because the regular expression can generate all words that
take the machine from the state represented by the starting node of i to the
state represented by the destination node of o. �

The remaining proofs for auxiliary functions are left as exercises.

17 Prove make-dgraph’s correctness.

18 Prove by induction on the length of the given list of edges
collapse-edges’ correctness.

19 Prove remove-multiple-edges’s correctness by induction on the
number of calls to it. Recall that every time the function is called, the
accumulator invariant must hold.

20 It is not always necessary to add a new start state and a new final
state to the initial directed graph. A new start state is unnecessary if the
given machine’s start state is not the destination state for any transition.
A new final state is unnecessary if the given machine only has one final
state and this final state is not the start state for any transition. Refine
the program to transform an ndfa to a regular expression taking these
observations into account and prove its correctness.



Chapter 8

Regular Grammars

In this chapter, we explore grammars as a means to specify the generation of
words in a language. Specifically, we explore regular grammars that specify
the rules for generating words in a regular language. You are probably, to
some extent, familiar with grammars from a past course in programming
languages or in English grammar. In an English grammar class, for example,
you may have been told that a sentence is a subject followed by a predicate
or a sentence is a noun followed by a verb followed by a noun. These concepts
may have been presented as production rules that look like this:

<sentence> → <subject> <predicate>

<sentence> → <noun> <verb> <noun>

The elements inside angled brackets represent syntactic categories. A syntac-
tic category represents something that must be generated. For the production
rules above, the syntactic categories are described as follows:

.<sentence.>: Generates a sentence

.<subject.>: Generates a subject

.<predicate.>: Generates a predicate

.<noun.>: Generates a noun

.<verb.>: Generates a verb

If we also have the following rules:

<noun> → humans

<noun> → cake

<verb> → eat
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The sentence Humans eat cake may be derived using the production rules
above as follows:

<sentence> → <noun> <verb> <noun>

→ humans <verb> <noun>

→ humans eat <noun>

→ humans eat cake

At each step, a syntactic category on the left-hand side of a production rule
is substituted with the right-hand side of the production rule. Using the same
rules, the sentence Cake eat humans may also be generated – which is not
proper English. Fortunately, we shall not start with languages as complex as
the English language. We shall start with regular languages.

32 Regular Grammars

We know that a dfa decides a regular language by reading one symbol at a
time. This suggests that words in the language may be generated one symbol
at a time starting from, S, an initial syntactic category. We have to, of course,
be able to generate the empty word because it may be part of a regular
language. Based on these observations, we shall say that there are three types
of rules in a regular grammar:

1. S generates the empty word (i.e., EMP).

2. Rules that generate an alphabet member.

3. Rules that generate a symbol representing the concatenation of a terminal
symbol and a symbol representing a syntactic category.

Historically, the members of the alphabet have been called the terminal sym-
bols, and the symbols representing syntactic categories are called the nonter-
minals.

We can now formally define a regular grammar as follows:

A regular grammar is an instance of (make-rg N Σ R S)

N is the set of capital letters in the Roman alphabet representing the nonter-
minal symbols (i.e., syntactic categories). Σ is the set of lowercase symbols
in the Roman alphabet called the alphabet (used to construct words). S is
the starting nonterminal symbol. R is the set of generating (or production)
rules. Each production rule contains a nonterminal followed by an arrow and
a symbol. There are only three types of production rules:

S → ε, where S is the starting nonterminal and S ∈ N
A → a, where A ∈ N and a ∈ Σ
A → aB, where A,B∈N and a∈Σ
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Observe that each rule generates one terminal symbol at a time. The language
of a grammar G is denoted as L(G). It contains all the words that can be
generated using G.

FSM provides a set of grammar observers for programmers:

(grammar-nts g): Returns a list of g’s nonterminal symbols.
(grammar-sigma g): Returns a list of g’s terminal symbols.
(grammar-rules g): Returns a list of g’s production rules.
(grammar-start g): Returns g’s starting nonterminal.
(grammar-type g): Returns a symbol for g’s grammar type.
(grammar-derive g w): If the given word, w, is in the language of the given

grammar, then a derivation for w is returned. Otherwise, a string indicat-
ing that w is not in the language of the given grammar is returned.

A derivation consists of one or more derivation steps. A derivation step is the
application of a production rule and is denoted by →. One or more derivation
steps is denoted by →+.

In addition, FSM provides the following testing functions for grammars:

(grammar-both-derive g1 g2 w): Tests if both of the given grammars ob-
tain the same result when trying to derive the given word.

(grammar-testequiv g1 g2 [natnum]): Tests if the given grammars ob-
tain the same results when deriving 100 (or the optional number of) ran-
domly generated words. If all tests give the same result, true is returned.
Otherwise, a list or words that produce different results is returned.

(grammar-test g1 [natnum]): Tests the given grammar with 100 (or the
optional number of) randomly generated words. A list of pairs containing
a word and the result of attempting to derive the word are returned.

Just as finite-state machines are designed, grammars also need to be de-
signed. For finite-state machines, the design revolves around the states needed
to decide if a word is in the language. For regular grammars, the design re-
volves around the syntactic categories needed to generate a word. Each non-
terminal represents a type (of partial) word that must be generated. Let us
explore this by implementing a regular grammar for:

L = {ε} ∪ ba∗

We start by picking a descriptive name for the grammar and specifying its
alphabet:

Name: EMP-U-ba*

Σ: (a b)

Next, we need to define the nonterminals (i.e., syntactic categories) needed.
Usually, this process starts with the starting nonterminal. This nonterminal
generates any word in the language. For L, we define the starting nonterminal
as follows:

S represents ε ∧ a word in ba∗



210 8 Regular Grammars

If the word is not empty, then it may contain a b followed by an arbitrary
number of as. We can distinguish two cases here. The first is when no as are
generated. In this case, there is no need to generate a nonterminal to generate
as. The second is when one or more as needs to be generated. An arbitrary
number of one or more as is a different type of word that must be generated
and, therefore, requires a syntactic category:

A represents an arbitrary number of 1 or more as

No other types of words need to be generated. This means only the two
nonterminals above are needed to build the grammar.

The next step is to develop the production rules. Given that the empty
word is part of the language, the starting nonterminal must generate it. The
needed production rule is:

(list 'S ARROW EMP)

ARROW is the FSM constant denoting an arrow in a production rule. The start-
ing nonterminal must also generate words that start with a b followed by an
arbitrary number of as. This means that S ought to generate either a b (i.e.,
not generate any as) or a b followed by A (the nonterminal to generate one
or more as). The needed production rules are:

(list 'S ARROW 'b)
(list 'S ARROW 'bA)

Finally, the production rules for A to generate one or more as are needed. A
ought to generate an a (i.e., only one a) or an a followed by one or more as.
Observe that the latter is A’s definition. Thus, the needed production rules
are:

(list 'A ARROW 'a)
(list 'A ARROW 'aA)

Next, we define tests to illustrate words that are and that are not in
the grammar’s language. To do so, we need to be more specific about
grammar-derive's output. When the given word is not in the language, the
returned string has this structure:

"<given word> is not in L(G)."

In the returned string, <given word> is substituted with the word given to
grammar-derive. When the given word is in the language, its derivation is
returned. A derivation is a list that starts with the starting nonterminal and
ends with a symbol representing the given word. In between, there is a step
for each rule applied. For example, the following is the derivation for '(a b):

'(S -> bA -> ba)

The derivation starts with S, and the third rule is applied to substitute S

to obtain bA. In the next step, the A is substituted using the fourth rule
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Fig. 49 The regular grammar implementation for L = {ε} .∪ ba.∗

#lang fsm

;; L = ε U ba*
(define EMP-U-ba* (make-rg (S A)

(a b)
((S ,ARROW ,EMP)
(S ,ARROW b)
(S ,ARROW bA)
(A ,ARROW a)
(A ,ARROW aA))

S))

;; Tests for EMP-U-ba*
(check-equal? (grammar-derive EMP-U-ba* (a))

"(a) is not in L(G).")
(check-equal? (grammar-derive EMP-U-ba* (a b b a a))

"(a b b a a) is not in L(G).")
(check-equal? (grammar-derive EMP-U-ba* ())

(S -> ε))
(check-equal? (grammar-derive EMP-U-ba* (b a))

(S -> bA -> ba))
(check-equal? (grammar-derive EMP-U-ba* (b a a a))

(S -> bA -> baA -> baaA -> baaa))

to obtain ba. There are no more nonterminals to substitute, and, therefore,
the derivation is complete. With this understanding, tests may be written as
follows:

;; Tests for EMP-U-ba*

(check-equal? (grammar-derive EMP-U-ba* '(a))
"(a) is not in L(G).")

(check-equal? (grammar-derive EMP-U-ba* '(a b b a a))

"(a b b a a) is not in L(G).")

(check-equal? (grammar-derive EMP-U-ba* '())
'(S -> ε))

(check-equal? (grammar-derive EMP-U-ba* '(b a a a))

'(S -> bA -> baA -> baaA -> baaa))

The program implementing the regular grammar designed is displayed in
Fig. 49. Run the tests and make sure they pass.
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Fig. 50 The design recipe for grammars
1. Pick a name for the grammar and specify the alphabet
2. Define each syntactic category and associate each with a nonterminal clearly specifying

the starting nonterminal
3. Develop the production rules
4. Write unit tests
5. Implement the grammar
6. Run the tests and redesign if necessary

33 The Design Recipe for Grammars

Building on the experience implementing the grammar in Fig. 49, the steps
of a design recipe for grammars are displayed in Fig. 50. Step 1 asks you to
select a descriptive name for the grammar and specify the alphabet for the
grammar’s language.

Step 2 asks you to identify the syntactic categories that are needed and
associate each with a nonterminal. This step usually starts with the start-
ing nonterminal. The starting nonterminal represents all the words in the
grammar’s language. From there, follow a top-down approach identifying the
different parts of a word that must be generated. For each part that must be
generated, use a different nonterminal, or use a previously defined nontermi-
nal.

Step 3 asks you to develop the production rules. This step is tightly cou-
pled with step 2. Each production rule has a nonterminal on the left-hand
side before the arrow and a symbol on the right-hand side after the arrow. A
nonterminal may have more than one production rule. Collectively, the pro-
duction rules for a nonterminal define what the nonterminal may be substi-
tuted by in one derivation step. A useful heuristic to follow is to separate the
generation of an arbitrary number of elements into two parts: the generation
of zero of those elements and the generation of one or more of those elements
(as done for a.∗ in the development of the regular grammar in Fig. 49).

Step 4 asks you to write unit tests to illustrate the expected derivations
using the grammar. Write tests for words that are not in the grammar’s
language and tests for words that are in the grammar’s language. Make sure
that, collectively, the tested words use every production rule in the grammar.

Step 5 asks you to implement the grammar using a grammar constructor
(e.g., make-rg) and the results of the previous steps.

Step 6 asks you to run the tests and redesign if necessary. If you provide the
wrong type of arguments to the constructor, carefully read the error messages.
The FSM error messages are designed to be informative. They do not, however,
prescribe a solution because it is impossible to know the intentions of the
programmer.
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34 The Design Recipe in Action

Consider designing and implementing a regular grammar for:

L = {w | the number of as in w is a multiple of 3}
Let us work through the steps of the design recipe for a grammar assuming
the alphabet is Σ = {a b}.

34.1 Grammar Name and Alphabet

A descriptive name for the grammar is MULT3-as. As specified by the problem
statement, the alphabet for L(MULT3-as) is Σ = {a b}.

34.2 Syntactic Categories

The starting syntactic category generates all words in L(MULT3-as). We de-
fine it as follows:

S = words where the number of a is 3n, starting nonterminal

S may start by generating an a or a b. If it generates a b, then it must
still generate a word in which the number of a is a multiple of 3. That is,
generating a b means that an S must also be generated. If S generates an a,
then it must also generate a word in which the number of as is a multiple of 3
plus 2. This is a new type of word, and its syntactic category, B, is described
as follows:

B = words where the number of a is 3n + 2

If B generates a b, it must still generate a word with 3n+2 as. Therefore,
generating a b means that a B must also be generated. If B generates an a,
then a word with 3n+1 as must be generated. This is a new type of word,
and its syntactic category is defined as follows:

C = words where the number of a is 3n + 1

If C generates a b, it must still generate a word with 3n+1 as. Therefore,
generating a b means that a C must also be generated. If C generates an a,
then a word with 3n as must be generated. That is, generating an a means
that an S must also be generated.

There are no more syntactic categories to define, and we may move to the
next step of the design recipe.
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34.3 The Production Rules

The production rules are developed one nonterminal at a time. Start, for
example, with S. According to the syntactic category, S must generate a
word with 3n as. The empty word is in L(MULT3-as). This means S must
generate EMP. S can also start by generating an a or a b. If it generates an a,
then a word with 3n+2 as must also be generated to end with a word that
has 3n as. If it generates a b, then a word with 3n as must still be generated
to end with a word that has 3n as. Based on the meaning of each syntactic
category, the needed production rules are:

(list 'S ARROW EMP)

(list 'S ARROW 'aB)
(list 'S ARROW 'bS)

B can start by generating an a or a b. If it generates an a, then a word
with 3n+1 as must also be generated to end with a word that has 3n+2 as. If
it generates a b, then a word with 3n+2 as must still be generated. Based on
the meaning of each syntactic category, the needed production rules are:

(list 'B ARROW 'aC)
(list 'B ARROW 'bB)

C can start by generating an a or a b. If it generates an a, then a word
with 3n as must also be generated. If it generates a b, then a word with 3n+1

as must still be generated. Based on the meaning of each syntactic category,
the needed production rules are:

(list 'B ARROW 'aC)
(list 'B ARROW 'bB)

34.4 Unit Tests

The tests are written using MULT3-as to derive words that are and that are
not in L(MULT3-as). Sample test for MULT3-as are:

;; Tests for MULT3-as

(check-equal? (grammar-derive MULT3-as '(b b a b b))

"(b b a b b) is not in L(G).")

(check-equal? (grammar-derive MULT3-as '(b b a b b a))

"(b b a b b a) is not in L(G).")

(check-equal?

(grammar-derive MULT3-as '(b b a b a b a a b))

"(b b a b a b a a b) is not in L(G).")

(check-equal? (grammar-derive MULT3-as '())
'(S -> ε))
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(check-equal?

(grammar-derive MULT3-as '(a a a))

'(S -> aB -> aaC -> aaaS -> aaa))

(check-equal?

(grammar-derive MULT3-as '(b b a a b a b b))

'(S -> bS -> bbS -> bbaB -> bbaaC -> bbaabC -> bbaabaS

-> bbaababS -> bbaababbS -> bbaababb))

34.5 Grammar Implementation

The grammar implementation uses make-rg and the results of steps 1–3 of
the design recipe for grammars:

(define MULT3-as (make-rg '(S B C)

'(a b)

`((S ,ARROW ,EMP)

(S ,ARROW aB)

(S ,ARROW bS)

(B ,ARROW aC)

(B ,ARROW bB)

(C ,ARROW aS)

(C ,ARROW bC))

'S))

34.6 Run the Tests

Run the tests and make sure they all pass. In addition, use grammar-test to
visually inspect the result of trying to derive randomly generated words. The
following displays the results obtained using ten randomly generated words:

> (grammar-test MULT3-as 10)

'(((b a a a) (S -> bS -> baB -> baaC -> baaaS -> baaa))

((b a a a a) "(b a a a a) is not in L(G).")

((a a) "(a a) is not in L(G).")

((a b a b) "(a b a b) is not in L(G).")

((a b) "(a b) is not in L(G).")

(() (S -> ε))
((b) (S -> bS -> b))

((b b) (S -> bS -> bbS -> bb))

((b a b a) "(b a b a) is not in L(G).")
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((b a a b a b)

(S

->

bS

->

baB

->

baaC

->

baabC

->

baabaS

->

baababS

->

baabab)))

You can observe that the correct result is obtained for each test word. This
further validates that the grammar is correctly implemented.

1 Let Σ={a b c}. Design and implement a regular grammar for all
words that have an even number of b. Make sure to follow all the steps
of the design recipe for grammars.

2 Let Σ = {a b}. Design and implement a regular grammar for all
words that have an even number of bs and an odd number of as. Make
sure to follow all the steps of the design recipe for grammars.

3 Let Σ = {a b}. Design and implement a regular grammar for all
words in which every b is immediately preceded by an a. Make sure to
follow all the steps of the design recipe for grammars.

4 Let Σ = {a b}. Design and implement a regular grammar for all
words that contain (a b b a). Make sure to follow all the steps of the
design recipe for grammars.

5 Let Σ = {a b}. Design and implement a regular grammar for all
words that do not contain (a b a). Make sure to follow all the steps
of the design recipe for grammars.
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35 Regular Grammars and Regular Languages

Despite being called regular grammars, do these grammars generate a regular
language? That is, is every language generated by a regular grammar regular,
and can every regular language be generated by a regular grammar? If so,
given a regular grammar, we ought to be able to construct a finite-state
machine or regular expression from it and vice versa.

It is, indeed, the case, and we may state the following theorem:

Theorem 1 L is regular .⇔ L is generated by a regular grammar.

Proof The theorem follows from Theorems 2 and 3 proven below. �

35.1 Constructing a Regular Grammar from a dfa

Theorems 7 and 8 establish the equivalence of regular expressions and ndfas.
Theorem 4 establishes the equivalence of ndfas and dfas. Therefore, if L is
regular, we know that there must be a dfa that decides L. If the language of
a regular grammar is regular, then there must be a dfa that decides it.

Consider the problem of building a regular grammar, R, from, D, a dfa

such that L(R) = L(D). D’s transition rules always consume an element of
the alphabet. We can view a transition rule as follows:

.
Q P

a

If D consumes a to move from Q to P, then R must have a production rule to
produce such an a. To write such a production rule, however, it is necessary
to know what may be substituted (i.e., the left-hand side of the production
rule) and what to substitute it with (i.e., the right-hand side of the production
rule). Clearly, the amust be part of the right-hand side of the production rule.
We do not know what D may consume after reaching P, but whatever it is, it
must be generated by production rules obtained from transition rules starting
at P. This means that for the transition rule above, the a and anything read
after reaching P must be generated. Recall that Q and P represent an invariant
property of what the machine has consumed. In a grammar, we may think of
Q and P as the type of word that must still be produced. That is, the states of
D are the nonterminals of the regular grammar. From Q, an a and whatever
is produced by P must be produced. Therefore, for D’s rule above, the needed
production rule is:

(list 'Q ARROW 'aP)

This discussion assumes that D’s states are represented using a single capital
letter in the Roman alphabet. Be aware that this limits the number of states
D may have to 26 and that FSM’s DEAD state may not be a state in D.
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The production rules of a regular grammar cannot all have the form above.
If all production rules had that form, then the language of the grammar is
empty. No words can be produced because every production rule produces a
nonterminal. We need production rules that do not produce a nonterminal.
Consider the following transition rule in D:

.
Q P

a

For such a transition rule, going into a final state, an a must be produced.
After the a, however, nothing may need to be produced because P is a final
state and the machine may accept if there is nothing left in the input. In
such a case, only the a needs to be produced by the grammar. There may be,
of course, more input for D to consume, and in this case, a production rule
that generates P, as above, is also needed. Therefore, for transition rules into
a final state, two production rules are needed as follows:

(list 'Q ARROW 'a)
(list 'Q ARROW 'aP)

Finally, we may observe that nothing may have to be produced. This can
only occur if D’s starting state, S, is a final state. If such is the case, the
following production rule is needed:

(list 'S ARROW EMP)

35.1.1 Implementation

The previous observations suggest an algorithm for transforming a list of dfa
rules into production rules. For each dfa rule, (Q a P), there are either one or
two production rules generated. The production rule (Q ARROW aP) is always
generated. To transform (a P) into a symbol, FSM’s los->symbol is used. If
P is a final state, then (Q ARROW a) is also generated. This transformation
may be achieved by append-maping over a list of dfa rules. The mapped
function takes as input a dfa rule and returns a list of production rules of
either length 1 or 2. The function to compute the production rules may be
implemented as follows:

;; (listof dfa-rule) (listof state) → (listof rg-rule)

;; Purpose: Generate production rules for the given

;; dfa-rules and the given final states

(define (mk-prod-rules mrules mfinals)

(append-map

(λ (r)

(if (not (member (third r) mfinals))

(list (list (first r) ARROW (los->symbol (rest r))))

(list (list (first r) ARROW (second r))

(list (first r) ARROW (los->symbol (rest r))))))

mrules))
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;; Tests for mk-prod-rules

(check-equal? (mk-prod-rules '() '(F G)) '())
(check-equal? (mk-prod-rules '((S a F) (S b R)

(R a G) (R b R)

(G a G) (G b G))

'(F G))

'((S -> a) (S -> aF) (S -> bR)

(R -> a) (R -> aG) (R -> bR)

(G -> a) (G -> aG) (G -> b) (G -> bG)))

Observe that the test clearly illustrate the production rules generated for
each dfa rule.

The function to convert a dfa, M, into a regular grammar, rg, takes as
input a dfa and returns an rg. It assumes all machine states are repre-
sented by a single capital letter in the Roman alphabet. It locally defines the
grammar’s nonterminals as the given machine’s state, the grammar’s alpha-
bet as the machine’s alphabet, the grammar’s starting nonterminal as the
machine’s start state, and the grammar’s production rules as the result of
calling mk-prod-rules with the machine’s rules and final states. If the ma-
chine’s starting state is a final state, then a production rule to generate EMP

from the starting state is added to the production rules. The function based
on this design is displayed in Fig. 51. The tests are written using the dfa for
the language containing the words with an even number of as and an odd
number of bs from Sect. 24.5 and the following dfa for Σ.

*:

;; L = (a U b U c)*

(define SIGMA* (make-dfa '(S)
'(a b c)

'S
'(S)
'((S a S)

(S b S)

(S c S))

'no-dead))

Each of these machines is converted into a regular grammar. For a w.∈L(M),
the last element in a derivation returned by grammar-derive must be a
symbol representing w, and M must accept w. For w./∈L(M), grammar-derive
must return a string, and M must reject w.

Run the tests and make sure they all pass. With the cautious confidence
provided by having all tests pass, we proceed to argue the correctness of the
constructor.
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Fig. 51 The function to convert a dfa into a regular grammar
;; dfa → rg
;; Purpose: Build a rg for the language of the given dfa
;; Assume: States in the given dfa are represented by a single capital letter
(define (dfa2rg m)

(let* [(nts (sm-states m))
(sigma (sm-sigma m))
(startnt (sm-start m))
(prules (if (member (sm-start m) (sm-finals m))

(cons (list (sm-start m) ARROW EMP)
(mk-prod-rules (sm-rules m) (sm-finals m)))

(mk-prod-rules (sm-rules m) (sm-finals m))))]
(make-rg nts sigma prules startnt)))

;; Tests for dfa2rg
(define SIGMA*-rg (dfa2rg SIGMA*))
(define EA-OB-rg (dfa2rg EVEN-A-ODD-B))

(check-equal? (eq? (last (grammar-derive SIGMA*-rg ())) EMP)
(eq? (sm-apply SIGMA* ()) accept))

(check-equal? (eq? (last (grammar-derive SIGMA*-rg (a b c)))
(los->symbol (a b c)))

(eq? (sm-apply SIGMA* (a b c)) accept))
(check-equal? (eq? (last (grammar-derive SIGMA*-rg (c c a b a c)))

(los->symbol (c c a b a c)))
(eq? (sm-apply SIGMA* (c c a b a c)) accept))

(check-equal? (string? (grammar-derive EA-OB-rg (a b)))
(eq? (sm-apply EVEN-A-ODD-B (a b)) reject))

(check-equal? (string? (grammar-derive EA-OB-rg (a a b a)))
(eq? (sm-apply EVEN-A-ODD-B (a a b a)) reject))

(check-equal? (eq? (last (grammar-derive EA-OB-rg (b)))
(los->symbol (b)))

(eq? (sm-apply EVEN-A-ODD-B (b)) accept))
(check-equal? (eq? (last (grammar-derive EA-OB-rg (b a a b b)))

(los->symbol (b a a b b)))
(eq? (sm-apply EVEN-A-ODD-B (b a a b b))

35.1.2 Correctness Proof

Theorem 2 L is regular ⇒ L is generated by a regular grammar.

Proof

Assume L is regular.

Let M = (make-dfa S Σ Z F δ) that decides L, and let G be the regular
grammar returned by (dfa2rg M). We must show that w∈L(M) ⇔ w∈L(G)
and that w/∈L(M) ⇔ w/∈L(G).
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w∈L(M) ⇔ w∈L(G)

(⇒) Assume w∈L(M).
This means that M performs the following computation: (w Z) �∗

M (() K),
where K∈F. By construction of G, for every rule, (C a D), in M, there is a
corresponding production rule (C → aD). In addition, if D is a final state,
then (C → a) is also a production rule. This means that every element con-
sumed by M’s computation is generated by a derivation using G simulating
M’s execution. If M moves to a final state and accepts, then the derivation
only generates a terminal symbol that is the same symbol consumed by M.
In this manner, it generates the same word M accepts. Finally, if nothing is
consumed and M accepts, then the derivation using G generates EMP. This
means there is a derivation using G that generates a word accepted by M.
Thus, w∈L(G).

(⇐) Assume w∈L(G).
This means that G can derive w. By construction of G, every derivation step
of G simulates a step taken by M in a computation that consumes w and
reaches a final state. Therefore, w∈L(M).

w/∈L(M) ⇔ w/∈L(G)

(⇒) Assume w/∈L(M).

This means that M’s computation on w is (w Z) �∗
M (() K), where K/∈F.

By construction of G, for every rule, (C a D), in M, there is a corresponding
production rule (C → aD). That is, a derivation using G simulates the com-
putation done by M. Let (L a K) be the last transition rule M uses during
its computation on w. This means that the last production rule G uses is (L
→ aK). Observe that the symbol produced still represents the existence of a
nonterminal and, thus, cannot equal w. Given that G is simulating a dfa and
K is not a final state of M, there is no other possible set of derivation steps
on w. Thus, w/∈L(G).

(⇐) Assume w/∈L(G).

This means that there is no derivation of w using G. By construction, a
derivation using G is simulating the computation of M on w. Given that M
is deterministic, there is only one computation possible. Thus, w/∈L(M). �
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6 The proof of Theorem 2 states twice that a derivation using G sim-
ulates the computation done by M. This suggests that the proof can be
even more rigorous by demonstrating that every transition made by M

on w is simulated in a derivation of w using G. Prove Theorem 2 by
induction on the number of transitions in M’s computation on w.

35.2 Constructing an ndfa from a Regular Grammar

We now need to convert G=(make-rg N Σ P S) into, M, a finite-state machine
that decides L(G). The constructor for a regular grammar from a dfa to a rg

provides some insights into this problem. That constructor informs us that
a regular grammar can simulate a computation carried out by a dfa. It is,
therefore, plausible that a finite-state machine can simulate a derivation.

Inspired in dfa2rg’s design, G’s nonterminals may be represented as states
in M that have the same name. Σ is M’s alphabet and S is M’s starting state.

If M is to simulate a derivation under G, then M must accept when a simple
production rule is used. A simple production rule is defined as follows:

I → i, where i∈{{ε}∪Σ} ∧ I∈N
M must also have a transition rule for every compound production rule in G.
A compound production rule is defined as follows:

I → iJ, where i∈Σ ∧ I,J∈N
To simulate a simple production rule, M shall have, Z, a unique state that

is also the single final state. The transformation of a simple production rule
is as follows:

I → i ��� (I i Z)

Observe that this means that M accepts when a derivation produces a word
and that the M’s set of states are G’s nonterminals and Z.

To simulate a compound production rule, it is converted to a transition
rule as follows:

I → iJ ��� (I i J)

If a derivation step produces from I a terminal i and a nonterminal, J, then
M moves from state I to state J on an i. Note that defining the transition
rules in this manner means that an ndfa is constructed (e.g., there are no
transitions out of Z).



35 Regular Grammars and Regular Languages 223

To illustrate how the constructor ought to work, consider converting the
following regular grammar into an ndfa:

;; L = a* U b*

(define a*Ub*-rg (make-rg '(S A B)

'(a b)

`((S ,ARROW ,EMP)

(S ,ARROW aA)

(S ,ARROW bB)

(S ,ARROW a)

(S ,ARROW b)

(A ,ARROW aA)

(A ,ARROW a)

(B ,ARROW bB)

(B ,ARROW b))

'S))

To build M=(make-ndfa S Σ A F δ), a fresh state, Z, is generated for its
final state. This means that we may now define four of M’s components:

S = (cons 'Z '(S A B))

Σ = '(a b)

A = 'S
F = (list 'Z)

To generate the transition relation, the production rules may be partitioned
into simple and compound production rules:

I → i rules I → iJ rules

(S → ε) (S → aA)

(S → a) (S → bB)

(S → b) (A → aA)

(A → a) (B → bB)

(B → b)

The simple production rules produce the transition rules into the final state:

(S ε Z) (S a Z) (S b Z) (A a Z) (B b Z)

The compound production rules produce the rest of the transition rules:

(S a A) (S b B) (A a A) (B b B)
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The transition diagram for the resulting ndfa is:

.

It is not difficult to see that it decides L = a.∗ .∪ b.∗.

35.2.1 Implementation

Based on the outlined design idea, we shall implement a constructor that con-
verts a rg to an ndfa. To test the constructor, the following sample grammars
are used:

;; Sample rg

;; L = (a U b U c)*

(define SIGMA*-rg (dfa2rg SIGMA*))

;; L = w | w has an even number of a and an odd number of b

(define EA-OB-rg (dfa2rg EVEN-A-ODD-B))

;; L = a* U b*

(define a*Ub*-rg

(make-rg

'(S A B)

'(a b)

`((S ,ARROW ,EMP) (S ,ARROW aA) (S ,ARROW bB) (S ,ARROW a)

(S ,ARROW b) (A ,ARROW aA) (A ,ARROW a) (B ,ARROW bB)

(B ,ARROW b))

'S))

;; L = a aba

(define a-aba-rg

(make-rg

'(S A B)

'(a b)

`((S ,ARROW a) (S ,ARROW aA) (A ,ARROW bB) (B ,ARROW a))

'S))
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The first two are used to illustrate that converting from a given dfa to a rg

and then to an ndfa constructs a machine that decides the same language as
the given dfa. The third is the rg used to illustrate the algorithm above. Fi-
nally, the fourth is for a finite language that clearly illustrates that simulating
simple production rules lead the machine to its final state.

To test the constructor, rg2ndfa, ndfas are built from the four sample rgs.
The tests are displayed in Fig. 52. For each ndfa, the tests illustrate that when
the ndfa rejects a given word, then the given word cannot be derived using the
corresponding grammar and that when the ndfa accepts a given word, then
the given word is derived using the corresponding grammar. For SIGMA*2,
there are no tests for rejected words because it accepts all possible words.
Given that SIGMA*2 and EA-OB are constructed from a rg that is constructed
from a dfa, the equivalence of SIGMA*2 and EA-OB with, respectively, SIGMA
and EVEN-A-ODD-B is tested.

The rg2ndfa implementation defines eight local variables to build the
components of the ndfa:

final-state: the generated symbol for the only final state.
states: the ndfa’s states are the nonterminals of the given grammar and

the generated final state.
sigma: the ndfa’s alphabet is the given grammar’s alphabet.
start: the ndfa’s start state is the given grammar’s starting nonterminal.
finals: the ndfa’s final states only contain the generated final state.
simple-prs: the given grammar’s simple production rules.
cmpnd-prs: the given grammar’s compound production rules.
rules: the ndfa’s transition relation.

The simple production rules are obtained by filtering the given grammar’s
production rules. The function used to filter the production rules converts
the right-hand side of the given production rule into a list and checks if its
length is 1. The compound production rules are obtained by filtering the
given grammar’s production rules. The function used to filter the production
rules converts the right-hand side of the given production rule into a list and
checks if its length is 2. The ndfa’s transition rules are obtained by appending
transition rules generated from the simple production rules and transition
rules generated from the compound production rules. To generate the first
set of transition rules, a function is mapped over the simple production rules.
This function creates a transition using the left- and right-hand sides of the
given production rule and the generated final state. To generate the second set
of transition rules, a function is mapped over the compound production rules.
This function converts the right-hand side of the given compound production
rule into a list and creates a transition using the left-hand side of the given
production rule and the two elements in the converted right-hand side. The
result of this implementation strategy is displayed in Fig. 53.
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Fig. 52 Tests for rg2ndfa
;; Tests for rg2ndfa
(define SIGMA*2 (rg2ndfa SIGMA*-rg)) (define EA-OB (rg2ndfa EA-OB-rg))
(define a*Ub* (rg2ndfa a*Ub*-rg)) (define a-aba (rg2ndfa a-aba-rg))

(check-equal? (eq? (sm-apply SIGMA*2 ()) accept)
(eq? (last (grammar-derive SIGMA*-rg ())) EMP))

(check-equal? (eq? (sm-apply SIGMA*2 (a b c)) accept)
(eq? (last (grammar-derive SIGMA*-rg (a b c)))

(los->symbol (a b c))))
(check-equal? (eq? (sm-apply SIGMA*2 (c c a b a c)) accept)

(eq? (last (grammar-derive SIGMA*-rg (c c a b a c)))
(los->symbol (c c a b a c))))

(check-equal? (sm-testequiv? SIGMA* SIGMA*2) #t)
(check-equal? (eq? (sm-apply EA-OB (a b)) reject)

(string=? (grammar-derive EA-OB-rg (a b))
"(a b) is not in L(G)."))

(check-equal? (eq? (sm-apply EA-OB (a a b a)) reject)
(string=? (grammar-derive EA-OB-rg (a a b a))

"(a a b a) is not in L(G).")
(check-equal? (eq? (sm-apply EA-OB (b)) accept)

(eq? (last (grammar-derive EA-OB-rg (b))) (los->symbol (b))))
(check-equal? (eq? (sm-apply EA-OB (b a a b b)) accept)

(eq? (last (grammar-derive EA-OB-rg (b a a b b)))
(los->symbol (b a a b b))))

(check-equal? (sm-testequiv? EVEN-A-ODD-B EA-OB) #t)
(check-equal? (eq? (sm-apply a*Ub* (a b)) reject)

(string=? (grammar-derive a*Ub*-rg (a b))
"(a b) is not in L(G)."))

(check-equal? (eq? (sm-apply a*Ub* (a b b a)) reject)
(string=? (grammar-derive a*Ub*-rg (a b b a))

"(a b b a) is not in L(G)."))
(check-equal? (eq? (sm-apply a*Ub* ()) accept)

(eq? (last (grammar-derive a*Ub*-rg ())) EMP))
(check-equal? (eq? (sm-apply a*Ub* (a a a)) accept)

(eq? (last (grammar-derive a*Ub*-rg (a a a))) aaa))
(check-equal? (eq? (sm-apply a*Ub* (b)) accept)

(eq? (last (grammar-derive a*Ub*-rg (b))) b))
(check-equal? (eq? (sm-apply a-aba (b b)) reject)

(string=? (grammar-derive a-aba-rg
(b b)) "(b b) is not in L(G)."))

(check-equal? (eq? (sm-apply a-aba ()) reject)
(string=? (grammar-derive a-aba-rg ()) "() is not in L(G)."))

(check-equal? (eq? (sm-apply a-aba (a b a)) accept)
(eq? (last (grammar-derive a-aba-rg (a b a))) aba))

(check-equal? (eq? (sm-apply a-aba (a)) accept)
(eq? (last (grammar-derive a-aba-rg (a))) a))
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Fig. 53 The ndfa constructor from a rg

;; rg → ndfa
;; Purpose: Build a ndfa for the language of the given regular grammar
(define (rg2ndfa rg)

(let* [(final-state (generate-symbol Z (grammar-nts rg)))
(states (cons final-state (grammar-nts rg)))
(sigma (grammar-sigma rg))
(start (grammar-start rg))
(finals (list final-state))
(simple-prs (filter

(λ (pr) (= (length (symbol->fsmlos (third pr))) 1))
(grammar-rules rg)))

(cmpnd-prs
(filter (λ (pr) (= (length (symbol->fsmlos (third pr))) 2))

(grammar-rules rg)))
(rules (append

(map (λ (spr)
(list (first spr) (third spr) final-state))

simple-prs)
(map (λ (pr)

(let [(rhs (symbol->fsmlos (third pr)))]
(list (first pr) (first rhs) (second rhs))))

cmpnd-prs)))]
(make-ndfa states sigma start finals rules)))

35.2.2 Correctness Proof

Let G be a regular grammar: G=(make-rg N Σ P A). Let M be the ndfa re-
turned by calling rg2ndfa with G: M=(rg2ndfa G)=(make-ndfa S Σ A '(Z)
δ), where S = N .∪ {Z}. Finally, let w=a.1. . .a.nK, where a.i.∈Σ and K.∈{N .∪
{ε}}. That is, w ends with a nonterminal in G, or it is a word in Σ.

∗.
To prove that the language generated by G is regular, we first prove a

lemma stating that G derives w if and only if M reaches Q by consuming
a.1. . .a.n. Q is M’s final state if K=ε. Otherwise, Q.∈N (i.e., Q is a state representing
a nonterminal of G).

Lemma 1 S .→+ w .⇔ ((a.1. . .a.n) A) �.
+ (() Q), where Q=Z if w ends with

a terminal symbol and Q.∈N if w ends with a nonterminal.

Proof
(.⇒) Assume S .→+ w.

We must show that (a.1. . .a.n A) �.
+ (() Q), where Q=Z if w ends with a

terminal symbol and Q.∈N if w ends with a nonterminal. The proof is by
induction on, n, the number of steps (i.e., rules used) in the derivation.
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Base Case: n=1
Observe that n=1 means that the derivation uses only a single production
rule. There are two cases:

If it is a simple production rule, (S .→ a), then w=a. By construction of
M, we have that (S a Z).∈δ. Therefore, (a A) �.

+ (() Z)=(() Q).

If it is a compound production rule, (S .→ aK), then w=aK. By construc-
tion of M, we have that (S a K).∈δ. Therefore, (a A) �.

+ (() K)=(() Q).

Inductive Step:
Assume: S .→+ w .⇒ (a.1. . .a.k A) �.

+ (() Q), where Q=Z if w ends with a
terminal symbol and Q.∈N if w ends with a nonterminal, for n=k.

Show: S .→+ w .⇒ (a.1. . .a.k+1 A) �.
+ (() Q), where Q=Z if w ends with a

terminal symbol and Q.∈N if w ends with a nonterminal, for n=k+1.

Assume S .→+ w for n=k +1.

Given that k.≥1, k+1.>1. This means that the derivation of w is either:

S .→ . . . .→ a.1. . .a.kU .→ a.1. . .a.ka.k+1, where U.∈N

S .→ . . . .→ a.1. . .a.kU .→ a.1. . .a.ka.k+1V, where U,V.∈N

By inductive hypothesis, we have:

((a.1. . .a.ka.k+1) A) �∗ ((a.k+1) U)

If the last production rule used in the derivation is a simple production
rule, (U .→ a.k+1), then by construction of M, (U a.k+1 Z).∈δ. Therefore,
((a.1. . .a.ka.k+1) A) �∗ (() Z)=(() Q).

If the last production rule used in the derivation is a compound production
rule, (U .→ a.k+1V), then by construction of M, (U a.k+1 V).∈δ. Therefore,
((a.1. . .a.ka.k+1) A) �∗ (() V)=(() Q).

(.⇐) Assume (a.1. . .a.n A) �.
+ (() Q), where Q=Z if w ends with a terminal

symbol and Q.∈N if w ends with a nonterminal.

We must show that S .→+ w. The proof is by induction on, n, the number of
transitions in M’s computation.
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Base Case: n=1
This means that w ends with a terminal. Thus, M’s computation is either:

(() A) � (() Z) .∨ ((a) A) � (() Z)
For the first computation, by construction of M, G must have (S → ε). For
the second computation, by construction of M, G must have (S → a). There-
fore, S .→+ w.

Inductive Step:
Assume: ((a.1. . .a.n) A) �.

+ (() Q), where Q=Z if w ends with a terminal sym-
bol and Q.∈N if w ends with a nonterminal .⇒ S .→+ w, for n=k.

Show: ((a.1. . .a.n) A) �.
+ (() Q), where Q=Z if w ends with a terminal symbol

and Q.∈N if w ends with a nonterminal .⇒ S .→+ w, for n=k+1.

Assume ((a.1. . .a.k+1) A) �.
+ (() Q), where Q=Z if w ends with a terminal

symbol and Q.∈N if w ends with a nonterminal. Given that k.≥1, k+1.>1.
This means that M’s computation on (a.1. . .a.k+1) is:

((a.1. . .a.k+1) A) �∗ ((a.k+1) R) � (() Q)

By inductive hypothesis, we have:

A .→∗ a.1. . .a.kR

The last transition in M’s computation has either Q=Z or Q.�=Z. If Q=Z,
then, by construction of G, (R → a.k+1).∈P. Therefore, we have:

A .→∗ a.1. . .a.k+1.

If Q.�=Z, then, by construction, of M (R → a.k+1Q). Therefore, we have:

A .→∗ a.1. . .a.k+1Q.

Theorem 3 L is generated by a regular grammar .⇒ L is regular.

Proof A assume L is generated by a regular grammar. Let G be a regular
grammar such that L = L(G), let w.∈L, and let M=(rg2ndfa G). By Lemma 1,
S .→+ w .⇔ (w A) �.

+ (() Z). Given that w is an arbitrary word, M decides
L. Thus, L is regular. �
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7 Consider the dfa displayed in the following transition diagram:

.

a

a

U

T

S

V

D
b

b

b, a

b, a

b, a

Using dfa2rg to build a regular grammar for the language the machine
decides results in:

(S → ε) (S → aU) (S → bU) (U → b)

(U → a) (U → bT) (U → aV) (T → bU)

(U → aV) (V → aD) (V → bD)

(T → aD) (D → aD) (D → bD)

Observe that the production rules in italics can never be part of a
derivation for a word in the language of the regular grammar. It is,
therefore, unnecessary to generate such production rules. Refine dfa2rg
so that it builds a grammar without unnecessary production rules. Use
grammar-testequiv to validate the refined constructor.

8 Prove that your constructor for the previous problem is correct.

9 The signature for dfa2rg is dfa → rg. The signature for rg2ndfa

is rg → ndfa. These functions are not inverses of each other. Write a
constructor, rg2dfa, with the following signature: rg → dfa.

10 Prove that your constructor for the previous problem is correct.
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11 Consider the following regular grammar production rules:

(S → ,EMP) (S → aA) (S → bB) (S → a) (S → b)

(A → aA) (B → bB) (B → b)

(C → aD) (D → aD) (D → bD)

The transition diagram for an ndfa built from a grammar with the
above rules is:

.

b

B

a

A ZS
a a

b, a, ε

b, a

a
C D

b b

Observe that the transition diagram is disconnected. It is unnecessary
to generate C, D, and their transition rules because they can never be
part of any computation performed by the machine. Refine rg2ndfa to
eliminate unnecessary states and their transitions in the ndfa returned.

12 Prove that your constructor for the previous problem is correct.



Chapter 9

Languages That Are Not Regular

We have a variety of techniques to establish that a language, L, is regular. A
regular expression, a dfa, an ndfa, or a rg may be created for L. We have
also seen that these artifacts may be used to solve interesting problems. You
might already suspect, however, that not all languages in the universe are
regular. This belief is likely rooted in the fact that the amount of memory
is bounded. For example, the amount of memory in a finite-state machine is
bounded by the number of states. It is difficult to see how to prevent loss of
knowledge (e.g., what has been read). It would be foolish, however, to dismiss
these models as irrelevant to modern computer science. We may not think
about it in our day-to-day programming, but the computers we program on
also have a finite amount of memory. The finite-state machines that we use
on a daily basis are, indeed, quite powerful. Does it surprise you or do you
doubt that modern computers are finite-state machines? Just think about it.
If a computer has N bits of memory available, then the maximum number of
states it can be in is 2.N. If N is in the trillions, then there are a huge number
of states our computers can be in. Nonetheless, the number of states is finite
just like a dfa or ndfa.

Does a finite amount of memory limit what can be computed? Consider
the following language:

L = {anbn| n≥0}
On the surface, it appears to be a rather simple and uninteresting language.
What is interesting about a language in which every word has n as followed
by n bs? If n is bound to be less than or equal to 3, for example, then im-
plementing an ndfa for the language is fairly straightforward. The transition
diagram for the ndfa that decides L' = {anbn| n≤3} is:
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.

A

B

C

D
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E

Fa

a b

b

ba

e

e

e

The machine may read 0, 1, 2, or 3 as and then the same number of bs.
The problem with L is that n is a natural number of arbitrary size. How

can a finite-state machine read n as and then read n bs? You may argue this
is easy by implementing a finite-state machine that has a loop to read n as
and then a loop to read n bs:

.

S

a b

Fe

If we define this machine as a2n-b2n, the following tests pass:

;; Tests for a2n-b2n

(check-equal? (sm-apply a2n-b2n '(b b a a)) 'reject)
(check-equal? (sm-apply a2n-b2n '()) 'accept)
(check-equal? (sm-apply a2n-b2n '(a b)) 'accept)
(check-equal? (sm-apply a2n-b2n '(a a b b)) 'accept)
(check-equal? (sm-apply a2n-b2n '(a a a b b b)) 'accept)

Should this give us confidence that the machine decides L? Unfortunately,
the answer is an unequivocal no. The tests are not thorough enough. They
fail to reveal that the machine is buggy. Consider the following tests:

(check-equal? (sm-apply a2n-b2n '(a a)) 'reject)
(check-equal? (sm-apply a2n-b2n '(b)) 'reject)
(check-equal? (sm-apply a2n-b2n '(a a a b)) 'reject)

These tests fail. That is, a2n-b2n accepts the words used in the three tests.
Clearly, this should not happen.

How can a finite-state machine detect an arbitrary number of as followed
by the same number of bs? To do this, the machine needs to remember the
number of as read and then make sure it reads the same number of bs. To
remember an arbitrary number of as, the machine needs an arbitrary number
of states. This, however, is impossible because finite-state machines have a
finite number of states and have no other way of remembering how many
as were read. This strongly suggests that L is interesting because it is not a
regular language. That is, it cannot be decided by a finite-state machine. This
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revelation brings us to an interesting question, how can we tell if a language
is not regular?

36 The Pumping Theorem for Regular Languages

Cycles in the transition diagram of a finite-state machine and Kleene stars in
a regular expression suggest that there is a repetitive structure in a language’s
words. The cycles or the Kleene star expressions may be repeated 0 or more
times. For long-enough words in the language, this repetition must occur one
or more times. If a cycle is traversed once, then it moves the machine from a
state, Q, through 0 or more states to end back at Q. If the cycle is traversed
once, it may be traversed an arbitrary number of times before moving past
Q or ending the computation. This means that the symbols read in the loop
may be repeated and the resulting word is in the machine’s language.

What does this observation suggest? It suggests that for long-enough words
in L(M), there must be a repeated subword. We ought to be able to identify
the repetition. We may call the repeated subword y. A word in the language,
therefore, may be written as w = xyz, where x is the concatenation of the
symbols that take the machine to Q, and z is the concatenation of the symbols
that take the machine from Q to a final state. Observe that xyyz, xyyyz,
xyyyyz, and so on are also in the machine’s language. The loop is traversed
one or more times. It is also the case that xz is in the machine’s language.
The loop is traversed 0 times. If we generalize, then xy.iz is in the machine’s
language, where i.≥0. That is, if w.∈L, then we can “pump” up or down
on y and still have a word that is in L. The Pumping Theorem for Regular
Languages formalizes these observations:

Theorem 1 For a regular language, L, there is a word length n.≥1 such that
any w.∈L may be written as w=xyz, where y.�=ε, .|xy.| ≤n, and xy.iz.∈L for i.≥0.

Before proceeding with the proof, let us be sure we understand what the
theorem is stating. It states that a w.∈L of length greater than or equal to some
positive integer, n, may be divided into three parts, x, y, and z, such that y is
nonempty and may be pumped up or down (i.e., repeated zero or more times)
and still remain in the machine’s language. Furthermore, it states that the
length of xy cannot be longer than n. That is, xy must be at the beginning of
w. What is this theorem good for? Think about this carefully. For a concrete
w.∈L that is long enough, we must be able to identify a nonempty y that may
safely be repeated an arbitrary number of times and still end with a world in
L. If such a y does not exist, then the language is not regular. In other words,
the theorem above may be used to prove that a language is not regular.
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Proof

Given that L is regular, there is an dfa, M=(make-dfa K Σ S F δ), which
decides L.

Let n=.|K.| and w=(a.1 a.2 . . . a.n. . . a.m).∈L, where a.i ∈Σ. The first n steps
of M’s computation on w are as follows:

((a.1 a.2 . . . a.n) S) � ((a.2. . . a.n) Q.1) � ((a.3. . . a.n) Q.2) � . . . (() Q.n)

Observe that the computation has n+1 configurations (each with the word
left to consume and a state). Since M only has n states by the pigeonhole
principle, there must be a repeated state in the computation. That is, Q.j=Q.k,
where j.�=k. This means that a.j . . .a.k takes the machine from Q.j back to Q.j .
That is, part of M’s computation is:

((a.j . . .a.k) Q.j−1) � ((a.j+1. . .a.k) Q.j) �∗ (() Q.j)

Given that j.<k and M is a dfa, (a.j . . .a.k) is not empty. Note that (a.j . . .a.k)
may be removed from w or repeated an arbitrary number of times, and the
resulting word is still in L. If we define x=(a.1. . .a.j−1), y=(a.j . . .a.k), and
z=(a.k+1. . .a.m), then .∀i.≥0 xy.iz.∈L.

Finally, observe that .|(a.1. . .a.k).| ≤n because the loop can contain at most
all of M’s states when x=ε. Therefore, .|xy.| ≤n. �

37 Proving a Language Is Not Regular

To prove that a language is not regular, there are two approaches. The first
uses Theorem 1 above, known as the pumping theorem for regular languages.
The second uses closure properties from Theorem 1 from Chap. 7.

37.1 Using the Pumping Theorem for Regular Languages

To use the pumping theorem for regular languages, think of it as game against
an opponent that will try to demonstrate that the conditions of the theorem
can be satisfied. To prove that L is not regular, you pick a word, w, in the
language that is long enough. That is, w.∈L and .|w.| ≥n, where n is the number
of states in the dfa that decides L. Your opponent tries to find values x,
y, and z such that w = xyz and xy.iz.∈L, where i.≥0. If your opponent can
find such values, you cannot conclude that L is not regular. If your opponent
cannot find such values, then you may conclude that L is not regular.
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To simplify the proof, it is useful to pick w in a manner to minimize the
possibilities your opponent has for xy. Recall that .|xy.| must be less than or
equal to n. Try to pick a w that minimizes the choices your opponent has in
that window, xy, at the beginning of the word. Fewer choices for y means
that fewer arguments must be made about what happens when y is pumped
up or down.

37.1.1 L = {anbn | n≥0} Is Not Regular

Theorem 2 L = {anbn|n≥0} is not regular

We shall use Theorem 1.

Proof

Assume L is regular. Let M = (make-dfa K Σ S F δ) be the machine that
decides L and let n = |K|. The pumping theorem requires picking a w∈L such
that |w| ≥ n. Let w=anbn. Clearly, M’s computation on w must visit at least
one state twice. That is, w is long enough to use the pumping theorem for
regular languages. We must now argue that for any valid choice for y, pump-
ing up or down some number of times results in a word not in L. That is,
we must show that for some, i≥0 w = xyiz/∈L, such that y �= ε and |xy| ≤ n.

We can observe that y can only contain as. If it contained any bs, then |xy|
would be too long. Thus, y = aj, where j > 0. We may write w as follows:

w = xyz = an−j−rajarbn, where x=an−j−r ∧ z=arbn

If we pump up once on y, then we get:

w'= an−j−ra2jarbn = an+jbn

Clearly, w'/∈L. Therefore, the assumption that L is regular is wrong. �

37.1.2 Revisiting L = {anbn | n≥0}

You may ask yourself why w=a.nb.n was chosen in the first place. The answer
is that it reduced the choices for y to 1. We could have carried out the proof
as follows:

Proof

Assume L is regular. Let M = (make-dfa K Σ S F δ) be the machine that
decides L and let n = .|K.|.

Let w=a.
n
2 b.

n
2 . Clearly, M’s computation on w must visit at least one state

twice. We must now argue that for any valid choice for y, there is an i.≥0
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such that pumping up or down i times results in a word not in L.

The possibilities for y, such that .|xy.| ≤n, are: y.∈a.+, y.∈a.+b.+, and y.∈b.+.
For y.∈a.+, we may write w as follows:

w = a
n
2 −rarb

n
2 , where r>0

Pumping up once on a.r results in:

w' = a
n
2 −ra2rb

n
2 = a

n
2 +rb

n
2

Clearly, w'./∈L.

For y.∈a.+b.+, we may write w as follows:

w = a
n
2 −rarbsb

n
2 −s, where r,s>0

Pumping up once on a.rb.s results in:

w' = a
n
2 −rarbsarbsb

n
2 −s = a

n
2 bsarb

n
2

Clearly, with bs before as, w'./∈L.

Finally, for y.∈b.+, we may write w as follows:

w = a
n
2 bsb

n
2 −s, where s>0

Pumping up once on b.s results in:

w' = a
n
2 b2sb

n
2 − s = a

n
2 b

n
2 +s

Clearly, w'./∈L.

Given that for all valid choices for y pumping up once results in a word
not in L, we may conclude that the assumption that L is regular is wrong. �

As you now see, judicious choice of w simplifies the proof. For L, the proof
with a single choice for y is simpler than the proof with three choices for
y. Always think carefully about how to choose a word, and structure the
argument in your proof.

37.1.3 Sometimes It Is Useful to Pump Down

To prove that a language is not regular, it may be easier to pump down
instead of pumping up. We shall use this approach in proving the following
theorem.



37 Proving a Language Is Not Regular 239

Theorem 3 L = {a.nb.m .| n.>m} is not regular.

Proof

Assume L is regular. Let M = (make-dfa K Σ S F δ) be the machine that
decides L and let n = .|K.|.

Let w = a.n+1b.n. Clearly, M’s computation on w must visit at least one
state twice. We must now argue that there is an i.≥0 such that pumping up
or down i times results in a word not in L.

The only possibility for y, such that .|xy.| ≤n, is y = a.p, where p.>0. If
we pump down once, the resulting word is w' = a.n+1−pb.n. Observe that
n+1-p.≤n. Clearly, w' is not in L. Therefore, the assumption that L is regular
is wrong.

37.2 Using Closure Properties

The closure properties of regular languages outlined in Theorem 1 from
Chap. 7 may also be used to prove that a language is not regular. Let us
prove that the language where each word has an equal number of as and bs
is not regular.

Theorem 4 L = {w .| w.∈(a b).∗ .∧ w has an equal number of as and bs} is
not regular

Proof
Assume L is regular. Consider the following regular language:

L' = (concat-regexp

(kleenestar-reg-exp (singleton-regexp a))

(kleenestar-reg-exp (singleton-regexp b)))

If L is regular, then by closure under intersection L .∩ L' is also regular.
However, we have that:

L ∩ L' = anbn

We know from Theorem 2 that a.nb.n is not regular. Therefore, the assumption
that L is regular must be wrong. �
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To recap, proving that a language is not regular requires a proof by con-
tradiction. Assume that the given language is regular and then show that the
assumption leads to a contradiction. The contradiction may be obtained by
using the pumping theorem for regular languages or by using closure prop-
erties of regular languages.

1 Use the pumping theorem for regular languages to prove that

L = {w | w∈(a b)∗ ∧ w has an equal number of as and bs}
is not regular.

2 Use the pumping theorem for regular languages to prove that the
following languages are not regular:

1. L = {a.nb.m .| n .≤ m .≤ 2n}
2. L = {ww .| w.∈(a b).∗}
3. L = {b.ia.j .| i .> j}
4. L = {wcw.

R
.| w.∈(a b).∗ .∧ w.

R = w reversed}
5. L = {w .| w.∈(a b).∗ .∧ w is a palindrome}

3 You just started a new job as a programmer. Your boss asks you to im-
plement a regular expression for the language of balanced parentheses.
That is, every word in the language has a matching closing parenthesis
for every opening parenthesis. What do you do? Justify your answer.

4 Consider the following language:

L = {anbcn | n≥0} ∪ {ambncp | n>0 ∧ m,p≥0}
Use closure under intersection and the pumping theorem for regular
languages to prove L is not regular.

5 Prove that the English language is not regular. You may find it useful
to consider the following sentences:

The cat and horse are, respectively, 1 and 2 years old.

The dog, cat, and horse are, respectively, 3, 1, and

2 years old.

The guppy, dog, cat, and horse are, respectively, 7, 3, 1,

and 2 years old.
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6 Consider the following language:

L = {w = xyz | w∈(a b)∗ ∧ |x|=|y|=|z| ∧ z = x with all

as substituted by bs and vice versa}
Prove L is not regular.

7 Consider the following language:

L = {w = x1bx2bx3b. . .bxk | k≥0 ∧ xi∈a∗ ∧ xi �=xj for i�=j}
Prove L is not regular.

8 Prove L = {a.nb.m .| n.<m} is not regular.

9 Prove L = {w .| w has more as than bs} is not regular.

10 Prove that for M = (make-dfa K Σ S F δ):

|L(M)|=∞ ⇔ M accepts a w such that |K| ≤ |w| < 2*|K|

11 Prove that L = {a.ib.j .| i .�= j} is not regular using the closure
properties of regular languages.



Part III

Context-Free Languages



Chapter 10

Context-Free Grammars

We shall now study how to describe languages that are not regular such as L
= {a.nb.n .| n .≥0}. Specifically, we shall study context-free languages. They
are called that because every word in a context-free language is generated by
a context-free grammar. A context-free grammar, cfg, describes the recursive
structure of a language. As such, cfgs are useful in a variety of applications
especially in programming languages and natural language processing.

You are likely familiar with context-free grammars to some degree given
that you had to learn how to code in at least one programming language or
have taken a course in programming languages or compilers. Usually, the syn-
tax of a programming language is presented as a context-free grammar. For
instance, the following context-free grammar specifies how to write definitions
in a small arithmetic programming language:

<definition> → (define <identifier> <expression>)

→ (define (<identifier> <params>) <expression>)

<params> → ε
→ <identifier> <parameters>

<expression> → <number>

→ <identifier>

→ (+ <expression> <expression>)

→ (- <expression> <expression>)

→ (* <expression> <expression>)

→ (quotient <expression> <expression>)

→ (remainder <expression> <expression>)

A context-free grammar ought to remind you of a regular grammar. Just like a
regular grammar, it has production rules albeit less restrictive. The syntactic
category <definition> informs us that there are two subtypes. The first,
inside parentheses, has the keyword define followed by a variable (i.e., the
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syntactic category <identifier>) followed by an expression. The second,
inside parentheses, has the keyword define followed by a function header
containing the name of the function and the names of its parameters, if any,
inside parentheses followed by an expression (i.e., the function body). The
parameters are zero or more identifiers. There are seven expression subtypes:
number, variable reference, and the application of arithmetic operator to two
arguments. In essence, a cfg tells a programmer what is needed to write a
valid program. Put differently, it informs a programmer how to generate a
valid program. A context-free grammar, however, does much more than that.
It also informs the language implementor of the recursive structure of valid
programs and suggests how a program may be interpreted or compiled using
structural recursion.

The theory for context-free languages is not as straightforward as the the-
ory for regular languages. It is worth studying them, because they are used
to describe the syntax of all modern programming languages and provide the
foundation to writing interpreters and compilers. That said, there are impor-
tant practical consequences. For example, there does not exist a fast (i.e.,
linear-time) algorithm to decide if a word is in the language of an arbitrary
context-free grammar.

38 Context-Free Grammar Definition

The name context-free arises from the fact that a production rule for a syn-
tactic category may be applied any time the syntactic category appears in a
derivation. It does not matter what is before or after the nonterminal for the
syntactic category. Context-free grammars are a type in FSM. Now, we can
formally define a context-free grammar:

A context-free grammar is an instance of (make-cfg N Σ R S)

N is the set of capital letters in the Roman alphabet representing the nonter-
minal symbols (i.e., syntactic categories). Σ is the set of lowercase symbols
in the Roman alphabet called the alphabet (or terminal symbols). S is the
starting nonterminal symbol. R is the set of production rules. Each produc-
tion rule is of the form (N → (N .∪ Σ .∪ ε).+). That is, there is a single
nonterminal on the left hand side of a production rule, and there is a symbol
consisting of one or more nonterminals, terminals, or ε on the right-hand side
of a production rule.

A derivation consists of one or more derivation steps. A derivation step is
the application of a production rule and is denoted by →.G (or simply → if
G is clear from the context). Zero or more derivation steps are denoted by
→.

∗
G (or simply →.

∗ if G is clear from the context). L(G) denotes the language
generated by G: {w .| w.∈Σ.

∗
.∧ S →.

∗
G w}. Finally, a language, L, is context-

free if L = L(G) for some context-free grammar G.
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39 L = {anbn | n≥0} Is a Context-Free Language

We prove that L = {a.nb.n .| n.≥0} is a context-free language by designing
and implementing a context-free grammar to generate it. We shall follow the
steps of the design recipe for grammars displayed in Fig. 50.

39.1 Steps 1 and 2: Name, Alphabet, and Syntactic
Categories

A descriptive name for the grammar is a2nb2n. The alphabet is Σ = {a b}.
The starting syntactic category, S, generates all words that start with n

as followed by n bs. How can this be done? Observe that for the first a, there
is a matching b at the end of the word. The same is true for the remaining
part of the word (i.e., without the first a and last b). This continues to be
true until the remaining part of the word is empty. This suggests S ought to
generate ε. It also suggests that nonempty words in L may be generated from
the outside in. That is, generate an a as the first letter in the word, generate
a b for the last letter in the word, and use S to generate the rest of the word
in the middle. No other nonterminals are needed because no other types of
words need to be generated.

39.2 Step 3: The Production Rules

A per our design S ought to generate ε. Therefore, the following is a needed
production rule:

`(S ,ARROW ,EMP)

To generate a nonempty word, a production rule to generate the first a,
the last b, and a.n-1b.n-1 in the middle is needed. The middle part may be
generated using S. Therefore, the needed production rule is:

`(S ,ARROW aSb)

39.3 Step 4: Tests

Testing context-free grammars in FSM has some practical limitations. The
first is that any word used must have a length greater than or equal to 2.
The second is that word derivation is computationally intensive. This means
that for some context-free grammars, a derivation may take an inordinate
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Fig. 54 The cfg implementation for L = {a.nb.n .| n.≥0}
#lang fsm

;; Syntactic Categories
;; S = words that start with n a and end with n b

;; L = aˆnbˆn
(define a2nb2n (make-cfg (S)

(a b)
((S ,ARROW ,EMP)
(S ,ARROW aSb))

S))

;; Tests for a2nb2n
(check-equal? (grammar-derive a2nb2n (b b b))

"(b b b) is not in L(G)")
(check-equal? (grammar-derive a2nb2n (a b a))

"(a b a) is not in L(G)")
(check-equal? (grammar-derive a2nb2n (a b))

(S -> aSb -> ab))
(check-equal? (grammar-derive a2nb2n (a a a b b b))

(S -> aSb -> aaSbb -> aaaSbbb -> aaabbb))

amount of time. As a result, it is most practical to use relative short words
in tests but never a word of length 0 or 1.

The tests ought to illustrate the expected result of attempting to derive
both words that are and that are not in the grammar’s language. The tests are
written using grammar-derive. How do we know beforehand what a deriva-
tion will look like? The answer is that FSM always substitutes the leftmost
nonterminal first and uses the applicable production rules from top to bottom
as they appear in the list of production rules. This helps you write expected
values, but does not suffice. A word in a context-free grammar may have
several derivations. Therefore, it is possible that the derivation you develop
is not the same as the derivation developed by grammar-derive. Remember
that you can always refine a test if these two derivations are not the same.
For a2nb2n, we may write tests as follows:

;; Tests for a2nb2n

(check-equal? (grammar-derive a2nb2n '(b b b))

"(b b b) is not in L(G)")

(check-equal? (grammar-derive a2nb2n '(a b a))

"(a b a) is not in L(G)")

(check-equal? (grammar-derive a2nb2n '(a b))

'(S -> aSb -> ab))

(check-equal? (grammar-derive a2nb2n '(a a a b b b))

'(S -> aSb -> aaSbb -> aaaSbbb -> aaabbb))
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39.4 Steps 5 and 6: Implementation and Testing

Based on the results for the previous steps of the design recipe, the imple-
mentation is displayed in Fig. 54.

Run the tests and make sure they all pass. In addition, use grammar-test
to further test the implementation. The following is a sample running using
ten random tests:

> (grammar-test a2nb2n 10)

'(((b a b b b a) "(b a b b b a) is not in L(G)")

(() "The word () is too short to test.")

((a a b b) (S -> aSb -> aaSbb -> aabb))

((a a) "(a a) is not in L(G)")

((a a b b b b b a b) "(a a b b b b b a b) is not in L(G)")

((a a a b a a) "(a a a b a a) is not in L(G)")

((a a a b b a a) "(a a a b b a a) is not in L(G)")

((a b) (S -> aSb -> ab))

((a) "The word (a) is too short to test.")

((b b b b) "(b b b b) is not in L(G)"))

Be mindful that trying to randomly generate words in the language is not
easy. As you can see, most of the time, a word that is too short or that is
not in the language is generated. Therefore, it is important for unit tests to
be thorough.

40 Practice Designing a cfg

Consider the following language:

L = {w | w∈(a b)∗ ∧ w has more bs than as}
Is this a context-free language? It is not always easy to tell, but think about
how words in the language may be generated. Every word in the language
must have at least one more b than as. This suggests that at least a b must
be generated. After that, for every a generated, there must be one or more
bs generated. This is likely something a cfg can generate.

40.1 Steps 1 and 2: Name, Alphabet, and Syntactic
Categories

A descriptive name for the grammar is numb>numa. The alphabet is Σ = {a
b}.
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For the needed syntactic categories, we may start by observing that the
starting nonterminal must generate all words that have more bs than as. This
means it must generate at least a b. After generating a b, words that have
more bs than as or equal number of bs and as need to be generated. This is
a different type of word, and a different syntactic category is needed for it.
We may document the syntactic categories as follows:

;; Syntactic Categories

;; S = words with the number of b > the number of a

;; A = words with the number of b >= the number of a

40.2 Step 3: The Production Rules

According to our design idea, S must at least generate a b. It may also
generate words with the number of b greater than or equal to the number of
a on either side of the generated b. These observations lead to the following
production rules for S:

(S ,ARROW b)

(S ,ARROW AbA)

Observe that both rules generate words with more bs than as.
To generate words with the number of b greater than or equal the number

of a, we can observe that there are three ways this may be done:

• For every a generated, there must be a b generated. The b or the a may
be generated first. Before and after each of these, there may be words with
the number of b greater than or equal the number of a.

• The empty word may be generated.

• A word starting with a b followed by a word with the number of b greater
than or equal the number of a may be generated.

These observations lead to the following production rules:

(A ,ARROW AaAbA)

(A ,ARROW AbAaA)

(A ,ARROW ,EMP)

(A ,ARROW bA))

Observe that for each rule, the word generated the number of bs is greater
than or equal to the number of as.
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40.3 Step 4: Tests

The tests ought to illustrate the expected result of attempting to derive both
words that are and that are not in the grammar’s language. For numb.>numa,
the following is a sample test suite:

;; Tests for numb>numa

(check-equal? (grammar-derive numb>numa '(a b))

"(a b) is not in L(G)")

(check-equal? (grammar-derive numb>numa '(a b a))

"(a b a) is not in L(G)")

(check-equal? (grammar-derive numb>numa '(a a a a a))

"(a a a a a) is not in L(G)")

(check-equal? (grammar-derive numb>numa '(b b b))

'(S -> AbA -> bA -> bbA -> bbbA -> bbb))

(check-equal?

(grammar-derive numb>numa '(b b a b a a b))

'(S -> AbA -> AbAaAbA -> bAaAbA -> bAbAaAaAbA

-> bAbAaAbAaAaAbA -> bbAaAbAaAaAbA -> bbaAbAaAaAbA

-> bbabAaAaAbA -> bbabaAaAbA -> bbabaaAbA

-> bbabaabA -> bbabaab))

(check-equal?

(grammar-derive numb>numa '(a a a b b b b))

'(S -> AbA -> AaAbAbA -> aAbAbA -> aAaAbAbAbA

-> aaAbAbAbA -> aaAaAbAbAbAbA -> aaaAbAbAbAbA

-> aaabAbAbAbA -> aaabbAbAbA -> aaabbbAbA

-> aaabbbbA -> aaabbbb))

Observe that for the fourth test, the derivation returned by
grammar-derive is:

'(S -> AbA -> bA -> bbA -> bbbA -> bbb)

A different derivation for bbb is:

'(S -> AbA -> bAbA -> bbAbA -> bbbA -> bbb)

Therefore, the following test fails:

(check-equal? (grammar-derive numb>numa '(b b b))

'(S -> AbA -> bAbA -> bbAbA -> bbbA -> bbb))

This does not mean that the derivation is incorrect. It simply means that
grammar-derive finds a different derivation. It does not matter, for our pur-
poses, what derivation is found. What is important is that using the grammar
you design and implement, a derivation is found for a word in the language.
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Fig. 55 A cfg for L = {w | w∈(a b)∗ ∧ w has more bs than as}
#lang fsm

;; Syntactic Categories
;; S = words such that number of b > number of a
;; A = words such that number of b >= number of a

;; L = w | w in (a b)* AND w has more b than a
(define numb>numa (make-cfg (S A)

(a b)
((S ,ARROW b)
(S ,ARROW AbA)
(A ,ARROW AaAbA)
(A ,ARROW AbAaA)
(A ,ARROW ,EMP)
(A ,ARROW bA))
S))

;; Tests for numb>numa
(check-equal? (grammar-derive numb>numa (a b))

"(a b) is not in L(G)")
(check-equal? (grammar-derive numb>numa (a b a))

"(a b a) is not in L(G)")
(check-equal? (grammar-derive numb>numa (a a a a a))

"(a a a a a) is not in L(G)")
(check-equal? (grammar-derive numb>numa (b b b))

(S -> AbA -> bA -> bbA -> bbbA -> bbb))
(check-equal? (grammar-derive numb>numa (b b a b a a b))

(S -> AbA -> AbAaAbA -> bAaAbA -> bAbAaAaAbA
-> bAbAaAbAaAaAbA -> bbAaAbAaAaAbA -> bbaAbAaAaAbA
-> bbabAaAaAbA -> bbabaAaAbA -> bbabaaAbA
-> bbabaabA -> bbabaab))

(check-equal? (grammar-derive numb>numa (a a a b b b b))
(S -> AbA -> AaAbAbA -> aAbAbA -> aAaAbAbAbA

-> aaAbAbAbA -> aaAaAbAbAbAbA -> aaaAbAbAbAbA
-> aaabAbAbAbA -> aaabbAbAbA -> aaabbbAbA
-> aaabbbbA -> aaabbbb))

40.4 Steps 5 and 6: Implementation and Testing

Based on the results for the previous steps of the design recipe, the imple-
mentation is displayed in Fig. 55.

Run the tests and make sure they all pass. In addition, use grammar-test
to further test the implementation. This is a sample of running five random
tests:

> (grammar-test numb>numa 5)

'(((a b b b a b b b b)

(S -> AbA -> AaAbAbA -> AaAbAaAbAbA -> aAbAaAbAbA

-> abAaAbAbA -> abbAaAbAbA -> abbbAaAbAbA -> abbbaAbAbA

-> abbbabAbA -> abbbabbA -> abbbabbbA -> abbbabbbbA

-> abbbabbbb))
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((a a b b b)

(S -> AbA -> AaAbAbA -> aAbAbA -> aAaAbAbAbA -> aaAbAbAbA

-> aabAbAbA -> aabbAbA -> aabbbA -> aabbb))

(() "The word () is too short to test.")

((a b b a b a a b) "(a b b a b a a b) is not in L(G)")

((a b b b b a b)

(S -> AbA -> AaAbAbA -> aAbAbA -> abAbA -> abAbAaAbA

-> abbAaAbA -> abbbAaAbA -> abbbbAaAbA -> abbbbaAbA

-> abbbbabA -> abbbbab)))

Be mindful that, for example, the above tests took several minutes to run.
If you find testing taking too long, then interrupt execution by clicking the
Stop button in DrRacket.

1 Design and implement a cfg for the following language:

L = {wwR | w∈(a b)∗ ∧ wR=w reversed}
Make sure to follow all the steps of the design recipe.

2 Design and implement a cfg for the following language:

L = {w | w∈(a b)∗ ∧ w is a palindrome}
Make sure to follow all the steps of the design recipe.

3 Design and implement a cfg for the following language:

L = {aibj | i≤j}
Make sure to follow all the steps of the design recipe.

4 Design and implement a cfg for the following language:

L = {wcwR | w∈(a b)∗ ∧ wR=w reversed}
Make sure to follow all the steps of the design recipe.

5 Design and implement a cfg for the following language:

L = {aibjck | i,j,k≥0 ∧ (i�=j or j�=k)}
Make sure to follow all the steps of the design recipe.
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6 Design and implement a cfg for the following language:

L = {aibjckdl | i,j,k,l≥0 ∧ i+j=k+l}
Make sure to follow all the steps of the design recipe.

7 Design and implement a cfg for the following language:

L {w | w is word with properly balance parenthesis}
Make sure to follow all the steps of the design recipe. To implement the
cfg, you will need to represent ( and ) with letters such as, respectively,
o and c (for open and close parenthesis).

8 Design and implement a cfg for the following language:

L = {aibj | i≤2j}
Make sure to follow all the steps of the design recipe.

41 All Regular Languages Are Context-Free

We know their existing languages, like L = {a.nb.n .| n.≥0}, that are not reg-
ular. An interesting question is: Are all regular languages context-free? If
so, it means that the regular languages are a proper subset of the context-
free languages. Therefore, any language that can be generated with a regular
grammar may also be generated by a context-free grammar. The following
theorem establishes that all regular languages are context-free.

Theorem 1 All regular languages are context-free.

Proof Assume L is a regular language. This means that there exists a regular
grammar:

G = (make-rg N Σ P S),

such that L = L(G). All the production rules in P are of the form:

1. A → ε
2. A → a, where a∈Σ
3. A → aB, where a∈Σ ∧ B∈N

This means P⊂(N → (N .∪ Σ .∪ ε).+). That is, p.∈P is a valid production
rule for a context-free grammar. Given that G’s N, Σ, and S may also be used
in a cfg, we may conclude that L is a context-free language. �
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Fig. 56 The cfg for L = {w | the number of as in w is a multiple of 3}
(define MULT3-as (make-cfg (S B C)

(a b)
((S ,ARROW ,EMP)
(S ,ARROW aB)
(S ,ARROW bS)
(B ,ARROW aC)
(B ,ARROW bB)
(C ,ARROW aS)
(C ,ARROW bC))

S))

;; Tests for MULT3-as
(check-equal? (grammar-derive MULT3-as (b b a b b))

"(b b a b b) is not in L(G).")
(check-equal? (grammar-derive MULT3-as (b b a b b a))

"(b b a b b a) is not in L(G).")
(check-equal? (grammar-derive MULT3-as (b b a b a b a a b))

"(b b a b a b a a b) is not in L(G).")
(check-equal? (grammar-derive MULT3-as ())

"The word () is too short to test.")
(check-equal? (grammar-derive MULT3-as (a a a))

(S -> aB -> aaC -> aaaS -> aaa))
(check-equal? (grammar-derive MULT3-as (b b a a b a b b))

(S -> bS -> bbS -> bbaB -> bbaaC -> bbaabC ->
bbaabaS -> bbaababS -> bbaababbS -> bbaababb))

The theorem above informs us that any regular language may be generated
by a context-free grammar. Consider the language of all words in which the
number of as is a multiple of 3 from Sect. 34. A cfg for this language is
displayed in Fig. 56. The only changes from the implementation in Sect. 34
are the constructor used and the expected value of the fourth test (because
the tested word is too short).

42 Parse Trees

Consider the language of words containing balanced parenthesis. For each
open parenthesis, there must be a matching closing parenthesis. There cannot
be a closing parenthesis in the word before its matching opening parenthesis.
For example, (), (()), and ()((())) are in the language, while )(, (())()),
and ( are not in the language.

To implement a cfg for the language of balanced parenthesis, the opening
parenthesis shall be represent by o, and the closing parenthesis shall be rep-
resented by c. To facilitate providing input to, for example, grammar-derive
and writing tests, a function may be written to convert a string of balanced
parenthesis into a list of symbols containing the corresponding os and cs. The
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Fig. 57 A cfg for the language of words with balanced parenthesis
#lang fsm

;; string → (listof (o or c)) throws error
;; Purpose: Converts given string of parens to a list of parens
(define (parensstr->los s)

(map (λ (p)
(cond [(eq? p #\( ) o]

[(eq? p #\) ) c]
[else (error (format "parensstr->los: non-parens symbol in: ˜s"

s))]))
(string->list s)))

;; Tests for parensstr->los
(check-equal? (parensstr->los "") ())
(check-equal? (parensstr->los "(())()") (o o c c o c))

;; Syntactic categories
;; S = words with balanced parenthesis

;; L = {w | w has balanced parenthesis}, where o = ( and c = )
(define BP (make-cfg (S)

(o c)
((S ,ARROW ,EMP)
(S ,ARROW SS)
(S ,ARROW oSc))

S))

;; Tests for BP
(check-equal? (grammar-derive BP (parensstr->los ""))

"The word () is too short to test.")
(check-equal? (grammar-derive BP (parensstr->los "))(("))

"(c c o o) is not in L(G).")
(check-equal? (grammar-derive BP (parensstr->los "()("))

"(o c o) is not in L(G).")
(check-equal? (grammar-derive BP (parensstr->los "()"))

(S -> oSc -> oc))
(check-equal? (grammar-derive BP (parensstr->los "(())()"))

(S -> SS -> oScS -> ooSccS -> ooccS -> ooccoSc -> ooccoc))

result of following the steps of the design recipe for grammars is displayed in
Fig. 57. Note that #.\( and #.\), respectively, represent the characters ( and ).

Consider deriving the "(()())". The result returned by grammar-derive

is:

'(S -> oSc -> oSSc -> ooScSc -> oocSc -> oocoScc -> oococc)

A derivation may be visualized as a tree as displayed in Fig. 58. Such a
visualization is called a parse tree. The leaves are terminal symbols or ε. The
interior nodes are rooted at a nonterminal. The edges out of an interior node
indicate what is generated from the nonterminal. The yield of a parse tree is
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Fig. 58 The parse tree for (grammar-derive oococc)
S

o S

S

o S

ε

c

S

o S

ε

c

c

the concatenation of all the leaves from left to right. That is, the yield is the
word generated.

A parse tree is formally defined as follows:

• For each a.∈Σ, the following is a parse tree: a
• For A → ε the following is a parse tree:

.

A

ε

• If T.0T.1. . .T.n−1 are the parse trees for a.0. . .a.n−1, where a.i is a nonterminal
or a terminal symbol, then for A → a.0a.1. . .a.n−1 the following is a parse
tree:

.

A

T0 T1 Tn−1. . .

42.1 Similar Derivations

Parse trees represent derivations eliminating irrelevant differences like the
order in which production rules are applied. We say that two derivations are
similar if they are captured by the same parse tree. For example, the following
are similar derivations for oococc:

S -> oSc -> oSSc -> ooScSc -> oocSc -> oocoScc -> oococc

S -> oSc -> oSSc -> oSoScc -> oSocc -> ooScocc -> oococc

Both of these derivations are captured by the parse tree displayed in Fig. 58.
They use the same production rules on the same nonterminals. The only dif-
ference is the order in which the production rules are used. The first is a
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leftmost derivation. In a leftmost derivation, the leftmost nonterminal is sub-
stituted first. The second is a rightmost derivation. In a rightmost derivation,
the rightmost nonterminal is substituted first. Given a cfg, G = (make-cfg

N Σ P S), every parse tree has a unique leftmost and a unique rightmost
derivation. A step in a leftmost derivation is described as follows:

x L → y ⇔ x = ωAβ, y = ωαβ, and A → α, where ω ∈Σ∗,
α,β ∈{N ∪ Σ}∗, and A∈N.

Observe that A is the leftmost nonterminal, because .ω only contains terminal
symbols. A step in the rightmost derivation is described as follows:

x R→ y ⇔ x = βAω, y = βα ω, and A → α, where ω ∈Σ∗,
α,β ∈{N ∪ Σ}∗, and A∈N.

Observe that A is the rightmost nonterminal, because .ω only contains terminal
symbols.

Given G = (make-cfg N Σ P S), A.∈N, and w.∈Σ.
*, the following state-

ments are equivalent:

• A →.
∗
G w

• .∃ a parse tree with root A and yield w

• .∃ a leftmost derivation A .
L→.

∗
G w

• .∃ a rightmost derivation A .
R→.

∗
G w

That is, a derivation of w from A using G is equivalent to a parse tree rooted
at A with yield w, which is equivalent to a leftmost derivation of w from A

using G, which is equivalent to the rightmost derivation of w from A using
G. In essence, we have four different forms to describe that from A using G’s
production rules, w is obtained.

42.2 Ambiguity

Given a cfg, like BP in Fig. 57, not all derivations of a word may be similar.
For instance, consider the following derivation using BP:

S -> SS -> S -> oSSc -> ooScSc -> oocSc -> oocoScc -> oococc

This derivation is not captured by the parse tree in Fig. 58. It uses, for
example, a production rule S → SS that is not present in the parse tree
displayed in Fig. 58. The parse tree for this derivation is:
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Fig. 59 A cfg for simple arithmetic expressions
#lang fsm

(define AE (make-cfg (S I)
(p t x y z)
((S ,ARROW SpS)
(S ,ARROW StS)
(S ,ARROW I)
(I ,ARROW x)
(I ,ARROW y)
(I ,ARROW z))

S))

;; Tests for AE
(check-equal? (grammar-derive AE (x p x))

(S -> SpS -> IpS -> xpS -> xpI -> xpx))
(check-equal? (grammar-derive AE (x t z))

(S -> StS -> ItS -> xtS -> xtI -> xtz))
(check-equal? (grammar-derive AE (x t z p y))

(S -> SpS -> StSpS -> ItSpS -> xtSpS -> xtIpS -> xtzpS
-> xtzpI -> xtzpy))

.

S

S

ε

S

o S

S

o S

ε

c

S

o S

ε

c

c

A cfg, G, is called ambiguous if for any w.∈L(G) there are two or more
parse trees. Therefore, BP is ambiguous. Ambiguity is a problem when mean-
ing must be assigned to a word as done in the implementation of programming
languages. For instance, consider the cfg for simple addition and multipli-
cation expressions displayed in Fig. 59. In this grammar, p stands for +, t
stands for *, and x, y, and z are variables. The word in the third test, '(x t

z p y), has two derivations that are not similar:

S -> SpS -> StSpS -> ItSpS -> xtSpS -> xtIpS -> xtzpS

-> xtzpI -> xtzpy

S -> StS -> ItS -> xtS -> xtSpS -> xtIpS -> xtzpS -> xtzpI

-> xtzpy
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Let us consider the corresponding parse trees. For the first derivation, the
parse tree is:

.

S

S

S

I

x

t S

I

z

p S

I

y

This parse tree suggests that x and z are multiplied and then their product
and y are added. This is considered the correct interpretation following the
traditional hierarchy of operations. The parse tree for the second derivation
is:

.

S

S

I

x

t S

S

I

z

p S

I

y

This parse tree suggests that first z and y are added, and then their sum is
multiplied by x. As you can see, a word may have different meanings when a
grammar is ambiguous.

There is a way to disambiguate AE. The idea is to first produce the sum-
ming subexpressions, if any, and then produce the product subexpressions
below them. In this manner, precedence is given to multiplications over addi-
tions following the traditional hierarchy of operations. To achieve this, a new
syntactic category, T, is introduced to generate product subexpressions. A
product subexpression may only be generated after summing subexpressions,
if any, are generated. The implementation of such a grammar is displayed in
Fig. 60.
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Fig. 60 An unambiguous cfg for simple arithmetic expressions
#lang fsm

(define AE2 (make-cfg (S I T)
(p t x y z)
((S ,ARROW SpS)
(S ,ARROW T)
(S ,ARROW I)
(T ,ARROW TtT)
(T ,ARROW I)
(I ,ARROW x)
(I ,ARROW y)
(I ,ARROW z))

S))

;; Tests for AE2
(check-equal? (grammar-derive AE2 (x p x))

(S -> SpS -> IpS -> xpS -> xpI -> xpx))
(check-equal? (grammar-derive AE2 (x t z))

(S -> T -> TtT -> ItT -> xtT -> xtI -> xtz))
(check-equal? (grammar-derive AE2 (x t z p y))

(S -> SpS -> TpS -> TtTpS -> ItTpS -> xtTpS -> xtIpS
-> xtzpS -> xtzpI -> xtzpy))

(check-equal? (grammar-derive AE2 ’(x p z t z p y))
(S -> SpS -> SpSpS -> IpSpS -> xpSpS -> xpTpS -> xpTtTpS

-> xpItTpS -> xpztTpS -> xpztIpS -> xpztzpS -> xpztzpI
-> xpztzpy))

Unfortunately, some context-free languages can only be generated by an
ambiguous cfg. Such grammars are called inherently ambiguous. Fortunately,
the grammars developed for programming languages are not inherently am-
biguous.

9 Consider the following cfg:

(make-cfg '(S)
'(a)
`((S ,ARROW ,EMP)

(S ,ARROW aS)

(S ,ARROW Sa))

'S)

Is this grammar ambiguous? Justify your answer.
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10 Using AE from Fig. 59, display two different parse trees for:

'(x t x p z t z t z p y p y)

Pick values for x, y, and z that demonstrate that different values are
obtained when plugging into the two different parse trees for this arith-
metic expression.

11 Display the rightmost derivation for:

'(x t x t x p z t y)

12 Consider the following cfg:

(make-cfg '(S C)

'(i t e m n f r)

`((S ,ARROW iCtSeS)

(S ,ARROW iCtS)

(S ,ARROW m)

(S ,ARROW n)

(C ,ARROW f)

(C ,ARROW r))

'S))

It represents a grammar for if-then-else statements. Is this grammar
ambiguous? Justify your answer.

13 Given a cfg, G, and a w.∈L(G) that has two derivations that are not
similar. Does this mean there are at least two leftmost derivations for
w? Justify your answer.

14 Let G a cfg and let k.>0 be a natural number. Consider the subset
of L(G) that contains all the words that are derived with k or fewer
steps using G. Prove that this subset is regular.



Chapter 11

Pushdown Automata

We have seen that the members of a context-free language, L, may be gener-
ated by a context-free grammar. We would also like to have a machine that
decides if a given word is a member L. Such a machine, of course, cannot be a
ndfa as we have seen. It is quite natural to ask what features may be added
to an ndfa to endow it with the power to decide a context-free language.

To help us think about this, let us write a function to decide if a given
word, w, is a member of L = a.nb.n. One design strategy is to call an auxiliary
function that takes as input w’s sub-word without the leading as, if any, and
w’s leading (and at this point unmatched) as as the value of an accumulator.
The auxiliary function distinguishes between three conditions:

1. If the given word is empty, then the value from testing if the given accu-
mulator is empty is returned.

2. If the first element of the given word is a, then false is returned.
3. Otherwise, return the conjunction of testing if the accumulator is not

empty, and check the rest of both the given word and the given accumu-
lator.

The program resulting from this design idea is displayed in Fig. 61.
Observe that the accumulator used in Fig. 61 is accessed in a last-in first-

out manner. The program first pushes (i.e., adds) all the as at the beginning
of the given word onto the accumulator. The auxiliary function, check, pops
an a for each recursive. In essence, the accumulator is a stack. This suggests
that an ndfa extended with a stack to remember part of the consumed input
may be powerful enough to decide a context-free language.
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Fig. 61 A predicate to determine if a word is in L = a.nb.n

#lang fsm

;; word → Boolean
;; Purpose: Decide if given word is in aˆnbˆn
(define (is-in-aˆnbˆn? w)

;; word (listof symbol) → Boolean
;; Purpose: Determine
;; Accumulator Invariant
;; acc = the unmatched as at the beginning of w
;; Assume: w in (a b)*
(define (check wrd acc)

(cond [(empty? wrd) (empty? acc)]
[(eq? (first wrd) a) #f]
[else (and (not (empty? acc))

(check (rest wrd) (rest acc)))]))
(check (dropf w (λ (s) (eq? s a)))

(takef w (λ (s) (eq? s a)))))

;; Tests for is-in-anbn?
(check-pred (λ (w) (not (is-in-aˆnbˆn? w))) (a))
(check-pred (λ (w) (not (is-in-aˆnbˆn? w))) (b b))
(check-pred (λ (w) (not (is-in-aˆnbˆn? w))) (a b b))
(check-pred (λ (w) (not (is-in-aˆnbˆn? w))) (a b a a b b))
(check-pred is-in-aˆnbˆn? ())
(check-pred is-in-aˆnbˆn? (a a b b))

43 Pushdown Automata Definition

An ndfa extended with a stack is called a pushdown automata (pda). The
stack is of arbitrary size and provides additional memory beyond the state
that is remembered by the control unit. Formally,

A (nondeterministic) pushdown automaton, pda, is an

instance of:

(make-ndpda K Σ Γ S F δ)

The inputs to the constructor are defined as follows:

K: A list of states.

Σ: An input alphabet.

Γ : A list of stack symbols.

S: The starting state.

F: A list of final (i.e., accepting) states.

δ: A transition relation.

The transition relation, δ, is a finite subset of:

((K × (Σ ∪ {EMP}) × Γ+ ∪ {EMP}) × (K × Γ+ ∪ {EMP})).
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Each transition rule consists of a triple and a double list. The triple repre-
sents the current state, the input to consume, and the stack elements to pop.
If no elements are popped, EMP is used. In a pop list of length n, the leftmost
element must match the topmost element on the stack, and the rightmost
element must match the n.th stack element from the top. If popped sequen-
tially, then the leftmost element is popped first, and the rightmost element
is popped last. The double represents the destination state and the stack
elements to push. If no elements are pushed, EMP is used. In a push list of
length n, the leftmost element becomes the topmost of the pushed elements,
and the rightmost element becomes the bottommost of the pushed elements.
If pushed sequentially, then the first element pushed is the rightmost ele-
ment, and the last element pushed is the leftmost. The machine first pops
and then pushes before changing states. In summary, the use of ((A a p)

(B g)) means that the machine is in state A, reads a from the input tape,
pops p off the stack, pushes g onto the stack, and moves to B. The machine
is nondeterministic, and therefore, a, p, and g may be EMP. For instance, ((P
EMP EMP) (Q j)) is a push operation that does not consult the input tape
nor the stack, and ((P EMP j) (Q EMP)) is a pop operation that does not
consult the input tape nor the stack.

A pda configuration is a member of (K .× Σ.
∗

.× Γ .
∗). It represents the

machine’s current state, the remaining unread input, and the contents of the
stack. For instance, (S (b b) (a b c)) means that the pda is in state S, b
b is the remaining unread input, and the stack contains a b c, where c is the
topmost stack element and a is the third element on the stack. A computation
step moves the machine from a starting configuration to a new configuration
using a single rule denoted as:

(P, xw, a) � (Q, w, g)

This means that the machine started in state P, consumed x from the input
tape, popped a off the stack, pushed g onto the stack, and moved to state
Q. Zero or more steps are denoted using �.

∗. A computation of length n on a
word, w, is denoted by:

C0 � C1 � C2 � . . . � Cn, where Ci is a pda configuration.

If a pda, M, starting in the start state consumes all the input and reaches a
final state with an empty stack, then M accepts. Otherwise, M rejects. A word,
w, is in the language of M, L(M), if there is a computation from the start state
that consumes and accepts w. Like with ndfas, it does not matter that there
may be many potential computations that reject w. If it exists, a pda can
sense the right sequence of transitions that lead to accept.

As with ndfas, the computation of words that are accepted may be visu-
alized using sm-showtransitions or sm-visualize. Figure 62 displays the
control view and the transition diagram view for a pda. In both views, the
stack is to the right of the machine view before the column to perform ma-
chine edits. The stack alphabet is displayed in the left column next to the
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Fig. 62 Visualization of a pda

(a) Control view

(b) Graph view

input alphabet. The configuration displayed in Fig. 62a is (M (b b b) (a a

a)). In addition, the consumed input is faded out. In Fig. 62b, the same con-
figuration is displayed, and the labels on the edges contain the read element,
the popped elements, and the pushed elements.10

A state invariant predicate may be associated with each state in the same
manner as done for finite-state automatons. For pdas, an invariant predicate
has two inputs: the consumed part of the word on the input tape and the
stack. It must test and relate the invariant conditions for and between the
consumed input and the stack.

10 Currently in FSM, EMP = ε.
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44 A pda for L = anbn

As a first example illustrating the design process for pdas, let us design a
machine to decide L = a.nb.n. We shall follow the steps of the design recipe
for state machines displayed in Fig. 20 in Sect. 23. We must first think about
how a stack may be used to decide if a word is in L. We know that for every
a in the first half of the word, there must be a matching b in the second half
of the word. A stack may be used to accumulate the read as. Once the as
have been read, the bs may be matched by popping an a for each. After all
the input is read, the machine ought to move to a final state. It accepts if
the stack is empty (i.e., all the as and bs have been matched). Otherwise, it
rejects.

44.1 Name and Alphabets

A descriptive name for the machine is a^nb^n. The input alphabet Σ = '(a
b). Given that only as are pushed onto the stack, the stack alphabet, Γ , is
'(a).

44.2 Unit Tests

Unite tests are written for both words in L and words not in L. A sample set
of tests are:

;; Tests for a^nb^n

(check-equal? (sm-apply a^nb^n '(a)) 'reject)
(check-equal? (sm-apply a^nb^n '(b b)) 'reject)
(check-equal? (sm-apply a^nb^n '(a b b)) 'reject)
(check-equal? (sm-apply a^nb^n '(a b a a b b)) 'reject)
(check-equal? (sm-apply a^nb^n '()) 'accept)
(check-equal? (sm-apply a^nb^n '(a a b b)) 'accept)

Observe that care is taken to test words not in L that have a prefix for words
that are in L.

44.3 Conditions and States

Deciding if a given word is in L can be done in three general steps. In the first,
only as have been read from the input tape, and all have been pushed onto
the stack. In the second, the read bs have been matched with corresponding
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read as on the stack. In the third, the machine moves to a final state and
accepts if all as and bs in the input tape have been matched. We may use the
starting state, S, to represent that only as have been read and all are pushed
onto the stack. This means that the consumed input and the stack must be
equal. We may use a different state, M, to represent that the consumed input
contains as followed by bs, that the stack only contains as, and that the read
bs have been matched with corresponding read as on the stack. How can this
third condition be determined? Observe that the read bs have been matched
with read as if the number of as in the consumed input equals the number of
as on the stack plus the number of read bs. Finally, a single final state, F, is
needed to represent that the stack is empty and the consumed input consists
of a number of as followed by an equal number of bs. The states may be
documented as follows:

;; States

;; S: ci = a∗ = stack, start state

;; M: ci = (append (listof a) (listof b))

;; ∧ stack = a∗

;; ∧ |ci as| = |stack| + |ci bs|

;; F: ci = (append (listof a) (listof b))

;; ∧ |stack| = 0

;; ∧ |ci as|=|ci bs|, final state

Recall that for a nondeterministic machine, the invariant properties only need
to hold on computations that end with the machine accepting the given word.

44.4 The Transition Relation

To formulate the transition relation, start with the starting state. At the
beginning, no as have been read nor pushed onto the stack. Therefore, the
consumed input is an empty (listof a), and the consumed input and the
stack are equal. That is, the invariant property for S holds. If an a is read,
then it needs to be pushed onto the stack, and the machine needs to remain
in S. Observe that if this is done, the invariant property of S holds after
reading the a. S should not process a b. Instead, when it is time to process
a b, the machine can nondeterministically move to M without changing the
stack. The needed transition rules are:

((S ,EMP ,EMP) (M ,EMP)) ((S a ,EMP) (S (a)))

When the machine transitions from S to M, observe that the consumed input
consists of an arbitrary number of as followed by 0 bs and that the number
of as in the consumed input is equal to the number of a on the stack and
the number of bs (i.e., 0) in the consumed input. That is, the invariant
properties for M hold. Once in M, the machine only reads bs. When a b is
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Fig. 63 The pda for L = anbn

;; L = {aˆnbˆn | n >= 0}
;; States
;; S ci = (listof a) = stack, start state
;; M ci = (append (listof a) (listof b)) AND
;; (length ci as) = (length stack) + (length ci bs)
;; F ci = (append (listof a) (listof b)) and all as and bs matched,
;; final state
;; The stack is a (listof a)
(define aˆnbˆn (make-ndpda (S M F)

(a b)
(a)
S
(F)
(((S ,EMP ,EMP) (M ,EMP))
((S a ,EMP) (S (a)))
((M b (a)) (M ,EMP))
((M ,EMP ,EMP) (F ,EMP)))))

;; Tests for aˆnbˆn
(check-equal? (sm-apply aˆnbˆn (a)) reject)
(check-equal? (sm-apply aˆnbˆn (b b)) reject)
(check-equal? (sm-apply aˆnbˆn (a b b)) reject)
(check-equal? (sm-apply aˆnbˆn (a b a a b b)) reject)
(check-equal? (sm-apply aˆnbˆn ()) accept)
(check-equal? (sm-apply aˆnbˆn (a a b b)) accept)

read, it is matched with a read a by popping it off the stack. Observe that if
this is done, M’s invariant properties hold after reading a b. The machine may
nondeterministically decide to move to F. The needed transition rules are:

((M b (a)) (M ,EMP)) ((M ,EMP ,EMP) (F ,EMP))

If the machine transitions to F when the input tape and the stack are empty,
then F’s invariant properties hold, and the machine may accept. Otherwise,
not all the input has been read, or not all stack elements have been matched.
In either case, the machine rejects. There is no need to read any input or
manipulate the stack. Thus, no transition rules are needed for F.

44.5 Machine Implementation and Testing

The implementation of a^nb^n is displayed in Fig. 63. Running the program
reveals that all the tests pass. To further test the machine, use sm-test:

> (sm-test a^nb^n 10)

'(((b b b a a a a a) reject)

((a b) accept)

((b b b a a b a b a) reject)
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((a a a a b) reject)

((a a b) reject)

((b b b b b a a a) reject)

((b) reject)

((a a b b) accept)

((b b b a b b b a) reject)

((b a a a a) reject))

44.6 State Invariant Predicates

The next step requires the design and implementation of state invariant pred-
icates. Recall that each receives the consumed input and the stack as argu-
ments. For S, the invariant checks that the consumed input and the stack have
the same length and that both only contain as. To check if both only con-
tain as, andmap may be used to simultaneously traverse both. The resulting
predicate is:

;; word stack → Boolean

;; Purpose: Determine if the given ci and stack are the

;; same (listof a)

(define (S-INV ci stck)

(and (= (length ci) (length stck))

(andmap (λ (i g) (and (eq? i 'a) (eq? g 'a))) ci stck)))

;; Tests for S-INV

(check-equal? (S-INV '() '(a a)) #f)

(check-equal? (S-INV '(a) '()) #f)

(check-equal? (S-INV '(b b b) '(b b b)) #f)

(check-equal? (S-INV '() '()) #t)

(check-equal? (S-INV '(a a a) '(a a a)) #t)

For M, the invariant predicate must establish that the consumed input
contains as followed by bs, that the stack only contains as, and that the
number of as in the consumed input equals the number of as on the stack
plus the number of bs in the consumed input. For this, the as at the beginning
of the consumed input may be extracted and locally defined. The same is done
for all the bs following these as. To establish the needed invariant properties,
the consumed input is tested for equality with the as appended with the bs,
andmap is used to verify that the stack only contains as, and the length of
the as is tested for equality with sum of the length of the bs and the length
of the stack. The resulting predicate is:

;; word stack → Boolean

;; Purpose: Determine if ci = EMP or a+b+ AND the stack

;; only contains a AND |ci as| = |stack| + |ci bs|
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(define (M-INV ci stck)

(let* [(as (takef ci (λ (s) (eq? s 'a))))
(bs (takef (drop ci (length as))

(λ (s) (eq? s 'b))))]
(and (equal? (append as bs) ci)

(andmap (λ (s) (eq? s 'a)) stck)

(= (length as) (+ (length bs) (length stck))))))

;; Tests for M-INV

(check-equal? (M-INV '(a a b) '(a a)) #f)

(check-equal? (M-INV '(a) '()) #f)

(check-equal? (M-INV '(a a a b) '(a a a)) #f)

(check-equal? (M-INV '(a a a b) '(a)) #f)

(check-equal? (M-INV '() '()) #t)

(check-equal? (M-INV '(a) '(a)) #t)

(check-equal? (M-INV '(a b) '()) #t)

(check-equal? (M-INV '(a a a b b) '(a)) #t)

For F, the predicate must establish that the consumed input starts with
an arbitrary number of as followed by the same number of bs and that all
as and bs have been matched. As done for M-INV, the beginning as and the
following bs are locally defined. The stack is tested to determine it is empty.
The consumed input is tested to establish that it is the extracted as followed
by the extracted bs, and the length of the extracted as is tested to establish
that it equals the length of the extracted bs. The resulting predicate is:

;; word stack → Boolean

;; Purpose: Determine if ci = a^nb^n and stack is empty

(define (F-INV ci stck)

(let* [(as (takef ci (λ (s) (eq? s 'a))))
(bs (takef (drop ci (length as))

(λ (s) (eq? s 'b))))]
(and (empty? stck)

(equal? (append as bs) ci)

(= (length as) (length bs)))))

;; Tests for F-INV

(check-equal? (F-INV '(a a b) '()) #f)

(check-equal? (F-INV '(a) '()) #f)

(check-equal? (F-INV '(a a a b) '(a a a)) #f)

(check-equal? (F-INV '() '()) #t)

(check-equal? (F-INV '(a b) '()) #t)

(check-equal? (F-INV '(a a b b) '()) #t)

Use the invariant predicates in conjunction with the visualization tool to
validate that they hold for computations that accept the given word.
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44.7 Correctness

The final step asks to establish the correctness of the implemented pda. As
done for finite-state machines, we start by proving that the state invariant
predicates always hold. Subsequently, we prove that L = L(a^nb^n).

We shall use the following definitions:

L = anbn ci = the consumed input w∈(sm-sigma M)∗

F=(sm-finals M) P = a^nb^n

44.7.1 Proving State Invariants Hold

Theorem 1 The state invariants hold when P is applied to w.

The proof is by induction on, n, the number of transitions to consume w.

Proof
When P starts, S-INV holds because ci = '() and the stack = '(). This
establishes the base case.
Proof that invariants hold after each transition:

((S EMP EMP) (M EMP)): By inductive hypothesis, S-INV holds. After using
this transition, M-INV holds because ci='() and the stack='().

((S a EMP) (S (a))): By inductive hypothesis, S-INV holds. After consum-
ing an a and pushing an a, P may reach S and by empty transition M. Note
that an empty transition into F with a nonempty stack cannot lead to an
accept. Therefore, we do not concern ourselves about P making such a tran-
sition because P only makes nondeterministic transitions that can lead to
accept. That observed, S-INV and M-INV hold because both the length of the
consumed input and of the stack increased by 1, thus, remaining of equal
length and because both continue to only contain as.

((M EMP EMP) (F EMP)): By inductive hypothesis, M-INV holds. After using
this transition, F-INV holds because ci='() and the stack='().

((M b (a)) (M ,EMP)): By inductive hypothesis, M-INV holds. After con-
suming a b and popping an a, P may reach M or nondeterministically reach
F because it may eventually accept. M-INV holds because ci continues to be
as followed by bs, the stack can only contain as, and the number of as in
ci remains equal to the sum of the number of bs in ci and the length of the
stack. F-INV holds because for a computation that ends with an accept, the
read b is the last symbol in the given word, and popping an a makes the stack
empty, ci continues to be the read as followed by the read bs, and, given that
the stack is empty, the number of as equals the number of bs in the consumed
input. �
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44.7.2 Proving L = L(P)

As before, the proof is divided into two lemmas. The first is for when w.∈L
and the second for when w./∈L
Lemma 1 w∈L ⇔ w∈L(P)
Proof
(.⇒) Assume w∈L. This means that w = a.nb.n. Given that state invariants
always hold, there is a computation that has P consume all the as, then con-
sume all the bs, and then reach F with an empty stack. Therefore, w∈L(P).

(.⇐) Assume w∈L(P). This means that M halts in F, the only final state, with
an empty stack having consumed w. Given that the state invariants always
hold, we may conclude that w = a.nb.n and, therefore, w∈L. �
Lemma 2 w/∈L ⇔ w/∈L(P)
Proof
(.⇒) Assume w/∈L. This means that w .
= a.nb.n. There are three possibilities
for the structure of w: w is not of the form a.nb.m, w is of the form a.nb.m,
where n .> m, or w is of the form a.nb.m, where n .< m. Given that the state
invariants always hold, all potential computations either fail to consume w or
fail to empty the stack. In the first case, when w is not of the form a.nb.m, then
either the first b cannot be consumed or there is an a after a b that cannot
be consumed. In the second case, at least one a is left on the stack without
a b to match it. In the third case, P is unable to read all the bs, because the
stack becomes empty. Therefore, it is impossible for P to transition into F
having read all the input with an empty stack, and we may conclude w./∈L(P)

(.⇐) Assume w/∈L(P). This means that P cannot transition into F with an
empty stack having consumed w. Given that the state invariants always hold,
w must either start with a b, have an a after a b, have too many as, or have
too many bs. In all cases, w./∈L. �

45 A pda for L = {wcwR | w∈(a b)*}

To further illustrate the design and implementation of pdas, we develop a
machine to decide L = {wcw.R | w.∈(a b).*}. As always, we follow the steps
of the design recipe for state machines.

The structure of the words in the language, wcw.R, suggests how to deter-
mine if a word is in the language by reading it from left to right. The machine
may read w and push it on the stack. This makes the stack w.R. After reading
c, the elements of w.R may be matched with the stack elements. If all the
elements after the c match all the elements on the stack, then the machine
accepts.
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45.1 Name and Alphabets

A descriptive name for the pda is wcw^r. The input alphabet, Σ, contains a,
b, and c. The stack alphabet, Γ , contains a and b.

45.2 Unit Tests

The unit tests are written for words in and not in L. These include words
that have and do have a c. A sample suite of unit tests is:

;; Tests for wcw^r

(check-equal? (sm-apply wcw^r '(a)) 'reject)
(check-equal? (sm-apply wcw^r '(a c)) 'reject)
(check-equal? (sm-apply wcw^r '(b a)) 'reject)
(check-equal? (sm-apply wcw^r '(a a b c b a b)) 'reject)
(check-equal? (sm-apply wcw^r '(c)) 'accept)
(check-equal? (sm-apply wcw^r '(a c a)) 'accept)
(check-equal? (sm-apply wcw^r '(a b b b c b b b a)) 'accept)

45.3 Conditions and States

To start, the consumed input, ci, is empty, and the stack, s, is empty. This
condition may be captured by the staring state, S, and is documented as
follows:

;; S ci is empty and stack is empty, start state

From S, the machine moves nondeterministically to a different state, P, in
which the machine reads w and pushes it onto the stack. We must carefully
define what is meant by w. We define w as the (sub)word before c. This means
that ci is equal to the reverse of the stack and that c is not in ci. P may be
documented as follows:

;; P ci = stack^R ∧ c not in ci

Observe that nondeterministically moving from S to P means that P’s condi-
tions hold.

Upon reading a c, the pda may move to different state, Q, in which the
(sub)word after the c is matched with the stack elements. This means that
ci may be divided into three parts: w (the elements before c), c, and the
elements, v, after c. Observe that w must equal the stack reversed appended
with v reversed. Q may be documented as follows:

;; Q ci = (append w (list 'c) v) ∧
;; w = (append stack^R v^R)
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Observe that moving from P to Q consuming a c without modifying the stack
guarantees that Q’s conditions hold.

Upon reading and matching all the elements after c, the pda may move
to a final state and accept. For this to occur, the stack must be empty, and
the consumed input must have a (sub)word w followed by c followed by w.R.
F may be documented as follows:

;; F stack = '() ∧ ci = (append w (list c) w^R), final state

Observe that a computation that leads to accept must transition to F after
matching the last elements in ci with the last element on the stack. Thus,
guaranteeing that F’s conditions hold.

45.4 The Transition Relation

From S, the pda only has to nondeterministically move to P. The needed
transition is:

`((S ,EMP ,EMP) (P ,EMP))

In P, any symbol read from the input tape must be pushed onto the stack.
When a c is read, the machine moves to Q without changing the stack. The
needed transitions are:

`(((P a ,EMP) (P (a)))

((P b ,EMP) (P (b)))

((P c ,EMP) (Q ,EMP)))

In Q, any symbol read from the input tape must be matched with the
symbol popped from the top of the stack. Nondeterministically, the machine
decides that all the input is read, and the stack is empty to move to F. The
needed transitions are:

`(((Q a (a)) (Q ,EMP))

((Q b (b)) (Q ,EMP))

((Q ,EMP ,EMP) (F ,EMP)))

There are no needed transitions from F.

45.5 Machine Implementation and Testing

Figure 64 displays wcw^R’s implementation. Running the tests reveals that
they all pass.

Testing with sm-test has limitations because randomly generating a word
in the language is infrequent. Thus, the overwhelming majority of tests gen-
erated are for words that are correctly rejected. When faced with such a
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Fig. 64 The pda implementation for L = {wcwR | w∈(a b)*}
;; L = wcwˆR | w in (a b)*
;; States
;; S ci is empty and stack is empty
;; P ci = stackˆR AND c not in ci
;; Q ci = (append w (list c) v) AND
;; w = stackˆR vˆR
;; F stack = () AND ci = (append w (list c) wˆR)
(define wcwˆr (make-ndpda (S P Q F)

(a b c)
(a b)
S
(F)
(((S ,EMP ,EMP) (P ,EMP))
((P a ,EMP) (P (a)))
((P b ,EMP) (P (b)))
((P c ,EMP) (Q ,EMP))
((Q a (a)) (Q ,EMP))
((Q b (b)) (Q ,EMP))
((Q ,EMP ,EMP) (F ,EMP)))))

;; Tests for wcwˆr
(check-equal? (sm-apply wcwˆr (a)) reject)
(check-equal? (sm-apply wcwˆr (a c)) reject)
(check-equal? (sm-apply wcwˆr (b c a)) reject)
(check-equal? (sm-apply wcwˆr (a a b c b a b)) reject)
(check-equal? (sm-apply wcwˆr (c)) accept)
(check-equal? (sm-apply wcwˆr (a c a)) accept)
(check-equal? (sm-apply wcwˆr (a b b b c b b b a)) accept)

situation, it becomes important for units tests using words in the language
to be thorough.

45.6 State Invariant Predicates

The invariant predicate for S must determine if both the consumed input and
the stack are empty. It is implemented as follows:

;; word stack → Boolean

;; Purpose: Determine in the given word and stack are empty

(define (S-INV ci s) (and (empty? ci) (empty? s)))

;; Tests for S-INV

(check-equal? (S-INV '() '(a a)) #f)

(check-equal? (S-INV '(a c a) '()) #f)

(check-equal? (S-INV '(a c a) '(b b)) #f)

(check-equal? (S-INV '() '()) #t)
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The invariant predicate for P must determine that c is not part of the
consumed input and that the consumed input is equal to the stack reversed.
It is implemented as follows:

;; word stack → Boolean

;; Purpose: Determine if the given ci is the reverse of

;; the given stack AND c is not in ci

(define (P-INV ci s)

(and (equal? ci (reverse s)) (not (member 'c ci))))

;; Tests for P-INV

(check-equal? (P-INV '(a c a) '(a c a)) #f)

(check-equal? (P-INV '(a a) '(a b)) #f)

(check-equal? (P-INV '() '()) #t)

(check-equal? (P-INV '(a b) '(b a)) #t)

(check-equal? (P-INV '(a b a a) '(a a b a)) #t)

For Q’s invariant predicate, let us define v as the (sub)word after the first c
and w as the (sub)word before the first c in the consumed input. The invariant
predicate must determine if the consumed input is equal to the appending of
w, c, and v and if w is equal to the stack reversed appended with v reversed.
To achieve this, local variables are defined for w and for v. The invariant
predicate is implemented as follows:

;; word stack → Boolean

;; Purpose: Determine if ci=s^Rv^Rcv

(define (Q-INV ci s)

(let* [(w (takef ci (λ (s) (not (eq? s 'c)))))
(v (if (member 'c ci)

(drop ci (add1 (length w)))

'()))]
(and (equal? ci (append w (list 'c) v))

(equal? w (append (reverse s) (reverse v))))))

;; Tests for Q-INV

(check-equal? (Q-INV '(a a) '()) #f)

(check-equal? (Q-INV '(b b c a) '(b a)) #f)

(check-equal? (Q-INV '(c) '()) #t)

(check-equal? (Q-INV '(b a c) '(a b)) #t)

(check-equal? (Q-INV '(a b c b) '(a)) #t)

(check-equal? (Q-INV '(a b b c b) '(b a)) #t)

Finally, the invariant predicate for F must determine if the stack is empty
and if the (sub)word before c in the consumed input is equal to the reverse
of the (sub)word after c. To achieve this, a local variable for the (sub)word
before c in the consumed input is defined. The invariant predicate is imple-
mented as follows:
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;; word stack → Boolean

;; Purpose: Determine if ci=s^Rv^Rcv AND stack is empty

(define (F-INV ci s)

(let* [(w (takef ci (λ (s) (not (eq? s 'c)))))]
(and (empty? s)

(equal? ci (append w (list 'c) (reverse w))))))

;; Tests for F-INV

(check-equal? (F-INV '() '()) #f)

(check-equal? (F-INV '(b b) '()) #f)

(check-equal? (F-INV '(b a c) '(b a)) #f)

(check-equal? (F-INV '(c) '()) #t)

(check-equal? (F-INV '(b a c a b) '()) #t)

(check-equal? (F-INV '(a b b c b b a) '()) #t)

45.7 Correctness

As before, the correctness proof is divided into two parts. The first proves
that the state invariant predicates always hold. The second proves that the
language of the pda is the language for which it was designed. We shall use
the following definitions:

L = wcwR

M = wcw^R

w ∈ (sm-sigma M)∗

s = the stack

F = (sm-finals M)

ci = consumed input

45.7.1 Proving State Invariants Hold

Theorem 2 The state invariants hold when M accepts w.

For the proof by induction on the number of transitions to consume w, we
must show that S-INV holds when the machine starts (before consuming any
input) and that invariants hold after each transition. We use the abbreviated
proof notation as in the previous section.

Proof

When M starts, S-INV holds because ci = '() and s = '(). This establishes
the base case.
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Proof invariants hold after each transition that consumes input:

((S ,EMP ,EMP) (P ,EMP)): By inductive hypothesis, S-INV holds. This
guarantees that ci = '() and s = '(). After using this rule, ci = '() and s
= '(). P-INV holds, because c is not a member of ci and ci = (reverse s).

((P a ,EMP) (P (a))): By inductive hypothesis, P-INV holds. P-INV guar-
antees that ci does not contain c and that ci = (reverse s). By reading and
pushing an a, ci still does not contain c, and we still have that ci = (reverse
s). Thus, P-INV holds after the transition rule is used.

((P b ,EMP) (P (b))): By inductive hypothesis, P-INV holds. P-INV guar-
antees that ci does not contain c and that ci = (reverse s). By reading and
pushing a b, ci still does not contain c, and we still have that ci = (reverse
s). Thus, P-INV holds after the transition rule is used.

((P c ,EMP) (Q ,EMP)): By inductive hypothesis, P-INV holds. P-INV guar-
antees that ci does not contain c and that ci = (reverse s). By reading c, ci
now contains c. Given that P-INV holds before the transition, after the tran-
sition, ci = (reverse s)c = (reverse s)(reverse '())c(reverse '()) = (reverse
s)(reverse v)cv. That is, v = '(). Thus, Q-INV holds. After using this transi-
tion rule, M may also reach F by consuming no input on a computation that
leads to accept. Given that Q-INV holds and M only moves to F if v = s =
'(), we have that ci = c = '()c'() = wc(reverse w). That is, w = EMP.
Thus, F-INV holds.

((Q ,EMP ,EMP) (F ,EMP)): By inductive hypothesis, Q-INV holds. Q-INV
guarantees that ci = (reverse s)(reverse v)cv before using this transition.
Reading nothing and not changing the stack means that ci = (reverse
s)(reverse v)cv after using this transition. Recall that M is nondeterministic
and uses such a transition only to move to F (the final state) and accept.
This means that s must be empty and, therefore, ci = (reverse v)cv. Thus,
F-INV holds.

((Q a (a)) (Q ,EMP)): By inductive hypothesis, Q-INV holds. Q-INV guar-
antees that ci = (reverse s)(reverse v)cv before using this transition. Reading
and popping a, in essence, moves the a on the top of the stack to v. Thus, ci
= (reverse s)(reverse v)cv after using this transition, and Q-INV holds. If a
is the last element of the input and the stack is empty, then M moves to F.
This means that ci = (reverse s)(reverse v)cv = EMP(reverse v)cv = (reverse
v)cv = (reverse w)cw. That is, v = w. Therefore, F-INV holds.

((Q b (b)) (Q ,EMP)): By inductive hypothesis, Q-INV holds. Q-INV guar-
antees that ci = (reverse s)(reverse v)cv before using this transition. Reading
and popping b, in essence, moves the b on the top of the stack to v. Thus, ci
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= (reverse s)(reverse v)cv after using this transition and Q-INV holds. If b
is the last element of the input and the stack is empty, then M moves to F.
This means that ci = (reverse s)(reverse v)cv = '()(reverse v)cv = (reverse
v)cv = (reverse w)cw. That is, v = w. Therefore, F-INV holds. �

45.7.2 Proving L = L(M)

As before, the proof is divided into two lemmas. The first is for when w.∈L
and the second for when w./∈L.

Lemma 3 w∈L ⇔ w∈L(M)

Proof
(.⇒) Assume w∈L. This means that w = vcv.R. Given that state invariants
always hold, the following computation takes place:

(S vcvR EMP) � ˆ∗ (P cvR vR) � (P vR vR) � ˆ∗ (F EMP EMP)

Therefore, w∈L(M).

(.⇐) Assume w∈L(M). This means that M halts in F, the only final state,
with an empty stack having consumed w. Given that the state invariants
always hold, we may conclude that w = vcv.R. Therefore, w∈L. �

Lemma 4 w/∈L ⇔ w/∈L(M)

Proof
(.⇒) Assume w/∈L. This means w .
= v.Rcv. Given that the state invariant
predicates always hold, there is no computation that has M consume w and
end in F with an empty stack. Therefore, w/∈L(M).

(.⇐) Assume w/∈L(M). This means that M cannot transition into F with an
empty stack having consumed w. Given that the state invariants always hold,
this means that w .
= vcv.R. Thus, w/∈L. �

1 Let Σ = {a b}. Design and implement a pda for L = {w .| w has an
equal number of as and bs}. Follow all the steps of the design recipe.

2 Let Σ = {a b}. Design and implement a pda for L = {a.ib.j .|
i.≤j.≤2i}. Follow all the steps of the design recipe.

3 Let Σ = {a b}. Design and implement a pda for L = {w .| w is a
palindrome}. Follow all the steps of the design recipe.

4 Let Σ = {a b}. Design and implement a pda for L = {w .| w has 3
times as many as than b}. Follow all the steps of the design recipe.
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5 Let Σ = {a b}. Design and implement a pda for L = {a.nb.ma.n .|
n,m.≥0}. Follow all the steps of the design recipe.

6 Let Σ={a b c d}. Design and implement a pda for
L={a.mb.nc.pd.q:m,n,p,q.≥0 .∧ m + n = p + q}. Follow all the steps of
the design recipe.

7 Let Σ={a b c}. Design and implement a pda for L = {a.mb.nc.p

: m,n,p.≥0 .∧ (m = n .∨ n = p)} Follow all the steps of the design
recipe.

8 Let Σ = {a b}. Design and implement a pda for L = {a.mb.n| m,n.≥0
.∧ m .
= n}. Follow all the steps of the design recipe.

9 Let Σ = {a b}. Design and implement a pda for L = {wx .| w,x .∈
Σ.

+
.∧ w is a subword of x}. Follow all the steps of the design recipe.

10 Let Σ = {a b}. Design and implement a pda for L = {}. Follow all
the steps of the design recipe.

46 ndfas and pdas

We know that not every context-free language is regular. Recall, for example,
that a.nb.n is a context-free language but is not regular. In this section, we
explore if for every language, L, decided by an ndfa there is a pda that
decides L.

If a language, L, is regular, then there is a ndfa that decides L. Intuitively,
an ndfa may be thought of as a pda that never operates on its stack. That
is, it never pushes anything onto the stack, and it never pops anything off
the stack. This means that given an ndfa, M, we ought to be able to build a
pda, P, such that L(M) = L(P).

46.1 Design Idea

Given an ndfa, M, a pda is constructed using M’s states, alphabet, starting
state, and final states. The stack alphabet for the constructed pdamay be '()
because nothing shall every be pushed onto the stack. The pda’s transition
relation is built using M’s transition relation. Each of M’s rules is converted to
a pda-rule. For an ndfa-rule, (P a R), the pda-rule ((P a EMP) (R EMP))

is generated. In this manner, the pda moves from P to R without modifying
the stack just like M moves from P to R.
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Fig. 65 Constructing a pda from an ndfa

;; ndfa → pda
;; Purpose: Convert the given ndfa to a pda
(define (ndfa->pda M)

(let [(states (sm-states M))
(sigma (sm-sigma M))
(start (sm-start M))
(finals (sm-finals M))
(rules (sm-rules M))]

(make-ndpda states
sigma
()

start
finals
(map (λ (r) (list (list (first r) (second r) EMP)

(list (third r) EMP)))
rules))))

;; Sample pda
(define ALOM-PDA (ndfa->pda AT-LEAST-ONE-MISSING))
(define LNDFA-PDA (ndfa->pda LNDFA))

(check-equal? (sm-testequiv? ALOM-PDA AT-LEAST-ONE-MISSING) #t)
(check-equal? (sm-testequiv? LNDFA-PDA LNDFA) #t)

46.2 Implementation

The constructor takes as input an ndfa and returns a pda that decides the
same language. It locally defines variables for the components of the given
ndfa. The pda is constructed using the locally defined states, alphabet, start
state, and final states unchanged. As the stack alphabet argument, the pda

constructor is given '(). The list of rules is traversed using map. For each,
a pda-rule is generated such that its triple contains the ndfa’s rule source
state, consumed element, and EMP (to pop nothing) and its double contains
the ndfa’s destination state and EMP (to push nothing).

To test the implementation of this pda-constructor, LNDFA from Fig. 24
and AT-LEAST-ONE-MISSING from Fig. 26 are used. The constructor is used
to build a pda from each of these sample ndfas. Test are written using
sm-testequiv? and pdas created using the new constructor. An implemen-
tation of this design is displayed in Fig. 65.

11 Let N be an ndfa and let P = (ndfa->pda N). Prove that L(N) =

L(P).



Chapter 12

Equivalence of pdas and cfgs

You probably already suspect that the set of languages accepted by pdas is
the same as the set of languages generated by cfgs. That is, pdas accept any
context-free language and cfgs generate any language accepted by a pda.
This is stated in the following theorem:

Theorem 1 The set of languages accepted by pdas is exactly the context-free
languages.

Our goal in this chapter is to prove the above theorem. You may notice
the use of the term accepted instead of decided. As we shall discover in this
chapter, some pdas do not decide a language (i.e., do not always accept or
reject). Some pdas can only accept a word in the language but are unable to
reject, and we shall explore why this is the case.

If the theorem above holds, then we ought to be able to build a pda for
the language of a given cfg and vice versa. We break up the proof into two
lemmas. The first establishes that given a cfg, G, there exists a pda, P, such
that L(G) = L(P). The second establishes that given a pda, P, there exists
a cfg, G, such that L(G) = L(P). For each lemma, a constructive proof is
written. That is, for the first lemma, a constructor that transforms a given
cfg into a pda is written. For the second lemma, a constructor that transforms
a given pda into a cfg is written.

47 Building a pda from a cfg

Lemma 1 L is a context-free language ⇒ ∃ pda that accepts L

Assume L is a context-free language. This means that there is a cfg,
G = (make-cfg V ΣG R SG), such that L=L(G).
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47.1 Design Idea

We need to construct a pda, P = (make-ndpda K Σ S F .Δ), such that L(P)
= L(G). P must read the input from left to right. This suggests that, for a
w.∈L(G), P can simulate the leftmost derivation of w. To start, P pushes S.G
onto the stack. For each cfg-rule, A → x, P pops A off the stack and pushes
x onto the stack. For each a.∈Σ.G, P reads a from the tape and pops a off the
stack.

The design idea suggests that the pda only needs two states. The starting
state, S, in which P pushes S.G and moves to, Q, the second state. P then
remains in Q, which is the final state, for the rest of the computation. P may
be constructed as follows:

(make-ndpda '(S Q) ΣG VG∪ΣG 'S '(Q) Δ)

There are three types of rule in .Δ:

1. ((S EMP (list SG)) (Q EMP))

2. ((Q EMP (list 'A)) (Q (symbol->fsmlos x))), for (A → x)∈RG
3. ((Q a (a)) (Q EMP)), for a∈ΣG

The first rule type starts the leftmost derivation simulation by pushing S.G
onto the stack and moving to state Q. The second rule type pops a nonterminal
off the stack and pushes the right-hand side of a grammar rule by converting it
to a list of valid FSM symbols. The third rule type reads an input symbol and
pops a matching symbol off the stack. As mentioned above, the transition
rules of P are designed to simulate the leftmost derivation of w using G.
Observe that we are careful to say nothing about the behavior of P if it is
ever applied to a word not in L(G).

47.2 Implementation

Based on the above design idea, the implementation of a function to convert
a cfg to a pda is displayed in Fig. 66. Locally, variables for the components of
the given cfg are defined. The constructed pda only has two states, S and Q,
and has the same input alphabet as the given grammar. The stack alphabet
are the nonterminals and terminal symbols of the given grammar, because
any right-hand side of context-free grammar rule may contain elements of
either. The starting state is S. The only final state is Q. The three types of
rules are constructed as outlined in the design idea.

To test constructed pdas, a2nb2n from Sect. 39 and numb.>numa from
Sect. 40 are used. Pay close attention to the tests written. For both con-
structed pdas, tests are written using words in the corresponding grammars.
This is certainly needed and expected because the machines are built to
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Fig. 66 A function to convert a cfg to a pda

;; cfg → pda
;; Purpose: Transform the given cfg into a pda
(define (cfg2pda G)

(let [(nts (grammar-nts G))
(sigma (grammar-sigma G))
(start (grammar-start G))
(rules (grammar-rules G))]

(make-ndpda (S Q)
sigma
(append nts sigma)
S

(list Q)
(append
(list (list (list S EMP EMP) (list Q (list start))))
(map (λ (r)

(list (list Q EMP (list (first r)))
(list Q

(if (eq? (third r) EMP)
EMP
(symbol->fsmlos (third r))))))

rules)
(map (λ (a) (list (list Q a (list a)) (list Q EMP)))

sigma)))))
;; Tests
(define a2nb2n-pda (cfg2pda a2nb2n))
(define numb>numa-pda (cfg2pda numb>numa))

(check-equal? (sm-apply a2nb2n-pda (b b)) reject)
(check-equal? (sm-apply a2nb2n-pda (a a b b a b)) reject)
(check-equal? (sm-apply a2nb2n-pda ()) accept)
(check-equal? (sm-apply a2nb2n-pda (a a a b b b)) accept)

(check-equal? (sm-apply numb>numa-pda (b b b)) accept)
(check-equal? (sm-apply numb>numa-pda (b b a)) accept)
(check-equal? (sm-apply numb>numa-pda (b b a b b)) accept)
(check-equal? (sm-apply numb>numa-pda (a b b a b)) accept) ; ˜3 minutes

mimic the leftmost derivation of a word. It is worth noting that pdas are
computationally intensive. Thus, it may take a significant amount of time for
them to accept a word. Such is the case of the last test in Fig. 66, which takes
about 3 minutes to evaluate (at the time of writing). Fortunately, we are not
concerned with efficiency at this moment. We are only concerned with what
can be done.

Observe that tests using words not in the corresponding language are only
written for a2nb2n-pda. This is because the design specifies nothing about the
behavior of a pda when given a word that is not in the language. Sometimes,
a constructed pda is capable of rejecting, and other times, it is incapable of
rejecting. That is, a pda produced by the constructor in Fig. 66 is guaranteed
to accept if the given word is in its language, but no such guarantee is made
for rejection when the given word is not in its language. When a machine can
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guarantee accepting any word in a given language, L, but cannot guarantee
rejecting any word not in L, we say that the machine semidecides L. The
constructor in Fig. 66 produces pdas that semidecide the language of the
given cfg.

For an intuitive understanding of why a pda may only semidecide a lan-
guage, it is necessary to understand how nondeterminism is implemented.
The implementation of nondeterminism has the machine perform a breadth-
first search for a computation to accept the given word. The search space is
a tree of derivations defined by the machine’s rules. A path from the root
to any element of level k is a partial computation of length k. If a compu-
tation ends at level k, then breadth-first search is guaranteed to reach it. If
the computation leads to accept, then the machine accepts. Otherwise, the
breath-first process continues to extend the search tree to find a computation
that leads to accept. If all paths in the search tree are finite and reject, then
the machine rejects. What if there is a path in the search tree that is not
finite? In this case, breadth-first search may continue to search for a compu-
tation that leads to an accept forever. Thus, the machine can accept but can
never reject.

To understand why a2nb2n-pda decides its language and numb.>numa-pda
semidecides its language, we can analyze their transition relations. The tran-
sition rules for a2nb2n-pda are:

'(((P ε ε) (Q (S)))

((Q ε (S)) (Q ε))
((Q ε (S)) (Q (a S b)))

((Q a (a)) (Q ε))
((Q b (b)) (Q ε)))

After popping S, the machine must read input before popping another non-
terminal (i.e., S) or must only read input (when there are only bs in the
stack). This means that for all computations, one of two things may even-
tually happen. The first is that the input becomes empty, and the stack is
examined to decide if the word is rejected or accepted. The second is that
the machine cannot consume the whole input, which means the computation
ends in reject. The machine can always say accept or reject, because all the
paths in the search space are finite. Thus, we say the machine decides its
language.

In contrast, the transition relation for numb.>numa is:

'(((P ε ε) (Q (S)))

((Q ε (S)) (Q (b)))

((Q ε (S)) (Q (A b A)))

((Q ε (A)) (Q (A a A b A)))

((Q ε (A)) (Q (A b A a A)))

((Q ε (A)) (Q ε))
((Q ε (A)) (Q (b A)))

((Q a (a)) (Q ε))
((Q b (b)) (Q ε)))
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Observe that after popping S, there are computations for which the stack
always grows using the fourth or fifth rules without consuming any input.
This means that there are computations that are infinite. A pda can only
reject if all possible computations reject. It is impossible for the pda to de-
termine this when there are potential computations that are infinite. It can
accept if in Q with an empty stack and no more input to read, but it can
never determine that all possible computations reject. Therefore, we say the
machine semidecides its language.

47.3 Proof

Let:

G = (make-cfg N Σ R S)

P = (cfg2pda G)

To establish that S L→.G w .⇔ (Q w S) �∗
.M (Q ε ε), we first prove the

following useful lemma:

Lemma 2
S .

L→.G .ωα ⇔ (Q .ω S) �∗
.M (Q ε α), where .α ∈ .{N(N ∪Σ)∗∪{ε}} .∧ .ω ∈Σ.

∗

Let us make sure we understand what the lemma is stating. It is stating that
a leftmost derivation of .ωα starting from S, where .α is either empty or starts
with the leftmost nonterminal in .ωα, is logically equivalent to M starting in
Q, reading .ω, and popping S to end in Q with .α on the stack. Observe that
if the stack is not empty after consuming .ω, then the topmost element is the
next nonterminal to substitute in the leftmost derivation.

Proof (.⇒) The proof is by induction on n = the length of the leftmost
derivation of .ω.

For the base case, n = 0. This means that .ω = ε and .α = S. Thus, we have
that (Q .ω S) = (Q ε S) �∗

.M (Q ε S) = (Q ε .α).

For the inductive step:
Assume: S .

L→.G .ωα ⇔ (Q .ω S) �∗
.M (Q ε α), for n = k.

Show: S .
L→.G .ωα ⇔ (Q .ω S) �∗

.M (Q ε α), for n = k + 1.

The derivation of length k+1 looks as follows:
S → u.1 → u.2 → . . . → u.n → u.n+1 = .ωα

Observe that u.n = xA.β, where x.∈Σ.
∗

.∧ A.∈N .∧ .β ∈{N .∪ Σ}.∗. The derivation
step from u.n to u.n+1 substitutes A using a rule: A → .θ, where .θ ∈{N .∪ Σ}.∗.
Therefore, u.n+1 = x.θβ.



288 12 Equivalence of pdas and cfgs

By inductive hypothesis, we have (Q x S) �∗ (Q ε A.β). By construction of P,
there is a type 2 rule such that (Q ε A.β) � (Q ε .θβ). Observe that it must be
the case that the leading terminals of .θ, y, are in .ω and that .α starts with, B,
the leftmost nonterminal in .θ and includes .β. That is, .ω = xy and .α = B.β,
where y.∈Σ.

∗ and .β ∈N. This means that y.α = .θβ. Thus, by construction of
P, there are type 3 rules that consume y to yield the following computation:
(Q .ω S) = (Q xy S) �∗ (Q y .θβ) = (Q y y.α) �∗ (Q ε .α).

(.⇐) Assume (Q .ω S) �∗ (Q ε .α). The proof is by induction on, n, the number
of type 2 transitions used by P.

For the base case, n = 0. (Q .ω S) �∗ (Q ε .α) means that .ω = ε and .α = S.
Thus, we have that S .

L→ .ωα = εS = S.

For the inductive step:
Assume: (Q .ω S) �∗

.M (Q ε .α) .⇒ S .
L→.G .ωα, for n = k.

Show: (Q .ω S) �∗
.M (Q ε .α) .⇒ S .

L→.G .ωα, for n = k + 1.

Let .ω = xy and (A → .θ).∈R. A computation using n + 1 type 2 rules looks
as follows:
(Q .ω S) = (Q xy S) �∗ (Q y A.β) � (Q y .θβ) �∗ (Q ε .α).
By inductive hypothesis, we have S .

L→.
∗
G xA.β. Using the rule for A above

yields S .
L→.

∗
G x.θβ. Observe that (Q y .θβ) �∗ (Q ε .α) only uses type 3 rules.

This means that y.α = .θβ. Thus, we have S .
L→.

∗
G x.θβ = xy.α = .ωα. �

48 Building a cfg from a pda

We now need to prove that if P = (make-ndpda K Σ Γ S F .Δ) semidecides
L, then L is a context-free language. To do so, we shall build a cfg, G, such
that L(P) = L(G).

48.1 Simple pda

It is useful to restrict the structure of P’s transition rules to have what we
shall call a simple pda. A pda is simple if all transition rules have the following
structure:

((Q a β) (P θ)), such that Q�=S, β ∈Γ, ∧ |θ|≤2
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In essence, a simple pda always pops the topmost stack element and pushes
zero, one, or two elements onto the stack. There are no restrictions on S,
because whenever a pda starts, the stack is empty.

To transform P into a simple pda, P.′, the components of P.′ are defined as
follows:

K′ = K ∪ {X Y}, such that X,Y/∈K
Σ′ = Σ
Γ ′ = Γ ∪ {Z}, such that Z/∈Γ
S′ = X

F′ = (Y)
Δ′ = T(Δ) ∪ {((X EMP EMP)(S (Z)))} ∪ {∀W∈F ((W EMP (Z))(Y EMP))}

The new states, X and Y, are P.′’s start and only final states. The new stack
symbol, Z, is the stack bottom symbol. Whenever P would have an empty
stack, P.′ only has Z on the stack. P.′ starts a computation in state X, pushes
Z onto the stack, and moves to S. Once in S, P.′ simulates P’s computation.
P.′ ends a computation that leads to accept by moving from a state in F to
Y and popping Z off the stack. The function T replaces all transitions rules
that violate simplicity with equivalent rules that satisfy simplicity. T replaces
rules, ((Q a .β) (P .θ)), that violate simplicity in three steps:

1. Replace |β| ≥2 rules

2. Replace |β|=0 rules without new rules with |β| ≥2

3. Replace |θ| >2 rules without new rules with |β| �= 1

A function to convert a pda to a simple pda based on this design is displayed
in Fig. 67. New symbols for the starting state, the final state, and the stack
bottom are locally defined. These are used to create the initial rule and the
final transition rules for the simple pda. The first step to achieve simplic-
ity is performed by calling an auxiliary function, generate-beta<2-rules,
that substitutes all rules that pop two or more elements. Given that new
(intermediate) states may be needed to pop two or more elements, this aux-
iliary function needs as input the states of the given machine to guarantee
that a repeated state is not generated. The set of rules generated is used
by another auxiliary function, generate-beta=1-rules, to eliminate rules
that pop nothing. To achieve this, the function needs the stack alphabet as
input to create new rules. The set of rules generated all pop one element
off the stack and are used by generate-theta<=2-rules to eliminate rules
that push more than two elements without adding rules with .|β| �=1. This
auxiliary function may create new states to serialize pushes through sev-
eral states and, thus, needs as input the set of states in the rules generated
by generate-beta=1-rules. Finally, the simple pda is constructed using the
generated start and final states along with the states in the rules generated by
generate-theta<=2-rules, the given pda’s alphabet, the generated bottom
symbol and the given pda’s stack alphabet, the generated start state, a list
containing the generated final state, and the starting rule, the rules into the
generated final state, and the rules generated by generate-theta<=2-rules.
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Fig. 67 A function to convert a pda to a simple pda
;; pda → pda
;; Purpose: Convert given pda to a simple pda
(define (pda2spda p)

(let*
[(pstates (sm-states p)) (psigma (sm-sigma p)) (pgamma (sm-gamma p))
(pstart (sm-start p)) (pfinals (sm-finals p)) (prules (sm-rules p))
(new-start (generate-symbol S pstates))
(new-final (generate-symbol F pstates))
(bottom (generate-symbol Z pgamma))
(initr (mk-pda-rule new-start EMP EMP pstart (list bottom)))
(frules (map (λ (s) (mk-pda-rule s EMP (list bottom) new-final EMP))

pfinals))
(beta<2-rules (generate-beta<2-rules prules pstates))
(beta=1-rules (generate-beta=1-rules beta<2-rules (cons bottom pgamma)))
(theta<=2-rules (generate-theta<=2-rules beta=1-rules

(extract-states beta=1-rules)))]
(make-ndpda (append (list new-final new-start)

(remove-duplicates
(cons pstart (extract-states theta<=2-rules))))

psigma
(cons bottom pgamma)
new-start
(list new-final)
(cons initr (append theta<=2-rules frules)))))

;; Tests for pda2spda
(define P1 (pda2spda a2nb2n))
(define P2 (pda2spda wcwˆr))

(check-equal? (sm-testequiv? a2nb2n P1) #t)
(check-equal? (sm-testequiv? a2nb2n P1) #t)
(check-equal? (sm-testequiv? wcwˆr P2) #t)
(check-equal? (sm-testequiv? wcwˆr P2) #t)

48.1.1 Eliminating |β| ≥2 Rules

For the first replacement step, the transition rules are partitioned based on
whether or not more than one element is popped. How is ((Q a .β) (P .θ)),
where .|β = b1b2. . ..bn| ≥2, replaced? The popping of n elements may be done
sequentially using n rules. The i.th rule pops .βi. For this n-1 new (interme-
diate) states are needed to generate the needed rules. The replacement rules
look as follows:

(((Q EMP b1) (B1 EMP))

((B1 EMP b2) (B2 EMP))

((B2 EMP b3) (B3 EMP))
...

((Bn a bn) (P θ)))
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Fig. 68 Function to replace rules that pop two or more elements
;; (listof pda-rule) (listof state) → (listof pda-rule)
;; Purpose: Eliminate rules that pop more than two elements
(define (generate-beta<2-rules rules states)

;; pda-rule (listof state) → (listof pda-rule)
;; Purpose: Create |beta| = 1 rules for given rule
(define (convert-beta=1 r states)

;; (listof symbol) (listof state) → (listof pda-rule)
;; Purpose: Generate pda rules for given pop list using given states
(define (gen-intermediate-rules beta sts)

(if (empty? (rest sts))
()

(cons (mk-pda-rule (first sts) EMP (list (first beta))
(first (rest sts)) EMP)

(gen-intermediate-rules (rest beta) (rest sts)))))
(let* [(from (get-from r)) (read (get-read r)) (to (get-to r))

(beta (get-pop r)) (push (get-push r))
(new-states (build-list

(sub1 (length beta))
(λ (i) (generate-symbol B (cons B states)))))]

(append
(list

(mk-pda-rule from EMP (list (first beta)) (first new-states) EMP)
(mk-pda-rule (last new-states) read (list (last beta)) to push))

(gen-intermediate-rules (rest beta) new-states))))
(let* [(beta>=2-rules (filter (λ (r) (and (not (eq? (get-pop r) EMP))

(>= (length (get-pop r)) 2)))
rules))

(beta<2-rules (filter (λ (r) (not (member r beta>=2-rules))) rules))]
(append beta<2-rules (append-map (λ (r) (convert-beta=1 r states))

beta>=2-rules))))

;; Tests for generate-beta<1-rules
;; (listof pda-rule) → Boolean
;; Purpose: Determine if at most 1 element is popped by every rule
(define (all-beta<2 L)

(andmap (λ (r) (or (eq? (get-pop r) EMP) (= (length (get-pop r)) 1))) L))

(check-pred
all-beta<2
(generate-beta<2-rules (list (list (list Q a (a b c)) (list R (z))))

(Q R)))
(check-pred

all-beta<2
(generate-beta<2-rules (list (list (list Q a (a b c)) (list R (z)))

(list (list Q EMP EMP) (list R EMP))
(list (list Q b (i j k l)) (list R EMP)))

(Q R)))

The B.is are the freshly generated states. Observe that input is not read nor
elements pushed until all n elements are popped.
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A function based on this design idea is displayed in Fig. 68. Observe that
only the rules that pop two or more elements are replaced. The auxiliary
function, convert-beta=1, is applied to every rule that pops two or more
elements. This function creates the needed new states and the first and last
rules of the popping process for the given rule. The intermediate rules are
generated by gen-intermediate-rules. This function traverses the given
list of states until it is of length 1. At each step, a rule is generated to pop
the next element and move to the next state.

Property-based testing is used to validate the rules generated. A predicate
to test if all the generated rules pop at most a single element is implemented.
Tests are written using check-pred and providing generate-beta<2-rules

varying lists of pda-rules.

1 Implement more thorough property-based tests for replace-beta>=2
in Fig. 68. For a given rule r = ((P a .β)(Q .θ)), for example, the first
rule must start at P, the last rule must end at Q, all but the Q rule must
read and push nothing, the Q rule must read a and push .θ, and the rules
must take the machine from P to Q.

48.1.2 Eliminating |β| = 0 Rules

Rule replacement step 2 is done replacing all rules ((Q a .β) (P .θ)), where
.|β| = 0. How can this be done? Observe that popping nothing off the stack
is equivalent to popping the top element and pushing it back on. Therefore,
a rule that pops nothing off the stack may be replaced with rules that pop a
.γ ∈Γ and push .γ back onto the stack. That is, an instance of such a rule is
replaced with the following set of rules:

∀γ ∈Γ ((Q a γ) (P γθ))

Observe that the new rules generated do not contain rules that pop two or
more elements off the stack. Therefore, the first simplicity condition is not
violated by this replacement step.

To generate the needed rules, the rules that pop no elements are traversed.
For each rule, the elements of Γ are traversed. For each element .γ ∈Γ , a rule
is generated that pops .γ and that adds .γ to .θ to obtain the pushed value or
values. A function based on this design is displayed in Fig. 69. The function
partitions the given rules into those that pop nothing and those that pop one
element. The resulting list of rules contains all the rules that pop one element
and the rules obtained from each rule that pops nothing. The new rules for
the zero-popping rules are obtained using a for*/list-loop. For each zero-
popping rule, the elements of the given stack alphabet (which includes the
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Fig. 69 Function to substitute rules that pop nothing from the stack
;; (listof pda-rule) (listof symbols) → (listof pda-rules)
;; Purpose: Substitute pop nothing rules with pop 1 rules
(define (generate-beta=1-rules rls gamma)

(let* [(beta=0-rls (filter (λ (r) (eq? (get-pop r) EMP)) rls))
(beta>0-rls (filter (λ (r) (not (member r beta=0-rls))) rls))]

(append beta>0-rls
(for*/list ([r beta=0-rls]

[g gamma])
(list (list (get-from r) (get-read r) (list g))

(list (get-to r)
(if (eq? (get-push r) EMP)

(list g)
(append (get-push r) (list g)))))))))

;; Tests for generate-beta=1-rules
(check-equal?
(generate-beta=1-rules (((P a ,EMP) (Q (a b)))) (S a b))
(((P a (S)) (Q (a b S)))
((P a (a)) (Q (a b a)))
((P a (b)) (Q (a b b)))))

(check-equal?
(generate-beta=1-rules (((P a ,EMP) (Q (a b)))

((P b (b) (Q ,EMP)))
((P c ,EMP) (Q ,EMP)))

(S A a b))
(((P b (b) (Q ε)))
((P a (S)) (Q (a b S)))
((P a (A)) (Q (a b A)))
((P a (a)) (Q (a b a)))
((P a (b)) (Q (a b b)))
((P c (S)) (Q (S)))
((P c (A)) (Q (A)))
((P c (a)) (Q (a)))
((P c (b)) (Q (b)))))

bottom of the stack symbol; see Fig. 67) are traversed. At each step, a rule
that pops and pushes the current stack element is produced.

48.1.3 Eliminating |θ| >2 Rules

Rule replacement step 3 is done replacing all rules ((Q a .β) (P .Θ)), where
.|Θ| > 2. An instance of such a rule is substituted with rules that sequentially
push all the elements in .Θ = '(.θ1θ2. . ..θn). New intermediate states need to be
generated for the rules that take the machine from Q to P. It is important to
note that the first rule in the sequence starts at Q and moves the machine to
the first intermediate state. The last rule in the sequence moves the machine
from the last intermediate state to P. In order not to violate the simplicity
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Fig. 70 Function to substitute rules that push more than two elements
;; (listof pda-rule) (listof states) → (listof pda-rule)
;; Purpose: Replace rules that push more than 2 elements
(define (generate-theta<=2-rules rls sts)

;; (listof pda-rule) (listof state) → (listof pda-rule)
;; Purpose: Generate rules with |theta|<=2 for given rules
(define (gen-theta<=2-rules theta>2-rules sts)

;; pda-rule → (listof pda-rule)
;; Purpose: Generate |theta|<=2 rules for given rule
(define (gen-rules r)

;; (listof state) (listof symbol) (listof symbol) symbol
;; → (listof pda-rule)
;; Purpose: Generate |theta|<=2 rules for given push and state lists
(define (process-sts sts push pop read)

(if (= (length sts) 2)
(list (mk-pda-rule (first sts) read pop (second sts) push))
(cons (mk-pda-rule (first sts) EMP pop (second sts)

(append pop (list (first push))))
(process-sts (rest sts) (rest push) pop read))))

(let* [(from (get-from r)) (read (get-read r)) (pop (get-pop r))
(to (get-to r)) (push (get-push r))
(new-states (build-list

(sub1 (length push))
(λ (i) (generate-symbol T (cons T sts)))))

(rev-push (reverse push))]
(cons (mk-pda-rule from EMP pop (first new-states)

(append pop (list (first rev-push))))
(process-sts (append new-states (list to)) (rest rev-push)

))))daerpop
(append-map gen-rules theta>2-rules))

(let* [(theta>2-rules (filter
(λ (r) (and (not (eq? (second (second r)) EMP))

(> (length (second (second r))) 2)))
rls))

(theta<=2-rules (filter (λ (r) (not (member r theta>2-rules)))
rls))]

(append theta<=2-rules (gen-theta<=2-rules theta>2-rules sts))))
;; Tests
;; (listof pda-rule) → Boolean
;; Purpose: Determine all rules have |theta|<=2
(define (all-theta<=2 rls)

(andmap (λ (r) (<= (length (second (second r))) 2)) rls))
(check-pred
all-theta<=2
(generate-theta<=2-rules (((P ,EMP (Z)) (Q (S c Z)))) (Q P)))

(check-pred
all-theta<=2
(generate-theta<=2-rules (((P ,EMP (Z)) (Q (S c Z)))

((A a (Z)) (B (A b B))))
(Q P)))
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condition that .β=1, each rule except the last must pop and push .β. The
last rule pops .β, consumes a, and pushes the first element in .Θ. Finally, the
elements of .Θ are pushed in reversed order to obtain the correct stack state.
In summary, the replacement rules look like this:

(((Q EMP β) (T1 βθn))
((T1 EMP β) (T2 βθn−1))

((T2 EMP β) (T3 βθn−2))
...

((Tn a β) (P θ1)))

Each T.i is a newly generated intermediate state.
A function based on this design idea is displayed in Fig. 70. The func-

tion partitions the rules in two: those that pop more than two elements and
those that pop fewer elements. The result includes all the rules that pop two
or less elements and the new rules generated for the rules that pop more
than two elements. The generation of the new rules is done by the auxiliary
function gen-theta<=2-rules that consumes the rules that pop more than
two elements and the list of existing states. It appends the rules generated
for each of the given rules. For each given rule, .|θ|-1 states are generated.
The first rule of the sequence moves the machine from Q to the first interme-
diate state, consuming nothing and pushing .βθn. This rule is added to the
rules generated by an auxiliary function, process-sts, which processes the
rest of the intermediate states and P. This function generates rules that take
the machine from the first given state to the second given state, consuming
nothing, popping .β, and pushing .βθi, where .θi is the first of the given list of
elements to push. The function stops when there are only two states left (the
last newly generated state and P) generating the rule that takes the machine
to P, consuming a, popping .β, and only pushing .θ1 (i.e., the last element left
in the given list of elements to push).

Property-based testing is used to validate the returned list of rules. The
unit tests in Fig. 70 check that all rules push at most two elements.

48.1.4 Auxiliary Functions

To complete the implementation of pda2spda, all that remains is the im-
plementation of the smaller auxiliary functions. We make the following data
definition to simplify the writing of signatures:

A stack element, stacke, is either

1. EMP

2. (listof symbol)

Interpretation: The stack elements to pop or push



296 12 Equivalence of pdas and cfgs

The function to make a pda-rule is:

;; state symbol stacke state stacke → pda-rule

;; Purpose: Build a pda-rule

(define (mk-pda-rule from a pop to push)

(list (list from a pop) (list to push)))

;; Tests for mk-pda-rule

(define PDA-R1 (mk-pda-rule 'P 'a EMP 'Q EMP))

(define PDA-R2 (mk-pda-rule 'A 'c '(a) 'B '(b)))

(check-equal? PDA-R1 (list (list 'P 'a EMP) (list 'Q EMP)))

(check-equal? PDA-R2 (list (list 'A 'c '(a)) (list 'B '(b))))

The selectors for a pda-rule are:

;; pda-rule → state

;; Purpose: Extract from state

(define (get-from r) (first (first r)))

;; Tests for get-from

(check-equal? (get-from PDA-R1) 'P)
(check-equal? (get-from PDA-R2) 'A)

;; pda-rule → symbol

;; Purpose: Extract read symbol

(define (get-read r) (second (first r)))

;; Tests for get-read

(check-equal? (get-read PDA-R1) 'a)
(check-equal? (get-read PDA-R2) 'c)

;; pda-rule → stacke

;; Purpose: Extract pop elements

(define (get-pop r) (third (first r)))

;; Tests for get-pop

(check-equal? (get-pop PDA-R1) EMP)

(check-equal? (get-pop PDA-R2) '(a))

;; pda-rule → state

;;Purpose: Extract to state

(define (get-to r) (first (second r)))

;; Tests for get-to

(check-equal? (get-to PDA-R1) 'Q)
(check-equal? (get-to PDA-R2) 'B)
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;; pda-rule → stacke

;; Purpose: Extract push elements

(define (get-push r) (second (second r)))

;; Tests for get-push

(check-equal? (get-push PDA-R1) EMP)

(check-equal? (get-push PDA-R2) '(b))

Finally, the function to extract the states from a given list of pda-rules is:

;; (listof pda-rule)→(listof state)

;; Purpose: Extract states in the given rules

(define (extract-states rls)

(remove-duplicates

(append-map

(λ (r) (list (first (first r)) (first (second r))))

rls)))

;; Tests for extract-states

(check-equal? (extract-states

`(((P ,EMP (Z)) (Q (S c Z)))))

'(P Q))

(check-equal? (extract-states

`(((P ,EMP (Z)) (Q (S c Z)))

((P a (Z)) (R (S c Z)))

((Q ,EMP (Z)) (T (S c Z)))))

'(P Q R T))

2 For an arbitrary pda, P, prove that L(P) = L((pda2spda P)).

3 Write more thorough property-based tests for
generate-theta<=2-rules in Fig. 70. For a given rule r = ((P

a .β)(Q .Θ)), for example, the first rule must start at P, the last rule
must end at Q, all but the Q rule must read nothing, pop .β and push
two elements (the first of which must be .β), and the Q rule must read
a and pop .β, and only push a single element.

4 Carefully explain why all rules generated in replacement step 3 are
guaranteed to operate on a nonempty stack.
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48.2 Building a cfg from a Simple pda

The next task is to convert a simple pda to a cfg. This is done by exploiting
the properties of transition rules in a simple pda. Unfortunately, the details
get messy, and the algorithm is not as intuitive as the algorithm to build
a pda from a cfg. On the positive side, modern applications rarely, if ever,
need to build a cfg from a pda.

48.2.1 Design Idea and Data Representation

The transformation of a pda, P=(make-ndpda K Σ Γ A F .Δ), to a simple
pda, P.′=(pda2spda P), simplifies the construction of a cfg for L(P). The
simplification stems from the fact that every pda-rule pops an element and
pushes at most two elements. Let us explore why this is the case. Let Z be
the bottom of the stack symbol, S.′ be the start state in P.′, and F.′ be the final
state in P.′. P.′ is outlined as follows:

.
S A . . . F F′(EMP EMP Z) (EMP Z EMP)

The labels on the arrows, from left to right, contain a read, a pop, and a push
element. The middle part simulates P. The grammar that is constructed shall
simulate P.′. It needs to generate all words that take P.′ from A to F.′ by popping
Z. We may represent these words as a triple: (S Z F.′). This means that the
starting nonterminal for the constructed grammar, S, must generate (S Z

F.′):

S → (A Z F′)

The representation of nonterminals as triples is an implementation choice.
To build an actual cfg, of course, these triples need to be converted to sym-
bols. In general, we shall talk about all words that take P.′ from some state
Q to some state R by popping .θ and represent them as (Q .θ R). All such
triples represent the nonterminals of the grammar that is constructed and
are formally defined as follows:

;; An list nonterminal, lnt, is a (list state symbol state).

;; Interpretation:

;; All words that take the pda from the first state to

;; the second state by popping the symbol off the stack.

Given that an lnt represents a nonterminal, how can a cfg-rule be rep-
resented? Clearly, lnts need to be used. The left-hand side of a rule may
be represented as a symbol (as the rule above) or as an lnt. We define a
cfg-rule’s left-hand side as follows:
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;; A lhs is either:

;; 1. symbol

;; 2. lnt

;; Interpretation:

;; The left-hand side of a cfg-rule is represented as either a

;; a symbol or an lnt.

How can the right-hand side of a cfg-rule be represented? To answer this,
consider the rules in a simple pda. Every rule has a symbol for what is read
and a symbol for what is popped. The simple pda rules vary in what is
pushed. A rule pushes 0, 1, or two elements. That is, there are three types of
rules in a simple pda. Let us first consider rules that push 0 elements: ((Q a

.β) (R EMP)). This rule takes the machine from Q to R by popping nothing.
After using this rule, the machine may transition in zero or more steps to
an arbitrary state V. Graphically, we may describe the use of such a rule as
follows:

.
Q R V

(a β EMP)

The grammar needs to generate all words that take P.′ from Q to V by popping
.β and pushing nothing. Such words are generated by (Q .β V). To get to V,
the machine reads a to reach R and then pops nothing to reach V in zero or
more moves.11 Thus, the needed rule is:

(Q β V) → a(R EMP V)

Let NS be P.′’s states except (sm-start P.′). .∀V.∈NS such a rule is generated.
Such a rule states that the words that take the machine from Q to V by popping
.β may start with a and be followed by a word that takes the machine from R

to V by pushing nothing. Thus, we have that the right-hand side of a cfg-rule
may be represented by a symbol followed by an lnt.

Now consider the cfg-rule needed when a single element is pushed:

.
Q R V

(a β θ)

The grammar needs to generate all words that take P.′ from Q to V by popping
.β and pushing .θ. This situation is similar to pushing nothing except that after
reaching R .θ must be popped. The needed cfg-rule is:

(Q β V) → a(R θ V)

Once again, such a rule is generated for all states V in P.′ except (sm-start
P.′). It is opportune to note that the above rule is not stating that all
(sub)computations from R to V pop .θ. It only refers to (sub)computations
from R to V that pop .θ. That is, there may be (sub)computations that pop

11 The rules that take the machine from R to V may, of course, make use of the stack.
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something different, and such cfg-rules are generated from different pda-
rules. That observed, we have that such a cfg-rule right-hand side may also
be represented by a symbol followed by an lnt.

Consider the pda-rules that push two elements: ((Q a .β) (R .θτ)). To
reach V from Q, the two elements must be pushed and popped. After popping
the first element, the machine may be in an arbitrary state W. Graphically,
consider the following:

.
Q R W V

(a β θτ)

The grammar must be able to generate a word that starts with a followed
by a word that takes P.′ from R to W by popping .θ and ending with a word
that takes P.′ from W to V by popping .τ . Thus, the needed cfg-rule may be
represented as follows:

(Q β V) → a(R θ W)(W τ V)

Such a rule is generated for all states V in P.′ except P.′’s start state. Observe
that the right-hand side of a cfg-rule may be represented by a symbol followed
by two lnts.

Finally, we must consider the stopping conditions for word generation by
the grammar. The three types of production rules generated above always
generate at least one lnt. Once all the terminal symbols are generated, how
are the remaining nonterminals eliminated? Observe that if P.′ is in an arbi-
trary state Q, then it may remain in Q without popping or consuming any
input. Therefore, the following rules are needed:

∀Q∈(sm-states P′) (Q EMP Q) → EMP

Note that the right-hand side of a cfg-rule may also be represented using a
symbol.

The representation of the right-hand side of a cfg-rule has variety and
may be defined as follows:

;; A rhs is either:

;; 1. symbol

;; 2. (list symbol lnt)

;; 3. (list symbol lnt lnt)

;; Interpretation:

;; A cfg-rule right hand side is represented as either a

;; symbol or a list with a symbol and either one or two lnt.

We can now define the representation of a cfg-rule as follows:

;; A cfg-rl is a (list lhs ARROW rhs)

;; Interpretation:

;; A cfg-rl represents a cfg-fule as a list with an lhs,

;; an ARROW, and a rhs.
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Finally, to simplify code development, the following function is defined to
construct a cfg-rl:

;; lhs rhs → cfg-rl

;; Purpose: Create a cfg-rl

(define (mk-cfg-rl a-lhs a-rhs) (list a-lhs ARROW a-rhs))

;; Tests for mk-cfg-rl

(check-equal? (mk-cfg-rl 'S 'aSb) (list 'S ARROW 'aSb))
(check-equal? (mk-cfg-rl '(S Z F) '(a (P Z Q)))

(list '(S Z F) ARROW '(a (P Z Q))))

48.2.2 Implementation

Figure 71 displays the body of an implementation for a function, pda2cfg,
to convert a pda to a cfg. It is tested by converting a^nb^n from Fig. 63 and
wcw^r from Fig. 64 into cfgs. The function’s body is a let*-expression that
defines variables for the simple pda obtained from the given pda, the com-
ponents of the simple pda, a new starting nonterminal, and a new bottom
of the stack symbol. The starting cfg-rl is constructed using the generated
starting nonterminal for the left-hand side and the given pda’s start state, the
bottom symbol, and the simple pda’s only final state. To generate the other
cfg-rls, the simple pda’s set of states, not including the start state, and the
simple pda’s rules, not including rules from the start state, are defined. The
production rules for when 0, 1, or 2 elements are pushed are independently
computed by traversing the appropriate rules and the states not including the
start state. The rules to stop word generation are constructed by traversing
the simple pda’s states. To actually build a cfg, a symbol must be generated
for each lnt in the generated production rules. An association table is cre-
ated whose entries contain an lnt and the corresponding nonterminal symbol
generated for it. The table is used to generate the needed cfg-rules (i.e., rules
with no lnts). Finally, the grammar is constructed by calling make-cfg with
the generated starting nonterminal and the states in the generated table,
the simple pda’s alphabet, the generated production rules, and the generated
starting nonterminal.

To generate the production rules for pda-rules that push nothing, the given
rules are traversed. For each rule, the given states are traversed. The needed
traversals are performed using a for*/list-loop. The lhs is constructed
using the current rule’s from-state, the current rule’s only pop element, and
the current state. The rhs is constructed using the current’s rule read element
and an lnt constructed using the current rule’s to-state, EMP, and the current
state. The function is implemented as follows:
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Fig. 71 The function to convert a pda to a cfg
;; pda → cfg Purpose: Convert given pda to a cfg
(define (pda2cfg P)

...
(let* [(p (pda2spda P))

(pstates (sm-states p)) (psigma (sm-sigma p)) (pgamma (sm-gamma p))
(pstart (sm-start p)) (pfinals (sm-finals p)) (prules (sm-rules p))
(start (generate-symbol S (S)))
(bottom (first (filter (λ (s) (not (member s (sm-gamma P))))

pgamma)))
(startr (mk-cfg-rl start (list (sm-start P) bottom (first pfinals))))
(pstates-nostart (remove pstart pstates))
(prules-nostartrls (filter (λ (r)

(not (eq? (first (first r)) pstart)))
prules))

(theta=0-prs (gen-theta=0-prs (filter (λ (r) (eq? (get-push r) EMP))
prules-nostartrls)

pstates-nostart))
(theta=1-prs (gen-theta=1-prs (filter (λ (r) (keep-rule? r 1))

prules-nostartrls)
pstates-nostart))

(theta=2-prs (gen-theta=2-prs (filter (λ (r) (keep-rule? r 2))
prules-nostartrls)

pstates-nostart))
(self-prs (map (λ (s) (mk-cfg-rl (list s EMP s) EMP))

pstates))
(st-list (cons (third startr)

(extract-lnts theta=0-prs theta=1-prs
theta=2-prs self-prs)))

(st-tbl (map (λ (lnt) (list lnt (generate-symbol G (G)))) st-list))
(new-rls (make-cfg-rules startr st-tbl theta=0-prs

theta=1-prs theta=2-prs self-prs))]
(make-cfg (cons start (map second st-tbl)) psigma new-rls start)))

;; Tests for pda2cfg
(define a2nb2n-grammar (pda2cfg aˆnbˆn))
(define wcwˆr-grammar (pda2cfg wcwˆr))

(check-equal? (last (grammar-derive a2nb2n-grammar (a b))) ab)
(check-equal? (last (grammar-derive a2nb2n-grammar (a a b b))) aabb)
(check-equal? (last (grammar-derive wcwˆr-grammar (a c a))) aca)
(check-equal? (last (grammar-derive wcwˆr-grammar (a b c b a))) abcba)

;; (listof pda-rule) (listof state) → (listof cfg-rl)

;; Purpose: Return cfg-rls for given |theta|=0 pda rules

(define (gen-theta=0-prs rls sts)

(for*/list ([r rls]

[s sts])

(mk-cfg-rl (list (get-from r) (first (get-pop r)) s)

(list (get-read r) (list (get-to r) EMP s)))))
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To generate the production rules for pda-rules that push one element,
the given rules are traversed. For each rule, the given states are traversed.
The needed traversals are performed using a for*/list-loop. The lhs is
constructed using the current rule’s from-state, the current rule’s only pop
element, and the current state. The rhs is constructed using the current’s
rule read element and an lnt constructed using the current rule’s to-state,
the current rule’s only push element, and the current state. The function is
implemented as follows:

;; (listof pda-rule) (listof state) → (listof cfg-rl)

;; Purpose: Return cfg-rls for given |theta|=1 pda rules

(define (gen-theta=1-prs rls sts)

(for*/list ([r rls]

[s sts])

(mk-cfg-rl (list (get-from r) (first (get-pop r)) s)

(list (get-read r)

(list (get-to r)

(first (get-push r)) s)))))

To generate the production rules for pda-rules that push two elements,
the given rules are traversed. For each rule, the given states are traversed.
Let us call each of state in this traversal s1. For each s1, the given states
are traversed. Let us call each of state in this second state traversal s2.
The needed traversals are performed using a for*/list-loop. The lhs is
constructed using the current rule’s from-state, the current rule’s only pop
element, and s2. The rhs is constructed using the current’s rule read element
and two lnts. The first lnt is constructed using the current rule’s to-state,
the current rule’s first push element, and s1. The second lnt is constructed
using s1, the current rule’s second push element, and s2. The function is
implemented as follows:

;; (listof pda-rule) (listof state) → (listof cfg-rl)

;; Purpose: Return cfg-rls for the given |theta|=2 pda rules

(define (gen-theta=2-prs rls sts)

(for*/list ([r rls] [s1 sts] [s2 sts])

(mk-cfg-rl (list (get-from r) (first (get-pop r)) s2)

(list (get-read r)

(list (get-to r) (first (get-push r)) s1)

(list s1 (second (get-push r)) s2)))))

To transform the generated cfg-rls to cfg-rules, each set of cfg-rl types
is first traversed to substitute lnts with their corresponding nonterminals and
to eliminate leading EMPs from rhss. For each cfg-rl to stop the word gener-
ation, a cfg-rule is constructed by using the nonterminal for lhs extracted
from the given table and the rule’s right-hand side (i.e., EMP). For each cfg-rl

that pops no elements or pops a single element, a cfg-rule is constructed
by using the nonterminal for lhs extracted from the given table. The rule’s
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right-hand side is constructed by examining the rhs’s first element. If it is
not EMP, a new rhs is constructed by converting the first element and the
nonterminal for the rhs’ lnt (extracted from the given table) to a symbol.
If it is EMP, then a new rhs is constructed using only the nonterminal for
the rhs’ lnt (extracted from the given table). For each cfg-rl that pops
two elements, a cfg-rule is constructed by using the nonterminal for lhs

extracted from the given table. The rule’s right-hand side is constructed by
examining the rhs’s first element. If it is not EMP, a new rhs is constructed
using the first element and the two nonterminals for the rhs’ lnts extracted
from the given table. If the first element is EMP, then a new rhs is constructed
using only the two nonterminals for the rhs’ lnts extracted from the given
table. The function is written as follows:

;; cfg-rl (listof (list lnt nt)) (listof cfg-rl)

;; (listof cfg-rl) (listof cfg-rl) (listof cfg-rl)

;; →
;; (listof cfg-rule)

;; Purpose: Convert all cfg-rls to cfg-rules using given

;; association table

(define (make-cfg-rules startr st-tbl theta=0-prs

theta=1-prs theta=2-prs self-prs)

(cons (mk-cfg-rl (first startr)

(get-nt (third startr) st-tbl))

(append

(map (λ (rl)

(mk-cfg-rl (get-nt (first rl) st-tbl)

(third rl)))

self-prs)

(map (λ (rl)

(mk-cfg-rl

(get-nt (first rl) st-tbl)

(if (not (eq? (first (third rl)) EMP))

(los->symbol (list (first (third rl))

(get-nt (second (third rl))

st-tbl)))

(get-nt (second (third rl)) st-tbl))))

(append theta=0-prs theta=1-prs))

(map (λ (rl)

(mk-cfg-rl

(get-nt (first rl) st-tbl)
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(if (not (eq? (first (third rl)) EMP))

(los->symbol (list (first (third rl))

(get-nt (second (third rl))

st-tbl)

(get-nt (third (third rl))

st-tbl)))

(los->symbol (list

(get-nt (second (third rl))

st-tbl)

(get-nt (third (third rl))

st-tbl))))))

theta=2-prs))))

The extraction of the lnts from the cfg-rls is done by appending the
lnts found in each cfg-rl type and removing duplicates. For rules that pop
0 or 1 element, the returned lnts are the lhs and the second element of
the rhs. For rules that pop 2 elements, the returned lnts are the lhs and
the second and third elements of the rhs. Finally, for rules that stop word
generation only the lhs is returned. The function is implemented as follows:

;; (listof cfg-rl) (listof cfg-rl)

;; (listof cfg-rl) (listof cfg-rl)

;; →
;; (listof lnt)

;; Purpose: Extract the lnts in the given cfg-rl

(define (extract-lnts theta=0-prs theta=1-prs

theta=2-prs self-prs)

(remove-duplicates

(append

(append-map (λ (pr) (list (first pr)

(second (third pr))))

(append theta=0-prs theta=1-prs))

(append-map (λ (pr) (list (first pr)

(second (third pr))

(third (third pr))))

theta=2-prs)

(map first self-prs))))

The remaining auxiliary local functions determine if the rhs of a given
cfg-rl is of a given length and extract from a given association table the
nonterminal associated with a given lnt. These functions are implemented
as follows:
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;; cfg-rl natnum → Boolean

;; Purpose: Determine if rule has a rhs of given length

(define (keep-rule? r len)

(and (not (eq? (get-push r) EMP))

(= (length (get-push r)) len)))

;; lnt (listof (list lnt nt)) → nt

;; Purpose: Extract nonterminal for given lnt from given table

(define (get-nt a-lnt tbl) (second (assoc a-lnt tbl)))

5 For an arbitrary pda, P, let G = (pda2cfg P), prove that L(P) =

L(G). The proof may be done by induction on the length of a derivation.
Start by proving the following claim:

(Q A P) →∗
G x ⇔ (Q x A) �∗ (P EMP EMP)

6 In a simple pda, the only transition from the starting state is ((S.′ EMP

EMP) (A (Z))). Carefully explain why the starting production rule in
the generated grammar is S → (A Z F.′) and not S.′ → (S EMP F.′).

7 The grammar returned by (pda2cfg P) may contain useless nonter-
minals. A useless nonterminal is one that can never be generated in any
derivation. Design and implement a function to remove useless nonter-
minals from a grammar returned by (pda2cfg P).



Chapter 13

Properties of Context-Free Languages

Chapter 12 established that we have two different ways of demonstrating
that a language, L, is context-free. We can either build a cfg for L or we can
build a pda for L. Which ought we use? The answer is that we ought to use
whichever is easier for us. Sometimes, it is easier to design and implement
a pda, and other times, designing and implementing a cfg is easier. This
flexibility is afforded to because we know that for every context-free L, there
is a cfg that generates its members and a pda that accepts its members.

In this chapter, we explore new ways to establish that a language, L, is
context-free. Specifically, we shall study closure properties of context-free lan-
guages. These properties are very much in the spirit of the closure properties
for regular languages studied in Sect. 30. That said, the number of operations
under which context-free languages are closed is fewer. In addition, we shall
explore how to prove that a language is not context-free. This is done by
proving a pumping theorem for context-free languages much like we did for
regular languages.

49 Union

Context-free languages are closed under union. Given two context-free lan-
guages, L.1 and L.2, we shall build a cfg for L.1 .∪ L.2.
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49.1 Design Idea

If L.1 and L.2 are context-free languages, then there are cfgs, G.1, and G.2, such
that L.1 = L(G.1) and L.2 = L(G.2). Without loss of generality, we assume that
(grammar-nts G.1) .∩ (grammar-nts G.2) = .∅. The grammar for L.1 .∪ L.2
nondeterministically decides to simulate a derivation using G.1 or G.2.

A cfg for L.1 .∪ L.2 is built using the following components:

V = (grammar-nts G.1) .∪ (grammar-nts G.2) .∪ {A}
Σ = (grammar-sigma G.1) .∪ (grammar-sigma G.2)

R = (grammar-rules G.1) .∪ (grammar-rules G.2) .∪
{(S ARROW (grammar-start G.1)) (S ARROW (grammar-start G.2))}

S = A = (generate-symbol 'S (append (grammar-nts G.1) (grammar-nts G.2)))

A is a freshly generated nonterminal symbol for the starting nonterminal,
such that A ./∈ (grammar-nts G) .∪ (grammar-nts H). The set of nonterminal
symbols contains A, G.1’s nonterminals and G.2’s nonterminals. The alphabet
contains G.1’s and G.2’s alphabets. The set of rules has G.1’s and G.2’s rules. In
addition, the set of rules has a transition from A to G.1’s starting nonterminal
and from A to G.2’s starting nonterminal. These rules give the grammar the
choice to use G.1 or G.2 for a derivation.

49.2 Implementation

The cfg constructor takes as input two cfgs, G1 and G2, and returns a cfg.
In order to guarantee that the given grammars do not share any nonterminals
the nonterminals in G2 are renamed using FSM’s grammar-rename-nts. The
starting symbol for the constructed grammar, A, is generated, making sure it
is not a nonterminal of either G1 or the renamed G2. The cfg constructor is
called with a list that contains A and the nonterminals in G1 and the renamed
G2, a list containing G1’s and in renamed G2’s alphabets without duplicates,
a list with the two new rules from A and all the rules in G1 and renamed G2,
and A. An implementation of the constructor is displayed in Fig. 72.

The constructor is tested using a2nb2n from Sect. 39, numb>numa from
Sect. 40, and MULT3-as from Fig. 56. Grammars are constructed for the
union of a2nb2n and numb>numa and for union of numb>numa and MULT3-as.
For each of these constructed grammars, words not in the union language as
well as words in the language of one input grammar but not the other are
tested.



49 Union 309

Fig. 72 A constructor for the union of two cfgs
;; cfg cfg → cfg
;; Purpose: Construct a grammar for the union of the given grammars
(define (cfg-union G1 G2)

(let* [(H (grammar-rename-nts (grammar-nts G1) G2))
(G-nts (grammar-nts G1)) (H-nts (grammar-nts H))
(G-sigma (grammar-sigma G1)) (H-sigma (grammar-sigma H))
(G-rules (grammar-rules G1)) (H-rules (grammar-rules H))
(G-start (grammar-start G1)) (H-start (grammar-start H))
(A (generate-symbol S (append G-nts H-nts)))]

(make-cfg (cons A (append G-nts H-nts))
(remove-duplicates (append G-sigma H-sigma))
(append (list (list A ARROW G-start)

(list A ARROW H-start))
G-rules
H-rules)

A)))

(define a2nb2nUnumb>numa (cfg-union a2nb2n numb>numa))
(define numb>numaUMULT3-as (cfg-union numb>numa MULT3-as))

(check-equal? (grammar-derive a2nb2nUnumb>numa (b a))
"(b a) is not in L(G).")

(check-equal? (grammar-derive a2nb2nUnumb>numa (b a a a b b))
"(b a a a b b) is not in L(G).")

(check-equal? (last (grammar-derive a2nb2nUnumb>numa (a b)))
ab)

(check-equal? (last (grammar-derive a2nb2nUnumb>numa (a a b b)))
aabb)

(check-equal? (last (grammar-derive a2nb2nUnumb>numa (b b)))
bb)

(check-equal? (last (grammar-derive a2nb2nUnumb>numa (b a a b b)))
baabb)

(check-equal? (grammar-derive numb>numaUMULT3-as (a a a a b b))
"(a a a a b b) is not in L(G).")

(check-equal? (grammar-derive numb>numaUMULT3-as (a a))
"(a a) is not in L(G).")

(check-equal? (last (grammar-derive numb>numaUMULT3-as (b b b)))
bbb)

(check-equal? (last (grammar-derive numb>numaUMULT3-as (a b a b a b)))
ababab)

49.3 Proof

Let G1 and G2 be cfgs, let L = L(G1).∪L(G2), and let G = (cfg-union G1

G2).

Theorem 1 Context-free languages are closed under union.
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Proof
Assume S →.G w. By construction of G, the derivation of w starts with
(grammar-start G), and then either (grammar-start G1) is generated or
(grammar-start G2) is generated. If (grammar-start G1) is generated,
then G simulates G1. If (grammar-start G2) is generated, then G simulates
G2. Recall that (grammar-nts G1).∩(grammar-nts G2) = .∅. This means
that either G1 generates w or G2 generates w. Thus, w .∈ L(G1).∪L(G2). �

1 Why does the proof that context-free languages are closed under union
require that (grammar-nts G1).∩(grammar-nts G2) = .∅. What can go
wrong if (grammar-nts G1).∩(grammar-nts G2) .�= .∅?

50 Concatenation

Context-free languages are closed under concatenation. Given two context-
free languages, L.1 and L.2, we shall build a cfg for L.1L2, the language of all
words that start with a word in L.1 followed by a word in L.2.

50.1 Design Idea

There are cfgs, G.1 and G.2, such that L.1 = L(G.1) and L.2 = L(G.2). Without
loss of generality, we assume that (grammar-nts G.1) .∩ (grammar-nts G.2)

= .∅. We shall build a grammar, G, for L.1L.2.
Every word in L.1L.2 may be written as w = xy, such that x .∈ L.1 and y .∈

L.2. A cfg for L.1L.2 is built using the following components:

V = (grammar-nts G.1) .∪ (grammar-nts G.2) .∪ {A}
Σ = (grammar-sigma G.1) .∪ (grammar-sigma G.2)

R = (grammar-rules G.1) .∪ (grammar-rules G.2) .∪
{S ARROW (grammar-start G.1)(grammar-start G.2)}

S = A = (generate-symbol 'S (append (grammar-nts G.1) (grammar-nts G.2)))

A is a freshly generated starting nonterminal for the grammar constructed
such that A ./∈ (grammar-nts G.1) .∪ (grammar-nts G.2). The constructed
grammar starts by generating (grammar-start G.1)(grammar-start G.2).
G.1 is simulated by G to derive x from (grammar-start G.1), and G.2 is sim-
ulated by G to derive y from (grammar-start G.2).
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Fig. 73 A constructor for the concatenation of two context-free languages
;; cfg cfg → cfg
;; Purpose: Build a cfg for the concatenation of the given cfgs
(define (cfg-concat G1 G2)

(let* [(G2 (grammar-rename-nts (grammar-nts G1) G2))
(G1-nts (grammar-nts G1)) (G2-nts (grammar-nts G2))
(G1-sigma (grammar-sigma G1)) (G2-sigma (grammar-sigma G2))
(G1-rules (grammar-rules G1)) (G2-rules (grammar-rules G2))
(G1-start (grammar-start G1)) (G2-start (grammar-start G2))
(A (generate-symbol S (append G1-nts G2-nts)))]

(make-cfg (cons A (append G1-nts G2-nts))
(remove-duplicates (append G1-sigma G2-sigma))
(append

(list (list A ARROW (los->symbol (list G1-start G2-start))))
G1-rules
G2-rules)

A)))

;; Tests for cfg-concat
(define a2nb2n-numb>numa (cfg-concat a2nb2n numb>numa))
(define MULT3-as-a2nb2n (cfg-concat MULT3-as a2nb2n))

(check-equal? (grammar-derive a2nb2n-numb>numa (b a))
"(b a) is not in L(G).")

(check-equal? (grammar-derive a2nb2n-numb>numa (a a a))
"(a a a) is not in L(G).")

(check-equal? (grammar-derive a2nb2n-numb>numa (a a b b))
"(a a b b) is not in L(G).")

(check-equal? (last (grammar-derive a2nb2n-numb>numa (b b b))) bbb)
(check-equal? (last (grammar-derive a2nb2n-numb>numa (a b b))) abb)
(check-equal? (last (grammar-derive a2nb2n-numb>numa (a a b b b b b)))

aabbbbb)

(check-equal? (grammar-derive MULT3-as-a2nb2n (a a))
"(a a) is not in L(G).")

(check-equal? (grammar-derive MULT3-as-a2nb2n (b b b b a))
"(b b b b a) is not in L(G).")

(check-equal? (last (grammar-derive MULT3-as-a2nb2n (a a b b))) aabb)
(check-equal? (last (grammar-derive MULT3-as-a2nb2n (b b b b b b))) bbbbbb)

50.2 Implementation

Based on our design idea, Fig. 73 displays the implementation of a cfg con-
structor that takes as input, G1 and G2, two cfgs. As done by cfg-union, the
nonterminals of one of the given grammars are renamed to guarantee that
the intersection of nonterminals is empty. A fresh symbol for the constructed
grammar’s starting nonterminal is generated. To construct the grammar, the
fresh starting nonterminal is added to the nonterminals of the given gram-
mars, and a new starting rule that generates the concatenation of the given
grammars’ starting nonterminals is added to the rules of the given grammars.
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50.3 Proof

Theorem 2 Context-free languages are closed under concatenation.

It is straightforward to see that L((cfg-concat G1 G2)) is a cfg for
L(G1)L(G2). The proof is left as an exercise.

2 Prove Theorem 2.

3 Why is it necessary to rename G2’s nonterminals in Fig. 73? What
can go wrong if (grammar-nts G1)∩(grammar-nts G2) �= ∅?

51 Kleene Star

Context-free languages are closed under Kleene star. Given a context-free
language, L, we shall build a cfg for L.*, the language of all words obtained
by concatenating 0 or more words in L.

51.1 Design Idea

Given that L is a context-free language, there exists a G = (make-cfg N Σ
R S) such that L = L(G). A cfg for L.* must generate 0 or more words in
L. Each word in L is generated by S. Thus, a cfg for L.* must generate 0 or
more Ss.

A cfg for L.* may be constructed using the following components:

V = (grammar-nts G) .∪ {A}
Σ = (grammar-sigma G)

R = (grammar-rules G) .∪ {(S ARROW EMP) (S ARROW SS}
S = A = (generate-symbol 'S (grammar-nts G))

A fresh new symbol, A, is generated for the starting nonterminal. The set of
nonterminals is defined by adding A to G’s nonterminals. The alphabet is G’s
alphabet. To obtain the set of rules, two new rules, to generate an arbitrary
number of G’s starting nonterminal, are added to G’s rules.
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51.2 Implementation

The implementation of the cfg constructor is left as an exercise.

4 Implement, (cfg-ks G), a cfg constructor for L.*.

51.3 Proof

Theorem 3 Context-free languages are closed under Kleene star.

The proof of the theorem is left as an exercise.

5 Prove Theorem 3 by showing that L* = L((cfg-ks G)), where L is
an arbitrary context-free language such that L = L(G).

52 The Pumping Theorem for Context-Free Languages

Like regular languages, there is an infinite number of context-free languages.
Also like regular languages, an infinite context-free language exhibits peri-
odicity to create longer and longer words. For example, a derivation using a
cfg may repeatedly cycle through a set of nonterminals generating the same
terminal symbols to obtain a longer word in the language.

There are, however, languages in the universe that are not context-free. In
this section, we explore how to prove that a language is not context-free. We
shall prove a pumping theorem for context-free languages that may be used
to prove that a language is not context-free. This, of course, means that any
such language is also not regular.

52.1 Yield Length

Before proceeding with the theorem, it is useful to bound the length of a
parse tree’s yield. That is, we wish to describe a parse tree’s yield’s length in
terms related to the parse tree and to the grammar. Given a grammar G, we
define .κ as the longest right-hand side of any rule. For instance, consider the
following cfgs:
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;; L = a^nb^n

(define a2nb2n (make-cfg '(S)
'(a b)

`((S ,ARROW ,EMP)

(S ,ARROW aSb))

'S))

;; L = w | w in (a b)* AND w has more b than a

(define numb>numa (make-cfg '(S A)

'(a b)

`((S ,ARROW b)

(S ,ARROW AbA)

(A ,ARROW AaAbA)

(A ,ARROW AbAaA)

(A ,ARROW ,EMP)

(A ,ARROW bA))

'S))

For a2nb2n, .κ is 3 because its longest right-hand side is aSb. For numb>numa,
.κ is 5.

Given a cfg G, the yield’s length for any parse tree generated by G is
bounded by the height of the tree and .κ. Let T be a parse tree generated by
G of height h.

Lemma 1 T’s yield’s length .≤ .κh.

Proof

The proof is by induction on h.

Base case: h = 1
A parse tree of height 1 means that a single rule has been used. This means
that the yield’s length may be at most .κ. Thus, yield’s length .≤ .κ = .κ1 = .κh.

Inductive Step
Assume: T’s yield’s length .≤ .κn, for h = n
Show: T’s yield’s length .≤ .κn+1, for h = n + 1

Consider the structure of a parse tree of height n + 1. It has a root and at
most .κ subtrees of height n. Let .Ti be any of these subtrees. By inductive
hypothesis, .Ti’s yield’s length .≤ κn. If every .Ti’s yield’s length is .κn then T’s
yield’s length is at most .κ ∗ κn. Thus, T’s yield’s length .≤ .κn+1. �

Let w.∈L(G) such that .|w.| > κh. Observe that Lemma 1 informs us that w’s
parse tree must have a path longer than h.
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Fig. 74 Parse tree for w with a repeated nonterminal

T

T′

T′′ t

w = u v x y z

S

A

A

52.2 The Pumping Theorem

The following definitions are assumed to state and prove the theorem:

G = (make-cfg V Σ R S) v = |V| w ∈ L(G)

Theorem 4 If .|w.| .> .κ|V | then w = uvxyz such that (v .�= EMP .∨ y .�= EMP),
.∃k .|vxy.| .≤ k, and .∀n.≥0 uv.nxy.nz .∈ L(G).

The theorem states that if w is long enough (i.e., .|w.| > κ|V |), then it may
be divided into five subwords (i.e., u, v, x, y, and z) such that v or y are
not empty, the length of vxy is at most k (a constant derived from the parse
tree), and any word obtained by repeating or suppressing both v and y the
same number of times is in L(G). The ability to repeat v and y an arbitrary
number of times captures the periodicity mentioned above and makes it clear
that G must generate an infinite language.

Proof
Let T be the parse tree for w rooted at S that has the smallest number of
leaves among all possible parse trees for w. Given that .|w.| > κ|V |, there is a
path in T (from S to a leaf) of length at least .|V.| + 1. This path has .|V.| +
2 nodes of which the last must be a terminal symbol (i.e., a member of w).
Thus, such a path must have .|V.| + 1 nonterminals. This means that there
must be a repeated nonterminal on this path.

The parse tree for w may be visualized as displayed in Fig. 74. The parse
tree, T, is rooted at S and generates w. During the derivation S generates
uAz. That is, S generates the beginning, u, and the end, z, of w with the
nonterminal A in between. The parse tree rooted at this A is T.

′ and A gen-
erates vAy. Observe that A is a repeated nonterminal. The parse tree rooted
at the second A is T.

′′, and it generates x.

Observe that the part of T.
′ excluding T.

′′ may be repeated an arbitrary num-
ber of times or may be excluded resulting in a word that is in L(G). That is,
uv.nx.ynz.∈L(G) for n.≥0.
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Let t be the height of T.
′ (as indicated in Fig. 74). Observe that the yield

of T.
′, vxy, has a length of at most .κt. This is the constant k that bounds

the length of the subword that contains the parts that may be repeated an
arbitrary number of times: .|vxy.| ≤ κt = k.

Finally, observe that if vy = EMP, then there is a parse tree with fewer leaves
that generates w. Specifically, the following derivation is captured by a parse
tree with fewer leaves:

S →∗ uAz →∗ uxz = w

That is, the smaller parse tree omits the derivation of A from A. This contra-
dicts our assumption that T is the parse tree for w with the smallest number
of leaves among all possible parse trees for w. Therefore, vy .�= EMP. This
means that .0 < |vxy| ≤ k ≤ κ|V |. �

52.3 Applying the Pumping Theorem for Context-Free
Languages

The pumping theorem is useful to prove that a language, L, is not context-
free. We abbreviate .κv as K. As with the use of the pumping theorem for
regular languages, think of the use of the pumping theorem for context-free
languages as a game against an opponent that will try to demonstrate that
the conditions of the theorem can be satisfied. You pick a word that is long
enough. That is, choose a word w such that .|w.| ≥ K. Your opponent searches
for values for u, v, x, y, and z such that vy .�= EMP, .|vxy.| ≤ K, and .∀n .≥ 0

uv.nxy.nz .∈ L. If no such values exists, then you may conclude that L is not
context-free.

Claim L = {a.nb.nc.n| n .≥ 0} is not context-free.

Proof

Let w = a.kb.kc.k. We must determine the possible values vxy may take. We
can observe that vxy may not contain as, bs, and cs because the length of
vxy must be less than or equal to k. Observe that vy may contain only one
letter variety or may contain two letter varieties by straddling the border
between as and bs or between bs and cs. We prove that L is not context-free
as follows:
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vy Argument

a.+ Pump up once on v and y. The resulting word has more as than bs
and than cs. Therefore, it is not in L.

b.+ Pump up once on v and y. The resulting word has more bs than as
and than cs. Therefore, it is not in L.

c.+ Pump up once on v and y. The resulting word has more cs than as
and than bs. Therefore, it is not in L.

a.+b.+ Pump up once on v and y. The resulting word has more as and b than
cs.
Therefore, it is not in L.

b.+c.+ Pump up once on v and y. The resulting word has more bs and c than
as.
Therefore, it is not in L.

No matter where the vxy window is placed in w, a word that is not in w may
be generated. Therefore, we may conclude that L is not context-free. �

Claim L = {a.n .| n is a square} is not context-free.

Proof

Let w = a.k
2

. Clearly, w is in L. Given that w only contains as then vy =

a.i, where .i > 0. If we pump up once the resulting word is a.K
2+i. Observe

that there are no words in L with a length greater than .|aK2 | and less than

.|a(K+1)2 |. That is, after a.K2

the next word in L has length K.
2 + 2K + 1. In

order for a.K
2+i to be in L, i must at a minimum be of length 2K + 1. This,

however, is impossible because .|vxy.| must be less than or equal to k. Thus, i
cannot be greater than or equal to 2k + 1.

No matter where the vxy window is placed in w, a word that is not in w may
be generated. Therefore, we may conclude that L is not context-free. �

6 Let Σ = {a b}. Use the pumping theorem for context-free languages
to show that L = {www .| w .∈ Σ.

∗} is not context-free.

7 Let Σ = {a b}. Use the pumping theorem for context-free languages
to show that L = {w .| w has equal number of as, bs, and cs} is not
context-free.

8 Let Σ = {a b}. Use the pumping theorem for context-free languages
to show that L = {a.mb.nc.p .| n .≤ minimum(m, p)} is not context-free.

9 Let Σ = {a b}. Use the pumping theorem for context-free languages
to show that L = {wxw.

R
.| x,w .∈ Σ.

∗ ∧ |w| = |x|} is not context-free.
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10 LetΣ = {a b}. Use the pumping theorem for context-free languages
to show that L = {ww .| w .∈ Σ.

∗} is not context-free.

11 LetΣ = {a b}. Use the pumping theorem for context-free languages
to show that L = {w .| w is a palindrome with equal number of as and
bs} is not context-free.

53 Context-Free Languages Are Not Closed Under
Intersection nor Complement

Unlike regular languages, context-free languages are not closed under inter-
section nor complement. The following theorems establish these facts.

Theorem 5 Context-free languages are not closed under intersection.

Proof

Let L.1 = {a.nb.nc.m .| m,n .≥ 0} and L.2 = {a.mb.nc.n .| m,n .≥ 0}. Observe that
both of these languages are context-free. Consider L = L.1 .∩ L.2. Clearly, L =
{a.nb.nc.n .| n .≥ 0}, which we know is not context-free. Therefore, context-free
languages are not closed under intersection. �
Theorem 6 Context-free languages are not closed under complement.

Proof

L.1 .∩ L.2 = (complement ((complement L.1) .∪ (complement L.2))). If
context-free languages were closed under complement, then they would also
be closed under intersection, which we know they are not. Therefore, context-
free languages are not closed under complement. �

54 Intersection of a Context-Free Language
and a Regular Language

Although context-free languages are not closed under intersection, there ex-
ist context-free languages that result in a context-free language when inter-
sected. Recall that all regular languages are context-free. We claim that the
intersection of a context-free language and a regular language is a context-
free language. How can we prove this? As you may have already guessed,
we ought to be able to develop a constructive proof and, therefore, a new
constructor for a context-free language.
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54.1 Design Idea

If L.1 is a context-free language and L.2 is a regular language, then there is a
pda, M.1 = (make-ndpda K.1 Σ.1 Γ S.1 F.1 R.1), and a dfa, M.2 = (make-dfa

K.2 Σ.2 S.2 F.2 R.2), such that L.1 = L(M.1) and L.2 = L(M.2). How can we con-
clude that L.1 .∩ L.2 is a context-free language? We shall build a pda that
simultaneously simulates M.1 and M.2. This new pda shall only accept if both
M.1 and M.2 accept.

The basic idea is to have each state of the new pda be a super state that
represents a state in M.1 and a state in M.2. The new pda shall simulate all the
transitions of M.1. In addition, it will also track the transitions made by M.2. If
M.1 has a rule that moves from P to Q on an a, then for every state Y.∈M.2, the
new pda has a rule that moves from super state (P Y) to super state (Q T),
such that (Y a T) .∈ R.2. If M.1 has a rule that moves from P to Q on EMP, then
for every state Y.∈M.2, the new pda has a rule that moves from super state (P
Y) to super state (Q Y) to simulate that M.2 does not change state.

We define push/pop elements, a super state, and pda super rule as follows:

;; Push or pop elements, stacke, is either

;; 1. EMP

;; 2. (listof symbol)

;; A super state, ss, is a (list state state)

;; A pda super rule, ssrule, is:

;; (list (list ss symbol stacke) (list ss stacke))

The first state in an ss is a state in M.1, and the second state is a state in M.2.
The super states for the new pda are obtained by computing the Cartesian
product of M.1’s and M.2’s states. The new pda’s input and stack alphabets are
those of M.1. The constructed pda’s starting ss represents M.1’s and M.2’s starting
states. The final sss for the constructed pda are given by the Cartesian
product of M.1’s and M.2’s final states. Finally, to build the pda, a state must
be generated for each sss and substituted into the set of states, the starting
state, the final states, and the rules of the constructed pda.

54.2 Implementation

Based on our design idea, an implementation of the constructor is outlined
in Fig. 75. The body of the function is a let*-expression that locally defines
the set of super states, the starting super state, and the set of final super
states. An auxiliary function is used to compute the Cartesian product of
two (listof state). The rules of the given pda are partitioned into those
that do not read from the input tape and those that do. Each of these sets
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Fig. 75 Constructor for context-free and regular language intersection
;; pda dfa → pda Purpose: Build intersection pda from given machines
(define (pda-intersect-dfa a-pda a-dfa)

;; (listof state) (listof state) → (listof ss)
;; Purpose: Create a list of super states
(define (cartesian-product pda-sts dfa-sts) . . .)

;; (listof pda-rule) (listof state) → (listof ssrule)
;; Purpose: Create ssrules for given empty transition pda-rules
(define (make-EMP-rls EMP-pda-rls dfa-sts) . . .)

;; (listof pda-rule) (listof state) (listof dfa-rls) → (listof ssrule)
;; Purpose: Create ssrules for given nonempty transition pda-rules
(define (make-nonEMP-rls non-EMP-pda-rls dfa-sts dfa-rls) . . .)

;; (listof ss) → (listof (list ss state))
;; Purpose: Create table associating given super states with a new state
(define (make-ss-table K) . . .)

;; (listof ssrule) (ss → state) → (listof pda-rule)
;; Purpose: Convert ssrules to pda-rules
(define (convert-ssrules ss-rls ss->state) . . .)

(let* [(pda-sts (sm-states a-pda)) (dfa-sts (sm-states a-dfa))
(pda-rls (sm-rules a-pda)) (dfa-rls (sm-rules a-dfa))
(K (cartesian-product pda-sts dfa-sts))
(start (list (sm-start a-pda) (sm-start a-dfa)))
(F (cartesian-product (sm-finals a-pda) (sm-finals a-dfa)))
(non-EMP-pda-rls (filter

(λ (r) (not (eq? (second (first r)) EMP))) pda-rls))
(EMP-pda-rls (filter (λ (r) (eq? (second (first r)) EMP)) pda-rls))
(non-EMP-rls (make-nonEMP-rls non-EMP-pda-rls dfa-sts dfa-rls))
(EMP-rls (make-EMP-rls EMP-pda-rls dfa-sts))
(ss-tbl (make-ss-table K))
(ss->state (λ (ss) (second (assoc ss ss-tbl))))]

(make-ndpda (map ss->state K) (sm-sigma a-pda) (sm-gamma a-pda)
(ss->state start) (map ss->state F)
(convert-ssrules (append non-EMP-rls EMP-rls) ss->state))))

are converted to ss-rules using an auxiliary function. A table is created
that associates each ss with a freshly generated state by calling an auxiliary
function. This table is used to define a function, ss->state, that consumes
a ss and returns its associated freshly generated state. Finally, the pda is
constructed by using this function to substitute sss with their associated
state.

The Cartesian product of two (listof state) is computed using a
for*/list. For every state in the first given list, the states in the second
given list are traversed. Each super state in constructed by creating a list
with the current state from the first list and the current state from the sec-
ond list. The function is implemented as follows:
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;; (listof state) (listof state) → (listof ss)

;; Purpose: Create a list of super states

(define (cartesian-product pda-sts dfa-sts)

(for*/list [(s1 pda-sts) (s2 dfa-sts)] (list s1 s2)))

The ssrules for the given pda’s transitions that consume no input are
constructed using the states from the dfa. A for*/list loop is used to
traverse the given states for each of the given rules. For the current rule, r,
and the current state, s, an ssrule is constructed. The triple of this rule
contains the ss built from the from-state in r and s, EMP, and the stacke

popped by r. The double of the rule contains the ss built from the to-state
in r and the stacke pushed by r. The function is implemented as follows:

(define (make-EMP-rls EMP-pda-rls dfa-sts)

(for*/list [(r EMP-pda-rls) (s dfa-sts)]

(list (list (list (first (first r)) s)

EMP

(third (first r)))

(list (list (first (second r)) s)

(second (second r))))))

The ssrules for the given pda’s transitions that consume input are con-
structed using the states and the rules from the dfa. The construction process
is the same as the ones used for the pda’s transitions that consume no input
with two exceptions. Instead of EMP, the element consumed by the current
pda-rule, i, is used. Instead of using s, the current dfa state to build the
destination super state, the destination super state is built using the state
the dfa transitions to from s on i. The function is implemented as follows:

(define (make-nonEMP-rls non-EMP-pda-rls dfa-sts dfa-rls)

(for*/list [(r non-EMP-pda-rls) (s dfa-sts)]

(list (list

(list (first (first r)) s)

(second (first r))

(third (first r)))

(list

(list

(first (second r))

(third

(first

(filter (λ (rl)

(and (eq? (first rl) s)

(eq? (second rl)

(second (first r)))))

dfa-rls))))

(second (second r))))))
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The ss-table is constructed by traversing the generated super states. For
each super state, a fresh state is generated using FSM’s generate-symbol.
The ssrules are converted by traversing them. For each, its super states
are converted to a state using ss->state. The functions are implemented as
follows:

(define (make-ss-table K)

(for*/list [(ss K)] (list ss (generate-symbol 'T '(T)))))

(define (convert-ssrules ss-rls ss->state)

(for*/list [(r ss-rls)]

(list

(list (ss->state (first (first r)))

(second (first r))

(third (first r)))

(list (ss->state (first (second r)))

(second (second r))))))

Finally, tests are written using M (the dfa from Sect. 21.1), NO-ABAA (the
dfa from Fig. 18), and a^nb^n (the pda from Fig. 63). A pda is defined for
the intersection of a^nb^n with each of the dfas. Words that are rejected
and accepted in each of the intersection languages are used to write tests as
follows:

;; Tests for pda-intersect-dfa

(define a^nb^nIM (pda-intersect-dfa a^nb^n M))

(define a^nb^nINO-ABBA (pda-intersect-dfa a^nb^n NO-ABAA))

(check-equal? (sm-apply a^nb^nIM '()) 'reject)
(check-equal? (sm-apply a^nb^nIM '(a b b)) 'reject)
(check-equal? (sm-apply a^nb^nIM '(a a b b)) 'reject)
(check-equal? (sm-apply a^nb^nIM '(a b)) 'accept)

(check-equal? (sm-apply a^nb^nINO-ABBA '(b b)) 'reject)
(check-equal? (sm-apply a^nb^nINO-ABBA '(a a b)) 'reject)
(check-equal? (sm-apply a^nb^nINO-ABBA '()) 'accept)
(check-equal? (sm-apply a^nb^nINO-ABBA '(a a b b)) 'accept)

54.3 Proof

Theorem 7 The intersection of a context-free language and a regular lan-
guage is context-free.

Proof (Sketch)
Let Q be a pda, let D be a dfa, and let M = (pda-intersect-dfa Q D). By
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construction, M simulates the transitions of both Q and D. M starts its
simulations in a state that represents Q’s and D’s starting states and only
accepts if both Q and D accept. This means that all accepted strings must
be in L(Q) and L(D). Thus, L(M) = L(Q) ∩ L(D). �

The previous theorem may be used to prove a language, L, is context-
free. To do so, we must show that L is obtained from the intersection of a
context-free language and a regular language.

Claim L = { w∈{a b}∗| w does not contain abaa and has equal number of
as and bs.} is context-free.

Proof The language of all words that do not contain abaa is decided by NO-
ABAA from Fig. 18. Thus, L(NO-ABAA) is regular. The language, E, of all
words that have an equal number of as and bs is generated by the following
context-free grammar:

S → EMP

→ aSb

→ bSa

→ aSbSbSa

→ bSaSaSb

Thus, E is context-free. Observe that L = L(E) ∩ L(NO-ABAA). By Theo-
rem 7, we may conclude that L is context-free. �

12 Let P1 and P2 be pdas. Show how to construct a pda for L(P1) ∪
L(P2), thus providing an alternate proof for Theorem 1. Make sure to
implement and test your construction algorithm.

13 Let P1 and P2 be pdas. Show how to construct a pda for L(P1)L(P2),
thus providing an alternate proof for Theorem 2. Make sure to imple-
ment and test your construction algorithm.

14 Let P1 be a pda. Show how to construct a pda for L(P1)
∗, thus

providing an alternate proof for Theorem 3. Make sure to implement
and test your construction algorithm.

15 Let C be a context-free language and let R be a regular language.
Consider the language, L(C - R), of all words in C that are not in R.
Is L(C - R) context-free? If so, implement a constructor for L(C - R).
Otherwise, explain why L(C - R) may not be context-free.

16 Let C be a context-free language and let R be a regular language.
Consider the language, L(R - C), of all words in R that are not in C.
Is L(R - C) context-free? If so, implement a constructor for L(R - C).
Otherwise, explain why L(R - C) may not be context-free.



Chapter 14

Deterministic PDAs

In this chapter we explore deterministic pdas in more detail. As for a dfa,
a deterministic pda’s transition relation is a function. That is, from a given
configuration, C.i, there is at most one transition that is applicable. That is,
the pda never has a choice of what to do next. For this to be the case the
pda’s transitions must satisfy the following constraints:

1. There are no pair of transitions that offer a choice on which to use
2. For all accepting states, Q, there are no transitions of this nature: ((Q

EMP EMP) (P a)). That is, the machine does not have to choose between
continuing with the computation or accepting.

Observe that the second constraint means that any transition out of a final
state must consume input or pop an element off the stack.

In our study of finite-state automata, we discovered that dfas and ndfas
are equivalent. That is, given an ndfa we can construct a dfa that decides
the same language. The natural question that arises is: Given a nondeter-
ministic pda, can a deterministic pda that decides the same language be
constructed? If this is possible then, much like for finite-state machines, we
are free to design a pda using nondeterminism with the assurance that it can
transformed into a deterministic pda and implemented in any programming
language beyond FSM.

55 A Deterministic pda for wcwR

To start, we shall become familiar with designing a deterministic pda. The
process is almost the same as designing a nondeterministic pda. The differ-
ence, of course, is that the pda must have a transition function. To explore
such a design we first revisit designing a machine to decide L = wcw.R.
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55.1 Design Idea

The nondeterministic pda’s operation for L developed in Sect. 45 may be
summarized as follows:

1. Nondeterministically move from S, the starting state, to P

2. In P, accumulate w on the stack in reversed order and move to Q upon
reading a c without modifying the stack.

3. In Q, match the elements of w.R with the elements on the stack and non-
deterministically move to, F, the final state.

A deterministic pda for Lmust avoid nondeterministic transitions. Observe
that the nondeterministic pda operates in two phases. Before reading c, it
pushes w onto the stack. After reading c, it matches w.R with the elements on
the stack. The phases are clearly delineated around reading c. This means a
deterministic pda may decide L as follows:

1. Before reading c, push read elements onto the stack
2. After reading c, match read elements with elements onto the stack

55.2 Name, Alphabets, and Unit Tests

A descriptive name is dwcw^r. The input alphabet is {a b c} and the stack
alphabet is {a b}.

The units tests illustrate words that are and that are not in L. Sample
tests are:

(check-equal? (sm-apply dwcw^r '())) 'reject)
(check-equal? (sm-apply dwcw^r '(a b b a)) 'reject)
(check-equal? (sm-apply dwcw^r '(a a)) 'reject)
(check-equal? (sm-apply dwcw^r '(a b b c b b a b))

'reject)
(check-equal? (sm-apply dwcw^r '(a c a)) 'accept)
(check-equal? (sm-apply dwcw^r '(b a c a b)) 'accept)
(check-equal? (sm-apply dwcw^r '(b b a c a b b)) 'accept)

55.3 Condition, States, Transition Function, and
Implementation

The design idea suggests the need for two states: one for each phase around
reading a c. In the first state, S, the elements before c are pushed onto the
stack. This state is documented as follows:

S: ci = {a b}* AND stack = ciR, starting state
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Fig. 76 A deterministic pda for wcw.R

#lang fsm
;; L = wcwˆR
;; State Documentation
;; S: ci = a b* AND stack = ciˆR
;; F: ci = xycyˆR AND stack = xˆR
(define dwcwˆr (make-ndpda (S F)

(a b c)
(a b)
S
(F)
(((S a ,EMP) (S (a)))
((S b ,EMP) (S (b)))
((S c ,EMP) (F ,EMP))
((F a (a)) (F ,EMP))
((F b (b)) (F ,EMP)))))

(check-equal? (sm-apply dwcwˆr ()) reject)
(check-equal? (sm-apply dwcwˆr (a b b a)) reject)
(check-equal? (sm-apply dwcwˆr (a a)) reject)
(check-equal? (sm-apply dwcwˆr (a b b c b b a b)) reject)
(check-equal? (sm-apply dwcwˆr (a c a)) accept)
(check-equal? (sm-apply dwcwˆr (b a c a b)) accept)
(check-equal? (sm-apply dwcwˆr (b b a c a b b)) accept)

In the second state, F, a c has been read and each read element after c has
been matched. This means that we may think of w as equal to xy, where
x is the unmatched part and y is the matched part. Under this light, the
consumed input is wcy.R and the stack is x.R. This state is documented as
follows:

F: ci = xycyR AND stack = xR, final state

In S, the machine pushes as and bs onto the stack without changing states.
If a c is read the machine transitions to F to begin the second phase. The
needed transition rules are:

((S a ,EMP) (S (a)))

((S b ,EMP) (S (b)))

((S c ,EMP) (F ,EMP))

In F, the machine matches each read a or b with the element on the top
of the stack and does not change state. The needed transitions are:

((F a (a)) (F ,EMP))

((F b (b)) (F ,EMP))

Observe that there are no nondeterministic choices that the machine must
make using the rules above. Therefore, if the machine is correct, we have
that L is a deterministic context-free language. The implementation of the
machine is displayed in Fig. 76.
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55.4 State Invariant Predicates

The invariant predicate for S determines if the consumed input only contains
as and bs and that the consumed input and the stack reversed are equal. It
is implemented as follows:

;; word stack → Boolean

(define (S-INV ci s)

(and (andmap (λ (s) (or (eq? s 'a) (eq? s 'b))) ci)

(equal? ci (reverse s))))

(check-equal? (S-INV '(c) '()) #f)

(check-equal? (S-INV '(b a) '(b a)) #f)

(check-equal? (S-INV '() '()) #t)

(check-equal? (S-INV '(a b b) '(b b a)) #t)

The invariant predicate for F determines that a c has been read, that the
consumed input is of the form xycy.R and that the stack equals x.R. A local
variable may be defined for the subword before the c and from it x and y are
extracted. The predicate invariant is implemented as follows:

;; word stack → Boolean

(define (F-INV ci s)

(and (member 'c ci)

(let* [(w (takef ci (λ (x) (not (eq? x 'c)))))
(x (take ci (length s)))

(y^R (drop ci (add1 (length w))))]

(and (equal?

ci

(append x (reverse y^R) (list 'c) y^R))

(equal? s (reverse x))))))

(check-equal? (F-INV '(a b c) '()) #f)

(check-equal? (F-INV '(a a c) '(a)) #f)

(check-equal? (F-INV '(a b) '(b a)) #f)

(check-equal? (F-INV '(c) '()) #t)

(check-equal? (F-INV '(b a c) '(a b)) #t)

(check-equal? (F-INV '(a b b c b) '(b a)) #t)

55.5 Correctness

We shall use the following definitions:

L = wcwR M = dwcw^r v ∈ (sm-sigma M)∗

s = the stack ci = consumed input
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55.5.1 Proving State Invariants Hold

Theorem 1 The state invariants hold when M accepts v.

For the proof by induction, on the number of transitions to consume v, we
must show that S-INV holds when the machine starts (before consuming any
input) and that invariants hold after each transition.

Proof

For the base case, when M starts ci = '() and s = '(). This means that ci
only contains as and bs and that ci equals s reversed. Thus, S-INV holds.

Proof invariants hold after each transition that consumes input:

((S a ,EMP) (S (a))): By inductive hypothesis S-INV holds. This means
that ci∈{a b}∗ and that ci = sR. After using this rule, the consumed input
only contains as and bs and the consumed input is equal to the stack reversed.
Thus, S-INV holds.

((S b ,EMP) (S (b))): By inductive hypothesis S-INV holds. This means
that ci∈{a b}∗ and that ci = sR. After using this rule, the consumed input
only contains as and bs and the consumed input is equal to the stack reversed.
Thus, S-INV holds.

((S c ,EMP) (F ,EMP)): By inductive hypothesis S-INV holds. This means
that ci∈{a b}∗ and that ci = sR. After using this rule, ci=xycyR, where x∈{a
b}∗ and y='(), and stack=xR. Thus, F-INV holds.

((F a (a)) (F ,EMP)): By inductive hypothesis F-INV holds. This means
that ci=xycyR, where x,y∈{a b}∗, and stack=xR. Using this rule means that
x’s last element is an a. That is, x=x'a. After using this rule, ci=x'aycyRa=
x'ayc(ay)R and stack=x'R. Thus, F-INV holds.

((F b (b)) (F ,EMP)): By inductive hypothesis F-INV holds. This means
that ci=xycyR, where x,y∈{a b}∗, and stack=xR. Using this rule means that
x’s last element is a b. That is, x=x'b. After using this rule, ci=x'bycyRb=
x'byc(by)R and stack=x'R. Thus, F-INV holds. �

55.5.2 Proving L = L(M)

Lemma 1 w∈L ⇔ w∈L(M)

Proof
(⇒) Assume w∈L. This means that w = vcvR. Given that state invariants
always hold, there is a computation that has M consume w and reach F with
an empty stack:
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(S vcvR EMP) �∗ (S cvR vR) � (F vR vR) �∗ (F EMP EMP)

Therefore, w∈L(M).

(⇐) Assume w∈L(M). This means that M halts in F, the only final state,
with an empty stack having consumed w. Given that the state invariants
always hold we may conclude that w = vcvR. Therefore, w∈L. �

Lemma 2 w/∈L ⇔ w/∈L(M)

Proof
(⇒) Assume w/∈L. This means w �= vRcv. Given that the state invariant
predicates always hold, there is no computation that has M consume w and
end in F with an empty stack. Therefore, w/∈L(M).

(⇐) Assume w/∈L(M). This means that M does not halt in F with an empty
stack having consumed w. Given that the state invariants always hold, this
means that w �= vcvR. Thus, w/∈L. �

56 A Deterministic pda for L = {ambncp| m �=n ∧ m,n,p>0}

Designing a deterministic pda for wcw.R is relatively straightforward because
the machine’s phases are well delineated around the reading of c. Not every
deterministic pda may have well delineated phases. Consider, for example,
the following language:

L = {ambncp | m �= n ∧ m,n,p > 0}
Every word in L either has more as than bs or vice versa. It is not immediately
clear, however, how the machine may deterministically decide that excess as
or excess bs need to be processed.

56.1 Design Idea

Intuitively, the machine ought to push all the as onto the stack, match bs,
either pop excess as or read excess bs, and read cs. The challenge is to
deterministically determine if excess as need to be popped or excess bs need
to be read. If there is an excess of bs in the input word then all the as on
the stack will be matched and the stack becomes empty. This is a problem
because the machine cannot nondeterministically decide to keep matching as
on the stack or read excess bs. If the machine could sense that the stack is
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empty then the decision becomes deterministic. If the stack is empty read
excess bs. Otherwise, match as as bs are read. Another potential problem is
deterministically transitioning to the final state. To prevent nondeterministic
transitions of this nature, a special end of input symbol, z, not in the input
alphabet of the machine, shall be used. All input for this deterministic pda

shall be wz, where w is the word the machine must decide to accept or reject.
How can the machine sense that the stack is empty? The machine cannot

sense when the stack is empty. Instead, we shall endow the machine with
the ability to detect that there is an excess of bs. We shall use a technique
developed to construct simple pdas (see Sect. 48.1): the machine shall use
a bottom of the stack symbol. The first element pushed onto the stack by
this machine is the bottom of the stack symbol and the last element popped
off the stack before accepting is also the bottom of the stack symbol. This
element is used to detect when the stack would be empty if not used. For our
purposes, y serves as the bottom of the stack symbol.

The machine’s phases may be outlined as follows:

1. When started, if an a is read then (a y) is pushed onto the stack.
2. All the remaining as read are pushed onto the stack.
3. Match a read b by popping an a

4. Decide if there are more as or more bs:

a. If a c is read and there is an a on the stack then there are more as
than bs. The machine transitions to a state to read the remaining cs
and pop the remaining as. Upon reading z, the machine pops y and
moves to the final state.

b. If a b is read and y is at the top of the stack then there are morebs
than as. The machine transitions to read the bs with changing the
stack. It then transitions to read the cs without altering the stack.
Upon reading z, the machine pops y and moves to the final state

56.2 Name, Alphabets, and Unit Tests

A descriptive machine name is ambncp. The input alphabet is '(a b c z),
where z, as mentioned above, is only used to mark the end of the input. The
stack alphabet is '(a y), where y is, as mentioned above, the bottom of the
stack symbol.

To test the machine, words that do not have z at the end, that have an
equal number of as and bs, that have letters out of order, and that fail to
have an a, a b, or a c are tested to illustrate that they are rejected. Words
that have a z at the end, no letters out of order, at least one a, one b, and
one c and either more as than bs or vice versa are tested to illustrate that
they are accepted. Sample tests are:
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(check-equal? (sm-apply ambncp '(z)) 'reject)
(check-equal? (sm-apply ambncp '(a b b c c)) 'reject)
(check-equal? (sm-apply ambncp '(a a b b c c z)) 'reject)
(check-equal? (sm-apply ambncp '(a b a z)) 'reject)
(check-equal? (sm-apply ambncp '(a b b z)) 'reject)
(check-equal? (sm-apply ambncp '(a a a b b c c z))

'accept)
(check-equal? (sm-apply ambncp '(a a a b b b b c c c z))

'accept)

56.3 Conditions, States, Transition Function, and
Implementation

According to the design idea, the machine starts with an empty stack and
having consumed no input. The state for this condition is documented as
follows:

S: ci = stack = '(), starting state

Upon reading an a, the machine transitions to A to push the rest of the as
read. The only transition needed out of S is:

((S a ,EMP) (A (a y)))

In A, the machine pushes the read as onto the stack. This state, A, is
documented as follows:

A: ci = (a+) ∧ stack = (a+ y)

Upon reading a b, the machine pops an a and transitions to a state, B, to
match read bs with as on the stack. Observe that an amay be popped because
at least one a must be read to reach A. The needed transitions are:

((A a ,EMP) (A (a)))

((A b (a)) (B ,EMP))

In B, read bs are matched with as on the stack. This means the consumed
input has 1 or more as followed by 1 or more bs, the number of as is less
than or equal to the number of bs, and the stack only contains unmatched
as and y. This state is documented as follows:

B: ci = (ai bj) ∧ stack = (ai-j y) ∧ 0 < j <= i

In this state, the decision is made to either match more bs and as, to pop
excess as, or to read excess bs. More bs and as may be matched if a b is
read and there is an a on the stack. In this case, the machine loops in B after
reading the b and popping the a. There are more as than bs if a c is read and
there is an a on the stack. In this case, the machine reads the c, pops the a,
and transitions to a state, C, that reads cs as long as as can also be popped.
There are more bs than as if a b is read and the bottom of the stack symbol
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is the top stack element. In this case, the machine transitions to a state, D,
to read the rest of the bs without changing the stack. The needed transitions
are:

((B b (a)) (B ,EMP))

((B c (a)) (C ,EMP))

((B b (y)) (D (y)))

In C, the consumed input is a.i followed by b.j followed by c.k. In addi-
tion, 0.<j.<i, 0.<k, and the stack contains i-j- k as and y. The state is
documented as follows:

C: ci = (ai bj ck) ∧ stack = (ai-j-k y) ∧ i > j ∧ i,j,k > 0

As long as there are as on the stack and cs on the input tape, the machine
reads a c and pops and a. If there are no more as on the stack the machine
transitions to a state, E, to read the rest of the cs, if any, without modifying
the stack. If there are no more cs to read the machine moves to a state, G, to
pop the rest of the as. The needed transitions are:

((C c (a)) (C ,EMP))

((C c (y)) (E (y)))

((C z ,EMP) (G ,EMP))

In D, the consumed input is one or more as followed by 1 or more bs and
there are more bs than as. In addition, the stack only contains the bottom
of the stack symbol, because all as have already been matched. This state is
documented as follows:

D: ci = (ai bj) ∧ stack = (y) and j > i ∧ i,j > 0

While there are bs to read, the machine loops in D. When a c is read the
machine transitions to E to read the rest of the input. The needed transitions
are:

((D b (y)) (D (y)))

((D c (y)) (E (y)))

In E, the consumed input consists of 1 or more as followed by 1 or more
bs followed by 1 or more cs. In addition, the number of as is not equal to the
number of bs and the stack only contains the bottom of the stack symbol.
The state is documented as follows:

E: ci = (ai bj c+) ∧ stack = (y), j != i ∧ i,j > 0

If there are cs to read the machine loops in E without modifying the stack.
When the end of the input marker is read, the machine pops the bottom
of the stack symbol and moves to, F, the final state to accept. The needed
transitions are:

((E c (y)) (E (y)))

((E z (y)) (F ()))
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Fig. 77 A deterministic pda for L = {a.mb.nc.p| m .�= n .∧ m,n,p.>0}
#lang fsm

(define ambncp (make-ndpda (S A B C D E F G)
(a b c z)
(a y)
S
(F)
(((S a ,EMP) (A (a y)))
((A a ,EMP) (A (a)))
((A b (a)) (B ,EMP))
((B b (a)) (B ,EMP))
((B c (a)) (C ,EMP))
((C c (a)) (C ,EMP))
((C z ,EMP) (G ,EMP))
((C c (y)) (E (y)))
((B b (y)) (D (y)))
((D b (y)) (D (y)))
((D c (y)) (E (y)))
((E c (y)) (E (y)))
((E z (y)) (F ,EMP))
((G ,EMP (a)) (G ,EMP))
((G ,EMP (y)) (F ,EMP)))))

(check-equal? (sm-apply ambncp (z)) reject)
(check-equal? (sm-apply ambncp (a b b c c)) reject)
(check-equal? (sm-apply ambncp (a a b b c c z)) reject)
(check-equal? (sm-apply ambncp (a b a z)) reject)
(check-equal? (sm-apply ambncp (a b b z)) reject)
(check-equal? (sm-apply ambncp (a a a b b c c z)) accept)
(check-equal? (sm-apply ambncp (a a a b c z)) accept)
(check-equal? (sm-apply ambncp (a a a b b b b c c c z)) accept)

In G, the consumed input consists of 1 or more as followed by 1 or more
bs followed by 1 or more cs followed by z. In addition, the number of as
does not equal the number of bs and the stack contains 0 or more as and the
bottom of the stack marker. The state is documented as follows:

G: ci = (ai bj c+ z) ∧ stack = (a* y) ∧ i != j ∧ i,j > 0

The machine loops in G popping as without reading any input. When the
stack only contains the bottom of the stack marker, it is popped and the
machine transitions to F to accept. The needed transitions are:

((G ,EMP (a)) (G ,EMP))

((G ,EMP (y)) (F ,EMP))
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Fig. 78 Predicate invariants for ambncp I
;; word stack → Boolean
(define (S-INV ci s) (and (eq? ci ()) (eq? s ())))

(check-equal? (S-INV (a a) (a)) #f)
(check-equal? (S-INV () (a)) #f)
(check-equal? (S-INV (a) ()) #f)
(check-equal? (S-INV () ()) #t)

;; word stack → Boolean
(define (A-INV ci s)

(and (not (empty? ci)) (andmap (λ (r) (eq? r a)) ci)
(eq? (last s) y)
(= (length (takef s (λ (r) (eq? r ’a)))) (length ci))))

(check-equal? (A-INV (a b) (a)) #f)
(check-equal? (A-INV (a) (a a y)) #f)
(check-equal? (A-INV (a a a) (a a a y)) #t)
(check-equal? (A-INV (a) (a y)) #t)

;; word stack → Boolean
(define (B-INV ci s)

(let* [(ci-as (takef ci (λ (r) (eq? r a))))
(i (length ci-as))
(ci-bs (takef (drop ci (length ci-as)) (λ (r) (eq? r b))))
(j (length ci-bs))
(s-as (takef s (λ (r) (eq? r a))))]

(and (equal? ci (append ci-as ci-bs)) (< 0 i) (< 0 j) (<= j i)
(eq? (last s) y) (equal? s (append s-as (y)))
(= (length s-as) (- i j)))))

(check-equal? (B-INV (b b) (a)) #f)
(check-equal? (B-INV (a a b b) (a y)) #f)
(check-equal? (B-INV (a a b b) (y)) #t)
(check-equal? (B-INV (a a a a b b) (a a y)) #t)

In F, the consumed input equals the entire input on the tape consisting of
1 or more as followed by 1 or more bs followed by 1 or more cs followed by
z. In addition, the stack is empty and the number of as and bs are not equal.
The state is documented as follows:

F: ci = (ai bj c+ z) ∧ stack = '() ∧ i != j,

∧ i,j > 0, final state

No transitions out of F are needed because the entire input has been read
and the stack is empty.

The implementation of the machine is displayed in Fig. 77. Observe that
the transition relation is deterministic. That is, for any given configuration
there is at most one configuration that may be reached in one step. That is,
there are no nondeterministic choices for the machine to make. You should
also observe that the machine either accepts after reading all the input or
rejects without reading all the input or not reaching the final state.
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Fig. 79 Predicate invariants for ambncp II
;; word stack → Boolean
(define (C-INV ci s)

(let* [(ci-as (takef ci (λ (r) (eq? r a))))
(i (length ci-as))
(ci-bs (takef (drop ci (length ci-as)) (λ (r) (eq? r b))))
(j (length ci-bs))
(ci-cs (takef (drop ci (+ (length ci-as) (length ci-bs)))

(λ (r) (eq? r c))))
(k (length ci-cs))
(s-as (takef s (λ (r) (eq? r a))))]

(and (equal? ci (append ci-as ci-bs ci-cs))
(eq? (last s) y) (equal? s (append s-as (y)))
(= (length s-as) (- i j k)) (> i j) (> i 0) (> j 0))))

(check-equal? (C-INV (a a b c z) (a y)) #f)
(check-equal? (C-INV (a a b c) (a y)) #f)
(check-equal? (C-INV (a a b) (a y)) #t)
(check-equal? (C-INV (a a a a b c) (a a y)) #t)

;; word stack → Boolean
(define (D-INV ci s)

(let* [(ci-as (takef ci (λ (r) (eq? r a))))
(i (length ci-as))
(ci-bs (takef (drop ci (length ci-as)) (λ (r) (eq? r b))))
(j (length ci-bs))]

(and (equal? ci (append ci-as ci-bs)) (equal? s (y))
(> j i) (> i 0) (> j 0))))

(check-equal? (D-INV (a a b c c z) (y)) #f)
(check-equal? (D-INV (a) (a y)) #f)
(check-equal? (D-INV (a b b) (y)) #t)
(check-equal? (D-INV (a a b b b) (y)) #t)

;; word stack → Boolean
(define (E-INV ci s)

(let* [(ci-as (takef ci (λ (r) (eq? r a))))
(i (length ci-as))
(ci-bs (takef (drop ci (length ci-as))

(λ (r) (eq? r b))))
(j (length ci-bs))
(ci-cs (takef (drop ci (+ (length ci-as) (length ci-bs)))

(λ (r) (eq? r c))))]
(and (equal? ci (append ci-as ci-bs ci-cs))

(>= (length ci-cs) 1) (equal? s (y))
(not (= j i)) (> i 0) (> j 0))))

(check-equal? (E-INV (a b) (a y)) #f)
(check-equal? (E-INV (a a b) (a y)) #f)
(check-equal? (E-INV (a b b c) (y)) #t)
(check-equal? (E-INV (a a a b c c) (y)) #t)
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Fig. 80 Predicate invariants for ambncp III
;; word stack → Boolean
(define (G-INV ci s)

(let* [(ci-as (takef ci (λ (r) (eq? r a))))
(i (length ci-as))
(ci-bs (takef (drop ci (length ci-as)) (λ (r) (eq? r b))))
(j (length ci-bs))
(ci-cs (takef (drop ci (+ (length ci-as) (length ci-bs)))

(λ (r) (eq? r c))))
(s-as (takef s (λ (r) (eq? r a))))]

(and (equal? ci (append ci-as ci-bs ci-cs (z)))
(>= (length ci-cs) 1) (equal? s (append s-as (y)))
(not (= j i))
(> i 0)
(> j 0))))

(check-equal? (G-INV (a) (a y)) #f)
(check-equal? (G-INV (a b c z) (y)) #f)
(check-equal? (G-INV (a a a b c z) (a y)) #t)
(check-equal? (G-INV (a a a b c c z) (a a y)) #t)

;; word stack → Boolean
(define (F-INV ci s)

(let* [(ci-as (takef ci (λ (r) (eq? r a))))
(i (length ci-as))
(ci-bs (takef (drop ci (length ci-as)) (λ (r) (eq? r b))))
(j (length ci-bs))
(ci-cs (takef (drop ci (+ (length ci-as) (length ci-bs)))

(λ (r) (eq? r c))))]
(and (equal? ci (append ci-as ci-bs ci-cs (z)))

(>= (length ci-cs) 1)
(empty? s)
(not (= j i))
(> i 0)
(> j 0))))

(check-equal? (F-INV (z) ()) #f)
(check-equal? (F-INV (a a b b c cz) ()) #f)
(check-equal? (F-INV (a a b z) (y)) #f)
(check-equal? (F-INV (a a b c z) ()) #t)
(check-equal? (F-INV (a b b b c c z) ()) #t)

56.4 State Invariant Predicates

Writing invariant predicates flows from the conditions identified above. As
general implementation strategy, whenever appropriate, local variables are
defined for the expected components of the consumed input and the stack. In
different predicates, local variables for the consumed input include those for
the leading as, the bs following the as, the cs following the bs, the number of
as (i.e., i), the number of bs (i.e., j) or the number of cs (i.e., k). The only
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stack value defined with a local variable, whenever needed, is for the as on
the stack. In each predicate, the subset of these local variables defined is used
to implement a conjunction for the properties the consumed input and the
stack are expected to have. The invariant predicates are displayed in Figs. 78
to 80.

56.5 Correctness

As always, we start by proving that the state invariant predicates always
hold for computations that lead to accept. Subsequently, we prove that L =

L(ambncp). In the proof, ci is used to denote the consumed input and P is
used to denote ambncp.

56.5.1 Proving State Invariants Hold

Theorem 2 The state invariants hold when P is applied to w.

The proof is by induction on, n, the number of transitions to consume the
input word w.

Proof
When P starts, S-INV holds because ci = '() and the stack = '(). This
establishes the base case.

Proof that invariants hold after each nonempty transition:

((S a ,EMP) (A (a y))): By inductive hypothesis, S-INV holds. This means
ci = stack = '(). Using this transition adds an a to ci and pushes y and
then a onto the stack. Therefore, after using this rule, ci = (a+) and stack =
(a+ y). Thus, A-INV holds.

((A a ,EMP) (A (a))): By inductive hypothesis, A-INV holds. This means
ci = (a+) and stack = (a+ y). Using this transition adds an a to ci and pushes
an a onto the stack. Therefore, after using this rule, ci = (a+) and stack =
(a+ y). Thus, A-INV holds.

((A b (a)) (B ,EMP)): By inductive hypothesis, A-INV holds. This means
ci = (a+) = (ai) and stack = (a+ y). Using this transition adds a b to ci and
pops an a off the stack. Therefore, after using this rule, ci = (ai b1) = (ai

bj), stack = (ai−1 y) = (ai−j y) and 0 < j ≤ i. Thus, B-INV holds.
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((B b (a)) (B ,EMP)): By inductive hypothesis, B-INV holds. This means
ci = (ai bj), stack = (ai−j y) and 0 < j ≤ i. Given that there is an a on the
stack, j must be strictly less than i. That is, j < i. Using this transition adds
a b to ci and pops an a off the stack. Therefore, after using this rule, ci = (ai

bj+1), stack = (ai−(j+1) y), 0 < j+1, and j+1 ≤ i. Without loss of generality,
we may think of j+1 as a new value for j. Thus, B-INV holds.

((B c (a)) (C ,EMP)): By inductive hypothesis, B-INV holds. This means
ci = (ai bj), stack = (ai−j y), and 0 < j ≤ i. Given that there is an a on the
stack, j < i. Using this transition , adds a c to ci and pops an a. Therefore,
after using this rule, ci = (ai bj c1) = (ai bj ck), stack = (ai−j−1 y) = (ai−j−k

y), i > j, and i,j,k > 0. Thus, C-INV holds.

((B b (y)) (D (y))): By inductive hypothesis, B-INV holds. This means ci

= (ai bj), stack = (ai−j y), and 0 < j ≤ i. Observe that if the stack does not
contain as then j = i. Using this transition adds a b to ci without modifying
the stack. Therefore, ci = (ai bj+1) and stack = (y) and j+1 > i and i,j+1
> 0. Without loss of generality, we may think of j+1 as a new value for j.
Therefore, D-INV holds.

((C c (a)) (C ,EMP)): By inductive hypothesis, C-INV holds. This means
ci = (ai bj ck), stack = (ai−j−k y), i > j, and i,j,k > 0. Using this transition
adds a c to ci and pops an a from the stack. Therefore, ci = (ai bj ck+1),
stack = (ai−j−(k+1) y), i > j, and i,j,k+1 > 0. Without loss of generality, we
may think of k+1 as a new value for k. Therefore, C-INV holds.

((C z ,EMP) (G ,EMP)): By inductive hypothesis, C-INV holds. This means
ci = (ai bj ck), stack = (ai−j−k y), i > j, and i,j,k > 0. Observe that i �=j and
that ck ∈c+. Using this transition adds z to ci without changing the stack.
Therefore, ci = (ai bj c+ z), stack = (a∗ y), i �= j, and i,j > 0. Thus, G-INV
holds.

((C c (y)) (E (y))): By inductive hypothesis, C-INV holds. This means ci

= (ai bj ck), stack = (ai−j−k y), i > j, and i,j,k > 0. Note that ck ∈c+. Using
this transition means that a c is added to ci without changing the stack.
Therefore, after using this transition, ci = (ai bj c+), stack = (y), j �= i, and
i,j > 0. Thus, E-INV holds.

((D b (y)) (D (y))): By inductive hypothesis, D-INV holds. This means ci

= (ai bj), stack = (y), j > i, and i,j > 0. Using this transition adds a b to
ci without changing the stack. Therefore, after using this transition, ci = (ai

bj+1), stack = (y), j+1 > i, i,j+1 > 0. Without loss of generality, we may
think of j+1 as a new value for j. Thus, D-INV holds.
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((D c (y)) (E (y))): By inductive hypothesis, D-INV holds. This means ci

= (ai bj), stack = (y), j > i, and i,j > 0. Using this transition adds a c to
ci without changing the stack. Therefore, after using this transition, ci = (ai

bj c+), stack = (y), j �= i, i,j > 0. Thus, E-INV holds.

((E c (y)) (E (y))): By inductive hypothesis, E-INV holds. This means ci

= (ai bj c+), stack = (y), j �= i, and i,j > 0. Using this transition adds a c

to ci without modifying the stack. Therefore, after using this transition, ci =
(ai bj c+), stack = (y), j �= i, and i,j > 0. Thus, E-INV holds.

((E z (y)) (F ,EMP)): By inductive hypothesis, E-INV holds. This means

ci = (ai bj c+), stack = (y), j �= i, and i,j > 0. Using this transition adds z
to ci and pops y from the stack. Therefore, after using this transition, ci =
(ai bj c+ z), stack = '(), i �= j, and i,j > 0. Thus, F-INV holds.

((G ,EMP (a)) (G ,EMP)): By inductive hypothesis, G-INV holds. This
means ci = (ai bj c+ z), stack = (a∗ y), i �= j, and i,j > 0. The use of
this transition informs us that stack = (a+ y) (i.e., the stack is not empty
and contains at least one a). This transition pops an a from the stack without
reading any input. Therefore, after using this transition, ci = (ai bj c+ z),
stack = (a∗ y), i �= j, and i,j > 0. Thus, G-INV holds.

((G ,EMP (y)) (F ,EMP)): By inductive hypothesis, G-INV holds. This

means ci = (ai bj c+ z), stack = (a∗ y), i �= j, and i,j > 0. The use of
this transition informs us that stack = (y) (i.e., the stack does not contain
any as). This transition pops y off the stack without consuming any input.
Therefore, after using this transition, ci = (ai bj c+ z), stack = '(), i �= j,
and i,j > 0. Thus, F-INV holds.

This establishes the inductive step and concludes the proof. �

56.5.2 Proving L = L(P)

As before, the proof is divided into two lemmas. The first is for when w.∈L
and the second for when w./∈L

Lemma 3 w.∈L .⇔ w.∈L(P)

Proof
(.⇒) Assume w.∈L. This means that w = a.mb.nc.p, where m .�= n and m,n,p .>
0. Given that state invariants always hold, the computation on w looks as
follows:



56 A Deterministic pda for L = {ambncp| m �=n ∧ m,n,p>0} 341

When m>n: (S (am bn cp z) EMP) � (A (am−1 bn cp z) (a y))

�∗ (A (bn cp z) (am y))

�∗ (B (cp z) (am−n y))

�∗ (F EMP EMP)

When m<n: (S (am bn cp z) EMP) � (A (am−1 bn cp z) (a y))

�∗ (A (bn cp z) (am y))

�∗ (B (bn−m cp z) (y))

�∗ (D (cp z) (y))

�∗ (F EMP EMP)

Therefore, w.∈L(P).

(.⇐) Assume w.∈L(P). This means that M halts in F, the only final state,
with an empty stack having consumed w. Given that the state invariants
always hold we may conclude that w = a.mb.nc.p, where m .�= n and m,n,p .> 0.
Therefore, w.∈L. �

Lemma 4 w./∈L .⇔ w./∈L(P)

Proof
(.⇒) Assume w./∈L. This means that w .�= a.mb.nc.p, m = n, or m,n,p .≯ 0. Given
that state predicate invariants always hold, P cannot consume w and end in
F with an empty stack. Therefore, w./∈L(P).

(.⇐) Assume w./∈L(P). This means that P cannot transition into F with an
empty stack having consumed w. Given that the state predicate invariants
always hold, w.�=a.mb.nc.p, m = n, or m,n,p .≯ 0. Therefore, w./∈L. �

1 Design and implement a deterministic pda that decides L = {a.ib.j .|
i .�= j}.

2 Design and implement a deterministic pda that decides L = a.* .∪
{a.ib.i .| i .> 0}.

3 Design and implement a deterministic pda that decides L = {a.ib.i|
i .≥ 0} .∪ {a.ic.i| i .≥ 0}.

4 Design and implement a deterministic pda that decides L = {a.icb.j .|
i .�= j} .∪ {a.idb.2i .| i .≥ 0}.

5 Design and implement a deterministic pda that decides L = {a.mb.nc.p|
n .�= p}.
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6 Design and implement a deterministic pda that decides L = {a.mb.nc.p|
m = n .∧ m,n,p .≥ 0}.

7 Design and implement a deterministic pda that decides L = {a.mb.nc.p|
n = p .∧ m,n,p .≥ 0}.

57 Are All Context-Free Languages Deterministic?

We return to our question regarding whether or not all context-free languages
are deterministic. That is, does there exist, for every context-free language,
a deterministic pda that decides it? Consider, for example, L = {w .| w=b.*

.∨ w=b.na.n, where n.>0. How can this language be decided by a deterministic
pda? The machine must accumulate bs on the stack in case the input word
is in b.na.n in order to match them with the as. If the input word is in b.*

then the machine does not accumulate bs. The problem is that the machine
cannot be ready to accept if the word is in b.* and at the same time be ready
to check if the bs and the as match. Does this mean L is not a deterministic
context-free language?

In order to design a deterministic pda for L, the machine needs the ability
to detect the end of the input. In this manner, the machine may accumulate
bs on the stack. If the end of the input is detected without reading an a then
the machine moves to a state that pops all the bs and accepts. If an a is read
then the machine moves to a state where it tries to match the as with the
accumulated bs. It does not suffice to make the decision when the blank after
the input word is read, because for a w.∈L a nondeterministic decision must
be made to either accept/reject or continue the computation to pop the bs
to empty the stack.

Instead, we shall change the meaning of accept for, M, a deterministic pda.
A language,L, is deterministic context-free if Lz = L(M). The symbol z is
used as an end-marker for the input word and must not be a symbol that
may be used in any w.∈L. When M is given an input word, z must be added
to the end. It is straightforward to see that any deterministic context-free
language is context-free. If M accepts Lz then a nondeterministic pda, M',
may be constructed that nondeterministically “senses” the end of the input
and transitions to states that consume no more input.

To answer the question of whether or not every context-free language is
deterministic context-free, we shall build on two important concepts. First, we
assume that if M accepts Lz then M is a simple pda (as defined in Sect. 48.1).
That is, the transition rules pop at most 1 element and push at most 2
elements. In addition, when the machine starts a bottom-of-the-stack symbol
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is pushed and just before ending the computation this symbol is popped. If
the given pda is not simple, its transformation into a simple pda results in a
machine that is still deterministic. Second, we define a configuration, C = (Q

w s), as a dead end if in zero or more steps it leads to a configuration, E = (R

w' s'), in which no input has been consumed (i.e., w = w') or the stack has
not shrunk (i.e., .|s'.| ≥ |s.|). If a pda does not have a dead-end configuration
then it will eventually read all its input. This follows by a observing that the
size of the stack may only be decreased a finite number of times before more
input must be consumed. In the absence of a dead-end configuration, it is
always the case that in the future of the computation input is consumed or
the stack is shrunk.

If M is simple then determining if a configuration is a dead end only depends
on the current state, the next element to read, and the top stack symbol. Let
Q be a state, a be an input alphabet symbol, and x a stack alphabet symbol.
(Q a x) is a dead-end if there does not exist a state P and stack symbol y
such that (Q a x) .�∗ (P EMP y) nor (Q a x) .�∗ (P a EMP). Let D be the
set of dead-end configurations. Observe that D is finite.

Recall that context-free languages are not closed under complement (see
Sect 53). To establish that not all context-free languages are deterministic,
we shall prove that deterministic context-free languages are closed under
complement.

Theorem 3 Deterministic context-free languages are closed under comple-
ment.

Proof

Assume L is a context-free language such that Lz is accepted by a determin-
istic simple pda M = (make-ndpda K .Σ .Γ S F R).

Intuitively, like done with dfas (see Sect. 30.4), we would like to build a
pda for L’s complement by simply switching the role of M’s accepting and
rejecting states. Unfortunately, this does not work because pdas may reject
without reading all the input. This may happen in two ways: M is in a configu-
ration for which no transition rules apply or M is in a dead-end configuration.

We shall convert M into, M.
', an equivalent deterministic pda without

dead-end configurations. M.
' is constructed as follows:

1. ∀ (Q a x)∈D, remove rules of the form ((Q a x) (H y))

in M and add ((Q a x) (U EMP)), where U is a new

non-accepting state.

2. ∀ a∈Σ, add the rule ((U a EMP) (U EMP))

3. ∀ b∈Γ, add the rules ((U z EMP) (V EMP)) and

((V EMP b) (V EMP)), where V is a new non-accepting

state.
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These transitions allow M.
' to read the remaining input without consulting

the stack when in U (type 2 rules) and to empty the stack and reject upon
reading z (type 3 rules).

M.
' is deterministic given that M is deterministic and the added rules do

not make M.
' nondeterministic. Observe that M.

' rejects by moving to a non-
accepting state whenever M does not read the entire input and that M.

' has
no dead-end configurations. Thus, M.

' always reads the entire input.

Given that M.
' reads the entire input, reversing the role of accepting and

non-accepting states results in a machine that accepts (Σ.
*-L)z. That is, the

resulting machine accepts L’s complement. �

This a rather stunning result. It allows us to prove that there are context-
free languages that are not deterministic. For example, consider L = {a.ib.jc.k
.| i .�= j .∨ i .�= k}. Assume L is a deterministic context-free language. The
theorem above informs us that L’s complement, L̄, is also a deterministic
context-free language. Recall that the intersection of a context-free language
and a regular language is a context-free language (proven in Sect. 54). Observe
that L̄ .∩ a.*b.*c.* = a.nb.nc.n. This is a language that we know is not context-
free. Thus, our assumption is wrong and L is not a deterministic context-free
language.

Clearly, the deterministic context-free languages are a proper subset of the
context-free languages. This means that, in the context of pdas, nondeter-
minism is more powerful than determinism. This is a sharp contrast to what
we discovered for finite-state machines: nondeterminism is not more powerful.
There are profound consequences for modern software development. For in-
stance, interpreters and compilers must parse a given program. That is, given
a program they try to build a parse tree based on a programming language’s
grammar. If this grammar is deterministic context-free then it is relatively
straightforward to write a parser. Such a grammar, as we have seen, may
not be deterministic context-free. For such grammars, it becomes necessary
to convert them to a deterministic pushdown automata that can decide if
the given program is or not in the set of valid programs for the program-
ming language. If such a transformation is possible then it usually involves
using heuristic rules that may (or may not) be useful to achieve it. The tech-
niques used are beyond the scope of this book. Nonetheless, you ought to be
aware that nondeterministic pdas are, computationally speaking, more pow-
erful than deterministic pdas and that this makes software development more
difficult.
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58 Closure Properties of Deterministic Context-Free
Languages

58.1 Union

Section 49 established that context-free languages are closed under union.
Surprisingly, the same is not true for deterministic context-free languages.
Deterministic context-free languages are not closed under union. This is es-
tablished in the following theorem.

Theorem 4 Deterministic context-free languages are not closed under union.

Proof

Assume deterministic context-free languages are closed under union.

Consider the following deterministic context-free languages:

• L = {a.mb.nc.p| m .�= n .∧ m,n,p .> 0}
• S = {a.mb.nc.p| n .�= p .∧ m,n,p .> 0}

In Sect. 56, we established that L is a deterministic context-free language.
Establishing that S is a deterministic context-free language was left as an
exercise.

Let LUS = L .∪ S. Given our assumption, LUS is a deterministic context-
free language.

In Sect. 57, we established that deterministic context-free languages are
closed under complement. Thus, the complement of LSU, NOT-LSU, is also
a deterministic context-free language. NOT-LSU is the union of the following
two languages:

• {a.mb.nc.p| m = n = p .∧ m,n,p .> 0}
• {w .| w.∈{a b c}.* .∧ w has letters out of order .∨ w is missing at least one
element in {a b c}}

In Sect. 54, we proved that the intersection of a context-free language and
a regular language is a context-free language. This means that NOT-LSU
.∩ a.*b.*c.* is a context-free language. Observe, however, that this language is
a.nb.nc.n, where n.>0. This is not a context-free language.12 Thus, our assump-
tion is wrong and deterministic context-free languages are not closed under
union. �

12 To prove this use the Pumping Theorem for context-free languages as done for
a.nb.nc.n, where n.≥0, in Sect. 52.3.
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58.2 Intersection

Like their context-free counterparts, deterministic context-free languages are
not closed under intersection. This is established in the following theorem.

Theorem 5 Deterministic context-free languages are not closed under inter-
section.

Proof

Assume deterministic context-free languages are closed under intersection.

Consider the following languages:

• L = {a.mb.nc.p| m .= n .∧ m,n,p .≥ 0}
• S = {a.mb.nc.p| n .= p .∧ m,n,p .≥ 0}

Both of these languages are deterministic context-free (see exercises after
Sect. 56).

The intersection of L and S is {a.nb.nc.n| n .≥ 0}. In Sect. 52.3, we proved
that this language is not context-free. Given that it is not context-free, it
cannot be deterministic context-free. Therefore, our assumption is wrong and
deterministic context-free languages are not closed under intersection. �

8 Prove that the intersection of a regular language and a deterministic
context-free language is a deterministic context-free language.

9 Prove that deterministic context-free languages are not closed under
concatenation.

10 Prove that deterministic context-free languages are not closed under
Kleene Star.



Part IV

Context-Sensitive Languages



Chapter 15

Turing Machines

We have seen that dfas, ndfas, and pdas are incapable of recognizing rather
simple languages like L = {a.nb.nc.n .| n.≥0}. Any reader of this textbook,
however, can write a program in their favorite programming language to
decide if a given word is in L. For this reason, these models of computation
cannot be considered a general model for modern computers. We need a
more general model that is capable of deciding L and other more complex
languages.

The new computation model that we shall study will not be replaced by
a more powerful model like pdas replaced dfas. To date, no one has been
able to strengthen the new computation model that we shall study. All at-
tempts to strengthen the new model have failed to offer any new computation
power. The new model is called a Turing machine named after its inventor
Alan Turing. A Turing machine (tm), like previous automatons, has a control
mechanism to track the current machine state, an input tape, and a read-
ing head. Unlike previous automatons, the head may move right or left on
the input tape and may write to the tape. You may think of writing on the
tape as mutation (i.e., assignment) that changes the value on the tape. The
value overwritten is lost forever, and after the mutation, only the new value
is accessible.

We shall do much more than simply decide or accept a language with a
Turing machine. We shall also compute the value of functions. Consider, for
example, the following function:

;; number number → number

;; Purpose: Add the given numbers

(define (plus a b) (+ a b))

We shall see that a Turing machine, just like this function, can add two
numbers. In fact, it is theorized that a Turing machine can compute anything
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that is computable. In this sense, Turing machines are more powerful than
any computer in existence today.

59 Turing Machine Definition

We shall start by thinking of Turing machines as language recognizers. Like
other automatons, a Turing machine is a type in FSM. A Turing machine
language recognizer is an instance of:

(make-tm K Σ R S F Y)

The components of a Turing machine language recognizer are described as
follows:

K The states.
.Σ The input alphabet.
R The transition function.
S The starting state.
F The final states.
Y The accepting final state

K, .Σ, S, and F are defined as in previous automatons. In addition to .Σ’s
elements, there are two special symbols that may appear of the input tape:
LM and BLANK (both FSM constants). LM may only appear in the input tape’s
leftmost position. It is the input tape’s left-end marker. BLANK may appear
anywhere on the input tape (except the leftmost position) and represents a
blank (a position in the input tape with nothing written in it). This definition
specifies R as a transition function. That is, the tm is deterministic. Later,
we shall relax this condition and allow R to be a transition relation. For now,
however, we shall design deterministic Turing machines.

A deterministic Turing machine language recognizer requires two final
states usually named Y and N. If the machine reaches Y it halts and accepts
the input even if it has not consumed all of it. If the machines reaches N, it
halts and rejects the input even if, once again, it has not consumed all of it.
This means that when a Turing machine reaches a final state, it halts and
performs no more transitions.

A Turing machine rule, tm-rule, is an element of:

(list (list N a) (list M A))

N is non-halting state (i.e., N.∈{K-F}), a.∈{.Σ .∪ {LM BLANK}}, M.∈K (which may
or may not equal N), and A is an action.∈{.Σ .∪ {RIGHT LEFT}. If A.∈ Σ
then the machine writes A in the tape position under the tape’s head. This
is equivalent to mutation. That is, the tape is permanently changed, and
the value overwritten is no longer accessible. If A.∈{RIGHT LEFT}}, then the
machine moves the tape’s head. RIGHT is an FSM constant to move the head
right, and LEFT is an FSM constant to move the head left. The only exception
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Fig. 81 Visualization of tm configurations

(a) A tm non-halting configuration.

(b) A tm halting configuration.

is when LM is read. When LM is read, the tm must move the tape’s head right
(regardless of the state it is in) and may not overwrite LM. Observe that with
such a definition, the tm cannot “fall off” the left end of the input tape. The
constructor make-tm automatically adds LM to .Σ and automatically adds the
rules to move the tape’s head right when LM is read. These rules, of course,
are only added for non-final states. It is pointless to add such rules for final
states because a Turing machine always halts upon reaching a final state.

A Turing machine configuration is a triple: (s n t). The machine’s current
state is denoted by s. The position of the head on the tape is denoted by n.
The input tape is denoted by t. The input tape has an infinite number of
blanks to the right of the last non-blank in the tape. When a configuration
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is displayed, only the “touched” part of the tape is displayed. The touched
part of the input tape includes the left-end marker and anything specified in
the initial tape value including blanks. Let us call the largest tape position
specified in the initial tape value i. If the tape’s head has never gone to the
right of i, then the part of the tape displayed is t[0..i]. If the tape’s head
has, at any time during the computation, moved to the right of i, then let
us call the rightmost position reached j. The part of the tape displayed is
t[0..j]. Figure 81a displays the FSM control view visualization for (S 2 (@

a a a)). LM is in position 0, and the head is on position 2 of the tape (i.e., the
second a). Figure 81b displays the FSM control view visualization for (Y 4 (@

a a a ). LM is in position 0, and the head is on position 4 of the tape (i.e.,
the first blank after the last a). Observe that the final states are in double
red circles and that the accepting final state is also enclosed in a blue circle.

A computation for a tm, M, is denoted by a list of configurations that M

traverses. A transition made by the machine is denoted, as done for other
automatons, using .�. C.i .� .Cj is valid for M if and only if M can move from C.i
to C.j using a single transition. Zero or more moves by M are denoted, as before,
using .�∗. C.i .�∗ C.j is valid for M if and only if M can move from C.i to C.j using
zero or more transitions. A word, w, is accepted by a tm language recognizer if
it reaches the final accepting state (i.e., Y in the definition above). Otherwise,
w is rejected.

The observers sm-apply and sm-showtransitions may consume an op-
tional third argument that is a natural number. This number denotes the
starting position of the head on the input tape when the machine starts. If
this optional argument is not provided, then the default initial head position,
0, is used. It is opportune to note that sm-showtransitions only returns
'reject when the given word is rejected.

A Turing machine language recognizer’s execution may be observed using
sm-visualize. As you may already suspect, the execution may only be vi-
sualized when the given word is in the machine’s language. State invariant
predicates take as input the “touched” part of the input tape and the po-
sition, i, of the input tape’s next element to read. The predicate asserts a
condition about the touched input that must hold which may or may not be
in relation to the head’s position. For language recognizers, it is important
to remember that when the machine’s head is at position i, the tape element
at i has not been read. Finally, to add a blank to the input, you type BLANK
in the tape input box in the left column.

60 A Turing Machine for L = a∗

To familiarize ourselves with designing Turing machines, we start by design-
ing a language recognizer for L = a.∗. We shall follow the steps of the design
recipe for state machines in Fig. 20.
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60.1 Name, Alphabet, and Tests

A descriptive name for the tm language recognizer is a*, and the input al-
phabet is {a b}. Unlike earlier automatons, a tm’s head may start on any
tape position. Therefore, it is important to specify a precondition. A tm pre-
condition is an assertion about the machine’s initial configuration. That is,
it is an assertion about the contents of the tape and the position of the head
when the machine starts its execution. For instance, the precondition for a*
is stated as follows:

;; PRE: tape = LMw ∧ i = 0

The precondition states that the tape contains the left-end marker followed
by, w, the input word. It is assumed that everything to the right of w are
blanks. The precondition also states that a*’s head starts on position 0 (i.e.,
over LM). Think of the precondition as establishing a contract with the ma-
chine’s user stating that if the machine starts in the correct configuration,
then it works correctly. No claim is made if the machine is not started in the
correct configuration.

The machine ought to decide L = a.∗. This means that the machine needs
to be tested with both words in and not in L. We test a* as follows:

;; Tests for a*

(check-equal? (sm-apply a* `(,LM a a a b a a)) 'reject)
(check-equal? (sm-apply a* `(,LM b a a)) 'reject)
(check-equal? (sm-apply a* `(,LM)) 'accept)
(check-equal? (sm-apply a* `(,LM a a a)) 'accept)

60.2 Conditions and States

We denote the contents of the tape from position i to position j by
tape[i..j]. The tm may remain in its starting state as long as it has only
read as. If a blank is read, then it may move to the final accepting state
because the input word is in L. If a b is read, then the machine may move to
the final rejecting state because the input word is not in L.

We may document the states as follows:

;; States (i = head’s position)

;; S: tape[1..i-1] only contains as, starting state

;; Y: tape[i] = BLANK and tape[1..i-1] only contains as,
;; final state

;; N: tape[i] is b, final state

In this example, the role of each state is defined in terms of the input’s tape
contents and the head’s position.
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Fig. 82 A tm to decide L = a.∗

;; States (i = head’s position)
;; S: tape[1..i-1] only contains as, starting state
;; Y: tape[i] = BLANK and tape[1..i-1] only contains as, final state
;; N: tape[1..i-1] contains a b, final state

;; L = a*
;; PRE: tape = LMw_ AND i = 0
(define a* (make-tm (S Y N)

(a b)
(((S a) (S ,RIGHT))
((S b) (N b))
((S ,BLANK) (Y ,BLANK)))

S
(Y N)
Y))

;; Tests for a*
(check-equal? (sm-apply a* (,LM a a a b a a)) reject)
(check-equal? (sm-apply a* (,LM b a a)) reject)
(check-equal? (sm-apply a* (,LM)) accept)
(check-equal? (sm-apply a* (,LM a a a)) accept)

60.3 Transition Function, Implementation, and Testing

The machine starts in S with the head at position 0. This means that the
next element to read is LM, and the machine includes a rule (automatically
added by the constructor) to remain in S and move to the right:

`((S ,LM) (S R))

After reading LM, the machine is in S and may read an a, a b, or BLANK.
If an a is read, then only as have been read. The machine may remain in S

to continue reading w by moving the head right because S’s condition holds.
Thus, the needed rule is:

((S a) (S R))

If a b is read, then w does not contain only as. This means that w./∈L and the
machine may reject by moving to N and writing b. Thus, the needed rule is:

((S b) (N b))

Finally, if BLANK is read, then w has been entirely read, and it only contains
as. The machine may accept by moving to Y and writing BLANK on the tape.
Thus, the needed transition rule is:

`((S ,BLANK) (Y ,BLANK))

The a* implementation is displayed in Fig. 82. It is opportune to examine
the machine’s alphabet and transition function:



60 A Turing Machine for L = a∗ 355

> (sm-sigma a*)

'(@ a b)

> (sm-rules a*)

'(((S @) (S R))

((S a) (S R))

((S b) (N b))

((S _) (Y _)))

As expected, the constructor adds LM to the input alphabet and adds the
rules (in this case just 1) to move to the right when LM is read. Inspecting
the transition diagram using sm-graph yields:

.

The labels on the edges contain the read element and the action taken. For
instance, [a R] means that a is read and the head moves to the right, and
[b b] means that b is read and b is written to the tape at the current head
position (i.e., in this case, the b read is overwritten with a b).

Running the tests reveals that they all pass. In addition to running the
tests, we can perform random testing:

> (sm-test a* 10)

'(((@ _) accept)

((@ a a b a b a b a) reject)

((@ b b a a) reject)

((@ a a) accept)

((@ b b b) reject)

((@ b b b b) reject)

((@ a) accept)

((@ a a b b a) reject)

((@ b a a b b a b b b) reject)

((@ b a a a a b b a b) reject))

A visual inspection of the results reveals that the random tests produce the
correct result. This gives us cautious optimism that the machine is correctly
implemented.
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60.4 Invariant Predicates

The invariant for S verifies that all tape elements from position 1 to the given
position minus 1 are as. When the machine starts, of course, nothing is read,
and the invariant for S must hold. This means it must return true when the
given tape position is i = 0. If the given position i .�= 0, then andmap may
be used to verify that the first i - 1 elements in the rest of, t, the tape are
as (observe that neither LM at position 0 nor the i.th are tested). Finally, tests
are written using t and i values that illustrate when false and true ought to
be returned. The invariant is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Everything in tape[1..i-1] is an a

(define (S-INV t i)

(or (= i 0)

(andmap (λ (s) (eq? s 'a))
(take (rest t) (sub1 i)))))

;; Tests for S-INV

(check-equal? (S-INV `(,LM b ,BLANK) 2) #f)

(check-equal? (S-INV `(,LM a a b a a) 4) #f)

(check-equal? (S-INV `(,LM) 0) #t)

(check-equal? (S-INV `(,LM b) 1) #t)

(check-equal? (S-INV `(,LM a ,BLANK) 2) #t)

(check-equal? (S-INV `(,LM a a a a ,BLANK) 5) #t)

The invariant for Y verifies that the tape value at the given position is
BLANK and that everything from position 1 to the given position minus 1 on
the tape is an a. The implementation is fairly straightforward after designing
and implementing S-INV. We must make sure, however, that the tests use
tape and position values that make the invariant hold and not hold. The
implementation is:

;; tape natnum → Boolean

;; Purpose: Everything in tape[1..i-1] is an a ∧
;; tape[i] = BLANK

(define (Y-INV t i)

(and (eq? (list-ref t i) BLANK)

(andmap (λ (s) (eq? s 'a))
(take (cdr t) (sub1 i)))))

;; Tests for Y-INV

(check-equal? (Y-INV `(,LM b ,BLANK) 2) #f)

(check-equal? (Y-INV `(,LM a b a ,BLANK) 2) #f)

(check-equal? (Y-INV `(,LM a b a ,BLANK) 4) #f)

(check-equal? (Y-INV `(,LM ,BLANK) 1) #t)

(check-equal? (Y-INV `(,LM a a a ,BLANK) 4) #t)
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The invariant for N verifies that the given tape at the given position is a
b. The implementation and tests are:

;; tape natnum → Boolean

;; Purpose: Determine that tape[i] = b

(define (N-INV t i) (eq? (list-ref t i) 'b))

;; Tests for N-INV

(check-equal? (N-INV `(,LM ,BLANK) 1) #f)

(check-equal? (N-INV `(,LM a a ,BLANK) 3) #f)

(check-equal? (N-INV `(,LM a b a b ,BLANK) 4) #t)

(check-equal? (N-INV `(,LM b b b) 2) #t)

(check-equal? (N-INV `(,LM a a a a b ,BLANK) 5) #t)

60.5 Correctness

We start by proving that the state invariants hold when a* is applied to w as
stated in the following theorem:

Theorem 1 State invariants hold when a* is applied to w.

The proof, as before, is done by induction on, n, the number of steps taken
by a*.

Proof

Base case: n = 0
If no steps are taken, a* must be in S, and by precondition, the head’s tape
position must be 0. Thus, S-INV holds.

Inductive Step:
Assume: State invariants hold for a computation of length n = k Show: State
invariants hold for a computation of length n = k + 1

Observe that n = k + 1 means that w .�= EMP. Let w = xcy, such that
x,y.∈ Σ∗, .|x.|=k, and c.∈{.Σ .∪ {BLANK}}. The first k + 1 steps may be de-
scribed as follows:

(S 0 xcy) �∗ (S i cy) � (B j y), where B∈{S Y N}

That is, the first k elements of w are traversed in S. Traversing the k + 1
element is done in one step that may take the machine to any state. We
must show that the state invariants hold for k + 1 transition. We make an
argument for each rule that may be used:.
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((S @) (S R)): By inductive hypothesis, S-INV holds. Using this rule moves
the head from position 0 to position 1. Observe that [1..0] is empty and,
therefore, everything in that tape interval is an a. Thus, S-INV holds after
using this rule.

((S a) (S R)): By inductive hypothesis, S-INV holds. Using this rule moves
the head one position to the right from i to i+1. The inductive hypothesis
informs us that all tape elements in [1..i-1] are a. The use of this rule means
that the tape’s i.th element is a. This means that all tape elements in [1..i]
are a. Thus, S-INV holds after using this rule.

((S b) (N b)): By inductive hypothesis, S-INV holds. Using this rule moves
the machine to N without moving the head from position i and leaving the
tape unchanged. This means that the tape’s i.th element is b. Thus, N-INV
holds.

((S BLANK) (Y BLANK)): By inductive hypothesis, S-INV holds. Using this
rule moves the machine to Y without moving the head from position i and
leaving the tape unchanged. This means that after using this rule, the tape’s
elements in positions [1..i-1] are a and that the i.th element is BLANK. Thus,
Y-INV holds. �

Armed with the knowledge that the state invariants always hold, we may
proceed to prove the following theorem:

Theorem 2 L = L(a*)

As before, the proof is divided into two lemmas.

Lemma 1 w .∈ L .⇔ w .∈ L(a*)

Proof
(.⇒) Assume w .∈ L. This means w consists of 0 or more as. Given that the
state invariants always hold, the only state that a* may be in after consuming
w is Y. Thus, w .∈ L(a*).

(.⇐) Assume w .∈ L(a*). Given that state invariants always hold, this means
that w contains only as. Therefore, w .∈ L. �

Lemma 2 w ./∈ L .⇔ w ./∈ L(a*)

Proof
(.⇒) Assume w ./∈ L. This means w contains a b. Given that the state invari-
ants always hold, a* cannot be in Y after consuming w. Thus, w ./∈ L(a*).

(.⇐) Assume w ./∈ L(a*). Given that state invariants always hold, this means
that w contains a b. Therefore, w ./∈ L. �
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This concludes the design, implementation, and correctness argument for a
Turing machine to decide a.*. It is common for beginners with Turing machines
to be puzzled by the following behavior:

> (sm-apply a* `(a a ,BLANK a a))

'accept

How can we claim that the machine is correct when it accepts a word that
does not only contain as? This highlights the importance of preconditions.
Recall the precondition for a*:

;; PRE: tape = LMw_ AND i = 0

The precondition clearly states that when the machine starts, the tape must
contain the left-end marker followed by w. The word, w, must be a member of
.Σ*. This means that every element of w is in .Σ. Therefore, w may not contain
BLANK. Thus, `(a a ,BLANK a a) is not valid input for a*, and as stated on
the onset of our design, we make no claims about how the machine behaves
when given an invalid tape.

1 Let .Σ = {a b}. Design and implement a tm language-recognizer for L
= {w .| w has an even number of as and an even number of bs}.

2 Let .Σ = {a b}. Design and implement a tm language-recognizer for
L = {w .| the number of as in w is divisible by 3}.

3 Your hacker friend claims that the following may be the precondition
for a*:

;; PRE: tape = LMw AND i = 1

Is she correct? Justify your answer.

61 Nondeterministic Turing Machines

A Turing machine language recognizer may be nondeterministic. The only
difference with a deterministic Turing machine language recognizer is that its
rules define a transition relation (not a function). To illustrate the design and
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implementation of a nondeterministic Turing machine language recognizer,
we consider the language L = a.* ∪ a.*b.

61.1 Name, Alphabet, and Tests

The machine is named a*Ua*b, and the input alphabet is .Σ = {a b}. The
precondition is:

;; PRE: tape = LMw AND i = 1

That is, we shall design based on the tape containing the left-end marker
followed by, w, the input word and on the tape’s head being over w’s first
element if it exists. If w is empty, then the tape’s head is on the first blank
after the left-end marker. Either way, note that whatever is under the tape’s
head has not been read.

The test are written using words that are in and that are not in a* or a*b.
For each test, the given head position is 1 to satisfy the precondition. Sample
tests are:

;; Tests for a*Ua*b

(check-equal? (sm-apply a*Ua*b `(,LM b b) 1) 'reject)
(check-equal? (sm-apply a*Ua*b `(,LM a a b a) 1) 'reject)
(check-equal? (sm-apply a*Ua*b `(,LM ,BLANK) 1) 'accept)
(check-equal? (sm-apply a*Ua*b `(,LM a b) 1) 'accept)
(check-equal? (sm-apply a*Ua*b `(,LM a a a) 1) 'accept)
(check-equal? (sm-apply a*Ua*b `(,LM a a a b) 1) 'accept)

61.2 Conditions and States

When the machine starts in S, nothing has been read. If the input word is
empty, the machine moves to accept. If the first element is an a, then the
machine nondeterministically moves to a state A to read a.∗ or to a state B to
read a.∗b. Upon reading a.∗ in A, the machine may accept. Upon reading a.∗b
in B, the machine moves to state C to determine if the end of the input word
has been reached and then moves to either accept or reject.

To accept, the machine must reach the first blank after the input word. If
in A, the machine may move to accept upon reading a blank. If in B, on the
other hand, the machine cannot move to accept upon reading a b because the
end of the input word may not have been reached. The state C reflects that
a.∗b has been read. From C, the machine may accept upon reading a blank
and reject otherwise.
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The states may documented as follows:

;; States (i is the position of the head)

;; S: no tape elements read, starting sate

;; A: tape[1..i-1] has only a

;; B: tape[1..i-1] has only a

;; C: tape[1..i-2] has only a and tape[i-1] = b

;; Y: tape[i] = BLANK and tape[1..i-1] in a* or a*b,

;; final accepting state

;; N: tape[1..i-1] != a* nor a*b, final state

61.3 Transition Function, Implementation, and Testing

When in S, upon reading a blank, the machine moves to Y, without moving
the head nor changing the tape, because the empty word is in a.∗. Upon
reading an a, the machine nondeterministically decides to move to A to read
a word in a.∗ or to B to read a word in a.∗b. Upon reading a b, the machine
moves to C, given that tape[1..i-2] has zero as followed by a b. In the
three latter cases, the machine moves the head right to read, if any, the next
element of the input. The needed transitions are:

((S ,BLANK) (Y ,BLANK))

((S a) (A ,RIGHT))

((S a) (B ,RIGHT))

((S b) (C ,RIGHT))

When in A upon reading a blank, the machine may move to Y and accept
because the input word is an a.∗ element. Upon reading an a, the machine
remains in A and moves the head to the right. The needed transitions are:

((A a) (A ,RIGHT))

((A ,BLANK) (Y ,BLANK))

When in B upon reading an a, the machine remains in B to read more as.
Upon reading a b, the machine moves to C to determine if the end of the input
word has been reached. In both cases, the machine moves the head right to
read, if any, the next element of the input. The needed transitions are:

((B a) (B ,RIGHT))

((B b) (C ,RIGHT))

When in C upon reading a blank, the machine may move to Y and accept
because the input word is in a.∗b. Upon reading an a or a b, the machine may
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Fig. 83 The nondeterministic tm language recognizer for L = a.* U a.*b
;; States (i is the position of the head)
;; S: no tape elements read, starting sate
;; A: tape[1..i-1] has only a
;; B: tape[1..i-1] has only a
;; C: tape[1..i-2] has only a and tape[i-1] = b
;; Y: tape[i] = BLANK and tape[1..i-1] = a* or a*b,
;; final accepting state
;; N: tape[1..i-1] != a* or a*b, final state

;; L = a* U a*b
;; PRE: tape = LMw AND i = 1
(define a*Ua*b (make-tm (S A B C Y N)

(a b)
(((S ,BLANK) (Y ,BLANK))
((S a) (A ,RIGHT))
((S a) (B ,RIGHT))
((S b) (C ,RIGHT))
((A a) (A ,RIGHT))
((A ,BLANK) (Y ,BLANK))
((B a) (B ,RIGHT))
((B b) (C ,RIGHT))
((C a) (N a))
((C b) (N b))
((C ,BLANK) (Y ,BLANK)))

S
(Y N)
Y))

;; Tests for a*Ua*b
(check-equal? (sm-apply a*Ua*b (,LM b b) 1) reject)
(check-equal? (sm-apply a*Ua*b (,LM a a b a) 1) reject)
(check-equal? (sm-apply a*Ua*b (,LM b) 1) ’accept)
(check-equal? (sm-apply a*Ua*b (,LM ,BLANK) 1) accept)
(check-equal? (sm-apply a*Ua*b (,LM a b) 1) accept)
(check-equal? (sm-apply a*Ua*b (,LM a a a) 1) accept)
(check-equal? (sm-apply a*Ua*b (,LM a a a b) 1) accept)

move to N, move the head to the right, and reject because the input word is
not in a.∗b. The needed transitions are:

((C a) (N ,RIGHT))

((C b) (N ,RIGHT))

((C ,BLANK) (Y ,BLANK)))

The implementation of a*Ua*b is displayed in Fig. 83. Running the tests
reveals that they all pass. The machine is also validated using random testing:
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> (sm-test a*Ua*b 10)

'(((@ _) accept)

((@ a a b) accept)

((@ b) accept)

((@ a b b b a a b a) reject)

((@ b b a) reject)

((@ b a a a b a) reject)

((@ a b a b b) reject)

((@ a b b b) reject)

((@ b b b) reject)

((@ a a) accept))

A visual inspection of the results reveals that all the randomly generated
words are correctly decided.

61.4 Invariant Predicates

The invariant predicate for S must determine that nothing on the tape has
been read. In accordance with the precondition for a*Ua*b, this means that
the given head position must be 1. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that no tape elements read

(define (S-INV t i) (= i 1))

(check-equal? (S-INV `(,LM a a) 2) #f)

(check-equal? (S-INV `(,LM a a b) 1) #t)

The invariant predicate for A must determine that only as have been read
and that the head’s position is at least 1. This means that the tape positions
in [1..i-1] only contain as, where i is the head’s position. The predicate is
implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that tape[1..i-1] only has a

(define (A-INV t i)

(and (>= i 2)

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

(check-equal? (A-INV `(,LM ,BLANK ,BLANK) 2) #f)

(check-equal? (A-INV `(,LM a) 0) #f)

(check-equal? (A-INV `(,LM a b a a a) 3) #f)

(check-equal? (A-INV `(,LM a ,BLANK) 2) #t)

(check-equal? (A-INV `(,LM a a a b) 4) #t)
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The invariant predicate for B is the same as the invariant predicate for A.
The predicate may be implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that tape[1..i-1] only has a

(define (B-INV t i)

(and (>= i 2)

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))))

(check-equal? (B-INV `(,LM ,BLANK ,BLANK) 2) #f)

(check-equal? (B-INV `(,LM a) 0) #f)

(check-equal? (B-INV `(,LM a b a a a) 5) #f)

(check-equal? (B-INV `(,LM a ,BLANK) 2) #t)

(check-equal? (B-INV `(,LM a a a b) 3) #t)

The invariant predicate for C must determine that only as followed by a b

have been read. This means that the tape positions [1..i-2] only contain as
and position i-1 contains a b, where i is the head’s position. The predicate
is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that tape[1..i-2] has only a and

;; tape[i-1] = b

(define (C-INV t i)

(and (>= i 2)

(andmap (λ (s) (eq? s 'a)) (take (rest t) (- i 2)))

(eq? (list-ref t (sub1 i)) 'b)))

(check-equal? (C-INV `(,LM ,BLANK ,BLANK) 2) #f)

(check-equal? (C-INV `(,LM a a b b a) 5) #f)

(check-equal? (C-INV `(,LM a a b b a) 4) #t)

(check-equal? (C-INV `(,LM b ,BLANK) 2) #t)

The invariant predicate for Ymust determine that tape positions [1..i-1]
only contains a blank, only contains as, or contains as followed by a b, where
i is the head’s position. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that tape[i] = BLANK and

;; tape[1..i-1] = a* or tape[1..i-1] = a*b

(define (Y-INV t i)

(or (and (= i 2) (eq? (list-ref t (sub1 i)) BLANK))

(andmap (λ (s) (eq? s 'a)) (take (rest t) (sub1 i)))

(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))
(back (takef (drop t (add1 (length front)))

(λ (s) (not (eq? s BLANK)))))]

(equal? back '(b))))))
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(check-equal? (Y-INV `(,LM a a a) 1) #f)

(check-equal? (Y-INV `(,LM b a a) 3) #f)

(check-equal? (Y-INV `(,LM a a a a ,BLANK) 5) #t)

(check-equal? (Y-INV `(,LM a a a a a b,BLANK) 7) #t)

Finally, the invariant predicate for N must determine that tape positions
[1..i-1] do not contain only as nor contain as followed by a b, where i is
the head’s position. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that tape[1..i-1] != a* or a*b

(define (N-INV t i)

(and (not (andmap (λ (s) (eq? s 'a))
(take (rest t) (sub1 i))))

(let* [(front (takef (rest t) (λ (s) (eq? s 'a))))
(back (takef (drop t (add1 (length front)))

(λ (s) (not (eq? s BLANK)))))]

(not (equal? back '(b))))))

(check-equal? (N-INV `(,LM ,BLANK) 1) #f)

(check-equal? (N-INV `(,LM b ,BLANK) 1) #f)

(check-equal? (N-INV `(,LM a b ,BLANK) 3) #f)

(check-equal? (N-INV `(,LM a a a ,BLANK) 4) #f)

(check-equal? (N-INV `(,LM a b a ,BLANK) 4) #t)

(check-equal? (N-INV `(,LM a a a b b ,BLANK) 5) #t)

61.5 Correctness

We start by proving that the state invariants hold when a*Ua*b is applied to
w as stated in the following theorem:

Theorem 3 State invariants hold when a*Ua*b is applied to w.

The proof, as before, is done by induction on, n, the number of steps taken
by a*Ua*b. Let a*Ua*b = (make-tm K .Σ R S F Y).

Proof

Base case: n .= 0
If no steps are taken, a*Ua*b may only be in S. By precondition, the head’s
position is 1. This means S-INV holds.

Inductive Step:
Assume: State invariants hold for a computation of length n = k
Show: State invariants hold for a computation of length n = k + 1
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Let w = xcy, such that x,y.∈ Σ∗, .|x.|=k, and c.∈{.Σ .∪ {BLANK}}. The first
k + 1 steps may be described as follows:

(S 1 xcy) �∗ (U r xcy) � (V s xcy), where V∈K ∧ U∈K-{N Y}

That is, the first k transitions take the machine to state U and move the head
to position r without changing the contents of the tape. The k + 1 transition
takes the machine to state V and leaves the head in position s without chang-
ing the contents of the tape. We must show that the state invariant holds
for the k + 1 transition. Note that a rule of the form ((I @) (I ,RIGHT)) is
never used because the machine never moves left, and by precondition the
head starts in position 1. We make an argument for each rule that may be
used:

((S ,BLANK) (Y ,BLANK)): By inductive hypothesis, S-INV holds. This
means that before using this rule, nothing has been read from the input
word because the head is in position 1. Reading the blank means the input
word is empty. Thus, Y-INV holds.

((S a) (A ,RIGHT)): By inductive hypothesis, S-INV holds. This means that
before using this rule, nothing has been read from the input word because
the head is in position 1. Using this rule means that the read part of the
input word only contains a and that the head moves to position 2. Therefore,
A-INV holds.

((S a) (B ,RIGHT)): By inductive hypothesis, S-INV holds. This means that
before using this rule, nothing has been read from the input word because
the head is in position 1. Using this rule means that the read part of the
input word only contains a and that the head moves to position 2. Therefore,
B-INV holds.

((S b) (C ,RIGHT)): By inductive hypothesis, S-INV holds. This means that
before using this rule, nothing has been read from the input word because
the head is in position 1. Using this rule means that the read part of the
input word only contains b and that the head moves to position 2. Therefore,
C-INV holds.

((A a) (A ,RIGHT)): By inductive hypothesis, A-INV holds. This means that
the read part of the input word is a member of a.* and that, the head’s posi-
tion, i .≥ 2. Reading the a means the read part of the input word continues
to be a member of a.* and i .≥ 2 continues to hold. Thus, A-INV holds.
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((A ,BLANK) (Y ,BLANK)): By inductive hypothesis, A-INV holds. This
means that the read part of the input word is a member of a.*. Reading a
blank means the input word is a member of a.*. Thus, Y-INV holds.

((B a) (B ,RIGHT)): By inductive hypothesis, B-INV holds. This means that
the read part of the input word is a member of a.* and that, the head’s posi-
tion, i .≥ 2. Reading the a and moving the head right means the read part of
the input word continues to be a member of a.* and i .≥ 2 continues to hold.
Thus, B-INV holds.

((B b) (C ,RIGHT)): By inductive hypothesis, B-INV holds. This means that
the read part of the input word is a member of a.* and, the head’s position, i
.≥ 2. Reading a b means the read part of the input word is a member of a.*b
and that i .≥ 2 continues to hold. Thus, C-INV holds.

((C a) (N ,RIGHT)): By inductive hypothesis, C-INV holds. This means that
the read part of the input word is a member of a.*b. Reading an a means the
input word is not a member of a.* nor a.*b. Thus, N-INV holds.

((C b) (N ,RIGHT)): By inductive hypothesis, C-INV holds. This means that
the read part of the input word is a member of a.*b. Reading an b means the
input word is not a member of a.* nor a.*b. Thus, N-INV holds.

((C ,BLANK) (Y ,BLANK)): By inductive hypothesis, C-INV holds. This
means that the read part of the input word is a member of a.*b. Reading a
blank means the input word is a member of a.*b. Thus, Y-INV holds. �

Armed with the knowledge that the state invariants always hold, we may
proceed to prove the following theorem:

Theorem 4 L = L(a*Ua*b)

As before, the proof is divided into two lemmas.

Lemma 3 w .∈ L .⇔ w .∈ L(a*Ua*b)

Proof
(.⇒) Assume w .∈ L. This means that w .∈ a.∗ or w .∈ a.∗b. Given that state
invariants always hold, a*Ua*b must halt in Y after reading w. Thus, w .∈
L(a*Ua*b).

(.⇐) Assume w .∈ L(a*Ua*b). This means that a*Ua*b halts in Y after con-
suming w. Given that the invariants always hold, w .∈ a.∗ or w .∈ a.∗b. Thus,
w .∈ L. �
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Lemma 4 w ./∈ L .⇔ w ./∈ L(a*Ua*b)

Proof
(.⇒) Assume w ./∈ L. This means that w ./∈ a.∗ and w ./∈ a.∗b. Given that state
invariants always hold, a*Ua*b does not halt in Y after reading w. Thus, w
./∈ L(a*Ua*b).

(.⇐) Assume w ./∈ L(a*Ua*b). This means that a*Ua*b does not halt in Y
after reading w. Given that state invariants always hold, this means that w
./∈ a.∗ and w ./∈ a.∗b. Thus, w ./∈ L. �

4 In a*Ua*b, states A and B have the same role. This type of repeti-
tion seems rather silly. Design and implement a deterministic Turing
machine for L = a.*∪ a.*b.

5 Let .Σ = {a b c}. Design and implement a nondeterministic Turing
machine for L = {w .| w is missing at least one element of .Σ}

6 Let .Σ = {a b}. Design and implement a nondeterministic Tur-
ing machine for L = {w .| w has an odd number of a or w has an

even number of a and ends with a b}

62 Turing Machines Decide Regular Languages

After completing the exercises in the previous sections, you may suspect that
tms can decide any regular language. If this is true, then tms are at least
as powerful as dfas, and we ought to be able to design and implement a
constructor for tms that takes as input a dfa.

62.1 Design Idea

Every regular language is decided by a dfa. We can think of a dfa as a tm

that never moves left and that never writes to the tape. That is, we may
think of a dfa as a tm whose only action is moving right. A dfa rule has the
following structure:

(state1 symbol state2)
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Using such a rule has two effects: it moves the machine from state.1 to state.2
and moves the input tape’s head one space to the right. A Turing machine
may simulate such a rule using the following rule:

((state1 symbol) (state2 RIGHT))

Thus, every rule in the given dfa can be converted to a tm-rule.
Handling a dfa’s final states requires a little care. We cannot simply make

every final state in the dfa a final state in the constructed tm. Recall that
a tm halts upon reaching a final state. In contrast, a dfa may continue to
consume input in a final state. We need a mechanism for the constructed tm

to move to its accepting final state when the dfa would be in a final state
with no more input to consume. We can observe that based in the tm-rule
construction above, the constructed tm’s head being on the first blank after
the input word is equivalent to the dfa having read all its input. Therefore,
the tm needs transition rules from every dfa final state on BLANK to the tm’s
final accepting state.

62.2 Implementation

Based on the design idea above, a dfa to tm constructor is displayed in
Fig. 84. A new state for the constructed tm’s final accepting state is created
using FSM’s generate-symbol. The tm’s states are this new state and the
given dfa’s states. The input alphabet is that of the given dfa. The rules
for the tm consist of two sets: those that transition into the final accepting
state and those that simulate the given dfa’s rule. The rules to transition
into the final accepting state are constructed using map. For every final state
in the given dfa, a transition into the final accepting state on a blank is
created. The rules for simulating dfa rules are also created using map. For
each rule, (A c B) a transition is created from A on c to B moving the head
right. The tm’s start state is the given dfa’s start state. The only final state
is the generated final state.

Tests are written by using the new constructor to convert a dfa into a tm

and testing that both the original dfa and the constructed tm yield the same
result. In Fig. 84, the dfa used for testing is the same M defined in Sect. 21.1.

62.3 Correctness

Let M be an arbitrary dfa and let T = (dfa2tm M). It is not difficult to see
that L(M) = L(T). Informally, T simulates M until M would have consumed all
its input. At this point, if M would have been in a final state, then T moves
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Fig. 84 Building a tm language recognizer from a dfa
;; DFA for testing
;; L(M) = ab*
(define M (make-dfa (S F ,DEAD)

(a b)
S
(F)
((S a F)
(S b ,DEAD)
(F a ,DEAD)
(F b F)
(,DEAD a ,DEAD)
(,DEAD b ,DEAD))

no-dead))

;; dfa → tm
;; Purpose: Build a tm for the language of the given dfa
(define (dfa2tm m)

(let [(accept-state (generate-symbol Y (sm-states m)))]
(make-tm (cons accept-state (sm-states m))

(sm-sigma m)
(append
(map (λ (f) (list (list f BLANK)

(list Y BLANK)))
(sm-finals m))

(map (λ (r) (list (list (first r) (second r))
(list (third r) RIGHT)))

(sm-rules m)))
(sm-start m)
(list accept-state)
accept-state)))

;; Tests for dfa2tm
(define M-tm (dfa2tm M))

(check-equal? (sm-apply M ()) (sm-apply M-tm (,LM)))
(check-equal? (sm-apply M (b b)) (sm-apply M-tm (,LM b b)))
(check-equal? (sm-apply M (a b b a a)) (sm-apply M-tm (,LM a b b a a)))
(check-equal? (sm-apply M (a)) (sm-apply M-tm (,LM a)))
(check-equal? (sm-apply M (a b)) (sm-apply M-tm (,LM a b)))
(check-equal? (sm-apply M (a b b)) (sm-apply M-tm (,LM a b b)))
(check-equal? (sm-apply M (a b b b b b))

(sm-apply M-tm (,LM a b b b b b)))

to its final accepting state. Otherwise, T halts in a non-accepting state and
rejects.

7 Strengthen the testing suite for dfa2tm by transforming more dfas
into tms.
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8 Mr. Hacker is very upset that the built tm has an accepting final state,
but does not have any rejecting states explicitly listed as final states.
He would like to make the final states:

(cons accept-state (sm-states m))

His reasoning is that every state in the given dfa becomes a reject state
because the tm only accepts in accept-state. What goes wrong if this
change is made to the constructor in Fig. 84?

9 Let M be an arbitrary dfa and let T = (dfa2tm M). Prove that L(M)
= L(T).

63 A Turing Machine for anbncn

We have established that Turing machines can do anything a dfa can do. Are
tms more powerful than dfas? Can tms do everything pdas can do? Are tms
more powerful than pdas? The answer to all these questions is affirmative. We
shall tackle the problem of proving that tms can do everything pdas can do
later in this textbook. Our current focus is to establish that tms can perform
computations that neither dfas nor pdas can perform. To establish this, we
design and implement a tm to decide a language that is not context-free. The
target language is: L = a.nb.nc.n.

Designing tms can be a complex process, and the details get messy rather
quickly. In a large part, this stems from using mutation to perform computa-
tions. It is more difficult to define state invariants when the tape is mutated
by the tm. A good analogy is traversing a binary tree. It is easier to traverse
a binary tree using recursion without mutation than it is to traverse a binary
tree using a while-loop, a stack, and the mutation of variables. Program-
ming Turing machines is also challenging because they offer a very low level
of abstraction. That is, the API is much more restricted than any popular
higher-level programming language. On the positive side, programming Tur-
ing machines provide us with the opportunity to sharpen our programming
skills using a given API.

63.1 Design Idea

How can a tm decide L = a.nb.nc.n? Without a doubt, there are many algo-
rithms to solve this problem. As the problem solver, you are free to design
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and implement any such algorithm. For our purposes, we shall design and
implement an algorithm that traverses the word on the tape multiple times.
The precondition is described by the following graphic:

.

LM a a b b c ci = 1

The input word is preceded by a blank, and the head starts on this blank.
First, the input word is traversed to determine if it is empty or in a*b*c*.

If it is not, then the machine may halt and reject. If it is empty, then the
machine may move to accept. If it is in a*b*c*, then the machine must check
that there are an equal numbers of as, bs, and cs.

To check that there are an equal number of as, bs, and cs, the input word is
traversed and mutated multiple times. If the input word is in L, then at each
iteration, a, a b, and a c are substituted with an x. When an a is replaced,
the machine nondeterministically decides if it is the last a. If it is not the
last a, the machine substitutes the next b and c and loops to substitute the
next a. If it is the last a, the machine substitutes the next b and c and moves
the head right after the last substituted c. If a blank is read, this means that
the machine may move to accept because the mutated word contains only
xs and the number of xs is a multiple of 3. If at any point a substitution
cannot be made or the element after the last c substituted is not a blank,
then the machine halts and rejects because it does not reach the accepting
final state.

Let us visualize how this works by continuing with our example. The ma-
chine nondeterministically decides that the next a is not the last. During the
first traversal, therefore, the first a, b, and c are substituted. The machine
ends in a state visualized as follows:

.

LM x a x b x ci = 6

At this point, the machine’s head is moved to the blank before the input
word to reach this configuration:

.

LM x a x b x ci = 1
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Now, the machine nondeterministically decides to substitute the last a.
The machine skips the xs to the right (i.e., just one in our example) and
substitutes the a leaving the machine in the following state:

.

LM x x x b x ci = 3

The machine proceeds to try to substitute a b. It skips xs to reach and
substitute the remaining b. The machine reaches the following state:

.

LM x x x x x ci = 5

The machine proceeds to skip xs to reach and substitute the remaining c,
leaving the machine in the following state:

.

LM x x x x x xi = 7

At this point, the machine moves the head to the right to determine if it may
accept. This action leaves the machine in the following configuration:

.

LM x x x x x xi = 8

Upon reading the blank, the machine moves to accept.

63.2 Name, Alphabet, and Tests

The machine is named anbncn and the input alphabet .Σ = {a b c x}. The
machine’s precondition is:

tape = `(,LM ,BLANK w) ∧ i = 1, where w∈{a b c}∗

That is, the machine’s head starts on the blank before w and w does not
contain an x.

The tests are written using input words that are and that are not in L. It is
important to test a variety of words that are in not in L. For example, words
that are not in a.*b.*c.* and words in a.*b.*c.* that do not have equal number of
all three letters are tested. For all tests, care is taken to make sure that the
machine’s precondition is met. The tests are:
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(check-equal? (sm-apply anbncn `(,LM ,BLANK b a b c) 1)

'reject)
(check-equal? (sm-apply anbncn `(,LM ,BLANK a c b) 1)

'reject)
(check-equal? (sm-apply anbncn `(,LM ,BLANK a a b c) 1)

'reject)
(check-equal?

(sm-apply anbncn `(,LM ,BLANK a a b b b c c) 1)

'reject)
(check-equal? (sm-apply anbncn `(,LM ,BLANK c) 1) 'reject)
(check-equal?

(sm-apply anbncn `(,LM ,BLANK a b c c) 1)

'reject)
(check-equal?

(sm-apply anbncn `(,LM ,BLANK a a b b c c a b c) 1)

'reject)
(check-equal? (sm-apply anbncn `(,LM ,BLANK) 1) 'accept)
(check-equal? (sm-apply anbncn `(,LM ,BLANK a b c) 1)

'accept)
(check-equal? (sm-apply anbncn `(,LM ,BLANK a a b b c c) 1)

'accept)
(check-equal?

(sm-apply anbncn `(,LM ,BLANK a a a b b b c c c) 1)

'accept)

63.3 Conditions and States

To determine the states needed it is useful to outline the algorithm that is
to be implemented in more detail. For anbncn, the algorithm is outlined as
follows:

1. The machine starts with the head in position 1 that must be a blank.
2. The machine moves the head to the right to determine if the input word

is empty. If the input word is empty, then the machine moves to accept.
Otherwise, it determines if the input word is in a.+b.+c.+.

3. If the input word is not empty, the machine

a. tries to read as before a b. If a c or a blank are read, then the machine
halts and rejects.

b. tries to read bs before a c. If a blank or an a is read, then the machine
halts and rejects.

c. tries to read cs before a blank. If an a or a b is read, then the machine
halts and rejects.

d. The machine moves the head to position 1.
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e. The machine skips xs to the right until it reaches an a.
f. The machine substitutes an a and nondeterministically decides to

either:
i. A. Substitute a b.

B. Substitute a c and loop.
ii. A. Substitute the last b.

B. Substitute the last c.
C. Move the head to the right.
D. Move to accept if a blank is read.

The algorithm above suggests that 14 states are needed: one for each
step outlined and a final accepting state. States are carefully documented
to make it easier to implement the needed Turing machine. Let i be the
head’s position, let w be the input word, and let xs be the xs in w. At the
beginning, the head must be on a blank in position 1. The starting state, S,
is documented as follows:

;; S: i = 1 ∧ tape[i] = BLANK, starting state

The machine first determines if the input word is empty. The head’s po-
sition must be 2, and position 1 of the tape must be a blank. The J state is
documented as follows:

J: i = 2 AND tape[i-1] = BLANK

State A is used to determine that the input word starts with as. This
means the head’s position must be greater than 2 (i.e., a position beyond
the left-end marker and the blank before the input word). As long as as are
read, the machine remains in this state. State B is used to determine that as
are followed by bs. This means the head’s position must be greater than 3.
As long as bs are read, the machine remains in this state. State C is used to
determine that bs are followed by cs. This means the head’s position must
be greater than 4. As long as cs are read, the machine remains in C. These
states are documented as follows:

A: tape[2..i-1] = a+ ∧ i > 2

B: tape[2..i-1] = a+b+ ∧ i > 3

C: tape[2..i-1] = a+b+c+ ∧ i > 4

After determining that the input word is in a.*b.*c.*, the machine moves
the head to position 1. In fact, this must be done every time the leftmost
a, b, and c are substituted with an x. This head movement is done in state
D and ends when the head reaches the blank before the input word. The
input word may have been mutated and has an equal number of as, bs, and
cs substituted. Given that the leftmost as, bs, and cs are substituted, there
must be an equal number of xs before the first a, the first b, and the first c.
In addition, given that the last substitution has not been performed, there
must be at least one a, one b, and one c left in the input word. This state is
documented as follows:
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D: w = xna+xnb+xnc+ ∧ i ≥ 1

After returning the head to position 1, the machine proceeds to substitute
the first a. State E is used for this purpose. The number of as must be greater
than 0 because there must be at least one more a substitute. In this state,
the substituted as are skipped. That is, the xs before the first a are skipped.
This means that the head’s position must be greater than 1. Upon reading
the first a, the machine nondeterministically decides if it is substituting the
next or the last a. We first consider the case in which the machine is not
substituting the last a. The machine moves to state F. This means there is
one more x for substituted as. In state F, the number of as must be greater
than 0, and the number of bs and the number of cs must both be greater
than 1 (i.e., the last b and c are not being substituted in this traversal of
the input word). The position of the head must be greater than 1 (it may
be 1 because it may be the case that the first a has just been substituted).
The machine skips the as and xs before the first b. Upon reading the first
b, the machine substitutes it and moves to state G. This means there is one
more x before the remaining as and before the remaining bs than before the
remaining cs. In addition, it means that the number of as and the number
of bs are both greater than 0 and the number of cs is greater than 1. The
head’s position must be greater than 3 because at least an a and a b have
been substituted. Upon reading the first c, the machine substitutes it and
moves to state D to repeat the process. You may observe that the condition
for D is satisfied. These new states are documented as follows:

E: i > 1 ∧ w = xna+xnb+xnc+

F: i > 1 ∧ w = xn+1a+xnbb+xncc+

G: i > 3 ∧ w = xn+1a+xn+1b+xncc+

We now consider substituting the last a, b, and c. After skipping the initial
xs and reading the last a in state E, the machine substitutes it and moves
to state H to substitute the last b. Thus, the position of the head must be
greater than 1. Reaching H means that all as have been substituted with x as
well as all bs and cs except the last of each. Recall that the last b and c must
be in w. Otherwise, the machine never makes the nondeterministic move to
H. This means that w has xs followed by a b followed by xs followed by a c.
The length up to the b must be twice the length of what is after it, and the
number of xs must be a multiple of 3 plus 1. Upon substituting the last b,
the machine moves to a state, I, to substitute the last c. Thus, the position
of the head must be greater than 2. In addition, w has xs followed by a c

such that the number of xs is a multiple of 3 plus 2. These new states are
documented as follows:

H: i > 1 ∧ w=x+bx+c ∧ |xs| remainder 3 = 1 ∧ |x∗b|=2|x∗c|
I: i > 2 ∧ w=x+c ∧ |xs| remainder 3 = 2

Upon substituting the last c while in state I, the machine moves to, K, a
new state. Observe that the head’s position must be greater than 3. In K, the
x just written is skipped by moving the head to the right, and the machines
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moves to, L, a new state to check if a blank is read. Thus, in L, the head’s
position must be greater than 4. Further observe that in K, the input word
is not empty and contains a multiple of 3 number of xs, the read element
is an x, and the head position is the length of the mutated input word plus
one and that in L, the input word is not empty and contains a multiple of 3
number of xs, and the head position is the length of the mutated input word
plus two. The states are documented as follows:

K: i > 3 ∧ w = xxxx∗ ∧ |xs| remainder 3 = 0 ∧ tape[i]=x

∧ i=|w|+1

L: i > 4 ∧ w = xxxx∗ ∧ |xs| remainder 3 = 0 ∧ i=|w|+2

Finally, the final accepting state, Y, means that each a, b, and c has been
substituted with an x and that the number of xs is divisible by 3. It is
documented as follows:

Y: w = x∗ ∧ |xs| remainder 3 = 0, final accepting state

63.4 Transition Function, Implementation, and Testing

From the starting state, S, on a blank, the machine moves the head right and
moves to J to determine if the input word is empty or is not empty. The only
needed transition is:13

((S ,BLANK) (J ,RIGHT))

In state J, the machine determines if the input is empty. If it is empty
then, it may move to Y and accept. Otherwise, it moves to A to start the
process to determine if the input word is in a.+b.+c.+. The needed transition
are:

((J ,BLANK) (Y ,BLANK))

((J ,BLANK) (A ,RIGHT))

The process of determining if the input is in a.+b.+c.+ is done using states A,
B, and C. In A, reading an a means the head must be moved right. Reading
a b means the head is moved to the right, and the machine moves to B to
determine that only bs followed by cs remain in the input word. The needed
transitions are:

((A a) (A ,RIGHT))

((A b) (B ,RIGHT))

Recall that the machine is nondeterministic and transition rules from other
elements in .Σ .∪ BLANK} are not needed because if encountered, the machine
halts in a non-final state and rejects.

13 We assume all the transition rules are placed inside a quasiquoted list.
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In B, reading a b means the head must move to the right. Reading a c

means the head is moved right, and the machine moves to C to determine if
only cs remain in the input word. The needed transitions are:

((B b) (B ,RIGHT))

((B c) (C ,RIGHT))

In C, reading a c means the head must move to the right. Reading a blank
means the machine transitions to D to move the head left to the blank before
the input word. The head may be moved to the left to start the process. The
needed transitions are:

((C c) (C ,RIGHT))

((C ,BLANK) (D ,LEFT))

In D, the machine moves the head left upon reading any element in .Σ.
Reading a blank means that the machine must transition to E to start the
next traversal of the input word and that the head is moved right to start
this process. The needed transitions are:

((D a) (D ,LEFT))

((D b) (D ,LEFT))

((D c) (D ,LEFT))

((D x) (D ,LEFT))

((D ,BLANK) (E ,RIGHT))

The process of mutating the input word is done in states E–I. In E, reading
an x means the first a has not been reached and the head must move to the
right. Reading an a means the machine must nondeterministically decide if
it is or is not the last a. If it is not, the machine mutates the a to an x and
moves to F to mutate the first b. If it is, the machine mutates the a to an x

and moves to H to mutate the last b. The needed transitions are:

((E x) (E ,RIGHT))

((E a) (F x))

((E a) (H x))

In F, the machine must skip the x just written to the tape in state E,
the remaining as, and the substituted bs. This means moving the head to
the right upon reading an a or an x. Reading a b means that it must be
substituted with an x, and the machine moves to G to substitute the first c.
The needed transition rules are:

((F a) (F ,RIGHT))

((F b) (G x))

((F x) (F ,RIGHT))

In G, the x just written to the tape in state F, the remaining bs, and the
substituted cs must be skipped. For these, the head must be moved to the
right. Upon reading a c, it is substituted with an x, and the machine loops
back to D to return to the blank before the input word. The needed transition
rules are:
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((G b) (G ,RIGHT))

((G x) (G ,RIGHT))

((G c) (D x))

In H, the x just written in state E, and the substituted bs must be skipped
to substitute the last b. This means that upon reading an x, the head is
moved to the right. Upon reading a b, it is substituted, and the machine
moves to I to substitute the last c. The needed transition rules are:

((H x) (H ,RIGHT))

((H b) (I x))

In I, the x written in H and the substituted cs are skipped by moving the
head right upon reading an x. If a c is read, then it is mutated to an x, and
the machine moves to K to start determining if the next element is a blank.
In K, the head is moved right to skipped the just written x in state I, and
the machine moves to state L. Finally, in L if a blank is read, the machine
moves to accept. The needed transition rules are:

((I x) (I ,RIGHT))

((I c) (K x))

((K x) (L ,RIGHT))

((L ,BLANK) (Y ,BLANK)))

The implementation of the machine is displayed in Fig. 85. Running the
program reveals that all the tests pass. Random testing, using sm-test, is
of limited use with Turing machines that mutate the tape. Consider, for
example, the following tests:

> (sm-test anbncn 10)

'(((@ _) accept)

((@ c x x x) reject)

((@ x c c b a c x c b) reject)

((@ x c c b b x b b c) reject)

((@ a a a c a c x b) reject)

((@ a c x x b a b b b) reject)

((@ a b c b b) reject)

((@ x c x c x a x) reject)

((@ c c a a x a c b a) reject)

((@ a c x x a c) reject))

The usefulness of random testing is diminished for two reasons. The first,
the likeliness of randomly generating a word in a.nb.nc.n is very small. The
second, the input word is mutated. This means that there is no way to re-
construct the original input from the provided results. A bit more useful is
sm-showtransitions. Consider the following trace:
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Fig. 85 The Turing machine implementation for L = a.nb.nc.n

(define anbncn (make-tm (S A B C D E F G H I J K L Y)
(a b c x)
(((S ,BLANK) (J ,RIGHT))
((J ,BLANK) (Y ,BLANK))
((J a) (A ,RIGHT))
((A a) (A ,RIGHT))
((A b) (B ,RIGHT))
((B b) (B ,RIGHT))
((B c) (C ,RIGHT))
((C c) (C ,RIGHT))
((C ,BLANK) (D ,LEFT))
((D a) (D ,LEFT))
((D b) (D ,LEFT))
((D c) (D ,LEFT))
((D x) (D ,LEFT))
((D ,BLANK) (E ,RIGHT))
((E x) (E ,RIGHT))
((E a) (F x))
((E a) (H x))
((F a) (F ,RIGHT))
((F b) (G x))
((F x) (F ,RIGHT))
((G b) (G ,RIGHT))
((G x) (G ,RIGHT))
((G c) (D x))
((H x) (H ,RIGHT))
((H b) (I x))
((I x) (I ,RIGHT))
((I c) (K x))
((K x) (L ,RIGHT))
((L ,BLANK) (Y ,BLANK)))

S
(Y)
Y))

(check-equal? (sm-apply anbncn (,LM ,BLANK a a) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK b b b) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK b a b c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a c b) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a b c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a b b b c c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a b c c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a b b c c a b c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK) 1) accept)
(check-equal? (sm-apply anbncn (,LM ,BLANK a b c) 1) accept)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a b b c c) 1) accept)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a a b b b c c c) 1) accept)
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> (sm-showtransitions anbncn `(,LM ,BLANK a b c) 1)

'((S 1 (@ _ a b c))

(J 2 (@ _ a b c))

(A 3 (@ _ a b c))

(B 4 (@ _ a b c))

(C 5 (@ _ a b c _))

(D 4 (@ _ a b c _))

(D 3 (@ _ a b c _))

(D 2 (@ _ a b c _))

(D 1 (@ _ a b c _))

(E 2 (@ _ a b c _))

(H 2 (@ _ x b c _))

(H 3 (@ _ x b c _))

(I 3 (@ _ x x c _))

(I 4 (@ _ x x c _))

(Y 4 (@ _ x x x _)))

The provided trace allows you to observe the movement of the head and
the mutations performed to the tape. Thus, you may observe if the desired
effects are correctly performed. Remember, however, that such a trace is only
provided for input words that lead to accept.

63.5 State Invariant Predicates

To make the implementation of state invariant predicates clearer, an auxiliary
function to extract a given word’s front symbols that match a given symbol
is used. The auxiliary function is:

;; word symbol → word

;; Purpose: Return the subword at the front of the

;; given word that only contains the given

;; symbol

(define (front-symbs w s)

(takef w (λ (a) (eq? a s))))

(check-equal? (front-symbs '(a a a c b) 'c) '())
(check-equal? (front-symbs '(a a a c b) 'a) '(a a a))

The invariant predicate for S determines that the head’s position is 1 and
a blank is under the head. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that head is in position 1 and

;; tape[i] = BLANK

(define (S-INV t i)

(and (= i 1) (eq? (list-ref t i) BLANK)))
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(check-equal? (S-INV `(,LM ,BLANK a b c) 0) #f)

(check-equal? (S-INV `(,LM a b c c) 1) #f)

(check-equal? (S-INV `(,LM ,BLANK a b c) 1) #t)

(check-equal? (S-INV `(,LM ,BLANK a a b b c) 1) #t)

The invariant predicate for A determines that the head’s position is greater
than 2 and that tape positions in [2..i-1] contain only as. To this end, the
input word is extracted from the given tape, and the leading as are extracted
from the input word. The predicate is implemented as follows:

(define (A-INV t i)

(and (> i 2)

(let* [(w (drop (take t i) 2))

(as (front-symbs w 'a))]
(equal? as w))))

(check-equal? (A-INV `(,LM ,BLANK a b c) 0) #f)

(check-equal? (A-INV `(,LM ,BLANK ,BLANK ,BLANK) 2) #f)

(check-equal? (A-INV `(,LM ,BLANK a b a b c) 4) #f)

(check-equal? (A-INV `(,LM ,BLANK a b c) 3) #t)

(check-equal? (A-INV `(,LM ,BLANK a a a b b c) 5) #t)

Observe that the second test illustrates that the input word may not be
empty.

The invariant predicate for B determines that the head’s position is greater
than 3 and that tape[2..i-1] = a.+b.+. To this end, the tape up to position
i - 1 is extracted from the given tape. The left-end marker and blank are
dropped to obtain the read part of the input word. The leading as are ex-
tracted as well as the bs after them. The predicate tests that the read part
of the input word is the extracted as followed by the extracted bs and that
there is at least one of both. It is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine head in position > 2 and

;; tape[2..i-1] = a+b+

(define (B-INV t i)

(and (> i 3)

(let* [(w (drop (take t i) 2))

(as (front-symbs w 'a))
(w-as (drop w (length as)))

(bs (front-symbs w-as 'b))]
(and (equal? w (append as bs))

(not (empty? as))

(not (empty? bs))))))
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(check-equal? (B-INV `(,LM ,BLANK a b c) 0) #f)

(check-equal? (B-INV `(,LM ,BLANK a b b c c) 6) #f)

(check-equal? (B-INV `(,LM ,BLANK a a b b c c) 6) #t)

(check-equal? (B-INV `(,LM ,BLANK a b b c) 5) #t)

(check-equal? (B-INV `(,LM ,BLANK a a b b b c c) 7) #t)

Observe that the tests allow for the number of as and bs not to be the same.
The invariant predicate for C determines that the head’s position is greater

than 4 and that tape[2..i-1] = a.+b.+c.+. To this end, the tape up to position
i is extracted from the given tape. The left-end marker and blank are dropped
to obtain the read part of the input word. The leading as are extracted as
well as the following bs and the cs after them. The predicate tests that the
read part of the input word is the extracted as followed by the extracted
bs followed by the extracted cs and that there is at least one of each. It is
implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine head in position > 3 and

;; tape[2..i-1]=a+b+c+

(define (C-INV t i)

(and (> i 4)

(let* [(w (drop (take t i) 2))

(as (front-symbs w 'a))
(w-as (drop w (length as)))

(bs (front-symbs w-as 'b))
(w-asbs (drop w-as (length bs)))

(cs (front-symbs w-asbs 'c))]
(and (equal? w (append as bs cs))

(not (empty? as))

(not (empty? bs))

(not (empty? cs))))))

(check-equal? (C-INV `(,LM ,BLANK a b b c c) 5) #f)

(check-equal? (C-INV `(,LM ,BLANK a b b) 4) #f)

(check-equal? (C-INV `(,LM ,BLANK a b b c c) 6) #t)

(check-equal? (C-INV `(,LM ,BLANK a b c ,BLANK) 5) #t)

The invariant predicates for D–G check a property of i, expect the input
word to be in x.*a.*x.*b.*x.*c.*, and check properties of the input word. This
leads the predicates to share the following body structure:

(and <expression for i property>

(let* [(w (takef (drop t 2)

(λ (s) (not (eq? s BLANK)))))

(xs1 (front-symbs w 'x))
(w-xs1 (drop w (length xs1)))

(as (front-symbs w-xs1 'a))
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(w-xs1as (drop w-xs1 (length as)))

(xs2 (front-symbs w-xs1as 'x))
(w-xs1asxs2 (drop w-xs1as (length xs2)))

(bs (front-symbs w-xs1asxs2 'b))
(w-xs1asxs2bs (drop w-xs1asxs2 (length bs)))

(xs3 (front-symbs w-xs1asxs2bs 'x))
(w-xs1asbsxs3 (drop w-xs1asxs2bs (length xs3)))

(cs (front-symbs w-xs1asbsxs3 'c))]
(and <expressions for input word properties>)))

The let*-expression extracts the components of the input word. Instead of
repeating the local variable definitions in the discussion of each invariant
predicate below, the local definitions are denoted by . . . . To define each
predicate as a function in FSM simply substitute .. . . with the local definitions
above.

The invariant predicate for D determines that the head’s position is greater
than or equal to 1 and that the input word is in x.na.+x.nb.+x.nc.+, where n is a
natural number greater than or equal to 1. To do so, it determines that in
the input word, there is at least one a, one b, and c and that the number of
xs before the as equals the number of xs before the bs and the number of xs
before the cs. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine that head position is >= 1 and that

;; tape[i]=xna+xnb+xnc+

(define (D-INV t i)

(and (>= i 1)

(let* [. . .]
(and (equal? w (append xs1 as xs2 bs xs3 cs))

(> (length as) 0)

(> (length bs) 0)

(> (length cs) 0)

(= (length xs1) (length xs2) (length xs3))))))

(check-equal? (D-INV `(,LM ,BLANK b b b c c) 4) #f)

(check-equal? (D-INV `(,LM ,BLANK a b b) 2) #f)

(check-equal? (D-INV `(,LM ,BLANK a b c) 1) #t)

(check-equal? (D-INV `(,LM ,BLANK a a b b c c) 7) #t)

The invariant predicate for E determines that the head’s position is greater
than 1 and that the input word is in x.na.+x.nb.+x.nc.+, where n is a natural
number greater than 1. To do so, as done by D-INV, it determines that there
is at least one a, one b, and c and that the number of xs before the as equals
the number of xs before the bs and the number of xs before the cs. The
predicate is implemented as follows:
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;; tape natnum → Boolean

;; Purpose: Determine head in position > 1 and

;; input word = xna+xnb+xnc+

(define (E-INV t i)

(and (> i 1)

(let* [. . .]
(and (equal? w (append xs1 as xs2 bs xs3 cs))

(> (length as) 0)

(> (length bs) 0)

(> (length cs) 0)

(= (length xs1) (length xs2) (length xs3))))))

(check-equal?

(E-INV `(,LM ,BLANK x a a x b b x c c ,BLANK) 1)

#f)

(check-equal?

(E-INV `(,LM ,BLANK x a a x b c c ,BLANK) 2)

#f)

(check-equal?

(E-INV `(,LM ,BLANK x a a x b b x c c ,BLANK) 4)

#t)

(check-equal? (E-INV `(,LM ,BLANK a a b b c c ,BLANK) 2) #t)

The invariant predicate for F determines that the head’s position is greater
than 1 and that the input word is in x.n+1a.+x.nbb.+x.ncc.+, where n is a natural
number greater than or equal to 1. To this end, it determines that there is at
least one a, at least 2 bs, and at least 2 cs, and that the number of xs before
the as is 1 more than both the number of xs before the bs and the number
of xs before the cs. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine head in position > 1 and

;; input word = xn+1a+xnbb+xncc+

(define (F-INV t i)

(and (> i 1)

(let* [. . .]
(and (equal? w (append xs1 as xs2 bs xs3 cs))

(> (length as) 0)

(> (length bs) 1)

(> (length cs) 1)

(= (sub1 (length xs1))

(length xs2)

(length xs3))))))
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(check-equal?

(F-INV `(,LM ,BLANK x a a x b b c c c ,BLANK) 3)

#f)

(check-equal?

(F-INV `(,LM ,BLANK x a b b c c ,BLANK) 1)

#f)

(check-equal?

(F-INV `(,LM ,BLANK x a a b b b c c c ,BLANK) 3)

#t)

(check-equal?

(F-INV `(,LM ,BLANK x a b b c c ,BLANK) 2)

#t)

The invariant predicate for G determines that the head’s position is greater
than 3 and that the input word is in x.n+1a.+x.n+1b.+x.ncc.+, where n is a natural
number greater than or equal to 1. To this end, it determines that there is
at least one a, at least one b, and at least two cs, that the number of xs
before the as equals the number of xs between the as and the bs, and that
the number of xs before the as is one less than the number of xs between the
bs and the cs. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine head in position > 2 and

;; tape=xn+1a+xn+1b+xncc+

(define (G-INV t i)

(and (> i 3)

(let* [. . .]
(and (equal? w (append xs1 as xs2 bs xs3 cs))

(> (length as) 0)

(> (length bs) 0)

(> (length cs) 1)

(= (sub1 (length xs1))

(sub1 (length xs2))

(length xs3))))))

(check-equal?

(G-INV `(,LM ,BLANK x a a x x b c c c ,BLANK) 3)

#f)

(check-equal?

(G-INV `(,LM ,BLANK x a a x b b x c c ,BLANK) 5)

#f)

(check-equal?

(G-INV `(,LM ,BLANK x a a x b b c c c ,BLANK) 5)

#t)

(check-equal?

(G-INV `(,LM ,BLANK x x a x x b x c c ,BLANK) 8)

#t)
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The invariant predicate for H determines that the head’s position is greater
than 1 and that the input word is in x.+bx.+c. In addition, it determines that
the remainder of the number of xs and 3 is 1 and that the length of x.+b is
twice the length of x.+c. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine tape[i]=x^+bx^+c and |xs|%3 = 1 and

;; |x^+b| = 2*|x^+c|

(define (H-INV t i)

(and (> i 1)

(let* [(w (drop-right (drop t 2) 1))

(xs1 (front-symbs w 'x))
(w-xs1 (drop w (length xs1)))

(b (front-symbs w-xs1 'b))
(w-xs1b (drop w-xs1 (length b)))

(xs2 (front-symbs w-xs1b 'x))
(w-xs1bxs2 (drop w-xs1b (length xs2)))

(c (front-symbs w-xs1bxs2 'c))]
(and (equal? w (append xs1 b xs2 c))

(= (add1 (length xs1)) (* 2 (add1 (length xs2))))

(= (length b) 1)

(= (length c) 1)

(= (remainder (length (append xs1 xs2)) 3) 1)))))

(check-equal? (H-INV `(,LM ,BLANK a b c ,BLANK) 2) #f)

(check-equal? (H-INV `(,LM ,BLANK x x c ,BLANK) 4) #f)

(check-equal? (H-INV `(,LM ,BLANK x b c ,BLANK) 2) #t)

(check-equal? (H-INV `(,LM ,BLANK x x x b x c ,BLANK) 3) #t)

The invariant predicate for I determines that the head’s position is greater
than 2 and that the input word is in x.+c. In addition, it determines that the
remainder of the number of xs and 3 is 2. The predicate is implemented as
follows:

;; tape natnum → Boolean

;; Purpose: Determine tape[i]=x*c and |xs|%3 = 2

(define (I-INV t i)

(and (> i 2)

(let* [(w (drop-right (drop t 2) 1))

(xs1 (front-symbs w 'x))
(w-xs1 (drop w (length xs1)))

(c (front-symbs w-xs1 'c))]
(and (equal? w (append xs1 c))

(= (length c) 1)

(= (remainder (length xs1) 3) 2)))))
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(check-equal? (I-INV `(,LM ,BLANK a b c ,BLANK) 2) #f)

(check-equal? (I-INV `(,LM ,BLANK x c ,BLANK) 3) #f)

(check-equal? (I-INV `(,LM ,BLANK x x c ,BLANK) 4) #t)

(check-equal? (I-INV `(,LM ,BLANK x x x x x c ,BLANK) 7) #t)

The invariant predicate for J determines that the head’s position is 2 and
that at position 1, the tape has a blank. The predicate is implemented as
follows:

;; tape natnum → Boolean

;; Purpose: Determine that head’s position is 2 and

;; tape[1] = BLANK

(define (J-INV tape i)

(and (= i 2) (eq? (list-ref tape (sub1 i)) BLANK)))

(check-equal? (J-INV `(,LM ,BLANK a b c) 1) #f)

(check-equal? (J-INV `(,LM a a a) 1) #f)

(check-equal? (J-INV `(,LM ,BLANK a b c) 2) #t)

(check-equal? (J-INV `(,LM ,BLANK b b b) 2) #t)

K’s invariant predicate determines that the input word only contains xs
and its length is at least 3 and divisible by 3. In addition, it determines that
the head is over the last x. The predicate is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine if w = xxxx* and |xs|%3 = 0

;; and tape[i] = x

(define (K-INV t i)

(let [(w (drop-right (drop t 2) 1))]

(and (eq? (list-ref t i) 'x) ;;;

(andmap (λ (s) (eq? s 'x)) w)

(>= (length w) 3)

(= (remainder (length w) 3) 0)

(= i (add1 (length w))))))

(check-equal? (K-INV `(,LM ,BLANK a b c ,BLANK) 3) #f)

(check-equal? (K-INV `(,LM ,BLANK x x c ,BLANK) 3) #f)

(check-equal? (K-INV `(,LM ,BLANK x x x ,BLANK) 4) #t)

(check-equal? (K-INV `(,LM ,BLANK x x x x x x ,BLANK) 7)

#t)

L’s invariant predicate determines that the input word only contains xs
and its length is at least 3 and divisible by 3. In addition, it determines that
the head is over the blank after the last x. The predicate is implemented as
follows:
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;; tape natnum → Boolean

;; Purpose: Determine that w = xxxx* and |xs|%3 = 0 and

;; i = |w| + 2

(define (L-INV t i)

(let [(w (drop-right (drop t 2) 1))]

(and (andmap (λ (s) (eq? s 'x)) w)

(>= (length w) 3)

(= (remainder (length w) 3) 0)

(= i (+ (length w) 2)))))

(check-equal? (L-INV `(,LM ,BLANK a ,BLANK) 3) #f)

(check-equal? (L-INV `(,LM ,BLANK x x c ,BLANK) 5) #f)

(check-equal? (L-INV `(,LM ,BLANK x x x ,BLANK) 5) #t)

(check-equal? (L-INV `(,LM ,BLANK x x x x x x ,BLANK) 8) #t)

The invariant predicate for Y determines that the input word only contains
xs and that the number of xs is divisible by 3. It is implemented as follows:

;; tape natnum → Boolean

;; Purpose: Determine input word = x* and |xs|%3 = 0

(define (Y-INV t i)

(let* [(w (drop-right (drop t 2) 1))]

(and (andmap (λ (s) (eq? s 'x)) w)

(= (remainder (length w) 3) 0))))

(check-equal? (Y-INV `(,LM ,BLANK x x c ,BLANK) 3) #f)

(check-equal? (Y-INV `(,LM ,BLANK a b c ,BLANK) 3) #f)

(check-equal? (Y-INV `(,LM ,BLANK ,BLANK) 2) #t)

(check-equal?

(Y-INV `(,LM ,BLANK x x x x x x ,BLANK) 7)

#t)

Use the invariant predicates in conjunction with the visualization tool to
validate that they hold for computations that accept the given word. Make
sure you understand why the state invariants hold before proceeding with
the correctness argument.

63.6 Correctness

As before, start by proving that the state invariant predicates always hold.
Subsequently, we prove that a.nb.nc.n = L(anbncn). We shall use the following
definitions:

L = anbncn M = anbncn w = input word xs = the xs in w
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63.6.1 Proving State Invariants Hold

Theorem 5 The state invariants hold when M is applied to w.

The proof is by induction on, n, the number of transitions performed by
M.

Proof

Base case: n = 0
When M starts it is in state S, and by precondition, M’s head position is 1,
and position 1 is the blank before w. Therefore, S-INV holds.

Inductive Step:
Assume: State invariants hold for a computation of length n = k
Show: State invariants hold for a computation of length n = k + 1

((S ,BLANK) (J ,RIGHT)): By inductive hypothesis, S-INV holds. This
means M’s head position is 1, and a blank is read. Using this transition
means the head’s position becomes 2, and the tape at position 1 has a blank.
Thus, J-INV holds.

((J ,BLANK) (Y ,BLANK)): By inductive hypothesis, J-INV holds. This
means the head’s position is 2, and the tape at position 1 has a blank. Using
this rule means that w is empty, and the number of xs (i.e., 0) is divisible by
3. Furthermore, the tape is reading a blank. Thus, Y-INV holds.

((J a) (A ,RIGHT)): By inductive hypothesis, J-INV holds. This means the
head’s position is 2, and the tape at position 1 has a blank. Using this rule
means that the head is moved to the right to position 3 and that a single a

and nothing else has been read from w. Thus, A-INV holds.

((A a) (A ,RIGHT)): By inductive hypothesis, A-INV holds. This means
that the head’s position is greater than 2 and that the read part of w only
contains as. Using this rule means that the head’s position continues to be
greater than 2 and that the read part of w continues to only contain as. Thus,
A-INV continues to hold.

((A b) (B ,RIGHT)): By inductive hypothesis, A-INV holds. This means
that the head’s position is greater than 2 and that the read part of w only
contains as. Using this rule means that the head’s position is moved to the
right to become greater than 3 and that the read part of w is in a+b. Thus,
B-INV holds.

((B b) (B ,RIGHT)): By inductive hypothesis, B-INV holds. This means
that the head’s position is greater than 3 and that w is in a+b+. Using this
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rule means that the head’s position continues to be greater than 3 and that
the read part of w continues to be in a+b+. Thus, B-INV holds.

((B c) (C ,RIGHT)): By inductive hypothesis, B-INV holds. This means
that the head’s position is greater than 3 and that w is in a+b+. Using this
rule means that the head’s position becomes greater than 4 and that the read
part of w is in a+b+c. Thus, C-INV holds.

((C c) (C ,RIGHT): By inductive hypothesis, C-INV holds. This means that
the head’s position is greater than 4 and that w is in a+b+c+. Using this rule
means that the head’s position continues to be greater than 4 and that the
read part of w continues to be in a+b+c+. Thus, C-INV holds.

((C ,BLANK) (D ,LEFT)): By inductive hypothesis, C-INV holds. This means
that the head’s position is greater than 4 and that w is in a+b+c+. Using this
rule means that the head’s position is greater than or equal to 1 and that w
is in x0a+x0b+x0c+. Thus, D-INV holds.

((D a) (D ,LEFT)): By inductive hypothesis, D-INV holds. This means that
the head’s position is greater than or equal to 1 and that w is in xna+xnb+xnc+,
where n is a natural number. Using this rule means that the head has not
reached the blank at position 1. Thus, the head’s position continues to be
greater than or equal to 1. Given that the tape is not mutated, w continues
to be in xna+xnb+xnc+. Thus, D-INV holds.

((D b) (D ,LEFT)): By inductive hypothesis, D-INV holds. This means that
the head’s position is greater than or equal to 1 and that w is in xna+xnb+xnc+,
where n is a natural number. Using this rule means that the head has not
reached the blank at position 1. Thus, the head’s position continues to be
greater than or equal to 1. Given that the tape is not mutated, w continues
to be in xna+xnb+xnc+. Thus, D-INV holds.

((D c) (D ,LEFT)): By inductive hypothesis, D-INV holds. This means that
the head’s position is greater than or equal to 1 and that w is in xna+xnb+xnc+,
where n is a natural number. Using this rule means that the head has not
reached the blank at position 1. Thus, the head’s position continues to be
greater than or equal to 1. Given that the tape is not mutated, w continues
to be in xna+xnb+xnc+. Thus, D-INV holds.

((D x) (D ,LEFT)): By inductive hypothesis, D-INV holds. This means that
the head’s position is greater than or equal to 1 and that w is in xna+xnb+xnc+,
where n is a natural number. Using this rule means that the head has not
reached the blank at position 1. Thus, the head’s position continues to be
greater than or equal to 1. Given that the tape is not mutated, w continues
to be in xna+xnb+xnc+. Thus, D-INV holds.
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((D ,BLANK) (E ,RIGHT)): By inductive hypothesis, D-INV holds. This
means that the head’s position is greater than or equal to 1 and that w
is in xna+xnb+xnc+, where n is a natural number. Using this rule means that
the head’s position becomes greater than 1 and, given that the tape is not
mutated, that w continues to be in xna+xnb+xnc+. Thus, E-INV holds.

((E x) (E ,RIGHT)): By inductive hypothesis, E-INV holds. This means
that the head’s position is greater than 1 and that w is in xna+xnb+xnc+,
where n is a natural number. Using this rule means that the head’s position
continues to be greater than 1 and, given that the tape is not mutated, that
w is in xna+xnb+xnc+. Thus, E-INV holds.

((E a) (F x)): By inductive hypothesis, E-INV holds. This means that the
head’s position is greater than 1 and that w is in xna+xnb+xnc+, where n is a
natural number. Using this rule means that the head’s position continues to
be greater than 1. In addition, it also means that the last a is not substituted,
and therefore, there must be at least two bs and two cs left to substitute.
Given that the tape is mutated by substituting the read a with an x, w is in
xn+1a+xnbb+xncc+. Thus, F-INV holds.

((E a) (H x)): By inductive hypothesis, E-INV holds. This means that the
head’s position is greater than 1 and that w is in xna+xnb+xnc+, where n is
a natural number. Using this rule means that the last a is substituted. The
head’s position continues to be greater than 1. Given that the read a is sub-
stituted with an x, w is in x+bx+c, such that |xs| is a multiple of 3 plus 1 and
|x+b| = 2*|x+c|. Thus, H-INV holds.

((F a) (F ,RIGHT)): By inductive hypothesis, F-INV holds. This means
that the head’s position is greater than 1 and that w is in xn+1a+xnbb+xncc+,
where n is a natural number. Using this rule means that the head’s position
continues to be greater than 1 and, given that the tape is not mutated, w
continues to be in xn+1a+xnbb+xncc+. Thus, F-INV holds.

((F b) (G x)): By inductive hypothesis, F-INV holds. This means that the
head’s position is greater than 1 and that w is in xn+1a+xnbb+xncc+, where
n is a natural number. Using this rule means that the head’s position is
greater than 3, because the b substituted is preceded by the left-end marker,
a blank, at least one x, and at least one a. In addition, it means that w is in
xn+1a+xn+1b+xncc+. Thus, G-INV holds.

((F x) (F ,RIGHT)): By inductive hypothesis, F-INV holds. This means
that the head’s position is greater than 1 and that w is in xn+1a+xnbb+xncc+,
where n is a natural number. Using this rule means that the head’s position
continues to be greater than 1 and, given that the tape is not mutated, w
continues to be in xn+1a+xnbb+xncc+. Thus, F-INV holds.
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((G b) (G ,RIGHT)): By inductive hypothesis, G-INV holds. This means
that the head’s position is greater than 3 and that w is in xn+1a+xn+1b+xncc+,
where n is a natural number. Using this rule means that the head’s position
continues to be greater than 3 and, given that the tape is not mutated, w
continues to be in xn+1a+xn+1b+xncc+. Thus, G-INV holds.

((G c) (D x)): By inductive hypothesis, G-INV holds. This means that the
head’s position is greater than 3 and that w is in xn+1a+xn+1b+xncc+, where n
is a natural number. Using this rule means that the head’s position is greater
than or equal to 1 and that w is in xna+xnb+xnc+. Thus, D-INV holds.

((H x) (H ,RIGHT)): By inductive hypothesis, H-INV holds. This means
that the head’s position is greater than 1 and that w is in x+bx+c, such that n
is a natural number, |xs| is a multiple of 3 plus 1, and |x+b| = 2*|x+c|. Using
this rule means that the head is moved to the right and w is not mutated.
Thus, H-INV holds.

((H b) (I x)): By inductive hypothesis, H-INV holds. This means that the
head’s position is greater than 1 and that w is in x+bx+c, such that n is a
natural number, |xs| is a multiple of 3 plus 1, and |x+b| = 2*|x+c|. Observe
that reading a b means that the head’s position is greater than 2. Using this
rule means that the head’s position continues to be greater than 2. In addi-
tion, w is mutated by substituting the last b with an x. After this mutation,
w is in x+c, such that |xs| remainder 3 is 2. Thus, I-INV holds.

((I x) (I ,RIGHT)): By inductive hypothesis, I-INV holds. This means that
the head’s position is greater than 2 and that w is in x+c, such that |xs| re-
mainder 3 is 2. Using this rule means that the head’s position is moved to
the right without mutating w. Thus, I-INV holds.

((I c) (K x)): By inductive hypothesis, I-INV holds. This means that the
head’s position is greater than 2 and that w is in x+c, such that |xs| remain-
der 3 is 2. Using this rule means that w is mutated to substitute the last c
with an x. That is, w is mutated to be in xxxx* such that |xs| is a multiple
of 3. In addition, reading a c means that the head’s position is greater than
3 (the c is preceded by at least the left-end marker, a blank, and two xs).
Finally, using this rules means that the head’s over the last x at the |w|+1.
Thus, K-INV holds.

((K x) (L ,RIGHT)): By inductive hypothesis, K-INV holds. This means
that w is in xxxx*, the head’s position is greater than 3, |xs| is a multiple
of 3, the head’s position is |w|+1, and the value at the head’s position is x.
After using this rule, the head’s position is greater than 4, w is in xxxx*, |xs|
is a multiple of 3, and the head’s position is |w|+2. Thus, L-INV holds.
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((L ,BLANK) (Y ,BLANK)): By inductive hypothesis, L-INV holds. This
means that w is in xxxx*, |xs| is a multiple of 3, and the head’s position
is |w|+2. Using this rule means that the tape’s first element after w is a
blank, that w is in x*, and that |xs| is a multiple of 3. Thus, Y-INV holds.
�

63.6.2 Proving L = L(M)

As before, the proof is divided into two lemmas. The first is for when w.∈L
and the second for when w./∈L

Lemma 5 w.∈L .⇔ w.∈L(M)

Proof
(.⇒) Assume w.∈L. This means that w = a.nb.nc.n. Given that state invariants
always hold, there is a computation that has M repeatedly mutating match-
ing as, bs, and cs to x and ending in Y with the input word only having a
multiple of 3 number of xs. Therefore, w.∈L(M).

(.⇐) Assume w.∈L(M). This means that M halts in Y, the only accepting
state, with the input word only having a multiple of 3 number xs. Given that
the state invariants always hold, the only way for M to reach Y is by the
original input being in a.nb.nc.n and substituting equal number of as, bs, and
cs with xs. Thus, w.∈L. �

Lemma 6 w./∈L .⇔ w./∈L(M)

Proof
(.⇒) Assume w./∈L. This means that w .�= a.nb.nc.n. Given that state invariants
always hold, M cannot halt in Y. Therefore, w./∈L(M).

(.⇐) Assume w./∈L(M). This means that M does not halt in Y. Given that
the state invariants always hold, this means that w is not in a.nb.nc.n. Thus,
w ./∈L. �

64 The Turing Tar-Pit

The first recipient of the prestigious Turing Award, Alan Perlis, wrote:

Beware of the Turing tar-pit in which everything is possible but nothing of
interest is easy.

It refers to the fact that Turing machines are capable of carrying out many
computations (like deciding languages that are not context-free) but offer a
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very low level of abstraction. That is, Turing machines do not offer any of
the common programming constructs that we are accustomed to as computer
scientists. For example, they do not offer a looping construct. A consequence
of this is that every time we need to loop through (part of) the input word, we
must code the loop as part of the transition relation. In this regard, defining
Turing machines is akin to programming in assembly. Any program that is
written in a higher-level programming language can be written in assembly.
We do not, however, commonly program in assembly because higher-level
programming languages offer abstractions that make problem-solving easier.

So, why bother studying Turing machines? The answer is twofold. The
first, as recurring theme in this book, programming Turing machines provide
us with the opportunity to sharpen our skills to program using an API. That
is, as programmers we must learn to adapt to the programming language
that we are asked to use to solve problems. Second, it is a simple model
that allows us to easily reason about it and provides a lingua franca for all
computer scientists to talk about computation and its limitations (as we shall
later in this textbook).

As you practice designing and implementing Turing machines, rely on the
design recipe for state machines. The steps of the design recipe assist in
managing the design complexity. Also rely on the visualization tool. Test
heavily to observe if the state invariants always hold. A state invariant that
fails to hold indicates a bug in your design. The bug may be either in the
transition relation or in the definition of the predicate. Either way, it indicates
that the steps of the design recipe must be revisited.

10 The famous Turing Hacker claims that he has designed and imple-
mented a simpler machine to decide a.nb.nc.n. He claims that there is no
need to first check if the input word is in a.*b.*c.*. His proposed Tur-
ing machine is displayed in Fig. 86. Is he correct? Carefully justify your
answer.

11 Design and implement a Turing machine for L = a.nb.n. Follow all the
steps of the design recipe for state machines.

12 Let .Σ = {a b}. Design and implement a Turing machine for L= {ww
.| w.∈ Σ*. Follow all the steps of the design recipe for state machines.

13 Let .Σ = {a b c}. Design and implement a Turing machine for
L = {w .| w.∈ Σ*} .∧ w has equal number of as, bs, and cs}. Fol-
low all the steps of the design recipe for state machines.

14 Design and implement a Turing machine for L = a.nb.nc.nd.n. Follow
all the steps of the design recipe for state machines.
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Fig. 86 Turing Hacker’s proposed machine for a.nb.nc.n

#lang fsm

;; L = aˆnbˆncˆn
(define anbncn (make-tm (S D E F G H I J Y)

(a b c x)
(((S ,BLANK) (J ,RIGHT))
((J ,BLANK) (Y ,BLANK))
((J a) (E a))
((D a) (D ,LEFT))
((D b) (D ,LEFT))
((D c) (D ,LEFT))
((D x) (D ,LEFT))
((D ,BLANK) (E ,RIGHT))
((E x) (E ,RIGHT))
((E a) (F x))
((E a) (H x))
((F a) (F ,RIGHT))
((F b) (G x))
((F x) (F ,RIGHT))
((G b) (G ,RIGHT))
((G x) (G ,RIGHT))
((G c) (D x))
((H x) (H ,RIGHT))
((H b) (I x))
((I x) (I ,RIGHT))
((I c) (Y x)))

S
(Y)
Y))

(check-equal? (sm-apply anbncn (,LM ,BLANK a a) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK b a b c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a c b) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a b b b c c) 1) reject)
(check-equal? (sm-apply anbncn (,LM ,BLANK) 1) accept)
(check-equal? (sm-apply anbncn (,LM ,BLANK a a a b b b c c c) 1) accept)

15 Let .Σ = {a b}. Design and implement a Turing machine for L =
{www .| w.∈ Σ*}. Follow all the steps of the design recipe for state ma-
chines.

16 Let .Σ = {a b}. Design and implement a Turing machine for L =
{w .| w is a palindrome}. Follow all the steps of the design recipe for
state machines.



Chapter 16

Turing Machine Composition

Turing machines can do much more than decide languages. They can also
perform computations and execute statements. For example, as we saw in
the development of anbncn in Chap. 15, Turing machines can move to the
first blank to the left. As we shall see, Turing machines can also, for example,
add numbers, make copies of a word, and compute any number of functions.
Before tackling such ambitious goals, however, it is a good idea to design Tur-
ing machines that perform simple computations or operations. These simple
machines may then be composed to build Turing machines that perform more
complex operations. In essence, we shall think of Turing machines as auxiliary
functions or subroutines that may be composed to solve problems.

It is possible, of course, to design and implement a Turing machine to solve
a problem without using auxiliary Turing machines, much like any program
may be written without using auxiliary functions. Such an approach, however,
is cumbersome and error-prone and results in machines for which it is too
difficult to understand their design. As problem-solvers, to be able to compose
Turing machines requires that we clearly specify their precondition and their
postcondition. A postcondition specifies the state of the machine after it halts.
Given two Turing machines, M.1 and M.2, their composition, M.1 .◦ M.1, runs M.1,
and when M.1 halts, M.2 runs starting in the configuration the machine is left
in by M.1. This configuration must satisfy M.2’s precondition. Otherwise, no
claim is made on how the machine behaves. In essence, as problem-solvers,
we are responsible for making sure that the precondition of a Turing machine
is satisfied before it is allowed to execute.
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65 Simple Common Operations

Before composing tms, we shall design and implement Turing machines that
perform simple operations that may be used as the building blocks for more
complex Turing machines. This is akin to a bottom-up programming ap-
proach. Let us assume that .Σ = {a b}. For a different alphabet, the ma-
chines that perform the same computation are easily designed in the same
manner.

65.1 Move Right Machine

To start, consider designing and implementing a machine that only moves
its head right one space. The precondition for this machine is that the tape
contains an arbitrary value and that the head’s position, i, is k, such that k
is a nonzero natural number. The postcondition is that the head’s position is
k+1 and the tape has not been mutated. To achieve this effect the machine
transitions to its final state and moves the head right. The implementation
is:

;; PRE: tape = (LM w) AND i=k>0, where w in {a b BLANK}*
;; POST: tape = (LM w) AND i=k+1

(define R (make-tm '(S F)

'(a b)

`(((S a) (F ,RIGHT))

((S b) (F ,RIGHT))

((S ,BLANK) (F ,RIGHT)))

'S
'(F)))

(check-equal? (sm-showtransitions R `(,LM a b a) 1)

`((S 1 (,LM a b a))

(F 2 (,LM a b a))))

(check-equal? (sm-showtransitions R `(,LM a b a) 3)

`((S 3 (,LM a b a))

(F 4 (,LM a b a ,BLANK))))

(check-equal?

(second (last (sm-showtransitions R `(,LM b b a a) 3)))

4)

It is straightforward to argue that the machine is correct. Therefore, we shall
not present a formal argument as suggested by the design recipe for state
machines.
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65.2 Move Left Machine

Consider designing and implementing a machine that only moves its head
left one space. This means that the head’s position must be greater than or
equal to 1, because the head cannot be moved left if it is on position 0. The
implementation is:

;; PRE: tape = (LM w) AND i=k≥1, where w in {a b BLANK}*
;; POST: tape = (LM w) AND i=k-1

(define L (make-tm '(S H)

'(a b)

`(((S a) (H ,LEFT))

((S b) (H ,LEFT))

((S ,BLANK) (H ,LEFT)))

'S
'(H)))

(check-equal? (last (sm-showtransitions L `(,LM a a) 1))

`(H 0 (,LM a a)))

(check-equal?

(last (sm-showtransitions L `(,LM ,BLANK b b a) 4))

`(H 3 (,LM ,BLANK b b a)))

Once again, arguing that the machine is correct is straightforward.

65.3 Halt Machine

How do we design a tm that starts and immediately halts? This machine must
do nothing. It may not read any input, move the head, nor write to the tape.
This is achieved by making the starting state a halting state. Given that the
machine shall not attempt to apply a transition, the list of transitions may
be empty. The halt machine may be implemented as follows:

;; PRE: tape = (LM w), where w in {a b BLANK}*
;; POST: tape = (LM w)

(define HALT (make-tm '(S)
'(a b)

'()
'S
'(S)))

(check-equal?

(last (sm-showtransitions HALT `(,LM ,BLANK) 1))

`(S 1 (,LM _)))

(check-equal?

(last (sm-showtransitions HALT `(,LM a a b a b) 4))

`(S 4 (,LM a a b a b)))
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Observe that the tests illustrate that machine does nothing. The starting
configuration is the ending configuration.

65.4 Machines That Write to the Tape

Next, consider designing machines that write an element of the alphabet or a
blank to the tape. Writing to the tape is done by overwriting an arbitrary tape
value and does not require moving the head. As long as the head’s position
is greater than or equal to 1, the machine may mutate the tape. Therefore,
this is specified in the precondition for each of these machines. After starting,
each of these machines writes the needed value to the tape regardless of what
is read and moves to its halting state. Their implementation is displayed in
Fig. 87. Observe that the tests illustrate that the desired effect is achieved.

66 Composing Turing Machines

We now consider designing a Turing machine that performs more than one
simple operation. It is useful to reason about such a machine as the compo-
sition of the machines for simple common operations. For example, consider
designing and implementing a machine that moves the head to the right twice.
In the simplest terms, this machine is, (R .◦ R), the composition of R with
itself. How can this be implemented? We shall follow the steps of the design
recipe for state machines. We name the machine R^2 and .Σ = {a b}.

66.1 Design Idea

To move the head two positions to the right, the tape may contain an arbi-
trary value. To simplify the design, we shall require that the head not start
in position 0. The pre- and postcondition may be stated as follows:

;; PRE: tape = (LM w) AND i=k>0 AND w in (a b BLANK)*

;; POST: tape = (LM w) AND i=k+2 AND w in (a b BLANK)*

After starting, the machine moves the head to the right and transitions to
an intermediate state representing that one right move has been made. In this
intermediate state, the machine moves the head to the right and transitions
to its final state.
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Fig. 87 Turing machines to write an a, a b, and a blank to the input tape
;; PRE: tape = (LM w) AND i=k>0 AND tape[i]=s, where w in {a b BLANK}*
;; POST: tape = (LM w) AND i=k AND tape[i]=a
(define Wa (make-tm (S H)

(a b)
(((S a) (H a))
((S b) (H a))
((S ,BLANK) (H a)))

S
(H)))

(check-equal? (last (sm-showtransitions Wa (,LM b) 1))
(H 1 (,LM a)))

(check-equal? (last (sm-showtransitions Wa (,LM b a ,BLANK a) 3))
(H 3 (,LM b a a a)))

;; PRE: tape = (LM w) AND i=k>0 AND tape[i]=s, where w in {a b BLANK}*
;; POST: tape = (LM w) AND i=k AND tape[i]=b
(define Wb (make-tm (S H)

(a b)
(((S a) (H b))
((S b) (H b))
((S ,BLANK) (H b)))

S
(H)))

(check-equal? (last (sm-showtransitions Wb (,LM ,BLANK ,BLANK) 2))
(H 2 (,LM ,BLANK b)))

(check-equal? (last (sm-showtransitions Wb (,LM b b b b) 3))
(H 3 (,LM b b b b)))

;; PRE: tape = (LM w) AND i=k>0 AND tape[i]=s, where w in {a b BLANK}*
;; POST: tape = (LM w) AND i=k AND tape[i]=BLANK
(define WB (make-tm (S H)

(a b)
(((S a) (H ,BLANK))
((S b) (H ,BLANK))
((S ,BLANK) (H ,BLANK)))

S
(H)))

(check-equal? (last (sm-showtransitions WB (,LM a a) 1))
(H 1 (,LM ,BLANK a)))

(check-equal? (last (sm-showtransitions WB (,LM a b b b) 3))
(H 3 (,LM a b ,BLANK b)))

66.2 Tests

The tests must illustrate that the effect has been achieved. That is, the tests
must show that the machine’s head has moved two positions to the right
without mutating the tape. Sample tests are:
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(check-equal?

(last (sm-showtransitions R^2 `(,LM a b a) 1))

`(F 3 (,LM a b a)))

(check-equal?

(last (sm-showtransitions R^2 `(,LM a b a) 3))

`(F 5 (,LM a b a ,BLANK ,BLANK)))

(check-equal?

(last (sm-showtransitions R^2 `(,LM b b a a) 4))

`(F 6 (,LM b b a a ,BLANK ,BLANK)))

Observe that in each test, the head’s position ends two positions to the right
of the head’s position in the initial configuration.

66.3 Transition Function

In the starting state, S, the machine moves the head to the right and tran-
sitions to the intermediate state A, regardless of what is read from the tape.
The needed transitions are:

((S a) (A ,RIGHT))

((S b) (A ,RIGHT))

((S ,BLANK) (A ,RIGHT))

In the intermediate state, A, the machine moves the head to the right and
transitions to, F, the final state regardless of what is read from the tape. The
needed transitions are:

((A a) (F ,RIGHT))

((A b) (F ,RIGHT))

((A ,BLANK) (F ,RIGHT))

66.4 Implementation

The machine’s implementation is displayed in Fig. 88. Running the tests re-
veals that they all pass and give us cautious optimism that the machine is
correctly implemented. The development of state invariants and the correct-
ness argument suggested by the design recipe for state machines are omitted,
because it is fairly straightforward to see that the machine works.

The important point to realize is that R^2 is the composition of R with
itself. Let us compare the transitions from each state:

((S a) (A ,RIGHT)) ((A a) (F ,RIGHT))

((S b) (A ,RIGHT)) ((A b) (F ,RIGHT))

((S ,BLANK) (A ,RIGHT)) ((A ,BLANK) (F ,RIGHT))
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Fig. 88 The Turing machine to move the head two positions to the right
;; PRE: tape = (LM w) AND i=k>0 AND w in (a b BLANK)*

;; POST: tape = (LM w) AND i=k+2 AND w in (a b BLANK)*

(define Rˆ2 (make-tm (S A F)
(a b)
(((S a) (A ,RIGHT))
((S b) (A ,RIGHT))
((S ,BLANK) (A ,RIGHT))
((A a) (F ,RIGHT))
((A b) (F ,RIGHT))
((A ,BLANK) (F ,RIGHT)))

S
(F)))

(check-equal? (last (sm-showtransitions Rˆ2 (,LM a b a) 1))
(F 3 (,LM a b a)))

(check-equal? (last (sm-showtransitions Rˆ2 (,LM a b a) 3))
(F 5 (,LM a b a ,BLANK ,BLANK)))

(check-equal? (last (sm-showtransitions Rˆ2 (,LM b b a a) 4))
(F 6 (,LM b b a a ,BLANK ,BLANK)))

Seen side by side like this, it becomes obvious that we have implemented R

twice in R^2. Is this a problem or simply a silly observation? Think about this
carefully. Perhaps, for moving the head twice to the right, it is an observation
that we are willing to ignore. However, what if we needed to a tm that moves
the head to the right 20 times? 50 times? Are we to repeatedly implement R
20 and 50 times?

By now, you surely realize that moving the head to the right n times
requires the composition of R with itself n times. Indeed, as programmers,
we have a problem with this. There is no problem-solver who wants to solve
the same problem n times, and there is no programmer who wants to write
the same code n times. As programmers, what do we do to avoid writing
the same code over and over again? We create an abstraction. That is, we
create a function and use the function multiple times instead of writing the
same code multiple times. This raises the tantalizing question of whether
or not a Turing machine can execute a program that represents a Turing
machine.

1 Design and implement a Turing machine that moves its head twice
to the left.

2 Design and implement a Turing machine that upon reading an a

writes a b and upon reading a b writes an a.
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3 Design and implement a Turing machine that swaps the read value
with the value immediately to the right.

4 Design and implement a Turing machine that swaps the read value
with the value immediately to the left.

5 Design and implement a Turing machine that overwrites every a with
a blank.

67 A Programmed Turing Machine

Our computers can read a program written using a programming language’s
syntax, read the input for the program, and evaluate the program to compute
a desired value or to achieve a desired effect. Are Turing machines powerful
enough to do the same? That is, can Turing machines read a program that
represents a Turing machine, read the input to the Turing machine repre-
sented by the program, and evaluate the given program? It would be truly
remarkable, indeed, for a Turing machine to be able to simulate a Turing
machine given as input.

Despite their simplicity, Turing machines are powerful enough to be pro-
grammed. The universal Turing machine (UTM) is a Turing machine that can
simulate an arbitrary Turing machine on arbitrary input. It is given as input
(on its tape) a description of the machine to simulate as well as a description
of the simulated input tape for the simulated machine. The description of
the machine to simulate may be thought of as a program that is interpreted
much like your FSM programs are interpreted. The UTM performs the actions
in the description of the machine to simulate on the simulated input tape.
To this end, it must track the next action to perform and the position of
the head in the simulated input. You may think of the next action to per-
form as a program counter. It indicates where to continue the execution of
the simulated machine once the current action is simulated. The position of
the simulated head indicates the next element to be read from the simulated
input tape when the current action is executed.

67.1 Moving the Head Right n Times

To illustrate that Turing machines are programmable, we shall tackle the
problem of moving the head to the right n times. That is, we shall create
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an abstraction to move the head to the right an arbitrary number of times.
To start, we must define how a tm that moves its head to the right n times
is represented. A straightforward representation is r.*ir.*. The rs represent
the number of times to move the head to the right. That is, the actions of
the machine to simulate. You may think of i as the program counter. It is
placed to the left of the next action to execute. The rs before i have been
executed, and the rs after i have not yet been executed. The input to the
simulated machine is in .Σ*h.Σ*, where h represents the position of the head.
The next input element to read is always immediately to the right of h. The
input to the Turing machine running the program contains LM, BLANK, the
representation of the machine to simulate, BLANK, and the simulated input
tape for the simulated machine. For instance, consider the following input
tape:

`(,LM ,BLANK i r r r ,BLANK h a b a)

The tm simulated moves the head to the right 3 times (indicated by the 3
rs). Given that i is before the first r, none of these movements have been
performed. The input word to the simulated machine is (a b a), and the
simulated head is over the first a. In contrast, consider the following input
tape:

`(,LM ,BLANK r i r r r ,BLANK b b a h b ,BLANK)

The tm simulated moves the head to the right 4 times. Given that i is before
the second r, the first of these movements has been performed. The input
word to the simulated machine is (b b a b), and the simulated head is over
the last b. Since the simulated head has been moved to the right once, we
can conclude it started over the a.

How does the Turing machine evaluate our program work? It works much
like the von Neumann architecture. The Turing machine fetches the next ac-
tion to perform, moves the program counter (i.e., i), performs the action, and
loops. The loop stops when there are no more instructions to perform (e.g.,
i is at the position containing the blank between the simulated machine’s
description and the simulated input tape). In essence, the tm evaluating the
program implements a fetch-execute cycle similar to what you may have
studied in a computer architecture course.

67.2 Design Idea

The machine being simulated does not require complex updating of the
program counter (i.e., no types of jumps required). Updating the program
counter is simply done by moving i to the right. For more complex prob-
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lems (as we shall see), jumps are required. Luckily, for this problem, we may
implement a jump-free version tm. The pre- and postcondition are stated as
follows:

;; PRE: tape = (LM BLANK i p BLANK w h v) AND

;; head on first blank in position 1

;; POST: tape = (LM BLANK p i BLANK o) OR

;; (LM BLANK p i BLANK u)

;; AND head on second blank,

;; where p = rn for n∈N,
;; o = w′hv′ where |w′|-|w| = n,

;; u = w′v′BLANK∗h where |w′v′BLANK∗|-|w| = n,

;; w,w′,v,v′∈Σ∗, wv = w′v′

The precondition states that the simulated program counter, i, starts before
the first action in, p, the simulated tm’s description, and the simulated head
is anywhere immediately before, in between, or after, wv, the simulated ma-
chine’s input. The postcondition states that p and wv are not mutated and
that h has been moved n spaces to the right.

The machine operates as follows:

1. Starts with the head on the blank in position 1 of the tape
2. Attempts to find the i to the right (i.e., the next instruction to execute)
3. If done executing the program, the tm running the program moves to

halt. Otherwise, it moves to the next step.
4. Move i to the right (i.e., to the next instruction to execute, if any, after

the current instruction)
5. Find h

6. Execute current instruction (i.e., move h to the right)
7. Find i

8. Loop to step 3

We shall implement a transition function for the above steps. Note that the tm
shall not be able to simulate an arbitrary tm. Our tm shall only be capable of
evaluating programs (i.e., Turing machine descriptions) that perform a single
operation an arbitrary number of times: move the head to the right. As we
shall see, tms are capable of evaluating an arbitrary tm. For our illustrative
purposes, the current simplification suffices. As computer scientists, we know
that a program written in a higher-level programming language is represented
by compiled code, akin to a tm description, which is evaluated by a computer,
akin to a tm, to produce a result or an effect.

We shall assume that the input to the simulated machine only has as
and bs. Therefore, the alphabet for the tm is: {a b h i r}. Note that the
simulated machine operates on a tape that only contains as, bs, and blanks.
Only the interpreting tm makes use of i, r, and h.
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67.3 Tests

The tests are written to simulate tms that move the head right 0 or more
times regardless of the length of the simulated input word. In addition, the
tests illustrate that the simulated machines move the head right the desired
number of times regardless of where the head starts in the simulated input.
For example, tests are written with the simulated head before, in the middle,
and at the end of the simulated word. A sample set of tests is:

(check-equal?

(last (sm-showtransitions PR^N

`(,LM ,BLANK i ,BLANK h a a)

1))

`(Y 3 (,LM ,BLANK i ,BLANK h a a)))

(check-equal?

(last (sm-showtransitions PR^N

`(,LM ,BLANK i r r ,BLANK a h b a)

1))

`(Y 5 (,LM ,BLANK r r i ,BLANK a b a h)))

(check-equal?

(last (sm-showtransitions PR^N

`(,LM ,BLANK i r r r ,BLANK h a b a)

1))

`(Y 6 (,LM ,BLANK r r r i ,BLANK a b a h)))

(check-equal?

(last (sm-showtransitions PR^N

`(,LM ,BLANK i r r ,BLANK a h a b a)

1))

`(Y 5 (,LM ,BLANK r r i ,BLANK a a b h a)))

(check-equal?

(last (sm-showtransitions PR^N

`(,LM ,BLANK i r r r ,BLANK h)

1))

`(Y 6 (,LM ,BLANK r r r i ,BLANK ,BLANK ,BLANK ,BLANK h)))

(check-equal?

(last (sm-showtransitions PR^N

`(,LM ,BLANK i r ,BLANK a h)

1))

`(Y 4 (,LM ,BLANK r i ,BLANK a ,BLANK h)))
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67.4 Transitions

From the start state, S, the machine moves right to the first instruction if any.
This is done using an intermediate step to skip over, the program counter, i.
The needed transitions are:

((S ,BLANK) (A ,RIGHT))

((A i) (Q ,RIGHT))

In state Q the machine decides if it is done evaluating the program. If it
reads a blank, the machine moves to, Y, the final state. Otherwise, it swaps
the next instruction (the read r) with i in the previous position. This swap
sets the machine to execute the next instruction, if any, after the current
instruction is executed. After the swap, the machine moves to state, B, to
search for h. The needed transitions are:

((Q ,BLANK) (Y ,BLANK))

((Q r) (M i))

((M i) (N ,LEFT))

((N i) (B r))

In state B, the machine moves right until it finds h. When h is found, the
machine moves to D and moves the head right to the element the simulated
machine reads. The needed transitions are:

((B r) (B ,RIGHT))

((B i) (B ,RIGHT))

((B ,BLANK) (B ,RIGHT))

((B a) (B ,RIGHT))

((B b) (B ,RIGHT))

((B h) (D ,RIGHT))

In state D, the machine executes the next instruction. That is, it swaps h
with the element read by the simulated machine. For each element, the sim-
ulated machine may read a different intermediate state is needed to perform
the swap. The intermediate state is used to remember the element read by
the simulated machine. For example, E is used to remember that an a was
read by the simulated machine. The tm writes h to the tape and transitions
to the appropriate intermediate state. In an intermediate state, the tm moves
its head left and transitions to another intermediate state to overwrite h with
the appropriate symbol. For instance, from E, the machine transitions to F

to write a to complete the swap of h and a. After the swap is complete, the
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tm moves to a state, K, to fetch the next instruction. The needed transitions
are:

((D a) (E h))

((D b) (G h))

((D ,BLANK) (I h))

((E h) (F ,LEFT))

((F h) (K a))

((G h) (H ,LEFT))

((H h) (K b))

((I h) (J ,LEFT))

((J h) (K ,BLANK))

In state K, the tm moves left until it finds i. When i is read, the tm moves
right and transitions to Q to execute, if any, the next instruction. The needed
transitions are:

((K a) (K ,LEFT))

((K b) (K ,LEFT))

((K ,BLANK) (K ,LEFT))

((K r) (K ,LEFT))

((K i) (Q ,RIGHT))

67.5 Implementation

The complete implementation of programmable tm to move n spaces to the
right is displayed in Fig. 89. Running the tests reveals that they all pass. As
illustrated by the tests, the tm takes as input a tm description along with a
description of its input tape and successfully moves the simulated machine’s
head to the right the number of times specified in the given tm description.
We no longer need to implement Rmultiple times. All we need to do is provide
the proper tm and input tape descriptions to move the simulated head to the
right a specified number of times.

Clearly, it is still rather difficult to program even the simplest tasks using
a tm. This is said even though we have not looked at problems that require
conditional and unconditional jumping. If programming solutions to simple
problems is too difficult, then in all likelihood, we need a better abstraction.
That is, we need a programming language that is conducive to making it
easier to express the solution to a problem, that is, a programming language
that makes it easier to compose Turing machines. If you are convinced that
tms are programmable, then let’s move to the next section to make the com-
position of Turing machines easier. We shall study a domain-specific language
within FSM to compose tms that supports conditional jumps, unconditional
jumps, and abstraction over values (i.e., variables).
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Fig. 89 A programmable tm for moving n spaces to the right
(define PRˆN (make-tm (S A B D E F G H I J K M N Q Y)

(a b h i r)
(((S ,BLANK) (A ,RIGHT))
((A i) (Q ,RIGHT))
((Q ,BLANK) (Y ,BLANK))
((Q r) (M i))
((M i) (N ,LEFT))
((N i) (B r))
((B r) (B ,RIGHT))
((B i) (B ,RIGHT))
((B ,BLANK) (B ,RIGHT))
((B a) (B ,RIGHT))
((B b) (B ,RIGHT))
((B h) (D ,RIGHT))
((D a) (E h))
((D b) (G h))
((D ,BLANK) (I h))
((E h) (F ,LEFT))
((F h) (K a))
((G h) (H ,LEFT))
((H h) (K b))
((I h) (J ,LEFT))
((J h) (K ,BLANK))
((K a) (K ,LEFT))
((K b) (K ,LEFT))
((K ,BLANK) (K ,LEFT))
((K r) (K ,LEFT))
((K i) (Q ,RIGHT)))

S
(Y)))

(check-equal? (last (sm-showtransitions PRˆN (,LM ,BLANK i ,BLANK h a a) 1))
(Y 3 (,LM ,BLANK i ,BLANK h a a)))

(check-equal?
(last (sm-showtransitions PRˆN (,LM ,BLANK i r r ,BLANK a h b a) 1))
(Y 5 (,LM ,BLANK r r i ,BLANK a b a h)))

(check-equal?
(last (sm-showtransitions PRˆN (,LM ,BLANK i r r r ,BLANK h a b a) 1))
(Y 6 (,LM ,BLANK r r r i ,BLANK a b a h)))

(check-equal?
(last (sm-showtransitions PRˆN (,LM ,BLANK i r r ,BLANK a h a b a) 1))
(Y 5 (,LM ,BLANK r r i ,BLANK a a b h a)))

(check-equal?
(last (sm-showtransitions PRˆN (,LM ,BLANK i r r r ,BLANK h) 1))
(Y 6 (,LM ,BLANK r r r i ,BLANK ,BLANK ,BLANK ,BLANK h)))

(check-equal? (last (sm-showtransitions PRˆN (,LM ,BLANK i r ,BLANK a h) 1))
(Y 4 (,LM ,BLANK r i ,BLANK a ,BLANK h)))
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68 The Universal Turing Machine

Composed Turing machines may be visualized as a graphic that resembles a
flow chart. Consider, for example, the following graphic:

M.1M.2 M.3

M.4

a

b

M.1--4 are descriptions of Turing machines. For our current purposes, their
purpose is irrelevant. The graphic is a description of a Turing machine that
starts by executing M.1 (denoted by being underlined). When M.1 halts, M.2
is executed starting in the machine’s configuration after M.1 halts. When M.2
halts, a decision is made. If an a is read, then M.3 is executed, and the machine
halts, given that there is nothing more to execute. If a b is read, then M.4 is
executed, and the machine halts for the same reason. Observe that in this
example, a conditional jump is required to either execute M.3 or M.4.

We shall implement the tm composition specified by such graphics using
a domain-specific programming language that is likely to remind you of pro-
gramming in assembly with conditional jumps, GOTOs, and variables. The
domain-specific language is used to write tm descriptions. That is, programs
that represent a Turing machine. Given a composed tm description (cmtd),
the constructor combine-tms is used to build a composed tm (ctm). This con-
structor takes as input a ctmd and the alphabet for the machine defined by
the given ctmd. It returns a ctm. There is one observer, ctm-run, that takes
as input a ctm, the input tape for the given ctm, and the initial position of the
head on the given input tape. The observer ctm-run is FSM’s implementation
of what is known as the universal Turing machine (UTM). The UTM simulates
the machine described by the given ctmd using the given tape and the given
starting head position. It returns the machine’s configuration when the given
ctm halts.

68.1 Syntax

A ctmd is a list defined as follows:

1. empty list
2. (cons m ctmd), where m is either a tm or a ctmd

3. (cons LABEL ctmd)
4. (cons (list GOTO LABEL) ctmd)
5. (cons (BRANCH (listof (list symbol (list GOTO LABEL)))) ctmd)
6. (cons ((VAR symbol) ctmd) ctmd)
7. (cons variable ctmd)
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The empty ctmd represents a machine that must only halt. It is equivalent
to HALT defined in Sect. 65.3. If during the execution of a ctm the empty
list is encountered, then execution halts, and the existing tm configuration is
returned. The second variety states that a ctmd may be a list that contains a
machine, m, and ctmd. The machine, m, may be a tm or a ctmd. The execution
is this variety of ctmd first executes m and then continues with the rest of the
ctmd.

The third variety introduces a label to a ctmd. The label is a number used
for unconditional branching. It represents the start of a ctmd that must be
executed when control moves to this point in the ctmd. The fourth variety
introduces a GOTO statement to a ctmd. This is how unconditional branch-
ing occurs. A GOTO statement contains a label that is jumped to when it is
executed. That is, control is passed to the ctmd designated by the label.

The fifth variety introduces a conditional branching point to a ctmd. A
BRANCH statement contains a list of branching options. Each option is a
list that contains a symbol and an unconditional jump. If the read element
matches the symbol in a branching option, then control is passed to the ctmd
specified by the label in the unconditional jump. One of the symbols must
match the element being read. Otherwise, an error is thrown.

The sixth variety introduces an abstraction. A VAR statement contains
a symbol representing a variable and an embedded ctmd. The variable is
introduced to capture the value being read on the tape. The scope of the
variable is the embedded ctmd. In the embedded ctmd, the seventh ctmd

variety may occur. When variable is encountered, the input tape is mutated.
The value of the variable is written at the head’s position.

68.2 Design Principles

When a ctmd is visualized as a graphic, then we may more easily design
its implementation. For example, the composition of two machines may be
represented as the sequence of their names. Consider implementing a cmtd

that moves the head right twice. Graphically, we may represented as:

R R

Neither jumping nor variables are needed for the implementation. The ctmd

only needs to sequence Rs twice. The needed ctmd is implemented as follows:

;; PRE: tape = (LM w) AND i=k>0 AND w in (a b)∗

;; POST: tape = (LM w) AND i=k+2 AND w in (a b)∗

(define RR (combine-tms (list R R) '(a b)))

(check-equal? (ctm-run RR `(,LM b a a) 1)

`(F 3 (,LM b a a)))

(check-equal? (ctm-run RR `(,LM a a a) 2)

`(F 4 (,LM a a a ,BLANK)))
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(check-equal? (ctm-run RR `(,LM a b b a) 3)

`(F 5 (,LM a b b a ,BLANK)))

(check-equal? (ctm-run RR `(,LM b) 1)

`(F 3 (,LM b ,BLANK ,BLANK)))

Observe how much easier the implementation becomes with the proper ab-
straction. That is, using the UTM does, indeed, make it easier to program
simple tasks. Do not, however, let this lead you to believe that programming
tms is easy. It still may require attention to many low-level details akin to
programming in assembly.

To simplify the graphics used to illustrate ctms, superscripts are used to
abbreviate the graphic when a machine is repeatedly composed with itself.
For example, the following abbreviated graphics denote the ctms to move the
head twice and thrice to the right:

R.
3

R.
2

If there is an incoming arrow into a machine, then a label is needed. If a
machine has one or more outgoing labeled arrows, then a branch statement
is needed. For instance, consider designing a machine that moves to the first
blank to the right. This machine must move to the right and then examine
the tape. If a blank is read, it ought to halt. Otherwise, it must loop and
repeat the process. Graphically, we may describe this ctm as follows:

R

not blank

What is this graphic communicating? It is stating that the UTM executes R.
When R halts, the tape is examined. If a blank is read, the machine halts.
Otherwise, the machine branches (back) to R. A label is used to transfer
control back to R. The ctm is implemented as follows:

;; PRE: tape = (LM w) AND i=k>0 AND w in (a b BLANK)∗

;; POST: tape = (LM w) AND i>k AND tape[i] = BLANK

;; AND tape[k+1..i-1] �= BLANK

(define FBR (combine-tms

(list 0

R

(cons BRANCH

(list (list 'a (list GOTO 0))

(list 'b (list GOTO 0))

(list BLANK (list GOTO 10))))

10)

(list 'a 'b)))



414 16 Turing Machine Composition

(check-equal? (ctm-run FBR `(,LM ,BLANK) 1)

`(F 2 (,LM ,BLANK ,BLANK)))

(check-equal? (ctm-run FBR `(,LM a a b b b ,BLANK a a) 2)

`(F 6 (,LM a a b b b ,BLANK a a)))

(check-equal? (ctm-run FBR `(,LM ,BLANK ,BLANK b b) 3)

`(F 5 (,LM ,BLANK ,BLANK b b ,BLANK)))

The label 0 is used to identify where R is in the ctm. After R, there is a
BRANCH statement with three branches. The blank branch jumps to label 10
to an empty ctm. This means that the machine halts after taking this branch.
Otherwise, in all other branches, the machine unconditionally jumps to label
0 to continue with the ctm’s execution. There is no need for a branch to
process reading LM, because the machine never reads LM from its starting
head position and to the right. The tests illustrate that the proper effect is
achieved: the head moves to the first blank after its initial position.

A problem that is deceptively similar to finding the first blank to the right
is finding the first blank to the left. This machine must move to the left and
then examine the tape. If a blank is read, it ought to halt. Otherwise, it must
loop and repeat the process. Graphically, we may describe this ctm as follows:

L

not blank

Consider making part of the precondition the head’s position, i, a value
k.>0. The machine must move left at least once. Therefore, we may decide to
state in the postcondition that i.<k. Under this design, the implementation
becomes:

;; PRE: tape = (LM w) AND i=k>0 AND w in (a b BLANK)∗

;; POST: tape = (LM w) AND i<k AND tape[i]=BLANK

;; AND tape[i+1..|w|] != BLANK

(define FBL (combine-tms

(list 0

L

(cons BRANCH

(list (list 'a (list GOTO 0))

(list 'b (list GOTO 0))

(list BLANK (list GOTO 1))

(list LM (list GOTO 0))))

1)

(list 'a 'b)))

(check-equal? (ctm-run FBL `(,LM ,BLANK a a b) 4)

`(H 1 (,LM ,BLANK a a b)))

(check-equal?

(ctm-run FBL `(,LM a ,BLANK a b ,BLANK b a b b) 8)

`(H 5 (,LM a ,BLANK a b ,BLANK b a b b)))
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Observe that when a blank is read, after moving left, the machine jumps to
label 1 and halts. The machine halts because the ctmd at label 1 is empty. The
BRANCH statement in this case has a branch for processing LM, because LM may
be read as it moves left. Running the program reveals that the tests pass.
We must, however, be careful about concluding that the design is correct.
Consider running FBL as follows:

(ctm-run FBL `(,LM a a b) 3)

The machine moves left onto the left-end marker. Therefore, it loops and tries
to move left again. This time, however, L must move right, because it reads
the left-end marker. FBL then moves left after looping again. This means that
the head ends in position 0 reading the left-end marker. Thus, the machine
goes into an infinite recursion. This underlines the importance of design and
proper documentation. FBL’s precondition needs to be strengthened to state
that there must be a blank to the left of the head’s position:

;; PRE: tape = (LM w) AND i=k>0 AND w in (a b BLANK)∗

;; AND there exists j<i such that tape[j]=BLANK

In this manner, running FBL as above is an improper use of the machine. Any
programmer using FBL now knows that they are responsible for only using
FBL when there is at least one blank to the left of the head’s position.

Finally, consider designing a ctm that reads the current element off the
tape and overwrites the two positions to the right with the read element.
Given that a tm cannot write the left-end marker to the tape, the head’s
position must be greater than 0. The machine must remember the read value
in order to mutate the two positions to the right. This is an instance when
a variable is needed. In the ctmd, we declare a variable to capture the value
read. Then, in the variable’s scope, we may have a ctmd that moves the head
right, writes the value of the variable, moves the head right again, writes the
value of the variable again, and halts. Before the machine starts, the value
on the input tape is arbitrary and i is k. When the machine halts, i is k+2,
and positions k-2, k-1, and k are the same, and the rest of the values on the
tape remain unchanged. The machine may be documented and implemented
as follows:

;;PRE: tape = (LM a1 . . . ak ak+1 ak+2 ak+3 . . . an-1)

;; ∧ i=k>0 ∧ aj∈{a b BLANK}
;;POST: tape = (LM a1 . . . ak ak ak ak+3 . . . an-1)

;; ∧ i=k+2

(define WTWICER (combine-tms `(((VAR s) ,R s ,R s))

(list 'a 'b)))
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(check-equal? (ctm-run WTWICER `(,LM a ,BLANK) 1)

`(h 3 (,LM a a a)))

(check-equal? (ctm-run WTWICER `(,LM b a a a ,BLANK) 1)

`(h 3 (,LM b b b a _)))

(check-equal?

(ctm-run WTWICER `(,LM a b ,BLANK ,BLANK a) 2)

`(h 4 (,LM a b b b a)))

Running the tests reveals that they all pass.
A precautionary word is now advised. Programming the UTM may be very

difficult, and it is fairly easy and frequent to have bugs in the machine de-
signed. Given that the UTM does not support a debugger nor print statements,
you will have to rely on your design skills to debug your machines. This is
part of the Turing tar-pit.

6 Let .Σ = {a b}. Design and implement a ctm to move the head to
the second blank to the right.

7 Let .Σ = {a b}. Design and implement a ctm to move the head to
the second blank to the left.

8 Let .Σ = {a b}. Design and implement a ctm to swap the value read
by the head with the value to its right.

9 Let .Σ = {a b}. Design and implement a ctm to erase a word that
has a blank before and after it.

10 Let .Σ = {a b}. Design and implement a ctm that overwrites the
first blank to the right with the read value.

69 Computing with Turing Machines

As has been suggested before, tms can do more than decide languages, move
the input tape head, and mutate the tape. For example, we have seen that
tms can perform searches. Evidence of this are FBR and FBL that search for a
blank, respectively, to the right and to the left. In addition to searching, tms
can also compute the value of functions. A tm, M, that computes the value
of a function, f, reads the needed values from the input tape and writes
the value of f to the tape. Such tms may be implemented using make-tm

or combine-tms. Which should be used? Unless otherwise instructed, use
whichever you feel makes it easier to perform the computation.
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69.1 f(a b) = a + b

Consider the problem of adding two natural numbers. This problem sounds
deceptively simple. After all, we all know how to add two natural numbers.
How did we learn to add two numbers? First, we were taught about the rep-
resentation of natural numbers. Second, we were taught about the rules for
adding natural numbers based on the chosen representation. For instance, in
grade school, we were taught how to represent numbers using the digits 0--9
(i.e., decimal notation), and then we were taught the rules adding two num-
bers represented using decimals. As a computer science student, it is unlikely
that grade school was the only place you learned to add two natural numbers.
In a computer architecture course, in all likelihood, you were taught how to
represent integers using two complement notation and then were taught how
to add two integers represented using this notation.

What is the connection with developing tm to add two natural numbers?
There are two things we must define before any such tm may be implemented.
First, we must define how to represent natural numbers. Second, we must
define how to add two natural numbers represented using the chosen notation.

69.1.1 Design Idea

First, we must choose a representation for natural numbers. Two clear candi-
dates are decimal and two’s complement notation. This would require defin-
ing the sum of two digits or two bits and defining how a carry is propagated.
Both certainly plausible approaches, but we shall explore a representation
that simplifies the addition operation: unary notation. In unary notation,
there is a single digit, say d, used to represent natural numbers. A natural
number is defined as follows:

A natural number in unary notation (nn) is either:

1. (BLANK)

2. (d nn)

The first subtype represents 0 that we are all familiar with in decimal nota-
tion. The second subtype is used to represent a nonzero natural number. For
instance, 0, 3, and 8 are represented as follows:

(BLANK) (d d d) (d d d d d d d d)

Given two nn separated on a tape by a blank, addition becomes straight-
forward:

1. Mutate the blank between the two given natural numbers to d
2. Mutate the last i in the second argument, if any, to a blank
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For example, consider the following input:

(LM BLANK d d BLANK d d d)

The first argument is 2, and the second argument is 3. Following the two
steps above yields:

(LM BLANK d d d d d)

This is the representation of 5, which is the sum of 2 and 3.
To implement and make the machine useful to others, we must specify

the pre- and postcondition. Let a and b be two natural numbers represented
using unary notation, and let i represent the position of the head. We shall
say that the input tape contains the left-end marker, a blank, a, a blank, and
b (followed, of course, by an infinite number of blanks). The head starts at the
blank before a. When the machine halts, the input tape ought to contain the
left-end marker, a blank, and d.numd(a)+numd(b), where numd(x) is the number
of d in x. In addition, the head ought to be on the first blank after the result.
The head’s position after the sum is computed depending on whether or not
either a or b represent 0. If both a and b represent 0, then the head ought
to be in position 3. That is, the tape contains the left-end marker, a blank
before the result, and a blank for the result, and the head is on the next
blank after the result. If either a or b do not represent 0, then the head ought
to be in position equal to the number of ds in a and b plus 2. That is, the
head is on the first blank after the result. The pre- and postcondition may
be written as follows:

;; PRE: tape = (LM BLANK a BLANK b) AND i = 1

;; POST: tape = (LM BLANK a b) AND

;; i = 3 if a = b = 0

;; = numd(a) + numd(b) + 2 otherwise,

;; where numd(x) = the number of ds in x

How does the machine mutate the tape to get from the state described
in the precondition to the state described in the postcondition? When the
machine starts, the machine is in the state described by the precondition. It
then performs the following abstract steps:

1. Skip a and write d in blank after a
2. Skip b and move head left
3. Mutate the position under the head to a blank
4. Move the head left and decide if the result is empty:

a. If a d is read move right and halt
b. Otherwise, move to the head right twice to the blank after the blank

representing 0 (the result) and halt

These steps suggest eight states are needed: the starting state, the final state,
and six additional states for the steps above. Each step above requires a state
except moving the head right twice. Moving the head right twice requires two
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states: one to move to the result (i.e., the blank representing 0) and one to
move to the blank after the result.

69.1.2 State Documentation

The starting state, S, represents the precondition. It is documented as follows:

S: i = 1 and tape = (LM BLANK a BLANK b)

State A is used to skip a. This means that the head’s position must always
be less than or equal to the number of ds in a plus two. Two is added to the
number of ds in a to account for the tape’s first two positions containing the
left-end marker and the blank before a. This state is documented as follows:

A: i <= numd(a) + 2 and tape = (LM BLANK a BLANK b)

State B is used to skip b after mutating the blank between a and b. This
means that the head’s position is always less than or equal to the number of
ds in a and b plus 3. The three account for the left-end marker, the blank at
the beginning of the tape, as well as the d that substituted the blank between
a and b. B is documented as follows:

B: i <= numd(a) + numd(b) + 3 and tape = (LM BLANK a d b)

State C is used to mutate the last d on the tape to a blank. This means that
i must equal the number of ds in a and b plus 2. This state is documented
as follows:

C: i = numd(a) + numd(b) + 2 and tape = (LM BLANK a d b)

After mutating the last d on the tape, the head has not moved, and the
written part of the tape ends with a followed by b. That is, we may think of
b as absorbing the d between a and b to replace its last d that was mutated
to a blank. This state is captured by D:

D: i = numd(a) + numd(b) + 2 and tape = (LM BLANK a b)

From D, the head is moved left to determine if the output is empty. When
the head is moved, the machine transitions to E that is documented as follows:

E: i = numd(a) + numd(b) + 1 and tape = (LM BLANK a b)

In E, the head is moved right, and the machine must decide what state
to transition to. If the output is 0 (i.e., a BLANK is read), then the machine
transitions to G to move the head to the right again before halting. Otherwise,
the head is moved to the right, and the machine transitions to F to halt. State
G is documented as follows:

G: i = numd(a) + numd(b) + 2 and tape = (LM BLANK)
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Finally, state F represents the postcondition. It is documented as follows:

F: i = 3 if a = b = 0

= numd(a) + numd(b) + 2 otherwise

and tape = (LM BLANK a b)

69.1.3 Transitions

In S, the machine only needs to move the head right and transition to A to
start the process of skipping a. The only transition needed is:

((S ,BLANK) (A ,RIGHT))

In A, the machine needs to skip all ds by moving the head right. When a
blank is read, the tape is mutated to make it a d, and the machine transitions
to B to skip b. The needed transitions are:

((A d) (A ,RIGHT))

((A ,BLANK) (B d))

In A, the machine needs to skip all ds by moving the head right. When a
blank is read, the machine moves the head one space to the left to position it
over the last d on the tape and transitions to C. The needed transitions are:

((B d) (B ,RIGHT))

((B ,BLANK) (C ,LEFT))

In C, the read d is mutated to a blank, and the machine transitions to D.
The only transition needed is:

((C d) (D ,BLANK))

In D, the machine moves the head left and transitions to E to decide if the
output is 0. The needed transition is:

((D ,BLANK) (E ,LEFT))

In E, the machine decides if the output is 0. The output is 0 if it reads a
blank. In this case, it moves the head right and transitions to G to make one
more move right. If the output is not 0, then the machine moves the head
right (i.e., the blank after the result) and transitions to F to halt. The needed
transitions are:

((E d) (F ,RIGHT))

((E ,BLANK) (G ,RIGHT))

In G, the machine reads the blank representing the output of 0. It moves
the head to the right (i.e., the blank after the result) and transitions to F to
halt. The needed transition is:

((G ,BLANK) (F ,RIGHT))
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Fig. 90 A Turing machine to add two natural numbers
;; numd(x) = the number of ds in x
;; State documentation
;; S: i = 1 and tape = (LM BLANK a BLANK b)
;; A: i <= numd(a) + 2 and tape = (LM BLANK a BLANK b)
;; B: i <= numd(a) + numd(b) + 3 and tape = (LM BLANK a d b)
;; C: i = numd(a) + numd(b) + 2 and tape = (LM BLANK a d b)
;; D: i = numd(a) + numd(b) + 2 and tape = (LM BLANK a b)
;; E: i = numd(a) + numd(b) + 1 and tape = (LM BLANK a b)

0=b=afi3=i:F;;
;; = numd(a) + numd(b) + 2 otherwise
;; and tape = (LM BLANK a b)
;; G: i = numd(a) + numd(b) + 2 and tape = (LM BLANK)

;; PRE: tape = (LM BLANK a BLANK b) AND i = 1
;; POST: tape = (LM BLANK a b) AND

0=b=afi3=i;;
;; = numd(a) + numd(b) + 2 otherwise,
;; where numd(x) = the number of ds in x
(define ADD (make-tm (S A B C D E F G)

(d)
(((S ,BLANK) (A ,RIGHT))
((A d) (A ,RIGHT))
((A ,BLANK) (B d))
((B d) (B ,RIGHT))
((B ,BLANK) (C ,LEFT))
((C d) (D ,BLANK))
((D ,BLANK) (E ,LEFT))
((E d) (F ,RIGHT))
((E ,BLANK) (G ,RIGHT))
((G ,BLANK) (F ,RIGHT)))

S
(F)))

(check-equal?
(last (sm-showtransitions ADD (,LM ,BLANK ,BLANK ,BLANK) 1))
(F 3 (,LM ,BLANK ,BLANK ,BLANK)))

(check-equal?
(last (sm-showtransitions ADD (,LM ,BLANK ,BLANK d d d ,BLANK) 1))
(F 5 (,LM ,BLANK d d d ,BLANK ,BLANK)))

(check-equal?
(last (sm-showtransitions ADD (,LM ,BLANK d d ,BLANK ,BLANK) 1))
(F 4 (,LM ,BLANK d d ,BLANK ,BLANK)))

(check-equal?
(last (sm-showtransitions ADD (,LM ,BLANK d d ,BLANK d d d) 1))
(F 7 (,LM ,BLANK d d d d d ,BLANK ,BLANK)))

69.1.4 Implementation

The implementation of a tm to add two natural numbers is displayed in
Fig. 90. Running the tests reveals that they all pass.
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69.1.5 Correctness

Computations that perform mutations are more difficult to prove correct. The
reason for this is that any values that originally existed on the tape are lost
after mutating them. This makes it impossible, for example, to infer previous
tape values. For instance, consider the tape value after ADD transitions into
B. A possible value is:

(LM BLANK d d d d d d)

The blank between a and b has been mutated to a d. This makes it impossible,
for example, to discern the value of a and the value of b. That is, we cannot
determine the number of ds in a and the number of ds in b. It is for this
reason that we cannot write invariant predicates that require extracting the
values of a and b from the tape. In general, mutation makes it impossible to
extract needed values from the tape.

To establish the correctness of mutation-based computations performed
by a tm, we may use triples consisting of an assertion, a transition rule, and
an assertion. The first assertion is the precondition for the transition rule.
It states what must be true before using the transition rule. That is, what
must be true in the from-state. The second assertion is the postcondition
for the transition rule. It states what must be true after using the transition
rule. That is, what is true for the to-state. Concretely, consider an arbitrary
transition rule:

((X i) (Y a))

The corresponding triple is:

<Assertion about X’s role>

((X i) (Y a))

<Assertion about Y’s role>

The assertions simply state that the invariant predicates hold. That is, the
assertions are based on the role each state plays. A triple is valid if assuming
the precondition and the execution of the transition implies the postcondition.

This approach to machine correctness is akin to using Hoare Logic to
establish the correctness of a mutation-based program written in a higher-
level programming language. The proof of partial correctness is done, as
before, by induction on the number of transitions performed.

Theorem 1 ADD computes the addition of two natural numbers and leaves
the head on the first blank after the result.
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Proof
Proof by induction on the number of transitions performed by a computation.

Base case (n = 0):

The machine starts in S, and by assumption, the precondition is true.
Therefore, the role of S is satisfied.

Inductive Step:
Assume: State roles satisfied for n = k
Show: that State roles satisfied for n = k + 1

We establish a valid triple for each transition rule. In each triple, the pre-
condition is the assertion for the state the machine is in. The postcondition is
the assertion for the state the machine transitions to. By inductive hypothe-
sis, the precondition in each triple holds.

i = 1 and tape = (LM BLANK a BLANK b)

((S ,BLANK) (A ,RIGHT))

i <= numd(a) + 2 and tape = (LM BLANK a BLANK b)

The machine moves the head right and transitions to A. Given that the head
starts in position 1 and the head moves right, the head ends in position 2. It
is certainly the case that 2 is less than or equal to numd(a) + 2. The tape
remains unchanged. Therefore, the postcondition holds.

i <= numd(a) + 2 and tape = (LM BLANK a BLANK b)

((A d) (A ,RIGHT))

i <= numd(a) + 2 and tape = (LM BLANK a BLANK b)

In A, reading an a means that the blank in between a and b is to the right
of the head. That is, i .< numd(a) + 2. The transition moves the head to the
right and does not mutate the tape. Thus, the postcondition holds.

i <= numd(a) + 2 and tape = (LM BLANK a BLANK b)

((A ,BLANK) (B d))

i <= numd(a) + numd(b) + 3 and tape = (LM BLANK a d b)

In A, reading a blank means that i = numd(a) + 2 .< numd(a) + numd(b) +
3. That is, it is reading the blank in between a and b. The transition mutates
the read blank to d and moves to B. This means after using the transition
i .≤ numd(a) + numd(b) + 3 and tape = (LM BLANK a d b). Thus, the
postcondition holds.

i <= numd(a) + numd(b) + 3 and tape = (LM BLANK a d b)

((B d) (B ,RIGHT))

i <= numd(a) + numd(b) + 3 and tape = (LM BLANK a d b)
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In B, reading a d means i .< numd(a) + numd(b) + 3. The transition moves
the head to the right and does not mutate the tape. Thus, the postcondition
holds.

i <= numd(a) + numd(b) + 3 and tape = (LM BLANK a d b)

((B ,BLANK) (C ,LEFT))

i = numd(a) + numd(b) + 2 and tape = (LM BLANK a d b)

In B, reading a blank means i = numd(a) + numd(b) + 3. The transition
moves the head to the left and does not mutate the tape. Thus, the postcon-
dition holds.

i = numd(a) + numd(b) + 2 and tape = (LM BLANK a d b)

((C d) (D ,BLANK))

i = numd(a) + numd(b) + 2 and tape = (LM BLANK a b)

In C, reading a d means the head on the last d on the tape. Observe that
tape contains numd(a) + numd(b) + 1 ds. The transition does not move the
head and mutates the read d to a blank. This mutation means that a d b

becomes a b. Thus, the postcondition holds.

i = numd(a) + numd(b) + 2 and tape = (LM BLANK a b)

((D ,BLANK) (E ,LEFT))

i = numd(a) + numd(b) + 1 and tape = (LM BLANK a b)

In D, reading a blank means the blank after a b is read. The transition moves
the head to the left and does not mutate the tape. Thus, the postcondition
holds.

i = numd(a) + numd(b) + 1 and tape = (LM BLANK a b)

((E d) (F ,RIGHT))

i = 3 if a = b = 0

= numd(a) + numd(b) + 2 otherwise

∧ tape = (LM BLANK a b)

In E, reading a d means a b does not represent 0 and the head is on the last
d of a b. The transition moves the head right and does not mutate the tape.
Thus, the postcondition holds.

i = numd(a) + numd(b) + 1 and tape = (LM BLANK a b)

((E ,BLANK) (G ,RIGHT))

i = numd(a) + numd(b) + 2 and tape = (LM BLANK BLANK)

In E, reading a blank means that a b represents 0 and that the head is
on the first blank on the tape. Observe that the tape is (LM BLANK). The
transition moves the head to the right and does not mutate the tape. Thus,
the postcondition holds.
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Fig. 91 A ctm diagram for copy(w) = w BLANK w

FBL R BLANK FBR2 k FBL2 k

FBR L R2

R

k�=BLANK

BLANK

BLANK

a,b

i = numd(a) + numd(b) + 2 and tape = (LM BLANK BLANK)

((G ,BLANK) (F ,RIGHT))

i = 3 if a = b = 0

= numd(a) + numd(b) + 2 otherwise

∧ tape = (LM BLANK a b)

In G, the input tape is (LM) = (LM BLANK BLANK), and the head is on the
second blank. This implies that a and b both represent 0 and, of course, their
sum is 0. Therefore, the head is reading the blank representing the result.
The transition moves the head to the right and does not mutate the tape.
Thus, the postcondition holds. �

The proof establishes that if ADD’s precondition is met, then, after ADD exe-
cutes, the sum of the two given natural numbers is left on the tape with the
head on the blank after the sum.

69.2 copy(w) = w BLANK w

The copy function takes as input a word w.∈ Σ* and returns two copies of w
separated by a blank. The first step in designing a machine to compute copy
is to specify the configuration when the machine starts and the configuration
when the machine halts. That is, we must clearly state the pre- and postcon-
ditions. The choices are many, and you are free to choose among them. We
shall design a machine with the following specification:

;; PRE: tape = (LM BLANK w BLANK) and head on blank after w

;; POST: tape = (LM BLANK w BLANK w BLANK) and

head on blank after second w

Observe that w’s copy starts immediately after the second blank.
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69.2.1 Design Idea

We may think of w as consisting of n symbols. That is, w = a.0 . . .a.n-1, where
n.≥0. If n is 0, then w is the empty word (i.e., just a blank). The goal is to
copy each a.i to the second blank to the right starting with a.0. We copy to
the second blank to the right because there must be a blank between w’s two
copies.

The machine starts by moving to the first blank to the left and then
moving right. At this point, the machine either reads the next element to
copy or reads the blank after w. The machine must branch based on the
element read. At this first branching point, if a blank is read, then the tape
contains two copies of w separated by a blank, and the machine must place
the head correctly to satisfy the postcondition. The head must be moved to
the first blank to the right and then moved left. A second branch is needed
to determine if w is empty. If a blank is read, then w is empty, and the head
is moved twice to the right to satisfy the postcondition. Otherwise, the head
is moved once to the right to satisfy the postcondition.

If an alphabet element is read at the first branching point, then the ma-
chine must make a copy of the element and loop to repeat the process for
any remaining elements to copy. The read value is captured in a variable and
then overwritten with a blank. This blank is a placeholder to remember the
read element’s position. The machine moves to the second blank to the right
and mutates this blank to be the value of the variable. It then moves to the
second blank to the left and restores the value previously overwritten with a
blank. The machine loops to move right and reach the first branching point
again.

Figure 91 displays the ctm diagram for the copy machine outlined above.
Observe that we have already implemented all the auxiliary Turing machines
in Sects. 65 and 68.2. Therefore, all we need to do is define the ctm. The ctm’s
starting point is denoted by the underlined machine (i.e., FBL). Six labels are
needed: one for each arrow and one to mark the end of the machine. This
last labeled is jumped to when the machine ought to halt.

69.2.2 Implementation

The machine is named COPY and .Σ = {a b}. The ctmd implementation is
displayed in Fig. 92.

The tests use the value returned by ctm-run, but omit the state. The
state is omitted because an auxiliary tm’s halting state is arbitrarily named.
The important features are the head’s position and the contents of the tape.
Therefore, only the rest of the result returned by ctm-run is tested. The
tests in Fig. 92 cover both the empty word and nonempty words. The first
test is for the empty word denoted by a blank. Observe that the precondition
is met by having the head start on the third blank on an empty tape. The
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Fig. 92 The ctmd for the copy machine
;; PRE: tape = (LM BLANK w BLANK) and head on blank after w
;; POST: tape = (LM BLANK w BLANK w BLANK) and head on blank after second w
(define COPY (combine-tms

(list FBL
0

R
(cons BRANCH (list (list BLANK (list GOTO 2))

(list a (list GOTO 1))
(list b (list GOTO 1))))

1
(list (list VAR k)

WB
FBR
FBR
k

FBL
FBL
k

(list GOTO 0))
2

FBR
L
(cons BRANCH (list (list BLANK (list GOTO 3))

(list a (list GOTO 4))
(list b (list GOTO 4))))

3
RR
(list GOTO 5)

4
R
(list GOTO 5)

5)
(a b)))

(check-equal? (rest (ctm-run COPY (,LM ,BLANK ,BLANK ,BLANK) 3))
(5 (,LM ,BLANK ,BLANK ,BLANK ,BLANK ,BLANK)))

(check-equal? (rest (ctm-run COPY (,LM ,BLANK a b b ,BLANK) 5))
(9 (,LM ,BLANK a b b ,BLANK a b b ,BLANK)))

(check-equal? (rest (ctm-run COPY (,LM ,BLANK b b b b ,BLANK)) 5)
(11 (,LM ,BLANK b b b b ,BLANK b b b b ,BLANK)))

expected result has the head on the fifth blank on an empty tape. Observe
that the postcondition is satisfied, because the tape is: (LM BLANK w BLANK

w BLANK). The tests for nonempty words are easier to understand. For each,
the precondition is met by having the head on the blank after the word, and
the postcondition is met by having the head on the blank after the copy of
the given word.
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The ctmd is written based on the ctm diagram in Fig. 91. The machine
starts by simulating FBL. Label 0 is used to mark the beginning of the machine
that decides if all elements of the given word have been copied. It starts by
simulating R and then branching. If a blank is read, the ctm goes to label 2
that marks the beginning of the machine that places the head to meet the
postcondition. Otherwise, the ctm goes to label 1 that marks the beginning
of the machine that copies the next element.

At label 1, the variable k is declared to capture the read value. The machine
then simulates WB, FBR twice, writes the value of k to the tape, simulates FBL
twice, writes the value of k to the tape, and unconditionally jumps to label
0.

At label 2, the machine simulates FBR, L, and branches to properly place
the head to satisfy the postcondition. If a blank is read, the machine branches
to label 3. Otherwise, it branches to label 4.

At labels 3 and 4, respectively, the machine moves right twice and once.
This properly places the head to satisfy the postcondition. In both cases, the
machine unconditionally jumps to label 5 and halts.

69.2.3 Correctness

To argue the correctness of the machine, we shall use Hoare triples as done in
Sect. 69.1.5. We assume that the auxiliary tms work correctly. That is, every
auxiliary tm satisfies its postcondition when the precondition is met.

When COPY starts, the given word may be empty or nonempty. If it is
empty, it is denoted by a blank. If it is nonempty, the given word is denoted
by a.1. . . a.n. By precondition, the tape contains the left-end marker, a blank,
and the input word. The head is on the first blank after the input word.
Observe that the precondition for FBL holds. Therefore, the triple for the
first machine action is:

(LM BLANK a 1. . .a n BLANK) ∨ (LM BLANK BLANK BLANK)

FBL

(LM BLANK a 1. . .a n BLANK) ∨ (LM BLANK BLANK)

If the input word is nonempty, then the head is moved to the blank before
it. Otherwise, the head is moved over the blank that denotes the input word.

Label 0 may be reached by one of two ways: after the initial FBL or by
unconditional branch after copying an element. This means that before R

is executed, the machine may be in one of three configurations. If label 0
is reached from the initial FBL, then the configuration may be one of the
configurations in the postcondition in the triple above. If label 0 is reached
after copying a.i, then the head is over a.i. After R is executed, the head is
either over the blank after the empty input word or over the next element
to copy. Without loss of generality, regardless of its position on the tape, in
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the post-assertion, the next element to copy is denoted as a.j. The resulting
triple is:

(LM BLANK a 1. . .a n BLANK) ∨
(LM BLANK a 1. . .ai. . .a n BLANK a 1. . .a i−1) ∨ (LM BLANK BLANK)

R

(LM BLANK a 1. . .aj . . .a n BLANK) ∨ (LM BLANK BLANK BLANK)

Label 1 is only reached if there is another element to copy. The index used
to refer to this element is arbitrary, and for ease of integration with the rest
of the loop, it is once again denoted a.i in the triple. The first action is to
introduce the variable k to capture a.i’s value. Therefore, the resulting triple
is:

(LM BLANK a 1. . .ai. . .a n BLANK a 1. . .a i−1)

(list VAR 'k)
(LM BLANK a 1. . .ai. . .a n BLANK a 1. . .a i−1) ∧ k=a i

The next action is to move the head to the first blank to the right. This places
the head on the blank after the input word. The action and the postcondition
are:

FBR

(LM BLANK a 1. . .a i. . .a n BLANK a 1. . .a i−1}) ∧ k=a i

The next action moves the head to the first blank to the right. This places the
head on the blank after the copied elements. The action and the postcondition
are:

FBR

(LM BLANK a 1. . .BLANK . . .a n BLANK a 1. . .a i−1 BLANK) ∧ k=a i

The next action mutates the tape. It changes the blank read to a.i. The action
and postcondition are:

'k
(LM BLANK a 1. . .BLANK . . .a n BLANK a 1. . .a i−1 ai) ∧ k=a i

The next action moves the head to the first blank to the left placing it over
the blank after the input word. The action and postcondition are:

FBL

(LM BLANK a 1. . .BLANK . . .a n BLANK a 1. . .a i−1 a i) ∧ k=a i

The next action moves the head to the first blank to the left placing it over
the blank that substituted a.i. The action and postcondition are:

FBL

(LM BLANK a 1. . .BLANK. . .a n BLANK a 1. . .a i−1 a i) ∧ k=a i
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The next action mutates the read blank to be a.i. The action and postcondi-
tion are:

'k
(LM BLANK a 1. . .ai. . .a n BLANK a 1. . .a i−1 a i)

Observe that a.i has been successfully copied and the machine may safely
loop to label 0 because the precondition for label 0 holds.

Label 2 is only reached by reading a blank in the branch of the machine
at label 0. Thus, the postcondition for label 0 is the precondition for label 2.
The first action is to move the head to the first blank to the right. Regardless
of the input word variety, the head is placed over the blank after the input
word’s copy. The resulting triple is:

(LM BLANK a 1. . .a n BLANK a 1. . .a n) ∨
(LM BLANK BLANK BLANK)

FBR

(LM BLANK a 1. . .a n BLANK a 1. . .a n BLANK) ∨
(LM BLANK BLANK BLANK BLANK)

The next action moves the head left. This places the head on the copy’s a.n
if the input word is not empty. Otherwise, it places the head over the input
word’s copy. The action and postcondition are:

L

(LM BLANK a 1. . .a n BLANK a 1. . .an BLANK) ∨
(LM BLANK BLANK BLANK BLANK)

Label 3 is only reached if a blank is read at the end of the machine at label
2. This means the input word is empty, and the head is over it. The action
moves the head right twice. The action and postcondition are:

(LM BLANK BLANK BLANK BLANK)

RR

(LM BLANK BLANK BLANK BLANK BLANK)

Observe that the configuration in the second assertion satisfies COPY’s post-
condition. Therefore, the machine may unconditionally jump to label 5 and
halt.

Label 4 is only reached if the head is over the last element of the nonempty
input word’s copy at the end of label 2. The action moves the head right.
The action and postcondition are:

(LM BLANK a 1. . .a n BLANK a 1. . .an BLANK)

R

(LM BLANK a 1. . .a n BLANK a 1. . .a n BLANK)

Observe that the configuration in the second assertion satisfies COPY’s post-
condition. Therefore, the machine may unconditionally jump to label 5 and
halt.
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This completes the correctness argument for COPY. If COPY’s precondition
holds, then the machine only halts when the postcondition holds.

11 Simplify the design of COPY by implementing and using machines to
move to the second blank to the right and move to the second blank to
the left. Update the correctness proof to take into account the use of
these machines.

12 Design and implement a Turing machine to compute f(a b) = a -

b. Assume a .> b. Provide a correctness proof.

13 Let .Σ = {a b}. Design and implement a Turing machine to com-
pute rev(w) = w.R. That is, a tm that reverses its input. Provide a cor-
rectness proof.

14 Let .Σ = {a b}. Design and implement a ctm that shifts its input
word one space to the right. Provide a correctness proof.

15 Let .Σ = {a b}. Design and implement a ctm that shifts its input
word one space to the left. Provide a correctness proof.

16 Design and implement a ctm to compute mult(a b) = a * b. That
is, a machine that multiplies two natural numbers. Provide a correctness
proof.



Chapter 17

Turing Machine Extensions

We have seen that Turing machines are powerful enough to recognize lan-
guages that are not context-free and to compute arbitrary functions. They
are hard to program, because they do not offer the abstractions readily avail-
able in modern higher-level programming languages. Nonetheless, this does
not diminish their computational power.

To date, an unanswered question in computer science is whether or not
there are (undiscovered) machines that are more powerful. There have been
attempts to strengthen Turing machines akin to strengthening ndfa’s with a
stack to create, computation-wise, a more powerful machine. These attempts
have not yielded a machine that can recognize a language nor compute a
function that a standard Turing machine cannot recognize or compute. It is,
indeed, a testament to the Turing machine’s computational power. Each of
the proposed strengthened tms can be simulated by a standard tm. Many com-
puter scientists today believe that the Turing machine is the most powerful
computational device and there are no more powerful automata.

A natural question to ask is: Why study new automata models that are
not more powerful than the Turing machine? The answer is convenience.
The additional features added in attempts to strengthen the Turing machine
can make problem-solving easier. Therefore, we are free to use these fea-
tures knowing that their use may be eliminated. That is, any solution using
a “strengthened” Turing machine may be simulated by a standard Turing
machine.
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Fig. 93 A graphical representation of the multitape Turing machine
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70 The Multitape Turing Machine

A proposed extension endows a Turing machine with multiple tapes. A graph-
ical representation is depicted in Fig. 93. Instead of a single infinite tape, the
machine has n infinite tapes. There is a separate head for each tape and
a control module that tracks the machine’s state. In one step, the machine
reads the value under each head. Based on the values read and the current
machine state, each head either mutates their tape, moves right, or moves
left and the machine transitions to a state. A standard Turing machine is,
therefore, a multitape Turing machine with a single tape.

More formally, a multitape Turing machine (mttm) with n-tapes is an in-
stance of:

(make-mttm K Σ S F δ n [Y])

The inputs to the constructor are defined as follows:

K: A list of states. Each state is denoted by a symbol that represents a capital
letter in the Roman alphabet.

Σ: A list of symbols or digits. Each symbol represents a lowercase letter in
the Roman alphabet.
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S: The starting state. It must be a member of K.
F: A list of final states. Each state must be a member of K.
δ: A list of transition rules defining a transition relation. Each transition rule

has the following type:

(list (list state (list symboln))

(list state (list actionn)))

The first tuple contains the state the machine is in and a list of all the
elements read by the n heads (the first element corresponds to what is
read by the head on tape 0 and the last element corresponds to what is
read by the head on tape n-1). The second tuple contains the state the
machine transitions into and the n actions taken by the heads (the first
element corresponds to the action taken by the head on tape 0 and the
last element corresponds to the action taken by the head on tape n-1).

n: A natural number greater than or equal to 1 representing the number of
tapes.

Y: An optional argument to define a language recognizer. It represents the
accepting state and must be a member of K.

A computation for a mttm, M, is denoted by a list of configurations that M
traverses during a computation. A configuration is denoted by a list on length
n + 1, where n is the number of tapes. The first element is the machine’s
state. The rest of the elements are lists that contain a head position and a
tape’s contents. The first corresponds to tape 0 and the last to tape n - 1.
For instance, consider the following configuration:

`(D
(9 (,LM ,BLANK a a b b c c d d ,BLANK))

(3 (,BLANK b b ,BLANK))

(3 (,BLANK c c ,BLANK))

(3 (,BLANK d d ,BLANK)))

The machine is in state D. On tape 0 the head is on position 9, and on tapes
1–3, the heads are on position 3.

A transition made by the machine is denoted using �. C.i � C.j is valid
for M if and only if M can move from C.i to C.j using a single transition. Zero
or more moves by M is denoted using �∗. C.i �∗ C.j is valid for M if and only
if M can move from C.i to C.j using zero or more transitions. Finally, an mttm

language recognizer accepts a word, w, if there is a computation that reaches,
Y, its accepting state.

We adopt the convention that an mttm’s input is provided on tape 0 (whose
first element is the left-end marker), and the initial position of the head
on tape 0 may be specified when the machine is applied. This is akin to a
standard tm. The other tapes are initially blank and do not contain the left-
end marker, and their heads start in position 0 (i.e., the initial blank). An
mttm’s output, if any, is provided on tape 0 when it halts, and the contents
of the other tapes are ignored.
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71 L = {w | w Has Equal Number of as, bs, and cs}

We proceed to design and implement an mttm to decide the language of all
words that have an equal number of as, bs, and cs. We follow the design
recipe for state machines.

71.1 Name, Alphabet, and Precondition

The machine is named EQABC and Σ = {a b c}.
Let t0h be the position of the head on tape 0. The precondition for EQABC

is:

;; PRE: (LM BLANK w) AND t0h = 1 AND tapes 1-3 are empty AND

;; t1h-t3h = 0

The precondition states that there is a blank before the input word and the
head on tape 0 is on this blank. The other tapes are empty, and their heads
are on position 0 (i.e., over each tape’s first blank).

71.2 Unit Tests

The tests illustrate words that are rejected and words that are accepted. The
following are a sample tests:

(check-equal? (sm-apply EQABC `(,LM ,BLANK a a b b a c c) 1)

'reject)
(check-equal? (sm-apply EQABC `(,LM ,BLANK a a a) 1)

'reject)
(check-equal? (sm-apply EQABC `(,LM ,BLANK c c a b b) 1)

'reject)
(check-equal? (sm-apply EQABC `(,LM ,BLANK) 1) 'accept)
(check-equal? (sm-apply EQABC `(,LM ,BLANK a c c b a b) 1)

'accept)
(check-equal?

(sm-apply EQABC

`(,LM ,BLANK c c c a b b a a c b a b b c a) 1)

'accept)

Observe that all the tests satisfy the precondition. That is, for all tests, there
is a blank between LM and the input word, and tape 0’s head is on position 1
over this blank. This includes the test when the empty word is given as input
(i.e., the fourth test).
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71.3 Conditions and States

To determine the different conditions that are represented by a state, we must
outline a design idea. How can an mttm determine if the input word has an
equal number of as, bs, and cs? We shall design a machine with four tapes
that operates in two phases. In the first phase, the input word is traversed.
Every a is copied to tape 1, every b is copied to tape 2, and every c is copied
to tape 2. In the second phase, the copied as, bs, and cs are matched. If all
are matched, then the machine moves to accept. If at any point an a, b, or c
cannot be matched, then the machine moves to reject.

When the machine starts, the precondition must be met. We may docu-
ment, S, the starting state as follows:

;; S: tape 0 = (LM BLANK w) AND t0h = 1

;; tape 1-3 = '(BLANK) AND t1h = t2h = t3h = 0

;; starting state

The position of the heads on tapes 1–3 is denoted, respectively, by t1h, t2h,
and t3h.

In the first phase, the machine copies all the elements on tape 0 to tapes
1–3. We use a state, C, to copy the elements one at a time. The head on tape
0 is over the next element to copy. Tape 1’s touched part contains a blank,
the copied as, and a blank. Its head is over the blank after the copied as at
a position that corresponds to the number of as copied plus 1 (for the initial
blank). This is where the next a, if any, is copied. Tapes 2 and 3 are described
in a similar manner using, respectively, b and c. The role of C is documented
as follows:

;; C: tape 0 = (LM BLANK w) AND t0h >= 2

;; tape 1 = (BLANK a* BLANK) AND

;; num a = num a in tape0[2..t0h-1] AND

;; t1h = num a in tape1[2..t0h-1] + 1 AND

;; tape1[t1h] = BLANK

;; tape 2 = (BLANK b* BLANK) AND

;; num b = num b in tape2[2..t0h-1] AND

;; t2h = num b in tape2[2..t0h-1] + 1 AND

;; tape1[t2h] = BLANK

;; tape 3 = (BLANK c* BLANK) AND

;; num c = num c in tape3[2..t0h-1] AND

;; t3h = num c in tape3[2..t0h-1] + 1 AND

;; tape1[t3h] = BLANK

When an element is copied from tape 0 to another tape, the machine moves to
a different state depending on the element copied. A different state is needed
for each of Σ’s elements, because a different tape is mutated and the head
on the mutated tape must be moved right to place it over the next blank
where the next element, if any, may be copied. We use states D, E, and F,
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respectively, for copying an a, a b, and a c. In each of these states, the element
read on tape 0 has been copied to the proper auxiliary tape. For example, if
on tape 0 a b is read, then on tape 2, the copied b is read, and a blank is read
on the other auxiliary tapes (i.e., in state E). These states are documented
as follows:

;; D: tape 0 = (LM BLANK w) AND

;; t0h >= 2 AND

;; tape0[t0h] = a

;; tape 1 = (BLANK a* BLANK) AND

;; num a = num a in tape1[2..t0h] AND

;; t1h = num a in tape1[2..t0h] + 1 AND

;; tape1[t1h] = a

;; tape 2 = (BLANK b* BLANK) AND

;; num b = num b in tape2[2..t0h] AND

;; t2h = num b in tape2[2..t0h] + 1 AND

;; tape2[t2h] = BLANK

;; tape 3 = (BLANK c* BLANK) AND

;; num c = num c in tape3[2..t0h] AND

;; t3h = num c in tape3[2..t0h] + 1 AND

;; tape3[t3h] = BLANK

;;

;; E: tape 0 = (LM BLANK w) AND

;; t0h >= 2 AND

;; tape0[t0h] = b

;; tape 1 = (BLANK a* BLANK) AND

;; num a = num a in tape1[2..t0h-1] AND

;; t1h = num a in tape1[2..t0h-1] + 1 AND

;; tape1[t1h] = BLANK

;; tape 2 = (BLANK b* BLANK) AND

;; num b = num b in tape2[2..t0h-1] AND

;; t2h = num b in tape2[2..t0h-1] + 1 AND

;; tape2[t2h] = b

;; tape 3 = (BLANK c* BLANK) AND

;; num c = num c in tape3[2..t0h-1] AND

;; t3h = num c in tape3[2..t0h-1] + 1 AND

;; tape3[t3h] = BLANK

;;

;; F: tape 0 = (LM BLANK w) AND

;; t0h >= 2 AND

;; tape0[t0h] = c

;; tape 1 = (BLANK a* BLANK) AND

;; num a = num a in tape1[2..t0h] AND

;; t1h = num a in tape1[2..t0h] + 1 AND

;; tape1[t1h] = BLANK
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;; tape 2 = (BLANK b* BLANK) AND

;; num b = num b in tape2[2..t0h] AND

;; t2h = num b in tape2[2..t0h] + 1 AND

;; tape2[t2h] = BLANK

;; tape 3 = (BLANK c* BLANK) AND

;; num c = num c in tape3[2..t0h] AND

;; t3h = num c in tape3[2..t0h] + 1 AND

;; tape3[t3h] = c

The second phase starts when on all tapes, a blank is read. This means that
all elements on tape 0 have been copied to an auxiliary tape and the matching
process may start. A new state, G, is used to implement the matching process.
In this state, the machine matches a’s, bs, and cs one at a time, from right to
left, on tapes 1–3. What is expected to be true during the matching process?
Think about this carefully. Tapes 1, 2, and 3, respectively, must only contain
as, bs, and cs. In addition, the number of as on tape 1 must equal the number
of as on tape 0, the number of bs on tape 2 must equal the number of bs on
tape 0, and the number of cs on tape 3 must equal the number of cs on tape
0. Finally, the number of matched as must equal the number of matched bs,
which must equal the number of matched cs. The state may be documented
as follows:

;; G: tape 0 = (LM BLANK w)

;; t1 = (BLANK a*)

;; t2 = (BLANK b*)

;; t3 = (BLANK c*)

;; num a in t0 = num a in t1

;; num b in t0 = num b in t2

;; num c in t0 = num c in t3

;; (= |as matched| |bs matched| |cs matched|)

Finally, we shall have two final states: Y to accept and N to reject. Carefully
reason about what needs to hold if the machine reaches Y. We must be able
to conclude that the input word is in L. This means that, respectively, all
as, bs, and cs on tape 0 are copied to tapes 1–3. In addition, the number
of as on tape 1 must equal the number of bs on tape 2, which must equal
the number of cs on tape 3. Now, carefully reason about what needs to hold
if the machine reaches N. We must be able to conclude that the input word
is not in L. This means that, respectively, all as, bs, and cs on tape 0 are
copied to tapes 1–3. In addition, the number of as on tape 1, the number of
bs on tape 2, and the number of cs on tape 3 are not equal. The states are
documented as follows:

;; Y: num a in t0 = num a in t1

;; num b in t0 = num b in t2

;; num c in t0 = num c in t3

;; num a in t1 = num b in t2 = num c in t3

;;
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;; N: num a in t0 = num a in t1

;; num b in t0 = num b in t2

;; num c in t0 = num c in t3

;; (not (num a in t1 = num b in t2 = num c in t3))

71.4 Transition Relation

From the starting state, S, the machine must prepare for the first phase of
the computation by transitioning into C and moving the heads on all tapes to
the right. In this manner, the head on tape 0 is over the first word element,
if any, and the rest of the heads are over the blank where the next element
from tape 0 may be copied. The needed transition is:

(list (list 'S (list BLANK BLANK BLANK BLANK))

(list 'C (list RIGHT RIGHT RIGHT RIGHT)))

When in C, the machine must copy the read element on tape 0 to either
tape 1, tape 2, or tape 3 and move right the heads on tape 0 and on the
tape copied to. This is done in two steps. First, the element read on tape 0 is
copied, and the machine moves to an intermediate state. If the element read
is an a, it is copied to tape 1, and the machine transitions to D. If it is a b, it
is copied to tape 2, and the machine transitions to E. If it is a c, it is copied to
tape 3, and the machine transitions to F. Second, in the intermediate state,
the machine transitions to C to continue with phase 1 of the computation
and moves to the right the heads on tape 0 and on the tape copied to. The
needed transitions are:

(list (list 'C (list 'a BLANK BLANK BLANK))

(list 'D (list 'a 'a BLANK BLANK)))

(list (list 'D (list 'a 'a BLANK BLANK))

(list 'C (list RIGHT RIGHT BLANK BLANK)))

(list (list 'C (list 'b BLANK BLANK BLANK))

(list 'E (list 'b BLANK 'b BLANK)))

(list (list 'E (list 'b BLANK 'b BLANK))

(list 'C (list RIGHT BLANK RIGHT BLANK)))

(list (list 'C (list 'c BLANK BLANK BLANK))

(list 'F (list 'c BLANK BLANK 'c)))
(list (list 'F (list 'c BLANK BLANK 'c))

(list 'C (list RIGHT BLANK BLANK RIGHT)))

If a blank is read on tape 0 when in C, then phase 1 of the computation has
ended, and the machine transitions to G to start phase 2. For this, the heads
on tapes 1–3 are moved left. The needed transition is:
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(list (list 'C (list BLANK BLANK BLANK BLANK))

(list 'G (list BLANK LEFT LEFT LEFT)))

In G, if blanks are read on tapes 1–3, then the word on tape 0 has an equal
number of as, bs, and cs, and the machine transitions to Y to accept. If an a

is read on tape 1, a b is read on tape 2, and a c is read on tape 3, then the
machines remains in G and moves the heads on tapes 1–3 left to continue the
matching process. For these conditions, the needed transition rules are:

(list (list 'G (list BLANK BLANK BLANK BLANK))

(list 'Y (list BLANK BLANK BLANK BLANK)))

(list (list 'G (list BLANK 'a 'b 'c))
(list 'G (list BLANK LEFT LEFT LEFT)))

In G, if there are too many of at least one letter, then the machine transitions
to N to reject. The needed transitions are:

(list (list 'G (list BLANK BLANK 'b 'c))
(list 'N (list BLANK BLANK 'b 'c)))

(list (list 'G (list BLANK 'a BLANK 'c))
(list 'N (list BLANK 'a BLANK 'c)))

(list (list 'G (list BLANK 'a 'b BLANK))

(list 'N (list BLANK 'a 'b BLANK)))

(list (list 'G (list BLANK BLANK BLANK 'c))
(list 'N (list BLANK BLANK BLANK 'c)))

(list (list 'G (list BLANK BLANK 'b BLANK))

(list 'N (list BLANK BLANK 'b BLANK)))

(list (list 'G (list BLANK 'a BLANK BLANK))

(list 'N (list BLANK 'a BLANK BLANK))))

71.5 Machine Implementation and Testing

The implementation of the machine is sketched as follows:

;; PRE: (LM BLANK w) AND i = 1

(define EQABC

(make-mttm

'(S Y N C D E F G)

'(a b c)

'S
'(Y N)

(list

(list (list 'S (list BLANK BLANK BLANK BLANK))

(list 'C (list RIGHT RIGHT RIGHT RIGHT)))
...

4

'Y)))
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You may fill in the missing transition rules by copying them from the previous
subsection. Observe that the machine is constructed with four tapes: one for
the input and three auxiliary tapes for the copying and matching.

Run all the tests, and make sure they pass.

71.6 Invariant Predicates

The invariant predicates for mttms take as input a list of tape configurations.
Each tape configuration has a natural number for the head’s position on the
tape and the touched part of the tape. For instance, the following is a sample
list of tape configurations for a machine with four tapes:

(list (list 1 `(,LM ,BLANK a b c))

(list 0 `(,BLANK a))

(list 0 `(,BLANK b))

(list 0 `(,BLANK)))

On tape 0, the head is on position 1 (i.e., the blank after the left-end marker),
and on tapes 1–3, the heads are all on position 0. Next to each head position
is the touched part of the tape, not including the infinite number of blanks
to the right. For example, on tape 3, only the first blank has been read.

An invariant predicate must test the contents of each tape to validate that
its contents satisfy the expected conditions. This means that each invariant
predicate must extract the head position and the contents for each tape in
the given list of configurations. We shall define these values locally using a
let*-expression. For a machine with four tapes, an invariant predicate is
outlined as follows:

(define (Z-INV tape-configs)

(let* [(t0c (first tape-configs))

(t1c (second tape-configs))

(t2c (third tape-configs))

(t3c (fourth tape-configs))

(t0h (first t0c))

(t0 (second t0c))

(t1h (first t1c))

(t1 (second t1c))

(t2h (first t2c))

(t2 (second t2c))

(t3h (first t3c))

(t3 (second t3c))]

<body of let*>

A local variable is defined for each tape configuration (i.e., t0c–t3c), for
the head position on each tape (i.e., t0h–t3h), and for the contents for each
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tape (i.e., t0–t3). Instead of repeatedly writing the declaration of such local
variables over and over, the presentation that follows denotes them with a
vertical ellipsis as follows:

;; (listof tape-config) → Boolean

(define (Z-INV tape-configs)

(let* [
...

<other local declarations if any>]

<body of let*>

To simplify the development of the invariant predicates for EQABC, we
observe that the transitions never mutate tape 0. Therefore, we shall not test
that its contents are (LM BLANK w). We simply assume it is always true given
that it is part of the precondition.

71.6.1 The S Invariant Predicate

The invariant predicate for S tests that the machine’s initial configuration
satisfies the precondition. This means that the head’s position on tape 0 is
1, that the other heads are positioned at 0, a blank is read on all the tapes,
and tapes 1–3 are empty. The invariant predicate is implemented as follows:

;; (listof tape-config) → Boolean

(define (S-INV tape-configs)

(let* [
...]

(and (= t0h 1) (= t1h 0) (= t2h 0) (= t3h 0)

(eq? (list-ref t0 t0h) BLANK)

(equal? `(,BLANK) t1)

(equal? `(,BLANK) t2)

(equal? `(,BLANK) t3))))

(check-equal? (S-INV (list (list 1 `(,LM ,BLANK a b c))

(list 0 `(,BLANK a))

(list 0 `(,BLANK b))

(list 0 `(,BLANK))))
#f)

(check-equal? (S-INV (list (list 1 `(,LM ,BLANK a b c))

(list 0 `(,BLANK))
(list 0 `(,BLANK))
(list 0 `(,BLANK))))

#t)
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71.6.2 The C Invariant Predicate

The invariant predicate for C tests that tape 0’s head position is greater than
or equal to 2, that tape 1 only contains as, that tape 2 only contains bs, and
that tape 3 only contains cs. It also tests that the number of as on tape 1
equals the number of as read on tape 0, that the number of bs on tape 2
equals the number of bs read on tape 0, and that the number of cs on tape
3 equals the number of cs read on tape 0. In addition, it tests that tape 1’s
head position is one more than the number of as read on tape 0, that tape
2’s head position is one more than the number of bs read on tape 0, and that
tape 3’s head position is one more than the number of cs read on tape 0.
Finally, it tests that on tapes 1–3, a blank is read.

To implement this predicate, it is necessary to extract the input word’s
read elements on tape 0. The read elements do not include LM and the first
blank on the tape. They include the next t0h-2 elements.

To test the contents of tapes 1–3, we observe that the elements written
to a tape must be between two blanks. Therefore, the written elements are
obtained by dropping the leading and ending blanks. All the written elements
on tape 1 must be as, all the written elements on tape 2 must be bs, and
all the written elements on tape 3 must be cs. Finally, each of these tapes’
length must be 2 greater than the length of its written elements.

The invariant predicate is implemented as follows:

;; (listof tape-config) → Boolean

(define (C-INV tape-configs)

(let* [
...

(readt0 (take (rest (rest t0)) (- t0h 2)))]

(and (>= t0h 2)

(eq? (list-ref t1 t1h) BLANK)

(eq? (list-ref t2 t2h) BLANK)

(eq? (list-ref t3 t3h) BLANK)

(let [(written-t1 (rest (drop-right t1 1)))

(written-t2 (rest (drop-right t2 1)))

(written-t3 (rest (drop-right t3 1)))]

(andmap (λ (s) (eq? s 'a)) written-t1)

(andmap (λ (s) (eq? s 'b)) written-t2)

(andmap (λ (s) (eq? s 'c)) written-t3)

(= (length t1) (+ (length written-t1) 2))

(= (length t2) (+ (length written-t2) 2))

(= (length t3) (+ (length written-t3) 2)))

(equal? (filter (λ (s) (eq? s 'a)) readt0)

(filter (λ (s) (eq? s 'a)) t1))

(equal? (filter (λ (s) (eq? s 'b)) readt0)

(filter (λ (s) (eq? s 'b)) t2))

(equal? (filter (λ (s) (eq? s 'c)) readt0)

(filter (λ (s) (eq? s 'c)) t3)))))
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(check-equal? (C-INV (list (list 2 `(,LM ,BLANK b b b))

(list 0 `(,BLANK a a))

(list 0 `(,BLANK))
(list 0 `(,BLANK))))

#f)

(check-equal? (C-INV (list (list 2 `(,LM ,BLANK b a c))

(list 1 `(,BLANK ,BLANK))

(list 1 `(,BLANK ,BLANK))

(list 1 `(,BLANK ,BLANK))))

#t)

(check-equal?

(C-INV (list (list 6 `(,LM ,BLANK b a b c a a b c))

(list 2 `(,BLANK a ,BLANK))

(list 3 `(,BLANK b b ,BLANK))

(list 2 `(,BLANK c ,BLANK))))

#t)

71.6.3 The D Invariant Predicate

The invariant predicate for D tests if tape 0’s head position is greater than or
equal to 2. Furthermore, it tests that on tapes 0 and 1, an a is read, and that
on tapes 2 and 3, a blank is read. In addition, it tests that everything written
on tapes 1–3 are, respectively, as, bs, and cs. Observe that in this state, the
written elements on tape 1 include the element under tape 1’s head. This
means the tape 1’s written part includes the t1h.th element. The written part
of tapes 2 and 3 does not include, respectively, the t2h.th and t3h.th elements.
Finally, it also tests that the number of as on tape 1 equals the number of
as read on tape 0, that the number of bs on tape 2 equals the number of bs
read on tape 0, and that the number of cs on tape 3 equals the number of
cs read on tape 0.

Observe that the read elements on tape 0 do not include LM and the first
blank and include the next t0h-1 elements. To extract these read elements,
tape 0’s first two elements are dropped, and the next t0h-1 elements are
taken. Further observe that the written elements on tape 1 include everything
after the initial blank, and the written elements on tapes 2 and 3 are between
two blanks.

The invariant predicate is implemented as follows:

;; (listof tape-config) → Boolean

(define (D-INV tape-configs)

(let* [
...

(readt0 (take (rest (rest t0)) (sub1 t0h)))]
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(and (>= t0h 2)

(eq? (list-ref t0 t0h) 'a)
(eq? (list-ref t1 t1h) 'a)
(eq? (list-ref t2 t2h) BLANK)

(eq? (list-ref t3 t3h) BLANK)

(let [(written-t1 (rest t1))

(written-t2 (rest (drop-right t2 1)))

(written-t3 (rest (drop-right t3 1)))]

(andmap (λ (s) (eq? s 'a)) written-t1)

(andmap (λ (s) (eq? s 'b)) written-t2)

(andmap (λ (s) (eq? s 'c)) written-t3)

(= (length t1) (+ (length written-t1) 1))

(= (length t2) (+ (length written-t2) 2))

(= (length t3) (+ (length written-t3) 2)))

(equal? (filter (λ (s) (eq? s 'a)) readt0)

(filter (λ (s) (eq? s 'a)) t1))

(equal? (filter (λ (s) (eq? s 'b)) readt0)

(filter (λ (s) (eq? s 'b)) t2))

(equal? (filter (λ (s) (eq? s 'c)) readt0)

(filter (λ (s) (eq? s 'c)) t3)))))

(check-equal? (D-INV (list (list 2 `(,LM ,BLANK b))

(list 0 `(,BLANK a a))

(list 0 `(,BLANK))
(list 0 `(,BLANK))))

#f)

(check-equal? (D-INV (list (list 4 `(,LM ,BLANK b a c))

(list 2 `(,BLANK a ,BLANK))

(list 2 `(,BLANK b ,BLANK))

(list 1 `(,BLANK ,BLANK))))

#f)

(check-equal?

(D-INV (list (list 2 `(,LM ,BLANK a a a b b b c c c))

(list 1 `(,BLANK a))

(list 1 `(,BLANK ,BLANK))

(list 1 `(,BLANK ,BLANK))))

#t)

(check-equal?

(D-INV (list (list 5 `(,LM ,BLANK c a b a b a))

(list 2 `(,BLANK a a))

(list 2 `(,BLANK b ,BLANK))

(list 2 `(,BLANK c ,BLANK))))

#t)
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71.6.4 The E Invariant Predicate

The invariant predicate for E is similar to the invariant predicate for D. Instead
of using a and tape 1, b and tape 2 are used. The invariant predicate is
implemented as follows:

;; (listof tape-config) → Boolean

(define (E-INV tape-configs)

(let* [
...

(readt0 (take (rest (rest t0)) (- t0h 1)))]

(and (>= t0h 2)

(eq? (list-ref t0 t0h) 'b)
(eq? (list-ref t1 t1h) BLANK)

(eq? (list-ref t2 t2h) 'b)
(eq? (list-ref t3 t3h) BLANK)

(let [(written-t1 (rest (drop-right t1 1)))

(written-t2 (rest t2))

(written-t3 (rest (drop-right t3 1)))]

(andmap (λ (s) (eq? s 'a)) written-t1)

(andmap (λ (s) (eq? s 'b)) written-t2)

(andmap (λ (s) (eq? s 'c)) written-t3)

(= (length t1) (+ (length written-t1) 2))

(= (length t2) (+ (length written-t2) 1))

(= (length t3) (+ (length written-t3) 2)))

(equal? (filter (λ (s) (eq? s 'a)) readt0)

(filter (λ (s) (eq? s 'a)) t1))

(equal? (filter (λ (s) (eq? s 'b)) readt0)

(filter (λ (s) (eq? s 'b)) t2))

(equal? (filter (λ (s) (eq? s 'c)) readt0)

(filter (λ (s) (eq? s 'c)) t3)))))

(check-equal? (E-INV (list (list 2 `(,LM ,BLANK b))

(list 0 `(,BLANK))
(list 0 `(,BLANK))
(list 0 `(,BLANK))))

#f)

(check-equal? (E-INV (list (list 4 `(,LM ,BLANK a c b))

(list 2 `(,BLANK a ,BLANK))

(list 1 `(,BLANK ,BLANK))

(list 2 `(,BLANK c ,BLANK))))

#f)
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(check-equal?

(E-INV (list (list 7 `(,LM ,BLANK a a a b b b c c c))

(list 4 `(,BLANK a a a ,BLANK))

(list 3 `(,BLANK b b b))

(list 1 `(,BLANK ,BLANK))))

#t)

(check-equal? (E-INV (list (list 4 `(,LM ,BLANK a c b))

(list 2 `(,BLANK a ,BLANK))

(list 1 `(,BLANK b))

(list 2 `(,BLANK c ,BLANK))))

#t)

(check-equal?

(E-INV (list (list 6 `(,LM ,BLANK c a b a b a))

(list 3 `(,BLANK a a ,BLANK))

(list 2 `(,BLANK b b))

(list 2 `(,BLANK c ,BLANK))))

#t)

71.6.5 The F Invariant Predicate

The invariant predicate for F is similar to the invariant predicates for D and
E. Instead of using a and tape 1 or b and tape 2, c and tape 3 are used. The
invariant predicate is implemented as follows:

;; (listof tape-config) → Boolean

(define (F-INV tape-configs)

(let* [
...

(readt0 (take (rest (rest t0)) (- t0h 1)))]

(and (>= t0h 2)

(eq? (list-ref t0 t0h) 'c)
(eq? (list-ref t1 t1h) BLANK)

(eq? (list-ref t2 t2h) BLANK)

(eq? (list-ref t3 t3h) 'c)
(let [(written-t1 (rest (drop-right t1 1)))

(written-t2 (rest (drop-right t2 1)))

(written-t3 (rest t3))]

(andmap (λ (s) (eq? s 'a)) written-t1)

(andmap (λ (s) (eq? s 'b)) written-t2)

(andmap (λ (s) (eq? s 'c)) written-t3)

(= (length t1) (+ (length written-t1) 2))

(= (length t2) (+ (length written-t2) 2))

(= (length t3) (+ (length written-t3) 1)))
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(equal? (filter (λ (s) (eq? s 'a)) readt0)

(filter (λ (s) (eq? s 'a)) t1))

(equal? (filter (λ (s) (eq? s 'b)) readt0)

(filter (λ (s) (eq? s 'b)) t2))

(equal? (filter (λ (s) (eq? s 'c)) readt0)

(filter (λ (s) (eq? s 'c)) t3)))))

(check-equal? (F-INV (list (list 2 `(,LM ,BLANK b))

(list 0 `(,BLANK))
(list 0 `(,BLANK))
(list 0 `(,BLANK))))

#f)

(check-equal? (F-INV (list (list 2 `(,LM ,BLANK a c b))

(list 2 `(,BLANK a ,BLANK))

(list 1 `(,BLANK ,BLANK))

(list 1 `(,BLANK ,BLANK))))

#f)

(check-equal?

(F-INV (list (list 9 `(,LM ,BLANK a a a b b b c c c))

(list 4 `(,BLANK a a a ,BLANK))

(list 4 `(,BLANK b b b ,BLANK))

(list 1 `(,BLANK c c ,BLANK))))

#t)

(check-equal? (F-INV (list (list 3 `(,LM ,BLANK a c b))

(list 2 `(,BLANK a ,BLANK))

(list 1 `(,BLANK ,BLANK))

(list 1 `(,BLANK c ,BLANK))))

#t)

(check-equal?

(F-INV (list (list 7 `(,LM ,BLANK c a b a b c a))

(list 3 `(,BLANK a a ,BLANK))

(list 3 `(,BLANK b b ,BLANK))

(list 2 `(,BLANK c c ,BLANK))))

#t)

71.6.6 The G Invariant Predicate

The invariant predicate for G tests that the head position on each tape is less
than the length of the corresponding tape length. It also tests if the same
number of as, bs, and cs has been matched; if everything written on tapes
1–3 is, respectively, a, b, or c; and if all the as, bs, and cs have been copied,
respectively, to tapes 1–3.
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The list of as matched is empty if tape 1’s length is 2 (i.e., the touched
part of tape 1 only contains two blanks). Otherwise, the list of matched as is
obtained by dropping the ending blank and the first t1h + 1 elements from
the front of the tape. Similarly, the list of matched bs and cs is obtained
using, respectively, tapes 2 and 3.

The invariant predicate is implemented as follows:

;; (listof tape-config) → Boolean

(define (G-INV tape-configs)

(let* [
...]

(and (< t1h (length t1))

(< t2h (length t2))

(< t3h (length t3))

(let [(as-matched

(if (= (length t1) 2)

'()
(drop-right (drop t1 (add1 t1h)) 1)))

(bs-matched

(if (= (length t2) 2)

'()
(drop-right (drop t2 (add1 t2h)) 1)))

(cs-matched

(if (= (length t3) 2)

'()
(drop-right (drop t3 (add1 t3h)) 1)))]

(and (= (length as-matched)

(length bs-matched)

(length cs-matched))

(andmap (λ (s) (eq? s 'a))
(rest (drop-right t1 1)))

(andmap (λ (s) (eq? s 'b))
(rest (drop-right t2 1)))

(andmap (λ (s) (eq? s 'c))
(rest (drop-right t3 1)))

(equal? (filter (λ (s) (eq? s 'a)) t0)

(filter (λ (s) (eq? s 'a)) t1))

(equal? (filter (λ (s) (eq? s 'b)) t0)

(filter (λ (s) (eq? s 'b)) t2))

(equal? (filter (λ (s) (eq? s 'c)) t0)

(filter (λ (s) (eq? s 'c)) t3)))))))

(check-equal? (G-INV (list (list 4 `(,LM ,BLANK b a a ,BLANK))

(list 0 `(,BLANK a a ,BLANK))

(list 0 `(,BLANK b ,BLANK))

(list 0 `(,BLANK ,BLANK))))

#f)
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(check-equal? (G-INV (list (list 2 `(,LM ,BLANK a c b))

(list 1 `(,BLANK a ,BLANK))

(list 0 `(,BLANK ,BLANK))

(list 1 `(,BLANK c ,BLANK))))

#f)

(check-equal?

(G-INV (list (list 11 `(,LM ,BLANK a a a b b b c c c ,BLANK))

(list 3 `(,BLANK a a a ,BLANK))

(list 3 `(,BLANK b b b ,BLANK))

(list 3 `(,BLANK c c c ,BLANK))))

#t)

(check-equal? (G-INV (list (list 5 `(,LM ,BLANK a c b ,BLANK))

(list 0 `(,BLANK a ,BLANK))

(list 0 `(,BLANK b ,BLANK))

(list 0 `(,BLANK c ,BLANK))))

#t)

(check-equal?

(G-INV (list (list 9 `(,LM ,BLANK c a b a b c a ,BLANK))

(list 2 `(,BLANK a a a ,BLANK))

(list 1 `(,BLANK b b ,BLANK))

(list 1 `(,BLANK c c ,BLANK))))

#t)

71.6.7 The Y Invariant Predicate

The invariant predicate for Y tests that the number of as, the number of
bs, and the number of cs on tape 0 are equal. The invariant predicate is
implemented as follows:

;; (listof tape-config) → Boolean

(define (Y-INV tape-configs)

(let* [
...

(t0as (filter (λ (s) (eq? s 'a)) t0))

(t0bs (filter (λ (s) (eq? s 'b)) t0))

(t0cs (filter (λ (s) (eq? s 'c)) t0))]

(= (length t0as) (length t0bs) (length t0cs))))
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(check-equal? (Y-INV (list (list 4 `(,LM ,BLANK b a a ,BLANK))

(list 0 `(,BLANK a a ,BLANK))

(list 0 `(,BLANK b ,BLANK))

(list 0 `(,BLANK ,BLANK))))

#f)

(check-equal? (Y-INV (list (list 2 `(,LM ,BLANK a a b))

(list 0 `(,BLANK a a ,BLANK))

(list 0 `(,BLANK ,BLANK))

(list 0 `(,BLANK c ,BLANK))))

#f)

(check-equal?

(Y-INV (list (list 11 `(,LM ,BLANK a a a b b b c c c ,BLANK))

(list 0 `(,BLANK a a a ,BLANK))

(list 0 `(,BLANK b b b ,BLANK))

(list 0 `(,BLANK c c c ,BLANK))))

#t)

(check-equal? (Y-INV (list (list 5 `(,LM ,BLANK a c b ,BLANK))

(list 0 `(,BLANK a ,BLANK))

(list 0 `(,BLANK b ,BLANK))

(list 0 `(,BLANK c ,BLANK))))

#t)

(check-equal?

(Y-INV (list (list 8 `(,LM ,BLANK c a b a b c ,BLANK))

(list 0 `(,BLANK a a ,BLANK))

(list 0 `(,BLANK b b ,BLANK))

(list 0 `(,BLANK c c ,BLANK))))

#t)

71.6.8 The N Invariant Predicate

The invariant predicate for N tests that the number of as, the number of bs,
and the number of cs on tape 0 are not equal. The invariant predicate is
implemented as follows:

;; (listof tape-config) → Boolean

(define (N-INV tape-configs)

(let* [
...

(t0as (filter (λ (s) (eq? s 'a)) t0))

(t0bs (filter (λ (s) (eq? s 'b)) t0))

(t0cs (filter (λ (s) (eq? s 'c)) t0))]

(not (= (length t0as) (length t0bs) (length t0cs)))))
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(check-equal? (N-INV (list (list 5 `(,LM ,BLANK b c a ,BLANK))

(list 0 `(,BLANK a ,BLANK))

(list 0 `(,BLANK b ,BLANK))

(list 0 `(,BLANK c ,BLANK))))

#f)

(check-equal? (N-INV (list (list 2 `(,LM ,BLANK ,BLANK))

(list 0 `(,BLANK ,BLANK))

(list 0 `(,BLANK ,BLANK))

(list 0 `(,BLANK ,BLANK))))

#f)

(check-equal? (N-INV (list (list 5 `(,LM ,BLANK b a a ,BLANK))

(list 2 `(,BLANK a a ,BLANK))

(list 1 `(,BLANK b ,BLANK))

(list 0 `(,BLANK ,BLANK))))

#t)

(check-equal?

(N-INV (list (list 7 `(,LM ,BLANK b a a c b ,BLANK))

(list 1 `(,BLANK a a ,BLANK))

(list 1 `(,BLANK b b ,BLANK))

(list 0 `(,BLANK c ,BLANK))))

#t)

71.7 Visualizing mttms

The visualization tool displays mttms differently from previous state ma-
chines. Figure 94 displays a snapshot of running EQABC with invariant predi-
cates:

(sm-visualize EQABC

(list 'S S-INV)

(list 'Y Y-INV)

(list 'N N-INV)

(list 'C C-INV)

(list 'D D-INV)

(list 'E E-INV)

(list 'F F-INV)

(list 'G G-INV))

On the bottom, the current state, the previous state, and the last transition
rule are displayed. The current state’s enclosing box is colored green if the
invariant for the current state holds and is colored red if the invariant for
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Fig. 94 An mttm visualization with invariants

the current state does not hold. In Fig. 94, G’s invariant holds. If an invariant
predicate is not provided for a state, then the current state’s enclosing box
is not colored.

The left column allows the programmer to add elements to the input tape.
Recall that to add a blank, you type BLANK. In the left column, the program-
mer may also set the initial position of the head on tape 0. Finally, the left
column also displays the machine’s alphabet.

The center displays an image containing the configuration of each tape.
For each tape, the touched part of the tape is displayed along with the index
of each element. The element under the head is displayed in red. In Fig. 94,
for example, tape 2 contains a blank, 3 bs, and a blank. Tape 2’s head is over
the b in position 3.

As for other state machines, run the visualization tool to validate invariant
predicates and the transitions before attempting to prove correctness. You
ought to use the visualization tool to validate EQABC’s invariant predicates.
Once you are fairly certain that the invariant predicates always hold, proceed
to developing a proof that establishes that they do and a proof that the
machine accomplishes its goal (i.e., decide a language or compute a function).

71.8 Proving L(EQABC) = L

After using the visualization tool to validate EQABC’s invariant predicates, we
are cautiously optimistic that they always hold. We may now proceed with
the final step of the design recipe for state machines and develop a proof that
L(EQABC) = L.
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71.8.1 Proving Invariants Hold

The first step is to prove that EQABC’s invariant predicates always hold. We
do so by induction on, n, the number of transition rules used during a com-
putation. We denote tapes 0–3 as t0–t3, the head position on each tape as
t0h–t3h, and the input word as w.

Theorem 1 The state invariants hold when EQABC is applied to w.

Proof

Base case: n = 0
When EQABC starts, it can only reach S, given that there are no empty
transitions out of S. By precondition, tape 0 contains the left-end marker, a
blank, and w, t0h is 1, tapes 1–3 are empty, and t1h–t3h all equal 0. There-
fore, S-INV holds.

Inductive Step:
Assume: State invariants hold for a computation of length n = k
Show: State invariants hold for a computation of length n = k + 1

((S (BLANK BLANK BLANK BLANK)) (C (R R R R)): By inductive hy-
pothesis, S-INV holds. This means that tape 0 contains the left-end marker,
a blank, and w, t0h is 1, tapes 1–3 are empty, and t1h–t3h all equal 0. Using
this rule means that a blank is read on all tapes, and all heads are moved
right. After using the rule, t0h is greater than or equal to 2. Given that tapes
1–3 are empty, a blank is read in the new position of each head, their written
part is empty, each tape’s length is the length of each tape’s written part plus
2, and all read as, bs, and cs on tape 0 (i.e., 0 of each) are copied, respectively,
to tapes 1–3. Therefore, C-INV holds.

((C (a BLANK BLANK BLANK)) (D (a a BLANK BLANK))): By induc-
tive hypothesis, C-INV holds. This means that t0h is greater than or equal
to 2, that a blank is read on tapes 1–3, that the length of tapes 1–3 is the
length of each tapes written part plus 2, and that all read as, bs, and cs on
tape 0 are copied, respectively, to tapes 1–3. Using this rule means that the
a read on tape 0 is copied to tape 1. After using this rule, we have that tapes
0’s head position is greater than or equal to 2; that an a is read on tape 0
and tape 1; that a blank is read on tapes 2 and 3; that the written part of
tapes 1–3 only contain, respectively, as, bs, and cs; that length of tape 1 is its
written part length plus 1; that the length of tapes 2 and 3 are the length of
its written part plus 2; and that all read as, bs, and cs on tape 0 are copied,
respectively, to tapes 1–3. Therefore, D-INV holds.

((D (a a BLANK BLANK)) (C (R R BLANK BLANK))): By inductive hy-
pothesis, D-INV holds. This means that tapes 0’s head position is greater
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than or equal to 2; that an a is read on tape 0 and tape 1; that a blank
is read on tapes 2 and 3; that the written part of tapes 1–3 only contain,
respectively, as, bs, and cs; that length of tape 1 is its written part length
plus 1; that the length of tapes 2 and 3 is the length of its written part plus
2; and that all read as, bs, and cs on tape 0 are copied, respectively, to tapes
1–3. Using this rule means that the heads on tape 0 and 1 are moved right.
This means that t0h is greater than or equal to 2, that a blank is read on
tapes 1–3, that the length of tapes 1–3 is the length of each tape’s written
part plus 2, and that all read as, bs, and cs on tape 0 are copied, respectively,
to tapes 1–3. Thus, C-INV holds.

((C (b BLANK BLANK BLANK)) (E (b BLANK b BLANK))): By induc-
tive hypothesis, C-INV holds. This means that t0h is greater than or equal
to 2, that a blank is read on tapes 1–3, that the length of tapes 1–3 is the
length of each tapes written part plus 2, and that all read as, bs, and cs on
tape 0 are copied, respectively, to tapes 1–3. Using this rule means that the
b read on tape 0 is copied to tape 2. After using the rule, we have that tapes
0’s head position is greater than or equal to 2; that an b is read on tape 0
and tape 2; that a blank is read on tapes 1 and 3; that the written part of
tapes 1–3 only contain, respectively, as, bs, and cs; that length of tape 2 is its
written part length plus 1; that the length of tapes 1 and 3 are the length of
its written part plus 2; and that all read as, bs, and cs on tape 0 are copied,
respectively, to tapes 1–3. Therefore, E-INV holds.

((E (b BLANK b BLANK)) (C (R BLANK R BLANK))): By inductive hy-
pothesis, E-INV holds. This means that tapes 0’s head position is greater
than or equal to 2; that an b is read on tape 0 and tape 2; that a blank
is read on tapes 1 and 3; that the written part of tapes 1–3 only contain,
respectively, as, bs, and cs; that length of tape 2 is its written part length
plus 1; that the length of tapes 1 and 3 are the length of its written part plus
2; and that all read as, bs, and cs on tape 0 are copied, respectively, to tapes
1–3. Using this rule means that the heads on tape 0 and 2 are moved right.
This means that t0h is greater than or equal to 2, that a blank is read on
tapes 1–3, that the length of tapes 1–3 is the length of each tape’s written
part plus 2, and that all read as, bs, and cs on tape 0 are copied, respectively,
to tapes 1–3. Thus, C-INV holds.

((C (c BLANK BLANK BLANK)) (F (c BLANK BLANK c))): By induc-
tive hypothesis, C-INV holds. This means that t0h is greater than or equal
to 2, that a blank is read on tapes 1–3, that the length of tapes 1–3 is the
length of each tapes written part plus 2, and that all read as, bs, and cs on
tape 0 are copied, respectively, to tapes 1–3. Using this rule means that the
c read on tape 0 is copied to tape 3. After using the rule, we have that tapes
0’s head position is greater than or equal to 2; that an c is read on tape 0
and tape 3; that a blank is read on tapes 1 and 2; that the written part of
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tapes 1–3 only contain, respectively, as, bs, and cs; that length of tape 3 is its
written part length plus 1; that the length of tapes 1 and 2 are the length of
its written part plus 2; and that all read as, bs, and cs on tape 0 are copied,
respectively, to tapes 1–3. Therefore, F-INV holds.

((F (c BLANK BLANK c)) (C (R BLANK BLANK R))): By inductive hy-
pothesis, F-INV holds. This means tapes 0’s head position is greater than or
equal to 2; that an c is read on tape 0 and tape 3; that a blank is read on
tapes 1 and 2; that the written part of tapes 1–3 only contain, respectively,
as, bs, and cs; that length of tape 3 is its written part length plus 1; that
the length of tapes 1 and 2 are the length of its written part plus 2; and that
all read as, bs, and cs on tape 0 are copied, respectively, to tapes 1–3. Using
this rule moves the heads on tape 0 and on tape 3 to the right. This means
that t0h is greater than or equal to 2, that a blank is read on tapes 1–3, that
the length of tapes 1–3 is the length of each tape’s written part plus 2, and
that all read as, bs, and cs on tape 0 are copied, respectively, to tapes 1–3.
Thus, C-INV holds.

((C (BLANK BLANK BLANK BLANK)) (G (BLANK L L L))): By induc-
tive hypothesis, C-INV holds. This means that t0h is greater than or equal
to 2, that a blank is read on tapes 1–3, that the length of tapes 1–3 is the
length of each tapes written part plus 2, and that all read as, bs, and cs on
tape 0 are copied, respectively, to tapes 1–3. This rule moves the heads on
tapes 1–3 left. This means that the head’s position on tapes 1–3 is less than
the corresponding tape’s length; that there is an equal number of matched as,
bs, and cs on tapes 1–3 (observe that the matched elements are to the right
of the respective head positions); that tapes 1–3, respectively, only contain
as, bs, and cs; and that all as, bs, and cs on tape 0 are copied, respectively,
to tapes 1–3. Therefore, G-INV holds.

((G (BLANKBLANKBLANKBLANK)) (Y (BLANK BLANKBLANKBLANK))):
By inductive hypothesis, G-INV holds. This means that the head’s position
on tapes 1–3 is less than the corresponding tape’s length; that there is an
equal number of matched as, bs, and cs on tapes 1-3; that tapes 1–3, respec-
tively, only contain as, bs, and cs; and that all as, bs, and cs on tape 0 are
copied, respectively, to tapes 1–3. This rule reads a blank on all tapes and
moves to Y to accept. A blank read on tapes 1–3 means that all as, bs, and
cs on these tapes are matched. Given that tapes 1–3, respectively, contain all
the as, bs, and cs in w on tape 0, we have that w has an equal number of as,
bs, and cs. Therefore, Y-INV holds.

((G (BLANK a b c)) (G (BLANK L L L))): By inductive hypothesis, G-INV
holds. This means that the head’s position on tapes 1–3 is less than the cor-
responding tape’s length; that there is an equal number of matched as, bs,
and cs on tapes 1–3; that tapes 1–3, respectively, only contain as, bs, and cs;
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and that all as, bs, and cs on tape 0 are copied, respectively, to tapes 1–3.
This rule moves the heads on tapes 1–3 to the left, because one more a, b,
and c are matched. Thus, G-INV holds.

All other transitions out of G: By inductive hypothesis, G-INV holds. This
means that the head’s position on tapes 1–3 is less than the corresponding
tape’s length; that there is an equal number of matched as, bs, and cs on
tapes 1–3; that tapes 1–3, respectively, only contain as, bs, and cs; and that
all as, bs, and cs on tape 0 are copied, respectively, to tapes 1–3. Each of
these rules transition to N, because there is an unmatched a on tape 1, an
unmatched b on tape 2, or an unmatched c on tape 3. Given that all as, bs,
and cs on tape 0 are copied, respectively, to tapes 1–3, we have that w does
not have an equal number of as, bs, and cs. Thus, N-INV holds. �

71.8.2 L(EQABC) = L

The second step is to prove L(EQABC) = L knowing that the invariant predi-
cates hold. As before, the proof is divided in two lemmas.

Lemma 1 w.∈L .⇔ w.∈L(EQABC)

Proof
(.⇒) Assume w.∈L.

w.∈L means that w has an equal number of as, bs, and cs. Given that in-
variants always hold, there is a computation that copies all as, bs, and cs,
respectively, to tapes 1–3, that matches all the elements on tapes 1–3, and
that moves to Y. Thus, w.∈L(EQABC).

(.⇐) Assume w.∈L(EQABC).

w.∈L(EQABC) means that there is a computation that consumes w and halts
in Y. Given that invariants always hold, w has an equal number of as, bs, and
cs. Therefore, w.∈L. �

Lemma 2 w./∈L .⇔ w./∈L(EQABC)

Proof
(.⇒) Assume w./∈L.

w./∈L means that w does not have an equal number of as, bs, and cs. Given
that invariants always hold, there is a computation that copies all as, bs, and
cs, respectively, to tapes 1–3, that fails to match all the elements on tapes
1–3, and that moves to N. Thus, w./∈L(EQABC).
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(.⇐) Assume w./∈L(EQABC).

w./∈L(EQABC) means that there is a computation that consumes w and halts
in N. Given that invariants always hold, w does not have an equal number of
as, bs, and cs. Therefore, w./∈L. �
Theorem 2 L(EQABC) = L

Proof
Lemmas 1 and 2 establish the theorem. �

1 Design and implement an mttm to decide L = {w | w.∈a.nb.nc.n}.

2 Design and implement an mttm to decide L = {w | w has an equal
number of as, bs, cs, and ds.}.

3 Let Σ = {a b}. Design and implement an mttm to decide L = {www
| w.∈Σ.

∗}.

4 Design and implement an mttm to multiply two unary numbers.

5 Let Σ = {a b}. Design and implement an mttm to compute f(w) =
ww.

72 tm and mttm Equivalence

Multitape Turing machines are capable of performing complex computations
and in many cases make the design of a solution easier. Are they more pow-
erful than standard Turing machines? That is, is there any language that can
be decided or any function computed by an mttm that cannot be decided nor
computed by a tm? Intuitively, you may want to believe that with multiple
tapes, there are tasks that can only be performed by an mttm. Perhaps sur-
prisingly, the answer to our questions is no. Multiple tapes do not provide us
with the ability solve problems that cannot be solved by a standard Turing
machine.

This means that a standard Turing machine can simulate any multitape
Turing machine. Such simulations are useful tools in studying the compu-
tational power of state machines. Typically, a simulating machine does in
multiple steps what is done by the simulated machine in one step.

We shall sketch how to build a standard Turing machine from a multitape
Turing machine. The word sketch is used because we shall not implement
the constructor. There are several reasons for this. First, the details to build
the simulating tm get messy very quickly. These details provide little insight
into understanding that mttms may be simulated by a tm. Second, there are
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Fig. 95 Tape configurations for a 3-tape mttm

LM a a a b bTape 0

b a b aTape 1

b a a b b b aTape 2

several design choices that may be made. Making such choices are necessary
to implement a constructor, but are not necessary to understand that mttms
may be simulated by a standard tm. Finally, there are limitations FSM imposes
on us. For example, simulating an mttm usually requires a rich alphabet that
is much larger than the set of lowercase letters in the Roman alphabet and
the digits. Therefore, we are unable to encode the needed alphabet in FSM.

72.1 Design Idea

The tape of a tm that simulates an mttm must represent all the information
contained in the mttm’s tape configurations. This information includes each
tape’s contents and each tape’s head position. For instance, consider the tapes
for a 3-tape mttm displayed in Fig. 95. The arrows indicate each tape’s head
position, and the empty tape locations represent a blank.

How can this information be represented on a single tape? We shall draw
inspiration from hard disk technology, and imagine that a standard tm’s tape
is divided into tracks. Specifically, if a k-tape mttm is simulated, then there
are 2k tracks. The even tracks, numbered 2j, represent tape j’s content in
the mttm. The odd tracks, numbered 2j+1, capture the head’s position on
tape j. An odd track, 2i+1, contains all zeroes and a single one indicating the
head’s position on track i. The standard tm tape contains the left-end marker,
the tracks for all tapes up to and including the largest position touched by
any simulated head, and an infinite number of blanks to the right. Figure 96
displays the standard tm tape for the mttm–tapes displayed in Fig. 95.

The division into tracks, of course, is an abstraction that must be imple-
mented. We can observe that alphabet for the simulating tm must contain
the mttm’s alphabet. In this manner, the simulating tm can receive the same
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Fig. 96 3-tape mttm tape representation in a tm

LM a a a b b

0 0 0 0 1 0 0 0 0

b a b a

0 0 1 0 0 0 0 0 0

b a a b b b a

0 0 0 0 0 0 1 0 0

LM

input as the mttm. In addition, we can observe that each position in the sim-
ulating tm’s tape is either LM, BLANK, or a symbol representing an element in
(Σ .× {0 1}).k, where Σ is the mttm’s alphabet. In summary, the simulating
tm’s alphabet must have a symbol for each possible column in the track rep-
resentation of the multiple tapes. By scanning the portion of the tape that
contains these symbols, it can be determined what symbols are read on each
tape and use a state to remember them. For example, there are nine different
columns formed by the tracks in Fig. 96. This means that nine different sym-
bols, say 'p–'x, are needed to represent them. Mapping the columns from left
to right to these symbols yields the following representation for a standard
Turing machine’s tape:

.

LM p q r s t u v w x

Assume P is a state representing that none of the read elements by the simu-
lated mttm are known. In P, the tape is scanned from the left-end marker to
the first blank. Upon reading r, the tm changes to state R, which represents
that an a is read on the mttm’s tape 1. Upon reading t, the tm changes to
state T, which represents that an a is read on the mttm’s tape 1 and an a on
tape 0. Finally, upon reading v, the tm changes to state U, which represents
that an a is read on the mttm’s tape 1, an a on tape 0, and a b on tape 2.
In summary, all the elements read by the multitape Turing machine can be
determined by scanning the tape and can be remembered using states.

In a similar fashion, the mttm’s state may also be coded into the simulating
tm’s state. Knowing both the mttm’s state and the elements read by the mttm
means the simulating tm may identify which rules may be used by the mttm.
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As with all tms, if more than one mttm rule may be used, then a rule is
nondeterministically chosen.

72.2 Proof Sketch

Theorem 3 Let M = (make-mttm K Σ S F R n [Y]). There exists a Turing
machine, M' = (make-tm K' Σ' S' F R' [Y]), that simulates M.

Proof (sketch)
Assume the precondition for M is:

;; PRE: tape 0 = (LM BLANK w) and t0h = 1

We partially outline how the simulating tm operates. There are three primary
phases M' operates in:

1. Make the M'’s tape represent M’s initial configuration.

a. Shift w to the right one space
b. To represent the beginning of the k tapes, move to the first blank,

and write Σ'’s symbol for:

LM

0

BLANK

1
...

BLANK

1

This symbol captures that in the simulated mttm, the head on tape
0 is not on the left-end marker and that all the heads on the other
tapes are on the first tape position reading a blank.

c. Move the head to the write to capture tape 0’s head position by
writing Σ'’s symbol for:

BLANK

1

BLANK

0
...

BLANK

0
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d. Proceed to the right until a blank is read. For each e∈Σ read, write
Σ'’s symbol for:

e

0

BLANK

0
...

BLANK

0

2. Simulate M. For each transition that would be made by M, M' starts on
the first blank that is not encoded into tracks and performs the following
operations:

a. Move left and determine what would be read by each of M’s head as
described in the design idea, and return the head to the first blank
that is not encoded into tracks.

b. Move left to update the tracks as M would update its tapes and
heads. �

3. If M would halt, convert the contents of the tape (i.e., M'’s tape) to
single track. This conversion ignores all tracks except tracks 0 and 1. The
content of track 0 is written to the tape, and the head is placed at the
position indicated by track 1. Finally, M' moves to the state M would
halt in and halt itself.

Many design choices are not described for phase 2, but it ought to be
clear that M' simulates M. M' performs many transitions to simulate one
transition performed by M, but this is not a concern for us in this context. The
important point is that any language decided, any language semi-decided,
and any function computed by an mttm can also be, respectively, decided,
semi-decided, and computed by a standard tm.

73 Turing Machines and Pushdown Automata:
Programming Project

Section 63 puts forth the idea that tms can do everything pdas do. That is,
given a pda that semi-decides or decides a language, there is a tm that does
the same. Building such a tm is a long error-prone exercise in design. Instead
of designing a tm, you shall use the lessons in this chapter. Specifically, you
shall design, implement, validate, and verify an mttm constructor that takes
as input a pda and returns an mttm that simulates the given pda.
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Intuitively, a 2-tape mttm can simulate a pda. Tape 0 contains the input
word. If the input word is empty, then tape 0 is `(,BLANK). The mttm sim-
ulates the pda reading from the input tape by moving the head on tape 0
to the right. Tape 1 is used to simulate the pda’s stack, such that the stack
elements written from left to right are the bottommost to the topmost. If
the stack is empty, then tape 1 is `(,BLANK). A pda push is simulated by
writing the pushed elements to tape 1. A pda pop is simulated by blanking
out the popped elements on tape 1 as tape 1’s head is moved left. To simplify
the implementation of pushing and popping in the mttm, it may be useful to
convert the given pda to a simple pda.

Developing the required mttm constructor is left as a programming project.
Use your answers to the following problems to guide your design, implemen-
tation, validation, and verification.

6 How does the mttm start a computation?

7 The given pda may have several final states. Reaching any of these
final states does not mean the computation must halt. For mttms, on
the other hand, reaching a final state means the machine must halt.
Furthermore, after a computation reaches a halting state, the pda ac-
cepts only if the word is consumed and stack is empty and, otherwise,
rejects. Carefully outline how the mttm that simulates the given pda

accepts and rejects.

8 What are the states for the mttm? What is the relationship with the
pda states?

9 What is the mttm’s input alphabet?

10 How is the constructed mttm tested?

11 Implement the constructor to build an mttm from a pda.

12 Prove that the constructor is correct.

74 Other Turing Machine Extensions

74.1 Multiple Heads

Does a Turing machine with one tape and multiple heads operating on the
tape provide us with more computational power? Each head operates inde-
pendently of the others. If a head moves right or left, it does not interfere
with other heads. A synchronization mechanism must be implemented when
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two or more heads try to write to the same tape position. We shall not con-
cern ourselves with the details of synchronization and assume that there is a
synchronization policy.

How can a standard tm simulate a Turing machine with one tape and
multiple heads? A representation strategy similar to the one used to simulate
multiple tapes may be used. The standard Turing machine operates on an
encoded multiple track tape. The first track represents the input tape, and
the rest of the tracks record each head’s position. To simulate one step of
the multiple heads machine, the standard tm scans the tape twice. The first
to determine the elements read by each of the multiple heads. The second
to simulate the action of each head (i.e., mutate the first track or move the
head). Although implementation details are not presented, it becomes clear
that a standard tm can simulate a Turing machine with multiple heads.

13 Describe a Turing machine with multiple heads that makes a copy
of its input word. You may assume the input word contains no blanks
in it.

74.2 Two-Way Infinite Input Tape

Is a Turing machine with a tape that is infinite both to the right and the left
more powerful than a standard Turing machine? In such a machine, at the
beginning, only the input is written on the tape, and the rest of the positions
are blank. Clearly, there is no left-end marker in such a machine.

A two-way infinite input tape Turing machine may be simulated by a 2-
tape mttm. Initially, the first tape contains the input, and the second tape is
blank. During a computation, if the head of the two-way infinite input tape
Turing machine is on the first element of the input or to right of it, then the
standard tm operates on tape 0. Otherwise, it operates on tape 1, where the
elements are written in reversed order. When the two-way infinite input tape
Turing machine is operating anywhere before the input, right and left moves
are simulated, respectively, by left and right moves on tape 1 by the 2-tape
mttm.



Chapter 18

Context-Sensitive Grammars

We have seen that Turing machines are automata that are capable of de-
ciding languages that are not context-free. That is, Turing machines can be
language recognizers. In previous chapters, we have also seen that less pow-
erful automata, dfas and pdas, have language generator counterparts called,
respectively, regular grammars/expressions and context-free grammars. In
fact, we have seen that languages may be characterized by an automaton
or by a grammar. This chapter does the same for Turing machine language
recognizers.

We shall now explore context-sensitive grammars (csgs). These grammars
are also known as unrestricted grammars and as rewriting systems. Further-
more, we shall discover the equivalence between csgs and Turing machine
language recognizers. Like previously studied grammars, a csg has a set of
nonterminal symbols, an alphabet, a set of production rules, and a starting
nonterminal. To generate a word, the left-hand side of a rule appearing in a
partially generated word is substituted by the right-hand side of the rule until
no more substitutions can be made. Unlike previous grammars, however, the
left-hand side of a rule may not consist of a single nonterminal symbol. In a
csg, the left-hand side of a rule may consist of any number of terminal and
nonterminal symbols as long as there is at least one nonterminal symbol. In
a single derivation step, all the symbols on the left-hand side of a rule are
substituted with all the symbols in the right-hand side of the rule. Observe
that this means that the length of a partially generated word may arbitrarily
decrease in a single step and that, as with other grammars, a generated string
may only contain terminal symbols.
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75 Formal Definition

The name context-sensitive arises from the fact that the substitution of a
nonterminal may depend on the symbols around it. What is before and after
a nonterminal defines how it may be substituted. Context-sensitive grammars
are a type in FSM. We formally define a csg grammar as follows:

A context-free grammar is an instance of (make-csg N Σ R S)

N is the set of capital letters in the Roman alphabet representing the non-
terminal symbols. Σ is the set of lowercase symbols in the Roman alphabet
called the alphabet (or terminal symbols). S is the starting nonterminal sym-
bol, and it must be a member of N. R is a finite set of production rules. Each
production rule is of the form:

(N ∪ Σ)∗N(N ∪ Σ)∗ → (N ∪ Σ)∗

(N ∪ Σ)∗N(N ∪ Σ)∗ → EMP

That is, there is at least one nonterminal and an arbitrary number of terminal
symbols on the left-hand side of a production rule, and there is a symbol that
is either EMP or consists of one or more nonterminals and terminals on the
right-hand side of a production rule. Observe that the set of regular grammars
and the set of context-free grammars are both proper subsets of the set of
context-sensitive grammars. This follows by observing that such grammars
place restrictions on the structure of production rules that do not violate the
definition of a context-sensitive grammar production rule.

A derivation consists of one or more derivation steps. A derivation step is
the application of a production rule and is denoted by →.G (or simply → if
G is clear from the context). Zero or more derivation steps are denoted by
→.

∗
G (or simply →.

∗ if G is clear from the context). L(G) denotes the language
generated by G: {w .| w.∈Σ.

∗
.∧ S →.

∗
G w}. Finally, a language, L, is context-

sensitive if L = L(G) for some context-sensitive grammar G.
To make csgs more tangible, consider the grammar displayed in Fig. 97.

This grammar generates words in the context-free language L = a.nb.n. It
has three nonterminals, S, A, and B, of which S is the starting nonterminal.
The alphabet is {a b}. There are four production rules. The first production
states that S generates AAaAAB: two nonterminal symbols followed by a termi-
nal symbol followed by three nonterminal symbols. The last production rule
states that a B generates an A. These two production rules are similar to any
production rules in a context-free grammar (i.e., their left-hand sides con-
sist of a single nonterminal). The remaining two production rules are more
interesting. They define what AAaAAB generates: either EMP or aSb. These
production rules differ from any production in a context-free grammar given
that their left-hand sides have more than a single nonterminal symbol. As you
can see, a nonterminal like A cannot be substituted on its own. Substitution
of As may only be done in the context of AAaAAA. Outside of that context, an
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Fig. 97 A context-sensitive grammar for a.nb.n

;; L = aˆnbˆn
(define anbn (make-csg (S A B)

(a b)
((S ,ARROW AAaAAB)
(AAaAAA ,ARROW aSb)
(AAaAAA ,ARROW ,EMP)
(B ,ARROW A))

S))

(check-equal? (grammar-derive anbn ()) (S -> AAaAAB -> AAaAAA -> ε))
(check-equal? (grammar-derive anbn (a a a b b b))

(S
-> AAaAAB
-> AAaAAA
-> aSb
-> aAAaAABb
-> aAAaAAAb
-> aaSbb
-> aaAAaAABbb
-> aaAAaAAAbb
-> aaaSbbb
-> aaaAAaAABbbb
-> aaaAAaAAAbbb
-> aaabbb))

A cannot be substituted. Further, observe that, in the derivation displayed
in the second test, the partially generated word’s length may shrink by more
than 1 after one step.

76 A csg for L = anbncn

Clearly, a csg is not needed to generate a.nb.n. Such a grammar, however,
offers a gentle first exposure to csgs. Let us now tackle the design and imple-
mentation of a grammar for a language that is not context-free: L = a.nb.nc.n.
If we are successful, then we will have established that computationally csgs
are more powerful than cfgs.

We shall design the grammar following the steps of the design recipe for
grammars displayed in Fig. 50. When designing csgs, however, the syntactic
category represented by a nonterminal may be less clear-cut than their coun-
terparts in cfgs and rgs. For instance, a nonterminal may not represent a
syntactic category on its own, given that it may only generate something in
the proper context. In this regard, it is sometimes useful to think of a non-
terminal as a promise to generate a desired subword in the proper context.
Alternatively, you may think of nonterminals as partially defining a syntactic
category. In addition, we must also take extra care in writing tests. Testing
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words in the given language is easier than words not in the language. Be
mindful that finding a derivation is computationally intensive especially if
the grammar uses nondeterminism. Therefore, finding a derivation may take
very long, making some tests unpractical. Further complicating the land-
scape, attempting to find derivations for a word not in the language may
take forever. Again, this is especially true when the grammar uses nonde-
terminism. The search may continuously generate longer partially generated
words in the hope of finding a derivation. This process is futile if the word is
not in the language of the grammar and ends in an infinite search. Unlike for
rgs and cfgs, there is no algorithm to distinguish when a search has become
futile. This has rather important consequences for us as programmers. Think
about this carefully. Is a search using grammar-derive taking a long time
to find a derivation, or is it hopelessly searching for a derivation that does
not exist? There is no general algorithm to decide if there is a bug in a csg

and, therefore, the search for a derivation is futile or if there is no bug in the
grammar and the search is simply computationally intensive forcing us to be
patient. In such a scenario, careful design is of paramount importance.

76.1 Design Idea

The grammar may generate an arbitrary but equal number of nonterminals,
say A, B, and C, which represent promises to generate as, bs, and cs in the
proper context. This generation ends with a nonterminal, say G, which repre-
sents a promise to generate cs in the proper context. The proper context, of
course, is that all the As must be before the all the Bs, which must be before
all the Cs with the G at the end. Before generating terminal symbols, the
grammar nondeterministically rearranges the As, Bs, and Cs in the partially
generated word to be in the right order. Finally, the grammar traverses the
partially generated word, from right to left, to generate the cs. If there is CG
in the partially generated word, then the G may be moved left, and a c may
also be generated. That is, CG generates Gc. After the last c is generated,
the grammar generates a nonterminal, say H, which represents a promise to
generate the bs in the proper context and continues the traversal to generate
all the bs. The promise is similar to the process to generate the cs. When
the last b is generated, the grammar generates a nonterminal, say I, which
represents a promise to generate the as in the proper context and continues
the traversal to generate all the as. When the last a is generated, I generates
EMP, and the derivation is done.

Commonly, it is useful to outline the steps to generate a concrete word. Let
us consider the derivation for aaabbbccc. The grammar first (nondetermin-
istically) generates ABC three times ending with G. The partially generated
word is:

ABCABCABCG
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Next, the grammar rearranges the As, Bs, and Cs to be in the right order.
After this step, the generated word is:

AAABBBCCCG

The next step is to generate the cs and move the G left after each c is
generated. The partially generated words after each c is generated are:

AAABBBCCGc

AAABBBCGcc

AAABBBGccc

Given that all the cs are generated, the grammar nondeterministically gen-
erates an H from G to generate the bs. The partially generated word becomes:

AAABBBHccc

The next step is to generate the bs and move the H left after each b is
generated. The partially generated words after each b is generated are:

AAABBHbccc

AAABHbbccc

AAAHbbbccc

Given that all the bs are generated, the grammar nondeterministically gen-
erates an I from H to generate the as. The partially generated word becomes:

AAAIbbbccc

The next step is to generate the as and move the I left after each a is
generated. The partially generated words after each a is generated are:

AAIabbbccc

AIaabbbccc

Iaaabbbccc

Given that all the as are generated, the grammar nondeterministically gen-
erates an EMP from I. The partially generated word becomes:

aaabbbccc

Observe that the partially generated word only contains terminal symbols.
Therefore, no more substitutions are possible, and the derivation is com-
pleted. You can observe that, indeed, the desired word is generated.

76.2 Name, Alphabet, and Syntactic Categories

A descriptive name for the grammar is anbncn. The alphabet is {a b c}.
The nonterminals are syntactic categories that promise to generate a sub-

word in the proper context. A and I together may generate an a in the context
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AI. B and H together may generate a b in the context BH. C and G together
may generate an a in the context CG. We document the syntactic categories
as follows:

;; Syntactic Categories

;; S: generates words in a^nb^nc^n

;; A,I: A promise to generate an a in the context AI

;; B,H: A promise to generate an b in the context BH

;; C,G: A promise to generate an c in the context CG

76.3 Production Rules

S needs to generate an arbitrary number of ABC and needs to generate G. The
needed production rules are:14

(S ,ARROW ABCS)

(S ,ARROW G)

The first rule generates one or more ABC. The second rule generates zero ABC

and a G.
To rearrange the As, Bs, and Cs in the right order, production rules are

needed that generate from any two of these nonterminals out of order the
same nonterminals in the right order. The needed production rules are:

(BA ,ARROW AB)

(CA ,ARROW AC)

(CB ,ARROW BC)

C and G are used to generate cs and move G right to left. After all the
cs are generated nondeterministically, an H must be generated. The needed
production rules are:

(CG ,ARROW Gc)

(G ,ARROW H)

B and H are used to generate bs and move H right to left. After all the
bs are generated nondeterministically, an I must be generated. The needed
production rules are:

(BH ,ARROW Hb)

(H ,ARROW I)

A and I are used to generate as and move I right to left. After all the
as are generated nondeterministically, EMP must be generated from I. The
needed production rules are:

(AI ,ARROW Ia)

(I ,ARROW ,EMP)

14 We assume the production rules are inside a quasiquoted list.
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76.4 Tests

Tests need to be written for words that are in the language. As noted before,
finding a derivation may be computationally intensive, and therefore, some
trial and error may be needed to make sure tests run in a reasonable amount
of time. Usually, a good heuristic is to test relatively short words that are in
the language. The following are sample tests using short words in L:

(check-equal? (grammar-derive anbncn-csg '())
'(S -> G -> H -> I -> ε))

(check-equal? (grammar-derive anbncn-csg '(a a b b c c))

'(S
-> ABCS

-> ABCABCS

-> ABACBCS

-> ABABCCS

-> AABBCCS

-> AABBCCG

-> AABBCGc

-> AABBGcc

-> AABBHcc

-> AABHbcc

-> AAHbbcc

-> AAIbbcc

-> AIabbcc

-> Iaabbcc

-> aabbcc))

Writing tests using words that are not in L is ill-advised in this case. The
search space for finding a derivation may be visualized as a tree. The root
of the tree is the partially derived word using 0 production rules. At each
level, n, of the tree, all the partially derived words using n transitions are
found. Consider trying to find a derivation for aa – a word that is not in the
language. Let us examine the top of the tree that represents the search space:

.

S

EMP ABCS

ABCG

abGc

ABCABCS

ABCABCG ABCABCABCS

Observe that when a left branch is followed, the derivation represented will
eventually fail. That is fine, because the search is finite. The only derivation
that never fails is the one represented by the path that always takes the right
branch in the tree. This is a problem, because the partially generated word is
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Fig. 98 A csg for anbncn

;; Syntactic Categories
;; S: generated words in aˆnbˆncˆn
;; A,I: A promise to generate an a in the context AI
;; B,H: A promise to generate an b in the context BH
;; C,G: A promise to generate an c in the context CG

(define anbncn-csg
(make-csg (S A B C G H I)

(a b c)
((S ,ARROW ABCS)
(S ,ARROW G)
(BA ,ARROW AB)
(CA ,ARROW AC)
(CB ,ARROW BC)
(CG ,ARROW Gc)
(G ,ARROW H)
(BH ,ARROW Hb)
(H ,ARROW I)
(AI ,ARROW Ia)
(I ,ARROW ,EMP))

S))

(check-equal? (grammar-derive anbncn-csg ())
(S -> G -> H -> I -> ε))

(check-equal? (grammar-derive anbncn-csg (a a b b c c))
(S
-> ABCS
-> ABCABCS
-> ABACBCS
-> ABABCCS
-> AABBCCS
-> AABBCCG
-> AABBCGc
-> AABBGcc
-> AABBHcc
-> AABHbcc
-> AAHbbcc
-> AAIbbcc
-> AIabbcc
-> Iaabbcc
-> aabbcc))

always made longer in the hope of finding a derivation and inevitably leads
to an infinite search. Therefore, we are unable to write tests using words that
are not in L.
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76.5 Implementation and Testing

Based on the results for the previous steps of the design recipe, the imple-
mentation is displayed in Fig. 98. Run the tests, and make sure they all pass.
As you may already suspect, grammar-test may easily be caught in an infi-
nite recursion when used to test a csg. For this reason, its use with csgs is
disabled in FSM.

77 A csg for Adding Expressions

Consider verifying valid adding expressions for numbers in unary notation.
The language of valid adding expressions may be represented as follows:

L = {AbBbAB | A,B∈i∗}
For example, the following are valid arithmetic expressions:

iibibiii bb iiibiibiiiii

Respectively, they represent 2+1=3, 0+0=0, and 3+2=5. To verify that a
given word is a valid adding expression, it must be in L. Observe that in L,
context matters. A given expression is valid only if it ends with a number
of is that is equal to the number of is before the second b. This suggests
implementing a csg for L and using it to verify valid adding expressions.

77.1 Design Idea

The grammar may start by generating AbBbE. The A and B are used to non-
deterministically generate the unary numbers in the sum and, for every i in
these, to generate, I, a promise to generate an i for the result. Every I may
be bubbled to the right until it reaches E. Upon reaching E, an I becomes an
i. Nondeterministically, E generates EMP.

77.2 Name, Alphabet, and Syntactic Categories

A descriptive name for the grammar is ADD-CSG. The alphabet in {b i}.
The nonterminals represent syntactic categories to generate the elements

of a valid adding expression in the proper context. The starting nonterminal,
S, must generate three unary numbers separated by bs such that the sum
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of the first two numbers is equal to the third number. It is documented as
follows:

;; S: generates words in i^nbi^mbi^ni^m

A nonterminal, A, is needed to generate a unary number. The generated
number must contain zero or more is. This nonterminal is documented as
follows:

;; A: generates words in i^* and, for every i generated,

;; a promise to generate a matching i for the result

Two nonterminals, I and E, are needed to generate the sum’s result. The
first represents the promise to generate an i in the proper context. The proper
context is at the end of the word being generated. That is, IE generates an
i for the sum of the first two numbers. These nonterminals are documented
as follows:

;; I: generates an i for the result in the context IE

;; E: generates zero i or generates one i for the result

;; in the context IE

77.3 Production Rules

S must generate three numbers separated by bs such that the third number
is the sum of the first two numbers. The needed production rule is:

(S ,ARROW AbAbE)

The nonterminal A must generate an arbitrary number of is and a match-
ing promise for each to generate an i for the number representing the result.
The needed production rules are:

(A ,ARROW ,EMP)

(A ,ARROW iIA)

To generate is for the result number, the Is must be bubbled to the end
of the partially generated word after the second b and before E. To do so,
every I needs to skip over is and bs to move right. The needed production
rules are:

(Ii ,ARROW iI)

(Ib ,ARROW bI)

Finally, E nondeterministically decides to generate 0 is or an i in the
context IE. If generating an i, then E moves left to generate other is for the
result number. The needed production rules are:

(IE ,ARROW Ei)

(E ,ARROW ,EMP)
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77.4 Tests

Tests are written using relatively short words that are in the language for the
reasons mentioned before. Sample tests are:

;; Tests

(check-equal? (grammar-derive ADD-CSG2 '(b b))

'(S -> AbAbE -> AbAb -> Abb -> bb))

(check-equal? (last (grammar-derive ADD-CSG2 '(b i b i)))

'bibi)
(check-equal? (last (grammar-derive ADD-CSG2 '(i b b i)))

'ibbi)
(check-equal?

(last (grammar-derive ADD-CSG2 '(i i b i i b i i i i)))

'iibiibiiii)
(check-equal?

(last (grammar-derive ADD-CSG2 '(i i b i i i b i i i i i)))

'iibiiibiiiii)

Be advised that the last test may take over 30 seconds to evaluate.

77.5 Implementation and Testing

Based on the results for the previous steps of the design recipe for grammars,
ADD-CSG’s implementation is displayed in Fig. 99. Run the tests, and make
sure they all pass.

78 Equivalence of csgs and tms

As we have just established, context-sensitive grammars can generate lan-
guages that are not context-free. We now explore the relationship between
csgs and tms. As you know, grammars can be used to derive a word, w, in a
language L. When w./∈L, grammars may provide no useful information because
the search for a derivation may never terminate. What does this mean for
the construction of a tm that simulates a grammar? Clearly, if a derivation
is found by the grammar, its simulating tm halts. On the other hand, if a
derivation is not found and the search continues forever, then the simulating
tm shall never halt. This means that the simulating tm can only semi-decide L.

Given a tm, M that semi-decides L, how is a grammar to generate words
in L be constructed? Intuitively, as done to construct a cfg from a pda, the
grammar shall mimic any computation by M in reverse order. We shall assume
that M always erases its tape before halting. That is, if M halts it halts in the
following configuration: (Y 1 `(,LM ,BLANK)), where Y is the accept state.
Any tm that does not satisfy this condition is easily transformed to satisfy it.



478 18 Context-Sensitive Grammars

Fig. 99 The csg designed for valid adding expressions
;; L = AbBbAB | A,B in i*
;; Syntactic Categories
;; S: generates words in iˆnbiˆmbiˆniˆm
;; A: generates words in iˆ* and, for every i generated, a promise
;; to generate a matching i for the result
;; I: generates an i for the result in the context IE
;; E: generates zero i or one i for the result in the context IE
(define ADD-CSG2 (make-csg (S A E I)

(b i)
((S ,ARROW AbAbE)
(A ,ARROW ,EMP)
(A ,ARROW iIA)
(Ii ,ARROW iI)
(Ib ,ARROW bI)
(IE ,ARROW Ei)
(E ,ARROW ,EMP))

S))

;; Tests
(check-equal? (grammar-derive ADD-CSG2 (b b))

(S -> AbAbE -> AbAb -> Abb -> bb))
(check-equal? (last (grammar-derive ADD-CSG2 (b i b i)))

bibi)
(check-equal? (last (grammar-derive ADD-CSG2 (i b b i)))

ibbi)
(check-equal? (last (grammar-derive ADD-CSG2 (i i b i i b i i i i)))

iibiibiiii)
(check-equal? (last (grammar-derive ADD-CSG2 (i i b i i i b i i i i i)))

iibiiibiiiii)

We shall only sketch the proof that L is generated by a csg if and only if L is
semi-decided by a tm. That is, we shall not implement the constructors. There
are two reasons for this. The first is that there are a series of implementation
choices that must be made that get messy fairly quickly and that provide
little insight into the equivalence of csgs and tms. The second stems from
the limitations that FSM imposes on us. The proof involves creating an mttm,
and as discussed in Fig. 17, transforming an mttm into a standard tm may
require an alphabet richer than any that can be generated using FSM.

Theorem 1 L is generated by a csg .⇔ L is semi-decided by a tm.

Proof (Sketch)

(.⇒) Assume L is generated by a csg.

Let G = (make-csg N Σ R S) be the grammar that generates L. We shall
design a nondeterministic 3-tape mttm. Recall that, as discussed in Fig. 17,
any mttm may be transformed into a tm.
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Tape 0 contains, w, the input and is never mutated. Tape 1 is used to recon-
struct a derivation for w starting with S. Therefore, M starts by writing S on
tape 1. Tape 2 contains R and is never mutated.

M operates in steps as follows:

1. M nondeterministically picks a rule, y .→ x, to apply from tape 2 or
chooses to match the contents of tape 2 with w on tape 0.

2. If a rule is chosen:

a. M scans tape 1 and nondeterministically stops at a symbol.
b. M matches y and tape 1 is mutated to replace y with x. Tape 1’s

contents is shifted as necessary to fit x.

3. If a rule is not chosen, M matches w and accepts or it runs forever

It is not difficult to see that M semi-decides L. M only halts if w is derived
using G and, otherwise, runs forever. Recall that M only makes a nondeter-
ministic choice if it leads to accept. If no such choice is possible it runs forever.

(.⇐) Assume L is semi-decided by a tm.

Let M = (make-tm K Σ R S F Y) semi-decide L as outlined above. We shall
construct a csg, G, that generates L.

Let G = (make-csg N Σ' R' S') such that N.∩Σ=.∅. The components are
described as follows:

• N contains K, a start symbol S', a right-end marker RM, and nonterminals
to represent an M configuration. The configuration `(q i (,LM i ua.iv))
is represented by the symbol LMua.iqvRM. Observe that the state is to the
immediate right of the symbol under the head and the right-end marker
is at the end of the symbol.

• Σ' = Σ
• .∀k.∈K and .∀a.∈Σ, R' has rules built as follows:

1. If ((Q a) (P b)).∈R, where b.∈Σ, then R has: Pb → aQ
2. If ((Q a) (P RIGHT)).∈R, then R' has the following rules:

a. .∀b.∈Σ R' has: abP → aQb
b. To reverse extending the touched part of the tape to the right,

R' has: aBLANKP → aQRM
3. If ((Q a) (P LEFT)).∈R and a.�=BLANK, then R' has: Pa → aQ
4. If ((Q BLANK) (P LEFT)) the R' has the following rules:

a. .∀ b.∈Σ R' has: Pab → aQb
b. To reverse erasing blanks, R' has: PRM → BLANKQ

• To start the derivation, R' has: S → BLANKYRM (i.e., the derivation starts
where M halts)
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• To erase the start state when the derivation is completed, R' has:
LMBLANKs → EMP

• To erase the right-end marker when the derivation is done, R' has:
RM → EMP .�

It is not difficult to see that G only generates words that are accepted by M.
When given a word, v, not in L, M runs forever. That is, it never reaches (Y
1 `(,LM ,BLANK)). Thus, G can never generate v.

1 The famous Turing Hacker is back to visit us. He claims that he has
implemented a simpler csg for L = a.nb.nc.n:

(define anbncn-csg

(make-csg '(S A B C G H I)

'(a b c)

`((S ,ARROW ABCS)

(S ,ARROW ,EMP)

(BA ,ARROW AB)

(CA ,ARROW AC)

(CB ,ARROW BC)

(A ,ARROW a)

(B ,ARROW b)

(C ,ARROW c))

'S))

(check-equal? (grammar-derive anbncn-csg '())
`(S -> ,EMP))

(check-equal? (grammar-derive anbncn-csg '(a a b b c c))

'(S
-> ABCS

-> aBCS

-> aBCABCS

-> aBCABC

-> aBCABc

-> aBACBc

-> aABCBc

-> aAbCBc

-> aabCBc

-> aabBCc

-> aabBcc

-> aabbcc))

Is he correct? Justify your answer.
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2 Design and implement a csg for L = {ww .| w.∈{a b}.*}. Follow all the
steps of the design recipe.

3 Design and implement a csg for L = {w .| w has equal number of as,
bs, and cs}. Follow all the steps of the design recipe.

4 Design and implement a csg for L = {w .| w.∈a.nb.2nc.3n. Follow all the
steps of the design recipe.

5 Design and implement a csg for L = {ww.Rw .| w.∈{a b}.∗}. Follow all
the steps of the design recipe.



Chapter 19

Church-Turing Thesis and
Undecidability

Throughout this book, we have asked ourselves: What can and cannot be
computed? On this journey, we have explored several computational models
capable of deciding, semi-deciding, or generating languages. We have also
seen how Turing machines can compute functions. In addition, we have seen
that attempts to strengthen Turing machines have failed. It appears that
we have reached the limit of what can be computed. Anything that can be
computed may be computed by a Turing machine.

Recall that in Chap. 2, we asked one of the most fundamental questions
in computer science: What is an algorithm? At the time, it is likely that you
were ill-equipped to answer that question. Our quest to discover what can
be computed has changed everything. You are now well-equipped to answer
that question. An algorithm is a Turing machine. We need to be a bit more
specific, however, because as we have seen, not all Turing machines are useful
devices. Turing machines that decide a language or that compute a function
are algorithms. Turing machines that may not halt are not considered algo-
rithms. Stated in more pedestrian terms, a program that goes into an infinite
recursion or an infinite loop is not the implementation of an algorithm.

A Turing machine that halts on all inputs is the formal notion of an algo-
rithm. Nothing that cannot be implemented as a Turing machine that halts on
all inputs is considered an algorithm. This principle is known as the Church-
Turing thesis. It is coined a thesis, because there is no formal proof for it.
In fact, this thesis cannot be proven because it is not a mathematical state-
ment. It is only an assertion that states that a mathematical object known
as a halting Turing machine is the same as our informal concept of an al-
gorithm. In theory, it is possible for the Church-Turing thesis to be proven
incorrect. For this, someone would have to propose a model of computation
capable of performing a computation that a Turing machine cannot carry
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out. Most computer scientists and mathematicians consider such an event
highly unlikely.

As exciting as having a formal definition of an algorithm is, why else
should we care about reaching this intellectual milestone? We ought to care
because it opens the door to proving that there are computational problems
for which a solution does not exist. A problem for which a solution does not
exist is known as an undecidable or unsolvable problem. The existence of such
problems is something that you may have already expected. In Chap. 4, for
example, we argued that a finite representation for each language does not
exist because there is a countable number of finite language representations
and an uncountable number of languages to represent. Stated differently, the
problem of computing a finite representation for every language is unsolvable.
This does not mean that we can never compute a finite representation for a
language. It means that there is no algorithm (i.e., halting Turing machine)
that can always do so.

Pondering the limitations of language representations may not be an every-
day primary concern in industrial computer science. Nonetheless, even indus-
trial computer scientists may face an unsolvable problem, and then it becomes
important to be able to recognize such problems and to prove they are un-
decidable. For instance, would it not be wonderful to have a program that
analyzes a program we write and tells us if our program goes or does not go
into an infinite recursion or an infinite loop? Indeed, such a program would
be wonderful. This problem, as we shall see, is undecidable. If your boss ever
asks you to write such a program, you will know it is an impossible task and
be able to explain why it is an undecidable problem. Mind you, this does
not mean that we can never prove that a given program never goes into an
infinite recursion or loop. It means that we cannot always solve the problem.
That is, there is no halting Turing machine (i.e., algorithm) that can always
decide if a given program, given valid input, will halt.

79 The Halting Problem

We now proceed to study our first undecidable problem: the halting problem.
Can a program be written in your favorite programming language that takes
as input a program in said language and the input for it and that determines
if the given program enters an infinite recursion or infinite loop on the given
input? Stated differently, does the given program halt on the given input?
You may imagine your program signature, purpose, and header as follows:

;; program value → Boolean

;; Purpose: Determine if the given program halts on

;; the given input

(define (halts? a-prog an-input) . . .)
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Let us assume that halts? can be implemented. That is, there is an algo-
rithm to determine if a given program halts on a given input. The predicate,
halts?, may be used an auxiliary function. We shall use it to write a predi-
cate that takes as input a program, p, and that goes into an infinite recursion
if (halts? p p) returns true. Otherwise, it returns a false. This ought to
be reminiscent of a diagonalization proof. In essence, it is asking if p is not
related to itself in terms of halt?. We can write such a function as follows:

;; program → Boolean

;; Purpose: Return #f if the given program does not

;; halt on itself

(define (p-halts-on-p? p)

(if (halts? p p)

(p-halts-on-p? p)

#f))

Why is p-halts-on-p? interesting? Consider calling p-halts-on-p? with
p-halts-on-p? as input:

(p-halts-on-p? p-halts-on-p?)

When does (p-halts-on-p? p-halts-on-p?) return #f and halt? It does so
when (p-halts-on-p? p-halts-on-p?) does not halt. This is clearly a con-
tradiction. Therefore, we are forced to conclude that our initial assumption
is wrong. The predicate halts? cannot be implemented. Thus, an algorithm
to determine if on a given input a given program halts does not exist. Stated
briefly, the halting problem is undecidable.

It is noteworthy that our discussion started by asking you to think about
implementing a program in your favorite programming language. This pro-
gramming language may be FSM. Therefore, the problem becomes to imple-
ment a Turing machine to determine if on a given input, a given Turing
machine halts. Such a machine may be encoded as a ctm. This hypothetical
machine must be a language recognizer for:

L = {(M w) | M=(make-tm K Σ R S Y) ∧ w∈Σ∗ ∧ M halts on w}
Based on the argument above, we can formally prove that L is undecidable.

Theorem 1 The halting problem is undecidable.

Proof

Assume L is decidable.

This means that there is a ctm (or tm if you like), M, that decides L. Consider
a tm, N, that decides L(N). Let w be an input word for N. Without loss of
generality, assume the precondition for this machine is:

PRE: tape = `(,LM BLANK w) ∧ head position = 1
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We can easily edit N to create R that semidecides L(N). That is, R only differs
from N by looping forever when N rejects w. Observe that we can build a ctm

that decides L(N) using M as follows:

1. Transform the input tape from `(,LM BLANK w) to

`(,LM R ,BLANK w)

2. Run M on the transformed input tape

By assumption, this ctm returns 'accept if R halts on w and 'reject other-
wise. If R halts then this means w.∈L(N). If R does not halt, then this means
w./∈L(N). That is, the ctm uses M to decide if w is in L(N).

Consider the following language:

H = {M | M is a tm encoding that halts when given

itself as input}
A ctm that decides H gets as input M and M as input to itself. In essence, M
is a tm capable of processing tms (much like an evaluator is a program that
processes programs). Clearly, if H is decidable, then it is recursively enumer-
able. That is, we can write a program that will eventually print an arbitrary
element in H. Furthermore, there exists a tm to decide its complement. This
machine is obtained by flipping the roles of the accept and reject states.

The complement of H is:

Ĥ = {w | w is not a tm encoding ∨ w is a tm encoding

that does not halt when given itself as input}
Observe, however, that Ĥ is not decidable. Let P be a tm encoding that semide-
cides Ĥ. We can now ask if P is in Ĥ. If P is in Ĥ, then P does halt when given
itself as input. However, P semidecides Ĥ and must halt if P does not halt
when given itself as input. Stated differently, we have concluded P.∈Ĥ if and
only if P halts on itself. That is, P does not halt on itself if and only if P

halts on itself. Clearly, this is a contradiction, and P cannot exist. If Ĥ is not
semi-decidable, then it is also not decidable. Thus, our assumption that L is
decidable is wrong, and L must be undecidable. �

1 The proof that the Halting problem is undecidable relies on decidable
languages being closed under complement. Formally prove that decid-
able languages are closed under complement.

2 Formally prove that decidable languages are closed under union.

3 Formally prove that decidable languages are closed under concatena-
tion.
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4 Formally prove that decidable languages are closed under Kleene star.

5 Formally prove that decidable languages are closed under intersection.

80 Reduction Proofs

It is certainly remarkable that we have established that the halting problem is
undecidable. Even more remarkable, perhaps, is that from the undecidability
of the halting problem, the undecidability of many other problems follow.
These results, however, do not follow the diagonalization argument used to
prove the halting problem’s undecidability. Instead, a reduction strategy is
followed.

A reduction proof establishes that an undecidable language/problem, L,
may be decided if some different language/problem, L1, is decidable. That
is, the tm that decides L1 may be used to build a tm that decides L. This, of
course, is a contradiction because we know L is undecidable. Therefore, L1
must also de undecidable.

It is important to note the direction of the reduction. When you try to
prove that a language, P, is undecidable, assume that P is decidable, and
establish a contradiction by showing how the tm that decides P may be used
to decide a language that is known to be undecidable. In other words, use
the tm that decides P as a subroutine in a ctm that decides a language known
to be undecidable. Observe that if the reduction is done in the wrong direc-
tion, nothing new is established. That is, showing that P is decidable using a
hypothetical tm for an undecidable problem does not establish that P is un-
decidable. It simply establishes that if a undecidable problem were decidable,
then P is also decidable. There is no contradiction. Granted, the tm designed
to decide P cannot exist. This, however, does not mean P is undecidable. It
simply means that we have not found an algorithm to decide P that does not
involve the use of hypothetical tms that cannot exist.

More formally, let R and S be two problems. A reduction from R to S is a
transformation function, .τ , such that x.∈R .⇔ .τ(x).∈S and x./∈R .⇔ .τ(x)./∈S.
You may think of .τ as a function that is computable by a tm that trans-
forms a subset of inputs for R to inputs for S in such a manner that the
answer returned by S means that we know the answer that R ought to re-
turn. Figure 100 displays a graphical representation of such a reduction for
an undecidable problem R. A ctm to decide R is built using two auxiliary tms
(or ctms). The first is for .τ . This machine converts a subset of R’s input to
serve as inputs to the second auxiliary machine. The second is a hypothet-
ical auxiliary machine that decides S. The output of S is used to return an
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Fig. 100 A graphical template for a reduction proof from R to S
ctm that decides, R, a known undecidable problem

R’s inputs

...

tm for τ

τ’s inputs

...
...

tm that decides S

S’s inputs

S’s output R’s output

answer for R. The following theorem establishes the correct employment of a
reduction.

Theorem 2 R is undecidable .∧∃ .τ = a reduction function from R to S .⇒ S
is undecidable.

Proof

Assume M.S decides S and T computes .τ .

The ctm T M.S decides R. This is a contradiction. Therefore, S is undecidable.

Hopefully, it is now clear that if R is undecidable, then a tm to decide S

cannot exist. If such a machine existed, then R would be decidable. As with
the halting problem, the proof above does not imply that there does not exist
an instance for which R can be solved. There may be many possible inputs
for which a solution may be found by other means (akin to proving that a
given while-loop or recursion halts). There is, however, no general algorithm
to decide R.

81 Undecidable Problems About Turing Machines

Alan Turing penned one of the great intellectual achievements of the 20.th
when in 1936, he proved that the halting problem was undecidable. It paved
the way to prove that other problems are undecidable using reduction proofs.
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In this section, we shall explore undecidable problems about Turing machines.
For each problem, S, the strategy shall be the same. We identify an undecid-
able problem, R, that becomes decidable if S were decidable, and we describe,
.τ , the reduction function.

81.1 M Halts on EMP

Does a tm, M, halt on the empty tape? That is, does M halt when it starts with
an empty tape? This problem is undecidable as established by the following
theorem.

Theorem 3 Given a tm, M, determining if M halts on EMP is undecidable.

Proof

Assume S decides if M halts on EMP. That is, S decides the following language:

L = {N | N is a tm or ctm that halts on EMP}
We shall use S to build a ctm, R, that decides the halting problem.

The inputs for R are M and a word w. The reduction machine for .τ builds
a tm, M', that operates as follows:

1. M'’s starting configuration is: (S 1 `(,LM ,BLANK))

2. M' writes w on the tape

3. Moves the head to the first blank to the left (i.e., the

first blank on the tape)

4. Simulates M

Stated using the graphical ctm notation, for w = a.1a.2. . ..an M' is:

R a1 R a2. . .R an FBL M

M' is given as input to S. If S accepts, then M halts on w, and the R’s output
is accept. Otherwise, if S rejects, then M does not halt on w, and the R’s
output is reject. Given that the halting problem is undecidable, we have a
contradiction, and therefore, S cannot exist. �

81.2 There Exists a Word for Which M Halts

We now turn our attention to the problem of determining if there exists any
word for which a given tm, M, halts. This problem is undecidable as established
by the following theorem.
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Theorem 4 Given a tm, M, determining if there exists a word for which M

halts is undecidable.

Proof

Assume S decides if there exists any word for which a given tm halts. That
is, S decides the following language:

L = {N | N is a tm or ctm such that there exists a word

for which N halts}
We shall use S to build a ctm, R, which decides if M halts on EMP. This lan-
guage is proven undecidable in Sect. 81.1.

The input to R is, M, an arbitrary tm. The reduction machine for .τ builds
a tm, M', which operates as follows:

1. Erases its input

2. Simulates M

M' is given as input to S. If S accepts, this means that M' halts on some word
if and only if it halts on all words. Therefore, M halts on EMP. Thus, R ought
to accept. Otherwise, if S rejects, this means that M' does not halt on any
word if and only if it does not halt on all words. Therefore, M does not halt
on EMP. Thus, R ought to reject. Given that determining if a tm halts on EMP

is undecidable, we have a contradiction, and therefore, S cannot exist. �

81.3 Does M Ever Reach Q Given w?

Given an arbitrary tm, M, a Q.∈(sm-states M), and a word w, we wish to
determine if M ever reaches Q during its computation on w. This problem is
undecidable as established by the following theorem.

Theorem 5 Given a tm, M, a state, Q.∈(sm-states M), and an input word
w, determining if M reaches Q when given w as input is undecidable.

Proof

Assume S decides if M ever reaches Q when given w as input. That is, S
decides the following language of triples:

L = {(N Q w) | N is a tm or ctm such that N reaches Q when

given w as input}
We shall use S to build a ctm, R, which decides the halting problem.

The input to R is, M, an arbitrary tm, and, w, an arbitrary word. The
reduction machine for .τ builds a tm, M', which operates as follows:



82 Undecidable Problems About Grammars 491

1. M' has a single final state, H, that is not a state in M.

2. Simulates M on w and moves to H if M halts

M', H, and w are given as input to S. If S accepts, this means that M' reaches
its final state. This only happens if M halts on w. Therefore, R ought to
accept. If S rejects, then this means that M' does not reach its final state.
This only happens if M does not halt on w. Therefore, R ought to reject.
Given that the halting problem is undecidable, we have a contradiction, and
therefore, S cannot exist. �

6 Prove that determining if a given tm halts on all inputs is undecidable.

7 Prove that determining if two given tms halt on the same input is
undecidable. Hint: Build on the solution to the previous problem.

8 Prove that determining if a given tm applied to EMP writes a given
symbol a is undecidable.

9 Prove that determining if there is any word for which two given tms
halt is undecidable.

10 Prove that determining if the language semidecided by a given tm is
finite is undecidable.

82 Undecidable Problems About Grammars

Undecidable problems also exist for grammars. We shall now study unde-
cidable problems about grammars. The same reduction strategy used for
undecidable tm problems is employed.

82.1 Determine if w Is in the Language of a Grammar

Given a csg, G, consider determining if w.∈L(G). It would be very useful to
have an algorithm to decide this problem. This problem, however, is unde-
cidable as established by the following theorem.
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Theorem 6 Given a csg, G, determining if a word, w, is in the language
generated by G is undecidable.

Proof

Assume S decides if w.∈L(G). That is, S decides the following language of
doubles:

L = {(G w) | G is a csg and w∈L(G)}
We shall use S to build a ctm, R, which decides the halting problem.

The input to R is, M, an arbitrary tm, and, w, an arbitrary word. The
reduction machine for .τ builds a csg, G', using M and the construction al-
gorithm sketched in Sect. 78. L(G') is the language semidecided by M.

G' and w are given as input to S. If S accepts, then we know that G'
generates w. This means M halts and accepts w. Therefore, R ought to accept.
If S rejects, then we know that G' does not generate w. This means M does
not halt on w. Therefore, R ought to reject. Given that the halting problem
is undecidable, we have a contradiction, and therefore, S cannot exist. �

82.2 Is L(G) Empty?

Theorem 7 Given a csg, G, determining if L(G)=∅ is undecidable.

Proof

Assume S decides if L(G)=∅. That is, S decides the following language of
doubles:

L = {G | G is a csg and L(G)=∅}
We shall use S to build a ctm, R, which decides if there is any word for which
a tm halts. This tm problem is proven undecidable in Sect. 81.2.

The input to R is, M, an arbitrary tm. The reduction machine for τ builds
a csg, G', for M using the construction algorithm sketched in Sect. 78. L(G)'
is the language semidecided by M.

G' is given as input to S. If S accepts, then we know that L(G)'=∅. This
means L(M) is empty. Therefore, R ought to reject. If S rejects, then we
know that L(G)'	=∅. This means L(M) is not empty. Therefore, R ought to
accept. Given that determining if there is any word for which a tm halts is
undecidable, we have a contradiction, and therefore, S cannot exist. �
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11 Given a csg, G, prove that determining if EMP∈L(G) is undecidable.

12 Given two csg, G and J, prove that determining if L(G)=L(J) is
undecidable.



Chapter 20

Complexity

One of the principal threads in this book is nondeterminism. We learned
in Sect. 28 that, computationally speaking, deterministic and nondetermin-
istic finite-state machines are equivalent. That is, given a nondeterministic
finite-state machine that decides a language L, we can build a deterministic
finite-state machine that decides L. We learned in Sect. 57 that, computation-
ally speaking, nondeterministic pushdown automata are more powerful than
deterministic pushdown automata. That is, there are context-free languages
decided by nondeterministic pushdown automata that cannot be decided by
deterministic pushdown automata.

In Sect. 59, we learned that Turing machines may be deterministic. Later,
in Sect. 61, we learned to design nondeterministic Turing machines. We also
learned, in Chap. 17, that proposed extensions for Turing machines result
in machines that may be simulated by a standard Turing machine. Further-
more, Turing machines decide regular languages (see Sect. 62), and a two-tape
Turing machine may be used to simulate any pushdown automata (see ex-
ercise at the end of Sect. 71). The natural question that arises is whether
or not deterministic and nondeterministic Turing machines, computationally
speaking, are equivalent. If so, deterministic Turing machines are powerful
enough to simulate nondeterministic Turing machines, pushdown automata,
and finite-state machines.

83 Equivalence of Deterministic and Nondeterministic
Turing Machines

Nondeterminism in tms, on the surface, seems to be a powerful feature that
may not be eliminated. In fact, however, a nondeterministic tm may be sim-
ulated by a deterministic tm. Eliminating nondeterminism in a tm is not
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Fig. 101 Computation tree
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done by cleverly encoding information as described in Chap. 17 to establish
the equivalence of Turing machine extensions. There is no known algorithm
using such an approach to eliminate nondeterminism from a tm.

Instead of cleverly encoding information, we shall develop an algorithm
for a deterministic tm to systematically simulate all the possible steps that
a nondeterministic tm may take – even those that do not lead to the ma-
chine halting or accepting. In essence, this algorithm performs an exhaustive
search of all the possible transitions, the nondeterministic tm would perform
if it did not have the ability to sense the right transition to apply when a
nondeterministic choice must be made.

83.1 Design Idea

Given a nondeterministic tm, N, that semi-decides a language, L, we need to
build a deterministic tm, D, that semi-decides L. Without loss of generality,
we shall assume that N always has at least one rule that may be used for any
configuration that is not in a final state and that it only halts if it accepts.
At each step, N chooses among all applicable rules to advance a computation.
N has the power to sense which is the right rule to apply. D cannot sense
which is the right rule to apply. Therefore, it must simulate a computation
for each possible choice as it searches for any computation that accepts the
input word. The search space may be visualized as a computation tree as
displayed in Fig. 101. Each node represents a configuration for N. The edges
represent a rule application (i.e., a step). For example, in one step, N can
change from configuration C to configuration K. The root of the tree is N’s
starting configuration.

If a node has more than one child, then N nondeterministically chooses
the path to follow. The deterministic machine must simulate all paths. To
this end, we need a systematic way to represent a computation (i.e., a path
from the root to any node). A possible representation is a word of encoded
numbers. Each number represents a choice made by N. The first number
represents the choice made at step 1, the second number represents the choice
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made at step 2, and so on. This requires knowing the maximum number of
rules that may be used on any configuration. Let us denote this number by
r. This means the maximum number of children any node may have in a
computation tree is r. For the purposes of this discussion, assume r is 4.
Observe that in Fig. 101, the maximum number of children is 4 (for node
S). The computation that takes N from S to D to M is the encoding for (4

1). This means that N chose the fourth applicable rule for step 1 and the
first applicable rule for step 2. It is not difficult to see that every path in
a computation tree may be encoded in this manner regardless of the tree’s
height. The edges in Fig. 101 are labeled with such choice numbers.

To systematically explore each computation path of varying lengths, the
deterministic machine can perform a breadth-first search of the computation
tree exploring shorter paths before longer paths. That is, the deterministic
machine first explores all paths of length 0, then all paths of length 1, then all
paths of length 2, and so on. The machine halts if it finds a path that takes
N to a final state. The key to making this process systematic is to define an
increment function for a word (of encoded numbers) that represents a com-
putation path. We coin this word the computation number. Every member
of the computation number is an element in [0..r]. Assume that there is a
blank before such a word on the tape that contains it. The increment function
may be described as follows:

1. If the rightmost number is less than r, add 1 to it.
2. If the rightmost number is r, make it 1, and propagate a 1 to the left.
3. During left propagation, if a number is less than r, add 1 to it. If the

number is r, make it a 1, and propagate left. If the blank is read, then
make the blank a 1, and shift the number one space to the right.

To illustrate how the increment function works, let us consider the first 12
increments and the computation paths in Fig. 101. The process starts with 1:

(1) represents the computation S � A

(2) represents the computation S � B

(3) represents the computation S � C

(4) represents the computation S � D

At this point, the number equals r, and the increment must propagate left:

(1 1) represents the computation S � A � E

(1 2) represents the computation S � A � F

(1 3) represents the computation S � A � G

(1 4) represents a computation that does not exist

Once again, the number equals r, and the increment must propagate left:

(2 1) represents the computation S � B � H

(2 2) represents the computation S � B � I

(2 3) represents a computation that does not exist

(2 4) represents a computation that does not exist
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We can now outline an algorithm for a tm to systematically search a com-
putation tree. It shall use an iterative deepening strategy and have three
main values (more values are needed in an actual implementation), the input
word w, N’s current configuration C, and the encoded number, I, representing
the current computation performed. The machine’s operation is outlined as
follows:

1. If N’s starting state is a final state, then halt.

2. Start with N’s starting configuration and I = (1).

3. Perform the computation encoded by I if possible.

If not possible, ignore the rest of I and return C.

4. Check the configuration returned by Step 3. If it is

in one of N’s halting states, then halt. Otherwise,

increment I, restore N’s starting configuration, and

go to step 3.

In essence, the deterministic machine performs a computation of length d and
checks if N would have reached a halting state. If so, the deterministic machine
halts. Otherwise, it restarts from N’s starting configuration and performs
the next computation, if any, of length d or length d + 1. Given how I

is incremented, a computation of length d + 1 is only performed after all
computations of length less than or equal to d are performed.

83.2 Correctness

The constructive proof shall focus on a tm that semidecides a language. The
construction for a tm that decides a language or that computes a function
is very similar. To avoid falling into the Turing pit, we shall not pin down
all the low-level details of the transitions. Instead, we shall sketch the proof
with enough detail to convince any reader that a deterministic tm can carry
out the simulation of the given nondeterministic tm.

Theorem 1 A nondeterministic tm semidecides L .⇒ .∃ a deterministic tm

that semidecides L

Proof (Sketch)

Assume N is a nondeterministic tm that semidecides L.

An mttm with five main tapes shall simulate N. The purpose of each tape
is described as follows:

Tape 0: Contains the input word, w, and is never mutated

Tape 1: Used to simulate N by recording N’s configuration

Tape 2: Stores, I, the next computation number
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Tape 3: Stores N’s rules

Tape 4: Stores the rules applicable to the current

configuration on Tape 1

More tapes may be needed to manage low-level details, but we shall not
concern ourselves with these details at this time. Clearly, an mttm may have
as many tapes as needed.

The mttm starts with the input word, w, on tape 0 and operates as follows:

1. Write the encoding for the computation number '(1)
onto tape 3

2. Write N’s starting configuration on tape 2 using w

on tape 1

3. Read the rightmost unprocessed encoded element, k,

in the computation number on tape 3

4. Extract the rules from tape 3 that may be used on the

configuration on tape 1, and copy them to tape 4

5. Apply the kth rule on tape 4 to the configuration on

tape 1, and mutate tape 1 to store this new configuration.

If no such rule exists, go to the next step.

6. Check if tape 1 contains a halting configuration

a. If so, halt

b. Otherwise, increment the computation number on tape 3,

and go to step 2

Although many low-level details (e.g., how to extract the k.th rule on tape
4 and extracting the computation number’s rightmost unprocessed element)
are left unspecified, it is not difficult to see that every step taken by the
sketched mttm is deterministic. In Sect. 72, we outlined how to convert an
mttm into a standard tm. This conversion does not introduce nondeterministic
operations that are not present in the given machine. Therefore, the result
of transforming the proposed mttm is a deterministic tm.

1 Sketch a proof demonstrating that if a nondeterministic Turing ma-
chine, N, decides a language, L, then there exists a deterministic Turing
machine that decides L.

2 Sketch a proof demonstrating that if a nondeterministic Turing ma-
chine, N, computes a function, f, then there exists a deterministic Turing
machine that computes f.
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84 Does Solvable Mean a Practical Solution?

We have studied problems that can be solved using a tms, and we have studied
problems that cannot be solved using a tm. Therefore, we categorize problems
as: solvable or unsolvable. There is nothing we can do about the unsolvable
problems. Therefore, as problem-solvers and computer scientists, we are de-
lighted that there are many solvable problems we can put our skills to use.
The question now becomes whether or not the solution to a solvable problem
is practical.

To explore whether or not solvable implies a practical solution, we shall
discuss the traveling salesman problem (TSP). Given k cities and the distances
between each pair of them, find the shortest itinerary that returns to its
starting point and visits each other city exactly once along the way. This
problem is clearly solvable:

1. List all possible itineraries that satisfy the

constraint of visiting each city once

2. Return the itinerary with the shortest distance

The second step is straightforward to solve. For each itinerary, sum the dis-
tances between adjacent cities, and return the path with the smallest sum.
Summing the distances for each itinerary is done in a number of steps pro-
portional to k: k distances are summed. This part of the algorithm is quite
manageable. The question becomes how many times must a manageable sum
be computed. This depends on the first step. Assume that the starting city
is A. Each valid itinerary looks as follows:

City: A ___ ___ ___ . . . ___ ___ A

Itinerary position: 0 1 2 3 k-2 k-1 k

The number of cities between the As is k-1. For the first of these cities, we
have k-1 cities to choose from; for the second, we have k-2 cities to choose
from and so forth until the k-1 city for which we only have one choice. This
means that the number of different itineraries is equal to (k - 1)!. This may
look innocent enough, but think carefully about what this means. If our hypo-
thetical salesman had to visit six cities, then number of possible itineraries is
5! = 120. A computer can quickly check 120 itineraries and select the shortest
one. Consider, however, the possibility that our hypothetical salesman must
travel to 50 cities. In this case, the number of possible itineraries is 49!15

Can these many itineraries be processed in a reasonable amount of time?
If 10 billion itineraries could be processed per second,16 then it would take
about 1928849137602319764308257747721002590333437440 years to find the
shortest itinerary.

15 49! = 608281864034267560872252163321295376887552831379210240000000000.
16 This is faster than any computer in the foreseeable future.
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Clearly, even for a modest value for k, finding the solution takes too long.
That is, the algorithm solves the problem, but it is not practical. No salesman
could wait that many years for an itinerary.

85 The Class P

We now understand that having a solution to a problem does not mean that
the solution is practical. For example, the number of operations performed
to solve the traveling salesman problem is proportional to (k - 1)!, which
grows faster than 2.k. That is, the number of operations that need to be
performed in the worst case grows exponentially as the size of the input grows.
In other words, the growth function is an exponential function. Such growth
renders the solution impractical. In contrast, other algorithms are considered
practical. For example, consider the problem of finding a pattern (or lack of
a pattern) in a given word from Sect. 25.1. Recall that in the worst case, the
entire word must be traversed. This means that the number of operations
performed is proportional to, n, the length of the word. That is, the number
of operations equals k * n, where k is a constant of proportionality. Observe
that k * n does not grow exponentially. The growth function is a polynomial.

85.1 Defining Practical Solutions

We need a way to characterize solutions that are practical. That is, solutions
that exhibit polynomial growth on the number of operations performed as
the input’s size grows. This eliminates deterministic tms that simulate nonde-
terministic tms. This follows from observing that the number of computation
paths in a computation tree (like that one displayed in Fig. 101) grows ex-
ponentially. This leaves us with (a subset of) deterministic Turing machines
that directly solve a problem (i.e., not simulating a nondeterministic ma-
chine). Let n be the size of the input, and let k be a non-negative constant.
We define the set of Turing machines (i.e., algorithms) that are practical (i.e.,
solve a problem in a polynomial number of steps) as:

P = {M | M is a deterministic Turing machine that decides

a language or computes a function in a number of

steps proportional to nk}
We say that any problem solvable by a tm.∈P is tractable.

A word of caution is opportune at this point. Not every practical algorithm
(i.e., in P) means it is suitable for use in everyday computing. Consider, for
example, a deterministic tm whose number of steps is proportional to n.10.
For a small input size of 10, the number of operations is proportional to 10.10
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Fig. 102 Constructor for the complement of a deterministic tm
;; tm-language-recognizer → tm-language-recognizer
;; Purpose: Build a deterministic tm-language-recognizer for the
;; complement of the language decided by the given
;; deterministic tm-language-recognizer
;; Assumption: Given tm’s final states are Y and N
;; and Y is the accepting state
(define (dtm4L->dtm4notL M)

(make-tm (sm-states M)
(sm-sigma M)
(sm-rules M)
(sm-start M)
(sm-finals M)
N))

;; L = a*
;; PRE: tape = LMw_ AND i = 0
(define a* (make-tm (S Y N)

(a b)
(((S a) (S ,RIGHT))
((S b) (N b))
((S ,BLANK) (Y ,BLANK)))

S
(Y N)
Y))

(define Not-a* (dtm4L->dtm4notL a*))

(check-equal? (sm-apply Not-a* (,LM a a a b a a)) accept)
(check-equal? (sm-apply Not-a* (,LM b a a)) accept)
(check-equal? (sm-apply Not-a* (,LM)) reject)
(check-equal? (sm-apply Not-a* (,LM a a a)) reject)

= 10000000000. For a modest input size of 100, the number of operations
is proportional to 10.100. It is difficult to see how such an algorithm can
be practical for other than the smallest instances of the problem solved.
Thankfully, most algorithms of interest to industry programmers are solved
in a number of steps proportional to n.3 or less.

85.2 Closure Under Complement

We can prove properties of P just like we proved properties for other classes
of languages. For instance, P is closed under complement.
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Theorem 2 P is closed under complement.

Proof

Let M = (make-tm K Σ R S '(Y N) 'Y) be deterministic, and decide a
language L in polynomial time. This means M.∈P. The interpretation of the
final states is as you may expect: Y is for accept, and N is for reject.

From M, we can build a deterministic Turing machine, M̄, to decide L’s
complement in polynomial time. Every word accepted by M ought to be
rejected by M̄, and every word rejected by M ought to be accepted by M̄.
To achieve this, M̄ is the same as M, except that the roles of Y and N are
swapped. In this manner, M̄ only accepts if M would have rejected and vice
versa. �

An implementation of the constructor described in proof is displayed in
Fig. 102.

86 The 2-Satisfiability Problem

A classical problem discussed to illustrate if a problem is or is not in P is
the Boolean satisfiability problem. The Boolean satisfiability problem takes
as input a Boolean formula in conjunctive normal form and determines if the
formula is satisfiable (i.e., is it possible for the formula to evaluate to true).
Consider, for example, the following Boolean formula in conjunctive normal
form:

(and (or x y) (not x) (or y z))

This formula is satisfiable. To establish this, we may make x = #f. The for-
mula simplifies to:

(and (or #f (not y)) #t (y ∨ z))

(and (not y) (or y z)

We may now make y = #f. The formula simplifies to:

(and #t (or #f z)

z

Clearly, making z = #t establishes the formula is satisfiable. In contrast, the
following formula is not satisfiable:

(and (or x y z)

(or (not x) (not y) (not z))

(or x (not y))

(or y (not z))

(or (not x) z))
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Let us establish this. The first clause, (or x y z), is satisfied if any variable
is true. The second clause, (or (not x) (not y) (not z)), is satisfied if
any variable is false. So far, we know that at least one variable must be true
and at least one variable must be false. The remaining conjunction

(and (or x (not y)) (or y (not z)) (or (not x) z))

is only satisfiable if the value of all three variables is the same. Thus, formula
is not satisfiable.

We shall now explore how to solve a simplified version of the Boolean satis-
fiability problem called the 2-satisfiability problem. In this simplified version
every clause of a formula in disjunctive normal form is either a singleton or
a 2-disjunction. A singleton is either a variable or the complement of a vari-
able. A variable is a symbol. The complement of a variable is a not-expression
with a symbol. A 2-disjunction is an or-expression with two singletons. The
following are valid formulae for the 2-satisfiability problem:

'(and x (or (not y) (not x)) (or (not z) y) y)

'(and (or x1 x2) x1 (or (not x1) (not x2)) (or (not x1) x2))

'(and (or a b) a (or (not a) (not c)) (not c))

'(and (or x1 x2)

(or (not x1) (not x2))

(or x2 x3)

(or (not x1) (not x3)))

The solution presented shall draw upon our knowledge of grammars to rep-
resent input formulae given by the user. In addition, the grammar for input
formulae is used to develop a formula parser. A parser is a function that
transforms data into a representation that makes it easier to write programs
that process said data. Specifically, parsers produce parse trees that eliminate
the need for superfluous information like parentheses and keywords (e.g., not
and or).

86.1 Representing Input Formulae

We need to decide how a user inputs a formula. The chosen representation
ought to be natural for the user and avoid being too cumbersome. For our
purposes, we shall adopt that an input formula is written as an and-expression
with an arbitrary number of input clauses. That is, a list that contains the
keyword and and a list of input clauses. An input clause is either an input
singleton or an input 2-disjunction. An input singleton is either a symbol
(representing a variable) or a not-expression containing a symbol (i.e., a list
containing the keyword not and a symbol representing a variable). Finally,
an input 2 disjunction is an or-expression with two input singletons (i.e., a
list containing the keyword or and two input singletons.



86 The 2-Satisfiability Problem 505

Fig. 103 Context-free grammar for the 2-satisfiability problem formulae
iformula → (and iclauses)

iclauses → ()
→ (cons iclause iclauses)

iclause → isingleton
→ i2disjunction

isingleton → symbol
→ (not symbol)

i2disjunction → (or isingleton isingleton)

The data definitions above are likely a bit cumbersome for any user to
remember. To help a user understand the data definitions, they may be con-
cisely described using a context-free grammar as displayed in Fig. 103. The
grammar informs any user how to input a valid formula for the 2-satisfiability
problem. Such a grammar is known as a concrete grammar. It specifies ev-
erything the user must type to input a valid formula. Any user familiar with
FSM syntax is very likely to find inputting formulae for the 2-satisfiability
problem quite natural.

86.2 Parsing Input Formulae

Manipulating formulae written in concrete syntax is cumbersome, error-
prone, and unnecessarily complex. This stems from the fact that many su-
perfluous elements, like parentheses and keywords, must be processed. Such
superfluous elements force programmers to use low-level functions, such as
car and cdr, to manipulate formulae. As programmers, we prefer to write
formula-processing functions at a higher level of abstraction. That is, we
would like to manipulate the elements of a formula instead of, for example,
manipulating lists to skip parentheses and keywords.

This may be achieved by transforming concrete syntax into abstract syn-
tax. In abstract syntax, superfluous elements are eliminated by transforming
an input formula into the parse tree representing its derivation using the
grammar in Fig. 103. When written in abstract syntax, a formula does not
retain the superfluous elements like parentheses and keywords. A program
that converts concrete syntax into abstract syntax is called a parser.

To write a parser, we need a concrete grammar (which we have) and a rep-
resentation for the syntactic categories of the concrete grammar without the
superfluous elements. That is, we need a grammar for the abstract represen-
tation that is manupalted by a program. With this goal in mind, a formula is
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represented a list of clauses. Do not confuse formula with iformula. A formula
represents abstract syntax. We define formula as follows:

;; A formula → '()
;; → (cons clause formula)

Observe that and is not part of the representation of a formula. We interpret
a list of clauses as the conjunction of said clauses.

A clause is defined as follows:

;; clause → singleton

;; → 2disjunction

These rules inform us that there two varieties of clauses. A singleton repre-
sents a variable or the complement of a variable. A 2disjunction represents
the disjunction of two singletons.

A singleton is defined as follows:

;; singleton → (var symbol)

;; → (notvar symbol)

(struct var (symb) #:transparent)

(struct notvar (symb) #:transparent)

Each variety of singleton is a structure containing a symbol representing a
variable. Observe that the representation for a variable’s complement does
not store the keyword not. Structure definitions contain inside parentheses
the keyword struct, the name of the structure, and a list of the symbols
(one for each field). In the two structure definitions above, each has a single
field named symb. The constructor for a defined structure is its name, and it
expects as input a value for each field. For example, (notvar 'x) builds the
representation for x’s complement. When a structure is defined, a selector
function for each field is created. A selector function name always follows the
same pattern, .<structure name.>-.<field-name.>. For instance, consider the
following definition:

(define VAR1 (var 'k))

To extract the symbol representing the variable stored in VAR1, (var-symb
VAR1) is used. Finally, #:transparent makes the values stored in a structure
visible. This illustrated with the following interaction:

> VAR1

(var 'k)

Without #:transparent, the value of symb inside any var-structure would
not be visible.

Finally, a disjunction is represented as follows:

;; disjunction → (2disjunction singleton singleton)

(struct 2disjunction (s1 s2) #:transparent)
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Fig. 104 The iformula parser
;; iformula → formula
;; Purpose: Parse the given iformula
(define (parse-iformula an-iformula)

;; icl → clause
;; Purpose: Parse the given icl
(define (parse-iclause an-icl) . . .)

(map parse-iclause (rest an-iformula)))

(check-equal? (parse-iformula (and x1 x2))
(list (var x1) (var x2)))

(check-equal? (parse-iformula (and (not i) j))
(list (notvar i) (var j)))

(check-equal? (parse-iformula
(and (or a b) (or (not x) b)))

(list
(2disjunction (var a) (var b))
(2disjunction (notvar x) (var b))))

(check-equal?
(parse-iformula

(and (or (not n) m) r (or s (not t)) (not y)))
(list
(2disjunction (notvar n) (var m))
(var r)
(2disjunction (var s) (notvar t))
(notvar y)))

Observe that the keyword or is not included as part of a disjunction. We
interpret that a disjunction represents an or-expression with two singletons.
As you expect, the selector functions for this structure are 2disjunction-s1
and 2disjunction-s2.

86.3 The Formula Parser

The iformula parser takes as input an iformula and returns a formula. For
code development, we use an iformula’s structure as defined by the grammar
in Fig. 103. This transformation is achieved by parsing each of the clauses in
the given input. This may be done by applying map to a function to parse an
iclause and the rest of the given iformula (to skip the keyword and). The
result of this design, including tests, is displayed in Fig. 104.

The auxiliary function parse-iclause creates a parse tree for the given
iclause. It dispatches on the subtype of the given iclause: isingleton or
i2disjunction. An auxiliary predicate isingleton? determines if a given
iclause is an isingleton by testing if it is a symbol or a list whose first
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Fig. 105 The iclause parser
;; icl → clause
;; Purpose: Parse the given icl
(define (parse-iclause an-icl)

;; isingleton → singleton
;; Purpose: Parse the given isingleton
(define (parse-isingleton an-is)

(if (symbol? an-is)
(var an-is)
(notvar (second an-is))))

;; idisjunction → disjunction
;; Parse: Parse the given idisjunction
(define (parse-i2disjunction an-id)

(2disjunction (parse-isingleton (first an-id))
(parse-isingleton (second an-id))))

;; iclause → Boolean
;; Purpose: Determine if the given iclause is an isingleton
(define (isingleton? an-icl)

(or (symbol? an-icl)
(eq? (first an-icl) not)))

(if (isingleton? an-icl)
(parse-isingleton an-icl)
(parse-i2disjunction (rest an-icl))))

element is 'not. To parse an isingleton, a var structure is constructed if
given a symbol. Otherwise, a notvar structure is constructed with the second
element of the given list (thus, not storing the keyword not). To parse an
idisjunction, a 2disjunction structure is constructed with the results of
parsing its two singletons. The result of the design is displayed in Fig. 105.

86.4 The 2-Satisfiability Solver

The next problem to solve is finding variable assignments that satisfy a given
formula. The coding part of our job is simplified given that we are processing
parse trees and not iformula as entered by a user.

86.4.1 Design Idea

The 2-satisfiability solver, 2-satisfiability, searches for a set of assign-
ments to satisfy a given formula. It returns 'accept if variables may be
assigned values that satisfy the formula. Otherwise, 'reject is returned.
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The variable assignment search is delegated to an auxiliary function,
solve, which employs an accumulator to store the current variable assign-
ments in a list. This accumulator starts as the empty list. The accumulator
invariant is that the accumulator contains the variable bindings made so far
to satisfy the formula. The function first checks if any variable assignment is
possible. If the given formula is empty, then all needed variable assignments
have been made, and the accumulator is returned. If the formula has no so-
lution, then the empty list is returned. A formula has no solution when a
variable and its complement are both clauses in the formula. An auxiliary
function, has-no-solution?, that processes the list of singleton clauses in
the given formula is used to determine if this is the case.

If the formula contains one or more singletons, the function assigns a value
to a single variable, simplifies the formula based on the assignment made,
and recursively searches for assignments using the simplified formula. If the
formula does not contain any singleton clauses, then it must only contain
disjunctions. In this case, a backtracking strategy is used. The first clause’s
first singleton is assigned a value, the formula is simplified based on the
assignment, and the simplified formula is solved. If this search is successful,
then the found list of bindings is returned. Otherwise, the first clause’s first
singleton is assigned the complement of its first assignment, the formula is
simplified based on this new assignment, and the simplified formula is solved.
If the second search fails, then the formula is not satisfiable. If this search is
successful, then the formula is satisfiable. Therefore, the result of this second
search for assignments is always returned.

86.4.2 Testing

To test the 2-satisfiability solver, the following parse trees are defined:

(define F0 (parse-iformula '(and)))

(define F1 (parse-iformula '(and x

(or (not y) (not x))

(or (not z) y)

y)))

(define F2 (parse-iformula '(and (or x1 x2)

x1

(or (not x1) (not x2))

(or (not x1) x2))))

(define F3 (parse-iformula '(and (or a b)

a

(or (not a) (not c))

(not c))))
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(define F4 (parse-iformula '(and (or x1 x2)

(or (not x1) (not x2))

(or x2 x3)

(or (not x1) (not x3)))))

F0 is not satisfiable, because no variable assignments are possible. F1 is not
satisfiable, because x must be true. This leaves a formula that contains both
y and its complement as clauses, which is clearly not satisfiable. F2 is not
satisfiable, because x1 must be true, thus, simplifying to a formula that has
both x2 and its complement. F3 is satisfiable by assigning a the value true
and c the value of false. F4 is satisfiable by assigning x1 the value true and
assigning x2 the value true.

Based on the analysis above, tests are written as follows:

(check-equal? (2-satisfiability F0) 'reject)
(check-equal? (2-satisfiability F1) 'reject)
(check-equal? (2-satisfiability F2) 'reject)
(check-equal? (2-satisfiability F3) 'accept)
(check-equal? (2-satisfiability F4) 'accept)

86.5 The Solver Function

The solver must distinguish between four properties the given formula may
have:

1. The formula is empty.
2. The formula has no solution because it contains both a variable and its

complement as clauses.
3. The formula contains a singleton.
4. The formula only contains disjunctions.

If the formula is empty, then the accumulator invariant informs us that
the accumulator contains the variable bindings needed to satisfy the formula.
Therefore, the accumulator is returned.

To determine if the given formula has no solution, its singletons are ex-
tracted and given as input to the auxiliary predicate has-no-solution?. If
the auxiliary predicate determines that the formula contains a variable and
its complement, then the formula is clearly not satisfiable. Therefore, the
empty list is returned.

To determine if a formula contains a singleton, ormap is used to test if any
clause is a var or a notvar structure. If so, a list with the var structures and
a list with the notvar structures are locally defined. Arbitrarily, the formula
is simplified using the first notvar and solved with a new accumulator that
binds the variable complemented to false. If there are only var structures in
the formula, then it is simplified using the first var and solved with a new
accumulator that binds the variable to true.
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Fig. 106 The 2-satisfiability solver
;; formula → Boolean Purpose: Determine if given formula is satisfiable
(define (2-satisfiability a-formula)

;; formula → Boolean
;; Purpose: Determine if given formula has x and not x
;; Assumption: Given formula does not contain disjunctions
(define (has-no-solution? a-formula) . . .)

;; singleton → singleton Purpose: Complement the given singleton
(define (complement-singleton a-clause) . . .)

;; formula singleton → formula
;; Purpose: Remove given singleton from given formula
(define (simplify-formula a-formula a-clause) . . .)

;; formula (listof (symbol Boolean) → (listof (list symbol Boolean))
;; Purpose: Find variable assignments to satisfy the given Boolean formula
;; Accumulator invariant:
;; acc = (listof (variable Boolean)) with the current variable
;; assignments made so far to satisfy the formula.
(define (solve a-formula acc)

(cond [(empty? a-formula) acc]
[(has-no-solution? (filter (λ (c) (not (2disjunction? c)))

a-formula))
()]

[(ormap (λ (c) (or (var? c) (notvar? c))) a-formula)
(let [(form-vars (filter var? a-formula))

(form-notvars (filter notvar? a-formula))]
(solve (remove-duplicates

(simplify-formula a-formula
(if (null? form-notvars)

(first form-vars)
(first form-notvars))))

(if (null? form-notvars)
(cons (list (var-symb (first form-vars)) #t) acc)
(cons (list (notvar-symb (first form-notvars)) #f)

acc))))]
[else ;; a-formula only has 2disjunctions
(let* [(fsingleton (2disjunction-s1 (first a-formula)))

(fvar (if (var? fsingleton)
(var-symb fsingleton)
(notvar-symb fsingleton)))

(not-fsingleton (complement-singleton fsingleton))
(sol1 (solve (simplify-formula a-formula fsingleton)

(cons (list fvar (var? fsingleton)) acc)))]
(if (not (null? sol1))

sol1
(solve (simplify-formula a-formula not-fsingleton)

(cons (list fvar (notvar? fsingleton)) acc))))]))
(if (not (null? (solve a-formula ()))) accept reject))
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Fig. 107 Simplifying a 2-satisfiability formula
;; formula singleton → formula
;; Purpose: Simplify the given formula by removing the given singleton
;; Assumption: The given formula does not have the complement of the given
;; singleton as a clause and the given singleton’s variable is
;; assigned a value that makes the singleton true
(define (simplify-formula a-formula a-clause)

(define (simplify a-formula)
(cond [(empty? a-formula) ())]

[(equal? (first a-formula) a-clause)
(simplify-formula (rest a-formula) a-clause)]

[(not (2disjunction? (first a-formula)))
(cons (first a-formula)

(simplify-formula (rest a-formula) a-clause))]
[(or (equal? (2disjunction-s1 (first a-formula)) a-singleton)

(equal? (2disjunction-s2 (first a-formula)) a-singleton))
(simplify-formula (rest a-formula) a-singleton)]

[(equal? (2disjunction-s1 (first a-formula))
(complement-singleton a-clause))

(cons (2disjunction-s2 (first a-formula))
(simplify-formula (rest a-formula) a-clause))]

[(equal? (2disjunction-s2 (first a-formula))
(complement-singleton a-clause))

(cons (2disjunction-s1 (first a-formula))
(simplify-formula (rest a-formula) a-clause))]

[else (cons (first a-formula)
(simplify-formula (rest a-formula) a-clause))]))

(remove-duplicates (simplify a-formula)))

Finally, if the given formula only contains disjunctions, then the first dis-
junction’s first singleton is used to simplify the formula. An attempt is made
to solve the simplified formula by, arbitrarily, binding the variable in the first
singleton to the value that makes the first singleton true. If a solution is
found using the simplified formula, then it is returned. Otherwise, the first
disjunction’s first singleton’s complement is used to simplify the formula. An
attempt is made to solve the simplified formula by binding the variable in
the first singleton to the value that makes the first singleton false. The result
obtained from attempting to solve this simplified formula is returned. The
result of the design so far is displayed in Fig. 106.

86.5.1 Simplifying a Formula

The function simplify-formula is used to simplify a formula. It needs as
input a formula and a singleton and returns a formula. A formula is simplified
by removing the given singleton and by simplifying disjunctions that contain
the given singleton or that contain the given singleton’s complement. Any
disjunction that contains the given singleton is removed given that it is true
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(recall that the variable in the given singleton is assigned a value that makes
the given singleton true). Any disjunction that contains the given singleton’s
complement are simplified to be the other variable in the disjunction. This
follows from observing that the given singleton’s complement plays no role
in making the disjunction true. All other clauses are left unchanged in the
simplified formula.

Observe that when a formula is simplified, it may contain repeated single-
tons. For example, consider simplifying the formula when the given singleton
is x1:

(and x1 (or (not x2) (not x1)) (not x2))

The assumption is that x1 is bound to true. Therefore, the first clause may
be removed. The second clause simplifies to (not x2) because (not x1) is
false. Finally, the third clause is left unchanged because it does not involve
x1. The simplified formula that looks as follows:

(and (not x2) (not x2))

Only one of the repeated clauses is needed to solve the formula, and therefore,
repetitions may be safely removed to obtain the simplified formula:

(and (not x2))

The function, therefore, simplifies a formula and removes duplicates.
The function simplify performs the simplification using the given single-

ton by traversing the formula. It dispatches on seven conditions:

1. The formula is empty.
2. The formula’s first clause is the given singleton.
3. The formula’s first clause is not a disjunction.
4. The formula’s first clause is a disjunction that contains the given single-

ton.
5. The formula’s first clause is a disjunction whose first singleton is the given

singleton’s complement.
6. The formula’s first clause is a disjunction whose second singleton is the

given singleton’s complement.
7. The formula’s first clause is a disjunction that does not contain the given

singleton.

If the formula is empty, there is nothing more to simplify, and the empty
formula is returned. If the first clause is the given singleton, then it is not
included in the simplified formula, and the rest of the formula is recursively
simplified.

If the first two conditions fail and the first clause is not a disjunction, then
the first clause is included in the simplified formula. It is added to the result
obtained from recursively processing the rest of the formula.

If the first three conditions fail and the first clause is a disjunction that
contains the given singleton, then the disjunction must be true. This means
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that it may not be added to the simplified formula. The simplified formula
is obtained by recursively processing the rest of the formula.

If the first four conditions fail and the first disjunction contains the com-
plement of the given formula, then the disjunction is simplified to be the
other singleton in the disjunction. This singleton is added to the result of
recursively simplifying the rest of the formula.

If the first six conditions fail, then the formula’s first clause must be a
disjunction that does not contain the given singleton. Therefore, it is added
to the result of recursively processing the rest of the formula. The result of
this design is displayed in Fig. 107.

The remaining two auxiliary functions are fairly straightforward to write.
The first, has-no-solution?, checks if a formula only containing singletons
is empty or not. If it is empty, then false is returned, given that the formula
does not contain as clauses a variable and the variable’s complement. If it
is not empty, then it checks if the first singleton’s complement is a member
of the rest of the formula. If so, true is returned because the formula is not
solvable. Otherwise, the result of recursively processing the rest of the formula
is returned. The predicate is written as follows:

;; formula → Boolean

;; Purpose: Determine if given formula has x and not x

;; Assumption: Given formula does not contain disjunctions

(define (has-no-solution? a-formula)

(cond [(empty? a-formula) #f]

[(member (complement-singleton (first a-formula))

(rest a-formula))

#t]

[else (has-no-solution? (rest a-formula))]))

A singleton’s complement is constructed by determining if the given singleton
is a var structure. If so, a notvar structure with the same symbol contained
in the given singleton is constructed. Otherwise, a var structure with the
same symbol contained in the given singleton is constructed. The function is
written as follows:

;; singleton → singleton

;; Purpose: Return the complement of the given singleton

(define (complement-singleton a-singleton)

(if (var? a-singleton)

(notvar (var-symb a-singleton))

(var (notvar-symb a-singleton))))

86.5.2 The 2-Satisfiability Problem Is in P

To demonstrate that the 2-satisfiability problem is in P, it is useful to first
determine the complexity of the auxiliary functions. Let us call the number
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of variables in the given formula n. We assume that the formula is well con-
structed. That is, it does not contain repeated clauses nor are the singletons
in a disjunction the same. Regardless of the singleton subtype received as
input, complement-singleton performs a constant number of operations.

The predicate has-no-solution? receives as input a list of singletons. For
each singleton, it checks if it is a member of the rest of the given list. This
means that the first element of the list must be compared with each element
in the list after it. In the worst case, the input list is of length n. This means
that the first element of the given list must be compared with n-1 elements,
the second element must be compared with n-2 elements, and so on until
the last element which is compared with zero elements. The total number

of comparisons, therefore, is .Σn
i=1 i-1. This summation is equal to .

(n−1)∗n
2 .

Thus, the number of operations performed is proportional to n.2.
The function simplify-formula uses simplify to simplify a formula and

then removes duplicates from the simplified formula. We can observe that
simplify uses structural recursion on the given formula performing a number
of operations bounded by a constant for each formula element. Therefore,
the number of operations is proportional to n. To remove duplicates, each
formula element is compared with each element after it in the formula. As
with has-no-solution?, this means that the first element must be compared
with n-1 elements, the second element must be compared with n-2 elements,
and so on until the last element which is compared with zero elements. Thus,
the number of operations performed is proportional to n.2.

Recursive calls to solve require, at least, a call to has-no-solution?

and the evaluation of and ormap-expression that traverses the given formula.
For each formula element, a constant number of operations are performed.
This means that the number of operations is proportional to n.2+n or simply
proportional to n.2. If the given formula contains a singleton, then the formula
is simplified by removing a singleton. Thus, when there is a singleton in the
formula, the total number of operations is proportional to n.2. If the given
formula does not contain a singleton, then the formula is simplified at most
twice by removing a singleton. Thus, when there are no singletons in the
formula, the total number of operations is proportional to 2n.2 or simply n.2.
This informs us that regardless of the stanza evaluated in cond-expression,
the number of operations is proportional to n.2. To establish the complexity of
solve, we must bound the number of recursive calls. Observe that for each
variable in the formula, at most two recursive calls are made. For each of
these calls, a variable is removed from the formula. Therefore, in the worst
case, 2n recursive calls are made. Thus, we may conclude that the number
of operations is proportional to 2n*n.2. That is, the number of operations is
bounded by n.3, and we may conclude that the 2-satisfiability problem is in P.
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87 A Language Not in P

We can also ask if a language is in P: Does M accept w performing a polynomial
number of steps? We can recast this problem as asking if the pair (M w) is a
member of the following language:

L = {(M w) | M accepts w performing at most 2n steps

∧ n = |w|}
Diagonalization is used, just as done for the Halting problem in Sect. 79, to
prove that L./∈P.

Theorem 3 L ./∈ P.

Proof

Assume L.∈P. This means that the following language is also in P:

L1 = {"M" | M accepts "M" performing at most 2|n| steps

∧ n = |"M"|}
”M” is the encoding of M that may be executed by a ctm. P’s closure under
complement (see Sect. 85.2) informs us that L.1’s complement is also in P. This
means there is a deterministic tm, M.*, which decides the following language:

L̄1 = {"M" | M fails to accept "M" performing at most

2|n| steps ∨ M is not the description of a tm},
where n = |"M"|

By assumption, L.∈P, and therefore, M operates performing a polynomial
number of steps. Thus, so does M.*. Now, consider what happens when M.* is
given an encoding of itself as input. If M.* accepts "M.*", then, given that M.*

decides L̄.1, M.
* fails to accept performing at most 2.|n| steps. This is clearly a

contradiction, because M.* accepts performing a polynomial number of steps.
If M.* rejects, then M.* accepts "M.*", performing at most 2.|n| steps. This is a
contradiction, because M.* only accepts if it fails to perform at most a poly-
nomial number of steps. Whether M.* accepts or rejects "M.*", we reach a
contradiction. Therefore, our assumption is wrong, and L./∈P. �

3 Prove that P is closed under union.

4 Prove that P is closed under concatenation.

5 Prove that P is closed under intersection.
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Fig. 108 Computation tree for a nondeterministic Turing machine
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88 The Class NP

A primary goal of complexity theory is to discover mathematical approaches
to establish that solutions to practical problems are not in P. Problems with
such solutions are, arguably, common. One such problem we have discussed
that appears not to be in P is the traveling salesman problem (see Sect. 84).
You may have studied others in an algorithms course such as integer factor-
ization, the subgraph isomorphism problem, and even the general Boolean
satisfiability problem (i.e., not the special case 2-satisfiability problem). We
use the word appears, because the best known algorithm implemented as a
deterministic Turing machine takes an exponential number of steps to find
the solution, but a nondeterministic Turing machine finds the solution in a
polynomial number of steps. This is what makes establishing that a problem
is not in P hard. Separating nondeterminism and determinism in terms of
polynomial running time is one of the biggest and most profound problems
in computer science. It is, to date, an open research question and remains
unanswered.

To explore problems not in P, it helps to formally define what it means that
a computation by a nondeterministic Turing machine is bounded by a polyno-
mial number of steps. A nondeterministic Turing machine, M, is bounded by a
polynomial, p(n), if there is no (possible) computation that takes more than
p(n) steps. We define the nondeterministic polynomial class of languages,
NP, as those languages decided by a polynomially bounded nondeterministic
Turing machine. In this context, by computation, we mean any series of steps
that lead to either accept or reject.

Recall that a deterministic Turing machine may simulate a nondeterminis-
tic Turing machine by performing a breadth-first traversal of the computation
tree for a nondeterministic Turing machine as the one in Fig. 108. In Fig. 108,
there are 11 different possible computations the deterministic machine must
simulate. Each node is a configuration, the edges represent a step, and y and
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n denote, respectively, accept and reject. Nondeterministic choices are cap-
tured by more than one edge out of a configuration. Time is measured by
the number of steps. In this example, the input is accepted after three steps.
The figure ought to make clear why nondeterminism in Turing machines is
so powerful. Only the configurations on a single path to accept need to be
visited, and no configurations beyond the starting configuration need to be
visited if all paths reject. In contrast, a deterministic Turing machine must
systematically visit all configurations on all paths until an accepting path is
found or all paths reject. Observe that a tree has an exponential number of
leaves. Therefore, in the worst case, the deterministic machine performs an
exponential number of steps.

89 The Boolean Satisfiability Problem Is in NP

Most computer scientists today believe that the Boolean satisfiability problem
is not in P. We shall demonstrate that it is NP. That is, we shall describe a
nondeterministic Turing machine that decides the Boolean satisfiability prob-
lem. Specifically, we shall describe a nondeterministic 2-tape Turing machine
that decides the Boolean satisfiability problem. This is equivalent to describ-
ing a single tape nondeterministic Turing machine, as you know, because a
multitape machine may be simulated by a single tape machine.

To simplify the design, we assume that the input on Tape 1 is a well-
formed Boolean formula in conjunctive normal form. Therefore, there is no
need to check if the input represents a valid formula. We represent true as T
and false as F. Finally, we use n to denote the number of (distinct) variables
in the formula and m to denote the number of clauses in the formula. The
machine operates in three stages:

1. For every distinct variable in the formula on tape 1, write an x on tape
2.

2. Nondeterministically, write an assignment on tape 2. Each x on tape 2 is
nondeterministically substituted with a T or an F.

3. Check that each clause in the formula on tape 1 contains a singleton that
is true given the assignment on tape 2. If this is the case, the formula is
satisfiable, and the machine accepts. Otherwise, it rejects.

Stage 1 is accomplished deterministically in a polynomial number of steps.
For each variable in a clause, prior clauses are checked to determine if they
contain the variable. If so, an x is not written on tape 2. Otherwise, an x is
written to tape 2. This phase is tantamount to determining if a variable is a
member of the clauses processed so far. The number of steps is proportional
to n.2. Stage 2 is accomplished nondeterministically in n steps by traversing
the xs on tape 2. Stage 3 is done deterministically by processing the m clauses.
For each clause, its singletons are traversed to determine if any evaluates to
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true. If all clauses are processed, then the machine accepts. To process a
clause, we observe that the number of singletons is bounded by 2n. These
singletons are traversed. For each, the value of its variable is plugged in. If it
evaluates to true, then the machine moves to the next clause. If it evaluates
to false, then it moves to the next singleton in the clause. If none of the
singletons evaluate to true, then the machine moves to reject. The number of
steps for stage 3, therefore, is proportional to m*2n. In summary, the number
of operations is proportional to n.2 for stage 1 + n for stage 2 and (max n m).2

for stage 3. This establishes that the nondeterministic machine performs a
polynomial number of steps, and therefore, the Boolean satisfiability problem
is in NP.

90 Unsolved Problems

In general, demonstrating that a problem is in NP requires solving a problem
using a nondeterministic Turing machine that is bounded by a polynomial
number of steps. An interesting question we may ask ourselves, is NP closed
under complement? The answer to this question is currently unknown. Con-
trast this with the fact that P is closed under complement as demonstrated
in Sect. 85.2. Many properties of NP remain elusive to establish, and this is
an area of active research.

One property that is immediately obvious, however, is that P.⊆NP. This
follows by observing that a deterministic Turing machine is a nondeterminis-
tic Turing machine whose transition relation is a function. This observation
suggests another question: Is P = NP? This question remains unanswered
and is one of the biggest unsolved problems in computer science. Intuitively,
perhaps, we are tempted to claim nondeterminism is such a powerful feature
that the answer is that they are not equal. Why would this be a tempting
conclusion? A computation tree has an exponential number of paths, and a
deterministic Turing machine, in the worst case, needs to simulate all these
paths, thus performing an exponential number of steps. It would be truly
remarkable, indeed, if a deterministic Turing machine could do the same in a
polynomial number of steps. Is it even reasonable to believe this may be pos-
sible? One could theorize that a deterministic Turing machine may be able to
prune the computation tree bounding the number of steps to a polynomial.
No such general pruning technique is known.
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6 Demonstrate that the traveling salesman problem is in NP .

7 Prove that NP is closed under union.

8 Prove that NP is closed under concatenation.

9 Prove that NP is closed under Kleene star.



Part V

Epilogue



Chapter 21

Where to Go from Here

Congratulations! You have completed your first steps into the thought-
provoking world of theoretical computer science. You have learned about
different models of computation: their powers and their limitations. You have
also learned about nondeterminism and the role it plays in computer science
and in programming. The models you have studied have varied applications
across computer science. Some of these applications you have seen in practice
such as finding a pattern in a word (as done in Sect. 25.1) and parsing (as
done in Sect. 86.3). Other applications of automata, grammars, and regular
expressions include software verification, distributed systems, real-time sys-
tems, compilers, artificial intelligence, and natural language processing. This,
of course, is not an exhaustive list, but it does provide a wide range of topics
you are now better prepared to study. Perhaps, most importantly, you now
understand how machines compute functions, how decidability problems may
be solved, and the meaning of the word algorithm. Understanding what an
algorithm is has naturally led to thinking about what can and cannot be
computed and what it means for a solution to be practical. In the process,
you have become a better programmer, and you have begun to explore some
of humanity’s limitations.

Where do you go from here? Believe it or not, you have only touched the
tip of the iceberg when it comes to formal languages, automata theory, and
complexity theory. In fact, your instructor may have extended your course
with modules that are not covered in this textbook. For instance, is it pos-
sible for a cfg to always derive a word or state that the word is not in the
language? It turns out that the answer to this question is almost always yes.
Any cfg may be transformed to Chomsky normal form and for “long” words,
there is an algorithm that either returns its derivation, if it exists, or states
that the word is not in the cfg’s language. If you have not done so already,
learn about transforming a cfg to Chomsky normal form and how the trans-
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formed grammar may be used to decide if “long” words are in the grammar’s
language. Equally intriguing, there are many examples of undecidable prob-
lems you can explore. For example, consider a set of dominos such that each
domino has two words on the same face (e.g., one of the top and one on the
bottom). Ask yourself: can dominos be placed in a row (repetitions allowed)
such that the appending of top strings is the same as the appending of the
bottom strings? This fun puzzle is known as the post-correspondence prob-
lem, and believe it or not, it is an unsolvable problem. If you have not done so
already, learn about the post-correspondence problem and other fascinating
undecidable problems.

There are also a myriad of topics you may explore that are not directly
suggested by the topics covered in this textbook. Have you ever heard of quan-
tum finite automata? Indeed, automata theory has applications in quantum
computing. Automata theory also has applications in program verification.
There is a special kind of invariant known as a preserved invariant. A pre-
served invariant is one such that if it holds for some state Q, then it also
holds for any state reachable from Q. This fascinating type of invariant may
be used to prove that software is correct. State-based machines also have al-
luring applications in artificial intelligence. For example, neural tms are used
to model artificial neural networks that exhibit temporal dynamic behavior.
If you do not know what the previous sentence means, then avail yourself
of the opportunity to engage in the process of discovery by researching the
topic. Have fun!

In closing, you are now well equipped to explore formal languages and
automata theory applications in many fields of computer science as well as to
deepen your understanding of computer science’s theoretical underpinnings.
You may do so by either taking more advanced courses or by personal inquiry.
Regardless of your approach, you bring with you actual programming expe-
rience with state-based machines, grammars, and regular expressions. Mind
what you have learned, and apply it in your future intellectual endeavors.
Above all, enjoy the challenges that come with process of discovery and the
rigor required to prove your designs correct!
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