
I. INTRODUCTION 
Eye contribute about 80% of the brain's knowledge and 

memory through vision. Maintaining eye health is essential 
to ensure an optimal quality of life and sustain daily 
productivity [1]. According to the World Health Organization 
(WHO), there are 2.2 billion global eye disease cases, with 
one billion still preventable or treatable. Eye diseases can 
cause social isolation, depression, and delays in motor, 
language, emotional, social, and cognitive development. 
Patients with eye diseases spend over 40% of their income on 
eye care, leading to severe financial strain [2].  

One of the most vital components within the structure of 
eye is retina. Diameter, density, shape, and tortuosity of 
retinal blood vessels serve as indicators for diagnosing eye 
diseases, including glaucoma and cataract [3]. Blood vessels 
in the retina form a network that supplies nutrients to various 
parts of eye and can reflect circulatory dynamics and overall 
health status [4], [5], [6], [7]. Various eye diseases can lead 
to deformities and bleeding in the retinal blood vessels [8], 
[9]. Retinal blood vessels can be observed non-invasively 
with imaging technologies like fundus image segmentation, 
essential for diagnosing ocular diseases. However, challenges 
persist, including limited vessel edge visibility [3] and the 
complex structure of retinal blood vessels, complicating the 
segmentation process [10]. Retinal blood vessels often have 
noise, low contrast, and multi-scale structures [11].  

Retinal vessel segmentation can be conducted using 
various approaches, including manual and algorithm-based 
methods [10]. Manual segmentation is performed by 
ophthalmologists through manual annotation [11] to mark the 
dynamics of the blood vessels [10]. This process is costly, 
time-consuming, labor-intensive, and depends heavily on 
ophthalmologists' experience [10], [11]. Algorithm-based 
methods like threshold segmentation, matched filter, and 
vessel tracking have successfully segmented retinal blood 
vessels but rely heavily on pixel intensity and vessel 
morphology, with filters and parameters often manually 
designed [11].  

Deep Learning (DL) offers an alternative to address 
segmentation challenges and has become the primary method 
in medical image segmentation due to advancements in DL 
and related technologies [12], [13], [14]. In recent years, 
Deep Convolutional Neural Networks (DCNN) have been 
used as a reliable architecture for image recognition tasks, 
particularly for classification [15], [16]. However, in many 
visual tasks, particularly in biomedical image processing, the 
desired output typically involves the localization of class 
labels assigned to each pixel. [17].  

Several studies related to the development of DCNN for 
retinal vessel segmentation have been extensively conducted. 
In 2015, Ronneberger et al. combined CNN and Fully 
Convolutional Network (FCN) to create the U-Net model, 
which enhances segmentation performance with localization. 
U-Net has been successfully implemented, achieving an F1-
score of 81.55% [17]. In 2018, Alom et al. proposed two 
models, namely Recurrent U-Net (RU-Net) and Recurrent 
Residual U-Net (R2U-Net), by adding recurrent and/or 
residual layers to the U-Net model. These models 
successfully performed retinal vessel segmentation with 

superior performance compared to U-Net. With the same 
number of parameters, the F1-scores for each model were 
achieved at 81.80% and 81.87%, respectively [18]. In 2018, 
Oktay et al. proposed the Attention U-Net model by adding 
attention gates to the U-Net's skip connections, achieving an 
F1-score of 80.03% [19]. In 2021, Zuo et al. proposed the 
R2AU-Net model by combining the Attention U-Net and 
R2U-Net models, achieving an F1-score of 82.13% [20]. 

Researchers have also extensively developed encoder and 
decoder blocks to enhance the performance of U-Net-based 
architectures. In 2023, Ryu et al. proposed an encoder block 
consisting of a Feature Extraction and Embedding (FEE) 
block and a Deep Feature Magnification (DFM) block, which 
can attribute dynamic morphology and amplify thin retinal 
vessels. Additionally, they introduced the Feature Precision 
and Interference Block (FPI) and the Denser Multiscale 
Feature Fusion Block (DMFF) as decoder blocks to aid in 
reconstructing images through precise spatial features, 
achieving an F1-score of 80.97% [10]. In 2024, Liu et al. 
proposed an encoder block consisting of a specialized 
convolution block and also created a decoder block that 
combines with Attention Pooling Fusion (APF), introducing 
the architecture as IMFF-Net, which achieved an F1-score of 
79.77% [21]. In 2024, Ma et al. proposed an encoder block 
called the Decoder Fusion Module (DFM), which enhances 
feature extraction and reduces loss caused by convolutional 
operations. The Context Squeeze and Excitation Module 
(CSE) was introduced as a decoder block to avoid loss in thin 
retinal vessels, achieving an F1-score of 82.98% [22]. 

Many researchers have developed new encoder and 
decoder blocks and integrated them into U-Net-based 
architectures, yet there remains uncertainty in identifying the 
best encoder and decoder for each level. Meta-heuristic 
approaches offer innovative strategies for identifying optimal 
encoder and decoder configurations within U-Net-based 
architectures. One of meta-heuristic algorithm that can be 
employed to find the optimal encoder and decoder is Komodo 
Mlipir Algorithm (KMA) [23]. KMA method is chosen due to 
its high exploitation movement through the exploration of 
male komodos, which helps avoid getting trapped in local 
optima [23]. IMFF-Net was chosen because it demonstrates 
superior performance compared to conventional methods and 
U-Net in terms of the F1-score, sensitivity, specificity, 
accuracy, and AUC metrics [20]. Therefore, this study 
proposes the implementation of KMA to optimize the type 
combination of encoder-decoder.  

 
 


