
Restnet152 82.73 82.73 82.45 35.08 66.75 

Learning Rate 0.001 

VGG19 86.23 86.23 86.73 41.78 71.58 

MobileNetV2 88.05 88.05 87.77 44.37 73.40 

Restnet152 85.00 85.00 83.38 37.86 68.75 

Learning Rate 0.0001 

VGG19 85.05 85.05 85.39 40.13 70.19 

MobileNetV2 86.91 86.91 86.23 44.18 72.44 

Restnet152 85.31 85.31 81.19 35.65 67.38 

 

From Table I, it is evident that MobileNetV2 achieved the 
highest overall performance with a Final Score of 73.40% at a 
learning rate of 0.001. In particular, MobileNetV2 achieved a 
Cohen's Kappa value of 44.37%, an accuracy and F1-score of 
88.05%, and an AUC of 87.77%. MobileNetV2 outperformed 
VGG19 and ResNet152, demonstrating its efficacy for multi-
label classification of eye disorders at this learning rate. 

Although VGG19 demonstrated decent performance with 
a Final Score of 71.58% at a learning rate of 0.001, 
MobileNetV2's higher AUC and Kappa coefficient indicate 
better overall classification capability and agreement with the 
true labels. While the AUC indicates how well the model can 
differentiate between positive and negative classes, a greater 
Kappa indicates a higher level of agreement than chance. 
Thus, with a learning rate of 0.001, MobileNetV2 was found 
to be the optimal model for further fine-tuning. 

B. Fine-Tuning the Best Model 

Following the identification of MobileNetV2 as the top-
performing model with a learning rate of 0.001, fine-tuning 
was carried out to further improve its performance. The 
MobileNetV2 model was fine-tuned to better fit the ODIR 
dataset, allowing for greater alignment with the unique 
features of the dataset. 

Post-fine-tuning, MobileNetV2 achieved an accuracy and 
F1-score of 86.54%, an AUC of 87.88%, and a Cohen's 
Kappa coefficient of 44.62%, resulting in a Final Score of 
73.01%, as shown in Table II. 

 
TABLE II. FINE-TUNING RESULTS OF 

MOBILENETV2 
Dataset Accuracy 

(%) 
F1 

Score 
(%) 

AUC 
(%) 

Kappa  
(%) 

Final 
(%) 

Validation 87.60 87.60 88.65 44.87 73.71 
Testing 86.54 86.54 87.88 44.62 73.01 

 
Compared to the baseline performance, the accuracy and 

F1-score changed from 88.05% to 87.60%, and the AUC 
improved from 87.77% to 88.65%. The Kappa coefficient 
also increased from 44.37% to 44.87%, shifting the Final 
Score from 73.40% to 73.71%. This outcome suggests that 
while the model’s discrimination capability improved, the 
overall agreement with the true labels remained nearly 
consistent. 

While the AUC demonstrated an improvement after fine-
tuning, the small increase in the Kappa coefficient from 
44.37% to 44.87% indicates a marginally better agreement 

with the true labels. This subtle change suggests that the model 
maintains reliable performance. 

V. CONCLUSION 

Using fundus images from the ODIR dataset, this work 
successfully created a multi-label eye disease recognition 
system employing the deep learning architectures 
ResNet152, VGG19, and MobileNetV2 as feature extraction 
backbone. Prior to fine-tuning, the evaluation results showed 
that MobileNetV2, with a learning rate of 0.001, performed 
the best, with a Final Score of 73.40%, an accuracy and F1-
score of 88.05%, an AUC of 87.77%, and a Cohen's Kappa 
factor of 44.37%. MobileNetV2's final score was 73.71% 
after the model was fine-tuned, with an accuracy and F1-
score of 87.60%, an AUC of 88.65%, and a Cohen's Kappa 
value of 44.87%. The final configuration on the testing set 
yielded a Final Score of 73.01%, with an accuracy and F1-
score of 86.54%, an AUC of 87.88%, and a Kappa coefficient 
of 44.62%. 

Compared to VGG19 and ResNet152, MobileNetV2 
delivered superior results, underscoring its capability for 
multi-label eye disease classification. Overall, the developed 
system demonstrates potential in streamlining eye disease 
detection, particularly in regions with limited ophthalmologist 
availability. However, the marginal performance gains after 
fine-tuning indicate that further optimization is necessary to 
enhance detection accuracy. Moreover, this study still faces 
challenges that require further research, including addressing 
data imbalance, enlarging the dataset for better generalization, 
and experimenting with diverse hyper-parameter 
configurations, such as exploring different optimizers not used 
in this study. 
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