
TABLE I: Performance Comparison Between Models for

Different Lookbacks

Model Lookback RMSE MAE R2 C.T.
(min)

iTransformer 24 0.0041 0.0489 0.9713 0.1
48 0.0415 0.0323 0.9882 0.3
96 0.0455 0.0368 0.9863 0.36

TCN 24 0.1050 0.0862 0.9861 3.3
48 0.1227 0.1006 0.9810 2.3
96 0.1172 0.0933 0.9827 1.88

Transformer 24 0.0410 0.0331 0.9886 5.05
48 0.0409 0.0325 0.9883 12.1
96 0.1285 0.1033 0.9792 19.8

Table I compares the performance of iTransformer, TCN, and Transformer
models for lookbacks of 24, 48, and 96. The performance metrics include Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared
(R2), and C.T. representing Computing Time. The bold values indicate the
best performance for each metric.

Fig. 6: iTransformer 14-days Actual and Prediction Data.

V. CONCLUSION

We presented sea level forecasting using a novel deep-

learning approach called iTransformer with short-term data,

specifically six months, utilizing four months for training and

the remaining two months for validation and testing. The

iTransformer model predicts sea levels over 14 days. As a case

study, we used a dataset from Singaraja, Bali, Indonesia. Based

on our experiments, it can be concluded that iTransformer

achieves the highest prediction accuracy, surpassing both TCN

and Transformer models. Additionally, the iTransformer model

exhibits lower computational times, requiring only 0.1 minutes

for a 24-hour lookback, 0.3 minutes for a 48-hour lookback,

and 0.36 minutes for a 96-hour lookback.

We also discovered that a 48-hour lookback period yields

high accuracy for the iTransformer model, with an RMSE

of 0.0415 and an MAE of 0.0323, both of which are very

low. This is complemented by R2 scores of 0.9882, which

indicate strong predictive performance but compared to the

other models, iTransformer excels in short computational

time. The results of the iTransformer model may serve as a

foundational basis for future iterations of the iTransformer as

a forecasting model. It is important to note that multivariate

datasets are highly recommended, as iTransformer is designed

for multivariate analysis, whereas this study employed univari-

ate datasets.

LIMITATIONS AND FUTURE WORKS

Our tests were conducted on univariate and short-term

datasets, while iTransformer is designed to excel with long-

term multivariate datasets. We suggest further research and

improvement are necessary to fully evaluate and implement

iTransformer with multivariate features. We sincerely hope our

comprehensive studies can benefit future work in this area.

iTransformer possesses various advantages and disadvan-

tages. Nonetheless, it offers extensive opportunities to explore,

reproduce, and implement long-term multivariate datasets.
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