
 
Fig. 8. Random forest (Drone &GEE) best fold confusion matrix 

Figure 8 shows the confusion matrix of the first fold, 

which achieved the best validation accuracy across the folds 

at 83.46%. However, this value does not indicate good model 

performance, as there is a 4.69% difference between the test 

accuracy and the mean validation accuracy—a relatively large 

gap. This 4.69% gap suggests that the model has potential 

overfitting, as the training and validation accuracy are higher 

than the test accuracy, indicating that the model may have 

learned patterns excessively from the training and validation 

sets. 

To summarize the experimental results, Figure 9 illustrates 

the performance of each model across different datasets.  

 
Fig. 9. Experiment results  

IV. CONSLUSION 

In this study, we proposed a machine learning-based 

image classification method for carbon stock measurement 

using XGBoost and Random Forest classifiers with a VGG16 

feature extractor. These models were employed to classify 

carbon stock with the goal of identifying the best classifier and 

dataset combination. From the six experiments conducted, we 

observed that dataset quality is a crucial factor in classifying 

carbon stock using remote sensing methods, particularly with 

machine learning algorithms. The XGBoost model combined 

with the Drone dataset emerged as the best combination, 

achieving an accuracy of 90.79%. This model also showed no 

signs of overfitting, with only a 0.49% difference between the 

test accuracy and mean validation accuracy. XGBoost 

outperformed Random Forest by effectively handling intricate 

patterns in high-resolution drone data, leveraging its boosting 

mechanism to iteratively correct errors and capture complex 

relationships, while regularization prevents overfitting and 

ensures stability, making it optimal for accurate and stable 

carbon stock classification. Based on the experiments 

conducted, the most optimal classifier performance, was 

achieved by a high-resolution dataset such as the drone 

dataset. However, if this is not feasible, a combination of high 

and low-resolution datasets can be used, albeit with a slight 

reduction in model performance. Whenever possible, it is 

recommended to avoid using low-resolution datasets to 

maintain better model performance. In addition, future 

research could explore the use of CNN or other state-of-the-

art method for carbon stock classification to add an additional 

context for the comparison. 
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