
occurred as much as 2.03% compared to the baseline. The
increase in accuracy of each model from the baseline to the
best final result is shown in Table IX.

TABLE IX
BEST PERFORMANCE OF ALL MODELS

Model Accuracy (%)
CNN 82.93 (+0.63)

BiLSTM 84.25 (+2.03)
CNN-BiLSTM 83.01 (+0.99)
BiLSTM-CNN 83.43 (+1.03)

IV. CONCLUSION

In this study, depression detection on the X social media
platform is performed using an attention-based CNN-BiLSTM
hybrid deep learning model, utilizing TF-IDF for feature
extraction and FastText for feature expansion. This research
uses text datasets from user tweets in Indonesian and translated
English with a total of 50,523 data and constructs a similarity
corpus with a total of 100,594 data. In testing, five scenarios
were carried out to find the best accuracy. Among them are
choosing the best split ratio, the best n-gram, the best number
of max features, feature expansion with FastText, and the
attention mechanism. The results showed that the BiLSTM
and hybrid deep learning CNN-BiLSTM models were able
to produce high accuracy using the attention mechanism.
The BiLSTM model with the attention layer achieves an
accuracy of 84.25%, showing a 2.03% improvement over the
baseline. On the other hand, the CNN-BiLSTM hybrid model
reaches an accuracy of 83.01%, reflecting a 0.99% increase
from the baseline. Although it does not always result in a
large increase in accuracy, the attention mechanism can help
depression detection from text data to be more accurate. There
are limitations that need to be considered for future research.
This analysis is limited by datasets from only one social media
platform, X. Future research can analyze other social media
platforms with different methods or algorithms.
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