List of Figures

6

1	An example of histopathological liver tissue images and their segmentation results. The left image
	illustrates the input, while the right image is the segmentation result. The 'background' class is
	highlighted in purple , the 'tissue' class in green , and the 'steatosis' class in yellow
2	Image pre-processing applied to the dataset. The splitting and resizing for the annotation data are
	only applied to the training and validation data while the histopathological image is applied to the
	training, validation, and testing. For the test data, prediction results undergo a post-processing step
	prior to evaluation to ensure consistency between the total annotation data and the ground truth
3	Post-processing applied to the output of deep learning model. The predicted output from the
	model that is trained using pre-processed dataset still outputs fragments of masks therefore resize
	and merge are needed. Resizing is done using nearest neighbour interpolation
4	The UNet3+ architecture with modified filter count to reduce the size of the trainable parameters
	which results in a more lightweight deep learning model
5	The model output integration method. The first model is trained on dataset that does not use