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Preface

Over past decade, there has been tremendous development in the artificial intelligence
(AI) community. Therefore, a new conference, the International Conference on Dis-
tributed Artificial Intelligence (DAI), has been organized since 2019. DAI aims at bring-
ing together international researchers and practitioners in many related areas. This year,
we received 16 submissions in total. Each paper was assigned to four Program Commit-
tee (PC) members, and each received at least two reviews, and on average three reviews.
With the reviews, the decisions were made based on the discussion and consensus of the
Program Committee with the PC chairs. The topics of the accepted papers included rein-
forcement learning, multi-agent learning, distributed learning systems, deep learning,
and applications of game theory.Wewere also delighted to have as invited speakers Peter
Stone (University of Texas), Katja Hofmann (Microsoft Research Cambridge), Wotao
Yin (University of California), Zhiwei (Tony) Qin (Didi Research America), Dacheng
Tao (Jingdong Institute of Discovery). Finally, we would like to sincerely thank the
conference committee and the Program Committee for their great work.

December 2022 Makoto Yokoo
Hong Qiao

Yevgeniy Vorobeychik
Jianye Hao
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A Distributed RBF-Assisted Differential
Evolution for Distributed Expensive

Constrained Optimization

Feng-Feng Wei, Xiao-Qi Guo, Wen-Jin Qiu, Tai-You Chen,
and Wei-Neng Chen(B)

South China University of Technology, Guangzhou, China

cschenwn@scut.edu.cn

Abstract. With the development of Internet of things and distributed
computing techniques, distributed and expensive constrained optimiza-
tion problems (DECOPs) have emerged in the industry. DECOPs refer to
optimization problems with objective and constraint functions that are
computationally expensive and can only be evaluated on multiple agents
of distributed networks. In DECOPs, the raw data of each agent cannot
be transmitted to other agents, but only objective or constraint value
of a solution can be evaluated, resulting in the incomplete data on each
agent. This paper proposes a distributed RBF-assisted differential evolu-
tion (DRADE) algorithm for solving DECOPs. In DRADE, we added a
master agent to the distributed networks of DECOPs, connecting work
agents that can evaluate objective or constraint values of candidate solu-
tions to the master agent in a star topology. The proposed algorithm
is composed of candidate generation and selection on master agent and
radial basis function (RBF) management on work agents. In candidate
generation and selection, differential evolution serves as an optimizer
to generate candidate solutions assisted by RBF models received from
work agents to replace expensive evaluations of candidate solutions in
the master agent. In RBF management, each work agent constructs and
updates a RBF model with its own data, which are updated by sam-
ples selected from candidate solutions received from the master agent
and their expensively evaluated values. Statistical results and analysis
of experiments carried out on benchmark test functions and engineering
problems show that DRADE has superior performance than compared
state-of-the-art SAEAs.

Keywords: Distributed optimization · Surrogate-assisted evolutionary
algorithm · Expensive constrained optimization · Differential evolution
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1 Introduction

Constrained optimization problems (COPs) are often encountered in industrial
applications in many real-world areas, such as medical [23], aeronautical design
[12], industrial manufacturing [5], resource [8] and so on. Evolutionary algo-
rithms (EAs) are widely used for solving COPs [17,22] due to their powerful
search abilities. The constraint-handing techniques in EAs are generally divided
into four categories, namely penalty function methods [20], repairing methods
[4], methods based on feasibility rule [18] and methods based on multi-objective
optimization algorithms [10]. It is noteworthy that objectives and constraints of
many COPs in industry are computationally expensive and cannot be modeled
as explicit mathematical expressions. This kind of COPs is named as expensive
ECOPs (ECOPs). Existing EAs that employ the constraint handling techniques
mentioned above often need to iteratively evaluate both the objective and con-
straint values of candidate solutions, which takes a long time to solve ECOPs.

To address the above issues, quite a few efforts have been made to use sur-
rogate models to replace part of expensive evaluations of objectives or/and con-
straints. This kind of methods are usually named surrogate-assisted evolution-
ary algorithms (SAEAs). For single-objective ECOPs, Su et al. [20] proposed
a hybrid surrogate-based-constrained optimization method, which replaces the
objective function with penalty function by a Kriging model in the first phase and
approximates both objective and constraints with radial basis function (RBF)
models in the second phase. Rahi et al. [18] devised a surrogate-assisted partial-
evaluation-based EA to address ECOPs. Handoko et al. [6] adopted a support
vector machine to construct a feasibility structure model to judge the feasibility
rule between two solutions in memetic algorithms in ECOPs. Wang et al. [24]
designed a global and local surrogate-assisted differential evolution for ECOPs
with inequality constraints, in which a generalized regression neural network is
served as global surrogate model and RBF is used as local surrogate model to
create new solutions. For multi-objective combinatorial ECOPs, Wang et al. [23]
proposed a random forest-assisted EA.

Almost all of the above SAEAs are designed for centralized ECOPs, but few of
them consider the situation that objectives and constraints are also distributed.
In fact, objectives and constraints of many real-world ECOPs need to be acquired
by different ways on multiple agents, which is named as distributed and expen-
sive constrained optimization problems (DECOPs). DECOPs are common in the
industry but have not received much attention in academia. For example, aircraft
design subjects to material properties, energy supply requirements, aerodynam-
ics principles and so on. Material properties such as static or dynamic stiffness
of aircraft materials require finite element analysis (FEA) simulation [7]. The
motor drive for aircraft energy supply demands high reliability and availability,
which should be verified by FEA [1]. Airfoil shape parameters should meet aero-
dynamic principles [12]. These constraints are acquired by different simulation
tools, which may be evaluated on different agents. Since the raw data of each
agent cannot be transmitted to other agents, we can only obtain one objective
value or constraint value of a candidate solution on each agent, leading to a
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new challenge in DECOPs with incomplete information. Incomplete information
makes it difficult to distinguish among individuals in the population of each
agent, thus it is hard to guide the population to evolve and generate promising
candidates. Therefore, it is worth researching how to select suitable candidates
in the case of distributed evaluations of objective and constraints in DECOPs,
which is of great significance for improving algorithm performance.

Taking account of the above challenges, we propose a distributed RBF-
assisted differential evolution (DRADE) for solving DECOPs. Contributions of
the proposed algorithm are described as follows.

Firstly, we add a master agent in the distributed network of each single-
objective DECOP to construct a star distributed topology. The master agent
needs to coordinate all work agents to solve DECOPs, but has no ability to
evaluate the objective or constraints. Work agents are responsible for expensive
evaluations of the objective or one of constraints, and can communicate with the
master agent to help solve problems.

Secondly, the proposed DRADE consists of candidate generation and selec-
tion on master agent and RBF management on work agents. The RBF model on
each work agent is transmitted to the master agent to avoid transmission of raw
data so that data privacy can be protected. Besides, it serves as surrogate model
to assist evolutionary optimization on the master agent and save the number
of real evaluations. The RBF model on each work agent serves as a surrogate
model to replace the data transmission and is transmitted to the master agent to
assist evolutionary optimization, which can not only save the number of expen-
sive evaluations but also protect data privacy. Differential evolution (DE) acts
as a search engine and uses approximated estimation of RBF models to generate
candidate solutions, which are fed back to work agents for expensive evaluations
and updating RBF models.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the definition of DECOPs. Section 3 elaborates the proposed DRADE for
DECOPs in detail. Experimental studies and analyses on benchmark suites and
ceramic formular optimization problems of the proposed algorithm are presented
in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Distributed and Expensive Constrained Optimization

In this paper we consider to solve single-objective DECOPs, in which evalua-
tions of objectives and constraints are computationally expensive and need to
be acquired in distributed ways. The two characteristics of expensive and dis-
tributed often occur in industrial problems at the same time. To be specific,
many expensive evaluations or tests in the industry often need to be completed
in specific institutions with specific equipment, so an optimization problem with
multiple constraints becomes a distributed problem.

For example, the optimization of vehicle parameters [3,18] in automobile
manufacturing needs to meet constraints such as safety performance, structural
performance, and air resistance, and these three types of assessments need to
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be completed by corresponding professional institutions, respectively. Therefore,
the process of optimizing the parameters needs to call multiple organizations to
complete through communication.

Without loss of generality, a minimization single-objective DECOP can be
formulated as follows:

min
x∈RD

f̂a0(x )

s.t. Ĉak

k (x ) ≤ 0, k = 1, 2, ..., l

gi(x ) ≤ 0, i = 1, 2, ...,m

hj(x ) = 0, j = 1, 2, ..., n

(1)

where x is the decision variable vector and each variable is bounded by xi ∈
[lbxi , ubxi ], i = 1, 2, ...,D. There are three types of constraints, which are l
expensive inequality constraints Ĉak

k (x ), m inexpensive inequality constraints
gi(x ), and n inexpensive equality constraints hj(x ). Because the evaluations of
objective function and expensive constraints are computational expensive, they
need to be computed in specific agents. The superscript of f̂a0 or Ĉak

k represent
the agent that computes it. In this definition, the data and evaluation informa-
tion is private to other agents. Therefore, objective function f̂a0 is computed in
agent a0 only, and constraint Ĉak

k is evaluated in agent ak only.
DECOPs have posed two challenges to optimization methods. On the one

hand, it is not practical to evaluate solutions frequently in the algorithm, con-
sidering the economic cost and the time cost. On the other hand, due to the
distribution of problem information and data privacy, the optimization requires
multiple agents to complete it cooperatively.

3 Distributed RBF-Assisted Differential Evolution

This section elaborates the proposed DRADE for DECOPs in detail. Specifically,
the framework of DRADE is firstly introduced. Then, two important parts, RBF
management and candidate generation and selection are presented to facilitate
DRADE.

3.1 DRADE Framework

DRADE is a distributed algorithm. It adopts a master-slave model on a star
topology. The framework of DRADE is shown in Fig. 1. There are 1 master and
NC+1 work agents, in which NC is the number of distributed and expensive con-
straints. Work agent #1,#2, ...,#NC is able to evaluate the 1th, 2nd, ..., NCth

constraint respectively and work agent #NC + 1 has the ability to evaluate the
objective values of candidate solutions. The master takes charge of evolution to
search for global optima through DE. Each work agent has the ability of expen-
sive evaluation for the objective or one constraint. It can also train an RBF
model using its private historical data. The master has no ability of any eval-
uations. It receives RBF models from work agents to predict the objective and
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Fig. 1. Framework of DRADE

constraints values of generated candidates. Only a few promising candidates are
sent to work agents for expensive evaluations. Work agents are mutually confi-
dential and they only can communicate with the master. The main procedures
are elaborated as follows.

Step 1) Initialization.

a) The master initializes an empty Dateset0 to save expensively evaluated can-
didates. Besides, a population P with only decision variables x i for evolution,
where x i = {x1

i , x
2
i , ..., x

D
i } is the decision variable in D dimensional search

space. i = 1, 2, ..., NP is the index of individuals and NP is the population
size.

b) The master asks all work agents to expensively evaluate constraints G(x i) =
{g1(x i), g2(x i)..., gNC(x i} and objective F (x i) of the population P . They
are added to the Dateset0 as known data.

c) Each work agent s initializes a Datesets with NS historical data, which
include decision variables X s = {x 1,x 2, ...,xNS} and corresponding evalu-
ated constraints Y s = gs(X s) or objective Y s = fs(X s).

Step 2) RBF Management.
Each work agent s uses all data {X s,Y s} in its own dataset to train or update
its RBF regression model Ms. Once Ms is updated, work agent s sends it to
the master.

Step 3) Candidates Generation.
Based on the feasibility rule which is introduced in Subsect. 3.3, the best

NP individuals are selection from A to form the population P . Three composite
DE evolution operators are conducted on P to generate NP × 3 candidates
x ′

i,j , i = 1, 2, ..., NP, j = 1, 2, 3.

Step 4) Candidates Preselection.

a) Based on received RBF models Ms, s = 1, 2, ..., NC + 1, the master predicts
constraints and the objective of generated candidates {Ĝ(x ′

i), F̂ (x ′
i)}, where

Ĝ(x ′
i) = ĝ1(x ′

1), ĝ2(x
′
2), ..., ĝNC(x ′

NC)
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b) Candidates are sorted from better to worse according to the feasibility rule
based on their predicted results.

c) The ranked first candidate is selected as the most promising one x p under
prediction.

Step 5) Expensive Evaluation.
The master sends x p to all work agents for expensive evaluation. After expensive
evaluation, each work agent s adds x p and expensively evaluated value gs(x p)
or fs(x p) to its own Datasets as known data for model update.

Step 6) Termination.
If the set number of expensive evaluations has been reached, DRADE is termi-
nated. The best individual, accompanied with its corresponding constraint and
objective values are output.

Otherwise, DRADE goes to Step 2) to continue evolution.

3.2 RBF Management

Radial basis function (RBF) uses a series of basis functions for interpolation.
Due to its high efficiency and flexibility, RBF has become a widely used model
in SAEAs [9].

At the start of the algorithm, each work agent s uses data {X s,Y s} in its
Datasets to build an RBF regression model Ms and sends it to the master.
Specifically, the approximation scheme is shown as follows:

Ĝ(x )orF̂ (x ) =
n∑

j=1

λjφ(||x − x j ||) (2)

in which x j ∈ X s are training data in Datasets. n is the total number of
training data, which is initialized as NS and increased during the evolution. x
is the individual to be predict. λj is the weight parameter to be trained. || · ||
is the Euclidean distance between x and x j . φ is the radial basis function. It
adopts Gaussian function exp(− x−xj

2δ ), where δ is the smoothing parameter.
During the evolution, work agents update their M once new individuals are

expensively evaluated. In other words, models are updated in each generation to
improve approximation accuracy and sent to the master to assist evolution.

3.3 Candidate Generation and Selection

Differential evolution (DE) is an effective EC algorithm with powerful global
search ability and has been widely applied to solve complex optimization prob-
lems [9]. After initialization and receiving the trained models M = {M1,M2, ...,
MNC+1} from work agents, the master conducts composite DE evolution on the
population. For each individual x i in the population P , the following three com-
posite DE mutation operators are applied to generate candidates.
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DE/current-to-rand/1

v t+1
i,1 = x t

i + r × (x t
r1 − x t

i) + F × (x t
r2 − x t

r3) (3)

DE/current-to-best/1

v t+1
i,2 = x t

i + F × (x t
cbest − x t

r1) + F × (x t
r2 − x t

r3) (4)

DE/best/1
v t+1

i,3 = x t
cbest + F × (x t

r1 − x t
r2) (5)

where t is the evolution generation. v t+1
i,j is the jth mutated trial of the ith

individual in the t + 1 generation and it is obvious that j = 1, 2, 3. r is a
D dimensional random decimal vector. r1, r2, r3 are three randomly selected
individuals from the population, which are different from other and do not equal
to i. cbest is the index of the best individual in the current population. F is the
mutation factor between [0, 1] and set ahead of time.

After that, the mutated trials are conducted binomial crossover as follows:

v t+1,d
i,j =

⎧
⎪⎨

⎪⎩

v t+1,d
i,j , if r < CR or d = drand

x t,d
i , otherwise

d = 1, 2, ...,D (6)

where r is a random decimal between [0, 1]. CR is the crossover factor and set
ahead of time. drand is a randomly selected dimension to make sure at least one
dimension conducts crossover.

Finally, candidates x ′
i, i = 1, 2, ..., NP × 3 are generated through boundary

check, in which

x ′
i,j = max(v t+1

i,j , lb) ⊕ min(v t+1
i,j ,ub) (7)

In a word, if one dimension is larger or smaller than corresponding upper bound
or lower bound, it is directly assigned as the corresponding bound value.

At last, candidate selection is conducted based on feasibility rule, which is
widely used to compare quality of solutions. For any two solutions x r1 and x r2,
x r1 is judged as the better one if one of the following conditions is satisfied:

⎧
⎪⎨

⎪⎩

f(x r1) < f(x r2) ∧ DV (x r1) < 0 ∧ DV (x r2) < 0
DV (x r1) < 0 ∧ DV (x r2) > 0
DV (x r1) < DV (x r2) ∧ DV (x r1) > 0 ∧ DV (x r2) > 0

(8)

Here, DV represents the degree of constraint violation, which is defined as
DV (x ) =

∑l
k=1 Ĉk(x ) +

∑m
i=1 gi(x ) +

∑n
j=1 |hi(x )|. If none of the three condi-

tions is satisfied, x r2 is judged to be better than x r1.
Based on predicted results, all candidates are sorted in descending order

according to the feasibility rule. The ranked first candidate is selected as the most
promising one under prediction, which is sent to all work agents for expensively
evaluation.
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4 Experiments and Analyses

This section conducts extensive experiments to demonstrate the satisfactory per-
formance of DRADE. Firstly, test problems in two benchmark suites are intro-
duced. Secondly, parameter and experiment settings are given. Thirdly, DRADE
is compared with four centralized SAEAs to illustrate its competitive conver-
gence and global search ability. Fourthly, an distributed and expensive opti-
mization problem in industrial, the optimization of ceramic formula is tested to
show the promising applications of DRADE in engineering optimization.

4.1 Test Suite

Two most widely used test suites for constrained optimization, CEC2006 [13]
and CEC2010 [16] are adopted for extensive experiments. Out of reason that the
feasible areas of equality constraints are extremely small, which is impossible
for models to approximate and SAEAs for expensive constrained optimization
generally do not handle them [6,19,24], we test problems with only inequality
constraints. Problems and their characteristics in CEC2006 and CEC2010 are
shown in Table 1 and Table 2 respectively.

Problems in CEC2006 have known optima whereas problems in CEC2010 are
much more complicated and there is no optima information. They have various
types of objective, which reflect different kinds of engineering problems. Feasible
area ratio ρ, which is calculated through feasible areas |F | divided by the whole
search space |S|, of each problem is also given. I is the number of inequality
constraints. Though constraints and objective of test suites are not expensive,
they are frequently used for SAEA experiments [6,19,24].

Table 1. Test function of CEC2006

Name D The optimal Type ρ = |F|/|S| I

g01 13 −15 quadratic 0.0111% 9

g02 20 −0.803619 nonlinear 99.9971% 2

g04 5 −30665.539 quadratic 52.1230% 6

g06 2 −6961.813876 cubic 0.0066% 2

g07 10 24.30620907 quadratic 0.0003% 8

g08 2 −0.095825042 nonlinear 0.8560% 2

g09 7 680.6300574 polynomial 0.5121% 4

g10 8 7049.248021 linear 0.0010% 6

g12 3 −1 quadratic 4.7713% 1

g16 5 −1.905155259 nonlinear 0.0204% 38

g19 15 32.6555929502 nonlinear 33.4761% 5

g24 2 −5.5080132716 linear 79.6556% 2
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Table 2. Test function of CEC2010

Name D Type of objective ρ = |F|/|S| I

c01 10 Non-Separable 99.7689% 2

c07 Non-Separable 50.5123% 1

c08 Non-Separable 37.9512% 1

c13 Separable 0.0000% 3

c14 Non-Separable 0.3112% 3

c15 Non-Separable 0.3210% 3

c’01 30 Non-Separable 100.0000% 2

c’07 Non-Separable 50.3725% 1

c’08 Non-Separable 37.5278% 1

c’13 Separable 0.0000% 3

c’14 Non-Separable 0.6123% 3

c’15 Non-Separable 0.6023% 3

4.2 Parameter Setting

Population size NP = 50. Mutation factor F is selected from {0.6, 0.8, 1.0} with
the same probability pF = 1

3 . Crossover factor CR is selected from {0.1, 0.2, 1.0}
with the same probability pCR = 1

3 . The initialized dataset size of work agents
NS = 300.

Due to the expensive cost of evaluations, the maximal number of expensive
evaluations FES = 1, 000 as most SAEAs set [15,21,25]. It should be noticed
that in DECOPs, one evaluation of each work agent consumes one expensive
evaluation budget. That means, full evaluation of a candidate consume NC + 1
evaluations, including evaluations of NC constraints and 1 objective.

Experiments are conducted on machine with 36 IntelR© XeonR© CPU E5-2696
v3 @ 2.30 GHz processors. All results are averaged over 25 independent runs to
avoid contingency.

4.3 Comparison with State-of-the-art SAEAs

It should be noticed that DECOP is a kind of emerging problem with the develop-
ment of IoTs and distributed computing techniques. There are few studies focus
on DECOPs. Therefore, we compare DRADE with four centralized SAEAs for
expensive constrained optimization to illustrate its global optimization ability.
The first one is Gaussian process surrogate-model-assisted evolutionary algo-
rithm for computationally expensive inequality constrained optimization prob-
lems (GPEEC) [14]. The second one is Kriging-assisted teaching-learning-based
optimization (KTLBO) [2]. The third one is multiple penalties and multiple local
surrogates (MPMLS) [11] and the fourth one is surrogate-assisted classification-
collaboration differential evolution (SACCDE) [26]. To make a fair comparison,
all parameter and experiment settings are the same as their proposed papers.
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Comparison results are shown in Table 3 and Table 4, in which mean is the
average value of found-best feasible fitness over 25 independent runs and std is
the corresponding standard variation. rf is the feasible ratio in the final popula-
tion, averaged over 25 runs. It is calculated by the number of feasible individuals
divided by population size. rs is the successful ratio which can successfully find
feasible individuals over 25 runs. p is the Wilcoxon rank-sum statistical test
value. (+), (−), (≈) means the compared algorithm is significantly better, worse
or has no significant difference than DRADE at the significant level α = 0.05.
(/) means there is no legal statistical test results out of reason that the com-
pared algorithm cannot find any feasible solution. However, DRADE can find
feasible solutions, which means DRADE is better than the compared algorithm.
The following conclusions can be got from tables.

Table 3. Comparison result of DRADE with four SAEAs for CEC2006

g01 g02 g04 g06 g07 g08 g09 g10 g12 g16 g19 g24

mean −6.3987 −0.2540 −30579 −6743.8 163.414 −0.0958 1681.31 11184.4 −1 NaN 1302.32 −5.5080

(−) (−) (−) (−) (−) (≈) (−) (≈) (≈) (/) (−) (≈) 7−
GPE std 0.68661 0.03617 24.2499 471.031 48.6336 0.00000 619.344 773.494 0 NaN 398.298 0 0+

EC rf 0.806 1 1 1 0.84 1 0.989 1 1 0 1 1 4≈
rs 1 1 1 1 1 1 1 1 1 0 1 1 1/

p 1.42E−9 1.23E−6 1.42E−9 1.42E−9 3.21E−6 1.51E−1 1.31E−8 5.81E−2 2.07E−1 NaN 3.26E−9 9.12E−2

mean −0.7099 −0.3343 −29824 −4055.2 216.913 −0.0707 935.134 11502.2 −1 −1.2466 729.648 −5.1573

(−) (≈) (−) (−) (−) (−) (−) (≈) (≈) (≈) (−) (−) 8−
KTL std 1.29385 0.06603 262.969 1873.54 0 0.02523 96.1133 1925.96 0 0 293.488 0.20798 0+

BO rf 0.81333 1 1 0.8 0.04 1 1 0.08 1 0.01333 1 1 4≈
rs 0.88 1 1 0.8 0.04 1 1 0.08 1 0.04 1 1 0/

p 4.85E−9 2.77E−1 1.42E−9 1.21E−8 1.43E−2 1.8E−10 1.07E−2 8.70E−1 2.07E−1 4.44E−2 1.13E−4 1.07E−9

mean −5.0994 −0.3232 −30597 −6954.5 1128.67 −0.0957 808.485 12588.9 −1 −1.5379 587.584 −5.507

(−) (−) (−) (−) (−) (≈) (+) (−) (≈) (≈) (−) (−) 8−
MPM std 0.98472 0.0562 37.1522 18.498 724.48 0 104.859 1580.48 0 0 146.176 0 1+

LS rf 0.09866 0.912 0.85066 0.48 0.01266 0.80666 0.81533 0.23133 0.68933 0.002 0.874 0.62933 3≈
rs 0.84 1 1 1 0.36 1 1 0.96 1 0.04 1 1 0/

p 4.85E−9 1.16E−2 1.42E−9 1.42E−9 1.76E−5 7.59E−1 3.40E−3 3.95E−2 7.36E−2 5.73E−1 3.02E−5 4.0E−3

mean −12.358 −0.3152 −30662 −6958.6 816.071 −0.0878 1279.25 15314.3 −0.999 −1.4489 357.717 −5.508

SAC (−) (−) (+) (−) (−) (−) (−) (−) (≈) (≈) (−) (≈) 8−
CDE std 0.75282 0.06076 1.22942 10.0238 598.294 0.02211 1179.54 2732.55 0.00304 0.1216 141.115 0 1+

rf 1 1 1 1 0.60533 1 1 0.22133 1 0.128 1 1 3≈
rs 1 1 1 1 0.64 1 1 0.84 1 0.6 1 1 0/

p 1.01E−6 3.61E−2 1.04E−2 7.90E−3 1.23E−6 6.05E−3 1.16E−8 4.59E−5 4.47E−1 2.90E−1 8.80E−3 1.42E−2

mean −13.942 −0.3652 −30660 −6961.8 76.1533 −0.0957 900.255 11787.1 −0.9985 −1.3846 404.503 −5.508

DRA std 1.03509 0.08665 3.29605 0.00044 53.9294 0 138.172 1851.41 0.00328 0.1665 97.3722 0

DE rf 0.9824 1 1 1 0.9408 1 1 0.3632 1 0.0416 1 1

rs 1 1 1 1 1 1 1 0.84 1 0.68 1 1

It can be concluded from tables that 1) DRADE performs significantly better
in seven out twelve problems of CEC2006 and nine out of twelve problems of
CEC2010 than GPEEC, 2) DRADE performs significantly better in eight out
twelve problems of CEC2006 and nine out of twelve problems of CEC2010 than
KTLBO, 3) DRADE performs significantly better in eight out twelve problems of
CEC2006 and six out of twelve problems of CEC2010 than MPMLS, 4) DRADE
performs significantly better in eight out twelve problems of CEC2006 and six
out of twelve problems of CEC2010 than SACCDE.

Though DRADE is used for distributed and expensive constrained optimiza-
tion, it still has competitive even better performance than compared SAEAs.
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Table 4. Comparison Result of DRADE with Four SAEAs for CEC2010

c01 c07 c08 c13 c14 c15 c’01 c’07 c’08 c’13 c’14 c’15

mean −0.6085 9.0E+09 9.7E+09 −37.9164 1.6E+14 NaN −0.16756 9.4E+10 9.3E+10 −1.36175 5.0E+14 4.9E+14

(+) (−) (−) (−) (−) (/) (−) (−) (−) (−) (−) (≈) 9−
GPE std 0.04778 4.0E+09 4.5E+09 4.43071 9.9E+13 NaN 0.01108 1.9E+10 1.5E+10 0 9.9E+13 0 1+

EC rf 1 1 1 1 0.043 0 1 1 1 0.001 0.102 0.001 1≈
rs 1 1 1 1 0.96 0 1 1 1 0.04 1 0.04 1/

p 6.15E−7 1.42E−9 1.42E−9 2.27E−4 2.10E−9 NaN 1.99E−9 1.42E−9 1.42E−9 1.17E−2 1.22E−9 8.00E−1

mean −0.3911 1.0E+08 1.2E+08 −22.281 1.3E+14 6.1E+13 −0.2846 5.3E+09 1.8E+09 −6.88964 2.9E+14 5.0E+14

(−) (−) (−) (−) (−) (≈) (+) (−) (−) (−) (−) (≈) 9−
KTL std 0.05844 1.5E+08 1.3E+08 8.72321 8.9E+13 5.3E+13 0.03434 4.4E+09 2.9E+08 6.56405 1.2E+14 2.7E+14 1+

BO rf 1 1 1 1 0.66667 0.02667 1 1 1 1 0.84 0.06667 2≈
rs 1 1 1 1 0.92 0.08 1 1 1 1 0.92 0.16 0/

p 4.60E−3 1.42E−9 1.42E−9 6.57E−9 4.06E−9 4.00E−01 1.17E−3 1.42E−9 1.42E−9 3.04E−8 3.16E−9 4.89E−01

mean −0.3947 2.4E+04 5.4E+05 −43.0983 2.7E+13 3.7E+13 −0.22556 4.2E+08 1.3E+09 −15.6600 7.9E+13 3.3E+14

(−) (+) (≈) (−) (≈) (≈) (−) (−) (−) (−) (+) (≈) 6−
MP std 0.07230 1.7E+04 5.6E+05 6.30885 7.9E+13 0 0.03735 5.6E+08 9.5E+08 6.69934 5.7E+13 1.7E+14 2+

MLS rf 0.86333 0.99667 0.96 0.70267 0.052 0.00067 0.938 0.95667 0.92667 0.132 0.04867 0.00133 4≈
rs 1 1 1 1 0.92 0.04 1 1 1 0.96 1 0.08 0/

p 6.60E−3 1.42E−9 1.51E−1 1.70E−2 2.65E−1 5.00E−1 2.83E−2 1.42E−9 1.46E−8 4.85E−7 1.65E−6 2.67E−1

mean −0.3147 3.1E+07 4.7E+07 −51.3691 4.2E+13 NaN −0.25806 4.5E+08 2.8E+10 −26.2345 2.9E+14 4.4E+14

(−) (−) (−) (≈) (+) (/) (≈) (−) (−) (+) (−) (≈) 6−
SAC std 0.06649 2.7E+07 4.8E+07 7.18763 3.3E+13 NaN 0.05302 1.7E+08 2.1E+10 6.33105 1.2E+14 0 2+

CDE rf 1 1 1 1 0.10933 0 1 1 1 0.98133 0.16533 0.00267 3≈
rs 1 1 1 1 0.8 0 1 1 1 1 1 0.04 1/

p 1.99E−6 1.42E−9 1.42E−9 2.69E−1 5.34E−7 NaN 4.04E−1 1.42E−9 1.42E−9 8.19E−4 3.16E−9 8.00E−1

mean −0.4630 1.0E+06 1.8E+07 −46.7456 6.4E+13 1.8E+14 −0.23281 6.1E+07 7.7E+08 −20.66 2.3E+14 5.5E+14

DRA std 0.10171 1.4E+06 1.0E+07 8.9904 4.4E+13 2.3E+13 0.03115 2.1E+08 6.3E+08 10.2707 9.3E+13 0

DE rf 1 1 1 1 0.0664 0.0024 1 1 1 0.1522 0.1248 0.0008

rs 1 1 1 1 0.88 0.08 1 1 1 0.28 1 0.04

With the cooperation of the master and work agents, RBF management can
effectively assist the expensive evaluation and DE evolution has satisfactory
convergence for global search. Therefore, DRADE is a useful algorithm for dis-
tributed and expensive constrained optimization problems.

4.4 Application on Optimization of Ceramic Formula

To demonstrate the promising applications of DRADE in engineering optimiza-
tion problems, we applied it to the optimization of ceramic formula.

Firstly, the optimization of ceramic formula is a distributed and expensive
constrained optimization problem due to its characteristics. Ceramic is a tradi-
tional manufacturing industry and the optimization of ceramic formula greatly
depends on experts experience. The evaluation of an ceramic formula is to fire the
ceramic product qualifying production standards, which consume lots of man-
power, material resources and time. Therefore, the optimization of ceramic for-
mula is an expensive constrained optimization. Further, different factories have
developed different formulae for the same product. Due to trade secret, they do
not disclose ceramic formulae to other factories. They authorize an institution
with higher credibility to cooperate different factories to optimize the formula.
Therefore, the optimization of ceramic formula is a distributed and expensive
constrained optimization problem.
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Secondly, the optimization of ceramic formula can be mathematically formu-
lated as follows.

min f(x ) =
n∑

j=1

pj × xj

s.t. Q(x ) <= 0

(9)

where n is the total number of gradients. xj is the percentage and pj is the
unit price of the jth gradient respectively. Q(x ) is a set of chemical and phys-
ical constraints which should be satisfied. For example, the combination of n
gradients should have qualified chemical composition. Physical properties like
whiteness, hardness, strength, etc. should satisfy fired ceramic product should
satisfy national production standards. However, these constraints do not have
mathematical formulations and evaluated through different tools.

Thirdly, we get historical formulae and corresponding constrained values of a
specific ceramic product P from an association company, which collect data from
different factories. The unit cost of the best qualified formula is 395.21. It can
be found in Table 5 that except GPEEC and KTLBO, other three SAEAs can
reduce the unit cost than 395.21. Particularly, DRADE has significantly better
result than MPMLS and SACCDE.

Therefore, DRADE is an effective method for distributed and expensive con-
strained optimization and has promising applications in both academia and
industry.

Table 5. Comparison Result of DRADE with Four SAEAs for Optimization of Ceramic
Formula

mean std rf rs p-value

GPEEC NaN NaN 0 0 /

KTLBO NaN NaN 0 0 /

MPMLS 352.8520 25.6206 0.0493 0.64 7.63E−3

SACCDE 345.9644 32.3060 0.8026 0.96 8.10E−3

DRADE 326.7871 32.0233 1 1

5 Conclusion

In this paper, we propose a distributed RBF-assisted differential evolution algo-
rithm, which is named as DRADE to solve DECOPs. The implementation of
DRADE is based on master-slave model. The master agent is responsible for
storing expensively evaluated individuals and generating offspring with compos-
ite DEs. The distributed work agents are responsible for expensively evaluation
and the management of RBF models. In each iteration, the best candidate pre-
dicted by RBF models is sent to all work agents for expensive evaluations and
stored in all datasets for further training. Experiments on CEC2006, CEC2010
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benchmark test suites and the optimization of ceramic formula in engineering
demonstrate the promising applications of DRADE.

For the future research, we are going to develop techniques to handle prob-
lems with multi objectives and discrete variables based on DRADE. It is mean-
ingful to develop such a new method since many engineering optimization prob-
lems usually have more than one objective and their decision variables are par-
tially or even fully discrete.
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Abstract. There has been extensive research on social dilemmas. Many
models and mechanisms have been proposed to promote cooperation. In
this work, we propose a three-stage social dilemma game, the Flexi Part-
ner Selection (FPS) mechanism that can promote cooperative behaviour
among agents that are trained to maximize an absolutely selfish objective
function. Compared with previous works, our settings are more general
and flexible as the number of players in each game is not fixed. Specifi-
cally, agents can vote out players based on their past behaviours or stay
out of the game if playing the game makes them worse off. Moreover, we
consider social dilemmas with both linear and non-linear payoffs. Using
reinforcement learning (RL), self-interested agents are able to learn to
punish defectors by consistently excluding them and cooperate with oth-
ers in a number of different settings.

1 Introduction

There has been extensive research on cooperation among self-interested agents
in the domains of economics [4] and evolutionary biology [10]. In these contexts,
agents usually face the dilemma of choosing between maximizing their individual
benefits and cooperating for the sake of the collective good. Studying cooperation
in social dilemmas is significant because it is important to learn how to engineer
agents and incentive or punishment schemes that enable cooperation to emerge
so as to achieve socially desirable outcomes that benefit all [11].

Many mechanisms have been proposed to promote cooperation among self-
interested agents in social dilemma games [1,7,13,14]. However, existing meth-
ods have several limitations. Firstly, many mechanisms deal with two-person
social dilemmas which make them highly inapplicable in more complicated set-
tings like N-person social dilemmas. Secondly, existing mechanisms are proven
to work only for very specific social dilemma games. In particular, none of the
proposed methods can handle N-person social dilemmas with both linear and
non-linear payoffs. Thirdly, irrational players who may take unforeseeable and
random actions are generally not taken into consideration. Mechanisms that rely

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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heavily on actions or outcomes in previous games [1,14] have the risk of break-
ing down when dealing with irrational players. Last but not least, the number
of players in each game is usually fixed which may be a strong and unrealistic
assumption in real world contexts. For example, the Collective Risk Dilemma
(CRD) [14] which is one of the dilemma games considered in this paper is inspired
from climate negotiations. It is not reasonable to assume that the number of par-
ticipating countries is fixed because some may enter or exit the negotiation over
time. As a result, it is important to have a mechanism that remains effective
in promoting cooperation even as the number of players in a dilemma game
changes.

To address the limitations of existing methods, we propose a three-stage
game, the Flexi Partner Selection (FPS) mechanism that allows self-interested
agents to learn to cooperate in social dilemmas with both linear and non-linear
payoffs. Note that we use a setting that is closer to real world contexts than
previous works, i.e., not to fix the number of players in each game and to include
irrational players that take unpredictable actions. Inspired by the effectiveness
of partner selection [1,14], we first have a voting stage (S1) where agents vote to
decide who will be their partners in the dilemma game based on the outcome of
the previous game [14]. Then in the opting out stage (S2), agents can opt out if
their expected payoffs are negative. In the final stage (S3), players who are still
in the game decide whether to cooperate or to defect. In order for the agents to
learn from their experiences to maximize their selfish objective functions, they
are trained using reinforcement learning (RL). Specifically, agents are trained
using Q-Learning [21] in S1 and Deep-Q-Network (DQN) Learning [9] in S3.

With our proposed mechanism, agents learn to consistently exclude “bad”
individuals and cooperate with the “good” ones. However, existing partner selec-
tion models [1,14] are unable to achieve large scale cooperation when irrational
players are involved and the number of players in each game is large and not
fixed.

The contributions we make in this work are summarized as follows. Firstly,
we propose a three-stage social dilemma game, the Flexi Partner Selection (FPS)
mechanism that is able to achieve sustainable cooperation among self-interested
agents in social dilemmas with both linear and non-linear payoffs. We also take
irrational players into consideration and do not fix the number of players in each
game which we believe is closer to real world contexts. Secondly, we design state
features and reward functions to facilitate the effective learning of RL agents.
Thirdly, we show the effectiveness of our mechanism using a number of different
experimental settings. Our experimental results show that self-interested agents
are largely able to learn to consistently exclude defectors and cooperate with
others. Note that cooperation is not achieved by making the agents sacrifice
their individual benefits. Instead, cooperation benefits them in the long run.

2 Related Work

Social dilemmas include 2-person social dilemmas and N-person social dilemmas.
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One classic example of a 2-person social dilemma is the 2-person Prisoner’s
Dilemma where each player can maximize his payoff by defecting while total
gains can be maximized when both players cooperate. A partner selection model
was proposed in [1] to promote cooperation in repeated 2-person Prisoner’s
Dilemma through partner selection based on actions in the previous game. Even-
tually more than 90% of the players learn to choose partners who cooperated
in the previous game and then to cooperate with them. However, this model is
restricted to 2-person settings.

There are also other works that explore cooperation in 2-person social dilem-
mas. For example, multi-agent reinforcement learning (MARL) is used to train
players to cooperate in computer games such as Wolfpack [6] and the Apple-
Pear game [20]. In [12], cooperation is achieved based on the assumption that
agents are emotional and hence have guilt when defecting. Under this assump-
tion, agents are not entirely self-interested. The mechanism proposed in [13]
assumes that players’ past actions are not public and can be revealed by their
co-players at a cost.

In the case of N-person social dilemmas, one typical example is the Collective
Risk Dilemmas (CRD) which have non-linear payoffs [8,14,15,17]. In a CRD
game, each agent can cooperate by contributing a certain amount towards the
collective goal or defect by not contributing anything. The collective goal is
achieved if the proportion of cooperators is no less than a certain threshold,
then every agent receives a positive payoff. Otherwise every agent receives a
payoff of 0. Defection is the dominant action although cooperation is desirable.
A partner selection model was proposed in [14] in the context of CRD. Agents
largely learn to pick up the Outcome-based Cooperative Strategy (OC), i.e.,
to always cooperate and to select agents that cooperated in the previous game
as partners if the collective goal was not achieved in the previous game. One
main disadvantage of the proposed model is that agents tend to defect when
(1) the amount of contribution required for cooperation is large; and (2) the
threshold to achieve the collective goal is large. There are also other ways to
punish defectors or to reward cooperators [2,3,19]. However, these mechanisms
involve components that incur extra costs such as costly monitoring institutions.

An extension of the CRD is the repeated Public Goods Game (PGG) where
each agent can decide how much to contribute and the collective goal is achieved
if the total contributed amount is no less than a certain threshold [7]. Although
large scale cooperation is achieved, agents fail to learn to cooperate unless a
significant portion of the agents first cooperate. There also exist N-person social
dilemmas with linear payoffs (LPSD) [16]. In this case, the payoffs to both coop-
erators and defectors follow some linear functions of the proportion of coopera-
tors. Payoffs to defectors are always larger than that to cooperators. However,
the payoff to each cooperator when every agent cooperates is larger than the
payoff to each defector when every agent defects. Note that no previous work
has achieved large scale cooperation in this setting.
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Fig. 1. Flexi partner selection (FPS) mechanism

3 Flexi Partner Selection (FPS) Mechanism

In this section, we formally introduce our proposed three-stage social dilemma
game, the Flexi Partner Selection (FPS) mechanism. We consider N players
playing rounds of games. Among the N players, we first follow [14] and have Nc

players that always cooperate, Nd players that always defect and Nrl agents that
are to learn a policy in order to achieve the highest possible individual reward.
On top on that, we also have Nr irrational players that cooperate (and defect)
with a probability of 50%. Note that the values of N , Nc, Nd, Nr and Nrl are not
fixed and different values will be tested to show the robustness of our proposed
method. We aim to make the agents learn to balance the immediate rewards for
defecting with the future cost of being excluded and to handle different types of
players. An overview of our proposed mechanism is shown in Fig. 1.

3.1 Mechanism Flow

Voting Stage (S1). At the beginning of every round, each of the Nrl agents
can vote out certain players. There are in total 4 types of votes including: (1)
not to vote out anyone; (2) to vote out players who defected in the previous
game; (3) to vote out players who defected or got voted out in the previous
game; and (4) to vote out players who cooperated in the previous game. Note
that although it is counter-intuitive to vote out cooperators, it is important to
include this possibility to show that the agents can learn to filter out bad actions.
If no more than half of the agents cast the same vote, nobody will be voted out.
Note that agents can keep excluding defectors which is fundamentally different
from strategies that are entirely based on players’ actions in the previous game
[1,14].

Opting Out Stage (S2). Based on the outcome of S1, an agent will opt out
and receive a payoff of 0 if the expected payoff is negative. The estimation of the
expected payoff is done based on the assumption that players who are not voted
out in S1 will take the same action as they did when they last participated in
the game. This assumption is consistent with existing partner selection models
[1,14].

Dilemma Game (S3). All remaining players then decide whether to cooperate
or to defect. We consider 2 different social dilemma games, i.e., Social Dilemmas
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with Linear Payoffs (LPSD) [16] and Collective Risk Dilemmas (CRD) [14]. For
LPSD games, the payoffs to a cooperator and a defector are C(x) = acx + bc
and D(x) = adx + bd respectively where x = m

N , m is the number of cooperators
and N is the total number of players. Note that the following 2 conditions have
to be satisfied: (1) each player always receives a higher payoff for defecting than
for cooperating, i.e., D(mN ) > C(m+1

N ); and (2) each player receives a lower
payoff if all defect than if all cooperate, i.e., D(0) < C(1). For CRD games, each
player can cooperate by contributing an amount c towards the collective goal or
defect by contributing nothing. The collective goal is achieved if the proportion
of cooperators is no less than a certain threshold thres. Each player receives
a payoff of b (where b > c) if the collective goal is achieved and a payoff of 0
otherwise. In both games, defection is the dominant action although cooperation
is desirable.

3.2 Policy Learning Using Reinforcement Learning

RL is a suitable tool to train agents in social dilemmas mainly because of 2 rea-
sons. Firstly, RL does not assume any knowledge of the environmental dynam-
ics and directly trains agents to take actions based on the states observed. It
can therefore be applied even when the environment is complex. Secondly, RL
agents are designed to take actions to maximize their rewards which are usually
derived from selfish objective functions for social dilemmas. This design aligns
with the characteristic of self-interested agents. It is rather challenging to design
the reward system because the actual return an agent receives for his action is
not only the payoff of the current game but also reflected in what other agents
learn. For example, when an agent defects in a game, he may be punished by
other agents and have to bear the consequences in subsequent games. Taking
this feature into consideration, the reward received by an agent is designed to
contain both the payoff from the current game and the payoffs from subsequent
games.

RL Agent Training with Q-Learning in S1. In Q-Learning [21], an agent
is to learn a policy represented through a state-action value function Q(s, a). A
Q-Table is commonly used in this context. The ε-greedy policy is defined as:

π(s) =

{
arg maxa Q(s, a) with probability 1 − ε

random action a with probability ε
.

Each agent stores a set of transitions (s, a, r, s′) by interacting with the envi-
ronment and updating its policy using

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] (1)

where s is the current state, a is the current action, r is the reward received for
(s, a), s′ is the next state, α is the learning rate and γ is the discount factor. In
order to ensure that all (s, a, r, s′) tuples stored in each agent’s memory buffer are
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always the most recent and updated, the memory buffers are refreshed whenever
a new (s, a, r, s′) is available. Each agent can then be trained with the most
recent experiences.

In S1, each RL agent is to pick an action av ∈ {0, 1, 2, 3}. Specifically, av = 0
is to vote nobody out, av = 1 (av = 3) is to vote out every player that defected
(cooperated) in the previous game and av = 2 is to vote out every player that
defected or got voted out in the previous game. An agent receives a reward rv
in S1 only if its vote is consistent with the outcome of the voting stage. The
reward rv is the agent’s payoff from the dilemma game. Motivated by the OC
strategy [14], each RL agent makes the voting decision av based on the number
of cooperators (Nprev

c ) and defectors (Nprev
d ) in the previous game respectively

which form the state sv each RL agent observes.
Each agent learns an optimal policy πv to take action av given state sv

using a Q-Table of size (N + 1)2 × 4. The corresponding Q-value for the state
sv = (Nprev

c , Nprev
d ) and action av is found at the (N · Nprev

c + Nprev
d )th row

and ath
v column of the Q-Table. An ε-greedy policy is used with initial εv value,

εv(init) set to be 1 so as to allow more exploration at the start. εv is reduced
by 1% after each round but never allowed to be below 0.1, i.e., εv(end) = 0.1.
Discount rate γ and learning rate α are set to be 0.99 and 0.1 respectively.

RL Agent Training with DQN Learning in S3. Deep-Q-Network (DQN)
Learning is used in S3 because it is no longer practical to use Q-Learning to
trace all state-action pairs [9]. In this context, a Q-value function Q∗(s, a) is
used to represent the expected accumulated reward that the agent can obtain if
it takes action a in state s and then follows the optimal policy until it reaches a
terminal state. The optimal policy takes the action with the maximum Q-value
in any state. The Q-value function Q∗(s, a) is approximated with a deep neural
network Q(s, a;Θ) with parameters Θ. We adopt the ε-greedy deep Q-learning
with experience replay [9] for learning the Q-value functions.

Given a set of transitions (s, a, r, s′), parameters in Q(s, a;Θ) are updated
with a gradient descent step by minimizing the mean square error (MSE) loss
function, as shown in Eq. 2.

L(θ) =
∑

s,a,r,s′
[(r + γ max

a′
Q̂(s′, a′;Θ−) − Q(s, a;Θ))2], (2)

where γ is the discount rate, and Q̂(;Θ−) is the frozen target network.
In S3, inspired by the strategy that relies on players’ actions in the previous

game proposed in [1], each RL agent takes an action ad ∈ {Cooperation, Defec-
tion} based on the state sd observed which includes relevant information about
players that participate in the current game. The state consists of the proportion
of players that cooperated, defected, got voted out and opted out in the previous
game respectively. Intuitively, the reward rd each agent receives can simply be
the payoff from the social dilemma game. However, because of the presence of
S1, one’s action in S3 may have an impact on whether or not he will be voted out
in subsequent games. As a result, our design of the reward signal follows other
RL applications [18,22] and consists of both immediate payoff and short-term
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Table 1. Emergence of cooperation in Different Mechanisms

PSM1 PSM2 FPS

Avg% of Cooperators 65% 62% 95%

Avg Individual Payoff 2.05 1.94 2.41

future payoffs. Specifically, the reward rd is set to be the sum of the payoff from
the social dilemma game in the current round and the payoffs from the next 2
rounds using a discount factor of 0.9.

Each agent learns an optimal policy πd to take action ad given state sd using
DQN Learning. We parameterize each RL agent’s model using a neural network
with one hidden layer of 32 neurons with activation function SELU [5]. Other
settings are the same as in S1.

4 Experiments and Discussions

In this section, we evaluate the emergence of cooperation with our proposed FPS
mechanism, as described in Sect. 3.1, using two different types of social dilemma
games, i.e., Social Dilemmas with Linear Payoffs (LPSD) and Collective Risk
Dilemmas (CRD). We follow [1] and train RL agents in 30,000 rounds of games
(episodes). The default settings for our experiments are as follows:

– LPSD: We follow [16] and set the payoff functions as C(x) = acx + bc for
(ac = 2, bc = 0.5) and D(x) = adx + bd for (ad = 2, bd = 1) respectively.

– CRD: We follow [14] and set the net gain to a cooperator when the collective
goal is achieved to be 2. Specifically, the contributed amount from a cooper-
ator is c = 1, the payoff to each player if the collective goal is met is b = 3
and the proportion of cooperative behaviour required to achieve the collective
goal is thres = 0.7.

– Players: The number of players that always cooperate is Nc = 5, the number
of players that always defect is Nd = 5, the number of irrational players that
take random actions is Nr = 5 and the number of RL agents is Nrl = 5. Under
this default setting, the total number of players in a game is significantly more
than that in previous works [1,14].

Note that all experiments follow the default setting unless specified otherwise.

4.1 Emergence of Cooperation in FPS Mechanism

In this experiment, we evaluate the effectiveness of the FPS mechanism in pro-
moting cooperation and make comparisons with the partner selection models
proposed in [1,14] which we call PSM1 and PSM2 respectively. The optimal
strategy of PSM1 is to always choose a cooperator as the partner and cooperate,
and to cooperate (defect) when chosen by one who cooperated (defected) in the
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previous game. The optimal strategy of PSM2 is to always cooperate, and to
only choose cooperators as partners if the collective goal was not achieved in
the previous game. We make slight modifications to PSM1 and PSM2 so as to
make them fit into our setting where the number of players per game is not
fixed. For PSM1, we modify it as a mechanism where agents choose all players
that cooperated in the previous game and then cooperate only if in the previous
game all players cooperated (for LPSD) or the collective goal was achieved (for
CRD). For PSM2, we modify it as a mechanism where if in the previous game
not all players cooperated (for LPSD) or the collective goal was not achieved
(for CRD), agents would choose players who cooperated in the previous game to
be their partners and cooperate. Otherwise, they would choose all other players
to be their partners and cooperate.

For each mechanism, the games are repeatedly played 100 times using the
default setting and its respective optimal strategy. We then report the aver-
age proportion of cooperative behaviour among S3 participants and the average
payoff each agent receives in Table 1. We observe that PSM1 and PSM2 show
rather poor performance as they achieve an average of 65% and 62% cooperation
respectively. In contrast, the FPS mechanism is able to achieve 95% coopera-
tion. We observe that the RL agents demonstrate significantly better cooperative
behaviour than the agents adopting respective optimal strategies in PSM1 and
PSM2. Moreover, the RL agents in the FPS mechanism receive the best payoffs
which shows that cooperation is not achieved at the expense of their individ-
ual payoffs. The poor performance of PSM1 and PSM2 may be attributed to 3
main reasons. Firstly, both mechanisms are not proven to be effective for social
dilemmas with more than 7 players. Their applications may be highly restricted
to small groups. Secondly, as the number of players in each game is not fixed,
they may not adapt well enough to such a complicated environment. Thirdly,
as they rely heavily on players’ actions and games outcomes in previous games,
they are not able to effectively deal with irrational players whose actions are
unpredictable.

4.2 Learned Strategy of RL Agents

In this set of experiments, we aim to explore how the behaviour of RL agents
and cooperative behaviour evolve in S1 and S3 respectively. We follow [1] and
report the evolvement of each action in Figs. 2 and 3 respectively. Specifically,
we report the average proportion of each action per 100 rounds (episodes) of
games. Note that there is no exploration in the last 100 rounds of games, i.e.,
all RL agents make decisions based on their learned policies.
RL Agents’ Learned behaviour in S1. Based on the result shown in Fig. 2,
we highlight 3 key observations.

Firstly, the average proportion of RL agents taking action av = 2 in the
last 100 episodes is 83% for LPSD and 91% for CRD. In both games, most RL
agents learned to vote out players that defected or got voted out in the previous
game as they recognize that in order to maximize their individual payoffs, it
is insufficient to only exclude players that defected in the previous game like
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the mechanisms designed in [1,14]. Instead, players that have been punished for
defecting must be consistently excluded.

Secondly, in the first few thousand episodes, the number of RL agents taking
av = 1 increased before most of them eventually learned to choose av = 2. This
is mainly because av = 1 is also effective in punishing defectors. However, over
time, most RL agents learned that av = 2 is the most effective as they try to
maximize their individual payoffs.

Last but not least, we observe that RL agents take action av = 2 more
often in CRD games than in LPSD games. Note that CRD games have only 2
possible outcomes, i.e., whether or not the collective goal is achieved. In con-
trast, LPSD games have different payoffs for different proportions of cooperative
behaviour. As LPSD games are inherently more complicated than CRD games,
it is expectedly harder for RL agents to learn an optimal policy in LPSD games.
It also explains why it takes a longer time for RL agents to learn not to vote out
cooperators (av = 3) in LPSD games.

Fig. 2. Evolvement of behaviours of RL agents in S1

Fig. 3. Emergence of cooperation in S3
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Emergence of Cooperation in S3. As shown in Fig. 3, the average proportion
of cooperative behaviour among S3 participants in the last 100 episodes is 94%
for LPSD and 96% for CRD. Similar to S1, we also observe in S3 that it takes a
longer time for convergence to occur in LPSD games than in CRD games. Note
that although LPSD games are more complicated than CRD games as explained
earlier, there is only marginal difference in the proportion of cooperators between
these 2 types of games. It shows that the FPS mechanism remains robust even
as the payoff type of the game changes.

4.3 The Effect of Changing the Number of Players

In this experiment, we aim to evaluate the robustness of the FPS mechanism
as the number of players increases. As more RL agents explore and adjust their
policies, there is a larger shift in the dynamics of the environment which may
affect the efficiency and the effectiveness of their learning. Therefore, we run
experiments with up to 3 times as many players in each game. Specifically, we
use the following 3 settings:

– PS1 (default): Nc = 5, Nd = 5, Nr = 5 and Nrl = 5.
– PS2: Nc = 5, Nd = 5, Nr = 5 and Nrl = 15.
– PS3: Nc = 15, Nd = 15, Nr = 15 and Nrl = 15.

With each of the 3 settings, RL agents are first trained and then play 100
rounds of games using their learned policies. We then report the average pro-
portion of cooperative behaviour among S3 participants in in Fig. 4.

For LPSD games, the proportion of cooperative behaviour decreases from
94% to 85% which translates to a loss of payoff of 0.18 to every player as the
setting changes from PS1 to PS2 and remains generally unchanged as the setting
changes from PS2 to PS3. On the other hand, for CRD games, the proportion of
cooperative behaviour remains generally unchanged as the setting changes from
PS1 to PS2 and decreases from 96% to 91% as the setting changes from PS2 to
PS3. Note that the outcomes of CRD games are not affected as the collective
goal is consistently achieved.

Fig. 4. Impact of varying the number of players on the emergence of cooperation
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Fig. 5. Impact of varying thres for CRD games

Fig. 6. Impact of varying the payoff functions for LPSD games

We have shown that, the FPS mechanism remains consistently effective as
the number of RL agents increases from 5 to 15 and the total number of players
increases from 20 to 60.

4.4 The Effect of Changing the Collective Goal Requirement
of CRD Games

We have shown experimentally the emergence of cooperation in CRD games
with the default setting of thres = 0.7. Any change in thres is expected to
have a large impact on the dynamics of the environment and hence RL agents’
learning. In Fig. 5, we report the average proportion of action av = 2 in S1 and
the average proportion of cooperative behaviour in S3 per 100 rounds of game
for thres ∈ {0.5, 0.7, 0.9} [14]. Note that there is no exploration in the last 100
rounds of game.
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For smaller values of thres, there should be more tolerance toward defectors
because it is now more possible for someone to defect without affecting the
outcome of a CRD game. This implication is reflected in both S1 and S3. In
S1, we observe that the convergence for thres = 0.5 is much slower than that
for thres = 0.7 although the average proportion of action av = 2 in the last
100 episodes does not differ significantly. For thres = 0.7, we see more than
half of the RL agents taking action av = 2 after 1000 episodes. In contrast,
for thres = 0.5, that only occurs after no fewer than 7000 episodes. As the
collective goal is achieved more easily and more frequently, it takes a longer
time for RL agents to learn the impact of defection upon the collective goal and
then to punish defectors. In S3, we observe not only slower convergence, but also
a significantly smaller proportion of cooperative behaviour (76%) for thres = 0.5
than that (96%) for thres = 0.7. Note that the outcomes of the CRD games are
not affected.

For larger values of thres, i.e., thres = 0.9, we make 2 major observations.
First of all, in S1, the rate of convergence for thres = 0.9 shows no difference
compared to that for thres = 0.7. Secondly, in S3, the average proportion of
cooperative behaviour in the last 100 episodes is merely 78% which is not enough
to achieve the collective goal. This is mainly because of the stringent requirement
for collective success. As RL agents explore and adjust their policies during the
learning process, they rarely experience cases where the collective goal is achieved
which significantly compromises their learning. Similar results were also reported
in [14] where thres is set to be 6/7.

4.5 The Effect of Changing the Payoff Functions of LPSD Games

In LPSD games, as the values of bc and bd are set to be smaller and more
negative, it may affect RL agents’ decisions in each stage and also the dynamics
of the environment because a larger proportion of cooperators will be needed
in order to achieve non-negative payoffs. In this set of experiments, we have 2
objectives: (1) evaluate the robustness of the FPS mechanism amid changes in
the payoff functions; and (2) explore the roles of S1 and S2 by first training RL
agents without them and then adding them incrementally. Our experiments are
run with the following payoff functions:

– LPSD PF1: ac = ad = 2, bc = −0.5 and bd = 0.
– LPSD PF2: ac = ad = 2, bc = −1 and bd = −0.5.
– LPSD PF3: ac = ad = 2, bc = −1.5 and bd = −1.

With each payoff function, RL agents are trained and 100 rounds of games are
played. We then report the average proportion of cooperative behaviour among
S3 participants in Fig. 6.

First of all, when RL agents are trained with only S3, the proportion of
cooperative behaviour stays consistently around 37.5% which consists of players
that always cooperate and irrational players that cooperate half the time. The
RL agents learn to defect as it is the dominant action. Note that in this case
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defectors are never punished. Similar results are also reported in [1] in the 2-
person setting. As S1 is added, most RL agents learn to consistently exclude
players with “bad” behaviour and to cooperate themselves. The proportion of
cooperative behaviour in S3 increases by more than 100% to at least 80% for all
3 settings. Furthermore, as S2 is added and RL agents can opt out of the game,
the proportion of cooperative behaviour in S3 further increases to at least 91%
which then translates to gains of payoffs of 0.2, 0.22 and 0.16 to each player in
LPSD PF1, LPSD PF2 and LPSD PF3 respectively.

We can draw 2 conclusions from this experiment. Firstly, the FPS mechanism
remains effective amid changes in the payoff functions of LPSD games. Secondly,
S1 and S2 significantly help with RL agents’ learning and contribute to the
emergence of cooperation.

5 Conclusion

In this work, we propose a three-stage N-person social dilemma game, the
Flexi Partner Selection (FPS) mechanism to promote cooperation among self-
interested agents. The FPS mechanism is experimentally proven to be effective
for social dilemmas with both linear and non-linear payoffs without the need to
fix the number of players in a game. It also demonstrates advantages over existing
methods when dealing with irrational players. In order to facilitate RL agents’
learning, we carefully design the state based on which they make decisions and
reward functions that provide valuable feedback to their past actions. RL agents
largely learn to consistently exclude defectors and to cooperate themselves.

We believe that with this work, we would open a few directions for future
work. The first possible direction is to explore possible extension to social dilem-
mas with more complicated settings such as Public Goods Game (PGG) [7]. The
second possible direction is the emergence of cooperation in evolving environ-
ments such as payoff functions that change over time. Last but not least, it is
possible to explore other machine learning applications in social dilemmas.
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Abstract. Successor Features (SFs) improve the generalization of Rein-
forcement Learning across unseen tasks by decoupling the dynamics of
the environment from the rewards. However, the decomposition highly
depends on the policy learned on the task, which may not be optimal
in other tasks. To improve the generalization of SFs, in this paper, we
propose a novel SFs learning paradigm, Policy-extended Successor Fea-
ture Approximator (PeSFA) which decouples the SFs from the policy by
learning a policy representation module and inputting the policy repre-
sentation to SFs. In this way, when we fit SFs well in the policy represen-
tation space, we can directly obtain a better SFs corresponding to any
task by searching the policy representation space. Experimental results
show that PeSFA significantly improves the generalizability of SFs and
accelerates the learning process in two representative environments.

Keywords: Reinforcement learning · Transfer learning · Successor
features · Policy representation

1 Introduction

Reinforcement Learning (RL) is used to solve sequential decision-making prob-
lems, where an agent learns its policy by interacting with the environment
[11,18]. Recent advance has shown Deep RL (DRL) obtains expressive success
of achieving human-level control in complex tasks [13,17]. However, DRL is still
faced with the problem of sample inefficiency. Transfer learning mainly accel-
erates learning by using prior knowledge, which takes the knowledge gained on
source tasks and uses it to learn a different but related target task more effi-
ciently. It is a promising way to improve the sample efficiency of DRL [20–22].

The successor features (SFs) [3] transfer the knowledge of the task-
independent policy among tasks with the Generalised Policy Improvement (GPI)
[3] method by decoupling the dynamics of the environment from the rewards.
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However, SFs has its limitations [3]. It cannot guarantee that the policy obtained
by the GPI method is the optimal policy for the new task, so further learning
and exploration are needed. Besides, some algorithms apply SFs in various ways
to exploit its rapid task inference mechanism. The SFOLS [1] and SIP [2] con-
struct a better basic policy set in different ways and obtain a policy that can
perform well on more complex downstream tasks with the GPI method. But
for more complex environments, constructing the policy set is computationally
intensive. VISR [15] and APS [12] take the policy-conditioning variable as an
additional input to SFs and combine the application of mutual information to
learn different behavior policies. However, generalizing SFs over behavioral poli-
cies implies inefficiencies in sampling and generalization among policies. USFA
[4] treats each task’s weight as the representation of the optimal policy for the
corresponding task, then takes them as additional input to the SFs, allowing SFs
to have generalization capability among tasks. However, USFA has the problem
of insufficient generalization among tasks and faces the problem of unsmoothness
in the task space caused by directly equating task weights with policies. Still,
none explicitly exploit the relationship between policies and SFs to allow suc-
cessor features to generalize among policies and tasks, nor do they address the
problem of over-coupling SFs with policies. If we do not decouple SFs from pol-
icy, much of the previously available policy information will be forgotten in the
process of learning SFs, which makes knowledge transfer inefficient. Moreover,
similar policies may be repeatedly learned when learning policies for different
tasks, making the learned knowledge redundant.

In this paper, we aim to decouple SFs from policy, which helps us take advan-
tage of generalizing SFs among policies to improve learning efficiency. Therefore,
we encode policy into representation as an additional input to the SFs and pro-
pose policy-extended successor features approximator (PeSFA). Its role is to fit
the SFs corresponding to each policy in the policy representation space. So given
a representation of any policy, we can well estimate the SFs of that policy. At
the same time, we know that SFs can decouple the policy from the task, then we
can decouple the SFs from the policy to generalize SFs among tasks and policies.
With the help of this property, we can find the SFs corresponding to a better
policy for any task in the policy representation space. The primary method we
use is to search for a better policy corresponding to the given task in the policy
representation space in the direction of the gradient that maximizes the action-
value function. Experimental results demonstrate the effectiveness of PeSFA in
improving learning performance compared with previous methods.

2 Related Work

Extension of SFs Function. UVFA [16] extends the traditional value func-
tion by taking additional input and generalizes the value function over different
targets by designing additional input forms. USFA [4] takes task weights as addi-
tional inputs to SFs, which generalize SFs at the optimal policy level by equating
the task weights to the encoding of the corresponding optimal policy. However,
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USFA directly equates the optimal policy with weight, making its generalizabil-
ity among tasks affected by the continuity between tasks and optimal policies,
leading to inaccurate estimation. VISR [10] applies SFs to the unsupervised pre-
training domain by using policy conditioning variable as additional input to SFs
and learning different behavioral policies by maximizing the behavioral mutual
information while using the GPI method to accelerate the speed of policy learn-
ing. On the other hand, the APS algorithm [12] points out some problems in
the VISR and APT algorithms, then combines the two as APS, which solves the
issue of the lack of exploration capability of VISR. Both VISR and APS gener-
alize SFs over the policy conditioning variable, making the method inefficient in
terms of sampling during training and generalization at the policy level.

Constructing Policy Set. The SIP [2] proposes to construct a specific set
of mutually independent policies. By using the GPI method on this policy set,
policies with higher performance can be obtained immediately on downstream
tasks that are usually more complex. SFOLS [1] enables the GPI method to
get the optimal policy for any task without interacting with the environment
by constructing a convex coverage policy set. Once the environment becomes
complex, SIP and SFOLS will need to build a set containing a large number of
policies, which requires a lot of computation. The Policy Caches [14] can calculate
the upper bound performance of the policy obtained by the GPI method on a new
task with the information in the historical policy set. It can help us determine
whether a new policy needs to be learned or uses the policy obtained by the GPI
method.

Transfering Expert Experience with SFs. The PsiPhi-Learning [7] algo-
rithm learns the SFs using the ITD method over a series of trajectories with
no reward. The trajectories are generated by agents with arbitrary perfor-
mance interacting with the environment. And GPI method combines the policies
obtained by each agent and the current policy being learned to get a policy with
better performance. However, this approach requires using many models to fit the
SFs under the corresponding policies, which lacks generalizability. Abstraction
with Successor Features [9] defines abstract successor options under the SMDP
setting. And each possible starting point is calculated to match the abstract suc-
cessor option under the specified MDP by the feature-matching algorithm in IRL.
Then the policy of the abstract successor option under the specified MDP can
be obtained to transfer the abstract option in different environments. However,
this method essentially transfers knowledge through a feature-matching-based
IRL approach, which lacks task-specific generalization.

Our work belongs to the category of extending SFs by adding additional
input. First, we decouple SFs from policies by using policy representations as an
additional input, which allows it to generalize among policies and leverage the
knowledge of historical policies. In addition, with the property of generalizing
SFs among policies and tasks, a method is proposed to search for a better policy
for the corresponding task in the policy representation space. Besides, the search
method can also help us expedite the learning process and explore the policy
representation space more efficiently, accelerating the fitting process of SFs and
corresponding policies.
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3 Background and Problem Formulation

3.1 Reinforcement Learning

Reinforcement learning (RL) means that the agent guides behavior through the
reward obtained by interacting with the environment, and the goal is to make
the agent obtain the maximum reward. The model of the interaction between the
agent and environment can be modeled as a Markovian decision process (MDP).

MDP can be expressed as a tuple M = (S,A, p,R, γ), where S and A are the
state and action space; p(· | s, a) describes the transition dynamics; R(s, a, s′)
is the reward obtained in the transition of s

a→ s′, and γ ∈ [0, 1) is the discount
factor [6].

The goal of the agent in RL is to find a policy π, that can maximize
the expected cumulative reward, i.e., Gt =

∑∞
i=0 γiRt+i+1, where Rt =

R(St, At, St+1). The action-value function of the policy π can be expressed as

Qπ(s, a) ≡ E
π(Gt | St = s,At = a) (1)

where E
π[·] represents the expected return of following the policy π.

3.2 Successor Features

First, We illustrate the setting of the environment that is of interest in this paper
with the MDP tuple. Each task is determined by the reward function Rw, and
the elements of the MDP tuple for each task are kept consistent except for R.
The one-step expected reward obtained in the transition of s

a→ s′ is

E[Rw(s, a, s′)] = rw(s, a, s′) = φ(s, a, s′)�w (2)

where φ(s, a, s′) ∈ R
d is feature of the one-step transition (s, a, s′) and w ∈ R

d

is the task weight [3]. The one-step transition feature φ(s, a, s′) can be viewed
as a description of a salient activity expected or undesired by the agent, such
as picking up an object or walking through a door. Suppose φt = φ(st, at, st+1),
then the action-value function of Eq. 1 can be written as

Qπ(s, a) = E
π

[ ∞∑

i=t

γi−tφi+1 | St = s,At = a

]�
w = ψπ(s, a)�w (3)

where ψπ(s, a) is the successor features (SFs) [3], which is the expected cumula-
tive value of φ under the policy π. And the following equation can be obtained

ψπ(s, a) = φt + γEπ[ψπ(St+1, π(St+1)) | St = s,At = a] (4)

This formula shows that SFs satisfy the Bellman equation and φt can be
considered as the reward function in Eq. 1. Therefore, most of the RL methods
can be used to calculate ψπ. With the temporal difference (TD) error [18], the
loss function for learning successor features is as follow
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L(ψ̃π) = E(s,a,s′)∼D
[(

φ(s, a, s′) + γψ̃π(s′, a′) − ψ̃π(s, a)
)2]

(5)

where a′ = arg maxb Q̃π(s′, b) = arg maxb ψ̃π(s′, b)w, D represents the replay
buffer used to store historical data.

Suppose the agent has learned the SFs {ψπi}n
i=1 on a series of tasks. Now

given a new task w, with the property of the SFs, the action-value function of
the existing policy πi on the new task w can be obtained immediately without
the need to evaluate again, i.e., Qπi = ψπi(s, a)�w. Then the policy on a new
task using the GPI method can be defined as

π(s) ∈ arg max
a

max
i

Qπi = arg max
a

max
i

ψπi(s, a)T w (6)

And the theorem of GPI guarantees that ∀(s, a) ∈ S × A, Qπ(s, a) ≥
maxi Qπi . This result can likewise be extended to replace Qπi with the fitted
Q̃πi .

4 Policy-Extended Successor Features

Traditional SFs leverage the knowledge of historical policies to transfer to the
new task by obtaining a policy with a basic performance guarantee with the
GPI method. However, the policy is not optimal for the new task, and it cannot
directly find a better policy built on the sub-optimal policy obtained by the GPI
method, but it requires exploration and training. In addition, the learned SFs
are highly correlated to the policy, which means that SFs cannot leverage all
the valuable policy knowledge learned during the training process of a policy
from random to optimal. Besides, it limits the efficiency of SFs in transferring
all possible policy knowledge.

In this paper, we propose a novel SFs learning paradigm called Policy-
extended Successor Feature Approximator, which takes the policy representation
as an additional input to SFs. We can fit the SFs corresponding to the policy
representations through the training process, that is, to fit SFs ψπ in the policy
representation space Π. And Fig. 1 is the overall architecture diagram of this
work. The architecture mainly comprises the SFs module, policy representation
module, and gradient ascent based representation space search module.

Ideally, in the policy representation space, if we know any policy representa-
tion, the SFs corresponding to the policy can be obtained by inputting the policy
representation into the SFs module. To achieve such an effect, we enhance the
inter-policy generalization of the SFs module by continuously exploring and fit-
ting the corresponding SFs in the policy representation space. At this time, The
gradient ascent based representation space search module can use the gradient
direction obtained under the corresponding task as the optimization direction
for the representation space searching. When we encounter any new task w, we
can randomly select the policy representation as the initial point, then take the
gradient as the direction and continuously update the policy representation. This
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Fig. 1. The overall architecture of PeSFA which consists of SFs module, policy rep-
resentation module, and gradient ascent based representation space search module.

process allows us to search for a better policy and explore the policy representa-
tion space more efficiently. Besides, the policy representation module consists of
a policy encoder and an auxiliary decoder which can learn in a self-supervised
manner, providing us with the representation encoding method. Next, we will
go into the details of each module.

4.1 Policy-Extended Successor Features Approximator

On the basis of UVFA [16], we extend SFs to take policy as an additional input
and define the policy-extended successor features as ψ : S × A × Π → R

d, that
is, ψ(s, a, π) = ψπ(s, a) for all s ∈ S, a ∈ A and π ∈ Π. At which point, the
action-value function can be expressed in the following form

Qπ(s, a,w) = ψπ(s, a)�w = ψ(s, a, π)�w (7)

In practice, using the policy as an additional input requires an algorithm to
encode policy into the corresponding representation as a more compact input.
Assuming that there is a mapping function g : Π → X ⊆ R

n, any policy π ∈ Π
can be mapped into an n-dimensional representation χπ = g(π) ∈ X . Then Eq. 7
can be expressed as Qπ(s, a,w) = ψ(s, a, χπ)�w, we call ψ̃(s, a, π) ≈ ψ(s, a, π) a
policy-extended successor features approximator (PeSFA).

PeSFA decouples the SFs from the policy, and we can obtain the correspond-
ing SFs ψ̃(s, a, χπ) according to the representation χπ of different policy π. It
is equivalent to fitting the SFs corresponding to each policy in the policy repre-
sentation space. Since PeSFA needs to fit the SFs ψ̃(s, a, χπ) corresponding to
each fixed policy π, it is more reasonable to use the on-policy algorithm.

Therefore, the transition we need to collect is (s, a, φ, s′, a′, ωπ), where a′ is
sampled using the same policy as the selection of action a, ωπ represents the
state-action pairs collected by policy π. Training with transitions of this form,
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we can fit the SFs corresponding to the policy representation on the task w. And
the loss function of PeSFA based on TD-error [18] is as follows

L(ψ̃) = E

[(
φ(s, a, s′) + ψ̃ (s′, a′, χπ) − ψ̃(s, a, χπ)

)2
]

(8)

where χπ = Ω̃(ωπ) is the representation of policy π, ψ̃ is the target net of
PeSFA.

The process of training PeSFA, and how the gradient ascent based represen-
tation search method is used for finding a better policy as well as exploring the
representation space more efficiently is provided in AppendixA.

4.2 Theoretical Analysis on Generalizing SFs Among Policies

In this section, we will analyze the generalizability of PeSFA at the policy level
and illustrate the difference between using a value-based approach and actor-
critic architecture for generalizing the SFs among policy. Then how PeSFA can
expedite the policy evaluation and optimization process with the help of policy
generalizability will be analyzed.

To better demonstrate our analytical procedure, the approximation loss of
PeSFA ψ̃θ at any policy π ∈ Π can be expressed as

fθ(π) =
∑

i

‖ψ̃i
θ(π) − ψi(π)‖ ≥ 0, i ∈ [0, d) (9)

Subsequently, similar to the definition of π-Value Approximation in PeVFA
[19], the approximation process of PeSFA can be defined as Pπ : Θ → Θ. and
the parameter changes from θ to θ′ in this process. Then PeSFA ψ̃(π) will have
a more accurate estimate of the SFs ψ(π) corresponding to the policy π, and its
corresponding loss on the policy π can be a γ-contraction mapping, which can
be expressed in the following form

fθ′(π) ≤ γfθ(π), γ ∈ [0, 1), θ′ = Pπ(θ) (10)

We first illustrate what is unique about using value-based methods for policy-
level generalization on SFs. For a common action-value function, the policy π
is represented implicitly by the value corresponding to the state. When the
action-value function is updated, the policy it implies changes. This phenomenon
persists when we use the policy representation as an explicit input.

Suppose we train PeSFA on the task w, then the action-value function for the
task w is Qθ(s, a, π) = ψ̃θ(s, a, π)�w, and subsequently we perform an approxi-
mation process on PeSFA of the following form

θ
Pπ−→ θ′ (11)

When performing an approximation process on PeSFA, it can be known from
Eq. 10 that fθ′(π) ≤ γfθ(π), i.e., PeSFA fits the SFs better corresponding to the
same policy representation. At this point, the action-value function obtained
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by PeSFA under the parameter θ′ is Qθ′(s, a, π) = ψ̃θ′(s, a, π)�w. Although
the same policy representation is input, the policy it implicitly expresses has
changed, and this change can be expressed as

∃(s, a), s.t. ψ̃θ(s, a, π)�w �= ψ̃θ′(s, a, π)�w (12)

Therefore, when we perform an approximation of PeSFA on the task w, the
policy implied by the action-value function corresponding to the task w changes,
i.e., from π to π′. Then the policy representation input to PeSFA should be
updated from π to π′, which can be computed by ψ̃θ′(s, a, π)�w. We can then
continue the approximation process on the basis of ψ̃θ′(s, a, π′)�w.

Thus the difference between using a value-based approach and actor-critic
architecture for generalizing SFs among policy is clear. When the approximation
process is applied to SFs, the updated PeSFA is used to calculate the represen-
tation of the policy as the new input to SFs, and this step represents the process
of policy optimization. If we explicitly train a policy net, the process of policy
optimization is to update the policy directly with the value function.

Similar to the above process of approximation and optimization for PeSFA,

we define the process of updating PeSFA from θ−1 to θ0 as θ−1

Pπ0→ θ0. Then,
the process of continuously optimizing PeSFA can be expressed as

θ−1

Pπ0−→ θ0
Pπ1−→ θ1

Pπ2−→ . . . (13)

Therefore, we can express the process of optimizing PeSFA consistent with
the policy evaluation and optimization process of PeVFA. So the following equa-
tion can be obtained according to the theorem of PeVFA

fθt
(πt) + fθt

(πt+1) ≤
∑

i

‖ψ(s, a, πt) − ψ(s, a, πt+1)‖,∀t ≥ 0, i ∈ [0, d) (14)

We can then learn that

fθt
(πt+1) ≤

∑

i

‖ψ̃θt
(s, a, πt) − ψπt+1(s, a)‖, i ∈ [0, d) (15)

According to Eq. 15, the error of predicting the SFs corresponding to πt+1

using PeSFA can be smaller than the difference between ψ̃θt
(s, a, πt) and the

true SFs ψπt+1 . Therefore, the generalization of PeSFA allows us to provide a
better starting point in each iterative learning. It allows PeSFA to fit the SFs
corresponding to each policy representation more quickly.

We will then show that the policy representation points traversed by PeSFA
during optimization can form a path, and PeSFA can generalize well among
policies over the range of this path. As the process in Eq. 11, the action-value
function changes from ψ̃θ(s, a, χπ)w to ψ̃θ′(s, a, χπ)w, and the policy represen-
tation corresponding to the policy also changes from χπ to χπ′ . Assuming that
fθ(π) is L-continuous at policy π, that is

|fθ(π) − fθ (π′)| ≤ L · d (π, π′) (16)
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where π′ ∈ Π, d denotes some distance metric in the policy representation space.
Since any t ≥ 0 in Eq. 13, fθt

is L-continuous in πt [19]. When starting from a
random policy and continuously optimizing PeSFA, we will continue to get bet-
ter policies through optimizing policy. And finally, the policy obtained in the
optimization process can form a path in the policy representation space, then
PeSFA generalizes well around this optimization path in the policy representa-
tion space.

4.3 Search for Better Policy in the Policy Representation Space

We first briefly introduce the policy representation module. Then we describe
how the gradient ascent based representation space search module helps us find
a better policy for the corresponding task. In addition, it can also accelerate the
learning rate and explore the representation space more efficiently.

We use the surface policy representation (SPR) [19] algorithm with a self-
supervised training method in PeVFA as the policy representation module, which
expresses the meaning of the policy more refined.

The SPR algorithm takes the state-action pairs {(si, ai)}k
i=1 collected by the

policy π as input, and obtain a d-dimensional representation χπ, this process
can be expressed as Ωe(π) = χπ. Besides, an auxiliary decoder is built to decode
the action a corresponding to the policy based on the policy representation χπ

and the state s, i.e., Ωd(s, χπ) = a. Then the loss function of the encoder and
auxiliary decoder for the policy representation module are as follows

LAUX(Ω̃e, Ω̃d) = E

[(
Ω̃d(Ω̃e(ωπ), a) − a

)2
]

(17)

where ωπ represents the state-action pairs {(si, ai)}k
i=1 constructed according to

the policy π.
For the convenience of training policy representation module, we decide to

perform a softmax operation on action-value function ψ̃(s, a, χπ)w, which can
convert the action into the probability distribution. Then we can construct the
state-action pairs as policy representation encoding data in the following form

ωπ = {(si, ai)}k
i=1 =

{(
si,

exp(ψ̃(si, χπ, a)w/T )
∑

j exp(ψ̃(si, χπ, aj)w/T )

)}k

i=1
(18)

With the help of the policy representation module, we can obtain the rep-
resentation of the policy in a more compact form. On this basis, combining
with the search module allows the SFs module to better explore and fit in the
representation space and efficiently get a better policy.

Through the training of the algorithm, ψ̃(s, a, χπ) fit the corresponding SFs
well in the policy representation space Π, that is PeSFA can fit the corresponding
SFs plane in the policy representation space very well. Then we can find the SFs
ψ̃(s, a, χπ′

w
) of a better policy π′

w for any new task w by searching in the policy
representation space corresponding to the SFs plane.
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Fig. 2. Optimizing the policy representation in the gradient direction that maximizes
the action-value function. (Color figure online)

However, the policy representation space is continuous and infinite. If every
policy representation in the space is searched, it will undoubtedly consume a lot
of time and not be worth the gain. Therefore, we propose a method that can
search more efficiently for SFs of better policy in the policy representation space.

If we have trained on a series of tasks and obtained Πhistory, we can choose a
historical optimal policy representation point χπ ∈ Πhistory or any random pol-
icy representation as the starting point χ0. We can take the gradient direction
that maximizes the action-value function ψ̃(s, a, χ0)w as the search direction.
Then the policy representation to be optimized is advanced a certain distance in
this direction. In addition, a weight β can be used to affect the value of the cor-
responding action that we expect to maximize, that is β = exp(ψ̃(s,χπ,a)w/T )

∑
j exp(ψ̃(s,χπ,aj)w/T )

.

To sum up, the method of adjusting the policy representation by gradient direc-
tion can be expressed as

χopt = χπ + α
∂

∂χ
βψ̃(s, a, χπ)�w (19)

Then we can recalculate the gradient direction with the optimized policy
representation χopt as the starting point and move forward a certain distance in
this gradient direction. Constantly searching for a better policy representation
in the gradient direction can help us find a near-optimal policy representation
corresponding to the new task as quickly as possible.

The optimization process of PeSFA and the process of searching for a better
policy representation are shown in Fig. 2. The blue circles on the gray plane indi-
cate each policy representation point in the optimization process as in Eq. 13.
The black straight line indicates the gradient direction as in Eq. 19. Advancing
the policy representation a certain distance in this direction makes the policy
representation point that being optimized closer to the optimal policy represen-
tation point. Then the figure shows that after the gradient ascent, only a few
optimization steps are needed to reach the optimal policy representation point.
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At the same time, in the process of training, we can also optimize the repre-
sentation of the policy that is currently being learned by moving it in the gradient
direction. It helps us speed up the learning rate and adjust the learning direction
of the current policy to avoid falling into a sub-optimal solution. Besides, the
process of optimizing the policy representation can also bring PeSFA from the
current range of policy representation space to an unseen policy representation
point and continue training. Thereby, the representation searching method can
also enhance the generalization ability of the model.

5 Experimental Results

In this section, we present the experimental results of PeSFA and two baselines
in the Grid World [3] and Reacher [3,8] environments. First, we will compare
the experimental results of PeSFA with two baselines, SFs [3] and USFA [4], in a
Grid World environment with discrete state space and the Reacher environment
with continuous state space. Then, we will test whether PeSFA combined with
the gradient ascent based representation space searching method will affect the
experimental results in the Grid world environment.

Fig. 3. Left: Average and cumulative return per task in the Four Room environment.
Right: Average return per task in the Reacher environment.

The first environment is a navigation task in Grid World consisting of four
rooms. In this environment, agent starts from a location in a room and needs
to reach the goal in another room, where the agent can pick up objects and
obtain their corresponding reward by passing through it, similarly as done in
[3,8].The second is a continuous state space environment which is constructed
on the PyBullet physics engine [5], and the agent can control the robotic arm
to reach the preferred target location, similarly as done in [3,8]. We test the
algorithm performance on two environments with specific task sets, and more
details of the experiments and the hyperparameters are shown in AppendixB.

We can see that PeSFA performs much better than SF and USFA after the
second task in the leftmost panel in Fig. 3. And PeSFA has better stability than
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other algorithms and can achieve better results faster on new tasks. Since PeSFA
needs to train the policy representation module at the beginning of the task, the
policy encoding part is not trained at the initial time, which leads to poor results
for PeSFA at the first task. The rightmost panel in Fig. 3 shows a similar result
in the Reacher environment. We can also find that PeSFA has a faster learning
rate from the second task onward and can obtain better results at the beginning
of the task with the help of finding better policy representation as the initial
point.

The experimental results of testing whether PeSFA combines the gradient
ascent based representation space searching method in the Grid World envi-
ronment are shown in Fig. 4. The figure shows that the PeSFA algorithm that
combines the searching method has better results on most tasks than the one
that does not. We can find that the PeSFA with the search method can get more
returns on the task and has a minor variance to get more stable returns. It also
shows that by combining the searching method, the PeSFA algorithm can obtain
better policy representations for the current task by searching the representation
space, thus expediting the learning process.

Fig. 4. Average and cumulative return per task in the four-room environment with
and without the gradient ascent based representation space searching method.

6 Conclusion

In this paper, we propose to decouple the SFs from the policy by taking the
policy representation as an additional input to the SFs. It allows PeSFA to fit
the SFs in the policy representation space. At the same time, we devise a method
to search for better policy in the policy representation space and exploit the
generalizability of PeSFA among task for transferring knowledge of policy. This
method helps with continuing training with a better starting point and exploring
the policy representation space more efficiently, which leads to a faster learning
process and a more efficient knowledge transfer. It is worthwhile investigating
whether we can build a PeSFA architecture that can fit SFs under multiple tasks
simultaneously to explore the policy representation space more efficiently.
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Appendix

A Training PeSFA

In this section, we will show how to train ψ̃(s, a, χπ) in an on-policy way based
on the sarsa method.

Algorithm 1 shows the overall process of training PeSFA. First, at the begin-
ning of a task, we will reset the environment and select an action for interacting
with the environment (line 4–6), and the action will be executed with some infor-
mation obtained from the environment, then the next action we will execute will
be selected before update the policy (line 9–12). After updating PeSFA, for the
reasons described in Sect. 4.1, it is necessary to recalculate the state-action pairs
ωπ′ corresponding to the new policy according to Eq. 18 (line 15–16). We will
also search for a better policy in the policy representation space according to
Eq. 19, and the χopt is chosen as the initial policy for subsequent training, which
leads to better sample efficiency and exploration in the policy representation
space. Besides, we will select the optimized policy representation which is found
in the representation space as described in Sect. 4.3.

Algorithm 1. PeSFA
Input: PeSFA net ψ̃, policy representation encoder net Ω̃, replay buffer Dmemory

1: for task id ← 1, 2, ..., task num do
2: initialize χπ

3: for epoch ← 1, 2, ..., max epoch do
4: select initial state s ∈ S
5: if Bernoulli(ε) = 1 then a ∼ Uniform({1, 2, ..., |A|})
6: else a ← arg maxb ψ̃(s, Ω̃(ωπ), b)w
7: end if
8: for step ← 1, 2, ..., max step do
9: Execute action a and observe s′, r, φ

10: if Bernoulli(ε) = 1 then a′ ∼ Uniform({1, 2, ..., |A|})
11: else a′ ← arg maxb ψ̃(s′, Ω̃(ωπ), b)w
12: end if
13: push (s, a, φ, s′, a′, ωπ) into Dmemory

14: a ← a′

15: update ψ̃(s, a, χπ) � see Eq. (8)
16: sample states from Dmemory, calculate ωπ ← ωπ′ � see Eq. (18)
17: if need to update χπ by gradient then
18: χπopt ← χπ + α ∂

∂χ
βψ̃(s, a, χπ)�w

19: sample states from Dmemory, calculate ωπ ← ωπopt � see Eq. (18)
20: end if
21: end for
22: update Ω̃ � see Eq. (17)
23: end for
24: end for
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B Additional Experimental Details

For code-level details, our codes are implemented with Python 3.6.9 and Torch
1.11.0. All experiments were run on a single NVIDIA GeForce GTX 1660Ti
GPU. The hyperparameters used in Grid World and Reacher experiments are
shown in Table 1, and the task weight is shown in Table 2.

The first experimental environment is a navigation task in Grid World, a
two-dimensional discrete space consisting of four rooms. In this environment, the
agent starts from a location in a room and needs to reach a goal point in another
room, where the agent can pick up objects and obtain their corresponding reward
by passing through it, similarly as done in [3,8]. These objects belong to one of
the three types of objects and each type of object has a specific reward. The
location of each object in the environment remains the same for all tasks, but
the reward of each type of object varies with the task. The goal is to maximize
the cumulative sum of reward values over tasks. And φ and w are artificially
constructed, which satisfy the reward function in Eq. 2, and φ ∈ R

4 represents
whether a particular type of object is passed in that transition and w ∈ R

4

indicates the reward corresponding to each type of objects.
The second environment is a continuous state space environment constructed

on the PyBullet physics engine [5], and the agent can control the robotic arm to
reach the preferred target location, as done in [3,8]. In each task of this environ-
ment, we control the degree of preference to each target locus by controlling the
task weights w, while φ ∈ R

4 represents the negative of the euclidean distance
from the robotic arm’s tip to each target locus and then adding one.

Table 1. PeSFA’s hyperparameters per environment.

Grid world Reacher

PeSFA network,ψ̃ MLP([256, 256]) MLP([512, 512])

Minibatch size 64 256

Learning rate 0.001 0.001

Gamma 0.95 0.9

Optimiser ADAM ADAM

Policy representation dim 12 6

α 0.0003 0.0003

SPR encoder network Ω̃e MLP([64, 64]) MLP([64, 64])

SPR decoder network ω̃d MLP([256, 256]) MLP([256, 256])
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Table 2. Task weight per environment.

Task Grid world Reacher

1 [0.25, 0.25, 0.25] [1, 0, 0, 0]

2 [1., 0., 0.] [0, 1, 0, 0]

3 [0., 1., 0.] [0, 0, 1, 0]

4 [0., 0., 1.] [0, 0, 0, 1]

5 [−0.25, 0.25, 0.25] [0.25, 0.25, 0.25, 0.25]

6 [0.25, −0.25, 0.25] [−0.25, 0.25, 0.25, 0.25]

7 [0.25, 0.25, −0.25]
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Abstract. We consider an information propagation game, where the
sponsor holds the information and wants to attract more players with a
fixed resource. We propose an allocation mechanism to incentivize the
existing players to propagate the information to more friends. The incen-
tives come from the fact that a player will share more when she prop-
agates more, but her share is also reduced by the others’ propagation.
Under the new allocation mechanism, for each player, propagating to
all her friends is a dominant strategy. The mechanism offers a new per-
spective for advertising with a limited budget and has great potential in
practice as people can easily reach each other via their social platforms.

Keywords: Information propagation · Mechanism design · Social
network

1 Introduction

Social networks, formed by agents’ connections, are popular platforms for rapid
information propagation and exchanges. Utilizing this characteristic, mecha-
nism design in social networks [20,21] finds applications in auctions [10,11,22],
online marketing [7,8], answer querying [4,9,18], blockchains [6,12], cooperative
games [19] and so on. These can all be modelled as the information propaga-
tion game where the goal of the mechanism designer is to incentivize agents to
diffuse some particular information to their neighbours, thus making as many
agents as possible be informed. However, there is competition among agents, so
the participation of new agents may bring loss to existing agents. Therefore, the
challenge here is that strategic agents are not willing to diffuse information to
others unless they can gain from the diffusion. Thus, one straightforward method
is to reward agents for their diffusion.

In the information propagation game, agents’ rewards usually come from the
divisible resource provided by the sponsor. Then, the challenge remains since
the limited resource is shared among more agents with information propaga-
tion. There have been many studies working on this. Most of them focused on
the scenarios where the sponsor’s goal for information propagation is to perform
some tasks, e.g., finding an answer [3,9,16] or making a bitcoin transaction [1]. In
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these settings, agents’ rewards are determined by their contributions to perform-
ing the task, and agents with non-zero rewards actually form a single path. In
the scenario where the sponsor just wants to maximize the information propaga-
tion, agents diffusing information should all have chances to be rewarded. Then,
the aforementioned works cannot take full advantage of the provided resource.
One work was proposed to incentivize information propagation with a limited
monetary budget [14]. However, when the resource is heterogeneous, i.e., agents’
valuation functions on the resources can differ, it becomes a cake-cutting prob-
lem [2,17]. Another challenge immediately appearing is that strategic agents
may misreport their valuation functions to get more [13].

Therefore, in this paper, we want to design a cake-cutting mechanism that
provides agents both incentives to propagate the information to all their neigh-
bours and truthfully report their valuation functions. Though these two incen-
tives don’t conflict with each other, things don’t get easier even when we only
guarantee one of them. When we only consider the propagation incentive, the
difficulty is that the cake is shared among all participants, and we cannot offer
the invitation incentives with extra monetary rewards. When we only require
the incentive to report valuation functions truthfully, it becomes a traditional
cake-cutting problem. In traditional cake-cutting settings, proportionality is one
important fairness criterion, requiring that each agent receives a part that she
values at least 1/n if the cake is divided among n agents [15]. However, to our
best knowledge, no deterministic, proportional and incentive compatible cake-
cutting mechanism is proposed without constraints for agents’ valuation func-
tions [2,5,13]. We also prove that proportionality cannot be satisfied if we require
the propagation incentive since agents’ share is decreasing when n is increasing.

To achieve the above objectives, we propose a cake-cutting mechanism to
incentivize the information propagation and report valuation functions truth-
fully, called the Invitation Incentive Cake-cutting Mechanism. To combat the
issue that agents are unwilling to diffuse information, we divide all participants
into layers. Then, we introduce the priority between layers and competitions
among agents in the same layer. More precisely, an agent closer to the sponsor
has a higher priority to share the resource. For agents in the same layer, an agent
gets more from the other agents if she diffuses more. Regarding the issue that
agents may strategically report their valuation functions, we introduce random-
ization when deciding the allocation. Though proportionality cannot be achieved
in our setting, we propose a local fairness to give a minimum guarantee for each
agent’s expected utility, which also guarantees the propagation incentive.

The remainder of the paper is organized as follows. We begin by introducing
our basic settings and definitions in Sect. 2. Our mechanism and an example are
presented in Sect. 3. We show the properties of our mechanism in Sect. 4. We
conclude our work in Sect. 5.

2 The Model

There is a group of n agents N = {1, ..., n} and a sponsor s in the network.
The sponsor s owns a divisible resource, which can be represented by a cake,
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denoted by an interval C = [0, 1]. Each agent i ∈ N has a private integrable
valuation density function fi : [0, 1] → R≥0 over the cake. A share of cake S ⊆ C
is denoted by union of several sub-intervals. For a share S, agent i’s valuation is
vi(S) =

∫
x∈S

fi(x)dx. In this way, the valuation is additive, which means that for
any two non-overlapping shares S1 and S2, there is vi(S1∪S2) = vi(S1)+vi(S2).
To simplify calculations, we normalize agents’ valuation for the entire cake as
vi(C) = 1 for each agent i ∈ N .

Given the above settings, the sponsor’s goal is to propagate the information
to as many agents as possible, with a limited divisible resource. The sponsor
only connects to some of the agents, and only these agents can be informed
initially. These agents also connect to some of the other agents so that they
could propagate the information to their neighbours. However, inviting others
to share together is not beneficial for them because this may reduce their allo-
cated share. Furthermore, agents may misreport their valuation functions to get
more rewards, which may affect the actual propagation results for the sponsor.
Therefore, in this paper, our goal is to design a cake-cutting mechanism where
agents are incentivized to propagate the information to all their neighbours and
truthfully report their valuation functions.

We give formal definition of the relationship among agents. The relationship
forms a directed graph G = (V,E), where the sponsor s is the only source. In the
graph, the node set is V = {s} ∪ N . Each edge (i, j) ∈ E indicates that agent j
is a neighbour of i, so i can directly propagate to j. For each node i ∈ V , the set
of her neighbours is ri = {j ∈ N | (i, j) ∈ E}. For each agent i ∈ N , her type is
denoted by ti = (ri, fi), containing the set of her neighbours and her valuation
to the cake. The type space of each agent is P(N)×F , where P(N) is the power
set of N , and F is the set of all valuation density functions.

Let t = (ti)i∈N be the type profile of all agents, T be the space of all agents’
type profiles. Let t′i = (r′

i, f
′
i) be the type report of agent i. Note that agent i

cannot know other agents who are not her neighbours in the network, so we have
r′
i ⊆ ri. The space of all possible reports of agent i is denoted by P(ri)×F . The

report profile of all agents is denoted as t′ = (t′i)i∈N . t′ is also represented by
(t′i, t

′
−i), where t′

−i is the report profile of all other agents except for i. In the
following, we give some important definitions of the cake-cutting mechanism.

Definition 1. Given a report profile t′ of all agents, define the propagation
network as G(t′) = (V (t′), E(t′)), where V (t′) = {im | there exists a sequence:
s, i1, i2, · · · , im, where i1 ∈ rs and ik+1 ∈ r′

ik
for all 1 ≤ k < m} and E(t′) =

{(i, j) | i ∈ V (t′), j ∈ r′
i} ∪ {(s, j) | j ∈ rs}.

In the propagation network, agent i can only be informed when there is at
least one information propagation path from the sponsor s to agent i. Therefore,
with all agents’ report profiles, we can find all agents who are informed of the
information. All the other agents are not included in the propagation network,
but their reports can be considered as potential reports if they are invited.

Definition 2. Given an propagation network constructed from a report profile
t′, let the depth of an agent i, denoted as di, be the length of the shortest path
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from s to i. The k-th layer lk is defined as the set of all agents with depth k, i.e.,
lk = {i ∈ V (t′) | di = k}.

Definition 3. Given a report profile t′ and G(t′) = (V (t′), E(t′)), for agent
i ∈ lk, let r̃i(t′) be the set of edges from i to some agent in the layer lk+1 when
agent i report t′, i.e., r̃i(t′) = {(i, j) | i ∈ lk, j ∈ lk+1, (i, j) ∈ E(t′)}. Let
Rk(t′) =

⋃
i∈lk

r̃i(t′) be the set of all edges from the k-th layer to the (k + 1)-th
layer. When t′ is clear in the context, we simply write r̃i and Rk.

We provide an example to illustrate the definition of layers and edge sets.
According to the report profile t′, we construct a directed graph as the propa-
gation network. Based on agents’ depths in the propagation network, we divide
the agents into different layers and find the edges between adjacent layers. For
example, in Fig. 1, the max depth of the graph is 3 and agents are divided into
three layers l1, l2 and l3. Agent 3, agent 4 and agent 5 have the same depth 2 so
that they are in the same layer. For agent 5, the set of edges from her to agents
in the next layer is r̃5 = {(5, 7)}. Then, the set of edges from the layer l2 to the
layer l3 is R2 = {(3, 6), (4, 6), (4, 7), (5, 7)}.

Fig. 1. An example for illustrating the definition of the network layer and the set of
edges, where l1 = {1, 2}, l2 = {3, 4, 5}, l3 = {6, 7}, and r̃5 = {(5, 7)}. The edge set from
the layer l2 to the layer l3 is denoted by R2 = {(3, 6), (4, 6), (4, 7), (5, 7)}.

In our problem setting, an allocation can be represented by a vector contain-
ing n shares. An allocation should fully allocate the cake to agents, and there
must be no overlap among each agent’s share. We give the formal definition of
an allocation and a cake-cutting mechanism in the following.

Definition 4. An allocation of the cake C = [0, 1] among N is defined as
A = (Ai)i∈N , where Ai ∩ Aj = ∅ for any i, j ∈ N and

⋃
i∈N Ai = C.

Definition 5. A cake-cutting mechanism is defined by M : T → A, where
A is the space of all allocations. Given the set of agents N and their report profile
t′ = (t′i)i∈N , the output of such mechanism is an allocation A = (A1, · · · , An),
where Ai is the share allocated to agent i.



Maximal Information Propagation with Limited Resources 49

For all possible report profile t′, a cake-cutting mechanism satisfies that 1) for
each agent i /∈ V (t′), Ai = ∅, and 2) for each agent i ∈ V (t′), Ai is independent
of the reports of the agents that are not in V (t′).

Next, we define the property of incentive compatibility for a cake-cutting
mechanism in our setting, which incentivizes agents to report their types truth-
fully.

Definition 6. A cake-cutting mechanism M is incentive compatible if for all
t ∈ T , all i ∈ N , all t′i ∈ P(ri) × F and all t′

−i ∈ ×j∈N\{i} (P(rj) × F),

E (vi (M ((ti, t′−i))i)) ≥ E (vi (M ((t′i, t
′−i))i)) .

The property of incentive compatibility guarantees that for each agent i ∈ N ,
it is a dominant strategy to invite all her neighbours and report her true valuation
function. Below, we provide the definition of proportionality in traditional cake-
cutting settings.

Definition 7. A cake-cutting mechanism M is proportional if vi(Ai) ≥ 1
n for

i ∈ N .

Then, we show that no cake-cutting mechanism can satisfy incentive compat-
ibility and proportionality simultaneously when considering information propa-
gation.

Proposition 1. In the network setting, no cake-cutting mechanism can satisfy
incentive compatibility and proportionality simultaneously.

Proof. We prove this conclusion by showing that an agent may misreport her
neighbours to increase her utility. Assume that all agents share the same valu-
ation density function for the cake. Then the only proportional distribution is
that each agent receives exactly 1/n of the entire cake.

Suppose that propagation network G(t) contains at least two layers. Consider
the action vector where each agent in the first layer do not invite any neighbour.
Under this action, each of them will get 1

|l1| . If one of the agents changes her
action to inviting k neighbours (k > 0), then her piece will reduce to 1

|l1|+k . In
this way, truthful propagation leads to a decreasing utility, so no proportional
mechanism can be incentive compatible.

3 The Mechanism

In this section, we present the Invitation Incentive Cake-cutting Mechanism
(IICM). The intuition of our mechanism is that we assign different priorities
to agents in different layers such that agents will not get smaller shares from
diffusion. Before giving the mechanism, we first introduce several notations used
in our mechanism.

Given a report profile t′ of all agents and the generated propagation network
G(t′), assume that there are total m layers. Denote them as l1, l2, · · · , lm.
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– For all agents with their depth no less than k, i.e., i ∈
⋃m

j=k lj , denotes the
share that divided among them as Ck. Then, C1 denotes the entire cake.

– For agent i with depth k, let Xi be the initial share assigned to her after
dividing Ck among agents in lk.

– For an edge (i, j) ∈ Rk, let Y
(i,j)
i be the share rewarding i for inviting j, and

Y
(i,j)
j be the share given to j’s layer.

As for input parameters α, β, γ, these are hyperparameters of the algorithm,
which are required to be positive integers and satisfy α ≥ β +γ. The parameters
are used to tune how the reward is shared between adjacent layers and among
agents in the same layer. We will illustrate the effect of parameters later in
Example 1.

Then, we can give the definition of the Invitation Incentive Cake-cutting
Mechanism, as shown in Algorithm 1.

Algorithm 1. Invitation Incentive Cake-cutting Mechanism
Input: A report profile t′, a cake C and parameters α, β, γ ∈ N+, where α ≥ β + γ.
Output: An allocation A = (A1, · · · , An) of the cake C.
1: Construct the propagation network G(t′).
2: Divide agents into different layers according to their depth. Let m = maxi∈N di.
3: Set Ai ← ∅ for all i ∈ N , C1 ← C and Ck ← ∅ for all 1 < k ≤ m.
4: for each layer lk, where k = 1, 2, ..., m do
5: Randomly divide Ck into |lk| parts, then assign one part to each agent i ∈ lk as

her initial share Xi.
6: Each agent i ∈ lk divides her initial share Xi into α · |Rk| parts with equal values

for i.
7: for each edge (i, j) ∈ Rk do
8: for each agent i′ ∈ lk\{i} do

9: Randomly choose β parts as Y
(i,j)
i , choose γ parts as Y

(i,j)
j , both from Xi′ .

Update Ai, Ck+1, Xi′ as follows.
10: Ai ← Ai ∪ Y

(i,j)
i .

11: Ck+1 ← Ck+1 ∪ Y
(i,j)
j .

12: Xi′ ← Xi′\
(
Y

(i,j)
i ∪ Y

(i,j)
j

)
.

13: end for
14: end for
15: For each agent i ∈ lk, Ai ← Ai ∪ Xi, i.e., allocate the retained shares to i.
16: end for
17: return (Ai)i∈N as the allocation of the cake C.

The main idea of the Invitation Incentive Cake-cutting Mechanism is that we
introduce the concept of priority and competition in layers when distributing the
cake. One obstacle to achieving incentive compatibility in social networks is that
agents may get smaller shares if they are with the same priority. Therefore, our
mechanism assigns higher priority to the agents that are closer to the sponsor
so that they can choose before other agents. In addition, competition should
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be encouraged among agents in the same layer, as this will incentivize them
to invite their neighbours, even if some of the shares will flow to the following
layers. In our mechanism, for each agent in layer lk, they will divide their initial
share into α · |Rk| parts with the same value for themselves. For each directed
edge (i, j) ∈ Rk, agent i gets a reward of β parts, and γ parts will be assigned
to the next layer. The aforementioned β + γ parts come from the initial share of
other agents in i’s layer.

Our mechanism provides agents having more propagation contributions with
more rewards, and the rewards come from other agents in the same layer. Then,
all agents will invite all their neighbours such that they would win a larger share.

3.1 An Example of Our Mechanism

In the following, we give an example to illustrate the running process of the
Invitation Incentive Cake-cutting Mechanism. Consider a social network shown
in Fig. 2. The sponsor s has two neighbours, agent 1 and agent 2. Agent 1 and
agent 2 have a common neighbour, agent 3. Then, we have r1 = r2 = {3}
and r3 = ∅. The sponsor has a cake C. The graph of agents’ valuation density
functions for the cake are also shown in Fig. 2. The valuation density function
of agent 1 is as the following.

f1(x) =

{
0 0.1 ≤ x ≤ 0.85
4 otherwise.

For agent 2 and agent 3, their valuation density functions are both uniform
distribution, i.e., f2(x) = f3(x) = 1.

Fig. 2. Left: A social network containing a sponsor and three agents. Right: The valu-
ation density functions of all agents in the social network. Agent 1 has an nonuniform
valuation density valuation function, while agent 2 and 3 both have uniform ones.

We set α = 2 and β = γ = 1. As for randomly choosing shares, we always
choose the leftmost share out of the remaining shares. Here, we first consider
the case where agents are all truthfully reporting their types, then consider the
cases where they misreport the neighbours.
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Fig. 3. The running procedure of our mechanism with α = 2, β = γ = 1, where all
agents truthfully report. In the final step, the blue parts are allocated to agent 1, the
red parts are allocated to agent 2 and the green part are allocated to agent 3. (Color
figure online)

The Case When All Agents Truthfully Report. To complete the allocation
of all agents, our mechanism runs in six steps as follows, which is shown in Fig. 3.

– Step 1: Suppose C is cut at 1
2 , and the initial shares to agent 1 and agent 2

are X1 =
[
1
2 , 1

]
,X2 =

[
0, 1

2

]
.

– Step 2: Agent 1 and 2 are in the layer l1 and we have R1 = {(1, 3), (2, 3)}.
Therefore, they are required to cut the initial shares into α · |R1| = 4 equal
parts (i.e., their shares are cut at 3 points in their intervals). Then, X1 is cut
at 71

80 , 37
40 , 77

80 , and X2 is cut at 1
8 , 1

4 , 3
8 .

– Step 3: For edge (1, 3), two parts of X2 are allocated to agent 1 and the next
layer respectively, and we have

Y
(1,3)
1 =

[

0,
1
8

]

, Y
(1,3)
3 =

[
1
8
,
1
4

]

.

– Step 4: Similarly, for edge (2, 3), two parts of X1 are allocated to agent 2
and the next layer respectively, and we have

Y
(2,3)
2 =

[
1
2
,
71
80

]

, Y
(2,3)
3 =

[
71
80

,
37
40

]

.

– Step 5: According to the mechanism, agent 3 gets the whole C2, where

C2 = Y
(1,3)
3 ∪ Y

(2,3)
3 =

[
1
8
,
1
4

]

∪
[
71
80

,
37
40

]

.

– Step 6: For agents 1 and 2, their allocation is the union of the propagation
reward shares and the remaining parts of initial shares. Agent 3 is the unique
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agent in l2, so she gets the whole C2. Therefore, the allocation should be as
follows.

A1 =
(
X1\

(
Y

(2,3)
2 ∪ Y

(2,3)
3

))
∪ Y

(1,3)
1 =

[

0,
1
8

]

∪
[
37
40

, 1
]

,

A2 =
(
X2\

(
Y

(1,3)
1 ∪ Y

(1,3)
3

))
∪ Y

(2,3)
2 =

[
1
4
,
71
80

]

,

A3 = C2 =
[
1
8
,
1
4

]

∪
[
71
80

,
37
40

]

.

For each agent, the valuation of her own share is as follows.

v1(A1) = 0.7, v2(A2) = 0.6375, v3(A3) = 0.1625.

The Cases When Agents Misreport Their Neighbours. In the social
network shown in Fig. 2, agent 1 and agent 2 can misreport by not inviting
anent 3. We list all the three cases where agents misreport in the following.

1. Agent 1 does not invite agent 3.
2. Agent 2 does not invite agent 3.
3. Both agent 1 and agent 2 do not invite agent 3.

For these cases, we omit the running details of our mechanism here and
directly give the allocation results instead. The results are shown below.

– Case 1: The allocation is A1 = ∅, A2 =
[
0, 37

40

]
and A3 =

[
37
40 , 1

]
. We have

v1(A1) = 0, v2(A2) = 0.925, v3(A3) = 0.075

– Case 2: The allocation is A1 =
[
0, 1

4

]
∪

[
1
2 , 1

]
, A2 = ∅, A3 =

[
1
4 , 1

2

]
. We have

v1(A1) = 1, v2(A2) = 0, v3(A3) = 0.25

– Case 3: The allocation is A1 =
[
1
2 , 1

]
, A2 =

[
0, 1

2

]
, A3 = ∅. We have

v1(A1) = 0.6, v2(A2) = 0.5, v3(A3) = 0

Combining the truthful reporting case and the three misreporting cases, there
is a game on whether inviting agent 3 between agent 1 and agent 2. The payoff
matrix are summarized in Table 1.

As we can see, the result is consistent with the envisioned fact, where inviting
agent 3 is a dominant strategy for both agent 1 and agent 2. Therefore, the agents
are incentivized to propagate the information in our mechanism.
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Table 1. The payoff matrix of agent 1 and agent 2.

Agent 1

Agent 2
Invite Agent 3 NOT Invite Agent 3

Invite Agent 3
0.6375 0

0.7 1

NOT Invite Agent 3
0.925 0.5

0 0.6

4 Properties of IICM

In this section, we will prove that the Invitation Incentive Cake-cutting Mech-
anism satisfies incentive compatibility. Furthermore, the Invitation Incentive
Cake-cutting Mechanism can also give each agent a minimum guarantee for her
share in her layer. Before discussing the properties, we first give two lemmas.

Lemma 1. Suppose one share X is cut into m parts, and we randomly choose
k parts (m, k ∈ N+, k ≤ m). Then, for each agent i ∈ N , the expected valuation
of these k parts is k

mvi(X).

Proof. Let the m parts of X be x1, x2, · · · , xm. To randomly select k parts, each
part is selected with a probability of k

m . Then, for agent i, the expected valuation
of these k parts is

k

m
(vi (x1) + vi (x2) + · · · + vi (xm)) =

k

m
(vi (x1 ∪ x2 ∪ · · · ∪ xm)) =

k

m
· vi (X)

Lemma 1 states that when the shares are randomly selected, the expected
valuation for each agent only depends on the number of shares. Then, the fol-
lowing lemma gives the portion of agent i’s initial share and other agents except
i’s initial share in the layer’s whole share.

Lemma 2. Applying the Invitation Incentive Cake-cutting Mechanism, for all
k = 1, 2, · · · ,m and all i ∈ lk, the share Ck is independent of i’s report profile t′i.
There are also E(vi(Xi)) = 1

|lk|vi(Ck) and E

(∑
j∈lk\{i} vi(Xj)

)
= |lk|−1

|lk| vi(Ck).

Proof. We first prove the independence of Ck and t′i = (r′
i, f

′
i). As for the valu-

ation function f ′
i , it is just used for deciding how i cuts her initial share later,

hence cannot affect Ck. So we should show that first k layers l1, l2, ..., lk is not
related to r′

i. Intuitively, this conclusion holds because IICM runs in breadth-first
order. However, we will give the formal proof in the following.

Consider two groups of agents: agents in the first k layers, and other agents.
Given a propagation network G(t′), for each agent j ∈ N , if j is in the first
k layers, the shortest path from s to j cannot include i, so her depth dj is
independent of r′

i. If j is not in the first k layers, j will not enter the first k
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layers no matter whether there exist an information diffusion path from i to her.
Assume that j enters first k layers because of i’s invitation, then the path from
s to i to j with length no more than k. It indicates that i is in first (k−1) layers,
which is a contradiction.

After Ck is generated, it is divided into |lk| parts, then each agent in lk
randomly gets one part. With Lemma 1, we have E(vi(Xi)) = 1

|lk|vi(Ck). As
for other agents’ initial shares, it is equivalent to choosing |lk| − 1 parts among
them. Using Lemma 1, the expected value is E

(∑
j∈lk\{i} vi(Xj)

)
= |lk\{i}| ·

1
|lk|vi(Ck) = |lk|−1

|lk| vi(Ck).
In brief, we have shown that with the change of t′i, 1) agents in the first k

layers stays in the original layer, 2) other agents cannot enter the first k layers.
So Ck is independent of t′i. Furthermore, for each agent in lk, her valuation of
her initial share is the average value of Ck.

Next, we will show that IICM satisfies the incentive compatibility.

Theorem 1. The Invitation Incentive Cake-cutting Mechanism is incentive
compatible.

Proof. We prove this statement by showing that each agent can maximize her
expected utility only when she truthfully reports. At first, we show each agent’s
utility under the Invitation Incentive Cake-cutting Mechanism.

Given agent i’s type ti, let (t′i, t
′
−i) be the report profile of all agents. Agent

i’s final allocation is related to the propagation edges from lk to lk+1. For each
edge in Rk, if it starts from i, agent i get rewards from other agents in the same
layer, otherwise part of her initial share will be allocated to others. Then, we
consider i’s propagation reward shares and the retained parts of her initial share
respectively. Let q = |r̃i((t

′
i,t

′−i))|
|Rk((t′

i,t
′−i))| represents the propagation contribution of i

when report t′i.

– Propagation reward shares: because of her own propagation, agent i can get
β|r̃i| parts among total α |Rk| parts from each other agent’s initial share in
lk. With Lemma 1, i’s expected valuation of these shares is
∑

j∈lk\{i}
(

β|r̃i|
α|Rk| · vi (Xj)

)
= q β

α · vi

(⋃
j∈lk\{i} Xj

)

– Retained initial shares: because of others’ propagation, i’s initial share will be
taken away (β + γ) (|Rk| − |r̃i|) parts among total α |Rk| parts. The retained
parts will be finally left to i. The expected valuation of the retained shares is
α|Rk|−(β+γ)(|Rk|−|r̃i|)

α|Rk| vi(Xi) =
(
1 − β+γ

α + q β+γ
α

)
vi(Xi)

With Ai being composed of these two parts and using Lemma 2, agent i’s
expected utility should be

E(vi(Ai)) =
[

1
|lk|

(

1 − β + γ

α

)

+ q(
β|lk| + γ

α|lk| )
]

vi(Ck). (1)
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Next, we will prove that for each agent i, 1) for all possible reported neighbour
set r′

i, agent i’s dominant strategy is to report her true valuation function, 2)
when reporting true valuation function fi, agent i maximizes her utility if she
propagates the information to all her neighbours.

Truthfully Report on Valuation Functions. With regard to the report
valuation function f ′

i , misreporting has no effect on the propagation reward
shares, so we only consider the retained shares of i’s initial share. The retained
shares contain

(
1 − β+γ

α + q β+γ
α

)
portion of parts in agent i’s initial share. If

i reports her true valuation function, then the value of these parts must be(
1 − β+γ

α + q β+γ
α

)
. If f ′

i 
= fi, this portion may not be achieved. Furthermore,
the expected value does not increase along i’s misreport, so it is a dominant
strategy for i to report her true valuation function fi.

Truthfully Report on Propagation. In this part, we need to show that
each agent can maximize her expected utility when she propagates to all of
her neighbours, i.e., reporting r′

i = ri. With all agents’ report profile t′, agent
i’s expected utility is shown in Eq. (1). Inferred from Lemma 2, lk and Ck is
independent of agent i’s report, so there is only one variable q changes with t′i in
Equation (1). Furthermore, q depends only on the propagation graph generated
from their diffusion. Therefore, i’s expected utility depends only on q, and we
prove this statement by proving that each agent can only maximize her expected
utility when she truthfully reports her neighbours ri.

For clear presentation, we use the notations r̃tru = r̃i(((ri, fi), t′
−i)), Rtru =

Ri(((ri, fi), t′
−i)) to represent edge sets when agent i truthfully reports, and

r̃mis = r̃i(((r′
i, fi), t′

−i)), Rmis = Ri(((r′
i, fi), t′

−i)) to represent those when agent
i misreports the neighbour set. When agent i misreports, some of i’s out-edges
are removed from the origin propagation network G((ti, t′

−i)). These edges can
be divided into the following two types.

1. The end points of the edges are not agents in the next layer. Removing these
edges will not change r̃i and Rk, thereby it cannot change the allocation to
agent i. Hence, we can ignore them.

2. The end points of the edges are agents in the next layer. Removing such an
edge will lead to a decrease of 1 in |r̃i| and |Rk| respectively. Let δ be the
number of such edges when agent i reports r′

i.

Therefore, when agent i misreports, we have |r̃mis| = |r̃tru| − δ and |Rmis| =
|Rtru| − δ with δ ≥ 0. Then there is |r̃truth|

|Rtruth| ≥ |r̃mis|
|Rmis| , which indicates that

misreporting neighbours cannot lead to a larger q. Since i’s utility monotonically
increases with q, i can maximize her utility if she truthfully report.

In the following, we provide an example to illustrate incentive compatibility,
as well as to explain how the mechanism parameters affect the allocation results.

Example 1. Suppose the sponsor has 3 neighbours, including agent i, who has
|ri| = 200 neighbours in the next layer. With all other agents’ report pro-
file t′

−i, there are total 50 edges from other agents in l1 to agents in l2.
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That is, we have |l1| = 3, |R′
1(((r

′
i, f

′
i), t

′
−i))| = |r̃′

i(((r
′
i, f

′
i), t

′
−i))| + 50 and

0 ≤ |r̃′
i(((r

′
i, f

′
i), t

′
−i))| ≤ 200. With Eq. (1), we can find the expected utility of

agent i as a function of t′i, the function curves under different parameters are
shown in Fig. 4.

Fig. 4. Relationship between E(vi(Ai)) and |r̃′
i| under different parameters when |l1| =

3, |R′
1| = |r̃′

i| + 50 and 0 ≤ |r̃′
i| ≤ 200.

The base case is shown as the curve in Fig. 4 where α = 4, β = 1, γ = 1.
The other two curves are the cases where β increases to 3 and γ increases to 3
respectively. The relationship between agent i’s valuation of Ai and |r̃′

i| is shown
in Fig. 4. From this figure, we can get the following results.

1. vi(Ai) monotonically increases with respect to |r̃′
i|, this is consistent with that

each agent is incentivized to report all neighbours.
2. When β = 3, vi(Ai) increases more dramatically than when β = 1. The

reason is that an agent’s propagation reward shares are more relative to her
invitation contribution when β increases.

3. When only γ increases, the shares retained from an agent’s initial share are
less, so the green curve lays below the blue curve. When |r̃′

i|/|R′
1| → 1, vi(Ai)

is nearly independent of γ, so these two curves are asymptotes.

In addition to incentive compatibility, we also consider fairness among agents.
As shown in Proposition 1, we are not able to guarantee proportionality for all
agents in an incentive compatible mechanism. However, we consider local fairness
within layers instead. This is because our mechanism assigns different priorities
to agents in different layers, and the unequal allocation among agents of different
priorities should not be considered as unfairness.

Local proportionality requires that every agents in layer lk receive 1/|lk| part
of Ck. We show that our mechanism can approximate such proportionality with a
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constant ratio. Moreover, the layer proportionality also guarantees agents’ incen-
tives to propagate, since each agent’s utility is guaranteed no matter whether
she propagate the information.

Theorem 2. In our mechanism, for all k = 1, 2, · · · ,m and all i ∈ lk, vi(Ai)
satisfies E

(
vi(Ai)
vi(Ck)

)
≥ Θ( 1

|lk| ) with constant factor α−β−γ
α .

Proof. For those agent i with ri = ∅, we have that q = 0, then there
is E(vi(Ai)) =

[
1

|lk|
(
1 − β+γ

α

)]
vi(Ck) according to Eq. (1). It implies that

E

(
vi(Ai)
vi(Ck)

)
= α−β−γ

α|lk| .
For each agent with an non empty neighbour set, her utility is not less than

this because of incentive compatibility, so there is E

(
vi(Ai)
vi(Ck)

)
≥ α−β−γ

α|lk| for each
agent in lk.

5 Conclusion

In this paper, we study the information propagation game in social networks with
a limited divisible resource. Moreover, agents’ valuation functions on the resource
are allowed to be different. To maximize information propagation, the sponsor
hopes that each agent will propagate the information to all her neighbours. To
this end, we propose the Invitation Incentive Cake-cutting Mechanism (IICM) to
incentivize agents to invite all their neighbours and report the true valuation to
the cake. Furthermore, our mechanism provides a guarantee for minimum share
within a propagation layer. Applications of IICM can be developed for social
platforms.
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Abstract. In multiagent reinforcement learning (MARL), independent cooper-
ative learners face numerous challenges when learning the optimal joint pol-
icy, such as non-stationarity, stochasticity, and relative over-generalization prob-
lems. To achieve multiagent coordination and collaboration, a number of works
designed heuristic experience replay mechanisms based on the ‘optimistic’ prin-
ciple. However, it is difficult to evaluate the quality of an experience effectively,
different treatments of experience may lead to overfitting and be prone to con-
verge to sub-optimal policies. In this paper, we propose a new method named
optimistic exploration categorical DQN (OE-CDQN) to apply the ‘optimistic’
principle to the action exploration process rather than in the network training pro-
cess, to bias the probability of choosing an action with the frequency of receiving
the maximum reward for that action. OE-CDQN is a combination of the ‘opti-
mistic’ principle and CDQN, using an ‘optimistic’ re-weight function on the dis-
tributional value output of the CDQN network. The effectiveness of OE-CDQN
is experimentally demonstrated on two well-designed games, i.e., the CMOTP
game and a cooperative version of the boat problem which confronts ILs with
all the pathologies mentioned above. Experimental results show that OE-CDQN
outperforms state-of-the-art independent cooperative methods in terms of both
learned return and algorithm robustness.

Keywords: Cooperative Markov games · Distributional reinforcement
learning · Independent learning · Optimistic principle

1 Introduction

Many complex reinforcement learning (RL) tasks, such as multi-robot control [4] and
traffic signal control [5,23,24], are often modeled as cooperative multiagent learn-
ing problems, where multiple agents work together to learn an optimal joint policy.
A natural way to handle coordination tasks is centralized learning of joint actions.
Not surprisingly, the majority of relevant works for this problem in recent years are
based on centralised learning [8,12,21,22]. However, centralized learning is hard to
scale, as the joint action space grows exponentially with the increase of the number
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of agents. Besides, in many settings, partial observability and/or communication con-
straints restrict the learning of agents’ policy, which condition only on the local obser-
vation of each agent.

To avoid the above two restrictions, works based on independent learning (IL) [17–
19] treat other agents as part of the environment and make decisions based on their
local observations, actions and rewards only, which are more universally applicable.
Different from centralized training methods, cooperative ILs in MARL literature must
overcome a rich taxonomy of learning pathologies to converge upon an optimal joint-
policy, such as non-stationarity, stochasticity, and relative overgeneralization problems
[14,18]. Traditional RL researches on IL MARL literature [11,13,20] mainly based
on the ‘optimistic’ principle, where agents choose and evaluate an action according to
the maximum expected return (MER) or the weighted value of MER and the Expected
Return. Such agents optimistically assume that all other agents will act to maximize
their rewards. Thus they update the evaluation of action only if (or prefer) the new eval-
uation is greater than the previous one. While for deep reinforcement learning (DRL)
algorithms, it shows natural shortcomings in ILs cooperative problems, such as sample
inefficiency, resulting from obsolete experiences being stored inside experience replay
memories (ERM) can become inefficient as the policy of other agents change. Thus
existing DRL algorithms for ILs all focus on how to identify and discard experience
(HDQN [17] and LDQN [19]) or trajectories (IGASIL [9] and NUI-DDQN [18]) based
on the ‘optimistic’ principle, to reduce the probability of miscoordination cause by the
learning pathologies mentioned above.

However, the importance of experience (or trajectories) is hard to identify, espe-
cially in games with high penalties nearby the optimal joint policy or the optimal policy
of the game is much more difficult to be explored than sub-optimal policies. We find
that while the above methods deliver promising performances in many tabular Markov
games, all of them are prone to suboptimal policies in some complex scenarios, e.g., an
environment with continuous state space that simultaneously confronts ILs with some
of the mentioned pathologies.

How about applying the ‘optimistic’ principle to the action execution process rather
than in the training process, to bias the probability of choosing the action with the
highest return other than the action with the highest expected return? Intuitively, it can
reduce the impact of environmental noise occurring in cooperative games with high
punishment for an uncoordinated behavior, and meanwhile increase the likelihood of
average return being established for policies leading to coordinated outcomes. In addi-
tion, it will also increase the quality of experience storied in ERM. The challenge is
how to choose an optimistic action from current learned models. For traditional RL
methods, such as FMQ and rFMQ [14], they maintain both the ordinary Q-value and
the maximum reward value Qmax, and then choose actions according to a weighted
value combined over the two Q. With the help of latest DRL works, i.e., distributional
RL [2,3,6,7,15], we can learn not only the ordinary Q and Qmax, but also the whole
distribution of the expected return of any state-action pairs. Thus we can design an ‘opti-
mistic’ action selection strategy based on distributional RL in a higher quality way.

In this work, we propose a new approach called optimistic exploration categori-
cal deep Q Network (OE-CDQN). OE-CDQN lies between the extremes of ordinary
Q-value and the maximum reward value Qmax like rFMQ, but extends the ‘optimistic’
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principle toMA-DRL based on categorical-DQN (CDQN) [3], which represents the dis-
tribution Z(s, a) by the categorical distribution. In detail, OE-CDQN train the expected
return distribution Z(s, a) use CDQN, and choose action in a given state according to
a refined optimistic average return Qτ (s, a), which is averaged by a re-weighted distri-
bution probability Zτ (s, a), where τ is a variable that diminishes from 1 to 0 overtime
to characterize the degree of optimistic. The ‘optimistic’ principle is mainly reflected in
the design of the re-weight function. Intuitively, the difference between OE-CDQN and
other deep RL methods is that OE-CDQN use an ‘optimistic’ principle in an ‘earn good
experience’ way while others in a ‘cut down bad experience’ way. We use two specially
designed games as the test bed to evaluate OE-CDQN. The first one is CMOTP game,
a tabular multiagent cooperative scenario desigend based on the climbing game [14]
proposed in papers of LDDQN [19], which contains non-stationarity and stochasticity
problems. Based on the climbing game, we design a new environment in a temporally-
extended continuous state Markov Game setting that simultaneously confronts ILs with
all of the mentioned pathologies, that we call the boat game. Compared with COMTP,
the boat game is a better test platform for the reason that: (a) influence degrees of the
mentioned pathologies can be controlled arbitrarily by adjusting the river speed and ran-
domness so that we can observe performances of methods in environments with differ-
ent difficulties; (b) the game has continuous state space, which is more suitable for the
test of deep learning based algorithms. Comparing with state-of-the-art works (NUI-
DDQN, HDQN, and LDDQN) in the boat game and the COMTP game, OE-CDQN
shows better performances in both learning effect and algorithm stability.

2 Definitions and Notations

2.1 Markov Game

We consider the standard multi-agent RL setting, in which the interaction of agents and
environment is modeled as a Markov game, where multiple agents make their choices
sequentially. Formally, a Markov game is defined by a tupleG = 〈N ,S,O,A, P,R, γ〉.
N is the set of N agents. S is the set of states and O = 〈O1, ...,ON 〉 is the observation
set where Oi is the observation set of agent i. A = 〈A1, ...,AN 〉 is the set of the joint
actions where Ai is the set of the action for agent i. P : S × A × S → [0, 1] is the
transition function returning the probability of transitioning from a state s to s′ given a
joint action 〈a1, ..., aN 〉. R = 〈r1, ..., rN 〉 is the reward function where ri : S×A → R

specifies the reward for agent i given the state and the joint action. γ is the discount
factor. Especially, a Markov game is a team game if every player gets the same reward.
Thus, team games are fully cooperative settings, where players have a shared objective.

The policy πi of agent i represents a mapping from the observation space to a prob-
ability distribution over actions: πi : Oi → Δ(Ai), while π = 〈πi, π−i〉 refers to a joint
policy of all agents and π−i is the joint policies excluding agent i. Given a joint policy
π the return (or expected sum of future rewards) for each agent i starting from a state
s can be defined by the state-value function (Eq. 1), also known as Q value function,
where rt

i refers to the reward received by agent i at time t:

Qi,π(s, a) = Eπ[
∞∑

k=0

γkrt+k+1
i |st = s, at = a] (1)
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For a Markov game, a joint policy π∗ is a Nash equilibrium (NE) if and only if
no agent can improve it‘s gain through unilaterally deviating from π∗. From a group
perspective NE are often sub-optimal. In contrast, Pareto-optimality defines a joint pol-
icy π̂ from which no agent can deviate without making at least one other agent worse.
A NE joint policy π̂∗ is Pareto optimal if it is not Pareto-dominated by any other NE.
In cooperative multiagent learning literature especially for a team game, convergence
to Pareto optimal NE is the most commonly accepted goal to pursue, considering that
multiple players cooperate to maximize their goals [14,19].

2.2 Distributional RL

In distributional RL, the distribution over returns Zπ(s, a) is considered instead of the
scalar value function Qπ(s, a). This change in perspective has yielded new insights
into the dynamics of RL [1], and is a useful tool for analysis [10]. Empirically, distri-
butional RL algorithms show improved sample complexity and final performance, as
well as increased robustness to hyperparameter variation [2]. An analogous distribu-

tional Bellman equation of the form Zπ(s, a)
D= r(s, a) + γZπ(s′, a′) can be derived,

where A
D=B denotes that two random variables A and B have equal probability laws,

and the random variables s′ and a′ are distributed according to P (.|s, a) and π(.|s, a),
respectively. Similar to the scalar setting, a distributional Bellman operator optimality
can be defined by

T Z(s, a) :
D=R(s, a) + γZ(s′, argmax

a′
E[Z(s′, a′)]), (2)

There are various choices of the representation of Z(s, a), including the categorical
distribution [3], the quantile distribution [7], and the mixture of Gaussian distribu-
tions [2]. In this work, we focus on the categorical distribution, i.e., categorical DQN
(CDQN) [3], Formally, CDQN models the value distribution using a discrete distribu-
tion parametrized by N ∈ N and VMIN , VMAX ∈ R, and whose support is the set of
atoms {zi|zi = VMIN + iΔz, 0 ≤ i < N}, Δz := VMAX−VMIN

N−1 . The atom probabili-
ties pi(s, a; θ) is given by a neural network θ: Zθ(s, a) = zi, w.p., pi(s, a; θ).

The value function of (s, a) is defined by Q(s, a; θ) =
∑

i zipi(s, a; θ). The net-
work θ is trained by minimizing the loss l(s, a; θ), which is the cross-entropy term of
the KL divergence,

l(s, a; θ) = DKL(T Zθ̃(s, a)||Zθ(s, a)), (3)

where T Zθ̃(s, a) is the target distribution of (s, a) calculated by Eq. 2 on target
network θ̃.

2.3 Pathologies in Multi-agent ILs

The MA-RL literature provides a rich taxonomy of learning pathologies that coopera-
tive independent learners (ILs) must overcome to converge upon an optimal joint-policy,
e.g., relative over-generalisation, non-stationarity, and stochasticity problems [18]. The
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climbing game (CG) (Fig. 1a) and the partially stochastic climbing game (PSCG)
(Fig. 1b) [14] are the most commonly used examples to help explain the pathologies
outlined. In CG and PSCG, each agent decides three actions A, B, and C. Both agents
receive the same payoff in the matrix corresponding to their joint action. PSCG (Fig. 1b)
is an extension of CG, which is the same as CG except that the reward of joint action
〈B,B〉 is 14 or 0 with equal probability. Both games have two Nash equilibria, i.e.,
〈A,A〉 and 〈B,B〉. Meanwhile, 〈A,A〉 is the Pareto-dominate optimal equilibrium.

Fig. 1. CG and partially stochastic CG

The best strategy of each agent in the CG game depends on the other agent’s strat-
egy. Specifically, if initial strategies of an agent is to select an action with equal prob-
ability, then action C will be the best choice for the other agent. Further, if an agent
chooses C with higher probability, then the other agent’s best strategy will be action B,
which means that algorithms based on the above assumptions may converge to 〈B,B〉
with high probability than 〈A,A〉. Relative over-generalization is a type of action
shadowing, occurring in games where a sub-optimal NE yields a higher payoff on aver-
age when each selected action is paired with an arbitrary action chosen by the other
player. Besides, since the other agent is also dynamically adjusting its strategy to opti-
mize its reward, an agent needs to find the optimal strategy in a situation where Markov
property is no longer satisfied, which are critical for learning algorithms to guaran-
tee the convergence in single-agent environments. The cooperative problem caused by
not meeting Markov properties is named the non-stationarity problem. Further, when
the reward function is stochastic, the noise in the environment and the behaviors of
other agents may both result in the variation of the reward, which makes the source
of variation difficult to distinguish, see PSCG game (Fig. 1(b)). The randomness of the
environment further increases the difficulty of finding the best strategy for a learning
algorithm. This problem is named as the stochasticity problem. Algorithms which did
not consider these problems may fail to converge to 〈A,A〉.

3 Optimistic Exploration Categorical Distributional Q Network

In this section, we propose a new method called optimistic exploration categorical dis-
tributional Q network (OE-CDQN), an ‘optimistic’ IL method based on CDQN [3] to
addressing the coordination problem in cooperative games. The key idea of OE-CDQN
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is to optimize the action selection policy when interacting with the environment based
on an optimistic exploration strategy, so as to increase the probability that agents can
choose the optimal joint actions. Then, CDQN network is trained based on experi-
ences gained from these optimized experiences. Note that the most critical part of the
OE-CDQN is the design of the optimistic exploration (OE) strategy, thus we use the
simplest distributional RL method CDQN as the distributional representation method
of OE-CDQN. The OE strategy can be extended to distributional RL algorithms with
more powerful if needed.

3.1 Optimistic Exploration (OE) Strategy

The OE strategy biased the probability of choosing an action of receiving the maxi-
mum return for that action based on the ‘optimistic’ principle, i.e., the assumption that
all other agents will act to maximize their reward. Formally, the learning goal of an
‘optimistic’ agent i in a cooperative task is to find an optimal policy maximizing the
optimistically expected gain

a∗
i = max

ai

Q̂i(oi, ai) = max
ai

max
a−i

Qi(s, ai, a−i) (4)

where Q̂i(oi, ai) = maxa−i
Qi(s, ai, a−i) is the optimistic estimation of value function

of (o, a).
By optimistically assuming that all other agents will act to maximize their reward,

all agents choose their optimistic action to interact with the environment. In a deter-
ministic game where the environment has no randomness to state transition and reward
function, the ‘optimistic’ agent fits perfectly and can address the non-stationarity prob-
lem. However, this approach leaves agents vulnerable to misleading rewards. To address
stochasticity and relative overgeneralization problems in stochastic games, a natural
expanding is to learn a goal between the expected gain and optimal gain weighted by the
‘degree of optimism’. Thus, action evaluations fluctuate between optimistic and mean
evaluations according to the stochasticity of the game. Following this, we design an
optimistic exploration strategy based on the distributional represented value function.

Let τ ∈ [0, 1] be the variable expressing the ‘degree of optimism’, where τ = 1
means ‘extremely optimistic’ in which agent evaluate return of a state-action by the
maximum return it obtained. Conversely, agent in τ = 0 evaluates return of a state-
action by its expected return, just the same as the original Q. The τ -optimistic Q value
function is defined based on the quantile function [16],

Qτ (o, a) =
1

1 − τ

∫ +∞

zτ

p(z; o, a)zdz, (5)

where p(x; o, a) is the probability density function on R over returns of (o, a) on x. zτ

is the τ quantile of Z, i.e., the value of the inverse function of FZ(z; o, a) at τ , where
FZ(z; o, a) is the cumulative distribution function of Z, formally,

{
FZ(z; o, a) = PZ{x ≤ z} =

∫ z

−∞ p(x; o, a)dx

zτ = F−1
Z (τ ; o, a)

(6)
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Intuitively, the τ -optimistic Q value Qτ (o, a) defined in Eq. 5 is the expectation
of the best 1 − τ returns of (o, a). By varying the ‘the degree of optimism’ variable
τ from 1 to 0, we can get return estimations of a given state-action from ‘extremely
optimistic’ to ‘extremely non-optimistic’, where Q(o, a) is a special case of Qτ (o, a)
when τ = 0. Then the optimistic exploration strategy of an observation o with degree
τ can be defined naturally by selecting the action with the maximal τ -optimistic Q
value,i.e.,

aτ = argmax
a

Qτ (o, a). (7)

In the learning process of multiagent tasks, agents are exploring at the beginning so
that most selected actions are poor choices. Agents with optimistic exploration strategy
defined by Eq. 5 choose actions with best returns actively and ignore the bad returns
of these actions, to increase the probability of sampling to joint optimal experience.
Note that the OE strategy is used in the interaction process, which does not directly
affect the training of Z(o, a). As experiences stored in the ERM are treated without
distinction, our methods avoid the overestimation problem of actions that appeared in
‘optimistic’ training methods mentioned above. Once an OE agent has explored, it also
needs to choose the average estimation of actions to address the stochasticity prob-
lem in stochastic games. So the agents are initially optimistic and the degree of opti-
mism decreases as the time goes on, realized by descrying the optimistic degree τ from
1 to 0.

3.2 Combine OE with Categorical DQN

Fig. 2. OECD architecture. We build on the standard Categorical DQN architecture by adding an
OE strategy (bottom left). Actions are selected using the ε-greedy exploration method where the
greedy part choice actions with maximal Qτ (o, a). τ & ε schedules (middle left) decay τ and ε
from 1 to 0 gradually.
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In this section, we introduce OE-CDQN, an OE strategy algorithm based on CDQN.
Here we want to integrate OE strategy into CDQN without changing the original train-
ing methods of the algorithm, so that the original performance of CDQN will not be
disturbed. State-of-art methods such as HDDQN [17] and LDDQN [19] train the DQN
network by modifying the loss and learning rate of different experiences, we will show
in experiments that the convergence property of these algorithms is not very good. As
shown in Sect. 2.2, CDQN model the value distribution using a discrete distribution on
N values {zi}i=1,...,N (zi < zj when i < j) with probability pi. Note that the deep net-
work of the CDQN learns the probability distribution P = 〈p1, ..., pN 〉 of each (o, a),
we need only to add a mapping function on the output of CDQN network based on
Eq. 5 to combine OE strategy with CDQN. Cause 〈zi〉 is an ordered monotone increas-
ing sequence, the τ -optimistic Q value function defined in Eq. 5 can be realized as
following,

Qτ (o, a; θ) =
∑N

i=iτ

p̂i(o, a; θ)zi =

∑N
i=iτ

pi(o, a; θ)zi
∑N

i=iτ
pi(o, a; θ)

(8)

where iτ is the index of the τ quantile, formally,

iτ = min i, s.t.
∑i

k=1 pk(o, a; θ) > τ (9)

The optimization problem in Eq. 9 needs no more than one traverse process, i.e., iτ
can be found by adding pk from 1 to N until the sum is greater than τ , so the application
of OE strategy to CDQN will not significantly increase the computational complexity.

Figure 2 shows the learning framework of OE-CDQN. The right half of the frame-
work is the training part of OE-CDQN, which remains the same as CDQN. In the train-
ing process, agents sample a batch of experiences from ERM randomly and update the
CDQN network θ by minimizing the cross-entropy loss (Eq. 3). The target CDQN net-
work θ̃ is synchronized with the CDQN network θ at a slightly slower speed. The main
difference between OE-CDQN and CDQN is the interaction process between agent and
environment as shown in the left side of the framework. CDQN chooses action to inter-
act according to the ε-greedy exploration method, i.e., with probability ε select a random
action, otherwise select the action with the maximal Q value, while OE-CDQN selects
the action using the τ -optimistic Q, i.e., the greedy part choice actions with maximal
Qτ (o, a). τ & ε schedules (middle left) update τ and ε from 1 to 0 gradually as the
number of interactions increases.

4 Experimental Results

4.1 Game Description

We use two specially designed games as the test bed to evaluate OE-CDQN, i.e.,
the CMOTP game (Fig. 3(a)) and the boat game (Fig. 3(b)). Specifically, CMOTP is
a Markov game extension of the Climbing game [14] proposed in LDDQN [19], in
which two agents are tasked with delivering one item of goods to drop zones within
a grid-world cooperatively. Multiple target zone and stochastic rewards make CMOTP
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Fig. 3. (a) CMOTP game, Zone G yields a reward of 8, whereas drop Zone S returns a reward
of 12 on 50% of occasions and only 0 on the other 50%. (b) Boat game, the three quay in the
right side of the river divides the success zone into three parts: ‘−’ optimal zone; ‘−’ sub-optimal
zone; and ‘−’ bad zone.

suffer from non-stationarity and stochasticity pathologies. Besides CMOTP, we further
design a temporally-extended continuous state Markov game denoted as the boat game.
Compared with CMOTP, this new game is more challenging since it confronts ILs with
the three pathologies introduced in Sect. 2.3, i.e., relative over-generalization, the non-
stationarity problem, and stochasticity problem.

Settings of the Boat Game. The goal of our boat game is to control the forward accel-
eration and the angular acceleration of the boat by two independent agents to optimize
expected return. State space of the game is defined by the state of the boat and the speed
of water; Observation of the two agents is defined the same as state except for the water
speed e. The speed of water is defined by e = ft[x/l − (x/l)2], where l is the width
of the river, x is the horizontal coordinate of the boat, ft is the current force subject
to a normal distribution N(μ, σ2) at time t. The random current force makes the game
suffers from the stochasticity problem where we would receive random rewards. We
can control the difficulty degree of this pathology by setting different noise, i.e., the
std σ. For the reward function R, we define three target quays (a sub-optimal zones,
an optimal zone, and a bad zone) at the right side of the river, where different reward
will be given when the boat reaches different zone. Ranges of the two sub-optimal zone
are large and easy to explore, while the optimal range is small and easy to be affected
by environmental randomness and actions of other agents. The dynamic optimal range
makes the game suffer from the relative overgeneralization problem. Besides, rewards
are set to −0.1 before the boat reaches the destination (the right side of the river) at
each time of an episode, to guide the boat through the river quickly. Influenced by the
water flow, it takes more steps for reaching the optimal zone (about 35 steps) than the
sub-optimal zone (about 25 steps), resulting in best returns of the two zones equal to
11.5 and 7.5, respectively. This setting further increases the difficulty of the pathology.
Since each agent knows only parts of state information, and do not communicate with
each other, the game also suffers from the the non-stationarity problem.
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4.2 Experiment Settings

Baselines. We compare OE-CDQN with the state-of-the-art independent MARL meth-
ods, i.e., HDQN [17], LDDQN [19], and NUI-DDQN [18]. Note that, LDDQN calcu-
lates leniency of each state action pair according to their frequency, resulting a poor
performance in the game with continuous state. Thus, we modify LDDQN by redesign-
ing its leniency strategy and denote this new version as LDDQN-M. Specifically, we
make following modifications for LDDQN: 1) we set the leniency of the LDDQN lin-
early decrease over time, which is similar to ε-greedy decay strategy. 2) we add weights
to the experience stored in ERM of LDDQN according to its storage time to reduce the
importance of earlier experiences. Unless stated otherwise, all networks use the same
architecture and hyper-parameters. The parameters of all algorithm are detailed in the
supplementary material.

Experimental Setups. We conduct three experiments on the boat game: (a) Learn-
ing efficiency and robustness comparison. All compared methods are evaluated under
different noise intensity (i.e., noise σ = 0, 0.5 and 1.0); (b) Hyper-parameter anal-
ysis. We conduct comprehensive experiments according to different hyper-parameter
settings and detect the valid range of these parameters (i.e., optimistic decay rate δτ and
categorical number N ); (c) Ablation study.We conduct a comparison between our OE-
CDQN and CDQN to validate the necessity and effectiveness of the OE strategy. (d)
Validation on CMOTP game. We further conduct the learning efficiency comparisons
to show that OE-CDQN can run well on the existing test bed.

4.3 Results in CMOTP Game

Fig. 4. Learning performances
in CMOTP game.

We compared OE-CDQN with LDDQN, HDQN and
NUI-DDQN in CMOTP game. We refined the return
of each methods by minus the length of the episode
times 0.001 as the measure of learning results,i.e., how
fast the two agents learn the joint optimal policy. From
Fig. 4, we can conclude that our algorithm also learns
the optimal strategy stably in the CMOTP game. Meth-
ods based on optimistic training, i.e., LDDQN, HDQN
and NUI-DDQN, are very prone to overestimation, and
we didn’t find an effective set of parameters to achieve
a desired results for those methods. All of those method
mis-cooperated after a period of training.

4.4 Results and Analysis in the Boat Game

Learning Efficiency and Robustness. We compare OE-CDQN with methods men-
tioned above in the boat game with noise σ = 0, 0.5, and 1 respectively. As depicted
in Fig. 5, only OE-CDQN and LDDQN-M learned a relatively stable strategy, with OE-
CDQN reached the global optimal return (nearby 11) and LDDQN-M reached the sub-
optimal (nearby 7). Besides, it can be seen from the three pictures that the environmental
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Fig. 5. Learning performance of OE-CDQN compared with HDQN, LDQN, LDQN-M and NUI-
DQN under different noise intensity: (a) noise σ = 0, (b) σ = 0.5 and (c) σ = 1.0

Fig. 6. Statistics results of OE-CDQN compared with HDQN, LDQN, LDQN-M and NUI-DQN
under different noise intensity: (a) noise σ = 0, (b) σ = 0.5 and (c) σ = 1.0

noise ranges from 0 to 1 has little effect on OE-CQDN, which means the robustness of
the algorithm to the environmental noise is acceptable.

To explain the experiment results, we calculated the final location of each episode
in the learning process of each algorithm, shown in Fig. 6. From the statistical results,
we can see that for each noise settings, OE-CDQN gets the most exploration times
for optimal zone and the least exploration times for sub-optimal zone, while LDDQN-
M is just the opposite. This intuitively explains why these two algorithms can learn
stable strategies. The statistical results of NUI-DDQN vary greatly in different noise
environments, which explores the optimal zone most in noise σ = 0 and explores sub-
optimal zones most in the other two environments. The main reason why it didn’t learn
an optimal return in the σ = 0 is that the explorations number of sub-optimal zone
of NUI-DDQN is relatively high, resulting in the relative overgeneralization problem
which interfere with the estimation of the algorithm. For LDDQN and HDDQN, the
optimistic training of experience makes them overestimate some bad strategies, thus
lots of trail of them reach the sub-optimal zone.

Adaptation of Parameters and Ablation Study. We discuss the application scope of
the two unique parameters in OE-CDQN, i.e., the optimistic decay rate dτ , and the atom
number of CDQN network Na. Figure 7(a) and (b) show the learning performance of
OE-CDQN with four different optimistic decay rates (0.65, 0.70, 0.75 and 0.80 times
of ε decay rate d) and atom numbers of CDQN network (40, 45, 51 and 60) in the boat
game with noise σ = 1 respectively.
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Fig. 7. Learning performance of OE-CDQN with different parameter setting (a & b); Ablation
study (c)

It can be seen that all tests have learned more than 9 returns. Note that the highest
return of the sub-optimal zone is about 7.5, which means all the tests have learned the
optimal zone. We can obtain that OE-CDQN is fairly stable when the change is moder-
ate. We also compared OE-CDQN with CDQN to show the necessity of the proposed
OE strategy. Figure 7(c) shows the learning performance of OE-CDQN and CDQN in
the boat game with all noise settings. We can see that CDQN can’t solve this problem
alone.

5 Conclusion

In this work, we have proposed the optimistic exploration based categorical DQN (OE-
CDQN) by introducing the ‘optimistic’ exploration strategy into categorical distribu-
tional reinforcement learning (RL). Our method realized ‘optimistic’ principle based
action exploration, which can address the coordination problem in cooperative games
effectively,e.g., the pathologies of independent learning cooperative Markov games. We
validate and compare our method and three state-of-the-art methods on a public avail-
able CMOTP game and a more challenging and self-designed boat game. The exper-
imental results showed that our method outperforms state-of-the-art methods in both
learned return and algorithm robustness.
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Abstract. Trust region methods are widely applied in single-agent
reinforcement learning problems due to their monotonic performance-
improvement guarantee at every iteration. Nonetheless, when applied in
multi-agent settings, the guarantee of trust region methods no longer
holds because an agent’s payoff is also affected by other agents’ adaptive
behaviors. To tackle this problem, we conduct a game-theoretical analy-
sis in the policy space, and propose a multi-agent trust region learning
method (MATRL), which enables trust region optimization for multi-
agent learning. Specifically, MATRL finds a stable improvement direc-
tion that is guided by the solution concept of Nash equilibrium at the
meta-game level. We derive the monotonic improvement guarantee in
multi-agent settings and show the local convergence of MATRL to sta-
ble fixed points in differential games. To test our method, we evaluate
MATRL in both discrete and continuous multiplayer general-sum games
including checker and switch grid worlds, multi-agent MuJoCo, and Atari
games. Results suggest that MATRL significantly outperforms strong
multi-agent reinforcement learning baselines.

Keywords: Multi-agent Reinforcement Learning · Game Theory ·
Trust Region Optimization

1 Introduction

Multi-agent systems (MASs) [29] have received much attention from the rein-
forcement learning community [40]. In the real world, automated driving [43],
StarCraft II [25,37] and Dota 2 [3] are a few examples of the myriad of applica-
tions that can be modeled by MASs. Due to the complexity of multi-agent prob-
lems, an investigation into whether agents can learn to behave effectively during
interactions with environments and other agents is essential [10]. This investiga-
tion can be conducted naively through an independent learner (IL) [32], which
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Fig. 1. Discounted returns ηi for an agent i given different joint policy pairs, where
πi is the current policy, and π′

i is the simultaneously predicted policy. Given πi, the
monotonic improvements of a fixed opponent can be easily measured: ηi(π

′
i, π−i) ≥

ηi(πi, π−i). However, due to simultaneous learning, the improvement of ηi(π
′
i, π

′
−i) is

unknown compared to ηi(πi, π−i).

ignores the other agents and optimizes the policy assuming a stable environ-
ment [5]; and trust region method (e.g., proximal policy optimization (PPO) [28])
based ILs are popular [37] due to their theoretical guarantee for single-agent
learning and good empirical performance in real-world applications.

In multi-agent scenarios, however, an agent’s improvement is affected by
other agents’ adaptive behaviors (i.e., the multi-agent environment is nonstation-
ary [11]). As a result, trust region learners can measure the policy improvements
of agents’ predicted policies compared to the current policies, but the improve-
ments compared to the other agents’ predicted policies are still unknown (shown
in Fig. 1). Therefore, trust-region-based ILs perform worse in MASs than in
single-agent tasks. Moreover, the convergence to a fixed point, such as a Nash
equilibrium [4], is a common and widely accepted solution concept for multi-
agent learning. Thus, although ILs can best respond to other agents’ current
policies, they lose their convergence guarantee.

One solution for addressing the convergence problem for ILs is empirical
game-theoretic analysis (EGTA) [38], which approximates the best response to
the policies generated by ILs [23]. Although EGTA-based methods [1,14,24]
establish convergence guarantees in several game classes, their computational
cost is also large when empirically approximating and solving the meta-game.
Other multi-agent learning approaches collect or approximate additional infor-
mation such as communication [25] and centralized joint critics [19]. Nevertheless,
these methods usually require centralized critics or centralized communication
assumptions, which require extra training efforts. Thus, there is considerable
interest in the use of multi-agent learning to find an algorithm that while hav-
ing minimal requirements and computational cost as ILs, also simultaneously
improves convergence performance.

This paper presents a multi-agent trust region learning (MATRL) algorithm
that augments the trust region ILs with a meta-game analysis to improve learning
stability and efficiency. In MATRL, a trust region trial step for an agent’s payoff
improvement is implemented by ILs, which provide a predicted policy based on
the current policy. Then, an empirical policy-space meta-game is constructed to
compare the expected advantages of the predicted policies with those of the cur-
rent policies. By solving the meta-game, MATRL finds a restricted step by aggre-
gating the current and predicted policies using the meta-game Nash equilibrium.
Finally, MATRL takes the best responses based on the aggregated policies from
the last step for each agent to explore because the identified stable trust region is
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not always strictly stable. MATRL is, therefore, able to provide a weakly stable
solution compared to naive ILs. Based on a trust region IL, MATRL requires
the knowledge of other agents’ policy during the meta-game analysis but does
not need extra centralized parameters, simulations, or modifications to the IL
itself. We provide insights into the empirical meta-game in Sect. 2.2, showing
that the approximated Nash equilibrium of the meta-game is a weak stable fixed
point of the underlying game. Our experiments demonstrate that MATRL sig-
nificantly outperforms deep ILs [28] with the same hyperparameters, VDN [31],
QMIX [26] and QDPP [41] methods in discrete action grid worlds, decentralized
PPO ILs, centralized MADDPG [19] and independent DDPG and COMIX [39]
in a continuous action multi-agent MuJoCo task [39] and zero-sum multi-agent
Atari [34].

2 Multi-agent Trust Region Learning

Notations and Preliminaries. A stochastic game [18] can be defined as fol-
lows: G = 〈N ,S, {Ai}, {Ri},P, p0, γ〉, where N is a set of agents, n = |N | is the
number of agents, and S denotes the state space. Ai is the action space for agent
i. A = A1 × · · · × An = Ai × A−i is the joint action space, and for simplicity,
we use −i to denote agents other than agent i. Ri = Ri(s, ai, a−i) is the reward
function for agent i ∈ N . P : S × A × S → [0, 1] is the transition function. p0
is the initial state distribution, and γ ∈ [0, 1) is a discount factor. Each agent
i ∈ N has a stochastic policy πi(ai|s) : S ×Ai → [0, 1] and aims to maximize its
long-term discounted return:

ηi(πi, π−i) = Es0,a0
i ,a0

−i···

[ ∞∑
t=0

γtRi(st, at
i, a

t
−i)

]
, (1)

where s0 ∼ p0, st+1 ∼ P(st+1|st, at
i, a

t
−i), and at

i ∼ πi(at
i|τ t

i ).
Then, we have the standard definitions of the state-action value and

state value functions: Q
πi,π−i

i (st, at
i, a

t
−i)=Est+1,at+1

i ,at+1
−i ···[

∑∞
l=0 γlRi(st+l, at+l

i ,

at+l
−i )] and V

πi,π−i

i (st) = Eat
i,a

t
−i,s

t+1···[
∑∞

l=0 γlRi(st+l, at+l
i , at+l

−i )]; also the
advantage function A

πi,π−i

i (st, at
i, a

t
−i) = Q

πi,π−i

i (st, at
i, a

t
−i)−V

πi,π−i

i (st), given
the state and joint action.

Motivations. A trust region algorithm aims to answer two questions: how to
compute a trial step and whether the trial step should be accepted. In multi-agent
learning, a trial step toward agents payoff improvement can be easily imple-
mented with ILs, denoted as independent improvement direction (IID).
The remaining issue is resolved by finding a restricted step leading to a stable
improvement direction, which is not in the single agent’s policy space but in the
joint policy space. In other words, MATRL decomposes trust region learning into
two parts: first, an IID between current policy πi and predicted policy π̂i should
be identified; then, with the help of the predicted policy, a more refined method,
to some extent, can approximate a stable trial step. Instead of line searching in
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Fig. 2. (Left): Overview of the MATRL phases. The pale red area indicates inde-
pendent payoff improvement directions; the pale blue area shows stable improvement
directions in joint policy space and π: current policy, π̂: predicted policy in IID step,
π̄: aggregated policy in SIP step; π′, next policy. (Right): the gray area illustrates
IID and SIP with a two-agent game, in which the arrows indicate the payoff improve-
ment directions for agents. The IID guarantees the partially monotone game in red
arrows; then, the SIPs are determined by improvement directions (include four cases)
of predicted policies in blue arrows.

a single-agent payoff improvement direction, MATRL searches for a joint policy
space to achieve a conservative and stable improvement. Essentially, MATRL is
an extension of the single-agent TRPO to a MAS, which learns to find a stable
point between the current policy and the predicted policy. To find the stable
improvement directions, we assume knowledge about other agents’ policies dur-
ing training to avoid unstable improvement via empirical meta-game analysis,
while the execution can still be fully decentralized. We explain every step of
MATRL in detail in the following sections (also in Fig. 2).

2.1 Independent Trust Payoff Improvement

Single-agent reinforcement learning algorithms can be straightforwardly applied
to multi-agent learning, where we assume that all agents behave independently.
In this section, we have chosen the policy-based reinforcement learning method—
ILs. In multi-agent games, the environment becomes a Markov decision process
for agent i when each of the other agents plays according to a fixed policy. We set
agent i to make a monotonic improvement against its opponents’ fixed policies.
Thus, at each iteration, the policy is updated by maximizing the utility function
ηi over a local neighborhood of the current joint policy πi, π−i. We can adopt
TRPO (or, PPO [28]), which constrains the step size in the policy update:

π̂i = arg max
π∈Πθi

ηi(π, π−i) s.t. D (πi, π̂i) ≤ δi, (2)

where D is a distance measurement, and δi is a constant. Independent trust
region learners produce the monotonically improved policy π̂i, which guaran-
tees ηi (π̂i, π−i) ≥ ηi (πi, π−i) and provides a trust payoff bound by π̂i. Due to
simultaneous policy improvement without awareness of other agents , however,
the lower bound of payoff improvement from single-agent [27] no longer holds
for multi-agent payoff improvement. By following a similar logic in proof, we
can obtain a precise lower bound for a simultaneous-move multi-agent payoff
improvement.
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Remark 1. The approximated expected advantage g
πi,π−i

i gained by agent i
when πi, π−i → π̂i, π̂−i is denoted as follows:

g
πi,π−i

i (π̂i, π̂−i) :=
∑

s

pπi,π−i(s)
∑

ai,a−i

π̂i(ai|s)π̂−i(a−i|s)Aπi,π−i

i (s, ai, a−i),

(3)
where pπi,π−i(s) discounted state visitation frequencies induced by πi, π−i. Then,
the following lower bound can be derived for multi-agent independent trust
region optimization:

ηi(π̂i, π̂−i) − ηi(πi, π−i) ≥ g
πi,π−i

i (π̂i, π̂−i) − 4γεi

(1 − γ)2
(αi + α−i − αiα−i)2, (4)

where εi = maxs,a−i,a−i

∣∣Aπi,π−i

i (s, ai, a−i)
∣∣, αi = maxs DTV(πi(·|s)‖π̂i(·|s)) for

agent i, and DTV is the total variation divergence.

Based on the independent trust payoff improvement, although the predicted
policy π̂i will guide us in determining the step size of the IID, the stability of
(π̂i, π̂−i) is still unknown. As shown in Remark 1, an agent’s lower bound is
approximately O(4α2), which is four times larger than the single-agent lower
bound trust region of O(α2). Furthermore, εi = maxs,a−i,a−i

∣∣Aπi,π−i

i (s, ai, a−i)
∣∣

depends on other agents’ action a−i, which will be very large when agents have
conflicting interests. Therefore, the most critical issue underlying MATRL is
finding a Stable Improvement Point (SIP) after the IID. In the next section, we
illustrate how to search for a weak stable fixed point within the IID based on
the meta-game analysis.

2.2 Approximating the Weak Stable Fixed Point

Stabilizing the independent trust payoff improvements is one of the essential
components of MATRL. Since each iteration of MATRL requires the solving of
additional stable improvement subproblem, finding an efficient solver for this
subproblem is very important. Instead of using the stable fixed points [2] as the
stable improvement target, we choose the weak stable fixed point in Definition 2,
which is easier to find. To maximize the objective defined in Eq. (1), we can
ask that reasonable algorithms avoid all strict minimums, which imposes only
that agents are well-behaved regarding strict minima, even if their individual
behaviors are not self-interested. Before providing the clear definitions for these
points, we first define a differentiable game restricted by the IID:

Definition 1 (Differentiable Restricted Game (DRG)). If the policy
space for each agent i in a game is restricted to open sets Π̄i = [πi, π̂i] ⊆ Πi,
where Π̄i ⊆ Πi, and the expected advantage gi is twice continuously differentiable
in this range, then we call it a differentiable restricted game.

Denote the simultaneous gradient of the DRG as ξ(πi, π−i) = (∇πi
gi,∇π−i

g−i).
We introduce the Hessian of DRG as the block matrix H = ∇πi,π−i

ξ(πi, π−i) to
define the types of fixed points:
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Definition 2 (Weak Stable Fixed Point). A point (π̄i, π̄−i) is a fixed point
if ξ(π̄i, π̄−i) = 0. We then say that (π̄i, π̄−i) is stable if H(π̄i, π̄−i) � 0, is
unstable if H(π̄i, π̄−i)  0 and is a weak stable fixed point if H(π̄i, π̄−i) � 01.

We denote the weak stable fixed points in the DRG as the stable improve-
ment point (SIP), it is reasonable if it converges only to fixed points and
avoids unstable fixed points (strict minimum) almost completely. Given that we
already have the IID, which produces a predicted policy, with the knowledge
about all agents policies, it is natural to conduct an EGTA [36] to search for
a SIP in the area bounded by the current and predicted policy pair. We then
define a meta-game in which each agent i has only two strategies πi, π̂i:

M(πi, π̂i, π−i, π̂−i) =

(
gi,−i

i , gi,−i
−i gi,−î

i , gi,−î
−i

gî,−i
i , gî,−i

−i gî,−î
i , gî,−î

−i

)
, (5)

where gî,−î
i = g

πi,π−i

i (π̂i, π̂−i) (as defined in Eq. (3)) is an empirical payoff entry
of the meta-game, and note that gi,−i

i = 0, as it has an expected advantage over
itself. Compared with using ηi(π̂i, π̂−i) = ηi(πi, π−i) + gî,−î

i as the meta-game
payoff, gî,−î

i has lower variance and is easier to approximate because ηi(πi, π−i) is
a constant baseline. However, most entries in M are unknown, and many extra
simulations are required to estimate the payoff entries (e.g., gî,−î

i ) in EGTA.
Instead, we reuse the trajectories in the IID step to approximate gî,−î

i by ignoring
the small changes in the state visitation density caused by πi → π̂i.

Remark 2. The meta-game M(πi, π̂i, π−i, π̂−i) is a partially monotone game and
has a pure strategy equilibrium, because the monotonic improvements gi,−i

i ≤
gî,−i

i and gi,−i
−i ≤ gi,−î

−i when πi, π−i → π̂i, π̂−i.

Taking the two-agent case as an example, as we can see in Eq. (5), meta-game M
becomes a 2×2 matrix-form game, which is much smaller in size than the whole
underlying game. Besides, according to Fig. 2 Right and Remark 2, all four cases
have at least one pure strategy that leads a stable improvement direction. To
this end, we can use the existing Nash solvers for matrix-form games to compute
a Nash equilibrium ρi, ρ−i = NashSolver(M) for meta-game M, where ρi and
ρ−i ∈ [0, 1], and the Nash equilibrium of the meta-game is also an approximated
equilibrium of the restricted underlying game. Then, SIP policies π̄i, π̄−i can be
aggregated based on current policy πi and predicted policy π̂i in the IID for each
agent i.

Assumption 1. In the IID step, ILs enjoy the monotonic improvement against
fixed opponent policies, in which the change from πi to π̂i is usually constrained
by a small step size. Then, we assume that there is a linear, continuous and
monotonic change in the restricted policy space between πi and π̂i.

1 In this paper, we want to maximize the return, not minimize the loss, so we need to
avoid a strict minimum.
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In this case, with ρi being agent i’s Nash equilibrium policy in the meta-game, π̄i

can be derived via a linear mixture: π̄i = ρiπi + (1− ρi)π̂i, which delimits agent
i’s SIP. Now, we can prove that (π̄i, π̄−i) is a weak stable fixed point for the
underlying game in Theorem 1. Furthermore, based on Assumption 1, the payoff
and policy space [πi, π̂i] for DRG are bounded in a linear continuous space, we
can conclude the following theorem:

Theorem 1 (Existence of a Weak Stable Fixed Point). If (ρi, ρ−i) is a
Nash equilibrium of the meta-game M, then linear mixture joint policy (π̄i, π̄−i)
is a weak stable fixed point for the DRG.

According to Theorem 1, (π̄i, π̄−i) is a weak stable fixed point of the restricted
underlying game. Although the weak stable fixed point is relatively weak com-
pared to the stable fixed points [2], as we have stated, a weak stable fixed point
is a reasonable (not as strong as it is rational) requirement for an algorithm to
avoid the minimum. Furthermore, weak stable fixed points can suit general game
settings. Similarly, a local Nash equilibrium can be stable or saddle in different
games [20]. Therefore, the goodness of stable concepts depends on specific set-
tings. If we make some additional game class assumptions, then we can easily
obtain stronger fixed point types. Nevertheless, this approach comes with a cost,
requiring additional computation or assumptions that may break the most gen-
eral settings. In addition, when the meta-game has multiple Nash equilibria, an
equilibrium is randomly selected in our work.

2.3 Improvement over a Weak Stable Fixed Point

Although the weak stable fixed point, (π̄i, π̄−i), binds the policy update to
another fixed point, there are still fully stable points according to Theorem 1.
Besides, it is difficult to generalize for the other parts of the policy space not
reached by SIP, especially in anticoordination games. Similar to the extragra-
dient method [21], to encourage the exploration, we apply the best response
against the weak stable fixed point (π̄i, π̄−i):

π′
i = arg max

π∈Πθi

ηi (π, π̄−i) . (6)

To perform the best response, we need another round to collect the expe-
riences and perform a gradient step in Eq. (6). However, in practice, since
we already have the trajectories in the IID step, the best response to the
weak stable fixed point can be easily estimated through importance sampling.
Alternatively, by defining ci

def= min
(
1 + c̄,max(1 − c̄, πi(ai|s)

π̄i(ai|s) )
)

as truncated
importance sampling weights, we can rewrite the best response update to
Eq. (6) as an equivalent form to the following one in terms of expectations:
π′

i = argmaxπ Ea−i∼π̄−i
[c−iηi (πi, π−i)]. If the agents end up playing the BR,

then there is no further improvement in the IID step; the payoff entries in the
restricted meta-game would be zero, meaning agents will stay at the current
policies following MATRL steps.
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2.4 Local Convergence

MATRL is a gradient-based algorithm with the best response to policies within
the SIPs, which is essentially a variant of LookAhead methods [42]. More specif-
ically, MATRL enhances the classic LookAhead method with variable step size
scaling or two time-scale update rules at each SIP step, which is controlled by
restricted meta-game analysis. It has been proven that the LookAhead method
can locally converge to a stable fixed point and avoid strict saddles in all dif-
ferentiable games [15]. Similarly, we show the local convergence of MATRL in
Theorem 2. Please note, here, that to investigate the convergence, fixed point
iterations are conducted on the whole learning process, while the meta-game
analysis step in MATRL borrows the variable stepsize scaling and shows it is
reasonable to locally avoid unstable fixed points. Unlike LOLA, which uses a
first-order Taylor expansion to estimate the best response to a predicted pol-
icy, we elaborately design the look-ahead step within the SIPs and perform
the gradient steps for the best response to the SIPs. We also show that MATRL
empirically outperforms the typical LookAhead method, IL LookAhead (IL-LA),
in the experiments.

Theorem 2 (Local Convergence of MATRL). Let the objectives ηi(πi, π−i)
of agents are twice continuously differentiable and step size α is sufficiently
small, MATRL converges locally to a stable fixed point with ε error in Euclidean
distance.

2.5 Discussions

Computation Cost. Compared to pure ILs, there are two extra cost sources
in common meta-game analysis: approximating and solving the meta-game [23].
In our case, the meta-game is restricted to a local two-action game, where two
actions, πi and π̂i, are close to each other. Reusing the IID trajectories will some
estimation errors [35], but this issue can be eased by large batch size. Then, we
can enjoy this proximity property and reduce the meta-game approximation cost
(without extra sampling) by reusing the collected trajectories in the IID step. The
next crucial problem is how to solve the n-agent two-action meta-game, which
consists of the 2n entries of each of the n payoff matrices. Solving this meta-
game is much simpler than solving the whole underlying game, which increases
exponentially with state size, action size, agent number, and time horizons. As
the general-sum matrix-form game has no fully polynomial time approximation
for computing Nash equilibria, it usually costs a great deal to solve the game [6].
However, as shown in Remark 2, there always exists at least one pure Nash
equilibrium in the meta-game, which can be computed in polynomial time [7].
Therefore, if we only require an approximated Nash equilibrium, then when n is
small, for example, n ≤ 5, it is affordable to find a meta-game Nash equilibrium
with subexponential complexity.

Connections to Existing Methods. MATRL generalizes many existing meth-
ods with the best response. In extreme cases, where the meta-game Nash equilib-
rium is (ρi, ρ−i) = (1, 1), which means that the Nash aggregated policies always
maintain the current policies, MATRL degenerates to ILs. Here, we always
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best respond to other agents’ current policy πi and π′
i = argmaxπi

ηi(πi, π−i)
following Eq. (6). The LookAhead [8], extragradient [12] and exploitability
descent [33] methods are also special instances of MATRL when meta-game
Nash is (ρi, ρ−i) = (0, 0), which means that the best response to the most
aggressive predicted policy π̂−i and π′

i = argmaxπi
ηi(πi, π̂−i). More specifi-

cally, let ξ denotes the game’s simultaneous gradient, Ho is the matrix of anti-
diagonal blocks of H (Hessian of the game), and α is step-size. Then we can
have the updating gradient for LookAhead methods as (I − αHo) ξ. Similarly,
for MATRL, we have the updating gradient (I − ραHo) ξ, where ρ is a ratio
determined by meta-game Nash to dynamically adjust the step-size at each
iteration.

3 Related Work

The research on the EGTA [35] creates a policy-space meta-game for model-
ing multi-agent interactions. Using various evaluation metrics, this work then
updates and extends the policies based on the analysis of meta policies [14].
Although these methods are broad with respect to multi-agent tasks, they require
extensive computing resources to estimate the empirical meta-game and solve it
with its increasing size [24]. In our method, we adopt the idea of a policy-space
meta-game to approximate the fixed point. Unlike previous works, we only main-
tain current and predicted policies to construct the meta-game, which is com-
putationally achievable in most cases. The payoff entry in MATRL’s meta-game
is the expected advantage, which has a lower estimation variance compared to
the commonly used empirically estimated return in EGTAs. Regardless, we can
reuse the trajectories in the IID step to estimate the payoffs without incurring
additional sampling costs.

Recently, due to the use of neural networks as a function approximation for
policies and values, many works have emerged on deep reinforcement learning
(DRL) [22]. TRPO [27,28] is one of the most successful DRL methods in the
single-agent setting, which places constraints on the step size of policy updates,
monotonically preserving any improvements. Based on the monotonic improve-
ment in single-agent TRPO [27], MATRL extends the improvement guarantee
to the multi-agent level towards a weak stable fixed point. Some works have
directly applied fully decentralized single-agent DRL methods [32], which can
be unstable during learning due to the issue of nonstationarity. [9,19,26,31] fur-
ther exploit the setting of centralized learning decentralized execution (CTDE).
These methods provide solutions for training agents in complex multi-agent envi-
ronments, and the experimental results show their effectiveness compared with
ILs. Similar to the CTDE setting, MATRL also enjoys fully decentralized exe-
cution. Although MATRL still needs knowledge about other agents’ policies
in adjusting the step size during training, it does not need centralized critics
or any communication channels. Besides, [16] attempted to apply trust-region
methods in networked multi-agent settings by conducting consensus optimiza-
tion with their neighbors. Instead takes a game-theoretical approach to compute
the meta-game Nash to find policy improvement directions without networked
assumption.
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Fig. 3. Learning curves in discrete and continuous tasks. The solid lines are average
episode returns with 10 random seeds for each model, and the light color areas are the
error bars.

4 Experiments

We design experiments to answer the following questions: 1) Can the MATRL
method empirically contribute to convergence in general game settings, including
cooperative/competitive and continuous/discrete games? 2) How is the perfor-
mance of MATRL compared to ILs with the same hyperparameters and other
strong MARL baselines in discrete and continuous games with various agent
numbers? 3) Do the meta-game and best response to the weak stable fixed
point bring about benefits? We first evaluate the convergence performance of
MATRL in matrix form games to answer the first question and validate the effec-
tiveness of convergence. For Question 2, we show that MATRL largely outper-
forms ILs (PPO [28]) and other centralized baselines (QMIX [26], QTRAN [30]
and VDN [31]) in discrete grid world games that have coordination problems.
MATRL also outperforms DDPG [17], MADDPG [19] and COMIX [39] for
continuous multi-agent MuJoCo games. In addition, we test the algorithms
with a 2-agent Atari Pong game to investigate whether MATRL can mitigate
unstable cyclic behaviors [1] in zero-sum games. In these tasks, MATRL uses
the same PPO configurations as ILs to examine the effectiveness of the trust
region gradient-update mechanism, and we use official implementations for the
other baselines. Finally, ablation studies are conducted by: 1. removing the best
response, called the “MATRL w/o BR”; 2. skipping the SIP estimation, named
“IL-LA”, which has similar procedures as those of LOLA [8], which approximates
the best response to the predicted policies via Taylor expansion, but IL-LA takes
the best response gradient steps for the predicted policies. These configurations
provide insights into how much, if at all, the SIP and the best response con-
tribute to the MATRL’s performance. The code and experiment scripts are also
available at https://github.com/matrl-project/matrl.

Grid Worlds. We evaluated MATRL in two grid world games from MA-
Gym [13], two-agent checker, and four-agent switch, which are similar to the
games in [31] but with more agents to examine if MATRL can handle the games
that have more than two agents. In the checker game, two agents cooperate in
collecting fruit on the map; the sensitive agent obtains 5 for an apple and −5

https://github.com/matrl-project/matrl
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Fig. 4. (a): MATRL/IL versus MATRL/IL in the two-agent Pong game. For each set-
ting, the grids show pairwise performance (average scores) by pitting their ten check-
points against one another; yellow indicates a higher score. (b): Run time for 20,000
environment steps (including 50 gradient steps) for the algorithms in two- to four-agent
games.

for a lemon, while the other agent obtains 1 and −1, respectively. Therefore,
the optimal solution is to let the sensitive agent obtain the apple and the less
sensitive agent obtain the lemon. In the four-agent switch game, two rooms are
connected by a corridor, each room has two agents, and the four agents try to
go through one corridor to the target in the opposite room. Only one agent can
pass through the corridor at one time, and agents obtain −0.1 for each step and
5 for reaching the target, so they need to cooperate to obtain optimal scores.
In both games, agents can move in four directions and only partially observe
their position. Although our formulation uses a fully observable setting, in this
game, the methods are adapted to the partially observable setting by pretend-
ing the observation is a state. We compare the MATRL with the PPO-based
IL and two off-policy centralized training and decentralized execution baselines:
VDN [31], QTRAN [30] and QMIX [26]. The results are given in Figs. 3a and 3b,
where MATRL shows stable improvement and outperforms other baselines. In
a two-agent checker game, using the best response, our method can achieve a
total reward of 18, while the ILs’ reward stays at −2. In addition, although
PPO-based MATRL uses on-policy learning, it achieves better final results in
fewer time steps compared to the off-policy baselines. For the four-agent switch
game, as shown in Fig. 3b, MATRL can continuously improve the total rewards
to 6.5, which is the closest to the optimal score for this game when compared
with other baselines. The result of the four-agent switch also demonstrates the
effectiveness of MATRL in guaranteeing stable policy improvement for games
that have more than two agents.

Multi-agent MuJoCo. We also examined MATRL in a multi-agent continuous
control task with a three-agent hopper from [39]. Here, three agents cooperatively
control each part of a hopper to move forward. The agents are rewarded with
the distance traveled and the number of steps they make before falling. Figure 3c
shows that MATRL significantly outperforms ILs, MADDPG, DDPG, and the
benchmarks like COMIX in [39] within the same amount of time.

Multi-agent Atari Pong Game. In the 2-agent Pong game experiments, we
used raw pixels as observations and trained the MATRL and IL agents indepen-



A Game-Theoretic Approach to Multi-agent Trust Region Optimization 85

dently. Following training, we compare the pairwise performance of these models
by pitting their ten checkpoints against one another and recording average scores.
We report the results in Fig. 4a, which shows that MATRL outperforms ILs in
MATRL vs. IL settings in most policy pairs. In addition, from the MATRL vs.
MATRL and ILs vs. IL settings’ results, we can see that MATRL has a more tran-
sitive learning process than that of ILs, which means that MATRL can mitigate
the common cyclic behaviors in zero-sum games.

Effect and Cost of the SIP and Best Response to a Fixed Point. This
section analyzes the effect of the SIP from the meta-game Nash equilibrium and
the best response against the weak stable fixed point. The ablation settings are
obtained by removing the SIP (IL-LA) and the best response (MATRL w/o BR).
In Fig. 3, we can observe that in all the tasks, without the best response to the
fixed point, the learning curves of MATRL w/o BR have higher variance and
the lowest final scores. This establishes the importance of the best response to
stabilize and improve agents’ performance and empirically shows that MATRL
has better convergence ability than do the other baselines. Additionally, without
the SIP to select a fixed point, MATRL recovers to ILs with policy prediction
(IL-LA) [8,42]. Similarly, the curves of IL-LA have lower final scores, and the
convergence speed is not as good as that of MATRL, which suggests that the
SIP provides benefits. MATRL w/o BR has lower variance compared to IL-
LA, which reveals that the SIP can stabilize the learning via weak stable fixed
point constraints. Finally, when compared to IL and IL-LA, as shown in Fig. 4b,
in two- to four-agent games with 20,000 environment steps and 50 gradient
steps, the training time of MATRL is empirically approximately 1.1–1.2 times
slower. Given the significant performance improvement, we believe such extra
computational cost from the SIP and the best response are acceptable.

5 Conclusions

We proposed and analyzed the trust region method for multi-agent learning prob-
lems, which considers the IID and SIP to meet multi-agent learning objectives.
In practice, based on independent trust payoff learners, we provide a convenient
way to approximate a further restricted step size within the SIP via a meta-
game. This approach ensures that MATRL is generalized, flexible, and easily
implemented to deal with multi-agent learning problems in general. Our experi-
mental results justify the fact that the MATRL method significantly outperforms
ILs using the same configurations and other strong MARL baselines in both con-
tinuous and discrete games with varying numbers of agents.
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Abstract. For negotiation dialogue tasks, instead of adopting station-
ary strategies, a more advanced opponent may demonstrate sophisti-
cated behaviors by employing reasoning strategies to predict its oppo-
nent’s actions. To address this challenge, this work proposes a novel
dialogue agent, which leverages the predictive power of Bayesian pol-
icy reuse and the recursive reasoning ability of theory of mind, allow-
ing efficiently detecting the policy of opponents using either stationary
or higher-level reasoning strategies and learning a best-response policy
when faced with previously unseen strategies. Finally, we present the
results of the proposed agent against state-of-the-art baselines on the
CRAIGSLISTBARGAIN dataset and show that the agent outperforms
existing agents and its efficacy of detecting new unseen strategies (This
is an extended version of the paper [3] presented at the 20th IEEE Inter-
national Conference on Ubiquitous Intelligence and Computing 2022.)

Keywords: Reinforcement Learning · Dialogue system · Negotiation
agent · Multi-agent system · Bayesian Policy Reuse · Theory of mind

1 Introduction

The task of building dialogue systems for negotiation is challenging as it demands
both effective communication and strategic reasoning [12]. Despite the success
of deep learning [6,19] and reinforcement learning in generating useful dialogue
strategies [2,9,14], most work assumes that opponents employ stationary strate-
gies rather than more complex strategies that adjust behaviors based on the
opponent. This assumption, however, limits their applicability to realistic sce-
narios where opponents may reason about each other’s strategies and react opti-
mally, e.g., during negotiation, one side can infer the intention of the opponent
and predict the effect of their own words on the opponent’s state and behavior.

In response to these limitations, this study presents a dialogue agent called
the BayesToM agent, based on the Bayesian Theory of Mind (BayesToM) algo-
rithm on Policy. [24]. Specifically, our BayesToM agent combines the Bayesian
policy reuse (BPR) [18] and theory of mind (ToM) [20]. ToM is a recursive rea-
soning technique that describes a cognitive mechanism for explicitly attributing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Yokoo et al. (Eds.): DAI 2022, LNAI 13824, pp. 88–102, 2023.
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unobservable mental contents to other players, such as beliefs and intentions, to
help predict their actions. BPR is used for responding to a new opponent by
selecting a policy from its policy library, and maintaining a probability distribu-
tion (i.e., Bayesian belief) over a set of known opponent strategies capturing their
similarity to the new policy, which is updated with observed signals related with
the performance of a policy. Unlike vanilla BPR, which can only detect non-
stationary opponents, the BayesToM agent can quickly and accurately detect
non-stationary and more sophisticated opponents that may construct an oppo-
nent model, and optimizes its own behavior by using the predictive power of
BPR and the recursive inference ability of ToM.

In the face of unseen strategies, the BayesToM agent demonstrates its ability
to detect and learn optimal response strategies. Evaluations were conducted on
the CRAIGSLISTBARGAIN dataset [9]. The results indicate that the superi-
ority of BayesToM over other dialogue agents in terms of completion rates and
utility achieved. Additionally, the experiments confirm the BayesToM agent’s
proficiency in detecting and adapting to an opponent’s new strategy.

The rest of this work is organized as follows. Section 2 overviews important
related work. Section 3 presents the framework of the negotiation dialogue, which
is composed of the task description, MDP formulation and negotiation systems.
Subsequently, the details of our agent are given in Sect. 4. In Sect. 5, extensive
experimental results are reported to verify the effectiveness of our agent. Finally,
Sect. 6 concludes and discusses future research directions.

2 Related Work

2.1 Negotiation Dialogues

Negotiation settings in which agents use natural language to bargain have
attracted much research attentions. There are a large body of work covering
various aspects of negotiation [2,4,5,22]. Lewis et al. [14] trained negotiation
agents based on an end-to-end RNN model to divide a set of items, e.g., books,
hats and basketballs. This study is grounded in a closed-domain game with a
fixed set of objects, thus lacking richness of human behavior. Moreover, the
agent’s goal is directly optimized through reinforcement learning (RL), which
often results in degenerate solutions where the utterances become ungrammat-
ical. To study human negotiation in more open-ended settings that involve real
goods, He et al. [9] collected a new dataset (CRAIGSLISTBARGAIN) of negoti-
ation dialogues by using Amazon Mechanical Turk for a task where two workers
were assigned the roles of buyer and seller respectively, and bargained the price
of an items for sale on craigslist.org. Their negotiation agent based on RL was
reported to be more effective than other competitors. Yang et al. [23] further
improved negotiation agents’ performance by modeling opponent personality.
A Theory of Mind based model was applied to predict an opponent’s response
given the current state, allowing one-step lookaheads during inference. The ToM
agent achieved a higher dialogue agreement rate and utility compared to the
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used benchmarks. However, it only considers the opponent’s primitive actions
instead of high-level strategies, which leads to slow adaptation to opponents that
are non-stationary.

2.2 Bayesian Policy Reuse

Bayesian Policy Reuse (BPR) was first presented in [18] as a framework for
an agent to swiftly choose the optimal policy to execute when faced with an
unknown opponent based on the opponent’s policy. A model-based algorithm
termed BPR+ in repeated games is later refined by [11] with the potential to
expand the policy library online. BPR+ has the limitation of only using episodic
rewards as signals, which makes it difficult to determine the opponent type in
challenging tasks. With integration of BPR and Pepper [7], Bayes-Pepper [10] has
been proposed for use in Markov games. When the opponent’s policy changes
during an episode, Bayes-Pepper employs state-action pairs as additional sig-
nals to modify its policy. BPR+ and Bayes-Pepper may be ineffective when
addressing complicated scenarios because they are tabular-based algorithms.
Zheng et al. [26]] proposed Deep BPR+ by extending BPR+ [11] with DRL
techniques [16]. With the help of opponent modeling, Deep BPR+ significantly
increases detection accuracy by using a policy distillation network as the pol-
icy library. However, Deep BPR+ exclusively concentrates on opponents who
switch randomly between a range of strategies, which is a major limitation of
the method, e.g., after a number of interactions, the opponent may intelligently
change its policy to seek higher returns.

2.3 Theory of Mind

The theory of mind (ToM) [20] can help predict an opponent’s action, by con-
structing an abstract model of the opponent using recursive nested beliefs. ToM
has been studied for training RL-based dialogue systems and to make dialogue
systems interpretable [1]. More recently, the theory of mind has been applied to
learn dialogue policy in certain domains. For navigation situations where ques-
tions and answers are created between a traveling agent and a guiding agent, the
Recursive Mental Model [17] was presented. Another approach, called Answer
in Questioner’s Mind [13], used information-theoretic techniques to tackle a
response guessing game.

A zero-order ToM (i.e., ToM0) agent is unable to model the mental content
of its opponents, and holds the zero-order belief in the form of a probability dis-
tribution over the action set of its opponent. The ToM0 agent simply maximizes
its expected payoff depending on the zero-order belief. In contrast, a first-order
theory of mind (ToM1) agent considers the possibility that its opponent is trying
to win the game in a more disciplined way, and it reacts to the choices given
by the ToM1 agent in the previous interactions. A ToM1 agent thus keeps both
zero-order belief and first-order belief (a probability distribution that describes
what the ToM1 agent believes its opponents believes about itself), and combines
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the two beliefs based on first-order confidence to predict opponents’ behaviors,
where the first-order confidence is adjusted based on the results.

3 Framework

3.1 Task

This work considers a task in which there is a bilateral negotiation dialogue
between a buyer and a seller. The task is based on the dataset CRAIGSLIST-
BARGAIN [9], which consists of 6682 human-human negotiation dialogues
scraped from craigslist.org about a buyer and a seller bargaining the price of
an item, including information like product description, photos, and the listing
price. Both sides are encouraged to get the best deal for itself (in terms of utility).
This dataset covers realistic scenarios with rich and diverse negotiation behavior,
e.g., cheap talks, embellishment and side offers. The item’s description is given
to both parties, whereas each party’s target price is kept private. Negotiation
process continues until an agreement is reached or one side breaks off.

Table 1. Dialogue acts based on the CRAIGSLISTBARGIN dataset.

Dialog Act Definition Example

greet say hello or chat randomly Hello, are you interested in the bed?
inquire ask questions about the product, such as the

usage, quality, parameters, etc
How about the cushions? Are they in good shape? Do
they have any smell?

inform answer questions about products It was only used a few times. it is in excellent condition
propose(price=) initiate a price or a price range for the product Oh, I’ve own a piece from them in the past, it only

lasted 5 years. Would you take $30?
counter(price=) propose a new price or a new price range That’s very low for me. I got the item for $80. The

couch is very comfortable and in a very good condition.
The item has very strong woods that last for years

counter-noprice dissatisfied with the current price, but does not
specify the desired price

They’re nice but expensive. I prefer this machine to
paying them if you know whta I mean

confirm confirmation of certain aspects of products The bathroom is pained white, and the combo
shower/bath is also white

affirm give an affirmative response to a confirm/propose Sweet. Is there anyway you’d allow me to bring my dog?
I swear she never pees in the house

deny give a negative response to a confirm/propose No scratches in excellent shape, I do have a matching
night table i can include if interested

agree(price=) make a deal That’s a good deal. Can you lower the price to 180 and i
pick up and it’s a deal

disagree(price) cannot make a deal Understood. The asking price is $24, but if you could
give me $15 we could make a deal no

offer(price=) final offer with price, no utterance OFFER($1500)
accept final acceptance, no utterance ACCEPT
reject final rejection, no utterance REJECT
quit leave the negotiation, no utterance QUIT

3.2 Negotiation Systems

As shown in Fig. 1, our negotiation system consists of three important modules,
which is in line with traditional goal-oriented dialogue systems [25].
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Fig. 1. The framework of negotiation systems.

– A parser resolves the utterance sent by the opponent and outputs the high
level dialogue act, which serves as a module for natural language understand-
ing. Dialogue acts are defined by an intent and its arguments. For example, it
converts the utterance “I really can’t go that low. I just renovated the kitchen
and our tenants are great people.” to the dialog act – counter-noprice. Note
that dialogue acts in this work are intended to capture the high level strate-
gic moves taken during the negotiation process, rather than the complete
semantics of a sentence. Table 1 overviews the dialogue acts.

– A manager is the core of the whole system, which governs the negotiation
moves and responds to the opponent’s utterances with the dialogue act (e.g.,
proposing a new offer, accepting a counter offer, etc.). Our Bayes-ToM app-
roach is applied to the dialog manger.

– A generator servers a role as natural language generation which composes
the dialogue act given by the manger into next utterance to give.

In our implementation, we employ Microsoft Language Understanding Intel-
ligent Service (LUIS) [21] with 10 annotated training samples for each dialog act
as the utterance parser. The generator uses a retrieval-based method condition
on both the current dialogue act suggested by the manger and the dialogue his-
tory, e.g., counter(price = $810) + dialogue history → How about $810 for the
rent?. To promote linguistic diversity, it samples an utterance from the top 10
matched candidates.

The basic type of the dialog manger is the one trained using supervised learn-
ing (SL) [9]. The SL manger uses a neural network to represent state transitions
and employs vanilla behavior cloning to learn a negotiation strategy directly from
the negotiation corpus with hand-coded rules to fine-tune the learned strategy
(e.g., filling prices in the arguments of an intent). It ensures that a proposal will



An Adaptive Negotiation Dialogue System 93

be accepted if the current price is at least 70% of the target price. An advanced
one is the RL manger further refines the SL model using reinforcement learning
algorithm called Advantage Actor-Critic [15]. Its policy network is initialised by
the SL manger without applying any rules. The RL manger considers neither
self-play to enhance strategy diversity nor value distribution to enhance policy
evaluation. The third one is the ToM manager [23], which is based on the RL
model and uses a probabilistic state representation to learn a response policy
that takes an opponent’s personality and mental state into account.

Next, we will introduce the details of our approach, which can efficiently
detect the strategy of opponents using either stationary or higher-level reasoning
strategies.

4 The Approach

The overview of our dialog agent is given in Algorithm 1. In this section, we con-
centrate on the core part of framework—the manger—decides on the responding
dialogue act given the current state. We start with the Markov Decision Process
formulation, which defines our task.

4.1 MDP Formulation

We formulate our negotiation process as a Markov Decision Process (MDP),
< N , S,A, T,R >, with N = {−1, 1} denoting the set of two agents (i.e., buyer
= −1/seller = 1), a set of states S, a set of dialogue acts A, a deterministic tran-
sition function T , a deterministic reward function R. S contains all negotiation
states, and each st ∈ S encodes the latest dialogue act and the preceding acts,
e.g., st = (s0, ai

1, a−i
2 , ..., ai

t−1, a−i
t ). A contains all dialogue acts, and each

ai ∈ A encodes the intent (inform, counter, offer, etc.) of an utterance and the
price (if any). For example, OFFER($3200) expresses that the agent proposes
a formal offer with price $3200. T formulates the state transition based on the
current state and the intended dialogue act.

4.2 Bayesian Theory of Mind for Dialogue

When incorporating theory of mind with Bayesian policy reuse, the simplest one
is the zero-order case – Bayes-ToM0, which is essentially equivalent to the vanilla
BPR with new Opponent detection and learning. Specifically, Bayes-ToM0 main-
tains a zero-order belief β0 about opponent’s strategies, where β0 is a probability
distribution over previously seen strategies. To update β0, Bayes-ToM0 uses a
performance model P (U |j, π) to describe the performance of policy π, i.e., a
probability distribution over the return U using π on opponent strategy j. The
approach selects the best responding policy through BPR-EI heuristics, and
updates its zero-order belief using received reward signals. When an unknown
opponent strategy is detected, Bayes-ToM0 switches to learn a new policy against
it. Due to space constraints, more details about the BPR method can be found
in the previous work [22].
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Now, we turn attention to the first-order case (Bayes-ToM1)1. Since compli-
cated opponents may predict our policy and then make best responses towards
the estimated policy accordingly, Bayes-ToM1 holds a first-order belief model β1

in addition to a zero-order belief β0 to cope with such complicated opponents.
The first-order belief model β1 captures the probability that our agent believes
the opponent believes it will choose a policy π ∈ Π, which is updated on the
basis of the performance mode Poppo(U |J,Π) (corres). The Bayes-ToM1 agent
first predicts its opponent’s strategy ĵ under the assumption that the opponent
maximizes its own utility based on the BPR-EI heuristic with its first-order belief
(corresponding to line 4 of Algorithm 1). This prediction’s outcome, neverthe-
less, might be inconsistent with what its zero-order belief predicts. Therefore to
balance the effect between the agent’s first-order prediction and the zero-order
belief, a first-order confidence c1 (0 ≤ c1 ≤ 1) is employed. The final prediction
is then calculated using a linear weighted combination of the first-order predic-
tion ĵ and the zero-order belief β(0), controlled by the confidence parameter c1
following Eq. 1 given in [20] (corresponding to line 4).

I(β(0), ĵ, c1)(j) =

{
(1 − c1)β(0)(j) + c1 if j = ĵ

(1 − c1)β(0)(j) otherwise
(1)

With this integrated belief I, the best response policy can be chosen (correspond-
ing to line 5). Then, the first-order belief and zero-order belief are both updated
following Bayes’ rule [18] (corresponding to line 8–15).

In the previous ToM model [20], the value of c1 would rise if the forecast was
accurate, and vice versa. However, this information is not available in our settings
since agents are reluctant to reveal their policies to others to avoid exploitation
in competitive environments like negotiations. Under first-order belief c1 can
be interpreted as the exploration rate of the opponent’s strategy, we thus use
negotiation outcomes as an indicator of whether the previous predictions are
correct. To be specific, the value of c1 increases when the agent wins (i.e., rself >
roppo), and it decreases by an amount of λ, otherwise. This heuristic works
well when playing against Bayes-ToM0, as the theory of mind technique can
provide Bayes-ToM1 with the optimal policy. However, for those opponents who
randomly switch among several fixed policies or are incapable of using ToM, it
may be ineffective because of oscillation of the curve of c1.

Therefore, we use a generalized way to adjust c1 using the concept of win rate

wi =
∑i

i−lrself

l . The value of l controls the number of episodes before considering
that our Bayes-ToM1 agent’s opponent has a less sophisticated policy, since it
starts out by assuming that its opponent is a Bayes-ToM0 agent. We increase
the value of c1 by the adjustment rate λ, if the average performance until the
current episode is better than the previous episode (wi ≥ wi−1). When wi is
less than wi−1 but still above the threshold δ, this indicates a decrease in the
performance of first-order predictions. Bayes-ToM1 then rapidly decreases the
1 Please note that as [20] proved that the reasoning levels that are deeper than level

2 cannot provide further benefits, here we focus on Bayes-ToM1.
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Algorithm 1. Bayes-ToM1 Negotiation Agent
Parser: Converts the opponent’s utterance u−i

t−1 to dialogue act a−i
t−1 and transmit it

to the manager
Manager:
1: Initialize policy library Π and opponent strategies J , performance mode

Pself (U |J, Π) and Poppo(U |J, Π), zero-order belief β(0), first-order belief β(1)

2: for each episode do
3: Receive the dialog act a−i

t−1 from the parser
4: Compute the first-order opponent policy prediction ĵ:
5: argmaxj∈J

∫ umax

u

∑
π∈Π β(1) (π)Poppo

(
U+

∣
∣π, j

)
dU+

6: Integrate ĵ with β(0): I(β(0), ĵ, μ)
7: Select the optimal policy π∗:
8: argmaxπ∈Π

∫ umax

u

∑
j

′ ∈J I(β(0), ĵ, μ) (j)Pself

(
U+

∣
∣j, π

)
dU+

9: Play and receive the episodic return 〈rself , roppo〉
10: for each own policy π ∈ Π do
11: Update first-order belief β(1)(π):

12: β(1)(π) =
Poppo(roppo|π,ĵ)β(1)(π)

∑

π
′ ∈Π

Poppo(roppo|π′
,ĵ)β(1)(π

′
)

13: end for
14: for each opponent policy j ∈ J do
15: Update zero-order belief β(0)(j):

16: β(0)(j) =
Pself (rself |j,π)β(0)(j)

∑

j
′ ∈J

Pself (rself |j′
,π)β(0)(j

′
)

17: end for
18: Update c1
19: Detect new opponent policy
20: Generate dialog act ai

t based on first-order theory and zero-order theory
21: end for
Generator: Produces natural language response ui

t based on the current dialogue act
ai

t and the dialog state st−1

value of c1 by a decreasing factor lg wi

lg (wi−δ) ; if wi ≤ δ, we set the rate of exploring
first-order beliefs to 0 and only utilize zero-order beliefs for prediction since we
believe that the opponent uses only simple strategies and does not model our
policy. So, we have c1 as follows,

c1 =

⎧⎪⎨
⎪⎩
((1 − λ)μ + λ)P(wi) if wi ≥ wi−1

( lg wi

lg (wi−δ)μ)P(wi) if δ < wi ≤ wi−1

λP(wi) if wi ≤ δ

(2)

where δ is a win rate threshold that represents a lower bound on the difference
between an agent’s forecast and its opponent’s actual actions. The direction of
the c1 value’s adjustment is controlled by the indicator function P(wi). Assuming
that its win rate vi is below δ, Bayes-ToM1 recognizes the change in the oppo-
nent’s policy in each event I and reverses the value of P(wi). Finally, Bayes-ToM1
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learns a new optimal policy if it detects a new opponent policy (detailed in next
section).

In fact, the Bayes-ToM1 agent is identical to the Bayes-ToM0 agent in the
new opponent detection and learning component. After realizing the opponent
is employing a new policy, the agent turns to the learning stage and starts to
learn the best-response policy against it. The Bayes-ToM agent considers Soft
Actor Critic (SAC) algorithm [8] to do off-policy learning using the obtained
interaction experience. The objective of SAC is to maximize the expected return
and the entropy at the same time:

J(θ) =
T∑

t=1

E(st,at)∼ρπθ
[r(st, at) + αE(πθ(.|st))] (3)

where α is the temperature parameter which controls how important the entropy
term is and E(.) is the entropy measure. Entropy is a measure of the stochastic
in the policy and helps to improve the robustness and universality of the trained
model. The policy is trained to maximize the trade-off between expected return
and entropy. After obtaining the learned policy, the agent updates its policy
libraries Π and its opponent’s policy library J , respectively.

The Bayes-ToM agent determines whether its opponent is employing a new
policy by recording negotiation results of fixed length. The number of episodes
to be considered before deciding if an opponent employs a new undiscovered
policy is represented by h. The Bayes-ToM agent records negotiation outcomes

h in episode i and utilizes the win rate θi =
∑i

i−hrself

h from the most recent h
episodes as a signal of the average performance of all policies up to the present
i episode. If the win rate θi is below a specified threshold δ (θi < δ), the Bayes-
ToM agent concludes that the opponent is employing a previously unseen policy.

5 Experiments

5.1 Experimental Setup

Opponents. Four types of opponents are considered in our experiments as
introduced in Sect. 3.2, 1) an TOM(e) agent that is equipped with the explicit
first-order ToM manager, where the opponent’s personality can be estimated to
a particular type from dialogs, 2) an ToM(i) agent that implements the implicit
first-order ToM manager, where the opponent type is modelled as a latent vari-
able, 3) an agent with SL manager, which uses a LSTM network to learn the
transitions from st to st−1 and 4) an agent with RL manager which employs an
actor-critic method [15] to fine-tune its behavior.

Training. We trained our Bayes-ToM agent with a learning count of 10,000
times for each training, and seven different SL-based opponents with different
rules (e.g., representing behaviors from cooperative to competitive types) for
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changing prices and rendering utterances are used in the training following the
settings as in [23]. Since DQN is a classic deep reinforcement learning and is
used in other work related to negotiation, we also implement another version
of Bayes-ToM agent that is equipped with DQN to compare the effect of SAC
algorithm. The maximum number of dialogues is set at 20, as most dialogues
end within 10 rounds. If no agreement is reached after 20 rounds, the negotiation
ends with failure and both sides of the negotiation will be equally penalized.

Both the seller’s and the buyer’s rewards are linear functions of the agreed
price, where the seller’s reward is 1 if the seller achieves its target price (i.e., the
listing price of the item) and the buyer’s reward is 1 if the buyer gets its target
price (i.e., the lowest price it expects). The rewards for both sides are zero when
the the agreed price is the middle of the two prices above. The entire process
can be seen as a zero-sum game. If no agreement is achieved, both the buyer and
the seller suffer the same penalty of −0.5.

Evaluation Metric. We evaluate the outcomes of negotiation dialogues across
four aspects:

1. Agreement rate (Ag): is defined as the ratio between successful negotiations
and all negotiations.

2. Objective utility (Ut): is given by

Uti =

{
(Pdeal − P−i

target)/�P deal;
0 no deal

where Pdeal stands for the the agreed price, P−i
deal for the opponent’s target

price, and ΔP the difference between the target prices of the agent and its
opponent.

3. Deal fairness (Fa): measures the fairness of an outcome, Fai = 1−2∗|Uti−0.5|
4. Dialog length (Len): represents the length of a dialog in terms of rounds.

5.2 Performance Against Different Chatbots

Results Against State-of-the-Art Dialogue Agents. To validate the effec-
tiveness of Bayes-ToM1, Bayes-ToM1 agent is first compared with four opponents
of various policies as introduced in Sect. 5.1. Moreover, the experiment also con-
siders Bayes-ToM1 with DQN.

The results are depicted in Fig. 2. As depicted in the figure, Bayes-ToM1

with SAC demonstrated excellent overall performance against all the opponents,
which was the best performing agent from the perspective of agreement rat,
utility and fairness. More precisely, this agent achieved an average 27% improve-
ment in Ag compared to other agents and a 43% improvement in Ut compared
to the averaged score of other agents. The detection ability of Bayesian policy
reuse and the inference power of the theory of mind may account for this success.
The performance of Bayes-ToM1 with SAC algorithm was better than that of



98 Q. Sun and S. Chen

Fig. 2. The performance of our agent against other complex agents

Bayes-ToM1 with DQN algorithm, due to the fact that the strategies learned by
SAC algorithm have certain randomness compared to DQN, which can achieve
higher returns in some scenarios. For both ToM agents, the employment of the-
ory of mind aids them to model their opponents and thus adjust their strategies
to obtain higher Ut and Ag, only being second to Bayes-ToM1. The SL agent
performed the worst among all agents, with the lowest Ag, Ut and Fa, mainly
because the SL agent was trained to clone human behaviors, which failed to
generate appropriate strategies.

Results Against Advanced Dialogue Agents. In order to study the advan-
tage of Bayes-ToM1 over Bayes-ToM0 when play against advanced agents that
can model opponents, ToMe, ToMi and Bayes-ToM0 were selected as negotiation
opponents, and the results are shown in Table 2.

Table 2. Negotiation results for Bayes-ToM with ToM (implicit), ToM (explicit) and
Bayes-ToM0

agents ToM (implicit) ToM (explicit) Bayes-ToM0

Ag Ut Fa Len Ag Ut Fa Len Ag Ut Fa Len

Bayes-ToM0 0.8 0.24 0.48 10.7 0.8 0.27 0.54 9.4 0.6 0.1 0.2 10.2
Bayes-ToM1 0.83 0.59 0.82 9.25 0.89 0.62 0.76 10.6 0.88 0.68 0.64 8.9

As can be seen from the table, Bayes-ToM1 had a better overall performance
than Bayes-ToM0 when negotiating with both ToM(i) and ToM(e). Especially,
Bayes-ToM1 led by a significant margin in Ut and Fa. When facing Bayes-ToM0,
Bayes-ToM1 improved its utility as well as other metrics significantly compared
to the agent equipped with the zero-order belief. This experiment verified that
Bayes-ToM1 was effective for advanced agents and it also took advantage of
Bayes-ToM with a lower-order one.
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5.3 New Strategy Detection

In this section, we evaluate the detection ability of Bayes-ToM1. The opponent
started with a policy that the Bayes-ToM1 agent had already learned already,
and after 5 episodes it switched to another policy that was not seen by the Bayes-
ToM1 agent (i.e., not included in the policy library). Besides, we also changed
the switch episodes to 10 and 20 episodes to study how the switch period affects
the detection performance (Fig. 3).

Fig. 3. The performance of our agent against new strategy

As the figure depicts, the Bayes-ToM1 agent had a high-quality performance
in all cases, and the averaged performance improved as the switch frequency
decreased (e.g., when the switch period is 20, Bayes-ToM1 can reach a accuracy
of 100% for all opponents). The experiments showed that the Bayes-ToM1 agent
was able to detect opponent policy accurately.

5.4 Human Evaluation

To evaluate the practicality of our Bayes-ToM dialogue agent, we recruited
50 participants in the negotiation task. Human participants were first given
a detailed tutorial of the negotiation. They then conducted the negotiations on
computers via a negotiation websever. Four negotiation agents are used to match
human players in this experiment, including Bayes-ToM1, RL agent, ToM(e).
Each human negotiator was partnered with one of the agents or another volun-
teer at random in order to compare the agents’ performance to that of humans
under the identical conditions. After a negotiation, human participants were
asked to fill out a questionnaire, in which they answered questions regarding the
following four aspects (using a 5-point Likert scale), i.e., intelligence of oppo-
nents (In), language fluency (Fl), language logic (Lg), willingness to play again
(Wl). Averaging the four indexes, a comprehensive human-likeness score (Hu)
can be obtained.
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Table 3. The results of human-machine negotiation. The best value of each column is
shown in bold.

Ag Ut Fa Len Hu In Fl Lg Wl

Human 0.76 0.56 0.66 12.2 4.93 4.9 5.0 4.9 4.9
Bayes-ToM1 0.68 0.5 0.67 12.9 4.4 4.7 3.9 4.3 4.7
ToM(e) agent 0.58 0.45 0.47 13.8 4.0 4.4 3.7 4.1 4.0
RL agent 0.61 0.33 0.29 14.3 3.5 3.9 3.2 3.5 3.4

The results are given in Table 3. Overall the human participants were the
most successful, leading in agreement rate (Ag), dialogue length (Len), human
likeness (Hu). Bayes-ToM1 outperformed other agents and was ranked second in
terms of negotiation related score (e.g., Ut and Ag), while maintaining reasonable
human-like scores, being only second to human negotiators. The results suggest
that Bayes-ToM1 was capable of human-like dialogue behavior, which was better
than other state-of-the-art baselines both from the perspective of negotiation
outcomes (e.g., utility and agreement rate) and human likeness scores.

6 Conclusion

This paper propose the Bayes-ToM negotiation agent to model opponent strategy
and select the optimal policy accordingly for negotiation dialogues. The extensive
experimental results show that Bayes-ToM significantly outperformed state-of-
the-art baselines on the CRAIGSLISTBARGAIN dataset. In addition, Bayes-
ToM can also achieve human-likeness when negotiating with human negotiators.

The exceptional results justify to invest further research efforts into this app-
roach. Regarding our future research, we plan to leverage prior knowledge from
past learned policies of relevant tasks to accelerate learning with transfer learn-
ing. Moreover, we will explore possibilities to enlarge the scope of our approach
towards other settings like multi-lateral and concurrent negotiation.

Acknowledgments. This study was supported by the National Natural Science Foun-
dation of China (Grant No. 61602391).

References

1. Chandrasekaran, A., Yadav, D., Chattopadhyay, P., Prabhu, V., Parikh, D.: It
takes two to tango: towards theory of AI’s mind. CoRR abs/1704.00717 (2017)

2. Chen, S., Su, R.: An autonomous agent for negotiation with multiple commu-
nication channels using parametrized deep q-network. Math. Biosci. Eng. 19(8),
7933–7951 (2022)

3. Chen, S., Sun, Q., Su, R.: An intelligent chatbot for negotiation dialogues. In:
Proceedings of IEEE 20th International Conference on Ubiquitous Intelligence and
Computing (UIC), pp. 68–73. IEEE (2022)



An Adaptive Negotiation Dialogue System 101

4. Chen, S., Weiss, G.: An approach to complex agent-based negotiations via effec-
tively modeling unknown opponents. Expert Syst. Appl. 42(5), 2287–2304 (2015).
https://doi.org/10.1016/j.eswa.2014.10.048

5. Chen, S., Yang, Y., Su, R.: Deep reinforcement learning with emergent commu-
nication for coalitional negotiation games. Math. Biosci. Eng. 19(5), 4592–4609
(2022)

6. Chen, S., Yang, Y., Zhou, H., Sun, Q., Su, R.: DNN-PNN: a parallel deep neural
network model to improve anticancer drug sensitivity. Methods 209, 1–9 (2023).
https://doi.org/10.1016/j.ymeth.2022.11.002

7. Crandall, J.W.: Just add pepper: extending learning algorithms for repeated matrix
games to repeated Markov games. In: van der Hoek, W., Padgham, L., Conitzer, V.,
Winikoff, M. (eds.) International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2012, Valencia, Spain, June 4–8, 2012, vol. 3, pp. 399–406.
IFAAMAS (2012)

8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Dy, J.G.,
Krause, A. (eds.) Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018.
Proceedings of Machine Learning Research, vol. 80, pp. 1856–1865. PMLR (2018)

9. He, H., Chen, D., Balakrishnan, A., Liang, P.: Decoupling strategy and generation
in negotiation dialogues. In: EMNLP. Association for Computational Linguistics,
pp. 2333–2343 (2018)

10. Hernandez-Leal, P., Kaisers, M.: Towards a fast detection of opponents in repeated
stochastic games. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017.
LNCS (LNAI), vol. 10642, pp. 239–257. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-71682-4_15

11. Hernandez-Leal, P., Taylor, M.E., Rosman, B., Sucar, L.E., de Cote, E.M.: Identi-
fying and tracking switching, non-stationary opponents: a bayesian approach. In:
Albrecht, S.V., Genter, K., Liemhetcharat, S. (eds.) Multiagent Interaction with-
out Prior Coordination, Papers from the 2016 AAAI Workshop, Phoenix, Arizona,
USA, 13, February 2016. AAAI Technical Report, vol. WS-16-11. AAAI Press
(2016)

12. Keizer, S., et al.: Evaluating persuasion strategies and deep reinforcement learning
methods for negotiation dialogue agents. In: Lapata, M., Blunsom, P., Koller, A.
(eds.) Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, EACL 2017, Valencia, Spain, April 3–7,
2017, vol. 2: Short Papers, pp. 480–484. Association for Computational Linguistics
(2017)

13. Lee, S., Heo, Y., Zhang, B.: Answerer in questioner’s mind: information theoretic
approach to goal-oriented visual dialog. In: Bengio, S., Wallach, H.M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada, pp. 2584–
2594 (2018)

14. Lewis, M., Yarats, D., Dauphin, Y.N., Parikh, D., Batra, D.: Deal or no deal?
end-to-end learning of negotiation dialogues. In: EMNLP 2017, pp. 2443–2453.
Association for Computational Linguistics (2017)

15. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Balcan,
M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19–24, 2016. JMLR
Workshop and Conference Proceedings, vol. 48, pp. 1928–1937. JMLR.org (2016)

https://doi.org/10.1016/j.eswa.2014.10.048
https://doi.org/10.1016/j.ymeth.2022.11.002
https://doi.org/10.1007/978-3-319-71682-4_15
https://doi.org/10.1007/978-3-319-71682-4_15


102 Q. Sun and S. Chen

16. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

17. Roman, H.R., Bisk, Y., Thomason, J., Celikyilmaz, A., Gao, J.: RMM: a recursive
mental model for dialog navigation. In: Cohn, T., He, Y., Liu, Y. (eds.) Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16–20
November 2020. Findings of ACL, vol. EMNLP 2020, pp. 1732–1745. Association
for Computational Linguistics (2020)

18. Rosman, B., Hawasly, M., Ramamoorthy, S.: Bayesian policy reuse. Mach. Learn.
104(1), 99–127 (2016). https://doi.org/10.1007/s10994-016-5547-y

19. Su, R., Yang, H., Wei, L., Chen, S., Zou, Q.: A multi-label learning model for
predicting drug-induced pathology in multi-organ based on toxicogenomics data.
PLoS Comput. Biol. 18(9), e1010402 (2022). https://doi.org/10.1371/journal.pcbi.
1010402

20. de Weerd, H., Verbrugge, R., Verheij, B.: How much does it help to know what she
knows you know? an agent-based simulation study. Artif. Intell. 199–200, 67–92
(2013)

21. Williams, J.D., Kamal, E., Ashour, M., Amr, H., Miller, J., Zweig, G.: Fast and easy
language understanding for dialog systems with Microsoft language understanding
intelligent service (LUIS). In: Proceedings of the SIGDIAL 2015 Conference, The
16th Annual Meeting of the Special Interest Group on Discourse and Dialogue,
2–4 September 2015, Prague, Czech Republic, pp. 159–161. The Association for
Computer Linguistics (2015)

22. Wu, L., Chen, S., Gao, X., Zheng, Y., Hao, J.: Detecting and learning against
unknown opponents for automated negotiations. In: Pham, D.N., Theeramunkong,
T., Governatori, G., Liu, F. (eds.) PRICAI 2021. LNCS (LNAI), vol. 13033, pp.
17–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89370-5_2

23. Yang, R., Chen, J., Narasimhan, K.: Improving dialog systems for negotiation with
personality modeling. In: ACL/IJCNLP, pp. 681–693. Association for Computa-
tional Linguistics (2021)

24. Yang, T., Hao, J., Meng, Z., Zhang, C., Zheng, Y., Zheng, Z.: Towards efficient
detection and optimal response against sophisticated opponents. In: Kraus, S.
(ed.) Proceedings of the Twenty-Eighth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, pp. 623–629.
ijcai.org (2019)

25. Young, S.J., Gasic, M., Thomson, B., Williams, J.D.: POMDP-based statistical
spoken dialog systems: a review. Proc. IEEE 101(5), 1160–1179 (2013)

26. Zheng, Y., Meng, Z., Hao, J., Zhang, Z., Yang, T., Fan, C.: A deep Bayesian pol-
icy reuse approach against non-stationary agents. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal,
Canada, pp. 962–972 (2018)

https://doi.org/10.1007/s10994-016-5547-y
https://doi.org/10.1371/journal.pcbi.1010402
https://doi.org/10.1371/journal.pcbi.1010402
https://doi.org/10.1007/978-3-030-89370-5_2


Author Index

A
An, Bo, 15

C
Chen, Hui, 74
Chen, Siqi, 88
Chen, Tai-You, 1
Chen, Wei-Neng, 1
Chen, Xu, 74

F
Fang, Wanqing, 60

G
Ge, Xu, 45
Gu, Tu, 15
Guo, Qing, 60
Guo, Xiao-Qi, 1

H
Hao, Jianye, 29

L
Li, Minne, 74
Li, Yining, 29

Q
Qiu, Wen-Jin, 1

S
Sun, Qisong, 88

T
Tang, Hongyao, 29
Tian, Yu, 60
Tian, Zheng, 74

W
Wang, Jun, 74
Wei, Feng-Feng, 1
Wen, Ying, 74

Y
Yang, Tianpei, 29
Yang, Yaodong, 74

Z
Zhang, Chengwei, 60
Zhang, Shiqi, 60
Zhang, Xiuzhen, 45
Zhao, Dengji, 45
Zhao, Xintian, 60
Zheng, Kangjie, 60
Zheng, Yan, 29

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M. Yokoo et al. (Eds.): DAI 2022, LNAI 13824, p. 103, 2023.
https://doi.org/10.1007/978-3-031-25549-6

https://doi.org/10.1007/978-3-031-25549-6

	 Preface
	 Organization
	 Contents
	A Distributed RBF-Assisted Differential Evolution for Distributed Expensive Constrained Optimization
	1 Introduction
	2 Distributed and Expensive Constrained Optimization
	3 Distributed RBF-Assisted Differential Evolution
	3.1 DRADE Framework
	3.2 RBF Management
	3.3 Candidate Generation and Selection

	4 Experiments and Analyses
	4.1 Test Suite
	4.2 Parameter Setting
	4.3 Comparison with State-of-the-art SAEAs
	4.4 Application on Optimization of Ceramic Formula

	5 Conclusion
	References

	A Flexi Partner Selection Model for the Emergence of Cooperation in N-person Social Dilemmas
	1 Introduction
	2 Related Work
	3 Flexi Partner Selection (FPS) Mechanism
	3.1 Mechanism Flow
	3.2 Policy Learning Using Reinforcement Learning

	4 Experiments and Discussions
	4.1 Emergence of Cooperation in FPS Mechanism
	4.2 Learned Strategy of RL Agents
	4.3 The Effect of Changing the Number of Players
	4.4 The Effect of Changing the Collective Goal Requirement of CRD Games
	4.5 The Effect of Changing the Payoff Functions of LPSD Games

	5 Conclusion
	References

	Efficient Deep Reinforcement Learning via Policy-Extended Successor Feature Approximator
	1 Introduction
	2 Related Work
	3 Background and Problem Formulation
	3.1 Reinforcement Learning
	3.2 Successor Features

	4 Policy-Extended Successor Features
	4.1 Policy-Extended Successor Features Approximator
	4.2 Theoretical Analysis on Generalizing SFs Among Policies
	4.3 Search for Better Policy in the Policy Representation Space

	5 Experimental Results
	6 Conclusion
	A Training PeSFA
	B Additional Experimental Details
	References

	Maximal Information Propagation with Limited Resources
	1 Introduction
	2 The Model
	3 The Mechanism
	3.1 An Example of Our Mechanism

	4 Properties of IICM
	5 Conclusion
	References

	Optimistic Exploration Based on Categorical-DQN for Cooperative Markov Games
	1 Introduction
	2 Definitions and Notations
	2.1 Markov Game
	2.2 Distributional RL
	2.3 Pathologies in Multi-agent ILs

	3 Optimistic Exploration Categorical Distributional Q Network
	3.1 Optimistic Exploration (OE) Strategy
	3.2 Combine OE with Categorical DQN

	4 Experimental Results
	4.1 Game Description
	4.2 Experiment Settings
	4.3 Results in CMOTP Game
	4.4 Results and Analysis in the Boat Game

	5 Conclusion
	References

	A Game-Theoretic Approach to Multi-agent Trust Region Optimization
	1 Introduction
	2 Multi-agent Trust Region Learning
	2.1 Independent Trust Payoff Improvement
	2.2 Approximating the Weak Stable Fixed Point
	2.3 Improvement over a Weak Stable Fixed Point
	2.4 Local Convergence
	2.5 Discussions

	3 Related Work
	4 Experiments
	5 Conclusions
	References

	An Adaptive Negotiation Dialogue Agent with Efficient Detection and Optimal Response
	1 Introduction
	2 Related Work
	2.1 Negotiation Dialogues
	2.2 Bayesian Policy Reuse
	2.3 Theory of Mind

	3 Framework
	3.1 Task
	3.2 Negotiation Systems

	4 The Approach
	4.1 MDP Formulation
	4.2 Bayesian Theory of Mind for Dialogue

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Against Different Chatbots
	5.3 New Strategy Detection
	5.4 Human Evaluation

	6 Conclusion
	References

	Author Index

