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Preface 

In the present day, the integrated circuit (IC) industry has, now more than ever, a 
massive demand for electronic devices not only for the consumer electronics markets 
but also in other industries such as medical, automotive, or security. Despite Moore’s 
Law not really being observed anymore, the evolution of the IC industry is still 
clearly observable every year, with designers building increasingly more complex, 
power-efficient, and integrated systems. These systems often combine analog and 
digital sections, where most components are integrated into a single chip originating 
mixed-signal systems-on-a-chip. While these ICs are implemented mainly using 
digital circuitry, analog operations are still fundamental and irreplaceable. Addi-
tionally, technologies such as the Internet of things or fifth-generation broadband 
join millions of devices and sensors. All these applications continuously gather an 
increasing amount of data, posing unprecedented challenges to each element of the 
networks. Due to this, today’s market is highly conditioned by the strong demand 
for high communication rates, large bandwidths, and ultra-low power consumptions, 
in which radio-frequency (RF) ICs play a critical role. However, analog design is 
unlike digital design, where an automated flow is established for most design stages. 
The absence of effective and established computer-aided design tools for electronic 
design automation of analog and radio-frequency IC blocks poses a significant contri-
bution to their bulky development cycles, leading to long, iterative, and error-prone 
designer intervention over their entire design flow. 

In the past years, automatic simulation-based sizing approaches became essential 
in designing analog and radio-frequency IC blocks for modern applications to ensure 
their robustness. However, optimizations considering process, voltage, and temper-
ature (PVT) corners or layout still pose unprecedented challenges in applying these 
tools due to the high simulation times and different simulator convergence issues. 
Therefore, the work presented in this book addresses the automatic sizing of analog 
ICs assisted by deep learning and artificial neural networks on two fronts. First, it 
proposes two deep learning models to assist the PVT-inclusive simulation-based 
sizing process of radio-frequency ICs, specifically, voltage-controlled oscillators 
(VCOs). Given specific devices’ dimensions, the first model classifies the likeli-
hood of the circuit to convergence for nominal and PVT corner cases, bypassing
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vi Preface

solutions that will hardly produce valuable information for the optimization process. 
The model also predicts the VCOs’ oscillating frequencies for the mentioned condi-
tions. The methodology is tested on a state-of-the-art VCO, reducing 19% of the 
workload of the circuit simulator, ultimately saving almost 5 days of computa-
tional effort and improving the optimization result. Secondly, a PVT regressor is 
proposed, which inputs the circuit’s sizing and the nominal performances to esti-
mate the PVT corner performances via multiple parallel artificial neural networks. 
Two control phases prevent the optimization process from being misled by inac-
curate performance estimates. The proposed controlled PVT estimator is tested on 
two state-of-the-art VCOs, reducing the workload of the circuit simulator up to 79% 
while achieving a speed-up factor of 2.92 ×, ultimately saving more than 16 days 
of computational effort. Both methodologies can be used simultaneously, and ulti-
mately, they offer a unique opportunity to reuse valuable legacy data, often discarded 
in optimization environments. 

Finally, the authors would like to express gratitude for the financial support 
that made this work possible. The work developed in this book was supported 
by FCT/MCTES through national funds and when applicable co-funded EU 
funds under the project UIDB/50008/2020 (including internal research project 
LAY(RF)2/X-0002-LX-20) and Research Grant FCT-SFRH/BD/07123/2021. 

This book is organized into four chapters. 
Chapter 1 presents an introduction to the analog IC design area and discusses how 

the advances in machine learning can pave the way for new EDA tools. 
Chapter 2 presents a study of the available tools for analog design automation. 

Starting with an overview of existing works where machine learning techniques are 
applied to analog IC sizing. 

Chapter 3 presents two artificial neural network models for analog IC design to 
be incorporated within simulation-based sizing loops. The first model classifies the 
convergence of the circuit for nominal and PVT corners, bypassing solutions that 
will hardly produce valuable information for the evolutionary kernel, and the second 
predicts the pre-defined simulator values for the previous conditions. 

Chapter 4 presents a controlled PVT regressor based on an artificial neural 
network, also intended to be incorporated within simulation-based synthesis. This 
regressor estimates the complete set of PVT corner performances via multiple parallel 
networks. 

Lisbon, Portugal João L. C. P. Domingues 
Pedro J. C. D. C. Vaz 
António P. L. Gusmão 

Nuno C. G. Horta 
Nuno C. C. Lourenço 
Ricardo M. F. Martins



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 Analog/RF Integrated Circuit Design Automation . . . . . . . . . . . . . . . 1 
1.2 Analog IC Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.3 Machine Learning and Analog IC Sizing . . . . . . . . . . . . . . . . . . . . . . . 4 
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.1 Knowledge-Based Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.2 Optimization-Based Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

2.2.1 Equation-Based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
2.2.2 Simulation-Based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

2.3 Machine Learning in Simulation-Based Evaluation . . . . . . . . . . . . . . 12 
2.3.1 Types of Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
2.3.2 Simulation-Based Sizing Enhanced with SVMs . . . . . . . . . . 14 
2.3.3 Simulation-Based Sizing Enhanced with ANNs . . . . . . . . . . 15 

2.4 Other ML/DL Efforts on Analog/RF Sizing . . . . . . . . . . . . . . . . . . . . 18 
2.4.1 Predicting Sizing from Performances . . . . . . . . . . . . . . . . . . . 18 
2.4.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
2.5.1 Dual-Mode Class C/D VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
2.5.2 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

3 Convergence Classifier and Frequency Guess Predictor Based 
on ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
3.2 Classifier and Regressor Based on Deep ANNs . . . . . . . . . . . . . . . . . 30 

3.2.1 Underlying Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
3.3 Training the Model in Isolation (Results Pre-integration) . . . . . . . . . 32 

3.3.1 Dataset Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



viii Contents

3.3.2 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
3.3.3 Convergence Classifier and Its Hyperparameters . . . . . . . . . . 35 
3.3.4 Regressor and Its Hyperparameters . . . . . . . . . . . . . . . . . . . . . 39 
3.3.5 Final Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

3.4 In-the-Loop Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
3.4.1 Class C/D VCO for 3.5-to-4.8 GHz @ 50% Threshold . . . . 48 
3.4.2 Class C/D VCO for 3.5-to-4.8 GHz @ 75% Threshold . . . . 53 
3.4.3 Class C/D VCO for 3.5-to-4.8 GHz @ 90% and 100% 

Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
3.4.4 Analysis of the Points Fed to the Simulator . . . . . . . . . . . . . . 57 
3.4.5 Plug-and-Play Class C/D VCO 2.3 GHz-to-2.5 GHz . . . . . . 59 
3.4.6 Plug-and-Train Ultralow-Power Class B/C VCO . . . . . . . . . . 61 

3.5 Conclusions and Future Research Directions . . . . . . . . . . . . . . . . . . . 61 
3.5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
3.5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

4 Process, Voltage and Temperature Corner Performance 
Estimator Using ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
4.2 Controlled PVT Regressor Based on Deep ANNs . . . . . . . . . . . . . . . 68 
4.3 Training the Model in Isolation (Results Pre-integration) . . . . . . . . . 69 

4.3.1 Dataset Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
4.3.2 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
4.3.3 Tuning Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
4.3.4 Final Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
4.3.5 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.4 In-the-Loop Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
4.4.1 Class C/D VCO with PVT Estimator Working at 100% . . . . 86 
4.4.2 PVT Estimator with Error Controller . . . . . . . . . . . . . . . . . . . . 89 
4.4.3 Results with Controlled PVT Estimator . . . . . . . . . . . . . . . . . 93 

4.5 Conclusions and Future Research Directions . . . . . . . . . . . . . . . . . . . 106 
4.5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
4.5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Chapter 1 
Introduction 

1.1 Analog/RF Integrated Circuit Design Automation 

In the present day, the IC industry has, now more than ever, a huge demand for 
electronic devices not only in the consumer electronics markets but also in other 
industries such as medical, automotive, or security. Despite Moore’s law not really 
being observed anymore, the evolution of the IC industry is still clearly observable 
every year, with designers building increasingly more complex, power-efficient and 
integrated systems. These systems often combine analog and digital sections, where 
most components are integrated into a single chip originating mixed-signal systems-
on-a-chip (SoCs). While most functionalities are implemented using digital or digital 
signal processing circuitry, analog circuits are the bridge between digital circuitry and 
physical devices with a steady increase in connectivity needs. Even though analog 
circuits only occupy a small fraction of the SoCs, their design effort is dispropor-
tionally large, as illustrated by Fig. 1.1 [1]. According to [2], the global IC market 
was worth $412.3 billion in 2019 and is expected to grow to $502.94 billion by 2023, 
with analog components being present in more than 50% of the total IC shipments 
yearly. Besides, the strict time-to-market constraints and development costs make 
electronic systems’ design challenging, being, therefore, fundamental to accelerate 
their development process as much as possible.

Plenty of EDA tools and design methodologies have been made available to cope 
with new capabilities offered by the integration technologies. However, there is still 
a considerable discrepancy between the analog and digital IC design tools. The 
gap between the number of existing EDA tools for digital and analog circuits is 
usually explained by the fact that the digital market is much larger, absorbing the 
available resources. It is also easier to express a digital system, which can be repre-
sented naturally in terms of Boolean expressions, whereas, on the analog side, their 
design is less systematic, more knowledge-based, and more heuristic [3]. Even though 
analog circuits only occupy a small fraction of these SoCs, they are responsible for 
most design errors and expensive redesigns/reruns. Therefore, economic pressure

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
J. L. C. P. Domingues et al., Speeding-Up Radio-Frequency Integrated Circuit Sizing 
with Neural Networks, SpringerBriefs in Computational Intelligence, 
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2 1 Introduction

Fig. 1.1 Contrast between analog and digital blocks’ design effort [1]

has motivated the quest for better methodologies to accelerate analog design. The 
automation level for analog IC has improved in the last few years, a field of profound 
academic and industrial research activity producing significant advances. However, 
it is still far from the push-button stage, leading designers to keep exploring the 
solution space almost manually, as there are no standard plug-and-play EDA tools 
and methodologies to automate the analog IC design flow. 

While most of this is true for analog base-band, on top of that, with predictions 
that more than half of new businesses will run on the internet-of-things (IoT) and 
advanced telecommunication broadbands, such as the 5th generation (5G), there 
will be an immense demand for devices and sensors, opening doors to advances in 
many areas. This has already led to an increase in the amount of data that is being 
continuously generated, resulting in new challenges within every part of the network. 
Consequently, there is high pressure in today’s market for larger communication 
rates, extensive bandwidths, and ultralow-power consumptions. This is where RF 
ICs come in hand, playing a crucial role. However, RF IC design in deep nanometric 
integration technologies for both IoT and 5G is extraordinarily difficult, due to their 
high complexity and demanding performances. Some of the design difficulties lie in 
the wide range of frequencies and dynamic ranges involved, but also on:

• Their dependence on non-reliable models of passive devices;
• At gigahertz frequencies, there is a huge impact of layout parasitics;
• Their integration in deep nanometer technologies causes variability issues and 

non-idealities which have never been experienced in older technology nodes. 

Avoiding costly redesign cycles and reducing post-fabrication tuning and compen-
sation work on first-pass fabrication success became primary RF IC design objec-
tives. Established computer-aided design (CAD) companies provide environments 
that allow circuit designers to carry this flow manually. Despite this, the classical trial
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and error method is no longer viable due to the high number of complex interactions 
leading to sub-optimal RF designs. 

1.2 Analog IC Design Flow 

Regarding the specific design flow of analog ICs, each designer/company may have its 
own. However, in [3], Gielen and Rutenbar standardized the steps that most designers 
take when designing an analog or mixed-signal IC, introducing the widely acknowl-
edged design flow shown in Fig. 1.2. This flow consists of a series of top-down design 
steps repeated from the system to the device level and bottom-up layout gener-
ation and verification. Using a hierarchical top-down design methodology allows 
for performing system architectural exploration, achieving a better overall system 
optimization at a higher level of abstraction before starting more specific implemen-
tations at the circuit or device levels. With this, one can find problems earlier in the 
design flow, increasing the chances of first-time success with fewer time-consuming 
redesign iterations. 

In this design flow, the number of hierarchy levels may vary according to the 
complexity of the system being designed, and although there are no overall accepted 
representations for the architectural design, the steps between two hierarchical levels 
are:

Circuit 
Level 

Level i 

Verification 

Extraction 

Verification 

Topology 
Selection 

Specification 
Translation 

Layout 
Generation 

R
ed

es
ig

n 

Specifications to the 
hierarchical level below 

Layout from the 
level below 

Specifications from the 
hierarchical level above 

Layout sent to 
the level above 

System 
Level 

Device 
Level 

More 
Abstract 

More 
Concrete 

Backtracking 

Redesign 

Validation 
Backtracking 

Level i+1 

... 
... Validation 

Redesign 

Fig. 1.2 Hierarchical levels and design tasks of analog design flow [4] 



4 1 Introduction

• Top-down electrical synthesis path, which includes topology selection, specifica-
tion translation (or circuit sizing at the lowest level), and design verification;

• Bottom-up physical synthesis path, that includes layout generation and detailed 
design verification (after layout extraction). 

In topology selection, the most appropriate circuit topology is determined to meet 
a certain number of specifications at the current hierarchy level. This topology can 
be chosen from a set of existing topologies or synthesized. 

Specification translation is the step where the designer maps the high-level block 
specifications and, given a certain topology, maps them into individual specifications 
for each sub-blocks. Due to these sub-blocks being single devices at the lowest level, 
this task is narrowed down to circuit sizing. Before proceeding down in the hierarchy, 
specification translation is verified using simulation. At higher levels of the design 
flow, there is no device-level sizing available, which results in behavioral simulations. 
However, device sizing is available at lower levels (circuit and device level), and 
therefore, electrical simulations are used. Each block’s specifications are passed to 
the following hierarchy level, and the whole process is repeated until the top-down 
electrical synthesis flow is completed. 

To aid designers to overcome the many difficulties encountered in manual sizing 
of analog/RF IC blocks, several optimization-based sizing approaches emerged. 
These EDA tools use several algorithms that explore the design space effectively 
rather than iterating over designer-defined analytical equations. They can be used 
along with performance models that can capture several circuit characteristics of 
RF circuits. However, despite its increased computational effort, utilizing foundry-
provided device models and a circuit simulator as an evaluation engine resulted in the 
most accurate and generally adopted approach. Most commercially available solu-
tions that use the simulation-based architecture, e.g., Cadence’s Virtuoso GXL [5] 
or MunEDA’s DNO/GNO [6], still take a restrictive single-objective approach being 
used to semi-automate the manual sizing design process. Consequently, simulation-
based techniques are a continuous research subject of the community to face the 
most recent design challenges. 

After the top-down flow is completed at a certain level, the sizing obtained must 
be verified by generating the corresponding layout and testing its performance. If 
these prove to be satisfactory results, the design flow is finished. If not, a redesign is 
needed, repeating the previous steps or the complete flow. 

1.3 Machine Learning and Analog IC Sizing 

ML is how a computer improves its capabilities by analyzing past experiences. This 
area of artificial intelligence (AI) has been chosen to solve problems in computer 
vision, speech recognition, and natural language processing, among others because it 
can be easier to train a system showing examples of what the output should be given a 
particular input than to anticipate all possible responses for all inputs. One of the most
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used models nowadays is artificial neural networks (ANNs), and those are the models 
considered in this book. This technique has been cyclically picked-up and abandoned 
over the years, but a new trend emerged recently, called deep learning (DL), where 
much more complex networks are employed, yielding fascinating results in image 
processing, for example. They are also playing a role in the design automation of 
analog and RF integrated circuits ICs [7], being used on several fronts, e.g., modeling 
[8], mapping from devices’ sizes to circuits’ performances [9–11], mapping from 
specifications to the sizing [12], layout generation [13–17] or even fault testing [18]. 

Analog IC performance evaluation is well established in the design flow. Further-
more, as stated in the previous section, this prominence of circuit analysis tools and 
methods led to simulation-based optimization as the most common method in both 
industrial [5, 6] and academic [19] environments. These automatic analog/RF IC 
sizing methods aim to find the best set of device sizes by iterating over tentative 
guesses and evaluating their impact on circuit performance, as shown in Fig. 1.3. 
This process is shown to produce usable designs, but it is still slow, and reuse 
usually involves new optimization runs. Some approaches have been made to use 
ML algorithms in analog IC sizing. However, most of the different approaches incor-
porating ML/DL concepts in the simulation-based sizing loop attempted to alleviate 
the simulator workload by building models that estimate the circuit performances, 
fully bypassing simulation. 

From the analysis of state-of-the-art sizing tools available for analog IC and RF 
design automation described in Chap. 2 of this book, simulation-based sizing opti-
mization tools are widely accepted approaches as they keep the solutions’ accuracy 
high and assist in the design of modern blocks. For instance, in IoT applications, 
where the demand for ultralow-power (ULP) radios is significant, voltage-controlled 
oscillators (VCOs) are extremely relevant design blocks. Besides requirements such 
as phase noise and power consumption, the intrinsic tradeoff specifications, such as 
the frequency tuning range and frequency pushing due to the supply voltage varia-
tion, must be carefully considered in a practical design. Building a realistic analysis 
of the design tradeoffs is a challenging task, as multiple tuning modes deliver a

Fig. 1.3 Simulation-based 
sizing concept 

Simulator 
in-the-loop 

Evaluated 
Circuits’ 

Performances 

... 
... 

Optimization Engine 

Candidate Circuit 
Sizing Solutions 



6 1 Introduction

vast number of conflicting performance figures that need to be balanced. Adding 
further complexity, the impact of the process variations or parasitic layout structures 
turns the optimal balance of the design tradeoffs beyond human capabilities, which 
can only be solved with the assistance of automatic tools. Still, some challenges 
arise when designing complex RF circuit topologies using simulation-based sizing 
optimization:

• In some cases, the simulator is unable to converge to the guessed oscillation 
frequency, whereas in others, the simulation attempts to converge infinitely;

• The increase in simulation time of extracted netlists, as opposed to the pre-layout 
one, makes it harder to decide when to put a timeout on convergence attempts;

• An oscillation frequency guess must be provided for the steady state (SST) 
analysis. However, it is strongly correlated with the convergence of the anal-
ysis. Therefore, promising designs may still be lost without simulating multiple 
guesses. 

1.4 Conclusion 

While the demand for new analog ICs for ever-increasing challenging specifications 
keeps building momentum, their design automation is still lacking and needs to be 
addressed. In this book, we explore how ML/DL can be used to increase the effec-
tiveness of analog and RF automatic sizing. Chapter 3 proposes a methodology that 
disrupts the most recent trials of replacing the simulator in the simulation-based 
sizing with ML/DL by proposing two distinct ANN models. The 1st classifies the 
convergence of the circuit for nominal and PVT corners, bypassing solutions that 
will hardly produce valuable information for the evolutionary kernel, and the 2nd 
predicts the VCOs’ oscillating frequencies for the conditions above. The conver-
gence classifier (CCANN) and frequency guess predictor (FGPANN) are seamlessly 
integrated into the simulation-based sizing loop, as shown in Fig. 1.1, accelerating 
and complementing the optimization process. And, in Chap. 4, a PVT regressor 
that inputs the circuit’s sizing and the nominal performances to estimate the PVT 
corner performances via multiple parallel ANNs greatly accelerates robust design. 
Two control phases prevent the optimization process from being misled by inaccurate 
performance estimates. Ultimately speeding up the analog/RF IC optimization-based 
sizing concept, complementing the simulation process with artificial neural networks, 
and reducing the simulator workload. 
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Chapter 2 
Background and Related Work 

2.1 Knowledge-Based Sizing 

As  shown in Fig.  2.1a [1], knowledge-based sizing tools, e.g., IDAC [2] and BLADES 
[3], have attempted to systematize the design by making use of a design plan obtained 
from expert knowledge. These tools solve a pre-designed plan using circuit equations 
and a hard-coded design strategy to build component sizes that meet the performance 
requirements. While this approach presented satisfactory results for automatic analog 
IC sizing, being its main advantage of the short execution time. However, deriving 
the design plan is complex and requires a high development time. Additionally, the 
continuous effort required to keep the design plan up to date with the advances in 
fabrication technologies, the increase in the complexity of circuit topologies, and the 
fact that the results obtained are not simulator-accurate make this approach suitable 
only as a first-cut design.

2.2 Optimization-Based Sizing 

Aiming for optimality, the next generation of sizing tools has applied optimization 
techniques to analog/RF IC sizing, which can be further classified into equation-
based or simulation-based when considering the method used to evaluate the circuit’s 
performance, as illustrated in Fig. 2.1b [1]. 

2.2.1 Equation-Based Evaluation 

Equation-based methods use analytic design equations to describe the circuit perfor-
mance, and then, to resolve the degrees of freedom, tools such as OPASYN [4]
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Fig. 2.1 Automatic circuit sizing methods: a knowledge-based and b optimization-based [1]

and CADICS [5] were used. Since the design equations had to be deduced by 
hand, the symbolic simulator ISAAC [6] was developed to automatically produce 
design equations used to evaluate the circuit performance in a relatively less complex 
process. This process reduces the setup time when optimizing new circuit topologies. 
Nonetheless, similar to knowledge-based sizing, the problem of using these methods 
is still mapping design characteristics by analytic equations, which is not straightfor-
ward. The approximations introduced in the equations result in poor accuracy when 
compared with the circuit simulator. 

2.2.2 Simulation-Based Evaluation 

Simulation-based optimization is the most prevalent method in both industrial 
[6, 7] and academic environments since designers prefer to avoid the risks of estima-
tion errors in equation-based performance approximation. These simulation-based 
methods use an off-the-shelf circuit simulator to evaluate the circuit’s performance. 
The main advantage of these approaches over the equation-based evaluation is its 
improved generalization capabilities, still, due to the long execution times required 
for some SPICE-based circuit evaluations and since a considerable number of simula-
tions (hundreds to thousands) are required to reach the desired solutions, it may result 
in a time-consuming optimization process. One example of this approach was intro-
duced in [8], where an analog IC design automation environment called AIDA imple-
ments a design flow from a circuit-level specification to a physical layout description. 
AIDA was a combination and integration of two in-house tools, GENOM-POF [9], 
responsible for the circuit synthesis and whose architecture is illustrated in Fig. 2.2, 
and, LAYGEN II [10], the AIDA’s layout generator.
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GENOM-POF was based on the multi-objective evolutionary optimization kernel 
NSGA-II [11] and used the industry standard circuit simulator Mentor Graphics’ 
HSPICE as an evaluation engine to address robust design requirements, e.g., corner 
analysis. Corner analysis is one of the most used techniques for analog IC design 
centering. It corresponds to a worst-case approach in which a sizing solution for a 
given circuit topology is simulated over multiple combinations of parameter varia-
tions, such as process, power supply, or temperature. In GENOM-POF, the designer’s 
inputs were the circuit and its testbench in the form of HSPICE netlist(s). These 
netlists must have, as parameters, the optimization variables and must include a 
method to measure the circuit’s performance. The designer also had to define the 
desired range of the optimization variables, design constraints, and optimization 
objectives. 

In the past few years, RF IC design has exploited this concept of simulation-
based sizing [12–18]. Regarding AIDA-C [19], an enhanced version of GENOM-
POF whose general flow is illustrated in Fig. 2.3, represents a generic number of 
candidate circuit sizing solutions, P, proposed by the optimization engine, where 
each one is a series of possible combinations of design variables. It is an iter-
ative process, where in each iteration, the framework simulates the several test 
benches, K, affected by each sizing of P, to extract the desired measures. The most 
widely adopted commercial circuit simulators are supported in this process, such as 
Cadence’s SPECTRE, Synopsys’ ELDO, or Mentor Graphics’ HSPICE. Due to a 
measure-processing interface, it is possible to combine measures from different test 
benches into composed expressions, which can be used as targets for the constrained 
multi-objective optimization problem.
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2.3 Machine Learning in Simulation-Based Evaluation 

As each simulation made within an optimization-based loop may be a time-
consuming process, an effort has been made to develop techniques that reduce the 
workload of the simulator, most of them focused on ML. ML is a subset of artificial 
intelligence, even though the latter aims to build complex decision systems and the 
former focuses on the statistical properties of data [20]. In his essay on probability 
theory, Thomas Bayes proposed several theorems [21] that laid the theoretical foun-
dations for statistical learning and is the cornerstone for some early ML techniques, 
such as naive Bayes or Markov chains. In 1951, the first artificial neural machine 
was proposed. However, artificial neural networks (ANNs) only began to receive 
more attention from the community with Frank Rosenblatt’s perceptron [22] and 
back-propagation [23] in 1958 and 1986, respectively, wherein the latter principles 
of dynamic programming were introduced. In the meantime, many other accom-
plishments have been achieved, and today there are a vast number of different ML 
techniques for solving classification and regression tasks. 

In a classification problem, the main goal is to categorize data correctly. A typical 
example is the email spam filter which assigns incoming emails to the “spam” or 
“not-spam” categories. In a regression problem, the system’s primary goal is to 
describe one or more continuous-value dependent variables as functions of the data 
observations. An example of regression is predicting house prices given the house’s 
features (size, the number of rooms, location, etc.). A visual comparison between 
these two problems is shown in Fig. 2.4.
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Fig. 2.4 Classification (left) versus regression (right) problems [25] 

2.3.1 Types of Supervision 

A critical characteristic of all ML systems is their ability to adapt correctly to new, 
previously unseen data and avoid overfitting the training data. Overfitting occurs 
when the system learns the detail and noise in the training data to the extent that it 
negatively impacts the performance of the system on new data, affecting its general-
izing capabilities [20, 24]. Another attribute of an ML system is the amount and type 
of supervision. The following subsections refer to the different supervision categories 
in which an ML system can be categorized. 

2.3.1.1 Supervised Learning 

For these models, the dataset used must have some observations and the expected 
results, called labels. The labels can further divide this method into two problem-
solving techniques: classification and regression. As stated, a classification problem 
is when the output variable is part of a group, for instance, “dog” or “not dog,” 
whereas regression is a case where the output variable is a real value, such as the cost 
of a house. Some examples of important supervised learning algorithms are linear 
regression, logistic regression, decision trees, support vector machines (SVMs), and 
ANNs. 

2.3.1.2 Unsupervised Learning 

The training uses data that has not been labeled for these models, aiming to create 
models that can draw inferences from datasets to describe hidden structures. Unsu-
pervised learning is particularly suitable for problems such as clustering or associa-
tion. A clustering problem is characterized by disclosing the inherent groupings in
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the data, for instance, grouping people based on their age, whereas an association 
problem aims to discover relations rules within the data, such as people who buy X 
also tend to buy Y. Some examples of relevant algorithms are principal component 
analysis, K-means, and mixture models. 

2.3.1.3 Semi-supervised Learning 

Semi-supervised learning is the third category that falls between supervised learning 
and unsupervised learning. Its training data combines a small amount of labeled data 
with a large amount of unlabeled data, and the system is trained with a combination of 
supervised and unsupervised algorithms. Some algorithm examples are autoencoders 
and deep belief networks. 

2.3.2 Simulation-Based Sizing Enhanced with SVMs 

With the recent technology advancements, the use of macro models such as ANNs or 
SVMs introduced another type of optimization-based sizing, designated numerical-
model based. Given the models’ prediction speed, by using these tools, one can 
reduce the high simulation times of the simulator loop by aiding the simulator in 
certain tasks or, in a more drastic way, by completely replacing the simulator. 

Starting with SVMs, which is a supervised learning algorithm for data separation, 
making use of linear combinations to produce a boundary that maximizes the margin 
between classes. This algorithm is especially interesting if the data is linearly sepa-
rable, as for nonlinear patterns, a kernel trick is used, allowing the SVM to create 
this boundary in a higher dimension hyperplane. 

In [1], an SVM classifier is used to enhance the multi-objective IC sizing opti-
mization process. The previously presented analog IC sizing tool, GENOM-POF, was 
used to demonstrate the methodology. The SVM is used to create feasibility models 
that diminish the design search space during the optimization process, reducing the 
number of required evaluations. This approach was validated using benchmark exam-
ples consisting of two different circuits, a single-ended folded cascode amplifier, and 
a fully differential telescopic amplifier. The functional feasibility regions used to 
train the feasibility model were defined by functional constraints, where the training 
data used to train the model was obtained using a design of experiments. The sampled 
points obtained were sorted into 3 classes, feasible, quasi-feasible, and infeasible. 
Finally, the evaluation was made, where the model classifies the individuals based on 
their classes, discarding the unfeasible ones. The results showed that the models had 
absolute gains ranging from 10 to 20% in terms of the overall reduction in the number 
of evaluations required. As the electrical simulation is more time-consuming than 
the SVM model evaluation, it allows an efficient diminishing of the design search 
space.
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In [26], an SVM is also used to identify the feasibility of the design space of 
analog circuits to reduce a large amount of the entire design space, sampling only the 
points considered feasible and their neighbors. After choosing the proper parameters 
of the SVM, the resulting model may reach 100% accuracy on the training data. 
So, the difficulty relies on the generalization capability when facing an independent 
validation data set. To tackle this issue, three accuracy metrics were presented, i.e., 
overall accuracy, percentage of false negatives, and percentage of false positives. 
These metrics are presented in Eqs. (2.1), (2.2), and (2.3), respectively: 

Pt = 
N umber o f correctly classi f i ed samples 

Number  o f  samples  in  the  validation  set  
(2.1) 

Pf n  = Number  o f  f  alse  negati  ves 

Number  o f  posi ti  ves in the validation  set  
(2.2) 

Pf p  = 
Number  o f  f  alse  posi ti  ves 

N  umber  o f  predicted  posi ti  ves 
(2.3) 

Two circuits were used as a case study to validate this method: an opera-
tional transconductance amplifier and a low-voltage double-balanced mixer. With 
discarding the predicted negative values, the coverage of the feasibility design space 
was consistently above 99% for both circuits, and the rate of feasible designs that 
were excluded from being sampled was in the order of 10−4. Finally, the computa-
tional time was also reduced, where the results show between 59 and 71% reduction 
when compared with previous approaches. The problem with using SVMs is that 
tuning hyper-parameters and selecting the correct kernel is quite challenging. SVMs 
also have degraded performance when faced with large datasets and a higher number 
of features. 

2.3.3 Simulation-Based Sizing Enhanced with ANNs 

Today, ANNs are pretty popular in ML due to the increased data and computing 
power available. These two factors prevented researchers from using them altogether 
in academic settings in the past. However, nowadays, with fast-processing computers, 
ANNs can be found in image processing, speech recognition, and other areas where 
large amounts of data are available. They are systems based on the human brain, 
copying how we learn and make decisions. These networks are composed of an 
input and an output layer and one or more hidden layers. Each of these layers is a 
combination of neurons, where the input layer is where the data is fed to the network 
and the output layer is where the algorithm results are obtained. 

The advantages of using ANNs are their high performance, capability to solve 
problems impossible for humans, an excellent algorithm for regression and classi-
fication problems, and ability to handle large amounts of data. Some disadvantages
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are their black-box nature (i.e., it is difficult for researchers to completely understand 
why the algorithm behaves a certain way because of how the numerical values are 
produced), the long time to train the model, and the large amount of data required. 
Nonetheless, ANNs have been proven to build effective end-to-end ML systems, 
which can also be used for the design automation of analog and RF ICs [27–29]. 
These may span from modeling [30], synthesis [31], layout generation [32–37], or 
even fault testing [38]. 

In [39], a neural network-based methodology is used to estimate the performance 
parameters of different CMOS operational amplifier topologies. To obtain the effi-
ciency and accuracy of the resulting performance models, these were used in a 
genetic algorithm-based circuit synthesis system. The performance parameters of 
the synthesized circuits were validated by SPICE simulations and compared with the 
ones predicted by the ANN models. Training data of the model was directly gener-
ated through SPICE simulations to provide accurate and reliable data to the system. 
The ANN’s architecture had only one hidden layer, with its number of neurons 
ranging from 8 to 13. However, its generalization capabilities were limited, as in 
some performances predicted by the model, the test error reached 60%. 

This approach proved to be much faster when compared to the traditional SPICE 
simulation. The genetic algorithm, using the ANN models, was executed 10,000 times 
to produce 8 performance parameters, each obtained through a different iteration. 
Through SPICE simulation, each of these iterations would require 2 s to complete, 
which would total about 44 h (10,000 × 2 × 8) for all configurations. The execution 
time using ANN models was about 80 s for all configurations, representing a speed-up 
factor of 2000×. Beyond some of the higher reported errors, the models also proved 
to be capable of capturing nonlinear behavior of the performance characteristics of 
a circuit which requires a large number of simulations, but in the end, the effort is 
justified when considering the reusability of the models in other amplifier topologies. 

In [40], an ANN with two hidden layers is used to replace the SPICE simulator. 
Multi-objective optimization is frequently used in analog sizing to reveal the trade-
offs of the design specifications with the help of Pareto optimal fronts (POFs). A 
rough POF can be found in a reasonable time with multi-objective optimization, 
but the high-quality ones require a large amount of simulator iterations, resulting in 
long synthesis periods. In this paper, a method is presented to speed-up this process. 
After a multi-objective optimization phase to obtain a, designated, low-quality POF, 
the process switches to a faster single-objective optimization to complete the POF 
making it smoother and more continuous. At this phase, the SPICE simulator was 
also replaced by an ANN, reducing the synthesis time even further. The training data 
for the ANN was obtained from the multi-objective optimization phase. 

This method was applied to the design of two circuits, a two-stage amplifier, and 
a folded cascode operational transconductance amplifier to validate this tool. For the 
first circuit a speed-up factor of about 29.7× was obtained, which translates to a 
96.6% time reduction, with a maximum error of 0.44%. As for the second circuit, a 
speed-up factor of 28.3 was obtained, representing a 96.4% time reduction, with a 
maximum error of 1.55%.
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In [41], a similar method is used to accelerate a simulation-based circuit synthe-
sizer using ANNs to determine circuit performances instead of a SPICE simulator. 
Instead of training the ANN with simulation data beforehand and simply replacing the 
simulator with the trained ANN, the simulation-based synthesizer is left unchanged 
for some generations of the optimization loop, and only after a period the ANN 
replaces the SPICE simulator. Unlike other conventional algorithms, all the data 
generated in the first phase is used as training data for the ANN instead of being 
discarded. The proposed circuit synthesizer flow is shown in Fig. 2.5. Since the 
training data acquisition step consumes a significant amount of time and is necessary 
for every new topology to be treated, the main innovation of this approach is that no 
separate data acquisition step to train the ANNs is required. Therefore, the flow can 
be used for every new topology without losing generality for all analog circuits. 

This method was applied to the circuit synthesis phase of two circuits, a single-
stage amplifier, and a folded cascode operational transconductance amplifier. With 
only the SPICE simulator, the circuit sizing of the single-stage amplifier took 4.92 h 
to complete, where the optimizer was executed for 100 generations. With ANNs 
replacing the simulator after the first 20 generations, the execution time was reduced 
by 64.8%, corresponding to a speed factor of 2.84×, with errors below 1%. For the 
folded cascode amplifier, which presents a higher complexity, the original optimizer 
took 400 generations and 22.58 h to complete the circuit sizing. The best time reduc-
tion obtained with ANNs was 50.3% with errors below 1%, where the ANN replaced 
the simulator after 155 generations. 

All these approaches to reduce the execution time of optimization-based sizing use 
ANNs to replace or complement the circuit simulator. The execution time is greatly 
reduced by avoiding time-consuming circuit simulations. However, in [39, 42], at 
later stages of the optimization, the circuit simulator is re-established to recover the 
accuracy lost. Furthermore, the ANN models are trained over the entire design space, 
which spends valuable resources modeling and evaluating large regions of unusable
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Table 2.1 Speeding-up simulation-based sizing with ANNs overview 

Reference Speedup 
factor 

Maximum error Number of 
layers 

Method 

Wolfe and Vemuri 
[39] 

≈ 2000 60% 3 Complement/Replace 
simulator 

Çakıcı et al. [40] 29.7 1.55% 3 Replace simulator 

İslamoğlu et al. [41] 2.8 0.77% 4 and  5 Semi-replace simulator 

Hakhamaneshi et al. 
[44] 

n/r n/r 4 Replace simulator 

Alpaydin et al. [42] n/r n/r 3 Complement simulator 

Liu et al. [43] n/r ≈ 10,000% 3 Replace simulator 

n/r—not reported 

design combinations. In [43], the ANNs were also trained to replace the simulator, 
but the previous issue is somewhat addressed by applying data mining techniques to 
build a model that captures only significant regions of the performance space visited 
during automatic synthesis. 

In [44], deep neural networks (DNNs) boost the optimizer’s sample efficiency. 
With the use of an oracle, a comparison is made between two designs, in terms of each 
design variable, as a method to select which of the two designs is likely to have better 
performance figures in advance. Since DNNs are especially good at approximating 
complex functions and have a good generalization to unseen samples, a DNN model is 
derived to behave as an oracle, which is in fact a simulator. This discriminator achieves 
at least two orders of magnitude in sample efficiency, representing a considerable 
reduction in the number of simulations required. A summary of these tools is shown 
in Table 2.1. 

2.4 Other ML/DL Efforts on Analog/RF Sizing 

This section overviews different ML applications in the analog/RF IC sizing domain. 

2.4.1 Predicting Sizing from Performances 

Using ANNs to find device sizing in analog IC proved to be feasible. These methods 
learn and output a candidate circuit sizing when asked for target specifications [45, 
46]. In [31], an ANN is developed to give the channel widths of all the transistors 
in a circuit when the designer gives the desired output specifications. The training 
phase data was performed with different SPICE parameters from the ones used in 
the test data in order to show the ability to give the transistor sizes of a circuit
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for new untrained technology, having no dependency on the SPICE parameters. As a 
method of validation, two circuits were used, current mirrors and a CMOS differential 
amplifier. For the first one, a general regression neural network was used, and the 
results showed that it could estimate the current mirror’s transistor sizes for new 
technologies with 94% accuracy. For the second one, a multilayer perceptron was 
used, and its results had an accuracy of 90%. 

In [47], to produce the sizing for a low noise amplifier, several ANNs are put in 
sequential order, having as input the intended performance. The results have shown 
good prediction accuracy. However, the training and tuning of such a model have 
proven to be exceedingly tricky. While only 277 handmade sizing solutions were 
used for the training phase, an outer loop was still required to define the model’s 
hyperparameters, reflected in a train of over 5 h on such a short dataset. In [48], the 
sizing for an amplifier is also predicted using ANNs when given its specifications. 
However, in this work, the model and training phases are different since the test was 
only performed on ten samples from the original dataset, and no evaluation is made 
on the performance and usability of the model for unknown target specifications. 

2.4.2 Reinforcement Learning 

Reinforcement learning (RL) aims to develop an agent that learns how to behave in 
a particular environment where the only feedback is the reward of its actions. This 
interaction between the agent and environment is depicted in Fig. 2.6. The agent’s 
primary goal is to maximize the notion of cumulative reward regarding its actions. 
These systems can teach robots to learn motor skills [49] or master complex board 
games like chess or Go [50]. 

RL can also be used in analog/RF sizing. In [51], an agent learns from trial and error 
how to behave like a circuit designer evolving to discover circuit sizes that satisfy the 
performance specifications finally. Another instance where RL is used for sizing is in 
[52], a tool named AutoCkt, an ML optimization framework trained using deep RL, 
that is capable of finding post-layout circuit parameters for a particular parameter

Get reward r 
New state s´ S 

State s S 
Take action a A 

ENVIRONMENTAGENT 

Fig. 2.6 Interaction between agent and environment 



20 2 Background and Related Work

specification and can also acquire knowledge about the entire circuit design space 
using a sparse subsampling technique. 

This method uses models to make a sequence of decisions. The agent observes 
and interacts with an uncertain, potentially complex environment by selecting and 
executing actions, following a trial-and-error approach, and getting rewards or penal-
ties according to what action it performs. The agent is trained to learn a policy that 
maximizes the expected outcome of the actions over time. These methods have been 
used to play complex board games or, for instance, in an autonomous vehicle to put 
safety first or minimize ride time. This method has been used in alternating current 
optimization in [51–53]. With deep learning, an agent is trained, not needing previous 
knowledge about optimizing circuits. 

2.5 Case Study 

To justify the motivation behind the developments proposed in this book, and 
to demonstrate how a time-consuming simulation step may hinder an effective 
optimization-based synthesis, a case study is introduced within this section, which 
will be explored in the following chapters. 

2.5.1 Dual-Mode Class C/D VCO 

The development of the proposed methodologies will be tested on the sizing of a 
complex dual-mode class C/D voltage-controlled oscillator (VCO), whose schematic 
is presented in Fig. 2.7 and whose optimization was firstly described in [54]. In 
that work, instead of achieving the desired performance parameters with sequen-
tial single-objective optimizations, a single many-objective sizing optimization, 
described as “everything-at-once” optimization, is proposed to find the best perfor-
mance boundaries. The circuit simulator performed a multi-process corner analysis 
and the optimization followed a worst-case corner criteria on top of a worst-case 
tuning range optimization, taking into account two different tuning modes, b0000 and 
b1111. The results pushed the circuit to its performance limits, reducing to almost 
half of the power consumption of the original design, and showing its potential for 
ultralow-power with more than 93% reduction. In the optimizations carried, there 
were 28 optimization variables that affected the sizing of 43 devices. The full list 
can be found in Table 2.2.

A total of 18 performance figures were considered from 7 different testbenches 
and the optimizations were performed with populations of 512 elements optimized 
through 200 generations only. Each optimization took approximately 50 h to complete 
in an Intel-Xeon CPU E5-2630-v3@2.40 GHz with 64 GB of RAM workstation using 
eight cores for parallel evaluation, i.e., more than 2 days. Nonetheless, a complete 
process, voltage and temperature (PVT) corners optimization of this circuit is desired,
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Fig. 2.7 Dual-mode Class 
C/D VCO [54] 
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Table 2.2 Optimization variables for the dual-mode class C/D VCO 

Variable Units Min. Grid Max. 

ind_radius µm 15 5 90 

ind_nturns – 1 1 6 

ind_spacing µm 2 1 4 

ind_width µm 3 1 30 

mccl, m1l nm 60 20 240 

mccw, m1w µm 0.6 0.2 6 

mccnf, m1nf – 1 1 32 

mccm – 1 1 100 

moscapw µm 0.4 0.2 3.2 

moscapl µm 0.2 0.2 3.2 

mimvw, mimvl, mim1w µm 2 0.2 20 

r1l, r2l, r3l, r4l µm 1 0.2 10 

r1m, r2m, r3m, r4m – 1 1 20 

nfn1, nfn2, nfp1, nfp2 – 1 1 100

which will expand that number of required simulations. Namely, 9 different testbench 
variations will be considered (TT, FF, FS, SF, SS, 300mV, 400mV, m40dC and 85dC), 
that produce 10 different performance figures each, and, due to the worst-case tuning 
range optimization where two tuning modes are evaluated, b0000 and b1111, resulting 
in each sizing being simulated 18 times and providing a total of 180 simulated
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Table 2.3 List of TT and 
PVT testbenches for the 
dual-mode class C/D VCO 

Name Process Voltage (V) Temperature (°C) 

Typical (TT) TT 0.35 25 

Fast–Fast (FF) FF 0.35 25 

Fast–Slow (FS) FS 0.35 25 

Slow–Fast (SF) SF 0.35 25 

Slow–Slow (SS) SS 0.35 25 

300mV TT 0.3 25 

400mV TT 0.4 25 

m40dC TT 0.35 −40 

85dC TT 0.35 85 

Table 2.4 List of 
performances considered for 
the dual-mode class C/D 
VCO in TT and PVT corners 

Measure Units Description 

fosc GHz Oscillation frequency 

PN@10 kHz dBc/Hz Phase noise at 10 kHz 

PN@100 kHz dBc/Hz Phase noise at 100 kHz 

PN@1 MHz dBc/Hz Phase noise at 1 MHz 

PN@10 MHz dBc/Hz Phase noise at 10 MHz 

Power mW Power consumption 

FOM@10 kHz dBc/Hz Figure-of-merit at 10 kHz 

FOM@100 kHz dBc/Hz Figure-of-merit at 100 kHz 

FOM@1 MHz dBc/Hz Figure-of-merit at 1 MHz 

FOM@10 MHz dBc/Hz Figure-of-merit at 10 MHz 

performance figures. The full list of testbench variations can be seen in Table 2.3 and 
the list of performances in Table 2.4. 

2.5.2 Dataset Generation 

To generate the dataset an optimization was conducted in order to minimize both 
power and phase noise at 10 MHz in both tuning modes, while imposing constraints 
on other 7 measured performances for each testbench, i.e., in all combinations of 
PVT corners and tuning modes. These optimization constraints and objectives are 
shown in Table 2.5. The optimization was executed through a total of 350 generations 
and took a total of 612 h to complete and resulted in a total of 27 sizing solutions. In 
Fig. 2.8 is shown the POF evolution of the original optimization which contains the 
best sizing solutions throughout the generations, and, in Table 2.6 the values of the 
final POF obtained at generation 350 are shown.



2.5 Case Study 23

Table 2.5 Optimization constraints and objectives 

Tuning mode Measure Testbenches Units Opt. constraint Opt. objective 

b0000 fosc All GHz ≥ 4.8 
PN@10 kHz All dBc/Hz ≤ −  49 
PN@100 kHz All dBc/Hz ≤ −  76 
PN@1 MHz All dBc/Hz ≤ −  98 
PN@10 MHz All dBc/Hz ≤ −  119 Minimize 

Power All mW n/d Minimize 

FOM@10 MHz All dBc/Hz ≥ −  180 
b1111 fosc All GHz ≤ 3.9 

PN@10 kHz All dBc/Hz ≤ −  55 
PN@100 kHz All dBc/Hz ≤ −  82 
PN@1 MHz All dBc/Hz ≤ −  103 
PN@10 MHz All dBc/Hz ≤ −  124 Minimize 

Power All mW n/d Minimize 

FOM@10 MHz All dBc/Hz ≥ −  180 
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Fig. 2.8 POF evolution throughout the original optimization
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Table 2.6 Final solutions of 
the original POF at generation 
350 

Worst case 
phase noise 
10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

Worst case 
phase noise 
10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

− 135.02 7.918 × 10−1 − 134.14 6.539 × 10−1 

− 134.95 7.727 × 10−1 − 134.08 6.537 × 10−1 

− 134.87 7.722 × 10−1 − 134.06 6.537 × 10−1 

− 134.83 7.722 × 10−1 − 134.05 6.536 × 10−1 

− 134.69 7.707 × 10−1 − 134.04 6.397 × 10−1 

− 134.65 6.914 × 10−1 − 133.94 6.369 × 10−1 

− 134.53 6.914 × 10−1 − 133.89 6.369 × 10−1 

− 134.37 6.749 × 10−1 − 133.88 6.368 × 10−1 

− 134.32 6.746 × 10−1 − 133.86 5.601 × 10−1 

− 134.30 6.746 × 10−1 − 133.09 5.348 × 10−1 

− 134.29 6.605 × 10−1 − 133.06 5.323 × 10−1 

− 134.26 6.598 × 10−1 − 132.97 5.322 × 10−1 

− 134.23 6.596 × 10−1 − 132.91 5.178 × 10−1 

− 134.21 6.539 × 10−1 

2.6 Conclusion 

In this chapter, different methods used in circuit optimization sizing were intro-
duced and compared regarding the evaluation engine used, emphasizing simulation-
based sizing. Using a simulator as the evaluation engine is the most widely accepted 
approach, with its main advantages being its generality and easy-and-accurate model. 
The main problem with this method is how time-consuming it may become when the 
SPICE-like simulation times increase. In recent works, the use of ML tries to address 
and solve this problem by often introducing SVM and ANNs into the optimization 
phase by either replacing or complementing the circuit simulator. 
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Chapter 3 
Convergence Classifier and Frequency 
Guess Predictor Based on ANNs 

3.1 Contributions 

Most of the different approaches incorporating machine learning (ML)/DL concepts 
in the simulation-based sizing loop attempted to alleviate the simulator workload by 
building models that estimate the circuit performances, bypassing simulation [8–10]. 
While an optimization using an ANN performance predictor can be 2000× faster 
than one using the simulator, the errors reported for some performance space regions 
can reach 60% deviation [8]. These performance estimation models can be trained 
offline, or online [19, 20], where the data gathered from the current simulation-based 
process is used for model training. Once a satisfactory deviation error is reached, 
the ANN replaces the simulator. Without attempting to predict performances, only 
recently were ANNs used as an oracle [21]. When given two different circuit sizing 
solutions, the ANNs predict which design will perform better post-layout, avoiding 
unnecessary simulations of, in theory, inferior solutions. 

Real-world applications demand robust VCOs, and to ensure it. Their sizing has 
moved towards exhaustive PVT or layout-inclusive optimizations. Still, convergence 
problems arise from these time-consuming simulations, and setting a timeout on the 
convergence attempt is a delicate decision. Additionally, the probability of conver-
gence is strongly correlated with the guess oscillating frequency, which is always 
fixed on the frequency of interest during automatic sizing procedures [1–5]. There-
fore, the major contributions of the work described in this chapter are listed as 
follows: 

• Previous works [8–10, 19, 20] focus on simulator replacement on automatic 
sizing procedures. Even if the estimated performances present acceptable devia-
tions, simulator-grade accuracy is lost. In this work, the proposed ANNs are used 
as a seamless filter/helper for exhaustive PVT-inclusive RF sizing optimization 
problems, and thus, the simulator is kept through the whole process;
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• The convergence classifier ANN captures underlying relations between the sizes 
of the different components and (un)successful convergence attempts in nominal 
and PVT corners. Therefore, the model is capable of operating in different regions 
of the performance space and be reused for optimizations with a different set of 
targets, i.e., generalizing beyond training data; 

• In [1–5], good VCO designs, i.e., feasible solutions or unfeasible but relevant 
information for the optimization process, are lost by simulating only one guess. 
The frequency guess predictor ANN provides an accurate prediction of which 
frequency a given combination of device dimensions is likely to oscillate, thus 
taking advantage of information that is often lost. 

3.2 Classifier and Regressor Based on Deep ANNs 

The goal is to reduce the total effort of the evaluation engine, i.e., the simulator, by 
reducing the number of simulated candidate circuit sizing solutions focusing on VCO 
circuits. A vital property of the VCO is that ill-designed circuits will not oscillate, 
leading to no convergence in the simulation. The combination of the proposed models 
will try to predict whether a particular solution can generate all the performance 
metrics, i.e., if it is likely that it will, at least, simulate, and when this is the case, at 
what frequency the circuit is likely to oscillate. These are critical factors in increasing 
the efficiency of state-of-the-art simulation techniques for oscillating circuits [22], 
which can waste immense resources trying to get some simulation output when the 
circuits do not oscillate. The optimization process is described in Fig. 3.1, where the 
DNNs, a classifier and a regressor, play the filter role of selecting from the candidate 
circuits that are most likely to be useful to the optimization process and, thus, to be 
presented to the simulator.

3.2.1 Underlying Architectures 

The two ANNs that are going to be developed have similar architectures, with some 
minor differences. The convergence classifier ANN will have n input neurons, corre-
sponding to the circuit sizing and the tuning mode (referent to the case study intro-
duced in Chap. 2), and y output neurons for each PVT corner considered, as shown 
in Fig. 3.2. With these inputs, the ANN can predict whether a given candidate circuit 
sizing solution should be simulated or not, as the output will be a classification of 
“convergent” or “nonconvergent” for each possible candidate circuit sizing solution.

Besides having the same inputs as the classification model, the regression ANN 
has one additional input. The PVT corner is to be considered. The output will deter-
mine the oscillatory frequency for that specific corner and tuning mode, as shown in 
Fig. 3.3. This regression will be executed only for the solutions classified as “con-
verge” since there is no point in predicting the oscillatory frequency for solutions
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Fig. 3.1 Proposed enhanced simulation-based loop

Fig. 3.2 Structure of the classification ANN

that will not be simulated. The target model will have a general behavior for the 
circuit analyzed, independently of the designer’s constraints. Since the solution only 
depends on the device sizing information, the trained model can be reused on different 
optimizations for the same circuit.
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Fig. 3.3 Structure of the regression ANN 

3.3 Training the Model in Isolation (Results 
Pre-integration) 

The starting point of training the models is the preparation of the dataset. Different 
ANN implementations are analyzed and tested to study the impact of their hyper-
parameters on the convergence classification and oscillating frequency regression. 
Finally, the test results of some of the hyperparameters of the ANNs are described 
using the dataset of the complex dual-mode class C/D voltage-controlled oscillator 
(VCO) circuit described in Chap. 2 [23]. The class-B/C VCO from [24] is used to see  
how the approach achieves on another circuit using the same hyperparameters for 
the classification and regression ANNs. All ANNs were implemented using Python 
using different ML libraries such as TensorFlow [25] and Keras [26]. The code was 
executed on an Intel® Core™ i5-8600K 6 cores CPU 3.60 GHz with 16 GB of RAM. 

3.3.1 Dataset Processing 

The dataset of the complex dual-mode class C/D voltage-controlled oscillator (VCO) 
circuit, previously defined in Chap. 2, contains 92,115 rows of data, where for each, 
it is given a combination of the 28 sizing variables and its resulting 180 performance 
values, 90 for each tuning mode. The tuning mode is input for both the classification 
and regression models. Therefore, each possible combination of device sizing is 
replicated, and a column is added containing the tuning mode considered, resulting
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in twice as many rows, i.e., 184,230 rows of data. Moreover, the 180 performance 
value columns were split in 90 for each of the two lines resulting from the described 
process. Thus resulting in a table with 184,230 lines and 28 + 1 + 90 = 119 columns. 
Then, the following actions differ for each ANN: 

• Classification: For the classification network, in each row, the 10 values of perfor-
mances generated for each of the 9 corners are analyzed to label the corresponding 
corner as “convergent” or “nonconvergent.” Each corner is examined, and if none 
of its performance metrics has a value of NaN, then the corner is labeled as “con-
vergent.” If not, it is labeled as “nonconvergent.” Having done this for every row, 
the classification dataset is prepared, totaling 184,230 rows and 38 columns, 28 
sizing variables and the tuning mode for the inputs, and the convergence label of 
the 9 corners as outputs. This process is illustrated in Fig. 3.4; 

• Regression: For the regression ANN the dataset had to go through a more thorough 
pre-processing. Since this ANN will only be used in convergence scenarios, only 
convergence scenarios should be considered in this dataset to focus the model’s 
training in the region in which it will operate. Moreover, each corner is considered 
as input. Therefore, each row of data is replicated 9 times so that for each possible 
combination of sizing variables, tuning mode, and corner, there is an oscillatory 
frequency guess, as shown in Fig. 3.5. Then, only rows (i.e., sizing, tuning mode, 
and corner combinations) where convergence occurs are kept. After a careful 
analysis, the data had to go through a final procedure to remove any possible

Fig. 3.4 Pre-process of classification dataset
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outliers by removing the outermost 1% of the data distribution. After this step, 
the dataset is ready for training the ANNs. Table 3.1 showcases the data and 
highlights the differences observed after removing the outliers.

Fig. 3.5 Pre-process of regression dataset 

Table 3.1 Frequency 
distribution with and without 
outliers 

Outliers Without outliers 

Max. oscillatory frequency 1.63 × 1016 6.47 × 109 

Min oscillatory frequency − 1.03 × 102 1.07 × 109 

Standard deviation 1.71 × 1013 7.93 × 108 

Mean 4.16 × 1010 4.21 × 109 

Quantile 0.25 3.58 × 109 3.59 × 109 

Quantile 0.5 4.14 × 109 4.14 × 109 

Quantile 0.75 4.89 × 109 4.88 × 109
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3.3.2 Feature Engineering 

Once the data is organized, the features still need to be prepared for an adequate input 
dataset. The scale and distribution of the data are significant to consider towards a 
stable numerical process. Some features may have different scales, while others may 
not even have units. If not adequately scaled, these variations may lead to either very 
large or minimal gradients, introducing a bias towards larger-scale features. In this 
work, we considered min–max scaling and standardization is considered. 

Min–max scaling scales a distribution to a range, typically between 0 and 1. This 
is obtained through (3.1), where x is the unscaled feature distribution and x ' is the 
scaled distribution: 

x ' = 
x − min(x) 

max(x) − min(x) 
(3.1) 

In standardization, a feature is modeled as a normal distribution centered in 0 with 
a unitary standard deviation. This is done through: 

x ' = 
x − μ 

σ 
(3.2) 

where μ and σ are the mean and standard deviation of the unscaled feature 
distribution, respectively. 

3.3.3 Convergence Classifier and Its Hyperparameters 

Having the dataset prepared, it can be used to train the classifier. Firstly, the data is 
divided into train and test data with a ratio of 80% and 20%, respectively, and where 
the data is first randomly shuffled before splitting. Regarding the classification, the 
metrics used to evaluate the model were: 

• Loss, computed by the binary cross entropy (3.3), in which the predictions made 
are compared to the collected labels; 

L = −  
1 

n 

nΣ

i=1 

yi ∗ log ŷi + (1 − yi ) ∗ log
(
1 − ŷi

)
(3.3) 

• Binary accuracy, which computes the rate of correct predictions made by the 
model, i.e., how often the model’s predictions align with the labels and is 
given by (3.4), where True Positives (TP) is the number of points correctly 
predicted as convergent, True Negatives (TN) the number of points correctly
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predicted as nonconvergent, False Positives (FP) are nonconvergent points incor-
rectly predicted as convergent and False Negatives (FN) are convergent points 
incorrectly predicted as nonconvergent; 

Accuracy = T P  + T N  

T P  + T N  + FP  + FN  
(3.4) 

• Recall evaluates how many of the dataset’s convergence scenarios were correctly 
predicted by the model, as in (3.5). 

Recall = T P  

T P  + FN  
(3.5) 

Besides training the model’s parameters (weights and biases), the model’s hyper-
parameters substantially impact the training time and final performance. Thus, these 
hyperparameters should be carefully selected. A simplified empirical search of the 
hyperparameter space is conducted toward this goal, where, even though these hyper-
parameters interact, a simplified approach is taken, and each hyperparameter is opti-
mized individually, with all others fixed. Although no established order exists to 
conduct this study, an effort was made to tune the hyperparameters in order of 
estimated impact on model performance (most impactful first). 

Training is done with the Adam optimizer, which has three hyperparameters, the 
default values for β1, β2 and ε are robust to a variety of settings. Thus, no optimization 
of these hyperparameters is conducted, and the default values corresponding to β1 = 
0.9, β2 = 0.999, and ε to a small value, such as 10−8, were used. We start with the 
ReLU as the activation function for the hidden layers and sigmoid for the output 
layer, the simple architecture of an ANN with two hidden layers with 200 neurons 
per layer, and MinMax scaling with a range going from 0 to 1 as the normalization 
scheme. A dropout of 20% is used to prevent overfitting and add robustness [27]. 

As a starting point, the learning rate is the first hyperparameter to tune since its 
impact on model performance is expected to be the highest of all [28]. The learning 
rate dictates how fast the model responds to the estimated error in each weight 
update. Setting this value is challenging. The process of choosing the most appro-
priate learning rate is not very well defined but rather empirical, where the approach 
starts with a high learning rate and steadily decreases it until no improvement is 
observed. The results in Table 3.2 show that the value of 0.003 presents the best 
overall results, with minimum training and test loss, maximum training and test 
accuracy, and third-best train and test recall.

An activation function defines the expressiveness of each neuron. In regression, 
when predicting the circuit’s oscillating frequency, where the output is a real value, 
the output neuron is taken directly from its linear activation. However, for the output 
of the classification and the hidden layers of both the ANNs, it is necessary to have 
non-linear activation functions to provide expressiveness to the network. Regarding 
the classification model, the sigmoid function, shown in Fig. 3.6, is a prominent 
function used in classification networks’ output layers, having the ability to map
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Table 3.2 Learning rate evolution with 32 batch size, ReLU, and sigmoid activation functions, two 
hidden layers and 200 neurons per layer, and MinMax of 0–1 

Training loss Test loss Training 
binary 
accuracy 

Test binary 
accuracy 

Training 
recall (%) 

Test recall 
(%) 

0.009 0.1022 0.1117 0.9654 0.9628 99.36 99.25 

0.007 0.1051 0.1140 0.9636 0.9604 98.18 98.03 

0.005 0.0935 0.1049 0.9686 0.9652 99.41 99.25 

0.003 0.0862 0.0990 0.9726 0.9678 99.13 98.87 

0.0009 0.0881 0.0992 0.9716 0.9675 98.89 98.68

the input values of a neuron to a value in the 0–1 range. This function contains the 
neuron’s output in the feasible range of binary classification tasks, making it helpful 
for this class of problems. 

As discussed in [29], other good candidate activation functions generally outper-
form the sigmoid function when addressing DNNs. The Rectified Linear Unit (ReLU) 
is a popular activation function, mathematically defined by f (z) = max(0, z). One  
issue that arises from using the ReLU activation function is denominated the dying 
ReLU function, in which the neuron’s parameters stop updating due to the null 
gradient in the z < 0 region, thus becoming stuck in that region. Variants of the 
ReLU function, such as the leaky ReLU, have been proposed to soften the hard

Fig. 3.6 Sigmoid function 
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Fig. 3.7 Leaky ReLU function 

cutoff the ReLU function presents in the z < 0 region. The leaky ReLU is illustrated 
in Fig. 3.7. 

Regarding the activation function used in the model’s hidden layers, Table 3.3 
shows the results obtained for each tested activation function. The results show that 
the sigmoid function achieves the best test loss and accuracy while achieving a 
comparable test recall score, thus presenting the best overall performance. 

The size (number of layers and number of neurons in each layer) determines the 
expressiveness of the ANN. Whereas a small model is easy to train and is unlikely to 
overfit, it will not be able to represent very complex notions. Conversely, large models

Table 3.3 Hidden layers activation functions evolution with 0.003 learning rate, 256 batch size, 
two hidden layers and 200 neurons per layer and MinMax of 0–1 

Training 
loss 

Test loss Training 
binary 
accuracy 

Test binary 
accuracy 

Training 
recall (%) 

Test recall 
(%) 

ReLU 0.0925 0.1052 0.9686 0.9642 98.50 98.26 

Leaky 
ReLU 

0.0953 0.1047 0.9674 0.9639 99.40 99.31 

Elu 0.0983 0.1022 0.9669 0.9656 99.23 99.15 

Tanh 0.1008 0.1100 0.9657 0.9617 99.25 99.12 

Sigmoid 0.0887 0.1010 0.9711 0.9667 99.10 98.90 
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Table 3.4 Number of layers and neurons evolution with 0.003 learning rate, 256 batch size, sigmoid 
activation functions, and MinMax of 0–1 

Training 
loss 

Test loss Training 
binary 
accuracy 

Test binary 
accuracy 

Training 
recall (%) 

Test 
recall 
(%) 

200/200 0.0910 0.1028 0.9693 0.9648 99.29 99.16 

200/200/150 0.0876 0.0987 0.9719 0.9677 99.14 98.98 

200/200/175 0.0879 0.0983 0.9716 0.9673 98.87 98.65 

200/200/200 0.0873 0.0977 0.9715 0.9678 99.01 98.83 

200/200/225 0.0864 0.0968 0.9721 0.9682 98.76 98.54 

200/200/250 0.0851 0.0941 0.9730 0.9694 99.11 98.95 

200/200/275 0.0851 0.0955 0.9730 0.9687 99.01 98.80 

200/200/250/200 0.0900 0.0982 0.9709 0.9679 98.90 98.72 

can represent higher dimension problems but are more likely to overfit. Moreover, 
large models also increase the time and computational effort for the training stage, as 
the output of each consequent layer is computed sequentially (not parallelized). As 
there is no formula to choose the optimal number of hidden layers, one single hidden 
layer will be implemented, and their number will be incremented until an increase in 
the test error is observed, after which point, the model is assumed to overfit further. 

The number of neurons to tune only applies to the neurons in the hidden layers 
since the ones in the input correspond to the number of sizing parameters plus the 
tunning mode and the output to the number of corners. Table 3.4 shows that when 
using three layers with 200, 200, and 250 neurons, respectively, the best values of 
loss and accuracy are achieved, only falling behind in recall, thus presenting the best 
overall scores. 

Finally, different ranges of MinMax scaling and its use were tuned and compared, 
arriving at the results shown in Table 3.5. The values of loss and accuracy showed to 
be the best when using MinMax with a range going from 0 to 1, making the slight 
variations of recall values when using different ranges not worth the tradeoff. Thus, 
MinMax normalization to a range between 0 and 1 is used.

3.3.4 Regressor and Its Hyperparameters 

The hyperparameter tuning process for the frequency guess regression model was 
conducted similarly to the ones of the classifier. However, since the task differs, the 
metrics used to evaluate the hyperparameters and the possible hyperparameter values 
explored differ.

• Loss, when considering regression, where the frequency value is predicted, mean 
squared error (MSE) is the most appropriate function to use. Equation (3.6) shows
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Table 3.5 Normalization evolution with 0.003 learning rate, 256 batch size, sigmoid activation 
functions, and three hidden layers with 200, 200 and 250 neurons per layer, respectively 

Training 
loss 

Test loss Training 
binary 
accuracy 

Test binary 
accuracy 

Training 
recall (%) 

Test recall 
(%) 

No 
MinMax 

0.1785 0.1927 0.9372 0.9319 98.67 98.38 

MinMax 
(0,1) 

0.0852 0.0963 0.9727 0.9686 99.13 98.87 

MinMax 
(0.5,1.5) 

0.0993 0.1038 0.9679 0.9666 99.06 99.02 

MinMax 
(1,2) 

0.1080 0.1115 0.9629 0.9613 99.29 99.25

the loss used: the average squared difference between the simulated frequency, 
fi , and the one predicted, f̂i .

L = MSE  = 
1 

n 

nΣ

i=1

(
fi − f̂i

)2 
(3.6) 

• Mean Absolute Error (MAE), which gives the mean of the absolute difference 
between the predictions made and the labels; 

MAE  = 
1 

n 

nΣ

i=1

||| fi − f̂i
||| (3.7) 

• Mean Absolute Percentage Error (MAPE), a measure of how accurate the 
model is considering the scale of the data. 

MAP  E  = 1 n 
nΣ

i=1

||| fi− f̂i 
fi

||| (3.8) 

As a starting point, the same logic was used as before. Therefore, the hyperparam-
eters were set to leaky ReLU as the activation functions, MinMax scaling with a range 
going from 0 to 1, and two hidden layers with 200 neurons per layer. Following the 
same logic, the learning rate started at a relatively high value and gradually decreased 
until no further improvement was observed. Analyzing Table 3.6, the best values of 
MSE and MAE come from using a value of 0.0008, and so this value was chosen.

Analyzing the results, it is possible to observe that the values of the MAPE were 
too high. The normalization scheme could drastically influence this value, thus, this 
parameter is the next to be optimized, changing the order relative to the classification 
model. As Table 3.7 shows, varying the minmax range greatly affects the MAPE 
value, the best results of MSE and MAE come from using MinMax with a range of
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Table 3.6 Learning rate evolution with leaky ReLU activation functions, two hidden layers and 
200 neurons per layer, and MinMax of 0–1 

Training 
MSE 

Validation 
MSE 

Training 
MAE 

Validation 
MAE 

Training 
MAPE 

Validation 
MAPE 

0.004 0.0021 0.0021 0.0292 0.0293 122.10 9.2120 

0.0008 0.0009 0.0009 0.0170 0.0170 152.46 7.6622 

0.0007 0.0011 0.0011 0.0212 0.0212 180.91 6.7929 

0.0006 0.0015 0.0015 0.0268 0.0267 288.66 13.586 

0.0005 0.0009 0.0008 0.0173 0.0173 72.251 361.88

0–1. However, the MAPE values are too high, so, MinMax was used with a range of 
1–2, since, overall, it has the best results, achieving the lowest values of MAPE. 

Regarding the activation function used in the hidden layers (the activation function 
in the output layer is the linear activation function), Table 3.8 shows that the Leaky 
ReLU results in the best overall performance. 

Finally, the number of layers and neurons per layer were tuned, having concluded 
that two layers with 200 and 150 neurons per layer, respectively, was the best option, 
as the lowest values of MSE, MAE, and MAPE are obtained, as shown in Table 3.9.

Table 3.7 Normalization evolution with 0.0008 learning rate, leaky ReLU activation functions, 
two hidden layers and 200 neurons per layer 

Training 
MSE 

Test MSE Training 
MAE 

Test MAE Training 
MAPE 

Test MAPE 

No 
MinMax 

0.1896 0.1889 0.3106 0.3108 177.45 203.70 

MinMax 
(0,1) 

0.0008 0.0007 0.0172 0.0172 99.090 224.68 

MinMax 
(0.5,1.5) 

0.0011 0.0011 0.0197 0.0196 2.0301 2.0290 

MinMax 
(1,2) 

0.0011 0.0011 0.0199 0.0199 1.3332 1.3327 

Table 3.8 Activation functions evolution with 0.0008 learning rate, 256 batch size, two hidden 
layers and 200 neurons per layer and MinMax of 1–2 

Training 
MSE 

Test MSE Training 
MAE 

Test MAE Training 
MAPE 

Test MAPE 

ReLU 0.0012 0.0012 0.0224 0.0225 1.4365 1.4402 

Leaky ReLU 0.0010 0.0010 0.0190 0.0191 1.2736 1.2816 

Elu 0.0011 0.0011 0.0217 0.0218 1.4686 1.4709 

Tanh 0.0012 0.0012 0.0195 0.0201 1.3290 1.3891 

Sigmoid 0.0011 0.0011 0.0231 0.0231 1.5500 1.5499 
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Table 3.9 Number of layers and neurons evolution with 0.0008 learning rate, 256 batch size, leaky 
ReLU activation functions, and MinMax of 1–2 

Training 
MSE 

Test MSE Training 
MAE 

Test MAE Training 
MAPE 

Test MAPE 

200/125 0.0005 0.0006 0.0121 0.0121 0.7928 0.7964 

200/150 0.0005 0.0005 0.0100 0.0101 0.6486 0.6525 

200/175 0.0005 0.0005 0.0117 0.0117 0.7511 0.7532 

200/200 0.0007 0.0007 0.0139 0.0139 0.8601 0.8640 

200/150/75 0.0007 0.0007 0.0149 0.0150 0.9514 0.9587 

200/150/100 0.0006 0.0006 0.0124 0.0123 0.7749 0.7708 

200/150/125 0.0007 0.0007 0.0164 0.0164 1.0659 1.0679 

200/150/150 0.0006 0.0006 0.0129 0.0129 0.8454 0.8489 

3.3.5 Final Model Details 

The hyperparameter tuning process led to a classification model with the hyperpa-
rameters described in Table 3.10 and a loss and accuracy curve of both training and 
test, as shown in Figs. 3.8 and 3.9. An analysis of the loss curve shows a monotonic 
decreasing trend as epochs increment, thus suggesting a stable convergence process. 
At the last few epochs, the test loss starts exhibiting increasing instability and growth, 
thus suggesting that further training could lead to overfitting. As for the accuracy 
curves: consistent improvement and increasing test instability in the last few epochs. 
The final accuracy values indicate that the model has a probability of less than 5% 
to classify the convergence of a corner incorrectly. 

Furthermore, two more metrics emphasized the model’s validity: precision and 
F1 score. Precision shows the portion of correct identifications, while F1 is an overall 
measure of a model’s accuracy resulting from the harmonic mean of the precision

Table 3.10 Summary of the 
classification model 

Hyperparameter Value 

Input layer 1 layer (29 neurons) 

Hidden layers 3 layers (200,200,250 neurons) 

Output layer 1 layer (9 neurons) 

Activation functions Sigmoid 

Optimizer Adam 

Regularizer Dropout (drop rate = 20%) 

Loss function Binary crossentropy 

Learning rate 0.003 

Epochs 200 

Batch size 256 

Normalization Min Max (0,1)
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Fig. 3.8 Loss 

Fig. 3.9 Accuracy

and recall metrics. The formulas of precision and F1 score are shown in (3.9) and 
(3.10), respectively, and their results on Table 3.11. 

Precision = T P  

T P  + FP  
(3.9)
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Table 3.11 Train and test 
precision and F1 score results 

Train Test 

Precision 0.979 0.977 

F1 score 0.985 0.983 

Table 3.12 Summary of the 
regression model 

Hyperparameter Value 

Input layer 1 layer (30 neurons) 

Hidden layers 2 layers (200,150 neurons) 

Output layer 1 layer (1 neuron) 

Activation functions Leaky ReLU and linear 

Optimizer Adam 

Regularizer Dropout (drop rate = 20%) 

Loss function MSE 

Learning rate 0.0008 

Epochs 100 

Batch size 256 

Normalization Min Max (1,2) 

F1 score = 2 ∗ T P  

2 ∗ T P  + FP  + FN  
(3.10) 

The regressor was implemented using the hyperparameters shown in Table 3.12. 
The curves for all metrics for both the train and test sets are shown in Figs. 3.10, 3.11, 
and 3.12. Analyzing the graphs, the model learns to predict the oscillatory frequency 
inferred by the decreasing metric values throughout training.

3.3.6 Discussion 

For the class-C/D VCO, the results shown are promising, showing good performance 
in the samples outside the training set, i.e., unseen data. Additionally, by analyzing the 
histograms in Figs. 3.13 and 3.14, it is possible to see that the frequency distribution 
of the test label set and the test predictions set do not differ significantly. In addition, 
a detailed analysis was conducted, and the results from the worst, medium, and 
best MAPE results, as well as the predicted values and the real ones, are presented 
in Table 3.13, showing that, even though the worst results are still high, the overall 
results show that the ANN can predict with a firm assurance the oscillatory frequency 
value. Therefore, it is reasonable to assume that the model’s training was successful.
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Fig. 3.10 Training and test MSE 

Fig. 3.11 Training and test MAE

3.4 In-the-Loop Integration 

Next, the convergence classifier and frequency guess regressor are included in AIDA’s 
simulation-based multi-objective multi-constraint sizing optimization loop []. The 
comparison and analysis between the optimization results obtained with and without 
using ANNs are performed and discussed.
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Fig. 3.12 Training and test MAPE

Fig. 3.13 Real frequency 
values

The classification ANN discards a point (i.e., a candidate sizing solution) based on 
if the percentage of corners predicted to converge lower than some threshold, then the 
point is discarded. Regarding the predicted oscillatory frequency, it was possible to 
conclude that when predicted values were negative, even if the classification predicted 
many corners to converge, the simulator would not be able to obtain values for that 
point. Therefore, in case of negative values given by the regression ANN, the point in 
question will not be sent through the simulator, as illustrated in Fig. 3.15. Different
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Fig. 3.14 Predicted 
frequency values 

Table 3.13 Test MAPE results and difference between predicted frequency values and real ones 

Test MAPE Test prediction 
normalized 

Test prediction 
de-normalized 
(GHz) 

Real value 
normalized 

Real value 
de-normalized 
(GHz) 

Worst 
values 

9.22e+01 1.93 6.08 1.00 1.09 

8.68e+01 1.91 5.96 1.02 1.17 

8.60e+01 1.93 6.09 1.04 1.27 

8.41e+01 1.87 5.77 1.02 1.16 

8.22e+01 1.84 5.62 1.01 1.13 

Medium 
values 

5.97e−01 1.47 3.62 1.46 3.57 

5.97e−01 1.73 5.00 1.72 4.95 

5.97e−01 1.77 5.21 1.78 5.27 

5.97e−01 1.67 4.69 1.66 4.64 

5.97e−01 1.49 3.73 1.48 3.68 

Best 
values 

2.08e−05 1.57 4.17 1.57 4.17 

2.00e−05 1.70 4.82 1.70 4.82 

1.69e−05 1.46 3.54 1.46 3.54 

1.65e−05 1.60 4.32 1.60 4.32 

1.64e−05 1.93 5.01 1.00 1.09

thresholds to determine if the points will be sent to the simulator are considered, 
and the results are analyzed. Not only did the threshold come from the usage of the 
classification ANN but also the regression ANN. The functioning of this threshold 
is illustrated in Fig. 3.16.
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... 

Simulator in-the-loop 

... 

Optimization Engine 

S Candidate Circuit 
Sizing Solutions 

S×Tb 
Classifications 

S-F Nominal and 
PVT Performances 

S×Tb Regressions 

Filter (0 < τ < 1) 

S-F Candidate Circuit 
Sizing Solutions 

Frequency Guess Predictor (FGPANN) 

Convergence Classifier (CCANN) 

Fig. 3.15 Introduction of the threshold in a simulation-based sizing flow

An optimization without the filters is used as a baseline to assess the advantages 
of having these filters. As a starting point, the points that form the original Pareto 
optimal front (POF) obtained were passed through the ANNs. The outcome of the 
ANNs showed that all the points in the POF were also validated with the ANNs. 
Therefore, they would be presented to the simulator in case they appeared during the 
optimization. 

3.4.1 Class C/D VCO for 3.5-to-4.8 GHz @ 50% Threshold 

To start, the directive to allow the points to be simulated was a naive approach starting 
with a 50% threshold, meaning that if the classification ANN predicts, for a given 
point, that more than half the PVT corners converge, then that point is simulated, 
otherwise, it is discarded. The exact configuration is used for optimizations with and 
without the filters, using a population of 256 elements and 150 generations. 

During the optimization, the points simulated and discarded were registered, 
resulting in the ratio of points simulated illustrated in Fig. 3.17. It shows that, from 
the points supposed to be simulated, 18.65% were discarded. More, it is important 
to note that not all simulations take the same time. The simulation can be 100 times 
longer when the simulator encounters convergence issues. Since the filtered points 
are more likely to be the source of convergence issues, the impact on the execution 
time will be superior. Since the optimization without the filters lasted 25 days, more 
than 5 days were economized with the filter.
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Fig. 3.16 Threshold function in detail

Fig. 3.17 Ratio of points 
discarded using a value of 
50% threshold
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With these results, a deeper analysis was conducted to test the accuracy of the 
values of oscillatory frequency predicted by the regression ANN. The evolution 
of the predicted oscillatory frequency along the generations was registered. The 
difference between those and those given by the simulator was outputted using the 
MAPE formula. For the purpose of this study, 5 random points were taken for every 
generation studied. 

The results for the first generation are presented in Fig. 3.18, where the MAPE 
presents some high values, reaching even values of 41.55% discrepancy for one 
point. This means that the predicted values were considerably far from the ones the 
simulator gave. As the optimization evolves, the values given by the regression ANN 
start to get closer, and the MAPE values start to decrease, never reaching values 
higher than 14%, as observed in Fig. 3.19, where the results were made using the 
values obtained from the 75th generation. 

Finally, the results of the last generation, i.e., the 5 random points from the 150th 
generation, show auspicious figures, achieving MAPE values lower than 6%, as 
observed in Fig. 3.20. These results suggest that the evolutionary process quickly 
converges to the general region of the optimal value, thus, the generated dataset 
through an evolutionary process contains many data points in this region, and so, the 
model is better fine-tuned for the later stages of the optimization process.

By inspecting the results, it is possible to conclude that the error between the value 
predicted by the regression ANN is high as the optimization begins but decreases 
over generations, culminating in values relatively close to the ones given by the 
simulator. It is also deduced that, along the graphs, the corner SS has the highest
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Fig. 3.18 MAPE values from 5 random points of the first generation using a 50% threshold
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Fig. 3.19 MAPE values from 5 random points of the 75th generation using a 50% threshold
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Fig. 3.20 MAPE from 5 random points of the 150th generation using a 50% threshold
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Fig. 3.21 Ratio of points 
discarded without the use of 
the regression ANN 
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error, suggesting that this might be the most challenging condition to evaluate the 
circuit. 

3.4.1.1 Impact of the Frequency Guess 

To evaluate the impact of the frequency guess predictor, another optimization with 
the same characteristics was conducted with the model removed, with a population 
of 256 elements optimized for 150 generations, leading to a discard of almost 30% of 
the total points that would be simulated, which was higher than the previous results, 
as Fig. 3.21 shows. This increase in points discarded can be explained since, without 
the frequency guess predictor, the simulator could not converge in some designs, 
hindering the optimization and leading to more solutions being discarded by the 
classification ANN. 

The optimal points for each optimization, with and without the regression ANN, 
were retrieved, and a POF was obtained. These two POFs were then compared against 
the POF obtained without using the ANNs, considered the reference, as depicted in 
Fig. 3.22. As the results show, the use of the regression ANN proves to be valuable 
since even though its corresponding POF shows that the solutions obtained have 
worse results in terms of power, never reaching values below 1.30E−03, the phase 
noise results are considerably better. Some solutions have worse values of power. 
However, some achieve values lower than 9.00E−04 and better results in phase noise, 
reaching values of − 136.00 dBc/Hz. Therefore, using the regression ANN proves 
to be essential, as it helps the simulator converge thanks to the predicted value of the 
oscillatory frequency.
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Fig. 3.22 Comparison between the obtained POFs 

3.4.2 Class C/D VCO for 3.5-to-4.8 GHz @ 75% Threshold 

Next, the threshold was set to 75%, being this value is more rigid, so the number of 
points discarded is expected to be higher. The same configuration for the optimization 
was used, so the simulated points were computed, reaching the ratio showcased in 
Fig. 3.23. As expected, the rate of non-simulated points was higher, reaching a value 
of 19.65% of points discarded from the total points that would be fed to the simulator. 

The MAPE values along the optimization cycle were measured, are presented 
in Figs. 3.24, 3.25, and 3.26 the results for the first, 75th and 150th generation, 
respectively.

As expected, the MAPE values kept decreasing as the generations increased, 
starting at values of 37% up to the point of reaching values under 12%, even though 
the results are not as spread as the ones from Sect. 3.4.1. The resulting POF was

Fig. 3.23 Ratio of points 
discarded using a value of 
75% threshold 
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Fig. 3.24 MAPE values from 5 random points of the first generation using a 75% threshold 
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Fig. 3.25 MAPE values from 5 random points of the 75th generation using a 75% threshold

again compared with the reference POF as illustrated in Fig. 3.27, showing that the 
points obtained were similar to the reference one, reaching power and phase noise 
values better than the unaltered optimization cycle. In terms of power, all the values 
are lower than 7.91E−04 and lower than − 134.19 in phase noise.

To sum up, the results show that the ANNs are accomplishing what is expected, 
discarding unwanted solutions, being each ANN indispensable. They show apt to
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Fig. 3.26 MAPE values from 5 random points of the 150th generation using a 75% threshold

Fig. 3.27 POF obtained with a 75% threshold

perform optimizations in less time, without compromising the results. Next the 
threshold is set up to an even higher value as the value is set to 90 and 100%, in 
order to better comprehend the impact of this parameter in the optimization cycle. 

3.4.3 Class C/D VCO for 3.5-to-4.8 GHz @ 90% and 100% 
Thresholds 

After setting the threshold to the higher values, the same logic and optimization 
configuration was used as before, so the number of points discarded from the total
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number was again registered. The results are shown in Fig. 3.28, where it can be seen 
that the number of filtered samples was lower than the ones obtained from the use of 
a 75% threshold. 

From the inspection of the POFs obtained in Figs. 3.29 and 3.30, it is possible to 
conclude that the results were worse, as the POFs obtained are further away from 
the reference POF. With a 90% value threshold, some points have good phase noise 
values. However, the power values are too high, whereas with a 100% threshold, 
both the power values and phase noise are considerably worse. 

Therefore, not only were the number of points discarded lower, but also the values 
of the optimization worse, which led to the conclusion that such high threshold values 
come at a performance cost, as promising solutions are discarded with no chance to
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Fig. 3.28 Ratio of points discarded with 90 and 100% threshold 

Fig. 3.29 POF obtained with 90% threshold 
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Fig. 3.30 POF obtained with 100% threshold 

be evaluated appropriately. Having tested different values for the threshold, the best 
results were generated with a threshold of 75%, which was the value used for the 
following tests. 

3.4.4 Analysis of the Points Fed to the Simulator 

Having tested several values for the threshold, the points that were forwarded to 
the simulator by the ANNs were studied to have a deeper understanding of the 
differences between what the ANNs predicted and the outcome of the simulator. 
This verification also serves to understand if some PVT corner was harder to predict 
or evaluate. Hence, for an optimization produced by a value of 75% threshold, the 
points that were sent to the simulator along the optimization cycle were analyzed. 

Starting with the points obtained from the first generation, 15 points were fed to 
the simulator. From those, the ANNs predicted that all those points would converge 
in all PVT corners, apart from three points where each would fail in a corner. Two 
of these points were predicted to fail to converge for the ff corner, one in the first 
tunning mode, one in the second, and the third point was predicted to not converge 
for the ss corner in the second tunning mode. However, the simulator did not manage 
to converge for more than only the predicted three sizing-corner pairs. Figure 3.31 
shows the distribution of non-converged simulations for each corner-tuning mode 
combination for the first generation of points.

Advancing to the 75th generation, there were fewer differences in the output of the 
ANNs and the simulator. Analyzing the 23 points that the ANNs fed to the simulator, 
only one point was predicted to not converge, in the ss corner for the second tunning 
mode, whereas the simulator failed to simulate for three different corners, and in the 
case of the ss corner in the second tuning mode, one additional point than the one 
predicted failed to converge, as shown in Fig. 3.32.

Finally, in the 150th generation, the ANNs predicted that all the generation’s 24 
points should be simulated, with zero cases of corners not converging, whereas the
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Fig. 3.31 Difference between the prediction of the classification ANN and the output of the 
simulator for the first generation

Fig. 3.32 Difference between the prediction of the classification ANN and the output of the 
simulator for the 75th generation

simulator failed to converge in seven of those points and seven different corners. 
The ss corner in the second tuning mode was the corner-tuning combination that 
registered the most non-convergence, as observed in Fig. 3.33.

An earlier analysis of the dataset made it possible to obtain the number of points 
that converged for each PVT corner. Table 3.14 showcases these results, and it
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Fig. 3.33 Difference between the prediction of the classification ANN and the output of the 
simulator for the 150th generation

Table 3.14 Percentage of converged points for each corner 

TT FF FS SF SS 300mV 400mV m40dC 85dC 

b0000 87,462 87,200 87,881 88,407 79,130 82,206 89,449 87,094 86,678 

%Total 94.95 94.66 95.40 95.97 85.90 89.24 97.11 94.55 94.10 

b1111 85,143 84,631 86,717 82,049 52,680 76,735 89,021 82,377 87,513 

%Total 92.43 91.88 94.14 89.07 57.19 83.30 96.64 89.43 95.00 

can be concluded that the corner ss, for both tunning modes, is the one with the 
highest rate of non-convergence, meaning that this is the most challenging corner 
to retrieve performance values from. Additionally, this happens more often in the 
second tunning mode, reaching almost half of the cases. This explains why the ANNs 
predict that corner fail more often. Furthermore, it also explains why the simulator 
often fails to converge for that corner, as the data suggests it to be the hardest corner 
to converge. Moreover, Table 3.14 also explains why the ANNs tend to misclassify 
points as convergent since the dataset presents more convergence scenarios than 
non-convergence. 

3.4.5 Plug-and-Play Class C/D VCO 2.3 GHz-to-2.5 GHz 

A new test was made to prove the efficacy of the ANNs within the same circuit 
but with slight operational differences. A new optimization was made, and the same
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Fig. 3.34 Ratio of points 
discarded for the new 
specifications 
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ANNs trained for the previous specifications were reused in a new setup where the 
specifications for the circuit were altered. For this setup, the circuit was meant to 
operate at 2.4 GHz, having a range of frequency from 2.3 to 2.5 GHz as opposed 
to the previous 3.5–4.8 GHz conditions, and the constraints of the phase noise were 
changed to a stricter 5 dBc/Hz. 

The new optimization was run using a population of 256 elements for 200 genera-
tions. The ratio of points simulated and discarded was again recorded and is illustrated 
in Fig. 3.34. The number of points discarded was low, only 9.51. 

Even with a low number of points discarded, the optimal points obtained could 
present good values, so the POF was retrieved and compared with the one obtained 
without using the ANNs. Analyzing the results, one can observe that the POF obtained 
while using the ANNs has better results in terms of phase noise, as the solutions are 
always lower than − 138.50. However, regarding power consumption, the minimum 
obtained value was 6.00E−04 W, whereas the power consumption values obtained 
without using ANNs never surpassed the 5.00E−04 W mark, as observed in Fig. 3.35.

Ultimately, the results are acceptable, with a reduction of almost 10% of the time. 
It corresponds to a reduction of almost 3 days since the optimization took about 
26 days to complete without using ANNs. In this case, the POFs are distanced and 
non-dominant, indicating that the optimizations (wich are random) converged to 
different parts of the design space. Still, the filter did work when facing different 
specifications.



3.5 Conclusions and Future Research Directions 61

Fig. 3.35 POF obtained with the new specifications

3.4.6 Plug-and-Train Ultralow-Power Class B/C VCO 

Finally, the ANNs were trained in a second circuit, the Class-B/C VCO [24]. The 
same approach was used as the one discussed in Sect. 3.4, so the optimization was 
performed, and the number of simulated points was registered. For this circuit, the 
configurations were changed, as the ones used in the reference optimization cycle 
with no ANNs were also modified. So a population of 256 points was used, and 
its optimization was performed for 100 generations. As Fig. 3.36 shows, from the 
total points generated, 17.27% were discarded. This number is close to the 19.65% 
obtained for the first circuit, the Class-C/D VCO, with a value of also 75% threshold. 
The resulting POF, shown in Fig. 3.37, was obtained and compared with the reference 
POF obtained from the optimization without ANNs. The results are promising, as 
the values of power obtained are lower, reaching a minimum of about 1.50E−04 W, 
whereas the reference values are all greater than around 2.00E−04 W. Regarding 
phase noise, the results are very similar, with three points reaching values below any 
recorded in the reference optimization.

3.5 Conclusions and Future Research Directions 

This work proposed a seamless filter/helper for exhaustive PVT-inclusive RF sizing 
optimizations. While the savings in terms of computational effort are conservative 
when compared with methodologies that entirely replace the simulator with a model, 
here, simulator-grade accuracy is kept throughout the whole process. Not only are 
irrelevant solutions bypassed, but additionally, by providing an accurate guess to the 
simulator, optimization results are improved.
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Fig. 3.36 Ratio of points discarded for the new circuit 

Fig. 3.37 POF obtained for the class-B/C

3.5.1 Conclusions 

The work here exhibited showed an approach to optimize the sizing of analog 
IC circuits with the help of two models, one used for classification and another 
trained for regression. They both proved valuable, as the classification and regres-
sion ANNs discard unwanted solutions, and the use of the regression ANN makes 
the optimization more effective. 

Two circuits were studied, and their design was optimized. The first one was a 
Class-C/D VCO, where thanks to the convergence filters, it was possible to reduce 
almost 20% of the optimization time without compromising the results. The obtained 
POF was even better in some cases than the one obtained via more traditional means.
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For the same circuit, the ANNs also proved to work for different specifications, with 
less efficiency, as the time saved was close to 10%, and the solutions obtained better 
in one of the optimization metrics but worse in the other. 

A second circuit, an Ultralow-Power Complementary Class-B/C Hybrid-Mode 
VCO, was analyzed and optimized using the same ANN architecture used for 
the previous circuit, the Class-C/D. A comparison with the unaltered optimization 
cycle was made, following the same process used for the previous circuit, and the 
results obtained were discussed and compared with the reference. The results were 
marginally different, proving there is no need to spend time optimizing a new ANN 
architecture and emphasizing the optimized architecture’s generalization capabili-
ties. The design of this circuit was successful, reducing almost as much time as for 
the first circuit, and its POF showed very competitive results. 

3.5.2 Future Work 

This work showed that using ANNs reduces the time required to design an analog 
IC, even if the time necessary for their training is considered. Having this thought in 
mind, it is possible to take a step further. 

First, even though the ANN architectures have demonstrated a high generalization 
towards different types of VCOs, the time required to train them must be considered. 
A future objective would be to reduce this time, which would be possible with 
additional computational resources. More, the ANNs hyperparameter optimization 
of the ANNs was performed empirically, requiring human input. This process could 
be optimized in the future via automatic algorithms such as Bayesian optimization, 
possibly reducing the time required. 

Furthermore, future implementations could consider an online training approach 
where both ANNs were trained during the first few generations of the optimization 
cycle, as opposed to the offline approach used in this work, where the model was 
pre-trained, requiring a previously built dataset. Following this online approach, the 
first few generations of the optimization cycle would follow the unaltered algorithm 
as the ANNs were trained in parallel. Once some condition was fulfilled, such as the 
minimum number of generations or minimum ANN performance, the models would 
be inserted in the optimization loop, filtering non-converging points and proposing 
an accurate frequency guess. 

One challenge with this approach is the relatively low amount of data the ANNs 
would have to train before deployment such that, overall, their introduction would 
still be worth it. However, the MAPE evolution throughout the optimization cycle 
suggests that the population quickly converges to a relatively small region of space. 
Thus, it is likely that a relatively small of data is enough for the models to reach a 
significant performance threshold.
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Chapter 4 
Process, Voltage and Temperature 
Corner Performance Estimator Using 
ANNs 

4.1 Contributions 

Real-world applications demand RF ICblocks’ robustness, and to ensure it, automatic 
sizing has moved towards exhaustive PVT-inclusive optimizations. In such scenarios, 
the relevant performances of each candidate sizing solution are found by simulating 
the circuit under different operating modes as well as fabrication dispersions and 
voltage/temperature variations, escalating the time required for optimization. In this 
chapter, DL is used to improve RF IC sizing automation, and the major contributions 
are listed as follows: 

• Previous works in this research field [3–5, 14, 15] focus on sizing on nominal 
conditions, and still, significant errors are observed in the estimated circuit perfor-
mances, hindering its use for complex PVT-inclusive optimizations. Here, ANNs 
tailored for exhaustive PVT-inclusive RF IC sizing optimization problems are 
proposed; 

• The proposed controlled PVT regressor incorporates the nominal performance 
figures obtained via circuit simulation in the input layer of its ANNs. Therefore, 
the model becomes flexible to operate in different regions of the performance 
space. Ultimately the same model can be used for optimizations with a completely 
different set of targets, i.e., generalizing beyond training data; 

• Instead of entirely replacing the simulator [3–5, 14, 15], two control phases 
used in every generation prevent the sizing loop from being misled by inaccu-
rate performance estimates and consequently guided to unrealistic design space 
regions; 

• The proposed controlled PVT regressor is tested on different optimizations of two 
state-of-the-art voltage-controlled oscillators (VCOs), reducing the workload of 
the simulator up to 79%, i.e., saving more than 16 days of computational effort 
while achieving competitive sizing solutions (Fig. 4.1).
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Fig. 4.1 Location of the PVT estimator in a simulation-based optimization loop 

4.2 Controlled PVT Regressor Based on Deep ANNs 

Recovering the dual-mode class C/D VCO case study [16] introduced in Chap. 2 
of this book (Sect. 2.5), a dataset generated using the current problem definition 
has a total number of 48 features, where 28 are the optimization variables plus 20 
performance figures of the simulation in typical (TT) conditions in two different 
modes, i.e., b0000 and b1111, and a total of 160 labels, i.e., the performance figures of 
the remaining corner variations in the two different tuning modes. 

Each ANN of the controlled PVT regressor will estimate the performance figures 
of a specific corner for a specific tuning mode so that the output layer will have ten 
neurons. Each ANN will receive, as inputs, the sizing of the circuit, which consists 
of the same 28 optimization variables and ten performance figures of the simulation 
in TT conditions for its corresponding tuning mode, which means that the input layer 
will have a total of 38 neurons. The number of hidden layers and number of nodes per 
hidden layer will be determined in the tuning phase, and a study will be conducted 
to find the best possible solution to these two hyperparameters. The structure of the 
ANN implemented for each corner and tuning mode is shown in Fig. 4.2, where a 
chain of fully connected layers is used. The output of the regression model is a real 
value, positive or negative, so the output nodes have no activation function. Overall, 
the structure of the PVT estimator, containing 16 different ANNs, is further detailed 
in Fig. 4.3.
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Fig. 4.2 ANN structure for corner FF and tuning mode b0000

4.3 Training the Model in Isolation (Results 
Pre-integration) 

For training the PVT estimator’s ANNs, first, the datasets for each ANN were defined 
along with the necessary pre-processing to obtain the best data for their training phase. 
Furthermore, the tuning phase of the hyperparameters of the ANNs is described, 
followed by the showcase of the final model structure. Finally, the test results of one 
of the hyperparameters of the ANNs are described. These results show that the ANN 
can achieve highly accurate results on unseen data and are considered adequate for 
the remaining experiments. In order to do this, the dataset of the complex dual-mode 
class C/D voltage-controlled oscillator (VCO) circuit, previously defined in Chap. 2, 
will be used. 

Again the models were implemented in Python, using both Tensorflow [17] and 
Keras [18] as ML libraries. The starting point of the ANN architecture is the one 
described in Fig. 4.2, where the output layer contains 10 nodes, one for each perfor-
mance parameter of a certain combination of tuning mode and PVT corner variation. 
The optimization was performed for 9 testbench variations (TT and 8 PVT corners) 
and 2 tuning modes; thus, 16 different ANNs will be required. 

4.3.1 Dataset Processing 

The dataset contains 92,115 data entries composed of, as previously described, 48 
features, where 28 represent the optimization variables and the other 20 represent the
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Fig. 4.3 Detailed diagram of the PVT estimator

TT performance figures, 10 for each tuning mode. As for labels, the dataset contains 
160 performance figures of the remaining PVT corner variations in two different 
tuning modes. For each different ANN, it is only needed the performance figures of 
one combination of corner variations and tuning mode, so firstly, the dataset had to 
be divided into 16 different datasets where each dataset represents a different corner
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combination. Only the TT performance figures representing the same tuning mode 
as the labels are kept to increase model accuracy, so the final dataset structure only 
contains 38 features and 10 labels. 

Some data entries have null values on the features and/or labels, representing 
sizing solutions that the simulator could not produce a meaningful performance 
figure. These entries had to be removed, along with duplicated rows, from each 
dataset to provide the best possible data to the ANNs. 

The division of the original dataset into smaller datasets and the removal process 
explained before are depicted in Tables 4.1 and 4.2, where some entries of the original 
dataset and dataset for FF b0000 are shown, respectively. 

Finally, the outliers present in each dataset must be removed. For each performance 
figure, the 1% lowest and highest values were cut from the dataset alongside their 
entire row of data. The final sizes of the dataset for each PTV corner ANN can 
be found in Table 4.3. Finally, all 16 datasets were randomized and split into two 
datasets: the training dataset, which consists of 90% of the original dataset, and 
the test dataset, which is the remaining 10% of the original dataset. The training 
dataset will be used to train the ANNs, while the test dataset will be used to test 
the models. As for the tuning of the ANN architecture, it was only performed in the 
ANN regarding the corner FF with tuning mode b0000.

Table 4.1 Structure of the original dataset 

Entry # Features (48) Labels (160) 

Design 
variables 

Perform. 
TT b0000 

Perform. 
TT b1111 

Perform. 
FF b0000 

… Perform. 
m40dC 
b1111 

Perform. 
85dC b1111 

0 Values ✓ Values ✓ Values ✓ Null … Values ✓ Null 

1 Values ✓ Values ✓ Values ✓ Values ✓ … Null Null 

2 Values ✓ Null Null Values ✓ … Null Null 

3 Values ✓ Values ✓ Values ✓ Null … Null Null 

… … … … … … … … 

92,114 Values ✓ Values ✓ Values ✓ Values ✓ … Values ✓ Values ✓ 

Table 4.2 Structure of the dataset for FF b0000 

Entry # Original entry # Features (38) Labels (10) 

Design variables Performances TT b0000 Performances FF b0000 

0 1 Values ✓ Values ✓ Values ✓ 
1 3 Values ✓ Values ✓ Values ✓ 
… … … … … 

83,037 92,114 Values ✓ Values ✓ Values ✓ 
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Table 4.3 Dimensions of datasets for the training of the different ANNs 

Corner Tuning mode 

b0000 % total b1111 % total  

FF 81,377 88.34 79,300 86.09 

FS 81,842 88.85 81,200 88.15 

SF 82,247 89.29 76,794 83.37 

SS 73,456 79.74 48,742 52.91 

300mV 77,608 84.25 69,017 74.92 

400mV 81,865 88.87 81,342 88.30 

m40dC 81,182 88.13 77,103 83.70 

85dC 80,707 87.62 82,028 89.05 

4.3.2 Feature Engineering 

All this raw data has to be pre-processed before using it in the training phase 
of the model so some feature engineering will be needed. The dataset contains 
small input device sizes (in the order of nanometers) combined with other opti-
mization variables, which can be simple integers (for example, ind_nturns), and 
with performance figures, which can have large values in the order of gigahertz (for 
example, oscillation f requency). This combination causes the learning algorithm 
of the ANN to wrongly compute the weights associated with these small values, 
almost completely negating their influence on the output. To solve this problem, data 
normalization will be performed on the entirety of the dataset. Two methods can 
be used to achieve this: standardization and normalization. Standardization scales 
the values while considering standard deviation, which is beneficial to reduce the 
effect of outliers in the data. Normalization scales all values to a fixed range. This 
scaling does not alter the feature distributions, and because of the decreased standard 
deviations, the effect of the outliers increases. The expressions for standardization 
and normalization are shown in (4.1) and (4.2), respectively, where μ represents the 
mean value and σ the standard deviation. 

z = 
x − μ 

σ 
(4.1) 

z = x − xmin 

xmax − xmin 
(4.2) 

Although many other feature engineering techniques can be performed on the 
dataset, the previously mentioned ones will be the most important. After this, the 
dataset is ready to be fed to the network.
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4.3.3 Tuning Hyper-Parameters 

With the dataset ready, the ANN’s hyper-parameter tuning phase starts. Three metrics 
were used as evaluation methods for the ANN’s training: MSE, defined as: 

MSE  = 
1 

n 

n∑

i=1

(
yi − ŷi

)2 
(4.3) 

Mean absolute error (MAE), defined by: 

MAE  = 
1 

n 

n∑

i=1 

|yi − xi | (4.4) 

And finally, Mean absolute percentage error (MAPE), defined by: 

MAP  E  = 
1 

n 

n∑

i=1

∣∣∣∣
yi − ŷi 

yi

∣∣∣∣ (4.5) 

Due to the nature of the values that are trying to be predicted with this ANN, 
the error between the predicted value and the actual value must be small. Because 
of this, an error value lower than 1% (for the case of the MAPE) was chosen as a 
reasonable target to achieve the accuracy of the ANN. 

Despite having three different metrics as evaluation methods, the loss function of 
the ANN throughout the tuning phase was the MSE. It is one of the most popular 
loss functions in regression problems like the one addressed in this book. A similar 
approach was used to choose the optimizer, with Adam being the most popular 
method. Regarding the batch size of the training phase, 128 was chosen, resulting 
in a mini-batch approach where the batch is small enough to introduce some helpful 
noise in the training process while diminishing the time increase associated with 
stochastic gradient descent (i.e., batch size of 1). The normalization range of 1–2 
was chosen, over the typical 0–1, due to its influence on MAPE values. If a range 
including zero was chosen, MAPE values would “explode” due to target values close 
to 0 appearing in the denominator of (4.5). 

The first parameters to be determined were: the number of layers, the number of 
neurons per layer, and the learning rate. Two studies were made to determine the 
adequate number of layers for the model, the first using 2 hidden layers and the 
second 3 hidden layers. Table 4.4 presents the parameters and values considered in 
the 2 hidden layers study.

It is common practice in ANN development that the size of a hidden layer is always 
equal to or larger than the following hidden layer. Considering this, the different 
combinations of these parameters were studied, and their results are shown in Table 
4.5. The lowest values of each metric (MSE, MAE, and MAPE) at both training and
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Table 4.4 Different 
parameters and corresponding 
values to study 

Size of hidden layer 
1 

Size of hidden layer 
2 

Learning rate 

200, 320, 440, 560 200, 300, 400, 500 0.00005, 0.0001, 
0.0005, 0.001

test phases were highlighted, and achieving 5 of the 6 total lowest metrics, the best 
combination of these parameters is: 

• Hidden layer size 1: 440 neurons 
• Hidden layer size 2: 400 neurons 
• Learning rate: 0.0001 

Given these results, a comparison with 3-hidden layer ANN architecture is carried. 
In this next study, the learning rate was set to 0.0001, considering it was the best

Table 4.5 Results of hidden layers size/learning rate study. Using activation function of hidden 
layers: ReLU, dropout rate: 20% 

Hidden layers Learning 
rate 

Training loss Test loss 

#1 #2 MSE (× 
10–4) 

MAE (× 
10–3) 

MAPE MSE (× 
10–4) 

MAE (× 
10–3) 

MAPE 

200 200 1 × 10–3 2.0271 9.0719 0.5865 2.9237 9.6342 0.6262 

5 × 10–4 1.6593 8.4255 0.5503 2.6371 8.9969 0.5903 

1 × 10–4 0.9633 4.9812 0.3263 2.0497 5.6614 0.3736 

5 × 10–5 1.5778 6.3185 0.4126 2.4236 6.9236 0.4543 

320 200 1 × 10–3 1.6222 8.4173 0.5433 2.5826 9.0382 0.5867 

5 × 10–4 1.2829 7.7522 0.5101 2.1944 8.4498 0.5579 

1 × 10–4 0.7502 4.2473 0.2801 1.7580 4.9959 0.3316 

5 × 10–5 1.1752 5.3409 0.3510 1.9515 5.9199 0.3911 

320 300 1 × 10–3 1.5518 7.4064 0.4838 2.4660 7.9911 0.5243 

5 × 10–4 0.9664 6.0647 0.3905 1.8117 6.7411 0.4368 

1 × 10–4 0.6854 4.0345 0.2649 1.6603 4.8014 0.3176 

5 × 10–5 1.5619 6.6477 0.4345 2.5805 7.3492 0.4827 

440 200 1 × 10–3 0.9685 5.9367 0.3893 1.7024 6.5298 0.4304 

5 × 10–4 0.9217 5.7347 0.3669 1.7494 6.4228 0.4139 

1 × 10–4 0.6052 4.0061 0.2625 1.4736 4.7756 0.3149 

5 × 10–5 1.2531 6.3213 0.4136 2.2113 7.0737 0.4648 

440 300 1 × 10–3 2.0921 8.0931 0.5290 3.4045 8.7485 0.5760 

5 × 10–4 0.9115 6.3530 0.4114 1.7763 7.0825 0.4612 

1 × 10–4 0.6586 4.0705 0.2677 1.4629 4.7683 0.3155 

5 × 10–5 1.2429 6.0380 0.3935 2.1168 6.7248 0.4407

(continued)
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Table 4.5 (continued)

Hidden layers Learning
rate

Training loss Test loss

#1 #2 MSE (×
10–4)

MAE (×
10–3)

MAPE MSE (×
10–4)

MAE (×
10–3)

MAPE

440 400 1 × 10–3 1.1995 6.0374 0.4000 2.1117 6.6899 0.4457 

5 × 10–4 0.6916 4.7748 0.3087 1.5629 5.4907 0.3578 

1 × 10–4 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919 

5 × 10–5 1.1603 5.4496 0.3574 2.3146 6.2074 0.4093 

560 200 1 × 10–3 1.0060 6.2592 0.4213 1.9085 6.9229 0.4667 

5 × 10–4 0.7292 5.0753 0.3370 1.5336 5.8173 0.3874 

1 × 10–4 0.5895 3.8783 0.2558 1.5572 4.6842 0.3110 

5 × 10–5 0.9646 5.0136 0.3267 1.9388 5.7902 0.3798 

560 300 1 × 10–3 0.9744 5.2125 0.3425 2.1092 5.9488 0.3937 

5 × 10–4 0.7596 5.2312 0.3366 1.7456 5.9887 0.3887 

1 × 10–4 0.5920 3.9961 0.2601 1.4898 4.8121 0.3157 

5 × 10–5 0.8541 4.6235 0.3033 1.6815 5.3325 0.3516 

560 400 1 × 10–3 5.8195 14.5366 0.9489 6.4470 14.9806 0.9800 

5 × 10–4 0.8302 5.4530 0.3566 1.6963 6.1971 0.4072 

1 × 10–4 0.5769 3.8253 0.2504 1.6146 4.6759 0.3085 

5 × 10–5 0.8927 4.9385 0.3201 1.7218 5.6835 0.3707 

560 500 1 × 10–3 1.5522 7.6797 0.5064 2.4262 8.3103 0.5505 

5 × 10–4 0.5916 4.2945 0.2834 1.4161 5.0691 0.3365 

1 × 10–4 0.6000 4.5236 0.3017 1.5613 5.3601 0.3586 

5 × 10–5 0.8585 5.3343 0.3411 1.7989 6.1322 0.3955

value of the previous study. Table 4.6 shows the different parameters and the values 
that were considered. This study follows the same rule as the previous one regarding 
the sizes of the hidden layers, and its results are shown in Table 4.7. 

When comparing the results of the two studies, it is clear that there is no improve-
ment when increasing the number of hidden layers. The best error results with 3 
hidden layers are 18–30% higher than the best results with 2 hidden layers. Consid-
ering this fact, there is no need to increase the number of hidden layers of the ANN, so 
no further study was required. These values (2 hidden layers with 440 and 400 neurons 
each, respectively, and a learning rate of 0.0001) will be used for the remainder of 
the tuning phase.

Table 4.6 Different 
parameters and corresponding 
values to study 

Size of hidden layer 
1 

Size of hidden layer 
2 

Size of hidden layer 
3 

200, 320, 440 200, 300, 400 200, 300, 400
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Table 4.7 Results of hidden layers size study using activation function of hidden layers: ReLU, 
learning rate: 0.0001 and dropout rate: 20% 

Hidden layers Training loss Test loss 

#1 #2 #3 MSE (×10–4) MAE (× 
10–3) 

MAPE MSE (×10–4) MAE (× 
10–3) 

MAPE 

200 200 200 1.9722 8.7683 0.5709 3.1234 9.4508 0.6186 

320 200 200 0.9191 5.8708 0.3796 2.0354 6.7268 0.4385 

320 300 200 1.5984 7.7507 0.5039 2.8096 8.5406 0.5586 

320 300 300 0.9735 6.1391 0.3957 2.0810 7.0175 0.4560 

440 200 200 0.7186 4.4182 0.2897 1.7230 5.2482 0.3465 

440 300 200 0.9799 5.9074 0.3852 1.9675 6.6465 0.4361 

440 300 300 0.8321 5.6166 0.3613 1.8117 6.4913 0.4210 

440 400 200 1.0870 6.4679 0.4147 2.1437 7.2971 0.4718 

440 400 300 1.1155 6.7236 0.4337 2.4101 7.6854 0.4997 

440 400 400 0.8439 5.5525 0.3570 1.8376 6.4363 0.4172

The following parameter to be tuned is the activation function of the hidden layers. 
For the hidden layers of the ANN, one should use non-linear activation functions to 
increase its capability to model highly complex relationships between its input and 
output. The following functions will be experimented with in the model, and their 
results will be compared to choose the most adequate for this methodology. 

The sigmoid function, shown in Fig. 4.4 (top), can map the input values of a 
neuron to an output range of ]0, 1[. It prevents cases where the neuron’s output 
reaches very high values, which can happen when taking the unbounded linear output 
of the neurons. Another quality of this function is its sensibility to input changes 
in the region near z = 0, which results in good separation of data. However, the 
responsiveness of the function starts to decrease when dealing with bigger and smaller 
input values, reaching almost a gradient value of 0. Therefore, the model can no 
longer update properly. One of the most popular activation functions is the rectified 
linear unit (ReLU) function [19], shown in Fig. 4.4 (bottom-left), computed through 
f (z) = max(0, z). The output value of the ReLU function is equal to the input value 
for inputs greater than 0 and 0 for all the other values. Due to its simpler formula, 
this non-linear function requires less computational power than the sigmoid function. 
However, the function is not bounded for positive input values making it susceptible 
to exploding output values. Despite this, it solves the low gradient value encountered 
in the sigmoid function for large positive values. The main problem appears in the 
negative input value region, where the gradient equals 0, which will stop any network 
update from happening (regarding the corresponding neuron). This is called the dying 
ReLU problem. To solve it, some variations to the ReLU were developed, such as 
the leaky ReLU [20] or the exponential linear unit (ELU) [21]. The ELU introduces 
a smooth derivate for the negative input values and is determined by (4.6), where α 
is a parameter to be tuned. This function is depicted in Fig. 4.4 (bottom-right).
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Fig. 4.4 Sigmoid (top), ReLU function (bottom-left) and ELU function (bottom-right) 

f (z) =
{

α(ez − 1) i f  z  ≤ 0 
z i  f  z  > 0 

(4.6) 

The results of using sigmoid, ReLU, leaky ReLU, and ELU as activation functions 
are shown in Table 4.8. As can be seen, by the highlighted values, the activation 
function that generates the lowest error in almost all cases is the ReLU function, 
proving why it is one of the most popular activation functions when working with 
ANNs nowadays [19]. Leaky ReLU has the best MSE test loss of all 4 activation 
functions, but the remaining values fall short of the ReLU. Regarding the sigmoid 
and ELU functions, these demonstrated weak results when compared with the other 
2 functions, getting values 2 times worse in all metrics. This study suggests that 
the best activation function for this work is the ReLU function, which will be the 
function used in the final model.

One of the main problems when training an ML model is overfitting. It refers to a 
model that fits the training data too well, i.e., the model learns the detail and noise in 
the training data to the point that it negatively impacts the model’s performance on 
new unseen data. Random fluctuations and noise present in the training data do not 
apply to new data, so it negatively affects the ability of the model to generalize. A 
regularization technique can be used when training the ANN to solve this problem 
[22, 23]. Dropout is one popular regularization technique because it solves two
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Table 4.8 Results of activation function study. Using 2 hidden layers of sizes 440 and 400, learning 
rate: 0.0001 and dropout rate: 20% 

Activation 
function 

Training loss Test loss 

MSE (×10–4) MAE (×10–3) MAPE MSE (×10–4) MAE (×10–3) MAPE 

Sigmoid 3.8048 10.4705 0.6847 4.2671 10.8543 0.7120 

ReLU 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919 

Leaky 
ReLU 

0.8000 4.2949 0.2804 1.4946 4.8755 0.3204 

ELU 2.8294 8.4947 0.5537 3.4148 8.9600 0.5855

Table 4.9 Results of dropout rate study using 2 hidden layers of sizes 440 and 400, learning rate: 
0.0001 and activation function of hidden layers: ReLU 

Dropout rate 
(%) 

Training loss Test loss 

MSE (×10–4) MAE (×10–3) MAPE MSE (×10–4) MAE (×10–3) MAPE 

0 1.6501 8.4134 0.5456 2.3367 8.8968 0.5786 

5 0.5724 3.6952 0.2417 1.6456 4.6661 0.3074 

10 0.5346 3.8489 0.2511 1.6371 4.7203 0.3105 

20 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919 

30 0.7887 4.8243 0.3167 1.7034 5.5186 0.3647 

crucial problems in an ANN: it prevents overfitting of the model and provides a 
method of approximately combining different ANN architectures. Dropout consists 
in removing some neurons temporarily from the ANN along with its incoming and 
outgoing connections during training. 

The dropout rate, which until now was set to 20%, is the last parameter to be tuned. 
The different values and corresponding results are shown in Table 4.9. Analyzing the 
results, dropout rates of 5, 10, and 20% show the best and relatively similar values 
between them, while the values for a dropout rate of 0 and 30% show a decrease in 
the accuracy of the ANN. The worst results come from no dropout, which reveals 
the necessity of this regularization technique. A dropout rate of 20% was chosen for 
the final model, given that the ANN presents the best results with this value. 

4.3.4 Final Model Details 

All the parameters of the ANN are now tuned to achieve a good performance. A model 
summary is shown in Table 4.10, along with the metrics of the training phase at each 
epoch. The evolution of the loss and error functions in the training and validation set 
is shown in Figs. 4.5 and 4.6.
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Table 4.10 Summary of 
ANN 

Parameter Value 

Input layer size 38 

Hidden layer 1 size 440 

Hidden layer 2 size 400 

Output layer size 10 

Loss function Mean squared error 

Optimizer Adam 

Batch size 128 

Hidden layers activation function ReLU 

Learning rate 0.0001 

Dropout rate 20% 

Training epochs 300 

Validation split 20% 

Fig. 4.5 MSE (loss) function

The final values of the 3 metrics for all 16 ANNs are shown in Table 4.11. As  
can be seen, by the MAPE values of both training and test loss, the final model in all 
ANNs presents better performance than the initial goal of 1% error.
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Fig. 4.6 MAPE (left) and MAE (right)

Table 4.11 Final model metric values 

Tuning 
mode 

Corner Training loss Test loss 

MSE (× 
10–4) 

MAE (× 
10–3) 

MAPE MSE (× 
10–4) 

MAE (× 
10–3) 

MAPE 

b0000 FF 0.5346 3.5950 0.2344 1.5345 4.4429 0.2919 

FS 0.5046 3.7093 0.2438 1.5623 4.3444 0.2873 

SF 0.7096 3.7298 0.2441 1.2777 4.2840 0.2810 

SS 0.9830 4.3566 0.2833 1.6931 4.9340 0.3236 

300mV 0.7763 5.3615 0.3524 1.5838 5.9087 0.3919 

400mV 0.6531 4.5662 0.3061 1.0625 4.9738 0.3339 

m40dC 0.6195 4.0734 0.2665 1.1569 4.3965 0.2890 

85dC 0.6881 4.4254 0.2965 1.1435 4.8061 0.3237 

b1111 FF 1.2872 5.4180 0.3638 2.3003 5.9296 0.3987 

FS 0.7244 4.0943 0.2727 1.7098 4.7493 0.3163 

SF 0.8058 4.3929 0.2858 1.7478 5.0881 0.3324 

SS 1.1053 7.8992 0.5777 2.8484 11.5884 0.8384 

300mV 1.8979 7.0264 0.4585 3.4236 8.1042 0.5304 

400mV 1.7348 7.4566 0.4828 3.1930 8.4154 0.5486 

m40dC 5.9536 9.3559 0.6163 8.4010 10.8045 0.7134 

85dC 1.0614 4.5612 0.3037 1.7748 5.1120 0.3418 

4.3.5 Test Results 

In order to check the performance of the ANN, the prediction errors of 4 different 
performances were obtained for the points that belong to the test. These performances 
are: Oscillation frequency; Power; Phase noise in 10 MHz; Figure of Merit in 10 MHz. 
All 4 of these performances were obtained for corner FF in mode b0000. In Tables 4.12,
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4.13, 4.14, and 4.15 the results of the predictions are presented, where 5 different 
sets of results are shown:

• Best: 5 lowest MAPE values; 
• 25th quantile value and the next 4 points (in order of MAPE); 
• Median value and the next 4 points (in order of MAPE); 
• 75th quantile value and the next 4 points (in order of MAPE); 
• Worst: 5 highest MAPE values. 

As observable in the results, the ANN can achieve highly accurate results. In 
all four performances, the best results are almost perfect predictions of the actual 
value with errors of 0.0005%. Another great indicator of the performance of the 
ANN is the quartile values. The worst 25th quantile value of the 4 performances is 
an error of 0.15%, which indicates that 25% of all the predictions have a MAPE 
lower or equal for that performance (phase noise for this case). The medians of all 
4 performances also show evidence of an accurate model ANN. The worst median 
value, also belonging to the phase noise performance, shows a slight error of 0.28% 
between prediction and real value. The same can be said for the 75th quantile values, 
where the worst one is at 0.42% for the phase noise. Once again, these results show 
the powerful prediction capabilities of the model as it states that 75% of the points 
predicted to have 0.42% or lower error values. Finally, the worst MAPE values are the 
extreme situations that the model encountered, precisely, points that belong to a range 
of values very different than the most representative ones on the dataset. This can be 
seen, for example, in the worst MAPE values of the oscillation frequency where real 
values correspond to 1.6, 7.3, 7.2, and 9.9 GHz, which correspond to values very 
different than the normal band of frequency of the dataset (3.5-to-4.8 GHz). 

4.4 In-the-Loop Integration 

This section provides a clear explanation of the integration in the AIDA [24] loop 
of the models developed is presented, and the results of 3 different optimizations 
using the modified AIDA loop will be shown and discussed. With the ANNs for each 
corner and tuning mode tuned and ready to be used, the next step of this work is to 
integrate the PVT estimator into the AIDA loop. The location of the PVT estimator 
is presented in Fig. 4.7.

In the first step of the optimization loop, several circuit sizing solutions are 
proposed by the optimization engine (the number of solutions depends on the popu-
lation defined). In the original AIDA loop, the simulator evaluates each of these 
solutions for all TT conditions and PVT corners and outputs all the evaluated perfor-
mances. The optimization engine receives these evaluations and ranks the solutions 
(population) according to their compliance with the objectives and constraints set for 
the current optimization problem. A brief flowchart of one generation of the original 
AIDA loop is shown in Fig. 4.8.
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PVT Regressor based 
on ANNs 

... 

Simulator in-the-loop 

... 

Optimization Engine 

S Candidate Circuit 
Sizing Solutions 
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& PVT Performances 

S Sets of Nominal and 
PVT Performances 

Control Phase 1 

δ Estimated PVT 
Performances 

(S–δ) Estimated 
PVT Performances 

Control Phase 2 

Fig. 4.7 Proposed controlled PVT regressor embedded into a simulation-based sizing loop

The simulator will only need to evaluate the solutions for TT conditions in the 
modified AIDA loop. Each of the ANNs will receive, as input, the sizing solution and, 
according to its tuning mode, the performance figures respective to the TT conditions 
(previously evaluated by the simulator). With the inputs defined, each ANN will 
output the performance figures corresponding to a specific corner and tuning mode, 
so the performance figures for all PVT corners can be sent to the optimization engine 
for further ranking. These performance figures are a mix of simulated performance 
figures (TT corners) and predicted performance figures (remaining PVT corners). In 
the scope of the sizing optimization, one of these loops represents a generation of 
the optimizer. A brief flowchart of one generation of the modified loop is shown in 
Fig. 4.9.

In the following sections, a comparison with an exhaustive circuit sizing opti-
mization is performed to determine if the optimization with the modified loop, while 
using the PVT estimator throughout 100% of the optimization, achieves adequate 
results. 

4.4.1 Class C/D VCO with PVT Estimator Working at 100% 

This speed-up factor results from the optimization with the modified loop only eval-
uating the TT conditions for two tuning modes and the original optimization, which 
evaluated both TT conditions and PVT corners for 2 different tuning modes ( 18 2 = 9). 
The number of generations of the now modified optimization was set to 350, the 
same as the original, to obtain the best comparison base possible. Both optimization
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Fig. 4.8 Flow of a 
generation of the original 
AIDA loop

constraints and objectives were the same, shown in Table 2.5. The POF evolution 
throughout the modified loop optimization is depicted in Fig. 4.10 alongside the final 
original POF. However, to ascertain whether the solutions obtained are feasible or 
not, Unfortunately, all the solutions were revealed to be unfeasible in at least 30 of the 
160 total performances. The POF values obtained in generation 350 and the number 
of failed optimization constraints are shown in Table 4.16.

As observable, the number of final solutions obtained increased substantially 
(from 27 to 40), and the range of values for both worst-case power and worst-case 
phase noise at 10 MHz improved significantly, with solutions where the worst-case 
power achieves 2 mW, less than half of the lowest worst-case power of the original 
optimization, and also, the worst-case phase noise of all solutions decreased by at 
least 2 dBc/Hz. However, these results cannot possibly be translated into a working
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Fig. 4.9 Flow of a 
generation of the modified 
AIDA loop (modification in 
red)

circuit. Finally, a small optimization of 20 generations with the original AIDA loop 
was performed using the last state of the modified loop optimization as the starting 
point. This optimization was done to ascertain if feasible solutions could be found 
from this starting point. However, even after this step, no feasible solution was found.
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Fig. 4.10 POF evolution throughout the modified loop optimization

These results demonstrate one major flaw in the modified loop. It over-estimates 
the circuit performances, i.e., it makes the optimization engine search in a perfor-
mance space where the circuit simply cannot operate in real-world conditions. In 
order to prevent this situation, some control has to be introduced in the modified 
loop to guide the optimization into feasible regions. 

4.4.2 PVT Estimator with Error Controller 

As stated, some control has to be introduced in the loop to guide the optimization 
to feasible solution regions better. In order to achieve this, a simple error controller 
for each ANN used in the modified loop was implemented. A brief flowchart of one 
generation of the modified loop with the new controller is shown in Fig. 4.11.

At each generation, before candidate sizing solutions and TT performance figures 
are sent to the ANNs, they first pass through a controller that will choose which 
ANNs will operate at the current generation, i.e., which PVT corner/tuning mode 
combination will be simulated or predicted. 

First, the controller sends 20% of the candidate sizing solutions to be simulated 
and predicted at the same time. For the PVT corner/tuning mode combination, with 
the simulator’s output, the controller checks if there are more feasible solutions than 
unfeasible solutions. If there are more unfeasible solutions than feasible solutions 
or the same number, the PVT corner/tuning mode combination will be simulated
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Table 4.16 POF at generation 350 

Worst case 
phase noise 
10 MHz 
(dBc/Hz) 

Worst case 
power 

#Failed 
constraints 

Worst case 
phase noise 
10 MHz 
(dBc/Hz) 

Worst case 
power 

#Failed 
constraints 

− 137.85 1.08E−03 30 − 137.31 5.02E−04 49 

− 137.82 1.08E−03 31 − 137.16 4.99E−04 49 

− 137.81 1.05E−03 36 − 137.09 4.96E−04 49 

− 137.80 1.04E−03 35 − 137.00 4.96E−04 49 

− 137.76 1.03E−03 36 − 136.91 4.89E−04 49 

− 137.74 1.02E−03 42 − 136.64 4.82E−04 49 

− 137.72 8.34E−04 36 − 136.53 2.97E−04 51 

− 137.70 8.28E−04 36 − 136.50 2.97E−04 50 

− 137.68 7.82E−04 35 − 136.39 2.91E−04 49 

− 137.67 7.65E−04 36 − 136.33 2.77E−04 49 

− 137.64 7.17E−04 36 − 136.29 2.64E−04 54 

− 137.63 7.09E−04 41 − 136.18 2.64E−04 48 

− 137.59 5.97E−04 44 − 136.07 2.39E−04 51 

− 137.56 5.97E−04 36 − 136.06 2.39E−04 50 

− 137.54 5.21E−04 49 − 136.03 2.29E−04 48 

− 137.53 5.21E−04 49 − 135.87 2.10E−04 49 

− 137.51 5.14E−04 49 − 135.79 2.09E−04 51 

− 137.47 5.10E−04 49 − 135.45 2.09E−04 49 

− 137.41 5.08E−04 49 − 135.39 2.08E−04 55 

− 137.37 5.08E−04 49 − 135.30 1.99E−04 55

(instead of predicted) in that generation for the remaining candidate solutions. This 
acts as the primary filter to prevent the optimization of entering unfeasible regions. 

If there are more feasible solutions than unfeasible, it passes to the next step. 
Here the controller uses the output of the feasible solutions from the simulator, i.e., 
simulated performances (from the previous step), and compares them to the corre-
sponding predicted performances. The error between each performance is calculated 
and the average error of all points is obtained. If the error (MAPE) is higher than 
5%, the combination will be simulated in that generation for the rest of the candidate 
solutions. If it is equal to or lower than 5%, the corresponding ANN will predict the 
PVT corner/tuning mode combination in that generation for the rest of the candidate 
solutions. The flow of the controller is depicted in Fig. 4.12.
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Fig. 4.11 Flow of a generation of the controlled modified AIDA loop (modification in red and 
controller in blue)
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Fig. 4.12 Flow of the controller for each PVT corner/tuning mode combination
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4.4.3 Results with Controlled PVT Estimator 

Using the new controlled PVT estimator, three different optimizations will be 
performed, where in each one, a different objective of this dissertation will be 
analyzed: 

• Class C/D VCO for 3.5-to-4.8 GHz: check if the controlled PVT estimator is 
capable of adequate circuit performance estimations in the PVT corners; 

• Class C/D VCO 2.3-to-2.5 GHz: verify if the controlled PVT estimator can be 
directly reused for optimization with entirely different objectives and constraints 
of the same topology that was trained for, i.e., without re-training it (plug-and-play 
functionalities); 

• ULP Class B/C VCO: verify if the same ANN structure used in the controlled 
PVT estimator for a particular circuit topology can be reused for a different VCO 
circuit topology (plug-and-train functionalities). 

4.4.3.1 Class C/D VCO for 3.5-to-4.8 GHz 

This section’s main objective is to compare the final POF results using the controlled 
PVT estimator with the final POF obtained in the original optimization. The number 
of generations of the optimization using the controlled PVT estimator was set to 330, 
and in the last 20 generations, the optimization was carried out using the original loop. 
The POF evolution throughout the optimization with the controlled PVT estimator 
is depicted in Fig. 4.13 alongside the final original POF.

As observable, the optimization at generation 330, i.e., the optimization using the 
controlled PVT estimator, finds solutions with similar worst-case power and worst-
case phase noise at 10 MHz to the original optimization when comparing with the 
optimization using a PVT estimator working at 100% in Fig. 4.10. 

The circuit sizing solutions of the POF at generation 330 were simulated and 
the results show that 1 of the 20 solutions of the POF passed all the optimization 
constraints and thus, a feasible solution was found. Additionally, 2 solutions close to 
the optimization specifications were also found, with only 1 constraint failing. These 
results are shown in better detail in Table 4.17. This concludes that the controller 
could direct the optimization to feasible performance regions, which was the main 
problem of the optimization using the PVT estimator working at 100%.

After the last 20 generations, the optimization could find 30 solutions, and because 
these generations were performed entirely with the simulator, all of them are feasible. 
Comparing the performances of these solutions with the original POF, it is possible 
to observe that the solutions in terms of worst-case power are worse than the original 
POF by at least 1 mW, but regarding the worst-case phase noise at 10 MHz the 
optimization was capable of finding solutions with nearly less 2 dBc/Hz. The final 
POF is shown in Fig. 4.18 and the values are shown in detail in Table 4.18.
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Fig. 4.13 POF evolution throughout the modified loop optimization with controller

Table 4.17 POF at generation 330 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

# Failed  
constraints 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

# Failed  
constraints 

− 136.78 1.57 1 − 134.96 9.53 × 10–1 24 

− 136.52 1.56 13 − 134.59 7.11 × 10–1 23 

− 136.36 1.50 0 − 134.32 4.96 × 10–1 30 

− 136.34 1.41 1 − 134.30 4.96 × 10–1 30 

− 136.29 1.26 7 − 134.29 4.39 × 10–1 30 

− 136.07 1.11 13 − 134.26 4.35 × 10–1 30 

− 135.94 1.05 18 − 134.18 4.31 × 10–1 30 

− 135.47 1.04 13 − 132.51 4.31 × 10–1 47 

− 135.19 9.79 × 10–1 18 − 132.50 4.22 × 10–1 30 

− 135.09 9.79 × 10–1 13 − 132.16 4.06 × 10–1 36

The speed-up obtained with the controlled PVT estimator is calculated by using 
the percentage of usage of each ANN throughout the first 330 generations of the 
optimization. These values are shown in Fig. 4.14.

While analyzing Fig. 4.14, it is possible to report that throughout the first 330 
generations of the optimization, 78.5% of the original PVT corners evaluations were
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Table 4.18 POF at generation 350 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

− 136.86 1.65 − 136.43 1.42 − 134.17 7.97 × 10–1 

− 136.83 1.65 − 136.38 1.42 − 134.16 7.79 × 10–1 

− 136.82 1.65 − 136.37 1.37 − 133.99 7.78 × 10–1 

− 136.77 1.65 − 136.23 1.34 − 133.97 6.98 × 10–1 

− 136.73 1.65 − 135.78 1.33 − 133.79 6.98 × 10–1 

− 136.68 1.64 − 134.56 8.90 × 10–1 − 133.72 6.90 × 10–1 

− 136.56 1.43 − 134.34 8.01 × 10–1 − 133.57 6.90 × 10–1 

− 136.47 1.43 − 134.33 7.99 × 10–1 − 133.41 6.90 × 10–1 

− 136.46 1.43 − 134.31 7.98 × 10–1 − 133.36 6.89 × 10–1 

− 136.44 1.43 − 134.22 7.98 × 10–1 − 133.28 6.81 × 10–1
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Fig. 4.14 Modes simulated (blue) versus predicted (green) throughout optimization

predicted using ANNs. Considering the simulation of the TT conditions, using the 
controlled PVT estimator resulted in a speed-up factor of 3.31. 

However, the total speed-up of the 350 generations is lower due to the last 20 
generations of full simulation that must be accounted. Considering these simulations, 
the total speed-up factor obtained using the controlled PVT estimator is 2.92. 

These results show that the optimization using a controlled PVT estimator can find 
a small group of feasible or almost feasible solutions capable of competing in terms
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of performance with the original optimization while achieving a speed-up factor 
of 3.31. In the original optimization, the first 330 generations took, approximately 
577 h to complete, while the optimization using the PVT estimator only took 185 h 
to complete. Using the simulator for an additional 20 generations at the end of the 
optimization achieves a more robust and broad-ranging POF, while still achieving 
a speed-up factor of 2.92. With the PVT estimator, the modified optimization took 
16 and a half days less than the original optimization. The main objective of this 
comparison is therefore confirmed to be possible, proving that the PVT estimator 
can find adequate PVT corner circuit performance estimations. 

4.4.3.2 Plug-and-Play Class C/D VCO 2.3-to-2.5 GHz 

The main objective of this section is to determine if the controlled PVT estimator, 
trained and tuned for the optimization of Sect. 4.4.3.1, can find adequate PVT corner 
circuit performance estimations for optimization with completely different targets of 
the same circuit topology. For the comparison, the optimization that will be used is 
a similar simulation-based sizing optimization of the circuit in Sect. 2.5. However, 
the range of the oscillation frequency in which the class C/D VCO will operate is 
now set to 2.3-to-2.5 GHz, and the optimization constraints were tightened, i.e., 
the maximum (or minimum) values chosen for the measured performances were 
decreased (or increased). The optimization constraints and objectives are shown in 
Table 4.19. 

Table 4.19 Optimization constraints and objectives 

Tuning mode Measure Testbenches Units Optimization 
constraint 

Optimization 
objective 

b0000 fosc All GHz ≥ 2.5 
PN@10 kHz All dBc/Hz ≤ 54 
PN@100 kHz All dBc/Hz ≤ 81 
PN@1 MHz All dBc/Hz ≤ −  103 
PN@10 MHz All dBc/Hz ≤ −  124 Minimize 

Power All mW n/d Minimize 

FOM@10 MHz All dBc/Hz ≥ 185 
b1111 fosc All GHz ≤ 2.3 

PN@10 kHz All dBc/Hz ≤ −  60 
PN@100 kHz All dBc/Hz ≤ −  87 
PN@1 MHz All dBc/Hz ≤ −  108 
PN@10 MHz All dBc/Hz ≤ −  129 Minimize 

Power All mW n/d Minimize 

FOM@10 MHz All dBc/Hz ≥ 185
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Fig. 4.15 POF evolution throughout the original optimization

First, an optimization using the unmodified loop was executed only for comparison 
terms. However, as opposed to the original optimization, the data will not be used 
for the training phase of the ANNs, given that it would defeat the main objective of 
this comparison. The optimization executed a total of 200 generations, took 350 h to 
complete, and resulted in 13 sizing solutions. Figure 4.15 shows the POF evolution 
of the original optimization, which contains the best sizing solutions throughout 
the generations and in Table 4.20 is shown the values of the final POF obtained at 
generation 200. 

Similar to the optimization of the previous section, the optimization using the 
controlled PVT estimator was executed for 180 generations, and after this, the opti-
mization was carried out for 20 generations using the original unmodified loop. The 
POF evolution throughout this optimization is depicted in Fig. 4.16 alongside the 
final original POF for easier comparison.

As can be seen by the results, the optimization at generation 180 was capable 
of finding solutions in a performance region with better worst-case phase noise 
at 10 MHz than the original optimization. However, the worst-case power almost 
doubled when comparing the solutions with the lowest worst-case power of both 
optimizations. 

To ascertain whether the solutions found are feasible and how many optimization 
specification constraints were failed, if any, these were simulated. The results show 
that no solution passed all optimization specification constraints. However, 2 of 
them achieved only 2 failed constraints and 2 other achieved 7 failed constraints.



98 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.20 Original POF at 
generation 200 

Worst case PN@10 MHz (dBc/Hz) Worst case power (mW) 

− 137.86 4.25 × 10–1 

− 137.85 4.24 × 10–1 

− 137.84 4.00 × 10–1 

− 137.82 3.91 × 10–1 

− 137.74 3.90 × 10–1 

− 137.72 3.69 × 10–1 

− 137.69 3.69 × 10–1 

− 137.68 3.33 × 10–1 

− 137.61 3.28 × 10–1 

− 137.59 3.28 × 10–1 

− 137.58 3.23 × 10–1 

− 137.50 3.22 × 10–1 

− 136.92 3.18 × 10–1
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Fig. 4.16 POF evolution throughout the modified loop optimization with the controller

This means that these solutions came close to feasibility which indicates that the 
optimization was capable of finding an adequate POF performance region. These 
results are shown in Table 4.21.

After the last 20 generations, the optimization found 5 feasible solutions near 
the region of performances at generation 180. When comparing results, it is clear
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Table 4.21 POF at 
generation 180 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case power 
(mW) 

#Failed constraints 

− 138.41 6.44 × 10–1 7 

− 138.35 6.43 × 10–1 2 

− 138.24 6.38 × 10–1 2 

− 138.09 6.18 × 10–1 7 

− 137.77 5.88 × 10–1 12

that the lowest worst-case power solution found with the PVT estimator increased by 
almost 3 mW equaling a 100% increase from the original optimization. However, the 
optimization was capable of finding solutions with 1 dBc/Hz less than the solutions 
in the original POF. These results are shown in Table 4.22. 

Once again, the speed-up obtained with the controlled PVT estimator is calculated 
by using each ANN’s usage percentage throughout the optimization. These values 
are shown in Fig. 4.17.

While analyzing Fig. 4.21, it is possible to report that throughout the first 180 
generations of the optimization, 74.5% of the original PVT corners evaluations were 
instead predicted using ANNs. Considering the simulation of the TT conditions, 
using the controlled PVT estimator resulted in a speed-up factor of 2.95. 

However, as before, the total speed-up of the 200 generations is lower as the last 
20 generations of full simulation must be accounted. Considering these simulations, 
the total speed-up factor obtained using the controlled PVT estimator is 2.48. 

These results show that the controlled PVT estimator can find adequate circuit 
sizing performance regions despite being trained and tuned with data from another 
optimization, while still obtaining a speed-up factor of 2.95. In the original opti-
mization, the first 180 generations took, approximately 315 h to complete, while 
the optimization using the PVT estimator only took 107 h to complete. Using the 
simulator for the additional 20 generations, resulted in a final POF with 5 feasible 
solutions while still being able to achieve a speed-up factor of 2.48. With the PVT 
estimator, in total, the modified optimization took 8 and a half days less than the 
original optimization. The final POF results reveal feasible solutions with better 
performances in terms of phase noise but worse performances in terms of power.

Table 4.22 POF at 
generation 200 

Worst case phase noise 10 MHz 
(dBc/Hz) 

Worst case power (mW) 

− 138.63 6.43 × 10–1 

− 138.62 6.23 × 10–1 

− 138.56 6.13 × 10–1 

− 138.54 6.03 × 10–1 

− 138.06 5.98 × 10–1 
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Fig. 4.17 Modes simulated (blue) versus predicted (green) throughout optimization 

Fig. 4.18 Ultralow-power complementary class B/C hybrid-mode VCO topology [25]

Due to the random nature of the optimization loop, it is not certain that these perfor-
mance results would be replicated if the optimization would be executed again. To 
ascertain the competitiveness of these solutions in terms of performances more opti-
mizations would have to be performed. However, the reduction of optimization days 
using the PVT estimator reveals the competitiveness in terms of computational time 
used to obtain feasible solutions.
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Table 4.23 Optimization variables 

Variable Units Min Grid Max 

irad µm 15 5 90 

itur – 1 1 6 

ispa µm 2 1 4 

iwid µm 3 1 30 

nccl, pccl nm 60 20 240 

nccf, pccf, f 5/6, f 7/8 – 1 1 32 

nccw, pccw, w5/6 µm 0.6 0.2 6 

l7/8 nm 130 20 6000 

w7/8 nm 120 20 6000 

rccl µm 0.8 0.2 30 

cnv, cnh, vnv, vnh, snv – 6 2 100 

snh – 6 2 50 

4.4.3.3 Plug-and-Train Ultralow-Power Class B/C VCO 

Next, we determine if the controlled PVT estimator, while reusing the ANN structure 
for a certain VCO circuit topology in the training phase, is capable of finding adequate 
PVT corner circuit performance estimations for a different VCO circuit topology. 
Simulation-based sizing optimization of the Ultra Low-Power class B/C VCO illus-
trated in Fig. 4.18 is used for this experiment. The complete list of optimization 
variables is presented in Table 4.23. 

Similar to the optimization of Sect. 4.4.1, the principal objective was to mini-
mize both power and phase noise at 10 MHz in both tuning modes, while imposing 
value constraints on 7 measured performances, in both tuning modes as well. These 
optimization constraints are shown in Table 4.24.

First, an optimization using the unmodified loop was executed for comparison 
with the optimization using the PVT estimator and to obtain the dataset to train the 
ANNs. The data from the original optimization was collected and structured similarly 
to the previous dataset. To use this dataset for the training phase of the ANNs, the 
pre-processing strategy was similar to the one described in Sect. 4.3, resulting in 16 
datasets clear of outliers and null values, ready to be fed to the ANNs. The structure 
of the ANNs that will be used in the PVT estimator will be one tuned through this 
chapter, and used in Sects. 4.4.3.1 and 4.4.3.2. However, as observable in Table 
4.23, the number of optimization variables is now 22, which forces the number of 
neurons in the input layer to change from 38 to 32 (22 optimization variables plus 
10 performance figures in TT conditions). 

The optimization with the unmodified loop executed a total of 100 generations, 
took 636 h to complete, and resulted in 14 sizing solutions. Figure 4.19 shows the 
POF evolution of this optimization and in Table 4.25 is shown the values of the final 
POF obtained at generation 100.
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Table 4.24 Optimization constraints and objectives 

Tuning mode Measure Testbenches Units Optimization 
constraint 

Optimization 
objective 

b0000 fosc All GHz ≥ 5.3 
PN@10 kHz All dBc/Hz ≤ −  55 
PN@100 kHz All dBc/Hz ≤ −  75 
PN@1 MHz All dBc/Hz ≤ −  95 
PN@10 MHz All dBc/Hz ≤ −  115 Minimize 

Power All mW n/d Minimize 

FOM@10 MHz All dBc/Hz ≥ 175 
b1111 fosc All GHz ≤ 4.6 

PN@10 kHz All dBc/Hz ≤ −  55 
PN@100 kHz All dBc/Hz ≤ −  75 
PN@1 MHz All dBc/Hz ≤ −  95 
PN@10 MHz All dBc/Hz ≤ −  115 Minimize 

Power All mW n/d Minimize 

FOM@10 MHz All dBc/Hz ≥ 175
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Fig. 4.19 POF evolution throughout the original optimization
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Table 4.25 Original POF at 
generation 100 

Worst case phase noise 10 MHz 
(dBc/Hz) 

Worst case power (mW) 

− 130.56 2.91 × 10–1 

− 130.44 2.85 × 10–1 

− 129.58 2.68 × 10–1 

− 129.17 2.63 × 10–1 

− 129.04 2.55 × 10–1 

− 128.90 2.48 × 10–1 

− 128.15 2.41 × 10–1 

− 128.06 2.28 × 10–1 

− 127.80 2.11 × 10–1 

− 127.67 2.05 × 10–1 

− 127.57 2.01 × 10–1 

− 127.44 2.01 × 10–1 

− 127.42 1.95 × 10–1 

− 127.28 1.93 × 10–1 

Using the same strategy as in the previous sections, the optimization using the 
controlled PVT estimator was executed for 80 generations, and after this, the opti-
mization was carried out for 20 generations using the original unmodified loop. The 
POF evolution throughout this optimization is depicted in Fig. 4.20 alongside the 
final original POF for easier comparison.

As observable, the optimization at generation 80 could find 16 solutions in a 
performance region with considerably better worst-case phase noise at 10 MHz than 
the original optimization and significantly lower worst-case power throughout almost 
all solutions. 

To ascertain whether the solutions found are feasible and how many optimiza-
tion specification constraints failed, if any, these were simulated. The results show 
that no solution passed all optimization specification constraints. However, 5 of them 
achieved 6 failed constraints and 4 other achieved 12 failed constraints. These 9 solu-
tions came close to feasibility which indicates that the optimization was capable of 
finding an adequate POF performance region. These results are shown in Table 4.26.

After the last 20 generations, the optimization found 12 feasible solutions near 
the region of performances at generation 80. It is evident that both worst-case phase 
noise at 10 MHz and worst-case power improved substantially when comparing 
with the original. The lowest and highest worst-case power decreased by 0.1 mW 
and 0.46 mW, respectively, while the lowest and highest worst-case phase noise at 
10 MHz decreased by 1.8 dBc/Hz and 0.32 dBc/Hz, respectively. These results are 
shown in Table 4.27.

Once again, the speed-up obtained with the controlled PVT estimator is calculated 
by using the percentage of usage of each ANN throughout the optimization. These 
values are shown in Fig. 4.21.



104 4 Process, Voltage and Temperature Corner Performance Estimator Using…

1.00E-04 

1.50E-04 

2.00E-04 

2.50E-04 

3.00E-04

-133.00 -132.00 -131.00 -130.00 -129.00 -128.00 -127.00 -126.00 -125.00 -124.00 

W
or

st
 c

as
e 

po
w

er
 (W

) 

Worst case phase noise 10MHz (dBc/Hz) 

Generation 20 

Generation 60 

Generation 80 

Generation 100 

Original 

Fig. 4.20 POF evolution throughout the modified loop optimization with controller

Table 4.26 POF at generation 80 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

#Failed 
Constraints 

Worst case 
PN@10 MHz 
(dBc/Hz) 

Worst case 
power (mW) 

#Failed 
constraints 

− 130.79 2.93 × 10–1 12 − 130.30 2.46 × 10–1 24 

− 130.78 2.68 × 10–1 12 − 130.15 2.18 × 10–1 6 

− 130.61 2.63 × 10–1 6 − 129.84 2.11 × 10–1 6 

− 130.51 2.59 × 10–1 12 − 129.74 2.02 × 10–1 6 

− 130.46 2.57 × 10–1 18 − 129.59 1.91 × 10–1 30 

− 130.45 2.54 × 10–1 12 − 129.13 1.79 × 10–1 6 

− 130.44 2.51 × 10–1 18 − 128.77 1.64 × 10–1 24 

− 130.31 2.46 × 10–1 24 − 126.99 1.60 × 10–1 42

When analyzing Fig. 4.21, it is possible to report that throughout the first 80 
generations of the optimization, 74.1% of the original PVT corners evaluations were 
predicted using ANNs. Considering the simulation of the TT conditions, using the 
controlled PVT estimator resulted in a speed-up factor of 2.92. 

However, the total speed-up of the 100 generations is lower because the last 20 
generations of full simulation must be accounted for, and the percentage of simulation 
added of these generations is bigger when compared to the previous optimizations
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Table 4.27 POF at 
generation 100 

Worst case PN@10 MHz (dBc/Hz) Worst case power (mW) 

− 130.88 2.45 × 10–1 

− 130.51 2.32 × 10–1 

− 130.50 2.30 × 10–1 

− 130.42 2.26 × 10–1 

− 130.16 2.18 × 10–1 

− 129.73 2.13 × 10–1 

− 129.72 2.12 × 10–1 

− 129.64 2.04 × 10–1 

− 129.54 1.88 × 10–1 

− 129.53 1.88 × 10–1 

− 128.99 1.82 × 10–1 

− 128.99 1.82 × 10–1
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Fig. 4.21 Modes simulated (blue) versus predicted (green) throughout optimization

(20% of total optimization). Considering this, the total speed-up factor obtained using 
the controlled PVT estimator is 2.11. 

These results confirm that the controlled PVT estimator can find adequate circuit 
sizing performance regions despite its ANNs not being tuned for this optimization, 
while still obtaining a speed-up factor of 2.92. In the original optimization, the first 
80 generations took approximately 509 h to complete, while the optimization using 
the PVT estimator only took 174 h to complete. The additional 20 generations using
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the original unmodified loop at the end of the optimization achieve better results 
than the original optimization while still achieving a speed-up factor of 2.11. With 
the PVT estimator, in total, the modified optimization took almost 14 days less than 
the original optimization. Once again, this reduction reveals the competitiveness of 
computational time used to obtain feasible solutions. 

4.5 Conclusions and Future Research Directions 

This chapter proposes an ML/DL method tailored for exhaustive PVT-inclusive RF 
IC sizing optimization problems for the first time in literature. Unlike previous 
approaches, where the simulator is entirely replaced, two control phases prevent 
the sizing loop from being guided to unrealistic design space regions. The proposed 
CPVTR was tested on a state-of-the-art class C/D VCO, providing speed-up factors 
of almost 3× when compared with traditional PVT-inclusive optimizations, saving 
weeks of computational effort. Due to the characteristics of its structure, the same 
model can be used for optimizations with a different set of targets, i.e., generalizing 
beyond training. 

4.5.1 Conclusions 

This work presents an approach towards the acceleration of analog/RF IC 
optimization-based sizing loop with the help of a PVT corner performance estimator, 
using multiple ANNs, to complement the simulation process, therefore reducing the 
simulator workload. 

For developing the PVT estimator, an optimization-based sizing of a Class C/D 
VCO for 3.9-to-4.8 GHz was used as a case study, gathering the necessary data to 
train the ANNs and ascertain if the results of the estimations before integration in the 
optimization loop, were adequate. All ANNs showed that the estimation error results 
were adequate, so the integration and discussion of the final results were performed. 

Three different circuit optimizations were used to test the PVT estimator. The 
first one was the same optimization based-sizing of a class C/D VCO for 3.9-to-
4.8 GHz used to develop the PVT estimator. The PVT estimator reduced 78.5% 
of the simulator workload, lowering the total optimization run time by 16 and a 
half days (the original run took 25 and a half days to complete). The final solution 
results showed similar performances to the original optimization, proving that the 
PVT estimator can find adequate PVT corner performances. The second optimiza-
tion was an optimization-based sizing of the same circuit topology as the previous 
one, although the range in which the VCO operates was changed to 2.3-to-2.5 GHz, 
and the optimization constraints were tightened. The PVT estimator reduced 74.5% 
of the simulator workload, lowering the total optimization run time by 8 and a half 
days (the original run took 14 and a half days to complete). Feasible solutions were
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found at the end of the optimization using the PVT estimator, proving its capability of 
being reused for optimizations with completely different targets of the same circuit 
topology its ANNs were trained to, demonstrating its plug-and-play functionalities. 
The third and final experiment was an optimization-based sizing of a different VCO 
circuit topology, i.e., an ultralow power class B/C VCO. The same structure of the 
ANNs used in the two previous tests was reused to train the ANNs in this optimiza-
tion. The PVT estimator reduced 74.1% of the simulator workload, lowering the 
total optimization run time by 14 and a half days (the original run took 26 and a half 
days to complete). Feasible solutions with better performances than the original opti-
mization were found at the end of the optimization using the PVT estimator, proving 
the capability of its ANNs reuse for a different VCO circuit topology, therefore 
demonstrating its plug-and-train functionalities. 

4.5.2 Future Work 

This work proved that an optimization loop using the PVT estimator could achieve 
feasible solutions while obtaining great speed-ups. However, it is possible to further 
optimize the competitiveness in both optimization times, quality of estimation, and 
the overall generalization of the PVT estimator when implemented in different circuit 
topologies. 

While it was possible to prove that the modified loop can achieve feasible solu-
tions, given the random nature of the optimization loop, each optimization can 
output different final solutions from another. Therefore, several optimizations must 
be performed to check if the final solutions are better or worse than the original opti-
mization. As these optimizations would take much time, several weeks or months 
should be spent on this process. 

The datasets used in this work were obtained by executing optimizations, with 
the unmodified loop, with an execution time of almost one month. Using larger 
datasets with a small number of null and duplicated values would surely increase 
the estimation capability of the ANNs, and given that smaller error results between 
estimation and real value would make the PVT estimator controller allow the ANNs 
to predict more often, the optimization would be faster, and the final solutions would 
be better. 

An essential aspect of the optimization with the PVT estimator is its great execu-
tion time reduction. One hypothesis that was not performed due to time constraints 
was making the execution time of the optimizations with the PVT estimator the same 
as the original ones to verify if the final POF results would be better, given that in 
some instances, the number of generations would triple in number. 

Augmentation of the capability of generalization of the PVT estimator could be 
done in two ways: using datasets with data from different circuit topology optimiza-
tions and making the PVT estimator online with the optimization. The first one would 
need a more complex structure for the ANNs used in the PVT estimator. However, 
there is a possibility that the ANNs would learn more information given different
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circuit topology data. The second one is an approach that uses the ANNs so that a 
training phase would not be performed prior to the integration in the loop. Therefore, a 
dataset would not be needed. The ANNs would be integrated into the loop, and for the 
first generations, the loop would work without them. At each generation, the ANNs 
would use the data from the input and output of the simulator for training purposes, 
therefore learning the circuit topology. In each generation, the ANNs would estimate 
some candidate sizing solutions, using the actual values from the simulator to check 
the estimation error. When the error is low enough, the ANNs will become online on 
the modified loop at the start of the next generation, beginning the speed-up process 
only then. With this, the total speed-up obtained would decrease considerably, but a 
time-consuming optimization to gather the data for the dataset would not be needed. 
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