
SpringerBriefs in Applied Sciences and Technology
Computational Intelligence

João L. C. P. Domingues · Pedro J. C. D. C. Vaz ·
António P. L. Gusmão · Nuno C. G. Horta ·
Nuno C. C. Lourenço · Ricardo M. F. Martins

Speeding-Up
Radio-Frequency
Integrated Circuit Sizing
with Neural Networks

SpringerBriefs in Applied Sciences and Technology

Computational Intelligence

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

SpringerBriefs in Computational Intelligence are a series of slim high-quality
publications encompassing the entire spectrum of Computational Intelligence.
Featuring compact volumes of 50 to 125 pages (approximately 20,000-45,000
words), Briefs are shorter than a conventional book but longer than a journal article.
Thus Briefs serve as timely, concise tools for students, researchers, and professionals.

João L. C. P. Domingues · Pedro J. C. D. C. Vaz ·
António P. L. Gusmão · Nuno C. G. Horta ·
Nuno C. C. Lourenço · Ricardo M. F. Martins

Speeding-Up
Radio-Frequency Integrated
Circuit Sizing with Neural
Networks

João L. C. P. Domingues
Instituto Superior Técnico
Instituto de Telecomunicações
Lisbon, Portugal

António P. L. Gusmão
Instituto Superior Técnico
Instituto de Telecomunicações
Lisbon, Portugal

Nuno C. C. Lourenço
Instituto Superior Técnico
Instituto de Telecomunicações
Lisbon, Portugal

Pedro J. C. D. C. Vaz
Instituto Superior Técnico
Instituto de Telecomunicações
Lisbon, Portugal

Nuno C. G. Horta
Instituto Superior Técnico
Instituto de Telecomunicações
Lisbon, Portugal

Ricardo M. F. Martins
Instituto Superior Técnico
Instituto de Telecomunicações
Lisbon, Portugal

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISSN 2625-3704 ISSN 2625-3712 (electronic)
SpringerBriefs in Computational Intelligence
ISBN 978-3-031-25098-9 ISBN 978-3-031-25099-6 (eBook)
https://doi.org/10.1007/978-3-031-25099-6

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9625-6435
https://orcid.org/0000-0002-1687-1447
https://doi.org/10.1007/978-3-031-25099-6

Preface

In the present day, the integrated circuit (IC) industry has, now more than ever, a
massive demand for electronic devices not only for the consumer electronics markets
but also in other industries such as medical, automotive, or security. Despite Moore’s
Law not really being observed anymore, the evolution of the IC industry is still
clearly observable every year, with designers building increasingly more complex,
power-efficient, and integrated systems. These systems often combine analog and
digital sections, where most components are integrated into a single chip originating
mixed-signal systems-on-a-chip. While these ICs are implemented mainly using
digital circuitry, analog operations are still fundamental and irreplaceable. Addi-
tionally, technologies such as the Internet of things or fifth-generation broadband
join millions of devices and sensors. All these applications continuously gather an
increasing amount of data, posing unprecedented challenges to each element of the
networks. Due to this, today’s market is highly conditioned by the strong demand
for high communication rates, large bandwidths, and ultra-low power consumptions,
in which radio-frequency (RF) ICs play a critical role. However, analog design is
unlike digital design, where an automated flow is established for most design stages.
The absence of effective and established computer-aided design tools for electronic
design automation of analog and radio-frequency IC blocks poses a significant contri-
bution to their bulky development cycles, leading to long, iterative, and error-prone
designer intervention over their entire design flow.

In the past years, automatic simulation-based sizing approaches became essential
in designing analog and radio-frequency IC blocks for modern applications to ensure
their robustness. However, optimizations considering process, voltage, and temper-
ature (PVT) corners or layout still pose unprecedented challenges in applying these
tools due to the high simulation times and different simulator convergence issues.
Therefore, the work presented in this book addresses the automatic sizing of analog
ICs assisted by deep learning and artificial neural networks on two fronts. First, it
proposes two deep learning models to assist the PVT-inclusive simulation-based
sizing process of radio-frequency ICs, specifically, voltage-controlled oscillators
(VCOs). Given specific devices’ dimensions, the first model classifies the likeli-
hood of the circuit to convergence for nominal and PVT corner cases, bypassing

v

vi Preface

solutions that will hardly produce valuable information for the optimization process.
The model also predicts the VCOs’ oscillating frequencies for the mentioned condi-
tions. The methodology is tested on a state-of-the-art VCO, reducing 19% of the
workload of the circuit simulator, ultimately saving almost 5 days of computa-
tional effort and improving the optimization result. Secondly, a PVT regressor is
proposed, which inputs the circuit’s sizing and the nominal performances to esti-
mate the PVT corner performances via multiple parallel artificial neural networks.
Two control phases prevent the optimization process from being misled by inac-
curate performance estimates. The proposed controlled PVT estimator is tested on
two state-of-the-art VCOs, reducing the workload of the circuit simulator up to 79%
while achieving a speed-up factor of 2.92 ×, ultimately saving more than 16 days
of computational effort. Both methodologies can be used simultaneously, and ulti-
mately, they offer a unique opportunity to reuse valuable legacy data, often discarded
in optimization environments.

Finally, the authors would like to express gratitude for the financial support
that made this work possible. The work developed in this book was supported
by FCT/MCTES through national funds and when applicable co-funded EU
funds under the project UIDB/50008/2020 (including internal research project
LAY(RF)2/X-0002-LX-20) and Research Grant FCT-SFRH/BD/07123/2021.

This book is organized into four chapters.
Chapter 1 presents an introduction to the analog IC design area and discusses how

the advances in machine learning can pave the way for new EDA tools.
Chapter 2 presents a study of the available tools for analog design automation.

Starting with an overview of existing works where machine learning techniques are
applied to analog IC sizing.

Chapter 3 presents two artificial neural network models for analog IC design to
be incorporated within simulation-based sizing loops. The first model classifies the
convergence of the circuit for nominal and PVT corners, bypassing solutions that
will hardly produce valuable information for the evolutionary kernel, and the second
predicts the pre-defined simulator values for the previous conditions.

Chapter 4 presents a controlled PVT regressor based on an artificial neural
network, also intended to be incorporated within simulation-based synthesis. This
regressor estimates the complete set of PVT corner performances via multiple parallel
networks.

Lisbon, Portugal João L. C. P. Domingues
Pedro J. C. D. C. Vaz
António P. L. Gusmão

Nuno C. G. Horta
Nuno C. C. Lourenço
Ricardo M. F. Martins

Contents

1 Introduction . 1
1.1 Analog/RF Integrated Circuit Design Automation 1
1.2 Analog IC Design Flow . 3
1.3 Machine Learning and Analog IC Sizing . 4
1.4 Conclusion . 6
References . 6

2 Background and Related Work . 9
2.1 Knowledge-Based Sizing . 9
2.2 Optimization-Based Sizing . 9

2.2.1 Equation-Based Evaluation . 9
2.2.2 Simulation-Based Evaluation . 10

2.3 Machine Learning in Simulation-Based Evaluation 12
2.3.1 Types of Supervision . 13
2.3.2 Simulation-Based Sizing Enhanced with SVMs 14
2.3.3 Simulation-Based Sizing Enhanced with ANNs 15

2.4 Other ML/DL Efforts on Analog/RF Sizing . 18
2.4.1 Predicting Sizing from Performances 18
2.4.2 Reinforcement Learning . 19

2.5 Case Study . 20
2.5.1 Dual-Mode Class C/D VCO . 20
2.5.2 Dataset Generation . 22

2.6 Conclusion . 24
References . 24

3 Convergence Classifier and Frequency Guess Predictor Based
on ANNs . 29
3.1 Contributions . 29
3.2 Classifier and Regressor Based on Deep ANNs 30

3.2.1 Underlying Architectures . 30
3.3 Training the Model in Isolation (Results Pre-integration) 32

3.3.1 Dataset Processing . 32

vii

viii Contents

3.3.2 Feature Engineering . 35
3.3.3 Convergence Classifier and Its Hyperparameters 35
3.3.4 Regressor and Its Hyperparameters . 39
3.3.5 Final Model Details . 42
3.3.6 Discussion . 44

3.4 In-the-Loop Integration . 45
3.4.1 Class C/D VCO for 3.5-to-4.8 GHz @ 50% Threshold 48
3.4.2 Class C/D VCO for 3.5-to-4.8 GHz @ 75% Threshold 53
3.4.3 Class C/D VCO for 3.5-to-4.8 GHz @ 90% and 100%

Thresholds . 55
3.4.4 Analysis of the Points Fed to the Simulator 57
3.4.5 Plug-and-Play Class C/D VCO 2.3 GHz-to-2.5 GHz 59
3.4.6 Plug-and-Train Ultralow-Power Class B/C VCO 61

3.5 Conclusions and Future Research Directions 61
3.5.1 Conclusions . 62
3.5.2 Future Work . 63

References . 64

4 Process, Voltage and Temperature Corner Performance
Estimator Using ANNs . 67
4.1 Contributions . 67
4.2 Controlled PVT Regressor Based on Deep ANNs 68
4.3 Training the Model in Isolation (Results Pre-integration) 69

4.3.1 Dataset Processing . 69
4.3.2 Feature Engineering . 72
4.3.3 Tuning Hyper-Parameters . 73
4.3.4 Final Model Details . 78
4.3.5 Test Results . 80

4.4 In-the-Loop Integration . 81
4.4.1 Class C/D VCO with PVT Estimator Working at 100% 86
4.4.2 PVT Estimator with Error Controller . 89
4.4.3 Results with Controlled PVT Estimator 93

4.5 Conclusions and Future Research Directions 106
4.5.1 Conclusions . 106
4.5.2 Future Work . 107

References . 108

Chapter 1
Introduction

1.1 Analog/RF Integrated Circuit Design Automation

In the present day, the IC industry has, now more than ever, a huge demand for
electronic devices not only in the consumer electronics markets but also in other
industries such as medical, automotive, or security. Despite Moore’s law not really
being observed anymore, the evolution of the IC industry is still clearly observable
every year, with designers building increasingly more complex, power-efficient and
integrated systems. These systems often combine analog and digital sections, where
most components are integrated into a single chip originating mixed-signal systems-
on-a-chip (SoCs). While most functionalities are implemented using digital or digital
signal processing circuitry, analog circuits are the bridge between digital circuitry and
physical devices with a steady increase in connectivity needs. Even though analog
circuits only occupy a small fraction of the SoCs, their design effort is dispropor-
tionally large, as illustrated by Fig. 1.1 [1]. According to [2], the global IC market
was worth $412.3 billion in 2019 and is expected to grow to $502.94 billion by 2023,
with analog components being present in more than 50% of the total IC shipments
yearly. Besides, the strict time-to-market constraints and development costs make
electronic systems’ design challenging, being, therefore, fundamental to accelerate
their development process as much as possible.

Plenty of EDA tools and design methodologies have been made available to cope
with new capabilities offered by the integration technologies. However, there is still
a considerable discrepancy between the analog and digital IC design tools. The
gap between the number of existing EDA tools for digital and analog circuits is
usually explained by the fact that the digital market is much larger, absorbing the
available resources. It is also easier to express a digital system, which can be repre-
sented naturally in terms of Boolean expressions, whereas, on the analog side, their
design is less systematic, more knowledge-based, and more heuristic [3]. Even though
analog circuits only occupy a small fraction of these SoCs, they are responsible for
most design errors and expensive redesigns/reruns. Therefore, economic pressure

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. L. C. P. Domingues et al., Speeding-Up Radio-Frequency Integrated Circuit Sizing
with Neural Networks, SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-3-031-25099-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25099-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-25099-6_1

2 1 Introduction

Fig. 1.1 Contrast between analog and digital blocks’ design effort [1]

has motivated the quest for better methodologies to accelerate analog design. The
automation level for analog IC has improved in the last few years, a field of profound
academic and industrial research activity producing significant advances. However,
it is still far from the push-button stage, leading designers to keep exploring the
solution space almost manually, as there are no standard plug-and-play EDA tools
and methodologies to automate the analog IC design flow.

While most of this is true for analog base-band, on top of that, with predictions
that more than half of new businesses will run on the internet-of-things (IoT) and
advanced telecommunication broadbands, such as the 5th generation (5G), there
will be an immense demand for devices and sensors, opening doors to advances in
many areas. This has already led to an increase in the amount of data that is being
continuously generated, resulting in new challenges within every part of the network.
Consequently, there is high pressure in today’s market for larger communication
rates, extensive bandwidths, and ultralow-power consumptions. This is where RF
ICs come in hand, playing a crucial role. However, RF IC design in deep nanometric
integration technologies for both IoT and 5G is extraordinarily difficult, due to their
high complexity and demanding performances. Some of the design difficulties lie in
the wide range of frequencies and dynamic ranges involved, but also on:

• Their dependence on non-reliable models of passive devices;
• At gigahertz frequencies, there is a huge impact of layout parasitics;
• Their integration in deep nanometer technologies causes variability issues and

non-idealities which have never been experienced in older technology nodes.

Avoiding costly redesign cycles and reducing post-fabrication tuning and compen-
sation work on first-pass fabrication success became primary RF IC design objec-
tives. Established computer-aided design (CAD) companies provide environments
that allow circuit designers to carry this flow manually. Despite this, the classical trial

1.2 Analog IC Design Flow 3

and error method is no longer viable due to the high number of complex interactions
leading to sub-optimal RF designs.

1.2 Analog IC Design Flow

Regarding the specific design flow of analog ICs, each designer/company may have its
own. However, in [3], Gielen and Rutenbar standardized the steps that most designers
take when designing an analog or mixed-signal IC, introducing the widely acknowl-
edged design flow shown in Fig. 1.2. This flow consists of a series of top-down design
steps repeated from the system to the device level and bottom-up layout gener-
ation and verification. Using a hierarchical top-down design methodology allows
for performing system architectural exploration, achieving a better overall system
optimization at a higher level of abstraction before starting more specific implemen-
tations at the circuit or device levels. With this, one can find problems earlier in the
design flow, increasing the chances of first-time success with fewer time-consuming
redesign iterations.

In this design flow, the number of hierarchy levels may vary according to the
complexity of the system being designed, and although there are no overall accepted
representations for the architectural design, the steps between two hierarchical levels
are:

Circuit
Level

Level i

Verification

Extraction

Verification

Topology
Selection

Specification
Translation

Layout
Generation

R
ed

es
ig

n

Specifications to the
hierarchical level below

Layout from the
level below

Specifications from the
hierarchical level above

Layout sent to
the level above

System
Level

Device
Level

More
Abstract

More
Concrete

Backtracking

Redesign

Validation
Backtracking

Level i+1

...
... Validation

Redesign

Fig. 1.2 Hierarchical levels and design tasks of analog design flow [4]

4 1 Introduction

• Top-down electrical synthesis path, which includes topology selection, specifica-
tion translation (or circuit sizing at the lowest level), and design verification;

• Bottom-up physical synthesis path, that includes layout generation and detailed
design verification (after layout extraction).

In topology selection, the most appropriate circuit topology is determined to meet
a certain number of specifications at the current hierarchy level. This topology can
be chosen from a set of existing topologies or synthesized.

Specification translation is the step where the designer maps the high-level block
specifications and, given a certain topology, maps them into individual specifications
for each sub-blocks. Due to these sub-blocks being single devices at the lowest level,
this task is narrowed down to circuit sizing. Before proceeding down in the hierarchy,
specification translation is verified using simulation. At higher levels of the design
flow, there is no device-level sizing available, which results in behavioral simulations.
However, device sizing is available at lower levels (circuit and device level), and
therefore, electrical simulations are used. Each block’s specifications are passed to
the following hierarchy level, and the whole process is repeated until the top-down
electrical synthesis flow is completed.

To aid designers to overcome the many difficulties encountered in manual sizing
of analog/RF IC blocks, several optimization-based sizing approaches emerged.
These EDA tools use several algorithms that explore the design space effectively
rather than iterating over designer-defined analytical equations. They can be used
along with performance models that can capture several circuit characteristics of
RF circuits. However, despite its increased computational effort, utilizing foundry-
provided device models and a circuit simulator as an evaluation engine resulted in the
most accurate and generally adopted approach. Most commercially available solu-
tions that use the simulation-based architecture, e.g., Cadence’s Virtuoso GXL [5]
or MunEDA’s DNO/GNO [6], still take a restrictive single-objective approach being
used to semi-automate the manual sizing design process. Consequently, simulation-
based techniques are a continuous research subject of the community to face the
most recent design challenges.

After the top-down flow is completed at a certain level, the sizing obtained must
be verified by generating the corresponding layout and testing its performance. If
these prove to be satisfactory results, the design flow is finished. If not, a redesign is
needed, repeating the previous steps or the complete flow.

1.3 Machine Learning and Analog IC Sizing

ML is how a computer improves its capabilities by analyzing past experiences. This
area of artificial intelligence (AI) has been chosen to solve problems in computer
vision, speech recognition, and natural language processing, among others because it
can be easier to train a system showing examples of what the output should be given a
particular input than to anticipate all possible responses for all inputs. One of the most

1.3 Machine Learning and Analog IC Sizing 5

used models nowadays is artificial neural networks (ANNs), and those are the models
considered in this book. This technique has been cyclically picked-up and abandoned
over the years, but a new trend emerged recently, called deep learning (DL), where
much more complex networks are employed, yielding fascinating results in image
processing, for example. They are also playing a role in the design automation of
analog and RF integrated circuits ICs [7], being used on several fronts, e.g., modeling
[8], mapping from devices’ sizes to circuits’ performances [9–11], mapping from
specifications to the sizing [12], layout generation [13–17] or even fault testing [18].

Analog IC performance evaluation is well established in the design flow. Further-
more, as stated in the previous section, this prominence of circuit analysis tools and
methods led to simulation-based optimization as the most common method in both
industrial [5, 6] and academic [19] environments. These automatic analog/RF IC
sizing methods aim to find the best set of device sizes by iterating over tentative
guesses and evaluating their impact on circuit performance, as shown in Fig. 1.3.
This process is shown to produce usable designs, but it is still slow, and reuse
usually involves new optimization runs. Some approaches have been made to use
ML algorithms in analog IC sizing. However, most of the different approaches incor-
porating ML/DL concepts in the simulation-based sizing loop attempted to alleviate
the simulator workload by building models that estimate the circuit performances,
fully bypassing simulation.

From the analysis of state-of-the-art sizing tools available for analog IC and RF
design automation described in Chap. 2 of this book, simulation-based sizing opti-
mization tools are widely accepted approaches as they keep the solutions’ accuracy
high and assist in the design of modern blocks. For instance, in IoT applications,
where the demand for ultralow-power (ULP) radios is significant, voltage-controlled
oscillators (VCOs) are extremely relevant design blocks. Besides requirements such
as phase noise and power consumption, the intrinsic tradeoff specifications, such as
the frequency tuning range and frequency pushing due to the supply voltage varia-
tion, must be carefully considered in a practical design. Building a realistic analysis
of the design tradeoffs is a challenging task, as multiple tuning modes deliver a

Fig. 1.3 Simulation-based
sizing concept

Simulator
in-the-loop

Evaluated
Circuits’

Performances

...
...

Optimization Engine

Candidate Circuit
Sizing Solutions

6 1 Introduction

vast number of conflicting performance figures that need to be balanced. Adding
further complexity, the impact of the process variations or parasitic layout structures
turns the optimal balance of the design tradeoffs beyond human capabilities, which
can only be solved with the assistance of automatic tools. Still, some challenges
arise when designing complex RF circuit topologies using simulation-based sizing
optimization:

• In some cases, the simulator is unable to converge to the guessed oscillation
frequency, whereas in others, the simulation attempts to converge infinitely;

• The increase in simulation time of extracted netlists, as opposed to the pre-layout
one, makes it harder to decide when to put a timeout on convergence attempts;

• An oscillation frequency guess must be provided for the steady state (SST)
analysis. However, it is strongly correlated with the convergence of the anal-
ysis. Therefore, promising designs may still be lost without simulating multiple
guesses.

1.4 Conclusion

While the demand for new analog ICs for ever-increasing challenging specifications
keeps building momentum, their design automation is still lacking and needs to be
addressed. In this book, we explore how ML/DL can be used to increase the effec-
tiveness of analog and RF automatic sizing. Chapter 3 proposes a methodology that
disrupts the most recent trials of replacing the simulator in the simulation-based
sizing with ML/DL by proposing two distinct ANN models. The 1st classifies the
convergence of the circuit for nominal and PVT corners, bypassing solutions that
will hardly produce valuable information for the evolutionary kernel, and the 2nd
predicts the VCOs’ oscillating frequencies for the conditions above. The conver-
gence classifier (CCANN) and frequency guess predictor (FGPANN) are seamlessly
integrated into the simulation-based sizing loop, as shown in Fig. 1.1, accelerating
and complementing the optimization process. And, in Chap. 4, a PVT regressor
that inputs the circuit’s sizing and the nominal performances to estimate the PVT
corner performances via multiple parallel ANNs greatly accelerates robust design.
Two control phases prevent the optimization process from being misled by inaccurate
performance estimates. Ultimately speeding up the analog/RF IC optimization-based
sizing concept, complementing the simulation process with artificial neural networks,
and reducing the simulator workload.

References

1. Lourenço N, Martins R, Horta N (2017) Automatic analog IC sizing and optimization
constrained with PVT corners and layout effects. Springer, Berlin

References 7

2. The Business Research Company (2020) Integrated circuits global market report 2020.
Technical report

3. Gielen GGE, Rutenbar RA (2000) Computer-aided design of analog and mixed-signal
integrated circuits. Proc IEEE 88(12):1825–1854

4. Martins R, Lourenço N, Horta N (2012) Generating analog IC layouts with LAYGEN II.
Springer briefs in applied sciences and technology. Springer, Berlin

5. Cadence (2019) Virtuoso analog design environment GXL. Retrieved from http://www.cad
ence.com, Mar 2019

6. MunEDA (2019) WIKED™. Retrieved from http://www.muneda.com, Mar 2019
7. Afacan E, Lourenço N, Martins R, Dündar G (2021) Review: machine learning techniques in

analog/RF integrated circuit design, synthesis, layout, and test. Integr VLSI 77:113–130
8. Suissa A et al (2010) Empirical method based on neural networks for analog power modeling.

IEEE TCAD 29(5):839–844
9. Wolfe G, Vemuri R (2003) Extraction and use of neural network models in automated synthesis

of operational amplifiers. IEEE TCAD 22(2):198–212
10. Alpaydin G, Balkir S, Dundar G (2003) An evolutionary approach to automatic synthesis of

high-performance analog integrated circuits. IEEE Trans Evol Comput 7(3):240–252. https://
doi.org/10.1109/TEVC.2003.808914

11. Liu H, Singhee A, Rutenbar RA, Carley LR (2002) Remembrance of circuits past: macromod-
eling by data mining in large analog design spaces. In: Proceedings 2002 design automation
conference, pp 437–442

12. Lourenço N et al (2019) Using polynomial regression and artificial neural networks for reusable
analog IC sizing. In: 16th International conference on synthesis, modeling, analysis and
simulation methods and applications to circuit design, pp 13–16, July 2019

13. Zhu K et al (2019) Genius route: a new analog routing paradigm using generative neural
network guidance. In: Proceedings of the ICCAD

14. Guerra D, Canelas A, Póvoa R, Horta N, Lourenço N, Martins R (2019) Artificial neural
networks as an alternative for automatic analog IC placement. In: International conference on
SMACD, Lausanne, Switzerland, July 2019

15. Gusmão A, Passos F, Póvoa R, Horta N, Lourenço N, Martins R (2020) Semi-supervised
artificial neural networks towards analog IC placement recommender. In: IEEE International
symposium on circuits and systems, Seville, Spain, Oct 2020

16. Gusmão A, Horta N, Lourenço N, Martins R (2022) Scalable and order invariant analog
integrated circuit placement with attention-based graph-to-sequence deep models. In: Expert
systems with applications. Elsevier, Amsterdam

17. Gusmão A, Póvoa R, Horta N, Lourenço N, Martins R (2022) DeepPlacer: a custom integrated
OpAmp placement tool using deep models. In: Applied soft computing, vol 115. Elsevier,
Amsterdam, 108188

18. Andraud M, Stratigopoulos H, Simeu E (2016) One-shot non-intrusive calibration against
process variations for analog/RF circuits. IEEE TCAS-I Regul Pap 63(11):2022–2035

19. Gonzalez-Echevarria R et al (2017) An automated design methodology of RF circuits by using
pareto-optimal fronts of EM-simulated inductors. IEEE Trans Comput Des Integr Circ Syst
36(1):15–26

http://www.cadence.com
http://www.cadence.com
http://www.muneda.com
https://doi.org/10.1109/TEVC.2003.808914
https://doi.org/10.1109/TEVC.2003.808914

Chapter 2
Background and Related Work

2.1 Knowledge-Based Sizing

As shown in Fig. 2.1a [1], knowledge-based sizing tools, e.g., IDAC [2] and BLADES
[3], have attempted to systematize the design by making use of a design plan obtained
from expert knowledge. These tools solve a pre-designed plan using circuit equations
and a hard-coded design strategy to build component sizes that meet the performance
requirements. While this approach presented satisfactory results for automatic analog
IC sizing, being its main advantage of the short execution time. However, deriving
the design plan is complex and requires a high development time. Additionally, the
continuous effort required to keep the design plan up to date with the advances in
fabrication technologies, the increase in the complexity of circuit topologies, and the
fact that the results obtained are not simulator-accurate make this approach suitable
only as a first-cut design.

2.2 Optimization-Based Sizing

Aiming for optimality, the next generation of sizing tools has applied optimization
techniques to analog/RF IC sizing, which can be further classified into equation-
based or simulation-based when considering the method used to evaluate the circuit’s
performance, as illustrated in Fig. 2.1b [1].

2.2.1 Equation-Based Evaluation

Equation-based methods use analytic design equations to describe the circuit perfor-
mance, and then, to resolve the degrees of freedom, tools such as OPASYN [4]

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. L. C. P. Domingues et al., Speeding-Up Radio-Frequency Integrated Circuit Sizing
with Neural Networks, SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-3-031-25099-6_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25099-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-25099-6_2

10 2 Background and Related Work

DESIGN
SPECIFICATIONS

DESIGN
SPECIFICATIONS

DESIGN PLAN
EXECUTION

EXPERT
DEFINED

DESIGN PLAN

Design Plan D
ES

IG
N

 P
LA

N

LI
BR

A
R

Y
 Design

Parameters
OPTIMIZATION

KERNEL

EV
A

LU
A

TI
O

N

EN
G

IN
E Simulations

Equations

Performance Model

Layout Inclusive

...
Circuit

Performances

Design
Parameters

SIZED CIRCUIT SIZED CIRCUIT

)b()a(

Fig. 2.1 Automatic circuit sizing methods: a knowledge-based and b optimization-based [1]

and CADICS [5] were used. Since the design equations had to be deduced by
hand, the symbolic simulator ISAAC [6] was developed to automatically produce
design equations used to evaluate the circuit performance in a relatively less complex
process. This process reduces the setup time when optimizing new circuit topologies.
Nonetheless, similar to knowledge-based sizing, the problem of using these methods
is still mapping design characteristics by analytic equations, which is not straightfor-
ward. The approximations introduced in the equations result in poor accuracy when
compared with the circuit simulator.

2.2.2 Simulation-Based Evaluation

Simulation-based optimization is the most prevalent method in both industrial
[6, 7] and academic environments since designers prefer to avoid the risks of estima-
tion errors in equation-based performance approximation. These simulation-based
methods use an off-the-shelf circuit simulator to evaluate the circuit’s performance.
The main advantage of these approaches over the equation-based evaluation is its
improved generalization capabilities, still, due to the long execution times required
for some SPICE-based circuit evaluations and since a considerable number of simula-
tions (hundreds to thousands) are required to reach the desired solutions, it may result
in a time-consuming optimization process. One example of this approach was intro-
duced in [8], where an analog IC design automation environment called AIDA imple-
ments a design flow from a circuit-level specification to a physical layout description.
AIDA was a combination and integration of two in-house tools, GENOM-POF [9],
responsible for the circuit synthesis and whose architecture is illustrated in Fig. 2.2,
and, LAYGEN II [10], the AIDA’s layout generator.

2.2 Optimization-Based Sizing 11

OUTPUTS

C
ir

cu
it

Si
m

ul
at

or

Sized circuit’s
Pareto Optimal

front

INPUTS DESIGN STRATEGIES NSGA-II
OPTIM.

KERNEL

C
or

ne
rs

Corner POF

Ty
pi

ca
l

Circuit
Testbench

Specifications

fm(x)
gP/F

i(x)

X(random)

fm(x)
gP/F

i(x)

Typical POF

Fig. 2.2 GENOM-POF architecture based on the NSGA-II and using circuit simulator [8]

GENOM-POF was based on the multi-objective evolutionary optimization kernel
NSGA-II [11] and used the industry standard circuit simulator Mentor Graphics’
HSPICE as an evaluation engine to address robust design requirements, e.g., corner
analysis. Corner analysis is one of the most used techniques for analog IC design
centering. It corresponds to a worst-case approach in which a sizing solution for a
given circuit topology is simulated over multiple combinations of parameter varia-
tions, such as process, power supply, or temperature. In GENOM-POF, the designer’s
inputs were the circuit and its testbench in the form of HSPICE netlist(s). These
netlists must have, as parameters, the optimization variables and must include a
method to measure the circuit’s performance. The designer also had to define the
desired range of the optimization variables, design constraints, and optimization
objectives.

In the past few years, RF IC design has exploited this concept of simulation-
based sizing [12–18]. Regarding AIDA-C [19], an enhanced version of GENOM-
POF whose general flow is illustrated in Fig. 2.3, represents a generic number of
candidate circuit sizing solutions, P, proposed by the optimization engine, where
each one is a series of possible combinations of design variables. It is an iter-
ative process, where in each iteration, the framework simulates the several test
benches, K, affected by each sizing of P, to extract the desired measures. The most
widely adopted commercial circuit simulators are supported in this process, such as
Cadence’s SPECTRE, Synopsys’ ELDO, or Mentor Graphics’ HSPICE. Due to a
measure-processing interface, it is possible to combine measures from different test
benches into composed expressions, which can be used as targets for the constrained
multi-objective optimization problem.

12 2 Background and Related Work

.MDL
Support

.MEAS
Support

.AEX
Support

Measure Processing Interface

Evaluated
Circuits’

Performances

...
...

Optimization Engine

Candidate Circuit
Sizing Solutions

Spectre® or Eldo® or HSPICE® simulations

...

Fig. 2.3 Design flow of a multi-test bench analog and RF IC sizing optimization [19]

2.3 Machine Learning in Simulation-Based Evaluation

As each simulation made within an optimization-based loop may be a time-
consuming process, an effort has been made to develop techniques that reduce the
workload of the simulator, most of them focused on ML. ML is a subset of artificial
intelligence, even though the latter aims to build complex decision systems and the
former focuses on the statistical properties of data [20]. In his essay on probability
theory, Thomas Bayes proposed several theorems [21] that laid the theoretical foun-
dations for statistical learning and is the cornerstone for some early ML techniques,
such as naive Bayes or Markov chains. In 1951, the first artificial neural machine
was proposed. However, artificial neural networks (ANNs) only began to receive
more attention from the community with Frank Rosenblatt’s perceptron [22] and
back-propagation [23] in 1958 and 1986, respectively, wherein the latter principles
of dynamic programming were introduced. In the meantime, many other accom-
plishments have been achieved, and today there are a vast number of different ML
techniques for solving classification and regression tasks.

In a classification problem, the main goal is to categorize data correctly. A typical
example is the email spam filter which assigns incoming emails to the “spam” or
“not-spam” categories. In a regression problem, the system’s primary goal is to
describe one or more continuous-value dependent variables as functions of the data
observations. An example of regression is predicting house prices given the house’s
features (size, the number of rooms, location, etc.). A visual comparison between
these two problems is shown in Fig. 2.4.

2.3 Machine Learning in Simulation-Based Evaluation 13

Fig. 2.4 Classification (left) versus regression (right) problems [25]

2.3.1 Types of Supervision

A critical characteristic of all ML systems is their ability to adapt correctly to new,
previously unseen data and avoid overfitting the training data. Overfitting occurs
when the system learns the detail and noise in the training data to the extent that it
negatively impacts the performance of the system on new data, affecting its general-
izing capabilities [20, 24]. Another attribute of an ML system is the amount and type
of supervision. The following subsections refer to the different supervision categories
in which an ML system can be categorized.

2.3.1.1 Supervised Learning

For these models, the dataset used must have some observations and the expected
results, called labels. The labels can further divide this method into two problem-
solving techniques: classification and regression. As stated, a classification problem
is when the output variable is part of a group, for instance, “dog” or “not dog,”
whereas regression is a case where the output variable is a real value, such as the cost
of a house. Some examples of important supervised learning algorithms are linear
regression, logistic regression, decision trees, support vector machines (SVMs), and
ANNs.

2.3.1.2 Unsupervised Learning

The training uses data that has not been labeled for these models, aiming to create
models that can draw inferences from datasets to describe hidden structures. Unsu-
pervised learning is particularly suitable for problems such as clustering or associa-
tion. A clustering problem is characterized by disclosing the inherent groupings in

14 2 Background and Related Work

the data, for instance, grouping people based on their age, whereas an association
problem aims to discover relations rules within the data, such as people who buy X
also tend to buy Y. Some examples of relevant algorithms are principal component
analysis, K-means, and mixture models.

2.3.1.3 Semi-supervised Learning

Semi-supervised learning is the third category that falls between supervised learning
and unsupervised learning. Its training data combines a small amount of labeled data
with a large amount of unlabeled data, and the system is trained with a combination of
supervised and unsupervised algorithms. Some algorithm examples are autoencoders
and deep belief networks.

2.3.2 Simulation-Based Sizing Enhanced with SVMs

With the recent technology advancements, the use of macro models such as ANNs or
SVMs introduced another type of optimization-based sizing, designated numerical-
model based. Given the models’ prediction speed, by using these tools, one can
reduce the high simulation times of the simulator loop by aiding the simulator in
certain tasks or, in a more drastic way, by completely replacing the simulator.

Starting with SVMs, which is a supervised learning algorithm for data separation,
making use of linear combinations to produce a boundary that maximizes the margin
between classes. This algorithm is especially interesting if the data is linearly sepa-
rable, as for nonlinear patterns, a kernel trick is used, allowing the SVM to create
this boundary in a higher dimension hyperplane.

In [1], an SVM classifier is used to enhance the multi-objective IC sizing opti-
mization process. The previously presented analog IC sizing tool, GENOM-POF, was
used to demonstrate the methodology. The SVM is used to create feasibility models
that diminish the design search space during the optimization process, reducing the
number of required evaluations. This approach was validated using benchmark exam-
ples consisting of two different circuits, a single-ended folded cascode amplifier, and
a fully differential telescopic amplifier. The functional feasibility regions used to
train the feasibility model were defined by functional constraints, where the training
data used to train the model was obtained using a design of experiments. The sampled
points obtained were sorted into 3 classes, feasible, quasi-feasible, and infeasible.
Finally, the evaluation was made, where the model classifies the individuals based on
their classes, discarding the unfeasible ones. The results showed that the models had
absolute gains ranging from 10 to 20% in terms of the overall reduction in the number
of evaluations required. As the electrical simulation is more time-consuming than
the SVM model evaluation, it allows an efficient diminishing of the design search
space.

2.3 Machine Learning in Simulation-Based Evaluation 15

In [26], an SVM is also used to identify the feasibility of the design space of
analog circuits to reduce a large amount of the entire design space, sampling only the
points considered feasible and their neighbors. After choosing the proper parameters
of the SVM, the resulting model may reach 100% accuracy on the training data.
So, the difficulty relies on the generalization capability when facing an independent
validation data set. To tackle this issue, three accuracy metrics were presented, i.e.,
overall accuracy, percentage of false negatives, and percentage of false positives.
These metrics are presented in Eqs. (2.1), (2.2), and (2.3), respectively:

Pt =
N umber o f correctly classi f i ed samples

Number o f samples in the validation set
(2.1)

Pf n = Number o f f alse negati ves

Number o f posi ti ves in the validation set
(2.2)

Pf p =
Number o f f alse posi ti ves

N umber o f predicted posi ti ves
(2.3)

Two circuits were used as a case study to validate this method: an opera-
tional transconductance amplifier and a low-voltage double-balanced mixer. With
discarding the predicted negative values, the coverage of the feasibility design space
was consistently above 99% for both circuits, and the rate of feasible designs that
were excluded from being sampled was in the order of 10−4. Finally, the computa-
tional time was also reduced, where the results show between 59 and 71% reduction
when compared with previous approaches. The problem with using SVMs is that
tuning hyper-parameters and selecting the correct kernel is quite challenging. SVMs
also have degraded performance when faced with large datasets and a higher number
of features.

2.3.3 Simulation-Based Sizing Enhanced with ANNs

Today, ANNs are pretty popular in ML due to the increased data and computing
power available. These two factors prevented researchers from using them altogether
in academic settings in the past. However, nowadays, with fast-processing computers,
ANNs can be found in image processing, speech recognition, and other areas where
large amounts of data are available. They are systems based on the human brain,
copying how we learn and make decisions. These networks are composed of an
input and an output layer and one or more hidden layers. Each of these layers is a
combination of neurons, where the input layer is where the data is fed to the network
and the output layer is where the algorithm results are obtained.

The advantages of using ANNs are their high performance, capability to solve
problems impossible for humans, an excellent algorithm for regression and classi-
fication problems, and ability to handle large amounts of data. Some disadvantages

16 2 Background and Related Work

are their black-box nature (i.e., it is difficult for researchers to completely understand
why the algorithm behaves a certain way because of how the numerical values are
produced), the long time to train the model, and the large amount of data required.
Nonetheless, ANNs have been proven to build effective end-to-end ML systems,
which can also be used for the design automation of analog and RF ICs [27–29].
These may span from modeling [30], synthesis [31], layout generation [32–37], or
even fault testing [38].

In [39], a neural network-based methodology is used to estimate the performance
parameters of different CMOS operational amplifier topologies. To obtain the effi-
ciency and accuracy of the resulting performance models, these were used in a
genetic algorithm-based circuit synthesis system. The performance parameters of
the synthesized circuits were validated by SPICE simulations and compared with the
ones predicted by the ANN models. Training data of the model was directly gener-
ated through SPICE simulations to provide accurate and reliable data to the system.
The ANN’s architecture had only one hidden layer, with its number of neurons
ranging from 8 to 13. However, its generalization capabilities were limited, as in
some performances predicted by the model, the test error reached 60%.

This approach proved to be much faster when compared to the traditional SPICE
simulation. The genetic algorithm, using the ANN models, was executed 10,000 times
to produce 8 performance parameters, each obtained through a different iteration.
Through SPICE simulation, each of these iterations would require 2 s to complete,
which would total about 44 h (10,000 × 2 × 8) for all configurations. The execution
time using ANN models was about 80 s for all configurations, representing a speed-up
factor of 2000×. Beyond some of the higher reported errors, the models also proved
to be capable of capturing nonlinear behavior of the performance characteristics of
a circuit which requires a large number of simulations, but in the end, the effort is
justified when considering the reusability of the models in other amplifier topologies.

In [40], an ANN with two hidden layers is used to replace the SPICE simulator.
Multi-objective optimization is frequently used in analog sizing to reveal the trade-
offs of the design specifications with the help of Pareto optimal fronts (POFs). A
rough POF can be found in a reasonable time with multi-objective optimization,
but the high-quality ones require a large amount of simulator iterations, resulting in
long synthesis periods. In this paper, a method is presented to speed-up this process.
After a multi-objective optimization phase to obtain a, designated, low-quality POF,
the process switches to a faster single-objective optimization to complete the POF
making it smoother and more continuous. At this phase, the SPICE simulator was
also replaced by an ANN, reducing the synthesis time even further. The training data
for the ANN was obtained from the multi-objective optimization phase.

This method was applied to the design of two circuits, a two-stage amplifier, and
a folded cascode operational transconductance amplifier to validate this tool. For the
first circuit a speed-up factor of about 29.7× was obtained, which translates to a
96.6% time reduction, with a maximum error of 0.44%. As for the second circuit, a
speed-up factor of 28.3 was obtained, representing a 96.4% time reduction, with a
maximum error of 1.55%.

2.3 Machine Learning in Simulation-Based Evaluation 17

Optimization Engine

SPICE

Optimization Engine

SPICE ANN Model

Training

Quit
simulation

Use ANN for
estimation

Fig. 2.5 a General flow of simulation-based synthesizer and b modified flow with ANN as
performance estimator [40]

In [41], a similar method is used to accelerate a simulation-based circuit synthe-
sizer using ANNs to determine circuit performances instead of a SPICE simulator.
Instead of training the ANN with simulation data beforehand and simply replacing the
simulator with the trained ANN, the simulation-based synthesizer is left unchanged
for some generations of the optimization loop, and only after a period the ANN
replaces the SPICE simulator. Unlike other conventional algorithms, all the data
generated in the first phase is used as training data for the ANN instead of being
discarded. The proposed circuit synthesizer flow is shown in Fig. 2.5. Since the
training data acquisition step consumes a significant amount of time and is necessary
for every new topology to be treated, the main innovation of this approach is that no
separate data acquisition step to train the ANNs is required. Therefore, the flow can
be used for every new topology without losing generality for all analog circuits.

This method was applied to the circuit synthesis phase of two circuits, a single-
stage amplifier, and a folded cascode operational transconductance amplifier. With
only the SPICE simulator, the circuit sizing of the single-stage amplifier took 4.92 h
to complete, where the optimizer was executed for 100 generations. With ANNs
replacing the simulator after the first 20 generations, the execution time was reduced
by 64.8%, corresponding to a speed factor of 2.84×, with errors below 1%. For the
folded cascode amplifier, which presents a higher complexity, the original optimizer
took 400 generations and 22.58 h to complete the circuit sizing. The best time reduc-
tion obtained with ANNs was 50.3% with errors below 1%, where the ANN replaced
the simulator after 155 generations.

All these approaches to reduce the execution time of optimization-based sizing use
ANNs to replace or complement the circuit simulator. The execution time is greatly
reduced by avoiding time-consuming circuit simulations. However, in [39, 42], at
later stages of the optimization, the circuit simulator is re-established to recover the
accuracy lost. Furthermore, the ANN models are trained over the entire design space,
which spends valuable resources modeling and evaluating large regions of unusable

18 2 Background and Related Work

Table 2.1 Speeding-up simulation-based sizing with ANNs overview

Reference Speedup
factor

Maximum error Number of
layers

Method

Wolfe and Vemuri
[39]

≈ 2000 60% 3 Complement/Replace
simulator

Çakıcı et al. [40] 29.7 1.55% 3 Replace simulator

İslamoğlu et al. [41] 2.8 0.77% 4 and 5 Semi-replace simulator

Hakhamaneshi et al.
[44]

n/r n/r 4 Replace simulator

Alpaydin et al. [42] n/r n/r 3 Complement simulator

Liu et al. [43] n/r ≈ 10,000% 3 Replace simulator

n/r—not reported

design combinations. In [43], the ANNs were also trained to replace the simulator,
but the previous issue is somewhat addressed by applying data mining techniques to
build a model that captures only significant regions of the performance space visited
during automatic synthesis.

In [44], deep neural networks (DNNs) boost the optimizer’s sample efficiency.
With the use of an oracle, a comparison is made between two designs, in terms of each
design variable, as a method to select which of the two designs is likely to have better
performance figures in advance. Since DNNs are especially good at approximating
complex functions and have a good generalization to unseen samples, a DNN model is
derived to behave as an oracle, which is in fact a simulator. This discriminator achieves
at least two orders of magnitude in sample efficiency, representing a considerable
reduction in the number of simulations required. A summary of these tools is shown
in Table 2.1.

2.4 Other ML/DL Efforts on Analog/RF Sizing

This section overviews different ML applications in the analog/RF IC sizing domain.

2.4.1 Predicting Sizing from Performances

Using ANNs to find device sizing in analog IC proved to be feasible. These methods
learn and output a candidate circuit sizing when asked for target specifications [45,
46]. In [31], an ANN is developed to give the channel widths of all the transistors
in a circuit when the designer gives the desired output specifications. The training
phase data was performed with different SPICE parameters from the ones used in
the test data in order to show the ability to give the transistor sizes of a circuit

2.4 Other ML/DL Efforts on Analog/RF Sizing 19

for new untrained technology, having no dependency on the SPICE parameters. As a
method of validation, two circuits were used, current mirrors and a CMOS differential
amplifier. For the first one, a general regression neural network was used, and the
results showed that it could estimate the current mirror’s transistor sizes for new
technologies with 94% accuracy. For the second one, a multilayer perceptron was
used, and its results had an accuracy of 90%.

In [47], to produce the sizing for a low noise amplifier, several ANNs are put in
sequential order, having as input the intended performance. The results have shown
good prediction accuracy. However, the training and tuning of such a model have
proven to be exceedingly tricky. While only 277 handmade sizing solutions were
used for the training phase, an outer loop was still required to define the model’s
hyperparameters, reflected in a train of over 5 h on such a short dataset. In [48], the
sizing for an amplifier is also predicted using ANNs when given its specifications.
However, in this work, the model and training phases are different since the test was
only performed on ten samples from the original dataset, and no evaluation is made
on the performance and usability of the model for unknown target specifications.

2.4.2 Reinforcement Learning

Reinforcement learning (RL) aims to develop an agent that learns how to behave in
a particular environment where the only feedback is the reward of its actions. This
interaction between the agent and environment is depicted in Fig. 2.6. The agent’s
primary goal is to maximize the notion of cumulative reward regarding its actions.
These systems can teach robots to learn motor skills [49] or master complex board
games like chess or Go [50].

RL can also be used in analog/RF sizing. In [51], an agent learns from trial and error
how to behave like a circuit designer evolving to discover circuit sizes that satisfy the
performance specifications finally. Another instance where RL is used for sizing is in
[52], a tool named AutoCkt, an ML optimization framework trained using deep RL,
that is capable of finding post-layout circuit parameters for a particular parameter

Get reward r
New state s´ S

State s S
Take action a A

ENVIRONMENTAGENT

Fig. 2.6 Interaction between agent and environment

20 2 Background and Related Work

specification and can also acquire knowledge about the entire circuit design space
using a sparse subsampling technique.

This method uses models to make a sequence of decisions. The agent observes
and interacts with an uncertain, potentially complex environment by selecting and
executing actions, following a trial-and-error approach, and getting rewards or penal-
ties according to what action it performs. The agent is trained to learn a policy that
maximizes the expected outcome of the actions over time. These methods have been
used to play complex board games or, for instance, in an autonomous vehicle to put
safety first or minimize ride time. This method has been used in alternating current
optimization in [51–53]. With deep learning, an agent is trained, not needing previous
knowledge about optimizing circuits.

2.5 Case Study

To justify the motivation behind the developments proposed in this book, and
to demonstrate how a time-consuming simulation step may hinder an effective
optimization-based synthesis, a case study is introduced within this section, which
will be explored in the following chapters.

2.5.1 Dual-Mode Class C/D VCO

The development of the proposed methodologies will be tested on the sizing of a
complex dual-mode class C/D voltage-controlled oscillator (VCO), whose schematic
is presented in Fig. 2.7 and whose optimization was firstly described in [54]. In
that work, instead of achieving the desired performance parameters with sequen-
tial single-objective optimizations, a single many-objective sizing optimization,
described as “everything-at-once” optimization, is proposed to find the best perfor-
mance boundaries. The circuit simulator performed a multi-process corner analysis
and the optimization followed a worst-case corner criteria on top of a worst-case
tuning range optimization, taking into account two different tuning modes, b0000 and
b1111. The results pushed the circuit to its performance limits, reducing to almost
half of the power consumption of the original design, and showing its potential for
ultralow-power with more than 93% reduction. In the optimizations carried, there
were 28 optimization variables that affected the sizing of 43 devices. The full list
can be found in Table 2.2.

A total of 18 performance figures were considered from 7 different testbenches
and the optimizations were performed with populations of 512 elements optimized
through 200 generations only. Each optimization took approximately 50 h to complete
in an Intel-Xeon CPU E5-2630-v3@2.40 GHz with 64 GB of RAM workstation using
eight cores for parallel evaluation, i.e., more than 2 days. Nonetheless, a complete
process, voltage and temperature (PVT) corners optimization of this circuit is desired,

2.5 Case Study 21

Fig. 2.7 Dual-mode Class
C/D VCO [54]

VDD

L

M1 M2

B<3:0>

VDDL

VDDH

VCCvar Cvar

Out+ Out

Table 2.2 Optimization variables for the dual-mode class C/D VCO

Variable Units Min. Grid Max.

ind_radius µm 15 5 90

ind_nturns – 1 1 6

ind_spacing µm 2 1 4

ind_width µm 3 1 30

mccl, m1l nm 60 20 240

mccw, m1w µm 0.6 0.2 6

mccnf, m1nf – 1 1 32

mccm – 1 1 100

moscapw µm 0.4 0.2 3.2

moscapl µm 0.2 0.2 3.2

mimvw, mimvl, mim1w µm 2 0.2 20

r1l, r2l, r3l, r4l µm 1 0.2 10

r1m, r2m, r3m, r4m – 1 1 20

nfn1, nfn2, nfp1, nfp2 – 1 1 100

which will expand that number of required simulations. Namely, 9 different testbench
variations will be considered (TT, FF, FS, SF, SS, 300mV, 400mV, m40dC and 85dC),
that produce 10 different performance figures each, and, due to the worst-case tuning
range optimization where two tuning modes are evaluated, b0000 and b1111, resulting
in each sizing being simulated 18 times and providing a total of 180 simulated

22 2 Background and Related Work

Table 2.3 List of TT and
PVT testbenches for the
dual-mode class C/D VCO

Name Process Voltage (V) Temperature (°C)

Typical (TT) TT 0.35 25

Fast–Fast (FF) FF 0.35 25

Fast–Slow (FS) FS 0.35 25

Slow–Fast (SF) SF 0.35 25

Slow–Slow (SS) SS 0.35 25

300mV TT 0.3 25

400mV TT 0.4 25

m40dC TT 0.35 −40

85dC TT 0.35 85

Table 2.4 List of
performances considered for
the dual-mode class C/D
VCO in TT and PVT corners

Measure Units Description

fosc GHz Oscillation frequency

PN@10 kHz dBc/Hz Phase noise at 10 kHz

PN@100 kHz dBc/Hz Phase noise at 100 kHz

PN@1 MHz dBc/Hz Phase noise at 1 MHz

PN@10 MHz dBc/Hz Phase noise at 10 MHz

Power mW Power consumption

FOM@10 kHz dBc/Hz Figure-of-merit at 10 kHz

FOM@100 kHz dBc/Hz Figure-of-merit at 100 kHz

FOM@1 MHz dBc/Hz Figure-of-merit at 1 MHz

FOM@10 MHz dBc/Hz Figure-of-merit at 10 MHz

performance figures. The full list of testbench variations can be seen in Table 2.3 and
the list of performances in Table 2.4.

2.5.2 Dataset Generation

To generate the dataset an optimization was conducted in order to minimize both
power and phase noise at 10 MHz in both tuning modes, while imposing constraints
on other 7 measured performances for each testbench, i.e., in all combinations of
PVT corners and tuning modes. These optimization constraints and objectives are
shown in Table 2.5. The optimization was executed through a total of 350 generations
and took a total of 612 h to complete and resulted in a total of 27 sizing solutions. In
Fig. 2.8 is shown the POF evolution of the original optimization which contains the
best sizing solutions throughout the generations, and, in Table 2.6 the values of the
final POF obtained at generation 350 are shown.

2.5 Case Study 23

Table 2.5 Optimization constraints and objectives

Tuning mode Measure Testbenches Units Opt. constraint Opt. objective

b0000 fosc All GHz ≥ 4.8
PN@10 kHz All dBc/Hz ≤ − 49
PN@100 kHz All dBc/Hz ≤ − 76
PN@1 MHz All dBc/Hz ≤ − 98
PN@10 MHz All dBc/Hz ≤ − 119 Minimize

Power All mW n/d Minimize

FOM@10 MHz All dBc/Hz ≥ − 180
b1111 fosc All GHz ≤ 3.9

PN@10 kHz All dBc/Hz ≤ − 55
PN@100 kHz All dBc/Hz ≤ − 82
PN@1 MHz All dBc/Hz ≤ − 103
PN@10 MHz All dBc/Hz ≤ − 124 Minimize

Power All mW n/d Minimize

FOM@10 MHz All dBc/Hz ≥ − 180

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

1.00E-03

1.10E-03

1.20E-03

-135.50 -135.00 -134.50 -134.00 -133.50 -133.00 -132.50 -132.00 -131.50 -131.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dBc/Hz)

Generation 40
Generation 120
Generation 240
Generation 350

Fig. 2.8 POF evolution throughout the original optimization

24 2 Background and Related Work

Table 2.6 Final solutions of
the original POF at generation
350

Worst case
phase noise
10 MHz
(dBc/Hz)

Worst case
power (mW)

Worst case
phase noise
10 MHz
(dBc/Hz)

Worst case
power (mW)

− 135.02 7.918 × 10−1 − 134.14 6.539 × 10−1

− 134.95 7.727 × 10−1 − 134.08 6.537 × 10−1

− 134.87 7.722 × 10−1 − 134.06 6.537 × 10−1

− 134.83 7.722 × 10−1 − 134.05 6.536 × 10−1

− 134.69 7.707 × 10−1 − 134.04 6.397 × 10−1

− 134.65 6.914 × 10−1 − 133.94 6.369 × 10−1

− 134.53 6.914 × 10−1 − 133.89 6.369 × 10−1

− 134.37 6.749 × 10−1 − 133.88 6.368 × 10−1

− 134.32 6.746 × 10−1 − 133.86 5.601 × 10−1

− 134.30 6.746 × 10−1 − 133.09 5.348 × 10−1

− 134.29 6.605 × 10−1 − 133.06 5.323 × 10−1

− 134.26 6.598 × 10−1 − 132.97 5.322 × 10−1

− 134.23 6.596 × 10−1 − 132.91 5.178 × 10−1

− 134.21 6.539 × 10−1

2.6 Conclusion

In this chapter, different methods used in circuit optimization sizing were intro-
duced and compared regarding the evaluation engine used, emphasizing simulation-
based sizing. Using a simulator as the evaluation engine is the most widely accepted
approach, with its main advantages being its generality and easy-and-accurate model.
The main problem with this method is how time-consuming it may become when the
SPICE-like simulation times increase. In recent works, the use of ML tries to address
and solve this problem by often introducing SVM and ANNs into the optimization
phase by either replacing or complementing the circuit simulator.

References

1. Lourenço N, Martins R, Barros M, Horta N (2013) Analog circuit design based on robust POFs
using an enhanced MOEA with SVM models. In: Fakhfakh M, Tlelo-Cuautle E, Castro-Lopez
R (eds) Analog/RF and mixed-signal circuit systematic design. Lecture notes in electrical
engineering, vol 233. Springer, Berlin

2. Degrauwe M et al (1987) IDAC: an interactive design tool for analog CMOS circuits. IEEE J
Solid-State Circ 22(6):1106–1116

3. El-Turky F, Perry EE (1989) BLADES: an artificial intelligence approach to analog circuit
design. IEEE Trans Comput Aided Des Integr Circ Syst 8(6):680–692

4. Koh H, Sequin CH, Gray PR (1990) OPASYN: a compiler for CMOS operational amplifiers.
IEEE Trans Comput Aided Des Integr Circ Syst 9(2):113–125

References 25

5. Jusuf G, Gray P, Sangiovanni-Vincentelli A (1990) CADICS—cyclic analog-to-digital
converter synthesis. In: Proceedings of ACM/EEEE ICCAD, pp 286–289

6. Gielen G, Walscharts H, Sansen W (1989) ISAAC: a symbolic simulator for analog integrated
circuits. IEEE J Solid-State Circ 24(6):1587–1597

7. Cadence (2019) Virtuoso analog design environment GXL. [Online]. Available: http://www.
cadence.com. Accessed: 15 May 2019

8. Martins R, Lourenço N, Rodrigues S, Guilherme J, Horta N (2012) AIDA: automated analog
IC design flow from circuit level to layout. In: International conference on synthesis, modeling,
analysis and simulation methods and applications to circuit design (SMACD), Seville, Sept
2012

9. Lourenco N, Horta N (2012) GENOM-POF: multi-objective evolutionary synthesis of analog
ICs with corners validation. In: Genetic and evolutionary computation conference, Philadelphia,
USA, July 2012

10. Martins R, Lourenço N, Horta N (2012) Generating analog IC layouts with LAYGEN II.
Springer briefs in applied science and technology. Springer, Berlin

11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

12. Liu B, Deferm N, Zhao D, Reyaert P, Gielen G (2012) An efficient high-frequency linear
RF amplifier synthesis method based on evolutionary computation and machine learning
techniques. IEEE TCAD Integr Circ Syst 31(7):981–993

13. Póvoa R et al (2014) LC-VCO automatic synthesis using multiobjective evolutionary tech-
niques. In: IEEE International symposium on circuits and systems, pp 293–296, June
2014

14. Afacan E, Dündar G (2016) A mixed domain sizing approach for RF circuit synthesis. In: IEEE
International symposium on design and diagnostics of electronic circuits and systems, pp 1–4,
June 2016

15. González-Echevarría R et al (2017) An automated design methodology of RF circuits by using
pareto-optimal fronts of EM-simulated inductors. IEEE Trans Comput Aided Des Integr Circ
Syst 36(1):15–26

16. Afacan E, Dündar G (2018) Design space exploration of CMOS cross-coupled LC oscillators
via RF circuit synthesis. In: 15th International conference on synthesis, modeling, analysis and
simulation methods and applications to circuit design, pp 1–4, July 2018

17. Enhanced systematic design of a voltage controlled oscillator using a two-step optimization
methodology

18. Afacan E, Dündar G (2019) A comprehensive analysis on differential cross-coupled CMOS
LC oscillators via multiobjective optimization. Integr VLSI 67:162–169

19. Martins R et al (2020) Design of a 4.2-to-5.1 GHz ultralow-power complementary class-B/C
hybrid-mode VCO in 65-nm CMOS fully supported by EDA tools. IEEE Trans Circ Syst I
Regul Pap 67(11):3965–3977

20. Murphy KP (2012) Machine learning: a probabilistic perspective (adaptive computation and
machine learning series). MIT Press

21. Bayes M, Price M (1763) An essay towards solving a problem in the doctrine of chances. By
the late rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton. In:
Philosophical transactions (1683–1775), vol 53, pp 370–418

22. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol Rev 65(6):386–408

23. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating
errors. Nature 323(6088):533–536

24. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining,
inference, and prediction. Springer, Berlin

25. Javatpoint. Accessed: Out. 12, 2021. [Online]. Available: https://www.javatpoint.com/regres
sion-vs-classification-in-machine-learnin

26. Ding M, Vemur R (2005) An active learning scheme using support vector machines for analog
circuit feasibility classification. In: International conference on VLSI design, Kolkata, India

http://www.cadence.com
http://www.cadence.com
https://www.javatpoint.com/regression-vs-classification-in-machine-learnin
https://www.javatpoint.com/regression-vs-classification-in-machine-learnin

26 2 Background and Related Work

27. Afacan E, Lourenço N, Martins R, Dündar G (2021) Review: machine learning techniques in
analog/RF integrated circuit design, synthesis, layout, and test. Integr VLSI 77:113–130

28. Fayazi M, Colter Z, Afshari E, Dreslinski R (2021) Applications of artificial intelligence on
the modeling and optimization for analog and mixed-signal circuits: a review. IEEE TCAS-I
68(6):2418–2431

29. Mina R, Jabbour C, Sakr G (2022) A review of machine learning techniques in analog integrated
circuit design automation. Electronics 11(3):435

30. Suissa A et al (2010) Empirical method based on neural networks for analog power modeling.
IEEE Trans Comput Aided Des Integr Circ Syst 29(5):839–844

31. Kahraman N, Yildirim T (2008) Technology independent circuit sizing for fundamental
analog circuits using artificial neural networks. In: 2008 PhD research in microelectronics
and electronics (PRIME). IEEE, pp 1–4

32. Zhu K et al (2019) Genius route: a new analog routing paradigm using generative neural network
guidance. In: Proceedings of international conference on computer aided design (ICCAD)

33. Guerra D, Canelas A, Póvoa R, Horta N, Lourenço N, Martins R (2019) Artificial neural
networks as an alternative for automatic analog IC placement. In: International conference on
SMACD, Lausanne, Switzerland, July 2019

34. Gusmão A, Passos F, Póvoa R, Horta N, Lourenço N, Martins R (2020) Semi-supervised
artificial neural networks towards analog IC placement recommender. In: IEEE International
symposium on circuits and systems, Seville, Spain, Oct 2020

35. Gusmão A, Horta N, Lourenço N, Martins R (2022) Scalable and order invariant analog
integrated circuit placement with attention-based graph-to-sequence deep models. In: Expert
systems with applications. Elsevier, Amsterdam

36. Gusmão A, Póvoa R, Horta N, Lourenço N, Martins R (2022) DeepPlacer: a custom integrated
OpAmp placement tool using deep models. In: Applied soft computing, vol 115. Elsevier,
Amsterdam, 108188

37. Gusmão A, Horta N, Lourenço N, Martins R (2021) Late breaking results: attention in
Graph2Seq neural networks towards push-button analog IC placement. In: ACM/IEEE design
automation conference (DAC), San Francisco, USA, Dec 2021

38. Andraud M, Stratigopoulos H, Simeu E (2016) One-shot non-intrusive calibration against
process variations for analog/RF circuits. IEEE Trans Circ Syst I Regul Pap 63(11):2022–2035

39. Wolfe G, Vemuri R (2003) Extraction and use of neural network models in automated synthesis
of operational amplifiers. IEEE Trans Comput Aided Des Integr Circ Syst 22(2):198–212

40. Çakıcı TO, İslamoğlu G, Güzelhan ŞN, Afacan E, Dündar G (2020) Improving POF quality
in multi objective optimization of analog ICs via deep learning. In: 2020 European conference
on circuit theory and design (ECCTD), Sofia, Bulgaria, pp 1–4

41. İslamoğlu G, Çakici TO, Afacan E, Dündar G (2019) Artificial neural network assisted analog
IC sizing tool. In: 2019 16th International conference on synthesis, modeling, analysis and
simulation methods and applications to circuit design (SMACD), Lausanne, Switzerland, pp
9–12

42. Alpaydin G, Balkir S, Dundar G (2003) An evolutionary approach to automatic synthesis of
high-performance analog integrated circuits. IEEE Trans Evol Comput 7(3):240–252

43. Liu H, Singhee A, Rutenbar RA, Carley LR (2002) Remembrance of circuits past: macromod-
eling by data mining in large analog design spaces. In: Proceedings 2002 design automation
conference (IEEE Cat. No.02CH37324), New Orleans, LA, USA, pp 437–442

44. Hakhamaneshi K, Werblun N, Abbeel P, Stojanović V (2019) BagNet: Berkeley analog
generator with layout optimizer boosted with deep neural networks. In: 2019 IEEE/ACM
international conference on computer-aided design (ICCAD), Westminster, CO, USA, pp 1–8

45. Lourenço N et al (2018) On the exploration of promising analog IC designs via artificial
neural networks. In: 2018 15th International conference on synthesis, modeling, analysis and
simulation methods and applications to circuit design (SMACD), Prague, pp 133–136

46. Lourenço N et al (2019) Using polynomial regression and artificial neural networks for reusable
analog IC sizing. In: 16th International conference on synthesis, modeling, analysis and
simulation methods and applications to circuit design (SMACD). IEEE, pp 13–16

References 27

47. Dumesnil E, Nabki F, Boukadoum M (2015) RF-LNA circuit synthesis using an array of
artificial neural networks with constrained inputs. In: 2015 IEEE International symposium on
circuits and systems (ISCAS), Lisbon, pp 573–576

48. Takai N, Fukuda M (2017) Prediction of element values of OPAmp for required specifications
utilizing deep learning. In: 2017 International symposium on electronics and smart devices
(ISESD), Yogyakarta, pp 300–303

49. Peters J, Schaal S (2008) Reinforcement learning of motor skills with policy gradients. Neural
Netw 21(4):682–697

50. Silver D et al (2017) Mastering the game of go without human knowledge. Nature
550(7676):354–359

51. Zhao Z, Zhang L (2020) Deep reinforcement learning for analog circuit sizing. In: 2020 IEEE
International symposium on circuits and systems (ISCAS), Sevilla. IEEE, pp 1–5

52. Settaluri K, Haj-Ali A, Huang Q, Hakhamaneshi K, Nikolic B (202) AutoCkt: deep rein-
forcement learning of analog circuit designs. In: 2020 Design, automation & test in Europe
conference & exhibition (DATE), Grenoble, France, pp 490–495

53. Wang H et al (2018) Learning to design circuits. arXiv preprint arXiv:1812.02734
54. Martins R et al (2019) Many-objective sizing optimization of a class-C/D VCO for ultralow-

power IoT and ultralow phase-noise cellular applications. IEEE TVLSI 27(1):69–82

http://arxiv.org/abs/1812.02734

Chapter 3
Convergence Classifier and Frequency
Guess Predictor Based on ANNs

3.1 Contributions

Most of the different approaches incorporating machine learning (ML)/DL concepts
in the simulation-based sizing loop attempted to alleviate the simulator workload by
building models that estimate the circuit performances, bypassing simulation [8–10].
While an optimization using an ANN performance predictor can be 2000× faster
than one using the simulator, the errors reported for some performance space regions
can reach 60% deviation [8]. These performance estimation models can be trained
offline, or online [19, 20], where the data gathered from the current simulation-based
process is used for model training. Once a satisfactory deviation error is reached,
the ANN replaces the simulator. Without attempting to predict performances, only
recently were ANNs used as an oracle [21]. When given two different circuit sizing
solutions, the ANNs predict which design will perform better post-layout, avoiding
unnecessary simulations of, in theory, inferior solutions.

Real-world applications demand robust VCOs, and to ensure it. Their sizing has
moved towards exhaustive PVT or layout-inclusive optimizations. Still, convergence
problems arise from these time-consuming simulations, and setting a timeout on the
convergence attempt is a delicate decision. Additionally, the probability of conver-
gence is strongly correlated with the guess oscillating frequency, which is always
fixed on the frequency of interest during automatic sizing procedures [1–5]. There-
fore, the major contributions of the work described in this chapter are listed as
follows:

• Previous works [8–10, 19, 20] focus on simulator replacement on automatic
sizing procedures. Even if the estimated performances present acceptable devia-
tions, simulator-grade accuracy is lost. In this work, the proposed ANNs are used
as a seamless filter/helper for exhaustive PVT-inclusive RF sizing optimization
problems, and thus, the simulator is kept through the whole process;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. L. C. P. Domingues et al., Speeding-Up Radio-Frequency Integrated Circuit Sizing
with Neural Networks, SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-3-031-25099-6_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25099-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-25099-6_3

30 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

• The convergence classifier ANN captures underlying relations between the sizes
of the different components and (un)successful convergence attempts in nominal
and PVT corners. Therefore, the model is capable of operating in different regions
of the performance space and be reused for optimizations with a different set of
targets, i.e., generalizing beyond training data;

• In [1–5], good VCO designs, i.e., feasible solutions or unfeasible but relevant
information for the optimization process, are lost by simulating only one guess.
The frequency guess predictor ANN provides an accurate prediction of which
frequency a given combination of device dimensions is likely to oscillate, thus
taking advantage of information that is often lost.

3.2 Classifier and Regressor Based on Deep ANNs

The goal is to reduce the total effort of the evaluation engine, i.e., the simulator, by
reducing the number of simulated candidate circuit sizing solutions focusing on VCO
circuits. A vital property of the VCO is that ill-designed circuits will not oscillate,
leading to no convergence in the simulation. The combination of the proposed models
will try to predict whether a particular solution can generate all the performance
metrics, i.e., if it is likely that it will, at least, simulate, and when this is the case, at
what frequency the circuit is likely to oscillate. These are critical factors in increasing
the efficiency of state-of-the-art simulation techniques for oscillating circuits [22],
which can waste immense resources trying to get some simulation output when the
circuits do not oscillate. The optimization process is described in Fig. 3.1, where the
DNNs, a classifier and a regressor, play the filter role of selecting from the candidate
circuits that are most likely to be useful to the optimization process and, thus, to be
presented to the simulator.

3.2.1 Underlying Architectures

The two ANNs that are going to be developed have similar architectures, with some
minor differences. The convergence classifier ANN will have n input neurons, corre-
sponding to the circuit sizing and the tuning mode (referent to the case study intro-
duced in Chap. 2), and y output neurons for each PVT corner considered, as shown
in Fig. 3.2. With these inputs, the ANN can predict whether a given candidate circuit
sizing solution should be simulated or not, as the output will be a classification of
“convergent” or “nonconvergent” for each possible candidate circuit sizing solution.

Besides having the same inputs as the classification model, the regression ANN
has one additional input. The PVT corner is to be considered. The output will deter-
mine the oscillatory frequency for that specific corner and tuning mode, as shown in
Fig. 3.3. This regression will be executed only for the solutions classified as “con-
verge” since there is no point in predicting the oscillatory frequency for solutions

3.2 Classifier and Regressor Based on Deep ANNs 31

Simulator
in-the-loop

Optimization Engine

Candidate Circuit
Sizing Solutions

...
Classification

ANN

Evaluated
Circuits’

Performances
Potentially Feasible
Sizing Solutions and

fosc Guesses

Regression
ANN

...

... ...

Fig. 3.1 Proposed enhanced simulation-based loop

Fig. 3.2 Structure of the classification ANN

that will not be simulated. The target model will have a general behavior for the
circuit analyzed, independently of the designer’s constraints. Since the solution only
depends on the device sizing information, the trained model can be reused on different
optimizations for the same circuit.

32 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.3 Structure of the regression ANN

3.3 Training the Model in Isolation (Results
Pre-integration)

The starting point of training the models is the preparation of the dataset. Different
ANN implementations are analyzed and tested to study the impact of their hyper-
parameters on the convergence classification and oscillating frequency regression.
Finally, the test results of some of the hyperparameters of the ANNs are described
using the dataset of the complex dual-mode class C/D voltage-controlled oscillator
(VCO) circuit described in Chap. 2 [23]. The class-B/C VCO from [24] is used to see
how the approach achieves on another circuit using the same hyperparameters for
the classification and regression ANNs. All ANNs were implemented using Python
using different ML libraries such as TensorFlow [25] and Keras [26]. The code was
executed on an Intel® Core™ i5-8600K 6 cores CPU 3.60 GHz with 16 GB of RAM.

3.3.1 Dataset Processing

The dataset of the complex dual-mode class C/D voltage-controlled oscillator (VCO)
circuit, previously defined in Chap. 2, contains 92,115 rows of data, where for each,
it is given a combination of the 28 sizing variables and its resulting 180 performance
values, 90 for each tuning mode. The tuning mode is input for both the classification
and regression models. Therefore, each possible combination of device sizing is
replicated, and a column is added containing the tuning mode considered, resulting

3.3 Training the Model in Isolation (Results Pre-integration) 33

in twice as many rows, i.e., 184,230 rows of data. Moreover, the 180 performance
value columns were split in 90 for each of the two lines resulting from the described
process. Thus resulting in a table with 184,230 lines and 28 + 1 + 90 = 119 columns.
Then, the following actions differ for each ANN:

• Classification: For the classification network, in each row, the 10 values of perfor-
mances generated for each of the 9 corners are analyzed to label the corresponding
corner as “convergent” or “nonconvergent.” Each corner is examined, and if none
of its performance metrics has a value of NaN, then the corner is labeled as “con-
vergent.” If not, it is labeled as “nonconvergent.” Having done this for every row,
the classification dataset is prepared, totaling 184,230 rows and 38 columns, 28
sizing variables and the tuning mode for the inputs, and the convergence label of
the 9 corners as outputs. This process is illustrated in Fig. 3.4;

• Regression: For the regression ANN the dataset had to go through a more thorough
pre-processing. Since this ANN will only be used in convergence scenarios, only
convergence scenarios should be considered in this dataset to focus the model’s
training in the region in which it will operate. Moreover, each corner is considered
as input. Therefore, each row of data is replicated 9 times so that for each possible
combination of sizing variables, tuning mode, and corner, there is an oscillatory
frequency guess, as shown in Fig. 3.5. Then, only rows (i.e., sizing, tuning mode,
and corner combinations) where convergence occurs are kept. After a careful
analysis, the data had to go through a final procedure to remove any possible

Fig. 3.4 Pre-process of classification dataset

34 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

outliers by removing the outermost 1% of the data distribution. After this step,
the dataset is ready for training the ANNs. Table 3.1 showcases the data and
highlights the differences observed after removing the outliers.

Fig. 3.5 Pre-process of regression dataset

Table 3.1 Frequency
distribution with and without
outliers

Outliers Without outliers

Max. oscillatory frequency 1.63 × 1016 6.47 × 109

Min oscillatory frequency − 1.03 × 102 1.07 × 109

Standard deviation 1.71 × 1013 7.93 × 108

Mean 4.16 × 1010 4.21 × 109

Quantile 0.25 3.58 × 109 3.59 × 109

Quantile 0.5 4.14 × 109 4.14 × 109

Quantile 0.75 4.89 × 109 4.88 × 109

3.3 Training the Model in Isolation (Results Pre-integration) 35

3.3.2 Feature Engineering

Once the data is organized, the features still need to be prepared for an adequate input
dataset. The scale and distribution of the data are significant to consider towards a
stable numerical process. Some features may have different scales, while others may
not even have units. If not adequately scaled, these variations may lead to either very
large or minimal gradients, introducing a bias towards larger-scale features. In this
work, we considered min–max scaling and standardization is considered.

Min–max scaling scales a distribution to a range, typically between 0 and 1. This
is obtained through (3.1), where x is the unscaled feature distribution and x ' is the
scaled distribution:

x ' =
x − min(x)

max(x) − min(x)
(3.1)

In standardization, a feature is modeled as a normal distribution centered in 0 with
a unitary standard deviation. This is done through:

x ' =
x − μ

σ
(3.2)

where μ and σ are the mean and standard deviation of the unscaled feature
distribution, respectively.

3.3.3 Convergence Classifier and Its Hyperparameters

Having the dataset prepared, it can be used to train the classifier. Firstly, the data is
divided into train and test data with a ratio of 80% and 20%, respectively, and where
the data is first randomly shuffled before splitting. Regarding the classification, the
metrics used to evaluate the model were:

• Loss, computed by the binary cross entropy (3.3), in which the predictions made
are compared to the collected labels;

L = −
1

n

nΣ

i=1

yi ∗ log ŷi + (1 − yi) ∗ log
(
1 − ŷi

)
(3.3)

• Binary accuracy, which computes the rate of correct predictions made by the
model, i.e., how often the model’s predictions align with the labels and is
given by (3.4), where True Positives (TP) is the number of points correctly
predicted as convergent, True Negatives (TN) the number of points correctly

36 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

predicted as nonconvergent, False Positives (FP) are nonconvergent points incor-
rectly predicted as convergent and False Negatives (FN) are convergent points
incorrectly predicted as nonconvergent;

Accuracy = T P + T N

T P + T N + FP + FN
(3.4)

• Recall evaluates how many of the dataset’s convergence scenarios were correctly
predicted by the model, as in (3.5).

Recall = T P

T P + FN
(3.5)

Besides training the model’s parameters (weights and biases), the model’s hyper-
parameters substantially impact the training time and final performance. Thus, these
hyperparameters should be carefully selected. A simplified empirical search of the
hyperparameter space is conducted toward this goal, where, even though these hyper-
parameters interact, a simplified approach is taken, and each hyperparameter is opti-
mized individually, with all others fixed. Although no established order exists to
conduct this study, an effort was made to tune the hyperparameters in order of
estimated impact on model performance (most impactful first).

Training is done with the Adam optimizer, which has three hyperparameters, the
default values for β1, β2 and ε are robust to a variety of settings. Thus, no optimization
of these hyperparameters is conducted, and the default values corresponding to β1 =
0.9, β2 = 0.999, and ε to a small value, such as 10−8, were used. We start with the
ReLU as the activation function for the hidden layers and sigmoid for the output
layer, the simple architecture of an ANN with two hidden layers with 200 neurons
per layer, and MinMax scaling with a range going from 0 to 1 as the normalization
scheme. A dropout of 20% is used to prevent overfitting and add robustness [27].

As a starting point, the learning rate is the first hyperparameter to tune since its
impact on model performance is expected to be the highest of all [28]. The learning
rate dictates how fast the model responds to the estimated error in each weight
update. Setting this value is challenging. The process of choosing the most appro-
priate learning rate is not very well defined but rather empirical, where the approach
starts with a high learning rate and steadily decreases it until no improvement is
observed. The results in Table 3.2 show that the value of 0.003 presents the best
overall results, with minimum training and test loss, maximum training and test
accuracy, and third-best train and test recall.

An activation function defines the expressiveness of each neuron. In regression,
when predicting the circuit’s oscillating frequency, where the output is a real value,
the output neuron is taken directly from its linear activation. However, for the output
of the classification and the hidden layers of both the ANNs, it is necessary to have
non-linear activation functions to provide expressiveness to the network. Regarding
the classification model, the sigmoid function, shown in Fig. 3.6, is a prominent
function used in classification networks’ output layers, having the ability to map

3.3 Training the Model in Isolation (Results Pre-integration) 37

Table 3.2 Learning rate evolution with 32 batch size, ReLU, and sigmoid activation functions, two
hidden layers and 200 neurons per layer, and MinMax of 0–1

Training loss Test loss Training
binary
accuracy

Test binary
accuracy

Training
recall (%)

Test recall
(%)

0.009 0.1022 0.1117 0.9654 0.9628 99.36 99.25

0.007 0.1051 0.1140 0.9636 0.9604 98.18 98.03

0.005 0.0935 0.1049 0.9686 0.9652 99.41 99.25

0.003 0.0862 0.0990 0.9726 0.9678 99.13 98.87

0.0009 0.0881 0.0992 0.9716 0.9675 98.89 98.68

the input values of a neuron to a value in the 0–1 range. This function contains the
neuron’s output in the feasible range of binary classification tasks, making it helpful
for this class of problems.

As discussed in [29], other good candidate activation functions generally outper-
form the sigmoid function when addressing DNNs. The Rectified Linear Unit (ReLU)
is a popular activation function, mathematically defined by f (z) = max(0, z). One
issue that arises from using the ReLU activation function is denominated the dying
ReLU function, in which the neuron’s parameters stop updating due to the null
gradient in the z < 0 region, thus becoming stuck in that region. Variants of the
ReLU function, such as the leaky ReLU, have been proposed to soften the hard

Fig. 3.6 Sigmoid function

38 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.7 Leaky ReLU function

cutoff the ReLU function presents in the z < 0 region. The leaky ReLU is illustrated
in Fig. 3.7.

Regarding the activation function used in the model’s hidden layers, Table 3.3
shows the results obtained for each tested activation function. The results show that
the sigmoid function achieves the best test loss and accuracy while achieving a
comparable test recall score, thus presenting the best overall performance.

The size (number of layers and number of neurons in each layer) determines the
expressiveness of the ANN. Whereas a small model is easy to train and is unlikely to
overfit, it will not be able to represent very complex notions. Conversely, large models

Table 3.3 Hidden layers activation functions evolution with 0.003 learning rate, 256 batch size,
two hidden layers and 200 neurons per layer and MinMax of 0–1

Training
loss

Test loss Training
binary
accuracy

Test binary
accuracy

Training
recall (%)

Test recall
(%)

ReLU 0.0925 0.1052 0.9686 0.9642 98.50 98.26

Leaky
ReLU

0.0953 0.1047 0.9674 0.9639 99.40 99.31

Elu 0.0983 0.1022 0.9669 0.9656 99.23 99.15

Tanh 0.1008 0.1100 0.9657 0.9617 99.25 99.12

Sigmoid 0.0887 0.1010 0.9711 0.9667 99.10 98.90

3.3 Training the Model in Isolation (Results Pre-integration) 39

Table 3.4 Number of layers and neurons evolution with 0.003 learning rate, 256 batch size, sigmoid
activation functions, and MinMax of 0–1

Training
loss

Test loss Training
binary
accuracy

Test binary
accuracy

Training
recall (%)

Test
recall
(%)

200/200 0.0910 0.1028 0.9693 0.9648 99.29 99.16

200/200/150 0.0876 0.0987 0.9719 0.9677 99.14 98.98

200/200/175 0.0879 0.0983 0.9716 0.9673 98.87 98.65

200/200/200 0.0873 0.0977 0.9715 0.9678 99.01 98.83

200/200/225 0.0864 0.0968 0.9721 0.9682 98.76 98.54

200/200/250 0.0851 0.0941 0.9730 0.9694 99.11 98.95

200/200/275 0.0851 0.0955 0.9730 0.9687 99.01 98.80

200/200/250/200 0.0900 0.0982 0.9709 0.9679 98.90 98.72

can represent higher dimension problems but are more likely to overfit. Moreover,
large models also increase the time and computational effort for the training stage, as
the output of each consequent layer is computed sequentially (not parallelized). As
there is no formula to choose the optimal number of hidden layers, one single hidden
layer will be implemented, and their number will be incremented until an increase in
the test error is observed, after which point, the model is assumed to overfit further.

The number of neurons to tune only applies to the neurons in the hidden layers
since the ones in the input correspond to the number of sizing parameters plus the
tunning mode and the output to the number of corners. Table 3.4 shows that when
using three layers with 200, 200, and 250 neurons, respectively, the best values of
loss and accuracy are achieved, only falling behind in recall, thus presenting the best
overall scores.

Finally, different ranges of MinMax scaling and its use were tuned and compared,
arriving at the results shown in Table 3.5. The values of loss and accuracy showed to
be the best when using MinMax with a range going from 0 to 1, making the slight
variations of recall values when using different ranges not worth the tradeoff. Thus,
MinMax normalization to a range between 0 and 1 is used.

3.3.4 Regressor and Its Hyperparameters

The hyperparameter tuning process for the frequency guess regression model was
conducted similarly to the ones of the classifier. However, since the task differs, the
metrics used to evaluate the hyperparameters and the possible hyperparameter values
explored differ.

• Loss, when considering regression, where the frequency value is predicted, mean
squared error (MSE) is the most appropriate function to use. Equation (3.6) shows

40 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Table 3.5 Normalization evolution with 0.003 learning rate, 256 batch size, sigmoid activation
functions, and three hidden layers with 200, 200 and 250 neurons per layer, respectively

Training
loss

Test loss Training
binary
accuracy

Test binary
accuracy

Training
recall (%)

Test recall
(%)

No
MinMax

0.1785 0.1927 0.9372 0.9319 98.67 98.38

MinMax
(0,1)

0.0852 0.0963 0.9727 0.9686 99.13 98.87

MinMax
(0.5,1.5)

0.0993 0.1038 0.9679 0.9666 99.06 99.02

MinMax
(1,2)

0.1080 0.1115 0.9629 0.9613 99.29 99.25

the loss used: the average squared difference between the simulated frequency,
fi , and the one predicted, f̂i .

L = MSE =
1

n

nΣ

i=1

(
fi − f̂i

)2
(3.6)

• Mean Absolute Error (MAE), which gives the mean of the absolute difference
between the predictions made and the labels;

MAE =
1

n

nΣ

i=1

||| fi − f̂i
||| (3.7)

• Mean Absolute Percentage Error (MAPE), a measure of how accurate the
model is considering the scale of the data.

MAP E = 1 n
nΣ

i=1

||| fi− f̂i
fi

||| (3.8)

As a starting point, the same logic was used as before. Therefore, the hyperparam-
eters were set to leaky ReLU as the activation functions, MinMax scaling with a range
going from 0 to 1, and two hidden layers with 200 neurons per layer. Following the
same logic, the learning rate started at a relatively high value and gradually decreased
until no further improvement was observed. Analyzing Table 3.6, the best values of
MSE and MAE come from using a value of 0.0008, and so this value was chosen.

Analyzing the results, it is possible to observe that the values of the MAPE were
too high. The normalization scheme could drastically influence this value, thus, this
parameter is the next to be optimized, changing the order relative to the classification
model. As Table 3.7 shows, varying the minmax range greatly affects the MAPE
value, the best results of MSE and MAE come from using MinMax with a range of

3.3 Training the Model in Isolation (Results Pre-integration) 41

Table 3.6 Learning rate evolution with leaky ReLU activation functions, two hidden layers and
200 neurons per layer, and MinMax of 0–1

Training
MSE

Validation
MSE

Training
MAE

Validation
MAE

Training
MAPE

Validation
MAPE

0.004 0.0021 0.0021 0.0292 0.0293 122.10 9.2120

0.0008 0.0009 0.0009 0.0170 0.0170 152.46 7.6622

0.0007 0.0011 0.0011 0.0212 0.0212 180.91 6.7929

0.0006 0.0015 0.0015 0.0268 0.0267 288.66 13.586

0.0005 0.0009 0.0008 0.0173 0.0173 72.251 361.88

0–1. However, the MAPE values are too high, so, MinMax was used with a range of
1–2, since, overall, it has the best results, achieving the lowest values of MAPE.

Regarding the activation function used in the hidden layers (the activation function
in the output layer is the linear activation function), Table 3.8 shows that the Leaky
ReLU results in the best overall performance.

Finally, the number of layers and neurons per layer were tuned, having concluded
that two layers with 200 and 150 neurons per layer, respectively, was the best option,
as the lowest values of MSE, MAE, and MAPE are obtained, as shown in Table 3.9.

Table 3.7 Normalization evolution with 0.0008 learning rate, leaky ReLU activation functions,
two hidden layers and 200 neurons per layer

Training
MSE

Test MSE Training
MAE

Test MAE Training
MAPE

Test MAPE

No
MinMax

0.1896 0.1889 0.3106 0.3108 177.45 203.70

MinMax
(0,1)

0.0008 0.0007 0.0172 0.0172 99.090 224.68

MinMax
(0.5,1.5)

0.0011 0.0011 0.0197 0.0196 2.0301 2.0290

MinMax
(1,2)

0.0011 0.0011 0.0199 0.0199 1.3332 1.3327

Table 3.8 Activation functions evolution with 0.0008 learning rate, 256 batch size, two hidden
layers and 200 neurons per layer and MinMax of 1–2

Training
MSE

Test MSE Training
MAE

Test MAE Training
MAPE

Test MAPE

ReLU 0.0012 0.0012 0.0224 0.0225 1.4365 1.4402

Leaky ReLU 0.0010 0.0010 0.0190 0.0191 1.2736 1.2816

Elu 0.0011 0.0011 0.0217 0.0218 1.4686 1.4709

Tanh 0.0012 0.0012 0.0195 0.0201 1.3290 1.3891

Sigmoid 0.0011 0.0011 0.0231 0.0231 1.5500 1.5499

42 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Table 3.9 Number of layers and neurons evolution with 0.0008 learning rate, 256 batch size, leaky
ReLU activation functions, and MinMax of 1–2

Training
MSE

Test MSE Training
MAE

Test MAE Training
MAPE

Test MAPE

200/125 0.0005 0.0006 0.0121 0.0121 0.7928 0.7964

200/150 0.0005 0.0005 0.0100 0.0101 0.6486 0.6525

200/175 0.0005 0.0005 0.0117 0.0117 0.7511 0.7532

200/200 0.0007 0.0007 0.0139 0.0139 0.8601 0.8640

200/150/75 0.0007 0.0007 0.0149 0.0150 0.9514 0.9587

200/150/100 0.0006 0.0006 0.0124 0.0123 0.7749 0.7708

200/150/125 0.0007 0.0007 0.0164 0.0164 1.0659 1.0679

200/150/150 0.0006 0.0006 0.0129 0.0129 0.8454 0.8489

3.3.5 Final Model Details

The hyperparameter tuning process led to a classification model with the hyperpa-
rameters described in Table 3.10 and a loss and accuracy curve of both training and
test, as shown in Figs. 3.8 and 3.9. An analysis of the loss curve shows a monotonic
decreasing trend as epochs increment, thus suggesting a stable convergence process.
At the last few epochs, the test loss starts exhibiting increasing instability and growth,
thus suggesting that further training could lead to overfitting. As for the accuracy
curves: consistent improvement and increasing test instability in the last few epochs.
The final accuracy values indicate that the model has a probability of less than 5%
to classify the convergence of a corner incorrectly.

Furthermore, two more metrics emphasized the model’s validity: precision and
F1 score. Precision shows the portion of correct identifications, while F1 is an overall
measure of a model’s accuracy resulting from the harmonic mean of the precision

Table 3.10 Summary of the
classification model

Hyperparameter Value

Input layer 1 layer (29 neurons)

Hidden layers 3 layers (200,200,250 neurons)

Output layer 1 layer (9 neurons)

Activation functions Sigmoid

Optimizer Adam

Regularizer Dropout (drop rate = 20%)

Loss function Binary crossentropy

Learning rate 0.003

Epochs 200

Batch size 256

Normalization Min Max (0,1)

3.3 Training the Model in Isolation (Results Pre-integration) 43

Fig. 3.8 Loss

Fig. 3.9 Accuracy

and recall metrics. The formulas of precision and F1 score are shown in (3.9) and
(3.10), respectively, and their results on Table 3.11.

Precision = T P

T P + FP
(3.9)

44 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Table 3.11 Train and test
precision and F1 score results

Train Test

Precision 0.979 0.977

F1 score 0.985 0.983

Table 3.12 Summary of the
regression model

Hyperparameter Value

Input layer 1 layer (30 neurons)

Hidden layers 2 layers (200,150 neurons)

Output layer 1 layer (1 neuron)

Activation functions Leaky ReLU and linear

Optimizer Adam

Regularizer Dropout (drop rate = 20%)

Loss function MSE

Learning rate 0.0008

Epochs 100

Batch size 256

Normalization Min Max (1,2)

F1 score = 2 ∗ T P

2 ∗ T P + FP + FN
(3.10)

The regressor was implemented using the hyperparameters shown in Table 3.12.
The curves for all metrics for both the train and test sets are shown in Figs. 3.10, 3.11,
and 3.12. Analyzing the graphs, the model learns to predict the oscillatory frequency
inferred by the decreasing metric values throughout training.

3.3.6 Discussion

For the class-C/D VCO, the results shown are promising, showing good performance
in the samples outside the training set, i.e., unseen data. Additionally, by analyzing the
histograms in Figs. 3.13 and 3.14, it is possible to see that the frequency distribution
of the test label set and the test predictions set do not differ significantly. In addition,
a detailed analysis was conducted, and the results from the worst, medium, and
best MAPE results, as well as the predicted values and the real ones, are presented
in Table 3.13, showing that, even though the worst results are still high, the overall
results show that the ANN can predict with a firm assurance the oscillatory frequency
value. Therefore, it is reasonable to assume that the model’s training was successful.

3.4 In-the-Loop Integration 45

Fig. 3.10 Training and test MSE

Fig. 3.11 Training and test MAE

3.4 In-the-Loop Integration

Next, the convergence classifier and frequency guess regressor are included in AIDA’s
simulation-based multi-objective multi-constraint sizing optimization loop []. The
comparison and analysis between the optimization results obtained with and without
using ANNs are performed and discussed.

46 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.12 Training and test MAPE

Fig. 3.13 Real frequency
values

The classification ANN discards a point (i.e., a candidate sizing solution) based on
if the percentage of corners predicted to converge lower than some threshold, then the
point is discarded. Regarding the predicted oscillatory frequency, it was possible to
conclude that when predicted values were negative, even if the classification predicted
many corners to converge, the simulator would not be able to obtain values for that
point. Therefore, in case of negative values given by the regression ANN, the point in
question will not be sent through the simulator, as illustrated in Fig. 3.15. Different

3.4 In-the-Loop Integration 47

Fig. 3.14 Predicted
frequency values

Table 3.13 Test MAPE results and difference between predicted frequency values and real ones

Test MAPE Test prediction
normalized

Test prediction
de-normalized
(GHz)

Real value
normalized

Real value
de-normalized
(GHz)

Worst
values

9.22e+01 1.93 6.08 1.00 1.09

8.68e+01 1.91 5.96 1.02 1.17

8.60e+01 1.93 6.09 1.04 1.27

8.41e+01 1.87 5.77 1.02 1.16

8.22e+01 1.84 5.62 1.01 1.13

Medium
values

5.97e−01 1.47 3.62 1.46 3.57

5.97e−01 1.73 5.00 1.72 4.95

5.97e−01 1.77 5.21 1.78 5.27

5.97e−01 1.67 4.69 1.66 4.64

5.97e−01 1.49 3.73 1.48 3.68

Best
values

2.08e−05 1.57 4.17 1.57 4.17

2.00e−05 1.70 4.82 1.70 4.82

1.69e−05 1.46 3.54 1.46 3.54

1.65e−05 1.60 4.32 1.60 4.32

1.64e−05 1.93 5.01 1.00 1.09

thresholds to determine if the points will be sent to the simulator are considered,
and the results are analyzed. Not only did the threshold come from the usage of the
classification ANN but also the regression ANN. The functioning of this threshold
is illustrated in Fig. 3.16.

48 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

...

Simulator in-the-loop

...

Optimization Engine

S Candidate Circuit
Sizing Solutions

S×Tb
Classifications

S-F Nominal and
PVT Performances

S×Tb Regressions

Filter (0 < τ < 1)

S-F Candidate Circuit
Sizing Solutions

Frequency Guess Predictor (FGPANN)

Convergence Classifier (CCANN)

Fig. 3.15 Introduction of the threshold in a simulation-based sizing flow

An optimization without the filters is used as a baseline to assess the advantages
of having these filters. As a starting point, the points that form the original Pareto
optimal front (POF) obtained were passed through the ANNs. The outcome of the
ANNs showed that all the points in the POF were also validated with the ANNs.
Therefore, they would be presented to the simulator in case they appeared during the
optimization.

3.4.1 Class C/D VCO for 3.5-to-4.8 GHz @ 50% Threshold

To start, the directive to allow the points to be simulated was a naive approach starting
with a 50% threshold, meaning that if the classification ANN predicts, for a given
point, that more than half the PVT corners converge, then that point is simulated,
otherwise, it is discarded. The exact configuration is used for optimizations with and
without the filters, using a population of 256 elements and 150 generations.

During the optimization, the points simulated and discarded were registered,
resulting in the ratio of points simulated illustrated in Fig. 3.17. It shows that, from
the points supposed to be simulated, 18.65% were discarded. More, it is important
to note that not all simulations take the same time. The simulation can be 100 times
longer when the simulator encounters convergence issues. Since the filtered points
are more likely to be the source of convergence issues, the impact on the execution
time will be superior. Since the optimization without the filters lasted 25 days, more
than 5 days were economized with the filter.

3.4 In-the-Loop Integration 49

Fig. 3.16 Threshold function in detail

Fig. 3.17 Ratio of points
discarded using a value of
50% threshold

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Simulated Non Simulated

50 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

With these results, a deeper analysis was conducted to test the accuracy of the
values of oscillatory frequency predicted by the regression ANN. The evolution
of the predicted oscillatory frequency along the generations was registered. The
difference between those and those given by the simulator was outputted using the
MAPE formula. For the purpose of this study, 5 random points were taken for every
generation studied.

The results for the first generation are presented in Fig. 3.18, where the MAPE
presents some high values, reaching even values of 41.55% discrepancy for one
point. This means that the predicted values were considerably far from the ones the
simulator gave. As the optimization evolves, the values given by the regression ANN
start to get closer, and the MAPE values start to decrease, never reaching values
higher than 14%, as observed in Fig. 3.19, where the results were made using the
values obtained from the 75th generation.

Finally, the results of the last generation, i.e., the 5 random points from the 150th
generation, show auspicious figures, achieving MAPE values lower than 6%, as
observed in Fig. 3.20. These results suggest that the evolutionary process quickly
converges to the general region of the optimal value, thus, the generated dataset
through an evolutionary process contains many data points in this region, and so, the
model is better fine-tuned for the later stages of the optimization process.

By inspecting the results, it is possible to conclude that the error between the value
predicted by the regression ANN is high as the optimization begins but decreases
over generations, culminating in values relatively close to the ones given by the
simulator. It is also deduced that, along the graphs, the corner SS has the highest

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Point 1 Point 2 Point 3 Point 4 Point 5

Fig. 3.18 MAPE values from 5 random points of the first generation using a 50% threshold

3.4 In-the-Loop Integration 51

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Point 1 Point 2 Point 3 Point 4 Point 5

Fig. 3.19 MAPE values from 5 random points of the 75th generation using a 50% threshold

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

Point 1 Point 2 Point 3 Point 4 Point 5

Fig. 3.20 MAPE from 5 random points of the 150th generation using a 50% threshold

52 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.21 Ratio of points
discarded without the use of
the regression ANN

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Simulated Non Simulated

error, suggesting that this might be the most challenging condition to evaluate the
circuit.

3.4.1.1 Impact of the Frequency Guess

To evaluate the impact of the frequency guess predictor, another optimization with
the same characteristics was conducted with the model removed, with a population
of 256 elements optimized for 150 generations, leading to a discard of almost 30% of
the total points that would be simulated, which was higher than the previous results,
as Fig. 3.21 shows. This increase in points discarded can be explained since, without
the frequency guess predictor, the simulator could not converge in some designs,
hindering the optimization and leading to more solutions being discarded by the
classification ANN.

The optimal points for each optimization, with and without the regression ANN,
were retrieved, and a POF was obtained. These two POFs were then compared against
the POF obtained without using the ANNs, considered the reference, as depicted in
Fig. 3.22. As the results show, the use of the regression ANN proves to be valuable
since even though its corresponding POF shows that the solutions obtained have
worse results in terms of power, never reaching values below 1.30E−03, the phase
noise results are considerably better. Some solutions have worse values of power.
However, some achieve values lower than 9.00E−04 and better results in phase noise,
reaching values of − 136.00 dBc/Hz. Therefore, using the regression ANN proves
to be essential, as it helps the simulator converge thanks to the predicted value of the
oscillatory frequency.

3.4 In-the-Loop Integration 53

Fig. 3.22 Comparison between the obtained POFs

3.4.2 Class C/D VCO for 3.5-to-4.8 GHz @ 75% Threshold

Next, the threshold was set to 75%, being this value is more rigid, so the number of
points discarded is expected to be higher. The same configuration for the optimization
was used, so the simulated points were computed, reaching the ratio showcased in
Fig. 3.23. As expected, the rate of non-simulated points was higher, reaching a value
of 19.65% of points discarded from the total points that would be fed to the simulator.

The MAPE values along the optimization cycle were measured, are presented
in Figs. 3.24, 3.25, and 3.26 the results for the first, 75th and 150th generation,
respectively.

As expected, the MAPE values kept decreasing as the generations increased,
starting at values of 37% up to the point of reaching values under 12%, even though
the results are not as spread as the ones from Sect. 3.4.1. The resulting POF was

Fig. 3.23 Ratio of points
discarded using a value of
75% threshold

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Simulated Non Simulated

54 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Point 1 Point 2 Point 3 Point 4 Point 5

Fig. 3.24 MAPE values from 5 random points of the first generation using a 75% threshold

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Point 1 Point 2 Point 3 Point 4 Point 5

Fig. 3.25 MAPE values from 5 random points of the 75th generation using a 75% threshold

again compared with the reference POF as illustrated in Fig. 3.27, showing that the
points obtained were similar to the reference one, reaching power and phase noise
values better than the unaltered optimization cycle. In terms of power, all the values
are lower than 7.91E−04 and lower than − 134.19 in phase noise.

To sum up, the results show that the ANNs are accomplishing what is expected,
discarding unwanted solutions, being each ANN indispensable. They show apt to

3.4 In-the-Loop Integration 55

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Point 1 Point 2 Point 3 Point 4 Point 5

Fig. 3.26 MAPE values from 5 random points of the 150th generation using a 75% threshold

Fig. 3.27 POF obtained with a 75% threshold

perform optimizations in less time, without compromising the results. Next the
threshold is set up to an even higher value as the value is set to 90 and 100%, in
order to better comprehend the impact of this parameter in the optimization cycle.

3.4.3 Class C/D VCO for 3.5-to-4.8 GHz @ 90% and 100%
Thresholds

After setting the threshold to the higher values, the same logic and optimization
configuration was used as before, so the number of points discarded from the total

56 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

number was again registered. The results are shown in Fig. 3.28, where it can be seen
that the number of filtered samples was lower than the ones obtained from the use of
a 75% threshold.

From the inspection of the POFs obtained in Figs. 3.29 and 3.30, it is possible to
conclude that the results were worse, as the POFs obtained are further away from
the reference POF. With a 90% value threshold, some points have good phase noise
values. However, the power values are too high, whereas with a 100% threshold,
both the power values and phase noise are considerably worse.

Therefore, not only were the number of points discarded lower, but also the values
of the optimization worse, which led to the conclusion that such high threshold values
come at a performance cost, as promising solutions are discarded with no chance to

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

90% Threshold 100% Threshold

Simulated Non Simulated

Fig. 3.28 Ratio of points discarded with 90 and 100% threshold

Fig. 3.29 POF obtained with 90% threshold

3.4 In-the-Loop Integration 57

Fig. 3.30 POF obtained with 100% threshold

be evaluated appropriately. Having tested different values for the threshold, the best
results were generated with a threshold of 75%, which was the value used for the
following tests.

3.4.4 Analysis of the Points Fed to the Simulator

Having tested several values for the threshold, the points that were forwarded to
the simulator by the ANNs were studied to have a deeper understanding of the
differences between what the ANNs predicted and the outcome of the simulator.
This verification also serves to understand if some PVT corner was harder to predict
or evaluate. Hence, for an optimization produced by a value of 75% threshold, the
points that were sent to the simulator along the optimization cycle were analyzed.

Starting with the points obtained from the first generation, 15 points were fed to
the simulator. From those, the ANNs predicted that all those points would converge
in all PVT corners, apart from three points where each would fail in a corner. Two
of these points were predicted to fail to converge for the ff corner, one in the first
tunning mode, one in the second, and the third point was predicted to not converge
for the ss corner in the second tunning mode. However, the simulator did not manage
to converge for more than only the predicted three sizing-corner pairs. Figure 3.31
shows the distribution of non-converged simulations for each corner-tuning mode
combination for the first generation of points.

Advancing to the 75th generation, there were fewer differences in the output of the
ANNs and the simulator. Analyzing the 23 points that the ANNs fed to the simulator,
only one point was predicted to not converge, in the ss corner for the second tunning
mode, whereas the simulator failed to simulate for three different corners, and in the
case of the ss corner in the second tuning mode, one additional point than the one
predicted failed to converge, as shown in Fig. 3.32.

Finally, in the 150th generation, the ANNs predicted that all the generation’s 24
points should be simulated, with zero cases of corners not converging, whereas the

58 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.31 Difference between the prediction of the classification ANN and the output of the
simulator for the first generation

Fig. 3.32 Difference between the prediction of the classification ANN and the output of the
simulator for the 75th generation

simulator failed to converge in seven of those points and seven different corners.
The ss corner in the second tuning mode was the corner-tuning combination that
registered the most non-convergence, as observed in Fig. 3.33.

An earlier analysis of the dataset made it possible to obtain the number of points
that converged for each PVT corner. Table 3.14 showcases these results, and it

3.4 In-the-Loop Integration 59

Fig. 3.33 Difference between the prediction of the classification ANN and the output of the
simulator for the 150th generation

Table 3.14 Percentage of converged points for each corner

TT FF FS SF SS 300mV 400mV m40dC 85dC

b0000 87,462 87,200 87,881 88,407 79,130 82,206 89,449 87,094 86,678

%Total 94.95 94.66 95.40 95.97 85.90 89.24 97.11 94.55 94.10

b1111 85,143 84,631 86,717 82,049 52,680 76,735 89,021 82,377 87,513

%Total 92.43 91.88 94.14 89.07 57.19 83.30 96.64 89.43 95.00

can be concluded that the corner ss, for both tunning modes, is the one with the
highest rate of non-convergence, meaning that this is the most challenging corner
to retrieve performance values from. Additionally, this happens more often in the
second tunning mode, reaching almost half of the cases. This explains why the ANNs
predict that corner fail more often. Furthermore, it also explains why the simulator
often fails to converge for that corner, as the data suggests it to be the hardest corner
to converge. Moreover, Table 3.14 also explains why the ANNs tend to misclassify
points as convergent since the dataset presents more convergence scenarios than
non-convergence.

3.4.5 Plug-and-Play Class C/D VCO 2.3 GHz-to-2.5 GHz

A new test was made to prove the efficacy of the ANNs within the same circuit
but with slight operational differences. A new optimization was made, and the same

60 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.34 Ratio of points
discarded for the new
specifications

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Simulated Non Simulated

ANNs trained for the previous specifications were reused in a new setup where the
specifications for the circuit were altered. For this setup, the circuit was meant to
operate at 2.4 GHz, having a range of frequency from 2.3 to 2.5 GHz as opposed
to the previous 3.5–4.8 GHz conditions, and the constraints of the phase noise were
changed to a stricter 5 dBc/Hz.

The new optimization was run using a population of 256 elements for 200 genera-
tions. The ratio of points simulated and discarded was again recorded and is illustrated
in Fig. 3.34. The number of points discarded was low, only 9.51.

Even with a low number of points discarded, the optimal points obtained could
present good values, so the POF was retrieved and compared with the one obtained
without using the ANNs. Analyzing the results, one can observe that the POF obtained
while using the ANNs has better results in terms of phase noise, as the solutions are
always lower than − 138.50. However, regarding power consumption, the minimum
obtained value was 6.00E−04 W, whereas the power consumption values obtained
without using ANNs never surpassed the 5.00E−04 W mark, as observed in Fig. 3.35.

Ultimately, the results are acceptable, with a reduction of almost 10% of the time.
It corresponds to a reduction of almost 3 days since the optimization took about
26 days to complete without using ANNs. In this case, the POFs are distanced and
non-dominant, indicating that the optimizations (wich are random) converged to
different parts of the design space. Still, the filter did work when facing different
specifications.

3.5 Conclusions and Future Research Directions 61

Fig. 3.35 POF obtained with the new specifications

3.4.6 Plug-and-Train Ultralow-Power Class B/C VCO

Finally, the ANNs were trained in a second circuit, the Class-B/C VCO [24]. The
same approach was used as the one discussed in Sect. 3.4, so the optimization was
performed, and the number of simulated points was registered. For this circuit, the
configurations were changed, as the ones used in the reference optimization cycle
with no ANNs were also modified. So a population of 256 points was used, and
its optimization was performed for 100 generations. As Fig. 3.36 shows, from the
total points generated, 17.27% were discarded. This number is close to the 19.65%
obtained for the first circuit, the Class-C/D VCO, with a value of also 75% threshold.
The resulting POF, shown in Fig. 3.37, was obtained and compared with the reference
POF obtained from the optimization without ANNs. The results are promising, as
the values of power obtained are lower, reaching a minimum of about 1.50E−04 W,
whereas the reference values are all greater than around 2.00E−04 W. Regarding
phase noise, the results are very similar, with three points reaching values below any
recorded in the reference optimization.

3.5 Conclusions and Future Research Directions

This work proposed a seamless filter/helper for exhaustive PVT-inclusive RF sizing
optimizations. While the savings in terms of computational effort are conservative
when compared with methodologies that entirely replace the simulator with a model,
here, simulator-grade accuracy is kept throughout the whole process. Not only are
irrelevant solutions bypassed, but additionally, by providing an accurate guess to the
simulator, optimization results are improved.

62 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

Fig. 3.36 Ratio of points discarded for the new circuit

Fig. 3.37 POF obtained for the class-B/C

3.5.1 Conclusions

The work here exhibited showed an approach to optimize the sizing of analog
IC circuits with the help of two models, one used for classification and another
trained for regression. They both proved valuable, as the classification and regres-
sion ANNs discard unwanted solutions, and the use of the regression ANN makes
the optimization more effective.

Two circuits were studied, and their design was optimized. The first one was a
Class-C/D VCO, where thanks to the convergence filters, it was possible to reduce
almost 20% of the optimization time without compromising the results. The obtained
POF was even better in some cases than the one obtained via more traditional means.

3.5 Conclusions and Future Research Directions 63

For the same circuit, the ANNs also proved to work for different specifications, with
less efficiency, as the time saved was close to 10%, and the solutions obtained better
in one of the optimization metrics but worse in the other.

A second circuit, an Ultralow-Power Complementary Class-B/C Hybrid-Mode
VCO, was analyzed and optimized using the same ANN architecture used for
the previous circuit, the Class-C/D. A comparison with the unaltered optimization
cycle was made, following the same process used for the previous circuit, and the
results obtained were discussed and compared with the reference. The results were
marginally different, proving there is no need to spend time optimizing a new ANN
architecture and emphasizing the optimized architecture’s generalization capabili-
ties. The design of this circuit was successful, reducing almost as much time as for
the first circuit, and its POF showed very competitive results.

3.5.2 Future Work

This work showed that using ANNs reduces the time required to design an analog
IC, even if the time necessary for their training is considered. Having this thought in
mind, it is possible to take a step further.

First, even though the ANN architectures have demonstrated a high generalization
towards different types of VCOs, the time required to train them must be considered.
A future objective would be to reduce this time, which would be possible with
additional computational resources. More, the ANNs hyperparameter optimization
of the ANNs was performed empirically, requiring human input. This process could
be optimized in the future via automatic algorithms such as Bayesian optimization,
possibly reducing the time required.

Furthermore, future implementations could consider an online training approach
where both ANNs were trained during the first few generations of the optimization
cycle, as opposed to the offline approach used in this work, where the model was
pre-trained, requiring a previously built dataset. Following this online approach, the
first few generations of the optimization cycle would follow the unaltered algorithm
as the ANNs were trained in parallel. Once some condition was fulfilled, such as the
minimum number of generations or minimum ANN performance, the models would
be inserted in the optimization loop, filtering non-converging points and proposing
an accurate frequency guess.

One challenge with this approach is the relatively low amount of data the ANNs
would have to train before deployment such that, overall, their introduction would
still be worth it. However, the MAPE evolution throughout the optimization cycle
suggests that the population quickly converges to a relatively small region of space.
Thus, it is likely that a relatively small of data is enough for the models to reach a
significant performance threshold.

64 3 Convergence Classifier and Frequency Guess Predictor Based on ANNs

References

1. Afacan E, Dündar G (2019) A comprehensive analysis on differential cross-coupled CMOS
LC oscillators via multi-objective optimization. Integr VLSI 67:162–169

2. Passos F et al (2018) Enhanced systematic design of a voltage controlled oscillator using a
two-step optimization methodology. Integr VLSI 63:351–361

3. Liao T, Zhang L (2017) Parasitic-aware GP-based many-objective sizing methodology for
analog and RF integrated circuits. In: ASPDAC

4. Passos F et al (2020) Ready-to-fabricate RF circuit synthesis using a layout- and variability-
aware optimization-based methodology. IEEE Access 8:51601–51609

5. Martins R et al (2020) Design of a 4.2-to-5.1 GHz ultralow-power complementary class-B/C
hybrid-mode VCO in 65-nm CMOS fully supported by EDA tools. TCAS-I 67(11):3965–3977

6. Afacan E, Lourenço N, Martins R, Dündar G (2021) Review: machine learning techniques in
analog/RF integrated circuit design, synthesis, layout, and test. Integr VLSI 77:113–130

7. Suissa A et al (2010) Empirical method based on neural networks for analog power modeling.
IEEE TCAD 29(5):839–844

8. Wolfe G, Vemuri R (2003) Extraction and use of neural network models in automated synthesis
of operational amplifiers. IEEE TCAD 22(2):198–212

9. Alpaydin G, Balkir S, Dundar G (2003) An evolutionary approach to automatic synthesis of
high-performance analog integrated circuits. IEEE Trans Evol Comput 7(3):240–252. https://
doi.org/10.1109/TEVC.2003.808914

10. Liu H, Singhee A, Rutenbar A, Carley LR (2002) Remembrance of circuits past: macromod-
eling by data mining in large analog design spaces. In: Proceedings 2002 design automation
conference, pp 437–442

11. Lourenço N et al (2019) Using polynomial regression and artificial neural networks for reusable
analog IC sizing. In: 16th International conference on synthesis, modeling, analysis and
simulation methods and applications to circuit design, pp 13–16, July 2019

12. Zhu K et al (2019) Genius route: a new analog routing paradigm using generative neural
network guidance. In: Proceedings of the ICCAD

13. Guerra D, Canelas A, Póvoa R, Horta N, Lourenço N, Martins R (2019) Artificial neural
networks as an alternative for automatic analog IC placement. In: International conference on
SMACD, Lausanne, Switzerland, July 2019

14. Gusmão A, Passos F, Póvoa R, Horta N, Lourenço N, Martins R (2020) Semi-supervised
artificial neural networks towards analog IC placement recommender. In: IEEE International
symposium on circuits and systems, Seville, Spain, Oct 2020

15. Gusmão A, Horta N, Lourenço N, Martins R (2022) Scalable and order invariant analog
integrated circuit placement with attention-based graph-to-sequence deep models. In: Expert
systems with applications. Elsevier, Amsterdam

16. Gusmão A, Póvoa R, Horta N, Lourenço N, Martins R (2022) DeepPlacer: a custom integrated
OpAmp placement tool using deep models. In: Applied soft computing, vol 115. Elsevier,
Amsterdam, 108188

17. Gusmão A, Horta N, Lourenço N, Martins R (2021) Late breaking results: attention in
Graph2Seq neural networks towards push-button analog IC placement. In: ACM/IEEE design
automation conference (DAC), San Francisco, USA, Dec 2021

18. Andraud M, Stratigopoulos H, Simeu E (2016) One-shot non-intrusive calibration against
process variations for analog/RF circuits. IEEE TCAS-I Reg Pap 63(11):2022–2035

19. İslamoğlu G, Çakıcı T, Afacan E, Dündar G (2019) Artificial neural network assisted analog
IC sizing tool. In: International conference on SMACD, July 2019

20. Çakıcı T et al (2020) Improving POF quality in multi objective optimization of analog ICs via
deep learning. In: ECCTD, pp 1–4, Sept 2020

21. Hakhamaneshi K et al (2019) BagNet: Berkeley analog generator with layout optimizer boosted
with DNNs. IEEE/ACM ICCAD, Nov 2019

https://doi.org/10.1109/TEVC.2003.808914
https://doi.org/10.1109/TEVC.2003.808914

References 65

22. Brachtendorf HG, Welsch G, Laur R (1995) Fast simulation of the steady-state of circuits by
the harmonic balance technique. In: Proceedings of ISCAS’95—international symposium on
circuits and systems, vol 2, pp 1388–1391. https://doi.org/10.1109/ISCAS.1995.520406

23. Martins R et al (2019) Many-objective sizing optimization of a class-C/D VCO for ultralow-
power IoT and ultralow phase-noise cellular applications. IEEE TVLSI 27(1):69–82

24. Martins R, Lourenço N, Horta N, Zhong S, Yin J, Mak P-I, Martins RP (2020) Design of a 4.2-
to-5.1 GHz ultralow-power complementary class-B/C hybrid-mode VCO in 65-nm CMOS fully
supported by EDA tools. IEEE Trans Circ Syst I Reg Pap (IEEE TCAS-I) 67(11):3965–3977

25. Ertam F, Aydın G (2017) Data classification with deep learning using Tensorflow. In: 2017
International conference on computer science and engineering (UBMK), pp 755–758

26. Lee H, Song J (2019) Introduction to convolutional neural network using Keras; An
understanding from a statistician. Commun Stat Appl Methods 26(6):591–610

27. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

28. Greff K, Srivastava R, Koutník J, Steunebrink B, Schmidhuber J (2015) LSTM: a search space
odyssey. IEEE Trans Neural Networks Learn Syst 28. https://doi.org/10.1109/TNNLS.2016.
2582924

29. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural
networks. J Mach Learn Res Proc Track 9:249–256

https://doi.org/10.1109/ISCAS.1995.520406
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924

Chapter 4
Process, Voltage and Temperature
Corner Performance Estimator Using
ANNs

4.1 Contributions

Real-world applications demand RF ICblocks’ robustness, and to ensure it, automatic
sizing has moved towards exhaustive PVT-inclusive optimizations. In such scenarios,
the relevant performances of each candidate sizing solution are found by simulating
the circuit under different operating modes as well as fabrication dispersions and
voltage/temperature variations, escalating the time required for optimization. In this
chapter, DL is used to improve RF IC sizing automation, and the major contributions
are listed as follows:

• Previous works in this research field [3–5, 14, 15] focus on sizing on nominal
conditions, and still, significant errors are observed in the estimated circuit perfor-
mances, hindering its use for complex PVT-inclusive optimizations. Here, ANNs
tailored for exhaustive PVT-inclusive RF IC sizing optimization problems are
proposed;

• The proposed controlled PVT regressor incorporates the nominal performance
figures obtained via circuit simulation in the input layer of its ANNs. Therefore,
the model becomes flexible to operate in different regions of the performance
space. Ultimately the same model can be used for optimizations with a completely
different set of targets, i.e., generalizing beyond training data;

• Instead of entirely replacing the simulator [3–5, 14, 15], two control phases
used in every generation prevent the sizing loop from being misled by inaccu-
rate performance estimates and consequently guided to unrealistic design space
regions;

• The proposed controlled PVT regressor is tested on different optimizations of two
state-of-the-art voltage-controlled oscillators (VCOs), reducing the workload of
the simulator up to 79%, i.e., saving more than 16 days of computational effort
while achieving competitive sizing solutions (Fig. 4.1).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. L. C. P. Domingues et al., Speeding-Up Radio-Frequency Integrated Circuit Sizing
with Neural Networks, SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-3-031-25099-6_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25099-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-25099-6_4

68 4 Process, Voltage and Temperature Corner Performance Estimator Using…

PVT Regressor based
on ANNs

...

Simulator in-the-loop

...

Optimization Engine

S Candidate Circuit
Sizing Solutions

S Sets of Nominal and
PVT Performances

Fig. 4.1 Location of the PVT estimator in a simulation-based optimization loop

4.2 Controlled PVT Regressor Based on Deep ANNs

Recovering the dual-mode class C/D VCO case study [16] introduced in Chap. 2
of this book (Sect. 2.5), a dataset generated using the current problem definition
has a total number of 48 features, where 28 are the optimization variables plus 20
performance figures of the simulation in typical (TT) conditions in two different
modes, i.e., b0000 and b1111, and a total of 160 labels, i.e., the performance figures of
the remaining corner variations in the two different tuning modes.

Each ANN of the controlled PVT regressor will estimate the performance figures
of a specific corner for a specific tuning mode so that the output layer will have ten
neurons. Each ANN will receive, as inputs, the sizing of the circuit, which consists
of the same 28 optimization variables and ten performance figures of the simulation
in TT conditions for its corresponding tuning mode, which means that the input layer
will have a total of 38 neurons. The number of hidden layers and number of nodes per
hidden layer will be determined in the tuning phase, and a study will be conducted
to find the best possible solution to these two hyperparameters. The structure of the
ANN implemented for each corner and tuning mode is shown in Fig. 4.2, where a
chain of fully connected layers is used. The output of the regression model is a real
value, positive or negative, so the output nodes have no activation function. Overall,
the structure of the PVT estimator, containing 16 different ANNs, is further detailed
in Fig. 4.3.

4.3 Training the Model in Isolation (Results Pre-integration) 69

fosc

PN@10kHz

FOM@10MHz

power

Input Layer
38 nodes

Devices sizing and
Nominal performances

PVT and tuning combination
performances

Output Layer
10 nodes

...

inner radius

channel length

...
fosc{TT}

power{TT}
...

Fig. 4.2 ANN structure for corner FF and tuning mode b0000

4.3 Training the Model in Isolation (Results
Pre-integration)

For training the PVT estimator’s ANNs, first, the datasets for each ANN were defined
along with the necessary pre-processing to obtain the best data for their training phase.
Furthermore, the tuning phase of the hyperparameters of the ANNs is described,
followed by the showcase of the final model structure. Finally, the test results of one
of the hyperparameters of the ANNs are described. These results show that the ANN
can achieve highly accurate results on unseen data and are considered adequate for
the remaining experiments. In order to do this, the dataset of the complex dual-mode
class C/D voltage-controlled oscillator (VCO) circuit, previously defined in Chap. 2,
will be used.

Again the models were implemented in Python, using both Tensorflow [17] and
Keras [18] as ML libraries. The starting point of the ANN architecture is the one
described in Fig. 4.2, where the output layer contains 10 nodes, one for each perfor-
mance parameter of a certain combination of tuning mode and PVT corner variation.
The optimization was performed for 9 testbench variations (TT and 8 PVT corners)
and 2 tuning modes; thus, 16 different ANNs will be required.

4.3.1 Dataset Processing

The dataset contains 92,115 data entries composed of, as previously described, 48
features, where 28 represent the optimization variables and the other 20 represent the

70 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Fig. 4.3 Detailed diagram of the PVT estimator

TT performance figures, 10 for each tuning mode. As for labels, the dataset contains
160 performance figures of the remaining PVT corner variations in two different
tuning modes. For each different ANN, it is only needed the performance figures of
one combination of corner variations and tuning mode, so firstly, the dataset had to
be divided into 16 different datasets where each dataset represents a different corner

4.3 Training the Model in Isolation (Results Pre-integration) 71

combination. Only the TT performance figures representing the same tuning mode
as the labels are kept to increase model accuracy, so the final dataset structure only
contains 38 features and 10 labels.

Some data entries have null values on the features and/or labels, representing
sizing solutions that the simulator could not produce a meaningful performance
figure. These entries had to be removed, along with duplicated rows, from each
dataset to provide the best possible data to the ANNs.

The division of the original dataset into smaller datasets and the removal process
explained before are depicted in Tables 4.1 and 4.2, where some entries of the original
dataset and dataset for FF b0000 are shown, respectively.

Finally, the outliers present in each dataset must be removed. For each performance
figure, the 1% lowest and highest values were cut from the dataset alongside their
entire row of data. The final sizes of the dataset for each PTV corner ANN can
be found in Table 4.3. Finally, all 16 datasets were randomized and split into two
datasets: the training dataset, which consists of 90% of the original dataset, and
the test dataset, which is the remaining 10% of the original dataset. The training
dataset will be used to train the ANNs, while the test dataset will be used to test
the models. As for the tuning of the ANN architecture, it was only performed in the
ANN regarding the corner FF with tuning mode b0000.

Table 4.1 Structure of the original dataset

Entry # Features (48) Labels (160)

Design
variables

Perform.
TT b0000

Perform.
TT b1111

Perform.
FF b0000

… Perform.
m40dC
b1111

Perform.
85dC b1111

0 Values ✓ Values ✓ Values ✓ Null … Values ✓ Null

1 Values ✓ Values ✓ Values ✓ Values ✓ … Null Null

2 Values ✓ Null Null Values ✓ … Null Null

3 Values ✓ Values ✓ Values ✓ Null … Null Null

… … … … … … … …

92,114 Values ✓ Values ✓ Values ✓ Values ✓ … Values ✓ Values ✓

Table 4.2 Structure of the dataset for FF b0000

Entry # Original entry # Features (38) Labels (10)

Design variables Performances TT b0000 Performances FF b0000

0 1 Values ✓ Values ✓ Values ✓
1 3 Values ✓ Values ✓ Values ✓
… … … … …

83,037 92,114 Values ✓ Values ✓ Values ✓

72 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.3 Dimensions of datasets for the training of the different ANNs

Corner Tuning mode

b0000 % total b1111 % total

FF 81,377 88.34 79,300 86.09

FS 81,842 88.85 81,200 88.15

SF 82,247 89.29 76,794 83.37

SS 73,456 79.74 48,742 52.91

300mV 77,608 84.25 69,017 74.92

400mV 81,865 88.87 81,342 88.30

m40dC 81,182 88.13 77,103 83.70

85dC 80,707 87.62 82,028 89.05

4.3.2 Feature Engineering

All this raw data has to be pre-processed before using it in the training phase
of the model so some feature engineering will be needed. The dataset contains
small input device sizes (in the order of nanometers) combined with other opti-
mization variables, which can be simple integers (for example, ind_nturns), and
with performance figures, which can have large values in the order of gigahertz (for
example, oscillation f requency). This combination causes the learning algorithm
of the ANN to wrongly compute the weights associated with these small values,
almost completely negating their influence on the output. To solve this problem, data
normalization will be performed on the entirety of the dataset. Two methods can
be used to achieve this: standardization and normalization. Standardization scales
the values while considering standard deviation, which is beneficial to reduce the
effect of outliers in the data. Normalization scales all values to a fixed range. This
scaling does not alter the feature distributions, and because of the decreased standard
deviations, the effect of the outliers increases. The expressions for standardization
and normalization are shown in (4.1) and (4.2), respectively, where μ represents the
mean value and σ the standard deviation.

z =
x − μ

σ
(4.1)

z = x − xmin

xmax − xmin
(4.2)

Although many other feature engineering techniques can be performed on the
dataset, the previously mentioned ones will be the most important. After this, the
dataset is ready to be fed to the network.

4.3 Training the Model in Isolation (Results Pre-integration) 73

4.3.3 Tuning Hyper-Parameters

With the dataset ready, the ANN’s hyper-parameter tuning phase starts. Three metrics
were used as evaluation methods for the ANN’s training: MSE, defined as:

MSE =
1

n

n∑

i=1

(
yi − ŷi

)2
(4.3)

Mean absolute error (MAE), defined by:

MAE =
1

n

n∑

i=1

|yi − xi | (4.4)

And finally, Mean absolute percentage error (MAPE), defined by:

MAP E =
1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (4.5)

Due to the nature of the values that are trying to be predicted with this ANN,
the error between the predicted value and the actual value must be small. Because
of this, an error value lower than 1% (for the case of the MAPE) was chosen as a
reasonable target to achieve the accuracy of the ANN.

Despite having three different metrics as evaluation methods, the loss function of
the ANN throughout the tuning phase was the MSE. It is one of the most popular
loss functions in regression problems like the one addressed in this book. A similar
approach was used to choose the optimizer, with Adam being the most popular
method. Regarding the batch size of the training phase, 128 was chosen, resulting
in a mini-batch approach where the batch is small enough to introduce some helpful
noise in the training process while diminishing the time increase associated with
stochastic gradient descent (i.e., batch size of 1). The normalization range of 1–2
was chosen, over the typical 0–1, due to its influence on MAPE values. If a range
including zero was chosen, MAPE values would “explode” due to target values close
to 0 appearing in the denominator of (4.5).

The first parameters to be determined were: the number of layers, the number of
neurons per layer, and the learning rate. Two studies were made to determine the
adequate number of layers for the model, the first using 2 hidden layers and the
second 3 hidden layers. Table 4.4 presents the parameters and values considered in
the 2 hidden layers study.

It is common practice in ANN development that the size of a hidden layer is always
equal to or larger than the following hidden layer. Considering this, the different
combinations of these parameters were studied, and their results are shown in Table
4.5. The lowest values of each metric (MSE, MAE, and MAPE) at both training and

74 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.4 Different
parameters and corresponding
values to study

Size of hidden layer
1

Size of hidden layer
2

Learning rate

200, 320, 440, 560 200, 300, 400, 500 0.00005, 0.0001,
0.0005, 0.001

test phases were highlighted, and achieving 5 of the 6 total lowest metrics, the best
combination of these parameters is:

• Hidden layer size 1: 440 neurons
• Hidden layer size 2: 400 neurons
• Learning rate: 0.0001

Given these results, a comparison with 3-hidden layer ANN architecture is carried.
In this next study, the learning rate was set to 0.0001, considering it was the best

Table 4.5 Results of hidden layers size/learning rate study. Using activation function of hidden
layers: ReLU, dropout rate: 20%

Hidden layers Learning
rate

Training loss Test loss

#1 #2 MSE (×
10–4)

MAE (×
10–3)

MAPE MSE (×
10–4)

MAE (×
10–3)

MAPE

200 200 1 × 10–3 2.0271 9.0719 0.5865 2.9237 9.6342 0.6262

5 × 10–4 1.6593 8.4255 0.5503 2.6371 8.9969 0.5903

1 × 10–4 0.9633 4.9812 0.3263 2.0497 5.6614 0.3736

5 × 10–5 1.5778 6.3185 0.4126 2.4236 6.9236 0.4543

320 200 1 × 10–3 1.6222 8.4173 0.5433 2.5826 9.0382 0.5867

5 × 10–4 1.2829 7.7522 0.5101 2.1944 8.4498 0.5579

1 × 10–4 0.7502 4.2473 0.2801 1.7580 4.9959 0.3316

5 × 10–5 1.1752 5.3409 0.3510 1.9515 5.9199 0.3911

320 300 1 × 10–3 1.5518 7.4064 0.4838 2.4660 7.9911 0.5243

5 × 10–4 0.9664 6.0647 0.3905 1.8117 6.7411 0.4368

1 × 10–4 0.6854 4.0345 0.2649 1.6603 4.8014 0.3176

5 × 10–5 1.5619 6.6477 0.4345 2.5805 7.3492 0.4827

440 200 1 × 10–3 0.9685 5.9367 0.3893 1.7024 6.5298 0.4304

5 × 10–4 0.9217 5.7347 0.3669 1.7494 6.4228 0.4139

1 × 10–4 0.6052 4.0061 0.2625 1.4736 4.7756 0.3149

5 × 10–5 1.2531 6.3213 0.4136 2.2113 7.0737 0.4648

440 300 1 × 10–3 2.0921 8.0931 0.5290 3.4045 8.7485 0.5760

5 × 10–4 0.9115 6.3530 0.4114 1.7763 7.0825 0.4612

1 × 10–4 0.6586 4.0705 0.2677 1.4629 4.7683 0.3155

5 × 10–5 1.2429 6.0380 0.3935 2.1168 6.7248 0.4407

(continued)

4.3 Training the Model in Isolation (Results Pre-integration) 75

Table 4.5 (continued)

Hidden layers Learning
rate

Training loss Test loss

#1 #2 MSE (×
10–4)

MAE (×
10–3)

MAPE MSE (×
10–4)

MAE (×
10–3)

MAPE

440 400 1 × 10–3 1.1995 6.0374 0.4000 2.1117 6.6899 0.4457

5 × 10–4 0.6916 4.7748 0.3087 1.5629 5.4907 0.3578

1 × 10–4 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919

5 × 10–5 1.1603 5.4496 0.3574 2.3146 6.2074 0.4093

560 200 1 × 10–3 1.0060 6.2592 0.4213 1.9085 6.9229 0.4667

5 × 10–4 0.7292 5.0753 0.3370 1.5336 5.8173 0.3874

1 × 10–4 0.5895 3.8783 0.2558 1.5572 4.6842 0.3110

5 × 10–5 0.9646 5.0136 0.3267 1.9388 5.7902 0.3798

560 300 1 × 10–3 0.9744 5.2125 0.3425 2.1092 5.9488 0.3937

5 × 10–4 0.7596 5.2312 0.3366 1.7456 5.9887 0.3887

1 × 10–4 0.5920 3.9961 0.2601 1.4898 4.8121 0.3157

5 × 10–5 0.8541 4.6235 0.3033 1.6815 5.3325 0.3516

560 400 1 × 10–3 5.8195 14.5366 0.9489 6.4470 14.9806 0.9800

5 × 10–4 0.8302 5.4530 0.3566 1.6963 6.1971 0.4072

1 × 10–4 0.5769 3.8253 0.2504 1.6146 4.6759 0.3085

5 × 10–5 0.8927 4.9385 0.3201 1.7218 5.6835 0.3707

560 500 1 × 10–3 1.5522 7.6797 0.5064 2.4262 8.3103 0.5505

5 × 10–4 0.5916 4.2945 0.2834 1.4161 5.0691 0.3365

1 × 10–4 0.6000 4.5236 0.3017 1.5613 5.3601 0.3586

5 × 10–5 0.8585 5.3343 0.3411 1.7989 6.1322 0.3955

value of the previous study. Table 4.6 shows the different parameters and the values
that were considered. This study follows the same rule as the previous one regarding
the sizes of the hidden layers, and its results are shown in Table 4.7.

When comparing the results of the two studies, it is clear that there is no improve-
ment when increasing the number of hidden layers. The best error results with 3
hidden layers are 18–30% higher than the best results with 2 hidden layers. Consid-
ering this fact, there is no need to increase the number of hidden layers of the ANN, so
no further study was required. These values (2 hidden layers with 440 and 400 neurons
each, respectively, and a learning rate of 0.0001) will be used for the remainder of
the tuning phase.

Table 4.6 Different
parameters and corresponding
values to study

Size of hidden layer
1

Size of hidden layer
2

Size of hidden layer
3

200, 320, 440 200, 300, 400 200, 300, 400

76 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.7 Results of hidden layers size study using activation function of hidden layers: ReLU,
learning rate: 0.0001 and dropout rate: 20%

Hidden layers Training loss Test loss

#1 #2 #3 MSE (×10–4) MAE (×
10–3)

MAPE MSE (×10–4) MAE (×
10–3)

MAPE

200 200 200 1.9722 8.7683 0.5709 3.1234 9.4508 0.6186

320 200 200 0.9191 5.8708 0.3796 2.0354 6.7268 0.4385

320 300 200 1.5984 7.7507 0.5039 2.8096 8.5406 0.5586

320 300 300 0.9735 6.1391 0.3957 2.0810 7.0175 0.4560

440 200 200 0.7186 4.4182 0.2897 1.7230 5.2482 0.3465

440 300 200 0.9799 5.9074 0.3852 1.9675 6.6465 0.4361

440 300 300 0.8321 5.6166 0.3613 1.8117 6.4913 0.4210

440 400 200 1.0870 6.4679 0.4147 2.1437 7.2971 0.4718

440 400 300 1.1155 6.7236 0.4337 2.4101 7.6854 0.4997

440 400 400 0.8439 5.5525 0.3570 1.8376 6.4363 0.4172

The following parameter to be tuned is the activation function of the hidden layers.
For the hidden layers of the ANN, one should use non-linear activation functions to
increase its capability to model highly complex relationships between its input and
output. The following functions will be experimented with in the model, and their
results will be compared to choose the most adequate for this methodology.

The sigmoid function, shown in Fig. 4.4 (top), can map the input values of a
neuron to an output range of]0, 1[. It prevents cases where the neuron’s output
reaches very high values, which can happen when taking the unbounded linear output
of the neurons. Another quality of this function is its sensibility to input changes
in the region near z = 0, which results in good separation of data. However, the
responsiveness of the function starts to decrease when dealing with bigger and smaller
input values, reaching almost a gradient value of 0. Therefore, the model can no
longer update properly. One of the most popular activation functions is the rectified
linear unit (ReLU) function [19], shown in Fig. 4.4 (bottom-left), computed through
f (z) = max(0, z). The output value of the ReLU function is equal to the input value
for inputs greater than 0 and 0 for all the other values. Due to its simpler formula,
this non-linear function requires less computational power than the sigmoid function.
However, the function is not bounded for positive input values making it susceptible
to exploding output values. Despite this, it solves the low gradient value encountered
in the sigmoid function for large positive values. The main problem appears in the
negative input value region, where the gradient equals 0, which will stop any network
update from happening (regarding the corresponding neuron). This is called the dying
ReLU problem. To solve it, some variations to the ReLU were developed, such as
the leaky ReLU [20] or the exponential linear unit (ELU) [21]. The ELU introduces
a smooth derivate for the negative input values and is determined by (4.6), where α
is a parameter to be tuned. This function is depicted in Fig. 4.4 (bottom-right).

4.3 Training the Model in Isolation (Results Pre-integration) 77

Fig. 4.4 Sigmoid (top), ReLU function (bottom-left) and ELU function (bottom-right)

f (z) =
{

α(ez − 1) i f z ≤ 0
z i f z > 0

(4.6)

The results of using sigmoid, ReLU, leaky ReLU, and ELU as activation functions
are shown in Table 4.8. As can be seen, by the highlighted values, the activation
function that generates the lowest error in almost all cases is the ReLU function,
proving why it is one of the most popular activation functions when working with
ANNs nowadays [19]. Leaky ReLU has the best MSE test loss of all 4 activation
functions, but the remaining values fall short of the ReLU. Regarding the sigmoid
and ELU functions, these demonstrated weak results when compared with the other
2 functions, getting values 2 times worse in all metrics. This study suggests that
the best activation function for this work is the ReLU function, which will be the
function used in the final model.

One of the main problems when training an ML model is overfitting. It refers to a
model that fits the training data too well, i.e., the model learns the detail and noise in
the training data to the point that it negatively impacts the model’s performance on
new unseen data. Random fluctuations and noise present in the training data do not
apply to new data, so it negatively affects the ability of the model to generalize. A
regularization technique can be used when training the ANN to solve this problem
[22, 23]. Dropout is one popular regularization technique because it solves two

78 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.8 Results of activation function study. Using 2 hidden layers of sizes 440 and 400, learning
rate: 0.0001 and dropout rate: 20%

Activation
function

Training loss Test loss

MSE (×10–4) MAE (×10–3) MAPE MSE (×10–4) MAE (×10–3) MAPE

Sigmoid 3.8048 10.4705 0.6847 4.2671 10.8543 0.7120

ReLU 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919

Leaky
ReLU

0.8000 4.2949 0.2804 1.4946 4.8755 0.3204

ELU 2.8294 8.4947 0.5537 3.4148 8.9600 0.5855

Table 4.9 Results of dropout rate study using 2 hidden layers of sizes 440 and 400, learning rate:
0.0001 and activation function of hidden layers: ReLU

Dropout rate
(%)

Training loss Test loss

MSE (×10–4) MAE (×10–3) MAPE MSE (×10–4) MAE (×10–3) MAPE

0 1.6501 8.4134 0.5456 2.3367 8.8968 0.5786

5 0.5724 3.6952 0.2417 1.6456 4.6661 0.3074

10 0.5346 3.8489 0.2511 1.6371 4.7203 0.3105

20 0.5372 3.5950 0.2344 1.5345 4.4429 0.2919

30 0.7887 4.8243 0.3167 1.7034 5.5186 0.3647

crucial problems in an ANN: it prevents overfitting of the model and provides a
method of approximately combining different ANN architectures. Dropout consists
in removing some neurons temporarily from the ANN along with its incoming and
outgoing connections during training.

The dropout rate, which until now was set to 20%, is the last parameter to be tuned.
The different values and corresponding results are shown in Table 4.9. Analyzing the
results, dropout rates of 5, 10, and 20% show the best and relatively similar values
between them, while the values for a dropout rate of 0 and 30% show a decrease in
the accuracy of the ANN. The worst results come from no dropout, which reveals
the necessity of this regularization technique. A dropout rate of 20% was chosen for
the final model, given that the ANN presents the best results with this value.

4.3.4 Final Model Details

All the parameters of the ANN are now tuned to achieve a good performance. A model
summary is shown in Table 4.10, along with the metrics of the training phase at each
epoch. The evolution of the loss and error functions in the training and validation set
is shown in Figs. 4.5 and 4.6.

4.3 Training the Model in Isolation (Results Pre-integration) 79

Table 4.10 Summary of
ANN

Parameter Value

Input layer size 38

Hidden layer 1 size 440

Hidden layer 2 size 400

Output layer size 10

Loss function Mean squared error

Optimizer Adam

Batch size 128

Hidden layers activation function ReLU

Learning rate 0.0001

Dropout rate 20%

Training epochs 300

Validation split 20%

Fig. 4.5 MSE (loss) function

The final values of the 3 metrics for all 16 ANNs are shown in Table 4.11. As
can be seen, by the MAPE values of both training and test loss, the final model in all
ANNs presents better performance than the initial goal of 1% error.

80 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Fig. 4.6 MAPE (left) and MAE (right)

Table 4.11 Final model metric values

Tuning
mode

Corner Training loss Test loss

MSE (×
10–4)

MAE (×
10–3)

MAPE MSE (×
10–4)

MAE (×
10–3)

MAPE

b0000 FF 0.5346 3.5950 0.2344 1.5345 4.4429 0.2919

FS 0.5046 3.7093 0.2438 1.5623 4.3444 0.2873

SF 0.7096 3.7298 0.2441 1.2777 4.2840 0.2810

SS 0.9830 4.3566 0.2833 1.6931 4.9340 0.3236

300mV 0.7763 5.3615 0.3524 1.5838 5.9087 0.3919

400mV 0.6531 4.5662 0.3061 1.0625 4.9738 0.3339

m40dC 0.6195 4.0734 0.2665 1.1569 4.3965 0.2890

85dC 0.6881 4.4254 0.2965 1.1435 4.8061 0.3237

b1111 FF 1.2872 5.4180 0.3638 2.3003 5.9296 0.3987

FS 0.7244 4.0943 0.2727 1.7098 4.7493 0.3163

SF 0.8058 4.3929 0.2858 1.7478 5.0881 0.3324

SS 1.1053 7.8992 0.5777 2.8484 11.5884 0.8384

300mV 1.8979 7.0264 0.4585 3.4236 8.1042 0.5304

400mV 1.7348 7.4566 0.4828 3.1930 8.4154 0.5486

m40dC 5.9536 9.3559 0.6163 8.4010 10.8045 0.7134

85dC 1.0614 4.5612 0.3037 1.7748 5.1120 0.3418

4.3.5 Test Results

In order to check the performance of the ANN, the prediction errors of 4 different
performances were obtained for the points that belong to the test. These performances
are: Oscillation frequency; Power; Phase noise in 10 MHz; Figure of Merit in 10 MHz.
All 4 of these performances were obtained for corner FF in mode b0000. In Tables 4.12,

4.4 In-the-Loop Integration 81

4.13, 4.14, and 4.15 the results of the predictions are presented, where 5 different
sets of results are shown:

• Best: 5 lowest MAPE values;
• 25th quantile value and the next 4 points (in order of MAPE);
• Median value and the next 4 points (in order of MAPE);
• 75th quantile value and the next 4 points (in order of MAPE);
• Worst: 5 highest MAPE values.

As observable in the results, the ANN can achieve highly accurate results. In
all four performances, the best results are almost perfect predictions of the actual
value with errors of 0.0005%. Another great indicator of the performance of the
ANN is the quartile values. The worst 25th quantile value of the 4 performances is
an error of 0.15%, which indicates that 25% of all the predictions have a MAPE
lower or equal for that performance (phase noise for this case). The medians of all
4 performances also show evidence of an accurate model ANN. The worst median
value, also belonging to the phase noise performance, shows a slight error of 0.28%
between prediction and real value. The same can be said for the 75th quantile values,
where the worst one is at 0.42% for the phase noise. Once again, these results show
the powerful prediction capabilities of the model as it states that 75% of the points
predicted to have 0.42% or lower error values. Finally, the worst MAPE values are the
extreme situations that the model encountered, precisely, points that belong to a range
of values very different than the most representative ones on the dataset. This can be
seen, for example, in the worst MAPE values of the oscillation frequency where real
values correspond to 1.6, 7.3, 7.2, and 9.9 GHz, which correspond to values very
different than the normal band of frequency of the dataset (3.5-to-4.8 GHz).

4.4 In-the-Loop Integration

This section provides a clear explanation of the integration in the AIDA [24] loop
of the models developed is presented, and the results of 3 different optimizations
using the modified AIDA loop will be shown and discussed. With the ANNs for each
corner and tuning mode tuned and ready to be used, the next step of this work is to
integrate the PVT estimator into the AIDA loop. The location of the PVT estimator
is presented in Fig. 4.7.

In the first step of the optimization loop, several circuit sizing solutions are
proposed by the optimization engine (the number of solutions depends on the popu-
lation defined). In the original AIDA loop, the simulator evaluates each of these
solutions for all TT conditions and PVT corners and outputs all the evaluated perfor-
mances. The optimization engine receives these evaluations and ranks the solutions
(population) according to their compliance with the objectives and constraints set for
the current optimization problem. A brief flowchart of one generation of the original
AIDA loop is shown in Fig. 4.8.

82 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Ta
bl
e
4.
12

E
rr
or
 r
es
ul
ts
 o
f
os
ci
lla
tio

n
fr
eq
ue
nc
y
fo
r
co
rn
er
 F
F
in
 m

od
e
b_
00
00

B
es
t

25
th

M
ed
ia
n

75
th

W
or
st

M
A
PE

(×

10
–4
)

R
ea
l

(G
H
z)

Pr
ed
.

(G
H
z)

M
A
PE

(×

10
–2
)

R
ea
l

(G
H
z)

Pr
ed
.

(G
H
z)

M
A
PE

(×

10
–1
)

R
ea
l

(G
H
z)

Pr
ed
.

(G
H
z)

M
A
PE

(×

10
–1
)

R
ea
l

(G
H
z)

Pr
ed
.

(G
H
z)

M
A
PE

R
ea
l

(G
H
z)

Pr
ed
.

(G
H
z)

0.
01

4.
86
3

4.
86
3

7.
52

6.
07
8

5.
94
0

1.
63

4.
79
2

4.
76
5

3.
06

5.
28
2

5.
21
1

4.
94

4.
15
5

4.
89
1

0.
68

4.
36
3

4.
36
3

7.
53

4.
50
8

4.
52
2

1.
63

4.
34
6

4.
32
5

3.
06

4.
92
3

4.
89
8

5.
26

7.
32
2

6.
37
1

0.
82

4.
81
4

4.
81
4

7.
53

5.
17
5

5.
14
7

1.
63

3.
13
4

3.
09
1

3.
06

4.
75
1

4.
75
4

6.
01

7.
18
4

6.
10
7

0.
98

4.
63
2

4.
63
2

7.
53

5.
35
3

5.
27
8

1.
63

6.
05
4

5.
95
7

3.
06

5.
04
7

5.
02
8

6.
16

1.
61
9

2.
38
0

1.
04

2.
53
5

2.
53
5

7.
54

5.
55
4

5.
78
8

1.
63

5.
35
6

5.
34
2

3.
06

4.
98
7

4.
97
9

6.
51

9.
85
2

8.
51
2

4.4 In-the-Loop Integration 83

Ta
bl
e
4.
13

E
rr
or
 r
es
ul
ts
 o
f
po
w
er
 f
or
 c
or
ne
r
FF

 in
 m

od
e
b_
00
00

B
es
t

25
th

M
ed
ia
n

75
th

W
or
st

M
A
PE

(×

10
–3
)

R
ea
l

(m
W
)

Pr
ed
.

(m
W
)

M
A
PE

(×

10
–2
)

R
ea
l

(m
W
)

Pr
ed
.

(m
W
)

M
A
PE

(×

10
–1
)

R
ea
l

(m
W
)

Pr
ed
.

(m
W
)

M
A
PE

(×

10
–1
)

R
ea
l

(m
W
)

Pr
ed
.

(m
W
)

M
A
PE

R
ea
l

(m
W
)

Pr
ed
.

(m
W
)

0.
02

4.
86
3

4.
86
3

7.
46

1.
10
3

1.
08
8

1.
63

1.
88
6

1.
83
5

3.
13

1.
26
4

1.
26
2

9.
83

1.
24
2

4.
89
1

0.
07

4.
36
3

4.
36
3

7.
46

1.
41
9

1.
43
5

1.
63

2.
05
9

2.
10
7

3.
13

2.
11
2

2.
09
6

9.
92

1.
16
5

6.
37
1

0.
12

4.
81
4

4.
81
4

7.
47

1.
03
4

1.
04
1

1.
63

3.
12
4

2.
86
8

3.
13

1.
74
7

1.
72
2

11
.1
6

1.
11
9

6.
10
7

0.
15

4.
63
2

4.
63
2

7.
47

1.
04
1

1.
03
3

1.
63

1.
19
9

1.
18
7

3.
13

1.
56
1

1.
56
2

12
.0
8

0.
98
2

2.
38
0

0.
17

2.
53
5

2.
53
5

7.
47

1.
32
1

1.
38
1

1.
63

1.
70
3

1.
66
1

3.
13

1.
54
7

1.
53
3

13
.0
2

2.
12
6

8.
51
2

84 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Ta
bl
e
4.
14

E
rr
or
 r
es
ul
ts
 o
f
ph
as
e
no
is
e
in
 1
0
M
H
z
fo
r
co
rn
er
 F
F
in
 m

od
e
b_
00
00

B
es
t

25
th

M
ed
ia
n

75
th

W
or
st

M
A
PE

(×

10

–3
)

R
ea
l

(|d
B
c/
H
z|
)

Pr
ed
.

(|d
B
c/
H
z|
)

M
A
PE

(×

10

–1
)

R
ea
l

(|d
B
c/
H
z|
)

Pr
ed
.

(|d
B
c/
H
z|
)

M
A
PE

(×

10

–1
)

R
ea
l

(|d
B
c/
H
z|
)

Pr
ed
.

(|d
B
c/
H
z|
)

M
A
PE

(×

10

–1
)

R
ea
l

(|d
B
c/
H
z|
)

Pr
ed
.

(|d
B
c/
H
z|
)

M
A
PE

R
ea
l

(|d
B
c/
H
z|
)

Pr
ed
.

(|d
B
c/
H
z|
)

0.
12

13
3.
73

13
3.
73

1.
54

13
2.
45

13
2.
48

2.
80

13
4.
01

13
3.
90

4.
21

13
1.
99

13
1.
88

11
.6
6

13
3.
41

12
8.
99

0.
20

13
4.
14

13
4.
14

1.
54

13
3.
30

13
3.
08

2.
80

13
4.
42

13
4.
31

4.
21

13
1.
29

13
1.
18

11
.9
6

13
2.
68

12
8.
06

0.
25

13
2.
22

13
2.
22

1.
54

13
2.
37

13
2.
17

2.
80

13
4.
16

13
3.
25

4.
21

13
4.
43

13
4.
25

13
.8
4

13
5.
65

13
0.
71

0.
25

13
2.
14

13
2.
14

1.
54

13
2.
02

13
2.
01

2.
80

12
9.
20

13
0.
29

4.
21

13
4.
41

13
4.
31

14
.6
8

12
4.
36

13
1.
26

0.
48

13
2.
69

13
2.
69

1.
54

12
9.
12

12
9.
05

2.
80

13
3.
54

13
3.
33

4.
21

13
3.
24

13
3.
11

16
.4
5

13
0.
22

13
6.
98

4.4 In-the-Loop Integration 85

Ta
bl
e
4.
15

E
rr
or
 r
es
ul
ts
 o
f
FO

M
 in

 1
0
M
H
z
fo
r
co
rn
er
 F
F
in
 m

od
e
b_
00
00

B
es
t

25
th

M
ed
ia
n

75
th

W
or
st

M
A
PE

(×

10

–4
)

R
ea
l

(d
B
c/
H
z)

Pr
ed
.

(d
B
c/
H
z)

M
A
PE

(×

10

–2
)

R
ea
l

(d
B
c/
H
z)

Pr
ed
.

(d
B
c/
H
z)

M
A
PE

(×

10

–1
)

R
ea
l

(d
B
c/
H
z)

Pr
ed
.

(d
B
c/
H
z)

M
A
PE

(×

10

–1
)

R
ea
l

(d
B
c/
H
z)

Pr
ed
.

(d
B
c/
H
z)

M
A
PE

R
ea
l

(d
B
c/
H
z)

Pr
ed
.

(d
B
c/
H
z)

0.
51

18
3.
41

18
3.
41

7.
10

18
7.
70

18
7.
62

1.
36

18
4.
86

18
4.
83

2.
17

18
5.
43

18
5.
22

9.
02

16
2.
52

16
7.
61

0.
78

18
3.
44

18
3.
44

7.
10

18
4.
86

18
4.
64

1.
37

18
4.
05

18
3.
84

2.
17

18
1.
88

18
1.
80

12
.9
3

16
5.
59

17
3.
27

1.
37

18
5.
86

18
5.
86

7.
10

18
6.
50

18
6.
30

1.
37

17
9.
14

17
7.
82

2.
17

18
5.
54

18
5.
42

13
.2
1

15
1.
36

15
7.
33

2.
17

18
5.
13

18
5.
13

7.
10

18
6.
42

18
6.
39

1.
37

18
4.
05

18
4.
72

2.
17

18
6.
54

18
6.
44

14
.9
8

16
4.
17

17
2.
86

2.
40

18
6.
17

18
6.
17

7.
10

18
2.
80

18
2.
87

1.
37

18
5.
81

18
5.
64

2.
18

18
5.
31

18
5.
23

17
.3
6

16
3.
12

17
3.
01

86 4 Process, Voltage and Temperature Corner Performance Estimator Using…

PVT Regressor based
on ANNs

...

Simulator in-the-loop

...

Optimization Engine

S Candidate Circuit
Sizing Solutions

δ Simulated Nominal
& PVT Performances

S Sets of Nominal and
PVT Performances

Control Phase 1

δ Estimated PVT
Performances

(S–δ) Estimated
PVT Performances

Control Phase 2

Fig. 4.7 Proposed controlled PVT regressor embedded into a simulation-based sizing loop

The simulator will only need to evaluate the solutions for TT conditions in the
modified AIDA loop. Each of the ANNs will receive, as input, the sizing solution and,
according to its tuning mode, the performance figures respective to the TT conditions
(previously evaluated by the simulator). With the inputs defined, each ANN will
output the performance figures corresponding to a specific corner and tuning mode,
so the performance figures for all PVT corners can be sent to the optimization engine
for further ranking. These performance figures are a mix of simulated performance
figures (TT corners) and predicted performance figures (remaining PVT corners). In
the scope of the sizing optimization, one of these loops represents a generation of
the optimizer. A brief flowchart of one generation of the modified loop is shown in
Fig. 4.9.

In the following sections, a comparison with an exhaustive circuit sizing opti-
mization is performed to determine if the optimization with the modified loop, while
using the PVT estimator throughout 100% of the optimization, achieves adequate
results.

4.4.1 Class C/D VCO with PVT Estimator Working at 100%

This speed-up factor results from the optimization with the modified loop only eval-
uating the TT conditions for two tuning modes and the original optimization, which
evaluated both TT conditions and PVT corners for 2 different tuning modes (18 2 = 9).
The number of generations of the now modified optimization was set to 350, the
same as the original, to obtain the best comparison base possible. Both optimization

4.4 In-the-Loop Integration 87

Fig. 4.8 Flow of a
generation of the original
AIDA loop

constraints and objectives were the same, shown in Table 2.5. The POF evolution
throughout the modified loop optimization is depicted in Fig. 4.10 alongside the final
original POF. However, to ascertain whether the solutions obtained are feasible or
not, Unfortunately, all the solutions were revealed to be unfeasible in at least 30 of the
160 total performances. The POF values obtained in generation 350 and the number
of failed optimization constraints are shown in Table 4.16.

As observable, the number of final solutions obtained increased substantially
(from 27 to 40), and the range of values for both worst-case power and worst-case
phase noise at 10 MHz improved significantly, with solutions where the worst-case
power achieves 2 mW, less than half of the lowest worst-case power of the original
optimization, and also, the worst-case phase noise of all solutions decreased by at
least 2 dBc/Hz. However, these results cannot possibly be translated into a working

88 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Fig. 4.9 Flow of a
generation of the modified
AIDA loop (modification in
red)

circuit. Finally, a small optimization of 20 generations with the original AIDA loop
was performed using the last state of the modified loop optimization as the starting
point. This optimization was done to ascertain if feasible solutions could be found
from this starting point. However, even after this step, no feasible solution was found.

4.4 In-the-Loop Integration 89

-3.00E-04

2.00E-04

7.00E-04

1.20E-03

1.70E-03

2.20E-03

-138.00 -137.00 -136.00 -135.00 -134.00 -133.00 -132.00 -131.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dBc/Hz)

Generation 40

Generation 120

Generation 240

Generation 350

Original

Fig. 4.10 POF evolution throughout the modified loop optimization

These results demonstrate one major flaw in the modified loop. It over-estimates
the circuit performances, i.e., it makes the optimization engine search in a perfor-
mance space where the circuit simply cannot operate in real-world conditions. In
order to prevent this situation, some control has to be introduced in the modified
loop to guide the optimization into feasible regions.

4.4.2 PVT Estimator with Error Controller

As stated, some control has to be introduced in the loop to guide the optimization
to feasible solution regions better. In order to achieve this, a simple error controller
for each ANN used in the modified loop was implemented. A brief flowchart of one
generation of the modified loop with the new controller is shown in Fig. 4.11.

At each generation, before candidate sizing solutions and TT performance figures
are sent to the ANNs, they first pass through a controller that will choose which
ANNs will operate at the current generation, i.e., which PVT corner/tuning mode
combination will be simulated or predicted.

First, the controller sends 20% of the candidate sizing solutions to be simulated
and predicted at the same time. For the PVT corner/tuning mode combination, with
the simulator’s output, the controller checks if there are more feasible solutions than
unfeasible solutions. If there are more unfeasible solutions than feasible solutions
or the same number, the PVT corner/tuning mode combination will be simulated

90 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.16 POF at generation 350

Worst case
phase noise
10 MHz
(dBc/Hz)

Worst case
power

#Failed
constraints

Worst case
phase noise
10 MHz
(dBc/Hz)

Worst case
power

#Failed
constraints

− 137.85 1.08E−03 30 − 137.31 5.02E−04 49

− 137.82 1.08E−03 31 − 137.16 4.99E−04 49

− 137.81 1.05E−03 36 − 137.09 4.96E−04 49

− 137.80 1.04E−03 35 − 137.00 4.96E−04 49

− 137.76 1.03E−03 36 − 136.91 4.89E−04 49

− 137.74 1.02E−03 42 − 136.64 4.82E−04 49

− 137.72 8.34E−04 36 − 136.53 2.97E−04 51

− 137.70 8.28E−04 36 − 136.50 2.97E−04 50

− 137.68 7.82E−04 35 − 136.39 2.91E−04 49

− 137.67 7.65E−04 36 − 136.33 2.77E−04 49

− 137.64 7.17E−04 36 − 136.29 2.64E−04 54

− 137.63 7.09E−04 41 − 136.18 2.64E−04 48

− 137.59 5.97E−04 44 − 136.07 2.39E−04 51

− 137.56 5.97E−04 36 − 136.06 2.39E−04 50

− 137.54 5.21E−04 49 − 136.03 2.29E−04 48

− 137.53 5.21E−04 49 − 135.87 2.10E−04 49

− 137.51 5.14E−04 49 − 135.79 2.09E−04 51

− 137.47 5.10E−04 49 − 135.45 2.09E−04 49

− 137.41 5.08E−04 49 − 135.39 2.08E−04 55

− 137.37 5.08E−04 49 − 135.30 1.99E−04 55

(instead of predicted) in that generation for the remaining candidate solutions. This
acts as the primary filter to prevent the optimization of entering unfeasible regions.

If there are more feasible solutions than unfeasible, it passes to the next step.
Here the controller uses the output of the feasible solutions from the simulator, i.e.,
simulated performances (from the previous step), and compares them to the corre-
sponding predicted performances. The error between each performance is calculated
and the average error of all points is obtained. If the error (MAPE) is higher than
5%, the combination will be simulated in that generation for the rest of the candidate
solutions. If it is equal to or lower than 5%, the corresponding ANN will predict the
PVT corner/tuning mode combination in that generation for the rest of the candidate
solutions. The flow of the controller is depicted in Fig. 4.12.

4.4 In-the-Loop Integration 91

Fig. 4.11 Flow of a generation of the controlled modified AIDA loop (modification in red and
controller in blue)

92 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Fig. 4.12 Flow of the controller for each PVT corner/tuning mode combination

4.4 In-the-Loop Integration 93

4.4.3 Results with Controlled PVT Estimator

Using the new controlled PVT estimator, three different optimizations will be
performed, where in each one, a different objective of this dissertation will be
analyzed:

• Class C/D VCO for 3.5-to-4.8 GHz: check if the controlled PVT estimator is
capable of adequate circuit performance estimations in the PVT corners;

• Class C/D VCO 2.3-to-2.5 GHz: verify if the controlled PVT estimator can be
directly reused for optimization with entirely different objectives and constraints
of the same topology that was trained for, i.e., without re-training it (plug-and-play
functionalities);

• ULP Class B/C VCO: verify if the same ANN structure used in the controlled
PVT estimator for a particular circuit topology can be reused for a different VCO
circuit topology (plug-and-train functionalities).

4.4.3.1 Class C/D VCO for 3.5-to-4.8 GHz

This section’s main objective is to compare the final POF results using the controlled
PVT estimator with the final POF obtained in the original optimization. The number
of generations of the optimization using the controlled PVT estimator was set to 330,
and in the last 20 generations, the optimization was carried out using the original loop.
The POF evolution throughout the optimization with the controlled PVT estimator
is depicted in Fig. 4.13 alongside the final original POF.

As observable, the optimization at generation 330, i.e., the optimization using the
controlled PVT estimator, finds solutions with similar worst-case power and worst-
case phase noise at 10 MHz to the original optimization when comparing with the
optimization using a PVT estimator working at 100% in Fig. 4.10.

The circuit sizing solutions of the POF at generation 330 were simulated and
the results show that 1 of the 20 solutions of the POF passed all the optimization
constraints and thus, a feasible solution was found. Additionally, 2 solutions close to
the optimization specifications were also found, with only 1 constraint failing. These
results are shown in better detail in Table 4.17. This concludes that the controller
could direct the optimization to feasible performance regions, which was the main
problem of the optimization using the PVT estimator working at 100%.

After the last 20 generations, the optimization could find 30 solutions, and because
these generations were performed entirely with the simulator, all of them are feasible.
Comparing the performances of these solutions with the original POF, it is possible
to observe that the solutions in terms of worst-case power are worse than the original
POF by at least 1 mW, but regarding the worst-case phase noise at 10 MHz the
optimization was capable of finding solutions with nearly less 2 dBc/Hz. The final
POF is shown in Fig. 4.18 and the values are shown in detail in Table 4.18.

94 4 Process, Voltage and Temperature Corner Performance Estimator Using…

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

-137.00 -136.00 -135.00 -134.00 -133.00 -132.00 -131.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dBc/Hz)

Generation 40

Generation 120

Generation 240

Generation 330

Generation 350

Original

Fig. 4.13 POF evolution throughout the modified loop optimization with controller

Table 4.17 POF at generation 330

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

Failed
constraints

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

Failed
constraints

− 136.78 1.57 1 − 134.96 9.53 × 10–1 24

− 136.52 1.56 13 − 134.59 7.11 × 10–1 23

− 136.36 1.50 0 − 134.32 4.96 × 10–1 30

− 136.34 1.41 1 − 134.30 4.96 × 10–1 30

− 136.29 1.26 7 − 134.29 4.39 × 10–1 30

− 136.07 1.11 13 − 134.26 4.35 × 10–1 30

− 135.94 1.05 18 − 134.18 4.31 × 10–1 30

− 135.47 1.04 13 − 132.51 4.31 × 10–1 47

− 135.19 9.79 × 10–1 18 − 132.50 4.22 × 10–1 30

− 135.09 9.79 × 10–1 13 − 132.16 4.06 × 10–1 36

The speed-up obtained with the controlled PVT estimator is calculated by using
the percentage of usage of each ANN throughout the first 330 generations of the
optimization. These values are shown in Fig. 4.14.

While analyzing Fig. 4.14, it is possible to report that throughout the first 330
generations of the optimization, 78.5% of the original PVT corners evaluations were

4.4 In-the-Loop Integration 95

Table 4.18 POF at generation 350

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

− 136.86 1.65 − 136.43 1.42 − 134.17 7.97 × 10–1

− 136.83 1.65 − 136.38 1.42 − 134.16 7.79 × 10–1

− 136.82 1.65 − 136.37 1.37 − 133.99 7.78 × 10–1

− 136.77 1.65 − 136.23 1.34 − 133.97 6.98 × 10–1

− 136.73 1.65 − 135.78 1.33 − 133.79 6.98 × 10–1

− 136.68 1.64 − 134.56 8.90 × 10–1 − 133.72 6.90 × 10–1

− 136.56 1.43 − 134.34 8.01 × 10–1 − 133.57 6.90 × 10–1

− 136.47 1.43 − 134.33 7.99 × 10–1 − 133.41 6.90 × 10–1

− 136.46 1.43 − 134.31 7.98 × 10–1 − 133.36 6.89 × 10–1

− 136.44 1.43 − 134.22 7.98 × 10–1 − 133.28 6.81 × 10–1

3.9 3.6
11.8

40.9
34.5

3.3
14.8

2.4 6.7 4.5

30.0

90.3

60.9

5.2

29.1

1.5

96.1 96.4
88.2

59.1
65.5

96.7
85.2

97.6 93.3 95.5

70.0

9.7

39.1

94.8

70.9

98.5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b0000
 FF

b0000
 FS

b0000
SF

b0000
SS

b0000
300mV

b0000
400mV

b0000
m40dC

b0000
85dC

b1111
FF

b1111
FS

b1111
SF

b1111
SS

b1111
300mV

b1111
400mV

b1111
m40dC

b1111
85dC

Fig. 4.14 Modes simulated (blue) versus predicted (green) throughout optimization

predicted using ANNs. Considering the simulation of the TT conditions, using the
controlled PVT estimator resulted in a speed-up factor of 3.31.

However, the total speed-up of the 350 generations is lower due to the last 20
generations of full simulation that must be accounted. Considering these simulations,
the total speed-up factor obtained using the controlled PVT estimator is 2.92.

These results show that the optimization using a controlled PVT estimator can find
a small group of feasible or almost feasible solutions capable of competing in terms

96 4 Process, Voltage and Temperature Corner Performance Estimator Using…

of performance with the original optimization while achieving a speed-up factor
of 3.31. In the original optimization, the first 330 generations took, approximately
577 h to complete, while the optimization using the PVT estimator only took 185 h
to complete. Using the simulator for an additional 20 generations at the end of the
optimization achieves a more robust and broad-ranging POF, while still achieving
a speed-up factor of 2.92. With the PVT estimator, the modified optimization took
16 and a half days less than the original optimization. The main objective of this
comparison is therefore confirmed to be possible, proving that the PVT estimator
can find adequate PVT corner circuit performance estimations.

4.4.3.2 Plug-and-Play Class C/D VCO 2.3-to-2.5 GHz

The main objective of this section is to determine if the controlled PVT estimator,
trained and tuned for the optimization of Sect. 4.4.3.1, can find adequate PVT corner
circuit performance estimations for optimization with completely different targets of
the same circuit topology. For the comparison, the optimization that will be used is
a similar simulation-based sizing optimization of the circuit in Sect. 2.5. However,
the range of the oscillation frequency in which the class C/D VCO will operate is
now set to 2.3-to-2.5 GHz, and the optimization constraints were tightened, i.e.,
the maximum (or minimum) values chosen for the measured performances were
decreased (or increased). The optimization constraints and objectives are shown in
Table 4.19.

Table 4.19 Optimization constraints and objectives

Tuning mode Measure Testbenches Units Optimization
constraint

Optimization
objective

b0000 fosc All GHz ≥ 2.5
PN@10 kHz All dBc/Hz ≤ 54
PN@100 kHz All dBc/Hz ≤ 81
PN@1 MHz All dBc/Hz ≤ − 103
PN@10 MHz All dBc/Hz ≤ − 124 Minimize

Power All mW n/d Minimize

FOM@10 MHz All dBc/Hz ≥ 185
b1111 fosc All GHz ≤ 2.3

PN@10 kHz All dBc/Hz ≤ − 60
PN@100 kHz All dBc/Hz ≤ − 87
PN@1 MHz All dBc/Hz ≤ − 108
PN@10 MHz All dBc/Hz ≤ − 129 Minimize

Power All mW n/d Minimize

FOM@10 MHz All dBc/Hz ≥ 185

4.4 In-the-Loop Integration 97

3.00E-04

3.20E-04

3.40E-04

3.60E-04

3.80E-04

4.00E-04

4.20E-04

4.40E-04

-138.00 -137.80 -137.60 -137.40 -137.20 -137.00 -136.80 -136.60 -136.40 -136.20 -136.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dBc/Hz)

Generation 40

Generation 80

Generation 160

Generation 200

Fig. 4.15 POF evolution throughout the original optimization

First, an optimization using the unmodified loop was executed only for comparison
terms. However, as opposed to the original optimization, the data will not be used
for the training phase of the ANNs, given that it would defeat the main objective of
this comparison. The optimization executed a total of 200 generations, took 350 h to
complete, and resulted in 13 sizing solutions. Figure 4.15 shows the POF evolution
of the original optimization, which contains the best sizing solutions throughout
the generations and in Table 4.20 is shown the values of the final POF obtained at
generation 200.

Similar to the optimization of the previous section, the optimization using the
controlled PVT estimator was executed for 180 generations, and after this, the opti-
mization was carried out for 20 generations using the original unmodified loop. The
POF evolution throughout this optimization is depicted in Fig. 4.16 alongside the
final original POF for easier comparison.

As can be seen by the results, the optimization at generation 180 was capable
of finding solutions in a performance region with better worst-case phase noise
at 10 MHz than the original optimization. However, the worst-case power almost
doubled when comparing the solutions with the lowest worst-case power of both
optimizations.

To ascertain whether the solutions found are feasible and how many optimization
specification constraints were failed, if any, these were simulated. The results show
that no solution passed all optimization specification constraints. However, 2 of
them achieved only 2 failed constraints and 2 other achieved 7 failed constraints.

98 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.20 Original POF at
generation 200

Worst case PN@10 MHz (dBc/Hz) Worst case power (mW)

− 137.86 4.25 × 10–1

− 137.85 4.24 × 10–1

− 137.84 4.00 × 10–1

− 137.82 3.91 × 10–1

− 137.74 3.90 × 10–1

− 137.72 3.69 × 10–1

− 137.69 3.69 × 10–1

− 137.68 3.33 × 10–1

− 137.61 3.28 × 10–1

− 137.59 3.28 × 10–1

− 137.58 3.23 × 10–1

− 137.50 3.22 × 10–1

− 136.92 3.18 × 10–1

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

9.00E-04

-139.00 -138.50 -138.00 -137.50 -137.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dB/Hz)

Generation 40
Generation 80
Generation 120
Generation 160
Generation 180
Generation 200
Original

Fig. 4.16 POF evolution throughout the modified loop optimization with the controller

This means that these solutions came close to feasibility which indicates that the
optimization was capable of finding an adequate POF performance region. These
results are shown in Table 4.21.

After the last 20 generations, the optimization found 5 feasible solutions near
the region of performances at generation 180. When comparing results, it is clear

4.4 In-the-Loop Integration 99

Table 4.21 POF at
generation 180

Worst case
PN@10 MHz
(dBc/Hz)

Worst case power
(mW)

#Failed constraints

− 138.41 6.44 × 10–1 7

− 138.35 6.43 × 10–1 2

− 138.24 6.38 × 10–1 2

− 138.09 6.18 × 10–1 7

− 137.77 5.88 × 10–1 12

that the lowest worst-case power solution found with the PVT estimator increased by
almost 3 mW equaling a 100% increase from the original optimization. However, the
optimization was capable of finding solutions with 1 dBc/Hz less than the solutions
in the original POF. These results are shown in Table 4.22.

Once again, the speed-up obtained with the controlled PVT estimator is calculated
by using each ANN’s usage percentage throughout the optimization. These values
are shown in Fig. 4.17.

While analyzing Fig. 4.21, it is possible to report that throughout the first 180
generations of the optimization, 74.5% of the original PVT corners evaluations were
instead predicted using ANNs. Considering the simulation of the TT conditions,
using the controlled PVT estimator resulted in a speed-up factor of 2.95.

However, as before, the total speed-up of the 200 generations is lower as the last
20 generations of full simulation must be accounted. Considering these simulations,
the total speed-up factor obtained using the controlled PVT estimator is 2.48.

These results show that the controlled PVT estimator can find adequate circuit
sizing performance regions despite being trained and tuned with data from another
optimization, while still obtaining a speed-up factor of 2.95. In the original opti-
mization, the first 180 generations took, approximately 315 h to complete, while
the optimization using the PVT estimator only took 107 h to complete. Using the
simulator for the additional 20 generations, resulted in a final POF with 5 feasible
solutions while still being able to achieve a speed-up factor of 2.48. With the PVT
estimator, in total, the modified optimization took 8 and a half days less than the
original optimization. The final POF results reveal feasible solutions with better
performances in terms of phase noise but worse performances in terms of power.

Table 4.22 POF at
generation 200

Worst case phase noise 10 MHz
(dBc/Hz)

Worst case power (mW)

− 138.63 6.43 × 10–1

− 138.62 6.23 × 10–1

− 138.56 6.13 × 10–1

− 138.54 6.03 × 10–1

− 138.06 5.98 × 10–1

100 4 Process, Voltage and Temperature Corner Performance Estimator Using…

6.7 2.8
8.9

42.8

61.7

2.8

20.0

1.7 6.7 1.7

17.8

85.0
73.3

46.7

28.3

1.7

93.3 97.2
91.1

57.2

38.3

97.2

80.0

98.3 93.3 98.3

82.2

15.0
26.7

53.3

71.7

98.3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b0000
 FF

b0000
 FS

b0000
SF

b0000
SS

b0000
300mV

b0000
400mV

b0000
m40dC

b0000
85dC

b1111
FF

b1111
FS

b1111
SF

b1111
SS

b1111
300mV

b1111
400mV

b1111
m40dC

b1111
85dC

Fig. 4.17 Modes simulated (blue) versus predicted (green) throughout optimization

Fig. 4.18 Ultralow-power complementary class B/C hybrid-mode VCO topology [25]

Due to the random nature of the optimization loop, it is not certain that these perfor-
mance results would be replicated if the optimization would be executed again. To
ascertain the competitiveness of these solutions in terms of performances more opti-
mizations would have to be performed. However, the reduction of optimization days
using the PVT estimator reveals the competitiveness in terms of computational time
used to obtain feasible solutions.

4.4 In-the-Loop Integration 101

Table 4.23 Optimization variables

Variable Units Min Grid Max

irad µm 15 5 90

itur – 1 1 6

ispa µm 2 1 4

iwid µm 3 1 30

nccl, pccl nm 60 20 240

nccf, pccf, f 5/6, f 7/8 – 1 1 32

nccw, pccw, w5/6 µm 0.6 0.2 6

l7/8 nm 130 20 6000

w7/8 nm 120 20 6000

rccl µm 0.8 0.2 30

cnv, cnh, vnv, vnh, snv – 6 2 100

snh – 6 2 50

4.4.3.3 Plug-and-Train Ultralow-Power Class B/C VCO

Next, we determine if the controlled PVT estimator, while reusing the ANN structure
for a certain VCO circuit topology in the training phase, is capable of finding adequate
PVT corner circuit performance estimations for a different VCO circuit topology.
Simulation-based sizing optimization of the Ultra Low-Power class B/C VCO illus-
trated in Fig. 4.18 is used for this experiment. The complete list of optimization
variables is presented in Table 4.23.

Similar to the optimization of Sect. 4.4.1, the principal objective was to mini-
mize both power and phase noise at 10 MHz in both tuning modes, while imposing
value constraints on 7 measured performances, in both tuning modes as well. These
optimization constraints are shown in Table 4.24.

First, an optimization using the unmodified loop was executed for comparison
with the optimization using the PVT estimator and to obtain the dataset to train the
ANNs. The data from the original optimization was collected and structured similarly
to the previous dataset. To use this dataset for the training phase of the ANNs, the
pre-processing strategy was similar to the one described in Sect. 4.3, resulting in 16
datasets clear of outliers and null values, ready to be fed to the ANNs. The structure
of the ANNs that will be used in the PVT estimator will be one tuned through this
chapter, and used in Sects. 4.4.3.1 and 4.4.3.2. However, as observable in Table
4.23, the number of optimization variables is now 22, which forces the number of
neurons in the input layer to change from 38 to 32 (22 optimization variables plus
10 performance figures in TT conditions).

The optimization with the unmodified loop executed a total of 100 generations,
took 636 h to complete, and resulted in 14 sizing solutions. Figure 4.19 shows the
POF evolution of this optimization and in Table 4.25 is shown the values of the final
POF obtained at generation 100.

102 4 Process, Voltage and Temperature Corner Performance Estimator Using…

Table 4.24 Optimization constraints and objectives

Tuning mode Measure Testbenches Units Optimization
constraint

Optimization
objective

b0000 fosc All GHz ≥ 5.3
PN@10 kHz All dBc/Hz ≤ − 55
PN@100 kHz All dBc/Hz ≤ − 75
PN@1 MHz All dBc/Hz ≤ − 95
PN@10 MHz All dBc/Hz ≤ − 115 Minimize

Power All mW n/d Minimize

FOM@10 MHz All dBc/Hz ≥ 175
b1111 fosc All GHz ≤ 4.6

PN@10 kHz All dBc/Hz ≤ − 55
PN@100 kHz All dBc/Hz ≤ − 75
PN@1 MHz All dBc/Hz ≤ − 95
PN@10 MHz All dBc/Hz ≤ − 115 Minimize

Power All mW n/d Minimize

FOM@10 MHz All dBc/Hz ≥ 175

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

-131.00 -130.50 -130.00 -129.50 -129.00 -128.50 -128.00 -127.50 -127.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dBc/Hz)

Generation 20

Generation 60

Generation 80

Generation 100

Fig. 4.19 POF evolution throughout the original optimization

4.4 In-the-Loop Integration 103

Table 4.25 Original POF at
generation 100

Worst case phase noise 10 MHz
(dBc/Hz)

Worst case power (mW)

− 130.56 2.91 × 10–1

− 130.44 2.85 × 10–1

− 129.58 2.68 × 10–1

− 129.17 2.63 × 10–1

− 129.04 2.55 × 10–1

− 128.90 2.48 × 10–1

− 128.15 2.41 × 10–1

− 128.06 2.28 × 10–1

− 127.80 2.11 × 10–1

− 127.67 2.05 × 10–1

− 127.57 2.01 × 10–1

− 127.44 2.01 × 10–1

− 127.42 1.95 × 10–1

− 127.28 1.93 × 10–1

Using the same strategy as in the previous sections, the optimization using the
controlled PVT estimator was executed for 80 generations, and after this, the opti-
mization was carried out for 20 generations using the original unmodified loop. The
POF evolution throughout this optimization is depicted in Fig. 4.20 alongside the
final original POF for easier comparison.

As observable, the optimization at generation 80 could find 16 solutions in a
performance region with considerably better worst-case phase noise at 10 MHz than
the original optimization and significantly lower worst-case power throughout almost
all solutions.

To ascertain whether the solutions found are feasible and how many optimiza-
tion specification constraints failed, if any, these were simulated. The results show
that no solution passed all optimization specification constraints. However, 5 of them
achieved 6 failed constraints and 4 other achieved 12 failed constraints. These 9 solu-
tions came close to feasibility which indicates that the optimization was capable of
finding an adequate POF performance region. These results are shown in Table 4.26.

After the last 20 generations, the optimization found 12 feasible solutions near
the region of performances at generation 80. It is evident that both worst-case phase
noise at 10 MHz and worst-case power improved substantially when comparing
with the original. The lowest and highest worst-case power decreased by 0.1 mW
and 0.46 mW, respectively, while the lowest and highest worst-case phase noise at
10 MHz decreased by 1.8 dBc/Hz and 0.32 dBc/Hz, respectively. These results are
shown in Table 4.27.

Once again, the speed-up obtained with the controlled PVT estimator is calculated
by using the percentage of usage of each ANN throughout the optimization. These
values are shown in Fig. 4.21.

104 4 Process, Voltage and Temperature Corner Performance Estimator Using…

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

-133.00 -132.00 -131.00 -130.00 -129.00 -128.00 -127.00 -126.00 -125.00 -124.00

W
or

st
 c

as
e

po
w

er
 (W

)

Worst case phase noise 10MHz (dBc/Hz)

Generation 20

Generation 60

Generation 80

Generation 100

Original

Fig. 4.20 POF evolution throughout the modified loop optimization with controller

Table 4.26 POF at generation 80

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

#Failed
Constraints

Worst case
PN@10 MHz
(dBc/Hz)

Worst case
power (mW)

#Failed
constraints

− 130.79 2.93 × 10–1 12 − 130.30 2.46 × 10–1 24

− 130.78 2.68 × 10–1 12 − 130.15 2.18 × 10–1 6

− 130.61 2.63 × 10–1 6 − 129.84 2.11 × 10–1 6

− 130.51 2.59 × 10–1 12 − 129.74 2.02 × 10–1 6

− 130.46 2.57 × 10–1 18 − 129.59 1.91 × 10–1 30

− 130.45 2.54 × 10–1 12 − 129.13 1.79 × 10–1 6

− 130.44 2.51 × 10–1 18 − 128.77 1.64 × 10–1 24

− 130.31 2.46 × 10–1 24 − 126.99 1.60 × 10–1 42

When analyzing Fig. 4.21, it is possible to report that throughout the first 80
generations of the optimization, 74.1% of the original PVT corners evaluations were
predicted using ANNs. Considering the simulation of the TT conditions, using the
controlled PVT estimator resulted in a speed-up factor of 2.92.

However, the total speed-up of the 100 generations is lower because the last 20
generations of full simulation must be accounted for, and the percentage of simulation
added of these generations is bigger when compared to the previous optimizations

4.4 In-the-Loop Integration 105

Table 4.27 POF at
generation 100

Worst case PN@10 MHz (dBc/Hz) Worst case power (mW)

− 130.88 2.45 × 10–1

− 130.51 2.32 × 10–1

− 130.50 2.30 × 10–1

− 130.42 2.26 × 10–1

− 130.16 2.18 × 10–1

− 129.73 2.13 × 10–1

− 129.72 2.12 × 10–1

− 129.64 2.04 × 10–1

− 129.54 1.88 × 10–1

− 129.53 1.88 × 10–1

− 128.99 1.82 × 10–1

− 128.99 1.82 × 10–1

18.8 13.8 15.0 17.5 15.0 16.3

38.8

15.0 17.5
26.3 27.5

40.0
47.5

18.8

57.5

30.0

81.3 86.3 85.0 82.5 85.0 83.8

61.3

85.0 82.5
73.8 72.5

60.0
52.5

81.3

42.5

70.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b0000
 FF

b0000
 FS

b0000
SF

b0000
SS

b0000
750mV

b0000
850mV

b0000
m40dC

b0000
85dC

b1111
FF

b1111
FS

b1111
SF

b1111
SS

b1111
750mV

b1111
850mV

b1111
m40dC

b1111
85dC

simulated

Fig. 4.21 Modes simulated (blue) versus predicted (green) throughout optimization

(20% of total optimization). Considering this, the total speed-up factor obtained using
the controlled PVT estimator is 2.11.

These results confirm that the controlled PVT estimator can find adequate circuit
sizing performance regions despite its ANNs not being tuned for this optimization,
while still obtaining a speed-up factor of 2.92. In the original optimization, the first
80 generations took approximately 509 h to complete, while the optimization using
the PVT estimator only took 174 h to complete. The additional 20 generations using

106 4 Process, Voltage and Temperature Corner Performance Estimator Using…

the original unmodified loop at the end of the optimization achieve better results
than the original optimization while still achieving a speed-up factor of 2.11. With
the PVT estimator, in total, the modified optimization took almost 14 days less than
the original optimization. Once again, this reduction reveals the competitiveness of
computational time used to obtain feasible solutions.

4.5 Conclusions and Future Research Directions

This chapter proposes an ML/DL method tailored for exhaustive PVT-inclusive RF
IC sizing optimization problems for the first time in literature. Unlike previous
approaches, where the simulator is entirely replaced, two control phases prevent
the sizing loop from being guided to unrealistic design space regions. The proposed
CPVTR was tested on a state-of-the-art class C/D VCO, providing speed-up factors
of almost 3× when compared with traditional PVT-inclusive optimizations, saving
weeks of computational effort. Due to the characteristics of its structure, the same
model can be used for optimizations with a different set of targets, i.e., generalizing
beyond training.

4.5.1 Conclusions

This work presents an approach towards the acceleration of analog/RF IC
optimization-based sizing loop with the help of a PVT corner performance estimator,
using multiple ANNs, to complement the simulation process, therefore reducing the
simulator workload.

For developing the PVT estimator, an optimization-based sizing of a Class C/D
VCO for 3.9-to-4.8 GHz was used as a case study, gathering the necessary data to
train the ANNs and ascertain if the results of the estimations before integration in the
optimization loop, were adequate. All ANNs showed that the estimation error results
were adequate, so the integration and discussion of the final results were performed.

Three different circuit optimizations were used to test the PVT estimator. The
first one was the same optimization based-sizing of a class C/D VCO for 3.9-to-
4.8 GHz used to develop the PVT estimator. The PVT estimator reduced 78.5%
of the simulator workload, lowering the total optimization run time by 16 and a
half days (the original run took 25 and a half days to complete). The final solution
results showed similar performances to the original optimization, proving that the
PVT estimator can find adequate PVT corner performances. The second optimiza-
tion was an optimization-based sizing of the same circuit topology as the previous
one, although the range in which the VCO operates was changed to 2.3-to-2.5 GHz,
and the optimization constraints were tightened. The PVT estimator reduced 74.5%
of the simulator workload, lowering the total optimization run time by 8 and a half
days (the original run took 14 and a half days to complete). Feasible solutions were

4.5 Conclusions and Future Research Directions 107

found at the end of the optimization using the PVT estimator, proving its capability of
being reused for optimizations with completely different targets of the same circuit
topology its ANNs were trained to, demonstrating its plug-and-play functionalities.
The third and final experiment was an optimization-based sizing of a different VCO
circuit topology, i.e., an ultralow power class B/C VCO. The same structure of the
ANNs used in the two previous tests was reused to train the ANNs in this optimiza-
tion. The PVT estimator reduced 74.1% of the simulator workload, lowering the
total optimization run time by 14 and a half days (the original run took 26 and a half
days to complete). Feasible solutions with better performances than the original opti-
mization were found at the end of the optimization using the PVT estimator, proving
the capability of its ANNs reuse for a different VCO circuit topology, therefore
demonstrating its plug-and-train functionalities.

4.5.2 Future Work

This work proved that an optimization loop using the PVT estimator could achieve
feasible solutions while obtaining great speed-ups. However, it is possible to further
optimize the competitiveness in both optimization times, quality of estimation, and
the overall generalization of the PVT estimator when implemented in different circuit
topologies.

While it was possible to prove that the modified loop can achieve feasible solu-
tions, given the random nature of the optimization loop, each optimization can
output different final solutions from another. Therefore, several optimizations must
be performed to check if the final solutions are better or worse than the original opti-
mization. As these optimizations would take much time, several weeks or months
should be spent on this process.

The datasets used in this work were obtained by executing optimizations, with
the unmodified loop, with an execution time of almost one month. Using larger
datasets with a small number of null and duplicated values would surely increase
the estimation capability of the ANNs, and given that smaller error results between
estimation and real value would make the PVT estimator controller allow the ANNs
to predict more often, the optimization would be faster, and the final solutions would
be better.

An essential aspect of the optimization with the PVT estimator is its great execu-
tion time reduction. One hypothesis that was not performed due to time constraints
was making the execution time of the optimizations with the PVT estimator the same
as the original ones to verify if the final POF results would be better, given that in
some instances, the number of generations would triple in number.

Augmentation of the capability of generalization of the PVT estimator could be
done in two ways: using datasets with data from different circuit topology optimiza-
tions and making the PVT estimator online with the optimization. The first one would
need a more complex structure for the ANNs used in the PVT estimator. However,
there is a possibility that the ANNs would learn more information given different

108 4 Process, Voltage and Temperature Corner Performance Estimator Using…

circuit topology data. The second one is an approach that uses the ANNs so that a
training phase would not be performed prior to the integration in the loop. Therefore, a
dataset would not be needed. The ANNs would be integrated into the loop, and for the
first generations, the loop would work without them. At each generation, the ANNs
would use the data from the input and output of the simulator for training purposes,
therefore learning the circuit topology. In each generation, the ANNs would estimate
some candidate sizing solutions, using the actual values from the simulator to check
the estimation error. When the error is low enough, the ANNs will become online on
the modified loop at the start of the next generation, beginning the speed-up process
only then. With this, the total speed-up obtained would decrease considerably, but a
time-consuming optimization to gather the data for the dataset would not be needed.

References

1. Afacan E, Lourenço N, Martins R, Dündar G (2021) Review: machine learning techniques in
analog/RF integrated circuit design, synthesis, layout, and test. Integr VLSI 77:113–130

2. Suissa A et al (2010) Empirical method based on neural networks for analog power modeling.
IEEE TCAD 29(5):839–844

3. Wolfe G, Vemuri R (2003) Extraction and use of neural network models in automated synthesis
of operational amplifiers. IEEE TCAD 22(2):198–212

4. Alpaydin G, Balkir S, Dundar G (2003) An evolutionary approach to automatic synthesis of
high-performance analog integrated circuits. IEEE Trans Evol Comput 7(3):240–252. https://
doi.org/10.1109/TEVC.2003.808914

5. Liu H, Singhee A, Rutenbar RA, Carley LR (2002) Remembrance of circuits past: macromod-
eling by data mining in large analog design spaces. In: proceedings 2002 design automation
conference, pp 437–442

6. Lourenço N et al (2019) Using polynomial regression and artificial neural networks for
reusable analog IC sizing. In: 16th international conference on synthesis, modeling, analysis
and simulation methods and applications to circuit design, pp 13–16, July 2019

7. Zhu K et al (2019) Genius route: a new analog routing paradigm using generative neural
network guidance. In: proceedings of the ICCAD

8. Guerra D, Canelas A, Póvoa R, Horta N, Lourenço N, Martins R (2019) Artificial neural
networks as an alternative for automatic analog IC placement. In: international conference on
SMACD, Lausanne, Switzerland, July 2019

9. Gusmão A, Passos F, Póvoa R, Horta N, Lourenço N, Martins R (2020) Semi-supervised
artificial neural networks towards analog IC placement recommender. In: IEEE international
symposium on circuits and systems, Seville, Spain, Oct 2020

10. Gusmão A, Horta N, Lourenço N, Martins R (2022) Scalable and order invariant analog
integrated circuit placement with attention-based graph-to-sequence deep models. In: expert
systems with applications. Elsevier, Amsterdam

11. Gusmão A, Póvoa R, Horta N, Lourenço N, Martins R (2022) DeepPlacer: a custom integrated
OpAmp placement tool using deep models. In: applied soft computing, vol 115. Elsevier,
Amsterdam, 108188

12. Gusmão A, Horta N, Lourenço N, Martins R (2021) Late breaking results: attention in
Graph2Seq neural networks towards push-button analog IC placement. In: ACM/IEEE design
automation conference (DAC), San Francisco, USA, Dec 2021

13. Andraud M, Stratigopoulos H, Simeu E (2016) One-shot non-intrusive calibration against
process variations for analog/RF circuits. IEEE TCAS-I Reg Pap 63(11):2022–2035

https://doi.org/10.1109/TEVC.2003.808914
https://doi.org/10.1109/TEVC.2003.808914

References 109

14. İslamoğlu G, Çakici TO, Afacan E, Dündar G (2019) Artificial neural network assisted analog
IC sizing tool. In: 16th international conference on synthesis, modeling, analysis and simulation
methods and applications to circuit design, pp 9–12, July 2019

15. Çakıcı TO, İslamoğlu G, Güzelhan ŞN, Afacan E, Dündar G (2020) Improving POF quality in
multi objective optimization of analog ICs via deep learning. In: ECCTD, pp 1–4

16. Martins R et al (2019) Many-objective sizing optimization of a class-C/D VCO for ultralow-
power IoT and ultralow phase-noise cellular applications. IEEE Trans VLSI Syst 27(1):69–82

17. Tensorflow. Accessed: Out. 12, 2021. [Online]. Available: www.tensorflow.org
18. Keras. Accessed: Out. 12, 2021. [Online]. Available: https://github.com/fchollet/keras
19. Aurlien Gron (2017) Hands-on machine learning with scikit-learn and tensorflow: concepts,

tools, and techniques to build intelligent systems (1st edn). O’Reilly Media, Inc. ISBN 978-
1491962299

20. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in
convolutional network. Cornell University. arXiv:1505.00853, Nov 2015

21. Clevert D, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by
exponential linear units (ELUs). Cornell University. arXiv:1511.07289, Nov 2015

22. Early stopping with PyTorch to restrain your model from overfitting. Accessed: Out. 12, 2021.
[Online]. Available: https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-res
train-your-model-from-overfitting-dce6de4081c5

23. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

24. Passos F et al (2018) Enhanced systematic design of a voltage controlled oscillator using a
two-step optimization methodology. Integr VLSI 63:351–361

25. Martins R, Lourenço N, Horta N, Zhong S, Yin J, Mak P-I, Martins RP (2020) Design of a 4.2–
5.1 GHz ultralow-power complementary class-B/C hybrid-mode VCO in 65 nm CMOS fully
supported by EDA tools. IEEE Trans Circ Syst I Reg Pap (IEEE TCAS-I) 67(11):3965–3977

http://www.tensorflow.org
https://github.com/fchollet/keras
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1511.07289
https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-dce6de4081c5
https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-dce6de4081c5

	Preface
	Contents
	1 Introduction
	1.1 Analog/RF Integrated Circuit Design Automation
	1.2 Analog IC Design Flow
	1.3 Machine Learning and Analog IC Sizing
	1.4 Conclusion
	References

	2 Background and Related Work
	2.1 Knowledge-Based Sizing
	2.2 Optimization-Based Sizing
	2.2.1 Equation-Based Evaluation
	2.2.2 Simulation-Based Evaluation

	2.3 Machine Learning in Simulation-Based Evaluation
	2.3.1 Types of Supervision
	2.3.2 Simulation-Based Sizing Enhanced with SVMs
	2.3.3 Simulation-Based Sizing Enhanced with ANNs

	2.4 Other ML/DL Efforts on Analog/RF Sizing
	2.4.1 Predicting Sizing from Performances
	2.4.2 Reinforcement Learning

	2.5 Case Study
	2.5.1 Dual-Mode Class C/D VCO
	2.5.2 Dataset Generation

	2.6 Conclusion
	References

	3 Convergence Classifier and Frequency Guess Predictor Based on ANNs
	3.1 Contributions
	3.2 Classifier and Regressor Based on Deep ANNs
	3.2.1 Underlying Architectures

	3.3 Training the Model in Isolation (Results Pre-integration)
	3.3.1 Dataset Processing
	3.3.2 Feature Engineering
	3.3.3 Convergence Classifier and Its Hyperparameters
	3.3.4 Regressor and Its Hyperparameters
	3.3.5 Final Model Details
	3.3.6 Discussion

	3.4 In-the-Loop Integration
	3.4.1 Class C/D VCO for 3.5-to-4.8 GHz @ 50% Threshold
	3.4.2 Class C/D VCO for 3.5-to-4.8 GHz @ 75% Threshold
	3.4.3 Class C/D VCO for 3.5-to-4.8 GHz @ 90% and 100% Thresholds
	3.4.4 Analysis of the Points Fed to the Simulator
	3.4.5 Plug-and-Play Class C/D VCO 2.3 GHz-to-2.5 GHz
	3.4.6 Plug-and-Train Ultralow-Power Class B/C VCO

	3.5 Conclusions and Future Research Directions
	3.5.1 Conclusions
	3.5.2 Future Work

	References

	4 Process, Voltage and Temperature Corner Performance Estimator Using ANNs
	4.1 Contributions
	4.2 Controlled PVT Regressor Based on Deep ANNs
	4.3 Training the Model in Isolation (Results Pre-integration)
	4.3.1 Dataset Processing
	4.3.2 Feature Engineering
	4.3.3 Tuning Hyper-Parameters
	4.3.4 Final Model Details
	4.3.5 Test Results

	4.4 In-the-Loop Integration
	4.4.1 Class C/D VCO with PVT Estimator Working at 100%
	4.4.2 PVT Estimator with Error Controller
	4.4.3 Results with Controlled PVT Estimator

	4.5 Conclusions and Future Research Directions
	4.5.1 Conclusions
	4.5.2 Future Work

	References

