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Foreword

We are delighted to welcome you to the proceedings of ICDAR 2023, the 17th IAPR
International Conference on Document Analysis and Recognition, which was held in
San Jose, in the heart of Silicon Valley in the United States. With the worst of the
pandemic behind us, we hoped that ICDAR 2023 would be a fully in-person event.
However, challenges such as difficulties in obtaining visas also necessitated the partial
use of hybrid technologies for ICDAR 2023. The oral papers being presented remotely
were synchronous to ensure that conference attendees interacted live with the presen-
ters and the limited hybridization still resulted in an enjoyable conference with fruitful
interactions.

ICDAR 2023 was the 17th edition of a longstanding conference series sponsored by
the International Association of Pattern Recognition (IAPR). It is the premier interna-
tional event for scientists and practitioners in document analysis and recognition. This
field continues to play an important role in transitioning to digital documents. The IAPR-
TC 10/11 technical committees endorse the conference. The very first ICDAR was held in
St Malo, France in 1991, followed by Tsukuba, Japan (1993), Montreal, Canada (1995),
Ulm, Germany (1997), Bangalore, India (1999), Seattle, USA (2001), Edinburgh, UK
(2003), Seoul, South Korea (2005), Curitiba, Brazil (2007), Barcelona, Spain (2009),
Beijing, China (2011), Washington, DC, USA (2013), Nancy, France (2015), Kyoto,
Japan (2017), Sydney, Australia (2019) and Lausanne, Switzerland (2021).

Keeping with its tradition from past years, ICDAR 2023 featured a three-day main
conference, including several competitions to challenge the field and a post-conference
slate of workshops, tutorials, and a doctoral consortium. The conference was held at the
San Jose Marriott on August 21–23, 2023, and the post-conference tracks at the Adobe
World Headquarters in San Jose on August 24–26, 2023.

We thank our executive co-chairs, Venu Govindaraju and Tong Sun, for their support
and valuable advice in organizing the conference. We are particularly grateful to Tong for
her efforts in facilitating the organization of the post-conference in Adobe Headquarters
and for Adobe’s generous sponsorship.

The highlights of the conference include keynote talks by the recipient of the
IAPR/ICDAR Outstanding Achievements Award, and distinguished speakers Marti
Hearst, UC Berkeley School of Information; Vlad Morariu, Adobe Research; and Seiichi
Uchida, Kyushu University, Japan.

A total of 316 papers were submitted to the main conference (plus 33 papers to
the ICDAR-IJDAR journal track), with 53 papers accepted for oral presentation (plus
13 IJDAR track papers) and 101 for poster presentation. We would like to express
our deepest gratitude to our Program Committee Chairs, featuring three distinguished
researchers from academia, Gernot A. Fink, Koichi Kise, and Richard Zanibbi, and one
from industry, Rajiv Jain, who did a phenomenal job in overseeing a comprehensive
reviewing process and who worked tirelessly to put together a very thoughtful and
interesting technical program for the main conference. We are also very grateful to the
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members of the Program Committee for their high-quality peer reviews. Thank you to
our competition chairs, Kenny Davila, Chris Tensmeyer, and Dimosthenis Karatzas, for
overseeing the competitions.

The post-conference featured 8 excellent workshops, four value-filled tutorials, and
the doctoral consortium. We would like to thank Mickael Coustaty and Alicia Fornes,
the workshop chairs, Elisa Barney-Smith and Laurence Likforman-Sulem, the tutorial
chairs, and Jean-Christophe Burie and Andreas Fischer, the doctoral consortium chairs,
for their efforts in putting together a wonderful post-conference program.

We would like to thank and acknowledge the hard work put in by our Publication
Chairs, Anurag Bhardwaj and Utkarsh Porwal, who worked diligently to compile the
camera-ready versions of all the papers and organize the conference proceedings with
Springer. Many thanks are also due to our sponsorship, awards, industry, and publicity
chairs for their support of the conference.

The organization of this conference was only possible with the tireless behind-the-
scenes contributions of our webmaster and tech wizard, Edward Sobczak, and our secre-
tariat, ably managed by Carol Doermann. We convey our heartfelt appreciation for their
efforts.

Finally, we would like to thank for their support our many financial sponsors and
the conference attendees and authors, for helping make this conference a success. We
sincerely hope those who attended had an enjoyable conference, a wonderful stay in San
Jose, and fruitful academic exchanges with colleagues.

August 2023 David Doermann
Srirangaraj (Ranga) Setlur



Preface

Welcome to the proceedings of the 17th International Conference on Document Analysis
and Recognition (ICDAR) 2023. ICDAR is the premier international event for scientists
and practitioners involved in document analysis and recognition.

This year, we received 316 conference paper submissions with authors from 42
different countries. In order to create a high-quality scientific program for the conference,
we recruited 211 regular and 38 senior program committee (PC) members. Regular PC
members provided a total of 913 reviews for the submitted papers (an average of 2.89 per
paper). Senior PC members who oversaw the review phase for typically 8 submissions
took care of consolidating reviews and suggested paper decisions in their meta-reviews.
Based on the information provided in both the reviews and the prepared meta-reviews we
PC Chairs then selected 154 submissions (48.7%) for inclusion into the scientific program
of ICDAR 2023. From the accepted papers, 53 were selected for oral presentation, and
101 for poster presentation.

In addition to the papers submitted directly to ICDAR 2023, we continued the tradi-
tion of teaming up with the International Journal of Document Analysis and Recognition
(IJDAR) and organized a special journal track. The journal track submissions underwent
the same rigorous review process as regular IJDAR submissions. The ICDAR PC Chairs
served as Guest Editors and oversaw the review process. From the 33 manuscripts sub-
mitted to the journal track, 13 were accepted and were published in a Special Issue of
IJDAR entitled “Advanced Topics of Document Analysis and Recognition.” In addi-
tion, all papers accepted in the journal track were included as oral presentations in the
conference program.

A very prominent topic represented in both the submissions from the journal track as
well as in the direct submissions to ICDAR 2023 was handwriting recognition. Therefore,
we organized a Special Track on Frontiers in Handwriting Recognition. This also served
to keep alive the tradition of the International Conference on Frontiers in Handwriting
Recognition (ICFHR) that the TC-11 community decided to no longer organize as an
independent conference during ICFHR 2022 held in Hyderabad, India. The handwriting
track included oral sessions covering handwriting recognition for historical documents,
synthesis of handwritten documents, as well as a subsection of one of the poster sessions.
Additional presentation tracks at ICDAR 2023 featured Graphics Recognition, Natural
Language Processing for Documents (D-NLP), Applications (including for medical,
legal, and business documents), additional Document Analysis and Recognition topics
(DAR), and a session highlighting featured competitions that were run for ICDAR 2023
(Competitions). Two poster presentation sessions were held at ICDAR 2023.

As ICDAR 2023 was held with in-person attendance, all papers were presented by
their authors during the conference. Exceptions were only made for authors who could
not attend the conference for unavoidable reasons. Such oral presentations were then
provided by synchronous video presentations. Posters of authors that could not attend
were presented by recorded teaser videos, in addition to the physical posters.
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Three keynote talks were given by Marti Hearst (UC Berkeley), Vlad Morariu (Adobe
Research), and Seichi Uchida (Kyushu University). We thank them for the valuable
insights and inspiration that their talks provided for participants.

Finally, we would like to thank everyone who contributed to the preparation of the
scientific program of ICDAR 2023, namely the authors of the scientific papers submitted
to the journal track and directly to the conference, reviewers for journal-track papers,
and both our regular and senior PC members. We also thank Ed Sobczak for helping with
the conference web pages, and the ICDAR 2023 Publications Chairs Anurag Bharadwaj
and Utkarsh Porwal, who oversaw the creation of this proceedings.

August 2023 Gernot A. Fink
Rajiv Jain

Koichi Kise
Richard Zanibbi
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Abstract. Concerns about reproducibility in artificial intelligence (AI)
have emerged, as researchers have reported unsuccessful attempts to
directly reproduce published findings in the field. Replicability, the abil-
ity to affirm a finding using the same procedures on new data, has
not been well studied. In this paper, we examine both reproducibility
and replicability of a corpus of 16 papers on table structure recognition
(TSR), an AI task aimed at identifying cell locations of tables in digital
documents. We attempt to reproduce published results using codes and
datasets provided by the original authors. We then examine replicability
using a dataset similar to the original as well as a new dataset, GenTSR,
consisting of 386 annotated tables extracted from scientific papers. Out
of 16 papers studied, we reproduce results consistent with the original
in only four. Two of the four papers are identified as replicable using
the similar dataset under certain IoU values. No paper is identified as
replicable using the new dataset. We offer observations on the causes of
irreproducibility and irreplicability. All code and data are available on
Codeocean at https://codeocean.com/capsule/6680116/tree.

Keywords: reproducibility · replicability · generalizability · table
structure recognition · artificial intelligence · science of science

1 Introduction

Concerns about reproducibility, replicability, and generalizability (RR&G) of
findings in the social and behavioral sciences are now well-established [2,3,6].
More recently, RR&G concerns have been raised in the field of artificial intelli-
gence (AI), e.g., [23,30]. There has been inconsistent use of these terms across the
literature. Here, we adopt definitions from Goodman et al. [11]. By reproducibil-
ity, we refer to computational repeatability – obtaining consistent computational
results using the same data, methods, code, and conditions of analysis. While,
replicability is obtaining consistent results on a different but similar dataset
using the same methods [1,11,22,25]. Generalizability refers to obtaining consis-
tent results in settings outside of the experimental framework [11]. Each concept
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-41679-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41679-8_1&domain=pdf
https://codeocean.com/capsule/6680116/tree
https://doi.org/10.1007/978-3-031-41679-8_1


4 K. Ajayi et al.

sets an incrementally higher standard than the previous one with reproducibility
being the most basic requirement of fundamental science.

Existing studies of AI reproducibility have focused on empirical and compu-
tational AI, in which datasets, codes, and environments are essential conditions
for reproduction. Some papers have examined the availability of certain infor-
mation assumed critical to reproducibility. For example, Gunderson et al. [12]
studied reproducibility of AI research by investigating whether research papers
include adequate metadata, i.e., detailed documentation of methodology. Oth-
ers have investigated the availability of open-access datasets and software [32]
and the executability of source codes [24]. Directly reproducing results provides
the most convincing evidence of reproducibility but usually requires more time,
effort, and domain knowledge. Raff [30] conducted direct reproduction of AI
papers. However, little effort has been put into the replicability of AI papers.

In this work, we investigate the reproducibility and replicability of methods
for table structure recognition, an AI task aimed at parsing tables in digital
documents and automatically identifying rows, columns, and cell positions in a
detected table image within a document [26]. This task is different from a related
task called table detection, automatically locating tables in document images [9].
Earlier methods attempted to solve these two tasks separately [33]. Recently,
several end-to-end solutions based on neural networks have been proposed [7,
17,26]. The input of the TSR task is a table image and the output is usually
an XML or JSON file containing coordinates of detected cells (row and column
numbers and pixels of cell bounding boxes). The content of cells is not identified.
Figure 1 illustrates the TSR problem. To the best of our knowledge, our work
takes the first step to assess the replicability (based on the definition given
above) of published research in the domain of document analysis and pattern
recognition.

Fig. 1. An illustration of the TSR problem.

The goal of our work is twofold. First, we test reproducibility of published
findings by examining whether results reported by the original authors can be
reproduced. Second, we test the replicability of executable codes on two datasets:
a dataset similar to the one used in the original paper and a new dataset built
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by manually annotating tables in six scientific domains. Our main contributions
are summarized as follows:

1. We perform a study on AI reproducibility and replicability based on state-of-
the-art TSR methods and identify reproducible and replicable papers under
certain conditions.

2. We build a new, manually-annotated dataset, GenTSR, representing digital
tables in papers from six scientific domains and demonstrate that the dataset
is more challenging than widely adopted benchmarks such as ICDAR 2013
and ICDAR 2019, on the TSR task.

3. We observe possible causes of irreproducibility and irreplicability of AI papers
based on our experiments.

2 Related Work

Concerns about reproducibility in computer science have been studied in the con-
text of computer systems, e.g., [4], software engineering, e.g., [19], and recently
on AI. e.g., [12,30]. Recent efforts have characterized the reproducibility of AI
papers using automatic verification or meta-level information. Pimentel et al.
[24] conducted an extensive study on over 1 million Jupyter notebooks from
GitHub and found that only 24.11% executed without errors and only 4.03%
produced the same results. Kamphius et al. conducted a large-scale study of
reproducibility on BM25 scoring function variants [15]. Seibold et al. [34] inves-
tigated the reproducibility of analyses of longitudinal data associated with 11
articles published in PLOS ONE after contacting original authors. Prenkaj [27]
compared several deep methods for trajectory forecasting on different datasets
to provide insight into the actual novelty, reliability, and applicability of avail-
able methods. Salsabil et al. [32] proposed a hybrid classifier to automatically
extract open-access datasets and software from scientific papers. Gunderson et
al. [12] investigated 400 AI papers, and found that none contain documentation
of published experiments, methods, and data altogether.

Although the work referenced above have highlighted the importance of
including codes and data alongside published findings, studies were limited to
meta-level indicators. There are a handful of studies that directly compare repro-
duced results of AI algorithms with published results. For example, Olorisade et
al. [23] attempted to directly reproduce 6 AI papers using the codes and datasets
from the original papers, reporting inconsistent results with published findings.
Raff [30] directly compared the reported results of 255 AI papers without using
the code from the original papers, and found out that 162 papers were at least
75% consistent with reported results while 93 were not.

Lack of transparency and reproducibility is particularly critical given the
standard for AI papers to evaluate performance of proposed methods against
baselines. Such problems have been found in AI research on machine learning
analyses on clinical research [36] and deep metric learning [21]. Replication stud-
ies that provide side-by-side comparisons between AI papers addressing the same
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topic are rarely conducted. Our work fills this gap by directly comparing the
implementations of TSR methods with reported results, and testing the replica-
bility of these methods on new datasets. We chose TSR because recently, many
learning-based methods on this task have been proposed and reportedly achieved
high performance but not all of them were evaluated on the same datasets. Stan-
dard benchmarks are available in open competitions, i.e., ICDAR 2013 [10] and
ICDAR 2019 (Task B2) [8]. Although the datasets were created 6 years apart,
both resemble generic tables in a variety of documents, including government
documents, scientific journals, forms, and financial statements. Scientific tables,
on the other hand, usually contain precise measurements of experimental or ana-
lytical results. Compared with other types of tables, scientific tables are more
heterogenous, with complex and freestyle structures. Therefore, for our repli-
cation study, we built a separate evaluation benchmark using tables extracted
from six scientific domains to challenge existing runnable TSR algorithms. Our
work is different from a typical survey paper in that our focus is not on outlining
the proposed algorithms but on testing the reproducibility and replicability of
state-of-the-art TSR algorithms.

Fig. 2. Workflow of our study.

3 Methods

Prior work by Tatman et al. [37] proposed a taxonomy of reproducibility for AI,
namely, “low”, “medium”, and “high” based on the availability of code, data,
and adequate documentation of the experimental environment. This taxonomy
is not directly applicable to our work because we not only verify the availability
of code and data but also execute the code and compare with reported results.
Figure 2 illustrates the workflow of our study. The process is summarized below.
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1. Sample Selection. TSR papers were selected by searching “table structure
recognition” as keywords on Google Scholar. Results were filtered to include
papers published after 2017, in which the proposed methods accepted doc-
uments or table images as input. We downloaded 25 TSR papers from the
conference websites, and we selected 16 candidate papers which use deep-
learning based methods as our final sample.

2. Meta-level Study. We conducted meta-level study by inspecting each paper
and determining whether the authors included URLs linking to source codes
and datasets. If no URLs were found, we attempted to find open access codes
and datasets by searching author names and framework names on Google.
We bookmarked code and data repositories.

3. Local Deployment. We downloaded the data and source codes and deployed
them in local computers by following the instructions in the original paper or
on the code repositories.

4. Reproducibility Tests. We attempted to execute the codes using default
settings and labeled each paper into one of three categories.
(a) Reproducible: The source code was executed without errors and the results

were consistent with the reported results within a deviation of an absolute
F1-score of 10% below or above the reported results.

(b) Partially-reproducible: The source code was executed without errors and
the results were better than the reported results by more than an absolute
F1-score of 10% deviation from the paper.

(c) Non-reproducible: Otherwise.
5. Replicability Tests on a Similar Dataset. We tested executable TSR

methods on a different but similar benchmark dataset. If results are consistent
with the reported results within a deviation of an absolute F1-score of 10%
under certain conditions, the paper was labeled as “conditionally replicable”
with respect to this dataset.

6. Replicability Tests on a New Dataset. We tested executable TSR meth-
ods on a new dataset. If results are consistent within a deviation of 10%
absolute F1-score, the paper was labeled as “conditionally replicable” with
respect to the new dataset.

We create a separate virtual environment for each TSR method to avoid
incompatibility issues. Then, we execute the code of each TSR algorithm to
reproduce or replicate the reported F1 scores. Because we focus on reproducing
results presented in original papers, we used the pre-trained models released
by the authors. One important parameter that may affect the TSR result is
Intersection over Union (IoU), defined as the percentage overlap between object
regions provided by the ground truth and predicted by the model. In practice,
IoU is measured by dividing the number of common pixels between the ground-
truth bounding boxes and predicted bounding boxes by the total number of
pixels across both bounding boxes. The IoU threshold defines the criterion of
whether the predicted bounding boxes match the ground truth bounding boxes.
The matching between two bounding boxes is counted if the predicted IoU is
larger than the threshold.
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For our reproducibility tests, we evaluate an executable model on the same
datasets used in the original paper, either ICDAR 2013 or ICDAR 2019. If a
paper used both ICDAR-2013 and ICDAR 2019 datasets, then we chose ICDAR-
2019 because it contains more challenging tables. If a paper used neither dataset,
then we used the dataset used in the original paper. For the replicability tests on
a similar dataset, we evaluated each executable model on the alternate dataset
of the two benchmarks, e.g., if ICDAR 2013 was used in the original paper, we
use ICDAR 2019. For the second replicability test, we evaluated the model on
a new dataset called GenTSR (introduced below). We compute F-scores at five
IoU thresholds 0.5, 0.6, 0.7, 0.8, and 0.9.

For reproducibility tests, we define the discrepancy Δ as the absolute dif-
ference between the F1-score obtained by our reproduction F1(R0) and the
F1-score reported in the original paper F1(O), i.e., Δ0 = F1(R0) − F1(O). For
replicability tests, discrepancy Δ is defined as F1-score of our replication F1(Rx)
and F1-score of our reproduction F1(R0), i.e., Δx = F1(Rx) − F1(R0). We do
not compare replicability against the original F1-score to ensure that compared
results are obtained in exactly the same setting.

4 Data

We use two standard benchmarks and GenTSR, our manually-annotated dataset.

ICDAR 2013. This dataset, released for the table competition by ICDAR 2013,
was used in 8 papers out of 16 papers (Table 1). ICDAR 2013 consists of 238
document pages in PDF format crawled from European and US government
websites, out of which 128 documents include tables. We did not use the original
ICDAR 2013 data as our ground truth because it consists of born-digital PDFs
and all the TSR models we surveyed accept either documents or table images
as input. Therefore, we cropped the tables from the PDFs based on the labeled
coordinates preserving resolutions and adjust its annotations accordingly.

ICDAR 2019. This dataset, released for the Competition on Table Detection
and Recognition (cTDaR) organized by ICDAR 2019, was used in 6 out of 16
papers we surveyed. The cTDaR competition includes two datasets including
the modern and historical tables, respectively. The modern dataset contains
100 samples from scientific papers, forms, and financial documents, and the
historical dataset includes images from hand-written accounting ledgers, and
train schedules. Our experiments adopt the modern table dataset used in Track
B2 (TB2).

GenTSR. This dataset consists of 386 table images obtained from research
papers in six scientific domains, including three STEM (Chemistry, Biology, and
Materials Science) and three non-STEM domains (Economics, Developmental
Studies, and Business). The format of GenTSR is consistent with ICDAR 2019.
The numbers of tables in each domain are 30 (Chemistry), 43 (Economics),
7 (Developmental Studies), 68 (Biology), and 208 (Materials Science). These
tables were manually annotated by two graduate students independently using
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Table 1. A summary of TSR papers used in our study, their properties, and direct
reproducibility labels (“Rep” column). The columns labeled “Data” and “Code” indi-
cate whether datasets and codes are publicly available at the time of writing. A dash
(“-”) means the resource is not available. Notes: NR: Not reproducible. R: Repro-
ducible. PR: Partially-reproducible. CMDD: Chinese Medical Document Dataset. Rep:
Reproducibility.

Reference Year Model Name Venue Training data Original Eval.
data

Data Code Rep

Schreiber et al. [33] 2017 DeepDeSRT ICDAR Marmot Marmot - - NR

Siddiqui et al. [35] 2019 DeeptabSTR ICDAR TabStructDB ICDAR 2013 - - NR

Xue et al. [39]a 2019 Res2TIM ICDAR CMDD +
ICDAR 2013

ICDAR 2013 � � R

Qasim. [28]b 2019 TIES-2.0 ICDAR Synthetic data Synthetic data � � NR

Tensmeyer et al. [38]d 2019 SPLERGE ICDAR Web-screaped
PDFs +
ICDAR 2013

ICDAR 2013 - � NR

Prasad et al. [26]e 2019 Cascade
TabNet

CVPR Marmot +
ICDAR 2019

ICDAR 2019
Track-B2

� � PR

Hashmi et al. [13] 2019 No name CVPR TabStructDB ICDAR 2013 - - NR

Khan et al. [16]c 2020 No name ICDAR UNLV ICDAR 2013 - � NR

Raja et al. [31]f 2020 TabStruct
Net

ECCV SciTSR UNLV � � NR

Fischer et al. [7]g 2021 Multi-Type-
TD-TSR

KI ICDAR 2019 ICDAR 2019
Track-B2

� � R

Xue et al. [40]h 2021 TGRNet ICCV TableGraph ICDAR 2019 � � R

Qiao et al. [29]i 2021 LGPMA ICDAR PubTabNet +
SciTSR +
ICDAR 2013

PubTabNet � � NR

Lee et al. [17]j 2021 Graph-based-
TSR

MTA ICDAR 2019 ICDAR 2019 � � R

Zheng et al. [41] 2022 GTE WACV PubTabNet ICDAR 2013
+ ICDAR
2019

- - NR

Jain et al. [14]k 2022 TSR-DSAW ESANN PubTabNet ICDAR 2013 - - NR

Li et al. [18]l 2021 No name ICDAR PubTabNet ICDAR 2019
+ unlv

- � NR

ahttps://github.com/xuewenyuan/ReS2TIM/
bhttps://github.com/shahrukhqasim/TIES-2.0
chttps://github.com/saqib22/Table-Structure Extraction-Bi-directional-GRU/
dhttps://github.com/pyxploiter/deep-splerge/
ehttps://github.com/DevashishPrasad/CascadeTabNet/
fhttps://github.com/sachinraja13/TabStructNet
ghttps://github.com/Psarpei/Multi-Type-TD-TSR/
hhttps://github.com/xuewenyuan/TGRNet/
ihttps://github.com/arushijain45/TSR-DSAW/
jhttps://github.com/hikopensource/DAVAR-Lab-OCR/tree/main/demo/table
recognition/lgpma/
khttps://github.com/ejlee95/Graph-based-TSR/
lhttps://github.com/L597383845/row-col-table-recognition/

https://github.com/xuewenyuan/ReS2TIM/
https://github.com/shahrukhqasim/TIES-2.0
https://github.com/saqib22/Table-Structure_Extraction-Bi-directional-GRU/
https://github.com/pyxploiter/deep-splerge/
https://github.com/DevashishPrasad/CascadeTabNet/
https://github.com/sachinraja13/TabStructNet
https://github.com/Psarpei/Multi-Type-TD-TSR/
https://github.com/xuewenyuan/TGRNet/
https://github.com/arushijain45/TSR-DSAW/
https://github.com/hikopensource/DAVAR-Lab-OCR/tree/main/demo/table_recognition/lgpma/
https://github.com/hikopensource/DAVAR-Lab-OCR/tree/main/demo/table_recognition/lgpma/
https://github.com/ejlee95/Graph-based-TSR/
https://github.com/L597383845/row-col-table-recognition/
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the VGG Image Annotator (VIA) [5]. VIA is open-source software for annotating
images, videos, and audio. We drew rectangular bounding boxes around text
content in a table cell and provided properties including “start-row”, “start-col”,
“end-row”, and “end-col” as labels. We followed the same schema as ICDAR 2019
dataset. We obtained a Cohan’s κ = 0.73, indicating a substantial agreement
between the two annotators [20]. The two annotators then discussed until they
agreed on the remaining table cells that they initially did not agree with each
other (Table 2).

Table 2. Three datasets used in our study.

Data # tables # cells # row ranges # column ranges

ICDAR-2013 158 14,278 2–58 2–13

ICDAR-2019 100 5,132 2–39 1–15

GenTSR 386 19,914 2–62 1–16

5 Experiment Results

We performed all experiments using two computing environments namely, a
Linux server with an Intel Silver CPU, Nvidia GTX 2080 Ti and Google Colab-
oratory platform with P100 PCIE GPU of 16 GB GPU memory. It took approx-
imately 12 h to reproduce the 5 papers that made their codes and data available.
Specifically, it took about 6 h to reproduce TGRNet and Res2TIM, and approx-
imately 2 h each for CascadeTabNet, Graph-based-TSR, and Multi-Type-TSR.
The replication experiment took about 18 h (excluding the time to create the
GenTSR dataset) even though all necessary packages used for each method had
already been installed when conducting reproducibility experiment. This was due
to the relatively large size of replication data and multiple replication attempts
to cross-check results.

We answer the following research questions (RQs) using meta-level sur-
vey results and reproducibility and replicability experiment results. The repro-
ducibility results are tabulated in Table 3. The replicability results are illustrated
in Fig. 3 and Fig. 4.

RQ1: What is the data and code accessibility of TSR papers we sam-
pled? Out of 16 papers we surveyed, 8 papers made their source code and data
publicly available, 3 papers made only the codes available, and 5 papers did not
provide either codes or data, making it difficult to validate the results of these
methods without private communication with the original authors (Table 1).
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RQ2: Are the accessible methods executable without contacting the
original authors? Out of 11 papers with accessible data or codes, the codes
of 5 papers were executable without contacting the original authors. The source
codes of 6 papers were not executable [14,16,18,28,29,31]. The code of one paper
(TGRNet; [40]) was executable after we contacted the original authors. The
reason was that the absolute paths to the evaluation data files in the original
code were hard-coded. Therefore, the program could not find data files after
they are transferred to a different environment. To evaluate the models, we
wrote a script to replace the paths and the source codes could be executed. The
source codes of the 6 papers were not executable due to multiple reasons such as
dependency issues, errors in code, pretrained models not being released, or the
absence of implementation in the authors’ GitHub directory.

RQ3: What is the status of reproducibility based on our criteria?
The status of reproducibility varies significantly depending on many factors.
As shown above, most papers were labeled irreproducible because they do not
provide datasets, codes, or executable codes. However, most papers with exe-
cutable codes were labeled reproducible under our criteria. Specifically, 4 out of
the 6 executable TSR methods were labeled reproducible, 1 paper was labeled
partially-reproducible, and 1 paper was labeled not-reproducible. The case stud-
ies are below.

– Lee et al. [17] used only 19 document images with border lines from the
ICDAR 2019 TB2 dataset to evaluate the Graph-based-TSR method. There-
fore, we evaluated this method on the same 19 images. Table 3 indicates that
the reproduction results are in general consistent with the reported results,
with discrepancies 0.087 ≤ Δ0 ≤ 0.130 depending on the IoU.

– The CascadeTabNet method was originally evaluated on 100 modern tables
in ICDAR 2019. Surprisingly, our experiment on CascadeTabNet obtained
higher F1-scores than the reported results by up to 0.682 at IoU = 0.9.

– The Multi-Type-TD-TSR method was originally evaluated on 162 tables from
ICDAR-2019 TB2. The experiment results are consistent with the reported
results with a discrepancy Δ0 ≤ 0.013.

– TGRNet and ReS2TIM are both consistent with the reported results with a
discrepancy Δ0 ≤ 0.003. The authors of these two methods used only IoU =
0.5 to allow more cell boxes to be predicted.

– The SPLERGE method was originally evaluated on 34 randomly selected
tables using ICDAR 2013 dataset but this dataset was not made publicly
available. Thus, the SPLERGE method was marked “Non-reproducible”.

RQ4: What reasons caused results to be not reproducible? We identified
several major reasons that caused the results to be irreproducible.

– Data and code availability: This is the top reason that caused most papers
to be irreproducible. However, most papers with executable codes are identified
as reproducible.
Several irreproducible papers have authors affiliated with the industry, which
may impose intellectual property restrictions, e.g., [13,16,28,33,35,41].
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Table 3. The reproducibility test results of executable TSR models at different IoU
thresholds. Data: the original dataset. SPLERGE does not provide evaluation data.

TSR Model Data IoU F1(O) F1(R0) Δ0

CascadeTabNet ICDAR 2019 0.6 0.438 0.770 0.332

CascadeTabNet ICDAR 2019 0.7 0.354 0.760 0.406

CascadeTabNet ICDAR 2019 0.8 0.190 0.745 0.555

CascadeTabNet ICDAR 2019 0.9 0.036 0.718 0.682

Multi-Type-TD-TSR ICDAR 2019 0.6 0.589 0.593 0.004

Multi-Type-TD-TSR ICDAR 2019 0.7 0.404 0.397 −0.007

Multi-Type-TD-TSR ICDAR 2019 0.8 0.137 0.124 −0.013

Multi-Type-TD-TSR ICDAR 2019 0.9 0.015 0.012 −0.003

Graph-based-TSR ICDAR 2019 0.6 0.966 0.879 −0.087

Graph-based-TSR ICDAR 2019 0.7 0.966 0.868 −0.098

Graph-based-TSR ICDAR 2019 0.8 0.966 0.856 −0.110

Graph-based-TSR ICDAR 2019 0.9 0.828 0.815 −0.130

TGRNet ICDAR 2013 0.5 0.667 0.670 0.003

ReS2TIM ICDAR 2013 0.5 0.174 0.174 0.000

SPLERGE ICDAR 2013 0.5 0.953 - -

– Portability: Agile software engineering may develop software packages that
are not portable when transferred to other platforms, e.g., [31].

– Documentation: This occurs when researchers do not provide detailed
instructions or explanations to execute their codes, e.g., [14].

– Dependency and compatibility issues: Software that relies on out-
dated dependencies can become prohibitive obstacles to reproducing reported
results. Certain software did not provide the dependency version, making it
extremely difficult or even impossible to find and install the right dependency,
e.g., [29].

– Data and code durability: This occurs when the data and codes used in
the original paper are updated after published results. Thus, a better result
than what was reported may be obtained after executing the updated codes
and data, thereby making it difficult to validate original reported results [26].

RQ5: What is the status of replicability with respect to a similar
dataset? To answer this question, we evaluated each executable TSR method
on a similar dataset. Here, we compare against the reproducibility experiment
results instead of the original results to ensure the results to be compared are
obtained in exactly the same setting.

Table 4 indicates the F1-scores of most methods were reduced by various lev-
els depending on the IoU thresholds. In particular, the F1 of Graph-based-TSR
decreases by 0.337. The F1 of Multi-Type-TD-TSR decreases by 0.009 to 0.586.
The performance of CascadeTabNet decreases marginally, exhibiting better repli-
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Table 4. The replicability test results of executable TSR models at different IoU thresh-
olds. Data: the similar dataset. TGRNet and ReS2TIM do not allow inference on a
custom dataset.

TSR Model Data IoU F1(R0) F1(R1) Δ1

CascadeTabNet ICDAR 2013 0.6 0.770 0.690 −0.080

CascadeTabNet ICDAR 2013 0.7 0.760 0.678 −0.082

CascadeTabNet ICDAR 2013 0.8 0.745 0.661 −0.084

CascadeTabNet ICDAR 2013 0.9 0.718 0.621 −0.097

Multi-Type-TD-TSR ICDAR 2013 0.6 0.593 0.007 −0.586

Multi-Type-TD-TSR ICDAR 2013 0.7 0.397 0.005 −0.392

Multi-Type-TD-TSR ICDAR 2013 0.8 0.124 0.004 −0.120

Multi-Type-TD-TSR ICDAR 2013 0.9 0.012 0.003 −0.009

Graph-based-TSR ICDAR 2013 0.6 0.879 0.542 −0.337

Graph-based-TSR ICDAR 2013 0.7 0.868 0.504 −0.364

Graph-based-TSR ICDAR 2013 0.8 0.856 0.444 −0.412

Graph-based-TSR ICDAR 2013 0.9 0.815 0.373 −0.442

TGRNet ICDAR 2019 0.5 0.670 - -

ReS2TIM ICDAR 2019 0.5 0.174 - -

SPLERGE ICDAR 2019 0.5 - 0.121 -

cability. We could not replicate the results of ReS2TIM and TGRNet because
they do not allow inference on an alternative dataset. We did not obtain the
discrepancy Δ1 for the SPLERGE method since it was not reproducible. Thus,
out of the 6 methods that were either executable or reproducible, only 2 papers
(CascadeTabNet and MUlti-Type-TD-TSR) were replicable under certain IoUs
(CascadeTabNet on IoU from 0.6 to 0.9; Multi-Type-TD-TSR on IoU = 0.9).

RQ6: What is the status of replicability with respect to the new
dataset? We test the replicability of each executable TSR model using GenTSR
containing tables in six scientific domains. Similar to RQ5., we compare against
the reproducibility experiment results using the 10% threshold defined above.
The results shown in Fig. 3 and Fig. 4 indicate that none of the 4 methods
that allow inference on custom data [7,17,26,38] was replicable with respect
to the GenTSR dataset, under a threshold of 10% absolute F1-score. Figure 4
also demonstrates that the performance of these methods varies significantly in
scientific domains. Specifically, the CascadeTabNet achieved much higher F1-
scores on five domains than biology. SPLERGE achieves comparable F1-scores
in all domains. Graph-based-TSR performs remarkably well in Material Science
but poorly in all other domains.
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Fig. 3. The comparison of the original (O), reproducibility (R0), replicability on sim-
ilar data (R1), and replicability on GenTSR (R2). The F1-scores of R2 are obtained
by averaging the F1-scores across all domains for each IoU. SPLERGE was excluded
because its results were not reproducible.

6 Discussion

Reproducibility. In reproducibility experiments, we were unable to produce
exactly the same results reported in most papers. The discrepancies may be
due to random factors, e.g., initialization, but certain discrepancies are too large
to be explained by random factors. Investigating the reasons is beyond the scope
of this paper, but the results suggest we define reproducibility using quantifiable
criteria associated with thresholds. The exact criteria will differ depending on
the results and the reproducer’s needs. In addition, we obtained an interesting
result in which the reproduced results were significantly better than the reported
result (Table 3). Assuming both original and reproduced results are correct, the
improvement could be attributed to the new versions of the codes and/or data.
If that is the case, this poses another question of how long reproducibility can
be preserved.

Replicability is More Challenging and Data Dependent. One requirement of repli-
cability is that the original code is not only executable but also configurable,
allowing users to test on different datasets. In our experiments, two methods did
not allow inference on different datasets. In addition, the replicability perfor-
mance could change the ranks of methods. For example, the Graph-based-TSR
was the best in terms of the original and reproduced F1-scores, but it under-
performed CascadeTabNet in two replicability tests (Table 4 and Fig. 3). This is
likely to be caused by the nature of the model and the training process. The exact
reason requires detailed ablation analysis and model surgery. In addition, only
CascadeTabNet obtained reasonably consistent results using a similar dataset
(Table 4). Using the new dataset, CascadeTabNet achieved a lower F1(R2) com-
pared with F1(O) and F1(R1). Figure 4 indicates that the performance exhibits
a strong domain dependency. The decreased performance as seen in the new
dataset indicates that TSR on scientific tables is still an unsolved problem and
state-of-the-art methods still have a large space to improve.

Potentially Irreplicability Causes: Evaluation Bias. The replicability test results
also indicate that the evaluation data of several TSR models may not be diverse
enough. For example, the Graph-based-TSR was evaluated on only tables with
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Fig. 4. The replicability test results of executable TSR model with respect to individual
domains in GenTSR. Econ: Economics, Dev: Developmental Studies, Bio: Biology, Mat:
Material Science, Chem: Chemistry, Bus: Business. Multi-Type-TD-TSR (not shown)
obtains recall scores of zero across all the domains.

borders. In contrast, models that exhibit better robustness tend to be evaluated
originally on more challenging datasets. For example, CascadeTabNet, which
obtained the best replicability results was evaluated on ICDAR 2019 Task B2
which was more challenging and diverse compared to ICDAR 2013 and other
small benchmarks.

Reproducibility and Venue Ranking. We inspected the relationship between
reproducibility and venue ranking, which is characterized by the h5-index
obtained in December, 2022. Created by Google Scholar, the calculation of h5-
index is similar to h-index. H5-index is defined as the largest number h such that
h articles published in the past 5 years have at least h citations each. Figure 5
shows the papers we studied and color-coded by reproducibility. It indicates that
reproducibility is not necessarily associated with venue ranking.

Limitations. One limitation of our study is the relatively small sample size.
Therefore the conclusions we draw may not directly be applicable to other AI
tasks and domains. However, the way we selected the papers allowed us to focus
on more papers on one topic and perform a side-to-side comparison between
different methods. Our threshold of 10% absolute F1-score is also a very lenient
threshold. Under a more strict threshold, fewer papers would be identified as
reproducible.
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Fig. 5. The relationship between reproducibility and venue ranking, characterized by
h5-index from Google Scholar at the time of writing. The h5-indices of ESANN (Jain)
and KI (Fischer) are not available, so we used h-indices as surrogates, obtained from
research.com and resurchify.com, respectively.

7 Conclusion

This work presents a study of reproducibility and replicability considering
16 recently-published papers on table structure recognition. We attempted to
directly reproduce the results reported in the original papers. We then tested
executable methods on an alternate benchmark dataset similar to the one used in
the original paper as well as a new dataset of modern scientific tables extracted
from six domains.

Under our criteria, most (12 out of 16) papers we examined were not fully
reproducible. Only 2 papers [7,26] were identified as conditionally replicable on a
similar dataset, and none of the papers was identified as replicable with respect
to the new dataset. Using a relatively small but focused dataset, our study
reveals several challenges of reproducing and replicating methods proposed for
the TSR task. Our study suggests that reproducibility should be defined under
certain criteria with quantifiable thresholds and replicability is data-dependent.
We also found that papers published in high-tier venues (characterized by h5-
index) are not necessarily reproducible. The new dataset GenTSR can be used as
ground truth for building more robust TSR models. Future work will investigate
replicability at the model level. We suggest that this work provides evidence that
infrastructure is needed for researchers to report RR&G of experiments.
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Abstract. Recently, due to the rapid development of deep learning, especially
Transformer, many Transformer-based methods have been studied and proven
to be very powerful for table recognition. However, Transformer-based models
usually struggle to process big tables due to the limitation of their global attention
mechanism. In this paper, we propose a local attention mechanism to address the
limitation of the global attention mechanism. We also present an end-to-end local
attention-based model for recognizing both table structure and table cell content
from a table image. The proposed model consists of four main components: 1)
an encoder for feature extraction; 2) the three decoders for the three sub-tasks of
the table recognition problem. In the experiments, we evaluate the performance
of the proposed model and the effectiveness of the local attention mechanism on
the two large-scale datasets: PubTabNet and FinTabNet. The experiment results
show that the proposed model outperforms the state-of-the-art methods on all
benchmark datasets. Furthermore, we demonstrate the effectiveness of the local
attention mechanism for table recognition, especially for big table recognition.

Keywords: Local Attention · Self-Attention · Table Recognition · End-to-End

1 Introduction

Table recognition is an important part of the document understanding system which aims
to recognize the table structure and the text content of each table cell from an input table
image, and to represent them in a machine-readable format such as HTML code [1–3]
and LaTeX code [4, 5]. This task is a big challenging problem due to the diversity of
table styles and the complexity of table structures and has been receiving much attention
from numerous researchers around the world. Early works [6–8] of the table recognition
primarily depend on hand-crafted features and heuristic rules are mainly applied to sim-
ple table structure or pre-defined table formats. In recent years, inspired by the success
of deep learning-based object detection and semantic segmentation methods, many deep
learning-based table recognition methods [9–12] have been proposed and proven to be
powerful models. However, these systems rely on training datasets containing rich anno-
tation information and are also difficult to be maintained and inferred due to consisting
of multiple separate components.
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In more recent years, inspired by the success of Transformer [13] in a wide range
of machine learning tasks such as natural language processing and computer vision,
many Transformer-based methods for table recognition [14–17] have been studied and
achieved competitive results on the recent large-scale table image datasets. The suc-
cess of these models is mostly due to the global attention mechanism in Transformer.
However, the global attention mechanism requires a large amount of training data and
usually struggles to work on the very long input sequence. Several recent studies [18–21]
suggest that incorporating more focused attention on important local regions in the input
sequence with an explicit bias could be more beneficial. Inspired by these suggestions,
we propose the local attention mechanism in the decoder components to address this
limitation of the global attention mechanism in Transformer-based table recognition
models. As far as we know, this is the first study of the local attention mechanism in the
decoder component for the document analysis problem.

In this paper, we also present an end-to-end local attention-based model for recog-
nizing both table structure and the text content of each table cell from a table image.
The proposed model consists of four main components: the CNN encoder, and the three
decoders for three sub-tasks of the table recognition problems: table structure recogni-
tion; table cell detection; and table cell content recognition. The whole system can be
trained in an end-to-end manner by stochastic gradient descent algorithms. The exten-
sive experiments on the two large-scale table image datasets show that the proposed
model achieves the state-of-the-art on the two large-scale datasets. The experiments also
demonstrate the effectiveness of the local attention mechanism in the decoders for table
recognition, especially for big table recognition.

In summary, the main contributions of this paper are as follows:

• We propose the local attention mechanism in the decoders to address the limitation of
the global attention mechanism in the Transformer-based table recognition methods.

• We present a novel local attention-based model for table recognition. The proposed
model can be easily trained and inferred in an end-to-end approach.

• Extensive experiments demonstrate the effectiveness of the local attention mechanism
as well as the proposed model for table recognition.

• Across all the benchmark datasets, the proposed model outperforms the state-of-the-
art methods.

The rest of this paper is organized as follows. In Sect. 2, we give a brief review of the
related works. In Sect. 3, we introduce the overview of the local attention mechanism as
well as the proposed model. In Sect. 4, we report the experimental results and analysis.
Finally, we draw conclusions in Sect. 5.

2 Related Works

Most of the previous methods for table recognition are based on two-step approaches
that divide the table recognition problem into two steps: table structure recognition and
table cell content recognition. Due to the simplicity of the table cell content recognition,
which can be easily overcome by the standard OCR methods [22, 23], many works only
focused on the table structure recognition problem [6–11]. Early works [6–8] of table
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structure recognition primarily depend on hand-crafted features and heuristic rules and
are mainly applied to simple table structure or pre-defined table formats. In recent years,
inspired by the success of the deep learning, especially in object detection and semantic
segmentation, many deep learning-based table structure recognition methods [9–11]
have been proposed and proven to be powerful models. S. Schreiber et al. [11] presented
two-fold system named DeepDeSRT that employs Faster RCNN [24] and FCN [25] for
both table detection and table structure recognition. S. Raja et al. [10] proposed a table
structure recognition model named TabStruct-Net that predicts the aligned cell regions
and the localized cell relations in a joint manner.

Recently, some works [12, 14, 15, 26] focused on both table structure recognition
and table cell content recognition to build a complete table recognition system. J. Ye et al.
[15] proposed the TableMASTER model which consists of two decoders for predicting
table structure and table cell location, and then combined it with a text line detector
to detect text lines in each table cell. Finally, they used a text line recognizer based on
MASTER [22] to recognize detected text lines in each table cell to build the complete
table recognition system which achieved the third place in the ICDAR2021 competition
[1]. Similar to [15], A. Nassar et al. [14] presented TableFormer which recognizes table
structure and table cell location, and then uses the text content extracted from PDF to
build the whole table recognition system. L. Qiao et al. [12] proposed a table structure
recognition system named LGPMA which is built based on the Mask-RCNN. Then they
combined LGPMA with a single line text detection and recognition models to get the
OCR information. Their model achieved the first place in the ICDAR2021 competition
[1].

Recently, due to the rapid development of deep learning and the availability of large-
scale table image datasets, some researchers try to focus on end-to-end approaches [2,
4]. Y. Deng et al. [4] formulated table recognition as the image-to-LaTeX problem and
directly employed IM2TEX model [27] for image-based table recognition. X. Zhong
et al. [2] proposed an encoder-dual-decoder (EDD) model that consists of two decoders
for predicting both table structure and text content of each table cell. However, their
performance is still mediocre compared to the non-end-to-end approaches. Most recently,
based on the global attention mechanism in Transformer, N. T. Ly et al. [16, 17] proposed
the end-to-end multi-task learning methods for image-based table recognition, and then
the weakly supervised learning method which reduces the annotation costs of preparing
the training data. These methods achieved competitive accuracies compared to the non-
end-to-end approaches; however, these methods do not work well on big table recognition
due to the limitation of the global attention mechanism.

In 2021, IBM Research in conjunction with ICDAR2021 committee held the
ICDAR2021 competition on scientific literature parsing (ICDAR2021 competition in
short) [1]. The competition consists of two tasks: Task A: Document layout recognition
and Task B: Table recognition which converts table images into HTML representations.
In the Task B: Table recognition, the committee provided the PubTabNet dataset [2] for
the participants to use to train and test their methods before evaluating in the final evalua-
tion validation set. There are 30 submissions from 30 teams for the final evaluation phase
and most of the top 10 solutions are non-end-to-end approaches and employ additional
annotation information as well as ensemble techniques to improve their methods.
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3 The Proposed Method

3.1 Local Attention Mechanism

Inspired by the work in [18], we employ the fixed-size window attention pattern in our
local attention mechanism. Difference from the work in [18] is that our local atten-
tion mechanism is implemented in the decoder component and each token in the input
sequence pays attention to w tokens on the backward side (instead of both sides in [18]).
The local attention mechanism restricts the decoder to focus on important local (neigh-
borhood) information. So, it helps the decoder easily learn to focus on the essential local
features of very long input sequences. We will describe the details of our local attention
mechanism as follows.

Local Attention. Let X ∈ Rl×dx denote the input sequence of the local attention mech-
anism. First, the input sequence is linearly projected to get the queries Q, keys K, and
values V. The attention weights are calculated from the queries Q and the keys K as
follows:

Q = XW Q K = XW K V = XW V (1)

AttnWeights = softmax

(
QKT

√
dk

)
(2)

where l is the length of the input sequence, the projections are parameter matrices W Q,
W k ∈ R

dx×dk and W V ∈ R
dx×dv . dx, dv, dk are the dimensions of the input sequence,

values and keys, respectively.
In order to implement the local attention mechanism, we define the mask matrix

M ∈ R
l×l that indicates the position in the keys K over which the queries Q should

attend. In other words, the attentions are activated on the positions where the mask
matrix element is 1; otherwise, the position with 0 will be canceled out. The mask
matrix M is defined as follows:

Mij =
{

1, if 0 ≤ i − j ≤ w
0, otherwise

(3)

where w denotes the window size of the local attention mechanism.
Finally, the final outputs of the local attention function are calculated from the

attention weights, the mask matrix M and the values V as follows:

Attention(X ) = (AttnWeights � M )V (4)

where � denotes element-wise multiplication.

Masked Multi-head Local Attention. The masked multi-head local attention mecha-
nism is the extension of the local attention mechanism, which allows the model to jointly
attend to information from different representation subspaces at different positions. First,
the masked multi-head local attention mechanism linearly projects the queries, keys, and
values h times with different linear projections to obtain h different representations of
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Fig. 1. The architecture of the local attention-based decoder layer.

(Q, K, V), and then performs the local attention function in parallel to get h heads out-
put values. Finally, h heads’ output values are concatenated and once again projected,
resulting in the final output values, as follows:

headi = LocalAttention
(

QW Q
i , KW K

i , VW V
i

)
(5)

MultiHeadLocal(Q, K, V ) = Concat(head1 . . . headh)W
O (6)

where h is the number of heads, W Q
i , W K

i ∈ Rdx×dk , W V
i ∈ Rdx×dv , and W O ∈ Rdx×dx are

parameter matrices of the linear projections, dx is the dimension of the input sequence,
dK = dV = dx/h.

Local Attention-Based Decoder Layer. The local attention-based decoder layer con-
sists of three sub-layers: a masked multi-head local attention layer, a multi-head attention
layer, and a position-wise fully connected feed-forward layer as shown in Fig. 1. Each
sub-layer is followed by a residual connection and a layer normalization similar to the
global attention-based decoder layer in the original Transformer.

3.2 The Proposed Model

In this work, we proposed a local attention-based end-to-end model for table recognition.
The proposed model is composed of four main components: a CNN-based encoder for
feature extraction, and three decoders for predicting three sub-tasks of the table recog-
nition problem: table structure recognition; table cell detection; and table cell content
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Fig. 2. The network architecture of the proposed model.

recognition as shown in Fig. 2. Given a table image, the CNN-based encoder extracts the
features and encodes them as a sequence of features. The sequence of features is passed
into the structure decoder to predict the sequence of structure tokens that represent the
structure of the table. When the structure decoder produces the structure token that rep-
resents a table cell, the cell-bbox decoder and the cell-content decoder are triggered and
use the hidden states of the structure decoder to predict the bounding box coordinates and
the text content of that cell. Finally, the text content of each cell is inserted into its cor-
responding cell of the sequence of structure tokens to produce the final representations
of the table. We describe the details of four components in the following sections.

Encoder. At the bottom of the proposed model, the encoder extracts the features from an
input table image and then encodes them as a sequence of fixed-size features. This work
employs a CNN backbone network followed by a positional encoding layer to build the
encoder. Given an input table image of the size {h, w, c}, the CNN backbone network
extracts a feature grid F of size {h′, w′, c′}, where c′ is the number of the feature map in
the last convolutional layer, and h′ and w′ depend on the h and w of the input image and
the number of pooling layers in the CNN network. The feature grid F is unfolded into
a sequence of features (column by column from left to right in each feature map), then
fed into the positional encoding layer to get the encoded sequence of fixed-size features.
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Structure Decoder. In this work, we formulate the table structure recognition problem
as the sequence prediction problem that predicts a sequence of HTML table tags rep-
resenting the structure information of a table. At the top of the encoder, the structure
decoder uses the encoded sequence of fixed-size features to predict a sequence of HTML
tags representing the table structure. Inspired by the works of [2, 15, 17], the sequence of
HTML tags representing the table structure are tokenized at the HTML tag level except
for the tag of a table cell. For the tag of the table cell, the form of ‘< td > < /td >’ is
treated as one structure token and the tags of the spanning cells (‘< td rowspan/colspan
=”number” >’) are broken down into ‘< td’, ‘rowspan/colspan =”number”’, and ‘ >’.
Thus, the structure token of ‘< td > < /td >’ and ‘< td’ represent a new table cell.

As shown in Fig. 2, instead of using the global attention-based decoder layer of the
original Transformer model, we employ a stack of three local attention-based decoder
layers followed by a linear layer and a SoftMax layer to build the structure decoder.
The local attention mechanism helps the structure decoder easily focus on the important
local features (on neighbor tokens) when predicting one structure token. The stack of
local attention-based decoder layers takes the encoded sequence of fixed-size features
as the input value and key vectors. In the training phase, the right-shifted sequence of
structure tokens (table structure target) is fed through the embedding layer and then the
positional encoding layer before being passed into the stack of local attention-based
decoder layers as the input query vector. In the inference phase, the table structure target
is replaced by the output of the structure decoder. Finally, the output of the stack of local
attention-based decoder layers are fed into the linear layer, and then the SoftMax layer
to generate the sequence of structure tokens representing the table structure.

Cell-Bbox Decoder. At the top of the encoder, the cell-bbox decoder selects the hidden
states of the structure decoder corresponding to the structure token representing a new
table cell and uses them to predict the bounding box coordinates of table cells. Similar to
the structure decoder, we also use the local attention-based decoder layer in the cell-bbox
decoder to help this decoder focus on the important local features (on neighbor tokens)
when predicting the location of one table cell. Specifically, the cell-bbox decoder consists
of one local attention-based decoder layer followed by a linear layer and a sigmoid layer
as shown in Fig. 2. When the structure decoder produces a new cell, the cell-bbox decoder
is triggered. Then the local attention-based decoder layer takes the hidden states of the
structure decoder as the query vectors, and the encoded sequence of fixed-size features
as the value and key vectors. Finally, the output of the local attention-based decoder layer
is fed into the linear layer and then the sigmoid layer to predict the four coordinates of
this cell bounding box.

Cell-Content Decoder. Similar to the cell-bbox decoder, the cell-content decoder selects
the hidden states of the structure decoder corresponding to the structure token represent-
ing a new table cell and uses them to predict the text content of table cells. In this
work, the text contents of table cells are tokenized at character level and the cell-content
decoder can be considered as a text recognizer.

As shown in Fig. 2, the cell-content decoder consists of one embedding layer, one
positional encoding layer, and one global attention-based decoder layer followed by a
linear layer and a SoftMax layer. Here, we do not employ the local attention mechanism
in the cell-content decoder. The reason is that the number of tokens in the cell content
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is usually much smaller than that in the table structure, then the global attention mecha-
nism can easily learn to focus on the important features. The following is the decoding
mechanism of the cell-content decoder. When the structure decoder produces a new cell,
the cell-content decoder is triggered, and takes the output of the encoder as the input
value and key vectors of the identical layer. The right-shifted text content target of this
table cell (the right-shirted output of the cell-content decoder in the inference phase) is
fed into the embedded and the positional encoding layers, and then added to the hid-
den states of the structure decoder referring to this table cell before being passed into
the identical layer as the query vectors. Finally, the output of the identical layer is fed
through the linear layer and then SoftMax layer to predict the text content of this table
cell.

Network Training. The whole model can be trained in an end-to-end manner by stochas-
tic gradient descent algorithms on pairs of table images and their annotations of the table
structure, the text content and its bounding box of each table cell. The overall loss of the
proposed model is defined as follows:

L = λ1Lstruc. + λ2Lcont. + λ3Lbbox (7)

where Lstruc. and Lcont. are the table structure recognition loss and the cell-content
prediction loss, respectively that are implemented in Cross-Entropy loss, whereas Lbbox
is the cell-bbox regression loss which is optimized by L1 loss. λ1, λ2, and λ3 are weight
hyperparameters.

4 Experiments

To evaluate the effectiveness of the local attention mechanism and the performance of the
proposed model, we conducted experiments on the two large-scale table image datasets:
PubTabNet and FinTabNet. The information of the datasets is given in Sect. 4.1; the
implementation details are described in Sect. 4.2; the results of the experiments are
shown in Sect. 4.3; and the visualization results are presented in Sect. 4.4.

4.1 Datasets

PubTabNet is a large-scale table image dataset published by X. Zhong et al. [28]. This
dataset is created by collecting scientific articles from PubMed Central Open Access
Subset (PMCOA) and consists of over 568k table images with corresponding annota-
tions of table structure, the text content and bounding box of all non-empty table cells.
PubTabNet is divided into 500,777 training samples; 9,115 validation samples; and 9,064
final evaluation samples used in the training phase, the development phase, and the Final
Evaluation Phase of the ICDAR2021 competition, respectively.

PubTabNet250. We select the table images from PubTabNet which have more than 250
structure tokens in the table structure to create a dataset named PubTabNet250. This
subset is used to verify the effectiveness of the local attention mechanism and consists
of 114,111 table images for training, and 2,161 table images for validation.
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FinTabNet. X. Zheng et al. [28] presented the large-scale table image dataset named
FinTabNet which is collected from the annual reports of the S&P 500 companies with
detailed annotations of the table HTML and the cell bounding boxes like PubtabNet.
This dataset consists of about 112k table images which are divided into training, testing
and validation sets with a ratio of 81%:9.5%:9.5%.

The statistics of these datasets are shown in Table 1.

Table 1. The statistics of the datasets.

Datasets Training Valid Testing

PubTabNet 500,777 9,115 9,064

PubTabNet250 114,111 2,161 –

FinTabNet 91,596 10,635 10,656

4.2 Implementation Details

In the encoder, inspired by the works in [22], we employ the ResNet-31 backbone
network [29] with the Multi-Aspect Global Context Attention (GCAttention) after each
residual block to build the CNN backbone network. All the input images are resized
to 520*520 pixels before being fed into the encoder and the size of the feature grid F
outputted from the CNN backbone network is 65*65.

In the structure and cell-bbox decoders, all local attention-based decoder layers have
the same architecture with 8 heads, the input feature size and the numbers of nodes of the
feed-forward layer are 512 and 2048, respectively. The window size in the local attention
mechanism is set as 300 in all the local attention-based decoder layers. The architecture
of the global attention decoder layer in the cell-content decoder is the same as the local
attention-based decoder layer except that the local attention mechanism is replaced by
the global attention mechanism. The maximum sequence length of the structure tokens
and the cell tokens (in the decoding process) are 600 and 150, respectively. The weight
hyperparameters are set as λ1 = λ2 = λ3 = 1.

The proposed model is implemented in the MMCV library [30] and trained on two
NVIDIA A100 80G with a batch size of 8. The learning rate is initialized at 0.001 for
the first 12 epochs and reduced to 0.0001 until the model converges.

4.3 Experiment Results

To evaluate the performance of the proposed model for table recognition, we employ
the Tree-Edit-Distance-Based Similarity (TEDS) metric [2]. It represents the prediction
and the ground-truth as a tree structure of HTML tags, and is calculated as follows:

TEDS(Ta, Tb) = 1 − EditDist(Ta, Tb)

max(|Ta|, |Tb|) (8)
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where Ta and Tb represent tables in a tree structured HTML format, EditDist denotes
the tree-edit distance, and |T | represents the number of nodes in T.

We also denote TEDS-struc. as the TEDS score between two tables when considering
only the table structure information.

4.3.1 Table Recognition

FinTabNet. The first experiment evaluates the performance of the proposed model on
the FinTabNet dataset in terms of TEDS (Table recognition) and TEDS-struc. (Table
structure recognition). To fairly compare with the previous methods, we do not use any
data augmentation as well as ensemble techniques. Table 2 compares the TEDS and
TEDS-struc. Scores between the proposed model and the previous methods on the test
set of the FinTabNet dataset. With the TEDS of 95.74% and TEDS-struc. of 98.85%, the
proposed model outperforms the best model in [16] and obtains state-of-the-art results
on both table recognition and table structure recognition on the test set of the FinTabNet
dataset.

Table 2. Table recognition results (%) on FinTabNet test set.

Models TEDS-struc TEDS

EDD [2] 90.60 –

GTE [28] 87.14 –

GTE(PT) [28] 91.02 –

TableFormer [14] 96.80 –

WSTabNet [16] 98.72 95.32

The Proposed Model 98.85 95.74

PubTabNet. In this experiment, we evaluate the performance of the proposed model
for table recognition on the validation set of the PubTabNet dataset. To fairly compare
with the previous methods, we also do not employ any data augmentation as well as
ensemble techniques. Table 3 shows table recognition results by the proposed model in
comparison with the previous methods on the validation set of the PubTabNet dataset.
As shown in Table 3, the proposed model outperforms all the previous methods which
do not employ any data augmentation as well as ensemble techniques. Furthermore,
with TEDS of 98.07% on simple tables and TEDS of 95.42% on complex tables, the
proposed model also achieves state-of-the-art results on both simple and complex table
images.

Although, we do not use any data augmentation as well as ensemble techniques, the
proposed method achieves competitive results compared to VCGroup + ME [15] which
requires additional annotations of text-line bounding boxes of the text content in each
table cell and employs three model ensembles in both table structure recognition and
text line recognition models.
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Table 3. Table recognition results on PubTabNet validation set.

Models TEDS

Simple Complex All

EDD [2] 91.20 85.40 88.30

TabStruct-Net [10] – – 90.10

GTE [28] – – 93.00

TableFormer [14] 95.40 90.10 93.60

SEM (3) [26] 94.80 92.50 93.70

LGPMA + OCR (1) [12] – – 94.60

VCGoup (2) [15] – – 96.26

WSTabNet [16] 97.89 95.02 96.48

Multi-Tasks Model [17] 97.92 95.36 96.67

The Proposed Model 98.07 95.42 96.77

VCGoup + ME (2) [15] – – 96.84

Table 4. Table recognition results on PubTabNet final evaluation set.

Team Name TEDS (%)

Simple Complex All

Davar-Lab-OCR 97.88 94.78 96.36

VCGroup [15] 97.90 94.68 96.32

XM [26] 97.60 94.89 96.27

The Proposed Model 97.77 94.58 96.21

YG 97.38 94.79 96.11

DBJ 97.39 93.87 95.66

TAL 97.30 93.93 95.65

PaodingAI 97.35 93.79 95.61

anyone 96.95 93.43 95.23

LTIAYN 97.18 92.40 94.84

We also evaluate the performance of the proposed model on the final evaluation set of
the PubTabNet dataset in comparison with the top 10 solutions in the ICDAR2021 com-
petition. As shown in Table 4, although we used neither any additional training data nor
ensemble techniques, the proposed model outperforms the 4th ranking solution named
YG and achieves competitive recognition results compared to the top 3 solutions in the
final evaluation set of the ICDAR2021 competition. Note that the top 10 solutions are
non-end-to-end approaches and most of them use additional training data or additional
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annotation information for training as well as ensemble techniques to improve the final
recognition results.

4.3.2 Ablation Studies

We also conducted additional experiments on the PubTabNet250 dataset with ablation
consideration.

The Effectiveness of the Local Attention Mechanism. In this study, we verify the
effectiveness of the local attention mechanism in comparison with the traditional global
attention mechanism. To do that, we prepared one variation, which is the same as the
proposed model except for using the global attention mechanism instead of the local
attention mechanism in the structure and cell-bbox decoders. We named this variation
as Global Attention and the proposed model as Local Attention. Table 5 shows their
table recognition results on the validation set of the PubTabNet250 dataset in different
sequence lengths of the table structure tokens.

Table 5. Table recognition results (TEDS) with different attention mechanisms.

Models TEDS (%)

All len > 500 len > 600 len > 700

Local Attention 94.28 92.99 91.29 89.61

Global Attention 93.86 91.16 90.63 88.65

len: number of table structure tokens.

As shown in Table 5, Local Attention slightly outperforms Global Attention on the
validation set of the PubTabNet250 dataset, and Local Attention is even more dominant
on the tables having a large number of table structure tokens. The results imply that
the local attention mechanism outperforms the global attention mechanism for table
recognition, especially for big table recognition.

Table 6. TEDS scores with respect to window sizes.

Window Size TEDS (%)

All len > 500 len > 600 len > 700

100 92.88 89.10 86.76 83.10

200 93.74 91.67 89.82 88.01

300 94.28 92.99 91.29 89.61

400 94.25 92.27 90.86 88.95

500 94.07 92.42 90.72 88.69

len: number of structure tokens.
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Fig. 3. Visualization results of the proposed model on PubTabNet.

Window Size. In this study, we evaluate the effect of the window size on the performance
of the local attention mechanism for table recognition. Table 6 shows the TEDS scores
with respect to window sizes. We observe that the performance of the proposed model
improves when the window size increases from 100 to 300. The results suggest that
the local attention mechanism with the short window size does not work well on table
recognition. The reason seems to be that the local attention mechanism with the too-
short window size might lose information on the potential features. We also observe that
the proposed model with a window size of 300 obtained the highest TEDS score and
decreases slightly as the window size increases from 300 to 500. The results suggest
that the too-long window size might decrease the performance of the local attention
mechanism.

4.4 Visualization Results

In this section, we show visualization results of the proposed model on PubTabNet. As
shown in Fig. 3, the proposed model is able to predict complex table structure as well as
bounding boxes and contents for all table cells, even for the empty cells or cells that span
multiple rows/columns. We also show the visualization results in comparison between
the local attention and the global attention mechanisms. As shown in Fig. 4, the local
attention mechanism can work more efficiently than the global attention mechanism on
the big table image.
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Global Attention

Local Attention

Fig. 4. Visualization results in comparison between the local and global attention.

5 Conclusion

In this paper, we present the local attention mechanism to address the limitation of the
global attention mechanism and propose the end-to-end local attention-based model for
image-based table recognition. The proposed model consists of four main components:
a CNN encoder for feature extraction, and three decoders for three sub-tasks of table
recognition: table structure recognition, table cell detection, and cell-content recogni-
tion. Extensive experiments on the two large-scale table image datasets demonstrate the
proposed model outperforms the previous methods as well as the effectiveness of the
local attention mechanism for table recognition, especially for big table recognition.

In the future, we will conduct the experiments of the proposed model on the other
table image dataset. We also plan to explore the effectiveness of the local attention
mechanism on other document analysis tasks such as text recognition and handwritten
mathematical expression recognition.
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Abstract. Extracting tables from documents is a crucial task in any
document conversion pipeline. Recently, transformer-based models have
demonstrated that table-structure can be recognized with impressive
accuracy using Image-to-Markup-Sequence (Im2Seq) approaches. Tak-
ing only the image of a table, such models predict a sequence of tokens
(e.g. in HTML, LaTeX) which represent the structure of the table. Since
the token representation of the table structure has a significant impact
on the accuracy and run-time performance of any Im2Seq model, we
investigate in this paper how table-structure representation can be opti-
mised. We propose a new, optimised table-structure language (OTSL)
with a minimized vocabulary and specific rules. The benefits of OTSL
are that it reduces the number of tokens to 5 (HTML needs 28+) and
shortens the sequence length to half of HTML on average. Consequently,
model accuracy improves significantly, inference time is halved compared
to HTML-based models, and the predicted table structures are always
syntactically correct. This in turn eliminates most post-processing needs.
Popular table structure data-sets will be published in OTSL format to
the community.

Keywords: Table Structure Recognition · Data Representation ·
Transformers · Optimization

1 Introduction

Tables are ubiquitous in documents such as scientific papers, patents, reports,
manuals, specification sheets or marketing material. They often encode highly
valuable information and therefore need to be extracted with high accuracy.
Unfortunately, tables appear in documents in various sizes, styling and struc-
ture, making it difficult to recover their correct structure with simple analyt-
ical methods. Therefore, accurate table extraction is achieved these days with
machine-learning based methods.

In modern document understanding systems [1,15], table extraction is typi-
cally a two-step process. Firstly, every table on a page is located with a bounding
box, and secondly, their logical row and column structure is recognized. As of
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<tr>

<td colspan=“2” rowspan=“2” > </td> <td colspan=“3” > </td>
</tr>
<tr>

<td> </td> <td> </td> <td> </td>
</tr>
<tr>

<td rowspan=“3” > </td> <td> </td> <td> </td> <td> </td> <td> </td>
</tr>
<tr>

<td> </td> <td> </td> <td> </td> <td> </td>
</tr>
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<td> </td> <td> </td> <td> </td> <td> </td>
</tr>

</table>

C L U X<table> <tr> </tr> <td> </td> <td colspan="2" colspan="3"
rowspan="2" rowspan="3" > </table>

C HTML
sequence length: 55

Fig. 1. Comparison between HTML and OTSL table structure representation: (A)
table-example with complex row and column headers, including a 2D empty span,
(B) minimal graphical representation of table structure using rectangular layout, (C)
HTML representation, (D) OTSL representation. This example demonstrates many of
the key-features of OTSL, namely its reduced vocabulary size (12 versus 5 in this case),
its reduced sequence length (55 versus 30) and a enhanced internal structure (variable
token sequence length per row in HTML versus a fixed length of rows in OTSL).

today, table detection in documents is a well understood problem, and the latest
state-of-the-art (SOTA) object detection methods provide an accuracy compara-
ble to human observers [7,8,10,14,23]. On the other hand, the problem of table
structure recognition (TSR) is a lot more challenging and remains a very active
area of research, in which many novel machine learning algorithms are being
explored [3–5,9,11–14,17,18,21,22].

Recently emerging SOTA methods for table structure recognition employ
transformer-based models, in which an image of the table is provided to the net-
work in order to predict the structure of the table as a sequence of tokens. These
image-to-sequence (Im2Seq) models are extremely powerful, since they allow for
a purely data-driven solution. The tokens of the sequence typically belong to a
markup language such as HTML, Latex or Markdown, which allow to describe
table structure as rows, columns and spanning cells in various configurations. In
Fig. 1, we illustrate how HTML is used to represent the table-structure of a par-
ticular example table. Public table-structure data sets such as PubTabNet [22],
and FinTabNet [21], which were created in a semi-automated way from paired
PDF and HTML sources (e.g. PubMed Central), popularized primarily the use
of HTML as ground-truth representation format for TSR.



Optimized Table Tokenization for Table Structure Recognition 39

While the majority of research in TSR is currently focused on the develop-
ment and application of novel neural model architectures, the table structure
representation language (e.g. HTML in PubTabNet and FinTabNet) is usually
adopted as is for the sequence tokenization in Im2Seq models. In this paper,
we aim for the opposite and investigate the impact of the table structure rep-
resentation language with an otherwise unmodified Im2Seq transformer-based
architecture. Since the current state-of-the-art Im2Seq model is TableFormer [9],
we select this model to perform our experiments.

The main contribution of this paper is the introduction of a new opti-
mised table structure language (OTSL), specifically designed to describe table-
structure in an compact and structured way for Im2Seq models. OTSL has a
number of key features, which make it very attractive to use in Im2Seq models.
Specifically, compared to other languages such as HTML, OTSL has a mini-
mized vocabulary which yields short sequence length, strong inherent structure
(e.g. strict rectangular layout) and a strict syntax with rules that only look
backwards. The latter allows for syntax validation during inference and ensures
a syntactically correct table-structure. These OTSL features are illustrated in
Fig. 1, in comparison to HTML.

The paper is structured as follows. In Sect. 2, we give an overview of the
latest developments in table-structure reconstruction. In Sect. 3 we review the
current HTML table encoding (popularised by PubTabNet and FinTabNet) and
discuss its flaws. Subsequently, we introduce OTSL in Sect. 4, which includes
the language definition, syntax rules and error-correction procedures. In Sect. 5,
we apply OTSL on the TableFormer architecture, compare it to TableFormer
models trained on HTML and ultimately demonstrate the advantages of using
OTSL. Finally, in Sect. 6 we conclude our work and outline next potential steps.

2 Related Work

Approaches to formalize the logical structure and layout of tables in electronic
documents date back more than two decades [16]. In the recent past, a wide
variety of computer vision methods have been explored to tackle the prob-
lem of table structure recognition, i.e. the correct identification of columns,
rows and spanning cells in a given table. Broadly speaking, the current deep-
learning based approaches fall into three categories: object detection (OD) meth-
ods, Graph-Neural-Network (GNN) methods and Image-to-Markup-Sequence
(Im2Seq) methods. Object-detection based methods [11–14,21] rely on table-
structure annotation using (overlapping) bounding boxes for training, and pro-
duce bounding-box predictions to define table cells, rows, and columns on a table
image. Graph Neural Network (GNN) based methods [3,6,17,18], as the name
suggests, represent tables as graph structures. The graph nodes represent the
content of each table cell, an embedding vector from the table image, or geomet-
ric coordinates of the table cell. The edges of the graph define the relationship
between the nodes, e.g. if they belong to the same column, row, or table cell.
Other work [20] aims at predicting a grid for each table and deciding which cells
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must be merged using an attention network. Im2Seq methods cast the problem
as a sequence generation task [4,5,9,22], and therefore need an internal table-
structure representation language, which is often implemented with standard
markup languages (e.g. HTML, LaTeX, Markdown). In theory, Im2Seq methods
have a natural advantage over the OD and GNN methods by virtue of directly
predicting the table-structure. As such, no post-processing or rules are needed
in order to obtain the table-structure, which is necessary with OD and GNN
approaches. In practice, this is not entirely true, because a predicted sequence
of table-structure markup does not necessarily have to be syntactically correct.
Hence, depending on the quality of the predicted sequence, some post-processing
needs to be performed to ensure a syntactically valid (let alone correct) sequence.

Within the Im2Seq method, we find several popular models, namely the
encoder-dual-decoder model (EDD) [22], TableFormer [9], Tabsplitter [2] and Ye
et al. [19]. EDD uses two consecutive long short-term memory (LSTM) decoders
to predict a table in HTML representation. The tag decoder predicts a sequence
of HTML tags. For each decoded table cell (<td>), the attention is passed to
the cell decoder to predict the content with an embedded OCR approach. The
latter makes it susceptible to transcription errors in the cell content of the table.
TableFormer address this reliance on OCR and uses two transformer decoders for
HTML structure and cell bounding box prediction in an end-to-end architecture.
The predicted cell bounding box is then used to extract text tokens from an
originating (digital) PDF page, circumventing any need for OCR. TabSplitter
[2] proposes a compact double-matrix representation of table rows and columns
to do error detection and error correction of HTML structure sequences based
on predictions from [19]. This compact double-matrix representation can not be
used directly by the Img2seq model training, so the model uses HTML as an
intermediate form. Chi et al. [4] introduce a data set and a baseline method
using bidirectional LSTMs to predict LaTeX code. Kayal [5] introduces Gated
ResNet transformers to predict LaTeX code, and a separate OCR module to
extract content.

Im2Seq approaches have shown to be well-suited for the TSR task and allow a
full end-to-end network design that can output the final table structure without
pre- or post-processing logic. Furthermore, Im2Seq models have demonstrated
to deliver state-of-the-art prediction accuracy [9]. This motivated the authors
to investigate if the performance (both in accuracy and inference time) can
be further improved by optimising the table structure representation language.
We believe this is a necessary step before further improving neural network
architectures for this task.

3 Problem Statement

All known Im2Seq based models for TSR fundamentally work in similar ways.
Given an image of a table, the Im2Seq model predicts the structure of the table
by generating a sequence of tokens. These tokens originate from a finite vocab-
ulary and can be interpreted as a table structure. For example, with the HTML
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tokens <table>, </table>, <tr>, </tr>, <td> and </td>, one can construct
simple table structures without any spanning cells. In reality though, one needs
at least 28 HTML tokens to describe the most common complex tables observed
in real-world documents [21,22], due to a variety of spanning cells definitions in
the HTML token vocabulary.

Fig. 2. Frequency of tokens in HTML and OTSL as they appear in PubTabNet.

Obviously, HTML and other general-purpose markup languages were not
designed for Im2Seq models. As such, they have some serious drawbacks. First,
the token vocabulary needs to be artificially large in order to describe all plau-
sible tabular structures. Since most Im2Seq models use an autoregressive app-
roach, they generate the sequence token by token. Therefore, to reduce inference
time, a shorter sequence length is critical. Every table-cell is represented by at
least two tokens (<td> and </td>). Furthermore, when tokenizing the HTML
structure, one needs to explicitly enumerate possible column-spans and row-
spans as words. In practice, this ends up requiring 28 different HTML tokens
(when including column- and row-spans up to 10 cells) just to describe every
table in the PubTabNet dataset. Clearly, not every token is equally represented,
as is depicted in Fig. 2. This skewed distribution of tokens in combination with
variable token row-length makes it challenging for models to learn the HTML
structure.

Additionally, it would be desirable if the representation would easily allow
an early detection of invalid sequences on-the-go, before the prediction of the
entire table structure is completed. HTML is not well-suited for this purpose as
the verification of incomplete sequences is non-trivial or even impossible.

In a valid HTML table, the token sequence must describe a 2D grid of table
cells, serialised in row-major ordering, where each row and each column have
the same length (while considering row- and column-spans). Furthermore, every
opening tag in HTML needs to be matched by a closing tag in a correct hierar-
chical manner. Since the number of tokens for each table row and column can
vary significantly, especially for large tables with many row- and column-spans,
it is complex to verify the consistency of predicted structures during sequence
generation. Implicitly, this also means that Im2Seq models need to learn these
complex syntax rules, simply to deliver valid output.
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In practice, we observe two major issues with prediction quality when train-
ing Im2Seq models on HTML table structure generation from images. On the
one hand, we find that on large tables, the visual attention of the model often
starts to drift and is not accurately moving forward cell by cell anymore. This
manifests itself in either in an increasing location drift for proposed table-cells
in later rows on the same column or even complete loss of vertical alignment, as
illustrated in Fig. 5. Addressing this with post-processing is partially possible,
but clearly undesired. On the other hand, we find many instances of predictions
with structural inconsistencies or plain invalid HTML output, as shown in Fig. 6,
which are nearly impossible to properly correct. Both problems seriously impact
the TSR model performance, since they reflect not only in the task of pure struc-
ture recognition but also in the equally crucial recognition or matching of table
cell content.

4 Optimised Table Structure Language

To mitigate the issues with HTML in Im2Seq-based TSR models laid out before,
we propose here our Optimised Table Structure Language (OTSL). OTSL is
designed to express table structure with a minimized vocabulary and a simple
set of rules, which are both significantly reduced compared to HTML. At the
same time, OTSL enables easy error detection and correction during sequence
generation. We further demonstrate how the compact structure representation
and minimized sequence length improves prediction accuracy and inference time
in the TableFormer architecture.

4.1 Language Definition

In Fig. 3, we illustrate how the OTSL is defined. In essence, the OTSL defines
only 5 tokens that directly describe a tabular structure based on an atomic 2D
grid.

The OTSL vocabulary is comprised of the following tokens:

– “C” cell - a new table cell that either has or does not have cell content
– “L” cell - left-looking cell, merging with the left neighbor cell to create a span
– “U” cell - up-looking cell, merging with the upper neighbor cell to create a

span
– “X” cell - cross cell, to merge with both left and upper neighbor cells
– “NL” - new-line, switch to the next row.

A notable attribute of OTSL is that it has the capability of achieving lossless
conversion to HTML.
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Fig. 3. OTSL description of table structure: A - table example; B - graphical repre-
sentation of table structure; C - mapping structure on a grid; D - OTSL structure
encoding; E - explanation on cell encoding

4.2 Language Syntax

The OTSL representation follows these syntax rules:

1. Left-looking cell rule: The left neighbour of an “L” cell must be either
another “L” cell or a “C” cell.

2. Up-looking cell rule: The upper neighbour of a “U” cell must be either
another “U” cell or a “C” cell.

3. Cross cell rule:
The left neighbour of an “X” cell must be either another “X” cell or a “U”
cell, and the upper neighbour of an “X” cell must be either another “X” cell
or an “L” cell.

4. First row rule: Only “L” cells and “C” cells are allowed in the first row.
5. First column rule: Only “U” cells and “C” cells are allowed in the first

column.
6. Rectangular rule: The table representation is always rectangular - all rows

must have an equal number of tokens, terminated with “NL” token.

The application of these rules gives OTSL a set of unique properties. First
of all, the OTSL enforces a strictly rectangular structure representation, where
every new-line token starts a new row. As a consequence, all rows and all columns
have exactly the same number of tokens, irrespective of cell spans. Secondly, the
OTSL representation is unambiguous: Every table structure is represented in one
way. In this representation every table cell corresponds to a “C”-cell token, which
in case of spans is always located in the top-left corner of the table cell definition.
Third, OTSL syntax rules are only backward-looking. As a consequence, every
predicted token can be validated straight during sequence generation by looking
at the previously predicted sequence. As such, OTSL can guarantee that every
predicted sequence is syntactically valid.

These characteristics can be easily learned by sequence generator networks,
as we demonstrate further below. We find strong indications that this pat-
tern reduces significantly the column drift seen in the HTML based models
(see Fig. 5).
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4.3 Error-Detection and -Mitigation

The design of OTSL allows to validate a table structure easily on an unfinished
sequence. The detection of an invalid sequence token is a clear indication of a
prediction mistake, however a valid sequence by itself does not guarantee pre-
diction correctness. Different heuristics can be used to correct token errors in
an invalid sequence and thus increase the chances for accurate predictions. Such
heuristics can be applied either after the prediction of each token, or at the end
on the entire predicted sequence. For example a simple heuristic which can cor-
rect the predicted OTSL sequence on-the-fly is to verify if the token with the
highest prediction confidence invalidates the predicted sequence, and replace it
by the token with the next highest confidence until OTSL rules are satisfied.

5 Experiments

To evaluate the impact of OTSL on prediction accuracy and inference times,
we conducted a series of experiments based on the TableFormer model (Fig. 4)
with two objectives: Firstly we evaluate the prediction quality and performance
of OTSL vs. HTML after performing Hyper Parameter Optimization (HPO) on
the canonical PubTabNet data set. Secondly we pick the best hyper-parameters
found in the first step and evaluate how OTSL impacts the performance of
TableFormer after training on other publicly available data sets (FinTabNet,
PubTables-1M [14]). The ground truth (GT) from all data sets has been con-
verted into OTSL format for this purpose, and will be made publicly available.
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Fig. 4. Architecture sketch of the TableFormer model, which is a representative for the
Im2Seq approach.

We rely on standard metrics such as Tree Edit Distance score (TEDs) for
table structure prediction, and Mean Average Precision (mAP) with 0.75 Inter-
section Over Union (IOU) threshold for the bounding-box predictions of table
cells. The predicted OTSL structures were converted back to HTML format in
order to compute the TED score. Inference timing results for all experiments
were obtained from the same machine on a single core with AMD EPYC 7763
CPU @2.45 GHz.
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5.1 Hyper Parameter Optimization

We have chosen the PubTabNet data set to perform HPO, since it includes a
highly diverse set of tables. Also we report TED scores separately for simple and
complex tables (tables with cell spans). Results are presented in Table 1. It is
evident that with OTSL, our model achieves the same TED score and slightly
better mAP scores in comparison to HTML. However OTSL yields a 2x speed
up in the inference runtime over HTML.

Table 1. HPO performed in OTSL and HTML representation on the same
transformer-based TableFormer [9] architecture, trained only on PubTabNet [22].
Effects of reducing the # of layers in encoder and decoder stages of the model show
that smaller models trained on OTSL perform better, especially in recognizing complex
table structures, and maintain a much higher mAP score than the HTML counterpart.

#enc-layers #dec-layers Language TEDs mAP (0.75) Inference time (secs)

simple complex all

6 6 OTSL 0.965 0.934 0.955 0.88 2.73

HTML 0.969 0.927 0.955 0.857 5.39

4 4 OTSL 0.938 0.904 0.927 0.853 1.97

HTML 0.952 0.909 0.938 0.843 3.77

2 4 OTSL 0.923 0.897 0.915 0.859 1.91

HTML 0.945 0.901 0.931 0.834 3.81

4 2 OTSL 0.952 0.92 0.942 0.857 1.22

HTML 0.944 0.903 0.931 0.824 2

5.2 Quantitative Results

We picked the model parameter configuration that produced the best prediction
quality (enc = 6, dec = 6, heads = 8) with PubTabNet alone, then independently
trained and evaluated it on three publicly available data sets: PubTabNet (395k
samples), FinTabNet (113k samples) and PubTables-1M (about 1M samples).
Performance results are presented in Table 2. It is clearly evident that the model
trained on OTSL outperforms HTML across the board, keeping high TEDs and
mAP scores even on difficult financial tables (FinTabNet) that contain sparse
and large tables.

Additionally, the results show that OTSL has an advantage over HTML
when applied on a bigger data set like PubTables-1M and achieves significantly
improved scores. Finally, OTSL achieves faster inference due to fewer decoding
steps which is a result of the reduced sequence representation.
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Table 2. TSR and cell detection results compared between OTSL and HTML on
the PubTabNet [22], FinTabNet [21] and PubTables-1M [14] data sets using Table-
Former [9] (with enc = 6, dec = 6, heads = 8).

Data set Language TEDs mAP(0.75) Inference time (secs)

simple complex all

PubTabNet OTSL 0.965 0.934 0.955 0.88 2.73

HTML 0.969 0.927 0.955 0.857 5.39

FinTabNet OTSL 0.955 0.961 0.959 0.862 1.85

HTML 0.917 0.922 0.92 0.722 3.26

PubTables-1M OTSL 0.987 0.964 0.977 0.896 1.79

HTML 0.983 0.944 0.966 0.889 3.26

5.3 Qualitative Results

To illustrate the qualitative differences between OTSL and HTML, Fig. 5 demon-
strates less overlap and more accurate bounding boxes with OTSL. In Fig. 6,
OTSL proves to be more effective in handling tables with longer token sequences,
resulting in even more precise structure prediction and bounding boxes.

Fig. 5. The OTSL model produces more accurate bounding boxes with less over-
lap (E) than the HTML model (D), when predicting the structure of a sparse
table (A), at twice the inference speed because of shorter sequence length (B), (C).
“PMC2807444 006 00.png” PubTabNet.
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Fig. 6. Visualization of predicted structure and detected bounding boxes on a complex
table with many rows. The OTSL model (B) captured repeating pattern of horizontally
merged cells from the GT (A), unlike the HTML model (C). The HTML model also
didn’t complete the HTML sequence correctly and displayed a lot more of drift and
overlap of bounding boxes. “PMC5406406 003 01.png” PubTabNet.
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6 Conclusion

We demonstrated that representing tables in HTML for the task of table struc-
ture recognition with Im2Seq models is ill-suited and has serious limitations.
Furthermore, we presented in this paper an Optimized Table Structure Language
(OTSL) which, when compared to commonly used general purpose languages,
has several key benefits.

First and foremost, given the same network configuration, inference time for
a table-structure prediction is about 2 times faster compared to the conventional
HTML approach. This is primarily owed to the shorter sequence length of the
OTSL representation. Additional performance benefits can be obtained with
HPO (hyper parameter optimization). As we demonstrate in our experiments,
models trained on OTSL can be significantly smaller, e.g. by reducing the number
of encoder and decoder layers, while preserving comparatively good prediction
quality. This can further improve inference performance, yielding 5–6 times faster
inference speed in OTSL with prediction quality comparable to models trained
on HTML (see Table 1).

Secondly, OTSL has more inherent structure and a significantly restricted
vocabulary size. This allows autoregressive models to perform better in the TED
metric, but especially with regards to prediction accuracy of the table-cell bound-
ing boxes (see Table 2). As shown in Fig. 5, we observe that the OTSL drasti-
cally reduces the drift for table cell bounding boxes at high row count and in
sparse tables. This leads to more accurate predictions and a significant reduction
in post-processing complexity, which is an undesired necessity in HTML-based
Im2Seq models. Significant novelty lies in OTSL syntactical rules, which are few,
simple and always backwards looking. Each new token can be validated only by
analyzing the sequence of previous tokens, without requiring the entire sequence
to detect mistakes. This in return allows to perform structural error detection
and correction on-the-fly during sequence generation.
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Abstract. Table detection is the task of classifying and localizing
table objects within document images. With the recent development in
deep learning methods, we observe remarkable success in table detec-
tion. However, a significant amount of labeled data is required to train
these models effectively. Many semi-supervised approaches are intro-
duced to mitigate the need for a substantial amount of label data.
These approaches use CNN-based detectors that rely on anchor pro-
posals and post-processing stages such as NMS. To tackle these lim-
itations, this paper presents a novel end-to-end semi-supervised table
detection method that employs the deformable transformer for detecting
table objects. We evaluate our semi-supervised method on PubLayNet,
DocBank, ICADR-19 and TableBank datasets, and it achieves superior
performance compared to previous methods. It outperforms the fully
supervised method (Deformable transformer) by +3.4 points on 10%
labels of TableBank-both dataset and the previous CNN-based semi-
supervised approach (Soft Teacher) by +1.8 points on 10% labels of
PubLayNet dataset. We hope this work opens new possibilities towards
semi-supervised and unsupervised table detection methods.

Keywords: Semi-Supervised Learning · Deformable Transformer ·
Table Analysis · Table Detection

1 Introduction

A visual summary is the main aspect of different applications in document anal-
ysis, such as recognizing graphical components in the visualization pipeline and
summarizing the content of a document. As a result, localizing and detecting
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graphical items such as tables will be an important action in the analysis and
summary of the document. Due to the increase in the number of documents,
manually retrieving the table data is no longer practical. Automated processes
offer efficient, reliable, and successful solutions for manual tasks. Previously, opti-
cal character recognition [1,2] and rule-based [3–5] table detection approaches
were used to identify and locate them. Then, some automated methods [6–8]
have been suggested to detect tables. However, these approaches are often rule-
based because the documents have a set structure or dimension [9]. Moreover,
they cannot generalize to a new table structure, such as borderless tables. Later
on, deep learning methods were used by researchers to identify them [10–13],
and shows that machine-learning approaches are more effective than traditional
methods [14].

Deep learning approaches [15–20] do not rely on rules and can accurately
generalize the problem. However, deep learning models take a considerable quan-
tity of labeled data for training. These supervised methods achieve impressive
results on public benchmarks, and their performance cannot be translated into
industrial applications unless similar large-scale annotated datasets exist in that
domain. It is potentially error-prone and time-consuming to generate this data
manually or via other pre-processing approaches. Therefore, it is important
to develop a semi-supervised approach due to concerns about the availabil-
ity of labeled training data, which shifts the problem from a supervised to a
semi-supervised setting. Recently, semi-supervised learning-based methods are
introduced in computer vision containing two detectors. The first detector pro-
vides pseudo labels for unlabeled data. The second detector trains using pseudo
labels generated by the first detector and a small percentage of label data and
provides final predictions. Both detectors update each other during training.
This approach has been described in several works, including [21–24]. In most
cases, the first detector is not strong enough, which can negatively impact the
pseudo-labeling process. Moreover, previous semi-supervised approaches used
CNN-based networks [11] that depend on anchors to generate region proposals
and post-processing stages such as Non-Maximal suppression (NMS) to reduce
the number of overlapping predictions.

To address these limitations, this paper proposes a semi-supervised table
detection approach that employs the deformable transformer [25]. It generates
pseudo-labels for unlabeled data and then trains the detector using them and a
small quantity of label data in each iteration. This approach aims to improve the
pseudo-label generation procedure by iteratively refining the pseudo-labels and
the detector. It involves training in two modules. The teacher module contains
a pseudo-labeling framework. The student module is the final detection network
that uses pseudo-labels and a small quantity of label data. The teacher module
is simply an Exponential Moving-Average (EMA) of the student module, which
ensures that the pseudo-label generation and detection modules are constantly
updating each other. Unlike other pseudo-labeling methods, we propose the idea
of employing the deformable transformer that allows completing the pseudo-
labeling process without needing object proposals and post-processing steps as
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Non-maximal suppression (NMS). Another benefit is having a dynamic effec-
tive receptive field to adapt fot tables of different sizes and scales in the input
image. This allows the network to effectively detect tables of varying sizes and
orientations, making it more robust and versatile. Additionally, this framework
has a reinforcing effect, providing that the Teacher model consistently monitors
the Student model. In this paper, we show through empirical evidence that this
semi-supervised table detection approach that uses a deformable transformer can
produce results comparable to CNN-based approaches without needing object
proposals and post-processing steps such as Non-maximal suppression (NMS).
In summary, the main contributions of the paper are as follows:

• We present an end-to-end semi-supervised table detection method that
employs the deformable transformer and allows completing the pseudo-
labeling process without needing object proposals and post-processing steps
such as Non-maximal suppression (NMS).

• We formulate the problem of table detection as an object detection prob-
lem and leverage the potential of deformable detection transformer for this
task. To the best of our knowledge, this work is the first that exploits the
transformer-based method in a semi-supervised setting.

• We perform an exhaustive evaluation on four different datasets, PubLayNet,
DocBank, ICDAR-19 and TableBank, and produce results comparable to
CNN-based semi-supervised approaches without needing object proposals
process and post-processing steps such as NMS.

2 Related Work

Table detection is an essential task for document image analysis. Many
researchers have proposed different approaches for detecting tables containing
arbitrary structures in document images. Previously, most presented approaches
used custom rules or relied on extra meta-data input to deal with table detec-
tion tasks [26–29]. Recently, researchers employed statistical methods [30] and
deep learning approaches to make the table detection systems more generaliz-
able [15,31–33]. This section gives a detailed summary of these techniques and
an overview of the CNN-based semi-supervised object detection methods.

2.1 Rule-Based Approaches

To the best of our knowledge, Itonori et al. [26] presented a table detection app-
roach for the first time on document images. This method represents the table
as a text block that uses specified rules. Later, [28] introduced a table detection
approach that works on horizontal and vertical lines. Pyreddy et al. [34] proposed
a procedure that extracts tabular regions from the text using custom heuristics.
Pivk et al. [35] presented a system that transforms HTML format table docu-
ments into logical forms. It introduces an appropriate tabular layout employed
for extracting tables. Hu et al. [36] presented a table detection approach that
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relies on white regions and vertically connected elements in document images.
Readers can find a complete overview of these rule-based methods in [3–5,37,38].
Though rule-based approaches perform fine on document images with matching
table formats, these methods can not provide generic solutions. Therefore, sys-
tems with more generalizable abilities are needed to solve table detection tasks
on document data.

2.2 Learning-Based Approaches

Cesarini et al. [39] presented a supervised learning system for detecting table
objects in document images. It converts a document image into an MXY tree
model and labels the blocks as tables confined in horizontal and vertical lines.
Hidden Markov Models [40,41] and the SVM classifier with traditional heuristics
[42] are applied to document images for table detection. Though these machine
learning approaches performed better than ruled-based approaches on docu-
ments, these methods need additional information, such as ruling lines. Deep
Learning-based approaches outperformed traditional approaches in accuracy and
efficiency. These methods are categorised into object detection, semantic segmen-
tation, and bottom-up approaches.

Semantic segmentation-based Approaches. These approaches [43–46] con-
sider table detection a segmentation task and apply available semantic segmen-
tation networks to generate segmentation masks on the pixel level and then
combine table regions to provide final table detection. These methods performed
better than traditional approaches on several benchmark datasets [47–53]. Yang
et al. [43] presented a fully convolutional network (FCN) [54] for page object
segmentation, which combines linguistic and visual features to enhance segmen-
tation results for table and other page object detection. He et al. [44] presented
a multi-scale FCN that provides segmentation masks table/text areas and their
related contours and then refined to get final table blocks.

Bottom-up Approaches. These approaches consider table detection as a
graph-labeling task and define graph nodes as page objects and graph edges con-
nection between page objects. Li et al. [55] extracted line areas using the classic
layout analysis approach, then used two CNN-CRF networks to categorise them
into four categories: text, figure, formula and table and then provided a predic-
tion of the corresponding cluster for pair of line areas. Holecek et al. [56] and
Riba et al. [57] considered text areas as nodes, formed a graph to determine the
design per document and then employed graph-neural networks for node-edge
classification. These approaches rely on specific assumptions, such as text line
boxes as an extra input.

Object Detection-based Approaches. Detecting tables from document
images can be represented as an object detection task, with table objects treated
as natural objects. Hao et al. [58] and Yi et al. [59] applied R-CNN for detect-
ing tables, but the performance of these approaches still relies on heuristic rules
as in previous methods. Later, more efficient single-stage object detectors like
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RetinaNet [60] and YOLO [61] and two-stage object detectors like Fast R-CNN
[10], Faster R-CNN [11], Mask R-CNN [62], and Cascade Mask R-CNN [63]
were applied for other document objects such as figures and formulas detection
in document images [9,15–17,64–69]. Furthermore, [65,68,70] applied different
image transformation approaches, such as coloration and dilation, to improve
the results further. Siddiqui et al. [31] combined deformable-convolution and
RoI-Pooling [71] into Faster R-CNN to provide a more efficient network for geo-
metrical modifications. Agarwal et al. [69] used a composite network [72] as a
backbone with deformable convolution to increase the performance of two-stage
Cascade R-CNN. These CNN-based object detectors have a few heuristic stages,
like proposals generating step and post-processing steps such as non-maximal
suppression (NMS). Our semi-supervised approach considers detection a set pre-
diction task, eliminating the anchor generation and post-processing stages such
as NMS and providing a simpler and more efficient detection pipeline.

2.3 Semi-supervised Object Detection

Semi-supervised learning approaches in object detection are divided into two
types: consistency-based approaches [22,73] and pseudo-label generation-based
approaches [21,74–79]. Our method falls into the pseudo-label type. Previous
work [74,75] combined prediction results from varied data augmentation tech-
niques to produce pseudo-labels for unlabeled data, while [76] trained a Selec-
tiveNet to generate the pseudo-labels. In [76], a box from unlabeled data was
placed onto labeled data and evaluated localization consistency on the labeled
images. However, this method requires a very complex detection procedure due
to the modification of the image. STAC [79] presented to perform strong augmen-
tation on the data for pseudo-label generation and weak augmentation for model
training. We propose an end-to-end semi-supervised table detection method that
employs the deformable transformer. Similar to other pseudo-label generation
approaches [21,74–76,79], it follows a multi-level training mechanism. It effec-
tively avoids the need for anchors generation stage and post-processing steps
such as Non-Maximal suppression (NMS).

3 Methodology

First, we revisit Deformable DETR, a modern transformer-based object detector,
in Sect. 3.1. Later, we explain the proposed semi-supervised learning mechanism
and its pseudo-label generation module in Sects. 3.2.

3.1 Revisiting Deformable DETR

Deformable DETR [25] contains a Transformer encoder-decoder network that
considers object detection as a set-predictions task. It uses Hungarian loss and
avoids overlapped predictions for ground-truth bounding boxes through bipar-
tite matching. It eliminates the need for hand-crafted elements such as anchors
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and post-processing stages such as Non-maximal suppression (NMS) used in
CNN-based object detectors. Deformable DETR is an extension of the DETR
[80] architecture that addresses some of the limitations of DETR, such as slow
training convergence and poor performance on small objects. Deformable DETR
introduces deformable convolutions into the architecture, which allows for more
flexible modeling of object shapes and better handling of objects of varying
scales. This can lead to improved performance, particularly on small objects, and
faster convergence during training. Here, we provide an overview of the encoder-
decoder network, Multi-scale Feature processing and attention mechanism of
deformable DETR. Figure 1 shows all modules of the deformable transformer,
including multi-scale features and encoder-decoder network.

Fig. 1. Illustration of the deformable transformer employed in semi-supervised table
detection method. We split the input image into small equal-sized patches, add position
embeddings, and feed the resulting patches along with input multi-scale features to
the transformer encoder. In the decoder, We use object queries as reference points and
provide bounding boxes predictions and class labels as the final output.

Transformer Encoder. The CNN backbone (ResNet-50) extracts the input
feature maps fm ∈ Rhi×wi×ci . The spatial dimensional feature maps are con-
verted into one-dimensional zm ∈ Rhi×wi×d1 feature maps as the transformer
encoder network takes input as a sequence. This one-dimensional vector is fed
as input along with positional embeddings [81,82] to the transformer encoder
network, which further transforms them into features for object queries. Every
layer of the encoder module contains an attention network and a feed-forward
network (FFN) where query and key values are the pixels of feature maps. Read-
ers can refer to [83] for a detailed explanation of transformer.
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Transformer Decoder. The decoder network takes the output of the encoder
features and N number of object queries as input. It contains two attention types
self-attention and cross-attention. The self-attention module finds the connec-
tion between object queries. Here both key and query matrics contain object
queries. The cross-attention module extracts feature using object queries from
the input feature map. Here key matrix contains the feature maps provided by
the encoder module, and the query matrix is the object queries fed as input
to the decoder. After the attention modules, feed-forward networks (FFN) and
linear projection layers are added as the prediction head. The linear projection
layer predicts class labels, while FFN provides final bounding-box coordinate
values.

Deformable Attention Module. The attention module in the DETR network
considers all spatial locations of the input feature map, which makes the training
convergence slower. However, a deformable DETR can solve this issue using the
deformable convolution-based [71,84] attention network and multiscale input
features [85,86]. It considers only a few sample pixels near a reference pixel,
whatever the size of input features, as illustrated in Fig. 2. The query matrix
takes only a small set of keys, which resolves the slow training convergence issue
of DETR. Readers can refer to [25] for a detailed explanation of Deformable
DETR.

Fig. 2. Deformable Attention network. It considers only a few sample pixels near a
reference pixel, whatever the size of input features. The query matrix takes only a
small set of keys, which resolves the slow training convergence issue of DETR. (image
from [25]).
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3.2 Semi-Supervised Deformable DETR

In this subsection, we describe the learning mechanism of our proposed semi-
supervised approach that employs the Deformable transformer and then explain
the pseudo-labeling strategy. Semi-supervised Deformable-DETR is a unified
learning approach that uses fully labeled and unlabeled data for object detection.
It contains two modules a student module and a teacher module. The training
data has two data types label data and unlabeled data. The student module
takes both labeled and unlabeled images as input where strong augmentation is
applied on unlabeled data while both (strong and weak augmentation) is applied
on label data. The student module is trained using detection losses of labeled and
unlabeled data through pseudo-boxes. The unlabeled data contains two groups
of pseudo boxes for providing class labels and their bounding boxes. The teacher
module only takes unlabeled images as input after applying weak augmentation.
Figure 3 presents a summary of proposed pipeline. The teacher module feeds
prediction results to the pseudo-labeling framework to get pseudo-labels. Then,
the student module uses these pseudo-labels for supervised training. Here, weak
augmentation on unlabeled data is used for the teacher module to generate
more precise pseudo-labels. Strong augmentation on unlabeled data is used for
the student module to have more challenging learning. The student module also
takes a small percentage of labeled images with strong and weak augmentation
as input. The student module sm is optimized with the total loss as follows:

Lsm =
∑

n

L(xl,sa

j , yl,sa

j ) + L(xl,wa

j , yl,wa

j ) +
∑

n

L(xu,sa

j , ytm
j ) (1)

where sa represents strong augmentation, wa represents weak augmentation.
xl,sa

j is the strong augmented input image and its corresponding label is yl,sa

j .
The term xl,wa

j is the weak augmented input image and its corresponding label is
yl,wa

j . For the labeled images, strong and weak augmentations are also applied for
learning, and are fed to the student module. The term xu,sa

j represents unlabeled
strong augmented image fed to student module and the term ytm

j is the pseudo-
label from teacher module. Here, L is the weighted sum of classification (class
labels) and regression (bounding box) loss as follows:

L = α1Lreg + α2Lcls (2)

where α1 and α2 are the weight values, the teacher-student modules are ini-
tialized randomly at the start of training. During training, the student mod-
ule continuously updates the teacher module with an Exponential Moving-
Average (EMA) [87] strategy. Pseudo-label generation for image classification
tasks is easy, considering probability distribution as Pseudo-labels. In contrast,
object detection tasks are more complicated as an image may include numerous
objects, and annotation contains object location and class label. The CNN-
based object detectors use anchors as object proposals and remove redundant
boxes by post-processing steps such as non-maximal suppression (NMS). In con-
trast, transformers use attention mechanisms and object queries. Figure 4 shows
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sample points and attention weights from multi-scale deformable attention fea-
ture maps for both student and teacher networks. Its training complexity is
O(Nqc

2
i +min(hiwic

2
i , Nqkc2

i )+5Nqkci +3Nqcipsk). This takes into account the
computation of the sampling coordinate offsets and attention weights, as well as
the bilinear interpolation and weighted sum in the attention mechanism. Nq is
the number of query elements, ci is the channel dimension, k is the kernel size,
ps is the number of sampling points, and hiwi is the height and width of the
feature map. In our experiments, ps = 8, k ≤ 4 and ci = 256 by default, thus
5k + 3psk < ci and the complexity is of O(2Nqc

2
i + min(hiwic

2
i , Nqkc2

i )). When
used in the DETR encoder with Nq = hiwi, the complexity of the deformable
attention module is O(hiwic

2
i ), which scales linearly with the spatial size. When

used in the DETR decoder with Nq = N (the number of object queries), the
complexity becomes O(Nkc2

i ), which is independent of the spatial size as atten-
tion is focused on the object queries.

Fig. 3. Our proposed semi-supervised approach that employs Deformable transformer
[25]. (1) The training data has two data types label data and unlabeled data. (2)
It contains two modules a student module and a teacher module. (3) The teacher
module only takes unlabeled images as input after applying weak augmentation. (4)
After applying strong augmentation on unlabeled data type, the student module takes
both labeled and unlabeled images as input. (5) During training, the student module
continuously updates the teacher module with an Exponential Moving-Average (EMA)
[87] strategy.
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Training. The semi-supervised network is trained in two steps: a) train the
student module independently on labeled data and generate pseudo-labels by
teacher module; b) combine training of both modules to provide final prediction
results.

Pseudo-Labeling Framework. We used a simple framework to provide
pseudo-labels for unlabeled data at the output of the teacher module, as applied
in SSOD [88]. Usually, object detectors give confidence score vector sk ∈ [0, 1]Ci

for every provided bounding box bk. A simple approach to provide pseudo-labels
is to just thresholding these scores. In a simple pseudo-labeling filter, pseudo-
labels can be formed by providing a threshold to the confidence value sck

k of
the ground-truth class ck. If the prediction value is not greater than the confi-
dence value for a ground-truth class, the highest prediction value is considered
the pseudo-label. Inspired by DETR [80], we develop the pseudo-label assign-
ment task as a bipartite matching task between the teacher module predictions
and the generated semi-labels. Specifically, the permutation of K elements is as
follows:

σ̂ = arg min
σ∈N

Ni∑

k

Lmatch(yk, ŷ(k)), (3)

where Lmatch(yk, ŷ(k)) is the match-cost between teacher labels and ground-
truth semi-labels as follows:

Lmatch(yk, ŷ(k)) = −1{ck �=φ}p̂σ(k)(ck) + 1{ck �=φ}Lbbox(bk, b̂σ̂(k)) (4)

Fig. 4. Visualization of the sample points and attention weights from multi-scale
deformable attention feature maps. Each sample point is denoted as a circle whose
color represents its relative attention weight value. The reference points are the object
queries taken as input in the encoder, represented by the green plus sign. In the decoder,
the final bounding boxes are represented as green rectangles, and the class label and
its confidence value are shown on the upper side in black text. (Color figure online)

The Pseudo-Labeling framework is applied to the predictions of teacher mod-
ule ŷ(k) where ŷ(k) = {ŷclass, ŷbbox} is the prediction, with ŷclass and ŷbbox rep-
resent the class and box values, respectively. Here, ŷcls = [v1, ..., vN ]T ∈ R

N×Ci

and ŷbox = [b̂1, ..., b̂N ]T ∈ R
N×4, where vN is the output vector (before the

softmax) , b̂N the related bounding-box prediction, and N is the object queries
provided as input to the transformer decoder. yk represents pseudo-labels gen-
erated from confidence-score. The optimal selection is allowed with the Hungar-
ian match mechanism [80,89], giving pseudo-labels {(bk, ck)}. This approach to
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select matching between the teacher module’s prediction and semi-labels gen-
erated by providing threshold works in the same way as the heuristic selection
rules used for matching proposals [11] or anchors [85] with ground-truth objects
in CNN-based object detectors. The main difference is that it determines one-to-
one matching without duplicates. The second stage calculates the loss function,
the Hungarian loss for all pair matching in the last stage. We define the loss sim-
ilar to the previous object detector’s losses as a linear combination of a negative
log-likelihood for class label and a bounding box as follows:

LH(y, ŷ) =
N∑

i=1

[−logp̂σ̂(k)(ck) + 1{ck �=φ}Lbox(bk, b̂σ̂(k))] (5)

Here, bk ∈ R
4 is the pseudo-bounding box, and ck is the pseudo-class label. σ̂ is

the matching determined in the previous stage. In training, we reduce the weight
of log probability by ten times when ck for class imbalance. This mechanism is
similar to the Faster R-CNN training strategy to balance proposals by sub-
sampling [11].

4 Experimental Setup

4.1 Datasets

TableBank: TableBank [52] is the second-largest dataset in the document anal-
ysis domain for the table recognition problem. The dataset has 417,000 docu-
ment images annotated through the arXiv database crawling procedure. The
dataset features tables from three categories of document images: LaTeX images
(253,817), Word images (163,417), and a combination of both (417,234). It also
includes a dataset for recognizing the structures of the table. In our experiment,
We only used the dataset for table detection from TableBank.

PubLayNet: PubLayNet [48] is a large public dataset with 335,703 images in
the training set, 11,240 in the validation set, and 11,405 in the test set. It includes
annotations such as polygonal segmentation and bounding boxes of figures, lists
titles, tables, and text of images from research papers and articles. The dataset
was evaluated using the coco analytic technique [90]. In our experiment, we only
used 102,514 of the 86,460 table annotations.

DocBank: DocBank [91] is a large dataset of over 5,000 annotated document
images from various sources designed to train and evaluate tasks such as text
classification, entity recognition, and relation extraction. It includes annotations
of title, author name, affiliation, abstract, body text, etc.

ICDAR-19: The competition for Table Detection and Recognition (cTDaR)
[47] is organized at ICDAR in 2019. For the table detection task (TRACK A),
two new datasets (modern and historical) are introduced in the competition. For
direct comparison against the prior state-of-the-art [68], we provide results on
the modern datasets with an IoU threshold ranging from 0.5-0.9.
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4.2 Evaluation Criteria

We use some evaluation metrics to analyze the performance of our semi-
supervised table detection approach that employs the deformable transformer.
This section defines the employed evaluation metrics as precision, Recall, and
F1-score. The Precision [92] is the fraction of actual instances as True Positives
among the predicted instances as False Positives and True Positives). The Recall
[92] is the fraction of actual instances as True Positives that were retrieved (True
Positives + False Negatives). The F1-score [92] is the harmonic mean of Preci-
sion and Recall. We compute the intersection over union(IoU) by performing the
intersection divided by the union for the region of the ground-truth box Ag and
the formed bounding box Ap.

IoU =
area(Ag ∩ Ap)
area(Ag ∪ Ap)

(6)

IoU estimates that either a detected table object is a false positive or a true
positive. We find the average precision(AP) by a precision-recall (PR) curve
following the context of MS COCO [90] evaluation. It is the area under the PR
curve, calculated using the following equation:

AP =
N∑

k=1

(Rek+1 − Rek)Pintr(Rek+1) (7)

where Re1, Re2, . . . , Rek represent the recall parameter. The mean average
precision (mAP) is often used to evaluate the performance of detection methods.
It is calculated by taking the mean of average precision for all classes in a dataset.
The mAP can be affected by changes in the performance of individual classes due
to class mapping, which is a limitation of this metric. We set the intersection
over union (IoU) threshold values at 0.5 and 0.95. The mAP is calculated as
follows:

mAP =
1
S

S∑

s=1

APs (8)

where S represents total classes.

4.3 Implementation Details

We use the Deformable DETR [25] with a ResNet-50 [93] backbone pre-trained
on the ImageNet [94] dataset as our detection framework for evaluating the use-
fulness of the semi-supervised approach. We perform training on PubLayNet,
ICDAR-19, DocBank and all three splits of the TableBank dataset. We use 10%,
30% and 50% of labeled data and the rest as unlabeled data. The threshold
value for pseudo-labeling is set at 0.7. We set the training epochs to 150 for all
experiments with the learning rate reduced by a factor of 0.1 at the 120th epoch.
We follow [25,88] to apply strong augmentation as horizontal flip, resize, remove
patches, crop, grayscale and Gaussian blur. We use horizontal flipping to apply
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weak augmentation. The value N for the number of queries to the input of the
decoder of Deformable DETR is set to 30 as it gives the best results. Unless
otherwise specified, we evaluated the results using the mAP (AP50:95) metrics.
All models are trained with a batch size of 16, using the same hyperparameters
as Deformable DETR [25]. The weight α1 is 2 and α2 is 5 to balance the classifi-
cation loss (Lcls) and regression loss (Lbox). To make the training faster, we set
the height and width of the input image to 600 pixels. We employ the standard
size of 800 pixels for comparison with other approaches.

5 Results and Discussion

5.1 TableBank

In this subsection, we provide the experimental results on all splits of the
TableBank dataset on different percentages of label data. We also compare
the transformer-based semi-supervised approach with previous deep learning-
based supervised and semi-supervised approaches. Furthermore, we give results
on 10% TableBank-both data split for all IoU threshold values. Table 1 provides
the results of semi-supervised approach that employs deformable transformer for
TableBank-latex, TableBank-word, and TableBank-both data splits on 10%, 30%
and 50% label data and the rest as unlabeled data. It shows that the TableBank-
both data split has the highest AP50 value of 95.8%, TableBank-word has 93.5%,
and TableBank-both has 92.5% at 10% label data.

Table 1. Performance of the semi-supervised approach that employs deformable trans-
former for TableBank-latex, TableBank-word, and TableBank-both data splits on dif-
ferent percentages of label data. Here, mAP represents mean AP at the IoU threshold
range of (50:95), AP50 indicates AP at the IoU threshold of 0.5, and AP75 denotes AP
at the IoU threshold of 0.75. ARL indicates average recall for large objects.

Dataset Label-percent mAP AP50 AP 75 AR L

TableBank-word 10% 80.5 92.5 87.7 87.1

30% 88.3 95.7 93.1 92.1

50% 91.5 96.7 95.2 94.5

TableBank-latex 10% 63.7 93.5 71.6 74.3

30% 82.8 96.4 93.4 89.0

50% 85.3 96.2 94.4 91.4

TableBank-both 10% 84.2 95.8 93.1 90.1

30% 86.8 97.0 94.1 91.5

50% 91.8 96.9 95.6 95.3

The qualitative analysis of semi-supervised learning for the TableBank-both
data split is shown in Fig. 5. Part (b) of Fig. 5 has a matrix with a similar
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Fig. 5. Semi-supervised table detection results that employs deformable transformer
on TableBank-both data split. Green color represents true positives, blue denotes false
negatives and red shows false positives. Here, (a) indicates true positive detection
results, (b) shows true positive and false positive detection results, and (c) gives false
negative detection results. (Color figure online)

structure as rows and columns, and the network detects the matrix as a table
giving false positive detection results. Here, incorrect detection results indicate
where the network fails to provide correct detection of table regions. Table 2
gives the results of this semi-supervised approach on different IoU threshold
values for all splits of the TableBank dataset on 10% label data and the rest
as unlabeled data. A visual comparison of Precision, Recall and F1-Score of
semi-supervised network that employs deformable transformer with ResNet-50
backbone on different IoU threshold values on 10% labeled dataset of TableBank-
both data split is shown in Fig. 6.

Table 2. The performance comparison of semi-supervised network that employs
deformable transformer with ResNet-50 backbone on different IoU threshold values
on 10% labeled dataset of TableBank-both data split.

Method IoU Precision Recall F1-score

Semi-Supervised 0.5 95.8 90.5 93.1

Deformable-DETR+ResNet-50 0.6 94.6 90.5 92.5

10% labels 0.7 93.3 90.3 91.8

0.8 91.8 89.8 90.8

0.9 89.1 87.2 88.1
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Comparisons with Previous Supervised and Semi-supervised
Approaches. Table 3 compares the deep learning-based supervised and semi-
supervised networks on the ResNet-50 backbone. We also compare supervised
deformable-DETR trained on 10%, 30% and 50% TableBank-both data split
label data with our semi-supervised approach that employs deformable trans-
former. It shows that our attention mechanism-based semi-supervised approach
provides comparable results without using proposal generation process and post-
processing steps such as Non-maximal suppression (NMS).

Table 3. Performance comparison of previous supervised and semi-supervised
approaches. Supervised Deformable-DETR and Faster R-CNN network trained on just
10%, 30% and 50% data of TableBank-both dataset while semi-supervised networks
used 10%, 30% and 50% TableBank-both dataset as labeled and rest as unlabeled data
using ResNet-50 backbone. Here, all results are represented on mAP (0.5 : 0.95). The
best threshold values are shown in bold.

Method Approach Detector 10% 30 % 50 %

Ren et al. [11] supervised Faster R-CNN 80.1 80.6 83.3

Zhu et al. [25] supervised Deformable DETR 80.8 82.6 86.9

STAC [79] semi-supervised Faster R-CNN 82.4 83.8 87.1

Unbiased Teacher [88] semi-supervised Faster R-CNN 83.9 86.4 88.5

Humble Teacher [95] semi-supervised Faster R-CNN 83.4 86.2 87.9

Soft Teacher [96] semi-supervised Faster R-CNN 83.6 86.8 89.6

Our semi-supervised Deformable DETR 84.2 86.8 91.8

Fig. 6. A visual comparison of Precision, Recall and F1-Score of semi-supervised net-
work that employs deformable transformer with ResNet-50 backbone on different IoU
threshold values on 10% labeled dataset of TableBank-both data split and PubLayNet
table class dataset. Here, blue indicates precision results on different IoU threshold
values, red shows recall results on different IoU threshold values, and green represents
F1-score results on different IoU threshold values. (Color figure online)
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5.2 PubLayNet

In this subsection, we discuss the experimental results on PubLayNet table class
dataset on different percentages of label data. We also compare the transformer-
based semi-supervised approach with previous deep learning-based supervised
and semi-supervised approaches. Furthermore, we give results on 10% Pub-
LayNet dataset for all IoU threshold values. Table 4 provides the results of the
semi-supervised approach that employs deformable transformer for PubLayNet
table class on the different percentages of label data and rest as unlabeled data.
Here, AP50 value is 98.5%, 98.8%, and 98.8% for 10%, 30% and 50% label data,
respectively.

Table 4. Performance results for PubLayNet table class dataset. Here, mAP represents
mean AP at the IoU threshold range of (50:95 ), AP50 indicates AP at the IoU threshold
of 0.5 and AP75 denotes AP at the IoU threshold of 0.75. ARL indicates average recall
for large objects.

Dataset Label-percent mAP AP50 AP75 ARL

PubLayNet 10% 88.4 98.5 97.3 91.0

30% 90.3 98.8 97.5 93.2

50% 92.8 98.8 97.3 96.0

Table 5. The performance comparison of semi-supervised network that employs
deformable transformer with ResNet-50 backbone on different IoU threshold values
on 10% PubLayNet labeled Dataset.

Method IoU Precision Recall F1-score

Semi-Supervised 0.5 98.5 91.0 94.6

Deformable-DETR 0.6 98.1 90.9 94.4

10% labels 0.7 97.4 90.8 94.0

0.8 94.0 90.0 92.0

0.9 89.0 87.0 88.0

Furthermore, our semi-supervised network is trained on different IoU thresh-
old values on 10% of labeled PubLayNet Dataset. Table 5 gives the results of the
semi-supervised approach on different IoU threshold values for PubLayNet table
class on 10% label data and the rest as unlabeled data. A visual comparison
of Precision, Recall and F1-score of the semi-supervised network that employs
the deformable transformer network with ResNet-50 backbone on different IoU
threshold values on 10% labeled dataset of PubLayNet table class is shown in
Fig. 6. Here, blue indicates precision results on different IoU threshold values
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Table 6. Performance comparison of previous supervised and semi-supervised
approaches. Deformable-DETR and Faster R-CNN trained on just 10%, 30% and 50%
table data while semi-supervised networks used 10%, 30% and 50% PubLayNet dataset
as labeled and rest as unlabeled data. Here, all results are represented on AP50 at the
IoU threshold of 0.5. The best threshold values are shown in bold.

Method Approach Detector 10 % 30 % 50 %

Ren et al. [11] supervised Faster R-CNN 93.6 95.6 95.9

Zhu et al. [25] supervised Deformable DETR 93.9 96.2 97.1

STAC [79] semi-supervised Faster R-CNN 95.8 96.9 97.8

Unbiased Teacher [88] semi-supervised Faster R-CNN 96.1 97.4 98.1

Humble Teacher [95] semi-supervised Faster R-CNN 96.7 97.9 98.0

Soft Teacher [96] semi-supervised Faster R-CNN 96.5 98.1 98.5

Our semi-supervised Deformable DETR 98.5 98.8 98.8

on different IoU threshold values, red shows recall results, and green represents
F1-score results on different IoU threshold values.

Comparisons with Previous Supervised and Semi-supervised
Approaches. Table 6 compares the deep learning-based supervised and semi-
supervised networks on PubLayNet table class using ResNet-50 backbone. We
also compare supervised deformable-DETR trained on 10%, 30% and 50% Pub-
LayNet table class label data with our semi-supervised approach that employs
the deformable transformer. It shows that our semi-supervised approach pro-
vides comparable results without using proposal and post-processing steps such
as Non-maximal suppression (NMS).

5.3 DocBank

In this subsection, we discuss the experimental results on DocBank dataset on
different percentages of label data. We compare the transformer-based semi-
supervised approach with previous CNN-based semi-supervised approach in
Table 7.

Table 7. Performance comparison of previous semi-supervised approach and our
Deformable-DETR based semi-supervised approach on DocBank dataset. Here, all
results are represented on mAP (0.5 : 0.95).

Method Approach Detector 10 % 30 % 50 %

Soft Teacher [96] semi-supervised Faster R-CNN 72.3 74.4 81.5

Our semi-supervised Deformable DETR 82.5 84.9 87.1

Furthermore, we also compare our semi-supervised approach on different
percentages of label data with previous table detection and document anal-
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ysis approaches for different datasets TableBank, PubLayNet, and DocBank
in Table 8. Although we cannot directly compare our semi-supervised app-
roach with previous supervised document analysis approaches. However, we can
observe that even with 50% label data, we achieve comparable results with pre-
vious supervise approaches.

Table 8. Performance comparison of previous supervised approaches for document
analysis. Our semi-supervised network uses 10%, 30% and 50% label data and rest as
unlabeled data. Here, all results are represented on mAP (0.5 : 0.95).

Method Approach Labels TableBank PubLayNet DocBank

CDeC-Net [69] supervised 100% 96.5 97.8 -

CasTabDetectoRS [32] supervised 100% 95.3 - -

Faster R-CNN [48] supervised 100% - 90 86.3

VSR [97] supervised 100% - 95.69 87.6

Our semi-supervised 10% 84.2 88.4 82.5

Our semi-supervised 30% 86.8 90.3 84.9

Our semi-supervised 50% 91.8 92.8 87.1

5.4 ICDAR-19

We also evaluate our method for table detection on the Modern Track A portion
of the table detection dataset from the cTDaR competition at ICDAR 2019. We
summarize the quantitative results of our approach at different percentages of
label data and compare it with previously supervised table detection approaches
in Table 9. We evaluate results at higher IoU thresholds of 0.8 and 0.9. For a
direct comparison with previous table detection approaches, we also evaluate
our approach on 100% label data. Our approach achieved a precision of 92.6%
and a recall of 91.3% on the IoU threshold of 0.9 on 100% label data.

Table 9. Performance comparison between the proposed semi-supervised approach
and previous state-of-the-art results on the dataset of ICDAR 19 Track A (Modern).

Method Approach IoU = 0.8 IoU = 0.9

Recall Precision F1-Score Recall Precision F1-Score

TableRadar [47] supervised 94.0 95.0 94.5 89.0 90.0 89.5

NLPR-PAL [47] supervised 93.0 93.0 93.0 86.0 86.0 86.0

Lenovo Ocean [47] supervised 86.0 88.0 87.0 81.0 82.0 81.5

CascadeTabNet [68] supervised - - 92.5 - - 90.1

CDeC-Net [69] supervised 93.4 95.3 94.4 90.4 92.2 91.3

HybridTabNet [33] supervised 93.3 92.0 92.8 90.5 89.5 90.2

Our semi-supervised (50%) 71.1 82.3 76.3 66.3 76.8 71.2

Our supervised (100%) 92.1 94.9 93.5 91.3 92.6 91.9
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5.5 Ablation Study

In this section, we validate the key design elements. Unless otherwise stated,
all the ablation studies are conducted using a ResNet-50 backbone with 30%
labeled images from the PubLayNet dataset.

Pseudo-Labeling Confidence Threshold. In Sect. 3.2, the threshold value
(referred to as the confidence threshold) plays an important role in determining
the balance between the accuracy and quantity of the generated pseudo-labels.
As this threshold value increases, fewer examples will pass the filter, but they
will be of higher quality. Conversely, a smaller threshold value will result in more
examples passing but with a higher likelihood of false positives. The impact of
various threshold values, ranging from 0.5 to 0.9, is presented in Table 10. The
optimal threshold value was determined to be 0.7 based on the results.

Table 10. Performance comparison using different Pseudo-labeling confidence thresh-
old values. The best threshold values are shown in bold.

Threshold AP AP50 AP75

0.5 86.9 91.6 90.1

0.6 89.5 98.1 95.7

0.7 90.3 98.8 97.5

0.8 89.4 97.2 95.3

0.9 87.9 96.3 94.5

Table 11. Performance comparison using different numbers of learnable queries to the
decoder input. Here, best performance results are shown in bold.

N AP AP50 AP75

3 61.4 69.7 62.6

30 90.3 98.8 97.5

50 89.4 90.3 85.4

100 88.4 89.7 83.9

300 78.5 94.7 90.2

Influence of Learnable Queries Quantity. In our analysis, we investigate
the impact of varying the number of queries fed as input in the decoder of
deformable DETR. Figure 7 compares prediction results by varying the number
of object queries fed as input in the decoder of deformable DETR. The optimal
performance is attained when the number of queries N is set to 30; deviating
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Fig. 7. Comparison of performance by variation of the number of object queries fed
as input in the decoder of deformable DETR. Here, (a) takes N = 3 object queries as
input, (b) contains N = 30 object queries as input, and (c) has N =300 object queries
as input. The optimal performance is achieved by selecting the number of queries N to
30; deviating from this value results in a decrease in performance. Here, blue rectangles
denote ground truth (GT), green rectangles indicate object class, and red rectangles
show background class. (Color figure online)

from this value results in a decrease in performance. Table 11 presents and ana-
lyzes the result for varying object query quantities. Choosing a small value for
N could result in the model failing to identify particular objects, negatively
impacting its performance. On the other hand, selecting a large value for N may
cause the model to perform poorly due to overfitting, as it would incorrectly
classify certain regions as objects. Moreover, training complexity O(Nkc2

i ) of
this semi-supervised self-attention mechanism in the decoder of student-teacher
module depends on the number of object queries and is subsequently improved
as complexity is reduced by minimizing the number of object queries.

6 Conclusion

This paper introduces a semi-supervised approach that employs the deformable
transformer for table detection in document images. The proposed method mit-
igates the need of large-scale annotated data and simplifies the process by inte-
grating the pseudo-label generation framework into a streamlined mechanism.
The simultaneous generation of pseudo-labels leads to a dynamic process known
as the ”flywheel effect”, where one model continually improves the pseudo-boxes
produced by the other model as the training progresses. The pseudo-class labels
and pseudo-bounding boxes are improved in this framework using two distinct
modules named student and teacher. These modules update each other by the
EMA function to provide precise classification and bounding box predictions.



Towards End-to-End Semi-Supervised Table Detection 71

The results indicate that this approach surpasses the performance of supervised
models when applied to labeling ratios of 10%, 30%, and 50% on TableBank
all splits and the PubLayNet training data. Furthermore, when trained on the
10% labeled data of PubLayNet, the model performed comparably to the current
CNN-based semi-supervised baseline. In future, we aim to investigate the impact
of the proportion of annotated data on the ultimate performance and develop
models that function effectively with a minimal quantity of labeled data. Addi-
tionally, we intend to employ the transformer-based semi-supervised learning
mechanism for table structure recognition task.
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Abstract. We introduce a novel bottom-up approach for the extraction
of chart data. Our model utilizes images of charts as inputs and learns
to detect keypoints (KP), which are used to reconstruct the components
within the plot area. Our novelty lies in detecting a fusion of contin-
uous and discrete KP as predicted heatmaps. A combination of sparse
and dense per-pixel objectives coupled with a uni-modal self-attention-
based feature-fusion layer is applied to learn KP embeddings. Further
leveraging deep metric learning for unsupervised clustering, allows us to
segment the chart plot area into various objects. By further matching
the chart components to the legend, we are able to obtain the data series
names. A post-processing threshold is applied to the KP embeddings to
refine the object reconstructions and improve accuracy. Our extensive
experiments include an evaluation of different modules for KP estima-
tion and the combination of deep layer aggregation and corner pooling
approaches. The results of our experiments provide extensive evaluation
for the task of real-world chart data extraction. Our Code is publicly
available (https://github.com/cse-ai-lab/SpaDen).
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1 Introduction

Data visualizations are effective constructs to efficiently convey knowledge in
documents. Most documents consist of semantically structured textual content
and complementary visualizations in the form of figures, generic infographics,
technical diagrams, charts, etc. Our work focuses on the problem of reconstruct-
ing tabular data used to plot the visualization, given the image and structural
information as input. We focus on the family of visualizations called charts,
specifically from the scientific literature.
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1.1 Charts

Charts are visual representations of data composed of simple abstract shapes
arranged to have a semantic meaning. They are often used to make it easier to
understand large amounts of data and to see patterns and trends. Charts can rep-
resent many types of data, including numerical, categorical, and time-based data.
Standard chart types include bar, line, scatter, and box plots. The elements of a
chart are the visual components used to represent data. These can include the title
of the chart, plot text labels, the axes, the legend, and the data points or lines.

The chart’s title is typically a brief phrase or sentence describing the data
being plotted. The plot text labels include text such as the actual values repre-
sented on the chart. The axes are the lines along the bottom/top and left/right
sides of the chart and show the scale and range of the data being plotted. The
axis usually has an axis title, major/minor tick marks, and tick labels. The leg-
end is a key that explains the meaning of different colors, symbols, or other
visual elements used in the chart. These are usually in a horizontal or vertical
box with patches representing the key and text representing a data series. The
data points or lines are the individual elements of the chart that represent the
data. For example, in a line chart, the data points would be plotted along the
line, while in a bar chart, they would be represented by the individual bars,
grouped bars, or stacked bars; box plots show the distribution as a box with
three whiskers - first quartile, central tendency, and third quartile, most box
plots also have two whiskers for minimum and maximum value whereas, in a
scatter plot, they are just the points.

Other chart elements can include gridlines, which are lines that help to divide
the chart into smaller sections and make it easier to read, and data labels, which
show the exact values for each data point or line. The overall design of the chart,
including the colors, fonts, and layout, can also be considered an element of the
chart.

1.2 Chart Data Extraction

There has been decent strides made in the space of document understanding
[2,8,18,20], with specialised tasks for non-textual understanding such as parsing
reason over mathematical expressions [1,14] One such focus has been automa-
tion of chart parsing, which originated from public challenges for chart data
extraction [4–6]. Multiple iterations of this competition have spurred signifi-
cant community interest in this highly challenging task. While earlier challenges
comprised large-scale (100k images) synthetic charts on which deep models can
achieve very high accuracies, the latest iterations feature only real-world charts,
which continue to be extremely challenging especially as it pertains to the end-
to-end data extraction task. Our focus is on Task-6 of the challenge where the
input is a chart image, the text corresponding to the chart, and structural prop-
erties such as the role of each text element and legend and axes elements, and
the output is a table with the data used to generate the original chart image.
Other works outside this competition have also been published on the chart data
extraction task but remain severely constrained, as discussed in Sect. 2.4.



SpaDen: Sparse-Dense Chart Keypoint Estimation 79

2 Background

In this section, We describe our problem, popular model architectures used in
the literature for keypoint(KP) and object detection tasks and techniques for
improving such models. We also discuss relevant prior works in this domain.

2.1 Chart Infographics: Chart Data Extraction Challenge

This challenge [6] aims to evaluate and promote the development of automated
chart data processing systems. This involves the extraction of structured data
from chart images. The challenge is divided into six sub-tasks, which mimic the
common steps used in manual chart data extraction.

The first task is chart type classification. The second task is the detection
and recognition of text regions in the input chart image. In the third task, text
elements are classified according to their semantic role in the chart, such as chart
title, axis title, or tick label. The fourth task requires associating tick labels with
specific pixel coordinates. The fifth task involves pairing the textual labels in the
legend with the associated graphical markers in the chart.

The sixth task is data extraction, where the goal is to extract the original
data used to create the chart. This is further divided into two parts: plot element
detection and classification, and data extraction. The former involves segmenting
the chart image into atomic elements such as bars, points, and lines, while the
latter involves producing named sequences of (x, y) pairs that represent the data
points used to create the chart. Subsequent tasks assume output of previous tasks
as available input. For our work, we focus on the sixth task of this challenge.

2.2 Keypoint Estimation Architectures

Keypoint estimation is a common task in computer vision, involving the detec-
tion of specific points or landmarks in an image. Popular models for this task
include Hourglass Network (HGN), [15], Cascade Pyramid Network (CPN) [3],
and Simple Pose Network (SPN) [10]. HGN has a bottleneck shape that com-
presses and expands data through downsampling and upsampling layers. Its
symmetrical shape allows the model to learn spatial information at multiple
scales. CPN is a variant of HGN that combines the strengths of bottom-up and
top-down approaches using multiple cascaded hourglass modules. SPN, on the
other hand, is a simpler and more efficient model than HGN and CPN, using
devonvolution learnable layers for upsampling and a bottom-up approach to KP
estimation. In the realm of KP localization benchmarks, including tasks such
as human pose, facial landmark detection, and document corner detection, it is
generally observed that while HGN and CPN are more accurate, they are also
more complex and resource-intensive. Conversely, SPN is faster and simpler to
train, but may sacrifice some degree of accuracy.

We conduct experiments with all three variants to provide an exhaustive
comparison.
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2.3 Anchor-Free Object Detection for Keypoints

In the domain of object detection, a promising approach is to treat it as a KP
detection problem and bypass the need for predefined anchors or bounding boxes.
This anchor-free paradigm has been successfully implemented in the Single Shot
Object Detection framework. CornerNet [9] is based on an HGN backbone and
uses two heads to detect the top-left and bottom-right KP of an object. The KP
are combined using corner pooling layers. CentreNet [7]extends CornerNet by
using an additional center KP. Thus three KP are combined using centre pooling
layers. Object as Points [21] proposes that the center point is sufficient to detect
objects. It uses the expected center of a box as both an object and a KP to
determine the coordinates and offsets of the bounding box. They combine DLA-
based architectures [19], with deformable convolutions replacing the upsampling
layers in SPN.

Inspired by these methods, we propose an extension that combines all four
top-down, bottom-up, left and right directional pooling for improved KP fea-
tures. Furthermore, we modify the downsampling convolution layers in popular
anchor-free object detection models such as HGN, CPN, and SPN with a DLA-
34 architecture to experiment with alternative backbones. To achieve this, we
implement a hierarchical deep-aggregation strategy for each of the downsampling
layers in a KP-backbone encoder, which we believe will enhance the overall per-
formance of the model.

2.4 Chart Data Extraction Models

Domain-specific models have been proposed for bottom-up chart data extrac-
tion techniques. In [13], the authors propose an ensemble of different popular
models for each task of box detection, point detection, and legend matching. For
bar plots and box-plots, they use a Feature Pyramid Network with a ResNet
backbone, and for points, they use a Fully Convolutional Network for producing
heatmaps. Further, they train a separate feature extractor with triplet loss over
legend patches for the legend linking task. In the same 2020 challenge, another
submission [12] uses a CentreNet model for bar plots and a CentreNet with DLA-
34 [19] connections for box, line, and scatter plots having a different number of
final layers per chart type. They do legend matching through HOG features.

Authors of [11] propose using a CornerNet model with an added head for
chart-type classification. Current literature [6] provides a general framework for
bottom-up chart data extraction. They primarily utilize off-the-shelf computer
vision models that are either disconnected and trained for separate tasks, have
different architectures for different chart types, or solve only half the task of
visual element detection and no legend matching. Extracting data from a chart
without its contextual legend information is ineffective. Also, since these works
were benchmarked on older versions of datasets or datasets with missing chart
types, it is hard to compare across methods.

We provide a systematic study that encompasses this family of architectures
and techniques and propose the first model, to our knowledge, for complete chart
data extraction.
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2.5 Contrastive Loss for Visual Element Reconstruction

For plot elements such as lines, the predicted KP need to be clustered or ‘recon-
structed’ in a bottom-up fashion. To train these clustering embeddings we exper-
iment with two types of contrastive losses.

Push-pull loss operates by comparing the distances between the reference
points and the actual data points in the embedding space. For data points simi-
lar to their reference point (i.e., belonging to the same class), the push-pull loss
function will try to minimize the distance between them while maximizing for
the rest.

Mathematically, the push-pull loss for KP detection can be defined as:

L = (1 − Y ) ∗ (max(0, dp − dn + m))2 + Y ∗ (max(0, dn − dp + m))2

where L is the loss, Y is a binary label indicating whether the inputs are similar
(Y = 1) or dissimilar (Y = 0), dp is the distance between the KP detected for
the positive input, dn is the distance between the KP detected for the negative
input, and m is a margin hyperparameter that determines how far apart the KP
should be.

Multi-Similarity Loss (MS) is designed to encourage learning deep features
that are discriminative between classes and similar within each class.

The discriminative term of the loss function is given by:

Ldis = −
N∑

i=1

log
efyi

∑C
j=1 efj

where N is the number of training examples, C is the number of classes, yi is
the class label of the ith training example, and fj is the predicted class score for
the jth class.

The similarity term of the loss function is given by:

Lsim =
1

2N

N∑

i=1

N∑

j=1

[yi = yj ]
(

1 − fyi
− fyj

max(0, fyi
− fyj

) + α

)

where α is a hyperparameter that controls the strength of the similarity regu-
larization.

The sum of the discrimination and similarity terms then gives the overall loss
function:

L = Ldis + Lsim
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(a) The Unified Data Extraction(UDE) Framework

(b) Chart Type Head

(c) SpaDen Keypoint Head : All 5 heatmaps are trained for each chart type. During inference
selective output is used. The dense/sparseness comes from the segmentaion mask used for training.

(d) Legend Mapping Head

Fig. 1. Chart Data Extraction using SpaDen Model in the UDE Framework.
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3 Unified Data Extraction (UDE) Framework

We propose a generic framework for bottom-up parsing for chart data extraction.
Figure 2 shows the general blocks of UDE and Fig. 1 shows a more detailed view of
the overall architecture. The UDE framework consists of a generalized backbone
chart feature extractor, chart type prediction, KP localization, chart component
reconstruction by KP grouping, and a legend mapping block. We discuss these
blocks in detail in this section. We also describe a custom segmentation mask for-
mulation, and making the feature extractor invariant to chart text.

Fig. 2. UDE Framework Blocks

3.1 Backbone Feature Extractor

Inspired by architectures used for KP extraction, our baselines consist of HGN,
CPN, SPN, DLA-34, and general-purpose Resnet. We further propose a novel
architecture using DLA techniques. We modify the connection layers of HGN,
CPN, and SPN by adding iterative deep aggregations. Another way of under-
standing these is (i) Hourglass blocks where each stage is a DLA encoder, (ii)
DLA model with hybrid top-down and bottom-up output layers similar to CPN
and (iii) DLA model with deconvolution layers instead of upsampling as in SPN.
We conduct ablation studies with each variant and corner pooling layers.

3.2 Chart Type Classification

A linear projection head takes base features and passes them through a series of
1x1Conv-BN layers to get the chart-type output. This is shown in Fig. 1b.

3.3 Keypoint Localization

These networks are trained with an L2 custom loss for KP and an L1 distance loss
for offset. We refer readers to [9] for their detailed implementations. Generally,
KP estimation literature makes an architectural decision based on the number
of output classes for this head. In charts, we have an unconstrained number of
KP for types like scatter and line. In our implementation, we predict a single
heatmap for all KP. As depicted in Fig. 1c we predict 5 different ‘views’ of the KP
heatmap, trained using different segmentation masks discussed in detail below.
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Fig. 3. Custom Groundtruth Masks. First Column: Input Chart, Second Column:
Generic Gaussian Mask (Classification), Third Column: Dense Directional Mask
(Regression).

Dense Directional Keypoint Masks are developed to learn regression
heatmaps for unconstrained KP in charts. This differs from the sparse KP masks
typically used in other tasks, such as human pose estimation. Sparse KP estima-
tion involves assigning a probability density centered at each sparse KP location,
achieved by applying a Gaussian kernel to the KP. Where each KP has a ‘class’
and each class has a different output layer. Due to the unconstrained nature of
chart KP, we output a single heatmap which makes it harder for the model to
segment each point by only using sparse labels.

To address this issue, we create dense directional KP masks by interpolating
KP between inflection points. Specifically, we interpolate 10 fixed KP between
each ground truth point and use a Gaussian kernel with a spread of 2.0 to
generate the dense mask. Figure 3 illustrates an example of the resulting dense
mask.

To compute the loss during training, we use the dense masks to focus on
informative pixels in the image. We binarize the masks to create classification
labels for line plots using a threshold of 0.6. For bar plots, we only use the top-
left, center, and bottom-right KP, and for box plots, we only use five KP for
each marking. For scatter plots, we use all KP. To generate background masks,
we invert the foreground masks.

SpaDen Keypoint-Loss utilizes a combination of direct regression, binary
classification, and even multi-class classification. While each loss has its merits,
each faces unique challenges on unconstrained KP when trained individually. The
lack of data makes regression overfit. Multiple KP without class discriminator
makes binary cross entropy hard to converge on a single heatmap, whereas a
general lack of informative pixels (99.9% pixels in plot area are background)
makes cross entropy an imbalanced classification problem. Even dice loss for
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Fig. 4. Affect of Keypoint loss. Top row shows output when trained in isolation: input
chart, gaussian mask, predicted BCE heatmap, predicted MSE foreground, predicted
MSE background, predicted CE foreground, predicted CE background. Bottom Row
shows outputs when trained in combination, first two show the groundtruth Classifi-
cation Mask and Regression Mask, rest are counterparts of top row outputs.

tackling imbalanced classification severely affects the training process of the
model when unconstrained KP from different plot area components are projected
on the same single layer instead of the per-class output layer.

Our final model consists of 5 heads for the different ‘views’ of the chart. Direct
binary reconstruction, fore/back-ground regression, and fore/back-ground classi-
fier. Figure 4 shows output predictions for each loss individually as well as when
combined. We weigh the background pixels to 0.01 and the foreground to 0.99.
We find that using a mixture of sparse masks for classification, and dense direc-
tional masks for regression, works best. This architecture choice helps further
with chart component reconstruction by providing specific feature outputs to
calculate global chart vs. KP attention and also in post-processing for discrete
and continuous data in the same model, as described in the next section. The
final loss value is an alpha blend of 0.7× Aggregated KP Loss from 5 heads and
0.2× contrastive loss for learning associations and 0.1× chart type classification.

3.4 Keypoint Clustering

In this stage, we first post-process the output heatmaps and then use a per-pixel
contrastive loss to cluster the KP.

Foreground Keypoint Heatmaps are critical for our method. The regression
output enables us to predict the complete contour of chart elements accurately.
The classification output gives us corners/points for discrete elements. Fore-
ground regression output is also used to extract clusters of relevant pixels of
individual chart elements. To avoid noise interference in the clustering process,
we apply a post-processing procedure shown in Fig. 5. Our approach involves
identifying pixel clusters by selecting the top 1,000 pixels with the highest con-
fidence values and reducing each connected component to individual points by
thresholding at 0.85× max-intensity.

We also find the median RGB color of the chart and discard all foreground KP
within 0.25 min-distance. For each point, we obtain the RGB color distribution
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Fig. 5. Post-Processing Regression Prediction: (Top row) Input image, Thresholded
islands, Points from connected components, (Middle Row) Colour Histogram over all
points, All points from cc before filtering, (Bottom Row) Histogram after discarding
pixels close to median color, Final points chosen for contrastive grouping.

and identify the median color value, as well as the peaks in the distribution
except for the median. We discard all points with a color distance greater than
the minimum distance between the median color and peaks. If the legend patch is
available, we use the centroid distance from the median color to the mean legend
patch color else mean peak value from cluster. Color distance is computed as
the L2 distance between RGB tuples.

Fig. 6. Global chart vs key-point attention implementation to generate Contrastive
Feature Map

Chart Component Reconstruction is done from the pixel clusters learnt
through contrastive loss. First, we calculate the cross-attention between the
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global chart features from the backbone and each of the individual heatmap
heads HMi. The resulting per-pixel embeddings are summed and aggregated to
perform clustering, as shown in Fig. 6.

We treat all KP belonging to the same instance of a line, bar, box, or scat-
ter as positive samples, and rest as negative. During inference, we filter the
regression heatmap output to obtain K informative pixels and then calculate
their exhaustive K × K similarity. A threshold value of 0.85 is used for cosine
similarity in the MS loss or 1e−5 for Euclidean distance in the push-pull loss.

Each resulting cluster is reconstructed to its original chart component using
heuristic rules. Lines are assumed to have a vertical axis as the dependent vari-
able and are joined from left to right. For bars, boxes, and scatter plots, the
closest point from each cluster with the highest probability output from the
foreground classification heatmap is taken. For bars and boxes, we take the top
2 (corner) and top 5 (whiskers) points, respectively. For scatter plots, we thresh-
old by selecting all points with a confidence interval of 0.25× the maximum
value.

To retrieve the data, we use task-6 inputs of a text box, axis tick, and text role
to get the data value at the pixel location. We also classify horizontal/vertical
bars and boxes as such.

3.5 Legend Mapping

To effectively associate the chart components with their legend patches, we intro-
duce a ROI-align layer that operates on the backbone features. We utilize a leg-
end oracle to obtain bounding box coordinates, then the roi-align layer provides
uniform embeddings as illustrated in Fig. 1d. We aggregate the KP clusters using
concatenation and 1x1Conv-BN and use the MS-Loss function to measure their
similarity with each of the legend patches. During training, the legend oracle
provides the association label. At inference time, we match the KP cluster with
the most similar legend patch.

3.6 Invariance to Chart Text

KP based backbones exhibit sensitivity to individual pixels, making invariance to
text a desirable characteristic. To achieve this, the heatmap features for the plot
area must generate KP exclusively for components within the chart area, and not
for text within the chart. In order to evaluate the robustness of our approach,
we introduced ‘easy’ and ‘hard’ samples by selectively adding or removing text
boxes from the chart. During each iteration of the training process, there is a
25% chance that all text boxes and content are replaced with the median color
from the chart, and a 25% chance of adding skewed and cropped contextual text
boxes to random positions within the chart. The model may receive different
augmented chart inputs in each epoch, but the same mask labels. The efficacy
of this augmentation strategy is demonstrated in Fig. 7, where the text box
information is obtained from an oracle.
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Fig. 7. Text box invariance for chart Keypoint-Estimation. TopRow: Input Chart,
Directional Mask, Predicted heatmap using generic mask w/o augmentation, Predicted
heatmap using custom mask with augmentation. BottomRow: Input Chart, Directional
Mask, Predicted heatmap using custom mask w/o augmentation, Predicted heatmap
using custom mask with augmentation.

4 Experiments

We first describe the dataset and evaluation and then provide an exhaustive
quantitative evaluation. We summarize our findings and conclusions comparing
different architectures, pooling, aggregation techniques, objective functions, and
post-processing methods for chart reconstruction.

4.1 Dataset and Evaluation

The Chart-Infographics Challenge Dataset is a rigorously curated collec-
tion of over 86,815 real charts sourced from the Open Access (OA) section of
PubMed Central (PMC). The dataset comprises both multi-panel and single-
panel charts, with the latter forming the focus of downstream tasks. Among
these, over 36,000 images are categorized as single-panel charts and are uti-
lized for training and testing. Multi-panel charts are divided to extract under-
represented chart classes. The final training set comprises 22,923 images, and
the testing set comprises 13,260 images. In addition, we incorporate 999 charts
from Arχiv publications, as provided in [16], along with 100k synthetic charts
from the previous Chart-Infographics ’19 challenge, to enhance the training data.
During each epoch, training is conducted over all real charts and an equivalent
number of randomly selected synthetic charts.

The Evaluation is conducted on the publicly released test set [6], with the
same splits as the challenge, ensuring a fair comparison in our study. The test
set contains a diverse range of chart types, including line plots, scatter plots,
horizontal and vertical bar charts, and vertical box-plots. The charts in the
dataset have been annotated for hierarchical image classification and further
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categorized as containing charts or not. For the downstream tasks, the output
and ground-truth for each chart are defined as the visual location in terms of
(x, y) coordinates for task-6a and a set of (name, data series) pairs for task-6b.

The evaluation metrics for the tasks are designed to capture the nuances
of different chart types. For continuous data series, represented by line charts,
the metric quantifies the difference between two functions as an integral of their
point-wise differences. Bi-variate point set data, such as scatter plots, is evaluated
using a capped distance function, where the distance is scaled by the inverse
covariance matrix of the ground truth points. Discrete data, represented by
bar charts and some line plots, is evaluated using two cases: exact text match
and fuzzy text matching. The distance is calculated based on string equality
for the exact match case and the normalized edit distance between predicted
and ground truth strings for fuzzy text matching. Boxplots are evaluated using
exact text matching between the predicted and ground truth strings for real-
numbered summary statistics such as minimum, maximum, first quartile, third
quartile, and median, ignoring outliers in this representation. The final metric
is calculated as 1 minus the distance for each task. We refer the readers to
the challenge for exhaustive details1 and publicly available script 2 used for our
evaluation.

4.2 Experiment Result

Qualitative outputs were shown in previous sections alongside the description
of our implementation in Figs. 4, 6, 7. These are all conducted with the same
simple HGN backbone without added pooling or aggregation. We further discuss
quantitative metrics below.

Exhaustive quantitative evaluation is provided in Table 1, grouped by rows.
We report most runs for the ‘Line’ type chart as they are the hardest to

reconstruct and further provide evaluation over all types for the best-performing
combination for each flavor of backbone.

We evaluated different reconstruction strategies, ranging from heatmap out-
put to chart objects, using various heuristics such as connected component analy-
sis [CC], [HOG] features extracted from the original image after thresholding and
clustering points, and low-level feature matching techniques using correlation,
local binary patterns, and cross-correlation. Additionally, we tested push-pull vs.
multi-similarity loss objectives for contrastive learning. All hyperparameters for
backbone models is kept the same as the original implementations. All thresh-
olding multipliers mentioned in Sect. 3 are calculated using Otsu’s hysteresis on
randomly sampled heatmaps during validation, minimising val loss and max-
imising val accuracy.

Rows 1–2 benchmark the public cornernet (HGN+CP) implementation of
[11]. Their performance on 6a is comparable out-of-the-box, but for 6b, they

1 https://chartinfo.github.io/metrics/metric.pdf.
2 https://github.com/chartinfo/chartinfo.github.io/blob/master/metrics/.

https://chartinfo.github.io/metrics/metric.pdf
https://github.com/chartinfo/chartinfo.github.io/blob/master/metrics/
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Table 1. Data Extraction Results for different models on the chart element detec-
tion (6a) and data extraction task (6b). NN - Neural Net, CC - Connected Component,
HOG - Histogram of Gradient, FM - Feature Matching, PP - Push Pull Loss, MS -
Multi Similarity Loss

# Model Backend Element Reconstruction Chart Type 6a 6b-Data 6b-Name

1 Chart-OCR (pretrained) NN + Rules Line 0.71 0.25 -

2 Chart-OCR (pretrained) NN + Rules Bar 0.88 0.28 -

3 IIT CVIT (as reported) Heuristic Line 0.773 - -

4 IIT CVIT (as reported) Heuristic Bar 0.906 - -

5 IIT CVIT (as reported) Heuristic Box 0.970 0.834 0.921

6 IIT CVIT (as reported) Heuristic Scatter 0.773 - -

7 ResNet32 Rule based [CC] Line 0.29 0.256 0.342

8 FCN Rule based [CC] Line 0.38 0.286 0.33

9 HGN Rule based [CC] Line 0.49 0.294 0.34

10 HGN Rule based [HOG] Line 0.56 0.292 0.34

11 HGN Rule based [FM] Line 0.14 0.285 0.34

12 HGN Learnt [PP] Line 0.68 0.611 0.741

13 HGN Learnt [MS] Line 0.699 0.683 0.756

14 HGN + CP Rule based [CC] Line 0.49 0.324 0.34

15 HGN + CP Learnt [PP] Line 0.69 0.62 0.756

16 HGN + CP Learnt [MS] Line 0.71 0.685 0.77

17 HGN + CP + DLA Learnt [PP] Line 0.74 0.66 0.75

18 HGN + CP + DLA Learnt [MS] Line 0.83 0.69 0.77

19 HGN + CP + DLA Learnt [MS] Bar 0.912 0.81 0.86

20 HGN + CP + DLA Learnt [MS] Box 0.965 0.882 0.88

21 HGN + CP + DLA Learnt [MS] Scatter 0.782 0.62 0.55

22 HGN + CP + DLA Learnt [MS] ALL 0.8722 0.7505 0.765

23 CPN Learnt [PP] Line 0.67 0.581 0.701

23 CPN Learnt [MS] Line 0.66 0.592 0.69

24 CPN + CP Learnt [PP] Line 0.67 0.585 0.701

25 CPN + CP Learnt [MS] Line 0.66 0.592 0.69

26 CPN + CP + DLA Learnt [PP] Line 0.675 0.58 0.69

27 CPN + CP + DLA Learnt [MS] Line 0.68 0.61 0.56

28 CPN + CP + DLA Learnt [MS] Bar 0.89 0.78 0.72

29 CPN + CP + DLA Learnt [MS] Box 0.952 0.83 0.772

30 CPN + CP + DLA Learnt [MS] Scatter 0.71 0.601 0.661

31 CPN + CP + DLA Learnt [MS] ALL 0.808 0.705 0.678

32 SPN Learnt [PP] Line 0.59 0.448 0.342

33 SPN Learnt [MS] Line 0.62 0.51 0.35

34 SPN + CP Learnt [PP] Line 0.587 0.44 0.342

35 SPN + CP Learnt [MS] Line 0.613 0.505 0.32

36 SPN + CP + DLA Learnt [PP] Line 0.577 0.421 0.338

37 SPN + CP + DLA Learnt [MS] Line 0.601 0.499 0.336

38 SPN + CP + DLA Learnt [MS] ALL 0.623 0.59 0.482

39 SPN Learnt [MS] Bar 0.82 0.782 0.68

40 SPN Learnt [MS] Box 0.85 0.812 0.778

41 SPN Learnt [MS] Scatter 0.58 0.324 0.27

42 SPN Learnt [MS] All 0.7175 0.607 0.519
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assume axis position and calculate the range of data values as the max differ-
ence between OCR outputs, which does not scale for real charts and has a low
6b-data score. The model also cannot perform legend matching and does not
report a 6b-name score. We used an open-source implementation [17] to replace
their proprietary text box localization and recognition software while keeping
everything else the same.

Rows 3–6 present partial results from the latest challenge participants,
referred to as ‘IIT CVIT’ in the challenge report [6].

Rows 7–42 present our implementations of the proposed strategies described
in this paper:

1. Rows 7–8: Baselines with simple ResNet32 and FCN based backbones.
2. Rows 9–13: We tested the best reconstruction strategy with a simple HGN

backbone, and learned embedding through MS Loss provided the best results.
3. Rows 14–22: We added pooling and aggregation to the HGN backbone and

compared across objective and chart types.
4. Rows 23–31: We compared CPN backbone-based models with contrastive loss,

pooling, aggregation, and different chart types.
5. Rows 32–42: We conducted a similar study for SPN-based models. Since

improving encoder architecture through pooling and aggregation did not help,
we used a base model for different chart types.

The results show that the best-performing model for line charts is the HGN +
CP + DLA model with MS loss for both element detection and data extraction,
achieving F1 scores of 0.83 and 0.69, respectively.

The best-performing model for bar charts is also the HGN + CP + DLA
model with the MS loss function, achieving an F1 score of 0.912 for element
detection and 0.81 for data extraction.

For box charts, the best-performing model is the IIT CVIT model with
heuristic-based element reconstruction, achieving an F1 score of 0.97 for ele-
ment detection and 0.834 for data extraction.

For scatter charts, the HGN + CP + DLA model with the MS loss function
achieves the highest F1 score of 0.782 for element detection and 0.62 for data
extraction.

The results also show that rule-based methods for element detection, such as
connected components and histogram of gradients, perform poorly compared to
learned methods. Furthermore, combining different models, such as the HGN +
CP + DLA models, improves the overall performance of the system. It is inter-
esting to note that SPN (upsampling is learned through deconvolution) performs
better without added pooling and aggregation. This shows that while these tech-
niques help improve encoders, their contribution might be outperformed by a
much more sophisticated decoder, which remains invariant to these features in
the deconvolution operation.

4.3 Conclusion

We have described our approaches to chart data extraction through bottom-
up KP parsing methods. We present an end-to-end framework for chart visual
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element detection, data series extraction, and legend matching. We have pro-
vided exhaustive experimentation with multiple backbones, pooling, and layering
strategies. We find that our approach using HG-Net KP backbone augmented
with the proposed pooling and aggregation techniques performs the best.
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Abstract. Current approaches for high precision fine-grained visual
extractions from charts are highly data intensive requiring thousands of
annotated samples. Annotating a dataset and retraining for every new
chart type with a shift in the spatial composition of chart elements, text
role regions, legend preview styles, chart element shapes and text-role
definitions, is a time-consuming and costly affair. Current approaches
struggle to generalize to new chart types with a distributional shift
across the above dimensions. In this paper, we define a novel attention
and dynamic filtering based approach for extracting chart elements and
identifying text-role regions, achieving SOTA results for visual extrac-
tion on charts for the PlotQA dataset, surpassing existing approaches by
an mAP of 2.81% @0.90 IOU. More importantly, the methods proposed
are designed to adapt to unseen chart types having the above mentioned
shifts in chart element distributions. We demonstrate the generalization
capabilities of our models trained on the PlotQA train set by providing
chart extraction results on out-of-distribution charts selected from the
LeafQA dataset. We achieve an mAP of 90.64% and 92.18% for @0.90
IOU for this well-curated out-of-distribution chart data in zero and few-
shot settings, respectively.

Keywords: Chart Extraction · Information extraction

1 Introduction

Charts are compact visualization techniques frequently used for illustrating facts
in scientific and financial documents in order to summarize observations and
draw conclusions about the underlying data. The fine grained perception capa-
bilities required to interpret the elements of a chart are one of the main bottle-
necks towards automated fact extraction from charts. High precision detection
of visual elements is critical, as errors in this step would cascade to downstream
inference tasks leading to substantial discrepancies in the final conclusions, espe-
cially in case of numerical data. These chart elements are distributed across tex-
tual elements such as the chart title, X/Y-axis labels, X/Y-ticks and tick labels,
legend preview, legend labels, in addition to visual elements such as bars, lines,
and dots. Existing approaches for information extraction from charts fine-tune
object detection networks such as Fast-RCNN [6], Faster-RCNN [29], YOLO [28],

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 94–110, 2023.
https://doi.org/10.1007/978-3-031-41679-8_6
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(a) Dot Chart (PQA) (b) Horizontal Bar (PQA) (c) Pie Chart (LQA)

(d) Vertical Bar (PQA) (e) Line Chart (PQA) (f) V-stacked Chart (LQA)

Fig. 1. Chart Types from PlotQA (PQA) [26] and LeafQA (LQA) [3]

SSD [21], and Mask-RCNN [9]. Fine-tuning is done over a large number of charts
(157K for PlotNet [5] and 200K for LeafQA [3]) either with [3,5,22,23] or with-
out [26] modification to the construction of the region proposals and/or the loss
function. These approaches achieve a maximum mAP (mean Average Precision)
of 93.44% @0.90 IOU (Intersection Over Union) for visual element detection
which is not good enough for consistent downstream extraction quality. Thus,
these models not only struggle with fine-grained Chart Visual Element Extrac-
tion but are also highly data intensive.

Charts have distinct spatial compositions for certain chart elements such as
the chart title which is predominantly positioned on the top or bottom of the
chart. Similarly, chart legends can be at distinct positions in different charts
(Charts (a), (b) and (f) in Fig. 1), X/Y axis labels may change their positions
based on whether graphs are horizontal or vertical (Charts (d), (f) versus chart
(b) in Fig. 1) and bars in bar graphs might be adjacent or stacked (Charts (b)
versus chart (f) in Fig. 1). Also, charts have distinct types of legend preview
styles with usage of different colors (Charts (a), (b), (c), (d) in Fig. 1), texture
patterns or combination of both (Charts (e) and (f) in Fig. 1). Moreover, charts
are of distinct types (Fig. 1) such as vertical/horizontal bar graphs, stacked bar
graphs, line charts, dot charts, pie charts, donut charts, box-plots and others.
These distinct types of chart have chart elements of distinct shapes such as
rectangular bars (Charts (b), (d) and (f) in Fig. 1), pie shaped pie charts (Chart
(c) in Fig. 1), circular dots (Chart (a) in Fig. 1), etc. Also, the distinct chart
types may have distinct text role definitions, for instance bar (Charts (b), (d)
and (f) in Fig. 1), line (Chart (c) in Fig. 1) and dot charts (Chart (a) in Fig. 1)
have text roles corresponding to X/Y axis labels, X/Y axis tick labels, whereas
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for Pie (Chart (c) in Fig. 1) or Donut charts, the only valid text roles are region
labels. Thus, charts are subject to variations across the following dimensions: (i)
spatial composition of chart elements and text role regions, (ii) legend preview
styles, (iii) chart element shapes and (iv) text-role definitions.

In real life scenarios, there can be a shift in the distribution over the above
mentioned dimensions. Current architectures mentioned above are not designed
to generalize to unseen charts with these distributional shifts. Realistically, it is
infeasible to create an annotated dataset with thousands of samples for each new
chart dimension/type and re-train the model each time to achieve satisfactory
fine-grained extraction. Thus, we need an approach which can be easily adapted
to unseen chart types with no (zero-shot) or minimal (few-shot) training data
to provide comparable performance for chart visual extractions.

In this paper, we define two novel architectures for (i) Extraction of chart
elements such as bars, lines, and dots (ii) Text Region and Role Detection which
allows for segmentation of textual components of charts and classification of
those segments to distinct text roles.

The main contributions of this work are as follows:

– The novel architectures achieve State-of-the-Art(SOTA) results for precise
fine-grained chart visual extractions on the PlotQA dataset [26] with an mAP
of 96.25% @0.90 IOU, surpassing existing approaches [5] by an mAP of ∼3%
@0.90 IOU.

– Our approach provides results comparable with the SOTA achieving an mAP
of 96.17% @0.90 IOU with significantly less data (only 2.50% of training
data).

– Our Chart Element Extraction (CEE) model uses an attention mechanism to
segment the regions in the chart following the same style as that of the legend
preview, which serves as the query patch (Sect. 4.2). This mechanism facili-
tates the detection of chart elements independent of their spatial compositions
and shapes, style definitions of legend previews and text-role definitions, mak-
ing it generalizable to unseen charts. We demonstrate that the model yields
comparable results on a subset of charts from the LeafQA dataset [3] by
rapidly adapting in a few shot setting (Sect. 5).

– Our Text Region and Role Detection (TRR) model uses dynamic filtering
with a text role patch as the trigger to detect the remaining text patches
belonging to the same text role (Sect. 4.1). This mechanism allows the model
to exploit the spatial relationship between the regions belonging to the same
text role and makes it invariant to the changes in i) the spatial composition
of the text regions, and ii) chart element shapes and styles. We demonstrate
the generalization capabilities of the model by showcasing comparable results
on a subset of charts from the LeafQA dataset [3], which share the same text
roles, in both zero and few shot settings (Sect. 5).
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2 Related Work

We examine existing techniques for extraction of visual as well as textual ele-
ments from charts and their generalization capabilities. We mention the prior
work on dynamic filters in the Supplementary section.

Chart Extraction approaches such as [15], which use techniques like the Veg-
aLite interpreter [31], D3 deconstructor [7,8] or ReVision [32] to extract chart
elements require charts be constructed from a predefined grammar. [25] use
image processing for chart extractions but the simplistic chart images they tackle
are synthetically generated from the FigureQA [13] and CQAC1 datasets. Recent
extraction approaches fine-tune object detection networks such as DenseNet [10],
Fast-RCNN [29], Fast-RCNN with Feature Pyramind Network [18], Yolo2 [4],
SSD [21], Mask-RCNN [34] and cascade RCNN [23], on a large number of charts.
[5,22,26] demonstrate that existing object detection networks perform reason-
ably well at an Intersection Over Union (IOU) of 0.50. However, for higher IOUs
of 0.75 and 0.90, the accuracy falls drastically. For the fine grained visual ele-
ment detection required for charts, having a high margin-of-error (IOU of 0.50)
is unacceptable.

To address this issue, (i) [22] adopt a modified version of CornerNet [17]
with an Hourglass Net [27] backbone for key point detection. (ii) The latest
end-to-end chart extraction approach named PlotNet [5] uses a hybrid network
employing a Fast R-CNN (FRCNN) along with FPN and ROI-Align layers.
These approaches [5,22] achieve an mAP of up to 93.44% @0.90 IOU. However,
these models are extremely data hungry with 157K samples needed for training
PlotNet [5], 200K for LeafQA [3] and 400K for ExcelChart400K. Thus, these
models are infeasible for real-world applications, where large scale annotated
chart images are not available. In this paper, we design a novel pipeline of neural
architectures to extract visual elements from charts which yields SOTA results
for chart extraction with an mAP of 96.25% @0.90 IOU on the PlotQA dataset.
More importantly, our approach provides comparable results (mAP of 96.17%
@0.90 IOU) with significantly less data (only 2.50% of PlotQA training data).

We further evaluate the generalization capability of the above approaches [5,
22]. [22] apply a set-of rule-based algorithms specific for a chart-type in order to
extract chart data elements from the detected key-points. As these algorithms are
specialized, they do not generalize to unseen chart-types. The prediction heads
of PlotNet [5] consists of a Classification (CH), Regression (RH) and a Linking
head (LH). CH classifies the given region proposal into 10 different classes (bar,
dot-line, legend-preview, legend-label, plot-title, x/y-axis label, x/y-axis ticks,
background), whose bounding boxes are obtained from the RH. LH predicts
whether a given proposal needs to be merged with its immediate 4 (top, left, right
and bottom) neighbours. As the CH is constrained with a fixed number of classes,
the method cannot be generalized to charts of other types (pie, donut, box-plots)
with out-of-distribution (OOD) text-role definitions. Secondly, PlotNet does not
use an RPN network. Instead, it proposes a combination of vision methods (edge

1 https://cqaw.github.io/challenge.

https://cqaw.github.io/challenge
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Fig. 2. Text Region and Role Detection Model

detectors and same color/intensity segmentation) to generate region proposals.
The authors claim that the method yields fewer and more accurate proposals
as compared to RPN. However, while these image processing based methods
work for the solid colored PlotQA [26] chart elements, they would struggle to
adapt to texture rich chart elements containing patterns (such as crossed lines
and checks) or to shapes of unseen chart types. Lastly, PlotNet [5] treats every
entity present in the chart as an independent object. Thus, there is no conceptual
understanding of the relationships between chart entities. For instance, PlotNet
is oblivious to the fact that the legend preview depicts the style of the visual
chart elements or that the text regions for the same text roles (X/Y axis tick
labels or legend preview labels) are related. In this paper we demonstrate that
our chart element extraction approach works well on OOD LeafQA charts with
distinct legend preview styles and unseen chart element shapes in both zero and
few-shot settings. Moreover, our models exploit the generic relationships between
the chart elements aiding generalization over a wide variety of chart types not
seen during training.

3 Datasets

To cater to line of research of Q&A over charts, the community has created
synthetic datasets such as DVQA [12] or FVQA [13]. However, these simu-
lated datasets are unrealistic with limited variability in the data-values and
chart elements. To avoid these biases, Leaf-QA [3] and PlotQA [26] datasets are
constructed from real-world sources like government census and financial data,
world bank open data, and the global terrorism database. Both these datasets
have good variations in their chart-types which include horizontal/vertical group
bars, stacked bars, pie charts, donut charts, horizontal/vertical box-plots, dot-
graphs, line-graph, and scatter-plots. The LeafQA++ [34] dataset also contains
real world charts, however, to the best of our knowledge, is not publicly avail-
able. Recent works [14,19,20,24] have used datasets of real charts. However,
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these approaches are end-to-end and directly extract the data series table out of
the plot. Thus, unavailability of the intermediate annotations and results prevent
us from benchmarking against these approaches.

In this paper, we train our models using the PlotQA [26] dataset which
contains horizontal/vertical bar charts, dot and line charts and test on the
PlotQA test split. In PlotQA there are 157,070, 33,650 and 33,657 plot images
in train, valid and test splits respectively. To demonstrate the data efficiency of
our pipeline we also train our models with only 4K representative images (1K
per chart type), which are randomly sampled from the train split of PlotQA.
We use a few OOD samples from the LeafQA [3] dataset, having stacked bar
charts, pie charts, donut charts and box-plots to demonstrate the generalization
capabilities of our models. Two sets of test samples are selectively chosen from
the LeafQA [3] dataset for testing our models in a zero-shot setting: (i) 500
charts which have a distributional shift in the spatial composition of visual and
textual elements and legend preview styles, yet follow the PlotQA distribution
for chart shapes and text role class definitions, (ii) 500 charts of distinct chart
types with a shift in the distribution of shapes of chart elements and text role
class definitions, yet follow the PlotQA distribution for spatial composition of
chart visual and textual elements and legend preview styles. We call these test
sets LeafQA-spatial-style and LeafQA-shape-roles, respectively. We make these
test sets publicly available for further research2. We test our models on both
the test sets to evaluate for generalization across all four dimensions, viz. spatial
composition of chart elements, legend preview styles, chart shapes and text role
class definitions. Generalization capability of the Text Region Role Detection
model is evaluated on text-role classes seen during training. For few shot adap-
tation results, we fine-tune the models on N (10 in our experiments) samples
from the test sets with the worst zero-shot performance and compute the results
on the remaining (500 − N) samples.

4 Approach

We extract visual chart information by employing modules for: (i) Chart Element
Extraction (CEE) (ii) Text Region and Role Detection (TRR). We describe both
the modules here along with the novel architectures defined and their important
features which allow for generalization.

4.1 Text Region and Role Detection (TRR)

The text present in the image is detected by employing the CRAFT model [1].
However, CRAFT frequently misses isolated characters and often yields partial
detection of text regions. We propose a novel approach depicted in Fig. 2 for
TRR, which corrects partially detected text, segments out the corrected text
region and identifies text-role labels (such as chart title, legend, X/Y-axis, and

2 https://drive.google.com/drive/folders/100FbK CliT7fehQEvuS18TyDSmLeWZDx.

https://drive.google.com/drive/folders/100FbK_CliT7fehQEvuS18TyDSmLeWZDx
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X/Y-tick labels) for each segmented text region. As we have multiple set-of
segments (text-regions) getting detected for a single image, we have defined
an approach which uses dynamic kernels. The dynamic kernels use a patch
based triggering mechanism where given a text role patch, the model detects
the remaining patches belonging to the same text role. This mechanism allows
the model to be invariant to the spatial composition of text regions belonging to
distinct roles, and chart element shapes/styles, thus allowing for generalization
to unseen charts sharing the same set of text roles. The architecture consists of
two modules described below.

Encoder-Decoder Module. For this module we use the U-net model [30]
where the encoder has four down-sampling steps, each consisting of a convo-
lution layer with a 3 × 3 kernel, followed by a ReLU activation and a batch
normalization layer. In order to minimize information loss, we replace the Max-
Pooling layer, which employs batch normalization, with a convolution layer with
Stride 2. Starting from 32 features in the first step, each down-sampled step
contains twice the number of features until the latent representation layer. The
latent representation for an image x obtained from the U-net encoder is:

r = UNETE(x) (1)

The encoder filters out irrelevant information by squeezing the feature map to
a latent space. The decoder is symmetric to the encoder block. At each up-
sampling layer, the feature maps are reduced by a factor of 2, and subsequently,
the symmetric layer from the encoder block is summed to the feature map, as a
skip connection. The output of the decoder for an image x is:

o = UNETD(r) (2)

Trigger-Controller Module. The image x is appended with the trigger patch
p of a text region detected by CRAFT along the channel dimension, with high-
lighted patch contours. This patch has the same dimensions as the image so after
appending we obtain an updated image xp. With this input, the trigger module
extracts features:

t = GAP (NNT (xp)) (3)

where NNT is a convolutional feature extractor followed by a Global Average
Pooling (GAP) layer. The features of the trigger patch t are concatenated (||)
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with the extracted encoder output features r, and are fed to the controller module
to generate dynamic kernels:

k = NNC(GAP (r)||t))) (4)

The next part of the controller module is the dynamic head which contains
three stacked 1 × 1 convolution layers, whose kernel weights are derived from
the dynamic kernel output k to get the final segmentation map s as explained
in [11].

s = (((o ◦ k1) ◦ k2) ◦ k3) (5)

where ◦ represents the convolution operation and k1, k2, k3 are the weights of
the dynamic kernel k distributed across the three convolutions. The dynamic
kernel output k is then fed to a fully connected linear layer to determine the
text role of the region. Thus, the trigger-controller module exploits the spatial
relationships between text-roles to generate dynamic kernels and obtain text-role
specific segmentation maps from the decoded image.

The whole network is trained with cross entropy loss by comparing the pre-
dicted and actual text-role class labels c and the predicted and the actual text-
role segmentation maps s. During inference, given a trigger patch p of an image x
for a detected text-region belonging to an unknown text-role, the model provides
the actual text-role classification output c and the segmentation map s of the
text-regions for that text-role. Trigger patches overlapping with detected text-
role regions are removed before repeating the process for the remaining trigger
patches. This process may lead to multiple segmentation maps for each text-role,
over which a union operation is performed.

4.2 Chart Element Extraction (CEE)

Prior works have performed the chart extractions in two steps: (i) different chart
elements are detected using object detection methodologies and (ii) extracted ele-
ments are mapped with corresponding legend previews assigning semantic mean-
ing to extracted chart elements. While some approaches rely on color matching,
usually, the second step involves training via a contrastive loss to learn models
capable of aligning the legend pattern with chart elements [2,23].

In our work, we propose an end-to-end model, which extracts chart elements
and also assigns semantic meaning to them. Our novel method requires only a
single patch of the chart element style (colour, patterns, etc.), preferably from the
detected legend preview, to segment out all the matching chart element regions
from the chart image. The intuition for the proposed approach is derived from the
fact that, irrespective of the chart type, legend previews replicate the pattern
representations within the chart elements. The architecture uses an attention
mechanism to segment the regions in the chart with the same style as that of
the legend preview which serves as the query patch. This allows the approach
to be invariant to chart types and thus generalize to accommodate the distribu-
tional shift in spatial composition of the chart elements, legend preview styles,
chart element shapes and text-role definitions. The architecture consists of the
following three modules:
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Legend Region Feature Extractor Module. Our proposed architecture
utilizes the VGG16 architecture [33] as the encoder backbone, to extract a rich
image representation. As, the relevant features for our task are more localized,
the shallow features extracted from the first three pooling layers of VGG16 are
appended and used as the image feature representation f . The detected legend
labels extracted via the TRR model (Sect. 4.1) are used to identify the location
of legend previews. We provide the detected legend preview bounding box, li, to
the model after scaling it down to the spatial size of the chart feature map f . For
the details of the exact dimensions refer to Fig. 3. We take the mean coordinates
of the bounding box of li and the features corresponding to these coordinates in
f to generate the extracted features fli for the legend preview li, having its style
information. As the field of view (FOV) of the VGG Encoder when using 3×3
pooling filters is restricted to local regions, the legend features in f which are
accumulated from shallow layers are not contaminated by other nearby legend
entries. This leads to fli spanning only the local neighbourhood.

Legend Attention Module. The legend attention module clusters regions
which are similar to the legend preview. To achieve this, it utilizes the legend
preview features and finds their similarity with the rest of the image features.
Traditionally, cosine similarity is used for similarity computations. However, in
traditional cosine similarity there is no control over the cosine curve. In our
use-case, usually the charts have very similar patterns, thus using traditional
cosine method might not facilitate definite demarcations, leading to different
chart elements having close similarity scores or similar chart elements having
distinct similarity scores with the given legend preview. To overcome this issue,
we leverage von Mises-Fisher(vMF) based measuring function. However, one
serious drawback of the vMF based formulations is that it suffers from its light
tail. This creates difficulty in learning as back-propagation yields null gradients
for the light tailed region of the distribution. Thus, along similar lines as [16] we
extend the vMF with the heavy-tailed student-t distribution and scale to obtain
similarity values by using Eq. 6.

sim(x, y) =
1 + x̂.ŷ

2(1 + k.(1 − x̂.ŷ)))
(6)

where, x̂, ŷ are unit vectors of x and y respectively, whose similarity has to be
computed and k is the parameter to control the compactness of the similarity
curve. Using (6), we compute the similarity score Sli of the image’s feature map
f with respect to fli in the range 0 to 1. This helps to obtain an attention heat
map based on similarity value.

Sli = sim(fli , f(x, y)) ∀x ∈ [1...hf ] ∀y ∈ [1...wf ] (7)

where hf and wf are the height and width of feature map f .
Figure 5 shows the comparison of how different attention functions align sim-

ilarity. Here the X-axis is the dot product of the normalized vectors representing
the features of the query preview patch and the features of a chart element and
the Y-axis depicts the attention score.
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Re-creation Module. As a part of this module we segment the regions match-
ing the legend preview styles from the chart image. Exploiting the key-value
relationship inherent in charts between the legend preview styles and the corre-
sponding chart image patches, we use the legend preview as a unit style patch
to identify the corresponding legend style distribution in the chart image. This
is performed by applying the following two steps.

We first perform a ‘REPEAT’ operation of the legend preview features fli

across the image feature map f . The ‘REPEAT’ function creates an empty tem-
plate with dimensions of f , filled with fli . The resulting output Eli matches the
resolution of the image’s feature f .

Eli = REPEAT (fli , f(x, y)) ∀x ∈ [1...hf ] ∀y ∈ [1...wf ] (8)

Finally, the obtained feature map Eli is scaled with respect to a similarity score
Sli obtained from 6, such that

Oli = (Eli × Sli) + ε (9)

where ε is a constant adjustment factor. This allows for suppression of the chart
regions not matching with the legend preview features and amplification of the
regions matching the preview style. Obtained output from Eq. (9) is scaled
up along-with skip connections from the encoder to smooth out the boundary
regions. The final decoder layer decodes the regions corresponding to the legend
preview pattern from the chart region. We compare this with the ground truth
chart element mask to compute the Binary Cross Entropy loss. To facilitate
better training of the model we also consider an auxiliary reconstruction loss.

Handling Non-legend Cases. As mentioned, the above model assumes the
presence of legend preview entries, which serve as an input to the model as a
query patch. However, there are also special cases where charts representing a
single entity do not have a legend (For example, Chart (d) in Fig. 1). To handle
such cases, we create a processing pipeline where we select random patches
from a chart. We plot the color histogram of the chart image and observe that
the background color has the highest frequency. With this histogram as the
reference, depending on the occurrence of the color in a sampled patch, it is
labeled as background and foreground. With each foreground patch as the query
along with the corresponding chart image as an input to the trained CEE, we
extract regions similar to a query patch from the chart image. We remove the
other query patches which are covered by the regions of the given query patch.
Repeating this process on all the selected patches yields a set-of segments of chart
elements which share a common style. There is a possibility of noisy segments
getting detected due to the chart element edges and textual regions. To get rid
of such noisy segments we use a threshold which defines the minimum number
of pixels required within a segment, for it to be non-noisy. This thresholding
mechanism is mainly useful for charts like line charts, where the chart element
segments contain fewer pixels.
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Fig. 4. Attention Similarity Score Visualization (Left Top) Input image, (Left Bottom)
Cosine, (Right Top) t-vMF k = 8, (Right Bottom) t-vMF k = 32

5 Results and Discussion

We first discuss hyper-parameter settings used for training with the PlotQA
as well as fine-tuning for few-shot adaptation on the LeafQA. The TRR model
encoder has the pre-trained VGG19 backbone. We train TRR with a batch size
of 8, for 2 epochs over the entire PlotQA training set, using the Adam opti-
mizer with an initial learning rate of 0.0005. While creating the training tuples,
we under-sample the axes-label classes to address class imbalance. For the CEE
encoder, a pre-trained VGG16 is set as the backbone further conditioned with
pre-training in an auto-encoder setting on the PlotQA train set. We train the
model with a batch size of 6 and use the ReduceLROnPlateau scheduler on
the number of iterations, with patience and factor value of 64 and 0.5, respec-
tively. For both the models the spatial resolution of an input image is set to
512 × 512. We employ an augmentation scheme for both the models to include
spatial transforms (rotation in range −π/6 to π/6, with translation between −50
to +50 pixels along both axes, for the MirrorTransform and ZoomTransform, we
use a flipping ratio of 0.5 and a scale factor ranging from 0.5 to 2, respectively),
noise transforms (Gaussian noise and Gaussian blur transforms with noise vari-
ance from 0 to 0.2 and blur sigma in range of 0.5 to 1, respectively), resample
transforms (simulate low resolution input data by scaling down the image and
resizing back to the original size, zoom scale used in the transform lies in range of
0.5 to 1) and color transforms (brightness, contrast, gamma and color exchange).
For the legend attention module, we used the optimal value of k = 32 (Eq. 6)
after experimenting with different values of k (Fig. 4).

Table 1 illustrates the SOTA chart visual extraction results on the PlotQA
Test Set with 96.25% mAP @0.90 IOU when trained with 157K images, surpass-
ing the baseline PlotNet [5] by 2.81% mAP @0.90 IOU. With Our data efficient
architectures, we get comparable results with only 2.5% (∼1K per chart-type,
total 4K) of the training samples, illustrated in the last row of Table 1. For
Table 1 and 3, the results of the first two columns (Bar, Dot-line) are based on
the inference performed with the CEE Model (Sect. 4.2). The results of columns
Leg Lbl, Leg PV, Plot title, X/Y axis Lbl and Ticks are based on the inference
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Table 1. Results on the PlotQA Test Set with mAP scores (in %). Leg: Legend,
Lbl: Labels, PV: Preview. Bar, Dot-line results are based on the inference with the
CEE and Leg Lbl, Leg PV, Plot title, X/Y axis Lbl and Ticks results are based on
the inference with the TRR. Both trained with PlotQA Train set. Bold Underlined:
Best Performance, Bold: Second-Best
IOU @0.90 @0.75 @0.50

Existing Models[5] Bar Dot-line Leg Lbl Leg PV Plot Title X-axis Lbl X-axis Ticks Y-axis Lbl Y-axis Ticks mAP mAP mAP

FRCNN (FPN+RA) 87.59 31.62 79.05 66.39 0.22 69.78 88.29 46.63 84.60 61.57 69.82 72.18

FrCNN (RA) 63.86 14.79 70.95 60.61 0.18 83.89 60.76 93.47 50.87 55.49 89.14 96.80

FrRCNN (FPN+RA) 85.54 27.86 93.68 96.30 0.22 99.09 96.04 99.46 96.80 77.22 94.58 97.76

PlotNet 92.80 70.11 98.47 96.33 99.52 97.31 94.29 97.66 94.48 93.44 97.93 98.32

Ours (Train: All) 96.24 74.57 99.89 98.67 99.99 99.90 99.45 99.89 97.69 96.25 98.63 99.66

Ours (Train: 4K) 93.83 73.95 96.31 96.31 99.63 96.35 96.84 99.48 96.58 95.92 98.09 99.18

Fig. 5. Attention graphs: cosine simi-
larity (red), t-vMF k = 8 (blue), k = 32
(green) (Color figure online)

Table 2. CEE Results: ablation with and
without legend charts for the PlotQA Test
Set. Leg: Legend, w/o: Without Legend,
mAP: Cumulative mAP

IOU Bar charts Dot/Line charts
Leg w/o mAP Leg w/o mAP

@0.9 96.53 94.52 96.24 75.07 72.15 74.57

@0.75 98.87 99.01 98.89 89.26 90.41 89.46

@0.5 99.58 99.34 99.54 98.02 97.84 97.99

(a) CEE (b) TRR

Fig. 6. Predictions for PlotQA Test Examples. Columns for 6a: Original image, Ground
Truth for a chart element, auxiliary reconstruction, mask prediction

performed with the TRR Model (Sect. 4.1) on the overlapping Text-Role classes.
We prefer mAP @0.90 IOU over mAP @0.75 IOU as an evaluation metric as we
require precise fine-grained extractions and the acceptable error margin is very
small as the resulting data errors can propagate to the downstream reasoning
tasks.

Due to unavailability of a trained model and code, we could not use PlotNet
[5] as a benchmark for generalizability results. However, the first row of the
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Table 3. Results for OOD charts in LeafQA-spatial-style (Sect. 3)
IOU @0.90 @0.75 @0.50

LeafQA-spatial-style [3] Bar Dot-line Leg Lbl Leg PV Plot Title X-axis Lbl X-axis Ticks Y-axis Lbl Y-axis Ticks mAP mAP mAP

0-Shot [26] 9.13 18.56 0.0 0.0 0.0 0.0 2.11 0.0 0.0 3.31 14.85 71.76

0-Shot 79.34 70.44 96.14 95.75 93.60 95.20 95.84 95.80 93.68 90.64 93.73 95.83

10-shot 85.84 72.55 96.62 96.38 95.71 95.71 95.97 96.12 94.71 92.18 94.77 96.67

Table 4. Results for OOD charts in LeafQA-shape-roles (Sect. 3) H: Horizontal, V:
Vertical, Box: BoxPlot, mAP: Cumulative mAP. TRR performance is computed for
the text roles common in PlotQA Train Set and LeafQA-shape-roles *Average of the
zero-shot results on the available text role labels
IOU @0.90 @0.75 @0.50

LeafQA-shape-roles [3] Donut Pie H Box V Box Leg Lbl Leg PV Plot Title X-axis Ticks Y-axis Ticks mAP mAP mAP

0-Shot [26] - - - - 0.0 0.0 0.0 0.0 0.0 0.0∗ 0.06∗ 0.14∗

0-Shot 90.51 92.57 89.77 89.06 95.62 94.92 92.80 96.41 94.52 92.91 93.79 94.77

10-shot 93.44 93.46 90.71 90.82 95.58 95.24 94.28 96.48 95.14 93.91 94.68 95.37

(a) Zero-Shot (b) 10-Shot

Fig. 7. CEE predictions on LeafQA-spatial-style Row: Input chart, GT, reconstruction,
prediction mask and attention map (left to right).

Tables 3 and 4 depict the zero-shot result with the FRCNN-FPN object detection
model trained with PlotQA training data [26] and tested on LeafQA-spatial-style
and LeafQA-shape-roles Test Sets, respectively. The zero-shot performance for
fine-granular extractions is very poor with near zero mAP @0.9 IOU, showcasing
bad generalization capabilities of the model. Also, the model can not provide
extractions for the classes unseen during training, such as ‘Donut’, ‘Pie’, ‘H-
Box’ and ‘V-Box’. On the other hand, zero shot (90.64% mAP @0.90 IOU)
and 10-shot (92.18% mAP @0.90 IOU) results on LeafQA-spatial-style Test Set
(Table 3), are comparable with the full scale training results, thus demonstrating
the generalization capability of the models with respect to spatial composition
of chart elements and legend preview styles. Table 4 showcases the results on
LeafQA-shape-roles. Some text roles are applicable to only a subset of the charts
in LeafQA-shape-roles. Thus, the results of Leg Lbl and Leg PV columns are
for donut and pie charts and the results of X/Y axis Ticks columns are for Box
Plots. 92.91% cumulative mAP @0.90 IOU in zero-shot settings demonstrates
our approach can handle OOD charts with distinct chart element shapes such
as box-plots, pie and donut charts.

Table 2 illustrates the ablation for charts with and without legends (Sect. 4.2).
The performance for charts without legend drops by a small amount (∼2.5 %
mAP @0.90 IOU), however is still comparable with the charts having pre-defined
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Fig. 8. CEE Zero-Shot Results on LeafQA-shape-roles for unseen Box-plots, Pie-charts
and Donut-charts. Rows: Reconstruction, Attention Map

(a) LeafQA-spatial-style (b) LeafQA-shape-roles

Fig. 9. Zero-Shot TRR Predictions. For 9b examples of text-role class labels overlap-
ping with the PlotQA train set

(a) case I (b) case II (c) case III

Fig. 10. Failure Cases. For 10a 10b Row: Input chart, GT, prediction mask

legend previews. From Tables 1 and 2 we observe that the extraction of dot/line
regions is challenging because of their small size, sparse distribution and very
close coloring scheme of legend styles. Moreover, the extractions primarily fail
in cases where the dots or lines are eclipsed or intersected by the dot/lines
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of other series (Fig. 1(c)). The generalizability results in Table 3 demonstrate
more drop (from 96.24 to 79.34% mAP @0.90 IOU) in zero-shot settings for
Bars as compared to the other chart elements. This drop is mainly because the
bar charts in PlotQA train set are all filled with continuous colors (Charts (b)
and (d) in Fig. 1), whereas plots in LeafQA-spatial-style have bars filled with a
combination of color and pattern (chart (f) in Fig. 1). However, as demonstrated
in Table 3, the performance improves from 79.34 to 85.84% mAP @0.90 IOU
just by adapting the model with fine-tuning on 10 samples (10-shot). This is
very useful in a realistic setting, where we can obtain a few annotated charts
for a shifted distribution with regards to, for example, new styles and adapt the
model on those few-shots to achieve comparable performance.

Following are the qualitative examples for TRR and CEE model predictions.
Figure 6a and Fig. 6b illustrate predictions on examples from the PlotQA Test
set depicting the correctly handled cases for (a) bar charts and dot charts with
and without legends by CEE and (b) Line and Bar charts by TRR, respectively.
Figure 7 and Fig. 9a illustrate correct predictions on examples from LeafQA-
spatial-style (i) stacked bar graphs with patterned style unseen during training
by CEE in a zero-shot setting and improved results for the same after few-shot
adaptation and (ii) bar charts with distinct composition of legends (top right
corner) and X/Y tick labels (slanted) unseen during training by TRR model
in zero shot setting, respectively. Figure 8 and Fig. 9b provide predictions on
examples from LeafQA-shape-roles for (i) Charts with completely unseen shapes
of char elements such as box-plots, pie-charts and donut charts by CEE model
(ii) overlapping text-roles for charts unseen by the TRR model.

Figure 10 illustrates the most commonly occurring failure cases of CEE and
TRR models. We observe that the CEE model typically fails at getting correct
extractions for charts (a) having their defined styles (colors in the illustrated
example) very close to each other, (b) char elements (lines in the illustrated
examples) of one style (color in the illustrated example) occlude or intersect
the chart elements of another style, (C) The TRR model typically fails to get
correct detections for text regions for text roles (X-axis labels illustrated in
the example), where the text-regions are highly cluttered causing merging of
segments with neighbouring regions.

6 Conclusion

Models for real life chart extraction must be able to rapidly adapt to unseen
chart distributions with only a few labelled examples. We present novel archi-
tectures for generalizable detection of Text Regions and their Roles, in addition
to Chart Element Extraction and demonstrate that our models are data efficient
and seamlessly adaptable to new chart distributions. Further, these models pro-
duce SOTA results for Chart Visual and Textual Element Extraction and offer
accurate results in zero and few shot settings for unseen charts.
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Abstract. In this paper, we propose a semi-supervised system for infor-
mation extraction from administrative documents, that learns from both
labeled and unlabeled data. The document is modeled as a words graph
where each node contains the textual, layout and visual features of the
word and it is connected to its spatially close neighbors. Semi-supervised
variational graph auto-encoders (VGAE) have proven efficient on graph-
based tasks, but they usually separate the classifier from the encoder and
decoder and don’t take full advantage of the VGAE model for the benefit
of the classification. To optimize the classification as much as possible,
we propose a semi-VGAE with an attention-based classifier that shares
its layers with the VGAE encoder. This is further enhanced by proposing
a VGAE loss managed by the classification loss. Experiments show that
our model helps improve nodes prediction accuracy. We tested the archi-
tecture on two artificially generated datasets: Gen-Invoices and Gen-
Payslips and one real dataset: receipts issued from the SROIE ICDAR
2019 competition. The latter data set yielded an important F1 score of
97.94%, placing our system among the best systems on this dataset.

Keywords: Semi-supervised · Multi-GAT · VGAE · Labeled and
Unlabeled document · Semi-Structured Document

1 Introduction

Information extraction (IE) from administrative documents like invoices and
payslips is a crucial task in document management for almost all companies
(for mail management, information manipulation, etc.). These administrative
documents, called semi-structured documents (SSD), are usually presented in
a specific format. Automatic processing of this type of documents remains a
challenge due to the diversity of their content and layout.

Various systems of IE from administrative documents are based on supervised
deep learning approaches, like [2,6,16,20,21,25,30,31]. These systems model
documents in a variety of ways, such as text sequences, graphs and grids. Each
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modeling can focus on several text features, including textual, visual, and posi-
tional ones. The two main obstacles of this category of systems are the com-
plexity and costliness of the document labeling task and the lack of real training
datasets.

To cope with the lack of training datasets, alternative methods have been
proposed such as [7,9,19,28] which perform transfer learning by adding a pre-
training step on unlabeled data from out-domain (free text / ordinary docu-
ments). They pre-train a model using tasks like input reconstruction, next sen-
tence prediction, etc., in an unsupervised mode and then they fine tune the result
on labeled documents. However, these methods require huge training datasets
for pre-training and form complex models (hundreds of millions parameters).

In this regard, we have developed a less complex semi-supervised system for
IE from SSDs, that learns from labeled and unlabeled in-domain documents.
Our system is based on a multi-GAT graph nodes classifier and a variational
graph auto-encoder (VGAE). We model the SSD as a graph of words that takes
into account all of its unique characteristics. To make use of the availability of
indicative keywords, we provide an effective nearest neighbors selection strategy.
In addition, we incorporate into it multiple multi-modal word features, such as
word region information. We choose a GAT based classifier to extract as much
information as possible from the graph to aid in predicting the entities classes
of the words. To fully maximize the classification optimization process on the
labeled and in-domain unlabeled data, we propose a customized Semi-VGAE
architecture, with a classifier and an encoder that share GAT layers and an
objective function controlled by the classification loss. This most effectively steers
the model toward optimum optimization for the classification purposes. Finally,
compared to the state-of-the-art systems, our suggested model is significantly
less complex with only 41M parameters.

The paper consists of the following parts: Sect. 2 briefly describes IE from
administrative documents methods and the various training modes in the liter-
ature; Sect. 3 expands on the proposed approach by describing the components
of the global architecture in detail; Sect. 4 presents the experiments and results
obtained, and Sect. 5 concludes the paper and shows the global contribution of
our system.

2 Related Work

Systems that learn from both labeled and unlabeled data to extract information
from documents can be classified into two types: pre-training based methods
trained on out-of-domain unlabeled data and semi-supervised methods trained
on in-domain unlabeled data.

2.1 Pre-training Based Models

Most state-of-the-art information extraction systems such as [7,9,19,27,28]
apply a two-step process on token sequences. The first step concerns learn-
ing the tokens features and their context from unlabeled dataset using various
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pre-training tasks. The second step, known as fine-tuning, allows the system
to specialize on a downstream task by learning on labeled data. The first step’s
pre-trained model is fine-tuned by adding an output layer, that allows token clas-
sification or tagging, to the pre-trained layers. These systems are based on trans-
former architecture [24]. The baseline model in this category is BERT [7] which
employs a multi-layer bidirectional Transformer encoder architecture based on
attention mechanism [24]. BERT is pre-trained on a huge unlabeled dataset
(BOOKCORPUS + English WIKIPEDIA) using a masked language model and
Next Sentence Prediction tasks. Another system, roBERTa [19] takes the same
architecture of BERT and widens the learning dataset used in the pre-training
step. Additionally, it eliminates one task from the pre-training step and modi-
fies the model’s hyperparameters such as the learning rate, regularization rate,
number of epochs, batch size, etc. This update has improved the BERT results
on the different tasks after the fine-tuning. LayoutLM [28] and LAMBERT [9]
propose adding the 2D position of the token in the document to the pre-training
of BERT and RoBERTa. LAMBERT [9] that records an important score of infor-
mation extraction on SROIE (their best model has reached a F1 score of 0,98),
uses the RoBERTa model and it adds in addition to the position information of
the token in the sequence (1D), the information of the 2D position in the doc-
ument and then integrates biases relating to these two 1D and 2D positions in
the calculation of the attention mechanism of the transformers. LayoutLM [28]
adds the 2D position of the token (in 4 coordinates) to the BERT input, and
then it adds the result of a faster RCNN+FC layers (image embedding) at the
pre-trained BERT output. LayoutLMV2 [27] integrates the visual information
in the pre-training step for a multi-modal training more efficient.

However, the pre-training step in these systems requires a very large mass of
training data and the final models are considered as complex models (at least
200 millions parameters). This makes it challenging to deploy and maintain them
in practical contexts.

2.2 Semi-supervised VAE Based Methods

Deep generative methods have recently made semi-supervised learning with in-
domain unlabeled data appealing. They are less complex than pre-training based
methods and have shown promise in text classification applications. [4,8,10,29]
employ the VAE (variational auto-encoder), a specific kind of generative model,
to perform text classification tasks within token sequences. The authors in [8]
introduce a semi-supervised VAE based on LSTM in which the Kullback-Leibler
divergence is removed from the loss to simplify the model. In [4], they use a
BiGRU based semi VAE for sequence labeling. The authors in [10] pre-train
a VAE based on feed-forward networks on word frequencies of unlabeled data.
The learned representations were then used concatenated to word vectors in
a downstream classifier. Another semi-supervised VAE was suggested in [29],
where gated convolutional neural networks (GCNN) served as both the encoder
and the decoder. They use a layer called Scalar after Batch Normalization (BN)
to scale the BN’s output as a solution to the KL-divergence vanishing problem
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of the VAE. The semi-VAE have proven efficient on other text analysis tasks,
such as relation extraction and sentiment analysis. The authors in [32] present a
semi-supervised VAE, to extract biomedical relation from biomedical text, based
on BLSTM encoder and CNN decoder, with a separate CNN classifier. In [26],
one bring a BLSTM based semi-supervised VAE for sentiment analysis, while in
[5] one present a sentiment analysis system built with a transformer encoder and
decoder and various kinds of classifiers such as LSTM and attention based one.
Some of the methods mentioned above suggest improvements to the loss function
calculation. [5,26,32]’s authors use an hyperparameter that balances the relative
weight between generative and discriminative learning and controls the weight of
the additional classification loss. In [8], they remove the KL-divergence and the
components associated with the latent variable in order to simplify the model
and improve the speed of the learning process. In fact, the VAE architecture is
not entirely oriented by these methods to improve the classification task.

In our approach, we study the effectiveness of this type of architectures for
IE from graph modeled SSDs. We aim to maximize the exploitation of the VAE
architecture for the benefit of the classification by proposing an adapted semi-
VGAE model and an improved loss function.

3 Proposed Method

This section provides a description of our semi-supervised approach with the use
of labeled and unlabeled SSDs by the different parts of the model. As shown in
Fig. 1, our system is composed mainly of three parts: graph modeling, multi-GAT
classifier and VGAE. We will detail the components of the model, the equivalent
inference problem and its derived loss function.

Fig. 1. The flow of labeled and unlabeled data across the three architecture’s compo-
nents (Graph modeling, classifier and VGAE)

3.1 Graph Modeling

As described in [1], a SSD can be modeled as a set of information blocks dis-
tributed over the layout of the document, such as company information, shipping
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and billing addresses in an invoice. Each information block regroups a set of ele-
mentary description presented in a pair format (keywords, information). The
SSD modeling can be simplified to SSD = {Pi}, Pi = (KW, Info), i ∈ [1, l],
where l is the number of pairs in the document and KW and Info are sequences
of words. Pi, KW and Info have some common characteristics in all SSDs:
each Info’s paired KW belongs to a limited lexicon; Some Infos may have a
very specific format without being accompanied by KW, such as dates (dd-mm-
yyyy; dd/mm/yy, etc.) and company/client identifiers (given by a combination
of numbers, letters and special characters); despite the fact that Pi’s position
varies in the same class of documents (invoices from different providers), it may
vary within the same region or limited variable zones. For instance, the total is
always at the bottom of an invoice, and the invoice number is always at the top
of the page (on either the left or the right side). To predict the class of Info in
a SSD, we are primarily interested in the close spatial neighborhood that should
contain the KW which introduces the information and helps to recognize its
correct class. Thereby, KW can be fully aligned with Info horizontally (placed
on the left side of Info), vertically (placed above Info), but can also be par-
tially aligned vertically or horizontally or completely not aligned, but keep close
spacing.

Three-Lines Neighborhood. For an improved neighborhood calculation, that
prioritizes the word’s spatially close neighbors in the SSD, we suggest a three
line based neighbors calculation. We take the “k” nearest neighbors in over three
consecutive lines as shown in the neighborhood selection of Fig. 2 (same line, line
above and line below if they exist) for each word in the SSD. We select the “k”
closest words (using Euclidean distance between bounding boxes) on the left
and right of the word on the same line, and the “k” closest words on the lines
above and below. The total number of word’s neighbors is at most n = 4 ∗ k.
n is set experimentally in Sect. 4. The selected neighborhood is said to contain
the indicative keywords that introduce the information we want to extract from
the SSD. Unlike [2,20] that use a global graph of all the training dataset words,
which makes the model very complex and increases the learning time, we propose
to limit the graphs to a maximum of n max=256 nodes (256 is the closest power
of 2 to the average words number across all SSD graphs studied here). This is
done by either associating several graphs of less than 256 nodes in the same
graph, or dividing a graph having more than 256 nodes into several graphs of
less than 256 nodes each, as shown in Fig. 2. This is possible thanks to the fact
that the neighborhood of the nodes is limited and can be dissociated from each
other.

Let G = (V,E) be undirected graph modeling the SSD words, where V is
the set of the graph nodes and E the set of connections between those nodes.
Although E is limited to indicating the adjacency relations between nodes, V
contains a maximum of information on the node, as explained below.
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Fig. 2. Graph modeling: (a) Features calculation to generate the multimodal features
vectors. (b) Neighbors selection to choose the word’s neighbors over three lines. (c)
Graph nodes limitation.

Word’s Features. V corresponds to a set of multimodal features, comprising:

– Textual features: we choose BPEmb [12], a pre-trained subword unit embed-
dings based on Byte Pair Encoding [23] to calculate the word embedding
vectors. BPEmb allows us to have the same vector size of each word in the
graph (300) and is available in 275 different languages among others: English
and French. It also performs better than other subword approaches.
A Boolean vector representing the word nature (alphabetic, alphanumeric,
etc.) is added to it. We reuse the 8 sized vector proposed in [2].

– Positional features (normalized position): first, the area that surrounds the
text is extracted and then the new coordinates of the words are calculated
according to these new references. We pick the two points that define each
word bounding box (the top left point and the bottom right one) and we
calculate their normalized coordinates in the new reference as can be seen in
the Fig. 2.

– Region encoding: we noticed that the information have a variable position
from a document to another, but floats usually in the same part of the doc-
ument i.e. the top right of the SSD, etc. To exploit this fact, a new region
encoding is added. The area surrounding the text in the document is divided
horizontally and vertically by 4. Each part is then represented by two binary
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numbers (x and y) encoding the SSD part number. x and y stand in two posi-
tions (00,01,10,11). The bounding boxes coordinates are encoded according
to the SSD region containing them.

– Visual features: an image embedding vector is computed, for each word in
the SSD. The ResNet Unet [11,22] network is used for this purpose. The
input image is resized to unify the model input dimension, and then it is
passed to a pre-trained ResNet Unet encoder. Using the result features map
and the original words bounding boxes coordinates, we extract for each word,
its region of interest (ROI). Finally, after flatting the ROI results, an image
embedding vector of size 21 is obtained.

The global features vector is a concatenation of all these multi-modal features
like in [2,20], forming a 337 sized vector.

The final graph G is modeled by a features matrix “X” that represents the
graph nodes set (V) and an adjacency matrix “A” that refers to the graph edges
(E).

3.2 Multi-GAT Classifier

G is fed into a classifier (Multi-GAT) that ensures a graph nodes classification
task. The multi-GAT is a multi-layer convolutional network [2] based on multi-
head attention. Each layer of the Multi-GAT takes into account a different level
of word neighborhood. The first layers apply the multi-head attention with “k”
heads and ReLU as a non linearity activation function, while the output layer
applies a Softmax function to classify the graph nodes, as shown in Fig. 3. For
each dataset, a different “k” is fixed according to the hypothesis proposed in [2]
about the correlation with the extracted entities number. The attention mech-
anism in one layer is used to learn which neighbors are most important and
which neighbors are least important for each node in the SSD graph, making
prediction of node classes more reliable. The number of GAT layers is fixed in
the experiments section for each dataset. It represents the words’ neighborhood
level to consider in order to capture the useful distant information belonging to
the same information block, since generally the information in each block comes
in a logical order (like: “sub-total”, “total”, “without tax”, “payment”, etc.).

3.3 Variational Graph Auto-Encoder: VGAE

The VGAE is composed of an encoder and two decoders, as can be seen in Fig. 3.
The encoder is made up primarily of multi-GAT and dense layers. It shares its
first GAT layers with the classifier and outputs Gaussian variables Z. These
shared layers allow to associate the task of classification to the data distribution
learning. This lead to the classifier becoming more generic as it learns the data
characteristics within their distribution. The encoder first learns the mapping
of the input data into latent space. The distribution of the latent variables is
modeled by a Gaussian distribution with its mean and variance generated by the
output layers of the encoder. From these Gaussian variables and the classifier
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result (y’) or the ground truth (y), we reconstruct X and A using two decoders.
The first decoder which reconstructs A consists mainly of an Inner-product layer,
as proposed in [15], while the second decoder which reconstructs X, consists of
several 2D convolution layers.

Fig. 3. Overview of our semi-supervised VGAE. The SSD graph goes through shared
GAT layers, followed by separate layers to output the nodes predictions and the latent
variable Z. These outputs are concatenated and fed into two decoders, which recon-
struct A and X.

The input of the decoders is the concatenation of the latent variable z gener-
ated by the encoder and the vector of the nodes classes as shown in Fig. 3. The
nodes classes vector is either y which represents the “ground truth (GT)” if the
input is labeled or y’ representing the nodes classes predictions if the input is
unlabeled. The decoders try to reconstruct the input from the latent variable
z and the vector (y/y’). The classifier predictions directly affect the output of
both decoders. When the input graphs are unlabeled data, the classifier weights
are updated using the VGAE losses. This means that our system learns useful
features from labeled and unlabeled data.

To ensure that the decoder input is as accurate as possible, we first train the
classifier on the labeled SSDs, then we continue the training by adding the other
VGAE components as well as the unlabeled SSDs.

Optimisation. In the associated inference problem of this architecture, each
component is considered as a probability distribution. The encoder refers to the
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inference network with p(z/x, a). The decoders represent generative networks
which reconstruct X (p(x/z, y)) and A (p(a/z, y)), while the classifier repre-
sents the discriminative network with p(y/x, a). The objective of our model is to
maximize the log-likelihood log pθ(x, a, y). As it is difficult to directly maximize
log pθ(x, a, y), we maximize its variational lower bound (ELBO).

We rely on the bound J on the marginal likelihood for an entire dataset of
labeled LD and unlabeled data UD proposed by [14]. We extend their J bound
to take into account both our architecture choice of using two decoders rather
than one as well as our data modeling, which involves adding “a” to “x” input
data and a new parametrization of the different losses parts. So we get:

J =αE(x,a,y)∼LD [log(qφ(y | x, a))] + E(x,a,y)∼LD [L(x, a, y)] + E(x,a)∼UD [U(x, a)]
(1)

For one data point in LD, we have:

log pθ(x, a, y) ≥Eqφ(z|x,a,y) [log pθ(x | y, z)] + Eqφ(z|x,a,y) [log pθ(a | y, z)]

+ log pθ(y) − βKL(qφ(z | x, a, y) || pθ(z)) = −L(x, a, y)
(2)

where KL is the Kullabck-Leibler divergence of pθ(z) and qφ(z | x, a, y) which
measures the difference between the latent z variables and the Gaussian distri-
bution. For UD, we get:

log pθ(x, a) ≥
∑

y

qφ(y | x, a) (−L(x, a, y)) + H [qφ(y | x, a)] = −U(x, a)

H [qφ(y | x, a)] =
∑

y

qφ(y | x, a) [log qφ(y | x, a)]
(3)

In this paper, we suggest a novel β parameterization based on the classifica-
tion loss β = f(E(x,a,y)∼LD [log(qφ(y | x, a))]), and f(x) = 1 + l

u ∗ x. l refers to
the size of LD and u to the size of UD. The main objective of this setting is to
penalize the KL loss according to the classification loss and force the semi-VGAE
to learn better distribution estimation of z, that improves the classification task.
Furthermore, we modify the α introduced in [14] by setting it to l

u , in order to
prioritize the classification loss.

4 Experiments

In this section, experiments are conducted to test the effectiveness of the imple-
mented method on different SSDs datasets.

4.1 Datasets

We experiment our approach on one real dataset SROIE and two generated other
datasets: Gen-Invoices, Gen-Payslips. The layout of the three datasets is variable
within different levels. SROIE: is a dataset of real English receipts proposed in
[13]. It is labeled with 4 entities: Address, Company, Data and Total.
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Table 1. Datasets statistics and characteristics, * refers to real documents

Characteristic SROIE Gen-Invoices Gen-Payslips

Training set size 626* 700 700

Validation set size - 200 200

Test set size 437* 300 300

Unlabeled set size 300 300 300

Entities number 4 27 25

language English English/French French

Gen-Invoices, Gen-Payslips and Gen-Receipts are artificial datasets generated
using a generic SSD generator [1,3]. We make sure to have as much content and
layout diversity as possible during the generation process in order to be as realis-
tic of the SSD as possible. For this purpose, various diversity scores are utilized,
including the BLEU score for text diversity, blocks alignment and overlapping for
layout diversity. The three datasets’s scores closely resemble those of the SROIE.
Gen-Receipts is only used to run semi-supervised mode experiments on SROIE.

Gen-Invoices contains 27 entities to extract among others: invoice number,
company address, company ids like: siren number and siret number, client infor-
mation, product information: serial number, description, unit price, etc., the
totals and the payment mode. As for Gen-payslips, it contains 25 classes to pre-
dict, including employee information: name, address, registration number, etc.;
company information: name, address, Siret, etc.; salary information: payment
period, earned leave, net salary, etc.

The details concerning the element numbers taken in the three datasets are
shown in the Table 1.

4.2 Implementation Details

The proposed model has been implemented using Tensorflow and Keras frame-
works. The ResNet-50 [11] Unet is adopted as our visual encoder to construct
the image embedding. All the experiments are performed using a mini-batch size
of 4. The Adam optimizer is used to optimize both multi-GAT and VGAE. The
learning rate is set to 0.002 for the Multi-GAT and 1.e-5 for the VGAE. The
maximum number of epoch is set to 1000 and the early stopping to 50. The n-
heads in the Multi-GAT layers is set to 26 for the Gen-invoices and Gen-Payslips
and to 8 for SROIE while in the GAT layers of the encoder, it’s equal to 8. The
latent dimension used in the encoder is set to 5. To compare the different results,
we use the F1 score metric.

4.3 Tests and Results

Different ablation studies are performed to show the impact of features vec-
tor components; the number of the neighbors in the graph and the number of
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Multi-GAT layers. We show also the results of our semi-supervised model.
Finally, we compare our results on the three datasets with those of state of
the art systems.

Features Vector Components. To show the effect of each features vector
component, we compare the multi-GAT results on the three datasets by vary-
ing the feature vector components. The basis vector initially contains the word
embedding part and the word nature boolean vector. We test the effect of nor-
malized position, layout encoding and image embedding on the Multi-GAT pre-
dictions. The Table 2 shows the F1 score obtained on SROIE, Gen-Invoices and
Gen-Payslips.

Table 2. F1 score (%) obtained by varying the vector features component in the three
datasets. These experiments are obtained using a 4 layers Multi-GAT. n in the graph
modeling is set to 4 for Gen-Payslips and Gen-Invoices and 8 for SROIE. “+” indicates
the presence and “−” the absence of the corresponding feature.

Added features to the basis vector Dataset

Norm. pos Region encod Image embed SROIE Gen-Invoices Gen-Payslips

− + + 96.37 95.84 99.46

+ − + 95.98 95.18 99.36

+ + − 96.53 96.12 99.44

+ + + 97.77 96.87 99.48

As can be seen in the Table 2, each feature improves the classification score
on the three datasets. The best combination for the three datasets is the vector
composed of word’s nature +word embedding+ normalized position (Norm. pos.)
+ region encoding (Region encod.) + image embedding (Image embed.). These
results confirm that the multi-modal representation helps to improve the results
of the words classification in the SSDs.

Word’s Neighborhood in the Graph. We also tested the effect of the first-
level word’s neighborhood in the three datasets graphs. We use a 4 layers multi-
GAT for the three datasets. The purpose of this experiment is to find the number
of the first-level neighbors needed to capture the local neighbors needed for a
better graph nodes prediction.

The results in Table 3 show that the model performs better with n = 4 (k = 1)
for the invoices and payslips dataset and around n = 8 (k = 2) for the SROIE
dataset. This can be explained by the fact that the first level of word’s neigh-
borhood, which is the most important in the SSD, should contain the keywords
that introduce the information. Analysis of the number of keywords introducing
entities in the three datasets reveals that most of the entities are introduced
using a single keyword in the payslips and invoices datasets.
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Table 3. F1 score (%) obtained with the supervised Multi-GAT by varying the number
of word’s neighbors (n = 4*k) in the graph

Neighbors number SROIE Gen-Invoices Gen-Payslips

4 97.57 96.87 99.48

8 97.77 94.12 98.10

12 96.33 92.08 97.13

The configuration of 8 neighbors (two on the left, on the right, above and
below the word) gives the best score for SROIE. Improvements in F1 scores are
noted in the total and date entities. The date in SROIE is generally introduced by
two keywords “Date:” and also followed by the time, usually composed of 2 words
(“Time 00:00:00” or “00:00:00 AM”). The total entity also can be introduced by
one or more than one word, so taking a single word will exclude the other cases,
while taking 2 words (max) on each side will consider the case of one keyword.

We also study the effect of the variation of the number of layers in the Multi-
GAT on the prediction of the classes of the graph nodes in each dataset.

Table 4. F1 score (%) obtained by varying the number of layers in the multi-GAT

Nb layers SROIE Gen-Invoices Gen-Payslips

2 95.99 91.54 98.06

3 97.56 93.88 99.25

4 97.77 96.87 99.48

5 97.85 96.62 99.20

6 97.91 96.59 99.05

7 97.45 95.70 98.72

As can be seen in the Table 4, the model achieves the best results with 4 layers
for payslips and invoices and 6 for SROIE. Here, each layer takes into account a
higher neighborhood level than the previous one. With each new layer, we take
into consideration more distant neighbors located in the same line and in more
distant lines. With each new layer, we add information from another distant
line. We need at least four neighborhood levels to get the best results. Indeed,
the information represented in a SSDs generally follows a logical order, and it
is found in information blocks, such as company information (name, address,
identifiers, etc.), order identifiers (invoice or receipt), payment information that
follow the total or the detail of the total which precedes it (VAT, discount, etc.).
They thus form a local context which is important for the entities prediction.
On the other hand, taking a very wide neighborhood (≥ 5 for Gen-Invoices and
Gen-Payslips and ≥ 7 for SROIE) leads to the loss of the local block context
and can cause a divergence.
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Learning Modes. In this part, the contribution of the semi-supervised mode to
the performance of the model is evaluated. We compare the F1 scores obtained
on the two generated datasets (Gen-Invoices and Gen-Paysplis) using our super-
vised model Multi-GAT (MG), two semi-supervised VGAE baslines and our final
semi-supervised model (MG+VGAE). Baseline1 is the MG+VGAE without the
shared GAT layers between encoder and classifier and the α/β parameterization.
Baseline2 is our MG+VGAE without the regularization hyperparameter β.

Table 5. F1 score % obtained by varying the learning mode, the multi-GAT contains
4 layers for both Gen-Invoices and Gen-Payslips (in the hyperparameters α and β,
l refers to the size of the labeled dataset, u to the unlabeled dataset and Ls is the
classification loss)

Model Shared GATs α β Gen-Invoices Gen-Payslips

Multi-GAT - - - 96.87 99.48

Baseline1 No 1 1 97.14 99.56

Baseline2 Yes l/u 1 97.27 99.56

MG+VGAE Yes l/u 1 + (l/u) ∗ Ls 97.34 99.58

As can be seen in Table 5, the MG+VGAE outperforms the supervised multi-
GAT and the two semi-VGAE baselines. This demonstrates that our architecture
with the shared GAT layers is advantageous and our proposed loss function
optimizes better the classification results. By using the Gen-Receipts dataset,
we also improve the SROIE results to an F1 score of 97.94%. Considering that
the layouts of the generated receipts differ slightly from the SROIE ones, the
improvement is less than it is for the other two datasets.

Fig. 4. F1 score (%) obtained on Multi-GAT and MG+VGAE by varying the labeled
Gen-Invoices training size

Figure 4 shows that our MG+VGAE improves the F1 score obtained by
the supervised Multi-GAT on Gen-Invoices for all the labeled dataset’s sizes.
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Despite the limited labeled data, the F1 score increases from 80.58 to 82.26
using MG+VGAE for the smallest dataset of 100 invoices. This demonstrates
that our MG+VGAE can improve prediction score even with limited labeled
data.

Overall Results. To evaluate our model, we compared our results on three
datasets to the results of the two graph nodes prediction systems proposed in
[2] and [20].

Table 6. F1 score (%) obtained with the graph nodes prediction systems

Model SROIE Gen-Invoices Gen-Payslips

[20] 96.71 92.87 97.98

[2] 97.62 93.53 99.28

Ours 97.94 97.34 99.58

As can be seen in the Table 6, our system outperforms the other two pro-
posed systems in [2] and [20]. Our system is richer in word’s features and it
provides more meaningful graph nodes neighborhood. In addition, it integrates
unlabeled SSDs in a semi-supervised scheme. We notice that the scores recorded
for Gen-Payslips are the highest, it results from the fact that this dataset has
less variation in content and layout than the two other ones.

Table 7. F1 score comparison between our system and the other systems (M refers to
million)

System Params F1 score

LAMBERT [9] 125M 98.17

LayoutLMV2(L) [27] 426M 97.81

LayoutLMV2(B) [27] 200M 96.25

StrucText [17] 107M 96.88

ViBERTGrid [18] 157M 96.40

TRIE [31] – 96.18

PICK [30] – 96.12

LayoutLM(L) [28] 343M 95.24

LayoutLM(B) [28] 113M 94.38

BERT(B) [7] 340M 92

Ours 41M 97.94
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We also compared our results (F1 score) on SROIE with several state-of-
the-art systems as well as the complexity of the models (number of parameters
in the model) in Table 7. Our system achieves competitive results, it comes in
the second position after the state-of-the-art model [9]. We want to point that
the best model registered on the public leaderboard for the Key Information
Extraction from SROIE belongs to [17] with 98.70%. Our system otherwise is
much less complex than all these systems, the classifier contains almost 41M
parameters (around 40.6M for the ResNet-UNet and BPEmb pre-trained models
and 277K for the multi-GAT). This last point makes our system much more easier
and faster than the others.

5 Conclusion

In this paper, we presented a semi-supervised entity extraction system from
semi-structured documents based on a multi-GAT graph nodes classifier and
a variational graph auto-encoder. We proposed a graph modeling of the SSD
based on its characteristics, with an efficient three-line-based neighborhood cal-
culation and the inclusion of the information clock region in the SSD layout. By
using the multi-head attention mechanism, our Multi-GAT classifier maximizes
the exploitation of the efficient nearest neighborhood and includes more useful
distant information. In addition, we have integrated a VGAE that optimizes our
classifier with both labeled and unlabeled in-domain data. Our VGAE is oriented
as much as possible toward the classification task optimization by proposing an
encoder and a classifier that share their first GAT layers and parameterizing the
VGAE loss based on classification loss. Our proposed semi-VGAE outperforms
the supervised version of multi-GAT, two additional graph-based extraction sys-
tems, and other semi-GVAE baselines on both Gen-Invoices and Gen-Payslips
datasets. It extracts 28 entities from Gen-Invoices with an interesting global F1
score of 97.34%, 25 entities from Gen-Payslips with a score of 99.58%, and 4
entities from the SROIE dataset with a score of 97.94%. In the future, we intend
to test our system on additional real data from other SSD classes and further
reduce its complexity to make it faster and easier to deploy.
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Abstract. Recent works on form understanding mostly employ multimodal
transformers or large-scale pre-trained language models. These models need
ample data for pre-training. In contrast, humans can usually identify key-value
pairings from a form only by looking at layouts, even if they don’t compre-
hend the language used. No prior research has been conducted to investigate how
helpful layout information alone is for form understanding. Hence, we propose a
unique entity-relation graph parsing method for scanned forms called LAGNN,
a language-independent Graph Neural Network model. Our model parses a form
into a word-relation graph in order to identify entities and relations jointly and
reduce the time complexity of inference. This graph is then transformed by deter-
ministic rules into a fully connected entity-relation graph. Our model simply takes
into account relative spacing between bounding boxes from layout information
to facilitate easy transfer across languages. To further improve the performance
of LAGNN, and achieve isomorphism between entity-relation graphs and word-
relation graphs, we use integer linear programming (ILP) based inference. Code
is publicly available at https://github.com/Bhanu068/LAGNN.

Keywords: Document Layout Analysis · Graph Neural Network · Language
Independent · Deep Learning

1 Introduction

Despite the growing popularity of e-forms, paper forms are still widely used to collect
data by various types of organizations, from government agencies to private companies.
A large body of collected data, especially historical data, is still available only in paper
forms or scanned document images. To digitize such data, we introduce the task of
entity-relation graph parsing for form understanding, which maps the document image
of a form to a structured entity-relation graph. As a result, users can explore and analyze
semantic information in such entity-relation graphs without any need to read the original
document images.

Entity relation graphs are introduced for forms in FUNSD [12], which are annotated
on a small sample of scanned forms. Herein, an entity is a group of words represent-
ing a semantic and spatial standpoint, such as question and answer, and a relation is
a directed edge between two entities, as illustrated in Fig. 1. Such graphs are layout-
agnostic. However, such graphs are not always fully connected via those relations due
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Fig. 1. Illustration of the pipeline of our proposed method.

to neglecting the layout information between entities. In contrast, form designers often
put semantically relevant entities close to each other in a form, hence spatial proximate-
ness is informative for semantic relevance between entities or relations.

Prior models on form understanding tackle at least two subtasks in the sequel, which
are entity recognition and relation extraction [6]. The former identifies a group of words
belonging to the same semantic entity and the label of the entity, while the latter pre-
dicts the relation between any two entities. Such a pipeline may easily lead to error
propagation because the models for relation extraction are not able to fix errors of entity
recognition, not to mention the exploitation of proximateness between relations to build
a fully connected entity-relation graph. However, entity-relation graph parsing by tack-
ing both subtasks jointly is challenging because the time complexity of inference is
quadratic to the number of tokens in a form, as shown in Sect. 3.

The use of large-scale pre-trained language models or multimodal transformers
dominates in the recent studies on form understanding [6,11,26]. However, such mod-
els require large-scale data for pre-training, especially for multilingual document under-
standing. For example, LANGUAGEXLM needs 30 million documents in 53 languages
for pre-training [6]. Adding any new languages or new document collections often
requires re-training of the models. In contrast, humans are often capable of recognizing
key-value pairs from a form by only using layout information, even though they may
not understand the language in the form. However, no prior studies explore to what
degree layout information is useful for language-agnostic form understanding.

In this work, we propose a novel language-agnostic Graph Neural Networks (GNN)
model for entity-relation graph parsing of scanned forms, coined LAGNN. To facilitate
navigation in an entity-relation graph and retain proximateness of entities and rela-
tions after parsing, we add two types of relations for proximateness to entity-relation
graphs: i) vertically proximate, coined proximate (V), and ii) horizontally proximate,
coined proximate (H). To mitigate error propagation in pipeline approaches, we intro-
duce a word-relation graph representation so that our model parses a document image
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into such a graph, which is subsequently converted to a fully connected entity-relation
graph by deterministic rules. This simplification enables linear inference time. To sup-
port language-agnostic form understanding without using pre-trained language models,
our model only considers features extracted from layout information. Furthermore, we
apply integer linear programming (ILP) based inference to ensure that the generated
graphs satisfy the properties of entity-relation graphs.

The main contributions of this paper are summarised as follows:

– We propose a language-agnostic GNN model, coined LAGNN, for parsing scanned
forms into a word-relation graph, which is isomorphic to a fully connected entity-
relation graph with two new relations based on proximateness.

– We propose a designated ILP-based inference method to ensure that i) the generated
graphs are fully connected, and ii) relations in a graph are logically coherent.

– The extensive experimental results show that our model significantly outperforms
the competitive baselines in terms of all metrics in the monolingual settings and the
averaged metrics in the zero-shot multilingual settings.

2 Related Work

Deep learning techniques have dominated document interpretation tasks [1,21,28] in
the past decade. Grid-based techniques [7,13,17] were suggested for representing 2D
documents. In these techniques, first character-level or word-level embeddings are used
to represent text, and later CNNs are used to categorize them into different field types.

Self-supervised pre-training has had a lot of success lately. Recent work on struc-
tured document pre-training [6,15,23,25,26] has pushed the boundaries, drawing inspi-
ration from the success of pre-trained language models on multiple downstream NLP
tasks. The BERT architecture was altered by LayoutLM [26] by including 2D spatial
coordinate embeddings. By considering the visual aspects as independent tokens, Lay-
outLMv2 [25] outperformed LayoutLM. To optimize the use of unlabeled document
data, extra pre-training activities were investigated. In contrast to StructuralLM [15],
who suggested cell-level 2D position embeddings and the accompanying pre-training
target, SelfDoc [16] developed the contextualization across a block of text. To unify
many issues surrounding natural language, TILT [19] suggests a pre-trained layout-
aware multimodal encoder-decoder Transformer. The useful coarse-grained informa-
tion like natural units and salient visual regions are ignored by the current layout-aware
multimodal Transformers. In an effort to include coarse-grained information into pre-
trained layout-aware multimodal Transformers, [24] argues that both fine-grained and
coarse-grained multimodal information is useful for document understanding and pro-
poses a multi-grained and multimodal transformer, ERNIE-mmLayout.

However, the preceding Structured Document Understanding (SDU) methods
mostly rely on a single language, which is usually English, making them rather con-
strained in terms of multilingual application scenarios. LayoutXLM [6] was the first
to incorporate a multilingual text model InfoXLM [3] initialization to LayoutLMv2
framework for multilingual pre-training with structured documents. However, a labori-
ous procedure of multilingual data collecting, cleansing, and pre-training was necessary.
To address this issue, LiLT [23], a straightforward yet powerful language-independent
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layout Transformer for monolingual/multilingual structured document interpretation
was proposed. LiLT employs BiACM to achieve language-independent cross-modality
interaction and an efficient asynchronous optimization technique for both textual and
non-textual flows in pre-training using two pre-training objectives.

Current state-of-the-art approaches to these document understanding challenges
have made use of the power of large pre-trained language models, focusing on lan-
guage more than the visual and geometrical information in a text, and end up using
hundreds of millions of parameters in the process [9]. Additionally, the majority of
these models are trained using a massive transformer pipeline, which necessitates the
pre-training of enormous amounts of data. In this sense, models that are independent of
language were proposed [5,20]. [5] concentrated on identifying entity relationships in
forms using a straightforward CNN as a text line detector, and then they find key-value
relationship pairs using heuristics based on the model’s scores for each connection can-
didate. Later, [20] reformulated the issue as a semantic segmentation (pixel labelling)
task with a focus on extracting the form structure. They employed a U-Net based archi-
tecture pipeline, which was quite effective at concurrently predicting all levels of the
document hierarchy. For form understanding, [2] employed GCNs to solve the entity
grouping, labelling, and entity linking tasks. They did not utilize any visual features
and instead used word embeddings and bounding box information as the main node
features, and k-nearest neighbours to obtain edge features. The FUDGE [4] framework
was then created as an extension of [5] to help with form understanding. It proposes
relationship pairings using the same detection CNN as in [5], considerably improving
the state-of-the-art on both the semantic entity labeling and entity linking tasks. Then,
because predicting key-value connection pairs and the semantic labels for text entities
are two tasks that are closely associated, a GCN was implemented using plugged visual
features from the CNN. Inspire by FUDGE [4], a task-agnostic GNN-based framework
called Doc2Graph [9] that adopts a similar joint prediction of both the tasks, semantic
entity labeling and entity linking utilizing a node classification and edge classification
module, respectively, without relying on heuristics to establish associations between
words or entities was developed. To take advantage of the relative location of document
objects via polar coordinates, a novel GNN architecture pipeline with node and edge
aggregation functions is implemented.

3 Methodology

Entity-relation graph parsing for form understanding is concerned with mapping a doc-
ument image to an entity-relation graph. To reduce inference time complexity, we pro-
pose to map a scanned form image to a novel word-relation graph, which is isomorphic
to the corresponding entity-relation graph. Then entity-relation graphs can be directly
constructed from word-relation graphs using deterministic rules.

Formally, an entity-relation graph is denoted by Ge = {Ve, Ee}, composed of a set
of entities Ve and a set of relations between entities Ee. Each entity is a word sequence
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Fig. 2. Illustration of our proposed entity-relation graph and word-relation graph.

[w0, ..., wm] labeled by a type ze ∈ Ze, and each word is associated with a bound-
ing box (xleft, ytop, xright, ybottom) [12]. The set Ze includes question, answer, and
section. A relation (va, y, vb) ∈ Ee is denoted by a directed edge from an entity va to
another entity vb labeled by z ∈ Zr, where Zr includes the following relations.

– Question-answer, denoted by a directed edge from a question to the corresponding
answer.

– Header-question, denoted by a directed edge from a section and a question belong-
ing to that section.

– Proximate (V), denoted by an undirected edge between an entity A and the first
entity B in the first line below it, which is not an answer and there is no relation
between A and B or the parent of B.

– Proximate (H), denoted by an undirected edge between an entity A and the closest
entity labeled as question or header to its right in the same line.
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In contrast, a word-relation graph Gw = {Vw, Ew} depicted in Fig. 2 comprises a
set of nodes Vw consisting of only the words in a document, and a set of relations Ew

between those words. A relation in Ew is a tuple (wa, z, wb) from a word wa to another
word wb labeled by z ∈ Zw, where the edge label set Zw augments Zr by adding
word-level relations. More details are provided in Sect. 3.1

As illustrated in Fig. 1, to parse document images into word-relation graphs, we first
apply an off-the-shelf Optical Character Recogniser docTR [18] to map a document
image into a set of cells, whereby each cell is a sequence of bounding boxes and each
bounding box corresponds to a word. Then we apply our model LAGNN to estimate
the probabilities of relations between each possible pair of words largely based on rel-
ative distances between bounding boxes. To construct a word-relation graph, we apply
a designated ILP inference algorithm to assign relation labels to word pairs jointly.

3.1 Word-Relation Graph

A naive solution that directly parses a document image to an entity-relation graph results
in a time complexity quadratic to the number of words in a document in the worst case.
First, a model needs to identify if a word belongs to the same group of its adjacent
words, followed by predicting relations between any pairs of word groups. In the worst
case, if each entity comprises only one word, the time complexity is O(n2) because
the number of edge predictions is n × n − 1, where n is the number of words in a
document. In fact, the average word lengths of entities in FUNSD [12] is 3.4, the actual
inference time complexity is not far from the worst case. The cost is estimated without
considering the one for estimating word groups for each entity.

We map entity-relation graphs to word-relation graphs so that entity-relation graph
parsing becomes the task of predicting relations between words in a word-relation
graph. To eliminate the task of entity recognition, we introduce an undirected rela-
tion same-entity to link two adjacent words in the same word sequence of an entity.
For a relation (va, z, vb) between two entities in an entity-relation graph, we adapt the
relation labels in entity-relation graphs to word-level relations:

– Question-answer, the last word in a question is linked to the first word in the corre-
sponding answer.

– Header-question, the first word in a section is linked to the first word of the corre-
sponding question.

– Proximate (V), the first word in va is linked to the first word in vb.
– Proximate (H), the last word in va is linked to the first word in vb.
– Same-entity, the adjacent words within an entity are connected with this relation.

The conversion process is deterministic because i) for a relation between two enti-
ties, either the first or the last word of an entity is linked, and ii) same-entity links only
adjacent words in an entity. Thus it is straightforward to revert the process to map a
word-relation graph and an entity-relation graph by using rules. As a result, an word-
relation graph is isomorphic to an entity-relation graph.
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3.2 LAGNN Model

In this section, we present LAGNN that parses a document image to a word-relation
graph, which is reformulated as predicting relations between words in a document.
In contrast to prior studies [6,26], our model relies on relative distances between the
bounding boxes of words, which are robust across languages, rather than linguistic fea-
tures. Moreover, we adopt Graph Attention Network (GAT) [22] to capture the sim-
ilarities of relations between the neighbours of a word. However, we slightly modify
GAT model to include edge features in addition to node features in message passing.
We do this by concatenating our edge features with node features before performing
the message passing. The coherence of predicted relations and graph properties of a
word-relation graph are ensured by ILP at the inference stage.

Similar to prior works [6,26], we apply the off-the-shelf OCR model [18] to map
document images to bags of words. The OCR outputs are reorganized by sorting lines
from top to bottom and arranging words from left to right in their original order by
using their bounding-box coordinates. For each word w, we define its neighbourhood
Nw as the set of words, to which it can potentially have relations. The set Nw consists
of at most K nearest words, including the word to the right of w and the words below it.
This definition of neighbourhood is motivated by the fact that the edge score between
two words is independent of the orientation of the edge. Hence, during inference, we
only compute edge scores between a word and each word in its neighbourhood Nw to
avoid repeated computations.

We observe that a significant proportion of the neighbours of a word have the same
relations. For example, all words in an answer composed of multiple words are asso-
ciated with the relation same-entity. By viewing a form as a word-relation graph, we
take the GAT model as our backbone because it supports both node features and edge
features. Herein, each node w is represented by a normalized bounding box coefficient
vector hw = (xleft/W, ytop/H, xright/W, ybottom/H), where W and H denotes the
width and the height of a document image respectively. To support cross-lingual pars-
ing, we represent an edge (va, vb) only by a relative spacing feature vector dij . Such
a feature vector dij is computed based on both horizontal and vertical relative dis-
tances between their normalized bounding boxes. Specifically, given two words wi and
wj with the bounding boxes (xi1, yi1, xi2, yi2), and (xj1, yj1, xj2, yj2) respectively, the
spacing between wi and wj is calculated along x and y-axis by

dx1, dx2, dx3 = (xi1 − xj1), (xi2 − xj1), (xi2 − xj12)
dy1, dy2, dy3 = (yi1 − yj1), (yi2 − yj1), (yi2 − yj12)

As a result, the spacing feature vector dij = [dx1, dx2, dx3, dy1, dy2, dy3].
In comparison with the prior works [6,11,25,26], which use text, image, and layout

features altogether, our model is more parameter efficient by adopting only language-
independent and layout-agnostic features. Due to those simple features, our model con-
tains only 7.3K parameters, significantly less than those transformer-based models,
which have approximately 200-400M parameters.
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3.3 Inference

We formulate the inference problem as an integer linear program that aims to identify
the most likely word-relation graph satisfying the graph properties outlined in Sect. 3.1.

Given an edge embedding eij , we compute a score sijz for each possible label
z ∈ Zw by using a linear layer. As a word-relation graph is sparse, we extend Zw to
the set Z+ by adding a relation no-relation, which indicates there is no relation between
two words. Let ujiz ∈ {0, 1} be a binary variable indicating if there is an edge with
a label z between vi and vj , the solution to the following integer linear program is the
most likely word-relation graph.

min sTu
s.t. Au ≤ b

(1)

where A denotes the constraint matrix and b is the corresponding constant vector.
We formulate five constraints specific to documents for efficient joint inference

using integer linear programming:

– Connectivity constraint (C1): The generated word-relation graphs are fully con-
nected such that there is a path between any pair of nodes in a graph.

∑

vj∈Ni

∑

z∈Zr

uijz ≥ 1,∀vi ∈ Vw

– QA constraint (C2): If a relation between two words uijzq is question-answer,
where zq denotes question-answer, then the next immediate relation must be either
proximate (H) (zh) or same-entity (zw). Let the next relation is denoted by ui(j+1)z ,
this constraint is defined as:

ui(j+1)zh + ui(j+1)zw ≥ uijzq

– Single label constraint (C3): There is only one relation in Zw between any pair of
nodes in a word-relation graph.

∑

z∈Z+

ujiz = 1,∀(vi, vj) ∈ Vw × Vw

– At least one semantic relations (C4): A word is part of an entity. Therefore, it
is linked to another word via same-entity if the entity contains multiple words. If
the word is at the beginning or the end of an entity, it points to another entity via
either question-answer or header-question. In other words, a word is involved in at
least one relation in Zs = {question-answer, same-entity, header-question}. If an
entity contains a single word, it should be associated with either question-answer
or header-question. Otherwise, if a word is associated only with proximateV or
proximateH , we cannot determine which entity it belongs to and the type of the
corresponding entity.

∑

j∈N

∑

z∈Zs

ujiz ≥ 1,∀vi
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– At least one semantic relation in the neighbourhood (C5): The previous con-
straint can still fail to exclude the cases that a word is only involved in same-entity
in Zs. In such a case, the word is expected to be at either end of an entity. If we
need to infer the type of entity, this word should be linked to another word via either
question-answer or header-question. Therefore, if a word is linked with a same-
entity relation, it should be linked to a different word with a relation in Zs.

ui(i+1)zh + ui(i+1)zw + ui(i+1)zq ≥ u(i−1)izw

After parsing a document image into a word-relation graph, we apply the deterministic
rules introduced in Sect. 3.1 to convert the graph into an entity-relation graph.

3.4 Model Training

Inspired by [8], we apply the cross-entropy loss to each pair of nodes during training.
The construction of word-relation graphs is realized by the ILP-based inference method
detailed above.

L = −
∑

ij

∑

z∈Z+

zij log ẑij (2)

where zij and ẑij denote the ground-truth labels and predicted labels respectively.

4 Experiments

We compare our model with the state-of-the-art methods on both monolingual and mul-
tilingual form datasets. The results show that our models significantly outperform the
baselines in terms of relation prediction on word-relation graphs in both settings, which
leads further to superior performance on entity-relation graphs. The extensive ablation
studies demonstrate the effectiveness of incorporating structural information using GAT
and the constraints during ILP-based inference.

4.1 Datasets

FUNSD [12]. It is a form understanding dataset consisting of 199 noisy documents
which are fully annotated. It has a total of 9,707 semantic entities over 31,485 words.
In the official data split, the 199 samples are divided into 149 training samples and
50 testing samples. However, we further split the 149 samples into 139 training and
10 validation samples. Our test split is the same as the official split. Each entity is
labelled with one of the four semantic entity labels - “question”, “answer”, “header”,
and “other”. This dataset is widely employed for semantic entity labelling and relation
extraction tasks.

XFUND [27]. This is a multilingual benchmark dataset comprising 199 forms that are
labeled by humans in 7 languages, which are Chinese (ZH), Japanese (JA), Spanish
(ES), French (FR), Italian (IT), German (DE), Portuguese (PT). The dataset is divided
into 149 forms for training and 50 for testing. In the ground-truth annotations, each
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entity is labeled with either “question”, “answer”, “header”, or “other”. Following pre-
vious works [6,23], we use this dataset to compare our model with existing state-of-
the-art models in the zero-shot settings.

To obtain the relation annotations in entity-relation graphs on both datasets, we
apply rules to generate the relation annotations based on entity annotations, followed
by manually checking all document images for correctness. Due to the isomorphism
between word-relation graphs and entity-relation graphs, we map the resulting entity-
relation graphs to word-relation graphs by using the deterministic rules.

Table 1. Relation extraction (RE) results on the word-relation graphs of FUNSD dataset, where
T, L, I denotes if models use text, layout, and image features respectively. Ours denotes LAGNN
without applying ILP-based inference. M stands for million and K refers to thousand. T, L, and I
refer to text, layout, and image modalities respectively.

Model #Parameters Modality Precision (↑) Recall (↑) F1 (↑)

XLM-RoBERTaBASE - T 0.563 0.561 0.561

InfoXLMBASE - T 0.593 0.603 0.598

LayoutLM 11M T+L+I 0.664 0.666 0.665

LayoutXLMBASE 30M T+L+I 0.709 0.715 0.712

LayoutLMv2 11M T+L+I 0.722 0.712 0.717

StructuralLM 11M T+L 0.741 0.749 0.745

LiLT[InfoXLM]BASE 11M T+L 0.792 0.786 0.789

LayoutLMv3 11M T+L+I 0.801 0.809 0.805

Ours 8.1K L 0.837 0.854 0.845

Ours + Constraints 8.1K L 0.848 0.861 0.854

Table 2. Evaluation of entity recognition on the entity-relation graphs of the FUNSD dataset.

Model Precision (↑) Recall (↑) F1 (↑)

LayoutLM 0.753 0.757 0.755

LayoutXLMBASE 0.791 0.796 0.793

LayoutLMv2 0.847 0.852 0.849

LiLT[InfoXLM]BASE 0.864 0.881 0.872

LayoutLMv3 0.898 0.903 0.900

LAGNN 0.921 0.936 0.928

4.2 Implementation Details

The entity-relation graphs are constructed using Deep Graph Library (DGL). We use a
single-layer GAT with 3 heads and a hidden dimension size of 64 for both node and edge
features. We train our model using Adam optimizer for 500 iterations with a learning
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rate of 1 × e−3. If the performance on the validation data does not improve after 100
iterations, training stops early. During training, we save the model checkpoint based on
its performance on validation data. For inference on the test set, the checkpoint with the
best performance across all training epochs is loaded. We train our model on 1 GTX
1080Ti 12 GB GPU.

4.3 Monolingual Results on FUNSD

We first evaluate our model on the word-relation graphs on FUNSD by considering
the task as relation extraction between words. More specifically, we run the state-of-
the-art models LayoutLM [26], LayoutLMv2 [25], LayoutLMv3 [11], StructuralLM
[15], LayoutXLM [6], InfoXLMBASE [3], and LiLT[InfoXLM]BASE [23] to predict
entities, followed by relation extraction.

For baselines, we perform relation extraction by following the approach in [6]. First,
we create all possible entity pairs as relation candidates. Each candidate is represented
by the concatenation of the corresponding entity representations. Furthermore, the rep-
resentation of an entity is first constructed by concatenating the embedding of the first
token of each entity and the entity type embedding, followed by feeding them through
two position-wise feed-forward networks (FFN) modules. The resulting relation can-
didate representations are fed into a bi-affine classifier for relation classification. The
conversion from entity-relation graphs to word-relation graphs is performed by the same
set of deterministic rules introduced in Sect. 3.1.

Table 1 reports the relation extraction results on word-relation graphs in terms of
Precision, Recall, and F1. For each metric, we take the micro-average among the rela-
tions in Zw. The two variations of our model achieve superior performance over the
baselines by only using the relative spacing features. In contrast, all baselines use textual
features extracted from large language models that require pre-training on large-scale
datasets. Some of the baselines, such as variations of LayoutLM, require even vision
features. The number of parameters of our models is also significantly smaller than
their competitors. Although pre-trained language models are widely used in a number
of AI applications, our work raises the basic question for future research “Are language
models necessary for form recognition?”.

Apart from relation extraction, we also evaluate the models in terms of entity recog-
nition on converted entity-relation graphs. Table 2 summarizes the results based on an
exact match in terms of Precision, Recall, and F1.

4.4 Zero-Shot Multilingual Results

We further evaluate model performance by applying the models trained on FUNSD
directly to the scanned forms in other languages on XFUND. Herein, we compare
our models with the state-of-the-art methods: XLM-RoBERTaBASE , InfoXLMBASE ,
LayoutXLMBASE [6], and LiLT[InfoXLM]BASE [23]. The latter two models are pre-
trained on large-scale document datasets of size 30M and 11M respectively.

Table 3 reports the corresponding zero-shot multilingual relation extraction results
on the word-relation graphs of XFUND dataset. Overall, our best model outperforms
the baselines in 7 out of 8 languages in terms of F1. The geometric mean of the F1
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Table 3. Multilingual relation extraction (RE) results on word-relation graphs of XFUND dataset.

Model Pretraining FUNSD XFUND Avg

Language Size EN JA ZH DE FR PT ES IT

XLM-RoBERTaBASE - - 0.587 0.116 0.132 0.335 0.400 0.354 0.281 0.286 0.311

InfoXLMBASE - - 0.601 0.132 0.159 0.357 0.398 0.352 0.295 0.300 0.324

LayoutXLMBASE Multilingual 30M 0.701 0.258 0.240 0.443 0.568 0.549 0.461 0.499 0.464

LiLT[InfoXLM]BASE English 11M 0.771 0.303 0.349 0.562 0.691 0.613 0.554 0.586 0.553

Ours × - 0.845 0.611 0.625 0.636 0.679 0.641 0.651 0.625 0.664

Ours + Constraints × - 0.853 0.625 0.626 0.647 0.673 0.641 0.644 0.638 0.669

Table 4. Ablation studies. C1, C2, C4 and C5 are the constraints defined in Sect. 3.3

Model Precision Recall F1

GraphSAGE 0.756 0.768 0.761

GCNs 0.814 0.823 0.818

LAGNN- Edgefeats 0.705 0.717 0.710

LAGNN + Edgefeats 0.837 0.854 0.845

LAGNN + Edgefeats + all constrs 0.848 0.861 0.854

LAGNN + Edgefeats + all constrs - C4+C5 0.846 0.860 0.852

LAGNN + Edgefeats + all constrs - C1 0.845 0.858 0.851

LAGNN + Edgefeats + all constrs - C2 0.840 0.851 0.845

is more than 10% better than the strongest baseline. It is noteworthy that performance
improvement is achieved without any time-consuming pre-training. We only use the
139 forms from the FUNSD dataset to train our models. Our models based on relative
spacing features are more transferrable than those multilingual language models on this
task. A further inspection shows that our models benefit from the fact that the space
between two words within an entity, as well as the distance between a question word
and an answer word, are similar across languages. In this zero-shot multilingual setting,
incorporating the constraints into inference does not always help, though it leads to
improvements in 6 out of 8 languages (Fig. 3).

4.5 Ablation Study

We evaluate the effectiveness of using GAT, edge features, constraints in ILP, and the
size of neighbourhood in our model. To show the usefulness of GAT, we compare it with
GraphSAGE [10] and graph convolutional networks (GCNs) [14] by using the same
features. For edge features, we run ablation studies by removing them with or with-
out applying ILP. To understand the usefulness of the constraints during inference, we
remove the connectivity constraint (C1), QA constraint (C2), and the last two semantic
constraints (C4+C5) respectively from the full model.

As shown in Table 4, it is expected that our full model performs the best among
all variations. Removing relative spacing features leads to the largest drop in terms of
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Table 5. This table illustrates the number of predictions by LAGNN that violated a constraint.
These are corrected by applying ILP inference described in Sect. 3.3.

Constraints Number of violations

C1 71

C2 169

C3 0

C4 51

C5 10

Table 6. Effectiveness of edge features.

Model Precision Recall F1

LAGNN + Edgefeats in lower-level and at classifier 0.837 0.854 0.845

LAGNN + Edgefeats in lower-level and not at classifier 0.713 0.725 0.718

LAGNN + Edgefeats not in lower-level but at classifier 0.831 0.849 0.840

LAGNN- Edgefeats 0.705 0.717 0.710

all metrics. GAT demonstrates its strengths over the two alternative neural structures.
Removing any of the constraints, the model performance drops slightly. Among them,
C2 is clearly the most useful one among them in terms of improving performance. As
such, C2 is the qa constraint that is designed to correct the wrongly predicted question-
answer relation labels, which are one of the most frequent model prediction errors based
on our evaluation. Before applying ILP, we observe that there were 169 out of 51775
word pairs in the test set that violate this constraint. Table 5 illustrates the number of
violations in the predictions of LAGNN before applying the constraint-based inference.

The constraints C4 and C5 are designed to ensure isomorphism between entity-
relation graphs and word-relation graphs. This constraint assists in preventing any iso-
lated word pairs that are not connected to an entity (question, or header). For instance, if
a question has more than one word in the answer, the words within the answer are linked
together using the same-entity relation. The last word of the question and the first word
of the answer are linked by the question-answer relation. When transforming a word-
relation graph to an entity-relation graph, we take into account the rule that any word
pairs with a same-entity connection following a question-answer relation are mapped to
the entity relation “answer” in the entity-relation graph. However, if LAGNN predicts
a different relation for a word pair within the answer than same-entity, this will result
in an inaccurate mapping of word-relation graph to entity-relation graph. Additionally,
a word pair can only have a same-entity relation if it is part of a chain of words whose
head is linked to either a “question” or a “header”. It is impossible to have an iso-
lated word pair with a same-entity relation that isn’t related to either the “question” or
“header” in our proposed way of word-relation graph construction. However, a few of
the LAGNN model’s relation predictions could result in isolated word pairs. In order to
prevent this, our uniquely designed semantic constraints correct these mistakes and aid
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Fig. 3. Trade off between neighbourhood size and computational time.

in the accurate mapping of the word-relation graph to the entity-relation graph. There
are 134 total isolated word pairings before semantic constraints are applied. However,
with the application of the constraints, there were no violations, and the performance
benefit from using semantic constraints-which are made particularly to achieve isomor-
phism between word-relation graph and entity-relation graph—is very little.

Where to Put Edge Features. To demonstrate the significance of using spacing
between pairs of nodes as its edge feature, we conduct four experiments with and
without edge features. The results for these experiments are available in Table 6. Our
key objective is to determine whether it is more effective to concatenate edge features
with node features when computing the node attention rather than doing so only at the
model’s final classifier layer. It is evident that employing edge features solely while
computing node attention (row 2) results in much lower performance than using the
model’s final (classifier) layer (row 3). Nevertheless, it is still marginally preferable
to not use edge features at all (row 4). The optimal performance can be obtained by
employing edge features while computing node attention as well as at the last layer of
the model (row 1).

Effect of Neighbourhood Size. On both datasets, the “linking” key found in the JSON
annotation files of the ground-truth documents is used to construct the ground-truth
graphs. There are no ground-truth annotation files accessible during the inference.
Therefore, the model must decide which nodes should be connected to which nodes.
The “no-link” relation label enables the model to discover which nodes ought to be
connected by an edge. Each word or node in the graph is linked to the n following
words or nodes in the document using an edge labelled no-relation. The edges pre-
dicted with a “no-link” relation label are removed prior to applying the ILP inference.
We experiment with various n to examine the impact of neighbourhood size on the
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model’s performance. As n increases, the computational time increases. We determine
an ideal value for n by finding an optimal trade-off between computation time and per-
formance.

5 Conclusion

In this work, we propose a novel entity-relation graph parsing model called LAGNN
that is language independent. Our model parses a document image into a word-relation
graph in order to minimize error propagation of pipeline approaches and reduce the
time complexity of inference. This graph is then transformed by deterministic rules into
a fully linked entity-relation graph. Due to this simplification, inference time is sharply
reduced. Our model simply takes into account relative spacing features extracted from
layout information in order to allow language-independent form understanding with-
out the use of pre-trained language models. To ensure that the generated graphs match
the specifications of entity-relation graphs, we use ILP-based inference by incorpo-
rating designated constraints for this task. Our experimental results on the multilin-
gual XFUND and FUSND datasets demonstrate that our proposed approach produces
superior results over competitive baselines. In particular, on the zero-short multilingual
form understanding task, our model surpasses recent strong baselines by a large margin.
Additionally, we conduct extensive ablation studies that demonstrate the effectiveness
of each new design choice we proposed.
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Antoine Doucet3 , Mickaël Coustaty3 , and Dimosthenis Karatzas4

1 Rossum, Prague, Czech Republic
stepan.simsa@rossum.ai

2 Visual Recognition Group, Czech Technical University in Prague, Prague, Czechia
3 University of La Rochelle, La Rochelle, France

4 Computer Vision Center, Universitat Autónoma de Barcelona, Barcelona, Spain

Abstract. This paper introduces the DocILE benchmark with the
largest dataset of business documents for the tasks of Key Informa-
tion Localization and Extraction and Line Item Recognition. It con-
tains 6.7k annotated business documents, 100k synthetically generated
documents, and nearly 1M unlabeled documents for unsupervised pre-
training. The dataset has been built with knowledge of domain- and
task-specific aspects, resulting in the following key features: (i) annota-
tions in 55 classes, which surpasses the granularity of previously pub-
lished key information extraction datasets by a large margin; (ii) Line
Item Recognition represents a highly practical information extraction
task, where key information has to be assigned to items in a table; (iii)
documents come from numerous layouts and the test set includes zero-
and few-shot cases as well as layouts commonly seen in the training set.
The benchmark comes with several baselines, including RoBERTa, Lay-
outLMv3 and DETR-based Table Transformer; applied to both tasks of
the DocILE benchmark, with results shared in this paper, offering a quick
starting point for future work. The dataset, baselines and supplementary
material are available at https://github.com/rossumai/docile.

Keywords: Document AI · Information Extraction · Line Item
Recognition · Business Documents · Intelligent Document Processing

1 Introduction

Automating information extraction from business documents has the potential
to streamline repetitive human labour and allow data entry workers to focus
on more strategic tasks. Despite the recent shift towards business digitaliza-
tion, the majority of Business-to-Business (B2B) communication still happens
through the interchange of semi-structured1 business documents such as invoices,
1 We use the term semi-structured documents as [62,69]; visual structure is strongly

related to the document semantics, but the layout is variable.
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tax forms, orders, etc. The layouts of these documents were designed for human
readability, yet the downstream applications (i.e. accounting software) depend
on data in a structured, computer-readable format. Traditionally, this has been
solved by manual data entry, requiring substantial time to process each doc-
ument. The automated process of data extraction from such documents goes
far beyond Optical Character Recognition (OCR) as it requires understanding
of semantics, layout and context of the information within the document. The
machine learning field dealing with this is called Document Information Extrac-
tion (IE), a sub-category of Document Understanding (DU).

Information Extraction from business documents lacks practical large-scale
benchmarks, as noted in [11,35,56,69,75]. While there are several public
datasets for document understanding, as reviewed in Sect. 2.2, only a few
of them focus on information extraction from business documents. They are
typically small-scale [49,74,79], focusing solely on receipts [58,74], or limit
the task, e.g., to Named Entity Recognition (NER), missing location anno-
tation [5,29,72,73]. Many results in the field are therefore published on pri-
vate datasets [9,21,26,33,56], limiting the reproducibility and hindering further
research. Digital semi-structured documents often contain sensitive information,
such as names and addresses, which hampers the creation of sufficiently-large
public datasets and benchmarks.

The standard problem of Key Information Extraction (KIE) should be dis-
tinguished [69] from Key Information Localization and Extraction (KILE) as the
former lacks the positional information, required for effective human-in-the loop
verification of the extracted data. Business documents often come with a list of
items, e.g. a table of invoiced goods and services, where each item is represented
by a set of key information, such as name, quantity and price. Extraction of
such items is the target of the Line Item Recognition (LIR) [69], which was not
explicitly targeted by existing benchmarks.

In this work, we present the DocILE (Document Information Localization
and Extraction) dataset and benchmark with the following contributions:
(i) the largest dataset for KILE and LIR from semi-structured business docu-
ments both in terms of the number of labeled documents and categories; (ii) rich
set of document layouts, including layout cluster annotations for all labeled docu-
ments; (iii) the synthetic subset being the first large synthetic dataset with KILE
and LIR labels; (iv) detailed information about the document selection, process-
ing and annotations, which took around 2, 500 h of annotation time, (v) base-
line evaluations of popular architectures for language modelling, visually-rich
document understanding and computer vision. (vi) is used both for a research
competition, as well as a long-term benchmark of key information extraction
and localization, and line item recognition systems; (vii) can serve other areas of
research thanks to the rich annotations (table structure, layout clusters, meta-
data, and the HTML sources for synthetic documents).

The paper is structured as follows: Sect. 2 reviews the related work. The
DocILE dataset is introduced and its characteristics and its collection are
described in Sect. 3. Section 4 follows with the tasks and evaluation metrics.
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Baseline methods are described and experimented in Sect. 5. Finally, conclusions
are drawn in Sect. 6.

2 Related Work

To address the related work, we first introduce general approaches to document
understanding, before specifically focusing on information extraction tasks and
existing datasets.

2.1 Methods for Document Understanding

Approaches to document understanding have used various combinations of input
modalities (text, spatial layout, image) to extract information from structurally
rich documents. Such approaches have been successfully applied to understand-
ing of forms [8,22,90], receipts [27,29], tables [24,64,89], or invoices [45,46,62].

Convolutional neural networks based approaches such as [33,42] use charac-
ter or word vector-based representations to make a grid-style prediction similar
to semantic segmentation. The pixels are classified into the field types for invoice
documents. LayoutLM [84] modifies the BERT [10] language model to incorpo-
rate document layout information and visual features. The layout information
is passed in the form of 2D spatial coordinate embeddings, and the visual fea-
tures for each word token are obtained via Faster-RCNN [61]. LayoutLMv2 [83]
treats visual tokens separately, instead of adding them to the text tokens, and
incorporates additional pre-training tasks. LayoutLMv3 [28] introduces more
pre-training tasks such as masked image modeling, or word-patch alignment.
BROS [27] also uses a BERT-based text encoder equipped with SPADE [30]
based graph classifier to predict the entity relations between the text tokens.
Document understanding has also been approached from a question-answering
perspective [47,48]. Layout-T5 [76] uses the layout information with the gener-
ative T5 [60] language model, and TILT [59] uses convolutional features with
the T5 model. In UDOP [77], several document understanding tasks are for-
mulated as sequence-to-sequence modelling in a unified framework. Recently,
GraphDoc [86], a model based on graph attention networks pre-trained only on
320k documents, has been introduced for document understanding tasks, show-
ing satisfactory results.

Transformer-based approaches typically rely on large-scale pre-training on
unlabeled documents while the fine-tuning of a specific downstream task is suf-
ficient with much smaller annotated datasets. Noticeable amount of papers have
focused on the pre-training aspect of document understanding [1,15,17,18,27,
36,38,40,59]. In this paper we use the popular methods [7,28,44] to provide the
baselines for KILE and LIR on the proposed DocILE dataset.

2.2 Information Extraction Tasks and Datasets

Extraction of information from documents includes many tasks and prob-
lems from basic OCR [13,20,31,50,54,70] up to visual question answering
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Table 1. Datasets with KILE and LIR annotations for semi-structured business doc-
uments.

name document type # docs labeled classes source multi page lang. task

DocILE (ours) invoice-like 106680 55 digital, scan yes en KILE, LIR

CORD [58] receipts 11000 30 − 42a photo no id ≈KILE, ≈LIRb

WildReceipt [74] receipts 1740 25 photo no en KILE

EPHOIE [79] chinese forms 1494 10 scan no zh KILE

Ghega [49] patents, datasheets 246 11/8 scan yes en KILE
a54 classes mentioned in [58], but the repository https://github.com/clovaai/cord only
considers 30 out of 42 listed classes, as of January 2023.
bCOORD annotations contain classification of word tokens (as in NER) but with the
additional information which tokens are grouped together into fields or menu items,
effectively upgrading the annotations to KILE/LIR field annotations.

(VQA) [47,48]. The landscape of IE problems and datasets was recently reviewed
by Borchmann et al. [5], building the DUE Benchmark for a wide range of doc-
ument understanding tasks, and by Skalický et al. [69], who argue that the
crucial problems for automating B2B document communication are Key Infor-
mation Localization and Extraction and Line Item Recognition.

Key Information Extraction (KIE) [15,29,72] aims to extract pre-defined key
information (categories of “fields” – name, email, the amount due, etc.) from a
document. A number of datasets for KIE are publicly available [29,49,72–74,74,
79]. However, as noted by [69], most of them are relatively small and contain only
a few annotated field categories.

Key Information Localization and Extraction (KILE) [69] additionally
requires precise localization of the extracted information in the input image or
PDF, which is crucial for human-in-the-loop interactions, auditing, and other
processing of the documents. However, many of the existing KIE datasets
miss the localization annotations [5,29,72]. Publicly available KILE datasets
on business documents [49,58,74,79] and their sizes are listed in Table 1. Due
to the lack of large-scale datasets for KILE from business documents, noted
by several authors [11,35,56,69,75], many research publications use private
datasets [9,26,33,43,55,56,65,87].

Line Item Recognition (LIR) [69] is a part of table extraction [3,9,25,46,56]
that aims at finding Line Items (LI), localizing and extracting key information
for each item. The task is related to Table Structure Recognition [64,71,78],
which typically aims at detecting table rows, columns and cells. However, sole
table structure recognition is not sufficient for LIR: an enumerated item may
span several rows in a table; and columns are often not sufficient to distin-
guish all semantic information. There are several datasets [14,52,66,71,88,89]
for Table Detection and/or Structure Recognition, PubTables-1M [71] being the
largest with a million tables from scientific articles. The domain of scientific
articles is prevailing among the datasets [14,66,71,89], due to easily obtainable
annotations from the LaTEXsource codes. However, there is a non-trivial domain

https://github.com/clovaai/cord
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Fig. 1. DocILE: a document with KILE and LIR annotations (left) and the Line Item
areas emphasized (right) by alternating blue and green for odd and even items,
respectively. Bottom: color legend for the KILE and LIR classes. (Color figure online)

shift introduced by the difference in the Tables from scientific papers and busi-
ness documents. FinTabNet [88] and SynthTabNet [52] are closer to our domain,
covering table structure recognition of complex financial tables. These datasets,
however, only contain annotations of the table grid/cells. From the available
datasets, CORD [58] is the closest to the task of Line Item Recognition with its
annotation of sub-menu items. The documents in CORD are all receipts, which
generally have simpler structure than other typical business documents, which
makes the task too simple as previously mentioned in [5].

Named Entity Recognition (NER) [39] is the task of assigning one of the
pre-defined categories to entities (usually words or word-pieces in the document)
which makes it strongly related to KILE and LIR, especially when these entities
have a known location. Note that the task of NER is less general as it only
operates on word/token level, and using it to solve KILE is not straightforward,
as the classified tokens have to be correctly aggregated into fields and fields do
not necessarily have to contain whole word-tokens.
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3 The DocILE Dataset

In this section, we describe the DocILE dataset content and creation.

3.1 The Annotated, the Unlabeled, and the Synthetic

The DocILE dataset and benchmark is composed of three subsets:

1. an annotated set of 6, 680 real business documents from publicly available
sources which were annotated as described in Sect. 3.3.

2. an unlabeled set of 932k real business documents from publicly available
sources, which can be used for unsupervised (pre-)training.

3. a synthetic set of 100k documents with full task labels generated with a
proprietary document generator using layouts inspired by 100 fully annotated
real business documents from the annotated set.

The labeled (i.e., annotated and synthetic) subsets contain annotations for the
tasks of Key Information Localization and Extraction and Line Item Recognition,
described below in Sects. 4.1 and 4.2, respectively. An example document with
such annotations is shown in Fig. 1. Table 2 shows the size of the dataset and
Fig. 2 shows the distribution of document lengths in the dataset.

3.2 Data Sources

Documents in the DocILE dataset come from two public data sources: UCSF
Industry Documents Library [80] and Public Inspection Files (PIF) [82]. The
UCSF Industry Documents Library contains documents from industries that
influence public health, such as tobacco companies. This source has been used
to create the following document datasets: RVL-CDIP [23], IIT-CDIP [37],
FUNSD [32], DocVQA [48] and OCR-IDL [4]. PIF contains a variety of informa-
tion about American broadcast stations. We specifically use the “political files”
with documents (invoices, orders, “contracts”) from TV and radio stations for
political campaign ads, previously used to create the Deepform [73]. Documents
from both sources were retrieved in the PDF format.

Documents for DocILE were selected from the two sources as follows. For
UCSF IDL, we used the public API [81] to retrieve only publicly available doc-
uments of type invoice. For documents from PIF, we retrieved all “political

Table 2. DocILE dataset — the three subsets.

annotated synthetic unlabeled

documents 6 680 100 000 932 467

pages 8 715 100 000 3.4M

layout clusters 1 152 100 Unknown

pages per doc. 1-3 1 1-884
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files” from tv, fm and am broadcasts. We discarded documents with broken
PDFs, duplicates2, and documents not classified as invoice-like3. Other types of
documents, such as budgets or financial reports, were discarded as they typically
contain different key information. We refer to the selected documents from the
two sources as PIF and UCSF documents.

3.3 Document Selection and Annotation

To capture a rich distribution of documents and make the dataset easy to work
with, expensive manual annotations were only done for documents which are:

1. short (1-3 pages), to annotate many different documents rather than a few
long ones;

2. written in English, for consistency and because the language distribution in
the selected data sources is insufficient to consider multilingual analysis;

3. dated4 1999 or later in UCSF , as older documents differ from the more recent
ones (typewritten, etc.);

4. representing a rich distribution of layout clusters, as shown in Fig. 3.

We clustered the document layouts5 based on the location of fields detected
by a proprietary model for KILE. The clustering was manually corrected for the
annotated set. More details about the clustering can be found in the Supple-
mentary Material.

Fig. 2. Distribution of the number of document pages in the training, validation and
unlabeled sets. The numbers of documents are displayed above the bars.

2 Using hash of page images to capture duplicates differing only in PDF metadata.
3 Invoice-like documents are tax invoice, order, purchase order, receipt, sales order,

proforma invoice, credit note, utility bill and debit note. We used a proprietary
document-type classifier provided by Rossum.ai.

4 The document date was retrieved from the UCSF IDL metadata. Note that the
majority of the documents in this source are from the 20th century.

5 We loosely define layout as the positioning of fields of each type in a document. We
allow, e.g., different length of values, missing values, and resulting translations of
whole sections.

http://rossum.ai
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Fig. 3. The number of documents of each layout cluster in the training, validation and
unlabeled sets, on a logarithmic scale. While some clusters have up to 100k documents,
the largest cluster in train. + val. contains only 90 documents.

In the annotation process, documents were skipped if they were not invoice-
like, if they contained handwritten or redacted key information or if they listed
more than one set of line items (e.g. several tables listing unrelated types of
items). Additionally, PDF files composed of several documents (e.g., a different
invoice on each page) were split and annotated separately.

For KILE and LIR, fields are annotated as a triplet of location (bounding box
and page), field type (class) and text. LIR fields additionally contain the line item
ID, assigning the line item they belong to. If the same content is listed in several
tables with different granularity (but summing to the same total amount), the
less detailed set of line items is annotated.

Notice that the fields can overlap, sometimes completely. A field can be multi-
line or contain only parts of words. There can be multiple fields with the same
field type on the same page, either having the same value in multiple locations
or even having different values as well as multiple fields with the same field type
in the same line item. The full list of field types and their description are in the
Supplementary Material.

Additional annotations, not necessary for the benchmark evaluation, are
available and can be used in the training or for other research purposes. Table
structure annotations include: 1) line item headers, representing the headers of
columns corresponding to one field type in the table, and 2) the table grid,
containing information about rows, their position and classification into header,
data, gap, etc., and columns, their position and field type when the values in
the column correspond to this field type. Additionally, metadata contain: docu-
ment type, currency, layout cluster ID, source and original filename (linking the
document to the source), page count and page image sizes.

Annotating the 6, 680 documents took approx. 2, 500 h of annotators’ time
including the verification. Of the annotated documents, 53.7% originate from
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PIF and the remaining 46.3% from UCSF IDL. The annotated documents under-
went the image pre-processing described in the Supplementary Material.

All remaining documents from PIF and UCSF form the unlabeled set.

3.4 Dataset Splits

The annotated documents in the DocILE dataset are split into training (5, 180),
validation (500), and test (1, 000) sets. The synthetic set with 100k documents
and unlabeled set with 932k documents are provided as an optional extension to
the training set, as unsupervised pre-training [85] and synthetic training data
[6,12,19,52,53] have been demonstrated to improve results of machine learning
models in different domains.

The training, validation and test splitting was done so that the validation and
test sets contain 25% of zero-shot samples (from layouts unseen during train-
ing6), 25% of few-shot samples (from layouts with ≤ 3 documents seen during
training) and 50% of many-shot samples (from layouts with more examples seen
during training). This allows to measure both the generalization of the evaluated
methods and the advantage of observing documents of known layouts.

The test set annotations are not public and the test set predictions will be
evaluated through the RRC website7, where the benchmark and competition is
hosted. The validation set can be used when access to annotations and metadata
is needed for experiments in different tasks.

As inputs to the document synthesis described in Sect. 3.5, 100 one-page
documents were chosen from the training set, each from a different layout cluster.
In the test, resp. validation sets, roughly half of the few-shot samples are from
layouts for which synthetic documents were generated. There are no synthetic
documents generated for zero-shot samples. For many-shot samples, 35 − 40%
of documents are from layouts with synthetic documents.

3.5 Synthetic Documents Generation

To generate synthetic documents with realistic appearance and content, we used
the following procedure: First, a set of template documents from different layout
clusters was selected, as described in Sect. 3.4. All elements in the selected docu-
ments, including all present keys and values, notes, sections, borders, etc., were
annotated with layout (bounding box), semantic (category) and text (where
applicable) annotations. Such full annotations were the input to a rule-based
document synthesizer, which uses a rich set of content generators8 to fill seman-

6 For the test set, documents in both training and validation sets are considered as
seen during training. Note that some test set layouts may be present in the validation
set, not the training set.

7 https://rrc.cvc.uab.es/.
8 Such as generators of names, emails, addresses, bank account numbers, etc. Some

utilize the Mimesis library [16]. Some content, such as keys, is copied from the
annotated document.

https://rrc.cvc.uab.es/
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tically relevant information in the annotated areas. Additionally, a style gener-
ator controls and enriches the look of the resulting documents (via font family
and size, border styles, shifts of the document contents, etc.). The documents
are first generated as HTML files and then rendered to PDF. The HTML source
code of all generated documents is shared with the dataset and can be used for
future work, e.g., for generative methods for conversion of document images into
a markup language.

3.6 Format

The dataset is shared in the form of pre-processed9 document PDFs with task
annotations in JSON. Additionally, each document comes with DocTR [51] OCR
predictions with word-level text and location10.

A python library docile11 is provided to ease the work with the dataset.

4 Benchmark Tasks and Evaluation Metrics

Sections 4.1 and 4.2 describe the two benchmark tasks as introduced in the teaser
[67] along with the challenge evaluation metrics used for the leaderboard ranking.
Additional evaluation metrics are described in the Supplementary Material.

4.1 Track 1: Key Information Localization and Extraction

The goal of the first track is to localize key information of pre-defined categories
(field types) in the document. It is derived from the task of Key Information
Localization and Extraction, as defined in [69] and motivated in Sect. 2.2.

We focus the challenge on detecting semantically important values corre-
sponding to tens of different field types rather than fine-tuning the underlying
text recognition. Towards this focus, we provide word-level text detections for
each document, we choose an evaluation metric (below) that does not pay atten-
tion to the text recognition part, and we simplify the task in the challenge by
only requiring correct localization of the values in the documents in the primary
metric. Text extractions are checked, besides the locations and field types, in
a separate evaluation — the leaderboard ranking does not depend on it. Any
post-processing of values — deduplication, converting dates to a standardized
format etc., despite being needed in practice, is not performed. With the sim-
plifications, the main task can also be viewed as a detection problem. Note that
when several instances of the same field type are present, all of them should be
detected.

9 Pre-processing consists of correcting page orientation, de-skewing scanned docu-
ments and normalizing them to 150 DPI.

10 Axis-aligned bounding boxes, optionally with additional snapping to reduce white
space around word predictions, described in the Supplementary Material.

11 https://github.com/rossumai/docile.

https://github.com/rossumai/docile
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Fig. 4. Each word is split uniformly into pseudo-character boxes based on the number
of characters. Pseudo-Character Centers are the centers of these boxes.

Fig. 5. Visualization of correct and incorrect bounding box predictions to capture the
phone number. Bounding box must include exactly the Pseudo-Character Centers that
lie within the ground truth annotation. Note: in 5a, only one of the predictions would
be considered correct if all three boxes were predicted.

The Challenge Evaluation Metric. Since the task is framed as a detection
problem, the standard Average Precision metric is used as the main evaluation
metric. Unlike the common practice in object detection, where true positives are
determined by thresholding the Intersection-over-Union, we use a different crite-
rion tailored to evaluate the usefulness of detections for text read-out. Inspired by
the CLEval metric [2] used in text detection, we measure whether the predicted
area contains nothing but the related character centers. Since character-level
annotations are hard to obtain, we use CLEval definition of Pseudo-Character
Center (PCC), visualized in Fig. 4. Examples of correct and incorrect detections
are depicted in Fig. 5.

4.2 Track 2: Line Item Recognition

The goal of the second track is to localize key information of pre-defined cat-
egories (field types) and group it into line items [3,9,25,46,56]. A Line Item
(LI) is a tuple of fields (e.g., description, quantity, and price) describing a single
object instance to be extracted, e.g., a row in a table, as visualized in Fig. 1 and
explained in Sect. 2.2.

The Challenge Evaluation Metric. The main evaluation metric is the micro
F1 score over all line item fields. A predicted line item field is correct if it fulfills
the requirements from Track 1 (on field type and location) and if it is assigned to
the correct line item. Since the matching of ground truth (GT) and predicted line
items may not be straightforward due to errors in the prediction, our evaluation
metric chooses the best matching in two steps:

1. for each pair of predicted and GT line items, the predicted fields are evaluated
as in Track 1,
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2. the maximum matching is found between predicted and GT line items, max-
imizing the overall recall.

4.3 Benchmark Dataset Rules

The use of external document datasets (and models pre-trained on such datasets)
is prohibited in the benchmark in order to focus on clear comparative evaluation
of methods that use the provided collection of labeled and unlabeled documents.
Usage of datasets and pre-trained models from other domains, such as images
from ImageNet [63] or texts from BooksCorpus [91], is allowed.

5 Baseline Methods

We provide as baselines several popular state-of-the-art transformer architec-
tures, covering text-only (RoBERTa), image-only (DETR) and multi-modal
(LayoutLMv3) document representations. The code and model checkpoints for
all baseline methods are distributed with the dataset.

5.1 Multi-label NER Formulation for KILE and LIR Tasks

The baselines described in Sects. 5.2 and 5.3 use a joint multi-label NER formu-
lation for both KILE and LIR tasks. The LIR task requires not only to correctly
classify tokens into one of the LIR classes, but also the assignment of tokens to
individual Line Items. For this purpose, we add classes <B-LI>, <I-LI>, <O-
LI> and <E-LI>, representing the beginning of the line item, inside and outside
tokens and end token of the line item. We found it is crucial to re-order the
OCR tokens in top-down, left-to-right order for each predicted text line of the
document. We provide a detailed description of the OCR tokens re-ordering in
the Supplementary Material. For the LIR and KILE classification, we use the
standard BIO tagging scheme. We use the binary cross entropy loss to train the
model.

The final KILE and LIR predictions are formed by the merging strategy as
follows. We group the predicted tokens based on the membership to the predicted
line item (note that we can assign the tokens which do not belong to any line
item to a special group ∅), then we use the predicted OCR text lines to perform
the horizontal merging of tokens assigned to the same class. Next, we construct a
graph from the horizontally merged text blocks, based on the thresholded x and
y distances of the text block pairs (as a threshold we use the height of the text
block with a 25% margin). The final predictions are given by merging the graph
components. By merging, we mean taking the union of the individual bounding
boxes of tokens/text blocks and for the text value, if the horizontal merging is
applied, we join the text values with space, and with the new line character when
vertical merging is applied.

Note that this merging strategy is rather simplistic and its proper redefinition
might be of interest for the participants who cannot afford training of big models
as we publish also the baselines model checkpoints.
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5.2 RoBERTa

RoBERTa [44] is a modification of the BERT [10] model which uses improved
training scheme and minor tweaks of the architecture (different tokenizer). It can
be used for NER task simply by adding a classification head after the RoBERTa
embedding layer. Our first baseline is purely text based and uses RoBERTaBASE

as the backbone of the joint multi-label NER model described in Sect. 5.1.

5.3 LayoutLMv3

While the RoBERTa-based baseline only operates on the text input, Lay-
outLMv3 [28] is multi-modal transformer architecture that incorporates image,
text, and layout information jointly. The images are encoded by splitting into
non-overlapping patches and feeding the patches to a linear projection layer, after
which they are combined with positional embeddings. The text tokens are com-
bined with one-dimensional and two-dimensional positional embeddings, where
the former accounts for the position in the sequence of tokens, and the latter
specifies the spatial location of the token in the document. The two-dimensional
positional embedding incorporates the layout information. All these tokens are
then fed to the transformer model. We use the LayoutLMv3BASE architecture as
our second baseline, also using the multi-label NER formulation from Sect. 5.1.
Since LayoutLMv3BASE was pre-trained on an external document dataset, pro-
hibited in the benchmark, we pre-train a checkpoint from scratch in Sect. 5.4.

5.4 Pre-training for RoBERTa and LayoutLMv3

We use the standard masked language modeling [10] as the unsupervised pre-
training objective to pre-train RoBERTaOURS and LayoutLMv3OURS

12 models.
The pre-training is performed from scratch using the 932k unlabeled samples
introduced in Sect. 3. Note that the pre-training uses the OCR predictions pro-
vided with the dataset (with reading order re-ordering).

Additionally, RoBERTaBASE/OURS+SY NTH and LayoutLMv3OURS+SY NTH

baselines use supervised pre-training on the DocILE synthetic data.

12 Note that LayoutLMv3BASE [28] used two additional pre-training objectives,
namely masked image modelling and word-patch alignment. Since pre-training
code is not publicly available and some of the implementation details are missing,
LayoutLMv3OURS used only masked language modelling.
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Table 3. Baseline results for KILE & LIR. LayoutLMv3BASE, achieving the best
results, was pre-trained on another document dataset – IIT-CDIP [37], which is prohib-
ited in the official benchmark. The best results among permitted models are underlined.
The primary metric for each task is shown in bold.

KILE LIR

Model F1 AP Prec. Recall F1 AP Prec. Recall

RoBERTaBASE 0.664 0.534 0.658 0.671 0.686 0.576 0.695 0.678

RoBERTaOURS 0.645 0.515 0.634 0.656 0.686 0.570 0.693 0.678

LayoutLMv3BASE (prohibited) 0.698 0.553 0.701 0.694 0.721 0.586 0.746 0.699

LayoutLMv3OURS 0.639 0.507 0.636 0.641 0.661 0.531 0.682 0.641

RoBERTaBASE+SYNTH 0.664 0.539 0.659 0.669 0.698 0.583 0.710 0.687

RoBERTaOURS+SYNTH 0.652 0.527 0.648 0.656 0.675 0.559 0.696 0.655

LayoutLMv3OURS+SYNTH 0.655 0.512 0.662 0.648 0.691 0.582 0.709 0.673

NER upper bound 0.946 0.897 1.000 0.897 0.961 0.926 1.000 0.926

DETRtable + RoBERTaBASE - - - - 0.682 0.560 0.706 0.660

DETRtable + DETRLI + RoBERTaBASE - - - - 0.594 0.407 0.632 0.560

5.5 Line Item Detection via DETR

As an alternative approach to detecting Line Items, we use the DETR [7]
object detector, as proposed for table structure recognition on the PubTables-1M
dataset [71]. Since pretraining on other document datasets is prohibited in
the DocILE benchmark, we initialize DETR from a checkpoint13 pretrained on
COCO [41], not from [71].

Two types of detectors are fine-tuned independently. DETRtable for table
detection and DETRLI for line item detection given a table crop — which in our
preliminary experiments lead to better results than one-stage detection of line
items from the full page.

5.6 Upper Bound for NER-Based Solutions

All our baselines use NER models with the provided OCR on input. This comes
with limitations as a field does not have to correspond to a set of word tokens —
a field can contain just a part of some word and some words covering the field
might be missing in the text detections. A theoretical upper bound for NER-
based methods that classify the provided OCR words is included in Table 3. The
upper bound constructs a prediction for each ground truth field by finding all
words whose PCCs are covered by the field and replacing its bounding box with
a union of bounding boxes of these words. Predicted fields that do not match
their originating ground truth fields are discarded.

13 https://huggingface.co/facebook/detr-resnet-50.

https://huggingface.co/facebook/detr-resnet-50
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5.7 Results

The baselines described above were evaluated on the DocILE test set, the results
are in Table 3. Interestingly, from our pre-trained models (marked OURS), the
RoBERTa baseline outperforms the LayoutLMv3 baseline utilizing the same
RoBERTa model in its backbone. We attribute this mainly to differences in the
LayoutLMv3 pre-training: 1) our pre-training used only the masked language
modelling loss, as explained in Sect. 5.4, 2) we did not perform a full hyper-
parameter search, and 3) our pre-training performs image augmentations not
used in the original LayoutLMv3 pre-training, these are described in the Sup-
plementary Material.

Models pre-trained on the synthetic training data are marked with SYNTH.
Synthetic pre-training improved the results for both KILE and LIR in all cases
except for LIR with RoBERTaOURS+SYNTH, validating the usefulness of the
synthetic subset.

The best results among the models permitted in the benchmark – i.e. not uti-
lizing additional document datasets – were achieved by RoBERTaBASE+SYNTH.

6 Conclusions

The DocILE benchmark includes the largest research dataset of business docu-
ments labeled with fine-grained targets for the tasks of Key Information Local-
ization and Extraction and Line Item Recognition. The motivation is to provide
a practical benchmark for evaluation of information extraction methods in a
domain where future advancements can considerably save time that people and
businesses spend on document processing. The baselines described and evaluated
in Sect. 5, based on state-of-the-art transformer architectures, demonstrate that
the benchmark presents very challenging tasks. The code and model checkpoints
for the baselines are provided to the research community allowing quick start
for the future work.

The benchmark is used for a research competition hosted at ICDAR 2023
and CLEF 2023 and will stay open for post-competition submission for long-
term evaluation. We are looking forward to contributions from different machine
learning communities to compare solutions inspired by document layout mod-
elling, language modelling and question answering, computer vision, information
retrieval, and other approaches.

Areas for future contributions to the benchmark include different training
objective statements — such as different variants of NER, object detection, or
sequence-to-sequence modelling [77], or graph reasoning [74]; different model
architectures, unsupervised pre-training [28,77], utilization of table structure —
e.g., explicitly modelling regularity in table columns to improve in LIR; address-
ing dataset shifts [57,68]; or zero-shot learning [34].
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Abstract. We propose a novel framework to evaluate the robustness of
transformer-based form field extraction methods via form attacks. We
introduce 14 novel form transformations to evaluate the vulnerability of
the state-of-the-art field extractors against form attacks from both OCR
level and form level, including OCR location/order rearrangement, form
background manipulation and form field-value augmentation. We con-
duct robustness evaluation using real invoices and receipts, and perform
comprehensive research analysis. Experimental results suggest that the
evaluated models are very susceptible to form perturbations such as the
variation of field-values (∼ 15% drop in F1 score), the disarrangement
of input text order(∼ 15% drop in F1 score) and the disruption of the
neighboring words of field-values(∼ 10% drop in F1 score). Guided by
the analysis, we make recommendations to improve the design of field
extractors and the process of data collection. Code will be available at
here.

Keywords: Document Understanding · Robustness Evaluation

1 Introduction

Forms such as invoices and receipts are essential in business workflows. Extract-
ing target values for fields of interest from forms (see an example in Fig. 1) is
among the most important tasks in document understanding. There are large
amounts of forms processed every day, but most current systems still rely on
human labor to manually capture field-values from massively irrelevant infor-
mation. Developing a method that automatically extracts field-values based on
understanding the forms is crucial to reduce human labor, thus improve business
efficiency.

Existing works [1,2,6,10,13,15,19,24,26] focus on improving the modeling
of field extractors and have made great progress. However, their evaluation
paradigms are limited. First, most of the methods are evaluated using inter-
nal datasets. Internal datasets usually have very limited variations and are often
biased towards certain data distributions due to the constraints of the data
collection process. For example, the forms might be collected from just a few
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 167–184, 2023.
https://doi.org/10.1007/978-3-031-41679-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41679-8_10&domain=pdf
https://github.com/salesforce/FormAttack
https://doi.org/10.1007/978-3-031-41679-8_10
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vendors in a relatively short time which leads to similar semantics and layouts
across the forms. Second, public datasets lack for diversity in terms of both tex-
tual expression and form layouts. Take the most frequently used dataset, SROIE
[7], as an example. The fields, company and address, are always on the very top
in all receipts. Although the existing models achieve decent performance on these
datasets, it is difficult to know whether they can generalize well. This issue can
be solved by collecting large-scale diverse forms for evaluation, but it is very
challenging since real forms usually contain customers’ private information, thus
are not publicly accessible.

Fig. 1. A form field extraction system may fail due to a slight modification to the form.
Keys (concrete text-expressions of fields) are marked in blue boxes. Values are marked
in red boxes. (Color figure online)

To tackle this dilemma, we propose a novel framework to evaluate the robust-
ness of form field extractors by attacking the models using form transformations.
We consider form perturbations from both OCR level and form level, including
OCR text location/order rearrangement, form background manipulation, and
form field-value augmentation. Fourteen form transformations are proposed to
impose these attacks. Using the proposed framework, we conduct robustness
analysis on two commonly used form types, i.e., invoices and receipts. Experi-
mental results demonstrate that the state-of-the-art (SOTA) methods are partic-
ularly vulnerable to form perturbations, including the variation of field-values,
the disarrangement of input text order, and the disruption of the neighbor-
ing words of field-values. Recommendations for model design and data collec-
tion/augmentation are made accordingly.

Our contributions are summarized as follows. First, we introduce a frame-
work to measure the robustness of form field extractors by attacking the models
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Fig. 2. An illustration of our evaluation pipeline. An OCR engine is first used to extract
texts and locations. 14 transformations are applied to the texts and their locations to
generate diverse form variants. Then, each transformed set will input to a transformer-
based field extractor. Robustness evaluation results are finally generated.

using the proposed form transformations. To the best of our knowledge, this
is the first work studying form attacks to field extraction methods. Second, we
identify the susceptibilities of the SOTA methods by comprehensive robustness
analysis on two form types using the proposed framework and make insightful
recommendations.

2 Related Work

Information Extraction from Forms is a widely researched area. [3,8] encode
each page of a form as a two-dimensional grid and extract header and line items
from it using fully convolutional networks. DocStruct [22] conducts document
structure inference by encoding the form structure as a graph-like hierarchy
of text fragments. Research works specifically focusing on form field extraction
are more related to our work. Earlier methods [2,18] relied on pre-registered
templates in the system for information extraction. [15] extract field-values of
invoices via an Attend, Copy, Parse architecture. Recent methods formulate
the field extraction problem as field-value pairing [6,13] and field tagging [24]
tasks, where transformer [21] based structures are used to extract informative
form representation via modeling interactions among text tokens. More recently,
Donut, an OCR-free method has also been developed [10] and shows promising
results. We focus on evaluating transformer-based field extraction methods given
their great predictive capability for the task.

Robustness Evaluation of models has received considerable attention. Erru-
dite [23] introduces model and task agnostic principles for informative error
analysis of NLP models. [12] propose NLPAug, which contains simple textual
augmentations to improve model robustness. Some works aim at robustness of
text attacks [9,14,25]. A recent work, Robustness Gym [5], presents a simple
and extensible evaluation toolkit that unifies standard evaluation paradigms.
There are also recent methods studying robustness of visual models [16,17,20].
To the best of our knowledge, this work is the first one focusing on robustness
evaluation of form field extraction systems.
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3 Preliminary: Transformer-Based Form Field Extractor

We are focusing on the robustness evaluation of transformer-based form field
extractors due to their undisputedly outstanding performance. Before discussing
the robustness evaluation, we first illustrate the field extraction pipeline.

In a standard field extraction system, an OCR engine is used to extract a
set of words, {w1, w2, ..., wN} and their bounding box locations, {b1, b2, ..., bN},
where N indicates the total number of words. Then, a transformer-based fea-
ture backbone is used to model the interactions between text tokens and generate
informative token representations, fi. Since both semantics and layouts are essen-
tial for field-value inference, we use LayoutLM [24] as the feature backbone. We
also experiment with two more transformers, i.e., BERT [4] and RoBERTa [11]
which only take text as input in Sect. 6. Finally, a fully connected (FC) layer
is used to project the token features to field space and generate, si = FC(fi),
where si ∈ R1×(M+1) indicates the predicted field score and M denotes the total
number of positive fields. During training, cross entropy loss between si and
field label is utilized for model optimization. During inference, a post-processing
method is applied to the predicted field scores to get the value for each field.
We follow the simple criteria to generate field-values: (1) we find the predicted
field label for each word by f̂d = argmax

c
(sic), where c corresponds to fields (2)

by default, for each field, we only keep the word as the value if its prediction
score is the highest among all the words and larger than a threshold (θ = 0.1).
For fields that often include multi-word values, e.g., address and company, we
keep all the words exceeding the threshold and group nearby ones with the same
predicted field.
Evaluation Metric. End-to-end F1 score averaging over fields is used to eval-
uate models. We use exact string matching between the predicted values and
the ground-truth to count true positives, false positives, and false negatives.
Precision, recall and F1 scores are obtained accordingly for each field.

4 Robustness Evaluation via Form Attacks

We propose OCR level and form level transformations to attack field extractors.
As shown in Fig. 2, our transformations are performed after OCR extraction,
and the transformed data is input to a transformer-based field extractor. An
analysis is conducted via performance comparison between the original set and
transformed sets. Each transformation and the principles behind it are intro-
duced as follows.

4.1 OCR Location and Order Rearrangement

We transform the original data to meaningful variants by slightly altering the
OCR locations and the text order arrangement. These transformations simulate
scenarios where we may obtain different OCR results before inputting to field
extractors due to various reasons, e.g., the quality of OCR engines.
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Center Shift and Box Stretch. To evaluate model robustness to OCR text
location jittering, we propose two word-level location transformations. In Center
Shift, we keep the box size and randomly shift the center of a box. The shifting
is in proportional to the width (horizontally) and height (vertically) of the box,
and the ratio is a random number drawn from a normal distribution, N (0, δcent).
Box Stretch randomly changes the four coordinates of a box in a similar way
using N (0, δxy).

Margin Padding. Scanning forms may introduce white margins, which globally
changes text locations. We use Margin Padding to manipulate the locations of
all the words in a form. We pad white margins in the left, right, up, and down
sides of a form where the margin length is a generated random number between
1 and rmp of the page size.

Global Shuffle. We observe that organizing a transformer’s inputs in reading
order is particularly beneficial to understanding the form structure. However, the
reading order is not always guaranteed by OCR engines. Hence, it is interesting
to investigate model robustness to poor reading order quality. We use Global
Shuffle to shuffle the order of words before inputting to transformers. Note that
the words and their locations are not changed at all and the only difference is
the order of the word sequence input to the transformer.

Neighbor Shuffle and Non-neighbor Shuffle. Intuitively, local neighbors
of a value make more contributions to its prediction. So, we propose Neighbor
Shuffle which shuffles the order of each value’s neighbors and keeps the order of
the rest. Oppositely, we also have Non-neighbor Shuffle. A word, wi, is defined
as a value’s neighbor if the IoU between bi and the neighbor zone of the value is
larger than 0.5. The neighbor zone is a box that shares the same center as the
value box with expanded width and height (expand rate denoted as rnb). We
also include nnb nearby words from the original reading order as the neighbors.

4.2 Form Background Manipulation

Form background generally affects the model performance in two ways: (1) some
background words are strong indicators to improve field-values’ recall and (2)
accurate prediction of background reduces false positives, thus increase model
precision. We propose the following transformations to evaluate model robust-
ness to background perturbations.

BG Drop. Background (BG) Drop mimics the scenario that some words are
completely missed by OCR detection. This transformation removes background
words together with the corresponding boxes at a probability of pbgd.

Neighbor BG Drop is similar to Neighbor Shuffle, which drops all background
words if they are neighbors of a field-value.

Key Drop. Keys are concrete text-representations of fields in a form. For exam-
ple, the field invoice number may be represented as “INV #”, “Invoice No.” etc.
in a form. A key is a very important feature for value localization since the value
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is often located near the key. We propose Key Drop to see the model performance
change if keys are accidentally missed by OCR detection.

BG Typo. OCR recognition usually makes errors. BG Typo simulates word-
level string typos. We select each background word at a probability of ptypo.
For each selected word, we apply one of the error types, including swapping,
deleting, adding, and replacing a random or a specific character.1

BG Synonyms. Similar semantics may be represented using different word syn-
onyms. BG Synonyms randomly replaces each background word at a probability
of pbgs with their synonyms.2

BG Adversarial. Some forms contain only one word in the same data type as
field-values. For example, there might be only one word with the date type of
date. It is less challenging for a model to recognize it as the invoice date. How-
ever, this type of easy case is not always guaranteed in real-world applications.
BG Adversarial is used to increase the difficulty level by adding distraction. Con-
cretely, we select background words at a probability of pbga and use adversarial
words for replacement. For each replacement, we randomly choose a data type
and then generate a random value of the corresponding data type. We focus on
three data types, i.e., date, number and money. We generate random dates using
Faker.3 For numbers, we first generate the number length randomly and then
a random number of the length accordingly. For money, we obtain a random
amount within lower and upper bounds. Then, we make the amount in money
format, where we add a decimal point at the second to the left digit, place a
comma at every third digit to the left of the decimal point and randomly insert
$ at the beginning. To protect strong indicators for values, neighbor words are
not replaced.

4.3 Form Field-Value Augmentations

Modifying field-values is a more direct way to increase the diversity of the eval-
uation set. We augment field-values in both text and locations.

Value Text Augment. Field-values of forms may be biased due to the lim-
itation of the data collection process. For example, the invoice date may be
restricted to the year the form is collected, and the invoice number may be
biased towards the vendor’s numbering system. Value Text Augment transfor-
mation targets at augmenting the field-values based on their data types. For each
field-value, we randomly generate a substitute with the same data type following
the same value generation procedure as we do in BG Adversarial.

1 We utilize the implementation of the string typos provided in https://pypi.org/
project/typo/.

2 We generate word synonyms using WordNet Interface (https://www.nltk.org/
howto/wordnet.html).

3 https://faker.readthedocs.io/en/master/.

https://pypi.org/project/typo/
https://pypi.org/project/typo/
https://www.nltk.org/howto/wordnet.html
https://www.nltk.org/howto/wordnet.html
https://faker.readthedocs.io/en/master/
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Value Location Augment. Form layouts can be very diverse in real-world sce-
narios. Intuitively, we should be able to infer a field-value as long as a key is rep-
resented properly no matter where we place the key-value pair in the document.
We introduce Value Location Augment to increase layout diversity. To maintain
the form format to the most, we keep the background as it is and shuffle the key-
value pair’s locations in the form. For example, for the field invoice number (key:
Invoice No., value: 1234) and invoice date (key: Invoice date, value: 01/01/2021),
we swap the box locations of “Invoice No.” and “Invoice date”, and also the loca-
tions of “1234” and “01/01/21”.

5 Experiments

We evaluate the robustness of transformation-based field extractors using our
framework on two commonly used form types, i.e., invoices and receipts.

5.1 Datasets

Our evaluation models are trained using a labeled train set, and the best per-
forming model is picked based on a validation set. We prepare a separate test set
to perform the robustness evaluation. To perform the proposed transformations,
we annotate both the key and value of each field of interest with their bounding
box locations in a form.

Invoice. The train, valid, and test sets contain 158, 348 and 338 real invoices.
They are collected from 111, 222, and 222 vendors, respectively. We sample at
most 5 forms from the same vendor and the vendors of train, valid and test sets
do not overlap. We consider 7 frequently used fields including invoice number,
purchase order, invoice date, due date, amount due, total amount and total tax.

Receipt. We use the publicly available receipt dataset, SROIE. The annotations
of their original test set are not publicly available, so we split the original train
set to train, valid, and test sets based on their company names and sample at
most 5 forms per company following [13]. Finally, we get 237 receipts for training,
76 for validation, and 74 for testing. The fields of interest are company, address,
date and total. We add value boxes and annotate keys according to the text-level
annotations provided by the original dataset.

5.2 Implementation Details

Our evaluation framework is implemented using Pytorch and the experiments
are conducted on a single Tesla V100 GPU. The strength of a transformation is
controlled by parameters. We set parameters to make moderate perturbations.
In BG Typo, BG Drop, BG Synonyms and BG Adversarial, transformations
are only applied to some selected words. We fix the pre-defined probabilities,
ptypo, pbgs, pbga, to 0.1. θcenter is set to 0.5 and θxy is 0.1. rmp in Margin Padding
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is set to 0.3. When determining the value’s neighbor zone, we set the expand
rate as rnb = 0.02 and nnb = 2.

We generate random values based on data types in BG Adversarial and
Value Text Augment. For dates, we randomly pick a date from the year 2001 to
2021 in one of the formats, including mm/dd/yy, yy-mm-dd, dd/month/yy, and
dd/mon/yy. For numbers, the number length is randomly generated from 3 to
12. The amount of money is randomly selected from 1 to 10,000,000.

We use a commercial OCR engine4 for OCR extraction and utilize Tesser-
act5 to rank the words in reading order. Our default transformer is Lay-
outLM [24] with text and boxes as inputs. We also evaluate using BERT [4]
and RoBERTa [11] that take only text tokens as the inputs in Sect. 6. All mod-
els are finetuned from the corresponding base models. During training, we set
the batch size to 8 and use the Adam optimizer with a learning rate of 5e−5.

5.3 Robustness Evaluation of Invoices

OCR Location Modification. Robustness evaluation of the LayoutLM model
to OCR text location jittering is shown in Table 1. We obtain comparable results
to the original performance when applying Center Shift and Box Stretch which
indicates that slight box jittering is tolerable in our case. Margin Pad shifts all
text locations by adding random margins around a form. This transformation
also just slightly decrease the model performance.

Table 1. Evaluation of robustness to OCR location modifications on invoices. Lay-
outLM is used as the transformer model.

Transforms Precision Recall F1

Original 70.9 69.3 70.0

Center Shift 70.8 69.9 70.3

Box Stretch 70.0 68.5 69.1

Margin Pad 69.6 68.3 68.9

Table 2. Evaluation of robustness to OCR text order on invoices. LayoutLM is used
as the transformer model.

Transforms Precision Recall F1

Original 70.9 69.3 70.0

Global Shfl 58.5 53.9 55.9

Neighbor Shfl 66.9 61.9 64.1

Non-neighbor Shfl 67.0 65.3 65.9

4 https://api.einstein.ai/signup.
5 https://github.com/tesseract-ocr/tesseract.

https://api.einstein.ai/signup
https://github.com/tesseract-ocr/tesseract
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OCR Text Order is essential to transformer-based field extractors since the
order can serve as an important feature to improve model performance. We
show the model performance when applying order shuffle to different places in
Table 2. The results show that if we shuffle all text orders, the performance
drops dramatically by 14.1% in F1 score. When only shuffle value neighbors, we
obtain ∼6% lower F1 score. We get ∼4% lower F1 score if we shuffle non-neighbor
words, even though we keep the text order of all values and their neighbors the
same. The results demonstrate the importance of the text order. If the model
is trained using texts with a good reading order, we may also want to ensure a
good reading order during inference.

A natural question is, what if we break the reading orders during training.
Will this help us save the effort of ensuring test reading order during inference?
We re-train field extractors using texts with random orders. We obtain 58.7% in
F1 score, which is 11.3% lower than our baseline. The comparison result suggests
that the text reading order is a very important feature. How to use it without
overfitting to it is an interesting research topic.

Table 3. Evaluation of robustness to BG manipulations on invoices. LayoutLM is used
as the transformer model.

Transforms Precision Recall F1

Original 70.9 69.3 70.0

BG Drop 69.8 66.2 67.7

Neighbor BG Drop 67.6 57.1 61.3

Key Drop 62.8 56.4 59.1

BG Typo 69.6 66.9 68.1

BG Synonyms 70.4 68.8 69.5

BG Adversarial 66.2 67.7 66.9

Background Drop related transformations simulate the scenarios where an
OCR detector accidentally misses some background words. BG Drop removes
words randomly selected in the background. As shown in Table 3, global BG
Drop leads to slight performance decrease. When we apply Neighbor BG Drop,
the performance largely drops by ∼9% in F1 score. Comparing BG Drop and
Neighbor BG Drop, we find that neighbor words are indeed more important
for value extraction. For a fair comparison, we have adjusted the dropping rate
of BG Drop to 0.13, such that the total number of dropped words is roughly
equal to the number of neighbor words. Further, Key Drop results in a similar
performance decrease as Neighbor BG Drop, although the total number of Keys
is less than half of that for neighbor words.

Other Background Manipulations. Some background words, e.g., keys and
other useful indicators, are important features to localize values. Adding typos
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Table 4. Evaluation of robustness to background and field-value augmentations on
invoices. LayoutLM is used as the transformer model.

Transforms Precision Recall F1

Original 70.9 69.3 70.0

Value Text Aug 56.3 53.5 54.5

Value Location Aug 61.4 56.8 58.8

to the background words may be harmful to these good features, thus BG Typo
leads to a 2.4% drop in recall rate.

Forms from different vendors may use different words even when represent
similar semantics. We attack the models using BG Synonyms. As shown in
Table 3, our field extractors are quite robust to this transformation with only
a negligible drop in F1 score.

BG Adversarial is used to add background words (serve as distractions) with
similar data types as field-values. As shown in Table 3, BG Adversarial leads to
4.7% drop in model precision.
Value Augmentations. Field-values of forms may be limited in diversity.
Value Text Augment transformation augments field-values by replacing them
with randomly generated values in the same data type. We augment the values
of all the fields, except for total amount and amount due, since these two fields
may involve complicated mathematical computations. For total tax, we randomly
select a number between 0 and 15% of the total amount. The comparison results
in Table 4 show that the model performance drop significantly by 15.5% F1 score.

Value Location Augment changes the spatial arrangements of key-value pairs.
In practice, we only shuffle the key-value pairs if they have the same number of
key words and the same number of value words, resulting in more than 75% key-
value pairs relocated. The results in Table 4 demonstrate that Value Location
Augment significantly reduces F1 scores by 11.2%.

Multiple Transformations. The proposed transformations can be combined
together to generate more diverse sets. We conduct exhaustive combinations of
every two and three transformations which result in 91 2-transformation com-
binations and 364 3-transformation combinations.6 The top-10 most impactful
combinations are shown in Fig. 3. The comparison results suggest the following
conclusions.

First, generally if an individual transformation drops more performance, it
also contributes more drop when combined with other transformations. The most
impactful combination is (Value text Augment, Global Shuffle, Value Location
Augment) with a F1 score of 25.7. They are the top-3 impactful transformations
suggested in Fig. 4.

6 We observe that different orders of transformations in a combination result in ignor-
able differences.
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Fig. 3. Top-10 most impactful 2-transformation and 3-transformation combinations.
VTA: Value Text Augment, GS: Global Shift, VLA: Value Location Augment, KD: Key
Drop, NBD: Neighbor Background Drop, BA: Background Adversarial, MP: Margin
Pad, BT: Background Typo, NS: Neighbor Shuffle, NNS: Non-Neighbor Shuffle.

Second, some individual transformations are less impactful, but they affect
more when combined with some specific transformations. For example, individ-
ual Margin Pad ranks low in Fig. 4. However, it leads to more performance drop
when combined with Value Text Augment and Global Shuffle. Their performance
drop ranks 5 out of 364 combinations (F1 is 30.8). This may due to that Margin
Pad (changes all words’ locations), Value Text Augment (changes values’ texts)
and Global Shuffle (changes text input order) are three complementary transfor-
mations. When we do Margin Pad alone, the model resorts to the information
of value texts and text orders. However, when we do these three transformations
together, the model becomes inevitably confused.

Third, if the transformations have overlapping effects, their combination has
a lower impact. For example, Key Drop, Neighbor BG Drop and Neighbor Shuf-
fle all manipulate neighbor words. The performance drop on their combination
ranks 246 out of 364 combinations although their individual transformation is
impactful (see Fig. 4). The F1 score is 58.1 which is very close to an individual
Key Drop transformation (59.1).
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Fig. 4. An overview of LayoutLM-based model performance drop due on different
transformed dataset. The results are sorted by the performance gap.

5.4 Robustness Evaluation of Receipts

There are two interesting features of the SROIE dataset. First, a significant
amount of field-values have no keys, for example, all values of company and
address, and some values of date and total. Consequently, changing the context
of values has a minor effect on model performance. Second, the layouts of differ-
ent receipts are very fixed. For example, company and address are always on the
very top of every receipt. So, models could easily overfit to field-value locations
and the text order. As shown in Table 5, Global Shuffle leads to significant per-
formance drop by 38.7% F1 score. Specifically, the fields of address and company
become 0% F1 score when the text’s order is completely shuffled before inputting
to the transformer. The results demonstrate that the model is overfitting to the
input text order, especially for address and company.

Table 5. Robustness evaluation on SROIE dataset. LayoutLM is used as the trans-
former model.

Transforms Precision Recall F1

Original 81.8 80.1 80.9

Global Shfl 42.5 41.9 42.2

Value Location Aug.* 54.3 48.0 49.7

Value Text Aug 75.2 73.6 74.4

Most of the fields in SROIE have no keys. To augment receipt layouts, we
design a dedicated method that locally moves field-value locations. Specifically,
for company and address in SROIE receipts, we move the values to the bottom
of the form and shift the rest above to fill the gap as shown in Fig. 5. We refer to
this transformation as Value Location Augment*. This transformation changes
the location of the values without breaking the text order within each value. We
obtain 21.6% and 1.7% F1 score for company and address, respectively, which
are around 60% and 68% lower than the original numbers.
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Fig. 5. An illustration of Value Location Augment* transformation on a receipt in
SROIE dateset.

Besides, we also evaluate models on test set transformed by Value Text Aug-
ment. We replace values of company, address and date using substitute randomly
generated by Faker. Same as what we do for total amount and amount due for
invoices, we keep the values of total as they are. To maintain the layout struc-
ture, we only replace company and address if we are able to get a randomly
generated sample with the same number of words as the original sample. This
results in about 69% company values and 31% address values changed, respec-
tively. As shown in Table 5, the Value Text Augment largely decreases the model
performance by 5.5% in F1 score.

5.5 Observations and Suggestions

An overview comparison of all the transformations of invoices is summarized
in Fig. 4. As we can see, the top-3 substantial transformations are Value Text
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Augment, Global Shuffle and Value Location Augment. Experiments on receipts
also show the effectiveness of these three transformations.

We make the following recommendations based on the analysis. For data col-
lection/augmentation, forms with more diverse values are preferable. For exam-
ple, we may want dates covering a wide range of time periods with more types of
formats and numbers being more extensive. Varying forms’ layouts is also benefi-
cial. Especially, we may want to focus on varying the arrangement of field-values
instead of altering individual word locations locally.

For the design of field extractors, we suggest making better utilization of
the text order. As shown in our experiments, the text order is a very useful
feature. How to utilize the text reading order without overfitting to it is an
interesting topic. Besides, Key Drop and Neighbor BG Drop result in significant
performance decreases as shown in Fig. 4. This suggests that value’s neighbors,
especially the keys, are essential for value extractions. Current state-of-the-art
models use transformers to model interactions between all words. We believe
paying attention to keys and neighbors in the model design has the potential to
improve the existing field extraction systems.

6 Experiments on More Transformers

6.1 Robustness Evaluation of Invoices

The results of BERT and RoBERTa on invoices are summarized in Table 6 and
Table 7.

Table 6. Robustness evaluation on invoice dataset. BERT is used as the transformer
model.

Transforms Precision Recall F1

Original 58.4 58.1 57.8

Global Shfl 40.5 38.2 38.6

Neighbor Shfl 51.5 50.7 50.6

Non-neighbor Shfl 57.9 56.4 56.6

BG Drop 57.7 57.2 56.9

Neighbor BG Drop 49.9 44.7 46.7

Key Drop 50.2 46.5 47.6

BG Typo 56.0 54.1 54.7

BG Synonyms 58.8 58.3 58.0

BG Adversarial 48.7 51.6 49.7

Value Text Aug 36.2 33.8 34.3

Value Location Aug 55.5 54.4 54.4
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Table 7. Robustness evaluation on invoice dataset. RoBERTa is used as the trans-
former model.

Transforms Precision Recall F1

Original 63.4 59.1 61.1

Global Shfl 40.5 33.3 36.4

Neighbor Shfl 58.9 53.2 55.9

Non-neighbor Shfl 60.6 57.0 58.7

BG Drop 63.6 58.8 61.0

Neighbor BG Drop 58.8 49.5 53.5

Key Drop 57.7 49.8 53.2

BG Typo 62.1 57.7 59.8

BG Synonyms 62.7 58.5 60.4

BG Adversarial 56.2 55.2 55.5

Value Text Aug 44.9 39.2 41.5

Value Location Aug 57.9 53.9 55.7

OCR Text Order. BERT and RoBERTa do not have text locations as inputs,
so they rely more on text order than LayoutLM does. When deploying Global
Shuffle, we observe more performance drop, i.e., by 19.2% F1 score for BERT
and by 24.7% F1 score for RoBERTa.

Background Drop. We observe similar results on BERT and RoBERTa as
compared to that on LayoutLM. Key Drop and Neighbor BG Drop have more
impact than global BG Drop.

Other Background Manipulations. We observe 3.1% and 1.3% drop in F1
score on BG Typo, when using BERT and RoBERTa. Similar to LayoutLM,
BERT and RoBERTa are robust to BG Synonyms. BG Adversarial leads to
9.7% and 7.2% drop in model precision for BERT and RoBERTa based methods,
respectively.

Value Augmentations. Value Text Augment results in 23.5% (BERT) and
19.6% (RoBERTa) drop in F1 score. Since BERT and RoBERTa do not rely on
location input, the performance drop on Value Location Augment of these two
models is much less than that of the LayoutLM (drop 11.2%).

6.2 More Robustness Evaluation of Receipts

The results of BERT and RoBERTa on receipts are summarized in Table 8 and
Table 9. The experimental results suggest that these three transformations have
significant impact to the performance of BERT and RoBERTa.
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Table 8. Robustness evaluation on SROIE dataset. BERT is used as the transformer
model.

Transforms Precision Recall F1

Original 75.4 73.3 74.3

Global Shfl 37.9 36.1 37.0

Value Location Aug.* 51.9 44.9 46.0

Value Text Aug 71.2 69.2 70.2

Table 9. Robustness evaluation on SROIE dataset. RoBERTa is used as the trans-
former model.

Transforms Precision Recall F1

Original 77.3 74.7 75.9

Global Shfl 40.6 37.1 38.8

Value Location Aug.* 48.6 41.9 43.4

Value Text Aug 72.5 70.6 71.5

7 Conclusion and Future Work

We proposed a novel framework to evaluate the robustness of transformer-based
form field extractors via form attacks. We introduced 14 transformations that
transform forms in different aspects, including OCR-level location and order,
background contexts, and field-value text and layouts. We conducted studies on
real invoices and receipts with three types of transformer-based models using
our proposed framework. Research recommendations were made based on the
robustness analysis.

Improving field extraction from forms using the research analysis generated
by the robustness evaluation is a very meaningful research area. The proposed
transformations are potentially useful for increasing the diversity of training
samples, thus improving model robustness. We will consider this in the future
work.

8 Broader Impact

This work targets at robustness evaluation of form information extraction sys-
tems, so it has positive impacts such as identifying bias of existing information
extractors and improving the fairness of model comparison. On the opposite side,
our method may have unintended negative consequences in that we have pro-
posed transformations that evaluate various aspects of model robustness, but
the metrics we have selected may not be comprehensive. As a result, there is
likely some degree of model bias present that has been missed by the proposed
framework. However, this negative impact is not specific to our work and should
be considered in general in the field of robustness AI.
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The invoice dataset is for internal use only and does not contain any person-
ally identifiable data. The SROIE dataset is a public dataset under MIT license.
All forms were annotated by the authors. Consequently, we are confident that
the datasets do not have ethical issues.
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Abstract. We propose a Transformer-based approach for information
extraction from digitized handwritten documents. Our approach com-
bines, in a single model, the different steps that were so far performed by
separate models: feature extraction, handwriting recognition and named
entity recognition. We compare this integrated approach with traditional
two-stage methods that perform handwriting recognition before named
entity recognition, and present results at different levels: line, paragraph,
and page. Our experiments show that attention-based models are espe-
cially interesting when applied on full pages, as they do not require any
prior segmentation step. Finally, we show that they are able to learn
from key-value annotations: a list of important words with their cor-
responding named entities. We compare our models to state-of-the-art
methods on three public databases (IAM, ESPOSALLES, and POPP)
and outperform previous performances on all three datasets.

Keywords: Key-value extraction · Named-Entity Recognition ·
Handwritten Document · Segmentation-free Approach

1 Introduction

Although machine learning and deep learning techniques are nowadays com-
monly used in the field of automatic processing of historical documents [12],
scientific work still often focuses on some specific processing steps in isolation.
It is common to develop models either for page analysis or line detection, for
handwriting recognition or for information extraction. Processing chains are still
often developed as a sequence of these steps independently. However, these pro-
cessing chains suffer from several drawbacks. Firstly, errors accumulate along the
chain: if the line detection step is bad, write recognition will be highly impacted
and information extraction impossible. On the other hand, the implementation
of these chains and their maintenance is complex: each step requires specific
skills and annotated data for each model and any update of a part of the chain
has an impact on all downstream processes. Finally, the different modules are
developed independently and there is no global optimization of the processing
chain. For all these reasons, the development of models allowing the extraction
of information directly from the image, by an end-to-end approach, with a single
model, would be very beneficial.
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As far as automatic recognition is concerned, three main types of projects
are currently being carried out on collections of historical documents, depending
on the intended use. The first type of project aims to carry out a complete
transcription of the documents to allow full-text searches [16,27]. The processing
chain then focuses on the page analysis stage to extract a maximum number of
lines of text and the handwriting recognition stage to best recognize the text.
The result of the processing is then exploited thanks to a search engine that
allows queries to be made and documents to be identified according to their
content. The second type of processing aims to produce electronic editions of
documents [11]. In this case, the emphasis is obviously on the quality of the
recognition, but also the fidelity to the text of the document and the reading
order. The result of the automatic processing is in this case always submitted
to the correction of an expert before publication. The last type of project aims
at extracting information from documents in order to populate a database with
the information they contain [24]. In addition to the document analysis and
handwriting recognition stages, these projects also incorporate an information
extraction stage, often in the form of named entity extraction. It is this third
type of project, the most complex in its implementation, that we are interested
in this work.

Information extraction chains for historical handwritten documents are usu-
ally composed of the following steps: line detection or document layout analysis
(DLA), handwriting recognition (HTR) and named entity extraction (NER). In
this paper, we first reconsider the possibility of combining the HTR and NER
models into a single model. Then we study whether it is possible to extend this
model to the processing of a complete page without going through a line detec-
tion step. Finally, we show that it is possible to go even further and train a single
model for the extraction of target information, of the key-value type, without
going through an explicit transcription.

The rest of this paper is organized as follows. In Sect. 2, we review the state-
of-the-art for information extraction in handwritten documents. We describe our
methodology and experiments in Sect. 3. The experimental results are presented
and analyzed in Sect. 4. Finally, in Sect. 5 we discuss the conclusions and outline
future works.

2 Related Work

Recent advances in computer vision and natural language processing have led to
major breakthroughs in the field of automatic document understanding. Deep
learning-based systems are now capable of automatically extracting relevant
information from historical documents. Interest in this field has been encour-
aged by the emergence of competitions, such as the Information Extraction on
Historical Handwritten Records competition [8] on the ESPOSALLES database
[20], as well as the publication of named entity recognition annotations for other
databases, such as IAM-NER [26] and POPP [4].
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Two main approaches exist to address automatic information extraction from
handwritten documents:

– Sequential approaches consist in dividing the problem into two successive
tasks: handwritten text recognition, and named entity recognition;

– Integrated approaches consist in combining text and named entity recog-
nition in a single-step.

Each of these approaches can work at several levels: either on words, lines,
paragraphs, or directly on full pages. Segmentation-based systems work on pre-
segmented text zones (words, lines, or paragraphs), while segmentation-free sys-
tems work directly on full pages. Performing handwriting recognition on smaller
zones is usually easier to achieve, but requires a prior segmentation step. As
opposed, handwriting recognition on full pages is more challenging (memory
management, reading order), but does not require any prior segmentation.

2.1 Sequential Approaches

In sequential approaches, HTR is performed first, then, NER is applied on rec-
ognized text. Note that HTR and NER can be applied at different levels: HTR
is usually performed at line-level, and NER at paragraph or page-level.

Segmentation-Based Systems. Five systems were introduced during the
ICDAR2017 Competition on Information Extraction in Historical Handwritten
Records [8] on ESPOSALLES. Most participants used CRNN trained with CTC
to recognize handwritten text. Named entity recognition was then performed
using logical rules based on regular expressions or CRF tagging. Other methods
were proposed after the competition.

Prasad et al. [17] propose a two-stage system combining a CRNN-CTC neural
network for HTR on text line images, followed by a BLSTM layer over the feature
layer for NER.

Tuselmann et al. [26] also introduce a two-stage system for information
extraction that combines a Transformer model [10] for HTR on word images,
and a LSTM-CRF model with word embeddings obtained using a pre-trained
RoBERTa for NER. They highlight the advantages of two-stage methods for
information extraction, as these methods yield state-of-the art results and are
easy to improve using post-processing techniques, close dictionary, or pre-trained
embeddings.

Monroc et al. [15] compare different off-the-shelf NER libraries on handwrit-
ten historical documents: SpaCy [9], FLAIR [1], and Stanza [19]. They perform
experiments on three datasets in an end-to-end setting, and study the impact
of text line detection and text line recognition on NER performances. Their
results highlight that line detection errors have a greater impact than handwrit-
ing recognition errors. This conclusion suggests that working directly on pages
could prevent segmentation errors from impacting the final entity recognition.
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Segmentation-Free Systems. To the best of our knowledge, no system per-
forming sequential HTR and NER at page-level has been proposed so far. How-
ever, many segmentation-free HTR models working directly at page-level [5,6,28]
have been introduced recently. Any of these models could easily be combined
with off-the-shelf NER libraries for segmentation-free information extraction.

2.2 Integrated Approaches

Integrated approaches combine HTR and NER in a single step by modeling
named entities with special tokens. This can be achieved with or without prior
segmentation.

Segmentation-Based Systems. Toledo et al. [25] and Rowtula et al. [22]
introduce models that work at word-level. Their systems are able to recognize
and classify word images into semantic categories.

Both Carbonell et al. [3] and Tarride et al. [23] propose neural networks
that predict characters and semantic tags from line images, respectively, using a
CRNN model trained with CTC and an attention-based network. Both of these
studies suggest that working on records would allow the model to capture more
contextual information.

In [4], the authors use the same approach on French census images from the
POPP dataset, as they predict text characters and special tokens for empty cells
and column separators. Although, this dataset does not directly include named
entities, each word is linked to a specific column and can be seen as a named
entity (name, surname, date of birth, place of birth...).

Finally, Rouhou et al. [21] are the first to introduce a Transformer model for
combined HTR and NER at record-level on the ESPOSALLES database. They
highlight the interest of performing this task on records to benefit from more
contextual information. As each page contains several records, this model still
requires record segmentation. Moreover, they use a special token for line breaks,
as they observe this improves performance.

Segmentation-Free Systems. Carbonell et al. [2] are the first to propose a
model that works directly at page-level on ESPOSALLES. Their system is able
to jointly learn word bounding boxes, word transcription and word semantic
category on ESPOSALLES. However, a major limitation of this method is that
it requires word bounding boxes during training.

The Transformer proposed by Rouhou et al. [21] could be applied to full pages
in its current stage, although this task has not been tackled by the authors.

Finally, the Document Attention Network (DAN) [5] is able to recognize text
on full pages with reading order. It is based on the Transformer architecture and
jointly learns characters and special tokens that represent layout information. It
is likely that this method is also able to recognize named entities, or in other
words, tokens that are not spatially localized but have a semantic meaning. How-
ever, the authors did not perform any experiments on named entity recognition.
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2.3 Discussion

The literature review opens up three main questions that are discussed in the
following.

What Is the Best Approach for Information Extraction? Although this
question has been well studied in the past, no consensus has been reached. On
the one hand, researchers have shown the interest of sequential methods which
can be optimized at every stage (with a language model, a dictionary, or pre-
trained embeddings) [15,26]. On the other hand, the advantages of integrated
methods have also been demonstrated [23], notably because they benefit from
shared contextual features and avoid cascade errors.

Can We Extract Relevant Information from Full Pages? Different meth-
ods were designed to work at different levels, some of them requiring prior seg-
mentation of text lines or paragraphs. However, in real-world scenarios, text
areas are not known and must therefore be detected automatically, which can
introduce segmentation errors. It has been established that segmentation errors
have a greater impact on information extraction than handwriting recogni-
tion errors [15]. Recently, Transformers have proved their ability to learn from
paragraphs and pages [5,21], enabling segmentation-free information extraction.
Learning directly from pages increases the task difficulty, but avoids the need
for prior segmentation. Moreover, working directly on pages makes it possible to
benefit from a larger context [21].

Are Integrated Models Able to Learn from Key-Value Annotations?
As sequential approaches rely on HTR, they require the entire transcription
before retrieving named entities. However, integrated methods could potentially
learn from key-value annotations, which corresponds to a list of words with their
corresponding named entities. In this scenario, ground-truth is also easier and
faster to produce, as annotators would only have to annotate important words
as well as their semantic category. This approach could also be applied in a
lot of practical applications where full transcriptions are not available, such as
genealogical crowdsourced information (civil status, or personal records). This
question has not been studied yet in the context of information extraction.

In the next section, we describe the experiments designed to address these
three questions.

3 Methodology and Experiments

In this section, we introduce the datasets used during our experiments, present
our methodology, and describe the different experiments conducted in this study.

3.1 Datasets

During our experiments, we worked on three public datasets of different kind.
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Fig. 1. Examples of pages from the three datasets used in this work

IAM. The IAM dataset [13] is composed of modern documents written in
English by 500 writers. It includes 747 training pages with corresponding tran-
scriptions. NER annotations have been made available by Tüselmann et al. [26].
A page from IAM is presented in Fig. 1a.

For our experiments, we use the RWTH split with 18 entities: Cardinal,
Date, Event, FAC, GPE, Language, Law, Location, Money, NORP, Ordinal,
Organization, Person, Percent, Product, Quantity, Time and Work of art. The
details of this split are provided in the appendix. Less than 10% of words are
associated to an entity. Due to the large number of classes, some entities have
very few examples in the training set. We perform experiments at two levels:
text line and page. When working on pages, we remove the header so that the
model does not see the printed transcription instruction.

ESPOSALLES. The ESPOSALLES dataset [8] is a collection of historical
marriage records from the archives of the Cathedral of Barcelona. The corpus
is composed of 125 pages. Each document is written in old Catalan by a single
writer. It includes 125 pages with word, line and record segmentations. The
details of this split are provided in the appendix. A page from ESPOSALLES is
presented in Fig. 1b.

Each word is transcribed and labeled with a semantic category (name, sur-
name, occupation, location, state, other) and a person (husband, wife, husband’s
father, husband’s mother, wife’s father, wife’s mother, other person, none). More
than 50% of words are associated to an entity. As there is no validation set, we
keep 25% of training pages for validation. We perform experiments at three
levels: text line, record, and page.
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POPP. The POPP dataset contains tabular documents from the 1926 Paris
census whose statistics are detailed in Table 1. It contains 160 pages written in
French, each page contains 30 lines. A page from POPP is presented in Fig. 1c.

Each row is divided in 10 columns: surname, name, birthdate, birthplace,
nationality, civil status, link, education level, occupation, employer. In our exper-
iments, we use the column name as a named entity. As a consequence, 100%
words are associated to an entity. We perform experiments at two levels: text
line and page.

Table 1. Statistics of the POPP dataset

(a) Pages, lines, words, and entities by split

Train Validation Test

Pages 128 16 16

Lines 3,837 480 479

Words 29,581 3,681 3,569

Entities 29,581 3,681 3,569

(b) Entities by split

Train Validation Test

Surname 3,100 392 375

First name 3,853 476 478

Birthdate 3,824 469 466

Location 4,789 600 584

Nationality 283 17 30

Civil status 2,277 292 225

Link 3,667 449 412

Education level 25 4 12

Occupation 4,488 529 535

Employer 3,275 453 452

3.2 Methods

Three methods are introduced and compare in this work.

Two-Stage Workflow. The first method is a traditional two-stage workflow
for information extraction that combines two steps. First, an HTR system is
applied for text recognition on line-level images, then, SpaCy1 [9] is used for
named entity recognition. We compare two systems for the HTR task: PyLaia
[18] and DAN [5].

– PyLaia2 is an open source model for handwritten text recognition. It com-
bines 4 convolutional layers and 3 recurrent layers, and is trained with the
CTC loss function. The last layer is a linear layer with a softmax activa-
tion function that computes probabilities associated with each character of

1 https://spacy.io.
2 https://github.com/jpuigcerver/PyLaia.

https://spacy.io
https://github.com/jpuigcerver/PyLaia
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the vocabulary. We use early stopping to avoid overfitting: the training is
stopped after 50 epochs without improvement. PyLaia is trained on text line
images.

– DAN3 is an open source attention-based Transformer model for handwritten
text recognition that can work directly on images of paragraph or page. It is
trained with the cross-entropy loss function. The last layer is a linear layer
with a softmax activation function that computes probabilities associated
with each character of the vocabulary. For each dataset, we train DAN on
zones with the strongest semantic consistency: on records for ESPOSALLES,
on pages for IAM, and lines for POPP.

For NER, we use SpaCy, a production-oriented NLP library that includes
transformer-based pipelines with support of English (for IAM), Catalan (for
ESPOSALLES), and French (for POPP). Like DAN, SpaCy is trained on records
for ESPOSALLES, pages for IAM, and lines for POPP. For ESPOSALLES, we
train two SpaCy models: one for the category label and one for the person label.
Comparing two HTR systems with the same SpaCy model allows us to study
the impact of handwriting recognition errors on the overall performance.

Integrated Workflow. The second method consists in training a model to
recognize directly characters and NER tokens.
We train DAN models for this task, later referred to as HTR+NER. The model
is trained at different levels to evaluate the impact of context: on lines and
pages for IAM, on lines, records and pages for ESPOSALLES, on lines and
pages for POPP. NER tokens are considered like characters by the network
and are localized before relevant words, as illustrated in Table 2. For ESPOS-
ALLES, we use a unique tag combining the category and person information
(ex: <name wife>Maria), as we found out that using two separate tags led to
poorer performance. This observation is consistent with the findings of Carbonell
et al. [3] and Rouhou et al. [21]. Finally, we also trained DAN with curriculum
learning, e.g. trained for HTR and fine-tuned for HTR+NER and found out
that the network reach similar performance. For clarity, we only provide results
without curriculum learning.

Integrated Workflow with Key-Value Annotations. Our last experiment
consists in training DAN on key-value annotations, so as to only predict relevant
information with the relevant text and the corresponding named-entity. This
task is referred to as Key-value HTR+NER in the rest of the article. To achieve
this, words that are not linked to any entities are removed from transcriptions,
as illustrated in Table 2. As a result, the model must learn to directly extract
important words with their named entities, and ignore any other word. In this

3 https://github.com/FactoDeepLearning/DAN.

https://github.com/FactoDeepLearning/DAN
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scenario, the two-stage approach cannot be used, as the full transcription is not
available. This task is very challenging on IAM, as 90% of words are not linked
to any entities, and more than 5% of pages do not have any entities. As a result,
the training data is very sparse. The task is easier for ESPOSALLES, as 50%
of words are linked to an entity. Finally, in POPP, every word is related to a
named entity, so the HTR+NER and Key-value HTR+NER tasks are the same.

Table 2. Example of different transcriptions of the same record from the Esposalles
database. Each transcription is used for a different task. HTR: the model predicts
characters, HTR+NER: the model predicts characters and NER tokens, Key-value
HTR+NER: the model predicts characters and NER tokens only for relevant words,
ignoring words that are not associated with NER tokens.

Task Transcription

HTR dit dia rebere de Jua Oliveres pages de Llissa demunt

viudo ab Maria donsella filla de Juan Pruna pages del

far y de Beneta

HTR+NER dit dia rebere de <N-H>Jua <SN-H>Oliveres <O-H>pages

de <L-H>Llissa demunt <S-H>viudo ab <N-W>Maria

<S-W>donsella filla de <N-WF>Juan <SN-WF>Pruna

<O-WF>pages del <L-WF>far y de <N-WM>Beneta

Key-value HTR+NER <N-H>Jua <SN-H>Oliveres <O-H>pages <L-H>Llissa

<S-H>viudo <N-W>Maria <S-W>donsella <N-WF>Juan

<SN-WF>Pruna <O-WF>pages <L-WF>far <N-WM>Beneta

4 Experimental Results

In this section, we introduce the evaluation metrics and present the results
obtained on each dataset. We also compare our work with state-of-the-art meth-
ods and discuss the results.

4.1 Metrics

For all three datasets, performances are evaluated by the same standard char-
acter recognition and entity recognition metrics, as detailed in the following
paragraphs. An additional metric is used to evaluate the experiments on ESPOS-
ALLES.
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4.2 HTR Metrics

The quality of handwriting recognition is evaluated using the character error
rate (CER) and word error rate (WER). The full text is evaluated, and named
entity tokens are ignored in integrated methods at this step of the evaluation.

4.3 NER Metrics

We use the Nerval4 evaluation toolkit to evaluate named entity recognition
results. In Nerval [14], the automatic transcription is aligned with the ground
truth at character level. Predicted and ground truth words are considered a
match if their edit distance is less than 30%. From this alignment, precision,
recall and F1-score are computed.

4.4 IEHHR Metrics

Finally, for the ESPOSALLES dataset, we also compute the IEHHR metric that
was introduced in the ICDAR 2017 Competition on Information Extraction in
Historical Handwritten [8]. This metric jointly evaluates HTR and NER. Only
words associated with named entities are taken into account in this evaluation.
The “basic” score is equal to 100-CER if the category tag is correct, 0 otherwise.
The “complete” score is equal to 100-CER if both the category and person tags
are correct, 0 otherwise.

4.5 Evaluation Results

We present handwritten text recognition results in Table 3 and named entity
recognition results in Table 4. For ESPOSALLES, we also provide the results
for information extraction in Table 5 and obtain state-of-the-art results on the
public IEHHR benchmark5.

What is the Best Model for HTR? Results in Table 3 show that DAN is
better than PyLaia for HTR on all three datasets. The DAN model trained only
for HTR is generally better than the model directly trained for HTR+NER. The
results show that DAN is always better than PyLaia for handwriting recogni-
tion: CER and WER are always lower with DAN. The WER reaches 1.37% on
ESPOSALLES, 13.66% on IAM, and 18.09% on POPP. Finally, we note that
DAN can be more performant on larger text zones. Indeed, DAN performs bet-
ter on pages on IAM, and on records on ESPOSALLES. On the other hand, on
POPP, the best performances are obtained on text lines. This observation can
be explained by the fact that POPP documents are tables in which the lines are
independent.

4 https://gitlab.com/teklia/ner/nerval.
5 https://rrc.cvc.uab.es/?ch=10&com=evaluation&task=1.

https://gitlab.com/teklia/ner/nerval
https://rrc.cvc.uab.es/?ch=10&com=evaluation&task=1
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Table 3. Evaluation results for handwritten text recognition on IAM, ESPOSALLES,
and POPP. Results are given for test sets. NER tokens are not taken into account for
this evaluation.

(a) IAM (RWTH split)

Model Task CER (%) WER (%) Input

VAN [6] HTR 4.45 14.55 Line

PyLaia HTR 7.79 24.73 Line

DAN HTR 4.30 13.66 Page

DAN HTR+NER 5.12 16.17 Line

DAN HTR+NER 4.82 14.61 Page

(b) ESPOSALLES

Method Task CER (%) WER (%) Input

Seq2seq [23] HTR 2.82 8.33 Line

Seq2seq [23] HTR+NER 1.81 6.10 Line

PyLaia HTR 0.76 2.62 Line

DAN HTR 0.46 1.37 Record

DAN HTR+NER 0.48 1.75 Line

DAN HTR+NER 0.39 1.51 Record

DAN HTR+NER 3.61 4.23 Page

(c) POPP

Model Task CER (%) WER (%) Input

VAN [4] HTR 7.08 19.05 Line

PyLaia HTR 17.19 37.43 Line

DAN HTR 8.18 18.09 Line

DAN HTR+NER 7.83 24.57 Line

DAN HTR+NER 11.74 30.78 Page
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Table 4. Evaluation results for named entity recognition on IAM, ESPOSALLES, and
POPP. Results are given for test sets. Evaluation results are computed using Nerval,
which computes an alignment between ground truth and predicted entities.

(a) IAM (RWTH split)

Method P (%) R (%) F1 (%) Input Type

Tülselmann et al.* [26] 60.4 50.9 54.2 Word/Record

Rowtula et al.* [22] 33.8 30.9 32.3 Word/Record

Todelo et al.* [25] 26.4 10.8 14.9 Word/Record

Dessurt [7] - - 40.4 Page

Ground-truth + SpaCy 74.9 76.2 75.5 -/Page

PyLaia + SpaCy 56.5 49.0 52.5 Line/Page

DAN + SpaCy 61.8 57.9 59.8 Page/Page

DAN 37.1 30.8 33.7 Line

DAN 37.2 27.0 31.3 Page

DAN 0 0 0 Page (key-value)

* Different computation method due to pre-existing word alignment.

(b) ESPOSALLES

Method Person Category Input Type

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Tülselmann et al.* [26] 99.3 99.2 99.3 98.5 98.2 98.3 Word/Record

Rowtula et al.* [22] 97.0 96.2 96.6 97.1 97.0 97.0 Word/Record

Todelo et al.* [25] 98.5 97.8 98.1 98.5 97.8 98.1 Word/Record

Ground-truth + SpaCy 98.6 98.4 98.5 98.3 98.7 98.5 -/Record

PyLaia + SpaCy 95.9 94.0 94.9 95.6 94.3 95.0 Line/Record

DAN + SpaCy 97.9 97.9 97.9 97.6 98.1 97.8 Record/Record

DAN 96.0 96.1 96.1 96.9 97.0 96.9 Line

DAN 97.9 98.2 98.1 97.4 97.8 97.6 Record

DAN 95.0 98.4 96.6 94.2 97.6 95.9 Page

DAN 97.0 97.4 97.2 96.7 97.1 96.9 Record (key-value)

* Different computation method due to pre-existing word alignment.

(c) POPP

Method P (%) R (%) F1 (%) Input type

Ground-truth + SpaCy 95.6 97.3 96.4 -/Line

PyLaia + SpaCy 75.6 77.0 76.3 Line/Line

DAN + SpaCy 82.8 85.3 84.0 Line/Line

DAN 85.6 86.2 85.9 Line

DAN 83.8 86.9 85.3 Page
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Table 5. IEHHR scores given for the test set of ESPOSALLES dataset.

Method Basic (%) Complete (%) Input Type

Baseline HMM [8] 80.28 63.11 Line/Line

CITlab ARGUS-1 [8] 89.54 89.17 Line/Line

CITlab ARGUS-2 [8] 91.63 91.19 Line/Line

CITlab ARGUS-3 [8] 91.94 91.58 Line/Line

CVC [25] 90.59 89.40 Line/Line

Naver Labs [17] 95.46 95.03 Line/Line

IRISA [23] 94.7 94.0 Line

IRISA multi-task [23] 95.2 94.4 Line

InstaDeep GNN/Transformer8 96.22 96.24 Record

InstaDeep Transformer [21] 96.25 95.54 Record

TEKLIA Kaldi + Flair [15] 96.96 - Line/Record

Ground-truth + SpaCy 97.51 97.57 -/Record

PyLaia + SpaCy 96.58 96.58 Line/Record

DAN + SpaCy 97.13 97.11 Record/Record

DAN 96.26 94.47 Line

DAN 97.03 96.93 Record

DAN 95.45 95.04 Page

DAN (key-value) 96.48 96.31 Record (key-value)

What is the Impact of HTR Errors on NER? Results in Table 4 help
us understand the impact of handwriting recognition errors on NER perfor-
mance. The second block of each subtable compares the results using ground
transcription or predicted transcriptions (PyLaia or DAN). On ESPOSALLES,
both HTR systems are very performant with CER below 1%. As a result, NER
performance remains very good. However, on IAM and POPP, PyLaia and DAN
yield a higher CER. As a consequence, the F1 score drops by 15 points for a 5%
CER on IAM, and by 10 points for a 10% CER on POPP.

What is the Best Approach for Information Extraction? The best perfor-
mance on IAM is achieved with a two-stage method, combining DAN (HTR) and
SpaCy (NER). These results support the observations of Tüselmann et al. [26],
and can be explained because there are few entities in the dataset. As a result,
DAN struggles to learn semantic information, while SpaCy benefits from pre-
trained embeddings for the English language. However, on POPP, DAN trained
for HTR+NER outperforms the two-stage approach combining DAN and SpaCy,
although SpaCy does benefit from pre-trained French embeddings. There are two
possible explanations for this result. First, POPP documents contain mostly
names and surnames, which may not be included in the embeddings. Second,
since these are tabular documents, word localization determines the semantic
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category, as each column corresponds to a specific named entity. Unlike DAN,
SpaCy does not have any information regarding the word localization. Finally,
on ESPOSALLES, both approaches yield similar results: SpaCy recognizes the
category labels better while DAN recognizes the person labels better.

What is the Performance of Segmentation-Free Methods? It is interest-
ing to note that DAN often performs better on pages (IAM) or records (ESPOS-
ALLES) than on text lines. And yet, the text recognition task is traditionally
done on text lines, which requires prior automatic or manual segmentation. But
manual segmentation is time-consuming, and automatic segmentation can intro-
duce many errors that affect the performance of handwriting or named entity
recognition [15]. Therefore, results presented on pages cannot be directly com-
pared to the results on text lines or records, as the task is much harder. In order to
compare these results fairly, segmentation-based workflows should be evaluated
on automatically segmented text lines or records. It is likely that segmentation-
free workflows will outperform segmentation-based workflows in an end-to-end
evaluation setting.

Is DAN Able to Learn from Key-Value Annotations? Finally, we evalu-
ate the ability of DAN to learn from key-value annotations. On ESPOSALLES,
where 50% of words are linked to an entity, DAN manages to learn from key-
value annotations. It learns to recognize relevant words and to ignore the others.
Although its performances are slightly lower than when trained with full tran-
scripts, they remain very competitive. In contrast, DAN fails to learn on IAM,
in which only 10% of words are linked to an entity. The model can be trained for
a few epochs before overfitting. As a result, it does not predict anything on the
test set. Finally, on POPP, all words are linked to an entity, so this experiment
is similar to the one with full annotations, as there are no words to ignore during
training.

5 Conclusion

In this paper, we focus on information extraction in digitized handwritten docu-
ments. We compare an integrated approach trained for joint HTR and NER with
a traditional two-stage approach that performs HTR before NER. We present
results at different levels: pages, paragraphs and lines and reach state-of-the-art
performance on three datasets.

Our experiments show that integrated approaches trained jointly for HTR
and NER can outperform two-stage approaches when word localization has an
impact on the NER label (POPP). As opposed, two-stage approaches are better
when applied on datasets with few entities (IAM) as they can benefit from pre-
trained embeddings. In other cases (ESPOSALLES), two-stage and integrated
approaches reach similar performance 97.11% and 96.93% respectively, for the
complete IEHHR score on records on ESPOSALLES. We also demonstrate that
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applying these models directly on pages leads to very acceptable performances,
either better than when applied on lines (ESPOSALLES, IAM), or with a minor
performance loss (POPP). The interest of this method is enhanced by the lack
of need for prior automatic segmentation, which is known to impact handwriting
recognition performances [15]. Finally, we show that, under certain conditions,
integrated methods are able to learn from key-value annotations, e.g. from a list
of relevant words with their corresponding named entities. On ESPOSALLES,
the model trained on key-value annotations reaches a complete recognition score
of 96.31%. This observation is encouraging as it would allow training models
from incomplete information manually, which considerably reduces the effort
needed for manual transcription.

In future works, we are interested is measuring the impact of segmentation
errors when evaluating end-to-end systems for information extraction. We also
would like to identify the conditions needed to train a model on key-value anno-
tations. Finally, we want to improve DAN for the task of information extrac-
tion. For example, the training loss could also be adapted to differentiate NER
tokens from characters. Performance could be improved by using pre-trained
embeddings like in SpaCy. Since DAN and SpaCy rely on character- and word-
embeddings respectively, it would be interesting to find a common representation
at sub-word level.

Appendix

Detailed splits for IAM and Esposalles

We provide the detailed splits used for IAM in Table 6 and ESPOSALLES in
Table 7. For IAM, we use the RWTH split. For ESPOSALLES, we use the official
split, with 25% of training data used for validation.

Impact of curriculum learning

We evaluate the impact of curriculum learning for the task of HTR+NER
in Table 8 and 9. The DAN model trained with curriculum learning is pre-
trained on the HTR task, then fine-tuned on the HTR+NER task. The results
show that curriculum learning does not always have a positive impact on final
performances.



200 S. Tarride et al.

Table 6. Statistics of the IAM dataset (RWTH split)

(a) Pages, lines, words, and entities by split

Train Validation Test

Pages 747 116 336

Lines 6,482 976 2,915

Words 55,111 8,900 25,931

Entities 5,868 654 1,713

(b) Entities by split

Train Validation Test

Person 1,399 252 603

GPE 731 38 129

Organization 825 39 100

NORG 282 19 79

Date 1,000 57 178

Cardinal 409 75 130

Work of Art 294 41 110

Time 167 24 114

FAC 126 37 71

Quantité 107 17 66

Location 124 16 41

Ordinal 104 19 38

Product 78 6 24

Percent 91 6 4

Event 61 2 15

Law 43 6 0

Language 15 0 5

Money 12 0 6

Table 7. Statistics of the ESPOSALLES dataset

(a) Pages, records, lines, words, and entities by split

Train Validation Test

Pages 75 25 25

Records 731 267 253

Lines 2,328 742 757

Words 23,893 7,608 8,026

Entities 12,388 3,937 4,238

(b) Entities by split

Train Validation Test

Name 3,774 1,223 1,312

Surname 2,033 634 694

Location 3,440 1,069 1,087

Occupation 2,273 737 797

State 868 274 319

Wife 2,093 678 768

Wife’s father 2,745 847 908

Wife’s mother 566 188 189

Husband 4,334 1,493 1,563

Husband’s father 1,838 476 518

Husband’s mother 462 1401 156

Other person 350 115 136
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For POPP, we also trained the model for key-value HTR+NER in a random
order, e.g. with named entities in a random order. Results show that DAN is
also able to learn with a random reading order, although the error rates are a
bit higher than when the model is trained with the correct reading order.

Table 8. Impact of curriculum learning on handwritten text recognition on IAM,
ESPOSALLES, and POPP. Results are given for test sets. NER tokens are not taken
into account for this evaluation.

(a) IAM (RWTH split)

Model Task CER (%) WER (%) Input

DAN HTR 4.86 15.78 Line

DAN HTR 4.30 13.66 Page

DAN HTR+NER 5.12 16.17 Line

DAN curriculum HTR+NER 5.01 16.32 Line

DAN HTR+NER 4.82 14.61 Page

DAN curriculum HTR+NER 4.30 13.65 Page

(b) ESPOSALLES

Method Task CER (%) WER (%) Input

DAN HTR 0.54 2.13 Line

DAN HTR 0.46 1.37 Record

DAN HTR 2.77 3.58 Page

DAN HTR+NER 0.48 1.75 Line

DAN curriculum HTR+NER 0.64 2.02 Line

DAN HTR+NER 0.39 1.51 Record

DAN curriculum HTR+NER 0.89 1.97 Record

DAN HTR+NER 3.61 4.23 Page

DAN curriculum HTR+NER 2.23 3.15 Page

(c) POPP

Model Task CER (%) WER (%) Input

DAN HTR 8.18 18.09 Line

DAN HTR+NER 7.83 24.57 Line

DAN curriculum HTR+NER 8.06 24.85 Line

DAN curriculum + random order HTR+NER 9.53 27.01 Line
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Table 9. Impact of curriculum learning for named entity recognition on IAM, ESPOS-
ALLES, and POPP. Results are given for test sets. Evaluation results are computed
using Nerval, which computes an alignment between ground truth and predicted enti-
ties.

(a) IAM (RWTH split)

Method P (%) R (%) F1 (%) Input Type

DAN 37.1 30.8 33.7 Line

DAN curriculum 33.0 23.3 27.3 Line

DAN 37.2 27.0 31.3 Page

DAN curriculum 38.2 29.1 33.1 Page

(b) ESPOSALLES

Method Person Category Input Type

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

DAN 96.0 96.1 96.1 96.9 97.0 96.9 Line

DAN curriculum 95.6 94.0 94.8 96.3 95.5 95.9 Line

DAN 97.9 98.2 98.1 97.4 97.8 97.6 Record

DAN curriculum 97.3 97.5 97.4 96.5 97.3 96.9 Record

DAN 95.0 98.4 96.6 94.2 97.6 95.9 Page

DAN curriculum 96.4 97.3 96.9 95.4 97.2 96.3 Page

DAN 97.0 97.4 97.2 96.7 97.1 96.9 Record (key-value)

DAN curriculum 96.7 96.3 96.5 96.0 96.1 96.0 Record (key-value)

(c) POPP

Method P (%) R (%) F1 (%) Input type

DAN 85.6 86.2 85.9 Line

DAN curriculum 85.4 86.2 85.8 Line

DAN curriculum + random order 84.6 84.8 84.7 Line
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Abstract. Research in Document Intelligence and especially in Docu-
ment Key Information Extraction (DocKIE) has been mainly solved as
Token Classification problem. Recent breakthroughs in both natural lan-
guage processing (NLP) and computer vision helped building document-
focused pre-training methods, leveraging a multimodal understanding of
the document text, layout and image modalities.

However, these breakthroughs also led to the emergence of a new
DocKIE subtask of extractive document Question Answering (DocQA),
as part of the Machine Reading Comprehension (MRC) research field.

In this work, we compare the Question Answering approach with
the classical token classification approach for document key informa-
tion extraction. We designed experiments to benchmark five different
experimental setups : raw performances, robustness to noisy environ-
ment, capacity to extract long entities, fine-tuning speed on Few-Shot
Learning and finally Zero-Shot Learning.

Our research showed that when dealing with clean and relatively short
entities, it is still best to use token classification-based approach, while
the QA approach could be a good alternative for noisy environment or
long entities use-cases.

Keywords: Document Key-Information Extraction · Machine Reading
Comprehension · Named Entity Recognition · Token Classification ·
Document Question Answering

1 Introduction

Document understanding is a key research area with a growing industrial inter-
est. Many businesses manually process thousands of documents for recurrent
tasks. As part of document understanding, information extraction is a complex
task, targeting to extract key structured information from unstructured docu-
ments. It is an important but complex process as documents can take several
shapes (contracts, invoices, reports ...) with their various inherent challenges
(long documents, complex layouts, tables ...)
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Recently, multi-modal approaches combining natural language processing,
computer vision and layout understanding proved to be effective in this config-
uration.

In the literature two standard approaches are used. The classical approach
formulates the information extraction task as a token classification approach (i.e.
we classify each token to belong to a specific entity or not). The second formulates
the information extraction task as a span extraction task (i.e. we search for the
beginning and end of a given entity), often represented as a question - answer
with fixed questions.

Our study is the first one undertaking an empirical study comparing the two
approaches in complex scenarios using multiple datasets. It relies on LayoutLM
[23], a standard backbone commonly used in the document understanding tasks.

Our contributions are as follows:

– We propose multiple scenarios in order to emulate real-world complexity on
open source datasets,

– We pursue the first study comparing token classification and question answer-
ing approaches in the information extraction task,

– We state in which setting to use one approach or the other one.

2 Problem Definition

2.1 Information Extraction from Documents

Information Extraction is a sub-task of document understanding that aims at
extracting structured information from unstructured data.

Traditionally, extracting information from documents consisted in classifying
each token of the text as belonging to a certain class (one per attribute/entity).
The IOB (Inside-Outside-Beginning) tagging [14] introduced a B(eggining) token
class declaring the start of a new entity.

Several benchmark datasets are widely used, such as FUNSD, CORD or
SROIE [5,6,11]. We note that existing benchmarks are heavily biased towards
short entities. For instance, clauses to be extracted from long documents are not
covered by these datasets.

In our study, we will explore two different approaches to perform such Infor-
mation Extraction:

– via classical Token Classification,
– via a Question Answering approach.

2.2 Machine Reading Comprehension

Machine reading comprehension is an active research field, belonging to the
Natural Language Processing (NLP) field [26] and overlaps with the Question
Answering task.
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The QA task is a NLP task and consists in processing a given question and
outputting the answer. Both the question and the answer are in natural lan-
guage. More specifically, the question is free-text (prompt) and the answer is
extracted as one or multiple spans from a given text (the context) since we con-
sider the Extractive QA setup. In that case, the concatenation of the question
and the context forms the input of the model and the output is one or multiple
contiguous spans of the text (denoted by start and end token indexes).

3 Related Work

The Information Extraction problem was first turned into a sequence labeling
task which is a conceptually simple approach and led to good results but it does
not allow models to separate two consecutive entities of the same class.

When the IOB tagging [14] was introduced, it led to more accurate tagging
and many variants of tagging schemes exist with variable performances over the
models and the dataset typology [24].

Recent breakthroughs in both natural language processing and Computer
Vision led to notable improvements in the key-information extraction (KIE)
task with the emergence of various efficient document pre-training methods such
as the Transformer-based LayoutLM family of models [4,22,23]. These models
introduced a multimodal pre-training approach, standing out not only due to
their difference in architecture but mostly from their incorporation of text, layout
and image modalities into their pre-training for document image understanding
and information extraction tasks. It leverages both text and layout features and
incorporates them into a single framework which is why this family of models or
variants are used by many research works. [2,10,15]

However the data quality remains essential and noisy datasets, missing tags
or errors in labels are common in various real-life use-cases. Research work have
been performed to detect or learn from such noisy settings [21,27] in terms of
Token Classification.

Another approach could also be considered in order to perform Information
Extraction.

The machine reading comprehension field has also known many break-
throughs [26], in particular for the question answering task. At the intersection
of information extraction and question answering, a few research work focused
on reframing the classical token classification problem as a MRC one [8].

Some propose to convert each attribute into a question, and to identify the
answer span corresponding to the attribute value in the context [9,20]. This
idea was followed by several incremental improvements, such as asking multiple
questions in a single pass [16].

We note the scarcity of question answering datasets designed for data and
questions typically framed as long document information extraction problems.
For instance, SQuAD [13], SQuADv2 [12] and Natural Questions [7] all pro-
pose questions related to text comprehension, but a few include classes to be
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directly extracted from the text. The CUAD dataset [3] a comprehensive QA
dataset on legal documents which are long by their nature: some questions ask
to retrieve contract dates, parties names or non-competing clauses. Such entities
to be extracted can be short (person names, dates) or very long (clauses to be
retrieved in a long contract).

Li et al. [8] studied this particular topic by focusing on the adaptation of the
specific NER into a MRC task.

Therefore, our research work introduces a new review of both Token Classifi-
cation and machine reading comprehension approaches, beyond the NER adap-
tation previously presented. In such field of Document Information Retrieval, we
experiment with various settings from standard benchmarks, noisy environment,
long entities, to few-shot or zero-shot learning setups, an extensive comparison
that has not been done so far in the literature.

All our experiments will be using a LayoutLM model backbone [23] since it
represents a standard baseline for Information Retrieval. It is also easy to set up
towards a token classification task or a question answering task.

4 Experimental Setups

Open-source datasets usually contain clean labels and data which facilitates the
benchmark of various models. However, in the industry, the data quality does
not necessarily reach such standards and can present various difficulties for the
model to actually learn to extract the correct entities.

In our work, we will focus on 4 different experimental settings.

4.1 Noisy Environments

Annotating documents and creating training data is an expensive and essential
part for building a supervised model.

As part of the information extraction task, annotating without any human
errors is extremely costly. For example, the annotation of 510 contracts in the
legal CUAD dataset is valued at $2 million [3].

Hence, it is common to assume a certain level of noise in the dataset. For
example, the original version of FUNSD contains too many annotation errors
[18].

In the information extraction task, the noise may be as follows:

– some annotations may be missing,
– some texts may be incorrectly annotated (i.e. “Barack Obam” instead of

“Barack Obama”),
– an entity can be partially annotated (i.e. “Obama” instead of “Barack

Obama”).

Therefore, it is essential to be able to create robust and performing models
even if noise is present in the dataset.
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4.2 Long Entities and Long Documents

Extracting long entities represents a common challenge for information extrac-
tion and QA tasks. Often, they are found on long documents like contracts and
other legal-binding documents (often composed of multiple dozens of pages). In
this case, one entity frequently corresponds to multiple sentences.

The first issue is when the number of input tokens in the document exceeds
the maximum capacity of the model. Transformer architectures, which are the
state-of-the-art for the defined tasks, cannot exceed a fixed size (pretrained posi-
tional embeddings size is often set at 512 for common architectures such as BERT
[1]). This is mainly because of their quadratic complexity with respect to the
number of input tokens (O(n2)).

The common fallback is to divide the text into chunks such that they can
properly fit in the model. However, this is an unsatisfying approach when answers
are expected to be long entities, as the probability that the answer is overlapping
on at least two chunks is significant.

Another common approach is to alleviate the memory consumption issue,
often by truncating the attention matrix format, by using diverse inductive
biases. BigBird [25] proposes a sampling methodology to choose the tokens used
for self-attention at any position. Finally, general approaches to reduce mem-
ory consumption of models can be used, such as gradient checkpointing, at the
expense of increased time complexity.

For Token Classification, long entities are also a challenge when defining the
task. Models are typically trained to classify the tokens given the IOB tagging
scheme [14]. As entities become longer, this model output becomes very sensitive
to errors. For example, one common issue is when the model predicts a sequence
like “BIIIIOIIIII”.

While the token classification task requires the entity classification for each
token, the question answering task is only trying to classify a token as the start
or the end of an entity. Long entities that overlap over different chunks could
therefore be treated more independently with less dependency to contiguous
context in QA than token classification.

4.3 Few-Shot Learning

Few-Shot Learning consists in feeding a machine learning model with very few
training data to guide and focus its future predictions, as opposed to a classical
fine-tuning which require a large amount of training labeled data samples for
the pre-trained model to adapt to the desired task with accuracy.

It represents a major challenge in the industry since large dataset labelling
is extremely costly. Therefore, achieving great performances with only a few
labeled data samples is an essential goal to reach.

4.4 Zero-Shot Learning

Zero-Shot Learning is a problem setup which consists in a model learning how
to perform a task it never did before, here: classify unseen classes.



210 L. Lam et al.

5 Datasets

In order to evaluate the different approaches and the various learning settings,
multiple datasets are available. Some of them allow to benchmark different Doc-
ument Information Extraction tasks, and in our work we will use FUNSD [6],
SROIE [5], Kleister-NDA [17] and CUAD [3] that are key information extrac-
tion datasets respectively from forms, receipts and contracts. We will also use
an internal dataset of Trade Confirmations.

In this work, we focus on the key information extraction task as a common
benchmark between visually-rich document understanding and machine reading
comprehension.

Table 1. Dataset statistics comparison between QA and Token Classification
approaches for SROIE, FUNSD, Kleister NDA, CUAD and Trade Confirmations

Token Classification QA

Datasets Split Documents Entities Categories QA Samples

SROIE train 626 2655 4 2498

test 346 1462 1384

FUNSD train 149 6536 3 440

test 50 1983 117

Kleister train 254 2861 4 744

NDA validation 83 928 254

CUAD custom train 408 1849 10 787

custom test 102 421 168

Trade custom train 170 1970 12 1857

Confirmations custom test 42 544 465

5.1 SROIE

The Scanned Receipts OCR and key Information Extraction (SROIE) [5] dataset
was introduced at the ICDAR 2019 conference for competition. Three tasks were
set up for the competition: Scanned receipt text localisation, scanned receipt
optical character recognition and key information extraction from scanned
receipts. In this work, SROIE will be mainly used for the different benchmarks,
with entities to extract among company, address, total or date.

5.2 FUNSD

The Form Understanding in Noisy Scanned Documents (FUNSD) [6] dataset was
introduced in 2019 and has been a classical benchmark in recent Document KIE
research works. The different entities are labeled as header, question or answer.
In this work, we will be using a revised version of this dataset [19] with cleaned
annotations.
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5.3 Kleister NDA

The Kleister NDA [17] dataset is composed of long formal born-digital docu-
ments of US Nondisclosure Agreements, also known as Confidentiality Agree-
ments, with labels such as Party, Jurisdiction, Effective Date or Term.

5.4 CUAD

Contract Understanding Atticus Dataset (CUAD) [3] is a dataset introduced in
2021, with classes representing information of interest to lawyers and other legal
workers when analyzing such legal documents. For instance, short labels (con-
tract date, parties names, etc.) exist, just as long labels (outsourcing agreement,
outsourcing agreement, etc.) where clauses are labeled.

5.5 Trade Confirmations

Trade confirmations are financial documents reporting the details of a completed
trade. It is well structured as the document comes from a limited number of
counterparties. It is composed of one-page PDFs detailing derivatives products
and 13 different entities to extract (price, volume, trade date ...).

6 Method and Experiments

6.1 Question Answering

Extractive QA datasets are based on tuples of contexts, queries and answers (c,
q, a). The answers can be found in the contexts and are associated with their
respective start indices and lengths in each context.

In order to adapt the QA task as an Information Extraction task into an
entity retrieval task, we turned the usual query into a generic question in natural
language about the given label: What is the <LABEL>? .

For each label to be found in a document, we create a QA data sample
composed of the document’s context, the generated query and the start indices
and lengths of the answers. One document could therefore appear multiple times
in the QA dataset since it would be associated with different queries and answers.

This procedure allows us to convert token classification-based datasets into
question answering datasets. As shown in Table 1, the number of samples for each
dataset is significantly larger when converted to QA task due to the dependence
on the number of entities and labels.

6.2 Common Setup

In this work, as mentioned, we will base our experiment on a unique LayoutLM
[23] backbone and especially the style-based embeddings variant introduced by
Oussaid et al. [10] due to its efficiency and effectiveness.
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Fig. 1. Processes of LayoutLM + style-based embeddings with QA and Token Classi-
fication tasks

Based on that backbone as shown on Fig. 1, the difference lies on the last
classification layer when trying to classify the different entities for each dataset
in token classification whereas the last layer in QA classifies start and end.

For the token classification approach, we use a batch size of 2 and an Adam
optimizer with an initial learning rate of 2∗10−5. Then throughout the training,
if there is no increase in the validation F1-score after 10 epochs, the learning rate
is divided by 2. We stop fine-tuning when the learning rate goes below 10−7.

Regarding the experimental setup for fine-tuning, for the QA approach, we
use a batch size of 4 and an Adam optimizer with an initial learning rate of
2 ∗ 10−5. The experiments also ran with gradient accumulation steps of 2. We
run the fine-tuning with early stopping on F1-score as well.

6.3 Vanilla Setting

In order to compare both approaches, we started by benchmarking the per-
formances of LayoutLM as token classification and LayoutLM as QA on the
datasets.

As represented in Table 2, the question answering approach’s performances
are not consistent across datasets since it performed very well on SROIE whereas
it achieved only poor results on Kleister NDA and did not succeed in capturing
some of the labels on FUNSD dataset. On the other hand, the token classification
approach achieved from acceptable to very good results on each dataset.

The poor results from QA approach on FUNSD could be explained by the
lack of specific semantics from its labels (header, question or answer). Indeed this
approach will first process the question query via its semantics but the question
or answer is not necessarily a refined or accurate query for the model, especially
when taken independently.
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Table 2. Performance of Token Classification and QA LayoutLM information extrac-
tion models on SROIE, FUNSD, Kleister NDA and Trade Confirmations

LayoutLMbase TC LayoutLMbase QA

Model F1 Precision Recall F1 Precision Recall

SROIE 95.79 95.36 96.24 93.78 93.78 93.78

FUNSD 86.57 87.23 86.03 6.84 55.90 4.03

Kleister NDA 76.81 77.60 76.40 32.58 53.71 24.03

Trade Confirmations 97.14 97.24 97.06 87.88 94.45 83.09

Another drawback of the QA approach that may lead to poorer performances
on datasets with multiple tags per label is its multi-responses handling for a given
label. Since the SQuAD v2 [12] dataset with the introduction of unanswerable
questions, the model must also determine when no viable answer can be extracted
from the context and should abstain from answering. But when there are multiple
(k) expected answers, taking the k -top answer outputs while filtering out the
considered non-viable answers from the model does not necessarily lead to the
wanted tags. As in SQuAD v2, the sum of the logits of the start and end tokens
must then be positive in order to be considered.

On the internal Trade Confirmations dataset, the question answering dataset
achieved correct performances with 87.88 weighted average F1-score whereas
the token classification model achieved almost perfect predictions with 97.14
weighted average F1-score.

6.4 Noisy Environments

In order to generate a noisy dataset from the SROIE dataset, we randomly sub-
sampled from the tags of each document using different sub-sampling ratios.
That setting allows us to recreate an environment where datasets are not fully
but only partially tagged.

We decided to take as sub-sampling tag ratios 10%, 30%, 50%, 70%, 90%.
This sub-sampling procedure is applied on the training and validation sets but
the test set remains the same fully annotated split. It can also happen that all
tags from a document are discarded using this procedure, the document is then
also discarded from the training or validation set.

We also performed the sub-sampling and training using 5 different random
seeds in order to assess the stability and statistical significance of the results.

As shown in Fig. 2, we notice that the Token Classification approach is seri-
ously affected by this noisy environment with more than 50% of average decrease
in weighted F1-score when using only 10% of the tags (40.66%) whereas for the
QA approach, the F1-score only decreased on average of 9% achieving on average
83.09% of weighted F1-score.

We notice that the results from the token classification approach have a
greater variance than the results from QA.
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Fig. 2. SROIE: QA vs Token Classification performances using partial random missing
tags

This is due to the fact that the QA approach is only fed with positive training
samples compared to the token classification approach that is provided all token
classifications, even where there are no tags. It therefore learns not to predict
certain tokens or values.

The performances of the QA approach is therefore more consistent using
different ratios of tag sub-sampling than the token classification approach.

However the token classification approach reaches slightly higher perfor-
mances than the QA approach with the fully annotated dataset as stated in
the Vanilla setting (Table 3).

6.5 Long Entities and Long Documents

In order to assess the performances of both approaches on Long Entities Infor-
mation Extraction, we based our experiment on the CUAD dataset using only
its top 10 labels with the longest entities on average.

This dataset represents a particular business use-case when dealing with con-
tracts or more generally Legal documents, in which entities to extract can be
several sentences or even entire paragraphs.

As shown in Table 4, the token classification approach has a lot of difficulties
at capturing long entities whereas the QA approach can predict some of them
correctly, even though the F1-score is still low (weighted average F1-score at
37.51).

This could be explained by the fact that in the regular token classification
approach, for long documents, since the O tag is predominant among all token
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Table 3. CUAD: Chosen labels & tag character lengths

Label Count Average #characters Median #characters

Affiliated License Licensor 96 576 485

Source Code Escrow 59 500 257

Affiliate License Licensee 96 559 475

Post Termination Services 378 461 370

Non Transferable License 237 412 344

Uncapped Liability 131 456 406

Irrevocable Or Perpetual License 128 594 510

Most Favored Nation 30 455 370

License Grant 639 431 355

Competitive Restriction Exception 96 433 361

Table 4. Performance of Token Classification and QA LayoutLM information extrac-
tion models on CUAD dataset

CUAD Token Classification QA

Model F1 Recall Precision F1 Recall Precision

Affiliated License Licensor 0.00 0.00 0.00 0.00 0.00 0.00

Source Code Escrow 0.00 0.00 0.00 20.00 14.29 33.33

Affiliate License Licensee 0.00 0.00 0.00 38.46 26.32 71.42

Post Termination Services 0.00 0.00 0.00 39.64 30.56 56.41

Non Transferable License 0.00 0.00 0.00 42.55 32.79 60.61

Uncapped Liability 0.00 0.00 0.00 39.22 27.78 66.67

Irrevocable Or Perpetual License 0.00 0.00 0.00 43.63 32.43 66.67

Most Favored Nation 0.00 0.00 0.00 40.00 25.00 99.99

License Grant 0.00 0.00 0.00 36.76 24.64 72.34

Competitive Restriction Exception 0.00 0.00 0.00 34.04 25.81 50.00

Weighted average 0.00 0.00 0.00 37.51 27.08 63.06

classification entities so the model may be focused on reducing that loss overall
and therefore predicting no tags.

6.6 Few-Shot Learning

In order to assess Few-Shot Learning capabilities, we used the SROIE dataset
and we randomly sub-sampled from the documents using different sub-sampling
ratios. That setting allows us to recreate an environment where the number of
labeled documents is largely reduced.
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We decided to take as sub-sampling document ratios 10%, 30%, 50%, 70%,
90%. This sub-sampling procedure is applied on the training and validation sets
but the test set remains the same.

Similarly to the noisy environment setting, we also performed the sub-
sampling and training using 5 different random seeds in order to assess the
stability and statistical significance of the results.

Fig. 3. SROIE: QA vs Token Classification performances using partial random missing
documents

As shown in the performance graph using different sub-sampling ratios in
Fig. 3, both approaches are impacted when trained with fewer documents, but
still achieving correct results. It is particularly true with the token classification
approach which decreased on average from 95.07% to 83.43% of weighted F1-
score when using only 10% of documents. On the other hand, the performance
drop for the QA approach was only from 92.76% to 84.58%.

The QA approach seems then slightly more robust to the lack of documents
compared to the token classification approach, even though the token classifi-
cation approach outperforms the QA approach when provided with sufficient
documents.

Once again, we notice that the results from the token classification approach
have a greater variance than the results from QA.

6.7 Zero-Shot Learning

The token classification approach cannot classify unseen classes. We could only
assess the Zero-Shot capabilities of the QA approach.
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Indeed as mentioned above, we assessed the QA approach using the prepared
QA datasets, with potentially generated questions with unseen labels. For exam-
ple, the model did not necessarily learn entities such as Header, Party or Market
during pre-training.

Using the base pre-trained LayoutLM or after fine-tuning on other datasets,
we tested the MRC performances on the different datasets (Tables 5, 6 and 7).

Table 5. Zero-Shot performances of QA LayoutLM information extraction models
pre-trained or fine-tuned on different datasets and evaluated on SROIE

SROIE Pre-trained FUNSD Kleister NDA

Model F1 Precision Recall F1 Precision Recall F1 Precision Recall

Company 0.00 0.00 0.00 5.33 3.08 20.00 0.00 0.00 0.00

Address 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 0.00 0.00 0.00 1.54 0.86 6.82 0.00 0.00 0.00

Date 54.63 86.39 39.95 79.67 70.70 91.25 22.32 12.59 98.11

weighted average 15.43 24.40 11.28 24.17 20.93 32.27 6.30 3.56 27.72

Table 6. Zero-Shot performances of QA LayoutLM information extraction models
pre-trained or fine-tuned on different datasets and evaluated on FUNSD

FUNSD Pre-trained SROIE Kleister NDA

Model F1 Precision Recall F1 Precision Recall F1 Precision Recall

Header 0.00 0.00 0.00 0.38 3.00 50.00 0.00 0.00 0.00

Question 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Answer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

weighted average 0.00 0.00 0.00 0.19 0.10 2.52 0.00 0.00 0.00

Table 7. Zero-Shot performances of QA LayoutLM information extraction models
pre-trained or fine-tuned on different datasets and evaluated on Kleister NDA

Kleister NDA Pre-trained SROIE FUNSD

Model F1 Precision Recall F1 Precision Recall F1 Precision Recall

Party 0.00 0.00 0.00 0.00 0.00 0.00 1.62 0.82 57.14

Jurisdiction 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.36 5.00

Effective Date 24.71 43.75 17.21 49.26 40.98 61.73 64.96 62.30 67.73

Term 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

weighted average 3.25 5.75 2.26 6.48 5.39 8.11 9.59 8.73 40.32

As shown in the different benchmarks above, the QA approach has only little
to none Zero-Shot capabilities depending on the labels it looks for. Especially
Date labels seems to be easier to detect since it might have seen similar Date
labels during fine-tuning. Also it is a relatively standard label since its format
has few variants. Otherwise, predicting totally new labels is not very effective,
without any prompt tuning or customization.
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7 Conclusion

In this paper, we presented an extensive benchmark between the token classifi-
cation approach and the question answering approach in the Document Infor-
mation Retrieval context. We showed that the token classification approach is
best suited with clean and relatively short entities in terms of both effectiveness
and efficiency, whereas the question answering approach can actually be used
for this task and represent an credible and robust alternative especially in the
cases of noisy datasets or with long entities to extract.

This represents a first study in the literature opposing those approaches on
this Key Information Extraction task, that can be completed with further works
such as question prompt-tuning or conditional search for the question answering
approach, additional experimental settings with nested entities, or even more
model architectures that could include image features as shown in the document
visual question answering task.
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Abstract. Unsupervised domain adaptation is studied to meet the
challenge of scene text recognition in diverse scenarios. Existing meth-
ods try to align source and target domain at the image or character
level. However, these approaches are somewhat coarse-grained as they
involve irrelevant information or ignore category attributes. To address
the above issues, we propose a novel Visual and Semantic Alignment
(ViSA) method to reduce the domain shifts in the high-frequency domain
and category space. Specifically, the high-frequency domain alignment
extracts the high-frequency components of global visual features, which
allows the domain classifier to focus on the text-relevant features. Fur-
thermore, the category space alignment is introduced to align char-
acter features at the category level. In the category space alignment,
cross-domain contrastive learning and prototype-consistency matching
are adopted to minimize the distance between domains. ViSA is flexible
to be plugged into various existing recognizers. In addition, ViSA can
be conducted in training and dropped in evaluation, which means no
impact on inference speed. Adequate experiments verify the superiority
of each module of ViSA, and our method achieves state-of-the-art results
on several benchmarks, such as SVT, IC13 and IC15.

Keywords: Scene Text Recognition · Unsupervised Domain
Adaptation · High-Frequency Domain · Contrastive Learning ·
Prototype Matching

1 Introduction

Understanding texts in scene images has wide applications in human life,
and poses the problem of scene text recognition (STR). A practical chal-
lenge in STR is that the recognizer is expected to possess the strong gener-
alization ability to diverse scenarios. As yet, the majority of existing meth-
ods [6,27,32,35,36,42,45,51] attempted to improve the model structures and
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Fig. 1. (a) Text images, and the high-frequency and low-frequency components of them
by wavelet transformation. (b) The intuition behind previous local-level feature align-
ment through category-agnostic marginal distribution and our category space align-
ment through domain-category joint distribution. For a better view, only the align-
ments of categories “a”, “i”, “s” are indicated.

trained them with massive synthetic data to acquire robust recognizers. How-
ever, the domain shift caused by the discrepancy between synthetic and real data
inevitably leads to the performance degradation of recognizers in real scenarios.
A reasonable solution to the above problem is unsupervised domain adapta-
tion. In unsupervised domain adaptation [8,15,24,28,34], the labeled synthetic
data and unlabeled real data are respectively regarded as the source and tar-
get domain, and the domain shift can be reduced employing feature alignment
[46,61]. Recently, some efforts on unsupervised domain adaptation [54,57,58]
have been made in STR. Nevertheless, these methods have two obvious draw-
backs: 1) Text images carry mixed information such as text content, writing
style and background style, some of which are irrelevant or even detrimental
to domain adaptation. 2) The utilization of category information is inadequate,
because the local-level feature alignment only judges whether a character belongs
to the source or target domain but neglects the category attribute, as shown in
Fig. 1(b). As a consequence, character features of different categories are prone
to mismatches across domains, which can be summarized as a negative transfer
phenomenon.

In this paper, to address the aforementioned issues, we propose a novel Visual
and Semantic Alignment (ViSA) method which takes a closer insight into the
domain shift problems in STR from visual and semantic perspectives. On the
one hand, we introduce the high-frequency domain alignment to alleviate the
domain shift at the visual level. On the other hand, we employ the category
space alignment to reduce the character-level discrepancy between domains at
the semantic level.

At the visual level, the low-frequency information in text images generally
reflects the overall appearance of images, while the high-frequency information
tends to describe the texture details of texts, as shown in Fig. 1(a). Based on this
phenomenon, we argue that focusing on high-frequency information in domain
adaptation can facilitate scene text recognition. Hence, we introduce a High-
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Frequency Feature Extraction Module (HFFEM) which decomposes the visual
features of overall images into multi-frequency components by the wavelet trans-
formation and extracts the high-frequency components by the high-pass filter.
Then, the high-frequency domain alignment is executed by a domain classifier.

At the semantic level, the attention-based LSTM decomposes the global
visual features to character-level semantic features. To reduce the character-
level domain shift more fine-grained, we align the domain-category joint distri-
butions via two novel alignment strategies: cross-domain contrastive learning and
prototype-consistency matching. To maintain categorial awareness of character
features during domain adaptation, cross-domain contrastive learning is adopted
to minimize the distance between character features of the same category and
maximize the distance between character features of different categories. Beyond
that, the prototype-consistency matching closes the paired prototypes of source
and target domain together to further reduce the discrepancy of feature distri-
butions of the same category. With the assistance of the above two strategies,
the category-level character feature alignment can be accomplished.

In the end, under the action of high-frequency domain alignment and cate-
gory space alignment, the strong generalization ability of the recognizer can be
guaranteed. Moreover, since ViSA is decoupled from the recognition model, it
can be flexibly plugged into various STR models to improve their performance.

The main contributions of this paper are summarized as follows.

– A Visual and Semantic Alignment method (ViSA) is proposed to alleviate the
domain shift problems in STR from the perspectives of the high-frequency
domain and category space in domain adaptation.

– A high-frequency domain alignment module is introduced, employing a
HFFEM to extract high-frequency features from text images to make the
domain classifier focus on the textual features.

– A category space alignment module is introduced, employing cross-domain
contrastive learning and prototype-consistency matching to reduce domain
shift more fine-grained via domain-category joint distribution.

– Experimental results on six public benchmarks, including IIIT5K, SVT, IC13,
IC15, SVTP and CUTE, demonstrate the effectiveness and superiority of
ViSA, and our method achieves state-of-the-art performance on several bench-
marks.

2 Related Work

2.1 Scene Text Recognition

As a widely applied visual task, STR has developed rapidly driven by deep learn-
ing technology in recent years. STR methods can be generally divided into two
categories: semantic context-free methods and semantic context-aware methods.

In semantic context-free methods [22,44,49,50,56,59], Connectionist-
Temporal Classification (CTC)-based methods [11,14,35] are a kind of main-
stream method. As a classical CTC-based model, CRNN [35] combined both
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CNN and RNN to acquire visual features with sequential properties, then
obtained the classification results of character sequence through a CTC decoder.

Except for normal visual modules, semantic context-aware methods [21,25,
30,31,41,42,45,47,52,53,55] invariably introduce additional semantic modules
to improve the capacity of recognizers. In attention-based methods, an encoder-
decoder structure with attention mechanisms was regarded as an implicit
language model, through which the dependencies between characters can be
extracted. Aster [36], a typical attention-based method, added a rectification
module to handle text with distortions and irregular layouts. Based on Aster,
Mou et al. [27] introduced a pluggable super-resolution branch to alleviate the
degradation of recognition performance caused by low-quality text images.

With Transformer [38] in full swing for natural language processing (NLP)
tasks, Transformer blocks are gradually incorporated into STR methods [2,7,43,
51]. To overcome the inefficiency caused by the time-dependent RNN methods,
Yu et al. [51] adopted a multiplex parallel transmission way to capture global
semantic information. ABINet [7] exploited a Transformer-based language model
to capture extra linguistic information to facilitate the process of STR. Xie et
al. [43] used the corner point to assist Transformer for artistic text recognition.

2.2 Unsupervised Domain Adaptation in Scene Text Recognition

In recent years, the study of unsupervised domain adaptation [15,23,24,28,34]
has been gradually deepened in various high-level visual tasks, especially in digit
classification. Compared to digit classification, the STR task is more complicated
and challenging, in which the sequential character information is contained in
images under diverse appearances and backgrounds. Zhan et al. [54] proposed
a geometry-aware domain adaptation network to reduce domain shifts in spa-
tial and appearance spaces. Focusing on the sequential attribute of text images,
Zhang et al. [58] exploited a sequence-to-sequence domain adaptation method
to align distributions between source and target domain from a character-level
perspective. On the basis of [58], a more remarkable domain adaptation perfor-
mance was achieved by adversarial learning [57]. However, the aforementioned
works merely applied domain adaptation measures coarsely in the process of
STR. In this paper, we take a closer insight into domain shift problems in STR
from the perspective of the high-frequency domain and character-category space.

3 Proposed Method

The proposed method is aimed to better utilize the visual and semantic informa-
tion of real scene text in unsupervised domain adaptation. To achieve this goal,
we probe into the process of domain adaptation in-depth from the high-frequency
domain and category space.
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Fig. 2. (a) The overall framework of ViSA, where the model parameters of the source
and target domains are shared; (b) The high-frequency domain alignment which applies
an HFFEM to extract high-frequency features and aligns the distributions between
domains through a domain classifier; (c) The category space alignment, including cross-
domain contrastive learning and prototype-consistency matching, aligns character-level
features at the category level.

3.1 Overall Framework

We adopt a CNN-LSTM pipeline as the base recognizer which can be divided
into two parts: the visual and semantic modules, as shown in Fig. 2(a). Specif-
ically, the visual module is composed of text rectification, feature extraction,
and feature squeeze. The text rectification, which is derived from Aster [36], is
applied to rectify irregular text images. The feature extraction shared a similar
ResNet structure as Aster does, except that the down-sampling convolutional
layers in the last three blocks of ResNet are removed. We employ the feature
squeeze module [27] to maintain more spatial information. In this module, a 1×1
convolutional layer is used for channel reduction, and a reshape layer is adopted
to generate the one-dimension vectors for subsequent recognition. The semantic
module is an encoder-decoder structure, in which the visual features are trans-
ferred to sequential semantic features. The encoder is a two-layer Bidirectional
LSTM (BiLSTM), and the decoder is a two-layer attention-based LSTM. The
detailed information of the base recognizer is described in Sect. 4.1.

On the one hand, as mentioned in [57], the visual feature alignment gener-
ally reduces the domain gap from the aspect of image appearance. Considering
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the property of text image, we conduct a novel high-frequency domain align-
ment to further promote the performance. On the other hand, as a text image
representing a sequence of characters, the fine-grained character feature align-
ment could narrow down the distance between domains at the semantic level.
Thus, we introduce a category space alignment to enhance the robustness of
character-level domain adaptation. Besides, the above two feature alignments
can be plugged into other STR models to enhance their performance.

3.2 High-Frequency Domain Alignment

There contains multifaceted information in text images, such as text content,
writing style, background style, etc. If we analyze this information from the
frequency domain perspective, a pattern can be concluded that low-frequency
information generally depicts the overall appearance of images (such as image
style, illumination and image quality) and high-frequency information invari-
ably highlights the texture details of texts (such as text content and writing
style). Based on this finding, we claim that the high-frequency information has a
stronger impact on the domain adaptation of text recognition, which is confirmed
in subsequent experiments in Sect. 4.4.

To extract the high-frequency information, we introduce a High-Frequency
Feature Extraction Module (HFFEM) which includes two operations: the wavelet
transformation and high-pass filtration, as shown in Fig. 2(b). Specifically, a clas-
sical wavelet transformation method, the Haar wavelet transform [9], is employed
to decompose the visual features, output from the feature extraction module, into
four components: LL, LH, HL and HH. Among these multi-frequency compo-
nents, LL indicates the low-frequency information, and LH,HL,HH indicate
the high-frequency information. In the high-pass filtration, LL is abandoned,
while LH, HL, HH are gathered as the high-frequency features. To encourage
the domain invariant of high-frequency features, we constrain the high-frequency
features of the source and target domain with a domain classifier DH .

Formally, we assume data from the source domain as DS = {(xS , yS)} and
data from the target domain as DT = {xT }, where xS , xT and yS respectively
denote the text images of the source and target domain and the text label cor-
responding to xS . Here, we represent the 2D visual features of the source and
target domain as F (xS) and F (xT ), respectively. To narrow down the distance of
high-frequency feature distributions between domains, the adversarial learning
[10] is adopted. The high-frequency adversarial loss can be written as:

Lhf = − ExS∼DS

[
log(1 − DH(Hwavelet(F (xS))))

]
(1)

− ExT ∼DT

[
log(DH(Hwavelet(F (xT ))))

]

where Hwavelet denotes the wavelet transformation and high-pass filtration oper-
ations in HFFEM. In this manner, the recognition capacity on target data can
be immediately promoted.
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3.3 Category Space Alignment

Apart from the high-frequency domain alignment at the visual level, we focus on
the character feature alignment at the semantic level in this part. It is aware that
the previous local-level feature alignment in Fig. 1(b) only considers whether a
character feature belongs to the source or target domain but neglects the cat-
egory attribute of the character. As a result, this category-agnostic alignment
strategy tends to the false match between character features of different cat-
egories cross domains, which leads to the negative transfer problem. Aiming
at the above problem, we introduce the cross-domain contrastive learning and
prototype-consistency matching strategies to align the domain-category joint
distributions between domains, instead of the category-agnostic marginal distri-
butions.

Specifically, in the semantic module, each character region in the text image
can be derived through the attention mechanism, where the character features
are obtained. Formally, the character representations of the source domain can
be denoted as A(xS) = {fS

i }NS

i=1, where NS represents the number of characters
in image xS and fS

i denotes the ith character feature. Likewise, the character
representations of the target domain can be represented as A(xT ) = {fT

i }NT

i=1. In
the implementation, we gather the character features in a batch as a collection.
For simplicity of expression, we still use A(xS) and A(xT ) to represent the char-
acter feature collections of the source and target domain, as shown in Fig. 2(a).
With these character features, the character feature alignment can be achieved.

Cross-Domain Contrastive Learning. Our goal is to maintain categorical
awareness of character features in domain adaptation. A spontaneous thought
is to increase the inter-class gap and reduce the intra-class gap of character fea-
tures. In consideration of the advantage of contrastive learning [1,17,40], which
minimizes the feature distance of the same category and maximizes the feature
distance of different categories by a simple InfoNCE loss [5], we introduce a cross-
domain contrastive learning framework to achieve the category-aware character
feature alignment.

Technically, the category-aware character feature alignment needs both
domain and category information. However, the target data is unlabeled. Hence,
we assign the pseudo labels to character features of target data according to the
maximum confidence category in predicted results. With the basic materials of
domain and category information, the cross-domain contrastive learning can be
implemented. Specifically, a character feature of the kth category, denoted as
fk,i, is considered as a query sample, as shown in Fig. 2(c). Corresponding to
fk,i, all character features belonging to the kth category in both source and tar-
get domain are selected as positive samples. In contrast, the remaining character
features are regarded as negative samples. Note that, as the number of negative
samples in a batch is adequate, the selection of negative samples is only carried
out in the current batch. In the process of cross-domain contrastive learning,
the character features belonging to the same category are pulled together, and
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the character features belonging to different categories are pushed away. The
cross-domain contrastive loss can be defined as:

Lcon=
∑

i∈I

1
NP

∑

p∈P

− log
exp(fk,i · fk,p/τ)

∑
p∈P exp(fk,i · fk,p/τ) +

∑
n∈N,k �=k′ exp(fk,i · fk′,n/τ)

(2)

where I is the set of overall character features in both source and target domain,
P and N respectively denote the sets of positive and negative samples, NP is
the number of positive samples, fk,p represents a positive sample corresponding
to fk,i, and fk′,n represents a negative sample of the k′th category. Besides, a
temperature hyper-parameter τ is utilized in the softmax operation. With the
assistance of cross-domain contrastive learning, the mismatch problem can be
alleviated.

Prototype-Consistency Matching. We observed a phenomenon in our exper-
iments that the character features of the same category from the same domain
(i.e., source or target domain) are aligned well, whereas the character features of
the same category across domains (i.e., source and target domains) are aligned
slightly worse. To further reduce the discrepancy of feature distributions of the
same category across domains, we introduce a prototype-consistency matching
strategy which is based on the concept of representing category-level features by
prototypes [28,37]. In general, prototype-consistency matching implicitly makes
the feature distributions of each category in the source and target domain con-
sistent by pairing all category prototypes of two domains separately, as shown
in Fig. 2(c). To be specific, the feature distribution of each category can be rep-
resented by a prototype that is the average of all character features in the same
category:

mk =
1

Nk

Nk∑

i=1

fk,i (3)

where Nk is the number of character features in the kth category. In [28], the
calculation of a prototype is on account of the current batch statistics. Consider-
ing the limited number of character features in a batch, simply representing the
category-level feature distribution with those samples is inadequate, which can
lead to a relatively large estimation error. Hence, we adopt a momentum-like
strategy to adaptively update prototypes during iterations:

m̂k ← βm̂k + (1 − β)ṁk (4)

where ṁk indicates the prototype of the kth category calculated by the current
batch, m̂k denotes the global prototype of the kth category, and β ∈ [0, 1) is a
momentum coefficient. In Eq. 4, the global prototype is obtained by the moving
average calculation between the historical and the current-batch prototype.
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In reference to [4], we utilize MSE loss to proceed one-to-one matching of
prototypes of all categories between the source and target domain:

Lproto =
C∑

k=1

||m̂S
k − m̂T

k ||2 (5)

where C is the number of categories, m̂S
k and m̂T

k indicate the global proto-
types of the kth category in the source and target domain, respectively. Under
the dynamic alignment of prototypes during training, the prototype-consistency
matching can be implemented. Ultimately, the category-level character feature
alignment is achieved with the support of both cross-domain contrastive learning
and prototype-consistency matching.

3.4 Training and Inference

The training of the entire network is implemented under the combined action
of supervised text recognition and unsupervised domain adaptation. For the
supervised text recognition, a decoding loss is applied to optimize the recognizer
with the labeled source data:

Lrec = E(xS ,yS)∼DS

[ − log p(yS |xS)
]

(6)

As for the domain adaptation, there include the high-frequency adversarial loss,
cross-domain contrastive loss and prototype-consistency loss. The overall loss of
the network is defined as follow:

L = Lrec + λhfLhf + λconLcon + λprotoLproto (7)

where λhf , λcon and λproto represent the weighting factors. In the inference stage,
after removing the high-frequency domain classifier, the adaptive model can be
directly applied to target data.

4 Experiments

4.1 Experimental Setup

All experiments in this paper involve two synthetic datasets and six real datasets.
The synthetic datasets are Synth90k [16] and SynthText [12], and the real
datasets include IIIT5K-words (IIIT5K) [26], Street View Text (SVT) [39],
ICDAR-2013 (IC13) [19], ICDAR-2015 (IC15) [18], SVT Perspective (SVTP)
[29] and CUTE80 (CUTE) [33]. On account of the various versions of several
datasets, we follow the protocol used in [45].

During training, the labeled Synth90k and SynthText are used as the source
data. Meanwhile, the training sets of the real datasets are adopted as the unla-
beled target data. Since there are no training sets in SVTP and CUTE, the
unlabeled target data only contains the training sets of IIIT5K, SVT, IC13 and
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IC15. After training, we evaluate the model on the test sets of all six real datasets.
These test sets are strictly consistent with those of other SOTA methods. Fur-
thermore, the target and test data do not share the same images, but belong to
the same domain. In summary, we guarantee a fair comparison in the dataset as
well as all other aspects.

Following the configuration of ASTER [36], the output image size of the
text rectification module is 32 × 100. Because the down-sampled convolutional
layers are removed from the last three blocks of ResNet, the output features
of the feature extraction module have the dimensions as W

4 × H
4 × C, where

W , H and C denote the width, height and channel of the input image and
W = 100,H = 32. The feature squeeze module reduces the channel dimension of
input features from 512 to 128 by a 1 × 1 convolutional layer and then reshapes
the features to the dimensions of 25 × 1024. More details of the feature squeeze
module can be found in [27]. As for the semantic module, the BiLSTM of the
encoder has 512 hidden units and the attention-based LSTM of the decoder has
1024 hidden units. Moreover, the domain classifier is composed of three fully
connected layers with the dimension of 1024. The momentum coefficient β is
set to 0.9. For joint optimization, we set λcon and λproto to 0.005 and 0.005,
respectively. The setting of λhf follows the dynamic alignment strategy in [57],
decreasing from 0.5 to 0.

The proposed ViSA is implemented with Pytorch. We primitively pre-train
our recognizer on labeled source data (i.e., Synth90k and SynthText), and then
train the overall model end-to-end on both labeled source data and unlabeled
target data (i.e., real scene data) by the manner of unsupervised domain adap-
tation. Without loss of generality, no data augmentation is used during training.
The training batch size is 512. The overall model is optimized with ADADELTA
for the minimization of the objective function. We initialize the learning rate as
2.0, and respectively decay it to 0.2 and 0.02 after 9 and 11 epochs.

4.2 Comparisons with State-of-the-Art Methods

We compare our proposed ViSA with other outstanding methods on six bench-
marks, and the results are shown in Table 1. To illustrate the contribution of
our approach to domain adaptation for STR, we set a baseline by the “source-
only”. The “source-only” is trained on synthetic labeled source data only, where
no domain adaptation is performed. It can be observed that ViSA outperforms
the baseline by 0.6%, 1.4%, 1.0%, 1.8%, 2.7% and 4.9%, respectively, on these
benchmarks. The above enhancement for domain adaptation is attributed to the
high-frequency domain alignment and category space alignment in ViSA. It is
noteworthy that there contains no training data of SVTP and CUTE in unla-
beled target data (i.e., dataset ‘U’), yet the accuracies of these two datasets are
also significantly improved. This phenomenon indicates that ViSA has strong
robustness not only for the target data but also for the unknown open data.

Furthermore, ViSA can be flexibly plugged in other recognizers to improve
their performance. To verify the adaptability of ViSA, we plug ViSA into the
typical language-free recognizer–Aster, as well as two typical language-based
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Table 1. Comparisons with previous STR methods on benchmarks.“Avg” means the
average accuracy on six benchmarks; “90K”, “ST” and “R” represent Synth90k, Syn-
thText and the labeled real data, “U” is the training sets of benchmarks as unlabeled
target data ; † indicates the methods equipped with language models; * indicates the
reproduced results; the best results are marked in bold. The second group of table
denotes the results of plugging ViSA into different models.

Method Year Training data IIIT5K SVT IC13 IC15 SVTP CUTE Avg

SOTA methods CRNN [35] 2016 90K 81.2 82.7 89.6 - - - -

ASTER [36] 2018 90K+ST 93.4 89.5 91.8 76.1 78.5 79.5 86.7

ACE [44] 2019 90K 82.3 82.6 89.7 68.9 70.1 82.6 78.8

SSDAN [58] 2019 90K+U 83.8 84.5 91.8 - - - -

SAR [20] 2019 90K+ST+R 95.0 91.2 94.0 78.8 86.4 89.6 89.5

DAN [41] 2020 90K+ST 94.3 89.2 93.9 74.5 80.0 84.4 87.2

RobustScanner [52] 2020 90K+ST 95.3 88.1 94.8 77.1 79.5 90.3 88.4

PlugNet [27] 2020 90K+ST 94.4 92.3 95.0 82.2 84.3 85.0 90.0

SRN [51]† 2020 90K+ST 94.8 91.5 95.5 82.7 85.1 87.8 90.4

GA-SPIN [55] 2020 90K+ST 95.2 90.9 94.8 82.8 83.2 87.5 90.3

ASSDA [57] 2021 90K+ST+U 88.3 88.6 93.7 78.7 - 83.3 -

JVSR [3] 2021 90K+ST 95.2 92.2 95.5 84.0 85.7 89.7 91.1

VisionLAN [42] 2021 90K+ST 95.8 91.7 95.7 83.7 86.0 88.5 91.2

PREN2D [45] 2021 90K+ST 95.6 94.0 96.4 83.0 87.6 91.7 91.5

S-GTR [13]† 2021 90K+ST 95.8 94.1 96.8 84.6 87.9 92.3 92.1

ABINet [7]† 2021 90K+ST 96.2 93.5 97.4 86.0 89.3 89.2 92.7

SGBANet [60] 2022 90K+ST 95.4 89.1 95.1 78.4 83.1 88.2 89.2

CornerTransformer [43] 2022 90K+ST 95.9 94.6 96.4 86.3 91.5 92.0 92.9

PARSeqA [2] 2022 90K+ST 97.0 93.6 97.0 86.5 88.9 92.2 93.2

DiG-ViT [48] 2022 90K+ST 96.7 94.6 96.9 87.1 91.0 91.3 93.3

Ours Baseline (Source-only) - 90K+ST 94.5 92.7 96.3 81.9 86.0 83.3 90.2

ViSA - 90K+ST+U 95.1 94.1 97.3 83.7 88.7 88.2 91.6

Aster* - 90K+ST 92.7 90.1 94.7 77.0 81.9 81.2 87.4

Aster+ViSA - 90K+ST+U 93.5 92.0 95.9 80.0 86.5 84.0 89.3

ABINet-SV†* - 90K+ST 95.4 94.4 96.4 84.0 87.6 85.8 91.5

ABINet-SV† +ViSA - 90K+ST+U 95.9 95.4 96.4 84.9 88.8 87.5 92.2

ABINet†* - 90K+ST 96.4 94.6 96.6 85.8 89.3 87.2 92.6

ABINet†+ViSA - 90K+ST+U 96.6 94.7 97.5 87.1 91.2 89.6 93.4

recognizers–ABINet-SV and ABINet. As shown in the second group of Table 1,
the performance of these recognizers is significantly improved. The average accu-
racies are increased by 1.9%, 0.7% and 0.8% for Aster, ABINet-SV and ABINet,
respectively. Throughout Table 1, ABINet plugged with ViSA has state-of-the-
art performance on SVT, IC13 and IC15 with the accuracies of 94.7%, 97.5%
and 87.1% respectively, and it achieves the best average performance of 93.4%.

In addition, as mentioned in Sect. 3.4, ViSA is only adopted during training,
and does not exist in the inference phase. Hence, ViSA does not increase any
labor to the model, no matter latency or FLOPs.

4.3 Comparisons with Other Domain Adaptation Methods

The proposed ViSA is designed to alleviate the degradation of recognition per-
formance in real scenarios, which is caused by the discrepancy between source
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Table 2. Comparisons with other domain adaptation methods in STR. � denotes that
the domain adaptation method is applied to the base recognizer.

Method IIIT5K SVT IC13 IC15 SVTP CUTE

SSDAN [58] 83.8 84.5 91.8 - - -

ASSDA [57] 88.3 88.6 93.7 78.7 - 83.3

Source-only 94.5 92.7 96.3 81.9 86.0 83.3

RevGrad [8]� 94.4 93.0 96.4 81.8 87.1 85.1

SSDAN� 94.5 93.0 96.5 82.4 87.8 86.1

ASSDA� 94.7 93.1 96.8 82.5 87.4 86.8

Ours 95.1 94.1 97.3 83.7 88.7 88.2

and target domain. To demonstrate the domain adaptation capacity of ViSA
in STR, we compare it with other domain adaptation methods. In Table 2, the
results of SSDAN and ASSDA are directly drawn from [57,58]. In both SSDAN
and ASSDA, the local-level feature alignment in Fig. 1(b) was employed for char-
acter feature alignment. Except that, ASSDA added a global-level feature align-
ment for multi-granularity domain adaptation. The remaining experiments all
adopt the base recognizer, described in Sect. 3.1, as the recognition model for a
fair comparison.

We analyze Table 2 from the following three folds: First, the recognition per-
formance of ViSA is boosted enormously over the original SSDAN and ASSDA;
Second, the results which are obtained utilizing the same base recognizer but dif-
ferent domain adaptation methods of RevGrad, SSDAN and ASSDA, are infe-
rior to ours; Third, the variant SSDAN and ASSDA by our implementation,
outperform the original SSDAN and ASSDA. The above analysis states that our
method alleviates the domain shift problem to a greater extent than the other
three domain adaptation methods. Furthermore, ViSA is equipped with a more
advanced base recognizer and has superior performance on STR.

4.4 Ablation Study

Effect of High-Frequency Domain Alignment. To illustrate the effective-
ness of high-frequency domain alignment, we conduct experiments to compare
our high-frequency domain alignment with low-frequency domain alignment and
global-level alignment. Besides, in the experiments of high-frequency domain
alignment, two feature fusion methods: concatenation and sum, are utilized for
comparison. As demonstrated in Table 3, the low-frequency domain alignment
shows the poorest results, which indicates that it is difficult to capture valu-
able information from low-frequency features only. In contrast, the results of
high-frequency domain alignment are higher than that of global-level alignment.
Beyond that, the sum-based feature fusion shows a more prominent effect than
the concatenation-based feature fusion. Compared to the global-level feature
alignment, the high-frequency domain alignment using sum-based feature fusion
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Table 3. Ablation study of high-frequency domain alignment. “GLFEM” means the
global-level feature alignment without HFFEM; “LFFEM” means the low-frequency
domain alignment; “HFFEM-C” and “HFFEM-S” mean the high-frequency domain
alignment by HH, HL, LH concatenated or summed, respectively.

Module IIIT5K SVT IC13 IC15 SVTP CUTE

GLFEM 94.4 93.0 96.4 81.8 87.1 85.1

LFFEM 94.1 92.3 96.0 81.4 86.2 84.4

HFFEM-C 94.7 93.5 96.5 82.3 87.1 85.4

HFFEM-S 94.9 93.8 96.4 82.8 87.6 85.4

Fig. 3. The ratio of low-frequency features in the source (left) and target domain (right)
during iterations. Note that, the y-axis is log scaled.

achieves gains of 0.5%, 0.8%, 1.0%, 0.5% and 0.3% in IIIT5K, SVT, IC15, SVTP
and CUTE, respectively.

To further explore the influence of high-frequency and low-frequency features
on the process of domain adaptation, another experiment is conducted, in which
the ratio of high-frequency and low-frequency features is dynamically adjusted by
a gated unit during training: z = σ(Wz ·[fL, fH ]), f = z∗fL+(1−z)∗fH , where fL

and fH are the low-frequency and high-frequency features, and Wz is trainable
weight. It can be observed in Fig. 3, the low-frequency features are barely used
in the course of feature alignment. On account of the above experiment results,
we conclude that the high-frequency features of text images are more conducive
to domain adaptation.

Effect of Category Space Alignment. In this section, we perform a series of
ablation experiments to verify the superiority of category space alignment. Ana-
lyzing Table 4, we observe the following phenomena: (1) The cross-domain con-
trastive learning outperforms the “source-only” in all datasets, and significantly
improves the accuracies by 1.3%, 2.2% and 3.5% on IC15, SVTP and CUTE; (2)
The prototype-consistency matching also gets improvements over the “source-
only” in the majority of datasets, while displaying inferior performance to the
cross-domain contrastive learning; (3) The category space alignment scheme, the
combination of the above two methods, achieves the best performance.

The above experimental results demonstrate that the cross-domain con-
trastive learning and prototype-consistency matching in the category space
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Table 4. Ablation study of category space alignment.

Method Lcon Lproto IIIT5K SVT IC13 IC15 SVTP CUTE

Source-only ✗ ✗ 94.5 92.7 96.3 81.9 86.0 83.3

Contrast ✓ ✗ 94.7 93.5 97.0 83.2 88.2 86.8

Proto ✗ ✓ 94.6 93.0 96.7 82.9 87.8 86.8

Category ✓ ✓ 94.9 93.8 97.2 83.4 88.5 87.5

Fig. 4. The visualizations of global visual feature distributions (a) for source-only
and (b) after high-frequency domain alignment; and character feature distributions
(c) for source-only, (b) after cross-domain contrastive learning, and (d) after category-
consistency alignment. In visual feature distributions of (a) and (b), the blue and red
dots denote the source and target domain. In character feature distributions of (c), (d)
and (e), the dots and triangles denote the source and target domain. The character
features in the middle are hard samples. (Color figure online)

alignment jointly promote the character-level domain adaptation. In addition,
we infer the reason why the prototype-consistency matching is inferior to
the cross-domain contrastive learning as follow: without the “push” action in
Fig. 2(c), the prototype-consistency matching leads to blurred category bound-
aries, which reduces the discriminability of character features. Besides, the effect
of prototype-consistency matching on the cross-domain contrastive learning is
further explained in Sect. 4.5.

4.5 Visualization and Analysis
Visualization on the Feature Distribution. To intuitively illustrate the
domain adaptation effect of ViSA, we employ t-SNE to visualize the visual and
semantic feature distributions of source and target domain, and the results are
shown in Fig. 4. As a note here, for visualization, we randomly select about 8,000
samples from Synth90k and SynthText as source data and utilize all real data
as target data.

It can be observed that the visual feature distributions of two domains are
much closer after high-frequency domain alignment, which verifies the effective-
ness of high-frequency domain alignment. Besides, to facilitate observation, we
choose the character features of 10 categories from 38 categories (i.e., digits, let-
ters, “UNKNOWN” and “EOS”) to visualize the character feature distributions.
In Fig. 4, the character feature distributions of the “source-only” are confusing,
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which implies the serious problem of misalignment between the character fea-
tures of different categories. After employing cross-domain contrastive learning,
the boundaries of feature distributions become clear, which indicates that the dis-
criminability of the categories of character features is enhanced. However, there
still exist domains gaps for some categories. With the assistance of prototype-
consistency matching, the feature distributions of two domains converge in the
majority of categories. This proves that prototype-consistency matching can fur-
ther reduce the distribution discrepancy between domains.

Visualization on the Attention Results. In category space alignment, atten-
tion mechanism is utilized to extract character regions in the text image. We visu-
alize the attention maps of text images at each time step, some attention results
are shown in Fig. 5. We can perceive that the character regions are relatively
accurate, which provides a reliable guarantee for character feature alignment.

Fig. 5. The attention results of text images.

Fig. 6. The prediction results of different methods.

Qualitative Comparison of Different Domain Adaptation Methods. We
present the prediction results of different domain adaptation methods for qualita-
tive comparison, as shown in Fig. 6. The “source-only” shows a poor recognition
performance on the displayed text images. The robustness of the adversarial
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domain adaptation of ASSDA is not strong enough to adapt to various real sce-
narios. On the contrary, ViSA is capable to recognize texts that suffered from
degradation and distortion, even long texts and artistic words. For example, the
word “chinatown” can be recognized, even though it is difficult for humans.

5 Conclusions

In this paper, we propose a novel Visual and Semantic Alignment method for
domain adaptation in scene text recognition. The proposed ViSA reduces the
domain gap at fine granularities in the high-frequency domain and category
space. In high-frequency domain alignment, a HFFEM is used to extract high-
frequency features from global features to make the domain classifier focus on
text-relevant information. In category space alignment, cross-domain contrastive
learning and prototype-consistency matching are adopted to align the charac-
ter feature distributions at category level. Extensive experimental results and
analysis demonstrate the effectiveness of ViSA: plugging ViSA into three rep-
resentative STR models, our method achieves state-of-the-art performance in
several benchmarks.
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Abstract. We propose a new Transformer-based text detection model,
named Dynamic Queries enhanced DEtection TRansformer (DQ-
DETR), to detect arbitrary shape text instances from images with high
localization accuracy. Unlike previous Transformer-based methods which
take all control points on the boundaries/center-lines of all text instances
as the queries of each Transformer decoder layer, we extend the query
set for each decoder layer gradually, allowing the DQ-DETR to achieve
higher localization accuracy by detecting control points for each text
instance progressively. Specifically, after refining the positions of exist-
ing control points from the preceding decoder layer, each decoder layer
further appends a new point on each side of each center-line segment,
which are input to the next decoder layer as additional queries for detect-
ing new control points. As offsets from the new control points to the
added reference points are small, their positions can be predicted more
precisely, leading to higher center-line detection accuracy. Consequently,
our DQ-DETR achieves state-of-the-art performance on five public text
detection benchmarks, including MLT2017, Total-Text, CTW1500, ArT
and DAST1500.

Keywords: Arbitrary shape text detection · Dynamic query · DETR

1 Introduction

Automatic text reading and understanding from images are playing an increas-
ingly more important role in various visual intelligence applications, such as
Robotic Process Automation (RPA), autonomous driving and OCR translation.
Robust text detection as a prerequisite has attracted increasing attention in
recent years. Advances in deep learning and the availability of massive data
have greatly improved the accuracy and capability of existing text detection
methods (e.g., [1–33]). However, arbitrary shape text detection remains challeng-
ing due to the high variations of text font, shape, scale, orientation, language,
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and extremely complex backgrounds, as well as various distortions and artifacts
caused by image capturing such as non-uniform illumination, low contrast, blur,
and occlusion.

Recently, DEtection TRansformer (DETR) [34] has made a profound impact
to object detection as latest DETR family object detection models (e.g., [35–
40]) have achieved better performance than previously popular object detection
frameworks, like Faster R-CNN [41], without relying on many hand-crafted com-
ponents like anchor generation, rule-based training target assignment and non-
maximum suppression (NMS). These models have also been introduced to solve
the text detection problem and achieved remarkable results [42–46]. For exam-
ple, Raisi et al. [42] first adapted DETR [34] to detect multi-oriented texts by
introducing a rotated version of the GIoU loss [47]. To detect the boundaries of
arbitrary shape text instances more precisely, TESTR [44] followed the two-stage
Deformable DETR [35] framework to use Transformer encoder to detect an axis-
aligned bounding-box for each text instance first. Then, it generated a set of con-
trol points for each bounding-box and took them as the queries of Transformer
decoder to enhance their representation ability. Finally, each enhanced query
embedding was input to a text/non-text classifier to predict its textness score
and a regressor to refine the position of its corresponding control point, respec-
tively. Inspired by TESTR, DPText-DETR [45] and DeepSolo [46] proposed to
update the point queries on the boundaries/center-lines of all text instances
iteratively between decoder layers to achieve higher accuracy. Despite the supe-
rior performance achieved on many public benchmark datasets, we observe that
the quality of the proposals predicted by the Transformer encoder is not high
enough for long text-lines, which affects their text/non-text classification accu-
racy. Moreover, we also find that the localization accuracy is still unsatisfactory.
Some examples are shown in Fig. 3(a).

To address these issues, we propose a new Transformer-based text detection
approach, named DQ-DETR, by introducing the concept of dynamic queries
into the DETR framework. Unlike previous methods that directly initialize all
queries before inputting them into the Transformer decoder, the query set in DQ-
DETR is extended gradually for each decoder layer. Specifically, each decoder
layer first refines the positions of already detected control points on text center-
lines from the preceding decoder layer, and then appends a new point on each
side of each center-line segment, which are input to the next decoder layer as
additional queries for detecting new control points. As offsets from the new
control points to the added reference points are small, their positions can be
predicted more precisely. Consequently, our DQ-DETR achieves state-of-the-
art performance on five public text detection benchmarks, including MLT2017,
Total-Text, CTW1500, ArT and DAST1500.



DQ-DETR for Arbitrary Shape Text Detection 245

2 Related Works

2.1 Scene Text Detection

Existing deep learning based text detection methods can be categorized into
three groups: bottom-up methods, segmentation-based methods and regression-
based methods.

Bottom-Up Methods usually use object detection models to detect text com-
ponents (e.g., characters or text segments) first and then group these components
into text instances. The major difficulty of these methods lies in how to robustly
group detected components into words/text-lines. Earlier works, like CTPN [26]
and WordSup [27], used rule-based methods to group text segments into horizon-
tal or multi-oriented text instances, which are not robust to curved texts. Some
follow-up works (e.g., [28–31]) first preformed pixel-wise text/non-text classifica-
tion, text segment box regression and optionally inter-pixel linkage relationship
prediction on each feature map simultaneously, then grouped text segments into
arbitrary shape text instances by using the local pixel connectivity information
on textness score maps and optionally inter-pixel linkage relationships. Later,
DRRG [32] and ReLaText [33] leveraged GCNs to improve linkage relationship
prediction accuracy with wider contextual information further. These methods
tend to use only local information to perform segment-wise text/non-text classi-
fication, so they cannot reject text-like objects robustly and generate more false
alarms.

Segmentation-Based Methods can be further classified into two categories:
two-stage methods and one-stage methods. Two-stage methods (e.g., [14–18])
usually borrow two-stage instance segmentation frameworks like Mask R-CNN
[48] to detect text region proposals first, then predict a segmentation mask and
optionally extra geometric attributes for the corresponding text instance in each
positive region proposal. These methods are not robust to nearby long curved
text instances as in the DAST1500 dataset [29], because the detected rectangular
proposals in this scenario are highly overlapped, which will cause some of them
to be wrongly suppressed by the NMS algorithm and hurt the recall rate. One-
stage methods (e.g., [19–25]) usually leverage FCN-based semantic segmentation
frameworks to predict a pixel-level textness score map from the input image first,
then use different methods to group text pixels into words/text-lines. In order to
avoid merging nearby words/text-lines together or over-segmenting words/text-
lines into pieces, these approaches tried to leverage other auxiliary information,
e.g., link prediction [21], progressive scale expansion [22], text border predic-
tion [23], direction field prediction [24], to enhance pixel merging performance.
Despite these efforts, these methods still tend to over segment text instances with
large inter-character spacing into pieces [24,25]. Segmentation-based methods
require manually designed post-processing algorithms to calculate text bound-
aries from segmentation mask(s).
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Regression-Based Methods (e.g., [1–11]) adopt box-regression based object
detection frameworks to detect text instances. Earlier works, like EAST [2]
and TextBoxes++ [3], only consider straight texts, which are represented by
quadrilaterals. Later, many methods explored better representations for arbi-
trary shape texts, from polygon vertices coordinates [7–9] to parameterized
contours by Bezier curve fitting [10] or Fourier tranformation [11]. To improve
localization accuracy, PCR [12] proposed to progressively evolve the initial axis-
aligned text bounding boxes to arbitrarily shaped text contours in a top-down
manner. TextBPN [49] and TextBPN++ [13] also detected arbitrary shape texts
in a coarse-to-fine manner. They first segmented text center regions as proposals,
and then gradually refined the positions of points on these proposals via iterative
boundary deformation. Recently, the DETR framework and its variants [34,35]
have been introduced into the text detection field and significantly improved the
performance of regression-based methods. Raisi et al. [42] first adapted DETR
[34] to detect multi-oriented texts by introducing a rotated version of the GIoU
loss [47]. Tang et al. [43] leveraged a Transformer encoder to model the relation-
ships of a few sampled representative features, then used these enhanced feature
vectors to predict the control points of Bezier curves to detect arbitrary shape
texts. Based on deformable DETR [35], TESTR [44] proposed a single-encoder
dual-decoder model for jointly performing curved text instance detection and
character recognition. Their bounding-box guided polygon detection procedure
allows the effective detection of arbitrarily shaped texts. DPText-DETR [45] and
DeepSolo [46] further improved the detection accuracy of TESTR by directly
using the coordinates of control points on text contours [45] or center-lines [46]
as queries and dynamically updating them between decoder layers.

2.2 DETR and Its Variants

Carion et al. [34] proposed a new Transformer-based object detector, named
DETR (DEtection TRansformer), which introduced the concept of object queries
and set prediction loss to object detection to eliminate many manually designed
components in previous object detectors like anchor generation and NMS. How-
ever, DETR has three issues: 1) Slow training convergence; 2) Unclear physical
meaning of object queries; 3) Hard to leverage high-resolution feature maps due
to high computational complexity. Deformable DETR [35] proposed effective
techniques to address these issues: 1) Formulating queries as 2D anchor points;
2) Designing a deformable attention module that only attends to certain sam-
pling points around a reference point to efficiently leverage multi-scale feature
maps; 3) Proposing a two-stage DETR framework and an iterative bounding box
refinement algorithm to further improve accuracy. Inspired by the concept of ref-
erence point, some follow-up works attempted to address the slow convergence
issue by giving spatial priors to object queries. For instance, Conditional DETR
[36] proposed a conditional spatial query to make each cross-attention head in
each decoder layer focus on a different part of an object. Anchor DETR [37] gen-
erated object queries from 2D anchor points directly. DAB-DETR [38] proposed
to directly use 4D anchor box coordinates as queries, which will be updated
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dynamically in each decoder layer. DN-DETR [39] found that the instability
of bipartite graph matching used in set prediction loss is another reason for
slow convergence and proposed a novel denoising training method to solve this
problem. DINO [40] improved DN-DETR in performance and efficiency further
by introducing a contrastive way for denoising training, a mixed query selec-
tion method for anchor initialization, and a look-forward-twice scheme for box
prediction.

3 Methodology

3.1 Overview

As depicted in Fig. 1, our DQ-DETR based text detector consists of a CNN back-
bone network, a deformable Transformer encoder, a dynamic queries enhanced
Transformer decoder, and a set of prediction heads for text/non-text classi-
fication and control point coordinate regression. Given an image, we follow
Deformable DETR [35] to extract four multi-scale feature maps with a ResNet-
50 backbone and feed them into the deformable Transformer encoder to obtain
an enhanced embedding for each pixel on each feature map, based on which a
prediction head is used to detect a set of text center-line proposals first, each
containing 3 control points. The control points of these center-line proposals
are taken as the initial queries of the DQ-DETR decoder, based on which the
decoder predicts the positions of other control points on each center-line progres-
sively. Specifically, given a set of queries output by the preceding decoder layer,
each decoder layer (except the last one) enhances their embeddings first and
then uses a detection head to refine the positions of their corresponding control
points. Based on the refined control points, we append one more point on both
sides of each detected text center-line segment. These new points are taken as
additional queries of the next decoder layer for detecting new control points for
each center-line. Finally, the query embeddings output by the last decoder layer
are fed into a detection head to reject non-text proposals and predict the relative
positions of control points on the boundary of each text instance with respect
to their corresponding reference points on the detected center-line.

3.2 Text Center-Line Proposal Generation

A number of stacked encoder layers are first used to enhance the image features
from the ResNet-50 backbone network. Each encoder layer contains a multi-
scale and multi-head deformable self-attention module [35] and a feed-forward
network (FFN). To retain positional and scale information, we add a 2D position
embedding and a learnable level embedding to the feature vector of each pixel
on each feature map before feeding them into the Transformer encoder. The
2D position embedding is calculated by using the sinusoidal positional encoding
function [50] which takes the normalized coordinates of each pixel on each feature
map as input. Feature vectors from a same feature map share a same level
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Fig. 1. An overview of the proposed DQ-DETR based text detector.

embedding. Then, each enhanced feature vector is fed into a prediction head to
perform text/non-text classification and text center-line regression, respectively.
The text/non-text classifier is implemented with a fully-connected (fc) layer
followed by a sigmoid activation function to determine whether a pixel vi on a
feature map corresponds to the midpoint of a text center-line or not. Here, we
use K = 11 ordered control points to represent a text center-line. Let cj,k denote
the k-th control point on the j-th text center-line lj in an image, then lj can be
denoted as follows:

lj = {cj,k|k = 1, 2, ...,K}. (1)

If a pixel vi is classified as corresponding to a text center-line midpoint cj,mid

(mid = K+1
2 ), we will use a regressor to predict the offsets from vi to cj,mid and

its two neighbors cj,mid−1 and cj,mid+1 simultaneously, so each text center-line
proposal contains 3 control points initially. The regressor is implemented with
a 3-layer MLP whose output channel dimension is 6. Finally, the control points
of Nq top scored center-line proposals are used to construct the initial query set
for the following DQ-DETR decoder.

3.3 DQ-DETR Decoder for Text Center-Line Extension

Query Initialization. The first decoder layer in DQ-DETR takes the control
points on all selected center-line proposals as queries. Let q0

j,k denote the initial
embedding of the k-th control point on the j-th selected center-line proposal.
q0

j,k is initialized as follows:

q0
j,k = cej,k + pej,k, (2)
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where cej,k is a learnable content embedding and pej,k is a positional embedding,
which is calculated by using the sinusoidal positional encoding function with the
normalized coordinates of the control point as input. In this way, we can initialize
3Nq queries from the Nq center-line proposals.

Query Embedding Enhancement. The queries input to a decoder layer
form a tensor Q with the shape of Nq × Np × D, where Np is the number
of already detected control points on each text center-line proposal before the
current decoder layer and D is the dimension of each query embedding. Here,
each decoder layer is composed of a factorized self-attention (SA) module [51], a
deformable cross-attention module [35] (CA) and an FFN. In the factorized self-
attention module, instead of conducting self-attention among all queries, it first
conducts intra-line self-attention and then inter-line self-attention. Denote the
j-th center-line proposal input to the l-th decoder layer as an ordered point set
{pl−1

j,k |k = start, ...,mid, ..., end}, where start = mid− Np−1
2 , mid = K+1

2 , end =
mid + Np−1

2 , and denote the input embedding of the k-th control point on the
j-th center-line proposal, i.e., pl−1

j,k , as ql−1
j,k . Then, the intra-line self-attention

operator fintra and inter-line self-attention operator finter are formulated as
follows:

fintra(ql−1
j,∗ ) =

[
q̄l−1

j,start, ..., q̄
l−1
j,mid, ..., q̄

l−1
j,end

]

= SA(ql−1
j,start, ...,q

l−1
j,mid, ...,q

l−1
j,end),

finter(q̄l−1
∗,k ) =

[
q̂l−1

1,k , q̂l−1
2,k , ..., q̂l−1

Nq,k

]

= SA(q̄l−1
1,k , q̄l−1

2,k , ..., q̄l−1
Nq,k),

j ∈ {1, 2, ..., Nq}, k ∈ {start, ...,mid, ..., end}, (3)

where q̂ is the enhanced embedding of each query output by the factor-
ized self-attention module. Compared with vanilla self-attention, factorized
self-attention can reduce the computational complexity from O(N2

q N2
p D) to

O(NqN
2
p D+N2

q NpD). The updated queries are further sent into the deformable
cross-attention module [35] to aggregate multi-scale image features from the
Transformer encoder to enhance their embeddings.

Dynamic Query Generation. The updated query embeddings from each
decoder layer (except the last one) will first be fed into a regressor to refine
the locations of current reference points. Given a query embedding ql

j,k output
from the l-th decoder layer, we denote its current position in the input image as
pl−1

j,k and its refined position as pl
j,k, respectively. pl

j,k is calculated as follows:

pl
j,k =

(
σ

(
σ−1(pxl−1

j,k ) + Δpxl
j,k

)
, σ

(
σ−1(pyl−1

j,k ) + Δpyl
j,k

))
, (4)
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where (pxl−1
j,k , pyl−1

j,k ) is the normalized coordinates of pl−1
j,k , σ(·) is the sigmoid

function and (Δpxl
j,k,Δpyl

j,k) is the predicted offset by the regressor, which
is implemented by a 3-layer MLP. After control point position refinement, we
add one more point on each end of each text center-line proposal. Specifi-
cally, denote a refined center-line proposal as an ordered point set {pl

j,k|k =
start, ...,mid, ...end}, we will insert a new point pl

j,start−1 before the first
point and append a new point pl

j,end+1 after the last point. The locations of
the newly added points will be simply initialized as pl

j,start−1 = pl
j,start and

pl
j,end+1 = pl

j,end. With these extended points, we can dynamically generate
2Nq new queries following Eq. 2 and concatenate them with the existing query
tensor. In this way, the center-lines can be extended progressively and refined
iteratively by the following decoder layers to achieve higher localization accuracy.
As depicted in Fig. 1, we use the first 5 decoder layers to generate a complete
center-line with K = 11 points. The above-mentioned regressor is shared by
these 5 decoder layers.

3.4 Final Prediction Head

The output query embeddings Q ∈ RNq×K×D from the last decoder layer will be
fed into a prediction head with two parallel FFNs for text/non-text classification
and text-line polygon vertices regression, respectively. Specifically, the text/non-
text classifier is implemented by an fc layer followed by a sigmoid activation
function. It takes the mean of query embeddings from a same text center-line as
input and predict whether there is a text-line. If so, a regressor will take each
query embedding as input and predict the offsets from the reference point to
the corresponding control points on the top boundary and bottom boundary of
a text-line, respectively. Here, the regressor is implemented by a 3-layer MLP
with an output channel dimension of 4.

4 Optimization

4.1 Bipartite Matching

We adopt the Hungarian algorithm [52] to solve the bipartite matching problem
to find the optimal matching between the predictions {P} and the ground-truths
{G}. Specifically, we need to find an injective function σ : {G} ∗→ {P} that
minimizes the matching cost as follows:

argmin
σ

|G|∑
i=1

C(G(i), P (σ(i))), (5)

where | · | denotes the number of elements in a set. Furthermore, C(G(i), P (σ(i)))
is defined as follows:

C(G(i), P (σ(i))) = λclsFL′(s(σ(i))) + λregLreg(b̂
(i)

,b(σ(i))), (6)
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where λcls and λreg are hyper-parameters to balance different tasks, and s(σ(i))

is the classification score for the σ(i)-th predicted box/center-line. FL′ is derived
from the focal loss [53], and is defined as follows:

FL′(s) = −α(1 − s)γ log(s) + (1 − α)sγ log(1 − s). (7)

Lreg is the cost for coordinates regression. To deal with the order ambiguity
problem in predicting the sequence of control points, inspired by [49], we intro-
duce an order-insensitive point matching method when calculating the regres-
sion cost. Specifically, we first enumerate all the potential point orders for each
ground-truth control point set, and calculate the L1 loss between these GT point
sequences with the predicted one. Then, we take the minimum one as the final
cost. Denote the ground-truth control point set as b̂ = {p̂i|i = 1, 2, ..., N} and
the predicted control point set as b = {pi|i = 1, 2, ..., N}, then the regression
cost between b̂ and b is defined as follows:

Lreg(b̂,b) = min
π

L1({p̂π}, {pi}), (8)

where L1(·, ·) is the L1 loss between two point sequences, and π is the permuta-
tion of the point sequence. We use the same bipartite matching scheme to match
the predictions from both encoder and decoder with the ground-truths.

4.2 Training Losses

Classification Loss. We adopt the focal loss for the classification task. Specif-
ically, for the i-th predicted box/center-line, whose classification score is si, the
classification loss can be calculated as follows:

L(i)
cls = −1{i∈Im(σ)}α(1 − si)γ log(si) − 1{i/∈Im(σ)}(1 − α)(si)γ log(1 − si), (9)

where 1 is the indicator function and Im(σ) is the image of the mapping σ.

Regression Loss. The regression loss is calculated between the matched
ground-truth box/center-line and the predicted box/center-line. For the i-th
predicted box/center-line, the corresponding regression loss can be defined as
follows:

L(i)
reg = 1{i∈Im(σ)}Lreg(b̂

σ−1(i)
,b(i)), (10)

where Lreg(·, ·) is defined as in Eq. 8.

Total Loss. The model is trained in an end-to-end manner, and we also add
deep supervision in each intermediate decoder layer. Therefore, the total loss is
the summation of the losses from the encoder Lenc and each decoder layer Ll

dec:

L = Lenc +
∑

l

Ll
dec, (11)

where Lenc and Ll
dec share the same formulation, which is defined as follows:

λcls

∑
i

L(i)
cls + λreg

∑
i

L(i)
reg. (12)
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5 Experiments

5.1 Datasets

We conduct experiments on five representative scene text detection benchmarks
to evaluate our DQ-DETR based text detector, including MLT2017 [54], Total-
Text [55], CTW1500 [7], ArT [56] and DAST1500 [29].

MLT2017 [54] is proposed for multilingual and multi-oriented text detection.
It contains 7, 200 training images, 1, 800 validation images and 9, 000 testing
images. Text instances are labeled with quadrilaterals.

Total-Text [55] contains 1, 255 training images and 300 testing images. Text
instances are labeled in word-level with polygons.

CTW1500 [7] contains 1, 000 training images and 500 testing images. Text
instances are annotated in text-line level with 14-point polygons.

ArT [56] is a large scale arbitrary shape scene text detection dataset, which
contains 5, 603 training images and 4, 563 testing images. Text instances in this
dataset are labeled in word level with polygons.

DAST1500 [29] is proposed for dense and long curved text detection. It
contains 1, 038 training images and 500 testing images. Text instances are labeled
in text-line level with polygons.

SynthText150K [10] is a synthetic dataset and consists of 94, 723 images
with multi-oriented texts and 54, 327 images with curved texts. We use the word-
level annotations to pre-train our text detection models.

5.2 Implementation Details

We use ResNet-50 as the backbone network, which is pre-trained on the
ImageNet-1K dataset [57]. By default, the number of Transformer encoder and
decoder layers are both set to 6. The number of attention head and sampling
points in each deformable attention module are set to 8 and 4, respectively. The
number of selected center-line proposals Nq is set to 300 in all experiments.
We implement our model based on Detectron21 and conduct experiments on a
workstation with 8 Nvidia V100 GPUs. During training, the batch size is set
to 16 in all experiments. AdamW [58] is used as the optimizer and the weight
decay is 1e−4. The loss weights λcls and λreg are set to 1.0 and 5.0, respectively.
The hyper-parameters α and γ in the focal loss are set to 0.25 and 2.0. We first
pre-train our model on a mixture of SynthText150K, MLT2017 and Total-Text
for 350K iterations. The base learning rate is 1e−4 and is divided by 10 at 280K
iterations. Then, we finetune it on each target dataset with a base learning rate
5e−5 and the learning rate is divided by 10 at 80% of the total number of itera-
tions. The number of finetuning iterations is set according to the size of different
datasets. Specifically, we finetune 100K, 50K and 20K iterations on MLT2017,
ArT and other small datasets (Total-Text, CTW1500 and DAST1500), respec-
tively. Data augmentations are used for better performance, including random

1 https://github.com/facebookresearch/detectron2.

https://github.com/facebookresearch/detectron2
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Table 1. Performance comparison on MLT2017.

Method P(%) R(%) F(%)

Lyu et al. [20] 83.8 55.6 66.8

CRAFT [31] 80.6 68.2 73.9

PSENet [22] 73.8 68.2 70.7

DB [60] 83.1 67.9 74.7

DRRG [32] 75.0 61.0 67.3

Xiao et al. [61] 84.2 72.8 78.1

MOST [62] 82.0 72.0 76.7

Raisi et al. [42] 84.8 63.2 72.4

FSGNet [43] 87.3 73.2 79.6

DQ-DETR 85.9 77.6 81.5

geometrical distortion [59] with a probability of 0.1, randomly rotating the image
by 90◦ with a probability of 0.2, randomly resizing both sides of an image to sizes
ranging from 128 to 2,560 pixels without keeping aspect ratios, instance-aware
random cropping and color jittering. In the testing phase, the longer side of each
testing image in all datasets except CTW1500 is resized to be 1,600 pixels while
keeping the aspect ratio. As the resolutions of raw images in CTW1500 are rel-
atively lower, the longer side of each image in this dataset is resized to be 800
pixels.

5.3 Comparison with State-of-the-Art Methods

We compare our DQ-DETR based text detector with previous scene text detec-
tion methods on MLT2017, Total-Text, CTW1500, ArT and DAST1500. For the
sake of fair comparisons, all the reported results are based on single-model and
single-scale testing.

Multilingual and Multi-oriented Text Detection. We first evaluate our
approach for multilingual and multi-oriented text detection on MLT2017. The
quantitative results are listed in Table 1. Our approach achieves the best F1-score
of 81.5%, surpassing the recent best performing method, FSGNet [43], by 1.9%.
The superior performance achieved on this challenging dataset demonstrates the
effectiveness of our approach.

Curved Text Detection. To validate the effectiveness of our approach on
curved text detection, we further conduct experiments on three representative
datasets, i.e., Total-Text, CTW1500 and ArT. The experimental results are listed
in Table 2. On Total-Text and CTW1500, our approach achieves the highest F1-
scores of 89.2% and 89.6%, respectively. On the larger scale dataset, ArT, our
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approach outperforms previous methods by a large margin, achieving the best
performance of 86.1%, 78.4% and 82.1% in terms of precision, recall and F1-
score, respectively.

Table 2. Performance comparison on Total-Text, CTW1500 and ArT. * indicates the
results on ArT are collected from the official website.

Method Total-Text CTW1500 ArT

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

TextSnake [30] 82.7 74.5 78.4 67.9 85.3 75.6 − − −
PAN [63] 89.3 81.0 85.0 86.4 81.2 83.7 − − −
CRAFT* [31] 87.6 79.9 83.6 86.0 81.1 83.5 77.2 68.9 72.9

TextFuseNet* [64] 87.5 83.2 85.3 85.8 85.0 85.4 82.6 69.4 75.4

DB [60] 87.1 82.5 84.7 86.9 80.2 83.4 − − −
PCR [12] 88.5 82.0 85.2 87.2 82.3 84.7 84.0 66.1 74.0

ABCNet-v2 [65] 90.2 84.1 87.0 85.6 83.8 84.7 − − −
I3CL [66] 89.2 83.7 86.3 87.4 84.5 85.9 82.7 71.3 76.6

TextBPN++ [13] 91.8 85.3 88.5 87.3 83.8 85.5 81.1 71.1 75.8

FSGNet [43] 90.7 85.7 88.1 88.1 82.4 85.2 − − −
TESTR-polygon [44] 93.4 81.4 86.9 92.0 82.6 87.1 − − −
SwinTextSpotter [67] − − 88.0 − − 88.0 − − −
DPText-DETR [45] 91.8 86.4 89.0 91.7 86.2 88.8 83.0 73.7 78.1

DQ-DETR 93.5 85.2 89.2 90.4 88.8 89.6 86.1 78.4 82.1

Table 3. Performance comparison on DAST1500. *indicates the results are from [29].

Method P(%) R(%) F(%)

SegLink∗ [28] 66.0 64.7 65.3

CTD+TLOC∗ [7] 73.8 60.8 66.6

PixelLink∗ [21] 74.5 75.0 74.7

SegLink++ [29] 79.6 79.2 79.4

ReLaText [33] 89.0 82.9 85.8

MAYOR [18] 87.8 85.5 86.6

DQ-DETR 91.1 88.2 89.6

Dense and Long Curved Text Detection. We further evaluate our approach
on DAST1500, which contains a large number of dense and long curved text-
lines. As the aspect ratios of text-lines in this dataset are much larger than that
of text instances in other datasets, we use more points (i.e., K = 15) to represent
each text center-line, which also requires two more decoder layers to detect all
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control points on each center-line. The quantitative results are shown in Table 3.
Our approach achieves the new state-of-the-art performance of 91.1%, 88.2%
and 89.6% in terms of precision, recall and F1-score, respectively, outperforming
the most competitive method, MAYOR [18], by 3.0% in terms of F1-score. The
superior performance achieved on this dataset also demonstrates the advantages
of the proposed dynamic query design.

Qualitative Results. Some qualitative results of our approach on these
datasets are presented in Fig. 2, from which we can observe that our approach can
work robustly under various challenging conditions such as perspective distor-
tion, occlusion, non-uniform illumination, low contrast, low resolution, extremely
large aspect ratio, dense distribution and arbitrary shapes.

Fig. 2. Qualitative detection results of DQ-DETR. (a-b) are from MLT2017, (c-d) are
from Total-Text, (e-f) are from CTW1500, (g-h) are from ArT, and (i-j) are from
DAST1500.

5.4 Ablation Study

Effectiveness of Dynamic Queries. In this section, we investigate the influ-
ence of the proposed dynamic query design on text detection accuracy. To this
end, we have implemented a baseline model without dynamic queries. In detail,

Table 4. Ablation study for the effectiveness of dynamic queries on MLT2017 and
ArT.

Method MLT2017 ArT

P(%) R(%) F(%) P(%) R(%) F(%)

DQ-DETR 85.9 77.6 81.5 86.1 78.4 82.1

− dynamic query 84.3 76.3 80.1 84.6 77.7 81.0
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Table 5. Ablation study for the effectiveness of dynamic queries on DAST1500.

Method IoU@0.5 IoU@0.8 FPS

P(%) R(%) F(%) P(%) R(%) F(%)

DQ-DETR 91.1 88.2 89.6 80.8 78.2 79.4 6.1

− dynamic query 89.7 87.7 88.7 78.0 76.3 77.1 5.7

Fig. 3. Some comparison examples between (a) baseli vne model (without dynamic
queries) and (b) the proposed DQ-DETR. The line segments in blue are center-line
proposals from Transformer encoder and the polygons in red are the final detection
results from Transformer decoder. (Color figure online)

we let the encoder of the baseline model detect all control points on each text
center-line proposal directly. Then, we take all these control points as queries
and feed them into the Transformer decoder to refine their positions iteratively.
Therefore, the number of queries is constant in all decoder layers. We keep all the
other settings unchanged to make a fair comparison. The experimental results
on MLT2017 and ArT are listed in Table 4 and the results on DAST1500 are
shown in Table 5. We can observe that dynamic queries can consistently improve
the performance in terms of precision, recall and F1-score on different datasets.
Specifically, with dynamic queries, the F1-scores on MLT2017 and ArT can be
improved by 1.4% and 1.1%, respectively. On DAST1500, dynamic queries can
improve the F1-score by 0.9% when evaluated at the IoU threshold of 0.5, and
the performance gap will be much larger, i.e., 2.3%, when compared at a higher
IoU threshold of 0.8. These results demonstrate that the proposed dynamic query
design can improve the localization accuracy effectively, especially for dense and
long curved text-lines. Some comparison examples can be found in Fig. 3.
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6 Limitations

The proposed approach has shown promising results in previous experiments,
exhibiting superior capabilities in most challenging scenarios. However, there
are still some limitations to be addressed. One of the challenges is caused by
text-lines with ambiguous layouts, where the directions of text-lines cannot be
determined by appearance features only. Additionally, the current model cannot
detect text-lines overlaid by watermarks or stamps robustly. Some failure exam-
ples are illustrated in Fig. 4. Finding effective solutions to these problems will
be our future work.

Fig. 4. Some typical failure cases. (a) text-lines with ambiguous layout, which should
be detected as three isolated characters in the red circle; (b) overlaid text-lines. (Color
figure online)

7 Conclusion and Future Work

In this paper, we introduce a new Transformer-based text detection model,
named DQ-DETR, by introducing the concept of dynamic queries into the DETR
framework. With the help of dynamic queries, our DQ-DETR based text detec-
tor can achieve higher localization accuracy than the previous Transformer-based
text detection models by detecting control points for each text instance progres-
sively. Consequently, our DQ-DETR based text detector has achieved state-of-
the-art performance on five public text detection benchmarks, namely MLT2017,
Total-Text, CTW1500, ArT and DAST1500.

For future work, we will explore how to incorporate textual information
into our DQ-DETR decoder to detect text-lines with ambiguous layouts. More-
over, we will explore to use different number of control points to represent text
instances with different aspect ratios, which may bring further improvement for
both accuracy and efficiency.
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Abstract. Self-supervised text recognition has attracted more and more
attention since it provides an effective way to utilize unlabeled real text
images. Nowadays, Masked Image Modeling (MIM) shows superiority in
visual representation learning, and several works introduce it into text
recognition. In this paper, we take a further step and design a method for
text-recognition-friendly self-supervised feature learning. Specifically, we
propose to decouple visual and semantic feature learning with different
masking strategies. For the visual features, intra-window random mask-
ing is proposed where the reconstruction is applied on a local image
region with random masking, which prevents the model from the help of
much context information. In the meanwhile, semantic feature learning
is based on a window random masking, which removes more visual clues
and boosts the sequence modeling of the model. Based on this idea, we
first propose a siamese network that aligns dual features with each other,
then we explore the dual distillation with a co-teacher framework. Our
proposed method shows the effectiveness of self-supervised scene text
recognition with state-of-the-art performances on most benchmarks.

Keywords: Scene Text Recognition · Self-Supervised Learning ·
Masked Image Modeling

1 Introduction

Nowadays, scene text recognition has been a hot topic due to the various practical
applications, which aims to transcribe the text in the image to computer-editable
text format. Existing text recognition methods [17,46,48,61] have achieved sig-
nificant improvements with the help of deep learning. However, deep learning
based text recognition methods also highly depend on large-scale training data.
Fortunately, the synthetic text images can be a solution for data-hungry training,
but recent works [2,4] also indicate the superiority of the real training images.
Considering the expensive annotations of the text images, it is valuable to explore
the usage of unlabeled real data.
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G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 261–279, 2023.
https://doi.org/10.1007/978-3-031-41679-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41679-8_15&domain=pdf
http://orcid.org/0000-0002-8942-5907
http://orcid.org/0000-0002-8799-3409
http://orcid.org/0000-0002-2822-1564
http://orcid.org/0000-0001-8940-480X
https://doi.org/10.1007/978-3-031-41679-8_15


262 Z. Qiao et al.

Fig. 1. Illustrations of different masking strategies. The first of two are existing mask-
ing strategies: (a) random masking and (b) block-wise masking, the former reserves
more visual details and the latter fully masks some characters. The last of two are
our proposed strategies: (c) intra-window random masking and (d) window random
masking. The red rectangles in the figure represent the windows. These two strategies
first split the image into several windows, and apply the masking based on the window.
Intra-window random masking uniformly masks the patches within a window, and the
window random masking masks all patches in some windows. (Color figure online)

Thanks to Self-Supervised Learning, the model can achieve a strong fea-
ture extractor with unlabeled data, the contrastive learning [7,21] and Masked
Image Modeling (MIM) [20,57] are two common techniques. The effectiveness
of self-supervised learning for text recognition is also verified, where SeqCLR [1]
proposes sequence-level contrastive learning with some corresponding data aug-
ments. PerSec [33] performs contrastive learning on different stages of the back-
bone to achieve multi-level feature learning. DiG [59] integrates contrastive learn-
ing and MIM into a unified framework, where the techniques of MIM follow the
SimMIM [57]. We explain that MIM is more suitable for text recognition for
three reasons: (1) The instance discrimination used in contrastive learning is
not very flexible for text recognition, since the characters are the individual
elements, the number of which varies in the text images; (2) MIM helps the
model build the intra-characters and inter-character dependencies; (3) Masked
Language Modeling (MLM) [13] has been widely adopted in Natural Language
Processing (NLP), and the text recognition is a cross-modal task so that MIM
and MLM could be integrated to achieve cross-modal pre-training.

In this paper, we propose to improve the existing MIM methods for scene text
recognition. The motivation is that visual and semantic information are two key
parts for the identification of each character, where a character can be recognized
by the corresponding visual clues and context information from other characters.
Based on this observation, we aim to decouple and improve the learning of
these two features during self-supervised pre-training with specifically designed
masks. As shown in Fig. 1(a) random masking and (b) block-wise masking are
two common masking strategies used in MIM. The random masking follows a
uniform distribution and it can reserve some visual details for characters. The
block-wise masking removes a large continuous region, where some characters are
fully masked. We explain that random masking can benefit the model with the
learning of character visual details, and block-wise masking helps the modeling of
context information among characters. In this paper, we unify these two masking
strategies in a single model with some improvements and pay attention to both
these two kinds of features during pre-training.
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Furthermore, we modify the two masking strategies to achieve a better adap-
tion for text recognition. As shown in Fig. 1(c), different from traditional random
masking, we limit the visible regions in a local window. In particular, the encoder
only performs attention operations among the patches in the same window. This
intra-window random masking can prevent the model from much context infor-
mation of the whole text image but reserve some visual details of characters.
Specifically, we first split the image into several non-overlapped windows and the
random masking is applied to each window independently with the same mask-
ing ratio. Compared with traditional random masking, the window-independent
masking can decrease the possibility that characters are completely masked. For
the window random masking, since most text images are single-line with hori-
zontal direction, we simplify the block-wise masking with vertical rectangle mask
regions as shown in Fig. 1(d). Note that the window random masking removes
all visual clues for some characters, and lets the model pay attention to the
context information. Based on the integration of two masking strategies, we pro-
pose Dual Masked Autoencoder (Dual-MAE for short) to improve the learning
of the visual and semantic features. We start from a siamese network including
dual branches to reconstruct the pixel values of two proposed masking strate-
gies. Additionally, we align the features from two branches with bi-directional
supervision. In this way, the features of visual and semantic information can ben-
efit from each other. Then we try to replace the low-level pixel supervision with
high-level feature supervision using a dual distillation framework. Specifically, we
pre-trained two teacher networks adopting intra-window random masking and
window random masking respectively, which provide feature targets focusing on
the visual and semantic information. In summary, we first propose to decouple
the learning of visual and semantic features for self-supervised text recognition
with a dual masking strategy, and our contributions are as follows:

1. We aim to decouple visual and semantic features learning for self-
supervised scene text recognition. A dual masking strategy of intra-window ran-
dom masking and window random masking is proposed for two kinds of features;

2. We design a siamese network integrating the dual masking strategies into
a single framework, and align the features belonging to each other;

3. A dual distillation framework with co-teacher is then proposed to adopt
the high-level feature as targets. The two teacher networks are pre-trained with
different masking strategies to provide two kinds of targets for distillation.

4. We conduct extensive experiments to verify the effectiveness of our Dual-
MAE. State-of-the-art (SOTA) performance is achieved compared with other
self-supervised text recognition methods.

2 Related Works

2.1 Scene Text Recognition

Scene text recognition is a hot topic and existing methods can be divided into
traditional and deep learning based methods. Traditional methods [60] usu-
ally adopt a bottom-to-up framework, which detects the characters first and
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then groups them with heuristic rules. Deep learning based methods attract
more attention nowadays, which can be distinguished from a different view
of decoding strategies. Connectionist Temporal Classification (CTC for short)
based methods [6,22,25,46,50] first extract the visual and context features,
then transcribe the target text with CTC. With the development of atten-
tion mechanism, many works [10,30,31,40,47,48,56] introduce attention mech-
anism into text recognition. Due to the flexibility of the attention mechanism,
recent works propose various improvements for text recognition. Such as irreg-
ular text recognition [31,37,48,63], the usage of semantic or linguistic informa-
tion [4,17,42,54,61], novel decoding strategies [11,12,41,61], and so on. Addi-
tionally, Segmentation based methods [23,32,51] treat text recognition as a task
of semantic segmentation. Note that most of the above work adopts synthetic
text images as the training data for the data-hungry challenge.

2.2 Self-Supervised Learning

Self-supervised learning is one of the most concerned research topics recently.
Pretext tasks [18,65] and contrastive learning [7,21] based methods have been
dominant with significant performance. With the development of Vision Trans-
former (ViT) [15] and MLM in NLP, MIM has attracted more and more atten-
tion. Existing methods can be roughly classified based on the reconstruction
targets. For example, MAE [20] and SimMIM [57] adopt the pixel as the target.
To achieve high-level supervision for the mask tokens, BEiT [3] and CAE [8]
adopt visual discrete tokenizer to provide a corresponding label, and MVP [55]
uses CLIP [44] as the tokenizer. Without the pre-trained tokenizer, some meth-
ods [9,14] construct the target from the momentum updated teacher online.

For self-supervised text recognition, SeqCLR [1] extends the SimCLR [7] with
sequence-to-sequence contrastive learning, where the feature sequence is divided
into several instances with different mapping strategies. PerSec [33] applies con-
trastive learning on two feature levels in a hierarchical manner. To combine the
advantages of contrastive learning and MIM, DiG [59] tries to integrate these
two techniques, and achieves a significant improvement. Apart from contrastive
learning, SimAN [36] first attempts to use generative learning for self-supervised
text recognition, which lets the model recover the augmented images. In sum-
mary, different from PerSec, we deal with the visual and semantic feature rep-
resentation from a MIM view with novel dual masking strategies instead of
hierarchical contrastive learning. Compared with DiG, we take a further step for
the MIM-based text recognition, where a siamese network and a dual distillation
framework are proposed.

3 Method

In this section, we will introduce the details of our Dual-MAE. We first illustrate
the adopted ViT-based architecture in Sect. 3.1. The proposed intra-window ran-
dom masking and window random masking are described in Sect. 3.2. Based on
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Fig. 2. The pipeline of the proposed intra-window random masking and window ran-
dom masking. Besides the differences of the mask patches sampling, the intra-window
random masking treats each window as an independent instance for the encoder. We
indicate that the gray patches are masked, which will not be input into the encoder.
(Color figure online)

the two kinds of masking strategies, the proposed siamese network and dual dis-
tillation framework are described in Sect. 3.3 and Sect. 3.4 respectively. Finally,
we introduce the details of fine-tuning in the last sub-section.

3.1 Architecture

For self-supervised pre-training, we follow most settings from MAE. An asym-
metric encoder-decoder architecture is adopted, the encoder and decoder are
both a fully Transformer based structure. The input image is first split into sev-
eral non-overlapped patches, and the patch size is set to 4×4. Same as MAE, we
remove the masked patches and only input the visible patches to the encoder.
The unmasked patches are then embedded by a linear projection layer and added
with position embedding. Just as the standard ViT, several Transformer blocks
are adopted to extract extensive features with the input of embedded patches.

The inputs of the decoder are the outputs of the encoder combined with mask
tokens, and the decoder aims to predict the corresponding values for the mask
tokens. More details of the decoder will be described in Sect. 3.3 and Sect. 3.4.
Note that the decoder only exists during pre-training, when fine-tuning, the
decoder is replaced with other text recognition decoders.

3.2 Masking Strategy

As mentioned above, we propose two kinds of masking strategies, intra-window
random masking, and window random masking. To implement these two masking
strategies, we first split the input image into windows and the masking is applied
according to the windows. Denote the size of an image as H ×W , and the patch
size is 4×4, so the number of patch tokens is H ′×W ′ where the H ′ = H/4,W ′ =
W/4. We adopt horizontal windows to split the patch tokens, a single window
contains H ′ × 4 patches, thus the number of windows is W ′/4.

As shown in Fig. 2(a), the intra-window random masking treats each win-
dow independently, and the mask ratio is set to 75% as MAE, which is widely
adopted by most MIM methods. The major concern of our work is to design the
corresponding masking strategy for feature learning, so we fix the masking ratio
without tuning. The encoder performs self-attention between each patch within
the same window, which prevents the encoder from much context information.
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Fig. 3. The pipeline of our siamese network for Dual-MAE. There are two branches
for different masked inputs and the parameters are shared during training. Both two
branches reconstruct the pixel values of the image, and the features belonging to each
other are aligned. The red rectangles on the features represent the part to be aligned.
(Color figure online)

Since the masking is applied to each window independently, there are always
some patches in a window visible, which will reserve some visual clues for a local
region contributing to reconstruction. In this way, intra-window random masking
lets the model focus on the visual features in the corresponding window.

Window random masking aims to improve the modeling ability of the global
context information. Different from other masking strategies, the masking ele-
ments are the windows instead of patches, where a masked window represents all
patches in it that are not visible. In this way, window random masking removes
more visual clues and the context information plays an important role to recon-
struct the target. The mask ratio of window random masking is also set to 75%,
and the encoder applies attention operations on all visible patches without the
limitation of windows, as shown in Fig. 2(b).

3.3 Siamese Network Based Dual-MAE

The motivation of siamese network based architecture is to align the predictions
from two kinds of masking strategies, which lets visual and semantic features
benefit from each other. As shown in Fig. 3, there are two branches in the siamese
network, which share the parameters. The upper branch adopts intra-window
random masking and the bottom adopts window random masking. Then the
upper branch encodes the visible patches within a window and the bottom branch
encodes all visible patches. With the outputs of the encoder, the decoder first
inserts the mask tokens into corresponding positions, and additional Transformer
blocks are applied. We denote the outputs of the decoder as Fu and Fb, which
represent the outputs from the upper and bottom branches respectively. A linear
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Fig. 4. The pipeline of our proposed dual distillation based Dual-MAE. The visual
and semantic teachers are pre-trained with intra-window random masking and window
random masking respectively. Instead of low-level pixel values, the target network aims
to reconstruct the high-level features from two teachers with two decoders. The param-
eters of the dual teachers are frozen without updating. The red rectangles represent
the windows, where the encoder treats them independently. (Color figure online)

layer is adopted to predict the pixel values, which are denoted as Pu and Pb.
The objective function for the pixel regression is as follow:

Lpixel =
∑

k∈Mu

||P k
u − xk||22 +

∑

k∈Mb

||P k
b − xk||22 (1)

where the loss contains two parts for upper and bottom branches, Mu and Mb

represent the intra-window and window random masked tokens, x indicates the
normalized pixel values. Besides the loss for pixel reconstruction, we align the
outputs of the decoder with a mean squared error:

Lalign =
∑

k∈Mb

||F k
u − F k

b ||22. (2)

where Mb indicates that we only align the window random masked patches,
which are predicted with the context information. In other words, the siamese
network tries to align the predictions based on the visual and semantic informa-
tion, and let them benefit from each other. The final objective function of the
siamese network consists of two parts:

Lsiam = Lpixel + Lalign. (3)

Moreover, several kinds of weights for two losses are compared, where treating
them equally achieves better results.
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3.4 Dual Distillation Based Dual-MAE

The proposed siamese network provides an effective way to model visual and
semantic information, but the low-level pixel reconstruction task may limit
the performance of self-supervised pre-training. Another idea is to replace the
pixel reconstruction with high-level features. Inspired by the knowledge distilla-
tion [24], we propose to pre-train two teacher networks focusing on visual and
semantic features respectively, then the target network is supervised by the two
teachers. As shown in Fig. 4, the two teachers adopt different masking strategies
and are pre-trained with the task of pixel reconstruction in advance. Specifi-
cally, the visual teacher is pre-trained with intra-window random masking, and
the semantic teacher adopts window random masking on the contrary.

The target network utilizes the traditional random masking same as MAE,
and a dual decoder is applied to predict the corresponding features provided by
the encoders of pre-trained teachers. During distillation, the inputs to the visual
teacher are the window partial patches according to the intra-window random
masking, so the encoder will perform the attention operations within a window.
The semantic teacher applies the attention operations on all patches. We denote
the outputs of two teachers as Tv and Ts, the prediction of the target network
are Sv and Ss, the objective function for the distillation is:

Ldistill =
∑

k∈M
||T k

v − Sk
v ||22 +

∑

k∈M
||T k

s − Sk
s ||22 (4)

the M is random masked patches of the target network. With the dual dis-
tillation, the target network can obtain visual and semantic knowledge from a
high-level view with the help of two teachers.

3.5 Text Recognition

After self-supervised pre-training, we apply the pre-trained encoder to the down-
stream task of text recognition. To verify the generalization of our Dual-MAE, we
adopt three kinds of decoders for text recognition: CTC-based, attention-based,
and Transformer-based. The CTC-based decoder contains a linear layer to pre-
dict a distribution for each character from the features extracted by the encoder.
Considering CTC can only be applied on 1D features sequence, we convert the
2D feature map from ViT encoder to 1D with a vertical average-pooling. The
attention-based and Transformer-based decoders use the attention mechanism
to align the features for each corresponding character, which can be directly per-
formed on the 2D feature map. Specifically, the attention based decoder contains
an LSTM to transcribe the text autoregressively with the attention weights cal-
culated between the hidden states of the LSTM and the feature map. The Trans-
former based decoder adopts the Transformer blocks as the main components,
the self-attention and cross-attention are included for decoding. The settings of
hyper-parameters are followed with DiG for a fair comparison.
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4 Experiments

We conduct extensive experiments to analyze the effectiveness of our proposed
Dual-MAE. In this section, we first introduce the datasets we used for pre-training
and fine-tuning, then the implementation details are described in Sect. 4.1. The
ablation studies are shown in Sect. 4.3 to analyze the effectiveness of our proposed
modules. Finally, we compare our Dual-MAE with other SOTA methods.

4.1 Datasets

We follow the training and evaluation datasets with DiG including three parts:

Synthetic Text Data (STD). Synth90K [26] and SynthText [19] are two
common synthetic datasets for text recognition, which contain 9 million and
8 million images respectively. We adopt these two datasets for self-supervised
pre-training and text recognition fine-tuning.

Annotated Real Data (ARD). We use the same annotated real data as DiG,
which includes 2.78 million images from TextOCR [49] and Open Images Dataset
v5 [29]. They are also adopted for pre-training and fine-tuning.

Evaluation Benchmarks. We evaluate our proposed method on sev-
eral public benchmarks, including IIIT5K-Words (IIIT5K) [38], Street View
Text (SVT) [52], SVT-Perspective (SVTP) [43], ICDAR2013 (IC13) [28],
ICDAR2015 (IC15) [27] and CUTE80 (CUTE) [45]. Specifically, the IIIT5K,
IC13, and SVT mainly contain regular text, and IC15, SVTP, and CUTE focus
on the irregular text.

In summary, we pre-train our Dual-MAE on STD and ARD, then fine-tune
the text recognition methods on STD or ARD. Note that, compared with PerSec
and DiG, we use much fewer images for pre-training (about 100 million and 15
million fewer.), which also verifies the effectiveness of our method.

4.2 Implementation Details

Model Settings. The feature dimension of Dual-MAE is 256 with a single
channel image as the input. The encoder contains 12 Transformer blocks, 8 blocks
are used for the decoder of the siamese network. The dual distillation based Dual-
MAE adopts 2 blocks for the decoder to achieve more efficient training with less
memory. The input images are resized to 32 × 128 without keeping ratio.

Self-Supervised Pre-Training. We follow the most training settings from
MAE, where the optimizer is AdamW [34], the learning rate is set to 1.5e−4 with
a cosine decay schedule [35]. The batch size is 512, and the model is optimized
for 50 epochs with 4 warm-up epochs. No augments are adopted for pre-training.

Text Recognition Fine-Tuning. 36 symbols are covered for recognition,
including digits, and lower-case characters. For attention-based and Transformer-
based decoders, the additional ∈EOS∗ token is appended, and ∈Blank∗ token is
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Table 1. Fine-tuning evaluation on the public benchmarks. All models are trained
or fine-tuned with synthetic text images (STD). “Scratch” represents without self-
supervised pre-training, “Dec.” is short for “Decoder” and “Avg.” represents the aver-
age accuracy. “Attn” and “Trans” are the short for “Attention” and “Transformer”.

Methods Dec. IIIT5K SVT IC13 IC15 SVTP CUTE Avg.

3000 647 857 1015 1811 2077 645 288

Scratch CTC 95.1 89.6 95.1 93.7 83.0 79.2 81.4 84.7 88.2

MAE 95.3 89.8 95.3 93.4 84.8 80.9 84.8 86.4 89.1

Dual-MAE (Siam) 96.0 90.7 95.0 93.7 84.8 81.1 84.8 87.8 89.5

Dual-MAE (Distill) 95.8 91.6 95.7 94.2 84.9 81.0 85.3 88.9 89.7

Scratch Attn 96.2 91.0 96.0 95.3 85.5 81.8 86.7 89.2 90.2

MAE 96.3 91.9 96.0 94.8 86.1 82.6 87.7 89.2 90.6

Dual-MAE (Siam) 96.2 90.7 96.5 95.7 85.6 81.8 87.9 90.6 90.4

Dual-MAE (Distill) 96.6 92.7 96.7 95.3 86.5 82.9 89.5 92.4 91.1

Scratch Trans 96.0 93.3 97.0 95.6 85.2 81.2 89.1 89.6 90.4

MAE 96.8 93.0 97.0 95.2 86.6 82.7 90.4 91.3 91.2

Dual-MAE (Siam) 96.7 94.6 97.2 95.8 87.1 83.2 89.6 91.0 91.5

Dual-MAE (Distill) 97.0 93.5 97.7 96.4 86.9 83.3 90.9 91.6 91.5

introduced to CTC-based decoding. The optimizer is also AdamW, with the
learning rate 1e−4. The total epochs are 10 with 1 warm-up epoch. We adopt
the same data augments as ABINet [17], including rotation, distortion, blur, etc.

4.3 Ablation Studies

About Dual-MAE. To analyze the effectiveness of our proposed Dual-MAE,
we evaluate the models with different pre-training initialization. As shown in
Table 1, when fine-tuned with synthetic text images, our Dual-MAE improves the
performance on public benchmarks significantly with different decoders. Specif-
ically, our distillation based Dual-MAE works best on average when combined
with all three kinds of decoders. For the CTC-based decoder, 1.5% and 0.6%
improvements are achieved compared with training from scratch and traditional
MAE. The performance increases are also consistent with the other two decoders.
We observe that Dual-MAE works better on some challenging benchmarks, such
as IC15 and SVTP, which contains more low-quality images. To deal with low-
quality images, the coordination of visual and semantic information plays an
important role. Dual-MAE decouples the visual and semantic information learn-
ing, which improves the modeling capability of the features.

The superiority of our Dual-MAE is more significant when fine-tuned with
real text images. As shown in Table 2, the siamese network based Dual-MAE
achieves the best performance on nearly all benchmarks. Compared with the
model without self-supervised pre-training, our proposed method improves the
performance with 3.8%, 2.2%, and 3.1% on average with different decoders.
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Table 2. Fine-tuning evaluation on the public benchmarks. All models are trained or
fine-tuned with real text images (ARD).

Methods Dec. IIIT5K SVT IC13 IC15 SVTP CUTE Avg.

3000 647 857 1015 1811 2077 645 288

Scratch CTC 94.6 91.3 93.7 93.6 84.0 81.3 82.6 88.5 88.8

MAE 96.3 93.3 95.2 95.2 85.6 83.7 85.3 92.4 92.4

Dual-MAE (Siam) 96.9 94.7 96.7 96.4 88.1 86.8 89.1 94.1 92.6

Dual-MAE (Distill) 97.2 94.9 97.0 96.7 87.5 86.1 89.0 93.8 92.5

Scratch Attn 96.5 93.7 94.7 94.9 85.7 84.3 88.1 92.7 91.0

MAE 97.1 95.0 96.2 96.2 87.7 86.5 89.4 96.2 92.5

Dual-MAE (Siam) 97.4 95.4 97.5 97.3 88.4 87.4 90.1 96.5 93.2

Dual-MAE (Distill) 97.5 95.4 96.6 96.6 88.1 86.6 89.1 95.5 92.8

Scratch Trans 96.2 93.3 94.5 94.8 86.6 84.8 88.7 90.6 91.1

MAE 97.7 96.0 97.1 97.0 88.8 87.7 93.2 97.2 93.6

Dual-MAE (Siam) 97.8 96.6 97.2 97.2 90.2 89.0 93.0 96.5 94.2

Dual-MAE (Distill) 97.8 96.3 97.1 97.2 89.7 88.7 93.0 97.9 94.0

Table 3. Comparison with different masking strategies. “Random” represents the tra-
ditional random masking, and “Dual” and “Dual w/o alignment” indicate integrating
intra-window random and window random masking with or without feature alignment.

Mask IIIT5K SVT IC13 IC15 SVTP CUTE Avg.

3000 647 857 1015 1811 2077 645 288

Random 96.3 93.3 95.2 95.2 85.6 83.7 85.3 92.4 92.4

Intra-Window Random 94.5 89.6 93.9 93.9 82.6 80.5 81.4 89.6 88.2

Window Random 94.5 91.2 93.3 93.4 83.5 81.2 82.2 87.8 88.5

Dual w/o align 96.5 92.6 94.3 94.4 85.3 83.6 85.4 93.8 90.6

Dual 96.9 94.7 96.7 96.4 88.1 86.8 89.1 94.1 92.6

Furthermore, our Dual-MAE outperforms traditional MAE with 0.2%, 0.7%,
and 0.6% performance gains. An observation is that the siamese network based
Dual-MAE works slightly better than distillation based Dual-MAE when fine-
tuned with real text images. We explain that the pre-training dataset includes
large-scale synthetic images, and the distillation based method may suffer from
the domain gap due to the teachers pre-trained on the synthetic images.
About Dual Masking Strategies. We conduct experiments to analyze the
proposed intra-window random masking and window random masking based on
the siamese network. As shown in Table 3, only adopting intra-window random
masking or window random masking harm the performance of fine-tuning, since
the visual and semantic information are not both considered. Integrating two
window masking strategies improves the performance with 2.1% on average, and
the additional visual and semantic feature alignment further improves the accu-
racy of 2%. Traditional random masking also works better than window-based
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masking, because the two kinds of features can be learned implicitly. However,
the worse performance of traditional MAE compared with our Dual-MAE also
verifies the effectiveness of the features decoupling learning, where our Dual-
MAE aims to learn the visual and semantic information explicitly.
About Distillation. We compare our distillation based Dual-MAE with dif-
ferent teachers and decoder structures. Table 4 illustrates the performance with
different teachers. Compared with pixel reconstruction, using high-level features
as the targets achieve better performance. Our dual distillation based Dual-
MAE outperforms other teachers with 0.5% improvements on average, where
the teachers are pre-trained with different masking strategies listed in Table 4.
For example, “MAE” represents the teacher pre-trained with traditional MAE.
Another choice is adopting the siamese network based Dual-MAE as the teacher.
As shown in Table 4, the second-best performance is achieved since it also con-
tains redundant visual and semantic information

As shown in Fig. 4, we adopt a dual decoder for better learning from two
teachers respectively, and the parameters of the two decoders are not shared
during training. Specifically, the decoder contains several Transformer blocks
and a prediction head. As shown in Fig. 5, the architecture of the decoder can
be modified according to blocks and heads. Figure 5(a) shows a “Dual Block
and Dual Head” structure as our Dual-MAE adopted. Sub-figure (b) and (c)
illustrate the other two designs with the parameters sharing of the blocks and
head. As shown in Table 5, the blocks and heads without weight sharing achieve
the best performance on all benchmarks, which indicates that the model without
parameters sharing adapts to feature decoupling learning better.

Table 4. The comparison of fine-tuning with different distillation teachers. “Siamese”
represents adopting the siamese network based Dual-MAE as the teacher, and “Dual”
denotes the Dual distillation with co-teacher.

Teacher IIIT5K SVT IC13 IC15 SVTP CUTE Avg.

3000 647 857 1015 1811 2077 645 288

MAE 96.9 94.0 96.6 96.3 87.1 85.7 87.9 93.7 92.0

Intra-Window Random MAE 97.1 94.3 96.7 96.5 86.7 85.2 88.2 94.4 92.0

Window Random MAE 96.2 92.9 95.2 95.3 86.2 84.8 87.3 92.7 91.1

Siamese 97.1 95.1 96.7 96.7 87.0 85.5 90.1 94.4 92.3

Dual 97.2 94.9 97.0 96.7 87.5 86.1 89.0 93.8 92.5

Fig. 5. Different decoders for dual distillation. The difference is whether the parameters
of the blocks and heads are shared. For example, the single-block and dual-head based
decoder adopts parameter-shared blocks and separated heads.
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4.4 Comparisons with Existing Self-Supervised Methods

In this section, we compare our proposed Dual-MAE with other self-supervised
text recognition methods. As shown in Table 6, our Dual-MAE outperforms Seq-
CLR and PerSec with significant improvements, even though we use fewer real
text images for self-supervised pre-training compared with PerSec. Compared
with DiG, our Dual-MAE uses less pre-training data (13M real text images
fewer.), but our proposed method achieves better or comparable fine-tuning per-
formance on both three decoders. For example, our Dual-MAE works better on
SVTP and CUTE with 1.4% and 2.4% improvements respectively when com-
bined with a CTC-based decoder.

Table 5. The comparison of fine-tuning with the different decoder architecture of our
dual distillation based Dual-MAE.

Dual Head Dual Blocks IIIT5K SVT IC13 IC15 SVTP CUTE Avg.

3000 647 857 1015 1811 2077 645 288

96.6 91.6 95.4 95.1 86.0 84.1 86.5 93.1 90.9

� 96.4 92.4 95.7 95.6 85.9 84.0 85.7 92.7 90.9

� � 97.2 94.9 97.0 96.7 87.5 86.1 89.0 93.8 92.5

Table 6. Comparison with other self-supervised text recognition methods. “UTI-
100M” is a large-scale unlabeled real dataset adopted by PerSec, “*-Real” represents
the number of the real text images used for pre-training. “DiG*” indicates the “DiG-
Small”, the parameters of which are similar with our Dual-MAE for a fair comparison.

Method Training Data Dec. IIIT5K SVT IC13 IC15 SVTP CUTE

SeqCLR [1] STD CTC 80.9 – 86.3 – – –

PerSec [33] STD + UTI-100M 85.4 86.1 92.8 70.3 73.9 69.2

DiG* [59] STD + 16M-Real 95.5 91.8 95.0 84.1 83.9 86.5

Dual-MAE (Siam) STD + 3M-Real 96.0 90.7 95.0 84.8 84.8 87.8

Dual-MAE (Distill) STD + 3M-Real 95.8 91.6 95.7 84.9 85.3 88.9

SeqCLR [1] STD Attn 82.9 – 87.9 – – –

PerSec [33] STD + UTI-100M 88.1 86.8 94.2 73.6 77.7 72.7

SimAN [36] STD + Real-300K 87.5 – 89.9 – – –

DiG* [59] STD + 16M-Real 96.4 94.6 96.6 86.0 89.3 88.9

Dual-MAE (Siam) STD + 3M-Real 96.2 90.7 96.5 85.6 87.9 90.6

Dual-MAE (Distill) STD + 3M-Real 96.6 92.7 96.7 86.5 89.5 92.4

DiG* [59] STD + 16M-Real Trans 96.7 93.4 97.1 87.1 90.1 88.5

Dual-MAE (Siam) STD + 3M-Real 96.7 94.6 97.2 87.1 89.6 91.0

Dual-MAE (Distill) STD + 3M-Real 97.0 93.5 97.7 86.9 90.9 91.6
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4.5 Comparisons with Existing Scene Text Recognition Methods

We compare our Dual-MAE with recent scene text recognition methods. Without
additional language model [17], permutation language modeling training [33] or
specific decoding designs [11,41], our proposed method just adopts the plain
ViT-based encoder and Transformer-based decoder. As shown in Table 7, our
Dual-MAE achieves the best performance on most benchmarks with a 0.3%
improvement on average. Especially, our Dual-MAE works best on some low-
quality benchmarks such as IC15, which verifies the effectiveness of the visual
and semantic features learning.

Table 7. Comparison with state-of-the-art scene text recognition methods. Bold rep-
resents the best performance. Underline represents the second best performance.

Method IIIT5K SVT IC13 IC15 SVTP CUTE Avg.

3000 647 857 1015 1811 2077 645 288

DAN [53] 94.3 89.2 – 93.9 – 74.5 80.0 84.4 86.9

RobustScanner [62] 95.3 88.1 – 94.8 – 77.1 79.5 90.3 88.2

SRN [61] 94.8 91.5 95.5 – 82.7 – 85.1 87.8 90.4

PIMNet [41] 95.2 91.2 95.2 93.4 83.5 81.0 84.3 84.4 90.5

ABINet [17] 95.4 93.2 96.8 – 84.0 – 87.0 88.9 91.5

GA-SPIN [64] 95.2 90.9 – 94.8 82.8 79.5 83.2 87.5 90.4

PREN2D [58] 95.6 94.0 96.4 – 83.0 – 87.6 91.7 91.5

VisionLAN [54] 95.8 91.7 95.7 – 83.7 – 86.0 88.5 91.2

JVSR [5] 95.2 92.2 – 95.5 84.0 – 85.7 89.7 91.2

S-GTR [23] 95.8 94.1 96.8 – 84.6 – 87.9 92.3 92.1

SVTR [16] 96.3 91.7 97.2 – 86.6 – 88.4 95.1 92.8

CornerTransformer [56] 95.9 94.6 96.4 – 86.3 – 91.5 92.0 92.6

LevOCR [11] 96.6 92.9 96.9 – 86.4 – 88.1 91.7 92.8

ParSeq [4] 97.0 93.6 97.0 96.2 86.5 82.9 88.9 92.2 93.2

Dual-MAE (Siam) 96.7 94.6 97.2 95.8 87.1 83.2 89.6 91.0 93.4

Dual-MAE (Distill) 97.0 93.5 97.7 96.4 86.9 83.3 90.9 91.6 93.5

4.6 Qualitative Analysis

In this section, we visualize the pixel reconstruction and recognition results to
illustrate the effectiveness of our Dual-MAE qualitatively. As shown in Fig. 6, we
visualize the pixel reconstruction results of our proposed window masking. Even
though the window random masking removes all visual details of some charac-
ters, the reconstruction can also be achieved, which verifies the contributions of
the semantic information. However, the reconstructed images from the window
random masking are not as well as the intra-window random masking, which
indicates that the former may not adapt to learn visual clues of characters. We



Dual-MAE for Scene Text Recognition 275

Fig. 6. Pixel reconstruction results of the two proposed masking strategies. The upper
image is the result of intra-window random masking, the bottom is the result of window
random masking. For better visualization, we concatenate the windows of the image.

Fig. 7. The visualization of the text recognition results. For each image, the strings
from top to bottom are the results from the model without pre-training, with MAE,
with siamese net based Dual-MAE, and with dual distillation based Dual-MAE.

explain that the visual details are the concern of intra-window random masking,
which is exactly the motivation of our Dual-MAE.

Figure 7 shows some text recognition results from different pre-training meth-
ods. Due to the better learning of the visual and semantic features, our proposed
Dual-MAE can help the text recognition model with some challenges of recog-
nition, such as occluded characters, curved text, and complex backgrounds.

5 Limitations

Compared with contrastive learning based methods, our Dual-MAE may suffer
from instance discrimination because no negative samples are used during pre-
training. Therefore, Dual-MAE may not be sensitive to the different characters.
We will improve the MIM with the idea of instance discrimination to achieve
better self-supervised text recognition in the future.

Another issue is that the MIM may not adapt to a CNN-based encoder.
However, it is not a severe problem, since the ViT-based encoder has been main-
stream for scene text recognition [4,12,16,39] recently. We will also regard the
Dual-MAE for CNN-based encoder as our future work.

6 Conclusion

In this paper, we focus on visual and semantic feature representation learning for
scene text recognition. We try to decouple the learning of these two features dur-
ing the self-supervised pre-training. Based on this motivation, we first propose
two novel masking strategies, intra-window random masking, and window ran-
dom masking, which aim at the learning of visual features and semantic features
respectively. Furthermore, we propose the Dual Masked Autoencoder (Dual-
MAE) with a siamese network based and a dual distillation based architec-
ture. Specifically, the siamese network based Dual-MAE aligns the features from
two different maskings, and the dual distillation based Dual-MAE introduces
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the high-level visual and semantic information with two corresponding teach-
ers. We first compare our Dual-MAE with traditional MAE, the improvements
for different decoders demonstrate the effectiveness of our decoupling features
learning. State-of-the-art or comparable performance is also reached compared
with other self-supervised text recognition methods. Combined with our pro-
posed self-supervised techniques, our Dual-MAE achieves satisfactory perfor-
mance, compared with other scene text recognition methods, even if only the
plain ViT-based encoder and Transformer-based decoder are adopted. In addi-
tion to dealing with the limitations mentioned above, we will increase the scale
of model size and training data for large text recognition models.

Acknowledgments. This work was supported by National Key R&D Program of
China, under Grant No. 2020AAA0104500.
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Abstract. Text-VQA refers to the set of problems that reason about the
text present in an image to answer specific questions regarding the image
content. Previous works in text-VQA have largely followed the common
strategy of feeding various input modalities (OCR, Objects, Question) to
an attention-based learning framework. Such approaches treat the OCR
tokens as independent entities and ignore the fact that these tokens often
come correlated in an image representing a larger ‘meaningful’ entity. The
‘meaningful’ entity potentially represented by a group of OCR tokens
could be primarily discerned by the layout of the text in the image along
with the broader context it appears. In the proposed work, we aim to clus-
ter the OCR tokens using a novel spatially-aware and knowledge-enabled
clustering technique that uses an external knowledge graph to improve
the answer prediction accuracy of the text-VQA problem. Our proposed
algorithm is generic enough to be applied to any multi-modal transformer
architecture used for text-VQA training. We showcase the objective and
subjective effectiveness of the proposed approach by improving the per-
formance of the M4C model on the Text-VQA datasets.

Keywords: Text VQA · Scene Text Clustering · Knowledge Graph

1 Introduction

Text-VQA plays an integral role in the automatic understanding of images that
come along with rich contextual text data. Specific questions regarding the con-
tent of text in an image can only be answered with the contextual understand-
ing of the various objects in the image along with the detected text. The suc-
cess of text-VQA approaches not only relies on proper reasoning regarding the
inter-dependency between visual and textual content but also on the correlation
between different words present in the textual content.

Previous works in text-VQA have focused on establishing inter-relationships
between multiple modalities [1,12,18,22] involving objects in the image, OCR-
detected text [10], and questions asked about the textual content. The different
modalities are fed as inputs to a multi-modal attention framework involving trans-
formers and learned in an end-to-end fashion with the answer as the ground truth
data. While it makes sense to learn the cross-correlation between the question,
image content (objects) and the detected OCR tokens using the guidance from
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G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 280–294, 2023.
https://doi.org/10.1007/978-3-031-41679-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41679-8_16&domain=pdf
http://orcid.org/0009-0008-5656-3490
http://orcid.org/0000-0002-8201-2253
http://orcid.org/0000-0001-7813-877X
https://doi.org/10.1007/978-3-031-41679-8_16


Re-Thinking Text Clustering for Images with Text 281

answer ground truths, the correlation between various OCR tokens in an image
cannot be learned in a similar way. Though the OCR tokens are detected sepa-
rately, in many cases they form a group or cluster with a larger context involved.
The understanding of this broader group of OCR tokens is imperative to rightly
answer many questions involved in a text-VQA task. In this work, we focus on
understanding the broader context in which the OCR tokens can be grouped and
subsequently feed the grouping information to a transformer-based attentional
framework with the aim to improve the accuracy of the text-VQA task.

Fig. 1. Our approach clusters the OCR tokens based on their spatial layout and an
external knowledge graph. The clustering information functions as an additional input
to a multi-modal transformer framework to improve the accuracy of the text-VQA
problem.

The grouping of OCR tokens under the broader context can be better under-
stood by considering the example shown in Fig. 1. In Fig. 1, the OCR tokens
detected are ‘Making’, ‘Visible’, ‘Mira’, ‘Schendel’, and so on. Though individ-
ual OCR tokens ‘Mira’ and ‘Schendel’ can occur with independent meanings,
in Fig. 1, they represent the name of the person ‘Mira Schendel’. To correctly
answer the question ‘Whose name is written on the white booklet?’, the training
network will need knowledge of the aforementioned grouping. Our work proposes
a novel method for OCR token grouping using a joint approach that exploits the
spatial layout of the tokens as well as the information available from external
knowledge bases. We can easily verify from Fig. 1 that the spatial layout of the
OCR token indeed holds a strong clue regarding their grouping while the pres-
ence of such a meaningful entity could be further established with the help of
an external knowledge graph.

The proposed work can be summarized in the following key points:

i) We improve the scene text clustering technique proposed in [26] by considering
the impact of spatial layout in grouping the tokens
ii) We modify the clustering algorithm parameters based on the inputs from
external knowledge bases and propose a novel method to ingrain the external
knowledge into the clustering technique.
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iii) We devise a novel method to incorporate the OCR clustering information into
the multi-modal transformer architecture and train it in an end-to-end fashion
to showcase improved objective and subjective results in text-VQA problems.

2 Background

2.1 Text Visual Question Answering (Text-VQA)

Text-VQA involves answering questions that require models to explicitly reason
about the text present in the image. Multiple datasets [1,7,9,10,18] have been
proposed for the text-VQA task. Subsequently, several methods have also been
proposed for this task. Broadly, the popular methods can be categorized into
vanilla attention-based models [1], graph-based models [21], and transformer-
based models [12,22]. An example of attention-based models is LoRRA [1] which
extends the Pythia framework [19] by including an additional attention mode
for OCR tokens to reason over a combined list of vocabulary and detected OCR
tokens. Multiple approaches have also incorporated the OCR tokens as a modal-
ity in their models [10,18,20]. [21] builds a three-layer multi-modal graph com-
prising numeric, semantic and visual features and then trains a graph neural net-
work for the Text-VQA task. Recently, transformer-based methods [12,22] have
been widely re-used for text VQA tasks by adapting the framework to accept
multiple modalities for OCR tokens, Visual features and Question tokens. We
elaborate on [12] (which is our baseline) in the following subsection.

There are other recent works that leverage large pre-trained encoder-decoder
language models and Vision Transformers (ViTs) which are topping the leader-
board of the text-VQA tasks [23–25]. Also, these models use OCR systems
(Google-OCR, Azure-OCR, etc.) that are more accurate than the Rosetta-OCR
results provided with the Text-VQA dataset [1]. We chose M4C as a baseline model
and used Rosetta-OCR results [12] to best demonstrate the advantage of the pro-
posed clustering strategy. However, our proposed method is modular and scalable
and thus can be plug-and-played with any transformer-based architecture.

2.2 Multimodal Multi-Copy Mesh (M4C)

M4C [12] builds on top of the [13] to create a multimodal transformer mod-
ule. This multimodal transformer has input modalities namely, question tokens,
object embeddings, and OCR tokens. The feature extraction procedure for these
three modalities is as follows:

1. Question Words: The question words are encoded using a pre-trained BERT
model [14]. The question embedding is fed into the transformer through the
question modality.

2. Detected Objects: The objects in the image are detected by passing the image
through a Faster R-CNN network [15] to detect the proposals. The object
embedding is generated by adding positional information (about the bound-
ing box) about the normalized coordinates of the object, thus making the
embedding richer.
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3. OCR tokens: The OCR features are extracted through FastText [16], Faster
R-CNN detector [15] and Pyramidal Histogram of Characters (PHOC) [17].
These features form parts of the OCR embedding. Additionally, positional
information (about the bounding box) is also added to enrich the OCR embed-
ding.

The M4C model projects the feature representations from these three modalities
as vectors in a learned common embedding space. The model learns to predict the
answer through iterative decoding accompanied by a dynamic pointer network.
The work M4C was the first breakthrough in text-VQA which demonstrated
the use of multimodal transformer architecture. M4C was benchmarked on text-
VQA datasets like Text-VQA [1] and ST-VQA [18] and achieved SOTA results
on the same.

2.3 Scene Text Clustering

Scene Text clustering is relatively a new idea in the text-VQA domain. There
has been only one such attempt in the past where Lu et al. [26] clustered the
tokens based on the bounding box coordinates and passed on that information
to a multimodal transformer through positional embeddings. However, this app-
roach does not cluster the tokens at a local level, due to which a larger set of
tokens are grouped together. It is also prone to grouping unrelated tokens with
significant differences in font size together just because they might be in close
vicinity. Apart from this, it uses positional embeddings for token numbers and
line numbers as well. In contrast to the clustering approach in [26], we leverage
the spatial alignment of the OCR tokens and the related external knowledge to
make the clusters more localized and meaningful. Furthermore, we explored the
idea of passing the clustering information through a simple mechanism instead
of positional encodings.

3 Spatially-Aware and Knowledge-Enabled Clustering

In this paper, we propose an approach that uses features of OCR bounding boxes
to cluster tokens together. Our contribution is novel in the following ways:

1. Implemented a localized clustering that works at an entity level unlike the
approach proposed in [26].

2. Utilized the spatial layout of OCR tokens by introducing a height penalty
parameter in the clustering method.

3. Clustered the OCR tokens to meaningful entities by combining the spatial
layout information of tokens with the external knowledge of WikiData.

Thus, our approach is spatially-aware by clustering the tokens based on spatial
features and knowledge-enabled by identifying the group of tokens based on their
actual meaning and presence in the knowledge graph.

Clustering is done in the pre-processing stage and the outputs of clustering
are then fed to a multimodal transformer.
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Fig. 2. An overview of our spatially-aware and knowledge-enabled approach. (a) Image
with OCR Bounding boxes. (b) The OCR tokens are clustered at different levels based
on the eps parameter that produces clusters with larger group sizes to smaller group
sizes. (c) WikiData Knowledge graph is used to identify real-world entities from the
clustered tokens. (d) The clusters are identified based on KG modifications and, (e)
bounding boxes of grouped OCR tokens are concatenated with the original bounding
boxes of tokens. (f) The concatenated bounding box vector is passed on to a multimodal
transformer that eventually uses a Dynamic Pointer Network to produce the output.

3.1 Spatially Aware Clustering

We use the DBSCAN [29] algorithm to cluster bounding boxes in each image
during the preprocessing stage. Each bounding box is represented by 17 fea-
tures, 16 features coming from x, and y coordinates of the top left, top right,
bottom left, bottom right, top midpoint, bottom midpoint, left midpoint, and
right midpoint points of the bounding box and 17th feature is the height of the
box. These features are passed to the DBSCAN algorithm for all the images and
the clustering is tuned by the epsilon(eps) parameter that specifies how close
boxes should be to each other to be considered a part of a cluster. The differ-
ence from traditional DBSCAN is that we use custom distance computation for
clustering.

To compute the distance we first choose the two nearest points between
the boxes using euclidean distance, and then the distance is penalized by the
height difference between the two boxes. The idea here is to increase the distance
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between two boxes for clustering that has significant differences in their height
even after being in close vicinity.

distance = d + λ × ΔH (1)

Here, d is the Euclidean distance between the two nearest points of bounding
boxes, λ is a penalty parameter and ΔH is the height difference between the
boxes.

The clustering is tuned in such a way that it focuses on grouping together
tokens at a localized level (Fig. 3).

Fig. 3. Multi-level clustering happens at three eps values 0.07, 0.05, and, 0.03. Starting
with eps = 0.07, the clustered tokens are concatenated and queried on WikiData. The
same is done for other eps values and the largest string that finds a match in the
WikiData query is retained in the final clustering. Refer to Sect. 3.2 for more details.

3.2 Knowledge Enabled Clustering

As demonstrated in Fig. 2, oftentimes, the text present in the image contains a
real-world entity like the author’s name, organization name, brand name, etc.
Such real-world entities are stored in publicly available knowledge graphs. Our
idea is to leverage a knowledge graph - WikiData to cluster real-world entities
that are present in the image.

To cluster larger entities and to reduce the number of queries hit on WikiData
APIs we take a sequential clustering approach where multi-level spatially aware
clustering is done for each image. Initial clustering is done with a larger eps
value, creating clusters with more tokens. In subsequent clustering, the eps value
is decreased and clusters get smaller. This is done for eps values 0.07, 0.05, and
0.03. The sequence of steps in our proposed clustering is described below:

1. A global clustering variable(global cluster) is initialized with −1 for all the
tokens.
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2. The clustering result with the same order is picked, and tokens from each
cluster are joined into a single string S.

3. S is then queried on WikiData and if S exists as an entity then the tokens
present in S are assigned the same cluster in the global cluster and this cluster
assignment cannot be changed by any further smaller cluster.

4. The above (3) process continues until the last cluster.
5. Finally, the tokens that still have no cluster assigned are passed through a

cluster reassignment method, which simply assigns new cluster ids based on
the eps 0.05 results.

Refer to Algorithm 1 for the pseudo-code of the approach.

3.3 Feature Engineering of Clustering Annotations

Scene Text Clustering is done during the preprocessing stage where every token is
assigned an additional key cluster bbox that stores the bounding box coordinate
of the cluster that the token belongs to. During the training, this additional
information is concatenated with every token’s original bounding box coordi-
nates vector. Thus, making the final OCR bounding vector 8-dimensional

xb′
n = [xtop left, ytop left, xbottom right, ybottom right,

x∼
top left, y

∼
top left, x

∼
bottom right, y

∼
bottom right]

(2)

Algorithm 1. Algorithm to Assign Cluster Ids to each token in a single Image
n ← number of OCR tokens in the image
token list ← list of OCR Tokens
global cluster ← [−1, −1, ..., −1]1×n

for eps value in [0.07, 0.05default, 0.03] do � Decreasing order of eps value to ensure

multi-level clustering

cluster ids = DBSCAN(eps=eps value)
for S in stringify(token list, cluster ids) do � Stringify joins tokens in the

same cluster and creates a list of Strings

if S in WikiData then
for token in S.tokens() do

cluster id = cluster ids[token]
if global cluster[token] == −1 then

global cluster[token] ← cluster id
end if

end for
end if

end for
end for
for token in token list do

if global clustertoken == -1 then
global cluster[token] ← token cluster iddefault � Cluster ids assigned here does

not overlap with any existing id in the global cluster

end if
end for
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This information is further linearly projected (into the same hidden-size space as
described in [12]) before adding it to the embedding formed from the FastText,
Faster-RCNN and PHOC features. The OCR feature embedding is created as
follows (similar to [12]):

xocr
n = LN(W3x

ft
n + W4x

fr
n + W5x

p
n) + LN(W6x

b′
n ) (3)

where W3, W4, W5 and W6 are learned projection matrices and LN() is a layer
normalization; xft

n , xfr
n , xp

n and xb′
n are FastText vector, Faster-RCNN (appear-

ance) feature, Pyramidal Histogram of Character (PHOC) feature and concate-
nation of location feature and cluster aggregation result respectively.

This embedding is now richer in terms of the positioning of the related “mean-
ingful” entity to which the OCR token belongs.

Another variation experimented with the OCR cluster embedding was feeding
it through a linear layer instead of concatenating it with the OCR token embed-
ding. In this approach, we project the OCR cluster Bounding box (xb′′

n ) and the
OCR token Bounding Box (xb

n) differently before adding them as described in
the equation below.

xocr
n = LN(W3x

ft
n + W4x

fr
n + W5x

p
n) + LN(W6x

b
n) + LN(W7x

b′′
n ) (4)

where W7 is a learned projection matrices and LN() is a layer normalization;
xb′′

n is cluster aggregation result.

4 Experiments

4.1 Datasets

Text-VQA. One of the datasets extensively used for Text Visual Question
Answering experiments is Text-VQA [1]. Text-VQA dataset contains images
from the Open Images dataset [2] from categories containing text like “bill-
board”, “traffic sign” and “whiteboard”. The dataset contains 28,408 images and
45,336 questions asked by (sighted) humans over them. Each question-image pair
has 10 ground truth annotations (given by humans). The training set contains
34,602 questions based on 21,953 images whereas the validation set contains
5,000 questions based on 3,166 images.

ST-VQA. The ST-VQA dataset [18] contains images from a combination of
public datasets used for scene text understanding and general computer vision
tasks. The ST-VQA comprises images from six datasets namely: ICDAR 2013
[3] and ICDAR 2015 [4], ImageNet [5], VizWiz [6], IIIT Scene Text Retrieval
[7], Visual Genome [8], and COCO-Text [9]. ST-VQA dataset contains a total of
31,791 questions over 23,038 images. The training set contains 26,308 questions
based on 19,027 images. We only use the training set for our experiments.
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OCR-VQA-200K. The dataset OCR-VQA [10] is derived from [11]. This
dataset contains cover images of the books including meta-data containing author
names, titles and genres. The OCR-VQA dataset comprises 207,572 images and
1,002,146 question-answer pairs. The training set contains approximately 800,000
question-answer pairs whereas the validation set contains 100,000 pairs.

4.2 Implementation Details

Concatenation of OCR Bounding Boxes (Concat-Boxes). The image con-
sists of multiple OCR tokens which are clustered by the Multi-level clustering
module (refer to Fig. 2) according to the information from the Knowledge Graph.
This process is described in greater detail in Sect. 3. The clustering algorithm iden-
tifies the labels of the OCR tokens and their corresponding cluster. Thus, every
OCR token forms a part of a larger group of OCR tokens. In this experiment, the
OCR bounding box feature is concatenated with the information of the cluster
(minimum and maximum boundaries of the box in both dimensions). The aim
is to find the tightest bounding box which can cover all the OCR tokens in the
cluster. We utilise the annotations of the Rosetta OCR system [28] for our exper-
iments. The resultant bounding box OCR embedding (xb′

n ) is thus 8-dimensional
(4 (token) + 4 (concat box)). This information is further linearly projected (into
the same hidden-size space as described in [12]) before adding it to the embedding
formed from the FastText, Faster-RCNN and PHOC features. The OCR feature
embedding is created as discussed in Subsect. 3.3 (similar to [12]).

Following this, we apply a similar training strategy as described by [12] for
the transformer module. We conduct two runs with this model, (i) Only Text-
VQA training data, and (ii) Text-VQA + ST-VQA training data.

The experiment results are presented in Table 2. The validation set questions
were divided into three subsets to evaluate the impact of the clustering strategy:
(i) Single-word answers – QA pairs with the answer as a single word, (ii) Multi-
word answers – QA pairs with the answer as two or more words, and (iii) Limited
OCR tokens – QA pairs where the number of OCR tokens is within the 75th
percentile of the overall number of OCR tokens distribution. The third subset
was selected to further evaluate the effectiveness of clustering, as clustering is
most effective when the number of tokens in the scene text is limited.

This strategy (Concat-Boxes) helps the model increase the single-word accu-
racy (in the first run with only Text-VQA training data) as compared to the
baseline by 0.03%. Additionally, it also boosted the overall model accuracy
by nearly 0.4% in the second run. Moreover, it also pushed the multi-word
accuracy by 0.72%, and 0.61% in limited OCR tokens set. The results of
the experiments on the dataset OCR-VQA-200K [10] are presented in Table 1.

Linear Projection of the Concatenation of OCR Bounding Boxes
(Concat-Boxes Linear Projection). The first experiment involved directly
concatenating the OCR cluster Bounding Box with the OCR token Bounding
Box. In this approach, we project the OCR cluster Bounding box (xb′′

n ) and the
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OCR token Bounding Box (xb
n) differently before adding them as described in

Subsect. 3.3.
This experiment was designed to investigate whether different projection

matrices for OCR tokens and cluster Bounding Box would help the transformer
get better information. Similar to the previous experiment, we conduct two runs
with this model, (i) Only Text-VQA training data and (ii) Text-VQA + ST-VQA
training data.

The results of the experiment are tabulated in Table 2. The results demon-
strate that we only improve the single-word accuracy at a marginal cost of overall
accuracy, in the first run. In the second run, there is a marginal increment in
the single-word and multi-word data subsets.

Thus, we can conclude that the addition of the linear projection of the cluster
bounding box coordinates makes the model less attentive to the OCR clusters
(Figs. 4 and 5).

Table 1. Accuracy scores for experiments 1 and 2. Results in the second row represent
the validation accuracy of LOGOS [26]. The improvements over the baseline are shown
in bold. The best configuration is Concat-Boxes with training data from TextVQA and
ST-VQA. There is a considerable improvement of nearly 0.4% in the overall accuracy,
0.72% in the Multi-word subset, and 0.61% in the limited OCR (as compared to the
baseline). As the code for [26] is not public, we created our own implementation of the
algorithm.

Validation Accuracy

Model Dataset for training TextVQA

(entire)

Single-word Multi-word Limited

OCR

TextVQA 39.65 47.13 34.28 41.52

Baseline TextVQA + STVQA 40.24 48.36 34.42 41.82

TextVQA 38.55 46.57 32.81 40.11

LOGOSa [26] TextVQA + STVQA 39.51 47.6 33.7 41.2

TextVQA 39.32 47.16 33.7 40.92

(1) Concat-Boxes TextVQA + STVQA 40.64 48.31 35.14 42.43

TextVQA 39.28 47.94 33.07 40.72

(2) Concat-Boxes
Linear Projection

TextVQA + STVQA 40.19 47.88 34.68 41.32

a Our implementation of LOGOS [26]

Table 2. Accuracy numbers for Concat-Boxes model on OCR-VQA-200K citeocrvqa
dataset. There is an improvement of 0.13% in the overall accuracy. Additionally, the
multi-word analysis also shows an improvement of 0.18%.

Validation Accuracy

Model Dataset for
training

OCR-VQA-200K
(entire)

Single-word Multi-word Limited
OCR

Baseline OCR-VQA-200K 63.48 86.80 44.80 63.47

(1) Concat-Boxes OCR-VQA-200K 63.61 86.87 44.98 63.53
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Q: What band is featured on

all three items?

Baseline: beatles beates

Ours: the beatles

Q: This establishment is called

coach and what?

Baseline: coach youngers

Ours: coach & horses

Q: What does the box say at

the bottom?

Baseline: christmes

Ours: merry christmas

Q: Who is the author of this

book?

Baseline: brian aldiss

Ours: brian w. aldiss

Q: Where is this mug featur-

ing?

Baseline: daytona beach fla

Ours: daytona beach

Q: What’s the book title?

Baseline: american tales

Ours: american gothic tales

Q: What is this publication

called?

Baseline: global book

Ours: the open book

Q: What does the light sign

read on the farthest right win-

dow?

Baseline: all light

Ours: bud light

Q: What is on the bottom left?

Baseline: ouble bonus

Ours: double bonus

Fig. 4. Qualitative Examples: These examples show the QA pairs (from Text-VQA
dataset [1]) along with the bounding box highlighting the captured meaningful entity
based on the question. The baseline considered was M4C [12] and our model is as
shown in Table 1(1).
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Q: What is the title of this book?

Baseline: the kingly sanctuary for a jew-

ish student has become disillusioned

Ours: the kingly sanctuary

Q: Who is the author of this book?

Baseline: wayne w. dyer

Ours: dr. wayne w. dyer

Q: Who wrote this book?

Baseline: ursula k. guin

Ours: ursula k. le guin

Q: What is the title of this book?

Baseline: the aesthetics of aquinas

Ours: the aesthetics of thomas aquinas

Fig. 5. More Qualitative Examples: These examples demonstrate the subjective
improvement on OCR-VQA-200K [10] dataset. The baseline considered was M4C [12]
and our model is as shown in Table 2(1).

5 Discussion

1. Text-KVQA dataset [27] contains questions that need to be answered using
external knowledge whereas Text-VQA [1] doesn’t need the same. The QA
pairs in Text-VQA dataset mostly refer to a “meaningful entity” present in
the scene text data. As opposed to the knowledge-graph-based works on the
Text-KVQA datasets, this work focuses on finding a meaningful entity in the
scene text data using external knowledge. To the best of our understanding, our
knowledge-graph-based clustering approach is the first such attempt to answer
questions on Text-VQA dataset. The clustering algorithm is transferable to a
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different domain which can expect the integration of multiple and new knowl-
edge graphs. This emphasizes the scalability and modularity of the algorithm.

2. Although, clustering the meaningful entities in the scene text improves the
accuracy for many QA pairs, for some examples as shown in Fig. 6, the answers
need to be extracted partially from that entity. In those scenarios, cluster-
ing information can force the multimodal transformer to output the entire
clustered entity as the answer.

3. Aside from the height discrepancy penalty, which aims to address variations
in size among OCR tokens, features based on font style can also enhance clus-
tering and open up the potential for further investigation. Another potential
avenue for model improvement is the integration of a dynamic vocabulary
of OCR clusters, similar to the approach used with OCR tokens in the M4C
decoder [12]. This can lead to improved predictions and provide an alternative
option to simply choosing a cluster as the answer.

Q: How many sides of this in-

tersection have a stop sign?

Baseline: 4

Ours: 4-way

Q: What city is listed on the

bottle?

Baseline: milan

Ours: milan mich.

Q: what does the sign say is

”back”?

Baseline: driving

Ours: driving is back.

Fig. 6. Failure cases of the clustering approach.

6 Conclusion

The paper presents a new approach to scene text clustering, based on external
knowledge, to address the text-VQA problem. By clustering OCR tokens and
prioritizing spatial alignment of scene text, our approach generates more infor-
mative queries for the knowledge graph. We also show that the information about
grouped tokens can be efficiently transmitted to a multimodal transformer-based
framework through box concatenation embeddings. Our objective and subjec-
tive evaluations on the Text-VQA dataset demonstrate the significance of the
proposed method, particularly for multi-word answers.
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Abstract. This paper proposes a Segmentation and Key point Collabo-
ration Network (SKCN) for structure recognition of complex tables with
geometric deformations. First, we combine the cell regions of the seg-
mentation branch and the corner locations of the key point regression
branch in the SKCN to obtain more reliable detection bounding box
candidates. Then, we propose a Centroid Filtering-based Non-Maximum
Suppression algorithm (CF-NMS) to deal with the problem of overlap-
ping detected bounding boxes. After obtaining the bounding boxes of all
cells, we propose a post-processing method to predict the logical relation-
ships of cells to finally recover the structure of the table. In addition, we
design a module for online generation of tabular data by applying color,
shading and geometric transformation to enrich the sample diversity of
the existing natural scene table datasets. Experimental results show that
our method achieves state-of-the-art performance on two public bench-
marks, TAL OCR TABLE and WTW.

Keywords: table structure recognition · segmentation and key point
collaboration · centroid filtering NMS · online generation of tabular
data

1 Introduction

Table is widely used as an effective representation of structured data in various
types of documents in daily life. With the rise digitalization, table recognition
has become an important research topic in the field of document understanding.
How to correctly recognize the structure of a table is an important step in table
recognition, whose main task is to identify the internal structure of a table. It
aims to locate all the physical position of cells in the table and obtain information
about the rows and columns in order to better understand the table as a whole.
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However, it’s a challenging task for natural scene tables which can be complex in
structure, vary in style and content, and may cause geometric distortions or even
bending during the image acquisition process. With the explosive growth in the
number of documents, applying table detection and table recognition techniques
to reconstruct tables from document images has become one of the important
techniques in current document understanding systems that can facilitate many
downstream tasks and has significant research value.

Early table recognition studies mainly focused on hand-crafted features and
heuristic rules [7–9]. Most of them were applied to simple table structures or
specific data formats, such as PDF. Recently, research scholars have proposed
more general models for structure recognition, such as LGPMA [22] and Flag-
Net [14]. The advantage is only one model is needed for all types of wired and
wireless tables in document and natural scenes. However, these models are gen-
erally complex and the feature that can be utilized is the intersection of features
extracted from different types of tables, thus ignoring the unique feature of each
type of table. In real life, table recognition tasks are usually applied to fixed
scenes, which require more targeted table recognition models. For example, for
distorted wired table recognition in natural scenes, in order to obtain accurate
cell boundaries, it is necessary to take full advantage of the most obvious visual
features of the cells, i.e., the box lines and four corner points of each cell; whereas
generic models, in order to be applicable to both wired and wireless table recog-
nition, often do not take full advantage of these most salient visual features.
Therefore, it also makes sense to design a specialized table recognition model to
take full advantage of the salient features of each type of table.

Cycle-CenterNet [17] proposed a detection-based table structure recognition
method that works well for wired table recognition in seven sub-scenarios. It first
locates the four corner points of each cell and further infers the overall logical
structure of the table from the coordinates of the cell. However, it only utilizes
the corner point features of the wired tables and ignores the box line features
of the tables. For table recognition of complex natural scenes with challenges
such as geometric distortion, overlay, occlusion and blurring, it is inadequate to
completely describe the overall position information of a cell by only four corner
points. Better results can be achieved if a scheme can be proposed to extract
both corner point features and box line features of wired tables.

Based on this, we propose a Segmentation and Key point Collaboration Net-
work (SKCN) that combines the cell region of the segmentation branch and
the corner locations of the key point regression branch to obtain a more reli-
able detection bounding box for better recognition performance. On the one
hand, these two branches can assist each other during training. On the other
hand, their respective results can interact and fuse to obtain refined detection
results. In order to effectively filter redundant detected bounding boxes, we pro-
pose a centroid filtering algorithm based on the standard NMS algorithm, which
achieves accurate cell detection results. Base on the refined cell boxes, we design
a post-processing scheme to predict the logical relationship of the cells to recover
the structure of the table.
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The main contributions of this paper are as follows:
1. We combine the cell region of the segmentation branch and the corner

locations of the key point regression branch to obtain a refined detected bounding
box.

2. We propose a Centroid Filtering-based Non-Maximum Suppression algo-
rithm (CF-NMS). To address the challenge of overlapping bounding boxes in
table recognition tasks, we use CF-NMS to filter out prediction results with
high IOU values that overlap with the target cell, thus improving the model
detection performance.

3. We propose a module to generate tabular data online by applying color,
shading and geometric transformation to enrich the sample diversity of existing
natural scene table datasets.

2 Related Work

Early methods for table structure recognition [7–9,24,26] were mainly based on
well-designed handcrafted features and heuristic rules. Most of these methods
were applied to specific data formats, such as PDF files. However, in these tra-
ditional methods, there are strong assumptions about the layout of the tables,
which limits their generality. With the rapid development of deep neural net-
works, image-based table structure recognition methods have shown great poten-
tial and outperform traditional methods by a large margin. We roughly divide
these methods into four categories: image-to-token generation method, graph-
based method, segmentation-based method, and object detection-based method.

2.1 Image-to-Token Generation Method

This method treats table structure recognition as an image-to-token generation
problem, typically using an encoder-decoder structure that directly converts the
source table image into target token to adequately describe tabular data struc-
ture and its cell content. Existing approaches have tried several attempts to
convert table images into symbols or HTML sequences [3,11,30,33]. However,
these methods usually rely on a large amount of data to train for convergence.
In some cases, especially with large and complex tables, this approach may lead
to performance degradation. Due to the limited length of the sequences, these
methods usually adopt certain trade-off strategies for large tables and have dif-
ficulty in tuning parameter and network design with their weep explanatory.

2.2 Graph-Based Method

The graph-based approach [21,23] treats the bounding boxes of cell regions or
text regions as nodes in a graph and uses graph neural networks to predict the
logical relationship of each sampled node pair. GraphTSR [1] introduces the
attention module to predict whether the sampled node pair belong to same row
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or same column. FLAG-Net [14] combines Transformer with graph-based con-
text aggregator in an adaptive way to exploit the advantages of both. NCGM
[13] leverages graphs and modality interaction to enhance the multi-modal rep-
resentation of text embeddings. However, these methods rely on bounding boxes
of cell regions or text regions used as additional input, which are not available
directly from the table images, thus bringing extra network cost.

2.3 Segmentation-Based Method

The segmentation-based approach first obtains the segmentation results from the
table image and then parses the segmentation results to reconstruct the table
structure. There are two broad types of this approach. One is to first obtain the
segmentation of the rows and columns, and then use the segmentation results
to grid out the cell boundaries. DeepdeSRT [25] and TableNet [19] semantically
segment rows and columns, and intersect the segmentation results of rows and
columns to obtain cell segmentation. To deal with spanning cells, SPLERGE
[28] uses the split model to segment cell boundaries and then uses the merge
model to further merge adjacent cells to obtain spanning cell boxes. SEM [31]
follows the idea of multimodality and introduces textual feature to fuse with
visual feature for each cell. The other is to recover cell boundaries to obtain cell
boxes directly. CascadeTabNet [20] classifies tables into bordered and borderless
tables, then predicts cell segmentation for borderless tables and extracts cells
from bordered tables using traditional algorithms. LGPMA [22] combines local
and global feature to accurately reconstruct cell boundaries by using soft pyra-
midal masks. However, these methods cannot handle distorted tables because
they rely on table-axis alignment.

2.4 Object Detection-Based Method

The method based on object detection first obtains the basic cells of a table from
a table image by directly detecting the bounding box of a cell or text. Heuristic
rules are then used to predict the logical relationships between detected cells
to further reconstruct the logical structure of the table. [23,27,32] propose to
detect the bounding boxes of table cells directly. After obtaining the bounding
boxes of cells, [23,32] designed some rules for clustering cells into rows and
columns. However, the methods mentioned above assume that the table is well
aligned and the target bounding boxes are rectangular, which are not suitable
for natural scene tables. Cycle-CenterNet [17] introduces a cyclic pairing module
to predict quadrilateral bounding boxes. Our method also uses quadrilateral
bounding boxes for detection, which are more adaptable to the complexity of
natural scene tables and achieve better performance in experiments. However,
quadrilateral bounding boxes are still difficult to accurately describe curved cells
and also may bring the potential of degrading detection performance. Sequential-
free box discretization (SBD) [16] parameterizes bounding boxes as key edges
and predicts the coordinates of four key points of the box from which the box
is subsequently recovered. It can output more qualitative and accurate results
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in natural scene table recognition. Therefore, we use SBD to predict four corner
points in our method. The model is built based on the box discretization network
[16], which use SBD as an additional branch to Mask-RCNN [6].

3 Methodology

Our approach consists of two main components: the Segmentation and Key point
Collaboration Network (SKCN) and the Centroid Filtering-based Non-Maximum
Suppression module (CF-NMS). The former is to obtain cell regions from both
the segmentation branch and the key point regression branch to generate refined
bounding boxes. The latter deals with the problem of overlapping cell boxes
under the natural scene table. After obtaining bounding boxes, we use a post-
processing algorithm to cluster cells into rows and columns and then parse the
table structure. The details of our approach are described separately in the
following sections.

3.1 SKCN

As shown in Fig. 1, the input image is first transformed into the output of four
branches, i.e., box classification, box regression, box segmentation and point
regression. The box regression branch outputs the minimum area bounding rect-
angle about the cell. The box classification branch predicts the category of the
cell, such as images, text, formulas and other categories. Among them, the box
segmentation branch and the point regression branch play an important role.
The box segmentation branch focuses on the box-line characteristics of the wired
table to get the segmentation result of the cell region wrapped by boundaries,
which better adapts to the arbitrary deformation of the cell. The point regression
branch mainly locates the four key points by using the key-point characteristics
of the cell. The advantage of our model is to fully capture the feature of table
elements to achieve a more accurate detection.

Since box segmentation and point regression serve for the same task of cell
detection, previous studies usually selected only one of the two in this case.
However, we believe that each of these two branches has its own characteristics.
The box segmentation branch outputs pixel-level instance segmentation of cells,
so the predicted box will be closer to ground truth. However, when it comes to
complex tables with geometrical distortions or incomplete linear characteristic,
it is difficult to separate out closely adjacent cell instances, which can easily lead
to missed detection. The point regression branch only needs to return the four
key points of the target. We first predict the eight boundary key edges of the
cell in the process of locating the key points, and then combine them into four
key points, which makes it easier to learn. The SBD branch tends to predict
cells more completely, but the drawback is also obvious. If a predicted error
occurs at one of the four key points, the detected bounding box becomes impre-
cise. Based on this, we propose to fuse results by a proper process to achieve
better performance. We give these two branches different priorities in different
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Fig. 1. The architecture of SKCN

confidence ranges. Firstly, we add a small constant of 0.03 to the segmentation
results with confidence higher than 0.9. In this way, the high confidence segmen-
tation results are preferred by the Non-Maximum Suppression. Then we select
the results of SBD with confidence higher than 0.2 and mix the results of both
branches together into the CF-NMS module to obtain the final results.

3.2 Key Point Prediction

Fig. 2. We visualize the results of the corner point detection method and our key point
detection method. For the cell “Name”, both methods predict correctly. However, for
the cell “Jim”, the corner point detection method predicts incorrectly because the cell
misses a lower-left corner point. However, our key point detection method avoids this
error by obtaining the critical point from the critical edge with the help of SBD’s edge
detection.

The most intuitive way of key point regression is to directly predict the
corner points of the target to localize it like CornerNet [10], and then Liu et
al. [16] proposed a method called SBD to solve the LC (Learning Confusion)
problem [15], which first predicts the eight boundary values of the target and
then combines them to obtain the four key points of the target. We refer to
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it to design our key point regression branch. Compared to direct corner point
prediction, our method has certain advantages. As shown in Fig. 2, the corner
characteristics of the cells may be incomplete for defective tables and wireless
tables. In this case, it is difficult for the direct corner point prediction method
to accurately predict the four corner points, which brings a large error. But for
SBD, the eight bounding key edges of the cell are obtained first. Key points
can be predicted with the help of border information, text information, not just
relying on the four corners. Our key point prediction method locates four key
points of a cell with the help of the location of eight boundaries, which is more
adaptive in natural scene table recognition.

3.3 Centroid Filtering Non Maximum Suppression (CF-NMS)

Fig. 3. Illustration of NMS and our CF-NMS. (a) is the standard NMS and (b) is our
proposed CF-NMS.

In the process of fusion of two branches of SKCN, there’s bound to be many
overlapped and redundant bounding boxes. How to effectively filter the wrong
detection boxes is the key to ensure the model performance. The process of the
standard NMS algorithm (Fig. 3(a)) consists of: (1) set the confidence threshold
for the target box, (2) arrange the list of candidate boxes in descending order of
their confidence, (3) select the box A with the highest confidence and add it to
the output list, while removing it from the list of candidate boxes, (4) calculate
the IOU value of all boxes in the list of candidate boxes with A, and remove the
candidate boxes with IOU values greater than the threshold value, (5) repeat the
above process until the list of candidate boxes is empty, and return the output
list. The effectiveness of the standard NMS algorithm depends on the setting of
the IoU threshold. A relatively high threshold can result in a large number of
false positives, while a lower threshold can result in missing highly overlapped
correct results.

The standard NMS algorithm is not fully applicable to the filtering of can-
didate boxes in natural scene tables where many complexities exist. On the one
hand, the threshold of NMS cannot be set too low, because the bounding boxes
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of adjacent cells in the distorted skew table often have a large part of overlap-
ping areas. In order to ensure the integrity of cell detection, we have to set the
NMS threshold higher, which results in many redundant detection boxes not
being filtered out. On the other hand, in some large tables, the GT boxes of cells
are relatively dense and the area of each box is small. Therefore, it can also be
regarded as a dense detection task of small targets. In this case, it is easy to pre-
dict some bounding boxes that are wrapped internally or around the perimeter
of the correct box. Such errors are unavoidable due to the relatively high NMS
threshold. Therefore, in order to solve the aforementioned problems of standard
NMS in cell detection tasks, a new NMS algorithm is urgently needed to solve
the existing problems of redundant bounding box detection.

Therefore, we propose a new non-maximum suppression algorithm based on
centroid filtering (CF-NMS) to avoid threshold setting. CF-NMS filters overlap-
ping bounding boxes by centroids, as shown in Fig. 3(b). Assuming that box A
is the correct bounding box to be picked out, if the center of box B is inside box
A, or conversely the center of box A is inside box B, then box B is judged to be
redundant. This can effectively eliminate the case of nested detection boxes and
make the detection results more accurate.

3.4 Tabular Data Augmentation

To address the lack of tabular datasets, we propose a tabular data enhancement
module (TabSynth) to expand the number and diversity of tables and improve
the performance of the model online. We propose three types of enhancement
methods. The first is color variation, whose change is achieved by changing the
HSV value of the table image. The second is shading transformation, which
changes the lighting conditions of the table by combining the collected shadow
photos with the table image to get a new table image with shading. And the
third is geometric transformation that changes the degree of tilt and distortion of
the table. The steps to achieve it are similar to the document image composition
process described in DocUNet [18]. Our enhancement is not a random enhance-
ment, but a targeted solution to two problems. Firstly, the distribution of various
types of tables in the existing datasets is not uniform. Some types of tables with
larger percentages are better trained and therefore more likely to yield better
results than others, while some types of tables with smaller percentages are
not sufficiently trained, which often leads to poorer performance. Therefore, we
address the problem of data distribution by using TabSynth to enrich the sample
diversity of the existing natural scene table datasets to enable each type of table
to be adequately trained. Secondly, the existing datasets also have some tables
with extreme aspect ratios, distortions and skews, and the structure recogni-
tion of these tables is also very challenging with existing methods. Therefore,
our augmentation module can increase the number of these difficult samples in
a targeted manner, so that the structure recognition model can fully learn the
characteristics of the difficult samples and achieve better performance Fig. 4.
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Fig. 4. Example of some augmented tabular data.

3.5 Table Structure Recovery

After obtaining refined detection cells, we further designed an adaptive adja-
cency matching algorithm to reconstruct the table structure. First, the four
corner points of all cells in the table are arranged in the order of top-left, top-
right, bottom-right and bottom-left. Then, we propose a center line matching
strategy to perform row/column matching on these cells. For example, in row
matching we first use the center point of the right boundary to match the rights,
and adjust the coordinates of the right boundary used for matching according
to the size of the matched cells, and then pass them to the right side one by
one. Left row matching is similarly. Since cells in natural scenes are not usu-
ally aligned, and the idea of dealing with cross-row and cross-column cases is
to use small cells to match large cells, we use an adaptive boundary matching
strategy, which means that the current cell boundary used for matching will be
adjusted according to the matched cells. For paired cell boxes in right match-
ing, {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} and {(x∼

1, y
∼
1), (x

∼
2, y

∼
2), (x

∼
3, y

∼
3), (x

∼
4, y

∼
4)},

if y2+y3
2 >= y∼

1 and y2+y3
2 <= y∼

4, the paired boxes are predicted to belong to
the same row. Then the coordinates of the right border used for matching are
adjusted by y2 = min(y2, y

∼
2) and y3 = max(y3, y

∼
3).

4 Experiments

In this section, we conducted experiments on two publicly available natural scene
table datasets to evaluate the performance of our proposed table structure recog-
nition method. To verify the effectiveness of the SKCN and the CF-NMS for the
table structure recognition task, we conducted ablation experiments. The fol-
lowing are the relevant details of the experiments.

4.1 Datasets and Evaluation Metrics

Datasets. We evaluate our method on two publicly available natural scene table
datasets, WTW and TAL OCR TABLE.

WTW [17] is a challenging and complex dataset for table structure recog-
nition in the wild with 10970 training images and 3611 testing images, a sum
of 14581 images. WTW divides the data into 7 cases by their own characteris-
tics and unique challenges: simple, inclined, extreme aspect ratio, occluded and
blurred, overlaid, multi-color and gird, and curved. The dataset annotation con-
tains table ids, table coordinates, cell coordinates and row/column information
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about cells. We cropped out table regions from the original images and used the
tilt angle of the table regions obtained by Hough Transform to rotation correction
for training and testing. We followed [17] using the cell adjacency relationship
(IoU = 0.6) [4] as the evaluation metric for this dataset. There are two ver-
sions of the evaluation metric for cell adjacent relationship, ICDAR2013 [5] and
ICDAR2019 [4]. Because some tabular datasets do not have textual annotations,
such as WTW, the previous version cannot be used in this case. We used the
more general version of ICDAR2019 without exact text-matching.

TAL OCR TABLE (TAL) [2] is a natural scene table dataset provided in
the PRCV2021 TAL table recognition competition, which focuses on wired tables
for educational scenarios. The dataset contains 18,000 images, 16,000 of which
have provided annotations for training and 2,000 for testing. The annotation of
the dataset includes the physical location of the cells and the HTML code of the
table. The physical location of the table is annotated by the four vertices of the
quadrilateral. We also cropped out the table regions from the original images for
training and testing.

Evaluation Metrics. There are two common evaluation metrics used in table
recognition tasks, TEDS and cell adjacent relationship.

Tree Edit Distance based Similarity (TEDS) [33] represents the logi-
cal structure of a table with a tree structure and examines the table structure
recognition results at the global tree-structure level. It uses the tree edit dis-
tance to evaluate the accuracy of table structure recognition, with higher values
being better. The TEDS results contain the extra results of text recognition, and
taking OCR errors into account may lead to unfair comparisons, since previous
work used different OCR models. Therefore, the TEDS metrics in this paper only
calculate the results for the logical structure of the table, without considering
the OCR recognition results.

Cell adjacent relationship [4] is used to evaluate the effectiveness of struc-
ture recognition by the accuracy of the physical location and the row/column
coordinates of each sampled adjacent cell pair. The adjacency relationship of
each cell is generated with its horizontal and vertical adjacent cells. Then preci-
sion, recall and F1 scores are calculated to compare the predicted relationships
with the ground truth.

4.2 Implementation Details

All experiments were implemented in PyTorch with 4x2080Ti GPUs. In Table 1,
we compared the experimental results of different backbones. Since the difference
between them is not very significant, we regard ResNet-50 as the backbone of
network by default in the subsequent experiments. From the comparison of the
results of different cell detection strategies, the accuracy of the box segmentation
branch is higher than that of the key point regression branch, while the recall is
lower. We further find that the SKCN after the collaborative processing of these
two strategies can improve the prediction results synthetically. After adding
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Table 1. Results with different backbones and cell detection strategies on TAL dataset.
Here, * denotes using our online tabular data generation module TabSynth. SEG refers
to the box segmentation. KEY refers to the key point regression.

Training data Backbone Strategy Prec. (%) Rec. (%) F1. (%)

TAL ResNet-50 SEG 99.5 98.89 99.2

KEY 99.12 99.41 99.27

SKCN 99.54 99.4 99.47

TAL ResNet-101 SEG 99.6 98.89 99.24

KEY 99.18 99.43 99.31

SKCN 99.6 99.39 99.49

TAL* ResNet-50 SEG 99.87 99.36 99.61

KEY 99.78 99.84 99.81

SKCN 99.88 99.82 99.86

our TabSynth module for training, the detection performance is also further
improved, and the effect of this improvement is greater than replacing ResNet-
50 with ResNet-101. This module allows us to adequately explore the potential
of the model and achieve better results with a smaller cost for the model.

4.3 Comparisons with Prior Arts

We have compared our proposed method with several state-of-the-art methods
on the public datasets TAL and WTW. our method achieves a state-of-the-art
performance of 99.35% in terms of TEDS, as shown in Table 2. The experi-
ments for SPLERGE [28] and CascadeTabNet [20] were reproduced based on
the authors’ original design. Since they are designed for scanned tables, they
could not perform well in natural scenarios. To validate the effectiveness of our
method on boundary warping or bending tables in natural scenarios, we con-
ducted experiments on the WTW dataset. The results in Table 3 show that our
method outperforms existing methods in terms of F1 scores for cell adjacent
relationship, improving by 1.2% over Cycle-CenterNet, designed specifically for
natural scenes, and by 0.2% over TSRFormer [12], which is able to robustly
identify the structure of distorted tables with and without borders.

To better verify the robustness of our approach to complex situations, we ana-
lyzed the F1 scores of different types of tables on WTW, as shown in Table 3.
Although our performance is slightly lower than Cycle-CenterNet on three ordi-
nary table subsets, our method shows significant improvements on complex sce-
narios. In particular, for the subset “overlaid”, we achieve a 14% improvement
with the mainly contribution of CF-NMS. The experiments on these subsets fully
demonstrate the superiority of our method and the ability to deal with complex
scenarios in table structure recognition.
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Table 2. Comparison of TEDS on TAL dataset

Method TEDS (%)

SPLERGE [28] 53.14

CascadeTabNet [20] 66.71

Table-Master [30] 94.30

SCAN [29] 98.45

TAL First Place [2] 99.20

Ours 99.35

Table 3. Comparison of cell adjacent relationship on WTW dataset

Method Curved Overlaid Simple Occluded and
blurred

Extreme aspect
ratio

Inclined Multi color and
grid

All

F1. (%) Prec. (%) Rec. (%) F1. (%)

Cycle-CenterNet [17] 76.1 84.1 99.3 77.4 91.9 97.7 93.7 93.3 91.5 92.4

FLAG-Net [14] – – – – – – – 91.6 89.5 90.5

TSRFormer [12] – – – – – – – 93.7 93.2 93.4

Ours 83.4 98.1 98.9 82.6 96.3 97.2 92.7 94.2 93.1 93.6

Table 4. Ablation experiments on TAL dataset

Training data TabSynth SEG KEY CF-NMS TEDS (%)

TAL � 93.2

� � 97.7

� � 98.5

� � � 98.7

� � � � 99.4

4.4 Ablation Studies

We conducted a series of experiments on the TAL and WTW datasets to verify
the effectiveness of the proposed modules, and the experimental results are shown
in Table 4. For TAL dataset, after adding our tabular data generation module
TabSynth for training, the training data of the model can simulate complex
scenarios with random distortions, random light and multi-color background
to overcome the difficulty of the lack of natural scene dataset, thus making the
model more robust and achieving a 4.5% improvement. We thus use TabSynth to
assist in training by default. The results show that the TEDS metric of the KEY
branch is higher than that of the SEG branch, and the interactive results of the
two branches outperform the results of the two branches individually, providing
support for our method and demonstrating that our method is more suitable for
challenging table structure recognition tasks in natural scenes. What’s more, our
CF-NMS module, designed for the dense detection in table scenes, contributes a
0.7% improvement over the standard NMS, whose threshold is set to 0.5 in our
experiment (Table 5).

For the WTW dataset, our approach also achieves considerable improvements
in F1 scores. Replacing the standard NMS with our CF-NMS can effectively han-
dle the challenges of dense cell detection scenarios and can yield improvements
in precision and recall, improving the F1 score by nearly 1.8%. This also shows
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Fig. 5. Qualitative results of our approach.

Table 5. Ablation experiments on WTW dataset for cell detection (IOU = 0.6)

Training data SEG KEY CF-NMS Prec. (%) Rec. (%) F1. (%)

WTW � 87.0 91.67 89.27

� 89.44 94.01 91.67

� � 93.4 93.59 93.5

� � � 96.87 93.84 95.28

that the CF-NMS is designed to be very friendly for cell detection tasks. Figure 5
gives a demonstration of the qualitative results of our method, and it can be seen
that for large dense table detection tasks, the collaboration of the SEG and KEY
branches outperforms both in terms of refinement results. Our proposed SKCN
and CF-NMS modules can even be applied to other dense target detection tasks
in the future.
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5 Conclusion

In this paper, we consider that existing networks do not fully exploit the fea-
tures of tables and propose a segmentation and key point collaboration network
(SKCN) for table structure recognition in the wild. Unlike previous detection
methods, the two branches of our model can complement each other during
training process and the results of each branch can be fused to obtain a refined
result. To better cope with complex table scenarios, we further propose CF-
NMS and a tabular data generation module. Experimental results show that
our method achieves state-of-the-art performance on two public benchmarks,
including TAL and WTW.

Acknowledgments. This research is supported in part by GD-NSF (No.
2021A1515011870), NSFC (Grant no. 61771199), Zhuhai Industry Core and Key Tech-
nology Research Project (No. 2220004002350), and the Science and Technology Foun-
dation of Guangzhou Huangpu Development District (Grant 2020GH17).

References

1. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table
structure recognition. arXiv preprint arXiv:1908.04729 (2019)

2. TAL Contributors: TAL OCR TABLE: a scene table structure recognition bench-
mark (2021). https://ai.100tal.com/dataset

3. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific
table recognition. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR), pp. 894–901. IEEE (2019)

4. Gao, L., et al.: ICDAR 2019 competition on table detection and recognition
(CTDAR). In: 2019 International Conference on Document Analysis and Recogni-
tion (ICDAR), pp. 1510–1515. IEEE (2019)
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Abstract. In this paper, we propose a novel method for handwritten
text generation that uses a style encoder based on a vision transformer
network that encodes handwriting style from reference images and allows
the generator to imitate it. The encoder learns to disentangle style infor-
mation from the content by learning to recognize who wrote the text,
and the self-attention mechanism in the encoder allows us to produce
character-specific encodings by using characters in the target sequence
as queries. Our method can also generate handwritten text images in
random styles by sampling random latent vectors instead of encoding
style vectors from reference images.

We demonstrate through experiments that our proposed method out-
performs existing methods for handwritten text generation in terms of
the quality of generated images and their fidelity with respect to the
distribution of real images. Furthermore, it achieves significantly better
performance at imitating handwriting styles defined by reference images.
Our model generalizes well to unseen data and can generate handwritten
images of words and character sequences as well as imitate handwriting
styles not included in the training data.

Keywords: Handwritten text generation · Handwriting imitation ·
Handwritten text recognition

1 Introduction

Significant progress has been achieved in image generation in recent years, partic-
ularly thanks to the emergence of new approaches such as generative adversarial
networks (GANs) [12], variational auto-encoders (VAEs) [26], and more recently
also diffusion models [17]. Generative models can now produce very accurate and
detailed images that are difficult to discern from real ones [24,32,39]. The origi-
nal GAN architecture could only generate images from randomly sampled latent
vectors, which did not provide a way to control what was generated. However,
further research proposed various methods to manipulate the generation pro-
cess by conditioning on class labels [30], text embeddings [40]+, segmentation
maps [36], reference images [32], etc. This extended the possibilities of image
generation beyond a simple generation of random objects.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 313–329, 2023.
https://doi.org/10.1007/978-3-031-41679-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41679-8_18&domain=pdf
http://orcid.org/0009-0000-9761-8672
http://orcid.org/0000-0001-8726-2780
https://doi.org/10.1007/978-3-031-41679-8_18


314 J. Zdenek and H. Nakayama

One of the domains that have adopted recent methods for image generation
is handwritten text. Multiple fields and applications can benefit from the abil-
ity to generate images of handwritten text automatically. In handwritten text
recognition (HTR), being able to generate a large number of diverse handwrit-
ing samples for training can improve the accuracy and robustness of recognition
models. Handwritten text generation can also be used to create handwritten text
assets for games and virtual reality applications, and it can also help in product
design when handwritten text is required or desirable.

In recent years, several works have proposed methods for generation of hand-
written text images. Some of them can only generate handwritten text with
random styles of writing [2,9,38], while some can imitate existing styles from
reference images [4,10,22]. The earlier proposed approaches suffer from poor
visual quality due to limitations such as being able to generate only fixed-size
images [2]. However, recent methods can generate images that are difficult for
humans to distinguish from real ones [11,38]. JokerGAN [38] achieves outstand-
ing performance, but it can only generate handwritten text in random styles.
In this work, we leverage the performance of JokerGAN by using it as a base
for our model and modify it to enable style imitation by generating handwritten
text with guidance by reference images. To encode style features from reference
images, we train a style encoder together with the rest of the model by making
it learn to recognize who wrote the text, inspired by [10]. As vision transformers
(ViT) [8] have shown to excel at various vision-based tasks [7,34,39], we employ
an encoder based on a ViT network. We further significantly improve the per-
formance of our model by using the target character sequence as a query for
self-attention in the transformer, which allows us to generate specific encodings
for different characters.

As our proposed model extends the original JokerGAN to support imitation
of style from reference images, we call it JokerGAN++.

In summary, the main contributions of our work are as follows:

– We propose a new method to imitate handwriting styles by using a ViT-
based encoder that uses target character sequences as queries to produce
character-specific style encodings. The experiments show that it can imitate
handwriting styles more accurately than existing methods and also generate
more authentic images with respect to the distribution of real images.

– We conduct experiments on data augmentation for HTR with generative mod-
els and show that HTR models trained on data augmented by images gener-
ated by our model outperform models trained on data augmented by images
generated by existing methods.

– We demonstrate that our method for generation of handwritten text can also
be used to erase handwritten text from images.

2 Related Work

Generation of realistic images of handwritten text is a challenging task. Conven-
tional methods in the past required a lot of manual manipulation of the source
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images, which involved clipping of individual characters. Those were then com-
bined by various rendering techniques to produce new images of handwritten
text [15,35].

The past decade has witnessed the success of deep neural networks, leading
to their utilization in various domains and applications, including generation
of handwritten text. The first attempts at applying deep neural networks to
handwritten text generation focused on online handwritten trajectories. Recur-
rent neural networks were used to learn and generate the temporal data [13],
and further improvement was achieved by adding a discriminator network and
employing adversarial training [20]. Manipulating the style of generated images
was accomplished by disentangling the style and content of handwritten text
[1]. Deep neural networks require a lot of data for successful training, but col-
lecting a large amount of online handwritten data is a demanding task that
involves special equipment to record handwriting trajectories. However, collect-
ing offline handwritten data is much easier as it only requires obtaining images
of handwritten text. It has been demonstrated that generative adversarial net-
works (GAN) [12] and variational auto-encoders [26] are capable of generating
images of handwritten digits, and it is possible to control which digits are gen-
erated with conditional GANs [30]. Recent progress in raster image generation
showed the potential of generative models to create very realistic and detailed
images [6,23,31], and it helped drive the research on offline handwritten text
generation.

There are two approaches to offline handwritten text generation: 1) gener-
ation of handwritten text in random styles given by randomly sampled latent
vectors, and 2) generation of handwritten text in a specific style defined by a
reference image. Most existing methods support generation either only in ran-
dom styles [2,9,38] or only in specific styles given by reference images [4,21,22].
Recently, methods that support both types of generation have also emerged
[10,11].

Application of GANs to offline handwritten text generation was first proposed
by Alonso et al. [2] and their model consisted of BigGAN [6] for image generation,
an LSTM [18] to encode the target word into a fixed-length vector used as a
conditional input for the generator, and a text recognition network to ensure
that the generator produces legible images of the target word. Due to its design,
the model was restricted to generating text images of a fixed size regardless of
the length of the generated word, which causes distortions. ScrabbleGAN [9]
resolved this problem by replacing the LSTM-based encoder with a bank of
base filters for each letter in the alphabet, which allows generation of images in
variable sizes. The generator in ScrabbleGAN uses k base filters corresponding
to k letters in the target word. The size of the model grows almost linearly with
respect to the size of the character set, which makes it unfeasible for languages
with large character sets, such as Chinese or Japanese. To alleviate this issue,
JokerGAN [38] replaces the bank of base filters with a single base filter for
all characters and uses multi-class conditional batch normalization to generate
different characters depending on the conditional input, which is obtained by
embedding individual characters in the target word. JokerGAN also introduced
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a new type of conditional input that makes the generator aware of the position
of all characters in the target word with respect to the baseline and mean line,
which reduces distortions in generated images.

Kang et al. [22] proposed a method that generates handwritten words from
style features extracted from reference images in a few-shot setting and textual
features of a predefined text length. In a later work [21], they extended their
previous method to support generation of long character sequences and text
lines. The recent surge of transformers in computer vision tasks inspired [4] to
use transformers to generate styled handwritten text. A transformer is used to
model the target word and style features extracted from a reference image by
a CNN, and the output is passed to a CNN that upsamples and generates a
text image in the desired resolution. The method works in a few-shot setting
and requires multiple words as a reference to extract and reproduce the style
accurately. HiGAN [10] extended ScrabbleGAN to support generation in specific
styles by adding a CNN to encode style from reference images, and a later work
[11] improved the performance by modifying the network architecture and using
contextual loss in training.

Besides methods that generate handwritten text from latent or encoding
vectors, there are methods that synthesize handwritten text in a given style
from skeleton images of handwriting [14] and from machine-printed text [28]
using an image-to-image translation approach.

Table 1. Comparison of functionality of existing methods and our proposed method.
Latent means that the method can generate images from random latent vectors. Ref-
erence means that generation process can be guided by a reference image.

Method Latent Reference Few-shot One-shot

Alonso et al. [2] �
ScrabbleGAN [9] �
GANWriting [22] � �
HWT [4] � �
JokerGAN [38] �
HiGAN [10] � � �
HiGAN+ [11] � � �
Ours � � �

Table 1 compares the functionality of our method and existing methods for
handwritten text generation. While most methods can generate text either only
in random styles using random latent vectors or only in specific styles, guided by
reference images, our method supports both types and can generate handwritten
text in both random styles and styles defined by a reference image. Our method
also requires only a single handwritten word as a reference to imitate the style,
unlike some of the other methods that work in a few-shot setting and require
multiple words as a reference.
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3 Proposed Method

Our proposed method, JokerGAN++, is based on JokerGAN [38] model for
handwritten text generation. JokerGAN boasts a high quality of generated hand-
written text images, but it cannot imitate specific handwriting styles. Therefore,
we modify the original architecture and add a style encoder network to control
the style of generated handwriting by reference images. We also revise the dis-
criminator to exploit semantic information about text in images to learn whether
the image is real or not. In Sect. 3.1, we describe individual parts of our pro-
posed model, and in Sects. 3.2 and 3.3, we introduce our key contributions to
the architecture in detail.

3.1 Model Architecture

Generator. Our generator G is based on [38]. It supports generation of charac-
ter sequences of arbitrary length by concatenating k identical base filters that
are passed into G, corresponding to the length k of the target character sequence.
Generation of different characters is achieved by multi-class conditional batch
normalization (MCCBN) that is conditioned on the target sequence of charac-
ters. MCCBN is also used to generate handwriting in different styles by concate-
nating the character sequence embeddings with style codes. In [38], style codes
are obtained randomly by sampling from a normal distribution. In our work,
we use a style encoder to imitate existing handwriting styles given by reference
images; however, random styles can also be generated by using randomly sam-
pled style codes. We also empirically find that using identical encoding vectors
in each block of the generator yields better results in our task than using hier-
archical input [6] for conditional batch normalization, and injecting noise for
additional diversity also hurts the performance.

Discriminator. The discriminator D learns to predict whether an image is
real or generated by G. The discriminator used in [9,38] learns to solve this
binary classification problem from real and generated image samples without any
explicit information about the character sequences in the images. We add a new
component into the discriminator that implicitly learns to recognize individual
characters in the image from output feature maps of discriminator layers and
uses this semantic information to modulate the feature maps. More details follow
in Sect. 3.3.

Style Encoder. We use a style encoder network E to produce encodings of hand-
writing styles that can be used as conditional input for G. Detailed description
of E can be found in Sect. 3.2.

Text Recognizer. The objective of text recognizer R is to promote generation
of legible text that matches the target character sequence. Following [9,38], we
use a simple network that predicts local patterns without global context to focus
on legibility of individual characters. The text recognizer is trained only on real
labeled images, and text recognition loss calculated on generated images is used
to provide guidance and optimize G.
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Figure 1 shows a diagram of the whole model. To simplify the diagram and
reduce visual clutter, we do not include all loss functions.

The training process is similar to [10,38], so we simplify the explanation. We
alternate between two optimization passes. In the first pass, we optimize D by
adversarial loss, R by CTC loss for text recognition, and the writer identification
module by cross-entropy loss. In the second pass, we optimize G and the style
encoding module in E by 1) adversarial loss, 2) CTC text recognition loss on
generated samples to ensure that G generates legible images, 3) cross-entropy
loss for writer identification using the writer identification module on generated
samples, 4) L1 reconstruction loss of style codes calculated between random
latent vectors z and style encoding vectors obtained by E from images generated
by G and conditioned on z, and 5) KL-Divergence loss to regularize the style
latent space so that it matches normal distribution.

Fig. 1. Overview of the proposed model and the ViT block with character embeddings
as queries.

3.2 ViT-Based Style Encoder

To generate images of handwriting that imitate an existing style, we use an
encoder network E to extract the style information from reference images.
Inspired by [10], we use E that is jointly trained by learning to identify the
writer of a handwriting sample and learning to encode style encodings for the
generator. Instead of using a simple convolutional network as [10] does, our E
is based on ViT. There are two reasons why we employ a ViT-based network
for the style encoder. First, ViTs have shown to be exceptionally powerful at
modeling local and global information in images, which makes them a great
choice to encode handwriting style from an image because a style is defined by
both global features (e.g., slant) and local features (e.g., shape of characters,
stroke width). Second, ViT allows us to incorporate information about the tar-
get character sequence in the encoding mechanism, so we are able to produce
style encodings that are not only dependent on the handwriting style, but also
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on the individual characters appearing in the sequence. As a result, we can cre-
ate character-specific style encodings, which distinguishes our method from [10]
that extracts identical style encoding for the whole character sequence without
considering the differences needed to capture to correctly encode the style for
different characters.

The identifier module of E takes handwriting images as input and is composed
of a convolutional patch embedding layer and transformer layers from [37] and
a single fully-connected layer. It is trained to predict writers of handwriting
images, which makes it learn and model differences in handwriting styles.

The encoding module of E takes features extracted by the transformer lay-
ers of the identifier module and disentangles the handwriting styles to produce
style encoding vectors. Similarly to the identifier module, it consists of trans-
former blocks and fully-connected layers to yield fixed-sized length encoding for
each character in the target sequence. Each transformer block in the encoding
module consists of multi-head scalable self-attention and interactive windowed
self-attention introduced in [37] along with fully-connected layers. ScalableViT
[37] is a variant of ViT that shows excellent performance across many vision
tasks and we empirically found it to yield the best results among several pop-
ular state-of-the-art ViT architectures. The feature inputs from the identifier
module are averaged across the spatial dimensions before being passed to the
encoding module to reduce differences in features based on the characters in the
text from the reference image as we want to produce encodings specific to the
characters in the target sequence.

To produce character-specific style encodings, we use characters in the target
sequence as queries for self-attention in the encoding module. Therefore, unlike
regular self-attention where query Q(), key K(), and value V () all have the
same input, the Q() input here is an embedded character c in the target character
sequence while K() and V () inputs are features X from the previous transformer
block. The self-attention in our module is thus calculated as

Attn (X, c) = softmax(
Q(c)K(X)√

d
)V (X). (1)

We produce a fixed-size style encoding vector for each character in the target
sequence. Style encodings of all characters are then employed as conditional
input for MCCBN in the generator.

3.3 Character Modulation

The original discriminator in [9,38] does not use any semantic information about
characters in the image to predict whether an image is real or generated. We
strive to improve the performance of the discriminator by modeling the semantic
information. Similarly to techniques such as [19], we add a branch with softmax
activation after each block in the discriminator. The feature maps X where
X ∈ R

H×W×C are passed to a convolutional layer f with the kernel size of 1× 1
and K output channels where K corresponds to the number of characters in the
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character set, such as alphanumeric characters. This aggregates channel-wise
features and reduces the number of channels to match the number of characters.
In order to utilize the information aggregated in the reduced feature space, we
need a gating mechanism that promotes emphasis of a single channel as we
ideally want each channel to correspond to one character. To achieve this, we
employ a softmax activation function across the channel dimension. The process
can be denoted as

X̂ = softmax (f (X,W)) , (2)

where W ∈ R
C×K . The extracted features X̂ are aggregated with the original

features X by concatenating them across the channel dimension to produce X̃ ∈
R

H×W×(C+K), and finally the concatenated features are passed to another 1 ×
1 convolutional layer to reduce the number of channel dimensions back to C.
Figure 2 illustrates the whole process.

Fig. 2. Diagram of the character modulation component used in the discriminator.

4 Experiments

4.1 Implementation Details

Our model is based on JokerGAN [38], whose core consists of BigGAN [6] layers
that are modified for generation of images with a fixed height and variable width.
Besides our stated modifications, the architecture of G, D and R is identical as
in [38]. The identification module of E consists of a patch embedding layer (filter
size 8, stride 4) and two ViT stacks, each comprised of 3 blocks of ViT layers
followed by a convolutional layer. The encoding module consists of two blocks
of ViT [37] with character embeddings as queries for self-attention, followed by
a convolutional layer for downsampling and a fully-connected layer to obtain
fixed-size style encoding vectors. The architecture of ViT layers is from [37]. We
use the Adam optimizer [25] with a learning rate of 0.0002 for training. Our
model is implemented in PyTorch.
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4.2 Datasets

We use the following two datasets in our experiments.

– IAM. The IAM dataset [29] contains approximately 80k grayscale images
of handwritten words in English, divided into training, test and validation
sets. The training set consists of about 40k and test set of about 10k images.
The words are written by 657 different people and all words written by one
person only appear in one of the sets to achieve mutual exclusivity of authors
in training, validation, and test sets. The data was created and preprocessed
for training of HTR models.

– GNHK. The GNHK dataset [27] is composed of images of unconstrained
handwritten text in the wild captured by mobile phone cameras. The train-
ing set we use in our experiments contains about 28k images of individual
handwritten words cropped from the original text images. Due to the nature
of the data, the GNHK dataset consists of images with more variety in style
and more noise, which makes it more challenging than the IAM dataset.

4.3 Handwritten Text Image Generation

We evaluate the quality of handwritten text image generation and handwriting
style imitation using several metrics to measure different performance aspects.

– Visual Quality. Our primary metrics of visual quality are Frechet Inception
Distance (FID) [16] and Kernel Inception Distance (KID) [5], which are widely
used to evaluate GANs. FID and KID compare the distributions of generated
images and real samples. We also use the structural similarity index (SSIM)
that measures structural similarity between real and generated images.

– Style Imitation. We use the writer identification error rate (WIER) [11] to
evaluate how well a model can imitate styles. A writer identification network is
trained on the test set of images and used to predict writers for images that are
generated with test set images as reference. Misclassified samples are deemed
as failures of the generative model to accurately imitate the handwriting style.
We measure WIER when generating the identical word as in the reference
image (WIER-I) as well as when generating a random word (WIER-R). SSIM
also indicates how similar the styles in generated and reference images are.

– Diversity and Fidelity. To measure how diverse and accurate the generated
images are with respect to the distribution of real images, we use GAN-
train and GAN-test evaluation [33]. Originally, GAN-train is measured by
training an image classifier on generated data and testing on real data and
approximates image generation recall, and GAN-test is measured by training
on real data and testing on generated data and approximates image generation
precision. GAN-tt is an average of GAN-train and GAN-test to consider their
trade-off and combine them into one score. In our case, we use a HTR model
in place of an image classifier and word recognition accuracy as the underlying
metric to calculate GAN-train and GAN-test scores.

– Readability. GAN-test also indicates the readability of generated samples
as it measures if a HTR model trained on real data can read them.
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Table 2. Comparison of performance of handwritten text generation methods on the
IAM dataset in terms of metrics for image generation quality based on the distance
between real and generated image distributions (FID, KID), structural similarity of
images (SSIM), style imitation accuracy measured by WIER, and diversity and quality
of image generation measured by training and testing with HTR models (GAN-test,
GAN-train, GAN-tt). Evaluation on real data is provided for reference.

Method FID↓ KID↓ SSIM↑ WIERI↓ WIERR↓ GAN-test↑ GAN-train↑ GAN-tt↑
ScrabbleGAN [9] 19.98 1.359 – – – 93.11 27.67 60.39

HWT [4] 18.76 1.214 0.182 0.829 0.855 64.06 22.15 43.11

JokerGAN [38] 4.63 0.186 – – – 80.86 54.42 67.64

HiGAN-L [10] 17.69 1.107 – – – 96.15 31.93 64.38

HiGAN-R [10] 12.43 0.669 0.196 0.628 0.674 96.61 36.03 66.62

HiGAN+ [11] 5.94 0.368 0.332 0.526 0.575 95.65 30.72 63.19

Ours (latent) 3.00 0.098 – – – 94.27 55.67 74.97

Ours (reference) 2.14 0.078 0.429 0.327 0.499 81.11 61.90 71.51

Real data 0.02 0.002 – 0.043 – 83.49 – –

As shown in Table 2, our method outperforms existing methods in virtually
all metrics. GAN-test is the only metric in which it slightly falls behind. This
can be attributed to the fact that our model generates more diverse samples that
might be harder for a HTR model to read correctly. The diversity is measured by
GAN-train in which our model surpasses other methods with a high GAN-test
score by a large margin. In addition, the GAN-test score of our method when
using reference images for generation is similar to word recognition accuracy
of a HTR model trained and tested on real data, which also suggests that the
distribution of images generated with our method is closer to the distribution
of real data. Our method also achieves the best WIER scores, indicating that
it can imitate styles from reference images better than other methods. We state
results of our method when generating both in random styles from randomly
sampled latent vectors (latent) and styles from reference images (reference).

SSIM and WIER are only applicable for methods that imitate style from
reference images; therefore, we do not use them for evaluation of methods that
generate images in random styles. We also include real data results for reference
where WIER represents the error rate of a writer identifier trained and tested
on real data, and the value in the GAN-test column represents word recognition
accuracy of a HTR model trained and tested on real data.

Table 3 shows results of experiments on GNHK. The trends are similar to
those in Table 2, further attesting our method outperforms the competition.
GNHK dataset is more complex than IAM, so the performance of all models is
worse compared to IAM. In particular, the diversity is limited and HTR models
trained only on generated images perform poorly as shown by low GAN-train.
Due to the nature of the dataset, we use top-5 error rate for WIER for GNHK.
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Table 3. Comparison of performance of handwritten text generation methods on the
GNHK dataset. The same metrics as in Table 2 are used.

Method FID↓ KID↓ SSIM↑ WIERI (top-5)↓ GAN-test↑ GAN-train↑ GAN-tt↑
ScrabbleGAN [9] 20.92 1.603 – – 92.24 8.98 50.61

JokerGAN [38] 10.35 0.515 – – 76.97 10.85 43.91

HiGAN-L [10] 14.27 0.840 – – 93.89 8.12 51.00

HiGAN-R [10] 8.12 0.366 0.327 0.695 92.09 9.58 50.84

HiGAN+ [11] 8.04 0.459 0.235 0.293 82.76 6.10 44.43

Ours (latent) 8.69 0.395 – – 89.88 12.30 51.09

Ours (reference) 5.99 0.194 0.269 0.129 82.39 12.15 47.27

Real data 0.03 0.005 – 0.081 63.32 – –

4.4 Ablation Study

We perform ablation studies to validate the effectiveness of individual proposed
components and modifications. We use the IAM dataset and evaluate the per-
formance in two settings, 1) handwritten text generation guided by a reference
image, and 2) handwritten text generation from randomly sampled latent vec-
tors. Baseline refers to [38] with the style encoder from [10].

As can be seen in Table 4 and 5, all of our new components and modifications
improve the performance of generation either from reference images or random
latent vectors. WIER improves particularly thanks to our newly proposed ViT-
based style encoder, which can encode the handwriting styles better than a
conventional CNN-based encoder. The performance further improves when we
input the target character sequence into the encoder and encode specific style
vectors for individual characters in the sequence that we want to generate. The
ViT-based style encoder also enhances the overall quality of generated images
and their fidelity to the distribution of the original real data as measured by
FID and KID, and also similarity to reference images in terms of the structure
as measured by SSIM. Since the style encoder is not used for generation with
random styles, replacing a CNN-based style encoder with our ViT-based one
does not significantly affect performance when generating from random latent
vectors instead of reference images as can be seen in Table 5. Using strict style
conditioning without introducing additional randomness by appending a random
latent vector to the style encoding and using identical style conditions for all
blocks in the generator instead of hierarchical input improves the performance of
generation from latent vectors. Finally, our newly proposed character modulation
in the discriminator improves performance of generation in both settings.
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Table 4. Ablation study of individual changes to the baseline model evaluated on the
IAM dataset. Style of generated images is defined by reference images.

Method FID↓ KID↓ SSIM↑ WIERI↓ GAN-test↑ GAN-train↑
baseline 3.698 0.171 0.266 0.498 69.82 50.22

+ strict style conditioning 3.634 0.154 0.263 0.503 64.99 47.88

+ non-hierarchical conditioning 3.719 0.178 0.271 0.499 75.82 48.53

+ character modulation in D 3.252 0.116 0.284 0.459 85.76 51.35

+ ViT-based style encoder 2.560 0.075 0.327 0.407 88.58 55.86

+ character specific style encoding 2.136 0.078 0.429 0.327 81.11 61.90

Table 5. Ablation study of individual changes to the baseline model evaluated on the
IAM dataset. Style of generated images is random, defined by random latent vectors.

Method FID↓ KID↓ GAN-test↑ GAN-train↑
baseline 7.330 0.575 82.74 48.19

+ strict style conditioning 4.003 0.202 80.92 48.46

+ non-hierarchical conditioning 3.261 0.122 82.05 54.19

+ character modulation in D 3.047 0.104 87.83 50.74

+ ViT-based style encoder 3.042 0.076 95.08 50.57

+ character specific style encoding 3.002 0.098 94.27 55.67

4.5 Data Augmentation for HTR

Creating annotation for training of machine learning models is a demanding
and expensive process, so in real life, we may encounter situations where we
only have unlabeled or partially labeled data. In this experiment, we follow [38]
and simulate the situation that we have partially labeled data by using only 5k
images with text annotations from the IAM dataset and the rest without text
annotations. We train generative models for handwritten text on both unlabeled
and labeled data since only the text recognizer requires text annotation for
training, but the rest of the model can be optimized on unlabeled data.

For data augmentation evaluation, we use a HTR model [3] trained only on 5k
labeled images from IAM as a baseline (IAM-5k). Each of our trained generative
models is then used to augment the training dataset by generating additional
100k images for training of HTR models. Word error rate (WER) and normalized
edit distance (NED) are used as metrics for evaluation. Table 6 illustrates that
using additional training data generated by handwritten text generation models
improves the HTR performance, and in particular, our proposed model achieves
the biggest performance boost out of all tested models. We also include the
results of a HTR model trained on the complete IAM dataset of 40k labeled
images for reference.
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Table 6. Comparison of different models when used to generate additional data for
training of a handwritten text recognition model.

Data WER↓ NED↓
IAM-40k 16.52 4.95

IAM-5k 34.17 11.90

IAM-5k + ScrabbleGAN 100k [9] 30.65 10.00

IAM-5k + HWT 100k [4] 33.58 11.59

IAM-5k + JokerGAN 100k [38] 28.50 9.26

IAM-5k + HiGAN-L 100k [10] 30.42 10.01

IAM-5k + HiGAN-R 100k [10] 30.96 10.44

IAM-5k + HiGAN+ 100k [11] 27.76 8.94

IAM-5k + Ours (latent) 100k 27.17 8.73

IAM-5k + Ours (reference) 100k 25.00 8.08

4.6 Qualitative Evaluation

Figure 3 shows results of handwritten text generation and style imitation with
different methods. The models are trained on the training set of the IAM dataset
and the reference images used in Fig. 3 are from the test set of IAM. As can be
seen, our model can accurately imitate the styles in the reference images, which
shows that it generalizes well and it can imitate styles that it did not see during
training. Since JokerGAN and ScrabbleGAN cannot imitate styles, the text in
Fig. 3 is generated in random styles for these two methods.

Figure 4 shows images generated by models trained on the GNHK dataset.
Style imitation is less accurate than in the case of IAM because the GNHK
dataset contains a larger variety of images of unrestricted handwritten text in
RGB colorspace. However, images produced by our model still exhibit a signifi-
cant style similarity to reference images.

4.7 Text Erasing

We demonstrate that while our proposed method is primarily intended for hand-
written text generation, it can be also used to erase text from documents, as
shown in Fig. 5. When we include whitespace in the character set that the model
learns to generate, our model can erase text from a reference image by generat-
ing whitespace characters with style guided by the reference image. Note that it
can erase text while preserving the original background and text lines.

Whitespace characters are not included in the original training data. As a
solution, we randomly add a whitespace character to the beginning or the end
of a word by padding the image with the left or right edge pixels. The size of
the padding corresponds to the set approximate width of one character.
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Fig. 3. Results of handwriting style imitation with different methods. The reference
style images are from the test set of the IAM dataset and the models did not see those
handwriting styles during training.

Fig. 4. Results of handwriting style imitation with different methods. The reference
style images are from the test set of the GNHK dataset.
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Fig. 5. Results of text erasing with our proposed method.

Table 7. Comparison of existing models and our proposed model in terms of size in
megabytes. Only the modules necessary to store to perform generation, that is generator
(Gen) and encoder (Enc), are considered.

Method Size (MB)

Gen Enc Total

ScrabbleGAN [9] 81.8 N/A 81.8

JokerGAN [38] 11.0 N/A 11.0

GANWriting [22] 95.6 76.5 172.1

HWT [4] 80.7 50.6 131.3

HiGAN [10] 38.6 20.5 59.1

HiGAN+ [11] 15.0 6.7 21.7

Ours 11.6 12.6 24.2

4.8 Model Size

Table 7 shows a comparison of the size of our model and existing models for
handwritten text generation. We only consider the size of the modules that
are needed at inference time, which is the generator and encoder. In the case
of models that only generate handwritten text in random styles, there is no
encoder. We denote the size of the models in megabytes. Our model not only
achieves better performance in terms of generation quality, but as can be seen,
it is also one of the most lightweight models.

5 Conclusion

We have proposed a new method for generation of handwritten text images. Our
method can not only generate handwriting in a random style, but it can also
imitate a specific handwriting style passed to the model as a reference in the
form of a raster image. Experiments show that our method outperforms existing
methods in terms of the quality of generation and similarity to the style of hand-
writing in reference images. The performance has particularly improved thanks
to our newly proposed ViT-based style encoder that takes the target character
sequence that we want to generate as an additional input to produce character-
specific style encodings. We also show that images generated by our model can
be used for data augmentation for training of OCR models for handwritten text.
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Abstract. Recent advancements in Deep Learning-based Handwritten
Text Recognition (HTR) have led to models with remarkable perfor-
mance on both modern and historical manuscripts in large benchmark
datasets. Nonetheless, those models struggle to obtain the same perfor-
mance when applied to manuscripts with peculiar characteristics, such
as language, paper support, ink, and author handwriting. This issue is
very relevant for valuable but small collections of documents preserved
in historical archives, for which obtaining sufficient annotated training
data is costly or, in some cases, unfeasible. To overcome this challenge, a
possible solution is to pretrain HTR models on large datasets and then
fine-tune them on small single-author collections. In this paper, we take
into account large, real benchmark datasets and synthetic ones obtained
with a styled Handwritten Text Generation model. Through extensive
experimental analysis, also considering the amount of fine-tuning lines,
we give a quantitative indication of the most relevant characteristics
of such data for obtaining an HTR model able to effectively transcribe
manuscripts in small collections with as little as five real fine-tuning lines.

Keywords: Document synthesis · Historical document analysis ·
Handwriting recognition · Synthetic data

1 Introduction

Digitization is becoming a crucial step for the efficient management, preserva-
tion, and valorization of documents, both in the cultural and industrial domains.
For this reason, Document Analysis (DA) techniques, especially those intended
to tackle challenging scenarios of handwritten text, are receiving significant inter-
est from the research community. State-of-the-art Handwritten Text Recognition
(HTR) models, trained on large publicly available datasets, can achieve impres-
sive results when applied to documents with characteristics similar to those used
during training. However, their performance is unsatisfactory when the data of
the domain of interest are too different from the training ones. In this respect,
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the small but valuable collections of historical manuscripts preserved in many
archives pose a challenge for modern HTR models. In fact, such archives often
contain few sample pages written by a specific but relevant author, with peculiar
characteristics, both visual and linguistic. Thus, a strategy to obtain high HTR
performance also for those documents is key to enabling the efficient digitiza-
tion of such documents. A popular approach to deal with this scenario consists
in pretraining the HTR model on large datasets, either real or synthetic, and
then fine-tuning on a limited number of real data from the target domain. This
strategy has also the potential to enable high-quality on-demand transcriptions
of entire single-author collections, which might be a service of interest to the
users of digital libraries and archives. In particular, the libraries can store pre-
trained HTR models, and users can request the transcription of the collection
they are interested in by simply providing the annotation for a few lines (e.g., 5–
15). At that point, the most suitable pretrained model can be chosen based on
the collection characteristics (e.g., language, period, authorship, style) possibly
available in the form of metadata and fine-tuned on the user-provided annota-
tions in a limited amount of time. Afterward, the fine-tuned model can transcribe
the entire collection with low error. This kind of interaction with the collection
can also benefit the overall experience of digital archives users. Note that, so
far, interactive transcription enhancement has been explored in terms of lan-
guage model refinement [36]. With this work, we aim to explore a more holistic
approach taking into account both language and appearance.

Note that, in literature, attempts have been made toward the use of syn-
thetic data for pretraining HTR models [2,25,30,32,52]. These strategies are as
effective as more similar the synthetic data are to the real ones [12]. In this
line, Handwritten Text Generation (HTG) techniques are emerging [5,7,23,31],
especially styled HTG ones, which might allow generating training data with the
characteristics needed for HTR on specific domains. In fact, models for styled
HTG can produce images with arbitrary text in the desired handwriting starting
from a few style example images. These models often comprise an encoder to
obtain writer-specific style features and a generator, which is fed with the style
features and content tokens representing the characters to produce text images
conditioned on the desired style and content. In light of this, in this paper,
we consider pretraining plus fine-tuning on an automatically generated author-
specific synthetic dataset, which is obtained by exploiting a State-of-the-Art
styled HTG network. Moreover, we evaluate pretraining on existing benchmark
datasets of various languages, with a varied number of authors and of various
periods. This way, we investigate whether it is feasible to obtain an effective
pipeline for interactive, on-demand HTR of single-author collections. In partic-
ular, we provide a set of quantitative guidelines taking into account both visual
and linguistic aspects, for designing the most effective pipeline for an HTR model
able to transcribe specific manuscript collections with low error after fine-tuning
on as little as 5 lines from the target manuscript. Potentially, the defined guide-
lines for choosing the most suitable pretrained model can either be exploited by
the archive management or presented to the user who would be more involved
in the transcription process.
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2 Related Work

Strategies for HTR. Due to its practical interest in both industrial and cul-
tural domain applications, HTR is a widely-investigated research topic. Despite
that, it remains a challenging task. HTR can be performed on single charac-
ters, which is a popular choice in the case of idiomatic languages [15], sin-
gle words [6,48], or entire lines [40,45], paragraphs, and pages [8,9,16,38,55].
The line-level variant is one of the most popular for non-idiomatic language,
both standalone and as part of a page-level system [9,38,56] The most used
learning-based solutions for HTR rely on Multi-Dimensional Long Short-Term
Memory networks (MD-LSTMs) [26] or on the combination of convolutional
and one-dimensional LSTMs [10,39,40,45,50] to represent the text image and
on the Connectionist Temporal Classifier (CTC) decoding strategy to output
the transcription [8,26]. Alternatively to approaches exploiting recurrent mod-
els, fully-convolutional networks have been proposed for HTR [18,56], as well as
solutions [30,32,53] based on Transformer encoder-decoder architectures [49].
Finally, it is worth noting that explicit language models or lexicons can be
exploited to refine the transcription. However, this strategy is all the more effec-
tive the more the language of the transcribed images is regular (i.e., it contains
no errors, uncommon words, and proper nouns) and well-represented. For this
reason, employing language models is not always feasible, especially when dealing
with historical manuscripts.

Strategies for HTG. HTG is an increasingly popular research area aimed at
producing realistic images of handwritten text. In the styled variant of the task,
which we consider in this work, the goal is to generate writer-specific hand-
written text images from just a few example images of the writer’s style to
mimic [5,23,31]. The early approaches to HTG, either styled or not, were able
to obtain impressive results, but at the cost of heavy human intervention and fea-
ture handcrafting [27,51]. Recently-proposed learning-based solutions, instead,
are fully automatic. Usually, these strategies entail using generative adversarial
networks (GANs) [24]. In the case of non-styled HTG, these can be uncondi-
tioned [1,23]. For styled HTG, instead, the employed GANs are conditioned on
style features extracted by an encoder from the handwriting style sample images.
Note that the style examples can be line images [20], a few images of words [5,31],
or a single image [37]. It is also worth mentioning a more recently-proposed app-
roach based on an encoder-decoder generative Transformer [5].

Synthetic Data for HTR. Lack of training data is a major challenge in HTR,
especially in the case of single-author documents or ancient manuscripts that
exhibit peculiar characteristics. A possible strategy to tackle this issue is to
perform data augmentation either in terms of generic color modifications and
geometric distortions [40,50,54] or image modifications carefully designed to
match the characteristics of the target data [14]. Another popular strategy entails
pretraining the HTR model on large datasets and then fine-tuning it on the
target data [25,28,47], which has been proven to be more beneficial than data
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augmentation for historical manuscripts [2]. The pretraining dataset can be real
(e.g., a publicly available benchmark dataset) or synthetic, generally obtained
by altering images of text rendered in calligraphic fonts [30,44]. In an attempt to
generate more realistic-looking text images, some recent works exploited HTG
models, either styled or not, to generate synthetic data for training HTR models
and boost their performance on real data. For example, in [46], the authors
exploited a compositional approach based on Bayesian Program Learning to
generate the symbols in a ciphered corpus and then combined them into realistic-
looking text lines for training an HTR model to transcribe historical ciphered
manuscripts. The benefits of training HTR models on generated text lines in
various styles have been investigated also in [29], where the authors applied a
styled HTG model to obtain a pretraining dataset. Finally, as for the single-
author scenario, in [12], the authors showed the benefits of pretraining the HTR
model on synthetic data that faithfully resemble the real ones over pretraining on
generic various-styles images. Their approach, however, heavily relies on human
effort to obtain such high-quality synthetic data. In sight of this, in this work,
we focus on synthetic data obtained from a fully-automatic HTG model.

3 Proposed Approach

In this work, we explore a pipeline for obtaining good-quality line-level tran-
scriptions of manuscript collections with peculiar characteristics (in terms of
handwriting, language, and paper support) by exploiting pretraining on large
datasets and fine-tuning on a small amount of samples from the target collec-
tion. In particular, we consider pretraining on real datasets and on synthetic
ones obtained via a few-shot styled HTG model to better reflect the characteris-
tics of the target data. To build the synthetic datasets, we need a few images of
words (15, in this work, as in [5,31]) that can be easily obtained from digitized
manuscripts in the small collection of interest. Moreover, we need to specify the
text to be rendered in the desired style. In this work, we consider two typical
scenarios in digital libraries and archives: one in which only the language of the
target manuscript is known and one in which also the information about the
author is available. If the author of the collection of interest is known and there
exist some other transcribed texts by the same author, we propose to make the
HTG model generate these texts. In case only the language is known (or if no
other texts by the same author are available), we make the HTG model generate
texts in the same language as the target collection. Note that, in both cases,
the HTG model outputs images of handwritten words, which we then combine
into lines of varying length. In the following, we describe the HTR network
used for the transcription and the HTG network used to generate the synthetic
pretraining data. An overview of our complete pipeline is depicted in Fig. 1.

3.1 HTR Model

Combining convolutional neural networks and recurrent neural networks for
HTR has been the standard choice for years, and many currently available tran-
scription services feature this kind of models for their efficiency. In this work, we
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Fig. 1. Overview of our pipeline for synthetic data generation from collection-specific
handwritten lines. The generation process renders handwritten line images from a given
text conditioned by a few style samples from the target dataset. Then, the synthetic
dataset is used to pretrain the CRNN.

consider a model featuring one-dimensional LSTMs, since these have been proven
to be comparable or superior to MD-LSTMs [26] and are faster to train [40].

In particular, in this work, we consider a variant of the approach proposed
in [45] (referred to as CRNN in the following). The convolutional part of the
architecture features seven convolutional blocks. For the first six blocks, we adopt
the same architecture as in the VGG-11 network, with the difference of apply-
ing rectangular pooling in the last two max-pooling layers to better reflect the
aspect ratio of text lines images. The seventh convolutional block has a 2 × 2
kernel. In the adopted variant, the convolutional component features Deformable
Convolutions [19], as proposed in [11,12,17], which enhances the performance.
The feature map of the last convolutional layer is a 2 × W × 512 tensor, where
W depends on the width of the input text line image. This tensor is collapsed
along the channel dimension to obtain a sequence of W feature vectors of 1024
elements, which is fed to the recurrent part of the architecture. This consists
of two Bidirectional LSTM layers with 512 hidden units each, separated by a
dropout layer with probability 0.5. The recurrent part outputs the probability of
each feature vector in the sequence to contain each of the characters in a charset.

As customary in HTR, the model is trained to optimize the CTC loss, and
thus, a special blank character is included in the model charset. Note that we do
not use any language model in combination with the HTR network to achieve
cross-language adaptability.

3.2 HTG Approach

Styled HTG models allow to efficiently obtain a large number of synthetic text
images in the handwriting of the desired author, which can then be used to train
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an HTR model tailored for the author of interest. In this work, we build upon the
transformer-based few-shot styled HTG model recently proposed in [5], namely
Handwriting Transformer (HWT).

The HTG approach applied is a Convolutional-Transformer encoder-decoder
architecture. The handwriting examples are first fed to a convolutional feature
extractor in the encoder (namely, a ResNet18), whose outputs are passed through
a multi-layer, multi-headed Transformer encoder (with 3 layers and 8 atten-
tion heads) and thus enriched with long-range dependencies thanks to the self-
attention mechanism. The resulting style vectors are used as keys and values in
a multi-layer, multi-headed Transformer decoder (with 3 layers and 8 attention
heads as the encoder) that performs cross-attention with vectors representing
the characters in the words to be rendered. Normal gaussian noise is added to
the resulting vectors to obtain some variability, and those are then fed into a
convolutional decoder made of four residual blocks and a tanh activation, which
outputs the final styled word images.

The HWT model is trained alongside additional blocks by optimizing a
multiple-term loss function. In particular, we follow the adversarial paradigm
with the hinge adversarial loss [33] and train HWT together with a convolutional
discriminator. Moreover, to enforce the generation of readable word images, we
include a CTC loss term obtained by making an HTR model predict the textual
content in the generated images. Also this HTR model is inspired by the archi-
tecture proposed in [45]. Finally, to force HWT to faithfully render the desired
style, we use two additional loss terms. One is the cross-entropy loss of a convo-
lutional classifier aimed at classifying the generated images based on the writers
in the HWT training set. The other is a cycle consistency loss term given by the
l1-norm of the difference between the encodings of the real and the generated
images obtained by the encoder part of HWT.

4 Experiments

In this section, we describe our experimental analysis. First, we give further
implementation details on the adopted HTR and HTG models. Then, we describe
the considered small, single-author target datasets, the real benchmark datasets
(whose details are reported in Table 1, and some samples in Fig. 2), and the
details on the procedure to build the synthetic pretraining datasets. Finally, we
describe the evaluation protocol applied and discuss the results obtained.

4.1 Implementation Details

The experiments for this work, both the HTG and HTR part, have been per-
formed on a single NVIDIA RTX 2080 Ti GPU.

CRNN. To train the CRNN model, we rescale all images to a height of 60 pix-
els, maintaining the original aspect ratio, and then normalize them between −1
and 1. Additionally, when pretraining, we apply the following augmentations.
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Table 1. Characteristics of the considered line-level datasets.

Training Lines Charset Period Language Authors

Washington [22] 526 68 1755 English One1

Saint Gall [21] 468 49 ca 890–900 Latin One

Leopardi [12] 1303 76 1818–1832 Italian One

IAM [35] 6482 79 Modern English Many

ICFHR16 [42] 8367 88 1470–1805 German Many

Rodrigo [43] 9000 105 1545 Spanish One

ICFHR14 [41] 9198 93 ca 1760–1832 English One

RIMES [3] 10188 95 Modern French Many

NorHand [34] 19653 111 1820–1940 Norwegian Many

LAM [13] 19830 89 1691–1750 Italian One

Synthetic for Washington 23121 78 – English One

Synthetic for Saint Gall 70494 66 – Latin One

Synthetic for Leopardi 89068 113 – Italian One

1 - A small number of lines are by another writer.

We modify the brightness of the image with a factor randomly chosen between
0.5 and 5, the contrast with a factor randomly selected from between 0.1 and
10, the saturation with a factor randomly chosen between 0 and 5, and the hue
with a factor randomly selected from between −0.1 and 0.1. Moreover, we apply
Gaussian blur whose kernel size is set to 5, and the standard deviation is ran-
domly chosen between 0.1 and 2. Finally, we apply a geometric distortion chosen
among the following: random rotation (between −1◦ and 1◦), affine transforma-
tion (with random rotation between −1◦ and 1◦ and random shear between −50◦

and 30◦), and random homography. We use a batch size of 16 when pretraining
and a batch size of 8 when fine-tuning and training from scratch. All experi-
ments use a learning rate of 10−4. We train the proposed model with Adam as
optimizer, with β1 = 0.9 and β2 = 0.999, and a scheduler to reduce the learning
rate by 10% if the model reaches a plateau for the CER on the validation set. We
train the models with a patience of 20 epochs for the CER on the validation set.
Note that when fine-tuning, we usually obtain the best CER within the second
epoch, which takes roughly less than an hour.

HWT. We train the HWT model on the IAM dataset in the word-level setting
(See 4.3). All image samples are grayscale images resized to a height equal to 32
pixels, maintaining the same aspect ratio and normalized between −1 and 1. We
train the model with the same settings as those used in the original paper [5] for
7000 epochs. The HWT model generates single-word images whose characters
occupy, on average, 16 pixels each. For this reason, we concatenate different
images to make a line with a spacing of 16 pixels between the words.

4.2 Target Datasets

Leopardi. [12] The Leopardi dataset consists of a small collection of early 19th

Century letters written in Italian by the Romanticism philologist, writer, and
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poet Giacomo Leopardi. It contains 1303 training lines, 596 validation lines, and
587 test lines. All samples are RGB scans of documents written with ink on
ancient paper.

Washington. [22] The George Washington dataset contains 20 English letters
written by American President George Washington and one of his collaborators
in 1755. The dataset is divided into 526 training lines, 65 validation lines, and
65 test lines. All samples are binary images.

Saint Gall. [21] The Saint Gall dataset contains 60 pages of a handwritten
historical manuscript written in Latin by a single author at the end of the 9th

Century. The dataset is divided into 468 training lines, 235 validation lines, and
707 test lines. All samples are binary images.

4.3 Pretraining Real Datasets

Rodrigo. [43] The Rodrigo dataset contains 853 pages written in Spanish by a
single author. The pages come from a manuscript entitled “Historia de España
del arçobispo Don Rodrigo,” written in 1545. All samples are grayscale scans of
documents written with ink on ancient paper.

NorHand. [34] The NorHand dataset consists of 4144 pages, mainly of diaries
and letters written by 15 Norwegian authors from approximately 1820 to 1940.
The training set includes 19653 lines. All samples are grayscale scans of docu-
ments written with ink on yellowed paper.

LAM. [13] The LAM dataset contains 1171 letters by the historian Ludovico
Antonio Muratori in Italian from 1691 to 1750, and thus, exhibits a certain degree
of variability due to this wide time-span. The training set includes 19830 lines.
All samples are RGB scans of documents written with ink on ancient paper.

ICFHR14. [41] The ICFHR14 dataset contains a collection of 433 pages on law
and moral philosophy written by the English philosopher Jeremy Bentham from
1760 to 1832. The training set includes 9198 lines. All samples are grayscale
scans of documents written with ink on yellowed paper.

ICFHR16. [42] The ICFHR16 dataset consists of a subset of 400 pages from the
Ratsprotokolle collection written from 1470 to 1805 in Early Modern German.
The number of writers is unknown. The training set includes 8367 lines. All
samples are grayscale scans of documents written with ink on yellowed paper.

RIMES. [3] The RIMES database (Reconnaissance et Indexation de données
Manuscrites et de fac similÉS/Recognition and Indexing of handwritten docu-
ments and faxes) consists of 12723 pages of scanned letters written in French
by 1300 different authors. The training set includes 10188 lines. All samples are
binary images.
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Target Datasets

Washington Saint Gall Leopardi

Pretraining Datasets

IAM RIMES

ICFHR16 NorHand

Rodrigo ICFHR14 LAM

Fig. 2. Exemplar line images from the considered real datasets. These datasets are in
different languages, from different periods, and with varied number of writers.

IAM. [35] The IAM Handwriting Database 3.0 is a modern collection of 1539
scanned pages written in English by 657 different authors. The IAM dataset
comes in different settings: we use the word-level setting to train the HTG net-
work and the line-level setting for pretraining the HTR network. In particular,
we train the HTG network with all the available words from 339 different authors
in the word-level training set. For the line-level setting, there are 6482 lines for
training, 976 for validation, and 2915 for test. All samples are grayscale scans of
documents written with ink on white paper and cleaned digitally.

4.4 Synthetic Data

We use the HWT model, trained on the word-level IAM dataset, to generate
synthetic data specific to each of the target datasets. In particular, for each
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dataset, we isolate a number of word images and repeatedly choose randomly
15 of them to serve as style examples. As for the textual content, we use some
of Giacomo Leopardi’s proses for the Leopardi dataset, some of George Wash-
ington’s diaries for the Washington dataset, and a Bible in medieval Latin for
the Saint Gall dataset. In this way, the language of the synthetic datasets more
closely resembles that of the target datasets. In the following, we refer to these
synthetic datasets as HWT-Generated. Note that HTW outputs words with
characters whose average width is 16 pixels. In our experiments, we also consider
a variant of the synthetic datasets in which the generated images are resized in
width to match the average character width of the target dataset. The result-
ing datasets are referred to as HWT-Generated+WA (Width Adjustment -
WA), in the following. As a final variant, we generate synthetic datasets with the
same textual content as the HWT-Generated versions but with style images from
the IAM dataset. This variant is referred to as HWT-Generated+WA+VS
(Varied Styles - VS), in the following. Additionally, for the Leopardi dataset, we
exploit the synthetic text lines released alongside the dataset. These have been
obtained by rendering the same text that we use for the HWT-Generated Leop-
ardi with a manually built randomized font mimicking the author’s handwriting.
In the following, we refer to this synthetic dataset as Human-Synthesized.

4.5 Evaluation Protocol

To evaluate the effect of the pretraining and fine-tuning strategy in the scenario
in which only a few lines in the target dataset are annotated, we perform fine-
tuning on a progressively smaller number of training lines, accounting for the
100% (taken as a reference), 50%, 5%, 2.5%, and 1.25%, respectively. As an
additional comparison, we train from scratch on the same amount of training
lines. Moreover, we consider direct transfer of the pretrained models on the target
datasets. The transcription performance is reported in terms of the commonly-
used Character Error Rate (CER) and Word Error Rate (WER) scores.

To give further insights into the characteristics of the training data from a
linguistic point of view, we calculate the Kullback Leiber Divergence between the
distributions of character unigrams, bigrams, and trigrams in each target and
pretraining dataset. Additionally, we report the Lexical Similarity [4] between
the languages of the considered datasets. This quantifies the lexical similarity
between pairs of languages based on words in both languages having a common
origin and similar pronunciation and meaning.

4.6 Results

As a baseline experiment, we perform direct transfer of the CRNN model pre-
trained on the real and synthetic data. The results are reported in Table 2. It
can be noticed that, on average, the models pretrained on the synthetic data
perform worse than those trained on the real ones, except in the case of the
Human-Synthesized dataset for Leopardi. In Tables 3, 4 and 5, we report the
results of fine-tuning on a few lines from the real datasets. These experiments
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Table 2. Performance of the considered model when pretrained on real datasets or on
differently-obtained synthetic datasets (WA stands for ‘width adjustment’ and VS for
‘varied styles’) and directly applied to the considered target datasets test set.

Leopardi Washington Saint Gall

CER WER CER WER CER WER

IAM 57.0 95.6 50.5 88.7 49.9 97.7

RIMES 68.0 97.2 48.2 96.2 51.2 98.5

Rodrigo 88.6 99.5 84.3 104.2 55.2 111.4

ICFHR14 75.0 105.6 83.6 128.8 83.7 106.9

ICFHR16 80.5 104.5 87.8 127.4 80.1 106.3

NorHand 49.1 95.4 64.9 101.4 76.0 114.4

LAM 23.4 57.3 78.8 103.8 78.0 99.5

Human-Synthesized 56.9 95.3 – – – –

HWT-Generated 93.2 99.4 90.9 100.0 83.7 106.9

HWT-Generated+WA 87.5 99.2 87.5 100.0 76.7 100.2

HWT-Generated+WA+VS 87.9 99.3 83.0 98.6 75.3 99.9

aim to reflect the on-demand transcription application. As a reference, we also
report the results of CRNN models trained from scratch on the same amount
of lines. Note that when less than 230 lines are used for training, the model did
not converge, thus enforcing the need for pertaining.

From the results, especially when fine-tuning on 1.25% and 2.5% of the train-
ing lines, where the most noticeable differences in performance appear, it emerges
that for each target dataset, the best pretraining dataset can be identified, sug-
gesting that the accurate selection of the pretraining data is key in boosting
the recognition performance. In particular, the LAM dataset is overall the most
suitable when working on the Leopardi dataset (see Table 3), the ICFHR14 is
the most helpful when working on the Washington dataset (see Table 4), and
Rodrigo when working on Saint Gall (see Table 5).

Note that pretraining a network on a dataset different from the target one
induces a bias that depends on some characteristics of the dataset used. In
particular, the more the pertaining and target datasets are similar from the
linguistic and visual point of view, the more useful the bias will be in terms of
the resulting performance. In the following, we explore the main causes of this
performance with the aim of tracing some guidelines for the selection of the most
suitable pretraining dataset.

Appearance. When choosing the dataset to be utilized during network pre-
training, one aspect to consider is the overall visual appearance (e.g., paper
support, ink color and thickness, and character width). To analyze the similar-
ities, we refer to Fig. 2, showing some examples of the various datasets. It can
be noticed that the samples in the LAM and the Leopardi datasets look similar,
and this is reflected in the performance that CRNN reaches when pretrained
on LAM and then fine-tuned on Leopardi. Conversely, there is a considerable
difference between the samples in Leopardi and Rodrigo. As a result, pretraining
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Table 3. Performance of the considered model when pretrained on real datasets or
on differently-obtained synthetic ones (WA stands for ‘width adjustment’ and VS for
‘varied styles’) and fine-tuned on different portions of the training set of Leopardi.

Fine-tuning/Training on

1.25% (15 l.) 2.5%(32 l.) 5%(65 l.) 50%(652 l.) 100%(1303 l.)

CER WER CER WER CER WER CER WER CER WER

Leopardi – – – – – – 4.9 18.4 2.8 10.8

IAM 21.7 63.2 17.1 54.1 12.0 41.0 4.9 19.4 3.3 13.5

RIMES 25.3 68.7 18.2 54.6 13.1 42.3 4.3 15.7 2.7 10.5

Rodrigo 34.9 81.1 23.0 63.7 15.8 48.8 5.2 18.6 2.9 11.0

ICFHR14 23.6 67.7 16.6 53.6 11.7 40.7 4.0 15.9 2.7 10.8

ICFHR16 38.7 85.8 24.4 68.1 16.7 53.4 6.3 24.2 4.3 17.8

NorHand 21.0 63.1 15.2 50.3 11.5 40.2 3.4 13.2 2.3 8.7

LAM 12.7 42.0 12.1 39.6 8.2 28.8 3.5 12.7 2.3 8.6

Human-Synthesized 25.3 70.1 17.5 53.8 11.7 38.5 4.3 16.1 2.5 9.6

HWT-Generated 66.3 97.8 43.8 84.8 22.5 59.6 5.0 18.3 2.8 10.9

HWT-Generated+WA 43.4 89.2 27.9 70.2 17.4 51.4 5.1 18.6 2.7 10.3

HWT-Generated+WA+VS 35.6 80.9 23.6 63.8 14.8 45.6 4.5 16.9 2.6 10.2

on this latter dataset for HTR on Leopardi leads to poor performance. A similar
case can be made for the other two datasets, Saint Gall and Washington. For
example, the images in Saint Gall have regular handwriting, similar to those
in Rodrigo, which is one of the datasets that leads to the best performance.
Moreover, the images in the Washington dataset are visually similar to those
in RIMES or IAM. These two datasets are, in fact, those on which performing
pretraining leads to the best performance on Washington. From these observa-
tions, we can conclude that some visual similarity facilitates transfer learning
from the pretraining dataset to the target dataset. However, this is one of many
aspects to consider, as we will see below. Another visual aspect to consider is the
average character width. As mentioned in Sect. 4.1, HWT generates images that
are 32 pixels high and have an average character width of 16 pixels. This aspect
ratio is very different from that of the images in the target datasets, which, on
average, have a character width of around 8 pixels. For this reason, by using the
few examples available, we estimated a form factor to shrink the width of the
HWT-generated images to match those of the target datasets. The results of the
CRNN models pretrained on the width-adjusted (WA) variant of the synthetics
datasets, reported in Tables 2, 3, 4 and 5, highlight that a smaller average char-
acter width, which is similar to the character width of the target datasets, leads
to better performance compared to the original HWT-generated version.

Handwriting. By observing the results in Tables 2, 3, 4 and 5 alongside the
datasets information in Table 1 (especially the number of authors and the time-
span), we can highlight a correlation between the performance and the different
calligraphies in the pertaining dataset. This latter, in particular, often ensures
a high variability of the handwriting style of the images in the dataset. If the
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Table 4. Performance of the considered model when pretrained on real datasets or
on differently-obtained synthetic ones (WA stands for ‘width adjustment’ and VS for
‘varied styles’) and fine-tuned on different portions of the training set of Washington.

Fine-tuning/Training on

1.25%(6 l.) 2.5%(13 l.) 5%(26 l.) 50%(263 l.) 100%(526 l.)

CER WER CER WER CER WER CER WER CER WER

Washington – – – – – – 5.3 24.3 3.4 15.9

IAM 18.8 52.7 14.4 45.9 12.5 40.0 4.9 20.7 3.9 16.1

RIMES 27.1 78.9 20.8 65.2 16.8 55.7 4.6 20.7 3.7 17.1

Rodrigo 48.9 92.6 39.6 84.3 27.3 69.0 6.4 25.8 4.5 19.9

ICFHR14 26.1 64.6 14.2 43.9 11.1 36.2 3.9 17.7 2.8 12.9

ICFHR16 58.0 97.8 49.1 90.1 30.3 74.6 7.1 28.0 5.2 21.3

NorHand 31.4 76.7 21.7 61.2 16.1 52.9 5.8 23.7 3.7 15.3

LAM 37.2 81.7 27.6 72.6 20.7 60.7 5.9 23.1 4.8 20.3

HWT-Generated 54.9 93.8 43.4 84.7 28.8 70.8 5.3 20.9 3.7 16.5

HWT-Generated+WA 47.4 90.9 34.0 79.7 27.9 70.8 5.5 22.1 3.6 17.3

HWT-Generated+WA+VS 31.3 77.7 23.9 63.4 19.1 56.9 4.8 20.9 3.3 16.1

Table 5. Performance of the considered model when pretrained on real datasets or
on differently-obtained synthetic ones (WA stands for ‘width adjustment’ and VS for
‘varied styles’) and fine-tuned on different portions of the training set of Saint Gall.

Fine-tuning/Training on

1.25%(5 l.) 2.5%(11 l.) 5%(23 l.) 50%(234 l.) 100%(468 l.)

CER WER CER WER CER WER CER WER CER WER

Saint Gall – – – – – – 5.8 38.6 4.5 32.5

IAM 16.5 68.3 13.3 61.0 10.6 54.2 5.4 36.0 4.6 31.4

RIMES 28.2 94.2 19.7 79.7 14.3 66.8 6.5 39.9 5.8 36.9

Rodrigo 14.4 66.4 11.3 58.7 8.8 50.8 5.3 35.8 4.6 31.9

ICFHR14 20.4 77.8 16.6 70.5 12.1 54.2 5.3 35.4 4.5 30.9

ICFHR16 32.0 94.2 22.8 83.5 16.1 71.1 6.8 41.9 5.7 36.0

NorHand 27.0 87.9 19.5 75.0 12.8 61.3 5.3 35.1 4.6 31.5

LAM 20.8 77.8 15.8 68.1 12.2 60.0 5.3 35.5 4.6 31.4

HWT-Generated 20.4 77.8 16.6 70.5 12.1 58.8 5.5 37.5 4.8 33.3

HWT-Generated+WA 19.7 80.1 14.3 66.6 11.4 58.6 5.4 36.8 4.5 31.2

HWT-Generated+WA+VS 18.8 76.1 13.3 61.2 11.0 55.8 5.4 35.9 4.5 31.6

pretraining dataset contains texts written by multiple authors, the network is
exposed to high variance and will achieve the ability to handle different styles
and calligraphies. On the other hand, pretraining the network on images with
only one author’s handwriting reduces the variance and makes the network focus
on that single author. For example, the LAM dataset has low variance since it is
single-author. Nonetheless, it is similar to the Leopardi dataset due to language
similarities and the historical period. Thus, pretraining on LAM induces a bias
that allows the HTR model to effectively generalize to Leopardi. An example
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Table 6. Language comparison between the Leopardi dataset and the considered per-
taining datasets, ordered by average Kullback Leiber Divergence of n-grams.

Lexical Similarity Kullback Leiber Divergence FT on 1.25%

Unigram Bigram Trigram CER WER

LAM – 0.02 0.09 0.23 12.7 42.0

Synthetic for Leopardi - 0.05 0.19 0.54 35.6 80.9

RIMES 9.54 0.11 0.84 1.89 25.3 68.7

IAM 6.76 0.17 0.85 1.62 21.7 63.2

ICFHR14 6.76 0.17 0.91 1.83 23.6 67.7

Rodrigo 10.45 0.20 0.71 1.48 34.9 81.1

NorHand 3.99 0.34 1.15 2.06 21.0 63.1

ICFHR16 4.19 0.40 1.50 2.50 39.0 86.0

Table 7. Language comparison between the Saint Gall dataset and the considered
pertaining datasets, ordered by average Kullback Leiber Divergence of n-grams.

Lexical Similarity Kullback Leiber Divergence FT on 1.25%

Unigram Bigram Trigram CER WER

LAM 5.81 0.17 0.87 1.59 20.8 77.8

Rodrigo 6.08 0.18 0.89 1.74 14.4 66.4

RIMES 5.39 0.19 0.87 1.74 28.2 94.2

ICFHR14 3.50 0.20 0.79 1.43 20.4 77.8

IAM 3.50 0.21 0.74 1.31 16.5 68.3

Synthetic for Saint Gall - 0.23 0.60 1.08 18.8 76.1

NorHand 2.39 0.42 1.22 1.78 27.0 87.9

ICFHR16 2.73 0.58 1.60 2.10 32.0 94.2

of the opposite case can be observed when pretraining on the ICFHR16 dataset
and fine-tuning on Saint Gall (Table 7). ICFHR16 is a German dataset with a
significant difference compared to Saint Gall, which is in Latin. Moreover, since
ICFHR16 contains texts written by multiple authors, the dataset has a higher
variance than Saint Gall, which is single-author. Therefore, during fine-tuning,
the network needs to apply more corrections to adjust for the bias and reduce the
variance to focus on the Saint Gall texts, and therefore, more samples are needed
to achieve good results. Overall, the results in Tables 2, 3, 5, and 4 show that, on
average, all single-author datasets bring to better performance on Leopardi and
Saint Gall, while in the Washington dataset, which contains the texts written
by two authors, the multi-author datasets (e.g., the IAM dataset) with many
different styles with a high variance allow obtaining better results.

Language. Tables 6, 7, and 8 compare the language similarity and the Kull-
back Leiber Divergence (KL) between the pretraining and target datasets. To
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Table 8. Language comparison between the Washington dataset and the considered
pertaining datasets, ordered by average Kullback Leiber Divergence of n-grams.

Lexical Similarity Kullback Leiber Divergence FT on 1.25%

Unigram Bigram Trigram CER WER

ICFHR14 – 0.05 0.30 0.66 26.1 64.6

Synthetic for Washington - 0.07 0.31 0.69 23.9 63.4

IAM – 0.08 0.30 0.59 18.8 52.7

NorHand 4.30 0.29 1.03 1.64 31.4 76.7

RIMES 9.67 0.31 1.36 2.22 27.1 78.9

Rodrigo 7.91 0.35 1.38 2.32 48.9 92.6

ICFHR16 4.72 0.36 1.24 1.83 58.0 97.8

LAM 6.76 0.36 1.52 2.31 37.2 81.7

highlight the correlation between the textual information and the network per-
formance, we sort the tables by KL divergence and include the results obtained
after fine-tuning with the 1.25% of the target dataset. In this way, we empha-
size a trend where datasets with a slight language variation are more suitable
to be used in pretraining than datasets with a significant difference. In particu-
lar, ICFHR16, in German, is, on average, the farthest dataset to all the target
datasets we compare with in terms of KL. As a result, pretraining on this dataset
leads to the highest recognition errors in all three target datasets. On the other
hand, pretraining on IAM and ICFHR14, which are in English, allows obtaining
good performance thanks to the language similarity to all the target datasets.
Notably, from Table 6, we observe that from a lexical point of view, the Leopardi
dataset is closer to the LAM dataset than the synthetic one containing proses
by the author. The text in all three datasets is in Italian and was written in
the same period with a time difference of fewer than 70 years. Arguably, the
reason why LAM is closer to the Leopardi dataset is that both datasets are a
collection of letters, which share many structural similarities (e.g., dates, open-
ings, salutations). Combining this aspect, the language, and the period makes
CRNN pretrained on the LAM dataset to obtain impressive performance on the
Leopardi test set, particularly in a direct transfer setting (see Table 2).

5 Conclusion

In this paper, we have explored line-level HTR on historical manuscripts when
limited training data are available. To this end, we have proposed to pretrain a
dedicated HTR model on existing benchmark datasets or on a large quantity of
synthetic data that reflect the characteristics of the handwriting of the target
author of the manuscripts, which we built with a fully-automatic procedure, and
fine-tune on a portion of real data in the collection of interest. In particular, we
have conducted an extensive quantitative analysis of the main characteristics
that the pretraining dataset should have in order to obtain a strong HTR model
with as little as five lines from the target collection.
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The obtained experimental results show that when choosing the real dataset
or generating the synthetic one for pretraining, both the overall appearance
(given by the paper support, writing tool, and average character width) and
the language should be taken into account. Moreover, it has emerged that an
HTR model trained on images of text with high variability in handwriting style
is more robust and easily adaptable than one trained on a single handwriting
style. Nonetheless, when the synthetic data faithfully resemble the real ones in
terms of handwriting, satisfactory performance is achievable.

In the sight of these conclusions, this work can help guide the selection of
the most suitable pretraining dataset to boost the performance of HTR models
on small domain-specific documents and give some insights into the maturity
of the HTG field and its potential benefit for HTR. Finally, this work has shed
some light on the feasibility of interactive, on-demand HTR on single-author
collections, which is a task worthy of further investigation for its application to
digital archives use and enhancement.
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Abstract. There are more than 80,000 character categories in Chi-
nese while most of them are rarely used. To build a high performance
handwritten Chinese character recognition (HCCR) system supporting
the full character set with a traditional approach, many training sam-
ples need be collected for each character category, which is both time-
consuming and expensive. In this paper, we propose a novel approach
to transforming Chinese character glyph images generated from font
libraries to handwritten ones with a denoising diffusion probabilistic
model (DDPM). Training from handwritten samples of a small charac-
ter set, the DDPM is capable of mapping printed strokes to handwritten
ones, which makes it possible to generate photo-realistic and diverse style
handwritten samples of unseen character categories. Combining DDPM-
synthesized samples of unseen categories with real samples of other cat-
egories, we can build an HCCR system to support the full character set.
Experimental results on CASIA-HWDB dataset with 3,755 character
categories show that the HCCR systems trained with synthetic samples
perform similarly with the one trained with real samples in terms of
recognition accuracy. The proposed method has the potential to address
HCCR with a larger vocabulary.
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1 Introduction

In the latest National Standards of the People’s Republic of China about Chi-
nese coded character set (GB18030-2022), 87,887 Chinese character categories
are included. To create a high-performance handwritten Chinese character recog-
nition (HCCR) system that supports the full character set using traditional
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approaches, a large number of training samples with various writing styles would
be collected for each character category. However, only about 4,000 categories are
commonly used in daily life. It is therefore both time-consuming and expensive
to collect representative handwritten samples for the remaining 95% rarely-used
ones. These categories are often of complicated structures, existing in personal
names, addresses, ancient books, historic documents and scientific publications.
An HCCR system supporting the full-set of these categories with high accu-
racy will be beneficial to improve user experience, protect cultural heritages and
promote academic exchanges.

Lots of research efforts have been made to build an HCCR system with only
real training samples from commonly used characters. A Chinese character con-
sists of radicals/strokes with specific spatial relationships, which are shared across
all characters. Rather than encoding each character category as a single one-
hot vector, [4,10,44,45] encode it as a sequence of radicals/strokes and spatial
relationships to achieve zero-shot recognition goal. In [1,19,21,22], font-rendered
glyph images are leveraged to provide reference representations for unseen charac-
ter categories. There are also some efforts to synthesize handwritten samples for
unseen categories. For example, [48] synthesizes unseen character samples with
a radical composition network and combines them with real samples to train an
HCCR system. However, its recognition accuracy is relatively poor.

We propose to solve this problem by synthesizing diverse and high-quality
training samples for unseen character categories with denoising diffusion prob-
abilistic models (DDPMs) [15,38]. Diffusion models have been shown to out-
perform other generation techniques in terms of diversity and quality [9,29,40–
42], due to their powerful modeling capacity of high-dimensional distributions.
This also offers a zero-shot generation capability. For example, in diffusion-based
text-to-image generation [28,33,36], with all object types and spatial relation-
ships existed in training samples, diffusion models are capable of generating
photo-realistic images of in-existence object combinations and layouts. As men-
tioned above, Chinese characters can be treated as combinations of different
radicals/strokes with specific layouts. We can leverage DDPM to achieve the
goal of zero-shot handwritten Chinese character image generation.

In this paper, we design a glyph conditional DDPM (GC-DDPM), which
concatenates a font-rendered character glyph image with the original input of
U-Net used in [9], to guide the model in constructing mappings between font-
rendered and handwritten strokes/radicals. To the best of our knowledge, we are
the first to apply DDPMs to zero-shot handwritten Chinese character generation.
Unlike other image-to-image diffusion model frameworks (e.g., [30,35,43]), which
aim at synthesizing images in the target domain while faithfully preserving the
content representations, our goal is to learn mappings from rendered printed
radicals/strokes to the handwritten ones.

Experimental results on CASIA-HWDB [23] dataset with 3,755 character
categories show that the HCCR systems trained with DDPM-synthesized sam-
ples outperform other synthetic data based solutions and perform similarly with
the one trained with real samples in terms of recognition accuracy. We also
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visualize the generation effect of both in and out of 3,755 character categories,
which indicates that our method has the potential to be extended to a larger
vocabulary.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
review related works. In Sect. 3, we describe our GC-DDPM design along with
sampling methods. Our approach is evaluated and compared with prior arts in
Sect. 4. We discuss limitations of our approach and future work in Sect. 5, and
conclude the paper in Sect. 6.

2 Related Work

Zero-shot HCCR. Conventional HCCR systems [6,7,20,50,52,53], although
achieving superior recognition accuracy, can only recognize character categories
that are observed in the training set. Zero-shot HCCR aims to recognize handwrit-
ten characters that are never observed. Most of the previous zero-shot HCCR sys-
tems can be divided into two categories: structure-based and structure-free meth-
ods. In structure-based methods, a Chinese character is represented as a sequence
of composing radicals [4,10,44,45] or strokes [5]. Although the character is never
observed, the composing radicals, strokes and their spatial relationships have been
observed in the training set. Therefore, structure-based methods are able to pre-
dict the radical or stroke sequences of unseen Chinese characters and achieve zero-
shot recognition. However, in these methods, the radical or stroke sequence rep-
resentations of Chinese characters require lots of language-specific domain knowl-
edge. In structure-free method, [1,17,21,22] leverage information from the corre-
sponding Chinese character glyph images. Zero-shot HCCR is achieved by choos-
ing the Chinese character whose glyph features are closest to that of the hand-
written ones in terms of visual representations. In [19], the radical information is
also used to extract the visual representations of glyph images.

Zero-shot Data Synthesis for HCCR. Besides designing zero-shot recogni-
tion systems, there are some studies to directly synthesize handwritten training
samples for unseen categories. [48] investigates a radical composition network to
generate unseen Chinese characters by integrating radicals and their spatial rela-
tionships. Although the generated handwritten Chinese characters can increase
the recognition rate of unseen handwritten characters, the overall recognition
performance is relatively poor. In this work, we propose to use a more pow-
erful diffusion model to generate unseen handwritten Chinese characters given
corresponding glyph images.

Zero-shot Chinese Font Generation. Zero-shot Chinese font generation aims
to generate font glyph for unseen Chinese characters based on some seen charac-
ter/font glyph pairs. In [11,25,47,51,54], the image-to-image translation frame-
work is used to achieve this goal. Works in [18,24,31] also leverage the infor-
mation of composing components, radicals, strokes for better generalization. In
this paper, we focus on zero-shot handwritten Chinese character generation with
DDPM and we can easily adapt this method to zero-shot Chinese font genera-
tion task.
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Fig. 1. Architecture of glyph conditional U-Net, which is adapted from the model
used in [9]. We concatenate font “kai” rendered character image with original input to
provide glyph guidance during generation.

Diffusion Model. DDPM [15,38] has become extremely popular in computer
vision and achieves superior performance in image generation tasks. DDPM uses
two parameterized Markov chains and variational inference method to recon-
struct the data distribution. DDPMs have demonstrated their powerful capabil-
ities to generate high-quality and high-diversity images [9,15,42]. It is shown
in [33] that DDPM can perform a great effect on combination of concepts,
which can integrate multiple elements. Diffusion models are also applied to other
tasks [8,49], including high-resolution generation [34], image inpainting [43], nat-
ural language processing [2] and so on. Besides, [27] introduces DDPM to solve
the problem of online English handwriting generation. In this work, we pro-
pose to leverage DDPM for zero-shot handwritten Chinese character generation
and to synthesize training data for unseen Chinese characters to build HCCR
systems.

3 Our Approach

3.1 Preliminary

Fig. 2. The Markov chain of forward (reverse) diffusion process of generating a hand-
written Chinese character sample by slowly adding (removing) noise. Adapted from
[15].

Diffusion model is a new paradigm of data generation. It defines a Markov chain
of diffusion steps to slowly add random noise to data and then learn to reverse
the diffusion process to construct desired data samples from the noise [46]. As
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shown in Fig. 2, in our handwritten Chinese character generation scenario, we
first sample a character image from the real distribution x0 ∼ q(x). Then, in
forward diffusion process, small amounts of Gaussian noise are added to the
sample in steps according to Eq. (1),

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (1)

xt =
√

αtxt−1 +
√

1 − αtεt

where αt = 1−βt and εt ∼ N (0, I), producing a sequence of noisy samples. The
step sizes are controlled by a variance schedule {βt ∈ (0, 1)}T

t=1. As t becomes
larger, the image gradually loses its distinguishable features. When t → ∞ , xt

becomes a sample of an isotropic Gaussian distribution.
If we can reverse the above process and sample from q(xt−1|xt), we will be

able to recreate the true sample from a Gaussian noise xT ∼ N (0, I). If βt is
small enough, q(xt−1|xt) will also be a Gaussian. So we can approximate it with
a parameterized model, as shown in Eq. (2)

pθ (xt−1|xt) = N (xt−1;μθ (xt, t),Σθ (xt, t)) . (2)

Since q(xt−1|xt,x0) is tractable,

q(xt−1|xt,x0) = N (xt−1; μ̃(xt,x0), β̃tI) (3)

where ᾱt =
∏t

s=1 αs, and

μ̃(xt,x0) =
1√
αt

(xt − 1 − αt√
1 − ᾱt

εt) (4)

β̃t =
1 − ᾱt−1

1 − ᾱt
· βt . (5)

So we can train a neural network to approximate εt and the predicted value
is denoted as εθ (xt). It has been verified that instead of directly setting Σθ (xt, t)
as β̃t, setting it as a learnable interpolation between β̃t, βt in log domain will
yield better log-likelihood [29]:

Σθ (xt, t) = exp(νθ(xt) log βt + (1 − νθ(xt)) log β̃t) . (6)

In this paper, we will train a U-Net to predict εθ (xt) and νθ(xt) with the same
hybrid loss as in [29].

3.2 Glyph Conditional U-Net Architecture

As shown in Fig. 1, the U-Net architecture we used is borrowed from [9]. With
128 × 128 image input, there are 5 resolution stages in encoder and decoder
respectively, and each stage consists of 2 BigGAN residual blocks (ResBlock) [3].
In addition, BigGAN ResBlocks are also used for downsampling and upsampling
activations. We also follow [9] to use multi-head attention at 32 × 32, 16 × 16
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and 8 × 8 resolutions. Timestep t will first be mapped to sinusoidal embedding
and then processed by a 2-layer feed-forward network (FFN). This processed
embedding will then be fed to each convolution layer in U-Net through a feature-
wise linear modulation (FiLM) operator [32].

To control the style and content of generated character images, writer infor-
mation [12] and character category information are also fed to the model. Given
a writer w, which is actually the class index of all writer IDs, it will be mapped
to a learnable embedding, followed by L2-normalization (denoted as z), which is
injected to U-Net together with the timestep embedding [29] as shown in Fig. 1.

If we inject character category information in the same way as writer, the
model will not be able to generate samples for unseen categories because their
embeddings are not optimized at all. In this paper, we propose to leverage printed
images rendered by font “kai” to provide character category information. We
denote this glyph image as g. There are several ways to inject g to the model.
For example, it can be encoded as a feature vector by a CNN/ViT and fed to
U-Net in FiLM way, or encoded as feature sequences and fed to attention layers
of U-Net serving as external keys and values [28]. In this paper, we simply inject
g as model’s input by concatenating it with xt and leave other ways as future
work. We call our approach as Glyph Conditional DDPM (GC-DDPM).

By conditioning model output on glyph image, we expect the model can learn
the implicit mapping rules between printed stroke combinations and their hand-
written counterparts. Then we can input font-rendered glyph images of unseen
characters to the well-trained GC-DDPM and get their handwritten samples of
high quality and diversity.

3.3 Multi-conditional Classifier-free Diffusion Guidance

Classifier-free guidance [16] has been proven effective for improving generation
quality on different tasks. In this paper, we are also curious about its effects on
HCCR system trained with synthetic samples.

There are 2 conditions, glyph g and writer w, in our model. We assume that
given xt, g and w are independent. So we have

pθ (xt−1|xt,g,w) ∝ pθ (xt−1|xt)pθ (g|xt)pθ (w|xt) . (7)

Following the previous practice in [16], we assume that there is an implicit
classifier (ic),

pic(g,w|xt) ∝
[
p(xt|g)
p(xt)

]γ

·
[
p(xt|w)
p(xt)

]η

. (8)

Then we have

∇xt
log pic(g,w|xt) ∝ γε(xt,g) + ηε(xt,w) − (γ + η)ε(xt) . (9)

So we can perform sampling with the score formulation

ε̃θ (xt,g,w) = εθ (xt,g,w) + γεθ (xt,g, ∅)
+ ηεθ (xt, ∅,w) − (γ + η)εθ (xt, ∅, ∅) .

(10)
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We call γ, η as content and writer guidance scales respectively. When g =
∅, an empty glyph image will be fed to U-Net and when w = ∅, a special
embedding will be used. During training, we set g and w to ∅ with probability
10% independently to get partial/unconditional models.

3.4 Writer Interpolation

Besides generating unseen characters, our model is also able to generate unseen
styles by injecting interpolation between different writer embeddings as new
writer embedding. Given two normalized writer embeddings zi and zj, we use
spherical interpolation [33] to get a new embedding z with L2-norm being 1, as
in Eq. 11:

z = zi cos
λπ

2
+ zj sin

λπ

2
, λ ∈ [0, 1] . (11)

4 Experiments

We conduct our experiments on CASIA-HWDB [23] dataset. The detailed exper-
imental setup is comprehensively explained in Sect. 4.1. Experiments on Writer
Independent (WI) and Writer Dependent (WD) GC-DDPMs are conducted in
Sect. 4.2 and Sect. 4.3, respectively. We further use synthesized samples to aug-
ment the training set of HCCR in Sect. 4.4. Finally, we compare our approach
with prior arts in Sect. 4.5.

4.1 Experimental Setup

Dataset: The CASIA-HWDB dataset is a large-scale offline Chinese handwrit-
ten character database including HWDB1.0, 1.1 and 1.2. We use the HWDB1.0
and 1.1 in experiments, where the former contains 3,866 Chinese character cat-
egories written by 420 writers, and the latter contains 3,755 categories written
by another 300 writers. We follow the official partition of training and testing
sets as in [23], where the training set is written by 576 writers.

Vocabulary Partition: We use the 3,755 categories that cover the standard
GB2312-80 level-1 Chinese set in experiments. We denote the set of 3,755 cate-
gories as S3,755. Following the setup in [1,45], we select the first 2,000 categories
in GB2312-80 set as seen categories (denoted as S2,000), and the remaining 1,755
categories as unseen categories (denoted as S1,755). The diffusion models are
trained on training samples of S2,000 and used to generate handwritten Chinese
character samples of S1,755 to evaluate the performance of zero-shot training
data generation for HCCR.

DDPM Settings: Our DDPM implementation is based on [9]. We use the “kai”
as our font library to render printed character images. We conduct experiments
on both WI and WD GC-DDPMs. In WI GC-DDPM training, we disable writer
embeddings and randomly set content condition g as ∅ with probability 10%.
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Fig. 3. Synthetic handwritten Chinese character samples and corresponding glyphs,
with stroke numbers increasing from left to right.

And in WD GC-DDPM, writer condition w is also randomly set to ∅ with
probability 10%. Flip and mirror augmentations are used during training. We
set batch size as 256, image size as 128×128, and we use AdamW optimizer [26]
with learning rate 1.0e-4. Diffusion step number is set to 1,000 with a linear
noise schedule. GC-DDPMs are trained for about 200K steps using a machine
with 8 Nvidia V100 GPUs, which takes about 5 d. During sampling, we use the
denoising diffusion implicit model (DDIM) [39] sampling method with 50 steps.
It takes 62 h to sample 3,755 characters written by 576 writers, which are about
2.2M samples, with the same 8 Nvidia V100 GPUs.

Evaluation Metrics: We evaluate the quality of synthetic samples in three
aspects. First, Inception score (IS) [37] and Frechet Inception Distance (FID) [14]
are used to evaluate the diversity and distribution similarity of synthetic samples
compared with real ones. Second, since samples are synthesized by conditioning
on glyph image, the synthetic samples should be consistent with the category of
conditioned glyph. Therefore, we introduce a new metric called correctness score
(CS). For each synthetic sample, the category of conditioned glyph is used as
ground truth, and CS is calculated as the recognition accuracy of synthetic sam-
ples using an HCCR model trained with real data, which achieves 97.3% recogni-
tion accuracy in real data testing set. Finally, as the purpose of diffusion model
here is to generate training data for unseen categories, we also train HCCR models
with synthetic samples and evaluate recognition accuracy on the real testing set
of unseen categories. Our HCCR model adopts ResNet-18 [13] architecture and
is trained with standard SGD optimizer. No data augmentation is applied during
HCCR model training. It is noted that starting from different random noise, it
is almost impossible to generate exact same handwritten samples even for same
conditional character glyphs. So it is not appropriate to adopt pixel-level metrics
to evaluate generative effect as [11,18,24,25,31,47,51,54] do (Fig. 3).

4.2 WI GC-DDPM Results

We first conduct experiments on WI GC-DDPM. It is shown in [16] that the
classifier guidance scale is able to attain a trade-off between quality and diversity.
In order to evaluate the behavior of different content guidance scale γ’s, we
choose different γ’s and generate samples to compute FID, ID and CS. Here we
synthesize 50K samples of S2,000, and the HCCR model used to measure CS
is trained using real samples of S3,755. γ ∈ {0.0, 1.0, 2.0, 3.0 , 4.0} are used
and the comparison results are summarized in Table 1. We can find that, as γ
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Table 1. Comparisons of generation quality using different content guidance scale γ’s
in terms of IS, FID, and CS.

γ IS FID CS (%)

0.0 2.62 8.07 94.7

1.0 2.51 10.97 99.8

2.0 2.46 18.03 99.9

3.0 2.44 24.34 99.9

4.0 2.39 28.69 99.9

Table 2. Comparisons of generation quality using different content guidance scale γ’s
in terms of recognition accuracy on testing set of classes in S1,755 using generated
samples as training set.

γ 0.0 1.0 2.0 3.0 4.0

Acc1,755 (%) 93.0 88.6 91.7 63.7 33.2

(a) Failure samples that do not look like any Chi-
nese characters.

(b) (top) Glyph condition images; (middle) Syn-
thetic samples; (bottom) Most similar characters.

Fig. 4. Synthetic samples that are wrongly recognized by real data trained HCCR
model when γ = 0.

increases, the IS decreases, the FID increases and the CS achieves close to 100%
accuracy. This indicates that with a larger γ, the diversity of synthetic samples is
decreasing. This behavior is also observed in Fig. 5a where we visualize multiple
sampled results of the character class in S2,000 using different γ’s. The generated
samples are less diverse, less cursive and easier to recognize when conditioned
on stronger content guidance. According to FID and examples in Fig. 5, the
distribution of synthetic samples with γ = 0 is closer to that of real samples.
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(a) S2,000 example (b) S1,755 example

(c) Out of S3,755 example (d) Complicated strokes example

Fig. 5. Multiple synthetic handwritten Chinese character samples with different con-
tent guidance scale, where (a), (b) and (c) are characters from classes of S2,000, S1,755,
and out of S3,755 Chinese character sets. Samples in each line use the same random seed
and initial noise. Samples across lines use different random seeds to visualize diversity.

When γ = 0, CS achieves 94.7%. In Fig. 4, we show synthetic cases that the
trained HCCR model fails to recognize. Failure cases include (a) samples that are
unreadable, and (b) samples that are closer to another easily confused Chinese
character. They are caused by alignment failures between printed and synthetic
strokes, and can be eliminated by improving glyph conditioning method. We
leave it as future work.

Then, we evaluate the quality of WI GC-DDPM for zero-shot generation
of HCCR training data. We use the trained WI GC-DDPM to synthesize 576
samples for each category in S1,755. Then, the synthetic samples are used along
with real samples of categories in S2,000 to train an HCCR model that supports
3,755 categories. We calculate its recognition accuracy on the testing set of cate-
gory S1,755, which is denoted as Acc1,755. Different γ’s are tried, and the results
are shown in Table 2. In Fig. 5b, we visualize synthetic samples of one category
in S1,755. The best Acc1,755 is achieved when γ = 0. Although synthetic sam-
ples with higher γ are less cursive, they achieve much lower Acc1,755. This is
because the lack of diversity makes it difficult to cover the wide distribution of
handwritten Chinese character image space.
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Fig. 6. Generated handwritten Chinese character samples with different content and
writer guidance scales, where the character is from the class of S1,755. Samples are
generated with the same random seed and initial noise.

Table 3. Comparisons of generation quality between WI and WD DDPMs in terms
of IS, FID, CS (%) and the recognition accuracy (%) on the testing set of class S1,755

using generated samples as training set.

Model IS FID CS Acc1,755

WI 2.62 8.07 94.7 93.0

WD 2.49 6.34 94.8 93.7

WD w/ interpolation 2.53 6.26 95.0 94.7

Clearly, by learning the mapping of radicals and spatial relationship between
Chinese printed and handwritten strokes, the diffusion model is capable of zero-
shot generation of unseen Chinese character categories. Moreover, a high accu-
racy of 93.0% is achieved on S1,755 by only leveraging the synthetic samples. In
Figs. 5c and 5d, we further show the synthetic samples of a Chinese character
category that does not belong to S3,755. The excellent generation effect implies
that our method has the potential to be extended to a larger vocabulary.

4.3 WD GC-DDPM Results

Although WI GC-DDPM can generate desired handwritten characters, we can-
not control their writing styles. In this part, we conduct experiments on WD
GC-DDPM, which introduces writer information as an additional condition.

Figure 6 shows the visualization results of sampling with different content
guidance scale γ’s and writer guidance scale η’s. It shows that with larger γ,
the synthetic samples become less cursive and more similar to the corresponding
printed image. This behavior is consistent with that of the WI GC-DDPM in
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(a) Real text line from [23].

(b) Synthetic samples arranged as a text line.

Fig. 7. Comparisons of real text line images in HWDB2.1 and generated samples
arranged in a text line, where we replace the characters from real data with the gen-
erated characters. Samples in different lines of (a) and (b) are selected and generated
conditioning on the same writer 1001.

Fig. 8. Interpolation of handwritten Chinese character samples, where the top, middle,
bottom lines are characters from classes of S2,000, S1,755, and out of S3,755 Chinese
character sets. We choose writer 1061 (left) and writer 1057 (right) for interpolation
and interpolation factors are shown at the top of images. Standard glyph images of
font “kai” are shown on the left. Samples in each line use the same random seed and
initial noise.

Fig. 5. We also find that with large η, the generated sample becomes inconsistent
with the conditioned printed image. Since writer information is injected to GC-
DDPM in FiLM way, a large guidance scale will cause the mean and variance
shift of μ̃θ (xt,g,w) and Σ̃θ (xt,g,w) which hinders the subsequent denoising,
leading to over-saturated images with over-smoothed textures [43].

In Fig. 7b, we show several synthetic text line images conditioned on a fixed
writer embedding with our WD GC-DDPM. Writing styles of these samples are
consistent and quite similar to real samples written by the same writer as shown
in Fig. 7a. These results verify the writing style controllability of our model.

Then, we compare the quality of synthetic samples when used as training data
for HCCR. For a fair comparison, we also generate 576 samples for each cate-
gory in S1,755, one image for each writer. Recognition performances are shown
in Table 3. To improve sampling efficiency and ensure training data diversity,
the writer guidance scale of 0 is applied. Compared with using samples synthe-
sized with WI GC-DDPM as HCCR training set, the accuracy on the testing set



360 D. Gui et al.

Table 4. Comparisons of recognition accuracy (%) on test sets of S2,000 and S1,755

using real and/or synthetic samples as HCCR training set.

Training set Accuracy on testing set

Real Synthetic Acc2,000 Acc1,755

� / 97.3 97.2

/ WI 96.3 96.0

/ WD 96.4 96.1

/ WD w/ interpolation 96.5 96.1

� WI 97.3 97.3

� WD 97.4 97.3

� WD w/ interpolation 97.4 97.3

of S1,755 is improved from 93.0% to 93.7%. When GC-DDPM is trained with-
out conditioning on writer embedding, it may generate similar samples from
different initial noise. Whereas in WD GC-DDPM, by conditioning on different
writer embeddings, the model will generate samples with different writing styles.
Therefore, the diversity of synthetic samples will be improved. To verify this, we
compare the quality of synthetic samples in terms of IS and FID. As shown in
Table 3, the FID improves from 8.07 to 6.34. The results demonstrate the superi-
ority of WD GC-DDPM in zero-shot training data generation of unseen Chinese
character categories.

Another capability of WD GC-DDPM is that it can interpolate between dif-
ferent writer embeddings and generate samples of new styles. We choose 2 writers
and try different interpolation factor λ’s and visualize the synthetic samples in
Fig. 8. We find that as λ increases from 0 to 1, the style of synthetic samples
gradually shifts from one writing style to another. We also observe that with
the same λ, the synthetic samples of different Chinese characters share similar
writing style as expected. Finally, we use writer style interpolation to generate
the training data of S1,755 for HCCR, and again 576 samples are generated for
each category. For each image, we randomly select 2 writers for interpolation.
We simply use an interpolation factor of 0.5. Results are summarized in Table 3.
We observe a slight improvement in FID score and a 1% absolute recognition
accuracy improvement on S1,755, which further verifies the superiority of our
WD GC-DDPM.

4.4 Data-Augmented HCCR Results

We also use GC-DDPMs trained on S2,000, to synthesize samples for all cate-
gories in S3,755, and combine them with real samples to build HCCR systems.
3 settings are tried: WI, WD and WD w/ interpolation. And 576 samples for
each category are synthesized in each setting. Table 4 summarizes the results.
Best accuracies are achieved with samples synthesized by WD w/ interpolation,
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Table 5. Comparisons of unseen character categories’ recognition accuracy (%)
between our method and prior zero-shot HCCR systems. Works with ∗ also use samples
from HWDB1.2 for training, while † means online trajectory information is also used.

Method Accuracy

CM† [1] 86.7

DenseRan [45] 19.5

FewRan∗ [44] 70.6

HCCR∗ [4] 73.4

OSOCR∗ [21] 84.3

OSCCD∗ [22] 95.6

WI GC-DDPM 96.4

WD GC-DDPM 96.8

WD GC-DDPM w/interpolation 96.9

Table 6. Comparisons of unseen character categories’ recognition accuracy (%) on
CASIA1.2 testing set.

Methods Accuracy

RCN [48] 46.1

WI GC-DDPM 98.6

WD GC-DDPM 98.6

ResNet-18 trained with real data 97.9

which is consistent with Table 3. The HCCR models trained with only synthetic
samples perform slightly worse than the one trained with only real samples.
Combining synthetic and real training samples only performs 0.0%˜0.1% better
than real samples. These results demonstrate the distribution modeling capacity
of GC-DDPMs.

4.5 Comparison with Prior Arts

Finally, we compare our method with prior arts. We first compare our method
with prior zero-shot HCCR systems. To be consistent with prior works in
[4,21,22], we randomly choose 1,000 classes in S1,755 as unseen classes and use
ICDAR2013 [50] benchmark dataset for testing. Results are shown in Table 5.
Here we only list the results from prior arts using 2,000 seen character classes.
It is noted that the 2,000/1,000 seen/unseen character class split for training
and testing is not exactly the same. So the results are not directly comparable.
The results in Table 5 show that our methods achieve the same level recogni-
tion accuracy compared with previous state-of-the-art zero-shot HCCR systems.
Moreover, our approach directly uses a standard CNN to predict supported cat-
egories, which is much simpler compared with the systems in [21,22].
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(a) Japanese (b) Korean

Fig. 9. Synthetic samples of Japanese and Korean characters and standard glyph
images in font “SourceHans”.

We also compare our approach with [48], which also leverages a genera-
tion model to synthesize training samples for unseen classes. We follow the
same experimental setups in [48] and use HWDB1.0 and 1.1 as training set,
which contains 3,755 categories, to train GC-DDPMs. Unseen 3,319 categories
in HWDB1.2 testing set are used as testing set. Results are shown in Table 6.
[48] achieves a 46.1% accuracy by adding more than 9.6M generated samples.
Our approach achieves a 98.6% accuracy by only adding about 1.9M synthetic
samples (576 samples for each unseen category). We also train a classifier using
all real samples in HWDB1.2 training set (240 samples for each category). The
classifier achieves a 97.9% accuracy, which is slightly worse than ours due to less
diverse training samples.

These results verify the zero-shot generation capability of our methods again.
It is easy to extend to larger vocabularies, which makes it possible to build a
high-quality HCCR system for 87,887 categories.

5 Limitations and Future Work

Although GC-DDPM-synthesized images are quite helpful for building a high-
quality HCCR system, there are still some failure cases. The blur and dislocation
phenomena in these samples reveal that there exist better ways to inject glyph
information. It is also possible to encode radical/stroke sequences with spatial
relationships as the condition of DDPM. We will investigate these methods and
report the results elsewhere.

Another limitation of our approach is the long training time of DDPMs. We
will try to reduce the number of character categories and sample numbers per
category to find a better trade-off between synthesis quality and training cost.

Japanese and Korean characters share most strokes with Chinese, so we also
try to synthesize handwritten Japanese and Korean samples with our Chinese-
trained DDPM. As Fig. 9 shows, except for some circle and curve strokes, the
results are quite reasonable. As future work, we will combine handwritten sam-
ples of CJK languages to build a new DDPM, which is expected to synthesize
samples for each language with higher diversity and quality.

6 Conclusion

We propose WI and WD GC-DDPM solutions to achieve zero-shot training data
generation for HCCR. Experimental results have verified their effectiveness in
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terms of generation quality, diversity and HCCR accuracies of unseen categories.
WD performs slightly better than WI due to its better distribution modeling capa-
bility and writing style controllability. These solutions can be easily extended to
larger vocabularies and other languages, and provide a feasible way to build an
HCCR system supporting 87,887 categories with high recognition accuracy.
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Abstract. Deep document enhancement models often suffer in real
world applications due to limited annotation and bias in training data.
Moreover, generative models are often prone to spectral bias towards
certain frequencies. The background (noisy) texture is usually harder to
learn as it is composed from different frequency regions. In this work,
we propose TBM-GAN, a generative adversarial network based frame-
work to synthesise realistic handwritten documents with degraded back-
ground. In addition to the spatial information, TBM-GAN also incor-
porates the frequency information in its loss function to focus on com-
plex noisy texture. Overall, we develop an automated pipeline for TBM-
GAN and train it with artificially annotated data from publicly avail-
able resources. The pipeline provides both text-label and corresponding
pixel-level annotation. We evaluate the quality of synthetic images in
the downstream task of OCR. In text images with historical noisy back-
ground, we observe an 11% reduction in the character error rate when
the OCR is trained with synthetic data from TBM-GAN.

Keywords: Synthetic Data · Data Augmentation · OCR · GAN ·
Focal Frequency Loss · Historical Document · Noisy Background

1 Introduction

The performance of document image understanding applications (DIUs) in real
world are largely affected by both structural deformation of written content
and background textural degradation of documents. Documents captured using
handheld mobile devices inherently come with textural degradation [8,22,34]
due to shadows, non-uniform illumination, warping in an uneven surface, and
blurring for out-of-scale focus, to name a few. Typical examples of such structural
and textural deformation in real-world document images are shown in Fig. 1.

Addressing real-world challenges like degraded texture and shape deforma-
tion altogether is relatively less explored due to the unavailability of appropriate
training data with annotation. It requires text information and corresponding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 366–383, 2023.
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Fig. 1. Illustration of real text images with several natural degradation both in (a)
textural aspects and in (b) structural aspects. It also depicts of diverse real background
texture of historical documents in (c) DIBCO/H-DIBCO databases [38].

pixel-level ground-truth simultaneously. Moreover, the manual annotation pro-
cess for the same is costly in terms of time, resource and man-power. In this
regard, generative networks may contribute to augment synthetic text images
with structural deformation and noisy background texture to compensate the
scarcity of real world data. Generative approaches have proven beneficial for
data augmentation in a wide range of computer vision applications including
DIUs [20,21,41,42]. They have also been applied successfully for various doc-
ument enhancement systems [3,10,28,29,34,37]. Generative framework is also
explored to augment clean handwritten images with writer variability and text
labels [17,18,39]. In particular, Vögtlin et al. [40] proposed a semi-supervised
OCR constrained GAN model to synthesise labeled data with ground-truth.

In addition to the quality and quantity of training data, the performance
of a generative model is also influenced by the information being captured by
its loss function. For instance, while the popular spatial loss functions such as
the �1-norm loss encourages less blurring [8,34]. However, the generative models
with only spatial losses often suffer in capturing the image properties with a
spectral bias towards certain frequency regions [25,31,36]. In the context of
natural images synthesis, recent works [6,15] demonstrated the usefulness of
using frequency based information in the loss function of generative models.

In this work, we propose a conditional GAN approach (TBM-GAN) for syn-
thesising handwritten documents with variable noisy background and deformed
texts. Given a text with clean background, we model the problem of generating
a noisy handwritten document as an image to image translation problem. TBM-
GAN incorporates both spatial and frequency information to learn a mapping
function of the noisy background while keeping the shape of the given text-
region unaltered. The proposed pipeline not only delivers texts with degraded
background but also delivers annotation of text label and pixels both of the noisy
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Fig. 2. Workflow diagram of the proposed framework for generation and evaluation of
handwritten text images with structural and background degradation.

document. Hence the proposed pipeline can be applied simultaneously for data
augmentation in multiple DIUs.

We also propose an artificial annotation process to prepare training data
for TBM-GAN. Thus the proposed TBM-GAN is trained without any manual
intervention. It significantly reduces the human effort, error rate, and time in the
annotation process. The annotation process utilises widely used unlabeled data
of other DIU applications like OCR, image binarisation, etc. to prepare training
data of TBM-GAN. The method produces a trio of (a) text label, (b) text-pixel
annotation, and (c) corresponding text with noisy background. The generated
documents can be used as additional training data for various downstream DIU
applications.

In this work, we consider one of the most popularly used DIU task i.e., OCR
to evaluate the effectiveness of the synthetic images. The flow of work is diagram-
matically outlined in Fig. 2. The synthetic images are used for improvement of
OCR in real-world challenging condition with noisy historical documents. We
evaluate the OCR systems in terms of character error rates (CER%) and words
error rates (WER%) in three major evaluation condition i.e., with clean, syn-
thetic and historical background from widely used benchmark databases. We
observe significant improvement in performance of synthetic data augmented
OCR over the same, trained with clean texts. The improvements are also con-
sistent for realistic unseen synthetic images as well. Finally we summarise the
major contributions of this work,

• We propose a framework to generate synthetic document images with both
text and pixel-level annotation.

• We also study the effect of different frequency bands on noisy document
images. This motivates us to incorporate frequency information in our loss
function.

• We develop an automated pipeline to train the proposed TBM-GAN. Our
pipeline utilises the existing datasets of various DIU applications for this
purpose.
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• Finally, we showcase the efficacy of the proposed data generation approach
in OCR application. We observed a significant improvement in OCR perfor-
mance when the OCR model is trained with synthetic data generated by the
proposed TBM-GAN.

The rest of the work is presented as follows. Section 2 presents a brief dis-
cussion on related prior works. Section 3 deals with methodology and model of
image synthesis module based on GAN and Focal Frequency Loss. The Sect. 4
discusses the synthetic image generation and artificial annotation process for
training data of TBM-GAN. Subsequently, Sect. 5 deals with experiments on
OCR, datasets, results and discussion. Finally, the work is concluded in Sect. 6.

2 Related Work

The deep learning models often suffer from limited amount of labeled data and its
corresponding bias and cost implications. Commonly, strategies such as trans-
fer learning, data augmentation, synthesizing artificial data, etc., are used to
tackle such problems. To augment real documents with systematic degradation,
Baird [2], Kieu et al. [19] and Seuret et al. [32] applied defect models in their
work. Subsequently, tools like DocEmul [7] and DocCreator [16] target to synthe-
sise documents with degraded background using a combination of user-specified
lay-outs. Recently, Augraphy [23] is also introduced to augment noisy documents
with user specified degradation in python. However, such approaches still costs
human interventions in designing and directing appropriate set-up to synthesise
realistic document images.

The work in [1] shows that deep autoencoders trained for reconstruction,
may not be effective for task of synthesising document images from unlabeled
data. However, GANs can potentially be used to synthesise realistic artificial
images using unlabeled data [12,14]. The works in [13,18,30,37,40] have used
GAN based approaches for document synthesis. The work in [5] proposed a
generative model for synthetic data generation with given user-defined layouts
and objects. The generative approaches are also found useful to augment clean
handwritten images with writer variability and text labels [17,18,39]. The work
in [40] proposed generative models to synthesise labeled data with ground truth
with OCR constrained setting. This attempt also requires human effort and cost
to prepare data for training.

The approaches primarily focus towards a particular DIU application like
OCR, binarisation, shadow, etc. In the literature, there is hardly any work study-
ing both text deformation and background degradation simultaneously. Subse-
quently, the existing approaches often require manual supervision for input con-
dition. The approaches may require labeled data or paired images for training.
Additionally, most of the generative deep models primarily focus only on the
spatial distribution for loss function. However, the relevance of the frequency
spectrum in loss function remained a potential area to be studied in DIUs.
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Fig. 3. TBM-GAN takes handwritten texts input with clean color background. It out-
puts the same text image with synthetic noisy texture. It uses focal frequency loss in
addition to �1-norm loss to learn a text and background mapping function.

3 Text and Background Mapping GAN (TBM-GAN)

In this work, generating a noisy handwritten document from a given clean hand-
written document is modeled as an image to image translation problem. In this
regard, we explore a conditional GAN [14,26] based framework. While the usual
(unconditional) GAN models the joint probability, the conditional GAN models
the conditional probability. In particular, we learn a mapping function from con-
ditional observed image domain and a randomized noise vector, to the targeted
image domain.

We propose a conditional GAN, Text and Background Mapping GAN
(TBM-GAN), to synthesise handwritten images with noisy background texture.
Given a text image on clean color background, TBM-GAN generates suitable
noisy background while keeping the tangibility of the input text pixels intact.
The network is able to handle different languages, structural deformation, and
writing styles. The model architecture of the TBM-GAN is shown in Fig. 3.

Existing GAN based architectures for document images enhancement [34,
37] have explored spatial loss functions such as �1-norm loss, �2-norm loss, and
focal loss, to name a few. The �1-norm loss function, for instance, encourages
less blurring [8,34]. However, GANs with only spatial loss function often suffer
from a spectral bias towards low frequency region [25,31,36]. The low frequency
components of the spectrum refers to less variability in spatial domain. Thus, the
generative models with only spatial loss tends to avoid frequency components
that are hard to synthesise. In context of noisy document image generation, this
spectral bias makes it harder for the model to learn detailed texture belonging to
various frequencies. In Fig. 4(a), we show synthetic images generated by TBM-
GAN with only �1-norm loss. We observe that the generated image texture in
Fig. 4(a) are visibly smooth and unable to capture the uneven and rough noisy
texture resembling real world documents.

Recent works [6,15] have shown the benefits of employing frequency based
information for generating more realistic natural images. However, to the best of
our knowledge, incorporating frequency based information for document image
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Fig. 4. (a) represents the images generated by TBM-GAN with only �1-norm loss.
(b) represents the images generated with TBM-GAN using focal frequency loss and
�1-norm loss

generation has not been explored. In Fig. 5, we observe that different bands
in the frequency domain affects the features of both background and texts of
document image. This motivates us to also use frequency representation of doc-
ument images. In particular, we explore the usage of focal frequency loss (FFL)
function [15] in TBM-GAN for generating document images.

Overall, we propose the following objective for TBM-GAN, which includes
the spatial �1-norm loss L�1(·) and FFL LFFL(·):

Ĝ = arg min
G

max
D

LcGAN (G,D) + λL�1(G) + αLFFL(G). (1)

The conditional GAN loss function function [14,26], LcGAN (G,D), is defined as

LcGAN (G,D) = EIC ,IR
[log D(IR|IC)] + EIC ,z[log(1 − D(G(z|IC))], (2)

where G is the generative model, D is the discriminative model, IC represents the
text images with clean background, IR represents the (real) noisy text images,
and z represents the random noise vector. The hyper-parameters λ ≥ 0 and
α ≥ 0 in (1) modulate the ratio of spatial �1-norm loss and FFL, respectively.
The spatial �1-norm loss function is defined as

L�1(G) = EIC ,IR,z[‖IR − G(z|IC)‖1]. (3)

We now describe the FFL computation [15]. Let the frequency representation
with 2D discrete Fourier transform of an image I of size M × N be represented
by H. Let (x, y) denotes the coordinate of an image pixel in the spatial domain
and I(x, y) be the pixel value corresponding to (x, y). Let (u, v) represents the
coordinate of a spatial frequency and H(u, v) represents complex frequency value.
Let Hr(u, v) and Hf (u, v) be the spatial frequency value of real and fake images
respectively.
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Fig. 5. Frequency spectrum (magnitude) of a document image with noisy background
with standard band-limiting operation

Then, FFL is defined as:

LFFL =
1

MN

M−1∑

u=0

N−1∑

v=0

ω(u, v)|Hr(u, v) − Hf (u, v)|2 (4)

In (4), ω(u, v) represents a spectrum weight matrix which dynamically weighs
down the easy frequencies and helps in focusing more on hard frequencies. The
matrix element ω(u, v) is defined as:

ω(u, v) = |Hr(u, v) − Hf (u, v)|γ (5)

where γ > 0 is the scaling factor. In our experiments, we use γ = 1. The
spectrum weight matrix is further normalized to the range [0, 1], where higher
weights correspond to lost frequencies.

4 Synthetic Document Image Generation

We now discuss our overall pipeline to generate synthetic document images using
the proposed TBM-GAN. As discussed in Sect. 3, TBM-GAN requires pairs of
images (IC , IR), where IR represents real world text image (with noisy back-
ground) and IC represents the corresponding text image with clean background.
Publicly available datasets which contain such pairs (IC , IR) are not able to cap-
ture the diversity of examples present in real world. Hence, we next propose a
methodology to synthesise documents with structural and textural degradation.
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Fig. 6. Framework of artificial annotation process for training data of TBM-GAN.
The artificial annotation process enables TBM-GAN to be trained without manual
intervention. It is also used to prepare evaluation set of augmented OCR

4.1 Artificial Annotation of Background and Text in Documents

The artificial annotation process is designed to generate document images with
structural deformation and noisy background. The procedure also generates both
the text labels and associated pixel-level annotation of the text for these noisy
document images. The proposed process consists of three major parts as shown
in Fig. 6. The process uses datasets of available DIUs like OCR and image bina-
risation as the source of annotation.

Fig. 7. Illustration of artificially prepared training data having both pixel level and text
annotation. Figure (a) represents pixel-level ground-truth of text region. (b) represents
corresponding images with real historical background

Clean Text Collection: The proposed annotation method takes a text label
as input. The OCR databases can be used for clean handwritten images with
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a given text label. Alternatively, deep generative models [4,17,18] may also be
used for generating clean handwritten images. Such models can generate real-
istic handwritten images with unlimited text with different languages, shape
deformation, variable writing style, etc. Further, the collected clean text image
is binarised with Otsu [27] to obtain the text pixels. Thus, we can obtain the
pair of foreground pixels of handwritten image and its corresponding text label
as in Fig. 6.

Structural Deformation: Existing works have studied incorporating shape
deformation on clean handwritten images [28,29]. Strike-out and underline tem-
plates can be superimposed on clean texts with random movements, rotation,
and spatial-deviations.

Background Texture: A patch is selected randomly from historical data and
the foreground pixels are replaced with vertically neighboring pixels in the same
column. Finally, the noisy patches are superimposed with the clean text images
as shown in Fig. 6. Thus, the artificial annotation process is used to obtain noisy
documents with (a) text labels (b) text pixels and (c) (real) noisy text image as
in Fig. 6. Figure 7 illustrates few examples of training data generated by artificial
annotation process.

4.2 TBM-GAN Model Architecture

As discussed, the proposed TBM-GAN model aims to learn a mapping from
observed text image with clean background (IC) and a random noise vector (z)
to a text image with real (noisy) background (IR). The generator network G
of TBM-GAN is designed to synthesise text images with noisy texture back-
ground (IS). The input pair (IR, IC) is generated using the approach described
in Sect. 4.1. The generator and discriminator model architectures of TBM-GAN
are adopted from Zhu et al. [43]. In the following, we detail the exact architec-
tures employed in our experiments.

Generator Network: Let c7s1-k denote a 7 × 7 Convolution-InstanceNorm-
ReLU layer with k filters and stride 1. Let dk denote a 3 × 3 layer with
Convolution-InstanceNorm-ReLU and k filters with stride 2. Reflection padding
is applied to diminish artifacts and glitches. Let Rk denote residual block which
consists of two 3 × 3 convolutional layers with a same number of filters on both
layers. Let uk denote a 3×3 fractional-strided-Convolution-InstanceNorm-ReLU
layer with k filters and stride 1

2 . Nine residual blocks are used in the generator
network to train images of size 128 × 128. Overall, the image generation net-
work is as follows: c7s1-64, d128, d256, R256, R256, R256, R256, R256,
R256, R256, R256, R256, u128, u64, c7s1-3. We include dropout layers as
noise distribution on several layers of our generator architecture in both learning
and testing phases.
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Discriminator Network: In the discriminator model (D), we employ a
70×70 PatchGAN [11,14,37]. Let Ck denote a 4×4 Convolution-InstanceNorm-
LeakyReLU layer with k filters and stride 2. At the end of the last layer, another
layer of convolution is appended to produce an output of 1-dimension. The net-
work does not apply InstanceNorm in the initial c64 layer. It uses leaky ReLUs
with a slope of 0.2. Overall, the discriminator architecture is: C64, C128, C256,
C512.

4.3 Dataset Creation

Figure 2 illustrates the proposed synthetic image generation framework with
TBM-GAN. As discussed in Sect. 4.1, the proposed pipeline is trained with arti-
ficially annotated data. The real background are prepared from the DIBCO/H-
DIBCO dataset series (2009–12, 2014, 2016–17) [37,38]. A total of 10 338 patches
of size 128 × 128 are created from the DIBCO/H-DIBCO database. Among
them, a random set of 7 000 real background patches are used to create the
train set (Itrain

R ) and the remaining 3 338 patches are used to generate data the
evaluation set (Ieval

R ). The real words are adopted from publicly available IAM
database [24] and has high variability in terms of writing style, gender, age, page-
texture, writing ink, and stroke-width. We have simultaneously collected stroke
images separately of various types like straight, slanted, cross, etc. A total of
2400 hand-drawn strokes are collected to introduce structural deformation such
as struck-out strokes, underlines, etc.

We generate text images with real background using the artificial annotation
framework described in Sect. 4.1. For training TBM-GAN, we create 76 412 pairs
of images (Itrain

R , Itrain
C ), where Itrain

R contains text with real background and
Itrain
C contains text with clean background. We also generate 76 412 synthetic

images Itrain
S by applying TBM-GAN to Itrain

C , each with a unique texture due
to the random noise vector (z). Synthetic images provide more diversity and com-
plexity of text and background appearance, which can improve the generalization
performance of downstream applications, e.g. OCR. However, synthetic images
may not capture all the real-world variations and challenges. Therefore, we use
Itrain
R to fine-tune our model. The background patches of Itrain

R are selected
from a pool of 7000 distinct real-world patches, which is much smaller than the
number of text images. This may cause overfitting to the limited background
variations and reduce the robustness of the model for real-world applications.
We observe this empirically and discuss it in Sect. 5.2. For evaluation, we gen-
erate another set of 21 489 pairs of images (Ieval

R , Ieval
C ), where Ieval

R contains
text with real background and Ieval

C contains text with clean background. We
also generate a synthetic evaluation set, Ieval

S , which consists of 21 489 synthetic
images obtained by applying TBM-GAN to Ieval

C .

5 Results and Discussion

In this section, we discuss our experiments to showcase the effectiveness of syn-
thetic data generated by our TBM-GAN based pipeline. We perform both qual-
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itative and quantitative evaluations. For the latter, the synthetic image gener-
ated by TBM-GAN (IS) can be used as additional training data for different
DIU applications. In particular, we demonstrate the effectiveness of TBM-GAN
on OCR application due to its wide applicability. In this regard, we have used a
deep learning based benchmark OCR architecture [33,35].

5.1 Qualitative Results

In Fig. 4, we compare the synthetic document images generated by TBM-GAN
with and without the FFL. We note that inclusion of FFL, Fig. 4 (b), enhances
the variability of texture and prominence in text region pixels. On the other
hand, TBM-GAN with only spatial loss, Fig. 4 (a), produces smooth background
with fewer texture details.

Additional examples of synthetic document image generated by TBM-GAN
are shown in Fig. 8. We observe that TBM-GAN is able to generate images
with various background colors and degradation. Though TBM-GAN model is
trained with clean handwritten images in English languages from IAM database,
we note that it is also able to generate degraded documents with both text and
numerals in non-English languages such as Telugu, Bengali, and Hindi. Figure 8
also shows that texts with shape deformation like struck-out strokes, underline,
or cross are nicely captured by TBM-GAN.

5.2 Improving OCR Using TBM-GAN

We next discuss a downstream application of TBM-GAN in improving OCR
with additional training data generated synthetically.

OCR architecture. We use state-of-the-art OCR model based on hybrid CNN-
BiLSTM-CTC network [9,35] in our evaluation. The above OCR architecture
includes five layers of convolution neural network (CNN), two layers of bi-
directional LSTM, and a connectionist temporal classification (CTC) module
at the end recognition.

Evaluation methodology. The OCR is trained in four different setups:

• OCRC: the OCR is trained with only clean text images (Itrain
C ) from IAM

database.
• OCRR: the OCR is trained with real text images (Itrain

R ).
• OCRS: the OCR is trained with the synthetically generated images (Itrain

S )
from TBM-GAN. It should be noted that the set Itrain

S is the TBM-GAN’s
output corresponding to the input (Itrain

R , Itrain
C ).

• OCRS+R: the OCR is initially trained using Itrain
S and subsequently fine

tuned using Itrain
R .

It should be noted that OCRS and OCRS+R are trained using TBM-GAN’s syn-
thetically generated output. In our experiments, we compare their performance
against two baselines, OCRC and OCRR, to evaluate the influence of TBM-GAN
on the downstream OCR application.

We compare the performance of the above discussed OCRs (OCRC, OCRR,
OCRS, OCRS+R) on three evaluation datasets, each containing 21 000 samples:
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Fig. 8. Output of synthesised images by TBM-GAN. The first four rows depict texts
and numerals in English. Fifth and sixth rows show multiple languages such as Telugu,
Bengali and Hindi (2 each) respectively. The seventh and eighth rows show texts with
structural or shape deformation
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• Clean text images (Ieval
C )

• Synthetic images generated using TBM-GAN (Ieval
S ). The set (Ieval

S ) is the
TBM-GAN’s output corresponding to the input (Ieval

R , Ieval
C ).

• Real images (Ieval
R )

We report standard OCR evaluation metrics, character error rate (CER) and
word error rates (WER%), in our experiments. The results are also broken down
by the word length of the evaluation images, ranging from 2 to 6 or more char-
acters.

Table 1. Evaluating OCRs on text images with clean background (Ieval
C ) in terms

of CER% (WER%). We observe that performance of OCRs trained with synthetic
data from TBM-GAN (OCRS and OCRS+R) are close to that of clean image baseline
(OCRC) when tested with clean documents (Ieval

C ).

Word Length OCRC OCRR OCRS OCRS+R

2 8.36 (11.22) 19.73 (27.05) 10.61 (15.36) 9.41 (13.34)

3 7.73 (15.11) 26.08 (46.07) 10.32 (20.19) 8.16 (16.15)

4 10.62 (27.12) 40.02 (82.11) 13.88 (34.75) 11.33 (27.94)

5 11.32 (35.19) 43.62 (91.44) 14.67 (44.85) 11.84 (36.49)

>=6 14.11 (52.23) 34.62 (92.15) 18.73 (64.58) 14.72 (53.60)

All 11.91 (30.24) 34.14 (68.24) 15.71 (38.36) 12.53 (31.57)

Table 2. Evaluating OCRs on synthetic background text images (Ieval
S ) in terms of

CER% (WER%). We observe that the OCRs trained on TBM-GAN’s generated output,
OCRS and OCRS+R, perform better than the baselines OCRC and OCRR.

WordLength OCRC OCRR OCRS OCRS+R

2 19.41 (22.55) 29.48 (39.80) 12.83 (17.37) 9.52 (12.88)

3 15.38 (24.89) 30.10 (51.22) 11.75 (23.24) 9.04 (16.49)

4 17.34 (36.55) 35.44 (67.54) 15.15 (35.27) 12.86 (29.22)

5 18.28 (46.30) 36.43 (76.04) 16.51 (46.50) 13.43 (37.54)

>=6 23.26 (64.97) 46.62 (91.82) 23.17 (69.03) 19.20 (59.01)

All 20.37 (41.31) 40.08 (67.35) 18.77 (40.84) 15.35 (33.57)

Results: Table 1 reports the performance of different OCRs on the clean text
images (Ieval

C ). In this setting, the baseline OCR system OCRC obtains the
best performance across all word lengths. This is because both the train set for
OCRC and the test set are from the same domain (clean text images). On the
other hand, the performance of the baseline OCRR deteriorates significantly.
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Table 3. Evaluating OCRs on real background text images (Ieval
R ) in terms of CER%

(WER%). We observe that the OCRs trained on TBM-GAN’s generated output, OCRS

and OCRS+R, outperform the baselines OCRC and OCRR.

WordLength OCRC OCRR OCRS OCRS+R

2 41.36 (38.66) 24.82 (33.05) 30.69 (36.65) 9.80 (13.40)

3 25.16 (35.13) 28.38 (48.90) 18.42 (30.90) 8.60 (16.28)

4 22.04 (42.52) 43.64 (84.46) 17.83 (40.14) 11.06 (26.64)

5 21.78 (51.75) 49.93 (94.36) 18.44 (48.95) 12.80 (36.82)

>=6 23.67 (66.37) 44.58 (95.42) 23.08 (68.74) 16.75 (54.94)

All 24.76 (48.59) 41.28 (71.71) 21.66 (46.91) 13.75 (31.84)

This is because its train set, Itrain
R , has a limited number of distinct real (noisy)

background texture. Hence, OCRR gets conditioned to work well only on such
background texture. We also observe that the performance of OCR systems
trained using TBM-GAN’s output, OCRS and OCRS+R, are slightly worse than
OCRC. This is because the training sets of OCRS and OCRS+R has noisy back-
ground, while the test set has clean background. The performance of OCRS+R is
better than OCRS, which highlights that pre-training on synthetic background
images helps to improve the generalization of the model to clean background
images. The difference in CER% and WER% between OCRS+R and OCRC is
less than 1% and 2%, respectively, for all word lengths greater than two. Over-
all, the results in Table 1 show that document images generated by TBM-GAN
have reasonably good properties and help in training OCRs which are robust to
change in test set distribution. It should also be emphasised that the setting of
evaluation set Ieval

C , text images with clean background, is not common in real
world scenarios. Real world images have noise, which is captured in the other
two evaluation sets Ieval

S and Ieval
R .

Table 2 reports the performance of different OCRs on the synthetic text
images with noisy background (Ieval

S ). As discussed, Ieval
S is generated from

TBM-GAN with Ieval
C as input. This is significantly more challenging evalua-

tion set than Ieval
C . Hence, we observe a steep rise in the character error rates

of OCRC and OCRR (6–11% and 4–12%, respectively) across all word lengths
(when compared with results in Table 1). However, OCRS and OCRS+R per-
form much better than the baselines and are much more robust to the presence
of background (noisy) texture. Compared to Ieval

C test set, the increase in the
character error rates of OCRS and OCRS+R on Ieval

S is 1.5–4.5% and 0.11–4.5%,
respectively. Overall, OCRS+R obtains the best performance across all word
lengths and its average improvement over OCRC is 5% (over characters) and
7.7% (over words).

Table 3 compares the accuracy of different OCRs on text images with real
background (Ieval

R ), grouped by word length. The results show that the OCR
trained on a combination of synthetic and real data (OCRS+R) achieves the
highest accuracy for all word lengths, demonstrating its superior generalization



380 A. Poddar et al.

ability on real images (Ieval
R ). This suggests that the synthetic data generated

by TBM-GAN can complement the real data and enhance the robustness and
accuracy of the model on real images. The model trained on real data (OCRR)
performs better than the model trained on clean data (OCRC) on real images,
but worse than the model trained on synthetic data (OCRS). This suggests that
the real data alone may not be sufficient or representative enough to train a
reliable OCR model on real images and that the synthetic data can provide
additional information and variation to the model.

The proposed TBM-GAN method can generate high-quality synthetic back-
ground text images that can be used to train OCR models that are robust
and accurate across different types of backgrounds. Synthetic data from TBM-
GAN improves OCR models’ ability to recognize text images with different back-
grounds. It preserves the text’s sharpness, mimics the diversity and complexity
of the backgrounds, and complements the real data. The best OCR model is
the one trained on both synthetic and real data, which can achieve significant
improvements over the baselines on all test sets, especially on real images. For
example, on real images, the OCRS+R model significantly reduces the CER and
the WER by 44.5% and 66.7% and by 34.4% and 55.6% respectively, compared
to the OCRC and OCRR models.

6 Conclusion

In this paper, we address the problem of generating realistic synthetic hand-
written documents with structural and texture degradation, along with text and
pixel-level annotation. We present TBM-GAN, a conditional GAN framework
that uses FFL and a spatial loss to generate realistic document images with var-
ious background textures and degradation levels. Our approach maintains the
spatial alignment and structure of the text and background, ensuring the read-
ability and quality of the synthesized documents. Capturing information from
document images with structural and texture degradation is an important prob-
lem in document-image understanding applications (DIUs). We show that the
synthetic data generated by TBM-GAN can be used to enhance the training
data for document-image understanding applications (DIUs), such as OCR. We
evaluated the performance of TBM-GAN on three datasets of document images
with clean, synthetic, and real background. We also trained and tested four
OCR models with different combinations of data sources to assess the impact
of TBM-GAN’s generated images on OCR accuracy. Our experimental results
showed that TBM-GAN can generate high-quality synthetic document images
with diverse background degradation and that the OCR models trained on TBM-
GAN’s output can achieve better or comparable accuracy than the baselines on
clean, and real background document images. We also present qualitative results
of TBM-GAN’s output on different languages and scripts, showing its ability
to capture the variability and prominence of text and background regions. We
believe that our framework can be a useful tool for creating large-scale synthetic
datasets for various DIUs, especially for low-resource languages and scripts.
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Abstract. Text-to-Image synthesis is the task of generating an image
according to a specific text description. Generative Adversarial Networks
have been considered the standard method for image synthesis virtu-
ally since their introduction. Denoising Diffusion Probabilistic Models
are recently setting a new baseline, with remarkable results in Text-to-
Image synthesis, among other fields. Aside its usefulness per se, it can
also be particularly relevant as a tool for data augmentation to aid train-
ing models for other document image processing tasks. In this work, we
present a latent diffusion-based method for styled text-to-text-content-
image generation on word-level. Our proposed method is able to generate
realistic word image samples from different writer styles, by using class
index styles and text content prompts without the need of adversarial
training, writer recognition, or text recognition. We gauge system per-
formance with the Fréchet Inception Distance, writer recognition accu-
racy, and writer retrieval. We show that the proposed model produces
samples that are aesthetically pleasing, help boosting text recognition
performance, and get similar writer retrieval score as real data. Code is
available at: https://github.com/koninik/WordStylist.

Keywords: Diffusion Models · Synthetic Image Generation · Text
Content Generation · Handwriting Generation · Data Augmentation ·
Handwriting Text Recognition

1 Introduction

Image synthesis is a very challenging problem in Computer Vision, which has
gained traction with the rekindling of interest in neural networks a decade prior,
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and especially the introduction of models and concepts such as Generative Adver-
sarial Networks (GANs) [10], Variational Autoencoders (VAEs) [17] or Normal-
izing Flows (NFs) [18]. Apart from the utility of the generated image in itself,
image synthesis has been employed as a tool to artificially augment training sets.
This is an aspect that is critical when it comes to training Deep Learning models,
which are notorious for typically requiring vast amounts of data to attain opti-
mal performance. Annotating data is an expensive and time-consuming task that
requires a lot of human effort and expertise. A particular variant of image syn-
thesis is text-to-image synthesis, where the task is to generate an image given a
text description. As stated in [9], a text description can indeed give more seman-
tic and spatial information about the objects depicted in an image than a single
label. Text-to-image synthesis has been established as a whole independent field
as several applications have gained relative prominence.

Conditional Generative Adversarial Networks (cGANs) [26], the conditional
variant of GANs, have further enabled the augmentation of existing datasets
by generating data given a specific class or a specific input. With the advent of
these models, adversarial training has been established as the standard for image
generation, where a minimax game is “played” between two networks, aptly
named Generator and Discriminator. The Generator is tasked with creating a
sample – in the current context, the synthesized image – while the Discriminator
is tasked with detecting instances that are outliers with respect to the training
data. Unlike GANs, which do not explicitly define a data density, other state-of-
the-art approaches have attempted to approach data generation as sampling from
a probability density function (pdf). Variational Autoencoders cast the problem
as one of estimating a latent representation for members of a given dataset,
given the prior knowledge that latent embeddings are Gaussian-distributed. They
are comprised of two network parts, named the Encoder and the Decoder. The
Encoder produces (probabilistic) latent representations given a datum, while the
Decoder is tasked with the inverse task, that is producing a sample given a latent
representation. Normalizing flows also deal with estimating the pdf of a given set,
and also assume the existence of a latent space that is to be estimated, like VAEs.
Latent data are equidimensional to the image data, and training is performed
by learning a series of non-linear mappings that gradually convert the data
distribution from and to a Gaussian distribution. In VAEs as in NFs, once the
model is trained, image generation can simply be performed by sampling from the
latent space and applying the learned transformation back to the image/original
space. The outburst of Diffusion Models, and in particular more recent variants
such as Denoising Diffusion Probabilistic Models (DDPMs) or Latent Diffusion
Models (LDM) have quickly begun to change the picture of the state of the art
with achievements that can often be described to be no less than astonishing.
The results of systems such as DALL·E-2 [30] and Imagen [34] have prompted
many researchers to experiment with their use in different applications. Diffusion
models [36] are based on a probabilistic framework like VAEs or NFs, but propose
a different approach to the problem of image synthesis, cast in its standard form
as density estimation followed by sampling. Like NFs, in their standard form the
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latent space dimensionality is defined to be equal to that of the original space,
and learning is performed by estimating a series of non-linear transformations
between latent space and original space. A “forward/diffusion” process gradually
adds noise to inputs according to a predetermined schedule; with the “reverse”
process the aim is to produce an estimate of an image given a latent, noisy
sample.

In this work, instead of using text only as a description of the image contents,
we also use it literally as image content, in the sense of generating handwriting.
Thus, we address a task of Text-to-Text-Content-Image Synthesis. The main
contributions of this work are the following:

1. We present a method based on a conditional Latent Diffusion Model, that
takes as input a word string and a style class and generates a synthetic image
containing that word.

2. We compare qualitative results of our method with other GAN-based gener-
ative model approaches.

3. We further evaluate our results by presenting qualitative and quantitative
results for text recognition using the synthetic data. The synthetic data is
used for data augmentation, resulting in boosting the performance of a state-
of-the-art Handwriting Text Recognition (HTR) system.

4. And finally, we compare synthetic data and real handwritten paragraphs using
a writer retrieval system. We show that data produced by our method show no
significant difference in style to real data, and outperforms the other methods
by a tremendous margin.

The paper is organized as follows. In Sect. 2, we present an overview of the
related work. Our proposed method is introduced in Sect. 3, while Sect. 4 includes
the evaluation process and results. Section 5 presents limitations and possible
future directions. Finally, we discuss conclusions in Sect. 6.

2 Related Work

Text-to-Text-Content-Image Synthesis refers to the task of generating an
image that depicts a specific text, whether it is on the character-, word-, sentence-
, or page-level, given that text as the input condition. A field directly related
to this task is Document Image Analysis and Recognition, notably one of the
resource-constrained domains with respect to the availability of annotated data,
at least compared to the current state in natural image-related tasks [7,20].

Most existing works focus on conditioning on a string prompt and a
writer style to generate images of realistic handwritten text using GAN-based
approaches. GANwriting [15] creates realistic handwritten word images condi-
tioned on text and writer style by guiding the generator. The method is able to
produce out-of-vocabulary words. The authors extend this work in [14], gener-
ating realistic handwritten text-lines. SmartPatch [25] fixes artifact issues that
GANwriting faces by deploying a patch discriminator loss. ScrabbleGAN [35]
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uses a semi-supervised method to generate long handwritten sentences of dif-
ferent style and content. A Transformer-based method is presented in [2], using
a typical Transformer Encoder-Decoder architecture that takes as inputs style
features of handwritten sentence images extracted by a CNN encoder and a
query text in the decoding part. The model is trained with a four-part loss func-
tion, including an adversarial loss, a text recognition loss, a cycle loss, and a
reconstruction loss.

Related to Historical Document Analysis [21,28], the work presented in [29]
initially generates modern documents using LaTEX and then attempts to convert
them into a historical style with the use of CycleGAN [40]. The work is fur-
ther extended in [39], by adding text recognition to the framework and the loss
function, which gives better readable text in the image synthesis.

3 Method

In this section, we present some general background information for the standard
Diffusion and Latent Diffusion Models. We then illustrate in detail the proposed
method that includes the forward process, model components, sampling and
experimental setup for training and sampling from the model.

3.1 Diffusion Models Background

Denoising Diffusion Probabilistic Models (DDPM). Diffusion Models
are a type of generative model that employ Markov chains to add noise and
disrupt the structure of data. The models then learn to reverse this process and
reconstruct the data. Inspired by Thermodynamics [36], Diffusion Models have
gained popularity in the field of image synthesis due to their ability to generate
high quality samples.

The Diffusion Model consists of two phases: the forward (diffusion) process
and the reverse (denoising) process. In the forward process, a sample x0 is ini-
tially drawn from a distribution x0 ∼ q(x0) corresponding to the observed data.
This is subjected to Gaussian noise, which produces a latent variable x1; noise
is again added to x1, giving latent variable x2, and so on, until some predefined
hyper-parameter T . This process forms a series of latent variables x1, x2, ·, xT ,
Formally, we can write:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1), q(xt|xt−1) = N(xt;
√

1 − βtxt−1, βtI), (1)

where we have βi ∈ [0, 1],∀i ∈ [1, T ]. Hyper-parameters β1, β2, ..., βT collectively
form a noise variance schedule, used to control the amount of noise added at each
timestep. In the final timestep, given large enough T and suitable noise schedule,
we will have q(xT |x0) = q(xT ) ≈ N(0, I), i.e. the end result becomes practically
a pure Gaussian noise sample with no structure. In the reverse (denoising) phase,
a neural network learns to gradually remove the noise from the sampled by a
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stationary distribution until ending up with actual data. Hence, image synthesis
will be performed according to an ancestral sampling scheme. This means that
first we need to sample from q(xT ), then we sample by the previous time-step
conditioned on the sampled value of xT , and so and so forth until we sample the
required x0.

The noise is gradually removed in reverse timesteps using the following
transition:

pθ(x0:T ) = p(xT )
∏T

t=1
pθ(xt−1|xt), pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t)). (2)

The network is trained by optimizing the variational lower bound between the
forward process posterior and the joint distribution of the reverse process pθ.
The training loss

L = Ex0,t,γ[||ε − εθ(xt, t)||2] (3)

is calculated as the reconstruction error between the actual noise, ε, and the
estimated noise, εθ. In the case of Latent Diffusion models the loss will be adapted
to the latent representation zt.

Latent Diffusion Models (LDM). Diffusion Models have demonstrated
remarkable performance in image generation and transformation tasks [13,16,
19,27]. However, their computational cost is high due to the size of the input
data and the use of cross-attention in images. To address this issue, Latent
Diffusion Models were introduced in [32] to model the data distribution in a
lower-dimensional latent representation space. This is accomplished by mapping
the input images to a latent representation using an encoder, and then decoding
the sampled latents back into an image using a decoder, both from a variational
autoencoder architecture.

3.2 Proposed Approach

The goal of this work is to generate synthetic word-image samples given a word
string and a style class as conditions from a known distribution. We approach this
problem with the use of latent diffusion models to minimize training time and
computational cost. To move to the latent space we use the pre-trained “stable-
diffusion” VAE implementation from the Hugging Face repository1. Figure 1
presents the overall architecture of the proposed method.

Forward Process and Training. For the forward process, the VAE encoder VE

initially transforms an input image to a latent representation z. A diffusion model
pθ(x|Y, cτ ) is learned on the style Y and text-condition cτ pairs. Timesteps t are
sampled from a uniform distribution and the latent representation z gets grad-
ually corrupted by the diffusion process in every timestep. For the noise predic-
tion, we use a U-Net architecture [33] with Residual Blocks [12] and intermediate
1 https://huggingface.co/CompVis/stable-diffusion.

https://huggingface.co/CompVis/stable-diffusion
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Diffusion process

UNet
Embedding

Positional Encoding

Self-Attention

Training

Sampling

Pixel Space Latent Space

Fig. 1. The overall architecture. During training, an input image is fed to the
encoder VE to create a latent representation z, then noise is added to the latent. The
noisy latent zt is then fed to the U-Net noise predictor along with a style class index
for the writer style and an encoded word as the content. The UNet predicts the noise
of the noisy latent zt−1 where t − 1 is the corresponding timestep. During sampling,
a random noise latent zT is given to predict its noise. Then the model uses the two
noise predictions to reconstruct the latent of the image z0 that is finally decoded by
the decoder VD that creates the synthetic image.

Transformer Blocks [38] to add the text condition to the model, as typically used
by Ho et al. [13]. The network takes as input the noisy image latents, the corre-
sponding timestep, and the desired conditions Y and τ . Timesteps are encoded
using a sinusoidal position embedding, similar to [38] to inform the model about
each particular timestep that is operating. The training objective is to minimize
the reconstruction error between the network’s noise prediction and the noise
present in the image. For the diffusion process, a noise scheduler increases the
amount of noise linearly from β1 = 10−4 to βT = 0.02 for T = 1000 timesteps.
While most works use multiple ResNet blocks within the U-Net components, in
the context of the current problem we need to take into account that we must
work with scarce data compared to other use-cases; larger models correspond to
larger parameter spaces, which are exponentially harder to explore. Hence, we use
1 ResNet block in every module of the U-Net. To further reduce the parameters
and complexity of the network we use an inner model dimension of 320 and 4 heads
in the Multi-Headed Attention layers within the U-Net.

Sampling. We generate synthetic samples by deploying the reverse denoising
process learned from the model. To this end, the noise of a random noisy sam-
ple zT is predicted by the learned network pθ and gradually removed in every
timestep of the reversed process starting from T to t = 0. One of the main
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challenges associated with DDPM is the time required for sampling. Our exper-
iments indicate that reducing the number of time steps from 1,000 to 600 does
not compromise the quality of the generated samples. The final image is obtained
in pixel space by decoding the denoised latent variable using decoder VD. We
demonstrate how the reduction of timesteps affects the quality of the gener-
ated sample in Fig. 2. The figure shows that below 500 timesteps the quality of
the images is really affected, thus to make sure the generated samples are not
affected dramatically we proceed with a value of 600.

T = 100 T = 200 T = 300 T = 400 T = 500

T = 600 T = 700 T = 800 T = 900 T = 1000

Fig. 2. Sampling outputs using various timesteps values in the reverse denoising
process.

Style and Text Conditions. The input style condition Y is processed with an
embedding layer and then added to the timestep embedding. For the text condi-
tion, a content encoder CE is used to transform an input string τ into a mean-
ingful context representation cτ = CE(τ) for the model. Initially, the string is
tokenized using a unique index for each letter and then passed through an embed-
ding layer to transform it to an appropriate embedding dimension according to
the vocabulary size which is the number of characters present in the training set.
Then, positional encodings similar to [38] are used to inform the model about
the character position in the sequence with the use of sine and cosine functions
as PEpos,i = sin(pos/1000i/emb dim) and PEpos,i+1 = sin(pos/1000i/emb dim),
where pos is the position of each letter in the sequence and emb dim is 320 as
mentioned previously. Finally, to create the text input condition cτ a dot-product
attention layer is used, defined as Att(Q,K, V ) = softmax(QKT

√
dk

)V , to create
a weighted sum of the character representations. To support the choice of the
positional text encoding we present a few samples as ablation with and without
the positional encoding and self-attention layers in Fig. 3.

3.3 Experimental Setup

We conducted extensive experiments using the IAM offline handwriting database
on word-level [24]. Similar to [15,25], we used the Aachen split train set and
included words of 2–7 characters to train the diffusion model. Thus, during
training the model sees 339 writer styles and approximately 45K words. For
consistency, all images were resized to a fixed height of 64 pixels, retaining their
aspect ratio. To handle variations in width, images of width smaller than 256
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pixels were center-padded, while larger ones were resized to the maximum width.
Since the maximum number of characters is 7, this resizing did not cause signifi-
cant distortions in the images. Moreover, these images were intended for training
other models, which could eventually lead to resizing or modifications of the orig-
inal images. AdamW [22] is used as the optimizer during training with a learning
rate of 10−4. To better understand the nature of the model, no augmentation is
used on the images during training. Each model was trained for 1K epochs with
a batch size of 224 on a single A100 SXM GPU.

Word τ "cool" "About" "kraut"

- CE

+ CE

Fig. 3. Comparison of generated images with (top row) and without (bottom row) the
positional encoding and self-attention layer of the context encoder CE . All image pairs
(top-bottom) share the same style condition.

4 Evaluation and Results

We evaluate the quality of the generated word-images using our method in three
aspects: visual quality, text quality, and style quality. To assess visual quality, we
compute the commonly used Fréchet Inception Distance (FID) score and pro-
vide examples of in-vocabulary and out-of-vocabulary words. Additionally, we
demonstrate the results of blending two distinct writer styles through interpola-
tion. To determine the effectiveness and text quality of our approach, we create
a pseudo training set from the IAM database and conduct several experiments
for handwriting text recognition (HTR). For comparison with other methods, we
perform the same experiments using two GAN-based approaches, SmartPatch
and GANwriting. Finally, we evaluate style quality in two ways. First, we train
a standard Convolutional Neural Network (CNN) on the real IAM database for
style classification and test it on the generated samples. Second, we apply a
writer retrieval method and compare its performances using real or synthetic
data. This enables us to measure the extent to which our method accurately
captures the style of the original IAM database.

4.1 Qualitative Results

A comparative qualitative evaluation can be found in Fig. 4, where both Smart-
Patch and GANwriting methods have been used to generate a set of word images.
Specifically, the goal was to recreate the original images (further left column).
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As we can see, all methods generate “readable” words without notable arti-
facts/deformations. Nonetheless, SmartPatch has a smoother appearance com-
pared to GANwriting, as it was designed to do, while the proposed Diffusion
approach retains the original style to an outstanding degree.

Furthermore, to validate the variety of styles and the ability to generalize
beyond already seen words, in Fig. 5 we present generated samples using our
method of In-Vocabulary (IV) and Out-of-Vocabulary (OOV) words and random
styles picked from the IAM training set. We can observe a notable variety over
the writing style, indicating the good behavior of the proposed method, even for
the case of OOV words that were never met in the training phase.

Real IAM WordStylist (ours) SmartPatch GANwriting

Fig. 4. Comparison of (in-vocabulary) real word images and synthetic versions of these
words.

Towards measuring the quality of the generation, a metric commonly used to
evaluate generative models is the Fréchet Inception Distance (FID) score [8]. The
metric computes the distance between two dataset feature vectors extracted by
an InceptionV3 network [37] pre-trained on ImageNet [7]. Our approach achieves

In-Vocabulary (IV) Generated Words Out-of-Vocabulary (OOV) Generated Words

Fig. 5. Qualitative results from WordStylist of random writer styles from In-
Vocabulary (IV) (left) and Out-of-Vocabulary (OOV) (right) word generation. All
writer styles are randomly selected to produce each word meaning that the IV samples
may not appear in the training set with the presented style-text combination.
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an FID score of 22.74, which is comparable to SmartPatch’s score of 22.55.
GANwriting performs with an FID of 29.94. While FID is a widely used metric
for evaluating generative models, it may not be appropriate for tasks that do
not involve natural images similar to those in ImageNet, on which the network
was trained. In fact, this domain shift between natural images and handwritten
documents lessens the fidelity of the evaluation protocol, but adapting this met-
ric, by fine-tuning the FID network on document images, is out of the scope of
this work. Despite this, the FID metric is still an indication of realistic images.

4.2 Latent Space Interpolation

Following the paradigm of GANwriting [15], we further interpolate between two
writer styles YA and YB by a weight λAB to create mixed styles. Using a weighted
average YAB = (1 − λAB)YA + λABYB , we interpolate between YA and YB for a
fixed text condition. Figure 6 shows the results on fixed words with interpolation
between two writing styles with various λAB values. One can observe the smooth
progression between styles as the mix parameter λAB increases. This interpola-
tion concept could be a useful tool for generating words of unseen/unknown style,
especially if the goal is to create an augmented dataset for training document
analysis methods.

YA 0.0 0.2 0.4 0.6 0.8 1.0 YB

Real A Real B

Fig. 6. Interpolation results between writer styles with various weights.

4.3 Handwriting Text Recognition (HTR)

We evaluate the generated data on the task of Handwriting Text Recognition
and assess the usefulness of the data on a standard downstream task. We use
the HTR system presented in [31]. Specifically, the used HTR system is a hybrid
CNN-LSTM network with a ResNet-like CNN backbone followed by a 3-layers
bi-directional LSTM head, trained with Connectionist Temporal Classification
(CTC) loss [11]. We followed the modifications proposed in [31] and used a
column-wise max-pooling operation between the CNN backbone and the recur-
rent head, as well as a CTC shortcut of a shallow 1D CNN head. This shortcut
module, as described in the initial work, is discarded during testing and is used
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only for assisting the training procedure. Input word images have a fixed size
of 64 × 256 by performing a padding operation (or resized if they exceed the
pre-defined size).

For comparison with the related work on word-image generation, we further
evaluate GANwriting and SmartPatch on the HTR task with the same model.

Using the generated images to train an HTR system and then evaluate the
trained system on the original test set of real images aims to a multifaceted
insight on the quality of the data; Achieving good results in the test set trans-
lates to “readable” words (at least in their majority), so that the system can
understand the existing characters during training with CTC, as well as to a
variability in writing styles, so that the training system could generalize well in
the test set of unseen writing styles. The ideal generative model should abide
to both these properties and thus can be used to train a well-performing HTR
system.

Following the protocol of [25], for this recognition task, we discarded, both
from the training and the test set, words containing non-alphanumeric charac-
ters, as well as words with more than 10 characters, since the generative models
have been trained considering the same setup. We used the generative models to
recreate the train set, both in text and in style. The results of this experiment are
reported in Table 1, where we present the character error and word error rates
(CER/WER) for the initial IAM train set, the recreated sets of the generative
models (i.e., GANwriting, SmartPatch and our proposed Diffusion approach),
as well as the combination of the original set with each one of the recreated
(i.e., with ×2 training images, compared to the initial set). The reported results
correspond to the mean value and the standard deviation over 3 different train-
ing/evaluation runs for each setup. The following observations can be made:

– The generated synthetic datasets under-perform with respect to the original
IAM dataset. However, both GANwriting and SmartPatch approaches lead to
a notable decrease in performance, indicating lack of writing style variability.
On the other hand, the proposed method achieves considerably low error
rates, but not on par with the real data.

– Combining the synthetic datasets with the real IAM train set, the perfor-
mance is improved compared to training only on the original IAM set, with
the exception of GANwriting and the CER metric, which is practically on
par with the baseline model.

– SmartPatch, despite visually improving the results of GANwriting, does little
to improve the HTR performance.

– The synthetic set, generated by our proposed method, along with the real
set, considerably outperforms all other settings and is statistically significant
with a p value of 0.035.
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Table 1. HTR results, reporting the Character Error Rate (CER) and Word Error
Rate (WER). For both metrics, the lower the better.

Training Data CER (%) ↓ WER (%) ↓
Real IAM 4.86 ± 0.07 14.11 ± 0.12

GANwriting IAM 38.74 ± 0.57 68.47 ± 0.32

SmartPatch IAM 36.63 ± 0.71 65.25 ± 1.02

WordStylist IAM (Ours) 8.80 ± 0.12 21.93 ± 0.17

Real IAM + GANwriting IAM 4.87 ± 0.09 13.88 ± 0.10

Real IAM + SmartPatch IAM 4.83 ± 0.08 13.90 ± 0.22

Real IAM + WordStylist IAM (Ours) 4.67 ± 0.08 13.28 ± 0.20

4.4 Handwriting Style Evaluation

Qualitative results show that our proposed method is able to nicely capture
the style of each writer present in the IAM database. In order to quantify this
property, we employ an implicit evaluation via writer identification.

The most straightforward way to address this is via a writer classification for-
mulation. Specifically, to evaluate the generated styles, we finetuned a ResNet18
CNN [12], pre-trained on ImageNet, on the IAM database for the task of writer
classification. Then, we use the generated datasets from the three generative
methods as test sets and present the obtained accuracy in Table 2. The net-
work manages to successfully classify most of the generated samples from our
proposed method with an accuracy of 70.67%, while it fails to recognize classes
on samples from the other two methods. This result comes as no surprise since
the proposed method learns explicitly the existing styles, while both the GAN-
based approaches adapt the style based on a few-shot scheme. Furthermore, we
use the features extracted by the model to plot t-SNE embeddings on the differ-
ent datasets in Fig. 7. In more detail, we used the 512-dimensional feature vector
extracted by the second-to-last layer, trying to simulate a style-based represen-
tation space. Again, the resulted projection of the data generated by our Diffu-
sion approach appears to be much closer to the real data. On the contrary, the

Table 2. Classification accuracy of a ResNet18 trained for writer identification on real
data.

Test Set Accuracy (%)↑
GANwriting 4.81

SmartPatch 4.09

WordStylist (Ours) 70.67
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GAN-based methods create “noisy“ visualization with no distinct style neighbor-
hoods. In fact, even the proposed method seems to have a similar noisy behavior
(in the center of the plot) but to a much lesser extent. This phenomenon is in
line with the HTR results, where the diffusion method provided results much
closer to the real IAM, but not on par.

As an alternative to the straightforward implementation of writer classifi-
cation, we also use a classic writer retrieval pipeline consisting of local feature
extraction and computing a global feature representation [3,4,6]. While the local
descriptors can also be trained in a self-supervised [5], we just use SIFT [23]
descriptors extracted on SIFT keypoints. The descriptors are normalized using
Hellinger normalization [1] (a. k. a. as RootSIFT) and are subsequently jointly
whitened and dimensionality-reduced using PCA [4]. The global feature repre-
sentation is computed using multi-VLAD [3], where the individual VLAD rep-
resentations use generalized max-pooling [6].

This pipeline needs paragraphs as input in order to gather a sufficient amount
of information. To produce synthetic text paragraphs, we paste randomly-
selected synthetic words on a blank background, following a similar structure
as the printed text of IAM: same number of lines, similar number of characters
per line. Thus, no information from the handwritten text is used. Line spacing
is constant, and a small randomness is added to word spacing.

We use a leave-one-image-out cross-validation, i. e., each sample is used as
query and the results are averaged. As metrics, we give the top-1 accuracy and
mean average precision (mAP). For our experiment, we use two paragraphs of
157 writers (IAM + IAM). In subsequent experiments, we replace the second
paragraph by the synthesizers (GANWriting, SmartPatch, WordStylist). In this
way, the query sample is either an original sample and the closest match should
be the synthetic one or vice-versa.

The results, given in Table 3, show little difference between real data (IAM
+ IAM) and data produced by our method (IAM + WordStylist). Thus, our
method produces persistent writing styles that are nearly indistinguishable for
the writer retrieval pipeline. It is able to imitate handwriting much better than
GANwriting and SmartPatch, which both achieve significantly lower scores in
this experiment.
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(a) Real IAM. (b) WordStylist IAM (ours).

(c) SmartPatch IAM. (d) GANwriting IAM.

Fig. 7. T-SNE projections of the feature vector produced by the ResNet18 trained for
writer identification, as described in Sect. 4.4.

5 Limitations and Future Work

Here, we address the limitations of the proposed method that pave the way
towards future directions. We identified two main limitations in the proposed
method:

– Style Adaptation: Our proposed method, contrary to the compared GAN-
based methods [15,25], explicitly takes the writing style as an input embed-
ding. This way, the model can learn to recreate such styles accurately.
Nonetheless, adaptation to new styles is not straightforward with this
pipeline. The interpolation concept is a work-around to generate “new” styles,
and can be extended to even interpolating K different styles. Nonetheless,
even such ideas do not provide the ability to adapt to a specific given style
via few word examples, as done in [15]. An interesting future direction is the
projection of different style embeddings to a common style representation



398 K. Nikolaidou et al.

Table 3. Writer retrieval results using a 157 writers subset of IAM.

Top-1 [%] ↑ mAP [%] ↑
IAM + IAM 97.45 97.61

IAM + GANwriting 3.18 7.23

IAM + SmartPatch 3.18 7.72

IAM + WordStylist (Ours) 97.13 97.84

space, using deep features extracted by a writer classification model as done
in Sect. 4.

– Sampling Complexity: Generating realistic examples requires many iterations
(timesteps) in the sampling process. To generate a single image requires ∼
12 sec, when using T = 600, making the creation of large-scale datasets
impractical. We aim to explore ways to assist the generation of quality images
in fewer steps, while also utilizing a more lightweight network to further
reduce the time requirements of a single step.

– Fixed Image Size: As the generation process is initiated by sampling a latent
Gaussian noise of a fixed shape, our proposed method currently generates
images of a fixed shape. Generating text images of arbitrary shapes is a
possible future direction to explore.

6 Conclusion

We presented WordStylist, a latent diffusion-based system for styled text-to-
text-content image generation on word-level. Our model manages to capture the
style and content without the use of any adversarial training, text recognition
and writer identification. Qualitative and quantitative evaluation results show
that our method produces high quality images which outperform significantly
the state-of-art systems used for comparison. Also we show that our synthetic
word images can be used as extra training data to improve HTR accuracy. The
verisimilitude of the synthetic handwriting styles is proven by two experiments.
Using a CNN for writer identification, we obtain a classification accuracy of 70%
with our synthetic data, while the other generative methods used for compari-
son do not get higher than 5%. Also, t-SNE projections of the features learned
by the CNN exhibit structures very similar to real data in the case of the pro-
posed method only. Moreover, we showed that using a recognized writer retrieval
pipeline, there is no significant difference between results on our synthetic data
and real data, both having a mAP slightly below 98%. The other generative
methods do not perform as well, obtaining mAP below 8%. For future work, we
aim to investigate the parameters and sampling of the model. We further plan on
extending this work for sentences and whole pages, focusing also on the layout
of the document.
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8. Dowson, D., Landau, B.: The Fréchet distance between multivariate normal dis-
tributions. J. Multivar. Anal. 12(3), 450–455 (1982)

9. Frolov, S., Hinz, T., Raue, F., Hees, J., Dengel, A.: Adversarial text-to-image
synthesis: a review. Neural Netw. 144, 187–209 (2021)

10. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information
Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.
neurips.cc/paper files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf

11. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A novel connectionist system for unconstrained handwriting recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2008)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural
Inf. Process. Syst. 33, 6840–6851 (2020)

14. Kang, L., Riba, P., Rusinol, M., Fornés, A., Villegas, M.: Content and style aware
generation of text-line images for handwriting recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 44(12), 8846–8860 (2021)
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Abstract. Recently, video text detection, tracking and recognition in
natural scenes are becoming very popular in the computer vision commu-
nity. However, most existing algorithms and benchmarks focus on com-
mon text cases (e.g., normal size, density) and single scenario, while
ignore extreme video texts challenges, i.e., dense and small text in vari-
ous scenarios. In this competition report, we establish a video text read-
ing benchmark, named DSText, which focuses on dense and small text
reading challenge in the video with various scenarios. Compared with the
previous datasets, the proposed dataset mainly include three new chal-
lenges: 1) Dense video texts, new challenge for video text spotter. 2) High-
proportioned small texts. 3) Various new scenarios, e.g., ‘Game’, ‘Sports’,
etc. The proposed DSText includes 100 video clips from 12 open scenarios,
supporting two tasks (i.e., video text tracking (Task 1) and end-to-end
video text spotting (Task2)). During the competition period (opened on
15th February, 2023 and closed on 20th March, 2023), a total of 24 teams
participated in the three proposed tasks with around 30 valid submissions,
respectively. In this article, we describe detailed statistical information of
the dataset, tasks, evaluation protocols and the results summaries of the
ICDAR 2023 on DSText competition. Moreover, we hope the benchmark
will promise the video text research in the community.

Keywords: Video Text Spotting · Small Text · Text Tracking · Dense
Text

1 Introduction

Video text spotting [1] has received increasing attention due to its numerous
applications in computer vision, e.g., video understanding [2], video retrieval [3],
video text translation, and license plate recognition [4], etc. There already exist
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 405–419, 2023.
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Fig. 1. Visualization of DSText. Different from previous benchmarks, DSText
focuses on dense and small text challenges.

some video text spotting benchmarks, which focus on easy cases, e.g., normal
text size, density in single scenario. ICDAR2015 (Text in Videos) [5], as the
most popular benchmark, was introduced during the ICDAR Robust Reading
Competition in 2015 focus on wild scenarios: walking outdoors, searching for
a shop in a shopping street, etc. YouTube Video Text (YVT) [6] contains 30
videos from YouTube. The text category mainly includes overlay text (caption)
and scene text (e.g., driving signs, business signs). RoadText-1K [7] provide
1,000 driving videos, which promote driver assistance and self-driving systems.
LSVTD [8] proposes 100 text videos, 13 indoor (e.g., bookstore, shopping mall)
and 9 outdoor (e.g., highway, city road) scenarios, and support two languages,
i.e., English and Chinese. BOVText [9] establishes a large-scale, bilingual video
text benchmark, including abundant text types, i.e., title, caption or scene text.

However, the above benchmarks still suffer from some limitations: 1) Most text
instances present normal text size without challenge, e.g., ICDAR2015(video)
YVT, BOVText. 2) Sparse text density in single scenario, e.g., RoadText-1k and
YVT, which can not evaluate the small and dense text robustness of algorithm
effectively. 3) Except for ICDAR2015(video), most benchmarks present unsatis-
factory maintenance. YVT, RoadText-1k and BOVText all do not launch a cor-
responding competition and release open-source evaluation script. Besides, the
download links of YVT even have become invalid. The poor maintenance plan
is not helpful to the development of video text tasks in the community. To break
these limitations, we establish one new benchmark, which focus on dense and small
texts in various scenarios, as shown in Fig. 1. The benchmark mainly supports two
tasks, i.e., video text tracking, and end to end video text spotting tasks, includes
100 videos with 56k frames and 671k text instances.

Therefore, we organize the ICDAR 2023 Video Text Reading competitive
for dense and small text, which generates a large-scale video text database,
and proposes video text tracking, spotting tasks, and corresponding evaluation
methods. This competition can serve as a standard benchmark for assessing the
robustness of algorithms that are designed for video text spotting in complex
natural scenes, which is more challenging. The proposed competition and dataset
will enhance the related direction (Video OCR) of the ICDAR community from
two main aspects:
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Table 1. Statistical Comparison. ‘Box Type’, ‘Text Area’ denote detection box
annotation type and average area of text while the shorter side of image is 720 pixels.
‘Text Density’ refers to the average text number per frame. The proposed DSText
presents more small and dense texts.

Dataset Video Frame Text Box Type Text Area

(# pixels)

Text

Density

Supported

Scenario (Domain)

YVT [6] 30 13k 16k Upright 8,664 1.15 Cartoon, Out-

door(supermarket,

shopping street,

driving...)

ICD15 VT [10] 51 27k 144k Oriented 5,013 5.33 Driving, Supermarket,

Shopping street...

RoadText-1K [7] 1k 300k 1.2m Upright 2,141 0.75 Driving

LSVTD [8] 100 66k 569k Oriented 2,254 5.52 Shopping mall,

Supermarket, Hotel...

BOVText [9] 2k 1.7m 8.8m Oriented 10,309 5.12 Cartoon, Vlog,

Travel, Game, Sport,

News ...

DSText 100 56k 671k Oriented 1,984 23.5 Driving, Activity,

Vlog, Street

View (indoor), Street

View (outdoor),

Travel, News, Movie,

Cooking

– Compared to the current existing video text reading datasets, the proposed
DSText has some special features and challenges, including 1) Abundant sce-
narios, 2) higher proportion of small text, 3) dense text distribution. Table 1,
Figs. 2, 3 and 5 present detailed statistical comparison and analysis.

– The competition supports two tasks: video text tracking and end-to-end video
text spotting. And we provide comprehensive evaluation metrics, including
IDP, IDR, IDF1 [11], MOTA, and MOTP. These metrics are widely used on
previous video text benchmarks, such as ICDAR2015 [10,12]. We are proud to
report the successful completion of the competition, which has garnered over
25 submissions and attracted wide interest. The submissions have inspired
new insights, ideas, and approaches, which promise to advance the state of
the art in video text analysis.

2 Competition Organization

ICDAR 2023 video text reading competition for dense and small text is orga-
nized by a joint team, including Zhejiang University, University of Chinese
Academy of Sciences, Kuaishou Technology, National University of Singapore,
Computer Vision and Pattern Recognition Unit, Computer Vision Centre, Uni-
versitat Autónoma de Barcelona, and Huazhong University of Science and Tech-
nology. And we organize the competition on the Robust Reading Competition
Website1, where provide corresponding download links of the datasets, and user
interfaces for participants and submission page for their results.
1 https://rrc.cvc.uab.es/?ch=22&com=introduction.

https://rrc.cvc.uab.es/?ch=22&com=introduction
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Fig. 2. The Data Distribution for 12 Open Scenarios. “%” denotes the percent-
age of each scenario data over the whole data.

After removing duplicate entries, we received 30 valid submissions for the
three tasks. These came from a total of 24 teams, encompassing both research
communities and industry sectors.

3 Dataset

3.1 Dataset and Annotations

Dataset Source. The videos in DSText are collected from three parts: 1) 30
videos sampled from the large-scale video text dataset BOVText [9]. BOVText,
as the largest video text dataset with various scenarios, includes a mass of small
and dense text videos. We select the top 30 videos with small and dense texts
via the average text area of the video and the average number of text per frame.
2) 10 videos for driving scenario are collected from RoadText-1k [7]. As shown
in Fig. 1, RoadText-1k contains abundant small texts, thus we also select 10
videos to enrich the driving scenario. 3) 60 videos for street view scenes are
collected from YouTube. Except for BOVText and RoadText-1k, we also obtain
60 videos with dense and small texts from YouTube, which mainly cover street
view scenarios. Therefore, we obtain 100 videos with 56k video frames, as shown
in Table 1. Then the dataset is divided into two parts: the training set with
29, 107 frames from 50 videos, and the testing set with 27, 234 frames from 50
videos.
Annotation. For these videos from BOVText, we just adopt the original annota-
tion, which includes four kinds of description information: the rotated bounding
box of detection, the tracking identification(ID) of the same text, the content
of the text for recognition, the category of text, i.e., caption, title, scene text,
or others. As for others from RoadText-1k and YouTube, we hire a professional
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Fig. 3. The distribution of different text size range on different datasets “%”
denotes the percentage of text size region over the whole data. Text area (# pixels) is
calculated while the shorter side of the image is 720 pixels.

annotation team to label each text for each frame. The annotation format is the
same as BOVText. One mentionable point is that the videos from RoadText-
1k only provides the upright bounding box (two points), thus we abandon the
original annotation and annotate these videos with the oriented bounding box.
Due to the structure of the video source, it is not allowed to use BOVText and
RoadText-1k as extra data for training in this competition. As a labor-intensive
job, the whole labeling process takes 30 men in one month, i.e., around 4,800
man-hours, to complete the 70 video frame annotations. As shown in Fig. 6, it
is quite time-consuming and expensive to annotate a mass of text instances at
each frame.

3.2 Dataset Comparison and Analysis

The statistical comparison and analysis are presented by three figures and one
table. Table 2 presents an overall comparison for the basic information, e.g.,
number of video, frame, text, and supported scenarios. In comparison with pre-
vious works, the proposed DSText shows the denser text instances density per
frame (i.e., average 23.5 texts per frame) and smaller text size (i.e., average
1, 984 pixels area of texts).
Video Scenario Attribute. As shown in Fig. 2, we present the distribution
of video, frame, and frame of 11 open scenarios and an “Unknown” scenario on
DSText. ‘Street View (Outdoor)’ and ‘Sport’ scenarios present most video and
text numbers, respectively. And the frame number of each scenario is almost the
same. We also present more visualizations for ‘Game’, ‘Driving’, ‘Sports’ and
‘Street View’ in Fig. 4.
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Fig. 4. More Qualitative Video Text Visualization of DSText. DSText covers
small and dense texts in various scenarios, which is more challenging.

Higher Proportion of Small Text. Figure 3 presents the proportion of dif-
ferent text areas. The proportion of big text (more than 1, 000 pixel area) on
our DSText is less than that of BOVText and ICDAR2015(video) with at least
20%. Meanwhile, DSText presents a higher proportion for small texts (less 400
pixels) with around 22%. As shown in Table 1, RoadText-1k [7] and LSVTD [8]
also show low average text area, but their text density is quite sparse (only 0.75
texts and 5.12 per frame), and RoadText-1k only focuses on the driving domain,
which limits the evaluation of other scenarios.
Dense Text Distribution. Figure 5 presents the distribution of text den-
sity at each frame. The frame with more than 15 text instances occupies
42% in our dataset, at least 30% improvement than the previous work, which
presents more dense text scenarios. Besides, the proportion of the frame with
less 5 text instances is just half of the previous benchmarks, i.e., BOVText,
and ICDAR2015(video). Therefore, the proposed DSText shows the challenge
of dense text tracking and recognition. More visualization can be found in
Fig. 4 (Visualization for various scenarios) and Fig. 6 (Representative case with
around 200 texts per frame).
WordCloud. We also visualize the word cloud for text content in Fig 5. All
words from annotation must contain at least 3 characters, we consider the words
less four characters usually are insignificant, e.g., ‘is’.
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Fig. 5. Comparison for frame percentage of different text numbers. “%”
denotes the percentage of the corresponding frame over the whole data.

4 Tasks and Evaluation Protocols

The competition include two tasks: 1) the video text tracking, where the objec-
tive is to localize and track all words in the video sequences. and 2) the end-to-end
video text spotting: where the objective is to localize, track and recognize all
words in the video sequence.
Task 1: Video Text Tracking. In this task, all the videos (50 train videos and
50 test videos) will be provided as MP4 files. Similar to ICDAR2015 Video [10],
the ground truth will be provided as a single XML file per video. A single
compressed (zip or rar) file should be submitted containing all the result files for
all the videos of the test set.

The task requires one network to detect and track text over the video
sequence simultaneously. Given an input video, the network should produce two
results: a rotated detection box, and tracking ids of the same text. For simplicity,
we adopt the evaluation method from the ICDAR 2015 Video Robust Reading
competition [10] for the task. The evaluation is based on an adaptation of the
MOTChallenge [11] for multiple object tracking. For each method, MOTChal-
lenge provides three different metrics: the Multiple Object Tracking Precision
(MOTP), the Multiple Object Tracking Accuracy (MOTA), and the IDF1. See
the 2013 competition report [12] and MOTChallenge [11] for details about these
metrics. In our competition, we reuse the evaluation scripts from the 2015 video
text reading competition [10], and transfer the format of annotation to the same
as that of the ICDAR2015 Video (Fig. 7).
Task 2: End-to-End Video Text Spotting. Video Text Spotting (VTS)
task that requires simultaneously detecting, tracking, and recognizing text in the
video. The word recognition performance is evaluated by simply whether a word
recognition result is completely correct. And the word recognition evaluation is
case-insensitive and accent-insensitive. All non-alphanumeric characters are not
taken into account, including decimal points, such as ’1.9’ will be transferred
to ‘19’ in our GT. Similarly, the evaluation method (i.e., IDF1, MOTA and
MOTP) from the ICDAR 2015 Robust Reading competition is also adopted for
the task. In the training set, we provide the detection coordinates, tracking id,
and transcription result.
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Fig. 6. One Case for around 200 Texts per Frames. DSText includes huge
amounts of small and dense text scenarios, which is a new challenge.

Fig. 7. Wordcloud visualizations for DSText.

Note: From 2020, the ICDAR 2015 Robust Reading competition online eval-
uation2 has updated the evaluation method, and added one new metric, i.e., ID
metrics (IDF1) [13,14]. Similarly, we adopted the updated metric for the two
tasks.

5 Baseline: TransDETR

To help participants more easily engage in our competition, we have also pro-
vided corresponding baseline algorithms in the competition website3, i.e., Trans-
DETR [15]. where including the corresponding training and inference code for
the competition. TransDETR is a novel, simple and end to end video text DEtec-
tion, Tracking, and Recognition framework (TransDETR), which views the video
text spotting task as a direct long-sequence temporal modeling problem.

2 https://rrc.cvc.uab.es/?ch=3&com=evaluation&task=1.
3 https://rrc.cvc.uab.es/?ch=22&com=downloads.

https://rrc.cvc.uab.es/?ch=3&com=evaluation&task=1
https://rrc.cvc.uab.es/?ch=22&com=downloads
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Table 2. Task 1: Video Text Tracking Results. - denotes missing descriptions
in affiliations. ‘M-M’, ‘P-M’, ‘M-L’ denotes ‘Mostly Matched’, ‘Partially Matched’ and
‘Mostly Lost’, respectively.

User ID Rank MOTA MOTP IDF1/% M-M P-M M-L Affiliations

TencentOCR 1 62.56% 79.88% 75.87% 8114 1800 2663 Tencent

DA 2 50.52% 78.33% 70.99% 7121 2405 3051 Guangzhou Shiyuan

Electronic Technology

Company Limited

Tianyu Zhang 3 43.52% 78.15% 62.27% 4980 2264 5333 AI Lab, Du Xiaoman

Financial

Liu Hongen 4 36.87% 79.24% 48.99% 2123 3625 6829 Tianjin Univeristy

Yu Hao 5 31.01% 78.00% 50.39% 2361 1767 8449 –

Hu Jijin 6 28.92% 78.46% 43.96% 1385 1186 10006 Beijing University of

Posts &

Telecommunications

CccJ 7 27.55% 78.40% 44.28% 1583 1103 9891 CQUT

MiniDragon 8 25.75% 74.03% 50.22% 3302 2806 6469 –

FanZhengDuo 9 23.41% 75.54% 49.66% 5216 3578 3783 –

zjb 10 19.85% 71.98% 39.87% 2815 3354 6408 –

dunaichao 11 19.84% 73.82% 31.18% 924 1765 9888 China Mobile

Communications

Research Institute

JiangQing 12 13.83% 75.75% 58.41% 6924 2622 3031 South China University

of Technology; Shanghai

AI Laboratory; KingSoft

Office CV&D

Department

Kebin Liu 13 7.49% 75.62% 45.68% 5403 3835 3339 Beijing University of

Posts and

Telecommunications

TungLX 14 0% 0% 0% 0 0 0 –

6 Submissions

The result for Task 1 and Task 2 are presented on Table 2 and Table 3, respec-
tively.

6.1 Top 3 Submissions in Task 1

Tencent-OCR team. The top 1 solution method follows the framework of Cas-
cade Mask R-CNN [16]. Multiple backbones including HRNet [17] and Intern-
Image [18] are used to enhance the performance. On the text tracking task,
the team designed four different metrics to compare the matching similarity
between the current frame detection box and the existing text trajectory, i.e.,
box IoU, text content similarity, box size proximity and text geometric neigh-
borhood relationship measurement. These matching confidence scores are used
as a weighted sum for the matching cost between the currently detected box and
tracklet. When there is a time difference between the current detection box and
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Table 3. Task2: End-to-End Video Text Spotting Results. - denotes missing
descriptions in affiliations. ‘M-M’, ‘P-M’, ‘M-L’ denotes ‘Mostly Matched’, ‘Partially
Matched’ and ‘Mostly Lost’, respectively.

User ID Rank MOTA MOTP IDF1/% M-M P-M M-L Affiliations

TencentOCR 1 22.44% 80.82% 56.45% 5062 1075 6440 Tencent

DA 2 10.51% 78.97% 53.45% 4629 1392 6556 Guangzhou Shiyuan

Electronic Technology

Company Limited

dunaichao 3 5.54% 74.61% 24.25% 528 946 11103 China Mobile

Communications

Research Institute

cnn lin 4 0% 0% 0% 0 0 0 South China

Agricultural University

Hu Jijin 5 0% 0% 0% 0 0 0 Beijing University of

Posts and

Telecommunications

XUE CHUHUI 6 0% 0% 0% 0 0 0 –

MiniDragon 7 -25.09% 74.95% 26.38% 1388 1127 10062 –

JiangQing 8 –27.47% 76.59% 43.61% 4090 1471 7016 South China University

of Technology;

Shanghai AI

Laboratory; KingSoft

Office CV&D

Department

Tianyu Zhang 9 –28.58% 80.36% 26.20% 1556 543 10478 AI Lab, Du Xiaoman

Financial

the last appearance of the tracklet, the IoU and box size metrics are divided
by the corresponding frame number difference to prioritize matching with the
latest detection box in the trajectory set. They construct a cost matrix for each
detected box and existing trajectory in each frame, where the Kuhn-Munkres
algorithm is used to obtain matching pairs. When the metrics are less than a
certain threshold, their corresponding costs are set to 0. Finally, they perform
grid search to find better hyperparameters. Referring to ByteTrack [19], boxes
with high detection/recognition scores are prioritized for matching, followed by
boxes with lower detection/recognition scores. Each box that is not linked to an
existing trajectory is only considered as a starting point for a new trajectory
when its detection/recognition score is high enough. Finally, we removed low-
quality trajectories with low text confidence scores and noise trajectories with
only one detection box.

Strong data augmentation strategies are adopted such as photometric dis-
tortions, random motion blur, random rotation, random crop, and random hor-
izontal flip. And IC13 [12], IC15 [5], IC15 Video [5] and Synth800k [20] are
involved during the training phase. Furthermore, they treat non-alphanumeric
characters as negative samples and regard text instances that are labeled
‘##DONT#CARE##’ as ignored ones during the training phase. In the infer-
ence phase, they use multiple resolutions of 600, 800, 1000, 1333, 1666, and
2000.
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Guangzhou Shiyuan Technology Team. The team utilized Mask R-
CNN [21] and DBNet [22] as their base architectures. These were trained sep-
arately, and their prediction polygons were fused through non-maximum sup-
pression. For the tracking stage, VideoTextSCM [23] was adopted, with Bot-
SORT [24] replacing the tracker in the VideoTextSCM model. Bot-SORT is
an enhanced multi-object tracker that leverages MOT bag-of-tricks to achieve
robust association. It combines the strengths of motion and appearance informa-
tion, and also incorporates camera-motion compensation and a more accurate
Kalman filter state vector. COCO-Text [25], RCTW17 [26], ArT [27], LSVT [28],
LSVTD [8], as the public datasets, are used in the training stage. RandomHori-
zontalFlip, RandomRotate, ColorJitter, MotionBlur and GaussNoise were used
for data augmentation.
AI Lab, Du Xiaoman Financial. The team selected TransDETR [15] as the
baseline and employed the public datasets COCO-Text V2.0 [25] and Synth-
Text [20] as the pre-training data. To enhance the model’s capacity to detect
small texts, additional small texts were added to the SynthText images. Fur-
thermore, the HRNet [17] was employed as the new backbone, which demon-
strated superiority in identifying faint text objects. The team modified the orig-
inal hyper-parameters of TransDETR to detect more texts from a single frame.
When loading the training data, the maximum number of text instance queries
of the Transformer module is set to 400.

6.2 Top 3 Submissions in Task 2

Tencent-OCR Team. To enable end-to-end video text spotting, two methods,
namely Parseq [29] and ABINet [30], were utilized in the recognition stage. Both
methods were trained on a dataset of 20 million samples, extracted from vari-
ous open-source datasets, including ICDAR-2013 [12], ICDAR-2015 [5], COCO-
Text [25], SynthText [20], among others.

During the end-to-end text spotting stage, different recognition methods are
applied to predict all the detected boxes of a trajectory. The final text result
corresponding to the trajectory is selected based on confidence and character
length. Trajectories with low-quality text results, indicated by low scores or
containing only one character, are removed.
Guangzhou Shiyuan Technology Team. The text tracking task was
addressed in a similar manner to Task 1. To recognize text, the PARSeq method
was employed, which involves learning an ensemble of internal autoregressive
(AR) language models with shared weights using Permutation Language Mod-
eling. This approach unifies context-free non-AR and context-aware AR infer-
ence, along with iterative refinement using bidirectional context. The recogni-
tion model was trained using several extra public datasets, including COCO-
Text [25], RCTW17 [26], ArT [27], LSVT [28], and LSVTD [8].
China Mobile Communications Research Institute Team. The team used
CoText [31] as the baseline and utilized ABINet [30] to enhance the recognition
head. The Cotext model was trained using the ICDAR2015 [5], ICDAR2015
Video [5], and ICDAR2023 DSText datasets for text detection and tracking. The
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recognition part employed a pretrained ABINet model based on the MJSynth
and SynthText [20] datasets.

7 Discussion

Text tracking Task. In this task, most participants firstly employ the power-
ful backbone to enhance the performance, e.g., HRNet, Res2Net and SENet.
With multiple backbones, TencentOCR team achieves the best score in three
main metrics, i.e., MOTA, MOTP, and IDF1/%, as shown in Table 2. For the
text tracking, based on ByteTrack, the team designed four different metrics to
compare the matching similarity between the current frame detection box and
the existing text trajectory, i.e., box IoU, text content similarity, box size prox-
imity and text geometric neighborhood relationship. To further enhance the
performance of result, most participants use the various data augmentations,
e.g., random motion blur, random rotation, random crop. Besides, various pub-
lic datasets, e.g., COCO-Text [25], RCTW17 [26], ArT [27], LSVT [28], and
LSVTD [8] are used for joint training.
End-to-End Video Text Spotting Task. To enhance the end-to-end text
spotting, most participants adopted the advanced recognition models, i.e.,
Parseq [29] and ABINet [30]. Large synthetic datasets (e.g., SynthText [20]),
firstly are used to pretrain the model, and then further finetuned on the
released training dataset (DSText). With various data augmentation, large pub-
lic datasets, powerful network backbones and model ensembles, TencentOCR
team achieves the best score in three main metrics, as shown in Table 3.

Overall, while many participants implemented various improvement tech-
niques such as using extra datasets and data augmentation, the majority of
their results were unsatisfactory, with MOTA scores below 25% and IDF1 scores
below 70%. As a result, there is still a significant amount of room for improve-
ment in this benchmark and many technical challenges to overcome. It is worth
mentioning that many of the top ranking methods utilize an ensemble of mul-
tiple models and large public datasets to enhance their performance. However,
these pipelines tend to be complex and the corresponding inference speeds are
slow. Simplifying the pipeline and accelerating inference are also important con-
siderations for the video text spotting task. Additionally, it is noteworthy that
many of the submitted methods adopted different ideas and strategies, providing
the community with new insights and potential solutions. We expect that more
innovative approaches will be proposed following this competition.

8 Conclusion

Here, we present a new video text reading benchmark, which focuses on dense
and small video text. Compare with the previous datasets, the proposed dataset
mainly includes two new challenges for dense and small video text spotting. High-
proportioned small texts are a new challenge for the existing video text methods.
Meanwhile, we also organize the corresponding competition on Robust Reading
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Competition Website4, where we received around 30 valid submissions from 24
teams. These submissions will provide the community with new insights and
potential solutions. Overall, we believe and hope the benchmark, as one standard
benchmark, develops and improve the video text tasks in the community.

9 Potential Negative Societal Impacts and Solution

Similar to BOVText [9], we blur the human faces in DSText with two steps.
Firstly, detecting human faces in each frame with face recognition5 - an easy-to-
use face recognition open source project with complete development documents
and application cases. Secondly, after obtaining the detection box, we blur the
face with Gaussian Blur operation in OpenCV6.

10 Competition Organizers

The benchmark is mainly done by Weijia Wu and Yuzhong Zhao, while they are
research interns at Kuaishou Technology. The establishment of the benchmark is
supported by the annotation team of Kuaishou Technology. Prof. Xiang Bai at
Huazhong University of Science and Technology, Prof. Dimosthenis Karatzas at
the Universitat Autónoma de Barcelona, Prof. Umapada Pal at Indian Statistical
Institute, and Asst Prof. Mike Shou at the National University of Singapore, as
the four main supervisors, provide many valuable suggestions and comments,
e.g., annotation format suggestion from Prof. Xiang Bai, competition schedule
plan from Prof. Dimosthenis Karatzas, submission plan and suggestions for the
proposal from Prof.Umapada Pal, and statistical analysis from Asst Prof. Mike
Shou. Therefore, our team mainly includes eight people from seven institutions.
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Abstract. This paper presents the results of the ICDAR 2023 competition on
Document UnderstanDing of Everything. DUDE introduces a new dataset com-
prising 5 K visually-rich documents (VRDs) with 40 K questions with novelties
related to types of questions, answers, and document layouts based on multi-
industry, multi-domain, and multi-page VRDs of various origins and dates.
The competition was structured as a single task with a multi-phased evaluation
protocol that assesses the few-shot capabilities of models by testing generaliza-
tion to previously unseen questions and domains, a condition essential to business
use cases prevailing in the field. A new and independent diagnostic test set is addi-
tionally constructed for fine-grained performance analysis. A thorough analysis
of results from different participant methods is presented. Under the newly stud-
ied settings, current state-of-the-art models show a significant performance gap,
even when improving visual evidence and handling multi-page documents. We
conclude that the DUDE dataset proposed in this competition will be an essential,
long-standing benchmark to further explore for achieving improved generaliza-
tion and adaptation under low-resource fine-tuning, as desired in the real world.

1 Introduction

Document UnderstanDing of Everything (DUDE) is a concept rooted in both machine
learning and philosophy, seeking to expand the boundaries of document AI systems by
creating highly challenging datasets that encompass a diverse range of topics, disci-
plines, and complexities. Inspired by the philosophical ‘Theory of Everything’, which
aims to provide a comprehensive explanation of the nature of reality, DUDE endeavors
to stimulate the development of AI models that can effectively comprehend, analyze,
and respond to any question on any complex document.
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Incorporating philosophical perspectives into DUDE enriches the approach by
engaging with fundamental questions about knowledge, understanding, and the nature
of documents. By addressing these dimensions, researchers can develop AI systems that
not only exhibit advanced problem-solving skills but also demonstrate a deeper under-
standing of the context, nuances, and implications of the information they process.

Over the past few years, the field of Document Analysis and Recognition (DAR) has
embraced multi-modality with contributions from both Natural Language Processing
(NLP) and Computer Vision (CV). This has given rise to Document Understanding
(DU) as the all-encompassing solution [1,10,23] for handling Visually Rich Documents
(VRDs), where layout and visual information is decisive in understanding a document.

This umbrella term subsumes multiple subtasks ranging from key-value informa-
tion extraction (KIE) [12,28], document layout analysis (DLA) [36], visual question
answering (VQA) [20,32], table recognition [13,24], and so on. For each of these sub-
tasks, influential challenges have been proposed, e.g., the ICDAR 2019 Scene Text
VQA [2,3] and ICDAR 2021 Document VQA (DocVQA) [21,32] challenges, which
in turn have generated novel ideas that have impacted the new wave of architectures
that are currently transforming the DAR field.

Nevertheless, we argue that the DAR community must encompass the future chal-
lenges (multi-domain, multi-task, multi-page, low-resource settings) that naturally jux-
tapose the previous competitions with pragmatic feedback attained via its business-
driven applications.

Challenge Objectives. We aim to support the emergence of models with strong multi-
domain layout reasoning abilities by adopting a diversified setting where multiple doc-
ument types with different properties are present (Fig. 2). Moreover, a low-resource
setting (number of samples) is assumed for every domain provided, which formulated
as a DocVQA competition allows us to measure progress with regard to the desired
generalization (Sect. 2). Additionally, we strive for the development of confidence esti-
mation methods that can not only improve predictive performance but also adjust the
calibration of model outputs, leading to more practical and reliable DU solutions.

We believe that DUDE’s emphasis on task adaptation and the capability of handling
a wide range of document types, layouts, and complexities will encourage researchers
to push the boundaries of current DU techniques, fostering innovation in areas such as
multi-modal learning, transfer learning, and zero-shot generalization.

Challenge Contributions. DUDE answers the call for measuring improvements closer
to the real-world applicability of DU models. By design of the dataset and competi-
tion, participants were forced to make novel contributions in order to make a signifi-
cant impact on the DU task. Competitors showcased intriguing model extensions, such
as combining models that learn strong document representations with the strengths of
recent large language or vision-language models (ChatGPT [4] and BLIP2 [16,17])
to better understand questions and extract information from a document context more
effectively. HiVT5 + modules extended Hi-VT5 [31] with token/object embeddings
for various DU subtasks, while MMT5 employed a two-stage pre-training process and
multiple objectives to enhance performance. These innovative extensions highlight the
ingenuity in addressing the complex challenges of document understanding.
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2 Motivation and Scope

We posit that progress in DU is determined not only by the improvements in each of
its related predecessor fields (CV, NLP) but even more by the factors connecting to
document intelligence, as explicitly understood in business settings. To improve the
real-world applicability of DU models, one must consider (i) the availability and variety
of types of documents in a dataset, as well as (ii) the problem-framing methods.

Currently, publicly available datasets avoid multi-page documents, are not con-
cerned with multi-task settings, nor provide multi-domain documents of sufficiently
different types. These limitations hinder real-world DU systems, given the ever-increa-
sing number of document types occurring in various business scenarios. This problem is
often bypassed by building systems based on private datasets, which leads to a situation
where datasets cannot be shared, documents of interest are not covered in benchmarks,
and published methods cannot be compared objectively. DUDE counters these limita-
tions by explicitly incorporating a large variety of multi-page documents and document
types (see e.g., Fig. 2). Furthermore, the adaptability of DU to the real world is slowed
down by a low-resource setting, since only a limited number of training examples can
be provided, involving unpleasant manual labor, and subsequently costly model devel-
opment. Anytime a new dataset is produced in the scientific or commercial context, a
new model must be specifically designed and trained on it to achieve satisfactory per-
formance. At the same time, transfer learning is the most promising solution for rapid
model improvements, while zero- and few-shot performance still needs to be addressed
in evaluation benchmarks.

Bearing in mind the characteristics outlined above, we formulated the DUDE
dataset as an instance of DocVQA to evaluate how well current solutions can simul-
taneously handle the complexity and variety of real-world documents and all subtasks
that can be expected. Optimally, a DU model should understand layout in a way that
allows for zero-shot performance through attaining “desired generalization”, i.e., gener-
alization to any documents (e.g., drawn from previously unseen distributions of layouts,
domains, and types) and any questions (e.g., regarding document elements, their proper-
ties, and compositions). Therefore, we incorporated these criteria while designing our
dataset, which may stand as a common starting point and a cooperative path toward
progress in this emerging area.

Desired Generalization. The challenge presented by DUDE is an instance of a Multi-
Domain Long-Tailed Recognition (MDLT) problem [34].

Definition 1 (Multi-Domain Long-Tailed Recognition). MDLT focuses on learning
from multi-domain imbalanced data whilst addressing label imbalance, divergent label
distributions across domains, and potential train-test domain shift. This framework nat-
urally motivates targeting estimators that generalize to all domain-label pairs.

A domain D = {(xi, yi)}N
i=1 is composed of data sampled from a distribution

PXY , where X denotes an input space (documents) and Y the output space (QA pairs).
Each x ∈ X represents a document, forming a tuple of (v, l, t), expressing a complex
composition of visual, layout and textual elements. For simplicity, consider that each
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Fig. 1. Illustration of MDLT as applicable to the DUDE problem setting. The y-axis aggregates
skills related to specific KIE or reasoning tasks over document elements (checkbox, signature,
logo, footnote, ...). The x-axis denotes the obtained samples (QA pairs) per task. Each domain
has a different label distribution P (Y ), typically relating to within-domain document properties
P (X). This training data exhibits label distribution shifts across domains, often requiring zero-
shot generalization (marked red).

‘label’ y ∈ Y represents a question-answer pair, relating to implicit tasks to be com-
pleted (such as date KIE in What is the document date?). Due to the potentially com-
positional nature of QA, the label distribution is evidently long-tailed. During training,
we are given MM domains (document types) on which we expect a solution to general-
ize (Fig. 1), both within (different number of samples for each unique task) and across
domains (even without examples of a task in a given domain).

What sets apart domains is any difference in their joint distributions P j
XY �= P k

XY .
For example, an invoice is less similar (in terms of language use, visual appearance,
and layout) to a contract than to a receipt or credit note. Yet, a credit note naturally
contains a stamp stating information such as “invoice paid”, whereas receipts rarely
contain stamps. This might require a system to transfer ‘stamp detection’ learned within
another domain, say on notary deeds.

Notably, it will be ‘organic’ to obtain more examples of certain questions (tasks) in a
given domain. This should also encourage models to learn a certain skill in the domains
where they have more training examples. Put plainly, it is better to learn checkbox
detection on contracts than on invoices, which rarely contain any. This MDLT frame-
work allows us to create a lasting, challenging benchmark that can be easily extended in
the future with more tasks (formulated as QA pairs) and domains (relating to document
types). In the first iteration of the DUDE competition, we have targeted specific skills
by guiding annotators with focused instructions, which we share for future extensions.
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Fig. 2. Excerpts from DUDE documents (one visualized per type). Note that it is not an exhaustive
list of document types collected.

3 DUDE Dataset

As part of the ICDAR 2023 DUDE competition, the authors constructed a novel dataset
from scratch. A separate publication [33] describes the dataset in more detail, together
with how it is different from related VQA datasets with an analysis of baseline methods.
As part of the report, we will summarize the most important statistics and provide more
insight into how the dataset and diagnostic subset were annotated and controlled for
data quality.

The DUDE dataset is diverse, covering a wide range of document types (±200),
sources, dates (1900–2023), and industries (±15). It contains documents with varying
layouts and font styles, targeting diverse questions that require comprehension beyond
document content. It includes abstractive and extractive questions, covering various
answer types like textual, numerical, dates, yes/no, lists, or ‘no answer’.

Annotation Process. To create the dataset, diverse documents were manually collected
from websites such as Archive, Wikimedia Commons, and DocumentCloud. The selec-
tion ensured that the documents were visually distinct and free from controversial con-
tent, privacy, or legal concerns. A total of 5,000 multi-page English documents were
gathered.

https://archive.org
https://commons.wikimedia.org
https://documentcloud.org
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The annotation process involved in-house annotators and Amazon Mechanical Turk
freelancers. The process consisted of four stages: generating candidate QA pairs, verify-
ing QA pairs, selecting the best answers, and an optional review by Qualified Linguists
for test set annotations. The total cost of annotation was estimated at $20,000.

Our multi-stage annotation process started with freelancers and in-house annota-
tors proposing QA pairs, which were semi-automatically filtered for length, non-typical
character combinations, and type-specific criteria. This was followed by the stage in
which freelancers answered the accepted questions. Cases with an inter-answer agree-
ment (ANLS) above 0.8 were added to the final dataset; otherwise, they were directed
to further investigation. This stage employed freelancers with the highest historic qual-
ity score, who evaluated document, question, and answer variants, making corrections
when necessary. Outliers were assessed by Qualified Linguists and corrected if needed
(see Van Landeghem et al. [33] for the detailed description).

Future Extensions. To extend the dataset, one could follow the document collection
and annotation process outlined in the original description [33]. This involves manually
gathering diverse documents from various sources, ensuring they meet the dataset’s
criteria, and then following the multi-phase annotation process to generate and verify
new QA pairs.

4 DUDE Competition Protocol

The ICDAR 2023 competition on Document UnderstanDing of Everything took place
from February to May of 2023. A training-validation set with 30 K QA annotations
on 3.7 K documents was given to participants at the beginning of February. The 11.4 K
questions on 12.1 K documents for the test set were only made accessible for a window
between March and May. Participants were asked to submit results obtained on the pub-
lic, blind test set documents rather than deliver model executables, although they were
encouraged to open-source their implementations. We relied on the scientific integrity
of the participants to adhere to the competition’s guidelines specified on The Robust
Reading Competition (RRC) portal1.

Task Formulation. Given an input consisting of a PDF with multiple pages and a
natural language question, the objective is to provide a natural language answer together
with an assessment of the answer confidence (a float value scaled between 0 and 1).
Each unique document is annotated with multiple questions of different types, including
extractive, abstractive, list, and non-answerable. Annotated QA pairs are not restricted
to the answer being explicitly present in the document. Instead, any question on aspect,
form, or visual/layout appearance relative to the document under review is allowed.

Additionally, competitors were allowed to submit results for only a specific answer
type (provided in annotations) such that, for example for extractive questions, encoder-
only architectures could compete in DUDE. Another important subtask is to obtain
a calibrated and selective DocVQA system, which lowers answer confidence when

1 https://rrc.cvc.uab.es/?ch=23.

https://rrc.cvc.uab.es/?ch=23
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unsure about its answers and does not hallucinate in case of non-answerable questions.
Regardless of the number of answers (zero in the case of non-answerable or multiple in
list-questions), we expect a single confidence estimate for the whole answer to guaran-
tee consistency in calibration evaluation. To promote fair competition, we provided for
each document three OCR versions obtained from one open-source (Tesseract) and two
commercial engines (Azure, AWS).

Evaluation Protocol. The first evaluation phase assumes only independently and iden-
tically distributed (iid) data containing a similar mixture of document and question-
answer types for the train-validation-test splits. To support scoring all possible answer
types, the evaluation metric is the Average Normalized Levenshtein Similarity (ANLS)
metric, modified for non-answerable questions (0/1 loss) and made invariant to the order
of provided answers for list answers (ANLSL [30]). To assess the calibration and rank-
ing of answer confidence, we applied two metrics, Expected Calibration Error (ECE)
[8,22] (�2 norm, equal-mass binning with 100 bins) and Area-Under-Risk-Coverage-
Curve (AURC) [7,11,15], respectively.

The (implicit) second evaluation phase created a mixture of seen and unseen domain
test data. This was launched jointly with the first evaluation phase, as otherwise, one
would be able to already detect the novel unseen domain test samples. To score how
gracefully a system deals with unseen domain data, the evaluation metric is AUROC
[18], which roughly corresponds to the probability that a positive example (in-domain)
is assigned a higher detection score than a negative example (out-of-domain). A system
is expected to either lower its confidence or abstain from giving an answer.

There is a strict difference between a non-answerable question and an unseen
domain question. For the former, the document is from a domain that was included
during training, yet the question cannot be solved with the document content, e.g., ask-
ing about who signed the document without any signatures present. For the latter, the
question is apt for the document content, yet the document is from a domain that was
not included during training and validation, which we would expect the system to pick
up on.

For an in-depth explanation of these metrics and design choices, we refer the reader
to [33, Appendix B.4.]. All metric implementations and evaluation scripts are made
available as a standalone repository to allow participants to evaluate close to official
blind test evaluations2.

All submitted predictions are automatically evaluated, and the competition site pro-
vides ranking tables and visualization tools newly adapted to PDF inputs to examine the
results. After the formal competition period, it will serve as an open archive of results.
The main competition winner will be decided based on the aggregate high scores for
ANLS, AURC, and AUROC.

To ensure proper validation and interpretability of competitor method results, we
have created a diagnostic hold-out test set, where each instance is expert-annotated with
specific metadata (QA type, document category, expected answer form and type, visual
evidence) or operations (counting, normalization, arithmetic) required to answer). Fur-

2 https://github.com/Jordy-VL/DUDEeval.

https://github.com/Jordy-VL/DUDEeval
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thermore, we sourced an independent human expert baseline on this diagnostic subset
(see [33, Section 3.4]) to further perform a ceiling analysis on the submitted methods.

5 Results and Analysis

Together with the creation of the DUDE dataset, we did a preliminary study with some
reference baseline methods [33]. These will not be covered in the competition report,
unless relevant for comparison or analysis.

Submitted Methods. Overall, 6 methods from 3 different participants were submitted
for the proposed tasks in the DUDE competition. To avoid cherry-picking from consid-
ering all submissions of individual participants, we consider only the last submission
(accentuated) for the final ranking. All the methods followed an encoder-decoder archi-
tecture, which is a standard choice for VQA when abstractive questions are involved.
Specifically, the submitted methods are mostly based on T5-base [25] as the decoder.
For this reason, we include the T5-base baseline to compare how the participant meth-
ods improved on it. A short description of each method can be found in Table 1.

Two very recent state-of-the-art architectures, UDOP and HiVT5, have been exten-
sively leveraged by participants. The former is geared toward improved document page
representations, while the latter targets multi-page document representations. In their
method reports, the UDOP-based models by LENOVO RESEARCH mention calculating
confidence by multiplying the maximum softmax score of decoded output tokens with
two additional post-processing rules: a) predicted not-answerable questions confidence
is set to 1, b) when abstaining, confidence is set to 0.

Performance Analysis. Table 2 reports the competition results ranking comparing the
submitted methods’ performance on the test set. Higher ANLS and AUROC values
indicate better performance, while lower ECE and AURC values signify improved
calibration and confidence ranking. According to the findings, the UDOP+BLIP2+GPT
approach attains the highest ANLS score (50.02), achieving the best calibration and
OOD (out-of-distribution) detection performance. In a direct comparison of the MMT5
and HiVT5+modules methods, the former shows a higher ANLS score, yet did not
provide any confidence estimates.

Thus, the overall winner is UDOP+BLIP2+GPT by LENOVO RESEARCH. Their
submitted methods (ranked by highest ANLS) also differentiate themselves by their
additional attention to confidence estimation. Based on the numbers in the table, several
interesting observations can be made to support the suggested future directions and
propose additional experiments:

– ANLS. The integration of UDOP, BLIP2, and ChatGPT contributes to the method’s
superior overall performance in answering different question types.

– ECE, AURC. Integrating UDOP, BLIP2 visual encoder, and ChatGPT for ques-
tion decomposition contributes to the method’s performance in handling uncertainty
across various question types.

– Abstractive. The top performance of UDOP+BLIP2+GPT in abstractive questions
reveals the potential of combining the UDOP ensemble, BLIP2 visual encoder, and
ChatGPT to enable abstract reasoning and synthesis of information beyond simple
extraction.
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Table 1. Short descriptions of the methods participating to the DUDE competition, in order of
submission. The last submitted method is considered for the final ranking.

Method Description

T5-base (ours) T5-base [25] fine-tuned on DUDE (AWS OCR), with a delimiter combining list
answers into a single string, and replacing not-answerable questions with ’none’.

LENOVO RESEARCH

UDOP(M) Ensemble (M=10) of UDOP [29] (794M each) models without self-supervised
pre-training, only fine-tuned in two stages: 1) SP-DocVQA [32] and MP-
DocVQA [31], and 2) DUDE (switching between Azure and AWS OCR).

UDOP +BLIP2 UDOP(M=1) with integrated BLIP2 [16] predictions to optimize the image
encoder and additional page number features.

UDOP
+BLIP2+GPT

UDOP(M=1) and BLIP2 visual encoder with ChatGPT to generate Python-like
modular programs to decompose questions for improved predictions [6,9].

UPSTAGE AI

MMT5 Multimodal T5 pre-trained in two stages: single-page (ScienceQA [27],
VQAonBD2023 [26], HotpotQA [35], SP-DocVQA) with objectives (masked
language modeling (MLM) and next sentence prediction (NSP)), multi-page
(MP-DocVQA and DUDE) with three objectives (MLM, NSP, page order match-
ing). Fine-tuning on DUDE with answers per page combined for final output.

INFRRD.AI

HiVT5 Hi-VT5 [31] with 20 <PAGE> tokens pre-trained with private document col-
lection (no information provided) using span masking objective [14]. Fine-tuned
with MP-DocVQA and DUDE.

HiVT5 +mod-
ules

Hi-VT5 extended with token/object embeddings for a variety of modular docu-
ment understanding subtasks (detection: table structure, signatures, logo, stamp,
checkbox; KIE: generic named entities; classification: font style)

– List. The performance of UDOP+BLIP2+GPT in list-based questions suggests that
incorporating page number features can enhance the model’s capability to process
and generate list information, which might be spread across pages.

Figure 3 visualizes an overview of the performance of each submitted method
respective to diagnostic subset samples matching a certain diagnostic category. The
models generally struggle with operations involving counting, arithmetic, normaliza-
tion, and comparisons. As expected, models have higher performance when dealing
with simpler questions (complexity simple) compared to more complex questions (com-
plexity multi-hop, complexity other hard, and complexity meta). Models tend to perform
better when handling evidence in the form of plain text (evidence plain) compared to
other forms of evidence, such as visual charts, maps, or signatures. Performance across
models is notably lower for tasks involving lists compared to other question types. Mod-
els show varying performance when dealing with different types of forms (e.g., date,
numeric, other, proper).

Figure 5 studies the ability of the competitors’ methods to answer questions respec-
tive to increasingly longer documents. We observe a significant drop in ANLS when
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Table 2. Summary of Method performance on the DUDE test set. Average ANLS results per
question/answer type are abbreviated as (Abs)tractive, (Ex)tractive, (N)ot-(A)nswerable, (Li)st.
(*) All scalars are scaled between 0 and 100 for readability.

Answer Calibration OOD Detection ANLS/answer type

Method ANLS ↑ ECE ↓ AURC ↓ AUROC ↑ Ex Abs Li NA

UDOP+BLIP+GPT 50.02 22.40 42.10 87.44 51.86 48.32 28.22 62.04

MMT5 37.90 59.31 59.31 50.00 41.55 40.24 20.21 34.67

HiVT5+modules 35.59 28.03 46.03 51.24 30.95 35.15 11.76 52.50

aggregating scores over gradually longer documents. This is expected as the longer the
document is, the more probable that the answer will either be located on a later page or
rely on a long-range dependency between the tokens (e.g., a multi-hop question). Strik-
ingly, all methods’ scores, except Hi-VT5+modules, drop significantly for questions
on 2-page documents. This is likely to have the root cause in the standard input size of
T5-based methods equal to 512 tokens, covering roughly 1 page.

Fig. 3. We report the average ANLS per diagnostic category for each of the submitted methods vs.
human and a baseline method T5-base. Since the diagnostic dataset contains a different number
of samples per diagnostic category, we added error bars representing 95% confidence intervals.
This helps visually determine statistically significant differences.
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Fig. 4. A histogram (bins=8, matching ANLS-threshold of 0.5) of the average ANLS rate per
QA pair when summing ANLS scores over competitor methods.

Fig. 5. Left: A histogram over the number of questions relative to the number of pages in the
document (limited to 20 pages). Right: A line plot of the average ANLS score per QA pair: –
documents of length at least (x-axis) pages.

Figure 4 analyzes the correlation of errors over competitor methods. A large portion
of QA pairs is predicted completely wrong (ANLS-rate = 0) by all competitor methods.
This can have many plausible causes: a) by all sharing a similar decoder (T5), methods
suffer from similar deficiencies, b) some QA pairs are too complex for current state-of-
the-art competitor methods, particularly questions requiring more complex reasoning or
unique document-specific layout processing. To further analyze this phenomenon, we
will sample qualitative examples with different ANLS rates.

5.1 Qualitative Examples

We provide some interesting, hand-picked test set examples with predictions from the
submitted competition methods.

Low Complexity. Who is the president and vice-chancellor? Despite the question’s
relatively straightforward nature, some systems struggle with providing the appropriate
answer. One can hypothesize it is the result of limited context (the answer is located
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at the end of the document), i.e., models either hallucinate a value or provide a name
found earlier within the document.

Requires Graphical Comprehension. Which is the basis for jurisdiction? To provide
a valid answer, the model needs to comprehend the meaning of the form field and rec-
ognize the selected checkbox. None of the participating systems was able to spot the
answer correctly.

Requires Comparison. In which year does the Net Requirement exceed 25,000? The
question requires comprehending a multi-page table and spotting if any values fulfill the
posed condition. Some of the models resort to plausible answers (one of the three dates
that the document covers), whereas others correctly decide there is no value exceeding
the provided amount.

Requires Arithmetic. What is the difference between how much Operator II and Oper-
ator III make per hour? The question requires table comprehension, determining rele-
vant values, and dividing extracted integers. None of the participating models was able
to fulfill this requirement.
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Requires Counting and List Output. What are the first two behavioral and intellectual
disabilities of people with FASDs? It seems most of the models correctly recognized
that this type of question requires a list answer but either failed to comprehend the ques-
tion or provided a list with incorrect length (incomplete or with too many values).

6 Conclusion and Future Work

As a core contribution of DUDE, we wanted to emphasize the importance of evaluation
beyond mere predictive performance. DUDE offers an interesting and varied test bed
for the evaluation of novel calibration and selective QA approaches (e.g., [5,19]). While
this was not explicitly attempted in this iteration of the competition, we hope that future
work will consider testing their methods against DUDE.

Future of the Shared Task. As the competition evolves, we hope that DUDE will
serve as an essential platform for pushing the frontiers of research and driving inno-
vation in the DU field. Currently, our competition focuses on English language docu-
ments, which means we miss out on the potential of incorporating multilingual data. An
ideal extension for future iterations of the shared task would be to introduce multilin-
gualism, which our framework can accommodate, provided that source documents are
readily available. However, this would also require specifying language qualifications
for annotation experts. Moreover, one could automate part of the data collection process
and annotation process by allowing the best-performing competition system to validate
the aptitude and complexity of human-proposed QA pairs.
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ish Innovation & Entrepreneurship) through the Baekeland Ph.D. mandate (HBC.2019.2604).
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11. Jaeger, P.F., Lüth, C.T., Klein, L., Bungert, T.J.: A call to reflect on evaluation practices for
failure detection in image classification. In: International Conference on Learning Represen-
tations (2023). https://openreview.net/forum?id=YnkGMIh0gvX

12. Jaume, G., Ekenel, H.K., Thiran, J.P.: FUNSD: a dataset for form understanding in noisy
scanned documents. In: 2019 International Conference on Document Analysis and Recogni-
tion Workshops (ICDARW), vol. 2, pp. 1–6. IEEE (2019)

13. Jimeno Yepes, A., Zhong, P., Burdick, D.: ICDAR 2021 competition on scientific literature
parsing. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp.
605–617. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1 40

14. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: SpanBERT: improving
pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77
(2020)

15. Kamath, A., Jia, R., Liang, P.: Selective question answering under domain shift. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
5684–5696 (2020)

16. Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with
frozen image encoders and large language models. arXiv preprint: arXiv:2301.12597 (2023)

17. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. In: International Conference on Machine
Learning, pp. 12888–12900. PMLR (2022)

18. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection
in neural networks. In: International Conference on Learning Representations (2018). https://
openreview.net/forum?id=H1VGkIxRZ

19. Lin, S., Hilton, J., Evans, O.: Teaching models to express their uncertainty in words. Trans.
Mach. Learn. Res. (2022). https://openreview.net/forum?id=8s8K2UZGTZ

20. Mathew, M., Bagal, V., Tito, R., Karatzas, D., Valveny, E., Jawahar, C.: InfographicVQA. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
1697–1706 (2022)

21. Mathew, M., Tito, R., Karatzas, D., Manmatha, R., Jawahar, C.: Document visual question
answering challenge 2020. arXiv preprint: arXiv:2008.08899 (2020)

https://doi.org/10.18653/v1/2022.findings-acl.133
https://doi.org/10.18653/v1/2022.findings-acl.133
https://aclanthology.org/2022.findings-acl.133
http://arxiv.org/abs/2303.08128
http://arxiv.org/abs/2211.11559
https://doi.org/10.1145/3503161.3548112
https://openreview.net/forum?id=YnkGMIh0gvX
https://doi.org/10.1007/978-3-030-86337-1_40
http://arxiv.org/abs/2301.12597
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=8s8K2UZGTZ
http://arxiv.org/abs/2008.08899


434 J. Van Landeghem et al.

22. Naeini, M.P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using
Bayesian binning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
29 (2015)

23. Powalski, R., Borchmann, Ł, Jurkiewicz, D., Dwojak, T., Pietruszka, M., Pałka, G.: Going
full-TILT boogie on document understanding with text-image-layout transformer. In: Lladós,
J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 732–747. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86331-9 47

24. Qiao, L., et al.: LGPMA: complicated table structure recognition with local and global pyra-
mid mask alignment. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol.
12821, pp. 99–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8 7

25. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res. 21(140), 1–67 (2020)

26. Raja, S., Mondal, A., Jawahar, C.: ICDAR 2023 competition on visual question answering
on business document images (2023)

27. Saikh, T., Ghosal, T., Mittal, A., Ekbal, A., Bhattacharyya, P.: ScienceQA: a novel resource
for question answering on scholarly articles. Int. J. Digit. Libr. 23(3), 289–301 (2022)

28. Stanisławek, T., et al.: Kleister: key information extraction datasets involving long docu-
ments with complex layouts. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021.
LNCS, vol. 12821, pp. 564–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86549-8 36

29. Tang, Z., et al.: Unifying vision, text, and layout for universal document processing. arXiv
preprint: arXiv:2212.02623 (2022)

30. Tito, R., Karatzas, D., Valveny, E.: Document collection visual question answering. In:
Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 778–792.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9 50

31. Tito, R., Karatzas, D., Valveny, E.: Hierarchical multimodal transformers for multi-page
DocVQA. arXiv preprint: arXiv:2212.05935 (2022)

32. Tito, R., Mathew, M., Jawahar, C.V., Valveny, E., Karatzas, D.: ICDAR 2021 competition on
document visual question answering. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR
2021. LNCS, vol. 12824, pp. 635–649. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-86337-1 42

33. Van Landeghem, J., et al.: Document understanding dataset and evaluation (DUDE). In:
International Conference on Computer Vision (2023)

34. Yang, Y., Wang, H., Katabi, D.: On multi-domain long-tailed recognition, imbalanced
domain generalization and beyond. In: Computer Vision - ECCV 2022: 17th European Con-
ference, Proceedings, Part XX, Tel Aviv, Israel, 23–27 October 2022, pp. 57–75. Springer-
Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20044-1 4

35. Yang, Z., Qi, P., et al.: HotpotQA: a dataset for diverse, explainable multi-hop question
answering. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2369–2380. Association for Computational Linguistics, Brussels
(2018). https://doi.org/10.18653/v1/D18-1259, https://aclanthology.org/D18-1259

36. Zhong, X., Tang, J., Yepes, A.J.: PubLayNet: largest dataset ever for document layout anal-
ysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR),
pp. 1015–1022. IEEE (2019)

https://doi.org/10.1007/978-3-030-86331-9_47
https://doi.org/10.1007/978-3-030-86549-8_7
https://doi.org/10.1007/978-3-030-86549-8_36
https://doi.org/10.1007/978-3-030-86549-8_36
http://arxiv.org/abs/2212.02623
https://doi.org/10.1007/978-3-030-86331-9_50
http://arxiv.org/abs/2212.05935
https://doi.org/10.1007/978-3-030-86337-1_42
https://doi.org/10.1007/978-3-030-86337-1_42
https://doi.org/10.1007/978-3-031-20044-1_4
https://doi.org/10.18653/v1/D18-1259
https://aclanthology.org/D18-1259


ICDAR 2023 Competition on Indic
Handwriting Text Recognition

Ajoy Mondal(B) and C. V. Jawahar

International Institute of Information Technology, Hyderabad, India
{ajoy.mondal,jawahar}@iiit.ac.in

Abstract. This paper presents the competition report on Indic Hand-
writing Text Recognition (IHTR) held at the 17th International Con-
ference on Document Analysis and Recognition (ICDAR 2023 IHTR).
Handwriting text recognition is an essential component for analyz-
ing handwritten documents. Several good recognizers are available for
English handwriting text in the literature. In the case of Indic languages,
limited work is available due to several challenging factors. (i) Two or
more characters are often combined to form conjunct characters, (ii) most
Indic scripts have around 100 unique Unicode characters, (iii) diversity in
handwriting styles, (iv) varying ink density around the words, (v) chal-
lenging layouts with overlap between words and natural unstructured
writing, and (vi) datasets with only a limited number of writers and
examples.
With this competition, we motivate the researchers to continue research-
ing Indic handwriting text recognition tasks to prevent the risk of vanish-
ing Indic scripts/languages. In this competition, we use a training set of
an existing benchmark dataset [3,4,6]. We create a new manually anno-
tated validation set and test set for validation and testing purposes. A
total of eighteen different teams around the world registered for this com-
petition. Among them, only six teams submitted the results along with
algorithm details. The winning team Upstage KR achieves an average
95.94% Character Recognition Rate (CRR) and 88.31% Word Recogni-
tion Rate (WRR) over ten languages.

Keywords: OCR · Indic handwriting text recognition ·
Indic language · Indic script · conjunct characters

1 Introduction

Optical Character Recognition (OCR) is the process of converting printed or
handwritten images into machine-readable formats. OCR is an essential compo-
nent in document image analysis. The OCR system usually consists of two main
modules (i) text detection module and (ii) text recognition module. The text
detection module locates all text blocks within an image, either at the word or
line level. The text recognition module attempts to interpret the text image con-
tent and translate the visual signals into natural language tokens. Handwriting
text recognition is more challenging than printed text because of the imbalanced
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differences in handwriting styles, content, and time. An individual’s handwrit-
ing is always unique, and this property creates motivation and interest among
researchers to work in this demanding and challenging area.

Many languages worldwide are disappearing due to their limited usage. We
can easily use OCR and natural language processing techniques to stop the
extermination of languages worldwide. Among 7000 languages1, the handwritten
OCR is available only for a few languages: English [7,10,19], Chinese [18,22,23],
Arabic [8,13], and Japanese [12,16]. Several Indian scripts and languages are at
risk due to insufficient research efforts. So, there is an immense need for research
on text recognition for Indic scripts and languages.

Among 22 languages in India, few are used only for communication purposes.
Hindi, Bengali, and Telugu are the most spoken languages [9]. In most Indic
scripts, two or more characters often combine to form conjunct characters [1].
These inherent features of Indic scripts make Handwriting Text Recognition
(HWR) more challenging than Latin scripts. Compared to the 52 unique (upper
case and lower case) characters in English, most Indic scripts have over 100
unique basic Unicode characters [17].

We organize a challenge on Indic handwriting text recognition tasks in ten
different scripts: Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Malay-
alam, Odia, Tamil, Telugu, and Urdu. The competition is hosted on http://
cvit.iiit.ac.in/ihtr2022/. This challenge motivates researchers to develop/design
new algorithms for the above scripts. This challenge suggests a significant new
direction for the community to recognize handwritten text in Indic scripts.

The paper is organized as follows. In Sect. 3, we give details about the
dataset used for the competition. The submitted methods are discussed in Sect. 4.
Section 5 shows the results of the competition. The conclusive remark is drawn
in Sect. 6.

Fig. 1. Shows a list of characters and corresponding Unicode characters in the Devana-
gari script.

1 https://www.ethnologue.com/guides/how-many-languages.

http://cvit.iiit.ac.in/ihtr2022/
http://cvit.iiit.ac.in/ihtr2022/
https://www.ethnologue.com/guides/how-many-languages
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2 Indic Languages

There are 22 official languages in India, Assamese, Bengali, Bodo, Dogri,
Gujarati, Hindi, Kannada, Kashmiri, Konkani, Malayalam, Manipuri, Marathi,
Maithili, Nepali, Odia, Punjabi, Sanskrit, Santali, Sindhi, Tamil, Telugu, and
Urdu. Each language has its script. Multiple languages are also derived from a
single script. Assamese and Bengali languages use Bengali script. Bodo, Dogri,
Hindi, Kashmiri, Konkani, Marathi, Maithili, Nepali, Sanskrit, and Sindhi use
the Devanagari script. Gujarati, Kannada, Malayalam, Odia, Punjabi, Tamil,
Telugu, and Urdu languages use Gujarati, Kannada, Malayalam, Odia, Guru-
mukhi, Tamil, Telugu, and Urdu scripts, respectively. While Manipuri uses Ben-
gali/Meitei script, and Santali uses Ol Chiki/Bengali/Odia scripts. Twenty-two
languages are derived from 12 scripts. Each script has a set of unique characters
and digits. Figure 1 and Fig. 2 show the groups of unique characters and corre-
sponding Unicode characters in Bengali and Devanagari scripts, respectively.

Fig. 2. Shows a list of characters and corresponding Unicode characters in Bengali
script.

Compared to English, most Indic scripts consist of over 100 Unicode charac-
ters. Two or more characters are often combined to form a conjunct character.
Figure 3 shows a few examples of conjunct characters in Bengali and Hindi. It
also shows how the unique characters are combined to create conjunct charac-
ters. It also presents a sequence of Unicode code characters corresponding to
the unique characters to create conjunct characters. From Fig. 3, for the Ben-
gali language, we observe that 1st and 3rd conjunct characters are obtained by
combining three unique characters. At the same time, 2nd and 4th conjunct
characters are created by combining five unique characters. In the case of the
Hindi language, all four conjunct characters are obtained by combining three
unique characters.
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Words in Indic languages are created by combining characters from the cor-
responding script. Figure 4 shows a few examples of words in Bengali and Hindi
languages. It also shows how these (e.g., Bengali and Hindi) words are formed
using unique characters from respective scripts (Bengali and Devanagari). Form
Fig. 4, we observe 1st and 4th words have ‘Upper Matra’, 1st and 2nd words
have ‘Lower Matra’. In the case of Hindi words, all four words have ‘Upper
Matra’, and 1st and 2nd words have both ‘Upper Matra and Lower Matra’. The
conjunct characters, ‘Upper Matra’ and ‘Lower Matra’ in Indic languages, differ-
entiate them from Latin scripts/languages. Due to these special characteristics,
the recognition of Indic words is more complex than Latin words.

3 Dataset

We use publicly available benchmark Indic handwriting text recognition
datasets [3,4,6] for this competition. We use the training set mentioned in [3,4,6].
For evaluation purposes, we create a new validation set (val-ihw-icdar-2023)
and test set (test-ihw-icdar-2023), which are manually annotated. For each
of the ten languages, we manually annotate 6000 word images from handwriting
pages written by 100 writers. Table 1 presents the statistics of training, valida-
tion, and test sets for this competition. It contains word-level images of ten Indic
languages: Bengali, Devanagari, Gujarati, Gurumukhi, Kannada, Odia, Malay-
alam, Tamil, Telugu, and Urdu. We also create a list of unique words from the
training set of a language which indicates the lexicon of this language. The lex-
icon can be used as a language model for post OCR error correction to improve
OCR performance. Table 1 also shows the statistic of words in the dataset. The
table shows that Malayalam has the most significant average word length among

Fig. 3. Shows a few samples of conjunct characters in both Bengali and Hindi lan-
guages.
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Fig. 4. Shows a few sample words from both Bengali and Hindi languages.

all other languages. Figure 5 shows sample word images from the test set. The
users in the competition are allowed to use additional real and/or synthetic data
for training purposes. But they need to provide useful information about the
additional dataset for training.

Table 1. Division of dataset into training, validation, and test sets. #Image: indicates
the number of word-level images. #Lexicon: shows the number of unique words from
the training set of respective languages.

Script Training Set Validation Set Test Set #Lexicon

#Image Word Length #Image Word Length #Image Word Length

Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.

Bengali 82554 29 1 7 1000 13 1 5 5000 19 1 5 11295

Devanagari 69853 23 1 5 1000 13 1 4 5000 15 1 4 11030

Gujarati 82563 22 1 6 1000 15 1 5 5000 20 2 4 10963

Gurumukhi 81042 22 1 5 1000 11 1 4 5000 12 1 4 11093

Kannada 73517 32 1 9 1000 17 1 6 5000 23 1 7 11766

Malayalam 85270 41 1 11 1000 21 1 7 5000 24 1 8 13401

Odia 73400 29 1 7 1000 15 1 5 5000 18 3 5 13314

Tamil 75736 31 1 9 1000 24 1 7 5000 24 1 7 13292

Telugu 80693 27 1 8 1000 20 1 6 5000 21 1 7 12945

Urdu 69212 14 3 5 1000 11 3 5 5000 9 1 3 11936
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Fig. 5. Shows sample word images from the test set.

4 Methods

This section discusses each submitted method, including the baseline, in detail.
Eighteen participants around the world registered for the competition. However,
we got submissions from eight of them. These eight teams are (i) EE-Noobies,
Indian Institute of Technology, Bombay, India, (ii) Upstage KR, Upstage KR,
(iii) huanxiteam, (iv) GG-GradientGurus, Indian Institute of Technology, Delhi,
India, (v) light, CCB Financial Technology Co. Ltd, China, (vi) PERO, Faculty
of Information Technology, Brno University of Technology, (vii) SRUKR, Sam-
sung R&D Institute Ukraine, and (viii) LEAP-OCR, Indian Institute of Tech-
nology, Bombay, India. However, the teams huanxiteam and GG-GradientGurus
are not interested to submitted algorithm details. Due to this, these teams are
not included in the draft.

4.1 Baseline

We evaluated the method proposed by Gongidi and Jawahar [6] as our baseline.
The baseline network consists of four modules: Transformation Network (TN),
Feature Extractor (FE), Sequence Modeling (SM), and finally, Predictive Mod-
eling (PM). The transformation network has six plain convolutional layers with
16, 32, 64, 128, 128, and 128 channels. Each layer has a filter size, stride, and
padding size of 3, 1, and 1, followed by a 2×2 max-pooling layer with a stride of
2. The feature extractor module consists of ResNet architecture. The sequence
modeling component consists of a 2 layer Bidirectional LSTM (BLSTM) archi-
tecture with 256 hidden neurons in each layer. The predictive modeling layer
consists of Connectionist Temporal Classification (CTC) to decode and recog-
nize the characters by aligning the feature and target character sequences. We
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resize input images into 96×256. We use the Adadelta optimizer with Stochastic
Gradient Descent (SGD) for all the experiments. We set the learning rate to 1.0,
batch size to 64, and momentum to 0.09. For more details, refer to [6]2.

4.2 EE-Noobies

Convolutional Recurrent Neural Networks (CRNN) have emerged as a robust
end-to-end trainable architecture for various image-based sequence recognition
problems, particularly scene text recognition. A detailed overview of the CRNN
implementation pipeline is presented here, highlighting the key components and
steps involved in training and inference.

CRNN Implementation Pipeline: The following section describes the key
components and steps involved in the CRNN implementation pipeline for hand-
written text recognition.

– Pre-processing: Input images are pre-processed by resizing them to a fixed
height while maintaining their aspect ratios. This step ensures that the input
images have a consistent format and size suitable for the CRNN model.

– Convolutional Layers: The pre-processed images are passed through convo-
lutional layers, extracting feature maps from the input images. Pooling layers
follow these layers to reduce spatial dimensions and capture local information.
Batch normalization and activation functions, such as ReLU, are applied to
improve training stability and performance.

– Recurrent Layers: The feature maps produced by the convolutional layers
are fed into a series of recurrent layers, typically implemented using Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells. These
layers capture the sequential information in the feature maps and model long-
range dependencies. To convert the feature maps into a sequence format, a
“Map-to- Sequence” operation is performed, which involves reshaping the
feature maps by collapsing the spatial dimensions, resulting in a sequence of
feature vectors.

– Bidirectional RNN: A bidirectional RNN often captures both forward and
backward context information in the sequence. It is achieved using two RNNs,
one processing the sequence in the forward direction and the other in the
reverse order. The outputs of these RNNs are then concatenated at each time
step.

– Transcription Layer: The output from the recurrent layers is passed
through a transcription layer that employs the Connectionist Temporal Clas-
sification (CTC) loss. The CTC layer allows the model to align the input
sequences with the target label sequences without explicit character segmen-
tation. It also helps the model recognize variable-length text by collapsing
repeated characters and inserting blank tokens between characters.

2 The code is available at https://github.com/sanny26/indic-htr.

https://github.com/sanny26/indic-htr
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– Training: The CRNN model is optimized during training using gradient-
based optimization methods, such as Stochastic Gradient Descent (SGD) or
Adam. The CTC loss is used as the objective function, and the gradients are
back-propagated through the entire network, updating the weights of both
the convolutional and recurrent layers.

– Inference: The CRNN model takes an input image and generates an output
sequence for inference. The CTC layer outputs a probability distribution over
the possible label sequences. A decoding algorithm, such as the best path
decoding or beam search decoding, is applied to find the most likely label
sequence to obtain the final prediction.

4.3 Upstage UK

To solve the Indic Handwritten Text Recognition task, the Upstage UK team
uses the PARSeq framework [2], changing the vision encoder to SwinV2 [11].
The training details are as follows.

– The Upstage UK team uses an in-house synthetic data generator derived from
the open-source SynthTiger [24] to generate English synthetic data. It uses
Pango Text Renderer to generate 100k Indic synthetic data for each language
for pre-training purposes.

– The team gathers a large pool of real-world in-house Korean scene text
datasets, English handwriting dataset (IAM) [14], and various Indic hand-
writing datasets on Kaggle3 to perform real-world data pre-training.

– The team used the competition data for ten languages to train a multilingual
model from the second pre-training stage. Lastly, they train single language
models for each of the ten languages respectively, using only the correspond-
ing competition data for that language, starting from the multilingual model
in the third stage. For the final submission, they use an ensemble of multi-
ple models per language, whose combination is determined by utilizing the
validation accuracy to pick the best ensemble candidates.
In the processing stage, they cropped the text image to remove the empty
area of the image using the Otsu threshold algorithm. In the post-processing
stage, they remove the ‘,’ character from Urdu words.

4.4 Light

The team light participated in the Indic Handwriting Text Recognition Compe-
tition using the TrOCR algorithm. In terms of data, they used GAN networks to
perform data augmentation for each language category, increasing the robustness
of the models.

3 https://www.kaggle.com/competitions/bengaliai-cv19/.

https://www.kaggle.com/competitions/bengaliai-cv19/
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Text Recognition Model TrOCR: TrOCR [10] is an end-to-end OCR model
based on Transformer. Unlike existing methods, TrOCR is simple and efficient,
does not use CNN as the backbone network but instead splits the input text
image into image slices and then inputs them into the image Transformer. The
encoder and decoder of TrOCR use standard Transformer structures and self-
attention mechanisms, with the decoder generating word pieces as the recogni-
tion text of the input image. To train the TrOCR model more effectively, the
researchers used pre-training models in ViT and BERT modes to initialize the
encoder and decoder.

Data Augmentation Method: To increase the diversity of training data and
improve the robustness of the model, the team utilized various techniques such
as image compression, image warping, stretching, random cropping, and grid
mask perspective overlay on the input images.

Additionally, the team attempted to use the ScrabbleGAN [5] generative
network for data generation. The team generated 100,000 training data for each
language class during model training. However, after comparing the accuracy
of the training data with and without data augmentation, the team observed a
1.6% reduction in accuracy. This decrease in accuracy can be attributed to the
limited simulation of the generated data. Consequently, the team discarded the
data augmentation method.

Training Implementation: First, the team initializes the model to a custom
training dataset and generates a character set lexicon file for the current data.
Then, the team initializes the custom model weights based on the lexicon file
and pre-trained model weights. Finally, the team loads the training data and
initializes the custom model weights for model training.

4.5 PERO

The OCR system consists of an optical model (OM) and a language model (LM).
For each script, the individual OM and LM are trained. Besides the provided
competition datasets, the team also used the original IIIT-INDIC-HW-WORDS
validation and test datasets, which differ from the corresponding competition
datasets, as additional training data.

The OM is a CRNN-based neural network comprising convolutional blocks
and LSTM layers, and it is trained using the CTC loss function. Each OM is
trained for 100k iterations with an initial learning rate of 2 × 10−4 and was
halved after 80k iterations. After every 2k iterations of training, the model is
evaluated on the validation dataset. As the final model, the team selected the
one with the lowest character error rate on the validation dataset. The team
used data augmentations during training, including color changing, binarization,
affine transformations, adding noise, blurring, and masking.
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The LM is an LSTM network trained to predict the next character in a
sequence. As training data, the team used vocabulary scraped from internet
sources (i.e., each word type occurring once in the training data). The team
used the transcriptions of the training data from the challenge to select the best
model by perplexity, exploring different model widths and dropout rates. The
language model is combined with the optical model during prefix beam search
over the OM outputs.

4.6 SRUKR

This report describes the approach used for offline handwritten text recogni-
tion of Indic languages. It is based on Convolutional Recurrent Neural Network
(CRNN) with Connectionist Temporal Classification (CTC) objective function,
which allows the processing of image-based sequence-to-sequence data and is
widely used in handwriting recognition [20,21,26]. There is no need for charac-
ter segmentation or horizontal scale normalization.

The developed solution is trained on the IHTR2022 and ICDAR2023
datasets. Training scripts were implemented using PyTorch. An essential step
of offline handwriting recognition is pre-processing because images can have dif-
ferent sizes, and writing styles differ in the characters’ skew, slant, height, and
thickness. With pre-processing, the recognition rate is significantly higher. Pre-
processing algorithms [21] used in the current recognition solution is described
below.

The first pre-processing step is image binarization. For this, we are taking
grey-scale images and using Otsu’s method. After that, we perform skew and
slant correction, then crop and normalize the image height to 64 px.

Each handwriting has its structure of the character’s shape with different
thicknesses of writing trajectory. To process such samples, we extract the skele-
ton of these binary images to a skeletal remnant using skeletonization. For the
Urdu language, the team flips images to account for right-to-left writing direc-
tion. Also, the team performed a set of experiments with blurring and data
augmentation to extend the training dataset.

The architecture of the CRNN consists of three components: convolutional
layers (CNN), recurrent layers (RNN), and a transcription layer. The CNN
extracts feature from the image based on MobileNet-V3 and EfficientNet-V2.
The team modifies strides to reduce the sequence length by the X-axis 8 times. It
provides a sufficient number of frames necessary for recognition. EfficientNet-V2
gives better results, and at the same time, it has more weight and works longer.
The team uses a 1-layer bidirectional GRU with 128 cells as the RNN. Detailed
configuration of every layer for trained recognition CRNN is given below. The
number of CNN parameters is 5326200, and the number of RNN parameters is
198144.

Configuration of trained CRNN:
Type Configuration
Input width x 64× 1
CNN (EfficientNet-V2) channels, kernel, stride, layers
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Conv2d 24, 3× 3, (2, 2), 1
Fused-MBConv 24, 3 × 3, (1, 1), 2
Fused-MBConv 48, 3 × 3, (2, 2), 4
Fused-MBConv 64, 3 × 3, (2, 2), 4
MBConv 128, 3 × 3, (2, 1), 6
MBConv 160, 3 × 3, (2, 1), 9
Reshape the image to a sequence
Conv1d in: 320, out: 128, kernel: 1, stride: 1
RNN
Bidirectional GRU hidden units: 128
Transcription
Linear (256 + 1(bias)) x (chars + 1 (blank))
Output width / 8 x (chars + 1 (blank))

In the recognition phase for decoding, the team uses an adapted version of
the token passing algorithm [25]. It allows the utilization of a language model
and improves the recognition rates. An adapted token-passing algorithm finds
the most probable sequence of complete words, given the class-based 3-gram
language model. The dictionary contains about 150 thousands of words.

4.7 LEAP-OCR

Handwriting recognition is one of the most widely researched problems. Hand-
written characters have many variations and are available in many scripts and
languages, making this problem more challenging. Furthermore, handwritten
text in Indic languages also has concerned complexities of conjunct consonants,
which further adds to the challenges. Deep learning is widely used to recognize
handwriting. The team proposed a Convolutional Recurrent Neural Network
(CRNN) based text recognition model as CRNNs have proven beneficial for
image-based sequential identification tasks.

Method: The team uses a CRNN [20] based recognition model for Indic Lan-
guage Handwritten Text Recognition as proposed in the DocTR [15] framework.
The competition dataset is pre-processed in the format required by DocTR,
which involves creating a JSON file for image names and corresponding ground
truths. The image pre-processing also includes making all of them equal sizes
(maintaining aspect ratio) by necessary padding, color inversion for a few images,
and adding random noise to make the model more robust. The processed images
from the competition dataset for the selected language and the ground are fed
to the randomly initialized CRNN model. Similarly, the team trained the CRNN
models language-wise, each composed of a distinct set of vocabulary. Once the
concerned epochs are completed, we use the learned models for handwriting
recognition. Along with the trained model, the language of the handwritten
data is also given as input for the inference stage to carry out proper predictions
in inference stage.
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5 Evaluation

5.1 Evaluation Metrics

Two popular evaluation metrics such as Character Recognition Rate (CRR)
(alternatively Character Error Rate, CER) and Word Recognition Rate (WRR)
(alternatively Word Error Rate, WER) are used to evaluate the performance of
recognizers. Error Rate (ER) is defined as

ER =
S + D + I

N
, (1)

where S indicates the number of substitutions, D indicates the number of dele-
tions, I indicates the number of insertions, and N number of instances in refer-
ence text. In the case of CER, Eq. (1) operates on the character level, and in the
case of WER, Eq. (1) operates on word level. Recognition Rate (RR) is defined
as

RR = 1 − ER. (2)

In case of CRR, Eq. (2) operates on the character level and in the case of WRR,
Eq. (2) operates on word level.

We assign a rank to a team based on WRR for each language. Each team
will get points based on their rank on each script: rank 1 gets 5 points, rank 2
gets 4 points, rank 3 gets 3 points, rank 4 gets 2 points, and rank 5 and below
get 1 point for participation. Not submitting results for a language gets a point
0. Since the competition has ten languages, each team may get different ranks
and corresponding points for ten languages. Therefore, finding the winner and
runner-up team from the list of groups for ten languages is tricky. To solve this
issue, we calculate the final point for a team by summing all points corresponding
to the languages of that team. We declare the winner and runner-up teams based
on the final points.

5.2 Competition Results

Among eighteen registered participants, six teams submitted the results of ten
languages (except EE-Noobies submitted results corresponding to three lan-
guages: Devanagari, Tamil, and Urdu. Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
show obtained results by different methods for Bengali, Devanagari, Gujarati,
Gurumukhi, Kannada, Malayalam, Odia, Tamil, Telugu, and Urdu, respectively.
While Table 12 shows the average CRR and WRR over ten languages for all
methods, including the baseline.

For Bengali, only five teams submitted results. Upstage KR obtains the best
CRR (98.99%) and WRR (96.10%) among the teams. It is because of using addi-
tional synthetic and real datasets and multi-stage training strategies. The second
highest scoring team, PERO, achieves CRR (98.11%) and WRR (92.02%), which
is significantly closer to the best CRR (98.99%) and WRR (96.10%). The team
PERO also used additional real data for training and language models to correct
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prediction. The team light obtains CRR (97.54%) and WRR (91.62%) and is in
the third position. During training, this team also used additional synthetic data
(10M word images, 1M word images per language). LEAP-OCR is the minor per-
former. From the results of Bengali, we observed that using additional training
data and language models improves CRR and WRR.

For Devanagari, the team Upstage KR achieves the best CRR (98.02%) and
WRR (93.16%). The other three groups, PERO (CRR 97.64%, WRR 91.16%),
light (CRR 97.24%, WRR 91.16%), and SRUKR (CRR 96.97%, WRR 91.98%),
obtain significantly closer CRR and WRR. All these four teams used additional
data for training. However, multi-stage training helps Upstage KR to achieve the
best CRR and WRR. On the other hand, teams LEAP-OCR and EE-Noobies
obtained the least CRR and WRR as they have not used any additional data
during training.

Table 2. Shows comparison of results obtained by several methods on Bengali.

Method CRR WRR Rank (Point)

Baseline [6] 93.46 75.34 –

Upstage KR 98.99 96.10 1 (5)

PERO 98.11 92.02 2 (4)

LEAP-OCR 74.58 40.98 5 (1)

SRUKR 96.01 88.06 4 (2)

light 97.54 91.62 3 (3)

EE-Noobies 0.0 0.0 0

Table 3. Shows comparison of results obtained by several methods on Devanagari.

Method CRR WRR Rank (Point)

Baseline [6] 92.99 74.72 –

Upstage KR 98.02 93.16 1 (5)

PERO 97.64 91.16 3 (3)

LEAP-OCR 80.68 58.16 4 (2)

SRUKR 96.97 91.98 2 (4)

light 97.24 91.16 3 (3)

EE-Noobies 76.04 41.30 5 (1)
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Table 4. Shows comparison of results obtained by several methods on Gujarati.

Method CRR WRR Rank (Point)

Baseline [6] 54.70 23.75 –

Upstage KR 83.88 61.4 4 (2)

PERO 84.38 61.96 3 (3)

LEAP-OCR 50.12 21.25 5 (1)

SRUKR 82.82 62.38 2 (4)

light 84.08 62.80 1 (5)

EE-Noobies 0.0 0.0 0

Table 5. Shows comparison of results obtained by several methods on Gurumukhi.

Method CRR WRR Rank (Point)

Baseline [6] 90.88 71.42 –

Upstage KR 98.52 95.28 1 (5)

PERO 98.62 95.0 3 (3)

LEAP-OCR 83.97 56.66 5 (1)

SRUKR 97.06 90.22 4 (2)

light 98.44 95.16 2 (4)

EE-Noobies 0.0 0.0 0

Table 6. Shows comparison of results obtained by several methods on Kannada.

Method CRR WRR Rank (Point)

Baseline [6] 89.16 56.08 –

Upstage KR 98.8 93.62 2 (4)

PERO 99.06 94.54 1 (5)

LEAP-OCR 85.72 50.46 5 (1)

SRUKR 97.77 91.36 4 (2)

light 98.6 92.58 3 (3)

EE-Noobies 0.0 0.0 0

For Gujarati, Gurumukhi, Kannada, Odia, and Tamil languages, the four
teams, Upstage KR, PERO, SRUKR, and light, obtained much closer CRR and
WRR. For these languages, additional synthetic and real data help the models
to predict higher and closer CRR and WRR.

In the case of the Malayalam language, using additional real data for the
teams Upstage KR, PERO, light, and SRUKR help the corresponding models
achieve good performance. Using synthetic and real data makes the Upstage KR
team achieve the highest CRR and WRR.

For Telugu, two teams, Upstage KR (CRR 98.53, WRR 91.18) and PERO
(CRR 98.63, WRR 91.44), obtain significantly closer output. While the other two
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Table 7. Shows comparison of results obtained by several methods on Malayalam.

Method CRR WRR Rank (Point)

Baseline [6] 95.79 77.20 –

Upstage KR 99.47 97.16 1 (5)

PERO 99.19 94.88 2 (4)

LEAP-OCR 73.78 43.24 5 (1)

SRUKR 97.26 87.22 4 (2)

light 98.98 94.46 3 (3)

EE-Noobies 0.0 0.0 0

Table 8. Shows comparison of results obtained by several methods on Odia.

Method CRR WRR Rank (Point)

Baseline [6] 89.83 66.34 –

Upstage KR 94.16 81.0 4 (2)

PERO 94.77 83.38 1 (5)

LEAP-OCR 82.07 46.68 5 (1)

SRUKR 94.04 81.48 3 (3)

light 94.37 82.96 2 (4)

EE-Noobies 0.0 0.0 0

Table 9. Shows comparison of results obtained by several methods on Tamil.

Method CRR WRR Rank (Point)

Baseline [6] 97.88 88.48 –

Upstage KR 99.61 97.92 2 (4)

PERO 99.59 97.54 3 (3)

LEAP-OCR 90.63 60.90 6 (1)

SRUKR 99.15 95.62 4 (2)

light 99.63 98.08 1 (5)

EE-Noobies 92.24 66.92 5 (1)

teams SRUKR (CRR 97.5, WRR 88.84) and light (CRR 97.61, WRR 86.62), also
get substantially closer results. The additional synthetic and real data helps the
model better recognize all these four teams. The teams LEAP-OCR and EE-
Noobies are inferior CRR and WRR because of no other synthetic and real data
for training.

For Urdu, the writing sequence is different from other languages. It is written
from right-to-left, while the word is written from left-to-right for other languages.
All four teams, Upstage KR, PERO, light, and SRUKR, used additional data for
training, reasonable CRR, and WRR obtained. As the words are written from
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Table 10. Shows comparison of results obtained by several methods on Telugu.

Method CRR WRR Rank (Point)

Baseline [6] 95.82 76.53 –

Upstage KR 98.53 91.18 2 (4)

PERO 98.63 91.44 1 (5)

LEAP-OCR 81.07 36.12 6 (1)

SRUKR 97.5 88.84 3 (3)

light 97.61 86.62 4 (2)

EE-Noobies 84.2 40.48 5 (1)

Table 11. Shows comparison of results obtained by several methods on Urdu.

Method CRR WRR Rank (Point)

Baseline [6] 76.23 36.78 –

Upstage KR 89.38 76.3 2 (4)

PERO 89.79 73.34 3 (3)

LEAP-OCR 59.1 22.42 5 (1)

SRUKR 91.68 82.12 1 (5)

light 78.32 48.5 4 (2)

EE-Noobies 0.0 0.0 0

right-to-left, the results of the teams Upstage KR, PERO, and light are lesser
than that of SRUKR. The team SRUKR obtained the best CRR (91.68%) and
WRR (82.12%). The team SRUKR flips word images to account for right-to-left
writing direction for Urdu. Because of this strategy, the SRUKR obtains the best
CRR and WRR and 6% margin in WRR than the 2nd best team Upstage KR.

From the experiments, we observed that additional real and synthetic data
helped to learn the representation of word images for recognition. Multi-stage

Table 12. Shows comparison of average results over ten languages obtained by several
methods.

Method CRR WRR Points

Baseline [6] 87.67 64.66 –

Upstage KR 95.94 88.31 40

PERO 95.98 87.53 38

light 94.48 84.39 34

SRUKR 95.03 85.93 29

LEAP-OCR 76.17 43.69 11

EE-Noobies 84.16 49.57 3
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Fig. 6. Shows sample word images recognized by different techniques.

learning further improves recognition accuracy. The language model helps to
rectify and correct wrongly recognized words. Though four methods, Upstage
KR, PERO, light, and SRUKR, achieve more than 84% WRR over ten languages
on average, several wrongly recognized words still need to be corrected. Figure 6
shows a few sample word images recognized by the submitted methods.

6 Conclusion

This competition motivates the researchers to continue researching Indic hand-
written text recognition tasks to prevent the risk of vanishing a few Indic
scripts/languages. Eighteen teams registered for this competition. Among them,
only six teams submitted results along with algorithm details. The Upstage KR
team won the competition and achieved an average CRR of 95.94% and WRR of
88.31% over all languages. At the same time, team PERO (average CRR 95.98%
and WRR 87.53% over ten languages) won the runner-up position in this com-
petition. Four of the six teams, Upstage KR, PERO, light, and SRUKR, obtain
much closer recognition results. The following factors (i) additional synthetic
and/or real training data, (ii) pre-processing of the training data, and (iii) lan-
guage model for recognition error correction help these teams to achieve high
recognition scores. In the case of the Urdu language, words are written from
right-to-left direction, totally different from the writing direction from left-to-
right for other Indic languages. For Urdu, flipping word images helps the SRUKR
team to achieve the best performance (CRR 91.68% and WRR 82.12%). All these
four methods set a new benchmark for the Indic handwriting text recognition
tasks. These methods open a direction for solving Indic handwriting recognition
tasks.
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In the future, we will continue this challenge to enrich the literature on Indic
handwriting text recognition tasks with methods and datasets. The challenge
impacts the OCR community in building better models and creating complex
datasets.
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Abstract. This paper presents the competition report on Visual Ques-
tion Answering (VQA) on Business Document Images (VQAonBD) held
at the 17th International Conference on Document Analysis and Recog-
nition (icdar 2023). Understanding business documents is a crucial
step toward making an important financial decision. It remains a man-
ual process in most industrial applications. Given the requirement for
a large-scale solution to this problem, it has recently seen a surge in
interest from the document image research community. Credit under-
writers and business analysts often look for answers to a particular set of
questions to reach a decisive conclusion. This competition is designed
to encourage research in this broader area to find answers to ques-
tions with minimal human supervision. Some problem-specific challenges
include an accurate understanding of the questions/queries, figuring
out cross-document questions and answers, the automatic building of
domain-specific ontology, accurate syntactic parsing, calculating aggre-
gates for complex queries, and so on. Further, despite having the same
accounting fundamentals, the terminologies and ontologies used across
different organizations and geographic locations may vary significantly.
This makes the problem of generic VQA on such documents only more
challenging. Since this is the first iteration of the competition, it was
restricted in terms of some of the challenges listed; however, the further
iterations of this competition aim to include many additional sub-tasks
with the larger vision of accurate semantic understanding of business
documents as images.
Eleven different teams around the world registered for this competi-
tion. Five teams out of those submitted methods spanning multiple
approaches, among which Team Upstage KR won the competition with
a weighted average score of 95.9%. The runner-up team, NII-TablQA
obtained a weighted average score of 90.1%

Keywords: Optical Character Recognition (OCR) · Visual Question
Answering (VQA) · Business Documents · Table Structure Recognition
(TSR)

1 Introduction

Visual question-answering generally aims to answer a query described in natural
language, taking cues from the document image as the only input. As a part of
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this competition, we propose a visual question-answering dataset and baseline
model from business document images. While a lot of work has already been done
in the broader VQA space [1–11], the questions from business documents present
many niche challenges that may require cross-document referencing, additional
numeric computations over the simple search query to reach the final solution,
and so on. Further, since most business documents are usually presented in a
tabular format, leveraging this structural conformity to answer more challenging
queries may be non-trivial. Given the unique nature of the problem, its tremen-
dous prospect in the industry, layers of challenges to be tackled, and the recent
surge of interest in visual question answering, we believe that there would be a
surge in the research interest in this area in the near future (Fig. 1).

Fig. 1. Given a document image and questions, the task of the competition is to pro-
duce answers corresponding to the questions.

The recent works in the broader problem of visual question answering on
generic scene images demonstrate the ability of deep-learning models to under-
stand the context of the scene at hand. While at first glance, the problem of
document VQA, particularly VQA on tabular images seems quite similar, the
reality is quite different. Tabular data often presents highly dense data com-
pressed in a structured format, with limited linguistic contexts. This is usually
because most of the data present is in numeric format, which is more complex
to digitize and understand in the broader context than standard documents
containing sentences and paragraphs.

Another possible way to approach the problem may be through a more
pipeline-driven methodology which would need table detection and table recon-
struction as precursors. Though this process involves multiple stages, it would
result in easy explainability with respect to question-answeing. Moreover, the
success of recent methods in table reconstruction space [12–19] make this app-
roach as a reasonable prospective.

The problem at hand has an immense utility, primarily in banking and insur-
ance verticals where analysts manually digitize the incoming financial reports
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(including but not limited to balance sheets, income statements and cash flow
statements). As a next step, subject matter experts, such as credit underwrit-
ers, peruse these reports to extract answers for a specific set of queries to make
a decision. This competition aims to pose this problem as a cognitive machine
learning task to answer the queries at hand, given only the table image along
with queries as inputs.

The paper is organized as follows. In Sect. 2, we give details about the dataset
used for the competition.The submittedmethods are discussed in Sect. 3. Section 4
shows the results of the competition. The conclusive remark is drawn in Sect. 5.

2 Dataset

We use the publicly available FinTabNet [20] datasets for this competition.
FinTabNet [20] dataset has predefined ground truth labels for table structure
recognition, which means that alongside every image, we have bounding boxes
for every word/token, digitized text, and row/column identifier. We create ques-
tions on top of these documents and tag their answers in terms of the actual
textual answer by annotating the word/token bounding box(es) used to com-
pute the final answer. Some of the complex table images with multiple row and
column headers split across different columns and rows respectively are shown
in Figs. 2, 3 and 4.

In order to achieve the desired scale of the dataset, we employ a heuristic-based
automated algorithm to create the dataset using original table structure annota-
tions of the FinTabNet [20] dataset. The algorithm, in brief, is described as follows:

– As a first step, we get the table grid from original FinTabNet [20] annotations
that allow us to identify all table cells, including those which are empty.

– The next step is to identify the data-type of each cell based on its content. The
data-types include string, integer, floating-point, empty, percentage-value,
year, month, date, special chars and ranges, to name a few.

– Once the datatype of every cell is identified, we employ heuristics to identify
row headers and column headers depending on data-types and whether the
cell spans multiple rows and/or columns.

– In case the image contains multiple tables, as shown in Figs. 2, 3 and 4, we
use the header information to split the tables horizontally and/or vertically.

– At this point, all the information and metadata (row headers, column headers,
cell data-types) of the table are extracted.

– Most business report document tables can often be represented in a tree-like
structure where certain rows add up corresponding to a row below in the
table in a recursive manner. We extract this tree structure for every table in
the dataset to identify inter-row relationships.

– Lastly, we generate questions of varying difficulty levels using all the table-
level and cell-level metadata collected as described above.
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Fig. 2. Example of a complex table image that has row headers split across different
columns.

The different categories of questions imply varying difficulty levels of the
questions as described below:

Fig. 3. Example of a complex table image that have column headers split across dif-
ferent rows.
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– To generate category 1 questions, which are simple extraction queries, we
define multiple question templates and depending on the cell data-type and
metadata, we curate the question accordingly.

– For the questions of category type 2, we compute ratios of cells that belong to
the same row but across two different columns. The question is then curated
according to the pre-defined multi-paraphrased templates by populating the
corresponding values of the row header and the two-column headers.

– For the questions of category type 3, we compute ratios of cells across two
different rows. The question is then curated according to the pre-defined
multi-paraphrased templates by populating the corresponding values of the
row and column headers.

– For the questions of category type 4, we compute aggregation functions
(among minimum, maximum, mean, median and cumulative) across cells with
the same row header but belonging to different years or months of the report.
The question is then curated according to the pre-defined multi-paraphrased
templates by populating the corresponding values of the row and column
headers (years).

– For the questions of category type 5, we make use of the recursive inter-rows
relationships to compute aggregation (among minimum, maximum, mean,
median and cumulative) across a group. The questions around these groups
are generated from the same column header and group row headers of the
report. The question is then curated according to the pre-defined multi-
paraphrased templates by populating the corresponding values of the row
and column headers.

Fig. 4. Example of a complex table image that have column headers (year of the table)
split across different rows.
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During the training phase, the dataset is divided into two categories - training
and validation sets containing 39,999 and 4535 table images respectively. Ground
truth corresponding to each table image consists of the following: Table Structure
Annotation: Each cell is annotated with information about its bounding box,
digitised content, and cell spans in terms of start-row, start-column, end-row
and end-column indices. Difficulty-Wise Sample Questions and Answers: Corre-
sponding to every table image, a few sets of questions along with their answers
are annotated in the JSON file. The questions are organised into five categories
in increasing order of difficulty. The question types primarily include extraction
type query, ratio calculations and aggregations across rows and/or columns. Fur-
ther, answer types are classified as text or numeric. While text answers will be
evaluated according to edit-distance-based measures, for numeric-type answers,
the absolute difference between the ground-truth and predicted value will also
be taken into account. Ideally, to answer all the questions correctly, both syn-
tactic along with a semantic understanding of the business document would be
required. Each table image would have annotations for a maximum of 50 ques-
tions and corresponding answers for training and validation. Depending on the
format and content of the table, the total number of questions from each category
within a single table will be in the following range:

– Category 1 : 0–25
– Category 2 : 0–10
– Category 3 : 0–3
– Category 4 : 0–7
– Category 5 : 0–5

Every training annotation is in the form of a json file that contains two
primary keys:

– Table Structure (table structure): Each key within this object is represented
by an integer value, cell id. The object corresponding to this cell id has infor-
mation about its bounding box, start row, start col, end row, end col and
content.

– Questions and Answers (questions answers): The keys within this object
denote the category of questions (category 1, etc.). Further, the object corre-
sponding to each category is again a dictionary with a key corresponding to
the question id and a value corresponding to the question object containing
the question as the string, its answer and answer type.

During the evaluation, the predictions are expected in a similar JSON format
such that the key at the first level is the category id. Within each category is
a nested dictionary such that its key is the question id and the corresponding
value is the predicted answer.

The statistics of the dataset are as shown below:
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Table 1. Division of dataset into training, validation, and test sets. #: indicates counts.

Dataset-Type #Images #Total Questions #Numeric Questions #Text Questions

Training 39,999 1,254,165 1,197,358 56,807

Validation 4,535 141,465 134,651 6,814

Test 4,361 135,825 129,861 5,964

3 Methods

In this section, we discuss each of the submitted methods including the baseline
in detail. Eleven teams registered for the competition. However, we obtained
complete submissions from five of them, which include results, submission
reports, trained model(s) and inference codes. One team did submit the results
but did not submit other details to test for reproducibility and hence, won’t be
included in the leaderboard. These five final participants are:

Table 2. Category-wise distribution of questions in training, validation and test
datasets. #: indicates counts.

Question Training Dataset Validation Dataset Test Dataset

Category #Numeric #Text #Numeric #Text #Numeric #Text

Category 1 632,037 56,807 69,458 6,814 68,439 5,964

Category 2 137,395 0 15,396 0 14,705 0

Category 3 107,712 0 12,471 0 11,863 0

Category 4 187,844 0 21,696 0 20,609 0

Category 5 132,370 0 15,630 0 14,245 0

– Upstage KR, affiliation: Upstage
– NII-TABIQA, affiliation: National Institute of Informatics, Japan
– DEEPSE-X-UPSTAGE-HK, affiliation: DeepSE x Upstage HK
– BD-VQA, affiliation: Apple Inc.
– SFANC57, affiliation: OneConnect FinTech

3.1 Baseline

We evaluated the method proposed by Xu and Li. [21,22] for our baseline. In
their work, they proposed the model called LayoutLM, which jointly mod-
els interactions between text and layout information across scanned document
images. This becomes beneficial for a great number of real-world document image
understanding tasks such as information extraction from scanned documents.
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To add to this, authors also leverage image features to incorporate words’ visual
information into LayoutLM. Their architecture extends the well-known Bert [23]
model by adding two types of input embeddings: (i)a 2-D position embedding
that denotes the relative position of a token within a document; and (ii) an
image embedding for scanned token images within a document. The proposed
2-D position embedding captures the relationship among tokens within a docu-
ment, meanwhile, the image embedding captures visual characteristics including
but not limited to fonts, font-styles, colors, etc. In addition, authors employ a
multi-task learning objective for LayoutLM [21,22], which includes a Masked
Visual-Language Model (MVLM) loss and a Multi-label Document Classifica-
tion (MDC) loss. The two losses combined allow for joint pre-training of text
and layout collectively. It is important to note that in order to extract the token,
authors use an OCR tool as a precursor to the joint training. The pre-trained
model was then finetuned on form understanding, receipt understanding and
document image classification as the downstream tasks. The implementation
that we have employed is in the form of an API available on Hugging-Face,
which has been further finetuned on both the SQuAD2.0 [24] and DocVQA [6]
datasets. This makes it a go to choice for our baseline1

3.2 Upstage KR

Participants use three models named CPRQ (Component Prediction from
Raw Question), CPEQ (Component Prediction from Extracted Questions), and
CPEQ Pseudo. After the prediction of each model, they generate the final result
using weighted hard voting (Table 1).

CPRQ. Component Prediction from Raw Question (CPRQ) attempts to train
the generative model (Donut [25]) to predict the values of the components
needed to answer the original raw question. Taking the ratio-type questions
as an example, instead of training the model to predict the final ratio answer,
it was trained to output the values present within the table that are needed to
solve the ratio question. After successfully extracting of the necessary compo-
nent values, subsequent mathematical operations (e.g. ratio) could be applied
in the post-processing step. To obtain the component values corresponding to
the different mathematical operation questions, both rule-based algorithms and
external generative model API were used. For the external generative model
API, ChatGPT 3.5 [26] API to be specific, only the training dataset was used
to find the component values and train their model (Table 2).

CPEQ. Component Prediction from Extracted Questions (CPEQ) attempts
to train the generative model (Donut [25]) to predict component value from
extracted questions.

1 The code is available at https://huggingface.co/impira/layoutlm-document-qa.

https://huggingface.co/impira/layoutlm-document-qa
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First, a raw question is divided into multiple extractive questions similar to
those in category 1 by pre-defined rules. For example, “What is the ratio of the
value of due after 10 years for the year 2018 to the year 2017?” is divided into
two extractive questions such as “What is the ratio of the value of due after 10
years for the year 2018?” and “What is the ratio of the value of due after 10
years for the year 2017?”. Participants defined some dividing patterns that can
cover all questions.

Second, a trained model using only category 1 data as training data predict
both category 1 questions and extracted questions in categories 2–5. Lastly, pre-
dictions from extracted questions in categories 2–5 are post-processed to generate
the final result by operation (e.g. maximum, minimum, ratio).

CPEQ Pseudo. CPEQ is trained using only category 1 data. For data aug-
mentation, pseudo question-answer pair is generated by the CPEQ algorithm,
and the trained CPEQ model is fine-tuned on pseudo data. The resulting model
is CPEQ Pseudo.

3.3 NII-TablQA

The team introduces TabIQA, a system designed for question-answering using
table images in business documents, as illustrated in Fig. 5. Given a table image
of a business document and a question about the image, the system utilizes the
table recognition module to extract table structure information and the text
content of each table cell and convert them into HTML format. Subsequently,
the high-level table structure is extracted to identify the headers, data cells, and
hierarchical structure with the post-structure extraction module. Once the table
is structured, it is converted to a data frame for further processing. The question-
answering module processes the input question and the table data frame with
an encoder and generates the final answer from a decoder.

Table Recognition. This module aims to predict the table structure infor-
mation and the text content of each table cell from a table image and represent
them in a machine-readable format (HTML). Specifically, this module consists of
one shared encoder, one shared decoder, and three separate decoders for three
sub-tasks of table recognition: table structure recognition, cell detection, and
cell-content recognition. Participants trained this model on the training set of
VQAonBD 2023 and validated it on the validation set of VQAonBD 2023 for
model selection and choosing the hyperparameters.
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Fig. 5. Architectural diagram of the team NII-TablQA.

Post-structure Extraction. The TabIQA system classifies table headers and
data rows from HTML tables using a set of heuristics. Specifically, the system
identifies headers as some of the first table rows with column spans, nan cells,
or duplicate values in the same rows. The system designates the first row as the
table header if no header is found. The system then classifies the remaining rows
as data cells. The system identifies hierarchical rows by focusing on data cells
with column spans for entire rows. Once the system has identified the structured
table, it generates a table data frame by concatenating the values of the header
rows to form a one-row header and concatenating the value of each hierarchical
row to the lower-level cell values to improve the interpretation of each cell value
and provide a more accurate representation of the table data in the data frame.

Question Answering. This module is built on the state-of-the-art table-based
question-answering model, OmniTab [27]. The team fine-tuned the OmniTab [27]
large pre-trained models using the VQAonBD 2023 training set.

3.4 DeepSE-x-Upstage-HK

Their method, Donut-EAMA (Extract Answer Merge Answer), is based on the
end-to-end OCR-free document understanding model - Donut [25] (https://
github.com/clovaai/donut). To apply it on the VQAonBD task, they first pre-
trained the model on the training set with the text-reading task. Then consid-
ering the model had no training involving arithmetic calculations, they believed

https://github.com/clovaai/ donut
https://github.com/clovaai/ donut
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that asking it to answer the questions directly would probably not work well.
Therefore, the team developed a rule-based algorithm that extracts relevant cell
values based on the question and the provided table annotations for the train-
ing set and uses those extracted values as labels to reformulate the task into
an extractive one. They then finetune the Donut [25] model on this extractive
task and implemented a simple post-processing algorithm to calculate the final
answer from the values generated by the model.

3.5 BD-VQA

As part of this challenge, the team has used Donut [25] VQA (Visual Ques-
tion Answering) pre-trained model open-sourced by Hugging face (https://
huggingface.co/naver-clova-ix/donut-base). This model is a deep learning model
that is designed to answer questions about images of donuts.

Before feeding the image and question list as inputs into the Donut VQA sys-
tem [25], they performed data pre-processing, handling questions from different
categories in distinct ways. They left Category 1 questions as they were, while
for Category 2 and Category 3 questions, they split them into two independent
questions and subsequently computed the ratio of the two values in the table.
This was done because they noticed that these questions relied on the ratio of
two values.

For Category 4 and 5 questions that involved operations such as median,
maximum, minimum, cumulative, and average, were found to rely on the final
aggregate output of three values in the table. Hence, the team split them into
three separate questions. Using Donut VQA [25], they predicted the value of
each question, and then computed the corresponding operator value to obtain
the final result.

3.6 SFANC57

For the system used for VQAonBD, the team has chosen the OCR-free VDU
model Donut [25]. For category 1 questions: most answers can be directly selected
from the original table content; thus we generate the answer from the Donut-
VQA model. For category 2–5 questions, they developed a simple query parsing
script to split the logic into content selection and aggregation calculation.

4 Evaluation

4.1 Evaluation Metrics

During the evaluation, a model is expected to take only the document image
and question as the input to produce the output. This output is then compared
against the ground truth answer to obtain a quantitative evaluation score com-
puted over the entire evaluation dataset.

In most cases, the expected answers to questions from business documents
are single numeric token ones. It makes classical accuracy a good prospect for

https://huggingface.co/naver-clova-ix/donut-base
https://huggingface.co/naver-clova-ix/donut-base
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evaluating this task. While for a more generic assignment of visual question
answering, there may be some subjectivity in the answers (e.g., white, off-white,
and cream may all be correct answers), the solutions for the proposed task are
primarily objective and absolute. It makes evaluation relatively straightforward.
Hence, we use standard accuracy as the primary criterion for evaluation. Further,
we also employ averaged absolute deviation as one of the criteria for numeric-type
answers. If the absolute difference between the ground truth and the predicted
value is more than 100%, we give a score of 0. In the other case, the score is
defined by:

Deviation Score = 1 − absolute distance

ground truth value
(1)

However, since the input to the model will only be by the document image
to answer a specific query, penalizing the VQA model word/token detection
and recognition is not fair. Therefore, we also employ Averaged Normalized
Levenshtein Similarity (ANLS) as proposed in [28,29], which responds softly to
answer mismatches due to OCR imperfections. ANLS is given by Eq. 2, where
N is the total number of questions, M are possible ground truth answers per
question, i = 0...N , j = 0...M and oqi

is the answer to the ith question qi.

ANLS =
1
N

N∑

i=0

(
max

j
s(aij , oqi

)
)

s(aij , oqi
) =

{
1 − NL(aij , oqi

), if NL(aij , oqi
) < τ.

0, otherwise.

(2)

where NL(aij , oqi
) is the normalized Levenshtein distance (ranges between 0

and 1) between the strings aij and oqi
. The value of τ can be set to add softness

toward recognition errors. If the normalized edit distance exceeds τ , it is assumed
that the error is because of an incorrectly located answer rather than an OCR
mistake.

The final score is an L2 norm of the deviation score and the ANLS score,
both of which range between 0 and 1 for the numeric values. For text answers,
the final score is the same as the ANLS score.

4.2 Results

Out of eleven registered participants, we received submissions from a total of six
teams. Five of them submitted their results along with a brief description of their
method, trained model(s) and inference codes. The final leaderboard consists of
those five submissions. Furthermore, we have executed the inference codes for
each of the submissions to ensure that the submission score could be replicated
within a +−1% score. Also, we received multiple submissions from each team. To
ensure there was no cherry-picking of the best-performing submission, we only
considered the most recent submission by the team within the deadline window.



466 S. Raja et al.

Table 3. Final Scores corresponding to the latest submissions of all the participating
teams. Categories 1 through 5 indicate the average scores corresponding to questions
of each category, All Avg indicates the average scores and Weighted average indicates
the weighted average score, based on which the final ranking was decided.

Team Category 1 Category 2 Category 3 Category 4 Category 5 All Avg Weighted Avg

Baseline 0.281 0.091 0.096 0.200 0.169 0.168 0.163

UPSTAGE KR 0.963 0.942 0.953 0.974 0.956 0.957 0.959

NII-TABIQA 0.932 0.876 0.855 0.895 0.931 0.898 0.901

DEEPSE-X-

UPSTAGE-HK 0.939 0.874 0.859 0.902 0.858 0.886 0.879

BD-VQA 0.799 0.794 0.729 0.736 0.422 0.696 0.640

SFANC57 0.648 0.119 0.132 0.463 0.418 0.356 0.359

Table 4. Final exact match accuracy scores corresponding to the latest submissions of
all the participating teams. Categories 1 through 5 indicate the average exact match
scores corresponding to questions of each category, All Avg indicates the average exact
match scores and Weighted average indicates the weighted average exact match score.

Team Category 1 Category 2 Category 3 Category 4 Category 5 All Avg Weighted Avg

BASELINE 0.085 0.000 0.000 0.015 0.012 0.023 0.015

UPSTAGE KR 0.933 0.907 0.925 0.957 0.924 0.929 0.931

DEEPSE-X-

UPSTAGE-HK 0.872 0.799 0.784 0.791 0.734 0.796 0.778

BD-VQA 0.586 0.630 0.533 0.501 0.110 0.472 0.397

NII-TABIQA 0.874 0.554 0.451 0.215 0.259 0.470 0.374

SFANC57 0.111 0.001 0.002 0.090 0.140 0.069 0.082

Table 5. Evaluation based on answer data types.

Team Numeric Text Micro-Average Numeric Exact Text Exact Micro Average

Team Score Score Score Match Score Match Score Exact Match Score

BASELINE 0.214 0.359 0.220 0.051 0.020 0.050

UPSTAGE 0.962 0.929 0.960 0.934 0.880 0.932

NII-TABIQA 0.924 0.674 0.913 0.645 0.470 0.637

DEEPSE-X-

UPSTAGE-HK 0.912 0.870 0.910 0.833 0.750 0.829

BD-VQA 0.753 0.522 0.743 0.545 0.051 0.523

SFANC57 0.494 0.470 0.493 0.091 0.057 0.089

From Tables 3 and 4, it is evident that the team UPSTAGE KR won the
competition by a significant margin of 5.8% average weighted final score across all
the categories of questions as compared to the runner-up team, which obtained
a score of 90.1%. There are many interesting conclusions that can be drawn from
these results. If we only consider the simple extractive questions, which belong
to category 1, we observe that the results obtained by the top three teams are
within a close range of 3% scores. Among the participants, we observe three
very distinct approaches toward the solution. The first team follows a weighted
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ensemble-driven approach where they train three different generative models
using the architecture of Donut [25] and ChatGPT 3.5 [26] API to answer the
questions. The second team, on the other hand, follows a more pipeline-driven
approach where they perform table recognition as a precursor step for post-
structure data extraction using heuristics to extract row and column headers.
On top of the structured information extracted, they use the OmniTab [27] model
to generate answers. The third team used the Donut [25] model but reformulated
the task into an extractive task instead of a text reading task. The fourth and
fifth teams used Donut [25] model to extract answers to the questions. The
fourth team developed parsers to break down complex questions into simple
ones, while the fifth standing team did not fine-tune or developed any query
parsers but used the standard Donut [25] model API available on hugging-face
to generate answers.

The numbers clearly indicate that the fine-tuning of the pre-trained genera-
tive models like Donut [25] is imperative to obtain any meaningful results in the
first place because of completely different dataset distributions. The difference
between the scores of the third and fourth teams also clearly indicates the sig-
nificance of training a problem-specific downstream task for a generative model
instead of using it right out of the box. Further, a difference of almost 19% score
between the BD-VQA and SFANC57 teams indicates that developing complex
question parsers and transforming those into simple extractive queries can signif-
icantly aid generative models; however, such models fail to perform well directly
on the aggregation and ratio-type complex questions.

Further, Table 5 compares the performance of each submission on text and
numeric-type questions. The non-trivial difference between the proposed evalu-
ation score and exact match accuracy scores clearly demonstrates that there is
some error induced because of OCR mistakes. The difference however is partic-
ularly stark for the team NII-TABIQA. Our qualitative analysis suggests that
the difference is primarily in the least significant bits of the numeric values. The
significant difference for the same submission for text-based questions further
signifies that OCR does not seem to be as accurate as compared to the other
submissions.

As discussed above, we draw many interesting conclusions from various sub-
missions of this competition. In this first iteration of the competition, we only
requested for the answers of every question put forward in front of the model
and did not ask for where the relevant information was picked up from in order
to answer the query. This makes it hard for us to thoroughly investigate the
errors made by the OCR tool in extracting tokens. In the next version, we would
definitely ask for the coordinates of the relevant tokens which would allow us to
thoroughly investigate the submissions from the OCR dimension as well.

5 Conclusion

This competition aims to bridge the gap between the document research commu-
nity in the academia and the industry. Through this competition, we have seen
two primary distinct ways in which researchers go about tackling this problem -
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(i) through direct VQA on images as a black box; and (ii) a more pipeline-driven
approach using table structure recognition and OCR as precursors to answering
the query. The high-performing quantitative results show both approaches as
promising directions of research in this space.

Since this was the first version of this competition and in turn the dataset, the
questions were generated primarily using keywords from the underlying ground-
truth tokens of the document itself. Furthermore, the aggregation queries by
themselves contained many cues using which it was not so difficult to break
them down into simpler questions to answer (as we have seen in most of the
submissions). The reasonable number of participants and submissions in this
challenge motivates us to take this further and build upon the dataset to make
it all the more challenging. Some of the ways in which we plan to do this are
to (i) increase the scope of the documents (including invoices, receipts, etc.);
(ii) add cross-document questions; (iii) add additional sub-tasks (such as table-
specific tokens detection and recognition, table structure recognition, key-value
pair detection); and (iv) by building domain specific taxonomy and ontology
which would make the questions independent of the absolute keywords seen in the
document thereby making them generic for multiple similar style of documents.
We believe that in the future, our competition would play a vital role in getting
towards a rather “Grand Challenge” in the document research space at large.

In conclusion, we hope that this competition would continue to bridge the
gap between the document research community in academia and the industry.
We also hope that models presented in this competition will eventually lead to
the building of state-of-the-art artificially intelligent methods that could solve
the real-world problem efficiently at a large scale.
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Abstract. Transforming documents into machine-processable represen-
tations is a challenging task due to their complex structures and variabil-
ity in formats. Recovering the layout structure and content from PDF
files or scanned material has remained a key problem for decades. ICDAR
has a long tradition in hosting competitions to benchmark the state-of-
the-art and encourage the development of novel solutions to document
layout understanding. In this report, we present the results of our ICDAR
2023 Competition on Robust Layout Segmentation in Corporate Docu-
ments, which posed the challenge to accurately segment the page layout
in a broad range of document styles and domains, including corporate
reports, technical literature and patents. To raise the bar over previous
competitions, we engineered a hard competition dataset and proposed
the recent DocLayNet dataset for training. We recorded 45 team reg-
istrations and received official submissions from 21 teams. In the pre-
sented solutions, we recognize interesting combinations of recent com-
puter vision models, data augmentation strategies and ensemble meth-
ods to achieve remarkable accuracy in the task we posed. A clear trend
towards adoption of vision-transformer based methods is evident. The
results demonstrate substantial progress towards achieving robust and
highly generalizing methods for document layout understanding.

Keywords: Document Layout Analysis · Machine Learning ·
Computer Vision · Object Detection · ICDAR Competition

1 Introduction

Document understanding is a key business process in the data-driven economy
since documents are central to knowledge discovery and business insights. Con-
verting documents into a machine-processable format is a particular challenge
due to their huge variability in formats and complex structure. Recovering the
layout structure and content from either PDF files or scanned material has
remained a key problem since decades, and is as relevant-as-ever today. One
can find vast amounts of approaches and solutions to this task [7,11,14–16,18],
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all of which are constrained to different degrees in the domains and document
styles that they can perform well on. A highly generalising model for structure
and layout understanding has yet to be achieved.

ICDAR has organized various competitions in the past to benchmark the
state-of-the-art and encourage the development of novel approaches and solu-
tions to layout segmentation problems in documents [2–4,21]. In this report, we
present the results of our ICDAR 2023 Competition on Robust Layout Segmen-
tation in Corporate Documents, which posed the challenge to accurately segment
the layout of a broad range of document styles and domains, including corporate
reports, technical literature and patents. Participants were challenged to develop
a method that could identify layout components in document pages as bounding
boxes. These components include paragraphs, (sub)titles, tables, figures, lists,
mathematical formulas, and several more. The performance of submissions was
evaluated using the commonplace mean average precision metric (mAP) used in
the COCO object detection competition [13]. To raise the bar over previous com-
petitions, we proposed to use our recently published DocLayNet dataset [16] for
model training, and engineered a challenging, multi-modal competition dataset
with a unique distribution of new page samples.

Below, we present a detailed overview of this competition, including its
datasets, evaluation metrics, participation, and results.

2 Datasets

Fig. 1. Dataset statistics of DocLayNet and the competition dataset.

2.1 Related Work

Layout segmentation datasets published in the recent past, such as Pub-
LayNet [25] or DocBank [12], have enabled a big leap forward for ML-driven
document understanding approaches due to their huge ground-truth size com-
pared to earlier work. However, these datasets still remain limited to a narrow
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domain of predominantly scientific documents, which is owed to their automatic
ground-truth generation approach from mostly uniform XML or LaTEX sources.
Despite exposing many different publisher layouts, all documents strongly share
common traits and general structure. This has led to a saturation of ML model
accuracy baselines at a very high level, with little room for improvement [21].
Yet, all publicly proposed ML models trained on these datasets generalize rather
poorly to out-of-domain document samples, such as those found in the corporate
world. For example, tables in invoices or manuals are difficult to detect correctly
with models trained on scientific literature or books.

2.2 DocLayNet Dataset

The DocLayNet dataset [16] addresses these known limitations by providing
80,863 page samples from a broad range of document styles and domains,
which are fully layout annotated by human experts to a high-quality standard.
DocLayNet is the first large-scale dataset covering a wide range of layout styles
and domains, which includes Financial reports, Patents, Manuals, Laws, Tenders,
and Technical Papers. It defines 11 class labels for rectangular bounding-box
annotations, namely Caption, Footnote, Formula, List-item, Page-footer, Page-
header, Picture, Section-header, Table, Text and Title. Detailed instructions and
guidance on how to consistently annotate the layout of DocLayNet pages were
published in the accompanying layout annotation guideline.

Fig. 2. Select samples in the competition dataset (Other category) which fall outside
of the layout distribution in DocLayNet.
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Additionally, DocLayNet provides a JSON representation of each page with
the original text tokens and coordinates from the programmatic PDF code. This
opens the opportunity for new multi-modal ML approaches to the layout seg-
mentation problem.

2.3 Competition Dataset

To assess the layout segmentation performance of each team’s submissions, we
engineered a competition dataset of 498 new pages in the same representation as
the original DocLayNet dataset, which was provided to the participants without
any annotation ground-truth. This competition dataset includes a mix of corpo-
rate document samples as shown in Fig. 2. Samples in the new Other category
expose layouts which fall outside of the DocLayNet layout space.

3 Task

We designed the competition objective as a straightforward object detection
task, since this is well-understood in the computer-vision community and fits
the representation format of our DocLayNet dataset. Participants of our compe-
tition were challenged to develop methods that can identify layout components
in document pages as rectangular bounding boxes, labelled with one of the 11
classes defined in the DocLayNet dataset (see Fig. 3). The performance of each
team’s approach was evaluated on our competition dataset using the well estab-
lished COCO mAP metric.

Fig. 3. Example page with bounding-box annotations.
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Submission Format: Since the COCO dataset format [13] and tooling is well
established in the object detection community, we provided a standard COCO
dataset file as part of our competition dataset, which includes the definition of
class labels and image identifiers, but no ground-truth annotation data. Submis-
sions were expected in the format of a JSON file complying with the commonly
used COCO results schema, including complete bounding-box predictions for
each page sample, matching to the identifiers defined in our provided dataset
file.

Evaluation Metric: All submissions were evaluated using the Mean Average
Precision (mAP) @ Intersection-over-Union (IoU) [0.50:0.95] metric, as used in
the COCO object detection competition. In detail, we calculate the average
precision for a sequence of IoU thresholds ranging from 0.50 to 0.95 with a step
size of 0.05, using the standard pycocotools library1. This metric was computed
for every document category in the competition dataset separately. Then, the
mean of the mAPs across all categories was computed with equal weights per
category. The final ranking of every team’s submissions was based on the overall
mAP.

4 Competition

Schedule: Our competition was officially announced on December 19th, 2022
and ended on April 3rd, 2023. The regular competition phase ended on March
26th, 2023 and the final week was run as a dedicated extension phase. Results
of both phases are reflected in Sect. 5.

Setup: We launched a competition website2 to provide task descriptions,
instructions, resources and news updates for the competition. For submission
management, automatic online evaluation and tracking team submissions on
a leader board, we relied on the free-to-use EvalAI platform [19]. To ensure
fair conditions and prevent reverse engineering of our ground-truth, each team
was originally granted 10 submission attempts on the evaluation platform. We
increased this limit by 5 attempts for the extension phase. The feature in EvalAI
to declare submissions private or public allowed teams to create multiple private
submissions and check how they perform in evaluation before deciding to re-
submit one of them as an official entry. The test-score for each submission was
provided directly after submission. The latter has advantages and disadvantages.
On the one hand, teams have a direct feedback on the quality of their results
and can explore different strategies, which is one of the main motivations of this
competition. On the other hand, it can also be used to overfit the model. For this
explicit reason, we limited the number of submissions of each team to 10 (with
extension 15). To set a baseline for the leader board, the competition organizers
created an initial submission entry, which was visible to all teams.
1 pypi.org/project/pycocotools.
2 ds4sd.github.io/icdar23-doclaynet.

https://pypi.org/project/pycocotools/
https://ds4sd.github.io/icdar23-doclaynet


476 C. Auer et al.

5 Results

5.1 Overview

After the competition ended, we counted 45 team registrations, which altogether
created 374 private or public submissions. Out of these, 21 team decided to make
at least one public submission which counts towards the final ranking. Table 1
shows the results achieved by the participating teams for the regular submission
phase and the extension phase of the competition. More detailed analysis and
descriptions of selected methods from the participants are presented below.

Table 1. Leaderboard of our competition with all teams ranking above our baseline
(rank 19). Ranks are shown separately for the regular phase (reg) and the extension
phase (ext)

Team mAPs after extension Ranking

Overall Rep Man Pat Other reg. ext. Diff

docdog 0.70 0.66 0.69 0.84 0.62 1 1 �

BOE AIoT CTO 0.64 0.54 0.67 0.84 0.52 2 2 �

INNERCONV 0.63 0.57 0.63 0.85 0.48 3 3 �

LC-OCR 0.63 0.61 0.65 0.77 0.48 5 4 ∠1

DXM-DI-AI-CV-TEAM 0.63 0.54 0.63 0.82 0.51 4 5 ∠1

alexsue 0.61 0.53 0.63 0.81 0.49 6 6 �

PIX 0.61 0.52 0.63 0.82 0.46 - 7 *

Acodis 0.60 0.53 0.62 0.80 0.46 15 8 ∠7

Linkus 0.59 0.49 0.64 0.77 0.48 7 9 ∠2

TTW 0.58 0.49 0.61 0.80 0.42 8 10 ∠2

amdoc 0.58 0.47 0.62 0.80 0.42 12 11 ∠1

CVC-DAG 0.58 0.49 0.61 0.77 0.44 9 12 ∠3

SPDB LAB 0.57 0.48 0.57 0.80 0.44 10 13 ∠3

Alphastream.ai 0.57 0.47 0.57 0.79 0.45 11 14 ∠3

Hisign 0.57 0.48 0.62 0.79 0.39 13 15 ∠2

DLVC 0.55 0.53 0.57 0.74 0.38 14 16 ∠2

Vamshikancharla 0.49 0.36 0.48 0.76 0.37 16 17 ∠1

Azure 0.49 0.44 0.55 0.59 0.38 17 18 ∠1

ICDAR23 DocLayNet organizers (Baseline) 0.49 0.38 0.52 0.70 0.35 18 19 ∠1

5.2 General Analysis

Layout Segmentation Performance: It is apparent that the top-ranking
team (docdog) has presented a solution that is performing notably superior com-
pared to the remainder of the field, as evidenced by their 6% lead in total mAP
score over the second best submission. This result is achieved through outper-
forming every other team in the Reports category (5% lead) and the particularly
difficult Others category (10% lead). From the second rank down, we observe a
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very competitive field with many teams achieving similar levels of mAP perfor-
mance, ranging from 0.64 (rank 2) to 0.55 (rank 16). Two more teams ranked
just slightly above our baseline mAP of 0.49 (see Fig. 4).

Fig. 4. Distribution of overall mAP achieved by teams. Numbers and ranks refer to
extension phase.

Throughout the extension phase, we observed mostly small improvements of
overall mAP within a 1–2% range, with few exceptions such as team docdog and
team Acodis, which managed to improve by 4% and 6% over their result from
the regular competition phase, respectively. Team PIX joined as a new entrant
in the extension phase only.

The highest, and also most consistent performance across submissions, is
observed in the Patent category, with 12 teams achieving an mAP of 0.79 or
better. This is consistent with our expectations, since Patent document lay-
outs are the most uniform and structured. The diverse, free-style layouts in the
Reports and Others categories posed a considerably bigger challenge, with mAPs
generally ranging in the low 60%s and 50%s respectively.

Two interesting observations can be made. On one hand, we find significantly
lower mAPs in the submissions across our competition set categories than those
which were achieved for example on PubMed Central papers in the ICDAR
2021 Competition on Scientific Literature Parsing [21]. This can be attributed
both to the more challenging layouts and higher class count of the DocLayNet
dataset, as well as to the distribution bias and hard samples we engineered the
competition dataset to expose. On the other hand, we see a significant spread of
mAPs across the final submissions, with almost all teams exceeding the baseline
by a significant margin. This delivers evidence that the participating teams have
created solutions that differentiate themselves significantly from previous off-the-
shelf object detection methods (see baseline). It also shows that the investment
to develop sophisticated methods is beneficial to obtain superior performance on
this dataset.

Models and Strategies: In the solutions presented by the top five teams,
we were pleased to see novel and interesting combinations of recent computer
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vision models, data augmentation strategies and ensemble methods applied to
solve the layout segmentation task with high accuracy. All top-ranking solutions
adopt, to different degrees, the recently emerging deep-learning models based on
vision transformer methods and self-supervised pre-training, such as the generic
DINO [22] and MaskDINO [10] models, or the document-understanding focused
DiT [11] and LayoutLMv3 [7] models. The DocLayNet dataset was used for fine-
tuning in this context. Several solutions combine these new-generation vision
models with more traditional, CNN-based object detectors such as YOLO [8]
through model ensemble, for example through Weighted Boxes Fusion [17]. Data
augmentation strategies used by the teams include multi-scale and mosaic meth-
ods, as well as deriving synthetic datasets from DocLayNet. Two of the top
five teams reported that they include the additional text cell layer provided by
DocLayNet and the competition dataset in their approach. No teams stated to
create private ground-truth data that was not derived from DocLayNet.

5.3 Method Descriptions

Below we summarize the methods reported by the top five teams for compari-
son reasons to our best understanding. We would like to extend our thanks to
all competition teams who took the time to provide us with a comprehensive
description of their methods.

Team Docdog (Tencent WeChat AI)

The team created a synthetic image dataset of 300,000 samples based on the
training dataset. For the task of layout prediction, the team used two mod-
els, YOLOv8 [8] and DINO [22]. An extra classification model was trained
to categorize the samples of the competition dataset into the document cat-
egories. YOLOv8 models with different network sizes (medium, large, x-large)
were trained, each with different input resolutions, for ensemble and optimization
of the detection performance. For the DINO model, the team applied a carefully
designed augmentation strategy and integrated focal modulation networks [20]
in the backbone for improved performance. Separate models were trained per
category, both with and without synthetic data. Model hyper-parameters were
optimized using a Tree-Structured Parzen Estimator (TPE) [1] to find the best
weights. Prediction results from the individual models were combined using
Weighted Boxes Fusion (WBF) [17] and fine-tuned using text cell coordinates
from the JSON representation of the samples in the competition dataset. Further
detail on the approach is provided in the team’s WeLayout paper [23].

Team BOE AIoT CTO

The team relied exclusively on the DocLayNet dataset for training, and applied
scale and mosaic methods for image augmentation. For the task of layout
prediction, the team trained two object detection models, YOLOv5 [9] and
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YOLOv8 [8]. Training was conducted over 150 epochs using BCELoss with Focal-
Loss, and mosaic augmentation was cancelled for the final 20 epochs. Addition-
ally, a DiT model [11] (dit-large) was fine-tuned using the DocLayNet dataset. To
improve vertical text detection, the team added multi-scale image training. Pre-
dictions for the final submission were ensembled from three detectors to achieve
superior performance.

Team INNERCONV

For the task of layout prediction, the team uses the MaskDINO model [10].
MaskDINO is derivative of DINO [22] which introduces a mask prediction branch
in parallel to the box prediction branch of DINO. It achieves better alignment
of features between detection and segmentation. In training, only the image
representation of the DocLayNet dataset is used. In inference, the team applied
the Weighted Boxes Fusion (WBF) technique [17] to ensemble the predictions
on multiple scales of the same input image.

Team LC-OCR (CVTE)

For the task of layout prediction, the team applied two models, VSR [24] and
LayoutLMv3 [7], which use pre-trained weights. Prediction results from both
models are merged in inference. Detections for the classes Footnote, Picture,
Table and Title were taken from LayoutLMv3, the remainder of classes from
VSR. In VSR, the team included the text cell information provided in the JSON
representation of DocLayNet.

Team DXM-DI-AI-CV-TEAM (Du Xiaoman Financial)

For the task of layout prediction, the team trained different versions of Cascade
Mask R-CNN [6] models, based on a DiT [11] backbone (DiT-large), and fuse
prediction results using different models.

Baseline of ICDAR 2023 DocLayNet Organizers

To set a comparison baseline for the competition, the organizers used a YOLOv5
model (medium size), and trained it solely on the DocLayNet training dataset,
with images re-scaled to square 1024 by 1024 pixels. The model was trained from
scratch with default settings for 80 epochs. We applied standard augmentation
techniques such as mosaic, scale, flipping, rotation, mix-up and image levels.

6 Conclusions

We believe that this ICDAR competition served its purpose well to benchmark
the state-of-the-art solutions to the layout segmentation task in documents, and
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again encouraged the development of unique new approaches. Our new com-
petition dataset was designed to raise the bar over previous competitions by
providing diverse, challenging page layouts, paired with multi-modal represen-
tation. This enabled participants to test the generalization power of the latest
computer-vision methods, especially with recently emerging models based on
self-supervised pre-training and visual transformers.

We were pleasantly surprised by the high level of engagement in this com-
petition, with 45 teams registering, out of which 21 teams created an official
final submission. The budget of 15 total submissions was fully used by the
majority of the contestants. Overall, the level of sophistication demonstrated
in the approaches went well beyond our anticipation. One core take-away is the
importance of data augmentation and ensemble techniques to improve the lay-
out prediction performance beyond the level of what any single end-to-end model
currently delivers. It was also interesting to observe how the various techniques
applied by the different teams in many cases yielded similar results in overall
accuracy. The remarkable progress demonstrated by the top-performing teams in
this competition will be valuable for future research on highly capable document
understanding models.

We are also glad to see this competition spark wider interest in the commu-
nity, as it prompted some members to build and share fully runnable example
codes and publish blog articles on training and inference with DocLayNet and
pre-trained models [5]. To support these community efforts, we made DocLayNet
available on the HuggingFace datasets hub3. As such, we believe that this ICDAR
competition has also helped to establish the DocLayNet dataset as a well known
asset for document understanding research and applications.

Acknowledgments. We would like to thank all participants for their remarkable
efforts and contributions to this competition, and the Competitions Chairs for providing
the opportunity to host this competition in ICDAR 2023.
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Abstract. We organize a competition on hierarchical text detection and
recognition. The competition is aimed to promote research into deep
learning models and systems that can jointly perform text detection and
recognition and geometric layout analysis. We present details of the pro-
posed competition organization, including tasks, datasets, evaluations,
and schedule. During the competition period (from January 2nd 2023 to
April 1st 2023), at least 50 submissions from more than 20 teams were
made in the 2 proposed tasks. Considering the number of teams and
submissions, we conclude that the HierText competition has been suc-
cessfully held. In this report, we will also present the competition results
and insights from them.

Keywords: OCR · Text Detection and Recognition · Layout Analysis

1 Introduction

Text detection and recognition systems [10] and geometric layout analysis
techniques [11,12] have long been developed separately as independent tasks.
Research on text detection and recognition [13–16] has mainly focused on the
domain of natural images and aimed at single level text spotting (mostly, word-
level). Conversely, research on geometric layout analysis [11,12,17,18], which is
targeted at parsing text paragraphs and forming text clusters, has assumed doc-
ument images as input and taken OCR results as fixed and given by independent
systems. The synergy between the two tasks remains largely under-explored.

Recently, the Unified Detector work by Long et al. [19] shows that the unifi-
cation of line-level detection of text and geometric layout analysis benefits both
tasks significantly. StructuralLM [20] and LayoutLMv3 [26] show that text line
grouping signals are beneficial to the downstream task of document understand-
ing and are superior to word-level bounding box signals. These initial studies
demonstrate that the unification of OCR and layout analysis, which we term as
Hierarchical Text Detection and Recognition (HTDR), can be mutually beneficial
to OCR, layout analysis, and downstream tasks.

Given the promising potential benefits, we propose the ICDAR 2023 Com-
petition on Hierarchical Text Detection and Recognition. In this compe-
tition, candidate systems are expected to perform the unified task of text detec-
tion and recognition and geometric layout analysis. Specifically, we define the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 483–497, 2023.
https://doi.org/10.1007/978-3-031-41679-8_28
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unified task as producing a hierarchical text representation, including word-level
bounding boxes and text transcriptions, as well as line-level and paragraph-level
clustering of these word-level text entities. We defer the rigorous definitions of
word/line/paragraph later to the dataset section. Figure 1 illustrates our notion
of the unified task.

Fig. 1. Illustration for the proposed unified task: Hierarchical Text Detection and
Recognition (HTDR). Given an input image, the unified model is expected to pro-
duce a hierarchical text representation, which resembles the form of a forest. Each tree
in the forest represents one paragraph and has three layers, representing the clustering
of words into lines and then paragraphs.

We believe this competition will have profound and long-term impact on the
whole image-based text understanding field by unifying the efforts of text detec-
tion and recognition and geometric layout analysis, and furthering providing new
signals for downstream tasks.

The competition started on January 2nd 2023, received more than 50 submis-
sions in 2 tasks in total, and closed on April 1st 2023. This report provides details
into the motivation, preparation, and results of the competition. We believe the
success of this competition greatly promotes the development of this research
field. Furthermore, the dataset except the test set annotation and evaluation
script are made publicly available. The competition website1 remains open to
submission and provides evaluation on the test set.

2 Competition Protocols

2.1 Dataset

The competition is based on the HierText dataset [19]. Images in HierText are
collected from the Open Images v6 dataset [27], by first applying the Google
Cloud Platform (GCP) Text Detection API 2 and then filtering out inappropri-
ate images, for example those with too few text or non-English text. In total,
11639 images are obtained. In this competition, we follow the original split of
8281/1724/1634 for train, validation, test sets. Images and annotations of the
train and validation set are released publicly. The test set annotation is kept
private and will remain so even after the end of the competition.
1 https://rrc.cvc.uab.es/?ch=18.
2 https://cloud.google.com/vision/docs/ocr.

https://rrc.cvc.uab.es/?ch=18
https://cloud.google.com/vision/docs/ocr
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As noted in the original paper [19], we check the cross-dataset overlap rates
with the two other OCR datasets that are based on Open Images. We find that
1.5% of the 11639 images we have are also in TextOCR [28] and 3.6% in Intel
OCR [29]. Our splits ensure that our training images are not in the validation
or test set of Text OCR and Intel OCR, and vice versa.

Fig. 2. Example of hierarchical annotation format of the dataset.

The images are annotated in a hierarchical way of word -to-line-to-paragraph,
as shown in Fig. 2. Words are defined as a sequence of textual characters not
interrupted by spaces. Lines are then defined as space-separated clusters of words
that are logically connected and aligned in spatial proximity. Finally, paragraphs
are composed of lines that belong to the same semantic topic and are geomet-
rically coherent. Figure 3 illustrates some annotated samples. Words are anno-
tated with polygons, with 4 vertices for straight text and more for curved text
depending on the shape. Then, words are transcribed regardless of the scripts
and languages, as long as they are legible. Note that we do not limit the character
sets, so the annotation could contain case-sensitive characters, digits, punctua-
tion, as well as non-Latin characters such as Cyrillic and Greek. After word-level
annotation, we group words into lines and then group lines into paragraphs. In
this way, we obtain a hierarchical annotation that resembles a forest structure
of the text in an image.
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Fig. 3. Illustration for the hierarchical annotation of text in images. From left to
right: word, line, paragraph level annotations. Words (blue) are annotated with
polygons. Lines (green) and paragraphs (yellow) are annotated as hierarchical clusters
and visualized as polygons. Images are taken from the train split.
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2.2 Tasks

Our challenge consists of 2 competition tracks, Hierarchical Text Detection
and Word-Level End-to-End Text Detection and Recognition. In the
future, we plan to merge them into a single unified Hierarchical Text Spotting
task that requires participants to give a unified representation of text with layout.

Task 1: Hierarchical Text Detection. This task itself is formulated as a com-
bination of 3 tasks: word detection, text line detection, and paragraph detection,
where lines and paragraphs are represented as clusters of words hierarchically.

In this task, participants are provided with images and expected to produce
the hierarchical text detection results. Specifically, the results are composed of
word-level bounding polygons and line and paragraph clusters on top of
words. The clusters are represented as forests, as in Fig. 1, where each paragraph
is a tree and words are leaves. For this task, participants do not need to provide
text recognition results.

Fig. 4. Illustration of how hierarchical text detection can be evaluated as 3 instance
segmentation sub-tasks. The coloring of each column indicates the instance segmenta-
tion for each sub-task.
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As illustrated in Fig. 4, we evaluate this task as 3 instance segmentation sub-
tasks for word, line, and paragraph respectively. For word level, each word is
one instance. For line level, we take the union of each line’s children words as
one instance. For paragraph level, we aggregate each paragraph’s children lines,
and take that as one instance. With this formulation, all the 3 sub-tasks will
be evaluated with the PQ metric [30] designed for instance segmentation, as
specified in [19]:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP | + 1
2 |FP | + 1

2 |FN | (1)

where TP, FP, FN represent true positives, false positives, and false negatives
respectively. We use an IoU threshold of 0.5 to count true positives. Note that
the PQ metric is mathematically equal to the product of the Tightness score,
which is defined as the average IoU scores of all TP pairs, and the F1, score which
is commonly used in previous OCR benchmarks. Previous OCR evaluation pro-
tocols only report F1 scores which do not fully reflect the detection quality. We
argue that tightness is very important in evaluating hierarchical detection. It
gives an accurate measurement of how well detections match ground-truths. For
words, a detection needs to enclose all its characters and not overlap with other
words, so that the recognition can be correct. The tightness score can penal-
ize missing characters and oversized boxes. For lines and paragraphs, they are
represented as clusters of words, and are evaluated as unions of masks. Wrong
clustering of words can also be reflected in the IoU scores for lines and para-
graphs. In this way, using the PQ score is an ideal way to accurately evaluate
the hierarchical detection task.

Each submission has 3 PQ scores for word, line, and paragraph respectively.
There are 3 rankings for these 3 sub-tasks respectively. For the final ranking of
the whole task, we compute the final score as a harmonic mean of the 3 PQ
scores (dubbed H-PQ) and rank accordingly.

Task 2: Word-Level End-to-End Text Detection and Recognition. For
this task, images are provided and participants are expected to produce word-
level text detection and recognition results, i.e. a set of word bounding polygons
and transcriptions for each image. Line and paragraph clustering is not required.
This is a challenging task, as the dataset has the most dense images, with more
than 100 words per image on average, 3 times as many as the second dense
dataset TextOCR [28]. It also features a large number of recognizable characters.
In the training set alone, there are more than 960 different character classes,
as shown in Fig. 5, while most previous OCR benchmarks limit the tasks to
recognize only digits and case-insensitive English characters. These factors make
this task challenging.

For evaluation, we use the F1 measure, which is a harmonic mean of word-
level prediction and recall. A word result is considered true positive if the IoU
with ground-truth polygon is greater or equal to 0.5 and the transcription is the
same as the ground-truth. The transcription comparison considers all characters
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and will be case-sensitive. Note that, some words in the dataset are marked as
illegible words. Detection with high overlap with these words (IoU larger than
0.5) will be removed in the evaluation process, and ground-truths marked as
illegible do not count as false negative even if they are not matched.

Fig. 5. Character set in the training split.

2.3 Evaluation and Competition Website

We host the competition on the widely recognized Robust Reading Competition
(RRC) website3 and set up our own competition page. The RRC website has been
the hub of scene text and document understanding research for a long time and
hosted numerous prestigious competitions. It provides easy-to-use infrastructure
to set up competition, tasks, and carry out evaluation. It also supports running
the competition continuously, making it an ideal candidate.

3 https://rrc.cvc.uab.es/.

https://rrc.cvc.uab.es/


490 S. Long et al.

2.4 Competition Schedule

We propose and execute the following competition schedule, in accordance with
the conference timeline:

– January 2nd, 2023: Start of the competition; submissions of results were
enabled on the website.

– April 1st, 2023: Deadline for competition submissions.
– April 15th, 2023: Announcement of results.

2.5 Other Competition Rules

In addition to the aforementioned competition specifications, we also apply the
following rules:

– Regarding the usage of other publicly available datasets: HierText
is the only allowed annotated OCR dataset. However, participants are also
allowed to do self-labeling on other public OCR datasets as long as they
don’t use their ground-truth labels. In other words, they can use the images
of other public datasets, but not their labels. They can also use non-OCR
datasets, whether labeled or not, to pretrain their models. We believe they
are important techniques that can benefit this field.

– Usage of synthetic datasets Synthetic data has been an important part of
OCR recently [21–25]. Participants can use any synthetic datasets, whether
they are public or private, but are expected to reveal how they are synthesized
and some basic statistics of the synthetic datasets if they are private.

– Participants should not use the validation split in training their models.
– Participants can make as many submissions as desired before the deadline,

but we only archive the latest one submission of each participant in the final
competition ranking.

2.6 Organizer Profiles

Authors are all members of the OCR team at Google Research. In addition to
academic publications, authors have years of experience in building industrial
OCR systems that are accurate and efficient for a diversity of image types and
computation platforms.

3 Competition Results

In total, the competition received 30 submissions in Task 1 and 20 submissions
in Task 2. Note that, we encourage participants to submit multiple entries using
different methods, for example, to understand the effect of applying different
techniques such as pretraining and synthetic data. To produce the final leader-
board in compliance with the ICDAR competition protocols, we only keep the
latest 1 submission from each participants. The final deduplicated competition
results are summarized in Table 1/Fig. 6 and Table 2/Fig. 7. In total, the com-
petition received 11 unique submissions in Task 1 and 7 in Task 2.
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Table 1. Results for Task 1. F/P/R/T/PQ stand for F1-score, Precision, Recall, Tight-
ness, and Panoptic Quality respectively. The submissions are ranked by the H-PQ
score. H-PQ can be interpreted as Hierarchical-PQ or Harmonic-PQ. H-PQ is calcu-
lated as the harmonic means of the PQ scores of the 3 hierarchies: word, line, and
paragraph. It represents the comprehensive ability of a method to detect the text hier-
archy in image. We omit the % for all these numbers for simplicity.

User Method Rank Task 1
metric

Word Line Paragraph

H-PQ PQ F P R T PQ F P R T PQ F P R T

YunSu Kim Upstage KR 1 76.85 79.80 91.88 94.73 89.20 86.85 76.40 88.34 91.32 85.56 86.48 74.54 86.15 87.40 84.94 86.52

DeepSE x
Upstage

DeepSE hierarchical
detection model

2 70.96 75.30 88.49 93.50 83.99 85.10 69.43 82.43 82.65 82.21 84.23 68.51 81.39 81.69 81.10 84.17

zhm hiertext submit 0401
curve 199 v2

3 70.31 76.71 88.18 92.71 84.08 86.99 71.43 83.32 89.32 78.07 85.73 63.97 74.83 81.25 69.35 85.48

Mike
Ranzinger

NVTextSpotter 4 68.82 73.69 87.07 95.10 80.29 84.63 67.76 80.42 93.87 70.35 84.25 65.51 78.04 81.82 74.60 83.94

ssm Ensemble of three
task-specific
Clova DEER detection

5 68.72 71.54 92.03 93.82 90.31 77.74 69.64 89.04 91.75 86.49 78.21 65.29 83.70 84.17 83.23 78.01

xswl Global and local
instance
segmentations for
hierarchical text
detection

6 68.62 76.16 90.72 93.45 88.16 83.95 68.50 82.22 80.24 84.31 83.31 62.55 75.11 74.00 76.25 83.28

Asaf
Gendler

Hierarchical Transform-
ers
for Text Detection

7 67.59 70.44 86.09 88.47 83.83 81.82 69.30 85.23 87.83 82.78 81.31 63.46 78.40 77.84 78.97 80.94

JiangQing SCUT-HUAWEI 8 62.68 70.08 89.58 89.79 89.37 78.23 67.70 86.20 90.46 82.33 78.53 53.14 69.06 74.03 64.72 76.96

Jiawei
Wang

DQ-DETR 9 27.81 61.01 77.27 80.64 74.17 78.96 26.96 35.91 26.81 54.39 75.07 18.38 24.72 15.99 54.41 74.36

ZiqianShao test 10 21.94 27.45 41.75 51.82 34.95 65.76 25.61 39.04 51.50 31.43 65.59 16.32 24.52 35.61 18.70 66.57

Yichuan
Cheng

a 11 0.00 0.00 0.00 0.24 0.00 53.62 0.01 0.01 0.25 0.01 51.29 0.01 0.02 0.21 0.01 50.89

Fig. 6. Figure for the results of task 1.
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Table 2. Results for Task 2. F/P/R/T/PQ stand for F1-score, Precision, Recall, Tight-
ness, and Panoptic Quality respectively. The submissions are ranked by the F1 score.
We omit the % for all these numbers for simplicity.

User Method Rank Word

PQ F P R T

YunSu Kim Upstage KR 1 70.00 79.58 82.05 77.25 87.97

DeepSE x Upstage DeepSE End-to-End Text
Detection and Recognition Model

2 67.46 77.93 88.05 69.89 86.57

ssm Ensemble of three task-specific
Clova DEER

3 59.84 76.15 77.63 74.73 78.59

Mike Ranzinger NVTextSpotter 4 63.57 74.10 80.94 68.34 85.78

JiangQing SCUT-HUAWEI 5 58.12 73.41 74.38 72.46 79.17

kuli.cyd DBNet++ and SATRN 6 51.62 71.64 82.76 63.15 72.06

LGS keba 7 44.87 54.30 68.37 45.03 82.64

Fig. 7. Figure for the results of task 2.

3.1 Submission Validation

In the final leaderboard, each participant is only allowed to have one submission.
We validate each submission and examine the number of submissions from each
team. If a team has more than one submission, we keep the latest one and remove
the rest from the leaderboard. Note that these removed submissions will remain
on the RRC portal for reference, since they also provide important aspects into
this research field. We adopt the following rules to determine the authorship of
each submission:
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– user id: If two submissions have the same user id field, it means they are
submitted by the same RRC user account and thus should be from the same
team.

– method description: Participants are asked to provide descriptive infor-
mation of their submissions, including authors, method details, etc. If two
submissions have strictly almost identical author list and method descrip-
tion, we consider them to be from the same team.

3.2 Task 1 Methodology

Task 1 in our competition, i.e. Hierarchical Text Detection, is a novel task in the
research field. There are no existing methods that participants can refer to. Even
the previous work Unified Detector [19] can only produce line and paragraph out-
puts but no word-level results. Among the 8 submissions in Task 1 which have
disclosed their methods, we observed that 5 of them develop ‘multi-head plus
postprocessing ’ systems. These methods treat words, lines, and paragraphs as
generic objects, and train detection or segmentation models to localize these
three levels of text entities in parallel with separate prediction branches for each
level. In the post-processing, they use IoU-based rules to build the hierarchy in
the post-processing step, i.e. assigning words to lines and lines to paragraphs. The
most of the top ranking solutions belong to this type of methods. One submission
(from the SCUT-HUAWEI team) adopts a cascade pipeline, by first detecting
words and then applying LayoutLMv3 [26] to cluster words into lines and para-
graphs. The Hierarchical Transformers for Text Detection method develops a
unified detector similar to [19] for line detection and paragraph grouping and
also a line-to-word detection model that produces bounding boxes for words.
Here we briefly introduce the top 2 methods in this task:
Upstage KR team ranks 1st place in Task 1, achieving an H-PQ metric of
76.85%. It beats the second place by almost 6% in the H-PQ metric. They imple-
mented a two-step approach to address hierarchical text detection. First, they
performed multi-class semantic segmentation where classes were word, line, and
paragraph regions. Then, they used the predicted probability map to extract
and organize these entities hierarchically. Specifically, an ensemble of UNets
with ImageNet-pretrained EfficientNetB7 [8]/MitB4 [7] backbones was utilized
to extract class masks. Connected components were identified in the predicted
mask to separate words from each other, same for lines and paragraphs. Then, a
word was assigned as a child of a line if the line had the highest IoU with the word
compared to all other lines. This process was similarly applied to lines and para-
graphs. For training, they eroded target entities and dilated predicted entities.
Also, they ensured that target entities maintained a gap between them. They
used symmetric Lovasz loss [9] and pre-trained their models on the SynthText
dataset [24].
DeepSE X Upstage HK team ranks 2nd in the leaderboard. They funda-
mentally used DBNet [6] as the scene text detector, and leveraged the oCLIP
[5] pretrained Swin Transformer-Base [4] model as the backbone to make direct
predictions at three different levels. Following DBNet, they employed Balanced
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Cross-Entropy for binary map and L1 loss for threshold map. The authors also
further fine-tuned the model with lovasz loss [9] for finer localization.

3.3 Task 2 Methodology

Task 2, i.e. Word-Level End-to-End Text Detection and Recognition, is a more
widely studied task. Recent research [2,15] focuses on building end-to-end train-
able OCR models, as opposed to separately trained detection and recognition
models. It’s widely believed that end-to-end models enjoy shared feature extrac-
tion which leads to better accuracy. However, the results of our competition say
otherwise. The top 2 methods by the Upstage KR team and DeepSE End-
to-End Text Detection and Recognition Model team are all separately
trained models. There are two end-to-end submissions. The unified model
team applies a deformable attention decoder based text recognizer and ranks
3th place. Here we briefly introduce the top 2 methods in this task:
Upstage KR team uses the same task 1 method for detecting words. For word-
level text recognition, they use the ParSeq [1] model but replace the visual feature
extractor with SwinV2 [3]. The text recognizer is pretrained with synthetic data
before fine-tuning it on the HierText dataset. They use an in-house synthetic data
generator derived from the open source SynthTiger [25] to generate word images
using English and Korean corpus. Notably, they generate 5M English/Korean
word images with vertical layout, in addition to 10M English/Korean word
images with horizontal layout. For the final submission, they use an ensemble of
three text recognizers for strong and stable performance.
DeepSE End-to-End Text Detection and Recognition Model team also
uses the ParSeq [1] model as their recognizer. They point out that, in order to
make the data domain consistent between the training and inference stages, they
run their detector on training data, and then crop words using detected boxes.
This step is important int adapting the training domain to the inference domain.
This trick essentially improves their model’s performance.

4 Discussion

In the Hierarchical Text Detection task, the original Unified Detector [19] can
only achieve PQ scores of 48.21%, 62.23%, 53.60% on the words, lines, and para-
graphs respectively. The H-PQ score for Unified Detector is only 54.08%, ranking
at 10th place if put in the competition leaderboard. The winning solution exceeds
Unified Detector by more than 20%. These submissions greatly push the enve-
lope of state-of-the-art Hierarchical Text Detection method. However, current
methods are still not satisfactory. As shown in Fig. 6, we can easily notice that
for all methods, word PQ scores are much higher than line PQ scores, and line
PQ scores are again much higher than paragraph PQ scores. It indicates that,
line and paragraph level detections are still more difficult than word detection.
Additionally, Fig. 8 shows that layout analysis performance is only marginally
correlated with word detection performance, especially when outliers are ignored.
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We believe there’s still hidden challenges and chances for improvement in layout
analysis. Furthermore, winning solutions in our competition rely on postprocess-
ing which can be potentially complicated and error-prone. It’s also important to
improve end-to-end methods.

Fig. 8. Correlation between text levels. Each dot is a submission in the Task 1. Left:
Correlation between word PQ and line PQ. Right: Correlation between word PQ and
paragraph PQ.

The task 2 of our challenge is a standard yet unique end-to-end detection and
recognition task. While it inherits the basic setting of an end-to-end task, it is
based on a diversity of images which has high word density, and it has an unlim-
ited character set. For this task, we see most of the submissions are two-stage
methods, where the detection and recognition models are trained separately, and
there’s no feature sharing. These two-stage methods achieve much better perfor-
mances than end-to-end submissions. This contrasts with the trend in research
paper that favors end-to-end trainable approaches with feature sharing between
the two stage. Therefore, we believe the HierText dataset can be a very use-
ful benchmark in end-to-end OCR research. Another interesting observation for
Task 2 is that, while most submissions achieve a tightness score of around 80%,
the correlation between tightness scores and F1 scores and very low, with a cor-
relation coefficient of 0.06. It could indicate that recognition is less sensitive to
the accuracy of bounding boxes after it surpasses some threshold. This would
mean that the mainstream training objective of maximizing bounding box IoU
might not be the optimal target. For example, a slightly oversized bounding
box is better than a small one which might miss some characters. With that
said, a precise bounding box is still useful itself, which indicates the localization.
Another potential reason is that bounding box annotation is not always accurate
– it’s always oversized because text are not strictly rectangular.

5 Conclusion

This paper summarizes the organization and results of ICDAR 2023 Competition
on Hierarchical Text Detection and Recognition. We share details of competition
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motivation, dataset collection, competition organization, and result analysis. In
total, we have 18 valid and unique competition entries, showing great interest
from both research communities and industries. We keep the competition sub-
mission site open to promote research into this field. We also plan to extend and
improve this competition, for example, adding multilingual data.
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Abstract. This competition investigates the performance of glyph
detection and recognition on a very challenging type of historical doc-
ument: Greek papyri. The detection and recognition of Greek letters
on papyri is a preliminary step for computational analysis of handwrit-
ing that can lead to major steps forward in our understanding of this
major source of information on Antiquity. It can be done manually by
trained papyrologists. It is however a time-consuming task that would
need automatising. We provide two different tasks: localization and clas-
sification. The document images are provided by several institutions and
are representative of the diversity of book hands on papyri (a millen-
nium time span, various script styles, provenance, states of preservation,
means of digitization and resolution).

Keywords: Document analysis · papyrus · character spotting

1 Introduction

Greek papyri are a unique source of information on Antiquity. In particular,
they allowed rediscovering lost pieces of ancient literature that had not survived
through the medieval manuscript tradition. Literary papyri are usually written
in a careful hand close to calligraphy with isolated (i.e. not connected) letters.
They are however heavily damaged and often broken into fragments, such as
the ones shown in Fig. 1, as papyrus becomes very brittle as it ages and dries.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 498–507, 2023.
https://doi.org/10.1007/978-3-031-41679-8_29
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Collections are often composed of disparate fragments, without necessarily infor-
mation about which ones come from the same document. Therefore comparing
shape similarities at the character level is a promising approach to improve the
assignment of dates, provenance, and possibly schools of writers, even to find
fragments that used to belong together. Correctly detecting and recognizing the
individual letters is thus a key preliminary step before applying methods based
on similarity measurement and clustering or classification.

2 Data

The dataset we produced is formed by 194 high-resolution (jpeg) images of papyri
bearing the text of the best-attested book of Antiquity, Homer’s Iliad. Images
have been collected from online catalogs that allow their use for scientific and
teaching purposes or have been requested from the owning institutions along
with their copyright authorization. Each image has been annotated by specialists
at the character level by drawing bounding boxes around each letter using the
Research Environment for Ancient Documents (READ) platform1.

Besides the transcription (which of the 24 Greek letters is in the bounding
box), an evaluation of the state of preservation of the letter has been made using
the following criteria:
– State 1: complete or almost complete character (the pattern is complete)
– State 2: damaged but recognizable character (at least one important compo-

nent of the pattern is missing but what remains can unequivocally be recog-
nized as one class of letter)

– State 3: damaged letter that requires the context to be identified (what
remains can be interpreted as more than one class of letter).

– Stage 4: incomplete letter that ambiguously looks like another class than the
one given by the context (due to a discriminative element now damaged).

Isolated blots of ink on the border of holes have not been annotated. Two
signs of punctuation have been annotated and transcribed (“”’ for apostrophe,
“.” for period) but will not be taken into account in the evaluation. All other
remains of ink that are neither letters nor punctuation (accents, marks indicating
paragraph or text section) have been annotated and assigned the “?” sign and
won’t be part of the evaluation.

The images have been carefully split into training and test subsets (respec-
tively 160 and 34 images).

Additionally, we provide a baseline method2 consisting to the PyTorch tuto-
rial on finetuning for object detection3, based on Fast-RCNN [3].

3 Evaluation

The evaluation is based on the mean Average Precision (AP) defined by COCO4,
with intersection over union (IoU) going from 50% to 95%, with steps of 5%.
1 https://github.com/readsoftware/read.
2 https://github.com/daliarodriguez/icdar2023-papyri.
3 https://pytorch.org/tutorials/intermediate/torchvision tutorial.html.
4 https://cocodataset.org/#detection-eval.

https://github.com/readsoftware/read
https://github.com/daliarodriguez/icdar2023-papyri
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://cocodataset.org/#detection-eval
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Fig. 1. Illustration of 4 random fragments from the test set.

This metric, which code is publicly available5, has however to be tuned to
our task for the reason detailed below. The detected bounding boxes have to
be provided together with a confidence score. The function which computes the
AP with a specific IoU, e.g., APIoU=.75, has a parameter to indicate how many
of the bounding boxes, from the highest confidence to the lowest, have to be
taken into account for the evaluation. However, this parameter cannot be set
when computing the mean AP, and the default value of 100 is used6. Computing
the mean AP requires computing AP with 10 different IoU thresholds, thus
we believe this implementation choice is motivated by the computation time.

5 https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/
cocoeval.py.

6 Lines 460 & 427 in the GitHub link, version of the 25th of December 2019.

https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
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We created an unrestricted version of the summarize class and attributed it to
COCOeval, which solved the issue.

We distinguish the detection and the recognition tasks as follows. For
the detection, we want the system to output bounding boxes around
characters, regardless of the characters’ classes. This is done by setting
cocoEval.params.useCats to false – in practice, it is equivalent to assuming
that all detection predictions have the correct class label. The recognition task
is done by using the class labels, i.e., in addition to having the bounding box
correctly located, it must have the correct label. Providing the participants with
crops to recognize, and thus fully decouple this metric from the detection, would
imply sending to the participants the solution for the detection task. Punctuation
symbols are not taken into account.

Moreover, state 3 characters (damaged beyond readability) are considered as
a special case. We run the evaluation for the detection task once ignoring them,
and once taking them into account, and keep the highest score. While they are
heavily damaged (or even missing, in some cases), a method able to spot faint
ink remains should benefit from it.

4 Competition Platform: CodaLab

To manage user evaluations, we used CodaLab [8], a web platform designed for
running competitions. CodaLab conveniently offers to run custom evaluation
scripts when participants submit results and manages a leaderboard automati-
cally.

We intend to re-open the competition, and thus allow researchers to continue
comparing their results on the leaderboard; any new submission will however not
be considered as taking part to the competition.

We have to mention that while CodaLab works very smoothly once fully
set up, some problems in the administration panel forced us to create a second
competition page and close the first one. Some leaderboard settings, such as
which variables to use, can be selected only when uploading the initial Yaml file;
the administration controls have no effect on these.

5 Proposed Methods

The descriptions of methods provided by the participants are given below, sorted
in alphabetical order.

5.1 Carson Brown

Images are passed through an RCNN (using a sliding window to crop the images
to a standard size) to detect bounding boxes around the glyphs without classes.
Once the set of glyphs is cleaned and duplicates are removed, the detected bound-
ing boxes are collected into lines using horizontal and vertical proximity. Each
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line is then fed into a recurrent CNN that classifies each glyph, with an LSTM
layer [4] acting as a language model to increase classification accuracy. Done as
a part of a Masters Thesis for the University of St Andrews, Scotland, with the
supervision of Dr Mark-Jan Nederhof.

5.2 KittyDetection

Proposed by Martin Leipert, from TH Deggendorf (Deggendorf Institute of Tech-
nology). He used Faster-RCNN [9] and plugged in FocalNet-T [14] (pre-trained
on ImageNet) with small receptive field as a backbone. He sliced the image into
overlapping patches and used them for training. Additionally, he did on-the-fly
augmentation with Albumentations [1]. He used class weighting to compensate
for class imbalance.

5.3 Nara Information

Proposed by Dr. Joon Mo Ahn, Tae Hong Jang, and Dr. Sojung Lucia KIM, from
Nara Information, Nara Labs in South Korea. They first apply some preprocess-
ing steps to the input images in order to reduce the noise, especially on the
background, and enhance the edges. They then apply an HRNet [13] for detec-
tion and classification, as this popular model allows to process high-resolution
data.

5.4 Shi et al.

They trained a YOLOv8 detection model. Instead of feeding it entire images,
they pre-processed the training set and divided each image into lines of 10 letters
based on the K-means clustering of the central points of each box. For the
prediction, they used the model first to predict the letters on the entire image.
Central points of the detected boxes were used to determine the line alignment
and also the possible letters that the model did not detect (based on intervals).
Then, the test images were cut into lines of 10 letters, which went through the
detection model again for local detection and classification.

5.5 Turnbull and Mannix

Robert Turnbull and Evelyn Mannix, from the Melbourne Data Analytics Plat-
form, University of Melbourne divided the dataset into five partitions, such that
all the images from any particular manuscript were in the same partition. They
took YOLOv8 models [5] for object detection and classification, at sizes medium,
large, and extra large and trained them using the competition dataset, using
cross-validation from the five partitions. They then downloaded roughly 4,000
published images of the Oxyrhynchus Papyri and used the YOLOv8 models to
detect and classify characters from these images. These predictions were used
to fine-tune the YOLOv8 models. The resulting models for each partition and
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model size were used to make predictions on the test dataset. These predictions
on the test set were ensembled using Weighted Boxes Fusion [10]. To enhance per-
formance, we trained image classifiers for detected characters. They were inter-
ested to see if we could improve the classification performance using additional
data, namely the AL-PUB dataset [11] and the predictions on the Oxyrhynchus
Papyri. In the first instance, they trained a SimCLR ResNet50 self-supervised
model on all of these data and used the available annotations and the AL-PUB
labels to fine-tune a classifier [2]. Then, They looked into using transfer learning
with transformers, following the DeiT approach [12]. These approaches achieved
similar performance, so they followed the above approach and ensembled them
with the YOLOv8 classifier. In the instance these three approaches agreed, they
kept the same label, but if they disagreed we created a new box with the same
dimensions that contained the other possible candidate characters.

5.6 ENCyclops

The approach proposed by Carolina Macedo, Malamatenia Vlachou Efstathiou,
Violette Säıag, Noé Leroy, and Chahan Vidal-Gorene, from the Ecole Nationale
des Chartes, is based on YOLOv5 [6], trained on the detection task (localiza-
tion + classification), mixed with a custom quite-intensive data-augmentation.
The objective was to experiment with an approach different from Faster-RCNN,
which performs detection in two stages. YOLO has already been tested on his-
torical documents (YaltAI), but never, to our knowledge, for character detection.
In detail, the task being complex, they used the pre-trained model yolov5l6u.pt,
which they specialized with Greek characters. The size of the images is fixed at
1536 pixels. YOLO is usually very permissive, with very low detection thresh-
olds, and default configuration leads to inaccurate results. In order to limit the
number of false positives caused by partial localization of information (default
IoU 0.45), they have drastically increased the thresholds to bring them to 0.9 of
IoU in localization and 0.65 of confidence for classification (during the training
step). In addition, the dataset presenting a disparity in the distribution of each
class, they developed a significant data augmentation, combining the following
methods: mixup (100%), mosaic (50%), pixel dropout (50%), image inversion
(25%), multiplicative noise (15%), blur (5%), random contrast and brightness
(5%) and elastic transform (5%). A combination of these methods is randomly
applied during each step of the training. A general dropout of 0.1 is applied,
and we have also implemented a scheduler for the learning rate (by step, every
200 epochs). Due to a lack of computing power, they restricted the training to a
batch of 2 and image size of 1536 pixels. They are convinced that doubling the
batch size and increasing the images to at least 2000 pixels would significantly
improve the results. Training is quite easy and the results converge quickly.

5.7 Vu and Aimar

Manh Tu Vu and Marie Beurton Aimar, from the Laboratoire Bordelais
de Recherche en Informatique, propose a new deep learning network called
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Table 1. Detection mean average precision

Rank Team mean AP (%)

1 Vu & Aimar 51.83

2 Turnbull & Mannix 51.42

3 ENCyclops 48.82

4 Shi et al. 44.09

5 Nara Information 39.25

6 Carson Brown 38.42

7 KittyDetection 28.81

PapyTwin which consists of two subnetworks, the first and second twin, that
cooperate together to address the challenge of detecting Greek letters on ancient
papyri. While the first twin network aims to uniform the letter size across the
images, the second twin network predicts letter bounding boxes based on these
letter-uniformed images. Both of these two subnetworks have the same network
architecture which is Faster RCNN pretrained on COCO database [7].

For the first twin network, they resized the images to the size of 800× 800
pixels. During training, random image translation and random colour jitter were
applied. They train the network in 80 epochs using Adam optimizer with a learn-
ing rate of Lr×BatchSize/256 with a base Lr = 4 ·10−3, and batches of 5 images.
The output bounding box predictions of this network are used to compute the
average letter height l(x) of the image. Then they compute the scaling factor of
the image by f(x) = s/l(x), where s is a reference size hyperparameter. They
found that their network works best with s = 96.

For the second twin network, they resize the images based on the scaling
factor that they have computed using the first twin network. Then, they train
the network using a patch-based training strategy. Rather than training an entire
large image, they split the image into a grid of overlapping patches and treat each
patch as an individual training sample. In the inference phase, they also split
the large image into a grid of overlapping patches with a fixed size of 800× 800
pixels and predict each patch separately. Then, they merge the prediction results
back together based the location of the patch in the original image.

Finally, to obtain the best prediction, they train several PapyTwin models
and merge their predictions by averaging the coordinate of bounding boxes that
have their IoU > 0.7. The most dominant label of these bounding boxes is chosen
to be the label of the merged bounding box.

6 Results

The competition results for the detection and recognition tasks are given
in Tables 1 and 2. We can see that the is very stable, with only the first two
positions being swapped in the tables.
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Table 2. Recognition mean average precision

Rank Team mean AP (%)

1 Turnbull & Mannix 42.16

2 Vu & Aimar 41.73

3 ENCyclops 38.60

4 Shi et al. 31.07

5 Nara Information 26.33

6 Carson Brown 25.51

7 KittyDetection 18.90

The winning team for the detection task is Mahn Tu Vu and Marie Beur-
ton Aimar, from the Laboratoire Bordelais de Recherche en Informatique, with
a mean AP of 51.83%. For the recognition task, the winning team is Robert
Turnbull and Evelyn Mannix, from the Melbourne Data Analytics Platform,
University of Melbourne, with a mean AP of 42.16%.

Table 3. Additional details for the AP

Team Detection (%) Recognition (%)

APIoU=.5 APIoU=.75 APIoU=.5 APIoU=.75

Turnbull & Mannix 93.2 49.9 74.7 41.2

Vu & Aimar 92.5 52.7 72.1 43.9

ENCyclops 90.6 46.1 69.9 37.9

Shi et al 84.9 39.3 57.9 28.3

Nara Information 77.9 33.5 49.3 25.1

Carson Brown 85.9 24.5 53.9 17.5

KittyDetection 68.2 17.5 41.2 12.9

More detailed results given in Tables 3 and 4 give some insight into the dif-
ferent methods’ performances. While the three best detection mean AP are at
around 50%, the AP with an IoU threshold of 0.5 are significantly higher, ranging
from 68.2% to 93.2% for the detection, and 41.2% to 74.7% for the recognition.
High AP could be linked to outputting few but accurate bounding boxes; for
this reason, we also measured the average recall (AR). Table 4 shows that the
recall is actually higher than the precision. Thus, the main source of error is
false positives, which decrease the AP without impacting the AR.

Another aspect of the results which arises from these measures is that the AP
and AR drop significantly when the IoU threshold increases. While lower values
are not surprising, such a drop implies that while most characters are correctly
detected, the bounding boxes do not match well the ground truth.
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Table 4. Additional details for the average recall AR

Team Detection (%) Recognition (%)

ARIoU=.5 ARIoU=.75 ARIoU=.5 ARIoU=.75

Turnbull & Mannix 98.6 81.2 69.9 56.4

Vu & Aimar 98.5 76.2 69.7 55.5

ENCyclops 97.5 75.1 64.9 51.8

Shi et al 90.9 62.5 56.3 39.8

Nara Information 84.7 53.7 50.4 34.8

Carson Brown 93.6 59.2 47.1 31.7

7 Conclusion

Overall the two highest-ranked teams for both tasks have very similar results,
but obtained with approaches following two very different philosophies. While
Turnbull & Mannix used a large amount of external papyri data for training their
method, Vu & Aimar developed a system using two subnetworks pre-trained on
external non-papyri data. We can note that ENCyclops, at the third rank, did
use heavy data augmentation. This highlights very well the importance of data
diversity for this task.

In general, the detection results were better than what we expected, which is
a pleasant surprise. The recognition, however, still leaves some room for improve-
ment, and the diversity of the approaches explored by the participants, such as
preprocessing, using external data, subnetworks, or language models predicts
exciting results in computer-assisted papyrology.
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Abstract. This paper presents the final results of the ICDAR 2023
Competition on Born Digital Video Text Question Answering (i.e.,
BDVT-QA) which contains two major task tracks: 1) End-to-End Video
Text Spotting, and 2) Video Text Question Answering. BDVT-QA aims
to spot texts and answer questions from born-digital videos. The pro-
posed competition introduces a brand new dataset consisting of 1,000
video clips fully annotated with manually-designed question/answer
pairs, where the answers are based on the text captions presented
in the video clips. A total of 23 final submissions were received for
this competition. The top-3 performances of each track are as follows:
1)T1.1 - 57.53%, T1.2 - 53.3%, T1.3 - 52.35%, and 2) T2.1 - 31.2%,
T2.2 - 28.84%, T2.3 - 21.19%. We summarize the submitted meth-
ods and give a deep analysis. Besides, this paper also includes dataset
descriptions, task definitions and evaluation protocols. The dataset and
the final ranking of submissions are publicly available on the chal-
lenge’s official website: https://tianchi.aliyun.com/specials/promotion/
ICDAR 2023 Competition on Born Digital Video Text QA.

Keywords: Born digital video · Video Text Spotting · Text-based
Video Question Answering · Video Text Understanding

1 Introduction

Textual content plays an important role in video understanding, as text instances
are either direct indicators of scenes or lingual cues about ongoing stories. They
can provide explicit and high-level semantic information which not available in
other form in the scene. Reading textual content in the videos such as captions,
product descriptions and brand names in man-made environments is important
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for downstream applications like navigation in advanced driver assistance sys-
tem, assistive shopping on the live stream, and conversation understanding in
drama.

Though numerous works have been proposed for related tasks such as video
text recognition [5,14,17] and image text QA [2,3,13], less effort are put on
born-digital video question answering. In BDVT-QA, we would like to go one
step forward to explore the video text QA problem, which requires a holistic,
precise and in-depth understanding of text information across space and time
over video frames. Though widely used, video text has been rarely explored
because of its challenging factors such as arbitrarily-shaped text trajectories,
animation of text’s presentation and long-term text language processing.

Fig. 1. Challenging factors in BDVT-QA. Row1: Animation of texts. Row2: Circular
trajectory of text caused by rotating object.

Currently, there are already several comprehensive benchmarks for text-based
VQA (ST-VQA [3], TextVQA [13], etc). Nevertheless, these works mainly focus
on image level and lack benchmarks on video text-based tasks. In the proposed
competition, we make a significant step further and present a new VTQA (short
for Video Text QA) benchmark. There are two steps in building the proposed
dataset: collection and labelling. In collection, we crawled more than 50 thousand
videos from public website, filtered out those videos without texts or with too
much texts, discarded those with stationary texts, and finally got 1000 qualified
videos. In labelling, detailed information are labelled, including period of the
target question, location and trajectory of text instances, transcription of the
text lines and corresponding question-answer pairs. In BDVT-QA, the questions
mainly involve inferring topics from videos and understanding the temporal con-
text between descriptive texts. This means that potential answers are presented
progressively alongside the video.
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Two tasks are proposed within this challenge: (1) End-to-End Video Text
Spotting, which requires simultaneously detecting, tracking and recognizing text
instances in a video sequence, and (2) Video Text Question Answering,
encourages participating teams to contribute state-of-the-art works that under-
stands question and video texts for answering specified questions.

In the End-to-End Video Text Spotting task, as shown in Fig. 1, texts are fre-
quently accompanied by animated elements, special effects, and visual imagery,
which can present considerable impediments to the accurate recognition of tex-
tual content. The majority of participants attain text spotting results through a
consecutive process consisting of a text detector, a text recognition component,
and a tracker. The winner is from team DA and gets a 57.53% NED score [12] in
their final submission, where a multistage solution is adopted. We believe that
the integration of advanced sub-methods led to a comparatively high score.

The Video Text Question Answering task focuses on questions about the text
content in videos. However, unlike previous image or frame-level QA tasks that
rely on a single frame, this task includes lots of questions that require long-term
frames. Exemplar questions are “How many items are presented?” and “What
is the second step?”, as shwon in Fig. 2. We appreciate that Top 2 participants
both use large language models, such as T5 and GPT3.5. The winner uses T5-
large as base model, trains it with resistance training and exponential sliding
average training skills, and gets a final 31.2% ANLS score [12].

2 Competition Organization

ICDAR 2023 Competition on Born Digital Video Text Question Answering
is organized by a joint team of Alibaba Damo Academy, Nanjing University,
Huazhong University of Science and Technology and Chinese Academy of Sci-
ences. The competition started and the training data was fully released on 1st
March, while the test set videos and questions were only made available for
a 15 day period between 15th March and 30th March. The participants were
requested to submit results over the test set videos and not executable of their
systems. At all times we relied on the scientific integrity of the authors to follow
the established rules of the challenge.

The competition is hosted on the TIANCHI plartform provided by Alibaba
Group. Participants can register, check information, download datasets, and sub-
mit results on TIANCHI. All submitted results are evaluated automatically, and
the platform updated the leader board 10 AM from 15th March 30th March.

The complete schedule of the proposed competition is as follows:

(1) 1st March 2023: Registration is started for competition participants. Train-
ing datasets of two tasks are available for download.

(2) 15th March 2023: Submissions of both tasks are open for participants. Test
data (without ground-truth information) is released.

(3) 1st April 2023: Registration and submission deadline for all the tasks for
participants.

(4) 15th April 2023: Technical report submission deadline for participants.
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Overall, we received more than 300 submissions, but half of which were invalid
due to factors such as false formatting, shortcuts in JSON, and illegal charac-
ters. On average, each team managed to submit 5.5 valid entries. There are 27
final submissions on the leader board, submitted by 23 teams. We have discussed
over-fitting issues with the competition chairs, given that the evaluation system
grants scores to teams that post on the leader board. In fact, the test set is exten-
sive and the video QA problems are complex, making it extremely challenging
for participants to overfit the test set. However, we have recognized that there
were drawbacks of the way that used in the evaluation. It is possible for some
participating teams to pick up a best model by submitting multiple times. We
appreciate the feedback from the competition chairs and will strive to improve
our organization of scientific contests in the future. Taking into account the rea-
sonable number of teams and the thought-provoking concepts presented in the
submissions, it can be inferred that the deductions and performance evaluation
are useful.

Fig. 2. Exemplar QA pairs in BDVT-QA

3 Dataset

The proposed dataset is deliberately collected from online sources and public
websites and consists of 1,000 video clips (ranging from 3 s to 3 min) from 3
common born-digital video scenes such as advertising, short videos of product
introductions and movies. There are multi-lingual texts with irregular shape
and movement in these videos. Thus, text instances in this proposed dataset are
only partially visible or recognizable through the whole video due to animation,
view changes and blurry scenes. Statistics of the datasets are shown in Table 1.
Distributions of dataset frames are shown in Fig. 5.

Dataset Split. We divided the dataset into training set and testing set, com-
prising 750 and 250 videos respectively, with no overlap between the two different
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splits. Both the training set and testing set contain videos from all scene cate-
gories, and have similar distributions of videos and annotations. Distribution of
words in the trainset is shown in Fig. 3.

Fig. 3. High frequency words in the training set and their distribution

Annotations. To meet the demand of practical application and better evalu-
ation, the proposed dataset has different transcription and bounding boxes of
ground truths from existing video text datasets. Text instances in our dataset
are annotated with (a) polygon ground truth per frame (in a similar way to
ICDAR2019 Robust Reading Challenge on Arbitrary-Shaped Text [6]) with text
instance id, and (b) transcription with text id. For the fully annotated video
frames, horizontal, multi-oriented, and vertical text instances are labelled with
quadrilateral bounding boxes. The points in the polygons are arranged in a clock-
wise sequence, starting from the reading direction. The transcriptions of every
text instance are annotated and encoded in UTF-8. The illegibility regions in
images are labeled with visibility as False, which are ignored to calculate final
scores.

These annotations mentioned above cater for (1) the End-to-End Video Text
Spotting task. For (2) Video Text Question Answering task, we provide large-
scale video-question-answer triplets, in which questions are mainly focused on
the temporal context between video texts. Some question/answer pair examples
are shown in Fig. 2. The proposed dataset also provides multiple alternative
human answers to each question in order to closely match the natural language
style. The common questions and their frequency are shown in Fig. 4.

Table 1. Number details of the proposed dataset

Original Dataset Videos Frames Texts Average Text Length

Trainset 750 380323 1530184 2.6

Testset 250 98944 417901 2.3
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Fig. 4. High frequency questions of training set

4 Tasks

The proposed competition has two major tasks: (1) End-to-End Video Text
Spotting, and (2) Video Text Question Answering. For the first task, alphanu-
meric and Chinese text instances are considered to be evaluated. For the second
task, only alphanumeric text instances are considered to be evaluated.

4.1 Task 1 - End-to-End Video Text Spotting

The objective of this task is to assess end-to-end system performance of video
text spotting. It requires models to localize, track and recognize words simulta-
neously. Following the previous competition settings [6,11], sequence-level met-
rics like Recall, Precision, F-score, and Normalized Edit Distance measures are
adopted for the end-to-end evaluation. In particular, we use Recall, Precision
and F-score to evaluate text detection performance. A predicted text instance
is considered as a true-positive if and only if it has the maximum IoU with a
groud-truth text and the IoU ≥ 0.5.

Prediction results of this track are required to be submitted as a single com-
pressed (zip or rar) file that contains all the result files and the videos of the test
set. Participants are required to automatically localize and recognize text lines
in all the frames of one specific video and output prediction results in a single
JSON file. If the submitted model fails to produce any prediction results for a
particular video, then the compressed file only includes the corresponding JSON
of that video. The naming of all the submitted JSON files follows the format:
res [video id].json. For example, the JSON result file corresponding to the test
video “vid 6371842732441621.mp4” should be “res vid 6371842732441621.json”.
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Fig. 5. Video frames distribution of trainset and testset

4.2 Task 2 - Video Text Question Answering

This task is the more generic and challenging one since it requires the partic-
ipants to combine video text spotting and video text question-answering tech-
nologies. The submitted methods for this task should be able to provide cor-
rect answers for the given questions by reading, tracking and comprehending all
text instances in videos. In this task, the evaluation metric will be the Average
Normalized Levenshtein Similarity (ANLS), the same as the ST-VQA competi-
tion [3].

The prediction results of this track are expected to be submitted as a single
JSON file. The JSON file contains a list of dictionaries and each dictionary
should have two keys: “question id” and”answer”. The “question id” key refers
to the unique id of the question and the “answer” corresponds to the model’s
prediction.

4.3 Evaluation Metric

For task 1, we use Recall, Precision and F-score to evaluate text detection perfor-
mance, and Normalized Edit Distance metric (1-N.E.D specifically) as evaluation
protocol of text recognition over frames. In task1, only the Normalized Edit Dis-
tance is treated as the official ranking metric while the results of other metrics
are published for reference only. The calculation of Recall, Precision and F-score
are as:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FN
(2)

F =
2 × Precision × Recall

Precision + Recall
(3)

where TP, FP, FN and F denote true positive, false positive, false negative and
F-score, respectively. For text recognition, we adopt Normalized Edit Distance
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metric (1-N.E.D specifically) as evaluation protocol, which is commonly used in
previous competitions [12]. Normalized Edit Distance (N.E.D) is formulated as:

N.E.D = 1 − 1
N

N∑

i=1

D (si, si) /max (si, si) (4)

where D represents the Levenshtein Distance, and si, si, denote the predicted
text and its corresponding ground-truth, respectively.

The conventional QA evaluation metrics based on standard accuracy criteria
pose a challenge in determining the correctness of answers in the proposed com-
petition. This is because the answers to the questions comprise text instances
recognized from video frames and not specific textual responses. Therefore, we
require an evaluation metric that can account for recognition errors and mis-
matches in answers resulting from imperfections in OCR. Such a metric should
be able to respond in a more flexible manner to such errors and mismatches
without rigidly judging the correctness of answers.

For task 2, we adopt Average Normalized Levenshtein Distance (ANLS),
following the previous competitions [12]. Given N questions and M ground-truth
answers per question, ANLS can be formulated as:

ANLS =
1
N

N∑

i=0

maxjs (aij , oqi
) (5)

where aij(i = 1..., N, j = 1..., M) is the ground-truth answers, and oqi
rep-

resents the predicted answer for ith question qi. Note that, N is the maximum
number of “paired” ground truths and detected regions, which include single-
tons, e.g., the ground truth regions that were not matched with any detection
(paired with an empty string) and detected regions that were not matched with
any ground truth region (paired with an empty string).

For both task 1 and task 2, text regions with visibility of False are excluded
and the detected results matched to such regions do not contribute to the final
score. To avoid the ambiguity in annotations, pre-processing are utilized before
comparing two strings: 1) The evaluation for English text recognition is case
insensitive; 2) The Chinese traditional and simplified characters are considered
to be the same categories; 3) The blank spaces and symbols, e.g., comma and
dots, etc., are ignored in distance calculation.

5 Submissions

Overall, we received 150 valid submissions from both research communities and
industries, among which 27 submissions are final-classified. Table 2 and Table 3
summarize top valid submitted results of the two tasks, respectively.

5.1 Top 3 Submissions in Task 1

For task 1, 14 submissions from different participants are final verified. In this
section we make brief introductions of the top 3 methods. The first place of this
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task is DA by She et al. from Guangzhou Shiyuan Electronic Technology Com-
pany Limited, with the wining 1-N.E.D score of 57.53% and the best detection
performance of 77.04% in terms of H-mean.

#1 - DA Team divides this task into three sub-tasks: text detection, text
line recognition ,and text tracker post-processing. In detection module, they
fuse the Cascade R-CNN [4] and DBNet [10], to get the better detection results.
Their detection models are implemented using MMOCR [9]. The backbone for
Cascade Mask R-CNN is ResNeXt101 [15] with official pretraining weights. The
network structures and parameter settings for Cascade R-CNN follow the default
configuration in MMOCR. As for DBNet, they use the ResNet50 [8] pretrained
on SynthText [7] using oclip [16] from MMOCR as the backbone.

To recognize text, the PARSeq [1] method is employed, which involves learn-
ing an ensemble of internal auto-regressive (AR) language models with shared
weights using Permutation Language Modeling.

To alleviate the low-quality text problems such as blurring, perspective dis-
tortion, rotation and camera motion, they also adopt BoT-SORT, an advanced
multi-object tracker with MOT bag-of-tricks for a robust association. For each
text trajectory, they get the top 3 results according to the number of occur-
rences. Then, the longest text is selected as the best text in the top 3 results.
Every text in the trajectory is replaced by the best text.

Table 2. Top 10 results of task 1 - End-To-End Text Spotting. Note that * denotes
missing descriptions in affiliations.

Team Rank Precision Recall H-mean 1-N.E.D Affiliations

DA 1 85.32% 70.23% 77.04% 57.53% Guangzhou Shiyuan
Electronic Technology
Company Limited

MFC 2 77.54% 62.60% 69.28% 53.30% *

Winforever 3 88.27% 61.53% 72.52% 52.35% Shandong University
of Science and
Technology

Lin et al. 4 87.76% 61.79% 72.52% 51.33% Xi’an Jiaotong
University

OCR-ing 5 87.77% 61.81% 72.54% 51.32% Peking University

Xie et al. 6 87.35% 61.86% 72.42% 50.25% Harbin Institute of
Technology

Tang et al. 7 87.32% 60.97% 71.80% 50.25% Xi’an Jiaotong
University

Liu et al. 8 81.88% 62.98% 71.20% 49.54% *

Qian et al. 9 83.45% 61.52% 70.16% 46.36% *

MatrixQ 10 58.96% 62.29% 60.58% 37.85% East China Normal
University
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#2 - MFC Team use the PP-OCRv3 version of the PaddleOCR framework
relative model. Specifically, the main model of text detection is DBNet network
and the main model for text recognition is SVTR. This team adopts the following
scheme to prepare data and predict end-to-end results. 1) Frame cutting of the
videos in the training set and test set. 2) Cutting out the text detection box
given in the training set, save the picture and corresponding text, and form
a new training set of text recognition, 3) Using PaddleOCR to train the text
recognition model of the above data set, 4) For the video test set, the PaddleOCR
pre-trained text detection model and the text recognition model trained by the
team were used to get the final result.

#3 - Winforever Team conducts OCR directly on a frame-by-frame basis
to see the results. Considering that the dataset has both Chinese and English
text, they choose to use paddle ch PP-OCRv3 as the pre-training model, and
then convert the trained model to the familiar Pytorch model before processing,
which involves a PaddlePaddle model to Pytorch model process here. And a
confidence threshold is set to remove the results with lower confidence.

5.2 Top 3 Submissions in Task 2

In total, 10 submissions are received from different participants for Task 2. The
first place in this task was taken by MFC Team which achieves the highest
ANLS score of 31.2%. We conclude top5 results of task 2 in Table 3. Here is a
brief introduction to the top 3 methods:

#1 - MFC Team tackles this task by fine-tuning a T5-large model after
processing video text data. In order to address the issue of repeated text across
multiple frames, they propose to select key frames as the input frames. Fur-
thermore, for some bilingual videos, they apply a language translation model to
translate Chinese into English to improve the QA performance.

#2 - Lin’s Team designs a system which consists of three sub-modules,
namely the frame-level OCR module, the video text tracking module, and the
text question answering module. The frame-level OCR module performs OCR
on a frame-by-frame basis. Then, the video text tracking module is responsible
for detecting, extracting and cleaning text from the video, through measuring
both content and location similarities. Finally, they employ prompt engineering
with Large Language Models (LLMs) to build the QA module as these models
are capable of generating coherent and precise responses to questions.

#3 - Qian’s Team propose to use Bert-large and Roberta-large for Span QA
to handle the task. Owing to the question types presented in the training set, they
employ an architecture that incorporates one backbone, such as BERT, along
with two heads, namely the answer type head and the span QA head. The answer
type head is a 3-class classifier implemented with a linear projection layer. The
three answer types correspond to “yes” “no” and “span” The input for the answer
type head is derived from the [CLS] token after processing through BERT. The
span QA head is responsible for predicting the start and end logits for each
token. During the training phase, the gradients for the span prediction branch
are disregarded if no span answer exists. To effectively address the challenge
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Fig. 6. Detection and recognition performance of all submissions in Task 1

posed by duplicate video text, they obtain the context by setting a threshold
of edit distance. During the training stage, they incorporate a stratified K-fold
strategy to address the issue of imbalanced distribution between yes/no questions
and span questions.

6 Performance Analysis

6.1 Performance Analysis on Task 1

For the task 1, most of the submitted methods adopt a multi-stage based pipeline
for end-to-end text recognition. They either divide the main task into two stages
(i.e., text detection and text recognition) or three stages (i.e., text detection,
text recognition and text tracking). Figure 6 shows the detection and recognition
performance of all submissions, with the 1-N.E.D scores labelled on the image.

In the detection part, most of the competitors employ DBNet and Cascade
R-CNN for training and prediction. The Winforever Team ranks first in terms of
precision, while DA team has top performances in terms of recall and H-mean.
The detection performance of all submissions varies from 33.64% to 77.04% in
terms of H-mean, and the average H-mean is 64.41%. Most top-ranking meth-
ods have an H-mean above 72% while the best detection performance is 77.04%.
Compared to current benchmarks for video text, text samples obtained from
born-digital videos exhibit greater discrepancies in font, size, shapes, and tra-
jectories, which poses a persisting challenge.

In the recognition part, the PARSeq and SVTR are mostly used. As shown
in Table 2, the performance of text recognition highly relies on the detection
performance. The DA team adopts an additional text tracking module to refine



ICDAR 2023 Competition on Born Digital Video Text Question Answering 519

its text recognition performance, and it has the best 1-N.E.D result which is
4.23% higher than the second place. The MFC team and Winforever team share
a similar pipeline by adopting PaddleOCR. Though the former has a sub-optimal
detection performance in terms of H-mean compared to the latter one, it achieves
slightly higher recognition results by optimizing the recognition module and data
processing procedure.

6.2 Performance Analysis on Task 2

In this task, many top-ranking methods generate context input for QA through
carefully designed text-processing strategies. For example, the MFC Team adopts
key frame selection and Lin’s Team propose text tracking methods to merge
and generate text tracklets across frames. Some teams use Edit Distance to
eliminate duplicate text sequences from their data processing. However, this
approach may face limitations due to inconsistent OCR results across frames.
Such inconsistencies can be attributed to variations in the backgrounds of the
frames, which ultimately affect the final performance. It has been demonstrated
that text processing strategies play a crucial role in preparing a concise and
effective context input to the QA module, therefore, they are important for
achieving optimal results.

In terms of the QA module, these teams employ different models including
span-based approaches such as BERT and Roberta, and generative models like
T5 or even LLMs like ChatGPT. We also note that several top-ranking meth-
ods choose generative models for answering various types of questions such as
counting problems, yes-or-no questions or extractive questions. The employment
of the generative and unified framework has emerged as a prominent research
direction in diverse fields. The rationale behind the adoption is that the uni-
fied approach can be applied to answer multiple types of questions rather than
formulating specific solutions or pipelines for each type of question.

Table 3. Top5 results of Task2 - Video Text Question Answering. Note that * denotes
missing descriptions in affiliations.

Team Name Rank ANLS Affiliations

MFC 1 31.20% *

Lin et al. 2 28.84% Xi’an Jiaotong University

Qian et al. 3 21.19% East China Normal University

Winforever 4 18.95% Shandong University of Science and Technology

Shen et al. 5 18.03% *

7 Conclusions and Future Directions

We organized the first Born Digital Video Text Question Answering ICDAR
BDVTQA 2023 competition. A novel video dataset featured with born-digital
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text was proposed. The competition lasted for one month, which has received
large attention and participation from diversified teams, showing that the video
text QA problem is a popular topic in the community. The report suggests that
the performance for both tasks was below 60% and 40%, respectively, indicating
that there is room for improvement in this area. Through our inspection, we
summarize some reasons that may affect the results: a) For task 1, animation
and effects of motion are key factors that result in false text recognition and
tracking; b) For task 2, QA with long-term context is the biggest challenge.
Besides, the way to handle the gap between OCR and QA is also important for
end-to-end QA. In the future, We plan to reserve the website and the evaluation
program for continuous research. We also plan to extend born digital video text
QA to multi-modal version which focus both text and info-graphics in the video.

Acknowledgments. The authors express their gratitude to the Competition Chairs
for their valuable input in organizing the competition and for their critical review of
the competition report. This challenge is sponsored by Alibaba Group. This work is
also supported by NSFC (62225603), NSFC (61672273) and NSFC (61832008).
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Abstract. Reading seal title text is a challenging task due to the vari-
able shapes of seals, curved text, background noise, and overlapped text.
However, this important element is commonly found in official and finan-
cial scenarios, and has not received the attention it deserves in the field of
OCR technology. To promote research in this area, we organized ICDAR
2023 competition on reading the seal title (ReST), which included two
tasks: seal title text detection (Task 1) and end-to-end seal title recogni-
tion (Task 2). We constructed a dataset of 10,000 real seal data, covering
the most common classes of seals, and labeled all seal title texts with text
polygons and text contents. The competition opened on 30th December,
2022 and closed on 20th March, 2023. The competition attracted 53
participants and received 135 submissions from academia and industry,
including 28 participants and 72 submissions for Task 1, and 25 partic-
ipants and 63 submissions for Task 2, which demonstrated significant
interest in this challenging task. In this report, we present an overview
of the competition, including the organization, challenges, and results.
We describe the dataset and tasks, and summarize the submissions and
evaluation results. The results show that significant progress has been
made in the field of seal title text reading, and we hope that this com-
petition will inspire further research and development in this important
area of OCR technology.

1 Introduction

Based on the flourish of deep learning method, we have witnessed the matu-
rity of regular and general OCR technology, including scene text detection and
recognition. However, as a common element which can be seen everywhere in
official and financial scenarios, seal title text has not gain its attention. And the
task of reading seal title text is also faced with many challenges, such as variable

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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shapes of seal (for example, circle, ellipse, triangle and rectangle), curved text,
background noise and overlapped text, as shown in Figs. 1, 2 and 3. In order to
promote the research of seal text, we propose the competition on reading the
seal title.

Considering there are no existing datasets for seal title text reading. We con-
struct a dataset including 10,000 real seal data, which covers the most common
classes of seal. In the dataset, all seal title texts are labeled with text poly-
gons and text contents. Besides, two tasks are presents for this competition: (1)
Seal title text detection; (2) End-to-end seal title recognition. We hope that the
dataset and tasks could greatly promote the research in seal text reading.

Fig. 1. Different shapes of seals samples in the ReST.

Fig. 2. Seals with curved texts in the ReST.

Fig. 3. Seals with overlapped texts in the ReST.
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1.1 Competition Organization

ICDAR 2023 competition on reading the seal title is organized by a joint
team, including Huazhong University of Science and Technology and Univer-
sitat Autónoma de Barcelona.

We organize the competition on the Robust Reading Competition (RRC)
website1, where provide corresponding download links of the datasets, and user
interfaces for participants and submission page for their results. Great support
has been received from the RRC web team. The online evaluation server2 will
remain available for future usage of this benchmark.

2 Dataset and Annotations

We name our dataset ReST, as it focuses on Reading Seal Title text. It totally
includes 10,000 images collected from real scene. The data is mainly in Chinese,
with English data accounting for 1%.

The datasets cover the most common classes of seals:

– Circle/Ellipse shapes: This type of seals are commonly existing in official
seals, invoice seals, contract seals, and bank seals.

– Rectangle shapes: This type of seals are commonly seen in driving licenses,
corporate seals, and medical bills.

– Triangle shapes: This type of seals are seen in bank receipts and financial
occasions. This type is uncommon seal and has a small amount of data.

The dataset is split half into a training set and a test set. Every image in
the dataset is annotated with text line locations and the labels. Locations are
annotated in terms of polygons, which are in clockwise order. Transcripts are
UTF-8 encoded strings. Annotations for an image are stored in a json file with
the identical file name, following the naming convention: gt [image id], where
image id refers to the index of the image in the dataset.

In the JSON file, each gt [image id] corresponds to a list, where each line in
the list correspond to one text instance in the image and gives its bounding box
coordinates and transcription, in the following format:

{
“gt 1”: [
“points”: [[x1, y1], [x2, y2], . . . , [xn, yn]], “transcription” : “trans1” ],
“gt 2”: [
“points”: [[x1, y1], [x2, y2], . . . , [xn, yn]] , “transcription” : “trans3” ], . . . . . .
}

where x1, y1, x2, y2, . . . , xn, yn in “points” are the coordinates of the polygon
bounding boxes,. The “transcription” denotes the text of each text line.

Note: There may be some inaccurate annotations in the training set, which
can measure the robustness of the algorithm, and participants may filter this
part of the data as appropriate. The test set is manually corrected and the
annotations are accurate.
1 https://rrc.cvc.uab.es/?ch=20.
2 https://rrc.cvc.uab.es/?ch=20&com=mymethods&task=1.

https://rrc.cvc.uab.es/?ch=20
https://rrc.cvc.uab.es/?ch=20&com=mymethods&task=1
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3 Competition Tasks and Evaluation Protocols

The competition include two tasks: 1) seal title text detection, where the objec-
tive is to localize the title text in seal image. and 2) the end-to-end seal title
recognition, where the main objective of this task is to extract the title of a seal.

3.1 Task 1: Seal Title Text Detection

The aim of this task is to localize the title text in seal image, The input examples
are shown in Fig. 4.

Fig. 4. Example images of the Seal Text dataset. Green color binding lines are formed
with polygon ground truth format. (Color figure online)

Submission Format. Participants will be asked to submit a JSON file contain-
ing results for all test images. The results format is:

{
“res 1”: [
“points”: [[x1, y1], [x2, y2], . . . , [xn, yn]], “confidence” : c],
“res 2”: [
“points”: [[x1, y1], [x2, y2], . . . , [xn, yn]] , “confidence” : c ],
. . . . . .
}

where the key of JSON file should adhere to the format of res [image id]. Also, n
is the total number of vertices (could be unfixed, varied among different predicted
text instance), and c is the confidence score of the prediction and the range is
0-1.

Evaluation Protocol. For Task 1, we adopt IoU-based evaluation protocol by
following CTW1500 [3,10]. IoU is a threshold-based evaluation protocol, with
0.5 set as the default threshold. We will report results on 0.5 and 0.7 thresholds
but only H-Mean under 0.7 will be treated as the final score for each submitted
model, and to be used as submission ranking purpose. To ensure fairness, the
competitors are required to submit confidence score for each detection, and thus
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we can iterate all confidence thresholds to find the best H-Mean score. Mean-
while, in the case of multiple matches, we only consider the detection region with
the highest IOU, the rest of the matches will be counted as False Positive. The
calculation of Precision, Recall, and F-score are as follows:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F =
2 ∗ Precision ∗ Recall

Precision + Recall

(1)

where TP, FP, FN and F denote true positive, false positive, false negative and
H-Mean, respectively.

3.2 Task 2: End-to-End Seal Title Recognition

The main objective of this task is to extract the title of a seal, as shown in Fig. 5,
the input is a whole seal image and the output is the seal’s title.

Fig. 5. Example of the task2 input-output.

Submission Format. For Task 2, participants are required to submit the pre-
dicted titles for all the images in a single JSON file:

{
“res 1”: [ “transcription” : “title1”],
“res 2”: [ “transcription” : “title2”],
“res 3”: [ “transcription” : “title3”],
. . . . . .
}

where the key of JSON file should adhere to the format of res [image id].

Evaluation Protocol. Metrics for this task is case-insensitive word accuracy.
We will compute the ratio of correctly predicted titles and the total titles.
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4 Submissions and Results

By the submission deadline, we received 135 submission from 53 participants in
total, including 72 submissions from 28 participants for Task 1, and 63 submis-
sions from 25 participants for Task 2.

After the submission deadlines, we collected all submissions and evaluate
their performance through automated process with scripts developed by the
RRC web team. Participants did not receive feedback during the submission
process, and for those who made multiple submissions, only the last submission
prior to the final deadline was considered for ranking purposes. The winners
are determined for each task based on the score achieved by the corresponding
primary metric. The complete leaderboard can be accessed on the official com-
petition website3 for all tasks. The following table presents the top 10 results
due to limited space.

4.1 Task 1 Seal Title Text Detection

The result for Task 1 is presented on Table 1.

Table 1. Task-1: Seal Title Text Detection Results.

Rank Method Name Team Members Insititute Precision-0.7 Recall-0.7 Hmean-0.7

1 Dao Xianghu
light of
TianQuan

Kai Yang, Ye Wang,
Bin Wang, Wentao Liu,
Xiaolu Ding, Jun Zhu,
Ming Chen, Peng Yao,
Zhixin Qiu

CCB
Financial
Technology
Co. Ltd, China

99.06% 99.06% 99.06%

2 det314 4 Huajian Zhou China Mobile
Cloud Centre

98.18% 98.18% 98.18%

3 INTIME OCR Wei Wang, Chengxiang
Ran,
Jin Wei, Xinye Yang,
Tianjiao Cao, Fangmin
Zhao

Institute of
Information
Engineering,
Chinese Academy
of Sciences;
Mashang Consumer
Finance Co., Ltd

98.14% 98.06% 98.10%

4 AntFin-UperNet Yangkun Lin, Tao Xu Ant Group 97.72% 97.70% 97.71%

5 SPDB LAB Jie Li, Wei Wang,
Yuqi Zhang, Ruixue Zhang,
Yiru Zhao, Danya Zhou,
Di Wang, Dong Xiang,
Hui Wang, Min Xu,
Pengyu Chen, Bin Zhang,
Chao Li, Shiyu Hu,
Songtao Li, Yunxin Yang

Shanghai
Pudong
Development Bank

97.60% 97.60% 97.60%

6 Aaaaa v3 Wudao, Liaoming cmb 97.34% 97.32% 97.33%

7 PAN ReST 4 Yuchen Su, Yongkun Du,
Tianlun Zheng,
Yi Gan, Zhineng Chen

Fudan University,
Paddle OCR

96.86% 96.86% 96.86%

8 DB with SegFormer Sehwan Joo, Wonho Song Upstage AI 98.11% 95.42% 96.75%

9 AppAI for Seal Chuanjian Liu, Miao Rang,
Zhenni Bi, Zhicheng Liu,
Wenhui Dong, Yuyang Li,
Dehua Zheng, Hailin Wu,
Kai Han, Yunhe Wang

Noah 96.00% 96.00% 96.00%

10 ratio 4.0 sunyifan SY 007 95.96% 95.96% 95.96%

3 https://rrc.cvc.uab.es/?ch=20&com=evaluation&task=1.

https://rrc.cvc.uab.es/?ch=20&com=evaluation&task=1
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The methods used by the top 3 submissions for Task 1 are presented below.

1st Ranking Method. The team of “CCB Financial Technology Co. Ltd,
China” are elaborated in detail from the following three perspectives:

– Data Analysis: This competition provided 5000 pieces of training data offi-
cially. Upon analyzing the data, they found that it can be classified into four
categories: round, oval, square, and triangular, with the round and oval cat-
egories being the primary ones. The training set contains various conditions,
including multi-directional rotations, uneven colors, overlapping seals, and
indistinct seal patterns.

– Data Processing: When it comes to data analysis, they began by re-annotating
the training set images and enlarging them to squares. They then rotated the
data and produced a total of 15,000 images. Data generation was carried
out on difficult samples, including those with overlapping or blurry stamps.
Prior to generating the seal data, they gathered a large number of company
and organization names from the internet. Then, they generated the rota-
tion angle and position of each individual character based on its length and
merged them into the seal’s background image. Moreover, they output the
coordinates of the outer edge points of the text. To create a more realistic rep-
resentation of seals in the generated data, they incorporated various colors,
fonts, backgrounds, and textures. The base image for each seal was created by
randomly cropping backgrounds, and they used RGBA format during data
generation to allow for control over the color depth of the seal by adding a
transparency channel. They also included two types of seal borders: solid and
fragmented.

– Model Introduction: In this segmentation task, they employed a “voting
ensemble” method to detect the content of the seal title. Five models are
utilized in the method, namely Mask R-CNN [5], K-Net [17], Segformer [12],
Segmenter [11], and UperNet [16]. Each model generates a mask. And they
utilize a majority vote to derive the final mask, which allows them to identify
the seal title area on the mask.

2nd Ranking Method. “China Mobile Cloud Centre” team are elaborated in
detail from the following two perspectives:

– Regarding the synthesized data, the team generated a dataset comprising
7000 seals, including circular, elliptical, rectangular, and triangular seals.
Additionally, the team addressed the issue of redundant annotation data.
Specifically, the annotation process often resulted in unnecessary parts being
included on the sides of elliptical and circular seal text. This redundancy
could potentially impact the segmentation and subsequent text recognition.
To mitigate this, the team developed a correction program that automati-
cally removes the redundant parts by leveraging the geometric properties of
the elliptical ring.

– The team utilized a single detection model, specifically the VitDet detec-
tion part from EVA’s (Exploring the Limits of Masked Visual Representation
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Learning at Scale) framework. The backbone network employed VIT-Giant,
while the network head employed Cascade Mask-Rcnn. Considering the small
size of the seals, the network input size was adjusted to 320 * 320. To ensure
a smooth mask output, the network head’s mask output size was increased
from 28 * 28 to 56 * 56.

3rd Ranking Method. “Institute of Information Engineering, Chinese
Academy of Sciences; Mashang Consumer Finance Co., Ltd” team’s competi-
tion solution is based on the TPSNet detection model [14]. To better adapt the
seals, the team has modified the regression branch to regress the bezier con-
trol points [9]. Due to some seal titles being too long for a single-stage model
to regress, the team has designed a regression-merging post-process where the
regressed curves belonging to the same title are merged, weighted by the dis-
tance between the feature location and text boundary. The backbone of the
team’s model is ResNet50 with DCN, pretrained on ImageNet.

In terms of data, the team has designed a script to convert the original
polygon annotation to two long curves for every title, allowing training of the
regression-based model. Inaccurate or wrong annotations have been re-annotated
to ensure data quality. To increase the size of the training set, the team has
implemented a seal synthesis pipeline based on Synthtext [4]. They have modified
the character layout to create various seals, used the WTW document dataset
images4 as background images, and employed the Company-Name-Corpus5 as
the corpus of seal titles. This effort has resulted in the generation of 10,000
synthetic seals that have been added to the training set.

During training and testing, both real and synthetic seals are trained
together. The team has applied ColorJitter, Random Rotate, and Random Resize
as training augmentations. For testing, an input scale of 448× 448 is used with-
out any augmentation.

4.2 Task 2 End-to-End Seal Title Recognition

The result for Task 2 is presented on Table 2.
The methods used by the top 3 submissions for Task 1 are presented below.

1st Ranking Method. “Shanghai Pudong Development Bank” team’s method
can be described in detail from the following two perspectives:

– Circle seals and Ellipse seals: Based on the results of the circle and ellipse
seals title detection in task1, PCA technology was used to correct the rotated
seal, the image processing technology was used to separate the seal title, and
finally the curved text was sent to the recognition model for recognition. The
recognition model was selected by Trocr [6], and the training data includes
the provided training data and synthetic data.

4 https://github.com/wangwen-whu/WTW-Dataset.
5 https://github.com/wainshine/Company-Names-Corpus.

https://github.com/wangwen-whu/WTW-Dataset
https://github.com/wainshine/Company-Names-Corpus
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– Rectangle seals and Triangle seals: Rectangle seals and triangle seals were not
based on the task1 detection model, but train a text line detection mode [15]l.
the image processing technology was used to separate the seal title. The
recognition model was selected by Trocr [6], and the training data includes
the provided by synthetic data.

Table 2. Task-2: End-to-end Seal Title Recognition Results.

Rank Method Name Team Members Insititute Accuracy

1 SPDB LAB Jie Li, Wei Wang,
Yuqi Zhang, Ruixue Zhang,
Yiru Zhao, Danya Zhou,
Di Wang, Dong Xiang,
Hui Wang, Min Xu,
Pengyu Chen, Bin Zhang,
Chao Li, Shiyu Hu,
Songtao Li, Yunxin Yang

Shanghai
Pudong
Development Bank

91.88%

2 rec320 3 Huajian Zhou China Mobile
Cloud Centre

91.74%

3 Dao Xianghu
light of TianQuan

Kai Yang, Ye Wang,
Bin Wang, Wentao Liu,
Xiaolu Ding, Jun Zhu,
Ming Chen, Peng Yao,
Zhixin Qiu

CCB
Financial Technology
Co. Ltd, China

91.22%

4 AppAI for Seal Chuanjian Liu, Miao Rang,
Zhenni Bi, Zhicheng Liu,
Wenhui Dong, Yuyang Li,
Dehua Zheng, Hailin Wu,
Kai Han, Yunhe Wang

Noah 90.20%

5 ensemble xubo - 90.08%

6 task2 test submit2 jgj aksbob pa 88.90%

7 INTIME OCR(e2e) Wei Wang, Jin Wei,
Chengxiang Ran, Xinye Yang,
Tianjiao Cao, Fangmin Zhao

Institute of
Information Engineer-
ing,
Chinese Academy
of Sciences;
Mashang Consumer
Finance Co., Ltd

84.24%

8 task2 result DH - 84.22%

9 Seal Recognize Shente Zhou, Tianyi Zhu,
Weihua Cao, Mingchao Fang,
Xiaogang Ouyang

Shizai Intellect 83.02%

10 SealRecognizor Qiao Liang Zhejiang University 83.00%
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2nd Ranking Method. “China Mobile Cloud Centre” team’s method can be
described in detail from the following perspectives:

– Text Detection and Segmentation Module:
Data:
1. Synthesize data: Synthesize 7000 seals (including circular, elliptical, rect-

angular, and triangular seals).
2. Correction of annotation data: In the annotation process, there are redun-

dant parts at two sides of elliptical and circular seal text, which can affect
text recognition. The correct program removes the redundant parts auto-
matically by utilizing the geometric properties of the elliptical ring.

Method:
The text detection and segmentation module follows the following approach:
1. Detection Model: Only one detection model is used, using EVA’s (Explor-

ing the Limits of Masked Visual Representation Learning at Scale) VitDet
detection part.

2. Backbone Network: The backbone network uses VIT-Giant.
3. Network Head: The network head uses Cascade Mask-Rcnn.
4. Adjustment for Seal Size: Considering the small size of the seals, the

network input size is adjusted to 320 × 320.
5. Mask Output Enhancement: The network head’s mask output size is

adjusted from 28 × 28 to 56 × 56 to achieve a smooth mask output.
– Text Rectification Module:

1. For triangular and rectangular texts, the text is rectified to horizontal text
by using the direction classification model combined with affine transfor-
mation.

2. For elliptical and circular text, the least squares method is used to obtain
the upper and lower curve equations of the text. Based on the curve equa-
tions, the curve region is divided into several small regions, and affine
transformations are performed on these regions. Then, they are concate-
nated to get the horizontal text.

– Text Recognition Model:
Data:
1. Synthetic data: Extracting millions of lines of corpus from the open-source

THUCNews, News2016zh, and wiki zh corpus datasets, and using this
data to synthesize horizontal and curved text images.

2. Rectification data: Rectifying or cropping official training images to
obtain text images.

Method:
1. Recognition model 1: Using SVTR-Small (Scene Text Recognition with a

Single Visual Model), with the network input size adjusted to 48 × 320.
2. Recognition model 2: Using DIG (Reading and Writing: Discriminative

and Generative Modeling for Self-Supervised Text Recognition), with the
network input size adjusted to 48 × 288.
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3. Recognition correction: If the results of the two models are different, the
correction program uses the open-source Chinese administrative division
dataset for correction.

3rd Ranking Method. “CCB Financial Technology Co. Ltd, China” team
finds that the difficulties of recognition mainly focus on multi-directional recog-
nition, overlapping interference from handwritten or printed characters, fuzzy
and blurred images, and multiple reading orders, after data exploration and
analysis. Based on the analysis, they build the following solution. First, they
make a seal title segmentation that masks out the non-title area, and removes
the interference of irrelevant regions. Then, they train a TrOCR [6] model using
over 6 million data from the training set, open dataset, and synthetic dataset.
Finally, in the post process, place names correction is implemented.

In the seal title segmentation, they adopt an ensemble strategy with five
segmentation models to vote for the title segmentation, laying a good foundation
for the recognition. Since the training set only has 5000 images, it is far from
enough for the recognition task. They use the official chars.txt dictionary and
collect the corpus of company names and organization names on the Internet,
and generate a large number of seals by codes. To simulate the real situation, they
use various fonts, colors, backgrounds, and textures to synthesize the images, and
they perform kinds of data augmentation strategies for improving generalization
including rotation, gaussian blur, stretching, perspective transformation, contour
expansion or contraction and so on. In addition, they use 10k seals from Baidu
public dataset.

At the early stage of the competition, they use the public dataset and the
synthesized dataset as the training set and the original training set of the compe-
tition as the test set. They continuously synthesize kinds of data to improve the
accuracy of the test set. To further improve the accuracy, they design a classifier
to separate circular seals (Circle/Ellipse shapes) and non-circular seals (Rect-
angle/Triangle shapes). They generate nearly 400k non-circular seals. And they
compare the single recognition model solution with the solution of classifying
then recognizing with multiple models. And they verify that the former solution
is better.

When analyzing bad cases, they find that smudging and character overlap-
ping often lead to recognition errors. So they design place names based post-
processing strategy to correct some of these errors.

5 Discussion

Task 1 Seal Title Text Detection. Many teams use data augmentation tech-
niques such as random scaling, flipping, rotation, cropping, and synthesis of hard
samples with various shapes, colors, fonts, and backgrounds to improve the gen-
eralization ability of their models. Additionally, they employ powerful methods
such as DBNet++ [7], ResNet, Segformer, Unet, and PANNet to enhance per-
formance. Some teams also use a “voting ensemble” strategy to achieve better
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results. Certain teams take into account the four main shapes of seal images
during training and data generation. Task 1, which involves general text detec-
tion, has produced excellent results, with 12 teams achieving an Hmean of over
95%. However, in scenarios that require stricter standards or zero error rates,
even the best method with a 99.06% Hmean in Task 1 cannot meet the required
performance. Therefore, there is still room for improvement, and further efforts
and exploration are needed.

Task 2 End-to-End Seal Title Recognition. Extending from Task 1, the
task of end-to-end seal title recognition poses greater challenges, requiring flex-
ible adjustments and further refinement based on the findings from Task 1.
To address the issues of curved or overlapped text, some teams have designed
image processing technologies such as PCA or post-processing strategies to cor-
rect these errors. Diverse model ensembles continue to be utilized for improved
results. For more accurate recognition, powerful models such as Parseq [1] and
TrOCR are employed. To further enhance accuracy, many teams have designed a
novel classification network to differentiate circular seals (Circle/Ellipse shapes)
and non-circular seals (Rectangle/Triangle shapes). Additionally, pre-trained
models and fine-tuning strategies with augmentations and label smoothing based
on joint datasets, including training sets, open datasets such as Synthtext-
Chinese, ReCTs [8], LSVT [13], ArT [2], and synthetic datasets, are used. How-
ever, as shown in Table 2, only five teams achieved accuracy of over 90.00%, with
the top-1 accuracy being 91.88%. Therefore, we can conclude that end-to-end
seal title recognition remains a challenging task, with most methods submitted
using different ideas and approaches. We look forward to seeing more innovative
approaches proposed following this competition.

6 Conclusion

We organized the ReST competition, with a focus on reading challenging seal
title text, an area that has not received sufficient attention in the field of doc-
ument analysis. To this end, we constructed new datasets, comprising 10,000
real seal data labeled with text polygons and transcripts. Strong interest from
both academia and industry was evident, with a large number of submissions
showcasing novel ideas and approaches for the competition tasks. Reading seal
titles holds significant potential for numerous document analysis applications,
making it a rewarding task. However, despite the top-performing team achieving
a remarkable performance of approximately 99% in Task 1, the task still war-
rants continued research and exploration, particularly in strict scenarios with
zero error tolerance rates. Additionally, Task 2 proved to be a challenging task,
with only five teams achieving an accuracy above 90%, and the top-1 accu-
racy reaching 91.88%. However, the excellent submissions by these teams pro-
vide valuable insights for other researchers. Future competitions could expand
on this topic with more challenging datasets and applications, thus attracting
researchers from the fields of computer vision and advancing the state-of-the-art
in document analysis.



534 W. Yu et al.

Acknowledgements. This competition is supported by the National Natural Sci-
ence Foundation of China (No. 62225603, No. 62206103, No. 62206104). The organiz-
ers thank Sergi Robles and the RRC web team for their tremendous support on the
registration, submission and evaluation jobs.

References

1. Bautista, D., Atienza, R.: Scene text recognition with permuted autoregressive
sequence models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner,
T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 178–196. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-19815-1 11

2. Chng, C.K., et al.: ICDAR 2019 robust reading challenge on arbitrary-shaped text
- RRC-art. In: 2019 International Conference on Document Analysis and Recogni-
tion (ICDAR), pp. 1571–1576 (2019)

3. Chng, C.K., et al.: ICDAR 2019 robust reading challenge on arbitrary-shaped text-
RRC-art. In: 2019 International Conference on Document Analysis and Recogni-
tion (ICDAR), pp. 1571–1576. IEEE (2019)

4. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2315–2324 (2016)

5. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. IEEE Trans. Pattern
Anal. Mach. Intell. 42, 386–397 (2017)

6. Li, M., et al.: TrOCR: transformer-based optical character recognition with pre-
trained models. arXiv abs/2109.10282 (2021)

7. Liao, M., Zou, Z., Wan, Z., Yao, C., Bai, X.: Real-time scene text detection with
differentiable binarization and adaptive scale fusion. IEEE Trans. Pattern Anal.
Mach. Intell. 45(1), 919–931 (2022)

8. Liu, X., et al.: ICDAR 2019 robust reading challenge on reading Chinese text on
signboard. In: 2019 International Conference on Document Analysis and Recogni-
tion (ICDAR), pp. 1577–1581 (2019)

9. Liu, Y., Chen, H., Shen, C., He, T., Jin, L., Wang, L.: ABCNet: real-time scene
text spotting with adaptive bezier-curve network. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 9806–9815 (2020)

10. Liu, Y., Jin, L., Zhang, S., Luo, C., Zhang, S.: Curved scene text detection via
transverse and longitudinal sequence connection. Pattern Recogn. 90, 337–345
(2019)

11. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for seman-
tic segmentation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7262–7272 (2021)

12. Strudel, R., Pinel, R.G., Laptev, I., Schmid, C.: Segmenter: transformer for seman-
tic segmentation. In: 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7242–7252 (2021)

13. Sun, Y., et al.: ICDAR 2019 competition on large-scale street view text with partial
labeling - RRC-LSVT. In: 2019 International Conference on Document Analysis
and Recognition (ICDAR), pp. 1557–1562 (2019)

14. Wang, W., et al.: Tpsnet: reverse thinking of thin plate splines for arbitrary shape
scene text representation. In: Proceedings of the 30th ACM International Confer-
ence on Multimedia (2021)

https://doi.org/10.1007/978-3-031-19815-1_11


ICDAR 2023 Competition on Reading the Seal Title 535

15. Wang, W., et al.: Efficient and accurate arbitrary-shaped text detection with pixel
aggregation network. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8439–8448 (2019)

16. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene
understanding. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 418–434 (2018)

17. Zhang, W., Pang, J., Chen, K., Loy, C.C.: K-Net: towards unified image segmen-
tation. In: NeurIPS (2021)



ICDAR 2023 Competition on Structured
Text Extraction from Visually-Rich

Document Images

Wenwen Yu1, Chengquan Zhang2, Haoyu Cao3, Wei Hua1, Bohan Li2,
Huang Chen3, Mingyu Liu1, Mingrui Chen1, Jianfeng Kuang1,

Mengjun Cheng5, Yuning Du2, Shikun Feng2, Xiaoguang Hu2, Pengyuan Lyu2,
Kun Yao2, Yuechen Yu2, Yuliang Liu1, Wanxiang Che6, Errui Ding2,

Cheng-Lin Liu7, Jiebo Luo8, Shuicheng Yan9, Min Zhang6,
Dimosthenis Karatzas4, Xing Sun3, Jingdong Wang2, and Xiang Bai1(B)

1 Huazhong University of Science and Technology, Wuhan, China
{wenwenyu,xbai}@hust.edu.cn

2 Baidu Inc., Beijing, China
zhangchengquan@baidu.com

3 Tencent YouTu Lab, Shanghai, China
{rechycao,huaangchen,winfredsun}@tencent.com

4 Universitat Autónoma de Barcelona, Bellaterra, Spain
5 Peking University, Beijing, China

6 Harbin Institute of Technology, Harbin, China
7 CAS Institute of Automation, Beijing, China

8 University of Rochester, Rochester, USA
9 Sea AI Lab, Singapore, Singapore

Abstract. Structured text extraction is one of the most valuable and
challenging application directions in the field of Document AI. However,
the scenarios of past benchmarks are limited, and the corresponding eval-
uation protocols usually focus on the submodules of the structured text
extraction scheme. In order to eliminate these problems, we organized the
ICDAR 2023 competition on Structured text extraction from Visually-
Rich Document images (SVRD). We set up two tracks for SVRD includ-
ing Track 1: HUST-CELL and Track 2: Baidu-FEST, where HUST-
CELL aims to evaluate the end-to-end performance of Complex Entity
Linking and Labeling, and Baidu-FEST focuses on evaluating the
performance and generalization of Zero-shot/Few-shot Structured Text
extraction from an end-to-end perspective. Compared to the current doc-
ument benchmarks, our two tracks of competition benchmark enriches
the scenarios greatly and contains more than 50 types of visually-rich
document images (mainly from the actual enterprise applications). The
competition opened on 30th December, 2022 and closed on 24th March,
2023. There are 35 participants and 91 valid submissions received for
Track 1, and 15 participants and 26 valid submissions received for Track
2. In this report we will presents the motivation, competition datasets,
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task definition, evaluation protocol, and submission summaries. Accord-
ing to the performance of the submissions, we believe there is still a large
gap on the expected information extraction performance for complex and
zero-shot scenarios. It is hoped that this competition will attract many
researchers in the field of CV and NLP, and bring some new thoughts to
the field of Document AI.

1 Introduction

In recent years, the domain of Document AI has gradually become a hot research
topic. As one of the most concerned Document AI technologies, structured text
extraction aims to capture text fields with specified semantic attributes from
complex visually-rich documents (VRDs). It is widely used in many applications
and services, such as customs information inspection, accounting in the financial
field, office automation, and so on.

In the past, several benchmarks have been established in the community, such
as FUNSD [7], CORD [12], XFUND [16], EPHOIE [14], etc., to measure relative
technical efforts. However, there are many imperfections in these benchmarks
and the corresponding evaluation protocols. The obvious shortcomings are as
follows: 1) The performance of structured text extraction is not evaluated from
the end-to-end perspective, but is disassembled into three independent functional
modules, namely text detection [11,19,22], text recognition [4,13,17] and entity
labelling or linking) [1,10,15,18], for respective evaluation, which is not intuitive
for downstream applications. 2) The scenarios covered by the above benchmarks
are relatively few, and only focus on a certain receipt or form scenario, which
is difficult to guide objectively evaluate the effectiveness and robustness of the
model.

Therefore, we propose a new structured text extraction competition bench-
mark including two tracks, which covers the most abundant visually-rich docu-
ment images of scenarios and types as far as we know. The whole benchmark will
contain more than 50 document types and more than 100 semantic attributes
of text fields. In order to evaluate the performance of structured information
extraction from an end-to-end perspective, we will set up two tracks: (1) end-to-
end Complex Entity Linking and Labeling created by Huanzhong University
of Science and Technology (HUST-CELL), where we have designed entity
linking and labeling tasks. (2) end-to-end Few-shot Structured Text extraction
created by Baidu Company (Baidu-FEST) to explore the generalization and
robustness of the submitted models, where we have newly designed zero-shot
and few-shot structured text extraction tasks. The motivation and relevance to
ICDAR community including:

– The intelligent analysis of visually-rich document images has always been
an important domain of concern for ICDAR community. Its core technolo-
gies include text detection, recognition and named-entity recognition. Our
proposed competition is the first time to guide the evaluation of the effect
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and generalization of structured text extraction scheme from an end-to-end
perspective, which is more valuable but more challenging.

– This competition aims to further connect researchers from both the document
image understanding and NLP communities to bring more inspiration.

1.1 Competition Organization

ICDAR 2023 competition on SVRD is organized by a joint team, including
Huazhong University of Science and Technology, Baidu Inc., Tencent YouTu
Lab, Universitat Autónoma de Barcelona, Peking University, Harbin Institute
of Technology, CAS Institute of Automation, University of Rochester, and Sea
AI Lab.

We organize the SVRD competition on the Robust Reading Competition
(RRC) website1, where provide corresponding download links of the datasets,
and user interfaces for participants and submission page for their results2. Great
support has been received from the RRC web team.

2 Related Works

This section discusses most of the well-received visually-rich document bench-
marks as following:

In 2019, the Robust Reading Competition (RRC) web portal introduced a
new challenge, known as Scanned Receipts OCR and Information Extraction
reading competition which also commonly named as SROIE [6]. The main feature
of SROIE is that all the images are collected from scanned receipts. It contains
of 626 receipts for training and 347 receipts for testing, and each receipt only
contains four predefined values: company, date, address, and total.

Meanwhile, EATEN [5] constructs a dataset of 1,900 real images in train
ticket scenarios, and it only has entity values annotation without OCR anno-
tation. CORD [12] consists of 1,000 Indonesian receipts, which contains images
and box/text annotations for OCR, and multi-level semantic labels for parsing,
which can be used to address various OCR and entity extraction tasks.

FUNSD [7] dataset was presented at the ICDAR workshop in 2019. FUNSD
is a form understanding benchmark with 199 real, fully annotated, scanned form
images, such as marketing, advertising, and scientific reports, which is split into
149 training samples and 50 testing samples. FUNSD dataset is suitable for a
variety of tasks including text detection, recognition, entity labelling, etc. And
its entity has only three types of semantic attributes including question, answer
and header.

XFUND [16] is an extended version of FUNSD that was proposed in 2021.
It is launched to introduce the multi-script structured text extraction problem.

1 https://rrc.cvc.uab.es/?ch=21.
2 Scores achieved using the ChatGPT large model interface during the competition

are temporarily excluded from the leaderboard.

https://rrc.cvc.uab.es/?ch=21
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It consists of human-labeled forms with key-value pairs in 7 languages (Chi-
nese, Japanese, Spanish, French, Italian, German, Portuguese). Each language
includes 199 forms, where the training set includes 149 forms, and the test set
includes 50 forms.

EPHOIE [14] was also released in 2021, and contains 1,494 images which are
collected and scanned from real examination papers of various schools in China.
There are 10 text entity types including Subject, Test Time, Name, School,
Examination Number, Seat Number, Class, Student Number, Grade, and Score.
As an overview, Table 1 lists the details of above datasets.

Table 1. Existing Visually-rich Document Images Datasets.

Dataset Image number(Train/Test) Language Granularity Document type Year

SROIE 973(626/347) English Word Receipt 2019

CORD 1,000(800/200) English Word Receipt 2019

EATEN 1,900(1,500/400) Chinese w/o OCR Train Ticket 2019

FUNSD 199(149/50) English Word Form 2019

XFUND 1,393(1,043/350) 7 languages Word/Line Form 2021

EPHOIE 1,494(1,183/311) Chinese Character Paper 2021

3 Benchmark Description

3.1 Track 1: HUST-CELL

Our proposed HUST-CELL complexity goes over and above previous datasets
in four distinct aspects. First, we provide 30 categories of documents with
more than 4k documents, 2 times larger than the existing English and Chi-
nese datasets including SROIE (973), CORD (1,000), EATEN (1,900), FUNSD
(199), XFUNSD (1,393), and EPHOIE (1,494). Second, HUST-CELL contains
400+ diverse keys and values. Third, HUST-CELL covers complex keys more
challenging than others, for instance, nested keys, fine-grained key-value pairs,
multi-line keys/values, long-tailed key-value pairs, as shown in Fig. 1. Current
state-of-the-art Key Information Extraction (KIE) techniques [2,3,15,18,20] fail
to deal with such situations that are essential for a robust KIE system in the
real world. Fourth, our dataset comprises real-world documents reflecting real-
life diversity of content and the complexity of the background, e.g. different fonts,
noise, blur, seal.

In this regard, under the consideration of the importance and huge applica-
tion value of KIE, we propose to set up track 1 competition on complex entity
linking and labeling.

Our proposed HUST-CELL were collected from public websites and cover
a variety of scenarios, e.g., receipt, certificate, and license of various industries.
The language of the documents is mainly Chinese, along with a small portion of
English. The number of images collected for each specific scenario varies, ranging



540 W. Yu et al.

from 10 to 300, with a long-tail distribution, which can avoid introducing any
bias towards specific real application scenarios. Due to the complexity of the
data source, the diversity of this dataset can be guaranteed. To be able to use
publicly, this data is collected from open websites, and we delete images that
contain private information for privacy protection. Some examples are shown in
Fig. 1.

Fig. 1. Samples of HUST-CELL collected from various scenarios.

The dataset is split into the training set and test set. The training set consists
of 2,000 images, which will be available to the participants along with OCR and
KIE annotations. The test set consists of 2,000 images, whose OCR annotations
and KIE annotations will not be released, but the online evaluation server3 will
remain available for future usage of this benchmark.

3.2 Track 2: Baidu-FEST

Our proposed Baidu-FEST benchmark comes from the practical scenarios,
mainly including finance, insurance, logistics, customs inspection, and other
fields. Different applications have different requirements for text fields of interest.
In addition, the data collection methods in different scenarios may be affected by
3 https://rrc.cvc.uab.es/?ch=21&com=mymethods&task=1.

https://rrc.cvc.uab.es/?ch=21&com=mymethods&task=1
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different cameras and environments, thus the benchmark is relatively rich and
challenging.

Specifically, the benchmark contains about 11 kinds of synthetic business
documents for training, and 10 types of real visually-rich document images for
testing. The format of documents major consists of cards, receipts, and forms.
Each type of document provides about 60 images.

Each image in the dataset is annotated with text-field bounding boxes (bbox)
and the transcript, entity caption, entity id of each text bbox. Locations are
annotated as rectangles with four vertices, which are in clockwise order starting
from the top. Some examples of images and the corresponding annotations are
shown in Fig. 2.

Fig. 2. Some visually-rich document samples of Baidu-FEST.

4 Competition Tasks and Evaluation Protocols

Our proposed competition has two tracks totaling four main tasks.

4.1 Track 1: HUST-CELL

Task-1: E2E Complex Entity Linking

– Task Description: This task aims to extract key-value pairs (entity linking)
from given images only, then save the key-value pairs of each image into
a JSON file. For the train set, both KIE annotation files for training and
human-checked OCR annotation files are provided. So the OCR annotation
is clean and can be used as the ground truth of the OCR task. The test set of
Task 1 will only provide images without any annotation including OCR and
KIE. It requires the method to accomplish both OCR and KIE tasks in an
end-to-end manner.
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Task-2: E2E Complex Entity Labeling

– Task Description: The end-to-end complex entity labeling is to extract texts
of a number of predefined key text fields from given images (entity labeling),
and save the texts for each image in a JSON file with required format. Task
2 has 13 predefined entities. For the train set, both KIE annotation files for
training and human-checked OCR annotation files are provided. So the OCR
annotation is clean and can be used as the ground truth of the OCR task. The
test set of Task 2 will only provide images without any annotation including
OCR and KIE. It requires the method to accomplish both OCR and KIE
tasks in an end-to-end manner.

4.2 Track 2: Baidu-FEST

Task-3: E2E Zero-Shot Structured Text Extraction

– Task Description: The zero-shot structured text extraction is to extract
texts of a number of key fields from given images, and save the texts for
each image in a JSON file with required format. Different from Task2, there
is no intersection between the scenarios of the provided training-set and the
scenarios of the provided test-set. Of course, the training data consists of the
real data provided by Track 1 and the synthetic data generated officially. The
caption en and caption ch in GT can be used as prompt to assist extraction
but it is not allowed to be modified.

Task-4: E2E Few-Shot Structured Text Extraction

– Task Description: The few-shot structured text extraction is to extract
texts of a number of key fields from given images, and save the texts for
each image in a JSON file with required format. Different from Task-3, the
localization information and transcript will be provided, but the total number
of the provided training-set will no more than five images for each scenario
of the provided test-set. The caption en and caption ch in GT can be used
as prompt to assist extraction but it is not allowed to be modified.

4.3 Evaluation Protocol

Task 1 Evaluation. For Task 1, the evaluation metrics include two parts:

Normalized Edit Distance. For each predicted kv-pair (key-value pair), if
it matched with GT kv-pair in the given image, the normalized edit distance
(NED) between the predicted kv-pair s1 and ground-truth kv-pair s2 will be
calculated as following:

NED(s1, s2) =

(
ed (s1 k, s2 k)

max (len (s1 k) , len (s2 k))
+

ed (s1 v, s2 v)

max (len (s1−v) , len (s2 v))

)
/2 (1)
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score 1 = 1 −
n∑

i=1

NED (si1, si2)

n
(2)

where n denotes the number of matched kv-pairs (both the edit distance of key
and value are larger than a threshold simultaneously. ed() denotes the edit dis-
tance function. The calculated details refer to the following Matching Protocol.).
s1 k/s2 k, s1 v/s2 v indicate the content of key and value of the kv-pair s1/s2,
respectively. Note that for predicted kv-pairs that do not matched in the GT of
the given image, the edit distance will be calculated between predicted kv-pairs
and empty string.

Matching Protocol: Given the predicted kv-pair s1 and ground-truth kv-pair
s2. The matching protocol is calculated as following:

Match(s1, s2) =

{
True, ed(s1 k, s2 k) ≤ th k and ed(s1 v, s2 v) ≤ th v

False, other
(3)

th k = max(factor k ∗ min(len(s1 k), len(s2 k)), 0) (4)

th v = max(factor v ∗ min(len(s1 v), len(s2 v)), 0) (5)

where ed() denotes the edit distance function. the factor k and factor v are set
to 0.15, 0.15, respectively.

F-score. Considering all the predicted kv-pairs and all GT kv-pairs, the F-score
will be calculated as following:

Precision =
N3

N2
(6)

Recall =
N3

N1
(7)

score2 =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

where N1 denotes the number of kv-pairs that exists in the given image, N2
denotes the number of predicted kv-pairs, N3 denotes the number of perfectly
matched kv-pairs (both the edit distance of key and value are larger than a
threshold simultaneously. Specifically, the factor k and factor v in matching pro-
tocol are set to 0.). The final score is the weighted score of score1 and score2:

score = 0.5 ∗ score1 + 0.5 ∗ score2 (9)

The final weighted score will be used as submission ranking purpose for
Task 1.

Task 2–4 Evaluation. For Task 2, Task 3, and Task 4, the evaluation metrics
include two parts:
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Normalized Edit Distance. For each predefined key text field, if it exists in
the given image, the normalized edit distance (NED) between predicted text s1
and ground-truth text s2 will be calculated as following:

NED(s1, s2) =
edit distance (s1, s2)

max( length (s1), length(s2))
(10)

where n denotes the number of perfectly matched key text fields (both entity id
and text are predicted correctly). Note that for predicted key text fields that
do not exist in the given image, the edit distance will be calculated between
predicted text and empty string. Then the score1 can be calculated by Eq. 2.

F-score. Considering all the predicted key text fields and all the predefined key
text fields, the score2 (F-score) can also be calculated as Eq. 8. In this scenar-
ios, N1 denotes the number of key text fields that exists in the given image, N2
denotes the number of predicted key text fields, N3 denotes the number of per-
fectly matched key text fields (both entity id and text are predicted correctly).
The final score is the weighted score of score1 and score2:

score = 0.8 ∗ score1 + 0.2 ∗ score2 (11)

The final weighted score will be used as submission ranking purpose for
Task 2, Task 3, and Task 4.

5 Submissions and Results

The competition attracted 50 participants and 117 submissions from academia
and industry, including 19 participants and 53 submissions for Task 1, 16 par-
ticipants and 38 submissions for Task 2, 7 participants and 15 submissions for
Task 3 and 8 participants and 11 submissions for Task 4, which demonstrated
significant interest in this challenging task.

After the submission deadlines, we collected all submissions and evaluate
their performance through automated process with scripts developed by the RRC
web team. No feedback was given to the participants during the submission pro-
cess. If participants have multiple submissions, we pick the last submission made
before the final submission deadline for ranking. The winners are determined for
each task based on the score achieved by the corresponding primary metric. The
complete leaderboard is available on the online website4 for all tasks. However,
due to limited space, the results table presented below showcases a maximum of
10 top performers.

5.1 Task 1 Performance and Ranking

The result for Task 1 is presented on Table 2.
The methods used by the top 3 submissions for Task 1 are presented below.

4 https://rrc.cvc.uab.es/?ch=21&com=evaluation&task=1.

https://rrc.cvc.uab.es/?ch=21&com=evaluation&task=1
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Table 2. Task-1: E2E Complex Entity Linking Results. ∗ means the reproducible script
has been submitted by participants and verified by organizers.

Rank Method Name Team Members Insititute Score1(NED) Score2(F-score) Score(Total)

1 Super KVer∗ Lele Xie, Zuming Huang,
Boqian Xia, Yu Wang,
Yadong Li, Hongbin Wang,
Jingdong Chen

Ant Group 49.93% 62.97% 56.45%

2 End-to-end document
relationship
extraction

Huiyan Wu, Pengfei Li, Can
Li

University of
Chinese Academy
of Sciences

43.55% 57.90% 50.73%

3 sample-3∗ Zhenrong Zhang, Lei Jiang,
Youhui Guo, Jianshu Zhang,
Jun Du

University of
Science and
Technology of
China, iFLYTEK
AI Research

42.52% 56.68% 49.60%

4 Pre-trained model
based fullpipe pair
extraction (opti v3,
no inf aug)∗

Zening Lin, Teng Li, Wenhui
Liao, Jiapeng Wang,
Songxuan Lai, Lianwen Jin

South China
University of
Technology;
Huawei Cloud

42.17% 55.63% 48.90%

5 Meituan OCR V4∗ Jianqiang Liu, Kai Zhou,
Chen Duan, Shuaishuai
Chang, Ran Wei, Shan Guo

Meituan 41.10% 54.55% 47.83%

6 submit-trainall hsy - 40.65% 52.98% 46.82%

7 f2 Zhi Zhang cocopark 41.07% 50.82% 45.94%

8 LayoutLM &
STrucText Based
Method

Wumin Hui, Mei Jiang PKU & BUPT 33.09% 45.92% 39.51%

9 Layoutlmv3 Li Jie, Wang Wei, Li
Songtao, Yang Yunxin, Chen
Pengyu, Zhou Danya, Li
Chao, Hu Shiyu, Zhang Yuqi,
Xu Min, Zhao Yiru, Zhang
Bin, Zhang Ruixue, Wang
Di, Wang Hui, Xiang Dong

SPDB LAB 29.81% 41.45% 35.63%

10 Data Relation2 - - 23.26% 35.07% 29.16%

1st Ranking Method. “Ant Group” team apply an ensemble of both discrimi-
native and generative models. The former is a multimodal method which utilizes
text, layout and image, and they train this model with two different sequence
lengths, 2048 and 512 respectively. The texts and boxes are generated by inde-
pendent OCR models. The latter model is an end-to-end method which directly
generates K-V pairs for an input image.

2nd Ranking Method. “University of Chinese Academy of Sciences” team
realized end-to-end information extraction through OCR, NER and RE tech-
nologies. Text information extracted by OCR and image information are jointly
transmitted to NER to identify key and value entities. RE module extracts entity
pair relationships through multi-classification. The training dataset is Hust-Cell.

3rd Ranking Method. “University of Science and Technology of China
(USTC), iFLYTEK AI Research” firstly perform key-value-background triplet
classification for each OCR bounding box using a PretrainedLM called Graph-
Doc [21] which utilizes text, layout, and visual information simultaneously.
Then they use a detection model (DBNet [11]) to detect all the table cells in
input images and split images into table-images and non-table images. For table
images, they merge ocr boxes into table cells and then group all the left and
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Table 3. Task-2: E2E Complex Entity Labeling Results. ∗ means the reproducible
script has been submitted by participants and verified by organizers.

Rank Method Name Team Members Insititute Score1(NED) Score2(F-score) Score(Total)

1 LayoutLMV3
&StrucText∗

Minhui Wu, Mei Jiang,
Chen Li, Jing Lv,
Qingxiang Lin, Fan
Yang

TencentOCR 57.78% 55.32% 57.29%

2 sample-3∗ Zhenrong Zhang, Lei
Jiang, Youhui Guo,
Jianshu Zhang, Jun Du

University of
Science and
Technology of
China, iFLYTEK
AI Research

47.15% 41.91% 46.10%

3 task 1 transfer
learning LiLT +
task3 transfer
learning LiLT +
LilLT +
Layoutlmv3
ensemble∗

Hengguang Zhou, Zeyin
Lin, Xingjian Zhao, Yue
Zhang, Dahyun Kim,
Sehwan Joo, Minsoo
Khang, Teakgyu Hong

Deep SE x Upstage
HK

45.70% 40.20% 44.60%

4 LayoutMask-v3∗ Yi Tu Ant Group 44.79% 42.53% 44.34%

5 Pre-trained model
based entity
extraction (ro)∗

Zening Lin, Teng Li,
Wenhui Liao, Jiapeng
Wang, Songxuan Lai,
Lianwen Jin

South China
University of
Technology, Huawei
Cloud

44.98% 40.06% 43.99%

6 EXO-brain for KIE Boqian Xia, Yu Wang,
Yadong Li, Zuming
Huang, Lele Xie,
Jingdong Chen,
Hongbin Wang

Ant Group 44.02% 39.63% 43.14%

7 multi-modal based
KIE through model
fusion

Jie Li, Wei Wang, Min
Xu, Yiru Zhao, Bin
Zhang, Pengyu Chen,
Danya Zhou, Yuqi
Zhang, Ruixue Zhang,
Di Wang, Hui Wang,
Chao Li, Shiyu Hu,
Dong Xiang, Songtao Li,
Yunxin Yang

SPDB LAB 42.42% 37.97% 41.53%

8 Aaaa Li Rihong, Zheng Bowen Shenzhen Runnable
Information
Technology Co.,
Ltd.

42.03% 37.14% 41.05%

9 donut zy - 41.64% 37.65% 40.84%

10 Ant-FinCV Tao Huang, Jie Wang,
Tao Xu

Ant Group 41.61% 35.98% 40.48%

top keys for each value table cell as its corresponding key content. For non-table
images (including all text in non-table images and text outside tabel cells in
table images), they directly use a MLP model to predict all keys for each value
box.

5.2 Task 2 Performance and Ranking

The result for Task 2 is presented on Table 3.
The methods used by the top 3 submissions for Task 2 are presented below.

1st Ranking Method. “TencentOCR” team are mainly based on LayoutLMv3
and StrucTextv1 model architecture. All training models are finetuned on large
pretrained models of LayoutLM and StrucText. During training and testing,
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they did some preprocessings to merge and split some badly detected boxes.
Since entity label of kv-pair boxes are ignored, they used model trained on task1
images to predict kv relations of text boxes in Task 2 training/testing images.
Thus they added additional 2 classes of labels (question/answer) and mapped
original labels to new labels (other → question/answer) to ease the difficulty of
training. Similarly, During testing, they used kv-prediction model to filter those
text boxes with kv relations and used model trained on Task 2 to predict entity
label of the lefted boxes. In addition, they combined predicted results of different
models based on scores and rules and did some postprocessings to merge texts
with same entity label and generated final output.

2nd Ranking Method. “University of Science and Technology of China
(USTC), iFLYTEK AI Research” team uses the GraphDoc [21] to perform
bounding box classification, which utilizes text, layout, and visual information
simultaneously.

3rd Ranking Method. “Deep SE x Upstage HK” team, for the OCR, uses
a cascade approach where the pipeline is broken up into text detection and
text recognition. For text detection, they use the CRAFT architecture with the
backbone changed to EfficientUNet-b3. For text recognition, they use the ParSeq
architecture with the visual feature extractor changed to SwinV2. Regarding the
parsing models, they trained both the LiLT and LayoutLMv3 models on the
Task2 dataset. For LiLT, they also conducted transfer learning on either task1
or task3 before fine-tuning on Task 2 dataset. Finally, they take an ensemble of
these four models to get the final predictions.

5.3 Task 3 Performance and Ranking

The result for Task 3 is presented on Table 4.

Table 4. Task-3: E2E Zero-shot Structured Text Extraction Results. ∗ means the
reproducible script has been submitted by participants and verified by organizers.

Rank Method Name Team Members Insititute Score1(NED) Score2(F-score) Score(Total)

1 sample-1∗ Zhenrong Zhang, Lei
Jiang, Youhui Guo,
Jianshu Zhang, Jun Du

University of
Science and
Technology of
China, iFLYTEK
AI Research

82.07% 65.27% 78.71%

2 LayoutLMv3∗ Minhui Wu, Mei Jiang,
Chen Li, Jing Lv,
Huiwen Shi

TencentOCR 80.01% 66.71% 77.35%

3 KIE-Brain3∗ Boqian Xia, Yu Wang,
Yadong Li, Ruyi Zhao,
Zuming Huang, Lele
Xie, Jingdong Chen,
Hongbin Wang

Ant Group 74.90% 57.59% 71.44%

4 zero-shot-qa - - 74.24% 56.81% 70.75%

5 task3-2 chengl CMSS 65.52% 50.85% 62.59%

The methods used by the top 3 submissions for Task 3 are presented below.
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1st Ranking Method. “University of Science and Technology of China
(USTC), iFLYTEK AI Research” team first use OCR models (DBNet-det +
SVTR-rec) to get each bounding box coordinate and it’s text content of input
images, then sort boxes with manual rules, and concatenate all text content to a
string according to the box sequence. Result string of step 1 is fed into a seq2seq
model to directly predict target text content, which consists of 8 open-source bert
models, including chinese-roberta, chinese-lilt-roberta, chinese-pert, chinese-lilt-
pert, chinese-lert, chinese-lilt-lert, chinese-macbert and chinese-lilt-macbert, and
these models are trained using the UniLM5 toolbox. Data augmentation includ-
ing random text replacing and erasing, box random scaling and shifting is used.
As for english doc images, they directly use DocPrompt6 outputs as final result

2nd Ranking Method. “TencentOCR” team’s method is based on Lay-
outLMv3 and StrucTextv1 model architecture. All training models are finetuned
on large pretrained models of LayoutLM and StrucText. During training and
testing, we did some preprocessings to merge and split some badly detected
boxes. They used models trained on task 1 images to predict key-value pairs in
test images and models trained on task 2 images to predict entity labels(title,
date, etc.) for text boxes. Besides, they applied rule based post processing meth-
ods and assembled results of different models to generate final outputs.

3rd Ranking Method. “Ant Group” team apply an ensemble of multi-task
end-to-end information extraction models. The document question answering
task and the document information extraction task are jointly realized, and the
model performance is improved. At the same time, this solution is an end-to-end
information extraction method and does not rely on external OCR.

5.4 Task 4 Performance and Ranking

The result for Task 4 is presented on Table 5.
The methods used by the top 3 submissions for Task 4 are presented below.

1st Ranking Method. “TencentOCR” team’s methods are mainly based on
LayoutLMv3 and StrucTextv1 model architecture. All training models are fine-
tuned on large pretrained models of LayoutLM and StrucText. During training
and testing, they did some preprocessings to merge and split some badly detected
boxes. They also trained our own ocr models including dc-convnet based detec-
tion and ctc/eda based recognition. They applied merging methods to merge
ocr results from different sources. Based on predicted results of task 3, they also
introduced self-supervising training to train segment-based classification models
for folder 9 & folder 10 to predict entity labels. Similar to task 3, they also did
rule based post processing methods and assembled results of different models to
generate final outputs.

5 https://github.com/microsoft/unilm/blob/master/s2s-ft/.
6 https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model zoo/ernie-

layout.

https://github.com/microsoft/unilm/blob/master/s2s-ft/
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/ernie-layout
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/ernie-layout
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Table 5. Task-4: E2E Few-shot Structured Text Extraction Results. ∗ means the
reproducible script has been submitted by participants and verified by organizers.

Rank Method Name Team Members Insititute Score1(NED) Score2(F-score) Score(Total)

1 LayoutLMv3&
StrucText∗

Mei Jiang, Minhui Wu,
Chen Li, Jing Lv, Haoxi
Li, Lifu Wang, Sicong
Liu

TencentOCR 87.14% 73.59% 84.43%

2 sample-1∗ Zhenrong Zhang, Lei
Jiang, Youhui Guo,
Jianshu Zhang, Jun Du

University of
Science and
Technology of
China, iFLYTEK
AI Research

85.24% 69.68% 82.13%

3 task4-base chengl CMSS 78.57% 60.21% 74.90%

4 Fewshot-brain v1∗ Boqian Xia, Yu Wang,
Yadong Li, Hongbin
Wang

Ant Group 77.81% 60.71% 74.39%

5 Dao Xianghu light
of TianQuan

Kai Yang, Tingmao Lin,
Ye Wang, Shuqiang Lin,
Jian Xie, Bin Wang,
Wentao Liu, Xiaolu
Ding, Jun Zhu, Hongyan
Pan, Jia Lv

CCB Financial
Technology Co.
Ltd, China

71.48% 55.03% 68.19%

6 GRGBanking Liu Kaihang, Yue
Xuyao, Xu Tianshi,
Zhang Huajun, Liang
Tiankai

GRGBanking 45.44% 35.83% 43.52%

2nd Ranking Method. “University of Science and Technology of China
(USTC), iFLYTEK AI Research” team first use OCR models (DBNet-det +
SVTR-rec) to get each bounding box coordinate and it’s text content of input
images, then sort boxes with manual rules, and concatenate all text content to a
string according to the box sequence. Result string of step 1 is fed into a seq2seq
model to directly predict target text content, which consists of 8 open-source bert
models, including chinese-roberta, chinese-lilt-roberta, chinese-pert, chinese-lilt-
pert, chinese-lert, chinese-lilt-lert, chinese-macbert and chinese-lilt-macbert, and
these models are trained using the UniLM7 toolbox. Data augmentation includ-
ing random text replacing and erasing, box random scaling and shifting is used.
As for english doc images, they directly use DocPrompt8 outputs as final result.

3rd Ranking Method. “CMSS” team’s method firstly perform data cleaning,
data synthesis, and random augmentation based on the given data. For blurry
images, they utilize a variety of cascaded models to optimize the text detec-
tion results. To further improve the accuracy of text recognition algorithm, they
use a neural network structure and remove special characters. Particularly, they
have found that the position of the text plays a significant role in the struc-
ture, especially for structured text with key and value. To address this issue,
they optimize the model parameters based on the UIE-X basic model (Unified
Structure Generation for Universal Information Extraction) and optimize the
data pre-processing part to enhance the relationship features between text lines.

7 https://github.com/microsoft/unilm/blob/master/s2s-ft/.
8 https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model zoo/ernie-

layout.

https://github.com/microsoft/unilm/blob/master/s2s-ft/
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/ernie-layout
https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/ernie-layout
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Finally, they merge the model inference results by designing rules to achieve the
best possible outcome.

6 Discussion

The competition saw a considerable number of submissions from both academic
and industrial participants, indicating a notable level of interest in the topic
of complex structured text extraction. The competition focused on two tracks:
Track 1 involved end-to-end complex entity linking and labeling, while Track 2
introduced new zero/few-shot scenario tasks for structured text extraction.

The leading approaches in Track 1 of the competition utilized ensemble mod-
els that integrated multiple modalities, including text, layout, and image infor-
mation. These models were enhanced by incorporating techniques such as OCR,
NER, and RE. The prominence of multimodal models and ensemble techniques
highlights their significance. Nevertheless, there exists a notable performance
gap in achieving the necessary accuracy for information extraction in complex
scenarios for large-scale practical applications. The observed performance gap is
notable when comparing the top-performing F1 score of 55.32% for Task 2 to
the state-of-the-art end-to-end method on other datasets. Specifically, Kuang et
al. [9] achieved an 85.87% F1 score on the SROIE dataset and Donut [8] achieved
an 84.1% F1 score on the CORD dataset in end-to-end evaluations.

Track 2 of the SVRD competition focused on new zero/few-shot scenario
tasks for structured text extraction. Specifically, Task 3 required participants to
extract structured text from images that were not present in the training set,
whereas Task 4 allowed participants to perform structured text extraction using
a small number of provided labeled examples. The methods used for zero-shot
and few-shot learning involved various deep learning techniques, such as pre-
trained large multimodal model and model ensemble. The top-performing meth-
ods achieved 78.71% and 84.43% for Task 3 and Task 4, respectively. Despite the
commendable average performance of Task 3 and Task 4 across all 10 scenar-
ios, the individual performance analysis of the champion method reveals signifi-
cantly low effectiveness in more challenging scenarios. Specifically, the champion
method attained a score of 53.25% in the Letter/Email scenario and 46.2% in the
Technical Report scenario for Task 3. In Task 4, the champion method achieved
a score of 59.23% in the Car Ticket scenario. These results underscore the need
for further research to enhance the performance of these methods in structured
text extraction for such challenging scenarios.

Despite the top-performing methods showcased promising results, a signifi-
cant performance gap remains for challenging scenarios in structured text extrac-
tion. Advancements in developing robust techniques for structured text extrac-
tion are crucial for the progress of Document AI. The SVRD competition pro-
vided a platform for researchers in CV and NLP to collaborate and showcase
their expertise. The results highlight the potential of structured text extraction
for various document analysis applications, emphasizing the need for continued
research.
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7 Conclusion

We hosted the SVRD competition, focused on key information extraction from
visually-rich document images, and provided new datasets, including HUST-
CELL and Baidu-FEST, and designed new evaluation protocols for our tasks.
The submissions indicated strong interest from academia and industry, but also
revealed significant challenges in achieving high performance for complex and
zero-shot scenarios. Key information extraction remains a difficult task with
potential for numerous document analysis applications. Future competitions
could expand on this topic with more challenging datasets and applications,
attracting researchers in CV and NLP and advancing the field of Document AI.

Acknowledgements. This competition is supported by the National Natural Sci-
ence Foundation of China (No. 62225603, No. 62206103, No. 62206104). The organiz-
ers thank Sergi Robles and the RRC web team for their tremendous support on the
registration, submission and evaluation jobs.
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Abstract. This paper overviews the 7th edition of the Competition
on Recognition of Handwritten Mathematical Expressions. ICDAR 2023
CROHME proposes three tasks with three different modalities: on-line,
off-line and bimodal. 3905 new handwritten equations have been collected
to propose new training, validation and test sets for the two modali-
ties. The complete training set includes previous CROHME training set
extented with complementary off-line (from OffRaSHME competition)
and on-line samples (generated). The evaluation is conducted using the
same protocol as the previous CROHME, allowing a fair comparison with
previous results. This competition allows for the first time the compari-
son of the on-line and off-line systems on the same test set. Six partici-
pating teams have been evaluated. Finally the same team won all 3 tasks
with more than 80% of expression recognition rate.

Keywords: mathematical expression recognition · handwriting
recognition · bimodal · evaluation · dataset

1 Introduction

Handwritten mathematical recognition is an important and challenging task
with numerous real-world applications. The CROHME (Competition on Recog-
nition of On-line Handwritten Mathematical Expressions) competition has been
organized since 2011 to foster research and development in this field. The com-
petition provides a platform for researchers to compare and evaluate their meth-
ods for recognizing on-line and off-line handwritten mathematical expressions.
CROHME has contributed to significant advances in this area by promoting the
development of new approaches and datasets, as well as facilitating the exchange
of ideas among researchers.
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At the very beginning CROHME (2011 [5], 2012 [6], 2013 [8], 2014 [9], 2016
[7]) focused only on-line content. Recently, CROHME 2019 [4] has considered
also off-line content using the rendering of the on-line signal to produce a perfect
image of the handwritten expressions. This was a first step towards the off-
line domain. After that, other competitions and dataset as OffSRAHME [15]
appeared focusing on the off-line domain with more realistic content. This time
the competition includes bimodal expressions that combine both on-line and
off-line data.

In this paper, we provide an overview of the ICDAR 2023 CROHME compe-
tition, describing the three tasks, the corresponding datasets and the evaluation
metrics. We also provide the results of the participating systems with a short
description. We conclude by discussing the main trends and challenges in hand-
written mathematical recognition.

2 Tasks

Task 1. On-line Handwritten Formula Recognition. As the main task in
the previous CROHME, participants utilise InkML format data, which has series
of handwritten strokes collected by a tablet or similar device (as in Fig. 1), and
should convert it to Symbol Label Graph (SymLG), which is a specific Symbol
Layout Tree since CROHME 2019. Note that the participants were advised to
use strictly only the on-line information and not the off-line information.

Task 2. Off-line Handwritten Formula Recognition. Real scanned images
(as in Fig. 3) or rendered images from InkML (as in Fig. 2) are used and should
be converted to SymLG. In the same manner as for Task 1, the participants
were advised to use strictly only the off-line information and not the on-line
information.

Task 3. Bi-modal Handwritten Formula Recognition. Both the on-line
strokes and off-line images which come from the same acquisition were used
for the bi-modal system. While similar with the 2 tasks mentioned above, the
outputs of bi-modal system are also SymLG. Note that the participants in this
task could use both the on-line and off-line information.

All three tasks involved in the above system are ranked according to the rate
of completely correct recognition, but each task is ranked separately.

Fig. 1. On-line handwritten formula. Strokes are sequence of points (in Inkml file
format).
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Fig. 2. Off-line handwritten formula rendered from Inkml (PNG file format).

Fig. 3. Off-line handwritten formula scanned from real paper (400 dpi, PNG file for-
mat).

3 Datasets and Formula Encodings

In this section, we describe the data sources, data collection, data format
and data encoding that we used in this competition. As indicated in Table 1,
CROHME 2023 collects new bimodal data both from off-line real images and
on-line strokes, as well as merges data from the previous CROHME. On this
basis, it is supplemented by the off-line dataset OffRaSHME and large scale of
artificial on-line data.

3.1 Handwritten Formulas Data Format

In general, CROHME 2023 provides 2 types of input handwritten formula data,
which are InkML for on-line and PNG format image for off-line, and the bi-modal
is combining these 2 formats of one same handwritten formula. All 3 tasks used
Symbol Label Graph (SymLG) as the ground truth for system training and also
as the final output of the system for further performance evaluation.

InkML: Strokes are defined by lists of (x, y) coordinates, representing sampled
points which are collected by on-line input equipment. Figure 1 gives a example
of on-line version of a expression, each point is visible and connected to the next
point to see the strokes. The specific strokes compose the symbols, and these
symbols compose the handwritten formulas. Each InkML (except test set), in
addition to giving information on the position of the strokes, also provides stroke-
level annotation information to indicate the relationship between strokes with the
assistance of MathML (XML-based representation) in presentation mode. Thus
the symbol segmentations and labels are available in this type of data. Similarly,
the Label Graph (LG), which is a CSV-based representation for Stroke-level
Label Graph used in previous CROHME is also provided
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Table 1. CROHME 2023 Data Sets. On-line data are only inkml files, off-line are
images, bimodal are inkml and image for each equation.

Tasks Train # Validation # Test #

Task 1

On-line Train 2019 9 993 Test 2016 1147

Validation 2019 986

artificial 145 108

new samples 1045 new samples 555 new samples 2 300

Total = 157 132 Total = 1 702 Total = 2 300

Task 2

Off-line rendered 9975 rendered 1147

real 1604

OffRaSHME 10 000

new samples 1045 new samples 555 new samples 2 300

Total = 20 979 Total = 1 702 Total = 2 300

Task 3:

Bimodal InkML + rendered 9 975 InkML + rendered 1147

InkML + real 1 604

new samples 1045 new samples 555 new samples 2 300

Total = 10 979 Total = 1 702 Total = 2 300

Image: Due to the different sources of data, there are two different images types.
Indeed, in first competitions several types of acquisition devices have been used:
Annoto pens (which produce on-line and off-line signal), tablet-pc with pen based
sensitive screen, and numeric white board. So a number of early CROHME data,
which are only available as on-line data, lack real off-line images, so these were
rendered automatically from the on-line data with size 1000 × 1000 pixels and
5 pixels of edge padding. At the same time, as OffSRaHME [15], we scanned all
the formulas that existed in real writing on paper; these real off-line images are
not gray-scale and have no fixed size due to the different sizes of handwritten
formulas scale.

Symbol Label Graph: With the development of end-to-end handwritten math-
ematical recognition system, the stroke level segmentation of each symbol is no
longer produced. Therefore, CROHME 2023 does not demand stroke level Label
Graph (LG) files as the final output of the system, only Symbol Label Graph
(SymLG) is required as formula structure representation for evaluation. SymLG
and the related metrics are detailled in Sect. 4.

3.2 Formula Data Selection and Collection

Firstly a corpus of expressions is built then these expressions are written by
volunteers.



ICDAR 2023 CROHME 557

Formula Data Selection. The selection of the mathematical expressions is an
important step because it selects the language domain of the competition. To
build this list of expressions, we have followed the same process as in the past
contests, as described in [10]. Using a public set of LATEX sources of scientific
papers [1] all math expressions have been extracted and filtered using the gram-
mar IV defined in previous context. Then the expressions are selected in this list
to keep the term frequency and expressions length frequency comparable to the
training set. 4000 expressions have been pre-selected.

Handwritten Formula Collection. The 2023 new data collection was done
over 150 of participants in three sites: France, Japan and Sweden with the Wacom
Intuio device, which is allowed to record the pen trajectory while writing on a
standard paper. Each A4 size paper has 5 or 8 formulas written on it. Most of
the formulas need to be written in rectangular boxes in order to easily separate
the formulas on the same sheet of paper. We also tried to let the participants
write down a series of formulas freely, without any limitation of boxes.

After the collection, each expression have been individually checked. A part
of them has been discarded because of issues in the acquisition (miss matching of
on-line and off-line), connecting symbols (the same stroke shared by 2 symbols),
or scratching. . . leading to a new set of 3900 handwritten expressions.

3.3 Generated Artificial HME

Two pattern generation sets are provided for Task 1. The first set consists of syn-
tactic patterns generated by parsing the structure of handwritten mathematical
expressions (HMEs) to identify the syntactic role of each component within an
HME [12]. After that, each HME is decomposed to identify all valid sub-HMEs
based on their syntactic role. These sub-HMEs are considered as new meaningful
HMEs. Moreover, we also interchange sub-HMEs that have the same syntactic
role inside each HME to get new HME patterns. The generated syntactic pat-
terns differ from the original patterns, and we have provided approximately
76,224 syntactic patterns in CROHME 2023.

The second set consists of synthetic patterns generated from LATEX sequences.
We create an XML layout from each LATEX sequence and update the layout
with the handwritten symbols extracted from CROHME 2019 training set. We
generated approximately 68,884 HME patterns from LATEX sequences of the
CROHME 2019 Wikipedia corpus and collected LATEX sequences.

The Table 1 describes clearly the usage of the different data sets in the
competition.

4 Evaluation Metrics

4.1 Symbol Layout Graph: SymLG

As CROHME 2023 concentrates on formula recognition for a variety of input
formats, the evaluation metric of formula recognition is always the same symbol-
level evaluation for different tasks. The unified SymLG representation forgets
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which strokes belong to which symbol and allows all systems, whether they
produce stroke-level or symbol-level results, to have an identical standard that
can be compared directly. The Fig. 4(a) gives an example of a SymLG for an
expression containing 4 symbols. This graph can be generated from the LATEX
string, from the mathML representation (available in InkML files) or from Stroke
level Label Graphs.

2
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(oR)

7

(oRR)

Sup

R R

(a) Ground Truth SymbLG: 2x + 7
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(oRR)
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R R R

(b) Symbol Recognition Error (c) Structure Recognition Error:
2x + 1 2x + 7

Fig. 4. A visualisation example for formula recognition evaluation with SymLG. Com-
pared with the Ground Truth (a) ‘2x + 7’, (b) ‘2x + 1’ and (c) ‘2x + 7’ are 2 possible
mistakes of system recognition. (b) has a symbol recognition error, which means that
‘1’ and ‘7’ are mistaken, while (c) has two structure recognition errors, which means
that the relationship between ‘2’ and ‘x’, ‘2’ and ‘+’ are misunderstood, which leads
to new errors of mismatching nodes oRR and oRRR.

4.2 Metrics

As previous CROHME, initially described in [10], updated in [4], we consider
expression and structure recognition rates as the most important metrics.

For each system, we generated a table giving the percentage of expressions
with matching MathML trees, and with at most 3 incorrect symbols or relations.
And the completely correct recognition rates were used to rank systems for all
Tasks. It should be noticed that the evaluation metric applied on SymLG looses
a part of its advantages.
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Indeed, originally designed for stroke level comparison, the tool lgeval first
aligned the node identifiers. For one expression, stroke identifiers are unique
and the same whatever the recognized output. In Symbol level LG, the node
identifiers are based on the position of the symbol in the relation tree, starting
from the origin. This identification leads to add new errors during the evaluation
in the case of relation errors.

For example, in Fig. 4(c) the symbols x, + and 7 are correctly recognized,
but because of the relation error at the beginning of the expression, all follow-
ing nodes are renamed and miss-matching with the ground-truth. So, in case of
perfect recognition, every nodes are matching and no errors will be produced.
In case of only symbol recognition errors (without structure errors), the match-
ing is pertinent and the provided errors are meaning full. In case of a relation
recognition error, all the symbols from the concerned sub-expression will be in
error.

5 Participating Methods

As clearly shown in Table 4, there are in total 6 teams joined in 3 tasks. Sunia,
YP OCR and TUAT participated all the 3 tasks, while DPRL RIT only partici-
pated in task 1, PERO and UIT@AIClub Tensor only participated in task 2. We
need to mention that, probably because of our technique problem, the system
description of team UIT@AIClub Tensor is missed, thus the descriptions of the
5 team are shown as follow.

Sunia PTE.LTD1. A standard encoder-decoder models are used to translate a
bitmap image or a sequence of offsets and pen-up flags to a sequence of tokens in a
compact language where each mathematical expression has a unique representa-
tion. The encoder consists of stacked CNN/BLSTM layers, and the decoder relies
on an attention mechanism that can model convergence and estimate the location
of each symbol. For on-line recognition, preprocessing steps such as reordering
(for some of the combined models which were trained on spatially sorted strokes
and thus stroke-order free), resampling, and normalization are performed to
ensure that our system is not too sensitive to stroke order, device, location, and
size. Model ensembling and LL(1) grammar parsing are also employed during
beam search to boost the accuracy and avoid illegal output. We have augmented
the training set by assembling synthetic samples from the subexpressions in the
official training set and applying local and global distortions. For data usage,
based on-line official data, more synthetic samples were generated with stroke-
level annotations by official labels of these artificial samples. And for off-line and
bimodal task, rendered version of on-line samples are also used in additional to
the official train set.

YP OCR, CVTE Research: The system utilized an attention-based encoder-
decoder structure, where the encoder adopted the DenseNet architecture. In the
decoding stage, both a bidirectional tree decoder and a regular decoder are
1 https://patentscope.wipo.int/search/zh/detail.jsf?docId=DE375155214.

https://patentscope.wipo.int/search/zh/detail.jsf?docId=DE375155214
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applied, and two different models are obtained. For Task 1, the InkML files were
rendered uniformly before feeding them into the models with different decoders.
Additionally, a multi-stage curriculum learning training strategy is employed
to train the models. For Task 2, the models is trained by only using the official
training dataset and alleviated the problem of limited training data by using data
augmentation methods. Finally, the trained models are fused in different stages
to obtain better results and integrated the results of both decoders through beam
search during the inference stage.

PERO System: The system consists of an optical model (OM) and a language
model (LM). The OM is based on a CRNN architecture trained using the CTC
loss function. It operates on images with a normalized height of 128 pixels and
arbitrary length. The LM is an LSTM network trained to predict the next LaTeX
token given its predecessors. To train the OM, the provided off-line dataset
and also the provided synthetic data are used. As training data for the LM,
the ground truth provided in the datasets and also publicly available equations
from Wikipedia1 are used. The OM is trained to produce a LaTeX code. The
LM decodes logits generated by the OM using prefix search decoding and the
hypothesis representing a valid LaTeX code with the highest probability is taken
as a result. Finally, LaTeX codes are converted into SymLG using the provided
tools.

Team DPRL RIT. QD-GGA [3] system is extended, a visual parser that (1)
creates a line-of-sight (LOS) graph over strokes, (2) scores stroke segmentation,
symbol class, and relationship hypotheses with a multi-task CNN, (3) segments
and classifies symbols, and (4) selects relationships using a maximum spanning
tree. We have improved visual features and speed. Input images are now 64× 64
for all stroke and formula window images, with formula windows centered on
the target/parent stroke. The 2 nearest neighbors [14] of strokes define con-
text windows. A modified graph attention network is used with cropped strokes
and their two cropped nearest neighbors as additional context features. Spatial
pyramidal pooling (SPP) [2] was added to avoid spatial information loss. These
features have improved symbol segmentation and classification rates, while rela-
tionships require more work. Memory optimizations provide inference times of
25.9 ms/formula on a desktop system with two Nvidia GeForce GTX 1080 Ti
GPUs (12 GB each).

Team TUAT. Two models and their combination are provided for on-line, off-
line, and bi-modal recognition tasks. For the on-line recognition model, a deep
BLSTM network is used for jointly classifying symbols and relations. Then, a
2D-CFG is used to parse the symbols into mathematical structure [11]. For the
off-line recognition model, an end-to-end deep neural network that is trained
using weakly supervised learning is used, and a symbol classifier is added to the
encoder-decoder model to improve the localization and classification of the CNN
features. More details of this method can be found in the paper [13]. For the
combination of on-line and off-line models, firstly several candidates with their
probability scores during the Beam Search process are generated for each on-
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line and off-line recognition model. Then, their prediction scores are combined
using a trained weight. The weight is chosen by the best combination recognition
rate on the validation set. For the data, the systems are trained using the given
dataset as provided by the competition.

6 Results

In this section, we summarize all of the results in CROHME 2023. Table 2 and 3
present respectively results on the new test set 2023 and on the previous test set
2019. There are in total 6 teams participating in 3 tasks, 3 of them participate
in all of these 3 tasks, while the other 3 teams only selected one of on-line or
off-line task.

Table 2. Formula Recognition Results (Test set 2023)

Structure + Symbol Labels Structure

Correct 1 ≤ s.err 2 ≤ s.err Correct rate

Task 1: On-line

Sunia* 82.34 90.26 92.47 92.41

YP OCR 72.55 83.57 86.22 86.60

TUAT 41.10 54.52 60.04 56.85

DPRL RIT 38.19 53.39 58.39 59.98

Task 2: Off-line

Sunia* 70.81 81.74 86.13 86.95

YP OCR 67.86 80.86 85.13 85.99

PERO 58.37 71.22 75.57 75.55

TUAT 51.02 63.17 67.48 64.59

UIT@AIClub Tensor 14.83 22.87 28.57 32.19

Task 3: Bi-modal

Sunia* 84.12 91.43 93.70 94.13

YP OCR 72.55 83.57 86.22 86.60

TUAT 53.76 68.83 74.22 70.81

Sunia team obtained all the highest recognition rate in on-line, off-line and
bi-modal tasks, and is ahead of YP OCR who also took part in all of 3 tasks.

Compared to the Test set 2019, Test set 2023 had lower recognition rates
for the same participants. AS this is a global observation, we can conclude that
the new test set is harder than the previous one. However, Sunia, which won
CROHME 2023, had a better recognition rate than the systems that partici-
pated in CROHME 2019 on the same data. It is a significant indication of the
continuous developments in Handwritten Mathematical Expression Recognition
over recent years.
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Table 3. Formula Recognition Results (Testset 2019)

Structure + Symbol Labels Structure

Correct 1 ≤ s.err 2 ≤ s.err Correct rate

Task 1: On-line

Sunia* 88.24 93.08 93.99 94.25

YP OCR 84.74 90.99 92.33 92.66

TUAT 56.88 71.89 76.31 70.73

DPRL RIT 40.70 59.47 67.06 70.23

2019 winner 80.73 88.99 90.74 91.49

Task 2: Off-line

Sunia* 77.73 87.41 90.08 90.58

YP OCR 73.39 85.74 88.49 89.16

PERO 67.39 77.23 81.07 78.98

TUAT 50.13 63.55 66.89 63.30

UIT@AIClub Tensor 38.28 52.29 58.80 59.13

2019 winner 77.15 86.82 88.99 89.49

Task 3: Bi-modal

Sunia* 86.91 92.16 93.58 93.74

YP OCR 84.74 90.99 92.33 92.66

TUAT 57.88 73.81 82.82 72.14

Since the 3 tasks in this competition use exactly the same evaluation metrics,
it is interesting to conduct a comparison between different tasks. In general,
bi-modal systems have the best performance, which has a more enriched data
dimension therefore fits the common sense. In most cases, on-line systems have
better capabilities than off-line systems, except on-line and off-line systems from
TUAT. This illustrates that on-line data with the combination of spatial and
temporal information is more conducive than off-line data which only consider
the spatial information. However, we do not exclude that generated artificial on-
line HME greatly increases the sample size of the on-line dataset, and improving
the performance of the deep learning system. Therefore, it is also necessary to
further explore the usage of artificial data for off-line datasets, which can greatly
increase the data volume of off-line datasets and save manual annotation costs.

A summary of confusion histograms that tabulate errors in symbols and
symbol pairs as defined in [10] is presented in Table 4. It is important to note
that the most common errors are confusion with absent symbols which are not
shown in the table. Indeed, the confusion with absent symbols is always caused
by the errors in structure, different structures can not be matched symbol by
symbol, that raises errors in the position and classification of the symbols, as
explained in Sect. 4.2. The statistics in the table show that symbols 1, 2, and
− are the most difficult to recognize, which have commonalities across systems,
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maybe because these symbols are the most frequent. For symbol pairs, most of
systems are hard to identify −1, 1 , and 2 , there is also specificity in the different
systems.

Table 4. Most frequent symbol and sub-structure recognition errors (Test set 2023).
E columns give the GT symbol or sub-structure which have been mis-recognized. #
columns give the number of occurrences of this errors.

Symbols Symbol Pairs

1st 2nd 3rd 1st 2nd 3rd

E # E # E # E # E # E #

Task1: On-line

Sunia 1 84 ) 71 2 68 −1 34 −− 27
2

26

YP OCR 1 193 2 152 - 132 −1 39 (x 26
2

26

TUAT 1 405 2 380 - 362 1 70 −1 70 −− 59

DPRL RIT 1 599 2 558 - 540
2

112 −1 109 1 104

Task2: Off-line

Sunia 1 181 2 157 - 136 −1 27 −− 26
2

21

YP OCR 1 213 x 172 2 168 x) 38 −1 36 (x 33

PERO 1 331 - 225 2 214 −1 57 = 1 52 1 37

TUAT 1 291 - 213 2 211 1 51 = 1 50 −− 48

UIT@AIClub Tensor - 986 1 982 2 978
2

169 1 165 −1 148

Task3: Bi-modal

Sunia 1 70 2 56 x 46 x) 14 ab 14 dx 12

YP OCR 1 193 2 152 - 132 −1 39 (x 26
2

26

TUAT 1 337 2 254 - 245 1 58 = 1 55 −− 55

7 Conclusion

CROHME 2023 provides 1,045 new expressions in train set, 555 in validation set
and 2,300 in test set of handwritten formulas in bi-modal with manual annota-
tions, as well as large-scale of artificial data. Compared to the CROHME 2019
results, the CROHME 2023 winner had a superior performance, especially in
on-line task. But the winner’s improvements are not as impressive as those in
2019. CROHME 2023 participants all adopted the deep learning approaches,
training models with large amounts of data. However, several system continue
to use structural constraints (as LL(1) or CFG grammars). Furthermore, sta-
tistical language models are now integrated by some participating systems. It
is worth noting that, the winner team Sunia, used data augmentation strategy
to increase the amount of provided official data. In addition, most on-line sys-
tems have better performance than off-line systems, there is still a significant
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improvement potential for Handwritten Mathematical Expression Recognition
systems, especially off-line.

On the basis of this topic, we have more in-depth ongoing discussions sched-
uled for the future. Nowadays, deep learning models, especially those with
encoder-decoder structure, have become the dominant solution for Handwritten
Mathematical Expression Recognition. These systems are sensitive to samples
quantity and quality of data sets, therefore, it will be interesting to extend the
amount of existing data set by exploring more cost-effective annotation methods
as well as gaining more data with the help of synthetic algorithms. Exploring
non-supervised training strategy would also be benefit. In addition, more bench-
marking experiments are possible to explore the highlights and weaknesses of
each system, in order to provide more guidance for them.
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particularly thank Da-Han Wang and the OffRASHME team for sharing their data.

References

1. Gehrke, J., Ginsparg, P., Kleinberg, J.: Overview of the 2003 KDD cup. ACM
SIGKDD Explorations Newsl. 5(2), 149–151 (2003)

2. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1904–1916 (2015)

3. Mahdavi, M., Zanibbi, R.: Visual parsing with query-driven global graph atten-
tion (QD-GGA): preliminary results for handwritten math formula recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 570–571 (2020)

4. Mahdavi, M., Zanibbi, R., Mouchère, H., Viard-Gaudin, C., Garain, U.: ICDAR
2019 CROHME + TFD: competition on recognition of handwritten mathematical
expressions and typeset formula detection. In: 15th IAPR International Conference
on Document Analysis and Recognition (ICDAR 2019), Sydney, Australia (2019)

5. Mouchère, H., Viard-Gaudin, C., Kim, D.H., Kim, J.H., Utpal, G.: CROHME
2011: competition on recognition of online handwritten mathematical expressions.
In: ICDAR, Beijing, China (2011)

6. Mouchère, H., Viard-Gaudin, C., Kim, D.H., Kim, J.H., Utpal, G.: ICFHR 2012 -
competition on recognition of on-line mathematical expressions (CROHME 2012).
In: ICFHR, Bari, Italy (2012)

7. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: ICFHR 2016 competi-
tion on recognition of handwritten mathematical expressions (CROHME 2016).
In: ICFHR, Shenzhen, Chine (2016)

8. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U., Kim, D.H., Kim, J.H.:
ICDAR 2013 CROHME: third international competition on recognition of online
handwritten mathematical expressions. In: ICDAR, Washington, DC, USA (2013)

9. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Utpal, G.: ICFHR 2014 - competition
on recognition of on-line mathematical expressions (CROHME 2014). In: ICFHR,
Crete, Greece (2014)



ICDAR 2023 CROHME 565

10. Mouchère, H., Zanibbi, R., Garain, U., Viard-Gaudin, C.: Advancing the state of
the art for handwritten math recognition: the CROHME competitions, 2011–2014.
Int. J. Doc. Anal. Recognit. (IJDAR) 19(2), 173–189 (2016). https://doi.org/10.
1007/s10032-016-0263-5

11. Nguyen, C.T., Truong, T.-N., Nguyen, H.T., Nakagawa, M.: Global context for
improving recognition of online handwritten mathematical expressions. In: Lladós,
J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12822, pp. 617–631.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86331-9 40

12. Truong, T.N., Nguyen, C.T., Nakagawa, M.: Syntactic data generation for hand-
written mathematical expression recognition. Pattern Recogn. Lett. 153, 83–91
(2022)

13. Truong, T.N., Nguyen, C.T., Phan, K.M., Nakagawa, M.: Improvement of end-
to-end offline handwritten mathematical expression recognition by weakly super-
vised learning. In: 2020 17th International Conference on Frontiers in Handwriting
Recognition (ICFHR), pp. 181–186. IEEE (2020)

14. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

15. Wang, D.H., et al.: ICFHR 2020 competition on offline recognition and spotting
of handwritten mathematical expressions-offrashme. In: 2020 17th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 211–215. IEEE
(2020)

https://doi.org/10.1007/s10032-016-0263-5
https://doi.org/10.1007/s10032-016-0263-5
https://doi.org/10.1007/978-3-030-86331-9_40
http://arxiv.org/abs/1710.10903


ICDAR 2023 Competition on Recognition
of Multi-line Handwritten Mathematical

Expressions

Chenyang Gao1, Yuliang Liu1, Shiyu Yao2, Jinfeng Bai2, Xiang Bai1(B),
Lianwen Jin3, and Cheng-Lin Liu4

1 Huazhong University of Science and Technology, Wuhan, China
{m202172425,ylliu,xbai}@hust.edu.cn

2 Tomorrow Advancing Life Education Group, Beijing, China
yaoshiyu@tal.com, jfbai.bit@gmail.com

3 South China University of Technology, Guangzhou, China
eelwjin@scut.edu.cn

4 Institute of Automation, Chinese Academy of Sciences, Beijing, China
liucl@nlpr.ia.ac.cn

Abstract. Mathematical expressions play an essential role in scientific
documents and are critical for describing problems and theories in var-
ious fields, such as mathematics and physics. Consequently, the auto-
matic recognition of handwritten mathematical expressions in images
has received significant attention. While existing datasets have primar-
ily focused on single-line mathematical expressions, multi-line mathe-
matical expressions also appear frequently in our daily lives and are
important in the field of handwritten mathematical expression recogni-
tion. Additionally, the structure of multi-line mathematical expressions is
more complex, making this task even more challenging. Despite this, no
benchmarks or methods for multi-line handwritten mathematical expres-
sions have been explored. To address this issue, we present a new chal-
lenge dataset that contains multi-line handwritten mathematical expres-
sions, along with a challenging task: recognition of multi-line handwritten
mathematical expressions (MLHMER). The competition was held from
January 10, 2023 to March 26, 2023 with 16 valid submissions. In this
report, we describe the details of this new dataset, the task, the evalua-
tion protocols, and the summaries of the results.

Keywords: Handwritten mathematical expression recognition ·
Multi-line handwriting recognition

1 Introduction

Mathematical expressions are a crucial component of scientific documents, pro-
viding a concise and precise way of describing complex problems and theories in
various fields, such as mathematics, physics, engineering, and economics. Conse-
quently, the automatic recognition of handwritten mathematical expressions is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 566–576, 2023.
https://doi.org/10.1007/978-3-031-41679-8_34
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an essential task as it can facilitate the digitization and analysis of mathemati-
cal texts, assist visually impaired students in learning mathematics, and enable
natural handwriting interfaces for mathematical notation.

In recent years, the field of handwritten mathematical expression recognition
has received significant attention, with various algorithms and techniques pro-
posed for recognizing single-line mathematical expressions. However, multi-line
mathematical expressions are equally important and challenging, appearing fre-
quently in our daily lives and in various scientific documents. More specifically,
multi-line expressions are used to represent complex mathematical concepts,
such as equations, matrices, systems of equations, and proofs. Moreover, the
structure of multi-line expressions is more complex, making their recognition a
challenging task.

Despite the importance of recognizing multi-line handwritten mathemati-
cal expressions, no benchmarks or methods for multi-line expressions have been
explored. Therefore, we present a new challenge dataset containing multi-line
handwritten mathematical expressions and a task of recognizing them. As shown
in Fig. 1, we give a simple comparison between multi-line mathematical expres-
sions in our MLHME-38K dataset and single-line mathematical expressions in
CROHME [10] and HME100K [11] datasets. Our goal is to promote research in
handwritten mathematical expression recognition and to address the gap in the
availability of datasets and methods for multi-line expressions.

Recognizing multi-line handwritten mathematical expressions is a challeng-
ing task due to several factors. First, multi-line expressions can be of varying
lengths and have complex structures, with nested subexpressions and dependen-
cies between lines. Second, the handwriting styles and fonts used in multi-line
expressions can vary significantly, making it difficult to generalize across differ-
ent writers and domains. Third, the recognition of multi-line expressions requires
not only the recognition of individual characters and symbols but also the iden-
tification of their spatial and structural relationships.

Considering the importance of recognizing multi-line handwritten mathemat-
ical expressions and the challenges it faces, we host the ICDAR 2023 Competition
on Recognition of Multi-line Handwritten Mathematical Expressions. We hope
this competition can attract more researchers to pay attention to this field and
promote research in this area.

2 Competition Organization

ICDAR 2023 Competition on Recognition of Multi-line Handwritten Mathe-
matical Expressions is organized by a joint team of Tomorrow Advancing Life
Education Group, Huazhong University of Science and Technology, South China
University of Technology, and Institute of Automation, Chinese Academy of Sci-
ences.
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(a) A single-line mathema�cal expression from CROHME dataset.

(b) A single-line mathema�cal expression from HME100K dataset.

(c) A mul�-line mathema�cal expression from our MLHME-38K  dataset.

Fig. 1. Comparison between multi-line mathematical expressions in our MLHME-38K
dataset and single-line mathematical expressions in CROHME and HME100K dataset.

3 Dataset

We name our dataset MLHME-38K, as it focuses on Multi-Line Handwritten
Mathematical Expressions. It totally includes 38,000 labeled images, of which
9,971 images are multi-line mathematical expressions and 28,029 images are
single-line. All these images were uploaded by users from real-world scenarios.
Consequently, our dataset MLHME-38K becomes more authentic and realistic
with variations in color, blur, complicated background, twist, illumination, longer
length, and complicated structure. Some examples of our dataset are shown in
Fig. 2.

The dataset is divided into a training set, a test A set, and a test B set. The
training set consists of 30,000 images which will be available to the participants
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Fig. 2. Some examples from our MLHME-38K dataset

along with their annotations. The test A set consists of 3,000 images and the
test B set consists of 5,000 images, whose annotations will not be released. In
the competition stage, only images are offered. The participants are required to
submit their results on the test A set and test B set with the specific format.
Dividing these two test sets can prevent the model from overfitting on a single
test set. During the competition, test A set will be open first and the top ranked
teams on the leaderboard will be selected for the evaluation of test B set. The
final ranking is based on test B set. Every image in the dataset is annotated with
a string of LaTeX sequence denoting the mathematical expression. Annotations
for images are stored in a txt file with the format shown in Table 1.
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Table 1. The annotation format of our MLHME-38K dataset.

File Name LaTeX String

train 0.jpg \begin{matrix} 9 x − y = 3 \\ 2 x + y = 5 \end{matrix}
· · · · · ·
train 26.jpg \begin{matrix} n + 2 m = a \\ 2 n − m = 3 a \end{matrix}

4 Tasks

The competition has only one task: recognition of multi-line handwritten math-
ematical expressions. The aim of this task is to recognize the multi-line hand-
written mathematical expressions in images and output them in LaTeX format.

4.1 Evaluation Protocol

In this task, expression recall and character recall are utilized to evaluate the
performance.

– Expression recall: The percentage of predicted LaTeX formula sequences
matching ground truth (ignore space).

Srecall =
Sright

Ssum
(1)

– Character recall: Cdiff is the sum of edit distances for all images and Csum

is the number of characters for all labels.

Crecall = 1 − Cdiff

Csum
(2)

For example, Suppose there are two predictions: “1+1==2” and “a−b=11”,
and the corresponding labels are “1+1=2” and “a−b=11”. As for the expression
recall, Ssum is 2 since there are two predictions, and Sright is 1 since only
“a−b=11” match the target. So the expression recall is 0.5 in this case. For the
character recall, Csum is 11 (5+6) since the label “1+1=2” contains 5 characters
and “a−b=11” contains 6 characters. Cdiff is 1 (1+0) because the edit distance
between “1+1==2” and “1+1=2” is 1. The edit distance between “a−b=11”
and “a−b=11” is 0. So the character recall is 0.909 in this case.

4.2 Evaluation Details

The ranking results on the leaderboard of both test A and test B set is based on
the expression recall. During the competition, test A set will be open first and
the top-10 teams on the leaderboard will be selected for the evaluation of test B
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set. After the submission of test B set due, the final ranking will be given based
on the expression recall (higher priority) and character recall:

Better =

⎧
⎪⎪⎨

⎪⎪⎩

Sr1, if Sr1 ≥ Sr2 + 0.001
Sr1, if |Sr1 − Sr2| < 0.001 and 0.9 (Sr1 − Sr2) + 0.1 (Cr1 − Cr2) > 0

Sr1, if Sr1 > Sr2 and 0.9 (Sr1 − Sr2) + 0.1 (Cr1 − Cr2) = 0
Sr2, otherwise

where Sr1 and Cr1 denotes the expression recall and the character recall from
one team. While Sr2 and Cr2 denote the expression recall and the character
recall from another team.

The final ranking mainly depends on the expression recall. When the expres-
sion recall difference between the two teams does not exceed 0.001, we will utilize
character recall as an additional measure. Since tiny expression recall differences
indicate that the performance of the two methods is very close. In this case,
the character recall can provide a better comparison since it focuses on individ-
ual characters. We also give different weights for the expression recall and the
character recall. The higher weight is given to the expression recall because it is
more commonly used in recognition of handwritten mathematical expressions.
The chosen hyperparameters mainly rely on previous experience in the similar
competition1.

5 Submissions

Overall, we received valid submissions from 16 teams from both research commu-
nities and industries. The submission results of test A and test B set are shown
in Table 2 and 3. The final ranking is based on the results of test B set (Table 3).

5.1 Top 5 Submissions

iFLYTEK-OCR team uses an encoder-decoder architecture that formulates
HMER as an image-to-sequence translation problem. Specifically, the Conv2For-
mer [2] is employed as the image encoder, and a bi-directional trained Trans-
former decoder [13] with Attention Refinement Module [12] is utilized as the
latex sequence decoder. A Beam Search Ensemble is proposed to ensemble the
models trained with different sizes of characters. Specifically, at each decoding
step, probability distributions produced by all member models are averaged by
certain weights, and the top-k candidate characters to be output are decided
by the averaged probability distribution. As for the data augmentation, blur,
random, color jitter, scale [6], and TIA Transform [9] are applied to improve the
generalization ability of the model.

100-Gan Car University team utilizes CoMER [12] as the baseline model.
To efficiently establish time-series information in the encoder, they use two con-
former blocks [1] to extract the sequential information in the image feature map

1 https://www.heywhale.com/home/competition/5f703ac023f41e002c3ed5e4/content.

https://www.heywhale.com/home/competition/5f703ac023f41e002c3ed5e4/content/3
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Table 2. Test A set results and rankings on recognition of multi-line handwritten
mathematical expressions.

Rank Team Name Exp. Recall Team Members Affiliations

1 iFLYTEK-OCR 0.6697 Hao Wu, Mingjun Chen, Xuejing

Niu, Changpeng Pi

iFLYTEK

2 BOE AIOT AIBD 0.6573 Zhanfu An, Guangwei Huang,

Ruijiao Shi, Rui Zheng

Boe Technology

Group Co., Ltd.

3 MACARON 0.6557 Yamato Okamoto, Baek

Youngmin, Ichimura Shuta,

Nakao Ryota, Nakagome Yu

LINE Corporation

4 Just do your best 0.6463 Yingnan Fu, Tiandi Ye East China Normal

University

5 TianyuAI 0.6383 Yu Yan Wuhan Tianyu

Information

Industry Co., Ltd.

6 100-Gan Car

University

0.6330 Zhuoyan Luo, Yinghao Wu,

Zihang Xu, Qi Jing, Hui Xue

Southeast

University

7 HMEfly 0.6300 Chenyu Liu University of

Science and

Technology of

China

8 zyyjyvision 0.6217 Hui Zheng, Xiahan Yang,

Qianwen Jia

None

9 sysu 0.6210 Qiqiang Lin, Haiyang Xiao Sun Yat-sen

University

10 FM 0.5993 Xiaoyu Zhang, Maojin Xia,

Wenhui Dong

Shanghai Yichuang

Information

Technology Co.,

Ltd., Huawei

Technologies Co.,

Ltd.

11 C OCR 0.5937 Haoyang Shen Guangzhou Shiyuan

Electronics Co., Ltd

12 None 0.5687 Dan Luo None

13 Not ready yet 0.5937 Weiwei Yi Vivo

Communication

Technology Co.

Ltd.

14 AYYTeam 0.4363 Zhe Wang, Yifan Bian, Mingyi

Ma, Zeyu Chen

None

15 BeatMER 0.2717 Jing Xian, Xingran Zhao Ant Group Co.,

Ltd.

16 atd doc cits 0.2347 Nobukiyo Watanabe, Tadahito

Yao

Canon IT Solutions

Inc.

from the horizontal and vertical axes, respectively. Then a fusion operation is
conducted on the reshaped feature maps from two different perspectives to get
the final image representations. Apart from the image encoder, the other parts
are the same as CoMER. The scale augmentation [6], distortion, sketch and per-
spective are employed to augment the images. Moreover, a simple voting scheme
is utilized to ensemble the models trained with different settings.
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Table 3. Test B set results and rankings on recognition of multi-line handwritten
mathematical expressions. Note that * denotes character recall.

Rank Team Name Exp.

Recall

Team Members Affiliations

1 iFLYTEK-OCR 0.6790

(0.9695*)

Hao Wu, Mingjun Chen,

Xuejing Niu, Changpeng Pi

iFLYTEK

2 100-Gan Car

University

0.6300

(0.9603*)

Zhuoyan Luo, Yinghao Wu,

Zihang Xu, Qi Jing, Hui

Xue

Southeast University

3 BOE AIOT AIBD 0.6244

(0.9618*)

Zhanfu An, Guangwei

Huang, Ruijiao Shi, Rui

Zheng

Boe Technology Group

Co., Ltd.

4 TianyuAI 0.6186

(0.9583*)

Yu Yan Wuhan Tianyu

Information Industry

Co., Ltd.

5 MACARON 0.6166

(0.9552*)

Yamato Okamoto, Baek

Youngmin, Ichimura Shuta,

Nakao Ryota, Nakagome Yu

LINE Corporation

6 Just do your best 0.6036

(0.9492*)

Yingnan Fu, Tiandi Ye East China Normal

University

7 sysu 0.5950

(0.9589*)

Qiqiang Lin, Haiyang Xiao Sun Yat-sen University

8 zyyjyvision 0.5950

(0.9463*)

Hui Zheng, Xiahan Yang,

Qianwen Jia

None

9 FM 0.5456

(0.9381*)

Xiaoyu Zhang, Maojin Xia,

Wenhui Dong

Shanghai Yichuang

Information Technology

Co., Ltd., Huawei

Technologies Co., Ltd.

10 HMEfly 0.2272

(0.1714*)

Chenyu Liu University of Science

and Technology of

China

BOE AIOT AIBD team adopts three steps to solve the problem. First, an
adaptive image adjustment is proposed to determine the number of lines of the
expression in an image. Second, to solve the problem of different image resolu-
tions, an Image Super Resolution (ISR) module is added to CAN [5] and CoMER
[12], resulting in six models with different training strategies. The simple voting
scheme is utilized to ensemble these models. Finally, they judge the latex format
of the fusion results. If the latex format is incorrect, the SAN network is utilized
to further correct these results. As for the data augment methods, color enhance-
ment (adjusting gamma value, adding Gaussian blur, adjusting hue, saturation,
and value), scale augmentation (scale ratio value range [0.7,1.4]), and rotation
(rotation angle value range [−5,5]) are applied to improve the robustness of the
model.

TianyuAI team adopts CAN [5] and CoMER [12] as the baseline models.
To enhance the prediction of single-line mathematical expressions, they utilize
a CTC branch during the training phase. They also introduce focal loss [7] to
address the unbalanced character distribution in the dataset. Similar to most
teams, the model ensemble strategy is adopted to improve the performance of
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their methods. Specifically, a simple voting scheme is utilized to ensemble the
CAN and CoMER models trained with different settings. As for the data aug-
mentation, blur, random sharpness, random contrast, color jitter, rotate and
stretch are utilized to improve the performance of the models. Moreover, they
use Test Time Augmentation (TTA) during the testing phase.

MACARON team use Donut [4] as the baseline framework, which is a
method of document understanding that utilizes an OCR-free end-to-end Trans-
former model. The encoder and decoder of Donut are SwinTransformer [8] and
Multilingual BART. They utilize RGB shift, random brightness, random con-
trast, hue saturation value, channel shuffle, CLAHE, random sun flare, sharpen,
gaussian blur, optical distortion, coarse dropout, and rotate as the data augment
methods. Different from most teams, no model ensemble strategy is applied to
further improve the performance of their method.

5.2 Discussion

In this task, most participants utilize an encoder-decode framework that models
the recognition process in a sequence-to-sequence manner. They first employ a
powerful backbone as the image encoder to enhance the performance. DenseNet
[3], SwinTransformer [8] and Conv2Former [2] are the commonly used image
encoder. Additionally, the conformer block [1] and counting sub-task [5] are uti-
lized to reinforce the extraction of image features. As for the LaTeX sequence
decoder, counting-based GRU decoder [5], Transformer decoder [13] with Atten-
tion Refinement Module [12], and syntax-aware decoder [11] are frequently uti-
lized.

To improve the generalization ability of the model, most participants use
various data augmentations, e.g., blur, color jitter, rotation, distortion, sketch,
perspective, and so on. Apart from these commonly used data augmentations,
the scale [6] and TIA Transform [9] can also effectively improve the performance
of different methods. The scale [6] augmentation can address the recognition dif-
ficulty caused by symbols of various sizes. The TIA Transform [9] is a learnable
geometric augmentation that can bridge the isolated processes of data augmen-
tation and model training.

The model ensemble strategy is also utilized by most teams to improve the
performance of their methods. The typical process is first to train a predefined
number of models with different training settings of the same method or with
different methods. During the inference stage, probability distributions produced
by all member models are ensembled to produce the final results at each decoding
step. The voting scheme and weighted average are the most widely used ensemble
strategies. However, the model ensemble strategy greatly increases the inference
time, limiting its application in real life.

Since our MLHME-38K dataset contains not only multi-line mathematical
expressions but also single-line mathematical expressions. More specifically, the
test B set contains 1,880 multi-line mathematical expressions and 3,120 single-
line mathematical expressions. In order to see the performance of different meth-
ods on the multi-line mathematical expressions, we conduct experiments on the
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multi-line subset of the test B set. As shown in Table 4, the iFLYTEK-OCR
team still ranks first. However, the MACARON team rises from 5th to 2nd which
indicates that document understanding frameworks may have more potential for
multi-line mathematical expressions.

From Table 4, it can be observed that the scores for the multi-line subset of
Test B are higher than the scores for the single-line subset. The major reason
is that the diversity of the multi-line expressions is much smaller than that of
single-line expressions in our MLHME-38K dataset. The image sources of our
dataset are mainly the test questions and solutions from middle school and high
school, which leads to the fact that the multi-line expressions in our dataset
are mostly equation sets. We will try to incorporate more diverse data (e.g.
university test questions) into our dataset in the future.

Table 4. The results on the multi-line subset and single-line subset of the test B set.
The rankings are based on the multi-line subset.

Rank Team Name Multi-line
Exp. Recall

Single-line

Exp. Recall

1 iFLYTEK-OCR 0.7532 0.6343

2 MACARON 0.7197 0.5545

3 100-Gan Car University 0.7160 0.5782

4 BOE AIOT AIBD 0.6968 0.5792

5 Just do your best 0.6952 0.5484

6 zyyjyvision 0.6952 0.5311

7 TianyuAI 0.6947 0.5715

8 sysu 0.6814 0.5429

9 FM 0.6542 0.4801

10 HMEfly 0.3069 0.1792

6 Conclusion

This paper summarizes the organization and results of ICDAR 2023 Compe-
tition on Recognition of Multi-line Handwritten Mathematical Expressions. In
this competition, we present a new dataset named MLHME-38K, which focuses
on multi-Line handwritten mathematical expressions. Compared with single-line
mathematical expressions, the structure of multi-line mathematical expressions
is more complicated which makes this task more challenging. We received valid
submissions from 16 teams from both research communities and industries. These
submissions will provide this research area with new insights and potential solu-
tions. We also believe that our dataset will contribute to advancing the field of
handwritten mathematical expression recognition.
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Abstract. In this report, we present the final results of the ICDAR 2023
Competition on RoadText Video Text Detection, Tracking and Recogni-
tion. The RoadText challenge is based on the RoadText-1K dataset and
aims to assess and enhance current methods for scene text detection,
recognition, and tracking in videos. The RoadText-1K dataset contains
1000 dash cam videos with annotations for text bounding boxes and
transcriptions in every frame. The competition features an end-to-end
task, requiring systems to accurately detect, track, and recognize text
in dash cam videos. The paper presents a comprehensive review of the
submitted methods along with a detailed analysis of the results obtained
by the methods. The analysis provides valuable insights into the cur-
rent capabilities and limitations of video text detection, tracking, and
recognition systems for dashcam videos.

Keywords: Scene text · Tracking · Recognition

1 Introduction

Text detection and recognition in videos have traditionally been explored by
the document analysis community. The last text-tracking competition was held
nearly a decade ago and introduced the Text in Videos [9] dataset, which com-
prises 51 egocentric videos encompassing indoor and outdoor scenarios. Othe
rpopular datasets that deal with text in videos are USTB-VidTEXT [18] and
YouTube Video Text(YVT) [14]. They contain videos sourced from YouTube.
The USTB-VidTEXT dataset primarily consists of text in the form of overlaid
captions, whereas the YVT includes both born-digital text and scene text. These
datasets contain videos with text that are incidental and widely dispersed across
the scene.
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Compared to the ICDAR 2013–15 Text-in-Videos Challenge that used a
dataset containing 50 videos, our challenge uses the RoadText1K [15] dataset
having much larger and diverse set of videos. The text objects in driving videos
typically have short lifetimes, which require models tolerant to occlusions, able
to handle tiny text instances, and robust to motion blur and significant perspec-
tive distortions. Additionally, text instances may not be fully readable in any
single frame, necessitating the combination of detections across various frames
to transcribe them successfully. Furthermore, camera movement during driving
introduces distortions, such as motion blur. As a result, the approaches devel-
oped for existing video text datasets tend to be challenging to adapt to real-world
applications, such as driver assistance and self-driving systems (Fig. 1).

Fig. 1. Sample frames from RoadText-1K illustrating the various challenges and arte-
facts like glare, raindrops, out-of-focus, low contrast, and motion blur often encountered
in driving videos.

2 Competition Protocol

The competition took place between December 2022 and March 2023. The train-
ing and validation data were made available at the end of December 2022, while
the test data was released in mid-February 2023. Submissions were accepted
between March 1st and March 27th. The expectation was that participating
authors would adhere to the established rules of the challenge, to which they
had agreed when registering at the Robust Reading Competition (RRC) por-
tal1, as a means of ensuring scientific integrity throughout the competition.

The RRC portal serves as the host platform for the challenge. Submissions are
assessed through automated methods, and the outcomes reported in this report
represent the state of submissions at the conclusion of the challenge. However,
the challenge will remain open to accept new submissions. But the submissions
made after the official challenge period are not considered as an official challenge
entry (Table 1).

3 The RoadText-1K Dataset

The RoadText-1K [15] dataset comprises 10-second video clips extracted from
the BDD100K [21] dataset. The videos are 720p and 30 fps, and capture diverse
1 https://rrc.cvc.uab.es/?ch=25.

https://rrc.cvc.uab.es/?ch=25
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Table 1. Comparison of RoadText-1K with existing text video datasets.

Dataset Text in Videos [9] USTB-VidTEXT [18] YouTube Video Text [14] RoadText-1K [15]

Source Egocentric Youtube Youtube car-mounted

Size (Videos) 51 5 30 1000

Length (Seconds) varying varying 15 10

Resolution 720 × 480 480 × 320 1280 × 720 1280 × 720

Annotated Frames 27,824 27,670 13,500 300,000

Total Text Instances 143,588 41,932 16,620 1,280,613

Text type Scene Text Digital (captions) Scene Text and Digital Scene Text

Unique Words 3,563 306 224 8,263

Avg. text frequency per frame 5.1 1.5 1.23 4.2

Avg. Text Track length 46 161 72 48

locations, weather conditions (such as sunny, overcast, and rainy), as well as dif-
ferent times of day. To identify videos with a significant number of text instances,
an off-the-shelf text detector was utilised to scan through the frames of the videos
in BDD100K. The dataset was randomly partitioned into train, validation and
test sets of 500, 200 and 300 videos, respectively.

The bounding boxes and their transcriptions are provided at line level for all
the frames in the dataset. The tracks are classified into English, Non-English, and
Illegible. Ground truth transcriptions are provided only for text instances of the
English category. In contrast to most scene text datasets, text lines rather than
individual “words” (separated by spaces) were annotated to expedite annotation
and avoid ambiguity in cases involving numbers or abbreviations (Fig. 2).

4 RoadText-1K Challenge

4.1 Evaluation Metrics

The evaluation is based on an adaptation of the CLEAR-MOT [3,13] and ID
[16] frameworks, designed for tracking multiple objects. Each submission is eval-
uated using three different metrics, namely Multiple Object Tracking Precision
(MOTP), Multiple Object Tracking Accuracy (MOTA), and IDF1 score. The
number of objects tracked for at least 80 per cent of their lifespan are considered
as “Mostly Matched”. Those objects that are tracked between 20 and 80 per

Fig. 2. These are sample frames from clips in RoadText-1K, and they have annotations
indicating the location and transcription of the text overlaid on them. The boxes that
are colored green indicate English text, the ones in blue represent non-English text,
and the red boxes represent text that is illegible. (Color figure online)
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Table 2. Affiliations and the methods of the competition participants.

Method Affiliation

ClusterFlow Google

TH-DL Tsinghua University

TencentOCR TencentOCR

TransDETR ByteDance Inc

RoadText DRTE KLE Technological University

SCUT-MMOCR-KS South China University of Technology, Shanghai AI
Laboratory and KingSoft Office CV R&D Department

cent of their lifespan fall under “Partially Matched”, and those tracked for less
than 20 per cent of their lifespan are categorised as “Mostly Lost”. For ranking
the submissions, MOTA is used. During the evaluation process, a predicted word
is classified as a true positive if its intersection over union with a ground-truth
word is greater than 0.5 and the predicted transcription matches the ground
truth transcription. The assessment of transcription is case insensitive and it
is only done for English category tracks. Leading and trailing spaces are disre-
garded, and instances of two or more spaces are treated as a single space. The
recognition of punctuation marks at the start or end of a ground truth word
is discretionary and does not influence the evaluation. The evaluation process
does not consider areas that contain illegible or non-English legible text. As a
result, if a method fails to detect such words, it will not be penalised. Similarly,
a method that is successful in detecting such words does not receive a higher
score. Even though we only have a single end-to-end task, we also provide results
of detection and tracking without taking recognition into account.

4.2 Submitted Methods

The challenge received a total of 16 submissions, out of which 6 were unique
and had fulfilled all the competition criteria. The contestants were permitted to
submit multiple entries, but they were required to select a single submission as
their official entry for the competition. This selection had to be made blindly,
without access to the evaluation scores for the submissions. Table 2 presents the
names of the submitted methods and affiliations. A brief description of the 6
submitted methods is provided below:

ClusterFlow - ClusterFlow benefits from merging multiple algorithms,
including optical character recognition (OCR), optical flow, clustering, and deci-
sion trees. The approach involves using a cloud API to extract OCR results at
the line level for every image frame of each video, followed by calculating a dense
optical flow field using a modern RAFT implementation. The optical flow field is
then used to temporally extend the OCR line results to generate tubes or track-
lets of lines, which are then grouped into clusters across the entire video using
an unsupervised clustering algorithm. To achieve this, the algorithm searches for
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the optimal distance metric between tracklets, clustering algorithm, and hyper-
parameters using the training dataset. Once the tracklets are clustered, the algo-
rithm selects geometry and text from the tracklet to create tracked lines that
appear at most once within any video frame. This is accomplished by generating
a set of features from each line appearance, tracklet, and cluster, which are then
inputted into a classification algorithm. The classification algorithm is trained to
select the appearances of the cluster that match the ground truth in the training
set. During inference, the classification probabilities are used to choose the most
suitable line text appearance within a cluster at any video frame.

TH-DL - It uses an integrated approach for text detection, recognition, and
tracking in driving videos. For text detection and recognition, the algorithm
adopts TESTR [22] based on Transformer and finetunes the pre-trained TESTR
model on the training set of the Roadtext Challenge. For multi-object tracking,
ByteTrack [23] is employed, which uses similarities with tracklets to recover true
objects from low score detection boxes. A post-processing module is included to
filter duplicate instances of text detection and recognition.

TencentOCR - It integrates the detection results of DBNet [10] and Cas-
cade MaskRCNN [4], built with multiple backbone architectures, with the Parseq
[2] English recognition model for recognition and further improves the end-to-
end tracking with OCSort [5]. The result is end-to-end tracking and trajectory
recognition.

TransDETR - The method used in this submission is TransDETR [19]. The
approach involves pre-training the network weights on the ICDAR2015 video [9]
and fine-tuning the network on the RoadText-3K [7] and BOVText [20] datasets
for 20 epochs each. Finally, the network is fine-tuned on the RoadText-1K dataset
for 20 epochs.

RoadText DRTE - EasyOCR [8] is used to perform the subtasks of detec-
tion and recognition on the RoadText-1K [15] dataset. The algorithm uses the
CRAFT [1] algorithm for detection and the CRNN [17] model for recognition.
Once the video is processed frame by frame, the algorithm performs the track-
ing subtask by assigning a unique ID to each unique transcription in the video.
Instances of the same unique transcription are assigned the same ID throughout
the video.

SCUT-MMOCR-KS - This submission utilizes DBNet++ [11] for text
detection, which is first pre-trained on a collection of TextOCR, HierText [12],
DSText, YVT [14], ICDAR2015-Video [9], and Minetto before being fine-tuned
on DSText. For text recognition, a ViT-based [6] recognizer is used, which is
pre-trained on 10M unlabeled real STR images and fine-tuned on 4M labelled
real STR images. CoText tracking module is used for text tracking (Fig. 3).
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Table 3. Results of RoadText video text detection, tracking

Method MOTA MOTP IDF1 Mostly Matched Partially Matched Mostly Lost

TransDETR 37.53 74.18% 60.27% 1665 1762 1563

ClusterFlow 36.01 70.29% 61.19% 1757 1194 2029

TH-DL 31.07 75.20% 62.35% 2180 1495 1317

TencentOCR 16.40 66.59% 42.58% 746 894 3231

SCUT-MMOCR-KS −10.27 71.84% 56.91% 2354 1660 978

RoadText DRTE −27.61 70.46% 17.42% 1083 1692 2214

Fig. 3. The chart illustrates the results for text detection and tracking, with MOTA,
MOTP, and IDF1 represented by blue, red, and yellow bars, respectively. (Color figure
online)

Table 4. Results of RoadText video text detection, tracking and recognition

Method MOTA MOTP IDF1 Mostly Matched Partially Matched Mostly Lost

ClusterFlow 11.09 69.04% 48.07% 1392 920 2668

TH-DL −23.10 72.83% 37.34% 1235 737 3020

TencentOCR −23.87 56.19% 19.71% 315 454 4102

TransDETR −28.50 68.74% 26.87% 660 741 3589

RoadText DRTE −61.39 65.47% 12.08% 146 823 4020

SCUT-MMOCR-KS −77.1 67.83% 29.6% 1196 918 2878
The participants could use any dataset for training their methods, except the RoadText-1K test set.

4.3 Analysis

The results of the evaluation are presented in Table 3 and Table 4, with the first
one focusing on text detection and tracking and the second one displaying text
tracking results with recognition. In the absence of recognition, the method with
the highest MOTA score was TransDETR, while TH-DL achieved the highest
MOTP score and IDF1 score for text tracking. However, in the presence of
recognition, ClusterFlow is the winner of the competition and the only method
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Fig. 4. The chart illustrates the results for text detection, tracking and recognition,
with MOTA, MOTP, and IDF1 represented by blue, red, and yellow bars, respectively.
(Color figure online)

with a positive MOTA value and also achieved the highest IDF1 score, while TH-
DL maintained its position for the highest MOTP value. The commercial Google
OCR performs better in comparison to TH-DL, which utilizes TESTR, SCUT-
MMOCR-KS, employing ViT-based, and TencentOCR, which relies on Parseq
methods for recognition. In the evaluation process, predicted words are only
considered true positives when they match the ground truth. This means that if
the recognition fails to identify a word, the corresponding track will be considered
a false positive, leading to negative MOTA values. Text that appears in a frontal
or head-on position is relatively easy to detect. However, text detection methods
appear to struggle when presented with text instances such as fancy shop signage
or text situated on distant portions of the road beyond the driver’s lane (Figs.
4 and 5).

The participants utilized various approaches and strategies to enhance the
effectiveness of their methods. These include pre-training and fine-tuning mod-
els on diverse datasets, implementing post-processing steps like filtering out
repeated text detection and recognition instances to improve outcomes, and
merging multiple algorithms and methods. Despite these efforts, the detection,
tracking, and recognition still have significant room for improvement, particu-
larly recognition in challenging scenarios presented by the dataset.
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Fig. 5. Sample visualisation of the detected text and the recognition are shown for
the ground truth and the top three methods. Green bounding boxes are drawn over
detected text, and the recognised text is displayed over the bounding box. (Color figure
online)
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5 Conclusions and Future Work

The text detection, tracking and recognition challenge introduces a robust bench-
mark based on driving videos. The challenge is based on the already existing
RoadText-1K dataset and has received a total of 16 submissions from multiple
teams. In this report, we have summarised the unique features of the RoadText-
1K dataset, which make it particularly challenging and different from previous
datasets. The report also details a concise overview and an analysis of the sub-
missions. The RoadText challenge will remain open for new submissions in the
future, thereby providing a platform for researchers to benchmark and show-
case their methods. Looking ahead, we plan to expand the RoadText challenge
further by gaining deeper insights into the results and incorporating additional
tasks that encompass multilingual settings.
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Abstract. Document analysis and recognition techniques are evolving
quickly and have been widely used in real-world applications. However,
detecting tampered text in images is rarely studied. Existing image foren-
sics research mainly focuses on detecting tampered objects in natural
images. Text manipulation in images exhibits different characteristics,
e.g.,, text consistency, imperceptibility, etc., which bring new challenges
for image forensics. Therefore, We organized the ICDAR 2023 Compe-
tition on Detecting Tampered Text in Images (DTTI) and established a
new dataset named TII, which consists of 11,385 images. 5,500 images
are tampered using various manipulation techniques and annotated by
pixel-level masks. Two tasks are set up: text manipulation classification
and text manipulation detection. The contest started on 15th February,
2023 and ended on 20th March, 2023. Over a thousand teams were reg-
istered for the competition, with 277 and 176 valid submissions in each
task. In this competition report, we describe the details of the proposed
dataset, tasks, evaluation protocols and the results summaries. We hope
that this competition could promote the research of text manipulation
detection in images.

Keywords: Images forensics · Tampered text detection · Image
manipulation detection · Document forgery detection

1 Introduction

Texts in images efficiently deliver a wealth of important information and have
become one of the most common mediums for various applications, such as
digital finance, electronic commerce, security audit, and qualification review.
Therefore, it is crucial that we can prevent text from tampering. A slight change
in a sentence might significantly twist the whole carried semantic information.
However, most of the previous studies in Document Analysis and Recognition
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. A. Fink et al. (Eds.): ICDAR 2023, LNCS 14188, pp. 587–600, 2023.
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focus on detecting and understanding the content of texts, such as text detec-
tion [22,23,30], recognition [31,32,41,42] and spotting [21,26]. The authenticity
of them is rarely discussed, raising growing concerns about information security
in daily life.

In recent years, image forensics have received increasing attention from both
academia and industry aiming to defend against malicious image manipulation.
Most of the studies focus on natural images, such as Columbia [28], CASIA [8],
COVER [38], NIST16 [10] and RTD [19], in which the tampered subjects are usu-
ally objects, e.g.,, a human or a car. The individual characteristics of texts bring
new challenges, such as various fonts, lengths, and shapes, which might cause
limitations when using previous image-based manipulation detection methods
for detecting tampered texts. In comparison, tampered text detection is more
challenging due to the unstructured presentation of the texts. For example, the
tampered areas can be very small (e.g., a character in a paragraph); the contrast
between tampered regions and surroundings can be very low.

However, most of the previous works [2,3,6,7] towards tampered text detec-
tion are based on private datasets, which restricts the advance of this area. In
addition, most works [2,4,6] define the task as image classification, while localiz-
ing the forgery region is also of great importance. Recently, [36] and [37] propose
synthetic tempered text datasets for document and scene text, respectively. In
real scenes, manual text manipulation is one of the most common approaches,
and the detection difficulty of manual tampering is often greater than that of
synthetic tampering. Nevertheless, manual text tampering requires professional
skills, and the cost of text manipulation and pixel-level annotation is expensive.

Therefore, we organized the ICDAR 2023 Competition on Detecting Tam-
pered Text in Images. We build a new tampered text dataset, namely Tampered
Text in Images (TTI), which simulates the common cases in real-world electronic
commerce scenarios. The images are captured via several sources for diversity,
especially some are highly related to actual applications. It contains 11,385 text
images in total, and 5,500 images are manipulated using several types of manip-
ulation techniques, including manual and automatic approaches. Each tampered
image is annotated with a binary mask indicating the location of tampered
regions. Correspondingly, two tasks are present for this competition: (1) text
manipulation classification, and (2) text manipulation detection. We hope the
dataset and competition could facilitate the research community and promote
the research in tampered text detection in images.

2 Competition Organization

ICDAR2023 Competition on Detecting Tampered Text in Images is organized by
a joint team, including Huazhong University of Science and Technology, Alibaba
Group, and the South China University of Technology. We organize the compe-
tition through the Aliyun Tianchi platform online. The website1,2 for each task
1 https://tianchi.aliyun.com/competition/entrance/532048/introduction.
2 https://tianchi.aliyun.com/competition/entrance/532052/introduction.

https://tianchi.aliyun.com/competition/entrance/532048/introduction
https://tianchi.aliyun.com/competition/entrance/532052/introduction
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Fig. 1. Samples from TTI dataset. (a), (d) are the tampered images, (b), (e) indicate
the locations of the tampered regions, and (c), (f) are corresponding binary masks.
Some are cropped from the full-size images for better visualization.

provides user interfaces for participants, including corresponding download links
of the dataset, descriptions of the evaluation protocol, and a submission page.
Participants are welcome to choose one of the tasks or both.

Schedule. The competition started on 15th February 2023 and ended on 20th
March 2023. The code was submitted and evaluated from 15th March to 20th
March.

Awards. To encourage the participants, we have established prize awards for
the top-performing teams. The prize for the Competition on Detecting Tampered
Text in Images is 87,000 CNY in total, sponsored by Alibaba Group.

Overall, the competition attracted 1267 and 1156 teams from both research
communities and industries in each task, receiving 277 and 176 valid submissions,
respectively. Note that duplicate submissions are removed.

3 Dataset

3.1 Dataset Construction

Source of Images. The images are captured from three sources: (1) the text
images from actual e-commerce applications provided by Alibaba Group after
data desensitization, which includes certifications, contracts and screenshots,
etc.; (2) the text images photographed by 10 volunteers from daily life, includ-
ing books, commodity packages and signboards; (3) the text images selected from
the open-source datasets, specifically, receipt images from SROIE [17], scan doc-
ument images from FUNSD [18] and TNCR [1].
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Text Manipulation. To simulate the practical situations of text manipula-
tion in the real world, we perform both manual manipulations and automatic
manipulations on the collected text images. Specifically, the manual manipula-
tions are conducted by more than 20 professional image editors with different
editing preferences. They manipulate the images using Adobe Photoshop (PS)
following six types of pre-defined operations: (1) copy-move, (2) splicing, (3)
insertion, (4) inpainting, (5) coverage, (6) replacement. These operations are
summarized based on the observation of the most commonly used manipula-
tion techniques in practical electronic commerce scenarios. The main purpose of
operations (1)-(3) is to add texts, while the intention of operations (4) and (5)
is removing texts. The replacement operation often represents the combination
of text removal and text addition in the same region. The automatic manipula-
tions are performed through PS scripts that mimic the realistic text tampering
process mentioned above. Moreover, all tampered images are further fed into
a series of post-processing, including random crop, random resize, and random
compression to create distortions that often occur in actual electronic commerce
scenarios.

Ground Truth. Images in the dataset are first categorized into tampered and
untampered. As shown in Fig. 1, each tampered image in TTI is annotated with
a binary mask, where the manipulated pixels are labeled as 1 (white) and the
other pixels are labeled as 0 (black). The binary mask is annotated in parallel
with the manual manipulation process. The annotations of automatically manip-
ulated images are generated under the same criteria by comparing the differences
between the images before and after tampering.

As a result, TTI contains multiple types of tampering. Figure 1 visualizes
some typical cases. The first row is text addition and replacement. The tampered
text is highly similar to adjacent text. The second row shows the situation of
text removal. The tampered regions and the surrounding background are well
integrated. The bottom row demonstrates the cases of automatic manipulation.
Although they might not be as stealthy as manual tampering, they increase the
diversity of tampering and are also likely to occur in real applications. More
data examples from TII can be found in Appendix A.

3.2 Dataset Statistics and Analysis

Statistics. There are 11,385 images in TTI dataset. 5,500 of them are tampered
images and the rest are untampered images. The dataset is split into a training
set and a test set to evaluate the performance of the two tasks. The training
set consists of 8,285 images (4,000 tampered and 4,285 untampered). The test
set contains 3,100 images, whose ground truth will be privately served for online
evaluation purposes. Figure 2 shows the statistics of the dataset. The side lengths
of each image are between 512 to 2000. The differences in image size between
the training set and the test set also introduce challenges. Most of the tampered
regions are smaller than 5‰. The proportion of images with more than 30‰
tampered pixels is below 5%.
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Fig. 2. Illustration of the statistics of TTI dataset. (a) is the distribution of image
size and aspect ratio; (b) is the distribution of the tampered pixel ratio in each forged
image.

Challenges. We briefly summarize the challenges of TTI into two parts, namely
diversity and imperceptibility, according to the visualization and statistical anal-
ysis.

1) Diversity. As mentioned, the diversity of text images in the real world
increases the difficulty of tampered text detection. Therefore, we try to sim-
ulate it from the following aspects When building TTI dataset. Firstly, the
source image comes from various sources from daily life. The texts in the images
differ in colors, fonts, perspectives, sizes and languages. Secondly, the size of
images varies, bringing challenges to tracing subtle tampering cues. As shown in
Fig. 2(a), the resolution of images in TTI dataset reflects an approximate decen-
tralized distribution from 512 to 2000 with different aspect ratios. Thirdly, the
manipulation methods are diverse. In addition, the shape of tampered regions is
also various. As shown in Fig. 1, the shape of tampered regions might be regular
shapes like a box or circle or irregular shapes. The size of the manipulated text
region varies from 0.001% to 50% as shown in Fig. 2(b). The diversity of TTI
challenges the generalization of detection methods.

2) Imperceptibility. Compared to natural image manipulation datasets, TTI
dataset is more difficult since the tampered texts leave fewer visual traces and
are well integrated with the surrounding context. Firstly, the tampered regions
are relatively small. As shown in Fig. 2(b), the size of most tampered text
regions is below 1% of the image. The smallness of tampered regions also means
subtle visual inconsistency. Secondly, the local contrast between tampered and
authentic regions is low, increasing the difficulty of distinguishing tampered from
authentic areas. The distortions including random resize and random compres-
sion further weaken the visual traces. The imperceptibility challenges the dis-
covery ability of artifacts and the robustness of solutions.
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4 Tasks and Evaluation Protocols

The competition consists of two tasks: 1) text manipulation classification, and
2) text manipulation detection. The former aims to determine whether the input
image contains tampered text, while the latter requires further localize the tam-
pered region. In real applications, the detection methods are expected to achieve
a higher recall within a range of tolerable false alarms. Based on such consider-
ation, the evaluation protocols are designed as follows.

Task 1: Text Manipulation Classification.

Submission: Probability scores that an image is predicted as tampered.

Evaluation Protocols: we use the average true positive rate (TPR) under a
fixed range of true negative rate (TNR) to evaluate the performance of submitted
methods. TPR and TNR under a certain threshold are formulated as:

TPR =
TP

TP + FN
(1)

TNR =
TN

TN + FP
(2)

Similar to threshold-free metrics like Area Under Curve (AUC), the average
true positive rate mPN is formulated as:

mPN[0.9:0.99] =
TPRTNR=0.90 + TPRTNR=0.91 + . . . + TPRTNR=0.99

10
(3)

The range of tolerable TNR is set from 0.9 to 0.99.

Task 2: Text Manipulation Detection.

Submission: The probability maps for all test images are saved as 8-bit gray-
scale images, where the value of predicted tampered and authentic pixels is closer
to 255 and 0, respectively. The shape of each map is equal to the corresponding
input image. The gray-scale images will be normalized before evaluation.

Evaluation Protocols: We use the maximum IOU under the fixed range of
image classification false positive rate as the evaluation index. Firstly, thresholds
are determined according to the predicted tampered image mask submitted by
the contestant, where the maximum value of each mask Mi is regarded as its
image-level classification score:

Scorei = max(Mi) (4)

Accordingly, the minimum threshold T under the lowest tolerable TNR is
calculated based on the proportion of the number of correctly predicted authentic
images. Specifically, classification scores for authentic test samples {ScoreA

i } are
sorted, and TNR is formulated as:
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TNR =
∑

i I(ScoreA
i < T )

∑
i I(ScoreA

i ≥ T )
(5)

For each TNR, the corresponding threshold is determined. Finally, we cal-
culate the sum of maximum IOU (MIOU) of the tampered image within the
threshold range, which is formulated as:

IOU[0.9:0.99] = MIOUTNR=0.90 + MIOUTNR=0.91 + . . . + MIOUTNR=0.99 (6)

The range of tolerable TNR is set from 0.9 to 0.99 following Task 1.

5 Submissions

The top-5 performing results for Task 1 and Task 2 are presented in Table 1, The
complete ranking can be viewed on the competition website3,4. We introduce the
representative public submissions.

5.1 Top Submissions in Task 1

Team DouyinCV. Multiple backbones including ResNet [16], EfficientNet [33]
and Swin Transformer V2 [24] are leveraged to enhance the performance. Various
manipulation trace extracting methods are used as data pre-processing, such as
Error Level Analysis (ELA), SRM filter, and pre-trained MantraNet [39]. Data
augmentations include random resize, random compression, random aspect ratio
and random crop. As some images are tampered from the same picture in the
training and test set, they design a post-processing method called local detection
to fully utilize the authentic prior. For each image in the test set, they retrieve the
most similar image in the training set based on the cosine similarity of features
extracted by ResNet18 and align them using ECC [9]. Both the image-level and
pixel-level labels of the reference image are taken into account when scoring the
test image.

Team Xixihaha. The team selects DeepLabv3+ [5] as the basic architecture
with DiNAT [14] as its backbone, followed by a classification head and segmen-
tation head. Multi-task learning can optimize the segmentation performance by
regarding classification probabilities as prior. Furthermore, A improved DCT
Volume stream based on CAT-Net [20] is paralleled to extract JPEG artifacts
from the DCT domain. Inspired by TransForensics [13], they replace the original
segmentation decoder in DeepLabv3+ [5] with an attention decoder to enhance
the relation between different positions and levels. In addition, random resize and
random compression are employed during training to balance the distribution.
Focal loss and dice loss are leveraged to alleviate the data imbalance problem.
3 https://tianchi.aliyun.com/competition/entrance/532048/rankingList.
4 https://tianchi.aliyun.com/competition/entrance/532052/rankingList.

https://tianchi.aliyun.com/competition/entrance/532048/rankingList
https://tianchi.aliyun.com/competition/entrance/532052/rankingList


594 D. Luo et al.

Table 1. Results summary for the top-5 submissions of the competition

Team Name Affiliation Score ⇑ Rank

Task 1 DouyinCV ByteDance 88.06 1

Xixihaha Xi’an Jiaotong University 87.28 2

Lykken Ant Group Co., Ltd. 86.33 3

Overfit Again IntSig Information Co., Ltd. 86.33 4

Heiha Shenzhen University 86.33 5

Task 2 Duiduidui IntSig Information Co., Ltd. 3.890 1

Xixihaha Xi’an Jiaotong University 3.419 2

Heiha Shenzhen University 3.163 3

Easy Electronics LLL Shenzhen University 3.087 4

ustc-imcc University of Science and
Technology of China

3.087 5

Team Lykken. Like previous teams, they adopt model ensemble using
YOLO [29], Mask-CNN [15] and HRNet [35]. Multi-task learning of classification
and segmentation is utilized. Furthermore, they simulate our tampering opera-
tions, such as text replacement, copy-move and removal to expand the training
data. Test Time Augmentation (TTA) is employed by taking three scales of the
test image as the input (480 × 480, 640 × 640 and 960 × 960) separately. Similar
to Team DouyinCV, they perform multi-mode retrieval based on image features
and text features. The discrepancy between the test image and its homologous
template in the database is fused with the prediction of the detection network.

Team Overfit Again. The team selects SORIE [17], TNCR [1], FUNSD [18]
and other two tampered detection competition data as pre-training data to
enhance the performance on receipts images and scan documents. To obtain more
robust results, five models are ensembled, including MobileViT-v1, MobileViT-
v3 [27], GhostNet [12], EfficientNet-B5 [33] and EfficientNetV2-M [34]. In addi-
tion, they perform automatic text tampering on the authentic images in our
dataset and additional data to expand the tampered samples during training.
During inference, the result of different models are fused and multiple steps of
post-processing are designed to refine the predictions.

5.2 Top Submissions in Task 2

Team Duiduidui. To combine the advantages of different architectures, five
models, namely ConvNeXt [25], HRNet [35], SegNeXt [11], DeepLabV3+ [5]
and SegFormer [40], are ensembled. Various data augmentation strategies are
adopted including random crop, random compression, photometric distortions,
random motion blur, random rotation and random horizontal flip. Furthermore,
they synthesize tampered text using untampered images in the training set to
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expand positive samples. To address the issue of data imbalance, they apply
Online Hard Example Mining (OHEM) and weighted loss functions. The combi-
nation of cross-entropy loss, lovasz loss and dice loss also contributes to the per-
formance. To comprehensively explore the local and global information, multi-
scale input during inference.

Team Xixihaha. Same as in Sect. 5.1.

Team Easy Electronics LLL. The team leverages ConvNeXt [25] and Seg-
Former [40] as their basic segmentation models. Dice loss and cross-entropy loss
were used to remedy the unbalance problem of the positive and negative samples.
In addition, they introduce multi-task learning by adding an auxiliary classifi-
cation head to alleviate false positives. To solve the problem of scale diversity,
they adopt the curriculum learning paradigm by continuously migrating from
small size to large size during training. Random flip, random brightness and
contrast transform, random compression and random Gaussian noise were also
used for data augmentation. TTA is applied to enhance the performance during
inference.

5.3 Discussion

In this competition, task 1 is the foundation of task 2. The submissions point
out some common difficulties, such as data imbalance, resolution diversity, small
targets, etc. Most teams design their methods based on semantic segmentation
architectures. Model ensemble strategy is also utilized by most teams as an
effective approach to improve performance, including CNN-based and ViT-based
architectures. Some participants introduce the manipulation trace extractors
from image manipulation detection methods to enhance the tamper detection
capacity through another domain, such as noise, ELA and frequency domain,
while others take the RGB image as the only cue as the trace may not be
evident as expected.

To overcome the data imbalance problem, various data augmentations and
OHEM are leveraged. In addition, synthetic tampered samples are generated by
some teams to further increase positive data. The design of the loss function is
also useful, participants mainly choose focal loss, dice loss and lovasz loss.

To boost the performance of models on images with different resolution,
multi-scale training and TTA is adopted by most contestants. By fusing predic-
tions from multi-scale inputs, the model is capable of discovering the tampered
regions from both local and global cues. As our evaluation protocols impose great
penalties for false positives, which is one of the major reasons that many teams
obtained poor scores, most teams introduce multi-task learning to alleviate it.
Some make further efforts to mine the complementarity of two tasks and fuse
their predictions.

Based on the observation of the existence of homologous data, Some teams
propose to exploit the untampered images by retrieving the most similar tem-
plate. The discrepancy map between them is regarded as an additional cue and
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fused into the prediction. They provide a potential aspect of treating the tam-
pered regions as anomalies if the authentic template exists. However, their gen-
eralization and flexibility when facing text images with brand-new layouts are
of concern.

In summary, the submissions provide valuable insights into our task and
propose pertinent approaches against some of the challenges. However, the char-
acteristics and challenges of tampered text detection are not comprehensively
studied. Some solutions might also have limitations. Thus this field still waits
for further exploration.

6 Potential Negative Societal Impacts and Solution

To avoid the malicious use of the proposed dataset, TTI is constructed after data
desensitization by cropping off the sensitive information. TTI is only available
for participating in the challenge.

7 Conclusion

We organize the Competition on Detecting Tampered Text in Images (DTTI).
TTI dataset of 5,500 tampered and 5,785 untampered images is released alone
with two tasks. During the challenge, more than a thousand teams are regis-
tered and submitted 277 and 176 results in each task, demonstrating the broad
interest in the community. These submissions will provide the community with
new insights and potential solutions. We hope that our dataset will contribute
to advancing the field of tampered text detection in images.

Acknowledgments. This competition is supported by the National Natural Science
Foundation (NSFC#62225603).
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Appendix

A More Examples from TTI

Figure 3 gives more examples from TII dataset, including tampered documents
and their ground truth.

Fig. 3. More examples from TTI dataset. The forged images and their ground truth
are presented in the odd rows and even rows, respectively.
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