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Preface

This volume contains the proceedings of the International Workshop on Shape in
Medical Imaging (ShapeMI 2023) held in conjunction with the 26th International
Conference on Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI 2023) on October 8, 2023, in Vancouver, Canada. ShapeMI 2023 was a continuation
of the previous MICCAI ShapeMI 2020, ShapeMI 2018, SeSAMI 2016, and SAMI 2015
Workshops, as well as the Shape Symposium 2015 and 2014.

ShapeMI 2023 received 27 submissions via the CMT system. All submissions under-
went single-blind peer review by at least two experts in the field. Based on these reviews,
the program committee chairs accepted 23 full papers.

Shape and geometry processing methods have received significant attention as they
apply in various fields, from medical image computing to paleontology, anthropology,
and beyond. While imaging is the primary mechanism to acquire visual information, the
underlying structures are usually 3D geometric shapes, often representing continuous or
time-varying phenomena. Thus, 3D shape models better describe anatomical structures
than voxels in a regular grid and can have a higher sensitivity to local variations or early
disease/drug effects relative to traditional image-based markers such as the volume of
a structure. Therefore, shape and spectral analysis, geometric learning and modeling
algorithms, and application-driven research are the focus of the ShapeMI workshop.

In ShapeMI we strive to collect and present original methods and applications related
to shape analysis and processing in medical imaging. The workshop provides a venue
for researchers working in shape modeling, analysis, statistics, classification, geomet-
ric learning, and their medical applications to present recent research results, to foster
interaction, and to exchange ideas. As a single-track workshop, ShapeMI also features
excellent keynote speakers, technical paper presentations, and state-of-the-art software
methods for shape processing.

We thank all the contributors for making this workshop such a huge success. We
thank all authors who shared their latest findings and the Program Committee members
who contributed quality reviews in a very short time. We especially thank our keynote
speakers, who kindly accepted our invitation and enriched the workshop with their
excellent presentations: Miaomiao Zhang (University of Virginia, USA) and Guido Gerig
(New York University, USA).

October 2023 Christian Wachinger
Beatriz Paniagua
Shireen Elhabian

Jianning Li
Jan Egger
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Anatomy Completor: A Multi-class
Completion Framework for 3D Anatomy

Reconstruction

Jianning Li1(B), Antonio Pepe2, Gijs Luijten1,2, Christina Schwarz-Gsaxner2,
Jens Kleesiek1, and Jan Egger1,2

1 Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany
jianning.li@uk-essen.de

2 Institute of Computer Graphics and Vision (ICG), Graz University of Technology,

Graz, Austria

Abstract. In this paper, we introduce a completion framework to recon-
struct the geometric shapes of various anatomies, including organs, ves-
sels and muscles. Our work targets a scenario where one or multiple
anatomies are missing in the imaging data due to surgical, patholog-
ical or traumatic factors, or simply because these anatomies are not
covered by image acquisition. Automatic reconstruction of the missing
anatomies benefits many applications, such as organ 3D bio-printing,
whole-body segmentation, animation realism, paleoradiology and foren-
sic imaging. We propose two paradigms based on a 3D denoising auto-
encoder (DAE) to solve the anatomy reconstruction problem: (i) the
DAE learns a many-to-one mapping between incomplete and complete
instances; (ii) the DAE learns directly a one-to-one residual mapping
between the incomplete instances and the target anatomies. We apply
a loss aggregation scheme that enables the DAE to learn the many-
to-one mapping more effectively and further enhances the learning of
the residual mapping. On top of this, we extend the DAE to a multi-
class completor by assigning a unique label to each anatomy involved.
We evaluate our method using a CT dataset with whole-body segmen-
tations. Results show that our method produces reasonable anatomy
reconstructions given instances with different levels of incompleteness
(i.e., one or multiple random anatomies are missing). Codes and pre-
trained models are publicly available at https://github.com/Jianningli/
medshapenet-feedback/tree/main/anatomy-completor.

Keywords: Anatomical Shape Completion · Shape Reconstruction ·
Shape Inpainting · Whole-body Segmentation · Residual Learning ·
MedShapeNet · Diminished Reality

1 Introduction

3D anatomy reconstructions play important roles in medical applications and
beyond, such as (1) 3D bio-printing and organ transplantation, where dam-
aged/diseased organs from traumatic injuries or pathologies are replaced by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Wachinger et al. (Eds.): ShapeMI 2023, LNCS 14350, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-46914-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46914-5_1&domain=pdf
https://github.com/Jianningli/medshapenet-feedback/tree/main/anatomy-completor
https://github.com/Jianningli/medshapenet-feedback/tree/main/anatomy-completor
https://doi.org/10.1007/978-3-031-46914-5_1
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3D bio-printed artificial organs [23]; (2) paleoradiology and forensic imaging, in
which the full anatomical structures are re-established based on the skeleton
remains [13,21,31]; (3) whole-body segmentation, where pseudo labels of whole-
body anatomies are generated given only sparse manual annotations [8,26,30];
(4) animation realism [2]; and (5) diminished reality, where the 3D view of an
anatomy blocked by medical instruments is reconstructed. Such an anatomy
reconstruction task is well aligned with the shape completion problem in com-
puter vision, which is commonly solved based on the symmetry of geometric
shapes [28] or using learning-based approaches, where auto-encoder and genera-
tive adversarial networks (GANs) [3,25,32,33] are popular choices. Recent years
have witnessed a growing interest in medical shape completion, with the rapid
development of medical deep learning [4]. Nevertheless, existing works in this
direction are mostly focused on reconstructing a pre-defined and geometrically
simple bone structure, such as the cranium [10,11,14,16–18,22,32], maxilla [34],
spine [19] and teeth [29], which restricts their scope of application to implant and
prosthetic design. Existing methods for medical shape completion are commonly
based on variants of auto-encoder and U-Net [10] and statistical shape models
(SSMs) [5,24]. Reconstructing random anatomies with varied geometric com-
plexity is significantly harder than when the reconstruction target is pre-defined
as in prior works. To realize the former, a network learns not only to identify the
targets (i.e., what are missing in the input) but to reconstruct them, a process
analogous to object instance segmentation [6], where a network first identifies all
objects in an image and then segments them. However, random anatomy recon-
struction has not been covered by existing research, which only completes one
fixed anatomy with missing part(s), and remains to be an open problem. The goal
of this work is to extend medical shape completion to the whole body, covering
the majority of anatomy classes, and to realize random anatomy reconstruction
in a single shape completion framework. To achieve this goal, we derived a 3D
anatomical shape dataset from a fully-segmented CT dataset and trained a 3D
convolutional denoising auto-encoder on the dataset to learn a mapping relation-
ship between the incomplete instances and the corresponding targets, i.e., the
full segmentations or the missing anatomies. Both quantitative and qualitative
evaluations have demonstrated the effectiveness of our proposed method towards
solving the anatomical shape reconstruction problem.

2 Methods

2.1 Problem Formulation

Reconstructing random missing anatomies is formulated as a shape comple-
tion problem, where the goal is to learn a mapping F between the incomplete
instances from N subjects X =

{
xm

n

}m=1,...,M

n=1,...,N
and the corresponding complete

ground truth Y =
{
yn

}N

n=1
derived from whole-body anatomy segmentations.

For subject xn, there exist M instances i.e., x1
n, x2

n, ..., xm
n , ..., xM

n with different
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Fig. 1. Illustration of the pre-processed dataset. (A, B): the full anatomy segmentations
from two subjects. (A-1, A-2, A-3) and (B-1, B-2, B-3): three incomplete instances with
random missing anatomies (shown in red). (C): the skeleton in a CT scan. (Color figure
online)

degrees of incompleteness, where one or multiple random anatomies are missing.
Therefore, F is supposed to be a many-to-one mapping, i.e.,

F :
{
xm

n

}M

m=1
→ yn, n = 1, 2, ..., N (1)

We use binary voxel grids to represent 3D anatomies, such that xm
n , yn ∈

RL×W×H . The value of a voxel in xm
n , yn is ‘1’ if the voxel belongs to an anatomy

and ‘0’ otherwise. Such a formulation extends existing medical shape completion
methods that target only a single, pre-defined anatomy to random anatomies.

2.2 Denoising Auto-Encoder with Residual Connections

Given the notations in Sect. 2.1, the missing anatomies for subject xn can be
conveniently expressed in a residual form:

{
yn − xm

n

}M

m=1
. Therefore, apart from

learning the full mapping F , we can instead learn a residual mapping Fres:

Fres :
{
xm

n

}M

m=1
→ {

yn − xm
n

}M

m=1
, n = 1, 2, ..., N (2)

Unlike F , the residual mapping Fres is obviously one-to-one, which can be
straightforwardly realized based on deep residual learning [7]. Motivated by
this observation, we propose to solve the shape completion problem using a
3D denoising auto-encoder (DAE) with a residual connection between the input
and the output. The input xm

n is treated as a corrupted version of yn with ran-
dom noise. The DAE denoises the input by restoring the anatomies missing in
xm

n . The DAE is trained in a supervised fashion, with the input being X and
the ground truth being Y. Even though both mappings are learnable by the
DAE, we presume that a one-to-one mapping relationship is easier to learn than
a many-to-one mapping, so that the DAE can reach a superior reconstructive
performance by learning Fres.
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2.3 Loss Aggregation for Random Anatomy Completion

To learn the many-to-one mapping F , we train the DAE by optimizing a Dice
loss function Ldice aggregated over M versions of incomplete instances with
random missing anatomies:

LF =
M∑

m=1

N∑

n=1

Ldice(yn, ỹm
n ) (3)

where Ldice = 2
∑

(yn

⊙
ŷm

n )∑
(yn

⊙
yn)+

∑
(ŷm

n

⊙
ŷm

n ) is the standard Dice loss [20]. ŷm
n denotes

the prediction for xm
n given the mapping F , and

⊙
denotes the Hadamard

product (i.e., element-wise multiplication between two matrices).
∑

denotes
the summation of all the elements of a matrix. Optimizing such an aggregated
loss function LF ensures that the DAE learns to reconstruct a complete set of
anatomies regardless of the class and/or number of anatomies that are absent in
the input. Similarly, to learn the one-to-one residual mapping Fres, the following
loss function is optimized:

LFres
=

M∑

m=1

N∑

n=1

Ldice(yn, x̃m
n + xm

n ) (4)

where x̃m
n denotes the reconstructed missing anatomies for xn. Depending on

the mapping to be learned, the respective loss function (LF or LFres
) is used.

2.4 Multi-class Anatomy Completion

For the multi-anatomy completion task, compared to representing xm
n and yn as

binary voxel grids in which different anatomies are not differentiated (Sect. 2.1),
it is more desirable to assign a unique label to each anatomy in xm

n and yn. This
extension can be easily achieved by setting the number of output channels of the
penultimate layer of the DAE network to the number of anatomy classes. Each
channel predicts the probability of occupancy of the voxel grids for an anatomy.
The same Dice loss Ldice can be calculated between the output and the ground
truth in one-hot encoding.

3 Experiments and Results

3.1 Dataset and Pre-processing

We validate our method using a public CT dataset with whole-body
anatomy segmentations, which is publicly available at https://zenodo.org/
record/6802614#.Y YMwXbMIQ8. The dataset comprises 1024 CT images,
each accompanied by a set of segmentation masks of 104 anatomies (organs,
bones, muscles, vessels) [30]. After screening (discarding images with corrupted
segmentations), 737 sets of segmentations are included in this work, which are

https://zenodo.org/record/6802614#.Y_YMwXbMIQ8
https://zenodo.org/record/6802614#.Y_YMwXbMIQ8
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further randomly split into a training (451) and test set (286). For each set of
segmentations, we randomly remove anatomies accounting for at least 10%, 20%
and 40% of the entire segmentation’s volume to create the incomplete instances
X . The original segmentations serve as the ground truth Y. Considering that
anatomy ratios are subject-specific, different type and/or number of anatomies
could have been removed for different subjects given the same threshold, as can
be seen from Fig. 1. Thus, anatomy removal is analogous to inserting random
noise to Y. In general, using a 10% threshold (Fig. 1, A-2, B-2) removes more
anatomies than using higher thresholds (20% and 40%), and using a threshold
of 40% removes only large anatomies, such as the aorta and the autochthonous
back muscles (Fig. 1, A-3, B-3). The small bones such as the individual ribs and
vertebrae that form the skeleton (Fig. 1, C) enclosing the internal anatomies
are generally not removed, providing a natural constraint for anatomy recon-
struction. We use the ratio-based method to remove anatomies, so that each full
segmentation yields three instances with random incompleteness in the train-
ing and test set. We denote the three test sets as Dtest1 (10%), Dtest2 (20%)
and Dtest3 (40%). Besides random anatomy removal, we create another test set
Dtest4 by removing only one specific anatomy from the full segmentations ran-
domly selected from the test set. All the images are re-scaled to a uniform size
of 1283 (L,W,H = 128). We made the anatomical shape dataset used in this
study publicly available through MedShapeNet [15].

3.2 Implementation Details

The DAE is comprised of four two-strided 3D convolutional (conv3D) and trans-
posed convolutional (t conv3D) layers for downsampling and upsampling. To
increase the learning capacity, we add a single-strided conv3D layer after each
t conv3D layer, and further append four single-strided conv3D layers at the end
of the DAE. We use ReLu activations and a kernel size of three for all lay-
ers, amounting to around 22M trainable parameters. The residual connection is
implemented as an addition between the input and the output of the penulti-
mate layer. The DAE is implemented using TensorFlow [1] and trained on an
NVIDIA RTX 3090 GPU using the ADAM optimizer [9]. The learning rate is
set to 0.0001 and the exponential decay rate for the first moment estimates is
set to 0.3 for the ADAM optimizer.

3.3 Experimental Setup

Since, to our knowledge, our paper is the first to investigate random anatomy
reconstruction, we adhere to the following steps to validate our methods: (i) A
baseline is established by training the DAE without residual connection using a
conventional Dice loss from existing single anatomy completion studies [16,18];
(ii) On top of the baseline, we train the DAE using the aggregated Dice loss
(Eq. 3); (iii) We train the DAE with residual connection (Eq. 2) using a con-
ventional Dice loss; (iv) We train the DAE with residual connection using the
aggregated Dice loss (Eq. 4). For all experiments, the DAE is trained for 100
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epochs. The baseline experiment evaluates the feasibility of realizing random
anatomy reconstruction using a single shape completion framework, and exper-
iments (ii-iv) verify the effectiveness of each proposed components (i.e., residual
connection, loss aggregation) for the anatomy reconstruction task. We denote
the trained DAE models from experiment (i-iv) as DAEb, DAEagg, DAEres and
DAEagg+res, respectively. Dice similarity coefficient (DSC) is used for quantita-
tive evaluation of the results on test set Dtest1, Dtest2, and Dtest3. The output
of the DAE is interpolated to the original size to calculate the DSC against the
ground truth. On Dtest4, we perform an empirical evaluation of our method in
reconstructing one specific anatomy.

3.4 Results

Table 1. Mean (Standard Deviation) of DSC on Dtest1, Dtest2, Dtest3.

Methods Dtest1 Dtest2 Dtest3

DAEb 0.783 (0.075) 0.778 (0.061) 0.757 (0.058)

DAEagg 0.789 (0.073) 0.803 (0.059) 0.812 (0.053)

DAEres 0.865 (0.069) 0.885 (0.046) 0.887 (0.047)

DAEagg+res 0.865 (0.074) 0.904 (0.039) 0.931 (0.030)

Quantitative Evaluation and Statistical Comparison. Table 1 presents
the quantitative results of the ablation experiments, where the mean and stan-
dard deviations (SD) of DSC on test set Dtest1, Dtest2 and Dtest3 are reported.
The quantitative comparisons show that both loss aggregation (DAEagg) and
residual connection (DAEres) help improve the anatomy reconstruction perfor-
mance compared to the baseline (DAEb). Furthermore, the comparison between
DAEagg and DAEres demonstrates that the DAE is significantly better at learn-
ing the residual (Eq. 2) than the full anatomy (Eq. 1). Combining both compo-
nents (DAEagg+res) further improves the reconstructive performance of the DAE
compared to using each component individually. Furthermore, DAEagg, DAEres

and DAEagg+res also perform more stably across test instances (smaller SD)
than the baseline, on all three test sets. Compared with Dtest1 and Dtest2, we
notice an obvious drop of mean DSC on Dtest3 for the baseline model, suggest-
ing that DAEb tends to perform worse when the combined ratio of all miss-
ing anatomies becomes smaller. The combined ratio of all missing anatomies in
Dtest3 is likely to be lower, since fewer anatomies can be removed due to the
higher ratio threshold. Higher sensitivity is required to detect and reconstruct
smaller anatomies. Applying loss aggregation (DAEagg) enforces the many-to-
one mapping and therefore mitigates the low sensitivity issue. The residual map-
ping (DAEres) overcomes the low-sensitivity issue even without loss aggregation.
A statistical comparison of the DSC between different models on the three test
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sets is also performed based on a t-test, and the p values are reported in Table 2.
p < 0.05 indicates a statistically significant improvement. Based on Table 1 and
the statistical comparisons of DAEagg ↔ DAEb and DAEagg+res ↔ DAEres,
we can also conclude that loss aggregation does not significantly improve the
results on Dtest1, which has a very high combined ratio of missing anatomies.

Qualitative Evaluation. Fig. 2 illustrates the reconstruction results in 2D
coronal planes. Multiple test instances with different degrees of incompleteness
are presented. As seen from the ground truth (Fig. 2, second column), an ideal
reconstruction covers 100% of the input and does not extend beyond the region
enclosed by the ribs (Fig. 2, first column). The qualitative comparison shows that

Table 2. Statistical Comparison of DSC on Test Set Dtest1, Dtest2, Dtest3 Between
Different Methods. The Table Reports the p Values From a T-test.

Methods Dtest1 Dtest2 Dtest3

DAEagg ↔ DAEb 0.328 4.301e-07 8.176e-29

DAEres ↔ DAEb 2.839e-35 2.147e-86 7.427e-114

DAEagg+res ↔ DAEb 2.295e-33 1.437e-110 2.985e-163

DAEres ↔ DAEagg 9.931e-32 3.051e-59 5.644e-57

DAEagg+res ↔ DAEres 0.989 2.866e-07 1.797e-34

Fig. 2. Qualitative comparison of anatomy reconstruction performance. indicates the
overlap between the reconstruction and the input, and indicates the reconstructed
missing anatomies. Small white blocks in the reconstructions indicate false negative
predictions.
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Fig. 3. The first to last row show the reconstructed aorta, autochthonous back muscles,
liver and lung by DAEagg+res. Two test instances are presented for each anatomy class.

the DAE models trained for full anatomy reconstruction (DAEb and DAEagg,
Eq. 1) have a tendency to produce false negatives, i.e., they fail to fully recon-
struct existing anatomies, as shown by the small white blocks in the third and
fourth column of Fig. 2, as well as false positives, i.e., they generate a reconstruc-
tion beyond the missing anatomies. Resorting to residual learning (DAEres and
DAEagg+res, Eq. 2) obviously mitigates the false prediction issue. Figure 3 shows
the reconstruction results from the best performing model DAEagg+res for a sin-
gle anatomy, specifically the aorta, the autochthonous back muscles, liver and
lung. For single anatomy reconstruction, only one random anatomy is missing in
the input (Dtest4). For smaller anatomies like the kidney and spleen, these mod-
els are not sufficiently sensitive to detect their absence and produce a reasonable
reconstruction. Only for relatively large anatomies, such as livers and lungs, sin-
gle anatomy reconstruction is feasible (Fig. 3). Increasing the loss aggregation
scope (i.e., the M in Eq. 3, 4) to explicitly cover the individual small anatomies
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during the training process is a promising solution to the low sensitivity problem.
Appendix (A) provides preliminary results that support this observation regard-
ing the reconstruction of small missing anatomies. In Appendix (B), we show that
it is feasible to reconstruct the whole anatomies given only the skeleton (rib cage
+ spine). These findings are potentially useful for (semi-)supervised whole-body
segmentations, in which a human annotator provides manual segmentations for
only a few of the anatomies, while the anatomy completor generates the seg-
mentation masks in 3D for the rest. Even though the quality of the generated
segmentations might not be sufficient to serve as the ground truth, they could
be used as the initial pseudo labels that can be iteratively refined [27]. Appendix
(B) gives an extreme example where only the skeleton is given or annotated. It
should be noted that the current results for such examples are not optimal, and
serve only as a proof of concept.

Fig. 4. Dataset for the multi-class anatomy completor. (A) the 12 anatomy segmenta-
tions. (B-D) three incomplete instances where some of the 12 anatomies are missing.

Multi-class Anatomy Completion. For the multi-class experiment, we
choose 12 anatomies, including the lung, heart, spleen, stomach, pancreas, spine,
rib cage, liver, kidney, aorta, a pair of autochthon muscles, and the pulmonary
artery (Fig. 4 (A)). We extract the 12 above-mentioned anatomy segmentations
from 18 whole-body segmentations randomly chosen from the training set. We
create 10 incomplete instances for each case by randomly removing some of the 12
anatomies (e.g., Fig. 4 (B-D)), resulting in 18×10 = 180 training samples. Images
are resized to 256×256×128 (L,W = 256,H = 128) and the DAEagg method is
used for the experiment (i.e., to learn a many-to-one mapping). Figure 5 presents
the multi-class anatomy completion results on test samples that are not involved
during training. It is noticeable from the reconstructions that the long thin struc-
tures i.e., the ribs, are not well reconstructed (e.g., the last row of Fig. 5). Terrac-
ing artifacts are also obvious on the reconstructed anatomical shapes compared
to the ground truth, which can be partly attributed to downsampling.
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Fig. 5. Qualitative results of multi-class anatomy completion. The first and second
column show three incomplete instances from the same subject in 3D and coronal
views. The last two columns show the corresponding reconstruction results.

4 Discussion and Conclusion

In this paper, we demonstrated that multi-class anatomy reconstruction can be
realized in a single shape completion framework. Given an incomplete instance
with random missing anatomies, a DAE network reconstructs the missing
anatomies specific to the instance, so that the new reconstructions geometri-
cally align with existing anatomies. We further verified that residual learning
and loss aggregation can significantly boost the performance of the DAE for the
reconstructive task, and mitigate the low sensitivity and false prediction issues.
Besides the baseline DAE, residual connection and loss aggregation can be eas-
ily implemented on top of more complicated network architectures. The models
can not only reconstruct multiple missing anatomies simultaneously (Fig. 2) but
also a specific anatomy, despite their sizes (Fig. 3 and Appendix A). There are
several known limitations remaining to be addressed in future work: (i) Not all
anatomy classes are covered by the segmentations of the CT dataset, such as the
skull, full limb, brain, skins and soft tissues (e.g., facial soft tissues and most of
the muscles); (ii) A quantitative evaluation for each specific anatomy is lacking
(only qualitative results are provided in Fig. 3 and Appendix A); (iii) The recon-
structions from the multi-class anatomy completor suffer from terracing artifacts
and discontinuous ribs. A super-resolution procedure can be applied to refine the
initial reconstructions using sparse convolutional neural networks [12]. An inter-
esting direction for future work is to use the multi-class anatomy completor in
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whole-body segmentation, where it can be used to generate the initial pseudo
labels of the organs given only skeletal annotations (e.g., the rib case and spine.
See Appendix B).

Acknowledgement. The work is supported by the Plattform für KI-Translation
Essen (KITE) from the REACT-EU initiative (EFRE-0801977, https://kite.ikim.nrw/)
and “NUM 2.0” (FKZ: 01KX2121) FWF enFaced 2.0 (KLI 1044). The anatomical
shape dataset used in this paper can be accessed through MedShapeNet at https://
medshapenet.ikim.nrw/.

Appendix A. Reconstructing Small Anatomies

(see Fig. 6)

Fig. 6. Reconstruction results of individual, small anatomies by DAEagg+res trained
with an increased loss aggregation scope (M). From the top: heart (2.4%), spine (4.3%),
kidney (1.7%) and spleen (1.2%). The percentages in the brackets are the approximate
volume ratio of the anatomy to the corresponding whole-body segmentations. The pre-
liminary results demonstrate that increasing M (in Eq. 3, 4 in the main manuscript)
increases also the sensitivity of the reconstructive model, which helps the model iden-
tify and reconstruct very small anatomies. Two test instances are presented for each
anatomy class.

https://kite.ikim.nrw/
https://medshapenet.ikim.nrw/
https://medshapenet.ikim.nrw/
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Appendix B. Anatomy Completion from Skeletons (rib
cage + spine)

(see Fig. 7)

Fig. 7. The first row shows the input skeleton (ribs and spine), and the second to
third row show the reconstruction results in axial and coronal views, respectively. The
results are obtained by training DAEres on 40 such ‘skeleton-full’ pairs for 200 epochs.
The preliminary results demonstrate the feasibility of reconstructing the full anatomy
based only on the skeleton.
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Abstract. 3D colon reconstruction from Optical Colonoscopy (OC) to
detect non-examined surfaces remains an unsolved problem. The chal-
lenges arise from the nature of optical colonoscopy data, characterized
by highly reflective low-texture surfaces, drastic illumination changes and
frequent tracking loss. Recent methods demonstrate compelling results,
but suffer from: (1) frangible frame-to-frame (or frame-to-model) pose
estimation resulting in many tracking failures; or (2) rely on point-based
representations at the cost of scan quality. In this paper, we propose a
novel reconstruction framework that addresses these issues end to end,
which result in both quantitatively and qualitatively accurate and robust
3D colon reconstruction. Our SLAM approach, which employs correspon-
dences based on contrastive deep features, and deep consistent depth
maps, estimates globally optimized poses, is able to recover from frequent
tracking failures, and estimates a global consistent 3D model; all within
a single framework. We perform an extensive experimental evaluation
on multiple synthetic and real colonoscopy videos, showing high-quality
results and comparisons against relevant baselines.

Keywords: Colonoscopy · Coverage · 3D-Reconstruction

1 Introduction

The third most commonly diagnosed cancer worldwide is colorectal cancer
(CRC) with over than 1.9 million incident cases in 2020 [3]. CRC is also among
the most preventable cancers [28] and can be prevented from progressing if
detected in it’s primary stages by conducting screening and early detection mea-
sures [27,29]. Consequently, global incidence rates have been decreasing in the
screening-eligible age group (50–75) due to the adoption of CRC screening [1].
The most common screening procedure is optical colonoscopy (OC) [20], which
visually inspects the mucosal surface for abnormalities in the colon such as col-
orectal lesions. Nevertheless, performing a thorough endoscopic colon investiga-
tion solely from OC is very difficult. In practice, this means that not all regions
of the colon will be covered and fully examined; consequently, tainting the polyp

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Wachinger et al. (Eds.): ShapeMI 2023, LNCS 14350, pp. 15–34, 2023.
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detection rate. Lately, we are seeing a bloom in deep learning-based methods
adapted to predict depth-maps from OC [6,33,35,42], aimed at providing a com-
plete 3D geometric information of the colon including polyps. Thus, indicating
the un-inspected surfaces during OC; as a result, increasing the polyp detection
rate.

Despite the profusion of reconstruction solutions, a holistic solution for the
problem of 3D colon reconstruction at scale that addresses real life issues during
OC has yet to be seen. This is due to the numerous requirements that such
system would have to support:

Accurate depth prediction - producing high-quality geometry-consistent depth
estimation from a monocular video is imperative as well as challenging. Scala-
bility - chosen representation should support extended scale environments while
preserving global structure, and high local accuracy. Global consistency - the
method should be robust to pose drifts and estimation error in order to enable
the re-examination of previously scanned areas or loop closure. Robust camera
tracking - tracking failure is extremely frequent in OC. Occlusions, fast motions,
featureless regions [26] and deficient frames are a fraction of the reasons that
contribute to loss of track. When these occur, the system should have the ability
to re-localize the camera position.

There have been studies addressing specific parts of these problems [26,32,
35,38,40,43]. Direct SLAM systems optimize a photometric error which is sus-
ceptible to drastic illumination changes in OC imagery. Ma et al. [26] recon-
structed fragments of the colon using Direct Sparse Odometry (DSO) [12] and
a Recurrent Neural Network (RNN) for depth estimation. Zhang et al. [43] pre-
dicted gamma correction value to alleviate sudden illumination changes and [42]
improved the depth estimation network using geometry-consistency losses. Indi-
rect SLAM methods, like [9,30], usually utilize keypoints matching based on
handcrafted descriptors. This kind of descriptors e.g., SIFT [24], are based on
local gradients and hence not well suited to often texture-less and shadow prone
OC imagery. Modern deep network based descriptors adopt CNN to predict both
keypoint and descriptors for local feature matching. DeTone et al. [11], predicts
keypoints and descriptors directly from a pre-trained DNN. However, it’s local-
ization accuracy is hampered due to the low dimensionality output. Moreover,
as it’s training is based on corner detection keypoints it is not optimized to OC
cases, characterized with numerous occlusions. Although these aforementioned
studies show promising results, there hasn’t been a single solution to tackle all
of these requirements up to date.

Our goal in this paper is to rigorously cope with all of these requirements in
a single, end-to-end 3D reconstruction pipeline. At the core of our method is a
robust positioning estimation scheme that utilizes contrastive deep-feature based
correspondences. The proposed method globally optimizes the camera pose per-
frame, taking into consideration all previously captured frames in an effective
local-to-global hierarchical optimization framework.

In summary, the main contributions of our work are as follows: (1) A novel,
deep-learning-driven global pose alignment SLAM system for OC which incorpo-
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rates the complete sequence of input frames and removes the fuzzy nature of tem-
poral tracking accuracy issues; (2) Large-scale colon 3D reconstruction, demon-
strating model refinement in revisited areas, recovery from tracking failures,
and robustness to drift and continuous loop closures; and (3) a novel method
for local feature matching in low-texture areas, implicit loop closures in highly
indistinguishable environments and highly-accurate fine-scale pose alignment.

Fig. 1. Our novel, deep-learning-driven global pose alignment framework for colono-
scopy SLAM system.

2 Method Overview

The main system pipeline (shown in Fig. 1) consists of three major parts: (i)
depth estimation and deep feature extraction, (ii) hierarchical pose optimisa-
tion, and (iii) surface fusion. For each new frame, part (i) outputs a depth-map
and keypoints with their deep descriptors, by inferencing DepthNet (Sect. 3.1)
and ContraFeat (Sect. 3.2) respectively. Part (ii) starts with matching the new
keypoints against previous frames and filtering mismatches (Sect. 4.1) to improve
alignment and avoid false loop closures. To manage large scaled sequences com-
prised out of massive amount of frames and to make pose alignment fast, we carry
out a hierarchical local-to-global pose optimization. This achieves robustness to
frequent loss of tracking as we do not solely depend on temporal consistency.
Thereby, enabling swift re-localization and allowing multiple visits of the same
regions within the scene.

On the first (local) hierarchy level, fragments are composed of sets of suc-
cessive frames sharing similar spatial coverage. Each frame’s pose is optimized
by taking all of the fragment′s frames into account. On the second (global)
hierarchy level, all fragments′ pose are optimized with respect to each other. In
part (iii) the global 3D scene representation is acquired by fusing all fragments
(Sect. 5) into a non-parametric surface represented implicitly by a scalable trun-
cated signed distance function (TSDF) [8,45] following with marching cubes [22]
applied to this volume to extract the final mesh.

3 Deep-Depth and Deep-Descriptors

3.1 Deep-Depth Self-supervised Training

Given as input an RGB image It, DepthNet predicts a depth map D̃t. During
training, for every frame It in a sequence of three sequential frames It−1, It, It+1,
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DepthNet predicts their corresponding depth maps D̃t−1, D̃t, D̃t+1. PoseNet pre-
dicts relative camera poses between each image pair: Tij∀(i, j) ∈ Fi = {∀i|j =
i ± 1}.

The network architecture is similar to the one used in Monodepth2 [13]. To
reduce the impact of strong visual distortions (e.g. lens distortion) that charac-
terized OC videos, we adopt deformable convolution [10] for the depth encoder,
similar to [4,19]. We train in the same manner as [13], using auto-masking (μ)
and per-pixel minimum photometric loss (Lph). Since the photometric loss is
not sufficiently informative for low-texture regions, common in OC imagery, and
to enforce structural coherence, we apply extra regularization in the form of
depth consistency loss [2], and extra spatio-temporal consistency losses. Consid-
ering that the additional regularization implicitly imposes depth smoothness, we
discard the smoothness term (Lds) used in [13].

To deal with specular reflections and occlusions by haustral folds we: (1)
mask and in-paint specular reflections as in [32] and (2) remove outlier pixels
having a loss greater than the 80-th percentile for the photometric and depth
consistency errors. We compute the additional spatio-temporal consistency and
depth consistency losses i.e., Lph−extra and Ldc respectively, between all image
pairs in S.

L
(i,j)
ph−extra =

1
|Vμ|

∑

p∈Vµ

pe(Ii, Ij→i), (1)

L
(i,j)
dc (D̃j→i, D̂i) =

∣∣∣D̃j→i − D̂i

∣∣∣

D̃j→i + D̂i

, (2)

∀(i, j) ∈ S = {i = {t − 1, t + 1}, j = {t − 1, t, t + 1}, i �= j}
where pe is the photometric error from [13] containing L1 and SSIM losses, Vμ

is a set comprises of all valid pixels in mask μ and the specular reflection mask
based on image intensity threshold. Ij→i is a warped view of Ij to Ii pose, using
the predicted depth D̃j and Tij . D̃j→i is the predicted depth map for image Ij

in the coordinate system of image Ii. D̂i is the interpolated depth map from the
estimated depth map D̃i. The final loss for the network is given in Eq. 3, where
λph−extra, λdc are weights for the different loss components.

L = Lph + λph−extra
1

|S|
∑

(i,j)∈S

L
(i,j)
ph−extra + λdc

1
|S|

∑

(i,j)∈S

L
(i,j)
dc (3)

3.2 Deep-Descriptors

Our deep feature descriptor block, ContraFeat, employs the detected key-
points from [24] in each frame, and extracts their deep feature representations
z = φ(kp), where kp is a SIFT keypoint in 2D pixel coordinates. For the feature
map φ, we use FPN [21] architecture in the bottom-up stream. The final feature
map has the same spatial resolution as the original image and thus, retaining
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Fig. 2. Qualitative comparison of predicted depth-maps on synthetic data.

keypoint’s pixel level accuracy. Each pixel is represented by a descriptor vector
of length c = 128. Finally, to find correspondence sets between frames, descrip-
tors are matched using cosine similarity. To train ContraFeat network, we use
synthetic data [41](see Sect. 6). Accordingly, keypoints are extracted using [24].
Then, using known depth, pose and camera intrinsics, we collect ground-truth
matches from corresponding 3D points and remove occluded points by filtering-
out distant matches.

Contrastive Loss. Inspired by recent self-supervised learning methods based on
contrastive losses [37,39], we use a loss similar to the InfoNCE loss [31] to train
ContraFeat to learn discriminative representations of keypoints. The contrastive
loss for an image pair (i, j) and a correct match k out of Mi,j possible matches
is given by

li,j,kc = − log
exp

(
(zk

i )T · zk
j /τ

)

∑Mi,j

m=0 exp
(
(zm

i )T · zm
j /τ

) (4)

where zm
i and zm

j are descriptor vectors sampled at pixel coordinates kpm
i and

kpm
j in the feature map of images i and j, respectively. τ represents a temperature
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parameter. We enforce ‖zm
i ‖2 = 1 via a L2-normalization layer. This loss is then

averaged over all ground-truth matches.

4 Pose Alignment

Our system takes an RGB-D stream consisting of pairs (Ii
RGB , Ii

Dpred
), where i

is the frame index, IRGB is the 3-channel color image and IDpred
is the predicted

depth map by the DepthNet network. Intrinsic and distortion parameters are
assumed to be known. The goal of this stage is to estimate the ideal set of rigid
camera poses Ti = {(Ri, ti)|Ri ∈ SO(3), ti ∈ R

3}N
i=1 in which all N frames

align as best as possible, based on extracted 3D correspondences between all
overlapping frames. The estimated transformations Ti(p) = Rip+ ti localizes all
frames in the global coordinates system defined relative to the first frame and
p ∈ R

3.

4.1 Feature Matching

In order to find correspondence sets that result with a coherent and stable rigid
transform between pair of frames fi, fj , we set to minimize outliers. To this
end, we utilize the key point correspondence filter and the Surface Area Filter
as in [9] to filter the sets of frame-pairwise matches based on geometric and
feature-representation constancy. The transformation Tij ∈ SE(3) is constructed
between fi, fj if minimal 10 matches are found with a re-projection error under
0.02cm and if it is valid. i.e. condition analysis results with a condition number
less than εcn.

4.2 Hierarchical Pose Optimization

A colonoscopy procedure typically takes 30–60 minutes at 30 FPS. To be able
to process such massive amount of frames in reasonable time we follow [9] and
split the input sequence into fragments of consecutive frames that share similar
coverage and apply two stage hierarchical optimization strategy. On the lower
hierarchy level, we perform pose-graph optimization [15] to register all frames
within a fragment. On the higher hierarchy level, we register all fragments with
respect to each fragment’s keyframe.

Fragment Construction Conditions. We keep track of one active fragment at
all times. A new frame will either be appended to the active fragment, or will
trigger the creation of a new fragment as it keyframe. There are two conditions
which determine whether a new fragment should be constructed. (1) Structural
affinity between the last two consecutive frames (i.e., minimal number of corre-
spondences found is less than 100) (2) The new frame and the active fragment
keyframe view frustums overlap is less than 85%.
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Inter vs. Intra Fragment Registration. The two hierarchies fragment registration
processes are similar. In Intra-fragment (local) registration the pose-graph opti-
mization (see Sect. 4.3) is applied for all fragment’s inhabited frames to align
as best as possible with respect to the fragment’s keyframe. Whereas in Inter-
fragment (global) registration, we estimate the best global registration for all
fragments using solely theirs keyframes.

Note that for the inter-fragment registration, we do not discard keyframes
that have no correspondences with past keyframes. Instead, we keep them as
a candidates, as they could share correspondences with future fragments. This
enables incorporating the lone fragment later on in the sequence.

4.3 Registration as Pose-Graph Optimization

The goal of the pose-graph optimization is to estimate the ideal set of rigid
transforms T = {Ti} such that all set of input frames F (which depends on the
hierarchy level) align as best as possible. The process uses [14,18] to estimate the
relative rigid transforms Tij ∀(i, j) ∈ F based on the matched features and their
predicted depth value. Given {Tij}, we construct a pose-graph [15] with vertices
{fi} and edges Tij . As in [7], we set to minimize the inconsistency measure g
between poses Ti, Tj and the relative pose Tij , defined as the sum of squared
distances between corresponding points in TiPi and TjPj :

g(Ti, Tj , Tij) =
∑

(i,j)

‖T−1
j Tipi − Tijpi‖2 (5)

Additional outlier removal filter in the form of edges pruning is applied to
further improve the algorithm’s robustness against false correspondences.

5 Scene Reconstruction

The colons 3D model is reconstructed by carefully fusing all RGB images, their
predicted depth maps and the optimized global poses into an implicit scalable
TSDF representation. The TSDF’s unique features enable us to alleviate any
further inconsistencies in successive depth maps predictions. The fusing scheme
is based on the premise that the endoscope is slowly being withdrawn during
the procedure; consequently, inspected regions won’t be visited again. We fuse
fragments when enough time has passed since last inspected (> εfna

), and when
the current camera position is far enough (> εcfd

). This approach scales well to
non-fixed scenes common in colonoscopy sequences, as demonstrated in Sect. 6.2.

6 Results

In this section, we analyze the results of our framework on 3 different data-sets:
A colon simulator data-set, a CT colon rigid print, and real optical colonoscopy
videos.
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Fig. 3. Left: Full endoscopic colon reconstruction result on the synthetic data-set. Top
right: the captured RGB images, Bottom right: The re-rendered reconstructed model.

We start by evaluating our results using a realistic synthetic colonoscopy sim-
ulator [41]. Like [42], we used the simulator to create 8 sequences of endoscopic
procedures. For every frame, the ground-truth depth and pose are known. Each
sequence contains on average 2000 frames with a trajectory length of 125cm, at
a resolution of 512× 512 with a field of view (FOV) of 125◦C. Different ‘Mate-
rial’, ‘Light and ’Wetness’ properties were set to best resemble real imagery (See
appendix A.1 for details) . We split the data-set sequences, similarly to [42],
into training/validation/testing sets, containing 9.5 k/0.5 k/2.5 k frames. The
metrics below are reported on the test set.

We also captured an endoscopic sequence of a rigid 3D-print CT based colon,
using a calibrated Olympus CF-H185L/I colonoscope, along with the ground-
truth camera trajectory that was captured by an EM tracker. The colon 3D
model was fabricated as follows: a CT colon scan from [36] was segmented in
order to extract the 3D surface of the colon, following with post processing re-
modeling operations (cleaning, re-topology, skinning etc.) and texturing. The
extracted mesh was then printed using a 3D printer. We intend to elaborate on
this data-set creation in a future paper.

Lastly, to qualitatively test our framework on real optical colonoscopy
sequences, we use Colon10K data-set [25]. Colon10K data-set contains 20
sequences cropped from full colonoscopies, each contains on average 500 frames.
We split them to training/testing sets at a ratio of 80/20% such that the entire
test sequences are not seen during training. For training and implementation
details, please see Appendix A.2

6.1 Quantitative Results

In this section we start by evaluating our framework’s components performance.
First, our monocular depth estimation is compared to relevant baselines, showing
it’s strengths in predicting consistent depth-maps. Following with an assessment
and comparison of our ContraFeat deep-descriptor in terms of recall/precision.
Concluding with dense tracking evaluation, in which we analyze our full pipeline
reconstruction trajectory accuracy.
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Fig. 4. Left: Full endoscopic colon reconstruction result on 3D colon print. Right:
zoomed in segments with visible holes (regions that were not covered during the scan).

(a) Seq.02 (b) Seq.09 (c) Seq.18

Fig. 5. 3D reconstruction results on Colon10K data-set. Our proposed framework (top)
outperforms the mesh reconstructed from depth and pose predictions by Godard et
al. [13] (bottom).

Monocular Depth Estimation. We train our network and [13] on the syn-
thetic data-set with the same data split paradigm as described above and com-
pare the results. To accommodate different scales of depth-maps, we use per-
image median ground-truth scaling as introduced by [46]. As shown in Table 1,
our monocular method outperforms existing state-of-the-art self-supervised
approaches. Specifically, our Sq Rel error has improved substantially (15.5%
relatively) over [13] which corresponds to improved depth consistency.

Keypoints Correspondence Evaluation. We estimate the keypoint match-
ing performance as precision (i.e., the percentage of correct correspondence
from all correspondences found) and recall (i.e., the percentage of valid corre-
spondences from all ground-truth correspondences) on the synthetic data-set
with ground truth depth and pose. To determine if a keypoint pair correspon-
dence is correct, we test if it lies in the ground truth set. We evaluate our con-
trastive deep-feature (CDF ) performance by comparing it to SIFT-based and
SuperPoint [11], with and without the addition of the key points filter (kpf )
described in Sect .4.1. Table 2 shows that SIFT matches suffers from a low recall
and extremely low precision which can impact the overall reconstruction. The
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Fig. 6. Tracking failure recovery on real data: keyframes and their connectivity graph.
(middle) recovery is lost (indicated as an additional disjoint sub-graph), (right) recovery
is enabled as a connection is formed between frames 5 <-> 9. Active keyframes are
highlighted (in blue). (Color figure online)

Fig. 7. Comparison of our frame-to-model approach with (left), and without (right)
loop closure. The point-clouds are color coded based on their timestamp.

additional kpf increases the precision drastically to around 99.5% on average, at
the cost of lowering the recall as can be expected. Although SuperPoint matches
start with higher precision/recall than SIFT, after applying the key points filter,
the precision greatly improves at the cost of drastically decreasing the recall.
This could indicate that the localization error of the matched keypoints is high
and therefore get filtered out. The CDF matches starts with much higher recall
& precision, combined with kpf it achieves outstanding results of 74.9% recall
and 100% precision on average. The results show that our hybrid approach i.e.,
using SIFT keypoint with contrastive deep-features, is well suited to OC domain.
See Appendix A.3 for examples of predicted correspondences between frames.

Table 1. Quantitative results on the synthetic data.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth2 [13] 0.089 0.058 0.540 0.134 0.931 0.982 0.992

ColDE [42] † 0.077 0.079 0.701 0.134 0.935 0.975 0.989

Ours 0.075 0.049 0.521 0.126 0.94 0.980 0.992

† Results taken from paper since training data-set and code are not publicly avail-

able
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Table 2. Keypoints recall/precision on the synthetic data-set: SIFT, SuperPoint (SP)
and our ContraFeat deep feature (CDF) with/without our key points filter (kpf).

Seq SIFT[%] SIFT+kpf[%] SP[%] SP+kpf[%] CDF[%] CDF+kpf[%]

Seq1 31.4/12.1 24.2/100 62.4/78.9 22.4/100 74.2/86.1 70.2/100

Seq2 44.4/32.1 29.9/98.4 59.2/68.2 17.3/100 82.3/89.2 79.2/100

Seq3 37.8/21.3 26.8/100 55.4/64.8 16.2/100 78.1/83.5 75.2/100

Full Endoscopic Reconstruction. We evaluate the trajectory accuracy over
the synthetic data-set and the 3D colon print sequence, and compare it to Direct
Sparse Odometry (DSO) [12]. We also provide results for the SIFT-based feature
descriptors instead of our suggested deep feature descriptor. Table 3 summarizes
the ATE [44] results. As can be seen from the rmse and std values, our method
surpasses DSO even using SIFT-based feature descriptors. When incorporating
the deep features, our final approach is 46% better than DSO on the synthetic
datast and 79% on the 3D colon print. This shows the major contribution of
our framework to the reconstruction. It is important to note that, although
ContraFeat was only trained on synthetic data, the ATE has improved by 10%
relatively over SIFT on the 3D print model. Thus, demonstrating ContraFeat’s
robustness. See Appendix A.4 for visual trajectories comparison.

Table 3. Avg. ATE statistics over synthetic and 3D colon print data-sets (avg. trajec-
tory of 125cm).

Method synthetic data-set 3D colon print data-set

RMSE[cm] std[cm] RMSE[cm] std[cm]

DSO 53.4 12.3 37.1 13.9

Ours(SIFT) 36.1 3.3 8.72 3.53

Ours 28.9 2.7 7.88 3.75

6.2 Qualitative Results

Monocular Depth Estimation. In Figure 2 we qualitatively compare our
predicted depth maps with monodepth2 [13]. Note that our method produces
high quality depth-maps characterized with consistent depth around the colon’s
surface while maintaining sharp boundaries around haustral folds. Furthermore,
our method is more robust to specular reflection artifacts. Extra depth-maps
can be seen in Appendix A.5.

Full Endoscopic Reconstruction Figure 3 and Fig. 4 depict the qualitative
results of our method; showing the reconstructions of a fully endoscopic colon
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investigation on the synthetic data-set and the 3D colon print respectively.
Figure 3 demonstrates that our approach produces high quality scans with negli-
gible camera drift and high local quality of the reconstructions in both geometry
and texture. Note in Fig. 3, the clear resemblance between the re-rendered mesh
of the reconstructed model (in gray) and the captured RGB images. We are
able to successfully capture the geometric curvatures of the colon while keeping
the missing regions visible. In addition, we show in Fig. 5 a qualitative compar-
ison of the reconstructed surfaces based on real optical colonoscopy videos from
Colon10K. The results from MonoDepth2 [13] were produced using their pre-
trained network on ImageNet, which was fine-tuned with semi-supervision over
the data-set. To be comparable, we additionally fused [13] outputs as described
in Sec.5 in order to generate a mesh. Extra images from different point of views
are shown in Appendix A.6.

Our novel hierarchical global pose optimization framework implicitly handles
loop closure, recovers from tracking failures, and reduces geometric drift. Our
method is able to support multiple loop closure as it does not rely on explicit
loop closure detection; thus, scales better.

Tracking Failure Recovery. When a new keyframe cannot be aligned with any of
the previous keyframes, tracking is assumed to be lost. Sensibly, this means that
the keyframe won’t have any edges connecting it to any previous keyframes in
the pose-graph optimization. Thus, an additional lone fragment will be created
in the fragment’s connectivity graph and the predicted surface won’t be included
in the output reconstruction. Based on our approach, recovery is enabled to any
previously scanned areas as we don’t require temporal nor spatial coherence. A
common tracking loss sequence is shown in Fig. 6 in which the camera is occluded
by a Haustral fold (colon wall protrusions). As our method globally matches new
keyframes against all existing keyframes, tracking can be lost and recovered at
a completely different place.

Loop Closure Operation. Our global pose optimization continuously operates
in the background; detects and handle loop closures seamlessly thus mitigating
camera pose errors and evidently preventing geometric drifts over time. See Fig. 7
where the synthetic sequence is played forward and backward in order to create
a loop. Notice how the forward and backwards trajectories align in our method
versus the vanilla frame-to-model approach.

7 Conclusion

We have presented a novel deep learning 3D reconstruction approach that pro-
vides a robust tracking with negligible geometric-drift and implicitly solves the
tracking loss problem frequent during OC. The proposed approach was evaluated
on multiple data-sets, showing outstanding reconstruction quality and complete-
ness compared to previously suggested methods. Additional experiments were
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conducted to illustrate the proficiency of the suggested method in several diffi-
cult cases common in colonoscopic sequences not supported by previous meth-
ods. The reconstruction can be used to indicate un-inspected surfaces that could
contain colorectal lesions and decrease the miss rates of polyps. Although our
framework deals with real life issues common in OC, some still remains unat-
tended: non-rigidity of the colon can be suppressed within the TSDF only up to
some extent and dynamic objects like stool and degenerate frames needs to be
discarded. We leave these further explorations to future work.

A Appendix

A.1 Synthetic Data Generation

For the purpose of reproducibility, we state the parameters that were used to
build each synthetic sequence using the synthetic colonoscopy simulator [41].
The parameters are summarised in Table. 4, where RP stands for Random Path.
It is worth mentioning that the user does not have the ability to set the seed of
the random number generator for the random path chosen.

A.2 Depth Training and Implementation Details

We use AdamW optimizer [23], with β1 = 0.9, β2 = 0.999. We train the synthetic
and the Colon10k models for 40 epochs, with a batch size of 16 on a 24GB
Nvidia 3090 RTX. The initial learning rate is 10−4; we reduce it by half on
each of the 16th, 24th and 32nd epochs. As for the 3D colon print model, we
train for 200 epochs; reduce the learning rate by half on each of the 80th, 120th
and 170th epochs. We center-crop the synthetic images to 400 × 400 to remove
vignetting effects. The Colon10k images are provided in an un-distorted and
center-cropped version of 270× 216 pixels. Finally, the cropped image is scaled
to 224× 224 before feeding to the network. For the 3D colon print, we employ
test time training due to the scarcity of the data and the fact that the training
process is completely self-supervised.

To generate the specular reflection mask for each frame, we convert the input
frames to YUV color-space and apply a threshold of 90% on the Y channel and
dilate the resulting binary mask with a kernel of 13 pixels.

We use MMLab’s [5] implementation of ResNet [16], deformable convolutions
and FPN. All ResNet encoders and the FPN were pre-trained on ImageNet [34].
We use ResNet50 for the depth encoder. For the pose encoder and FPN, we use
ResNet18. Deformable convolution layers are applied in the depth encoder stages
of conv3, conv4 and conv5. We set λph−extra = 0.1 and λdc = 0.1, τ = 0.01.

A.3 Correspondence Matching Qualitative Results

Matching examples of ContraFeat, SIFT [24] and SuperPoint [11] are shown
in Fig. 8. ContraFeat incline to produce more correct matches and spread out
evenly throughout the image, and is less susceptible against drastic illumination
changes.
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SIFT [24] SuperPoint [11] ContraFeat

Fig. 8. Matching qualitative comparison on the synthetic data. Correct matches are
green lines and mismatches are red lines. Mismatches defined when correspondence
re-projection error is greater than 1% of colons diameter. (Color figure online)

A.4 Comparison of the Estimated Trajectories and Ground Truth
Trajectories

Fig 9 compares the estimated trajectory and ground truth trajectory on the
3D colon print between DSO [12], our framework using SuperPoint [11] and
our proposed method. The pose estimation from the network is of arbitrary
scale. Therefore, we first align the two trajectories using similarity transform [18]
following with first-frame alignment for better visualization and comparison.
Note that the estimated trajectories by our framework is more accurate with
loops of similar shape as compared to the ground truth trajectory.

DSO [12] Ours + SuperPoint [11] Ours

Fig. 9. Comparison of the estimated trajectories and ground truth trajectories on the
3D colon print sequence.
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A.5 Extra Qualitative Depth-Map Predictions Results

In Fig. 10 and Fig. 11 we show extra depth-map predictions of the 3D colon print
and Colon10K [25].

A.6 Extra Qualitative 3D Reconstruction Results on Colon10K

In Fig. 12 and Fig. 13 we show extra points-of-view of the 3D reconstructions by
our proposed framework on Colon10K [25] and 3D colon print data.

Table 4. Synthetic data creation parameters.

Parameters Sequence

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6 Seq. 7 Seq. 8

Path A RP B RP RP RP RP RP

Trip Duration 150 150 150 150 150 150 150 150

Shots per sec 30 30 30 30 30 30 30 30

Shots Resolution 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512

Hue 0 0 3 3 100 100 100 100

Saturation 72 72 90 90 78 78 78 78

Value 100 100 100 100 52 52 52 52

Wetness 88 88 56 56 40 40 40 40

Vessel Size 60 60 60 60 60 60 60 60

Vessel Opacity 30 30 30 30 30 30 30 30

Angle 150 150 150 150 150 150 150 150

Intensity 74 74 59 59 62 62 62 62

Distance 0 0 0 0 0 0 0 0

Shadow On On On On On On On On

Dynamic Off Off Off Off Off Off Off Off

Field of View 110 110 110 110 110 110 110 110

Vignette On On On On On On On On

Bloom On On On On On On On On

Grain 0 0 1 1 3 3 3 3

A.7 SuperPoint Training

SuperPoint [11] was trained using [17] Pytorch implementation with their sug-
gested improvements that enable end to end training using a softargmax at
the detector head and a sparse descriptor loss that allows an efficient training.
Photo-metric augmentations were adapted to the colon data-set by lowering the
contrast, blur and noise levels to values that enabled the extraction of features
even from deeper shadowed areas of the colon. the network was trained for about
100 epochs, with a batch size of 10 and learning rate of 0.0003. The best check-
point was chosen based on validation set precision and recall.
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Fig. 10. Extra depth map prediction results on 3D colon print.
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Fig. 11. Extra depth map prediction results on Colon10K [25]. Left image exhibits a
highly specular area with strong motion blur. The middle image exhibits strong illumi-
nation differences. The right image exhibits low texture images. In all three examples,
our depth network produces detailed and artifact-free depth maps.
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Colon10K [25] 3D colon print

Fig. 12. Extra reconstruction qualitative results on Colon10K [25] and 3D colon print.

(a) Seq.09
(b) Seq.18

Fig. 13. Extra points-of-view of the 3D reconstruction results on Colon10K data-set.
proposed framework (top), mesh reconstructed from depth and pose predictions by
Godard et al. [13] (bottom).
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RGB Image Re-rendered reconstructed
model (with texture)

Fig. 14. Captured video and re-rendered reconstruction model similarity.

A.8 Supplementary Video Results

In the supplementary video, labeled as rgb tex geo.mp4, we show the fully endo-
scopic investigation of the 3D colon print while comparing the resemblance
between the reconstructed model and the captured RGB images. This is accom-
plished by re-rendering the reconstructed model using the camera intrinsics, cam-
era predicted pose and framework’s output mesh. In the video rgb tex geo.mp4
we visualise the captured video (Left) next to the re-rendered reconstructed
model with texture (right). An example can be seen in Fig. 14. An additional
camera fly-through video is available, labeled as fly through.mkv, showing the
final reconstruction of the 3D colon print.
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Abstract. Inpainting has recently been employed as a successful deep-
learning technique for unsupervised model discovery in medical image
analysis by taking advantage of the strong priors learned by models to
reconstruct the structure and texture of missing parts in images. Even
though the learned features depend on the masks as well as the images,
the masks used for inpainting are typically random and independent of
the dataset, due to the unpredictability of the content of images, i.e.,
different objects and shapes can appear in different locations in images.
However, this is rarely the case for medical imaging data since they are
obtained from similar anatomies. Still, random square masks are the
most popular technique for inpainting in medical imaging. In this work,
we propose a pipeline to generate, position and sample the masks to
efficiently learn the shape and structures of the anatomy and generate
a myriad of diverse anatomy-aware masks, aiding the model in learn-
ing the statistical shape prior to the topology of the organs of interest.
We demonstrate the impact of our approach compared to other masking
mechanisms in the reconstruction of anatomy. We compare the effective-
ness of our proposed masking approach over square-shaped masks, which
are traditionally used in medical imaging, and irregular shape masks,
which are used in SOTA inpainting literature. Project Page: https://
anatomyaware.github.io/.

Keywords: Inpainting · Mask Generation · Superpixel ·
Self-supervised

1 Introduction

Recent advances in deep learning and particularly generative models have made
it possible to take advantage of these methods for image generation, completion,
or manipulation tasks. A commonly used image manipulation method is image
inpainting [4,5,10,11], which reconstructs partially masked images. The main
application of inpainting is to replace corrupted or unwanted objects in an image
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using normal distribution priors [7]. Early medical image inpainting methods
relied on classical techniques such as Mumford-Shah function [14,29] or manual
pixel modification [28] to remove erroneous parts. However, recently, most of the
works incorporate deep learning techniques [34]. Some works utilize inpainting
to remove anomalies to improve model robustness in other tasks [16,27]. Inpaint-
ing has also shown to be effective in removing brain lesions and improving brain
atrophy detection performance [16]. Armanious et al. proposed two networks
for inpainting - one for MR images [3] and another with a more general direc-
tion for arbitrary regions [2]. To preserve the structure and edges in the image,
some works enforce edge continuity during inpainting [14,35,37]. For exam-
ple, [37] uses the edge and structure information to address distortion in medical
images, including COVID CT, Abdominal CT, and Abdominal MR reconstruc-
tion. Multi-scale masks for medical images are used to handle homogeneous
areas and structure details [15]. Bukas et al. [6] use inpainting to reconstruct
and straighten broken vertebrae. In 3D brain MR scans, the inpainting of sparse
2D scans can be utilized to decrease the run time [20]. Kim et al. [22] generate
tumors in the healthy brain using inpainting to visualize the tumor progression.

Masking Approaches. Liu et al. [26] introduced the irregular masks dataset
consisting of binary images extracted from video clips, as a substitute for rectan-
gular masks. Elharrouss et al. [8] found that models can effectively reconstruct
holes up to 20 percent of the original image but struggle with larger holes. To
address this, Rojas introduced mask shapes as an additional input to improve
model performance [31].

Superpixels for Masking. Superpixels have never been utilized for training,
but Isogawa et al. [18] used superpixels to shape the masks during testing, lever-
aging their shape as prior information for reconstruction. Similarly, Li et al. [25]
utilized superpixels to generate holes in the image during inference. They then
identified significant differences between the reconstructed and original images
as anomalies.

Mask Placement. Previous works [8,18,24,33,35] have shown that the size
and placement of masks can affect the performance of inpainting models. How-
ever, finding the optimal mask for each image is challenging due to the high
dimensionality of images. In computer vision, irregular-shaped masks are com-
monly used, while previous work on inpainting with medical imaging relies on
random square-shaped masks. We argue that irregular-shaped masks are suit-
able for non-medical images, but for medical images with predictable shapes and
textures, anatomy-based masks are more appropriate to capture the structure of
the target organ or anatomical region. We investigate the effect of the inpainting
mask’s position and shape on image reconstruction performance. We propose a
novel anatomy-aware mask generation and positioning method that conforms
to the image’s structures and shapes. Segmentation maps can provide strong
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Fig. 1. Here, we show an overview of (a) our mask generation method, and (b) the
inpainting framework. The organ bounded region and pseudo-segments are gener-
ated by morphological opening and the superpixel algorithm, respectively. Finally, our
anatomy-aware masks are sampled using the mask generator and used for the inpaint-
ing model.

shape prior information for mask generation, but they are hard to obtain and
require a lot of supervised training data for segmentation models [9,12,40,41].
To overcome this challenge, we use superpixel over-segmentation maps, which
do not need any training or manual annotation. Several over-segmentation algo-
rithms [1,19,39] have been proposed; however, in this work we use a fast and
straightforward off-the-shelf method [13] used in medical imaging [30]. We exten-
sively evaluate different masking strategies using image reconstruction metrics.
To summarize our contributions:

– We propose a self-supervised anatomy-aware mask localization, generation,
and sampling strategy for the more anatomy-friendly inpainting.

– To the best of our knowledge, this is the first work that uses shape priors to
generate masks in medical imaging.

– We verify our hypothesis that the masks’ location and shape are essential
aspects of mask generation for image reconstruction in inpainting.

– Our proposed method outperforms existing mask shapes (square and irregu-
lar) and arbitrary sampling and positioning of the mask in inpainting.

2 Methodology

Our anatomy-aware mask generation strategy for inpainting is explained in this
section. First, we define the inpainting framework and then present our proposed
mask localization and mask shape generation techniques. An overview of our
method is presented in Fig. 1 and Algorithm 1.
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Algorithm 1. Mask Generation
1: I ← Image
2: M(.): Mask sampling function
3: B(.): Boundary Region Generator
4: G(.): Pseudo-Segment Generator
5: S: Set of si, configurations for G(si, I)
6: for si in S do
7: PSi = G(si, I) ∗ B(I)
8: mI ← (ps(i,j), area(ps(i,j)), center(ps(i,j))), ∀psj ∈ PSi

9: ωI ← area(ps(i))/
∑

area(ps(i,j)) , ∀ps(i,j) ∈ PSi

10: end for
11: M = {m′|m′ ∼ P (mI |ωI)} � where P is the probability density function

Definitions. Given an input image I ∈ R, the goal of our inpainting network
f(.) is to reconstruct pixels of the image which are masked by M(.) before feeding
it to f(.). In addition to reconstructing the masked image, the inpainting model
also reconstructs the masked edges C ′. Therefore, the output of our network,
which is the reconstructed image I ′ becomes f(M(I)).

Pseudo-segment Generation. Inspired by [30], we generate pseudo-segments
for our images using the Felzenszwalb superpixel over-segmentation algo-
rithm [13], which maps image pixels into a graph defined by (V,E). Each edge
εi,j connects neighboring pixels νi, νj and has a distance measure δi,j ∈ Ω that
defines the dissimilarity between νi and νj . Our approach is not bound to a spe-
cific algorithm, but we demonstrate the effectiveness of our approach through
image reconstruction metrics. To generate the pseudo-segments for mask gener-
ation, dissimilarity distances δi,j are computed for each pixel’s eight neighboring
pixels. These distances are then merged using the dissimilarity measure Ω to
create the segments. The size of the segments is determined by a threshold value
τ based on the distance between their vertices.

Shape and Sampling. We created a variety of shapes and sizes of pseudo-
segments using different settings si ∈ S (as it can be seen in Fig. 2) for our
pseudo-segment generator G(si, I), and intentionally increased the frequency of
smaller segments to enhance their importance in the model’s objective function.
We achieved this by creating a weight-biases matrix ω that paired each pseudo-
segment with a value calculated by the inverse number of pixels, resulting in
pseudo-segments PSn for each image In used by the sampler to generate masks.
Our approach prioritizes smaller segments that may hold important information,
as traditional objective functions for image reconstruction can be less sensitive
to them because the number of pixels are an impacting factor for them.

Masking Position. We place a set of sampled pseudo-segments in specific
regions to generate our desired mask. The placement regions are identified based
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on the centers of the pseudo-segments. Three approaches are outlined for the
placement of the sampled pseudo-segments: 1) random locations in the image,
2) random locations inside the bounded region of the organ (IBR), 3) exact
location of the pseudo-segment (OPS):

– Inside Bounded Region (IBR): To obtain the bounded region of the organ,
we apply morphological opening to the input image In. This provides us
with a pseudo-segmentation mask that defines the whole region of the organ.
The mask coordinates are then randomly sampled from the area inside the
bounded region.

– On Pseudo-segments (OPS): We suggest that the location of masked regions
in image inpainting plays a significant role in modeling the dataset. Therefore,
in our approach we sample m random pseudo-segments from each image and
use the center of sampled pseudo-segments as the positioning anchor in the
mask layout.

Inpainting Framework: Our inpainting framework is based on CTSDG [17],
which is an state-of-the-art architecture for inpainting. The reason behind this
choice lies in CTSDG relying both on the texture and the structure for image
reconstruction, and taking advantage of the edges in the image. With that we
show that the proposed masking strategy is the main contributing factor in
the improvement of the model performance, since the model already receives the
extracted edges of the image as an extra input and has an additional independent
objective function to ensure the continuity of the edges.

Objective Functions: Our model is trained with a combination of reconstruc-
tion loss, perceptual loss, adversarial loss, and style loss similar to [17]:

L = ‖I ′ − I‖ +
∑

‖φ(I ′) − φ(I)‖ +
∑

‖ψ(I ′) − ψ(I)‖ + Ladv + Lint (1)

where φ corresponds to the activation map of the image from a pre-trained
VGG [32] network and ψ is the Gram matrix of the activation map φ to preserve
the style. The adversarial and intermediate losses are defined as Ladv and Lint

respectively:

Ladv = min
f

max
D

E[log(D(I, C))] + E[log(1 − D(I ′, C ′))] (2)

Lint = BCE(C,C ′′) + ‖I − I ′′‖ (3)

where C ′′, I ′′ are intermediate reconstructions of the edge and image and D(.)
is the discriminator in our inpainting network.

3 Experiments

In this section, we present the experiments that validate our hypothesis. To
evaluate our mask generation and positioning method, we train and test it on
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Fig. 2. Variety of generated anatomy-dependent masks by our proposed method.

the recently published CHAOS [21] (Combined (CT-MR) Healthy Abdominal
Organ Segmentation) dataset. The CHAOS dataset includes healthy abdominal
MR and CT scans from 80 patients. We train our model on T1-DUAL In-phase
MR scans from 40 patients. The scans from 75% of the patients were randomly
chosen for training the model and the scans from the remaining 25% patients
for evaluation.

3.1 Experimental Setup

In all the experiments on CHAOS [21], we follow the same protocols and hyper-
parameters as [17] for the inpainting framework unless explicitly specified. All
our models were trained for 10K iterations, batch size of 6, and a learning rate of
2e−4 for the inpainting network and 0.1 for the discriminator. All networks were
trained with the Adam optimizer [23]. For the superpixel over-segmentation, we
used the scikit-image [36] library with the scale factor of 2, Gaussian filtering
with σ = 0.5, and a minimum size of 9 for each segment. To merge the pseudo-
segments, we set the threshold value τ = 10 and refine the pseudo-segments based
on their mean color and their distance to their neighbors. In the experiments on
CHAOS [21], we evaluate the model using three different masking techniques to
show the model’s robustness to masks of other shapes during testing. Since we
did not observe any commonly used or publicly available benchmark for evalu-
ating inpainting masks in prior works, we define our own evaluation protocol,
including the ground truth segmentation maps, and square-shaped masks, which
are the standard masks used in medical image inpainting.

Evaluation Masks. In the experiments on CHAOS [21], we used three eval-
uation masks: 1) segmentation shaped mask + OPS, which explicitly masks a
segment that correlates with the shape of the organs, 2) multiple small squares,
with similar total size to the area of the segments scattered in the image, and,
3) one large random sized and randomly located square that masks 20% to 60%
of the image. Since progressive mask reconstruction becomes more challeng-
ing [8,26], we evaluate the methods on large square masks (over 20 percent of
the image area) as well. In the inpainting literature, the capability of the model
to reconstruct larger masks is a main challenge. This is due to the fact that in
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Table 1. A comparison of various mask locations for training the model tested in 3 dif-
ferent evaluation settings. IBR: Inside Bounded Region, OPS: On Pseudo-Segments.
The mask shape in these experiments is square.

Position Evaluation Mask

Segments Multiple Small Squares Single Large Square

L1↓ PSNR↑ SSIM ↑ LPIPS↓ L1↓ PSNR↑ SSIM↑ LPIPS↓ L1↓ PSNR↑ SSIM↑ LPIPS↓
Random 0.049 16.66 0.60 0.2885 0.052 16.78 0.63 0.32 0.56 14.08 0.64 0.29

IBR (Ours) 0.048 18.04 0.67 0.2686 0.05 18.13 0.67 0.2586 0.057 13.65 0.65 0.2670

OPS (Ours) 0.047 18.07 0.68 0.2676 0.049 18.45 0.69 0.2888 0.055 13.49 0.67 0.2685

the larger masks, the model has less neighboring information, that would make
the task more challenging. On the other hand, small square masks have closer
correlation with the tasks and the size of the organs.

Evaluation Metrics. We evaluate our method and the baselines on four dif-
ferent similarity metrics: 1) PSNR (Peak Signal-to-Noise Ratio), 2) SSIM [38]
(Structural Similarity Index Measure), 3) LPIPS [42] (Learned Perceptual Image
Patch Similarity), and 4) the L1 distance. All the metrics were calculated only
on the region of interest (RoI) where the masks are applied.

3.2 Results

Our results are presented in three sections: Table 1 shows the effect of the masks
locations on the performance of the model. In Table 2, we discuss the shapes
of the masks, and in Table 3 we ablate the source and locations of the shape
distributions and how our weight-biased sampling improves the results.

Finally, in Table 3 we show that the reconstruction performance of our pro-
posed masking strategy on both IBR and OPS outperforms even similar set-
tings. We also used masks that are sampled from another image to investigate

IrregularRandom Small SquaresPseudo-Segments + IBR Squares + IBRPseudo-Segments + OPS Masked Image

Segm
ents

Ground Truth

Sm
all Squares

Large Square

Evaluation Mask

Fig. 3. Comparison of reconstructed masked image with different masking techniques.
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the model performance’s dependency on the domain of the mask shapes; how-
ever, the number of pseudo-segments are not the same, the masks from the other
image are sampled based on their own weight-biases (ω).

Table 2. A comparison of various mask shapes used for training the model tested in
3 different evaluation settings. The positioning of the masks for all shapes is based on
OPS. PS: Pseudo-Segments.

Shape Evaluation Mask

Segments Multiple Small Squares Single Large Square

L1↓ PSNR↑ SSIM↑ LPIPS↓ L1↓ PSNR↑ SSIM↑ LPIPS↓ L1↓ PSNR↑ SSIM↑ LPIPS↓
Square 0.047 18.07 0.68 0.2676 0.049 18.45 0.69 0.2888 0.055 13.49 0.67 0.2685

Irregular 0.046 16.44 0.61 0.3078 0.047 16.63 0.64 0.3174 0.053 14.13 0.66 0.2781

PS (Ours) 0.045 19.38 0.77 0.2655 0.044 19.58 0.78 0.2630 0.052 14.4 0.74 0.2663

For the experiments in Table 1, we first evaluate different mask localization
approaches using the square masks to demonstrate that regardless of the shape,
appropriate mask positioning improves the reconstruction performance. It can
be seen that bounding the masking region to the organ region brings the most
significant improvement. Furthermore, if we enforce the mask centers to fall into
the predicted pseudo-segments, the performance slightly improves. To ensure
comparable results, we set the size of the squares the masks in all of the experi-
ments to be the same

Table 3. IBR: Inside Bounded Region, OPS: On Pseudo-Segments. Weighted:
weighted sampling.

Distribution Weighted Position Evaluation Mask

Segments Multiple Small Squares Single Large Square

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Same Image - OPS 18.25 0.6456 0.29 18.5 0.6767 0.2955 14.02 0.6865 0.2862

Other Image � OPS 18.31 0.6295 0.3009 18.48 0.6552 0.3054 14.11 0.6878 0.2871

Same Image � IBR 19.16 0.6836 0.2544 19.18 0.7064 0.2599 13.42 0.6619 0.29665

Same Image � OPS 19.38 0.77 0.2655 19.58 0.78 0.263 13.5 0.74 0.2853

In Table 2, we evaluate and compare our proposed masking strategy against
the commonly used irregular [26] and square masks. As it can be seen, the model
trained with pseudo-segment shaped masks (PS) achieves the best performance
in most of the evaluation settings and metrics. Some qualitative results of recon-
struction with different models and evaluated on various tasks is shown in Fig. 3.

We demonstrate the importance of the mask’s shape and position in Table 3.
Masks sampled from another image perform better than square masks, but masks
sampled from the same image and positioned based on IBR perform even better.
Moreover, masks that use OPS achieve the best performance.
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4 Discussion and Conclusion

We proposed a novel approach for anatomy-aware mask generation that enforce
geometric priors captured from the the images to generate masks for context
encoders. Our mask generator and sampler considers shape, location and the
size of anatomies, which proved to be more anatomy friendly than the commonly
used square masks. Our experiments demonstrate that positioning the masks in
the region of the organ or on pseudo-segments has a significant effect on the
model’s reconstruction performance. Therefore, as shown in Table 3, especially
in smaller dataset, our method is preferred. Finally, we showed that using pseudo-
segments from images other than the current image for mask generation has a
higher performance than commonly used square shaped and irregular masks and
therefore a dataset of our generated pseudo-segment masks can be considered
a substitute to square and irregular masks for the medical image inpainting or
pretext tasks.
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16. Guizard, N., Nakamura, K., Coupé, P., Fonov, V.S., Arnold, D.L., Collins, D.L.:
Non-local means inpainting of MS lesions in longitudinal image processing. Front.
Neurosci. 9 (2015). https://doi.org/10.3389/fnins.2015.00456

17. Guo, X., Yang, H., Huang, D.: Image inpainting via conditional texture and struc-
ture dual generation. In: ICCV (2021)

18. Isogawa, M., Mikami, D., Iwai, D., Kimata, H., Sato, K.: Mask optimization for
image inpainting. IEEE Access 6, 69728–69741 (2018). https://doi.org/10.1109/
ACCESS.2018.2877401

19. Jampani, V., Sun, D., Liu, M.-Y., Yang, M.-H., Kautz, J.: Superpixel Sampling
Networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer
Vision – ECCV 2018: 15th European Conference, Munich, Germany, September
8–14, 2018, Proceedings, Part VII, pp. 363–380. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01234-2 22

20. Kang, S.K., et al.: Deep learning-Based 3D inpainting of brain MR images. Sci.
Rep. 11(1), (2021). https://doi.org/10.1038/s41598-020-80930-w

21. Kavur, A.E., et al.: CHAOS Challenge - combined (CT-MR) healthy abdomi-
nal organ segmentation. Med. Image Anal. 69, 101950 (2021). https://doi.org/10.
1016/j.media.2020.101950

22. Kim, S., Kim, B., Park, H.W.: Synthesis of brain tumor multicontrast MR images
for improved data augmentation. Med. Phys. 48(5), 2185–2198 (2021). https://
doi.org/10.1002/mp.14701

https://doi.org/10.1007/978-3-031-16852-9_5
https://doi.org/10.1007/978-3-031-16852-9_5
http://arxiv.org/abs/2304.14573
https://doi.org/10.1007/978-3-031-16434-7_56
https://doi.org/10.1007/978-3-031-16434-7_56
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.1088/1757-899X/680/1/012040
https://doi.org/10.1088/1757-899X/680/1/012040
https://doi.org/10.3389/fnins.2015.00456
https://doi.org/10.1109/ACCESS.2018.2877401
https://doi.org/10.1109/ACCESS.2018.2877401
https://doi.org/10.1007/978-3-030-01234-2_22
https://doi.org/10.1007/978-3-030-01234-2_22
https://doi.org/10.1038/s41598-020-80930-w
https://doi.org/10.1016/j.media.2020.101950
https://doi.org/10.1016/j.media.2020.101950
https://doi.org/10.1002/mp.14701
https://doi.org/10.1002/mp.14701


Anatomy-Aware Masking for Inpainting in Medical Imaging 45

23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization.
arxiv.org:1412.6980 (2014)

24. Li, W., Lin, Z., Zhou, K., Qi, L., Wang, Y., Jia, J.: Mat: mask-aware transformer
for large hole image inpainting. In: CVPR (2022)

25. Li, Z., et al.: Superpixel masking and inpainting for self-supervised anomaly detec-
tion. In: BMVC (2020)

26. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image
inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018: 15th Euro-
pean Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XI,
pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 6

27. Manjón, J.V., et al.: Blind MRI brain lesion inpainting using deep learning. In:
Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds.) Simulation and Syn-
thesis in Medical Imaging: 5th International Workshop, SASHIMI 2020, Held in
Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings, pp.
41–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59520-3 5

28. Arnold, M., Ghosh, A., Ameling, S., Lacey, G.: Automatic segmentation and
inpainting of specular highlights for endoscopic imaging. EURASIP J. Image Video
Process. 2010, 1–12 (2010). https://doi.org/10.1155/2010/814319

29. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685
(1989). https://doi.org/10.1002/cpa.3160420503

30. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision
with Superpixels: training few-shot medical image segmentation without annota-
tion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision
– ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXIX, pp. 762–780. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58526-6 45

31. Rojas, D.J.B., Fernandes, B.J.T., Fernandes, S.M.M.: A review on image inpaint-
ing techniques and datasets. In: 2020 33rd SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI). IEEE (2020)

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 (2014)

33. Suvorov, R., et al.: Resolution-robust large mask inpainting with Fourier convolu-
tions. In: WACV (2022)

34. Tran, M.T., Kim, S.H., Yang, H.J., Lee, G.S.: Deep Learning-Based Inpainting for
Chest X-Ray Image. Association for Computing Machinery, New York, NY, USA
(2020)

35. Tran, M.-T., Kim, S.-H., Yang, H.-J., Lee, G.-S.: Multi-task learning for medi-
cal image inpainting based on organ boundary awareness. Appl. Sci. 11(9), 4247
(2021). https://doi.org/10.3390/app11094247

36. van der Walt, S., et al.: scikit-image: image processing in Python. PeerJ 2, e453
(2014). https://doi.org/10.7717/peerj.453

37. Wang, Q., Chen, Y., Zhang, N., Gu, Y.: Medical image inpainting with edge
and structure priors. Measurement 185, 110027 (2021). https://doi.org/10.1016/
j.measurement.2021.110027

38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

39. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolu-
tional networks. In: CVPR (2020)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-01252-6_6
https://doi.org/10.1007/978-3-030-59520-3_5
https://doi.org/10.1155/2010/814319
https://doi.org/10.1002/cpa.3160420503
https://doi.org/10.1007/978-3-030-58526-6_45
https://doi.org/10.1007/978-3-030-58526-6_45
http://arxiv.org/abs/1409.1556
https://doi.org/10.3390/app11094247
https://doi.org/10.7717/peerj.453
https://doi.org/10.1016/j.measurement.2021.110027
https://doi.org/10.1016/j.measurement.2021.110027
https://doi.org/10.1109/TIP.2003.819861


46 Y. Yeganeh et al.

40. Yeganeh, Y., et al.: Scope: structural continuity preservation for medical image
segmentation. arXiv preprint arXiv:2304.14572 (2023)

41. Yeganeh, Y., Farshad, A., Weinberger, P., Ahmadi, S.A., Adeli, E., Navab, N.:
Transformers pay attention to convolutions leveraging emerging properties of vits
by dual attention-image network. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 2304–2315 (2023)

42. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

http://arxiv.org/abs/2304.14572


Particle-Based Shape Modeling
for Arbitrary Regions-of-Interest

Hong Xu(B), Alan Morris, and Shireen Y. Elhabian

Scientific Computing and Imaging Institute, School of Computing,
University of Utah, Salt Lake City, UT, USA

{hxu,amorris,shireen}@sci.utah.edu
http://www.sci.utah.edu

Abstract. Statistical Shape Modeling (SSM) is a quantitative method
for analyzing morphological variations in anatomical structures. These
analyses often necessitate building models on targeted anatomical regions
of interest to focus on specific morphological features. We propose an
extension to particle-based shape modeling (PSM), a widely used SSM
framework, to allow shape modeling to arbitrary regions of interest.
Existing methods to define regions of interest are computationally expen-
sive and have topological limitations. To address these shortcomings, we
use mesh fields to define free-form constraints, which allow for delimiting
arbitrary regions of interest on shape surfaces. Furthermore, we add a
quadratic penalty method to the model optimization to enable compu-
tationally efficient enforcement of any combination of cutting-plane and
free-form constraints. We demonstrate the effectiveness of this method
on a challenging synthetic dataset and two medical datasets.

1 Introduction

Statistical Shape Modeling (SSM) is a widespread method used to analyze shape
variation across 3D anatomical samples within a population. These analyses
are crucial in detecting common morphological pathologies and advancing the
understanding of different diseases by studying the form-function relationships
between anatomies [2,5–8,13,16–18,21]. While building SSMs, certain biomed-
ical and clinical applications require a focus on specific anatomical regions of
interest (ROIs) to tailor the analysis to precise morphological features (e.g. [1–
4,11,14–16]). Such applications might require excluding certain surface aspects,
modeling certain regions in isolation, or a mix of these. ROI definition with-
out altering the input shape has been achieved using constraints, mathematical
delimiters that restrict model construction to certain surface areas [11]. Our
approach focuses on redesigning the constraint application method to improve
its functionality, flexibility, and efficiency during SSM construction.

To construct such SSMs, two distinct families of shape representations can be
used to allow for statistical analysis, deformation fields and landmarks. Whereas
the former encodes implicit transformations between cohort samples and a pre-
defined (or learned) atlas, the latter uses explicit landmark points spread on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Wachinger et al. (Eds.): ShapeMI 2023, LNCS 14350, pp. 47–54, 2023.
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shape surfaces that correspond across the population [19,20]. We focus on the
latter approach given its extensive use due to its simplicity, computational effi-
ciency, and interpretability for statistical analysis [19,22]. Although landmarks
used to be manually placed on specific anatomical features of interest, the mod-
ern convention uses dense automatically-placed landmarks obtained through
computational methods, such as minimum description length (MDL) [12], and
particle-based shape modeling (PSM) [9,10]). We utilize PSM, an efficient and
robust entropy-based optimization method that creates a system of dense land-
marks or particles, which conform to all population shape surfaces while main-
taining correspondence across them.

A previous attempt to constrain PSM particle distributions uses geometric
primitives in the form of spheres or cutting planes to exclude regions [11]. This
exclusion is achieved by projecting virtual particles onto these geometric prim-
itives (represented as parametric constraints), relying on the entropy objective
to repel landmark particles away from these areas. Such an approach has the
advantage of not altering input surfaces, which can otherwise distort morphol-
ogy or necessitate manual expert-driven reprocessing of data. However, it falters
when arbitrary regions of interest cannot be expressed via geometric primitives,
limiting the topologies to be modeled. It also exhibits poor scaling due to it
requiring an additional set of projected virtual particles per constraint. Thereby,
to address these shortcomings in the existing literature, we propose the use of
the quadratic penalty method in the optimization to allow the simultaneous
and scalable application of cutting-plane, spheres, other primitive constraints, as
well as a proposed method of defining arbitrary surface constraints, or free-form
constraints (FFCs). This method provides both flexibility in the definition of
constraints to define ROIs and scalability with large-scale or heavily constrained
populations without the need to reprocess data.

2 Method

The aforementioned automatic landmark placement methods take in a popula-
tion of I− shapes S = {Si}I

i=1 (binary segmentations, meshes, or n-dimensional
contours), and obtain particles P = {Pi}I

i=1 where the i−th shape point distri-
bution model (PDM) is denoted by J−particles Pi = [pi,1,pi,2, · · · ,pi,J ], where
pi,j ∈ R

3. Such particles are obtained by optimizing an objective f(P), which
give

f(P) = H(P) −
J∑

j=1

H(Pi), (1)

where H is an estimation of the differential entropy. The particles enable quan-
tifying subtle differences and computing shape statistics (e.g., by performing the
principal component analysis (PCA) on corresponding particles) by providing a
population-specific anatomical mapping across the given cohort.
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We constrain each shape Si by Mi−inequality constraints in the form
gi,m(p) ≤ 0, where gi,m(p) is a differentiable function. These parametric con-
straints can be in the form of cutting planes or spheres as showcased in [11]
(by using the equations of planes or spheres), other parametric delimiters, or
free-form constraints, which allow arbitrary surface region definition. These con-
straints limit the distribution of particles to regions that satisfy the inequality, a
region more easily demarcated using parametric constraints in some anatomies,
and/or free-form surface-painting in others.

In this section, we describe the use of a quadratic penalty method to allow
efficient and simultaneous enforcement of an arbitrary number of parametric
constraints, and the use of signed mesh vector fields to build free-form constraints
that allow arbitrary surface region isolation. We will also showcase a friendly
graphical interface to define these constraints.

2.1 Quadratic Penalty for Efficient Constrained PDM Construction

We define an extended objective function to express this constrained optimiza-
tion problem in an unconstrained form. For each constraint function in the form
gi,m(p) ≤ 0, we add a quadratic penalty term g+

i,m(p) = max(0, gi,m(p)) to the
optimization objective, yielding

F (P) = f(P) +
I∑

i=1

Mi∑

m=1

J∑

j=1

g+
i,m(pi,j). (2)

We optimize this objective function using a Gauss-Seidel gradient descent
scheme, with the second term preventing particles from violating constraints,
hence restricting their movement exclusively to feasible regions. This method
scales linearly with respect to the number of particles per shape, whereas the
virtual particle model [11] scales quadratically.

2.2 Free-Form Constraints

We express free-form constraints in the same form gi,m(p) ≤ 0 for each shape
Si by attributing a distance and gradient field onto each vertex of a mesh Mi.
Any feasible region on the surface of Mi can be delineated by a set of surface
boundaries Bi = [Bi,1,Bi,2, · · · ,Bi,B ], which are represented as vertex loops on
the mesh surface. A distance field query for a particle p, denoted Md

i (p), pro-
vides the signed geodesic distance to the closest constraint boundary Bi,∗ from
the projection of p onto Mi, illustrated in Fig. 1 (b). Similarly, a gradient field
query, denoted Mg

i (p), would provide the gradient direction, shown in Fig. 1 (c).
Ultimately, the mesh Mi together with its fields Md

i and Mg
i , can approximate

the distance and first-order gradients over near-surface points, effectively simu-
lating a differentiable function gi,m(p). When integrated into the aforementioned
penalty method 2.1, this approach can enforce arbitrary surface constraints.
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Fig. 1. (a) Constrained particle distribution on a sphere, where yellow illustrates the
feasible region of the constrained area where particles are allowed to be distributed, the
gray is the infeasible region where if particles were to be there, they would be violating
the constraint. (b) Distance field Md

i (p) of signed geodesic distances to the surface of
every mesh vertex. (c) Gradient field Mg

i (p) on the mesh surface at every mesh vertex
represented using white arrows and the blue surface as the feasible region. (Color figure
online)

2.3 Graphical Interface Tool

We include a graphical interface tool that can define cutting planes and FFCs
and can roughly propagate these to all shapes in the population. Cutting planes
are defined by prompting 3 points that the user can pick that are on the shape
surface, and can be copy-pasted into all other shapes. FFCs are defined using a
“painting” tool that can define included and excluded areas with an adjustable
brush size. This tool allows precise and arbitrarily customizable definition of
constraints. An FFC on a single shape can be propagated to others using defor-
mation parameters computed from image registration. This functionality is also
included. All the graphical interface functionality is illustrated in Fig. 2.

3 Results

We demonstrate our results by integrating our method into an open-source
implementation of the particle-based shape modeling (PSM) framework, Shape-
Works [9], and produce SSMs from three datasets. The first is a synthetic dataset
of ellipsoids that vary between values of 10, 20, 30, and 40, in each of their three
major axes, totaling 64 ellipsoids. These ellipsoids are constrained by a free-form
boundary that divides each ellipsoid into upper and lower halves by a full period
of a sine wave projected onto the surface, providing a challenging but uniformly
delimited population of shapes. Figure 3 shows a few examples and the modes of
variation from the SSM. The constraints have the desired effect, and the modes
of variation meet expectations as they mimic the variation in the three major
axes.

The second is a dataset of 25 computerized tomography (CT) femurs, where
the region of interest is the proximal femur sans the lesser trochanter (femoral
head, neck, and greater trochanter). For each shape, we use a cutting plane
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Fig. 2. (a) The constraint panel shows the constraints that have been defined and the
tools to define the constraints. (b) Cutting-plane constraints are defined by ctrl-clicking
3 points on the shape surface. (c) Constraints can be flipped or applied to all other
shapes via the right-click menu. (d) FFCs are defined with a painting tool with different
brush sizes and options to customize included and excluded areas. We show how the
painting of excluded areas of different sizes applied to a segmentation of a left atrium.

Fig. 3. (a) Sample ellipsoids from the dataset with feasible regions in yellow and
restricted regions in grey. (b) The first three modes of variation in the dataset, which
show the variation in corresponding major axes. (Color figure online)
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constraint to exclude the shaft and a free-form constraint to exclude the lesser
trochanter. Figure 4 illustrates a few examples and the first two modes of vari-
ation. We observe that a cutting plane allows a more straightforward exclusion
of the shaft whilst the FFC precisely excludes the lesser trochanter. The con-
straints restrict the movement of particles to the feasible region as expected, and
the modes of variation meet expectation as well.

Fig. 4. (a) Example of defined constraints. The feasible region is shown in yellow and
the constrained region in grey. (b) The first two modes of variation in the dataset.
Notice that particles are excluded from the lesser trochanter. (Color figure online)

The third dataset comprises 21 segmentation of left atria models obtained
from MRIs. The pulmonary veins represent the area of greatest variation both
in anatomical structure (e.g. number of veins, common veins, etc.) as well as
greatest variability in segmentation by expert observers (e.g. length into vein
to segment). While the position of veins may be important from a shape mod-
eling perspective, their exact shape is not particularly relevant to LA shape
morphology. Thus, we paint a free-form constraint exclusion area around the
veins. Figure 5 showcases some examples of the shape and the first three modes
of variation. The models meet expectations.

4 Conclusion

We demonstrate a flexible and more scalable approach to define regions of inter-
est in fully-groomed shapes for landmark-based statistical shape modeling by
allowing arbitrary definition of surface constraints via FFCs and incorporating
mixed constraint types into the optimization. This significantly improves the
usability of PSM methods, obviating the need for reprocessing datasets. Future
work includes the automatic propagation of constraints to the entire cohort given
manual definitions on certain representative shapes.
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Fig. 5. (a) Example of defined constraints where the left atrium (in yellow) segmen-
tations have the pulmonary veins excluded (in grey). (b) The first three modes of
variation in the dataset. Notice how the pulmonary vein areas remain hollow. (Color
figure online)

References

1. Atkins, P.R., et al.: Prediction of femoral head coverage from articulated statistical
shape models of patients with developmental dysplasia of the hip. J. Orthop. Res.
40(9), 2113–2126 (2022). https://doi.org/10.1002/jor.25227

2. Atkins, P.R., et al.: Quantitative comparison of cortical bone thickness using
correspondence-based shape modeling in patients with cam femoroacetabular
impingement. J. Orthop. Res. 35(8), 1743–1753 (2017)

3. Atkins, P.R., et al.: Which two-dimensional radiographic measurements of cam
femoroacetabular impingement best describe the three-dimensional shape of the
proximal femur? Clin. Orthop. Relat. Res. 477(1), 242 (2019)

4. Audenaert, E.A., Pattyn, C., Steenackers, G., De Roeck, J., Vandermeulen, D.,
Claes, P.: Statistical shape modeling of skeletal anatomy for sex discrimina-
tion: Their training size, sexual dimorphism, and asymmetry. Front. in Bio-
eng. Biotechnol. 7 (2019). DOI: https://doi.org/10.3389/fbioe.2019.00302,https://
www.frontiersin.org/articles/10.3389/fbioe.2019.00302

5. Bhalodia, R., Dvoracek, L.A., Ayyash, A.M., Kavan, L., Whitaker, R., Goldstein,
J.A.: Quantifying the severity of metopic craniosynostosis: a pilot study application
of machine learning in craniofacial surgery. J. Craniofac. Surg. 31(3), 697–701
(2020). https://doi.org/10.1097/SCS.0000000000006215

6. Bruse, J.L.: A statistical shape modelling framework to extract 3D shape biomark-
ers from medical imaging data: assessing arch morphology of repaired coarctation
of the aorta. BMC Med. Imaging 16, 1–19 (2016)

7. Carriere, N., et al.: Apathy in Parkinson’s disease is associated with nucleus accum-
bens atrophy: a magnetic resonance imaging shape analysis. Mov. Disord. 29(7),
897–903 (2014)

8. Cates, J., et al.: Computational shape models characterize shape change of the left
atrium in atrial fibrillation. Clin. Med. Insights: Cardiol. 8s1, CMC.S15710 (2014).
https://doi.org/10.4137/CMC.S15710

https://doi.org/10.1002/jor.25227
https://doi.org/10.3389/fbioe.2019.00302,
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00302
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00302
https://doi.org/10.1097/SCS.0000000000006215
https://doi.org/10.4137/CMC.S15710


54 H. Xu et al.

9. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks. In: Statistical Shape and Defor-
mation Analysis, pp. 257–298. Elsevier (2017). https://doi.org/10.1016/B978-0-12-
810493-4.00012-2

10. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling
and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt,
B. (eds.) Information Processing in Medical Imaging: 20th International Confer-
ence, IPMI 2007, Kerkrade, The Netherlands, July 2-6, 2007. Proceedings, pp.
333–345. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
73273-0 28

11. Datar, M., Cates, J., Fletcher, P.T., Gouttard, S., Gerig, G., Whitaker, R.: Par-
ticle based shape regression of open surfaces with applications to developmental
neuroimaging. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C.
(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2009, pp. 167–174. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04271-3 21

12. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A mini-
mum description length approach to statistical shape modeling. IEEE Trans. Med.
Imaging 21(5), 525–537 (2002)

13. Harris, M.D., Datar, M., Whitaker, R.T., Jurrus, E.R., Peters, C.L., Anderson,
A.E.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop.
Res. 31(10), 1620–1626 (2013). https://doi.org/10.1002/jor.22389

14. Jacxsens, M., et al.: Thinking outside the glenohumeral box: Hierarchical shape
variation of the periarticular anatomy of the scapula using statistical shape model-
ing. J. Orthop. Res. 38(10), 2272–2279 (2020). https://doi.org/10.1002/jor.24589

15. Jacxsens, M., Elhabian, S.Y., Brady, S.E., Chalmers, P.N., Tashjian, R.Z., Hen-
ninger, H.B.: Coracoacromial morphology: a contributor to recurrent traumatic
anterior glenohumeral instability? J. Shoulder Elbow Surg. 28(7), 1316–1325
(2019)

16. Lenz, A.L.: Statistical shape modeling of the talocrural joint using a hybrid
multi-articulation joint approach. Sci. Rep. 11(1),(2021). https://doi.org/10.1038/
s41598-021-86567-7

17. Merle, C., et al.: How many different types of femora are there in primary hip
osteoarthritis? an active shape modeling study. J. Orthop. Res. 32(3), 413–422
(2014)

18. Merle, C., et al.: High variability of acetabular offset in primary hip osteoarthritis
influences acetabular reaming-a computed tomography-based anatomic study. J.
Arthroplasty 34(8), 1808–1814 (2019)

19. Sarkalkan, N., Weinans, H., Zadpoor, A.A.: Statistical shape and appearance mod-
els of bones. Bone 60, 129–140 (2014)

20. Thompson, D.W., et al.: On growth and form. On growth and form. (1942)
21. van Buuren, M., et al.: Statistical shape modeling of the hip and the associa-

tion with hip osteoarthritis: a systematic review. Osteoarthritis and Cartilage
29(5), 607–618 (2021). https://doi.org/10.1016/j.joca.2020.12.003,https://www.
sciencedirect.com/science/article/pii/S106345842031219X

22. Zachow, S.: Computational planning in facial surgery. Facial Plast. Surg. 31(05),
446–462 (2015)

https://doi.org/10.1016/B978-0-12-810493-4.00012-2
https://doi.org/10.1016/B978-0-12-810493-4.00012-2
https://doi.org/10.1007/978-3-540-73273-0_28
https://doi.org/10.1007/978-3-540-73273-0_28
https://doi.org/10.1007/978-3-642-04271-3_21
https://doi.org/10.1007/978-3-642-04271-3_21
https://doi.org/10.1002/jor.22389
https://doi.org/10.1002/jor.24589
https://doi.org/10.1038/s41598-021-86567-7
https://doi.org/10.1038/s41598-021-86567-7
https://doi.org/10.1016/j.joca.2020.12.003,
https://www.sciencedirect.com/science/article/pii/S106345842031219X
https://www.sciencedirect.com/science/article/pii/S106345842031219X


Optimal Coronary Artery Segmentation
Based on Transfer Learning and UNet

Architecture

Belén Serrano-Antón1,2,3(B) , Alberto Otero-Cacho1,2,3,
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Abstract. Recent results demonstrated that the use of AI to perform
complicated segmentation of medical images becomes very useful when
the coronary arteries are considered. Nevertheless, the different segments
of the coronary arteries (distal, middle and proximal) exhibit singulari-
ties, mostly linked to section changes and image visibility, that point in
the direction to consider each in a singular way. In the present contri-
bution we thoroughly analyse the quality of the segmentation obtained
using different neural networks, based on the UNet architecture, applied
to the three segments of the coronary arteries.

We observe that for proximal segments any of the AI considered pro-
vides acceptable segmentations while for distal segments the 3D UNet
is not able to recognise the coronary structures. In addition, in the dis-
tal region there is a noticeable improvement in the 2D UNet without
pre-training compared to the 2D networks with pre-training.
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1 Introduction

The use of artificial intelligence as a diagnostic aid in clinical practice is becom-
ing increasingly widespread. Despite its limitations in terms of computational
resources or explainability, this tool is of great help in reducing costs, time and,
above all, risk for patients [7].

In particular, invasive procedures such as catheterisation can be avoided by
CT angiography (CCTA). Based on the CT images, the coronary arteries can
be reconstructed. These geometries are then used to calculate, by means of com-
putational fluid simulation techniques (CFD), parameters of clinical interest,
such as FFR [4,5,9]. Extracting the geometries from the images manually is
a tedious, time-consuming and error-prone task. Therefore, some studies have
developed artificial intelligence techniques capable of accurately extracting these
geometries [1,2,6,8].

In most of the medical studies on coronary arteries, an additional degree of
differentiation is considered depending on the location of the artery considered.
Three segments are typically analyzed: proximal (close to the aorta), middle
and distal (corresponding with the artery segments farther from the aorta). It is
known that each segment has differences basically linked to the artery diameter
and visibility due to contrast loss [3,10], thus, it is likely that different AI might
be more suitable for each region.

In this study we will focus on evaluating the performance of different UNet
networks developed in [8] for the different segments of the coronary arteries.
Specifically, we will analyse 2D networks with and without pre-training (with
ImageNet data) and a 3D network. Our case study is based on the analysis in
the three coronary regions: proximal, middle and distal.

2 Methods

2.1 Dataset

The paper on which this contribution is based, [8], uses a dataset of up to
88 patients, which is divided into training, validation and test sets. Both the
manual segmentations (ground truth) and the network predictions considered in
this study are from the test set, which consists of 10 patients. In the following
they will be named from T001 to T010.

In [8], training is done with different numbers of patients and coronary struc-
tures (aorta and coronary arteries or coronary arteries only). For this study, we
will just consider network weights of the training with the maximum number of
patients (N=65) and coronary arteries only, since we want to evaluate the best
performance of the networks only in this region. The influence of the number
of patients used for training is demonstrated in [8]. When data is scarce, per-
formance is worse, especially in networks without pre-training. Note that the



Optimal Coronary Artery Segmentation Based on Transfer Learning 57

availability of segmented coronary arteries is always a problem so it is impor-
tant to develop techniques that can provide accurate answers without the need
of extensive training data set.

In addition, the prediction segments of the neural networks have been cleaned
of all false positives located in a separate connected component of the coronary
arteries. That is, only those pixels that are in contact (or their neighbors are in
contact) with a true positive have been selected. This allows us to evaluate the
results only in the region of interest.

2.2 Network Implementation

The neural networks of the study are described in [8]. We have 4 UNet with
different backbones. Specifically, 2D pre-trained UNet, 2D UNet and a Effcient-
Net and a 3D UNet without pre-training. The UNet architecture is divided into
two parts: an encoder, which extracts features from the image by increasing
the number of channels and reducing its size, and a decoder, which performs
the opposite process and generates a prediction of the same size as the original
image. The networks using transfer learning (pre-trained) keep the pre-trained
weights in the encoder part and only train the decoder part with the CTCA
images.

2.3 Separation of the Coronary Tree into Three Regions: Proximal,
Middle and Distal

In order to evaluate the performance of the different neural networks, the coro-
nary tree is divided into three regions: proximal, middle and distal.

The separation into three regions is done using 3D Slicer. First, the ground
truth (GT) mask segment for each patient is obtained. Then a curve is manually
drawn along the main vessels (usually the right coronary artery, the left coronary
artery and the circumflex artery) of the manual segmentation of each patient,
from the ostium to the last bifurcation in the most distal part (see Fig. 1). The
proximal part corresponds to 30% of the length, measured from the ostium, the
distal part corresponds to 30% of the length from the distal end of the curve, and
finally the middle part corresponds to the remaining 40% between the proximal
and distal parts. We also distinguish between right coronary tree (RCT) and left
coronary tree (LCT).

2.4 Evaluation Metrics

The parameters used to assess network performance are well known in the field
of segmentation. They include true positives (TP ), false positives (FP ), true
negatives (TN) and false negatives (FN). Following with the above parameters,
we define:

– Sensitivity or recall: TP/(TP +FN). Value in the interval [0, 1]. Measures the
number of true positives out of the total number of positives of the manual
segmentation (GT). The closer to 1, the more vessel has been detected.
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Proximal Middle Distal

)c()b()a(

Fig. 1. Hand-made segmentation of the test patient T002. In red the part corresponding
to the right coronary tree (RCT). In orange the part corresponding to the left coronary
tree (LCT). Blue shows a curve along the RCT with its associated length in mm. (a)
Proximal region. (b) Middle region. (c) Distal region. (Color figure online)

– F1 score or dice similarity coefficient (DSC): TP/(TP +0.5 ∗ (FP +FN)). It
is the harmonic mean of precision and sensitivity. It can also be expressed as
2∗(Y ∩ ̂Y )/(|Y |+|̂Y |). Where Y and ̂Y represent ground truth and prediction,
respectively, and Y, ̂Y ∈ {0, 1}. The closer to 1, the better is the result of our
prediction.

– False negative rate (FNR) or miss rate: FN/(FN +TP ). Value in the interval
[0, 1]. Measures the number of false negatives out of the total number of
positives of the manual segmentation (GT). The closer to 1, he more vessel
that has not been detected.

– Critical success index (CSI): TP/(TP + FN + FP ). Similar to F1 score but
does not give as much weight to true positives, thus it is more influenced by
prediction errors.

3 Results

Figure 2 shows the segmentations of each region, proximal, middle and distal,
obtained with each of the neural networks, for the patient T002. A first inspection
of the pictures reveals that proximal segments are well-reproduced independently
of the network used. On the contrary, there is a large diversity of results when
distal segments are considered. In order to quantify this, for each of these regions,
the DSC, FNR, sensitivity and CSI parameters are analysed.

Parameter values for the proximal segment are shown in Fig. 3. The DSC
(Fig. 3.(a)) shows values above 0.8 for all 2D networks. However, the 3D network
has values below 0.8. This fact is more accentuated in the left branch. This is
easily explained with the help of the FNR (Fig. 3.(b)), since a reduction in vessel
detection is observed (false negatives increase, true positives decrease (sensitivity,
Fig. 3.(c))).
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Proximal Middle Distal
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Fig. 2. Segmentations of test patient T002. In columns the proximal, middle and distal
regions. In rows the manual segmentation (GT ), the 2D UNet without pre-training (2D
scratch), the 2D UNet pre-trained, the 2D efficient net pre-trained (2D efficient) and
the 3D UNet without pre-training (3D).

For the middle region (Fig. 4) we observe the same pattern as in the proximal
region. However, worse results are shown for the left coronary tree. This may be
due to the fact that, in this region, the left coronary artery has more branches
and complexity than the right coronary artery. The network that is least affected
by this fact is the 2D efficient net, since the DSC and CSI values (Fig. 4.(a) and
Fig. 4.(d)) are practically identical for both branches.

The fact that the 3D UNet achieves similar DSC and CSI values (Fig. 4.(a)
and Fig. 4.(d)) to the 2D nets, despite detecting less vessel quantity (Fig. 4.(b)
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(a) (b)

(c) (d)

Fig. 3. Parameter values in proximal region in y-axis, network type in x-axis. (a) Dice
Similarity coefficient (DSC) parameter. (b) False Negative Rate (FNR) parameter. (c)
Sensitivity parameter. (d) Critical Success Index (CSI) parameter. Dot represents right
coronary tree (RCT). Cross represents left coronary tree (LCT).

and Fig. 4.(c)) could indicate a significant reduction in the number of false pos-
itives compared to the other nets. This implies that the vessel diameter is less
overestimated.

Finally, the distal part shows a different pattern. The DSC value falls below
0.8 for the 2D nets and the difference between the left and right branch is
accentuated (Fig. 5.(a)). Moreover, the 3D UNet barely recognises 50% of the
vessel (Fig. 5.(b)). A relevant aspect is that the 2D scratch has a sensitivity value
of more than 0.9, outperforming the other 2D nets by up to 10% (Fig. 5.(c)).
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(a) (b)

(c) (d)

Fig. 4. Parameter values in middle region in y-axis, network type in x-axis. (a) Dice
Similarity coefficient (DSC) parameter. (b) False Negative Rate (FNR) parameter. (c)
Sensitivity parameter. (d) Critical Success Index (CSI) parameter. Dot represents right
coronary tree (RCT). Cross represents left coronary tree (LCT).

Figure 6 presents a summary of all the parameters measured for the three
artery regions. It becomes apparent that all four methods are equivalent when
the proximal segments are reconstructed with preference to the 2D from scratch
or the 2D efficient. Nevertheless, as we move away from the aorta, in the middle
region, the 3D network indicators become worse. For the distal segments, this is
clear and the 3D network becomes useless.
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(a) (b)

(c) (d)

Fig. 5. Parameter values in distal region in y-axis, network type in x-axis. (a) Dice
Similarity coefficient (DSC) parameter. (b) False Negative Rate (FNR) parameter. (c)
Sensitivity parameter. (d) Critical Success Index (CSI) parameter. Dot represents right
coronary tree (RCT). Cross represents left coronary tree (LCT).

4 Discussion and Conclusion

The task to be addressed in this study is the comparison of the performance of
the different UNet for the proximal, middle and distal regions.

What has been observed is a similar pattern for the proximal and middle
regions. In this case, the performance of the 2D networks is similar, regardless
of the pre-training. This indicates that the number of patients used to train the
2D UNet from scratch is sufficient to obtain a complete and detailed coronary
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(a) (b)

(c)

Fig. 6. Radial plots for each of the three regions. (a) Proximal region. (b) Middle
region. (c) Distal region. The parameters represented are: dice similarity coefficient
(DSC), Sensitivity, false negative rate (FNR) and critical success index (CSI). In purple
2D from scratch UNet, in blue 2D pre-trained UNet, in orange 2D pre-trained efficient
UNet and in green 3D UNet. (Color figure online)

tree. In the middle region, however, the differences between RCT and LCT start
to become more pronounced, as the latter is more complex and therefore yields
worse results.

The most important change in behaviour is observed for the distal region, as
the 3D network is not able to reproduce the vessels, as it did in the proximal
and middle zones, leading to an increase in false negatives. This region is char-
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acterised by narrow arteries and low brightness due to a lack of contrast during
the image acquisition. This scarcity of information makes the 3D network fail.
Moreover, it is in the distal region where the 2D UNet from scratch obtains
better results than the other nets. This may indicate that pre-trained nets also
have limiting factors when adjusting their parameters.

In conclusion, the 2D networks perform better than the 3D in all regions,
being more evident in the distal region, where the 3D generate incomplete geome-
tries. However, the 2D networks tend to overestimate the vessel calibre. Our
study opens the possibility to consider a more complex mechanism for segmen-
tation that uses different tools depending on the region considered. In this way,
global performance indicators will improve.
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Abstract. We present novel learning-based spherical registration using
the spherical harmonics. Our goal is to achieve a continuous and smooth
warp field that can effectively facilitate precise cortical surface registra-
tion. Conventional spherical registration typically involve sequential pro-
cedures for rigid and non-rigid alignments, which can potentially intro-
duce substantial warp distortion. By contrast, the proposed method aims
at joint optimization of both types of alignments. Inspired by a recent
study that represents a rotation by 6D parameters as a continuous form
in the Euclidean domain, we extend the idea to encode and regularize a
velocity field. Specifically, a local velocity is represented by a single rota-
tion with 6D parameters that can vary smoothly over the unit sphere
via spherical harmonic decomposition, yielding smooth, spatially vary-
ing rotations. To this end, our method can lead to a significant reduction
in warp distortion. We also incorporate a spherical convolutional neural
network to achieve fast registration in an unsupervised manner. In the
experiments, we compare our method with popular spherical registra-
tion methods on a publicly available human brain dataset. We show that
the proposed method can significantly reduce warp distortion without
sacrificing registration accuracy.

Keywords: Cortical surface registration · Spherical registration ·
Spherical harmonics · Unsupervised learning

1 Introduction

Neuroimaging data analysis is one of the most challenging tasks in the field due
to the presence of high structural variability across individuals. In structural
data analysis, neuroimaging data are often understood on 2-manifolds, which
requires non-rigid surface registration [6]. Since a bijective spherical mapping is
readily available for cortical surfaces [6], spherical registration is a popular choice
to establish a shape correspondence. Here, the goals of spherical registration can
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be categorized (1) to align the input geometry as closely as possible to the tar-
get geometry and (2) to reduce the warp distortion. While most methods focus
on (1), the importance of warp distortion is often overlooked, which can mis-
lead statistical shape analysis even with high registration accuracy [13,17,22,25].
In previous attempts, classical non-learning-based spherical registration meth-
ods [7,8,13,14,17,22,24] provided a well-established spherical correspondence by
directly optimizing the energy function. Due to their high registration accuracy,
they hence have been widely used in structural data analysis. Nevertheless, a
common drawback of these methods is costly optimization process.

Despite the success of spherical convolutional neural networks (CNNs) in
neuroimaging studies [1,2,12,15,16,18–20,23,27], only few have explored CNN-
based spherical registration. An early attempt by [4] adapted a volumetric
method for spherical registration by flattening out the spherical space to the
Euclidean domain. Despite the computational gain, their method suffers from
unbalanced sampling of spherical coordinates and boundary discontinuity. [26]
extended [24] by incorporating a spherical CNN. However, their convolution can
be flipped at the pole, the resulting registration is inconsistent depending on
a pole choice. [21] built upon the work of [17] by enhancing the flexibility of
spherical warp through the incorporation of a broader range of predefined rota-
tions. Nevertheless, their warp remains constrained to a discrete representation.
Furthermore, the existing methods employ rigid alignment only once prior to
optimization, which may not be optimal for non-rigid alignment. This can con-
sequently yield substantial warp distortion as reported in [13].

In this paper, we propose a learning-based surface registration method while
reducing warp distortion. The main approach of this work follows our previ-
ous study [13] that jointly optimize rigid and non-rigid alignments using the
spherical harmonics. Unfortunately, spherical warp in [13] is achieved via local
displacement rather than vector field integral, which can restrict the amount of
spherical warp. Moreover, parameter dependency in the displacement encoding
of [13] poses challenges for its extension with deep learning approaches. In this
work, we consider local velocity rather than a simple displacement for spherical
warp. Here, local velocity can be interpreted as a rotation, which can be effi-
ciently encoded via spherical harmonic decomposition. Consequently, the pro-
posed method enables flexible warp trajectories and deep learning integration.
The main contributions of this paper include (1) a new encoding scheme of the
warp field, (2) a significant reduction in warp distortion without losing registra-
tion accuracy, and (3) validation in registration accuracy, warp distortion, and
runtime. Figure 1 shows an overview of the proposed method.

2 Method

2.1 Problem Statement

Given a moving geometric feature M and a target feature F on S
2, the goal is

to seek a warp field Φ : S
2 → S

2 such that F (θ, φ) = M(Φ(θ, φ)) for (θ, φ) ∈
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Fig. 1. A schematic overview of the proposed method. The size of the output channels
is shown in each box. N is the number of vertices of the spherical tessellation, and
L is the harmonic bandwidth. The velocity field is initially estimated by a spherical
CNN and further refined by imposing smoothness and allowing joint optimization of
rigid and non-rigid alignments through the spherical harmonic transform (SHT) and
its inverse (ISHT). The dotted arrows indicate the training phase only.

[0, π] × [−π, π]. In general, spherical registration minimizes the following energy
function: ∫

S2
Lsim(F (x),M ◦ Φ(x))dx + α

∫
S2

Lreg(Φ(x))dx, (1)

where Lsim(·, ·) ∈ R is a similarity term and Lreg(·) ∈ R is a regularization term
to control the smoothness of Φ for some non-negative weighting factor α ∈ R. A
diffeomorphic mapping can be modeled by introducing a smooth velocity field on
the tangent space in a continuous time domain t = [0, 1] as a stationary ordinary
differential equation (ODE):

dΦ(x, t)
dt

= v(Φ(x, t)), (2)

where v ∈ TxS
2 is a stationary velocity with the initial condition Φ(x, 0) = x.

We will describe the computation of the velocity field and its incorporation into
a spherical CNN in the remainder of this paper.

2.2 Velocity Encoding

We encode a velocity vector as a spatially varying function using a 6D continuous
representation of the rotation space SO(3) [28] to handle vector as independent
set of scalar components. More formally, for a velocity v at x, we can find a
function that generates a rotation matrix Rx : R

6 → SO(3):

Φv(x) = Rx({r(i)}i=1,··· ,6) · x, (3)

such that
Rx · x = expx(v), (4)

where {r(i)}i=1,··· ,6 is a set of spatially varying irreducible parameters with
respect to x.
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2.3 Velocity Field

In our encoding scheme, a smooth velocity field can be interpreted as a smooth
change of the 6 parameters, and their order independence allows smoothing
over each parameter in its own parametric space. However, the complexity of
parameter-wise smoothing is subject to the spherical tessellation, which may
also affect the quality of the smoothing depending on the tessellation regularity.
To address such an issue, we propose spherical harmonic decomposition that
encodes our velocity field and encourages its smoothness, inspired by [13]. Here,
we restate our original problem of computing a smooth vector field by finding a
proper set of learnable harmonic coefficients {c} ⊆ R. Once {c} is determined,
the ith parameter r(i)(θ, φ), i = 1, · · · , 6 can be reconstructed by a linear com-
bination of the irreducible real harmonic basis functions Y : S

2 → R:

r(i)(θ, φ) = c
(i)
00 Y00(θ, φ) +

L∑
l=1

l∑
m=−l

c
(i)
lmYlm(θ, φ), (5)

where r is truncated up to degree of L. This strategy has three major advantages.
(1) The velocity field is differentiable because the spherical harmonics consist
of trigonometric functions that guarantee C∞ continuity for L > 0. As high-
frequency components are truncated by L, the velocity field becomes smoother
as L decreases, in which the smoothness can be easily tunable. (2) As discussed
in [13], both rigid (l = 0, the left term of Eq. (5)) and non-rigid (l > 0, the
right term of Eq. (5)) alignment components are explicitly encoded and thus
can be optimized simultaneously. (3) Smoothing over the proposed encoding is
independent of the spherical tessellation.

2.4 Warp Trajectory

Since our velocity field consists of rotation matrices, the warp trajectories on
S

2 can be computed easily as matrix multiplications. The trajectories can be
efficiently traced in a scaling and squaring fashion on S

2 as numerical integration
with k-step recursion [24]:

Φv/2(k−1)(x) = Φv/2k ◦ Φv/2k(x). (6)

2.5 Architecture

Velocity Field Estimation. We couple M and F to estimate a set of the
initial vertex-wise parameters r̂(i)(θ, φ), i = 1, · · · , 6. We integrate a spherical
CNN into the proposed framework. Although the framework is flexible in choos-
ing spherical CNNs, we use [9] as our backbone architecture since its spectral
convolution is free of tessellation strategies and some resources are reusable. It is
noteworthy that the estimated parameters by the spherical CNN may not exhibit
spatial smoothness, which requires further refinement. Hereafter, we denote the
spherical tessellation by S ⊂ S

2.
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Refinement Block. To control the smoothness of r̂ over S
2 and enable joint

optimization of rigid and non-rigid alignments, r̂ are converted into the spectral
signals using the spherical harmonic transform. This yields the ith harmonic
coefficient for degree of l and order of m through the inner product:

ĉ
(i)
lm =

∫
S2

r̂(i)(θ, φ)Ylm(θ, φ)dθdφ. (7)

For a sufficiently dense spherical tessellation, the above integral can be efficiently
approximated by a Riemann sum, as reported in [5,9]. Each spectral component
is further refined by its own linear model:

c
(i)
lm = ĉ

(i)
lm · w

(i)
lm + b

(i)
lm, (8)

where w
(i)
lm and b

(i)
lm are learnable parameters. The refined harmonic coefficients

are recovered back to vertex-wise rotations by Eq. (5) followed by Eq. (3). We
finally compute the warp field by Eq. (6).

Loss Function. To compute the similarity between the registered and fixed
surfaces, we consider an L2 similarity metric as widely used in classical meth-
ods [7,13,24]:

Lsim(F,M ◦ Φ) =
1

|S|
∑
x∈S

(F (x) − M ◦ Φ(x))2 . (9)

In the proposed encoding, the smoothness of the velocity field is controlled
after the harmonic truncation. For further regularization, we penalize the amount
of warp after registration [13]. For a spherical location x ∈ S with its neighbor-
hoods Nx ⊂ S, their arc length changes after the spherical warp are measured
by

Lreg(Φ) =
1
2

∑
x∈S

∑
y∈Nx

(arccos(xTy) − arccos(Φ(x)TΦ(y)))2. (10)

In this way, the regularity of the field can be controlled by tuning α. Strong
regularization (i.e., large α) forces the field to stay as isometric as possible.

Implementation Details. We use PyTorch for the backend processing and
customized CUDA kernels for spherical re-tessellation. For the hyperparameters,
we choose k = 6, L = 40, and α = 25−1 for smoothing and refinement block,
and 64 input channels, harmonic bandwidth of 80, and depth of 4 for initial
velocity estimation (1.19M learnable parameters in total). We use the Adam
optimizer [10] at initial learning rate of 0.001 with decay by a factor of 0.5 if no
improvement is made in four consecutive epochs.
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3 Experimental Setup

3.1 Imaging Data

We used the Mindboggle public dataset [11] with 101 subjects becasue the man-
ual labels of 32 regions of interest (ROIs)1 are available. The cortical surfaces
were reconstructed via the standard FreeSurfer package [6]. For M , we used aver-
age convexity [6] for registration metric and performance evaluation. For F , we
used the Buckner40 template provided by the official FreeSurfer package [6]. We
note that the proposed method is flexible in choosing other geometric features.
The left hemisphere was used.

3.2 Baseline Methods

We compared publicly available spherical registration methods: FreeSurfer [7],
Spherical Demons (SD) [24], Multimodal Surface Matching (MSM) [17], Hierar-
chical Spherical Deformation (HSD) [13], and Deep-Discrete Spherical Registra-
tion (DDR) [21]. For a fair comparison, we carefully tuned the baseline methods
to match the mean squared error (MSE) around 0.31, while keeping their warp
field as smooth as possible. In FreeSurfer [7], we disabled the default mean cur-
vature alignment to align with average convexity only. We also set the distance
term to be 6 for smooth warp. In SD [24], we set 3 iterations for the velocity field
smoothness for all multi-resolution stages (icosahedral subdivision: 4, 5, 6, 7).
In MSM [17], we set the weight for smoothing to be 0.1 for all multi-resolution
stages (icosahedral subdivision: 4, 4, 5, 6). We also used cross-correlation as
a similarity metric as suggested for its best performance. In HSD [13], we set
L = 0, 5, 10, 15 for the respective optimization stages (icosahedral subdivision: 4,
5, 6, 6) by fixing the regularization weight of 169. In DDR [21], we followed the
same training configurations as reported in the paper. It is noteworthy that all
the baseline methods commonly reported optimization over average convexity
in their original work. For DDR and our method, we performed 5-fold cross-
validation strategy: 60% for training, 20% for validation, and 20% for test. For
each fold, we circulated the partitions to achieve full validation. In the test phase,
we used the learned model parameters at the peak performance in the validation
set. For the inference of unseen data, the inferred warp field is applied to the
original mesh. All the experiments were conducted on an Intel Xeon 6248R and
an NVIDIA GeForce RTX 3090.

3.3 Evaluation Metrics

For the similarity evaluation, we used the normalized cross-correlation (NCC)
between F and M◦Φ and Dice of ROIs. As our template has no manual labels, we
transferred the manual labels of individuals to a target subject via the established
correspondence by each method and then computed the majority for x ∈ S

2 to

1 A full list can be found at https://mindboggle.readthedocs.io/en/latest/labels.html.

https://mindboggle.readthedocs.io/en/latest/labels.html
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Table 1. Benchmark in registration accuracy, distortion, CPU runtime, and learnable
parameters. The runtime is measured on the original mesh (average: 141K vertices) for
the whole process, including model initialization, rigid alignment, remeshing, and model
inference. Inference (sec.): 9.02 (DDR) and 8.62 (ours). Bold : best. Blue: q < 0.05.

Accuracy Log Area CPU Param

Method MSE NCC Dice Mean Median Max (sec.) (N)

FreeSurfer 0.313 0.898 0.873 0.322 0.267 4.808 439.83 –

SD 0.309 0.898 0.873 0.320 0.250 2.319 42.28 –

MSM 0.311 0.891 0.863 0.573 0.404 7.043 503.23 –

HSD 0.305 0.898 0.872 0.306 0.234 3.340 206.82 –

DDR 0.305 0.885 0.871 0.344 0.251 3.699 15.91 21.26M

Ours 0.307 0.899 0.871 0.289 0.225 2.277 15.48 1.19M

measure the Dice. For the warp distortion, we measured the absolute logarithm
of the area ratio (Log Area) given by | log2 (Δ(x)/Δ(Φ(x))) |, where Δ(·) is a
vertex area [17].

4 Results

Table 1 summarizes the overall performance in registration accuracy and warp
distortion. We performed a paired t-test against each baseline and reported sta-
tistical significance by the false discovery rate (FDR) [3] at q = 0.05. There is
no performance degradation in registration accuracy for our method. For warp
distortion, our method achieves the best performance in most cases. Clearly, a
comparable NCC/Dice can be maintained in our method while reducing the warp
distortion (see Table 1 and Figs. 2 and 3). This is because the proposed method
incorporates diffeomorphic trajectories for the feature alignment and optimizes
rigid and non-rigid alignments simultaneously for the distortion reduction. It is
noteworthy that although the reported measures can be adjusted by balancing
the similarity and regularization terms, there always exists a trade-off between
the two terms. In the runtime benchmark, our method offers faster registration
than the baseline methods on a single CPU thread (see Table 1).

5 Discussion

Our preliminary findings indicate that our framework can reduce warp distor-
tion without compromising registration accuracy. However, further research is
necessary, particularly regarding methodological validation. Firstly, an exhaus-
tive analysis of individual hyperparameters will provide valuable insights into
fine-tuning our approach. Secondly, the performance of our method can be eval-
uated on other high-resolution geometric features. A multi-resolution approach
could further enhance our framework [21,26]. Furthermore, as our method allows
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Fig. 2. Average feature and distortion maps across 101 subjects. Top: mean average
convexity. Bottom: area distortion by the exponent of the Log Area. All the methods
show comparable registration accuracy, while our method overall achieves the lowest
area distortion. The inflated surface is used for better visualization.

Fig. 3. The lateral frontal lobe of an example subject. Top: warped feature. All the
methods align M well with F . Bottom: area distortion by the exponent of the Log Area.
Our method reduces warp distortion without sacrificing registration accuracy.

for flexibility in designing similarity measures, exploring the incorporation of
multi-modal geometric features [17] could be an interesting direction for future
research.

6 Conclusion

We presented a novel learning-based spherical registration method using the
spherical harmonics. We decomposed local velocity into 6D independent param-
eters and encoded the velocity field as a smooth spherical function via spherical
harmonic decomposition. This approach enabled the simultaneous optimization
of both rigid and non-rigid alignments, resulting in reduced warp distortion. We
also integrated a spherical CNN for fast spherical registration. The experimental
results on a human brain dataset demonstrated significant reduction in warp
distortion without sacrificing registration accuracy.
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2023-00251298 and RS-2023-00266120, in part by the IITP under Grant 2020-0-01336,
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Abstract. The aim of this study was to develop a model to accurately
identify corresponding points between organ segmentations of different
patients for radiotherapy applications. A model for simultaneous corre-
spondence and interpolation estimation in 3D shapes was trained with
head and neck organ segmentations from planning CT scans. We then
extended the original model to incorporate imaging information using
two approaches: 1) extracting features directly from image patches, and
2) including the mean square error between patches as part of the loss
function. The correspondence and interpolation performance were evalu-
ated using the geodesic error, chamfer distance and conformal distortion
metrics, as well as distances between anatomical landmarks. Each of the
models produced significantly better correspondences than the baseline
non-rigid registration approach. The original model performed similarly
to the model with direct inclusion of image features. The best performing
model configuration incorporated imaging information as part of the loss
function which produced more anatomically plausible correspondences.
We will use the best performing model to identify corresponding anatom-
ical points on organs to improve spatial normalisation, an important step
in outcome modelling, or as an initialisation for anatomically informed
registrations. All our code is publicly available at https://github.com/
rrr-uom-projects/Unsup-RT-Corr-Net.

Keywords: correspondence · un-supervised learning · geometric
learning · image registration · radiotherapy

1 Introduction

Radiotherapy is used in the treatment of ∼ 80% of Head and Neck (HN) cancer
patients [19]. Treatments are planned on a patient’s computed tomography (CT)
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scan, where the tumour and the organs-at-risk are segmented. These segmen-
tations are also used to establish dose-effect relationships which are ultimately
used to improve radiotherapy practice. Modern techniques which allow the inves-
tigation of sub-volume dose effects rely on spatial normalisation to map the dose
distributions between patients [15]. Examples for these associations in HN radio-
therapy include radiation dose to the base of the brainstem and late dysphagia
(problems swallowing) [20], dose to the masseter muscle and trismus (limited
jaw movement) [2]. In these examples, the authors used intensity-based non-
rigid image registration (NRR) to indirectly establish the correspondence of the
anatomy between different patients. Improved spatial normalisation, using point-
wise correspondences rather than NRR algorithms, would reduce uncertainties in
outcome modelling applications. However, manually annotating pair-wise corre-
spondences is a complex and time consuming task, rendering its practice unfea-
sible.

Another promising use of correspondences in radiotherapy applications is
in the initialisation of structure-guided image registration methods. Currently,
spline-based registration relies on estimating correspondence based on distance
criteria [21] and more advanced finite-element based models rely on a set of
boundary conditions, e.g. based on structure curvature [4]. These structure-based
registrations are particularly useful for cases with dramatic changes, such as
registration of images before/after an intervention [22] or of images separated
by a long time period (e.g. paediatric follow-up or re-irradiation settings). A
model that can quickly and accurately identify corresponding points on sets of
anatomical structures would be particularly effective for incorporation into other
non-rigid image registration frameworks.

The aim of this study was to find a solution to automatically identify cor-
responding anatomical points on organs for radiotherapy applications. In this
study, we took an established model for simultaneous correspondence and inter-
polation estimation in everyday 3D shapes, Neuromorph [5], and retrained it on
biomedical data, specifically HN organ segmentations from planning CT scans.
It has previously been shown that the performance of geometric learning models
for tasks involving radiotherapy organ shapes can be dramatically improved by
incorporating the associated CT scan imaging [6], an approach not attempted in
previous correspondence literature [9,13,17]. Therefore we extended Neuromorph
in two ways in an attempt to optimise its performance for this application: 1) by
directly complementing geometrical features with learned image features, and
2) by adding a novel imaging loss function component. The performance of our
resultant correspondence models were compared to a NRR algorithm currently
used for outcome modelling.

2 Materials and Method

2.1 Dataset

An open-access dataset of 34 head and neck CT scans with segmentations of
the brainstem, spinal cord, mandible, parotid and submandibular glands was
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used for this study [14]. The segmentations are highly consistent and followed
international guidelines, having been produced by an expert and then audited by
three observers and a specialist oncologist with at least four years of experience.

2.2 Pre-processing

The CT scans had a ∼ 2.5 × 1 × 1 mm voxel spacing and were truncated at the
apex of the lungs to ensure consistency in the length of the cervical section of
the spinal cord. The marching cubes algorithm was used to generate 3D trian-
gular meshes for each organ, which were then smoothed with ten iterations of
Taubin smoothing. The meshes were simplified using quadric decimation to 3000
triangles for each of the organs apart from the submandibular glands which were
simplified to 2000 triangles because of their smaller volume. The organ meshes
were then optimised by iteratively splitting the longest and collapsing the short-
est edges. The CT scans were rigidly aligned to a single reference patient using
SimpleITK 2.0.2. The computed transformations were applied directly to the
mesh vertices to align the organ shapes thereby avoiding interpolation artefacts.

2.3 Model

The source model used in this study, Neuromorph, was originally presented by
Eisenberger et al. [5]. Neuromorph is a geometric learning model which, when
given two 3D triangular meshes, predicts corresponding points and a smooth
interpolation between the two in a single forward pass. The model performs
unsupervised learning which is crucial for our applications because of the scarcity
of high quality 3D data labelled with point-to-point correspondences.

Figure 1 shows a schematic of the original model and one of our modifications
to add imaging features. The Neuromorph model is formed of two components: a
Siamese feature extracting network and an interpolator. The feature-extracting
portion consists of two networks with shared features which receive two meshes
as input. The encoded shape features are matched using matrix multiplication to
produce a correspondence matrix between the input meshes. The correspondence
matrix is used to produce a vector which contains the offset between source
vertices and their corresponding counterparts in the target mesh. This offset
vector provides part of the input to the interpolator, along with the original
source vertices and a time-step encoding to provide the number of intermediate
steps along which to interpolate the deformation. The interpolator outputs a
deformation vector for these time-steps for each vertex in the source mesh.

The feature extractor and interpolator have identical graph neural network
architectures, consisting of repeating residual EdgeConv layers [23]. The primary
intuition behind success of the Neuromorph architecture is that correspondence
and interpolation are interdependent tasks that complement each other when
optimised in an end-to-end fashion. Neuromorph uses a three-component loss
function for unsupervised learning. These are: a registration loss, to quantify
the overlap of the target and source meshes; an “as-rigid-as-possible” (ARAP)
loss, to penalise overly elastic deformations; and a geodesic distance preservation
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loss, to regularise the predicted pair-wise correspondences. For all models in this
study, the weight of the ARAP loss component was increased by a factor of ten
compared to the originally proposed value to reduce the elasticity of predicted
deformations. For full implementation details of the original Neuromorph model,
refer to [5].

Fig. 1. A schematic of the Neuromorph architecture [5] with our first extension to lever-
age the CT imaging. Additional CNN blocks (red) encode a 7×19×19 CT sub-volume
for each mesh point into an imaging feature vector to complement the geometrical
features used to predict point correspondences. An example of the correspondence and
interpolation predictions for a pair of parotid glands from different patients is shown
with the different colours showing corresponding points. (Color figure online)

2.4 Incorporating Imaging Information

The original Neuromorph model predicts point-to-point correspondences solely
on the geometric structure of the input meshes. Since the meshes used in this
study are organ shapes derived from CT scans, we have additional imaging
information which was leveraged using two different approaches.

Complementing Geometrical Features with Image Features. We fol-
lowed a similar approach as in our previous work to encode image patches for each
point on the mesh using a 3D convolutional neural network (CNN) [6]. Figure 1
shows further details of this methodology extension. Cubic 3D image patches
of side length ≈ 19 mm (7 × 19 × 19 voxel sub-volumes) were extracted from
the CT scan for each vertex on the triangular mesh of each organ. This patch
size was chosen so that image information 10 mm outside the organ is within
view, including surrounding structures such as bones and air cavities. Figure 2
shows an example slice of a parotid gland contour and demonstrates the field-of-
view which these image patches cover. The image patches were normalised from



Unsupervised Correspondence with Combined Geometric Learning 79

Hounsfield Units (HU) onto the range [0, 1] using contrast windowing with set-
tings used to visualise soft tissue (W 350HU, L 40HU) [7]. The patches were then
encoded using a custom CNN architecture into imaging feature vectors (Fig. 1).
These imaging feature vectors were concatenated with the feature vectors created
by the geometric feature extractors of the original Neuromorph model. Feature
matching and correspondence prediction was then performed as before, but now
utilising both geometric and imaging information. The imaging and geometric
feature extractors of the extended model were optimised simultaneously during
training.

Imaging as a Component of the Loss Function. For the second approach,
we added a new loss term to calculate the mean-squared error of 7 × 19 × 19
image patches for which the associated vertices are identified as corresponding.
The limaging loss component was calculated as

limaging = λimaging × ‖ΠYCT patches − XCT patches‖2 (1)

where Π is the predicted correspondence matrix, YCT patches and XCT patches are
the CT image patches of the related target and source mesh points respectively
and λimaging was set to 1000 to balance the contribution with the other com-
ponents. This hyperparameter value was chosen in preliminary testing from a
range spanning 1 → 100, 000.

By incorporating the imaging information as a loss component, the model
does not require any additional input or modification from the original architec-
ture. However, the rationale of including such an imaging loss was to encourage
the model to learn more anatomically feasible correspondences at training time
based on the underlying CT scan.

Example 7 × 19 × 19 voxel CT sub-volume 
extracted from a paro�d gland mesh

a) b)

Fig. 2. a) A cross sectional view of a parotid gland mesh showing the field-of-view of
the 7 × 19 × 19 CT sub-volumes. Only ∼ 10% of the sub-volume patches in this cross
section are shown for clarity of the visualisation. b) A visualisation of one of the 3D
CT sub-volumes from the lateral aspect of the parotid.
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2.5 Comparison with Non-rigid Image Registration

We compared the performance of the correspondence models with an established
NRR algorithm which is a standard approach for aligning images and anatomical
structures for radiotherapy applications [2,11,20]. For this comparison, the CT
scans were first rigidly registered to a single reference patient, as before, then
NiftyReg was used to non-rigidly register each pair of patients [10]. The registra-
tion performed was a cubic B-spline using normalised mutual information loss
with specific parameters: -ln 5 -lp 4 -be 0.001 -smooR 1 -smooF 1 -jl 0.0001.
The computed non-rigid transformations were applied to the organ masks which
were then meshed as in Sect. 2.2. Corresponding points between the pairwise
registered organs were assigned using the nearest neighbours.

2.6 Evaluation Metrics

We implemented each of the three metrics used by Eisenberger et al. [5]:

The Geodesic Error: measures the consistency of shapes for sets of corre-
sponding points [18]. It is defined as the differences between the geodesic dis-
tances of pairs of points on the target and the predicted corresponding pairs
of points on the source mesh. This metric quantifies the discrepancies in the
geodesic distances, resulting from the predicted correspondences, normalised by
the square root area of the mesh.

The Chamfer Distance: measures the accuracy of the predicted interpolation.
It is defined as the distance between each predicted point on the source mesh to
the nearest point on the target [3]. While the chamfer distance is a good measure
of the overlap of the predicted shapes, a sufficiently elastic (and anatomically
unrealistic) registration can achieve a near perfect (zero) chamfer distance.

The Conformal Distortion: provides insight into the realism of the deforma-
tions produced [8]. This metric quantifies the amount of distortion each triangle
on the mesh experiences through interpolation. The conformal distortion is a
good indicator of the anatomical feasibility of a deformation, with a higher con-
formal distortion metric value suggesting a more unrealistic registration.

Anatomical Landmark Error We additionally evaluated the correspondence
of organ sub-regions using anatomical landmarks identified in the original CT
scans. Figure 3 shows the landmarks used in this study which were manually
identified in each of the 34 CT scans by a single observer. When the identified
landmark was not on the segmentation, the closest point on each mesh was
found. The Euclidean distance between the landmark on the target organ and
the predicted corresponding landmark point was then found, which we call the
landmark error.
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Fig. 3. CT scan slices showing the locations of the anatomical landmarks used for
clinical validation.

2.7 Implementation Details

All models are implemented using PyTorch 1.13.0 and PyG 2.2.0. Open3D 0.13.0
and PyVista 0.38.6 were used to perform mesh smoothing and visualisation.
All training was performed using a 24 GB NVidia GeForce RTX 3090 and
AMD Ryzen 9 3950X 16-Core Processor. The base Neuromorph model con-
tained 389, 507 parameters and the extended model with imaging features con-
tained 686, 467 parameters. Models were trained for 75 epochs with the Adam
optimiser (learning rate of 0.0001) and used a maximum of 4.8 GB GPU memory.

2.8 Experiments

For this study we evaluated the original model, Neuromorph, and two proposed
extensions against a NRR baseline. Each model was trained with data from all
organs, but with the restriction that only pairs of the same organ were presented
to the model, e.g., a pair of left parotid glands, followed by a pair of mandibles,
etc. For each configuration we performed a five-fold cross-validation, dividing
the data into folds to train five different model parameter sets. Trivial self-pairs
were excluded when computing the evaluation metrics in Sect. 2.6, resulting in
7×242 = 4032 pairs for training, 7×32 = 63 pairs for validation and 7×7×6 =
294 pairs for testing each parameter set. The metric results in the testing fold
for all five parameter sets are reported.

A Wilcoxon signed-rank hypothesis test was used to compare the performance
of each of the model configurations to the NRR baseline for the anatomical
landmark error. The geodesic error and chamfer distances were also calculated
for the non-rigidly registered organs, but the conformal distortion could not
be computed for the baseline approach since this metric requires a vertex-wise
interpolation sequence.
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3 Results

Figures 4 and 5 show an example set of correspondence predictions for every
organ between a single pair of patients. Identical colours on the organs iden-
tify corresponding points. 2D images, either axial or sagittal slices or maximum
intensity projections of the CT scans are shown annotated with the organ con-
tour to aid visualisation. The predictions shown were produced by a single model
that included the imaging loss during training.

Fig. 4. Visualisation of predicted correspondences for a) the brainstem, b) the spinal
cord and c) the mandible between a single pair of patients. The target patient scan and
contour is presented in the first column, followed by the reference/target mesh, then
the predicted correspondence on the source mesh, and finally, the scan and contour of
the source patient. Sagittal slices or a maximum intensity projection (mandible) of the
CT scans are shown to improve visualisation clarity.

Figure 6 shows cumulative distributions of the geodesic error, chamfer dis-
tance and conformal distortion of all model configurations and organs. The orig-
inal (Neuromorph) model and model with imaging features perform similarly
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Fig. 5. Visualisation of predicted correspondences for a) the left parotid gland, b) the
right parotid gland, c) the left submandibular gland and d) the right submandibular
gland between a single pair of patients. The target patient scan and contour is pre-
sented in the first column, followed by the reference/target mesh, then the predicted
correspondence on the source mesh, and finally, the scan and contour of the source
patient. Axial slices of the CT scans are shown.

across most metrics. The original performs better on the geodesic error and
conformal distortion for the spinal cord. However, the imaging features model
produces less distortion for the parotid and submandibular glands. The model
which includes the imaging as an additional loss component performed similarly
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Fig. 6. Cumulative distributions of the geodesic error, chamfer distance and conformal
distortion metrics for each of the model configurations and the NRR baseline. Closer
to zero is better for all metrics.

to the original for the geodesic error, apart from the submandibular glands for
which it outperforms the original. The imaging loss model has a slightly poorer
chamfer distance results compared to the original, but greatly improved confor-
mal distortion results, especially for the submandibular glands.

For the geodesic error, the NRR baseline performs better than the correspon-
dence models in the spinal cord and mandible, similarly for the parotid glands
and worse for the brainstem and submandibular glands. The correspondence
models outperform the NRR baseline for the chamfer distance for all organs
apart from the mandible.

Table 1 shows the landmark error distances for each of the model configura-
tions and the NRR baseline. All of the models showed a significant improvement
over the baseline for all anatomical landmarks. All correspondence methods per-
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Table 1. Landmark error distances for each model configuration. The level of signifi-
cance of improvement of each model over the NRR baseline according to the Wilcoxon
signed-rank test is shown as: * - p value < 0.05, **

- p value < 0.005, † - p value

< 0.0005, ‡ - p value < 0.00005.

Model configuration Median landmark error (IQR) mm

Pineal gland Spinal cord
at C1

Styloid process Mandible
lingula

Baseline (NRR) 4.6 (4.4) 3.9 (3.6) 8.4 (7.0) 7.8 (10.8)

Neuromorph 3.7 (2.5) † 2.3 (2.0) ‡ 5.6 (5.3) * 3.1 (2.1) ‡
+ Imaging features 3.7 (2.7) † 2.2 (1.9) ‡ 6.2 (5.8) * 3.0 (2.4) ‡
+ Imaging loss 3.8 (2.5) **

2.5 (2.2) ‡ 6.3 (5.5) * 3.1 (2.1) ‡
Distance from
landmark to organ

3.6 (2.4) 2.1 (1.6) 5.4 (5.0) 2.6 (1.8)

form similarly in terms of landmark distance, but subtle differences could exist
that are hidden by observer variation. The median distance from the landmark
to the organs is shown in the final row and this serves as an indication on the
landmark variability and hence a reasonable upper bound of the correspondence
accuracy identifiable with this measure.

Figure 7 shows an additional example of correspondences produced by the
model including imaging loss. This particular case is interesting as it demon-
strates how the model handles the difficult scenario of missing correspondences.
One of the patients has an accessory parotid, an anterior extension of the parotid
present in > 30% of the population [16], and the other does not. The model was
able to robustly handle this case in both directions, i.e. with either patient as
the reference.

Fig. 7. An example of the model including imaging loss robustly handling a case with
missing correspondences for a pair of parotid glands. In a) the reference parotid has
an anterior extension (accessory) which is not reproduced on the predicted correspon-
dences. In b) the lack of accessory in the reference does not impact majority of the
predicted correspondences shown by the black stripes aligning between the two. Black
and white has been used here to show corresponding points instead of the full colormap
for clarity.
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4 Discussion

In this study we showed that an established neural network for predicting corre-
spondence and smooth interpolation of 3D shapes can be applied to HN organ
segmentations from CT scans. We additionally evaluated two methodological
extensions to leverage the CT imaging information.

The correspondence models were compared to an intensity-based NRR algo-
rithm regularly used for radiotherapy outcome modelling. The NRR produced
better correspondences for the spinal cord and mandible in terms of the geodesic
error showing the effectiveness of the image registration method for the more
straightforward task of aligning the skeleton and anatomy enclosed by bone.
However, the original Neuromorph model and extensions all produced signifi-
cantly lower landmark errors for every organ than the NRR baseline as well as
producing better chamfer distance results for soft tissue organs. This promis-
ing result demonstrates the potential of such correspondence methods to reduce
uncertainties in radiotherapy outcome modelling. Further work is required to
quantify the uncertainty reduction and its impact for this purpose.

An intensity-based non-rigid registration algorithm was used as a comparison
baseline for the learning-based correspondence models. A mesh-based registra-
tion such as coherent point drift could have alternatively been applied for a more
direct comparison [12]. However, intensity-based image registration algorithms
are the current standard for aligning images and structures for radiotherapy
applications, particularly for outcome modelling, and therefore provide a more
relevant comparison for this study [2,11,20].

The performance of the original Neuromorph model was slightly improved by
incorporating imaging information, not as explicit imaging features, but rather
by introducing an additional imaging term to the loss function. This configu-
ration does not require imaging at inference time, instead the imaging is used
solely when training to additionally encourage the model to match points with
similar appearances within the local neighbourhood. Our underlying assumption
here was that corresponding locations look similar between patients. This con-
figuration was shown to be particularly effective at regularising the predicted
correspondences with substantially reduced conformal distortion results. This
indicates that the inclusion of an imaging loss term produced more anatomically
feasible and robust deformations. The improvement in conformal distortion met-
ric, whilst hardly affecting performance in terms of the other metrics, makes this
particular configuration appealing for future exploration as a starting point for
an anatomically informed non-rigid registration method.

The original Neuromorph model was also extended to receive imaging input
directly and predict correspondences based on geometric and imaging features,
but this extension did not improve performance. We believe that this is primarily
due to the highly consistent data used for model training. The segmentations
were as close to the consensus guidelines as possible which is unlikely in clinical
practice. This meant the contours will deviate only slightly from “true” organ
boundaries. We envisage providing the imaging information as input to the model
to be of greater use in scenarios where the segmentations are more variable, and
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could be inconsistent with the underlying anatomy. This is an interesting avenue
for future work.

While Neuromorph is an established model for everyday 3D shapes, we
believe this is the first time it has been shown to be effective in biomedical
applications. Additionally, while there are other learning based correspondence
methods [1,9], this is the first to combine geometric learning and leverage imag-
ing, providing a slight improvement on the original model in terms of anatomical
feasibility.

The additional imaging loss component described in Sect. 2.4 utilises the
mean squared error for simplicity. This metric is only appropriate when quan-
tifying the similarity of mono-modal scans which are intensity calibrated, such
as CT scans used for radiotherapy planning. If the underlying imaging was a
cone-beam CT or MRI, an alternative measure such as mutual information or
correlation ratio could be used.

Our model was primarily developed with outcome modelling in mind, which
relies on inter-patient analysis. Inter-patient correspondence is a more complex
task than identifying intra-patient correspondence since there is greater variabil-
ity in the anatomy. Consequently, we believe that extension to the intra-patient
tasks should be straightforward.

5 Conclusion

We have shown that an established model, originally developed for generic 3D
shapes can be adapted for applications in biomedical imaging. Specifically, this
model could be used to identify corresponding points on 3D organs to improve
spatial normalisation in outcome modelling applications, potentially reducing the
associated uncertainties and facilitating the development of better radiotherapy
treatments. Further, we envision that in the future, such a correspondence tool,
which also provides a smooth interpolation, could be deployed at the heart of
an effective, anatomically informed non-rigid registration method.
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Abstract. Statistical shape models (SSM) have been well-established as
an excellent tool for identifying variations in the morphology of anatomy
across the underlying population. Shape models use consistent shape
representation across all the samples in a given cohort, which helps to
compare shapes and identify the variations that can detect pathologies
and help in formulating treatment plans. In medical imaging, computing
these shape representations from CT/MRI scans requires time-intensive
preprocessing operations, including but not limited to anatomy segmen-
tation annotations, registration, and texture denoising. Deep learning
models have demonstrated exceptional capabilities in learning shape rep-
resentations directly from volumetric images, giving rise to highly effec-
tive and efficient Image-to-SSM networks. Nevertheless, these models
are data-hungry and due to the limited availability of medical data, deep
learning models tend to overfit. Offline data augmentation techniques,
that use kernel density estimation based (KDE) methods for generating
shape-augmented samples, have successfully aided Image-to-SSM net-
works in achieving comparable accuracy to traditional SSM methods.
However, these augmentation methods focus on shape augmentation,
whereas deep learning models exhibit image-based texture bias resulting
in sub-optimal models. This paper introduces a novel strategy for on-
the-fly data augmentation for the Image-to-SSM framework by leveraging
data-dependent noise generation or texture augmentation. The proposed
framework is trained as an adversary to the Image-to-SSM network, aug-
menting diverse and challenging noisy samples. Our approach achieves
improved accuracy by encouraging the model to focus on the underlying
geometry rather than relying solely on pixel values.
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1 Introduction

Statistical shape modeling (SSM) is widely used in the fields of medical image
analysis and biological sciences for studying anatomical structures and conduct-
ing morphological analysis. It enables shape analysis by facilitating the under-
standing of the geometrical properties of shapes that are statistically consistent
across a population. SSM has diverse applications in neuroscience [17,27], car-
diology [8], orthopedics [5,18], and radiology [9,15].

Optimization-based SSM [10] methods typically involve anatomy segmen-
tation, data preprocessing (e.g., image resampling, denoising, rigid registra-
tion), and optimizing population-level shape representation i.e., correspondence
points (or particles), all of which require substantial expertise-driven work-
flow, involving intensive preprocessing that can be time-consuming. Deep learn-
ing approaches for SSM, train networks to learn the functional mapping from
unsegmented images to statistical representations of anatomical structures [2–
4,6,8,22]. This shift towards deep learning-based methods offers a more efficient
and automated approach to SSM, bypassing the need for extensive manual pre-
processing and leveraging the power of neural networks to learn directly from raw
imagery data [4,23]. However, deep learning models are notorious for requiring
enormous quantities of data to achieve acceptable performance [21], necessitating
the use of data augmentation to supplement the available training data [8].

In the field of deep learning for medical image analysis, data augmentation
plays a crucial role [1,11,20]. Nevertheless, unlike computer vision applications,
acquiring a substantial number of segmented medical images is difficult due to
privacy concerns, the substantial human effort and expertise required, and the
intensive preprocessing involved [14]. Off-the-shelf data augmentation methods
may not generate augmented samples that promote invariances and improve
the task-specific generalizability of the model [16]. Therefore, having a large
amount of data supplemented with challenging task-specific variations would be
extremely beneficial for training deep neural networks and improving model per-
formance. In the field of medical imaging, attempts have been made to employ
task-driven automatic data augmentation techniques [12] for image segmenta-
tion and classification [11,14,24]. For regression tasks, various strategies have
been proposed for handling data augmentation that includes, data-dependent
shape augmentation for Image-to-SSM networks [2,6,7] and a mix-up [26] based
augmentation by interpolating input samples using the similarity of labels [25].

DeepSSM [6,7], and other variants [2–4], learn to map unsegmented images to
shape models, exhibiting comparable performance to traditional SSM [10] meth-
ods, as well as in downstream tasks such as atrial fibrillation recurrence [8,18].
DeepSSM relies heavily on offline shape-based data augmentation via kernel
density estimation (KDE) in the linear principal component analysis (PCA)
subspace [6,7]. The DeepSSM shape augmentation approach entails using gen-
erative modeling to sample shapes from probability distribution estimated via
KDE. Existing offline methods have three deficiencies: (1) the generation of aug-
mented samples is independent of the task (shape modeling) at hand, (2) the
augmentation process focuses on shape augmentation rather than incorporating
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noise/texture augmentation, neglecting the inherent texture bias often present
in deep learning models [19], which can lead to sub-optimal models in shape
analysis, and (3) they require extensive offline data compilation, which is time
intensive and resource consuming.

We draw inspiration from adversarial domain adaptation [13] and adver-
sarial data augmentation for classification tasks [14] and adapted these ideas
to regression tasks with application to Image-to-SSM networks. The regression
task poses a greater challenge as it is not straightforward to generate challeng-
ing adversarial samples for the learning task at hand due to the absence of
label-separating hyperplanes. Consequently, we focus our methodology on gen-
erating noise-augmented samples as an alternative to KDE based shape aug-
mentation [6,7]. The proposed method implicitly drives the model to attend
to the shape of the underlying object of interest instead of explicit shape aug-
mentation [6,7]. We also demonstrate that data- and task-dependent noise aug-
mentation is better than off-the-shelf noise augmentation with varied variance
levels. The proposed augmentation approach is generic enough to be used for
any Image-to-SSM network, but here we focus on DeepSSM [7] to showcase the
efficacy of the on-the-fly noise augmentation vs offline shape and noise augmen-
tation.

As we focus on image noise augmentation for this work, the shape represen-
tation of the augmented images should not be affected. As a result, we employ
a contrastive loss to inform the deep learning model that noisy and their corre-
sponding original images should be projected to the same latent representation.
This contrastive loss acts as a regularizer to both the augmentation framework
and the Image-to-SSM network.
The contributions of this paper are as follows:-

– A computationally efficient, automated, on-the-fly adversarial data augmen-
tation method for regression tasks with better generalization.

– A contrastive loss based regularization that enables enhanced noise generation
that is more task- and data-dependent.

– Extensive experiments with Image-to-SSM and downstream tasks on left
atrium and femur datasets show the efficacy of the proposed approach.

2 Methodology

This section explains the details of the proposed method and the regularization
losses. The block diagram for the proposed approach is shown in Fig. 1.

2.1 Adversarial Data Augmentation Block

The proposed framework for augmentation aims to enhance the performance
of the Image-to-SSM network by generating data-dependent noise. This archi-
tecture can be especially useful in the context of SSM tasks, where the input
data size is typically limited. Due to the paucity of data samples, deep learning
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Fig. 1. ADASSM Block Diagram. Conditional Noise Generator uses the input
volumes (x1) to generate noise (n1), which is added back to the input volume. Dis-
criminator used the remaining volumes (X2) for GAN loss(LGAN ) to ensure the
generated data is in distribution. The noise generator and DeepSSM are connected by
a gradient reversal layer, which sets up the second adversarial training paradigm.
Both the noisy and original volumes are used to train the Image-to-SSM framework
(DeepSSM). LRMSE is the correspondences RMSE loss, Lp contrastive & Lb contrastive

are correspondence and bottleneck contrastive loss.

models may suffer from overfitting, leading to poor generalization performance
on unseen data. To address this, we integrate an adversarial [13,14] data aug-
mentation approach for regression tasks with applications in shape modeling.
The generator produces adversarial data samples that are difficult for the shape
model to project into statistical shape representation.

Conditional Noise Generator: Conditional noise generator receives an image
x1 from input set X1 and a randomly sampled Gaussian vector, z as inputs. It
then generates noise vector n1, which is subsequently added to the original input
volume x̂1 = x1 + n1, resulting in the generation of a noisy augmented sample.

x̂1 = R ∗ G(z,x1) ⊕ x1 (1)

Here, R is a hyperparameter for noise perturbation range, G denotes the con-
ditional generator, and ⊕ represents voxelwise addition. To achieve controlled
augmentations and minimize excessive perturbations, a regularization loss based
on total variation (TV) is incorporated [14]. TV loss also enables the generation
of noise variations that exhibit smooth transitions, which is crucial for capturing
the inherent features of real-world images.

LTV = ||G(z,x1)||2 (2)

Discriminator: To further regularize the noise generation a discriminator is
used. This discriminator uses the remaining input samples from set X2, as refer-
ence distribution, and noisy samples are treated as samples of input distributions.
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The objective of the discriminator is to assist the generator in producing realistic
noise while ensuring that the noisy augmented sample comes from the same dis-
tribution as the original data. The generative adversarial network (GAN) aims to
strike a balance between meaningful data-specific augmentations and excessive
perturbations. The loss of the block is given in the equation below:-

LGAN = min
G

max
D

EX∈Ω [log D(x2)]+EX∈Ω[log(1−D(G(z,x1)⊕x1))] +βLTV

(3)
where β is hyperparameter.

2.2 Adversary to Image-To-SSM Network

The noisy augmented sample is fed into the Image-To-SSM network to obtain
the predicted shape representation(ŷ), which is compared to the original shape
representation via an RMSE loss.

L(ŷ,y) = RMSE(y,DeepSSM(x̂1)) (4)

The Image-to-SSM network and GAN framework are put in an adversarial
relationship with the help of a gradient reversal layer, as shown in the block
diagram in Fig. 1. The objective function in Eq. 5 aims to minimize the Image-To-
SSM network error while maximizing the conditional generator G perturbations,
setting up a second adversarial objective:

LRMSE = EX,Y ∈Ω[min
M

max
G

L(ŷ,y)] (5)

The framework above allows the augmentation model to search along the adver-
sarial direction, leading to the generation of challenging noise augmentations
that facilitate the learning of more robust shape features.

2.3 Image-To-SSM Network:

The DeepSSM Model employs a deterministic encoder and a deterministic lin-
ear decoder. The reconstructed correspondences are obtained as the output of
the Image-to-SSM network, providing both shape representation as well as low
dimensional latent features for each input volume.

2.4 Shape Regularization Loss:

Noise augmentation affects only the texture of the input volume and does not
affect the underlying shape. We hypothesize that the shape representation (after
DeepSSM) of the augmented noisy volume (x̂1) and original volume (x1), should
be closer in the shape space. We use a contrastive loss in Eq. 6 as an additional
regularizer to ensure that both the Image-to-SSM network and GAN account
for this.

Lcontrastive = − log(
exp (sim(DeepSSM(x1),DeepSSM(x̂1)))

∑N exp(sim(DeepSSM(x1),DeepSSM(x̂1)))
) (6)
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We propose to use contrastive loss at two different latent representations as
shown in Fig. 1:

1. Correspondences (Lp contrastive, PC), which are the predicted SSM representa-
tion by the Image-to-SSM network. This loss ensures that the augmentation
does not effect the final statistical shape representation of the augmented
image.

2. Bottleneck (Lb contrastive, BC), which is the low-dimensional space represen-
tation obtained from the Image-to-SSM network. This loss helps the model
learn the same latent representation despite noise augmentation.

These regularization losses encourage both the generator and shape model to
focus more on shape-related information during the learning process and factor
out texture variations. The overall objective function for the proposed model is:

L = αLGAN + LRMSE + λ1Lb contrastive + λ2Lp contrastive (7)

where α, λ1, λ2 are hyperparameters.

3 Results

We use the same Image-to-SSM (DeepSSM [6]) model architecture across
all experiments to ensure that variations in model performance can only be
attributed to different augmentation techniques. As a baseline for comparison,
we train an Image-to-SSM architecture without any augmentations (NoAug).
Additionally, we train another model using KDE [6] augmentation (KDE [6]).
We also compute two other baselines with off-the-shelf Gaussian noise augmen-
tation with different variances(σ = 1 and 10).

3.1 Metrics

Root Mean Squared Error (RMSE): To measure the error, we calculate
the average relative mean squared error (RMSE) between the predicted 3D cor-
respondences and this is achieved by computing the RMSE for the x, y, and z
coordinates and averaging them as shown in (7)

RMSE =
1
3
(RMSEx + RMSEy + RMSEz) (8)

For N 3D correspondences, RMSEx =
√

||Cx−C′
x||22

N . The same calculation is
applied to RMSEy and RMSEz for the respective coordinates. Additionally,
we calculate the RMSE error for each correspondence point as, RMSEi =√

||Ci
x−C′i

x ||22+||Ci
y−C′i

y ||22+||Ci
z−C′i

z ||22
3

The per-point RMSE helps us assess the accuracy of DeepSSM in modeling
various local anatomical features. For all experiments, the shape representations
were calculated on same test data (held-out data) using the trained DeepSSM
model and were only used for inference.
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Surface-to-Surface Distance (mm): The surface-to-surface distance is mea-
sured between the ground truth mesh and the mesh reconstructed from the
predicted correspondences by DeepSSM. This distance provides a more precise
measure of how well the correspondences adhere to the shape and indicates their
suitability for anatomy segmentation.

Furthermore, we validate the effectiveness of DeepSSM with the learned
shape representations by utilizing its correspondences for various downstream
analysis applications. The specific downstream applications vary for each dataset
and are described in separate subsections below.

3.2 Femur

Data Description and Processing: The femur dataset consists of 49 CT
images of the femur bone, of which 42 are considered healthy with no mor-
phological abnormalities. DeepSSM [6,7] requires generating point distribution
models (or correspondences) for the training images. We use ShapeWorks [10] to
optimize a shape model with 1024 correspondences. Along with the training and
validation data, we also randomly selected 7 controls and 2 CAM-FAI scans for
testing the DeepSSM Model. To meet GPU memory requirements, each image
is downsampled by a factor of 2 from 260 × 184 × 235 (0.5 mm isotropic voxel
spacing) to isotropic voxel spacing of 1mm with dimensions of 130×92×117. The
training images are divided into training and validation sets with 80% -20% split.

Training Specifics: Empirically we set α = 1 and β = 0.1. The default param-
eters and configuration are used to get the result for KDE [6] augmentation for
femur dataset. The training process involves optimizing the loss on correspon-
dences for 1500 epochs, employing a data augmentation framework based on
validation loss. For all ADASSM experiments, involving the proposed regular-
ization losses, a learning rate of 5e-5 is utilized while ADASSM itself is trained
with a learning rate of 1e-5. The generator and discriminator learning rates are
set to 5e-3, except for ADASSM+BC+PC, which employs a learning rate of
1e-3. A batch size of 4 is used for training all the proposed models and baseline
models. In the generator, R is set to 500 for ADASSM experiments.

Evaluation and Analysis: Figure 2 visualizes the RMSE results alongside
the surface-to-surface distance. Augmenting the DeepSSM model with Gaus-
sian noise with different variances without any adversarial training improves
the RMSE when compared to the KDE augmentation [6]. However, an increase
in the surface distance of the predicted correspondences indicates misalignment
with the ground truth femur bone segmentation. This result shows that standard
noise augmentation can provide better results for Image-to-SSM networks.

We can observe that for the proposed ADASSM (data-dependent noise aug-
mentation), RMSE results are better compared to both KDE [6] and Gaussian
noise. The addition of contrastive regularization losses further improves RMSE
error and surface distance, which proves that data-dependent noise-augmented
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Fig. 2. Femur Test Results. The RMSE is the Euclidean distance between the
ground truth and predicted correspondences for all the test samples. The Surface-
to-Surface distance (mm) is computed by comparing the reconstructed mesh using
the ground truth correspondences and the predicted correspondences for all the test
samples. λ1 for ADASSM+BC is 0.5, λ2 for ADASSM+PC is 0.1 and λ1, λ2 for
ADASSM+BC+PC is 0.5. Y-axis is the magnitude of the errors displayed.

samples are better compared to Gaussian augmented samples and shape aug-
mentation [6].

Visualizations of surface-to-surface distance for the best, median, and worst
cases for the test set are shown in Fig. 3. Upon careful examination of these
visualizations, we can observe that the proposed models demonstrate a remark-
able reduction in errors in critical regions such as the greater trochanter, growth
plate, femoral neck, and epiphyseal lines in the best-case scenario. In the median
case, a detailed analysis of both views reveals that in view (1), the KDE base-
line [6] exhibits some errors around the trochanter region that are substantially
reduced by the proposed models. In view (2), the error around the trochanter
region is completely reduced with the ADASSM+BC+PC model. In the worst-
case scenario, view (2) displays the majority of errors in the KDE baseline [6],
but these errors are significantly diminished, particularly in the lower trochanter
region, with the employment of the ADASSM variants.

Downstream Task - Group Differences: To evaluate the effectiveness of the
learned shape representations using the proposed models, we conducted a down-
stream analysis. The experiments were aimed at evaluating whether the models
can accurately capture group differences [18] in medically relevant regions. To
achieve this, we formed two groups: a control group and a pathology group
consisting of CAM-FAI cases. We calculated the mean differences (μnormal and
μcam−FAI) between these groups and visualized the differences on a mesh and
compared the group differences obtained using the predicted correspondences
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Fig. 3. Femur Surface-to-Surface distance (mm) visualization: Shape recon-
struction error is displayed as a heatmap on the ground truth reconstructed meshes.
The results for different proposed models are presented, showcasing their performance
in the best, median, and worst-case scenarios.

from the proposed models and the ShapeWorks PDM model. We utilized the
entire dataset, including both training and testing samples, for these group dif-
ferences, and the results are presented in Fig. 4.

Each group difference illustrates the transition from the mean shape of the
pathological group to that of the control group, overlaid on the mean patho-
logical scan. Interestingly, we observed that the group differences between the
state-of-the-art PDM model and ADASSM+PC were quite similar compared to
baseline KDE [6]. In some cases, the proposed models exhibited similar differ-
ences in medically relevant regions of the femur, whereas in other areas, the mod-
els identified additional variations. These findings suggest that the established
correspondences can be employed to characterize CAM deformity effectively.
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Fig. 4. Femur shape group difference between CAM-FAI and controls. The
difference μcam−μnormal and is projected on μcam with both training and test samples,
the arrows denote the direction of the correspondence (particle) movement, and the
heatmap showcases the normalized magnitude.

3.3 Left Atrium

Data Description and Processing: The left atrium dataset consists of 176
late gadolinium enhancement (LGE) MRI images from patients that have been
diagnosed with atrial fibrillation (AF). These scans are acquired after the first
ablation. 80% -20% split is used to split the data where 146 volumes are used to
train the model and 30 scans which are used to test the DeepSSM network. To
generate point distribution models (or correspondences) for training images, we
utilize ShapeWorks [10] to optimize a shape model with 1024 correspondences.
For training purposes, the MRIs are downsampled from 235×138×175 (0.625mm
isotropic voxel spacing) to 117×69×87 (1.25mm voxel spacing) by a factor of 2.

Training Specifics: The results for KDE augmentation [6] on the left atrium
dataset are obtained using the default parameters and configuration. With the
proposed data augmentation framework, DeepSSM model is trained for 1000
epochs. For the various ADASSM models with the aforementioned regularization
losses, a learning rate of 1e-4 is utilized, while ADASSM itself is trained with
a learning rate of 5e-3. A batch size of 6 is employed during the training of
both the proposed and baseline models. In all ADASSM experiments, R in the
generator is set to 100. Following the publication of the manuscript, we plan to
make the training models, implementation code, and relevant hyperparameters
publicly available.

Evaluation and Analysis: Figure 5 displays the RMSE results alongside the
surface-to-surface distance. We can make the following observations from the bar
graph:- 1) When augmenting the DeepSSM model with Gaussian noise of vary-
ing variances without any adversarial training, we find that it does not improve
performance, which may be because the original dataset already has more inten-
sity variation when compared to CT volumes. 2) By enhancing the data- and
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Fig. 5. Left Atrium Test Set Results. The RMSE is the Euclidean distance between
the ground truth and predicted correspondences for all the test samples. The Surface-
to-Surface distance (mm) is computed by comparing the reconstructed mesh using
the ground truth correspondences and the predicted correspondences for all the test
samples. λ1 for ADASSM+BC is 0.001, λ2 for ADASSM+PC is 0.05 and λ1, λ2 for
ADASSM+BC+PC is 0.05. Y-axis is the magnitude of the errors displayed.

task-dependency of the noise and integrating the proposed data augmentation
framework with various regularization losses, the methodology surpasses the
baseline Gaussian noise and KDE shape augmentation framework [6]. In the
left atrium, the performance disparity between the ADASSM variants is more
pronounced compared to the femur. This can be attributed to the significant
variations observed in the left atrium, where the proposed method excels in
effectively regulating the Image-to-SSM task.

In Fig. 6, visualizations of the surface-to-surface distance are presented for
the best, median, and worst cases in the test set. For best-case and median-case
views, the proposed model plainly outperforms other methods, while worst-case
views are comparable.

Downstream Task - AF Recurrence Prediction: The shape of the left
atrium can provide insights into the recurrence of AF [18]. The dataset has
binary outcome labels indicating whether patients experienced AF recurrence
after ablation. The goal is to estimate the probability of AF recurrence based
on the learned shape representations. We use PCA projections of the shape
representations as features for a Multi-Layer Perceptron (MLP) for classification.
The results are summarized in Table 1. Compared with the traditional SSM [10]
and KDE, we observe similar performance. All ADASSM variants perform on
par with the PDM, with the ADASSM+PC model outperforming the baselines
by capturing better shape descriptors for the left atrium than the PCA scores
learned in other models. Due to the fact that the classification model is based on
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Fig. 6. Left Atrium Surface-to-Surface distance (mm) visualization: Shape
reconstruction error is displayed as a heatmap on the ground truth reconstructed
meshes. The results for the best, median, and worst-case scenarios are shown for var-
ious proposed models. We can observe that the proposed methods are outperforming
the baseline results in best and median-case.

the PCA scores of correspondences, ADASSM+PC has the highest accuracy, as
the contrastive loss will bring the correspondence’s latent space representation
closer. But if we train a classifier with non-linear features (other than PCA),
ADASSM+BC+PC might result in the best accuracy.

3.4 Training Time

The proposed augmentation method not only improved model performance for
both the left atrium and femur datasets but also significantly reduces the training
time by approximately 60% compared to the baseline method [6] as shown in
Table 2.



102 M. S. T. Karanam et al.

Table 1. AF Recurrence Prediction: Accuracy of AF recurrence that uses PCA
scores as shape descriptors from different models.

Model Accuracy

ShapeWorks [10] 53.99% ± 6.20

KDE [6] 52.66% ± 1.77

Gaussian(sigma=1) 50.66% ± 6.22

Gaussian(sigma=10) 51.99% ± 7.11

ADASSM 51.33% ± 2.66

ADASSM+BC 55.99% ± 15.11

ADASSM+PC 67.99% ± 2.67

ADASSM+BC+PC 51.33% ± 2.66

Table 2. Resources Required: Comparison for time taken to run Augmentation &
Model training required on Nvidia RTX 5000 system.

Dataset KDE[5] ADASSM

Left Atrium 690.35+122.35 min 336.15 min

Femur 725.35+ 93.5 min 399.6 min

4 Conclusion and Future Work

In this study, we introduced a novel methodology by proposing an adversar-
ial data augmentation framework for generic regression tasks with applicabil-
ity to Image-to-SSM networks. Using data-dependent noise augmentation, the
proposed method seeks to discover effective shape representations for three-
dimensional volumes. By generating challenging augmentations during model
training, the proposed method eliminates the need for offline data augmentation,
effectively training a more accurate Image-to-SSM network. The proposed noise
augmentation framework outperforms the shape augmentation framework [8]
and standard noise augmentation, demonstrating that data-dependent noise aids
the model by implicitly attending to shape. Through downstream task analysis,
we confirmed that the proposed method effectively taught models robust shape
descriptors that capture pertinent pathology information. In addition, compared
to existing frameworks for shape augmentation, the proposed methodology is not
only more robust but also faster. The limitation of the proposed framework is
that it trains only on data-dependent intensity/noise augmentations and does
not take shape augmentation into account. We plan to extend this framework
to data-dependent shape augmentation as well.
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Abstract. Body fat volume and distribution can be a strong indication
for a person’s overall health and the risk for developing diseases like type
2 diabetes and cardiovascular diseases. Frequently used measures for fat
estimation are the body mass index (BMI), waist circumference, or the
waist-hip-ratio. However, those are rather imprecise measures that do
not allow for a discrimination between different types of fat or between
fat and muscle tissue. The estimation of visceral (VAT) and abdomi-
nal subcutaneous (ASAT) adipose tissue volume has shown to be a more
accurate measure for named risk factors. In this work, we show that trian-
gulated body surface meshes can be used to accurately predict VAT and
ASAT volumes using graph neural networks. Our methods achieve high
performance while reducing training time and required resources com-
pared to state-of-the-art convolutional neural networks in this area. We
furthermore envision this method to be applicable to cheaper and easily
accessible medical surface scans instead of expensive medical images.

1 Introduction

The estimation of body composition measures refers to the qualification and
quantification of different tissue types in the body as well as the estimation of
their distribution throughout the body. These measures can function as risk fac-
tors of individuals and be an indicator for health and mortality risk [1,12]. One
component of body composition analysis is the estimation of fatty tissue volume
in the body. The strong correlation between body composition and disease risk
has lead to a routine examination of measures indicating body composition in
medical exams. The body mass index (BMI), for example, measures the ratio
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Fig. 1. Visualisation of body surface meshes at different decimation rates; The most
left mesh shows the original mesh, then left to right are visualisations of decimated
meshes with ten thousand, one thousand, five hundred and two hundred faces.

between a person’s weight and height and has been shown to be an indicator
for developing cardiovascular diseases, type 2 diabetes, as well as overall mortal-
ity [3,12,28,32]. Additionally, the waist circumference and waist-hip-ratio can
be used as an indication for body fat distribution [6,25,42,48]. These metrics
are easy, fast, and cheap to assess. However, they have strong limitations. They
are imprecise as they do not allow for a more accurate assessment of the distri-
bution of body fat or to differentiate between weight that stems from muscle or
fat tissue. Understanding the specific differences between different types of fatty
tissue and their impact on health risks is crucial for accurately assessing an indi-
vidual’s risk factors and enabling personalised medical care. Towards this goal,
several works have investigated methods to identify variations of fat distribution
in the body and the quantification of fatty tissues [29,54].

Body fat can be divided into different types of fat. Two commonly investi-
gated types are visceral fat (VAT), which surrounds the abdominal organs, and
abdominal subcutaneous fat (ASAT), which is located beneath the skin. Studies
have shown that especially visceral fat can have a negative impact on a per-
son’s health [8,40,47]. Therefore, a separate analysis of VAT and ASAT is an
important step towards gaining accurate insights into body composition. Several
works have investigated a precise estimation of VAT and ASAT volumes from
medical images, like magnetic resonance (MR) [29] and computed tomography
(CT) images [23], dual-energy X-ray absorptiometry (DXA) assessment [41], or
ultrasound imaging [7]. Deep learning techniques have shown promising results
in analysing these medical images in order to estimate body composition val-
ues [23,29,43,53].

In this work, we perform VAT and ASAT volume prediction from full body
triangulated surface meshes using graph neural networks (GNNs). We show that
GNNs allow to utilise the full 3D data at hand, thereby achieving better results
than state-of-the-art convolutional neural networks (CNNs) on 2D silhouettes,
while requiring significantly less training time and therefore resources. Both ours
and related work, such as [29], use data extracted from MR images. However,
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MR imaging is a very expensive technique, which is highly unequally distributed
around the globe. The access to MR scanners in lower income countries is much
more limited [18]. Furthermore, the acquisition of MR images is time consuming
and very unlikely to be used for routine exams. Given the light computational
weight and fast nature of our method, we envision it to be applied to data
acquired from much simpler surface scans in the future and enable an incorpo-
ration into routine medical examination.

2 Background and Related Work

In the following, we summarise related works on body fat estimation from med-
ical (and non-medical) images, define triangulated meshes and the concept of
graph neural networks and show some of their application to medical data, with
a focus on surface meshes.

2.1 Body Fat Estimation from Medical Imaging

Body fat estimation has been part of routine medical assessments for decades
through the analysis of simple measurements such as BMI or waist circumfer-
ence [17]. However, more elaborate ways such as using proxy variables derived
from medical images, like dual energy X-ray absorptiometry (DXA), CT or MR
images, have achieved more accurate results. Multiple studies have successfully
assessed patient body composition based upon DXA [15,22,41]. Hemke et al. [23]
and Nowak et al. [43] show successful utilisation of CT images for body com-
position assessment. Works like [31] use segmentation algorithms to identify
fatty tissue in MR scans, from which body composition values can be derived.
Tian et al. [50] estimate body composition measures based on 2D photogra-
phy, not even requiring medical imaging techniques. Many of these approaches
focus on predicting specific types of adipose tissue [29,31,36,39]. One idea, that
has been followed by several works is the utilisation of silhouettes, a binary 2D
projection of the outline of the body extracted from images. Xie et al. [54] use
silhouettes generated from DXA whole-body scans to estimate shape variations
and Klarqvist et al. [29] use silhouettes derived from MR Images for VAT and
ASAT volume estimation using CNNs. The latter use two-dimensional coronal
and sagittal silhouettes of the body outline and predict VAT and ASAT volume
using convolutional neural networks. The silhouettes are extracted from the full-
body magnetic resonance (MR) scans of the UK Biobank dataset [49]. In our
work, we propose to switch from full medical images or binary silhouettes to sur-
face meshes for fat volume prediction, which allows to integrate the full potential
of the 3D surface into deep learning methods, while using the light-weight and
fast method of graph neural networks (GNNs).

2.2 Triangulated Meshes

In this work, we use triangulated surface meshes of the body outline. A mesh
structure can be interpreted as a specific 3D representation of a graph. A graph
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G := (V ,E ) is defined by a set of nodes V and a set of edges E , connecting pairs
of nodes. The nodes usually contain node features, which can be summarised
in a node features matrix X. A triangulated mesh M has the same structure,
commonly holding the 3D coordinates of the nodes as node features. All edges
form triangular faces that define the surface of the object of interest –in our
case: body surfaces. A visualisation of such meshes can be found in Fig. 1.

2.3 Graph Neural Networks

Graph neural networks have opened the field of deep learning to non-Euclidean
data structures such as graphs and meshes [11]. Since their introduction
by [20] and [46], they have been utilised in various domains, including medi-
cal research [2,14]. Graphs are, for example, frequently used for representations
of brain graphs [9], research in drug discovery [10], or bioinformatics [55,56]. One
native data structure that benefits from the utilisation of graph neural networks
are surface meshes [11]. GNNs on mesh datasets have also advanced research
in the medical domain such as brain morphology estimation [5], which can be
used for Alzheimer’s disease classification, or for the predicting of soft tissue
deformation in image-guided neurosurgery [45].

In general, GNNs follow a so-called message passing scheme, where node
features are aggregated among neighbourhoods, following the underlying graph
structure [13,24,27,30]. This way, after each iteration, a new embedding for the
node features is learned. In this work, we use Graph SAGE [21] convolutions,
which were designed for applications on large graphs. The mean aggregator archi-
tecture for a node v ∈ V at step k is defined as follows:

hk
v = σ

(
W · MEAN({hk−1

v } ∪ {hk−1
u ,∀u ∈ Nv})

)
. (1)

Nv is the neighbourhood of node v, W is a learnable weight matrix, and
MEAN the mean aggregator, which combines the node features of v at the
previous step and the node features of v’s neighbours.

3 Methods

We construct three different model architectures: (a) a graph neural network, (b)
a simple convolutional neural network (CNN), and (c) a DenseNet and compare
their performance. All models are trained using the Adam optimiser [26] and
Shrinkage loss [38] and all results reported are cross-validated based on a 5-fold
data split. We use a Quadro RTX 8 000 GPU for our experiments and all models
predict both targets –VAT and ASAT– with the same network, following the
approach from [29].

GNN Architecutre. We perform a whole-graph regression task on the input
meshes. The model architecture consists of a three-layer GNN with SAGE graph
convolutions [21] and batch normalisation layers, followed by a max aggregation
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Fig. 2. Distribution of VAT (left) and ASAT (right) volume of male and female subjects
in the cohort. Male subjects tend to have more VAT volume, whereas female subjects
tend to have more ASAT volume.

and a three-layer multi-layer perceptron (MLP). Hyperparameters such as learn-
ing rate and GNN layers are selected by manual tuning. All GNNs are trained
for 150 epochs.

CNN Architecture. In order to compare our results to the work by Klarqvist
et al. [29], we also train a DenseNet and a simpler CNN on the silhouette data.
DenseNet is a CNN which is more densely connected, where each layer takes all
previous outputs as an input. For our DenseNet implementation, we follow the
architecture in [29]. We additionally construct a simpler CNN architecture that
consists of three 2D convolutions, followed by a three-layer MLP, matching the
design of the graph neural networks. Both convolutional networks are trained
for 20 epochs on a 2D input image, that consist of a sagittal and a coronal view
of the binary silhouette masks of the MR images, following the pipeline in [29].

4 Experiments and Results

We use a subset of the UK Biobank dataset [49], which is a large-scale medical
database. It contains a variety of imaging data, genetics, and life-style infor-
mation from almost 65 000 subjects and was acquired in the United Kingdom.
In this work, we use the neck-to-knee magnetic resonance images of a subset
of 25 298 subjects, for which the labels are available (12 210 male and 13 088
female). The mean age of this cohort is 62.95 years. The VAT and ASAT dis-
tributions of male and female subjects are visualised in Fig. 2. We can see that
female subjects tend to have a higher ASAT volume, whereas male subjects tend
to have more VAT. As labels, we used the reported VAT and ASAT volumes in
the UK Biobank (field IDs: 22407 and 22408) (Fig. 3).
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Fig. 3. R2 scores of VAT (left) and ASAT (right) predictions for male, female, and all
subjects at different decimation rates of the input meshes.

4.1 Data Processing

The experiments in this work are performed on triangulated body surface meshes
that are extracted from the neck-to-knee MR images from the UK Biobank [44].
These were acquired in stations and merged through stitching [33]. In order to
extract the surface meshes, we first perform an algorithmic whole-body segmen-
tation by a succession of morphological operations on the stitched MR scans.
We then convert these segmentations into surface meshes using the marching
cubes algorithm [37] and the open3d library [57]. In order to investigate how
much the surface meshes can be simplified, we decimate them into meshes con-
sisting of different numbers of faces. We use meshes with 10 000, 5 000, 1 000,
500, 200, and 100 faces. The number of nodes is always half the number of faces,
following Euler’s formula for triangular meshes [16]. Subsequently, the meshes
are registered into a common coordinate system, using the iterative closest point
algorithm [4]. As a reference subject, the most average subject in the dataset
was selected based on height, weight, and age. The resulting decimated and
registered surface meshes are then used for graph learning. Figure 1 shows an
example of a body surface mesh at different decimation rates

4.2 Results

Table 1 summarises the results of the GNNs and CNNs for ASAT and VAT vol-
ume prediction. We report the 5-fold cross-validation results on the test set of
the best performing models, evaluated on the validation loss. We compare the
results of our graph neural networks (GNNs) with the results achieved by the
DenseNet from [29] and the results of a simpler CNN (which we call CNN in
the tables). We furthermore report the training times of all models, measured
by the full training process for 150 and 20 epochs for GNNs and CNNs, respec-
tively. All GNNs are trained on the body surface meshes, whereas the CNNs are
trained on the silhouettes, following the approach proposed in [29]. We evaluate
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Table 1. Results for VAT and ASAT volume estimation; We report the R2 scores on
the test set with standard deviations based on 5-fold cross validation, as well as the
training times of the full training in minutes.

Tissue Model Decim. Test R2 Time (min)

VAT GNN (ours) 100 0.858 ± 0.001 8.36

200 0.872 ± 0.001 8.63

500 0.882 ± 0.001 9.01

1k 0.888 ± 0.001 10.11

5k 0.893 ± 0.002 22.36

10k 0.893 ± 0.003 37.75

CNN (ours) – 0.874 ± 0.001 16.20

DenseNet – 0.878 ± 0.004 95.79

ASAT GNN (ours) 100 0.909 ± 0.001 8.36

200 0.921 ± 0.002 8.63

500 0.931 ± 0.001 9.01

1k 0.935 ± 0.002 10.11

5k 0.938 ± 0.000 22.36

10k 0.941 ± 0.002 37.75

CNN (ours) – 0.921 ± 0.002 16.20

DenseNet – 0.934 ± 0.002 95.79

the GNNs on body surface meshes at different decimation rates of ten thousand,
five thousand, one thousand, 500, 200, and 100 faces per mesh (see Fig. 1 for a
visualisation of some of these decimated meshes). The best test performances are
highlighted in bold, so are the shortest training times. We can see that the sim-
pler CNN architecture almost matches performance of the DenseNet proposed
by [29], while requiring less training time. The GNNs outperform the CNN and
the DenseNet, when the utilised meshes are not heavily decimated. But even
highly decimated surface meshes with one hundred faces, only result in minor
performance loss while requiring less than ten times less training time compared
to the DenseNet. We envision the utilisation of the surface meshes and graph
neural networks to allow for more efficient model training and the utilisation of
the full 3D structure of the body, while keeping resource requirements low.

Male and female subjects show different distributions in VAT and ASAT
volume. While male subjects tend to have more VAT, females tend to have
more ASAT. Figure 2 shows the distributions of the fat volumes of the two sex
groups. We therefore compare the results of our method for female and male
subjects separately. Table 2 summarises the results of all GNNs and CNNs for
VAT and ASAT volume prediction split by sex. The best performing model for
each fat type and sex is highlighted in bold. We can see that the predictions
of VAT volume tends to be better on male subjects whereas the prediction of
ASAT volume achieves slightly higher scores for the female subject. The GNNs,
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Table 2. Results of VAT and ASAT volume prediction split by subject sex; all
reported values are R2 scores on the test set, cross-validated across 5 folds.

Fat tissue Model Decimation Female R2 Male R2

VAT GNN (ours) 100 0.782 ± 0.004 0.824 ± 0.003

200 0.804 ± 0.006 0.840 ± 0.003

500 0.815 ± 0.008 0.854 ± 0.003

1k 0.827 ± 0.004 0.861 ± 0.001

5k 0.831 ± 0.006 0.868 ± 0.002

10k 0.837 ± 0.002 0.867 ± 0.004

CNN (ours) – 0.804 ± 0.003 0.845 ± 0.002

DenseNet – 0.811 ± 0.006 0.849 ± 0.006

ASAT GNN (ours) 100 0.923 ± 0.003 0.852 ± 0.004

200 0.934 ± 0.001 0.870 ± 0.006

500 0.940 ± 0.002 0.890 ± 0.002

1k 0.945 ± 0.001 0.895 ± 0.004

5k 0.945 ± 0.000 0.903 ± 0.002

10k 0.948 ± 0.001 0.906 ± 0.005

CNN (ours) – 0.934 ± 0.002 0.870 ± 0.002

DenseNet – 0.944 ± 0.001 0.891 ± 0.003

however, seem to show a slightly lower gap in performance between the sex
groups. We attribute the difference in performance on the different fatty tissue
types to the varying distributions in fat volume between the sex groups.

5 Discussion and Conclusion

In this work, we introduce a graph neural network-based method that enables
adipose tissue volume prediction for visceral (VAT) and abdominal subcuta-
neous (ASAT) fat from triangulated surface meshes. The assessment of fatty
tissue has high clinical relevance, since it has been shown to be a strong risk
factor for diseases like type 2 diabetes and cardiovascular diseases [28,32]. Espe-
cially a separate estimation of the two different fat tissues VAT and ASAT has
shown to be a relevant medical assessment, since VAT is known to have a higher
correlation with disease development compared to ASAT [8,40,47]. We here use
graph neural networks and triangulated surface meshes, extracted from full-body
MR scans and show that they achieve accurate VAT and ASAT volume predic-
tions. We investigate how different decimation rates impact model performance
and training times. Figure 4 visualises this correlation. The bars in the left figure
show the average ASAT volume prediction R2 scores on the test set of the GNNs
trained on the differently decimated meshes. The overlaid line plot notes the cor-
responding training times. We can see that at one thousand faces, we reach an
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Fig. 4. Relationship between training time and decimation rate of the meshes; The left
plot shows the ASAT R2 scores (bars) and the corresponding training time, the right
plot shows the linear relation between the training time or the energy consumption in
kWh and the number of faces of the meshes.

optimal trade-off between training time and performance. Training the GNN
on the meshes with one thousand faces only takes about 10 min and achieves
high results of 0.893 R2 on VAT and 0.935 on ASAT volume prediction. On the
right in Fig. 4, we visualise the linear relation between the training time and
the number of faces in the meshes. Training time also corresponds linearly to
energy consumption in kWh. We attribute the comparably high performance of
the strongly decimated meshes to the fact that the most outer coordinates/nodes
still remain in the meshes, which carry a lot of information about the outline of
a body.

The light-weight nature of GNNs allows for the usage of the full 3D data,
while significantly reducing resource requirements and run time compared to
3D image-based methods. This shows great promise in the effort of bridging
the gap between cheap, fast, but imprecise measures –such as BMI and waist
circumference– and time-consuming, costly, but accurate methods such as med-
ical imaging (CT, MR, or DXA).

6 Limitations and Future Work

We see high potential in the utilisation of surface meshes and graph neural net-
works, given that the full 3D data can be utilised compared to only using binary
silhouette projections like in [29]. The low training times as well as the high
scores of the GNNs show the successful application to fat volume prediction. We
note that we compare the run time of the training loops only. This does not
include any pre-processing that is required for both silhouette-based and surface
mesh-based approaches. The GNN architecture is based on SAGE graph convo-
lutions [21], because they achieved the best results in our experiments, compared
to graph attention networks [51] and graph convolutional networks [27]. A poten-
tial improvement of our method would be the utilisation of other mesh-specific
convolutions such as adaptive graph convolution pooling [19] or FeaStNet [52].
Another interesting direction to explore is the utilisation of deeper GNNs. Li et
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al. [34], for example, introduce a method that enables the utilisation of deeper
GNNs without over-smoothing –a commonly known problem with GNNs. Over-
smoothing refers to the issue that deep GNNs do not achieve high performance
because all node embeddings in the graph converge to the same value [35].

Our experiments are performed on surface meshes, that were extracted from
MR images. However, we envision this method to work equally well on designated
surface scans, without requiring expensive and time-consuming MR scans. We
intend to investigate this in future work and apply our method to surface scans,
which are for example acquired for dermatological examinations. This would
eliminate the need for expensive MR scans and could lead to an embedding of
this technique into routine medical examination.
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Abstract. Many segmentation networks have been proposed for 3D vol-
umetric segmentation of tumors and organs at risk. Hospitals and clinical
institutions seek to accelerate and minimize specialists’ efforts in image
segmentation, but in case of errors generated by these networks, clini-
cians would have to edit the generated segmentation maps manually.

Problem Statement: Given a 3D volume and its putative segmen-
tation map, we propose an approach to identify and measure erroneous
regions in the segmentation map. Our method can estimate error at any
point or node in a 3D mesh generated from a possibly erroneous volu-
metric segmentation map, serving as a Quality Assurance tool.

Method: We propose a graph neural network-based transformer
based on the Nodeformer architecture to measure and classify the seg-
mentation errors at any point. We have evaluated our network on a high-
resolution µCT dataset of the human inner-ear bony labyrinth structure
by simulating erroneous 3D segmentation maps. Our network incorpo-
rates a convolutional encoder to compute node-centric features from the
input µCT data, the Nodeformer to learn the latent graph embeddings,
and a Multi-Layer Perceptron (MLP) to compute and classify the node-
wise errors.

Results: Our network achieves a mean absolute error of ∼ 0.042 over
other Graph Neural Networks (GNN) and an accuracy of 79.53% over
other GNNs in estimating and classifying the node-wise errors, respec-
tively. We also put forth vertex-normal prediction as a custom pretext
task for pre-training the CNN encoder to improve the network’s overall
performance. Qualitative analysis shows the efficiency of our network in
correctly classifying errors and reducing misclassifications.

Keywords: 3D Segmentation error detection · geometric learning

1 Introduction

Medical image segmentation is crucial to isolate and analyze specific structures or
regions of interest in a medical image to aid in the diagnosis, treatment planning,
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and monitoring of diseases or conditions. Deep learning models have evolved in
accuracy, versatility, and deployment-readiness for automatic segmentation of
various organs across diverse medical imaging modalities [4,13,14]. Still, auto-
mated medical image segmentation needs output review, as models are known to
be overconfident, although dealing with natural biological variations and diver-
sity in pathological presentation. There is a need for an automated method of
predicting and identifying segmentation errors to aid in improving the segmen-
tation maps in erroneous regions.

Related Works: Many recent works have studied the problem of detecting seg-
mentation errors. Kronman et al. [10] proposed a geometrical segmentation error
detection and correction method in which they detect segmentation errors by
casting rays from the interior of the initial segmentation map to its outer surface.
Altman et al. [2] created an automatic contour quality assurance method that
utilizes a knowledge base of historical data. Chen et al. [3] proposed supervised
geometric attribute distribution models to identify contour errors accurately.
The Reverse Classification Accuracy method [12] identifies failed segmentations
to predict the CMRI segmentation metrics, achieving a strong correlation with
the predicted metrics and visual quality control scores. Alba et al. [1] utilized a
random forest classifier with statistical, pattern, and fractal descriptors to detect
segmentation contour failures directly without the need for intermediate regres-
sion of segmentation accuracy metrics. Roy et al. [15] presented an approach
that directly incorporates a quality measure or prediction confidence within the
segmentation framework. This measure is derived from the same model, elimi-
nating the need for a separate model to evaluate quality. By leveraging model
uncertainty, their approach avoids the requirement of training an independent
classifier for evaluation, which could introduce additional prediction errors.

Graph Neural Networks (GNN) are deep learning algorithms that can extract
features from complex graph structures through message-passing. They are par-
ticularly suited for processing three-dimensional data and extracting geometric
features to capture and analyze the data structure [18].

Henderson et al. [9] proposed a quality assurance tool for identifying seg-
mentation errors in 3D organs-at-risk (OAR) segmentations using a geometric
learning method by considering the parotid gland. Their study focuses on the
parotid gland in head-neck CT scans.

Inspired by this work [9], we propose a novel segmentation error identifica-
tion network to predict and classify segmentation errors in the inner ear human
bony labyrinth using Nodeformer [20], an advanced Transformer based GNN.
We also investigate the effect of pre-training tasks on improving the encoding
of node feature vectors for GNNs. The key contributions of our work are: (1)
We propose a novel 3D segmentation error estimation network based on graph
learning, capable of handling graphs with millions of nodes generated from 3D
segmentation maps. (2) We present VertNormPred, a novel pretext task for pre-
training the encoder of our network. It involves predicting the node-wise vertex
normals to capture the graph’s geometric relationships and surface orientations.
(3) We quantitatively and qualitatively evaluate our network against other GNN
models to estimate and classify node-wise segmentation errors.



120 S. Sree et al.

Fig. 1. Simulation of true and perturbed meshes for self-supervised learning of seg-
mentation errors. Each specimen’s SDT was perturbed 100 times to produce 100 dif-
ferent deformed segmentations and meshes. The mesh simplification process utilized
Taubin smoothing and quadric error decimation techniques to achieve smoother mesh
representations.

2 Methods

Formulation: Let S be the input segmentation map of the μCT volume I. Let
T be the true segmentation map of I. There exists a deformation on S which
operates in the voxel grid to transform S to approach T (limited to nearest
neighbors interpolation). The alternative (and finer) domain for mutating S is
the surface mesh, computed through a discrete Marching Cubes algorithm [11]
f on (per-label) extracted contours.

By defining contours as zero-crossings on a signed Euclidean Distance Trans-
form, we have an additional interim domain of the distance transform, which
though residing on the voxel grid, offers some unique properties. For instance,
take X ′ = SDT (S) to be the Signed Distance Transform of S, and likewise, for
the true segmentation map, define X = SDT (T ). A dense deformation mapping
S to T is modeled conveniently as an additive distortion of X with a structured
(sparse) ‘noise’ field: X ′ = X +N , and recovering T from S becomes estimating
and subtracting the noise in X ′. Further, the discrete distance transform domain
can be interpolated to match the resolution of the surface mesh.

Thus, estimating a per-voxel additive correction on X ′, conditioned on I
would lead to determining the location and magnitude of errors in segmentation.
This is mapped to learning from ground truth segmentations T through known
random perturbations applied in the form X ′ = SDT (T ) + Nsim, leading to a
self-supervised learning problem, as shown below.

X = SDT (T ), T = X ≤ 0
X ′ = X + Nsim, S = X ′ ≤ 0

(1)
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Instead of solving this in the SDT domain, we proceed to the mesh domain to
setup a per-mesh-vertex estimation of N (v) conditioned on I, which is equivalent
to a corrective field in the interpolated SDT space.

Graph Learning: The surface mesh of a segmentation map S, computed
through an operation such as the Discrete Marching Cubes, is representable
as a graph G′ = (V ′, E′), whose nodes are the mesh vertices, and edges the sides
of the triangular faces.

G′ = (V ′, E′) = f(X ′) (2)

A vertex vi can be localized in the voxel grid of I to assign an interpolated inten-
sity value. Extending further, a local subvolume in I can be defined around vi.
Finally, vi is connected to nearby vertices forming a local topological arrange-
ment conditioned on image structure. To capture these relationships jointly in
the mesh and image domain, we propose to use graph neural networks.

The learning task is the prediction of node-wise segmentation errors by pre-
dicting node-wise Signed Distances (SD) and classifying the node-wise SD into
different ranges, given the μCT subvolume centred at each node v, and the entire
mesh G′.

The GNN is setup as

N̂ (v′) := hθ (G′, I) ∀v′ ∈ V ′ (3)

and optimized as

θ∗ = arg min
∥
∥
∥N̂ − Nsim

∥
∥
∥

2

2
(4)

Modeling: We propose a graph learning network based on NodeFormer [20],
an advanced Transformer based model designed for efficient node classification
on large graphs. NodeFormer incorporates an all-pair message-passing method
on adaptive latent structures, enabling information exchange between all nodes
by effectively capturing the local and global context. To handle larger graphs,
Nodeformer employs the kernelized Gumbel-Softmax operator [20], enabling scal-
ability to millions of nodes.

Our intuition behind the model design was, a CNN encoder can capture con-
textual details from the μCT data, while the GNN effectively utilizes the local
neighborhood of the graph, considering the associated data for each node v. By
leveraging the graph’s local neighborhood based on data, the GNN can analyze
the relationships and connectivity between graph elements, allowing the model
to incorporate both the image contextual information from μCT data and the
geometric structure of the input. This approach enables the model to exploit the
information provided by the local neighborhood of each graph element, enhanc-
ing its ability to analyze and process the input data effectively.

2.1 Architecture

We choose a CNN consisting of two 3D Conv layers, each followed by ReLU
activation functions as a feature extractor to produce node-wise representations
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of a 5 × 5 × 5 μCT subvolume centered around each node. The extracted node
features are embedded with the perturbed graph’s edge connectivity information
and passed on to the graph transformer network, consisting of three Nodeformer
Conv layers. This takes in the graph-embedded node-wise representations and
performs all pair message-passing, updating each node’s representation. We con-
sider three Nodeformer Conv layers with eight attention heads, and Batch Nor-
malization and a Leaky ReLU activation function followed each layer. Finally, a
Multi-Layer Perceptron (MLP) consisting of three fully connected layers, wherein
each layer was followed by a ReLU activation function, Batch Normalization,
and a Dropout regularization, processes the updated node-wise representations
to produce node-wise SD predictions (using Tanh activation function in the last
layer) or classifications (using Softmax activation function in the last layer).

Fig. 2. The proposed graph learning-based transformer network for predicting and
classifying node-wise errors. #f represents the number of output channels/nodes.
Given the 5 × 5 × 5 µCT subvolume centred at each node and the edge connectivity
information of the perturbed mesh, the model predicts the errors at each node.

For classification, predicted node-wise SDs are classified into five classes as
shown in Fig. 5, ranging from SDs of −0.16 mm to +0.16 mm. Nodes falling into
the higher end of the range, exceeding +0.16 mm, suggest the occurrence of out-
segmentation errors in broad regions. Conversely, nodes with SDs below −0.16 mm
indicate in-segmentation errors specifically within narrow regions. These obser-
vations highlight the correlation between SDs and the likelihood of realistic seg-
mentation errors in different regions of interest. Figure 2 illustrates the proposed
network architecture for node-wise SDs prediction and classification.
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2.2 Pre-training Tasks

Towards improving the prediction of node-wise SDs, we incorporated the pre-
training transfer learning technique by initializing the model with pre-trained
weights obtained from training on different pretext tasks. This approach allows
leveraging the knowledge and representations learned during the pretext task to
tackle the mainstream tasks [21].

We considered the following three pretext tasks: our custom 1) Vertex Normal
Prediction (VertNormPred), 2) μCT volume Reconstruction (ReconCT), and 3)
Masked μCT volume Reconstruction (MaskReconCT) tasks. In the VertNorm-
Pred task, we train the CNN model shown in Fig. 3(a) to predict the node-
wise vertex normal Xvn given the 5 × 5 × 5 μCT subvolume centred around
a node. While generating the dataset using the marching cubes algorithm, we
also obtained the ground truth node-wise vertex normals for each mesh. This
task enabled the model to capture geometric relationships and surface orienta-
tions. Since neighboring nodes and their orientations influence node-wise SDs [5],
understanding surface properties through vertex normal prediction significantly
improved the accuracy of the SDs predictions.

In the ReconCT task, we train an encoder-decoder network illustrated in
Fig. 3(b) to reconstruct 5 × 5 × 5 μCT subvolumes. This task allowed the CNN
encoder to extract essential features from the node-wise μCT data.

In the MaskReconCT [8] task, we focus on reconstructing pixel-wise randomly
masked 5 × 5 × 5 μCT subvolumes using an encoder-decoder network shown in
Fig. 3(b). We train the model to infer missing regions in the data. By learning

Fig. 3. a) Vertex Normal Prediction (VertNormPred) network predicts the node-wise
vertex normals given the 5 × 5 × 5 µCT subvolume centred at each node. b) (i) CT
volume Reconstruction (ReconCT) network and (ii) Masked CT volume Reconstruction
(MaskReconCT) network reconstructs the 5 × 5 × 5 µCT subvolume given µCT or
pixel-wise randomly masked µCT subvolume centred at each node, respectively.
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to fill these gaps, the model becomes more adept at estimating SDs, especially
when parts of the μCT are incomplete.

We initialized the CNN encoder of our model with the pre-trained weights
obtained from the CNN encoder of the models shown in Fig. 3 from these pretext
tasks to facilitate node-feature extraction. The pretext tasks: VertNormPred,
ReconCT, and MaskReconCT, improved the model in capturing the μCT bony
labyrinth structure for the mainstream task of prediction/classification of node-
wise SD.

3 Dataset Description

We use the publicly available OpenAIRE’s human bony labyrinth dataset [19]
to evaluate the method. The dataset consists of clinical Computed Tomography
(CT) volumes, co-registered high-resolution micro-CT (μCT) volumes, segmen-
tation maps, and surface models of 23 human bony labyrinths. We used 22 spec-
imens of μCT volumes of 0.06 mm isotropic voxel size and their corresponding
segmentation maps.

3.1 Generation of Training Data

We generate the perturbed segmentation maps by perturbing the SDT by addi-
tion of noise of the true segmentation map 100 times, ensuring the Hausdorff
distances of the perturbed segmentation maps are in the range of (7–65). Figure 4
illustrates the simulation of a perturbed segmentation map obtained from a per-
turbed SDT.

(a) (b) (c) (d)

Fig. 4. One of the slices of (a) true segmentation map, (b) distance transform, (c)
perturbed distance transform after addition of noise to distance transform and (d)
perturbed segmentation map obtained from the perturbed distance transform (c).

We use the marching cubes algorithm to obtain the triangular mesh manifolds
of the perturbed segmentation maps. The complex geometry of the human bony
labyrinth led to generating a mesh with numerous triangles, resulting in a graph
with nodes in the order of 105. We use Taubin smoothing [16] and quadratic error
decimation techniques to smoothen the mesh. We consider the mesh vertices as
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nodes (V ) of the graph and the sides of the triangular faces of the mesh as edges
(E). The simulation of true and deformed mesh is shown in Fig. 1.

To calculate the node-wise SD, we perform bi-linear interpolation between
the nodes of the perturbed mesh and the voxels of the ground truth SDT. Note
that the generated node-wise errors correspond to the node-wise SDs of the true
segmentation. For classification, we split these node-wise SDs into five classes
ranging from −0.16 mm to +0.16 mm.

4 Experiments and Results

Towards fine-grained prediction of node-wise SDs, we trained and evaluated our
model for regression of node-wise SDs. To also identify the errors in different
ranges, we trained and evaluated our model for classification to classify the
predicted node-wise SDs into different classes.

For all the experiments, we considered the perturbations tied to the 14 vol-
umes in the training set, while maintaining a similar procedure, 2 volumes are

(b)

-0.1mm to 0.1mm

0.1mm to 0.16mm
>0.16mm

<-0.16mm

-0.16mm to -0.1mm

(a)

Fig. 5. Visualization of the true, perturbed meshes, and the node-wise SD classes. (a)
At the top, the true mesh (in blue) is overlaid with the perturbed mesh (in green). At
the bottom, the perturbed mesh (in green) is overlaid with the true mesh (in blue).
The overlapping region between the true and perturbed meshes reveals where internal
and external segmentation errors occur. (b) The node-wise SDs in the perturbed mesh
are distributed into five classes indicated by colours varying from red to blue, and the
class ranges are shown above. (Color figure online)
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Table 1. Comparison of Nodeformer with different pre-trained weights against other
models for regression of node-wise SDs.

GNN Pretraining MAE ↓ MSE ↓
Spline ReconCT 0.06994 0.00986

GAT – 0.06946 0.00913

GAT VertNormPred 0.0694 0.00968

Spline MaskReconCT 0.06783 0.00802

GAT ReconCT 0.06755 0.00884

GAT MaskReconCT 0.06705 0.00903

Spline – 0.06032 0.00762

Spline VertNormPred 0.05728 0.00757

Nodeformer – 0.04536 0.00475

Nodeformer MaskReconCT 0.04397 0.00451

Nodeformer ReconCT 0.04254 0.00444

Nodeformer VertNormPred 0.04182 0.00429

designated for the validation set, and 6 volumes are allocated for the testing
set. So, with these perturbations, we got 1400 examples for training, 200 for
validation, and 600 for the test set.

We have quantitatively and qualitatively evaluated our model against Spline
Conv [7] and GAT [17] based GNN models for regression and classification of
node-wise SDs. We have also evaluated the models using pre-trained weights
from the three pretext tasks. We also performed ablation studies to understand
the contribution of each block in our proposed model.

4.1 Implementation Details

We train the network in Fig. 3(a) for the VertNormPred task, where we min-
imize the Cosine Similarity loss between the predicted and ground truth
node-wise vertex normals. We train the network in Fig. 3(b) for ReconCT and
MaskReconCT tasks, where we minimize the L1 loss between the generated and
original 5 × 5 × 5 μCT node-wise subvolumes.

For regression of node-wise SDs, we train the models to minimize the Smooth
L1 loss between the predicted node-wise SDs and the node-wise SDs obtained
using interpolation (GT SDs). We used the Mean Absolute Error (MAE) and
Mean Square Error (MSE) metrics to quantify the performance of the models
trained for regression. For the classification of node-wise SDs, we train the models
to minimize the Cross Entropy loss between the predicted and GT SD classes.
We used the F1 score, Precision, Recall, and Accuracy metrics to quantify the
performance of the models trained for classification. We trained all the networks
for 100 epochs, using a learning rate of 1e−3 and a cosine annealing scheduler
with a weight decay of 1e−3. Both the regression and classification models utilized
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the AdamW optimizer, while the pre-training networks employed the Adadelta
optimizer. Models are implemented using PyTorch and PyG [6], and the training
process was carried out in a workstation using an i5-1035G4 CPU and NVIDIA
24 GB RTX 3090 GPU.

4.2 Results and Discussion

In Table 1, it can be observed that our model built upon Nodeformer can predict
node-wise SDs efficiently, and additionally, using pre-trained weights improved
the prediction. Among the evaluated models, our model with a CNN encoder
initialized with VertNormPred pre-trained weights yielded the lowest MAE score
of 0.04182. This signifies a substantial improvement of ∼30.6% compared to
Spline Conv GNN without any pre-trained weights.

Table 2. Comparison of Nodeformer with different pre-trained weights against other
models for classification of node-wise SD classes.

GNN Pretraining f1 Score ↑ Precision ↑ Recall ↑ Accuracy (%) ↑
Spline MaskReconCT 0.4872 0.5445 0.5124 66.3

GAT VertNormPred 0.5186 0.605 0.5398 69.03

GAT MaskReconCT 0.5024 0.5649 0.5425 71.22

Spline VertNormPred 0.5367 0.612 0.5487 71.76

GAT ReconCT 0.5746 0.6289 0.5927 72.17

Spline ReconCT 0.5871 0.6136 0.614 72.28

GAT – 0.5623 0.6487 0.567 72.4

Spline – 0.5582 0.6181 0.5779 71.53

Nodeformer MaskReconCT 0.5986 0.6693 0.589 74.55

Nodeformer ReconCT 0.6695 0.72 0.7131 76.57

Nodeformer – 0.6899 0.7343 0.6693 78.82

Nodeformer VertNormPred 0.6943 0.7384 0.6835 79.53

In Table 2, our model, initialized with pre-trained encoder weights of the Vert-
NormPred task, gave an overall accuracy of 79.53%. This signifies a substantial
improvement of ∼8% in accuracy compared to the Spline Conv GNN without
any pre-training task, indicating a significant improvement in the model’s ability
to identify different ranges of segmentation errors.

Tables 1 and 2 show that our model has benefited from using the pre-trained
weights of the VertNormPred task, indicating that the prediction of the node-
wise vertex normals during pre-training has helped the encoder of our model
in capturing the intricate surface orientations and geometric inter-node rela-
tionships in the bony labyrinth structure. This has helped further improve the
prediction of node-wise SDs.

From Fig. 6, it is evident that our model, using Nodeformer, outperforms
the other models in the classification of node-wise SDs. Our model qualitatively
exhibits improved classification of node-wise SD classes, with significantly fewer
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(a) (b) (c) (d)

(a) (b) (c) (d)
(i) (ii)

Fig. 6. Visual illustration of the classification of node-wise SDs by all the models.
(i) The actual node-wise SD classes in the perturbed mesh. (ii) Two distinct regions
within the graph to showcase the predicted node classes compared to the ground truth
node classes. The first and second rows show the zoomed-in regions in the pink and
yellow boxes in the perturbed mesh (i). (a) GT perturbed node-wise SD classes, (b)–
(d) predicted node-wise SD classes by Spline Conv, GAT, and our model, respectively.
The black-coloured nodes denote incorrect predictions. The yellow boxes in (ii) (a)–(d)
show how well our model can classify the node-wise SD classes with respect to the GT
node-wise SD classes with the least number of black nodes. (Color figure online)

black-colored nodes representing incorrect predictions than those obtained using
Spline Conv and GAT models. This highlights our model’s superior performance
and effectiveness in accurately classifying the node classes in the given graph.

In our experiments, we observed that incorporating pre-trained weights from
the pretext tasks positively impacted the performance of the models in the regres-
sion of node-wise SDs. However, using pre-trained weights for the classification
task did not result in much significant improvement.

4.3 Ablation Study

To evaluate the extent to which Nodeformer effectively learns meaningful infor-
mation from the geometric structure of the segmentation, we performed an abla-
tion study for the classification task that involved removing the GNN component
entirely and directly passing on the node-wise representations from the encoder
to the MLP decoder. Also, to evaluate the importance of node feature extraction
using the CNN encoder and pre-trained weights, we experimented by passing the
μCT subvolumes through a linear layer as node feature representations to the
Nodeformer instead of passing them through the CNN encoder.

Figure 8 demonstrates the significance of incorporating geometrical struc-
ture learning using Nodeformer and the CNN encoder to extract node features
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(c) (d)

(a) (b)

Fig. 7. Confusion Matrices of (a) CNN-MLP: Node features from the CNN encoder
are directly given to the MLP for classification, (b) GNN-MLP: Node feature vectors
are obtained from a linear layer instead of the CNN encoder are passed on to the
Nodeformer and MLP for classification, (c) our complete model, and (d) our model
with the CNN encoder initialized with the VertNormPred pre-trained weights. Labels
A: (< − 0.16 mm), B: (−0.16 mm to −0.1 mm), C: (−0.1 mm to 0.1 mm), D: (0.1 mm
to 0.16 mm), E: (>0.16 mm).

in identifying segmentation errors by comparing their performance in classifica-
tion. Upon removing Nodeformer from our model (CNN-MLP), the classification
performance for error identification is notably poor. This emphasizes the impor-
tance of Nodeformer in capturing the geometrical information required for error
analysis.
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Fig. 8. Comparison of Classification Scores between the different blocks of our model,
described in Sect. 4.3. The plot provides a visual representation of the distribution and
relative performance of the models based on their classification scores.

Furthermore, using a linear layer to extract node features from μCT subvol-
umes instead of the CNN encoder also resulted in poor performance, as shown
in Fig. 8. This highlights the importance of Conv layers in effectively capturing
the node-centred μCT information necessary for accurate error classification.

Regarding using pre-trained weights, our model with the CNN encoder ini-
tialized with pre-trained weights from the VertNormPred task gave the best
classification performance regarding accuracy, precision, recall, and F1 score, as
shown in Figs. 7 and 8.

By comparing Fig. 7(a) and Figs. 7(b)–(d), it can be observed that remov-
ing the GNN component (Nodeformer) led to a notable decrease in the model’s
performance in classifying errors in different ranges. Specifically, it fails to iden-
tify internal errors (recall score of 7.6%). Figure 7(b) shows that the Linear-
Nodeformer-MLP (GNN-MLP) model can identify internal and external errors
but fail to identify the intermediate ones. From Fig. 7(c) and (d), it is clear
that the models using Nodeformer for geometrical structure learning with a
CNN encoder for node feature extraction were capable of identifying errors in
all ranges and using pre-trained weights reduced misclassification in some classes
and significantly improved the recall score.

5 Conclusion

Our work introduced a Nodeformer-based graph learning network as a Qual-
ity Assurance (QA) tool to evaluate errors in the automatic segmentation of
medical images. To our knowledge, this is the first work that addresses segmen-
tation errors in the 3D data of the human inner-ear bony labyrinth structure.
The complexity of the inner-ear human bony labyrinth structure gave rise to
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graphs with nodes in the order of 105. Our network, built upon Nodeformer, can
scale up to millions of nodes and easily handle human inner-ear bony labyrinth
graphs. To boost the performance of our network, we also proposed a custom
Vertex Normal Prediction pretext task for pre-training the CNN encoder of our
network. We have evaluated our network against other GNN models with pre-
trained weights from different pretext tasks for regression and classification of
node-wise segmentation errors. We have qualitatively shown how well our model
can correctly classify segmentation errors and reduce misclassifications. We have
also conducted an ablation study to show the strengths of individual modules of
our network, along with loading the pre-trained weights from the Vertex Normal
Prediction pretext task, for classification. This study motivates further research
into developing and advancing QA techniques and tools for measuring, classify-
ing, and correcting segmentation errors.
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Abstract. Thyroid disorders are most commonly diagnosed using high-
resolution Ultrasound (US). Longitudinal nodule tracking is a pivotal
diagnostic protocol for monitoring changes in pathological thyroid mor-
phology. This task, however, imposes a substantial cognitive load on clin-
icians due to the inherent challenge of maintaining a mental 3D recon-
struction of the organ. We thus present a framework for automated US
image slice localization within a 3D shape representation to ease how
such sonographic diagnoses are carried out. Our proposed method learns
a common latent embedding space between US image patches and the
3D surface of an individual’s thyroid shape, or a statistical aggregation
in the form of a statistical shape model (SSM), via contrastive metric
learning. Using cross-modality registration and Procrustes analysis, we
leverage features from our model to register US slices to a 3D mesh rep-
resentation of the thyroid shape. We demonstrate that our multi-modal
registration framework can localize images on the 3D surface topology
of a patient-specific organ and the mean shape of an SSM. Experimen-
tal results indicate slice positions can be predicted within an average
of 1.2 mm of the ground-truth slice location on the patient-specific 3D
anatomy and 4.6 mm on the SSM, exemplifying its usefulness for slice
localization during sonographic acquisitions. Code is publically available:
https://github.com/vuenc/slice-to-shape.

Keywords: Ultrasound · Multi-modal Registration · Statistical Shape
Models

1 Introduction

High-resolution Ultrasound (US) has detected the presence of thyroid nodules
in up to 69% of scans in randomly selected individuals [18]. While only 7–15%
of cases develop into malignant tumors, periodic screening is an essential pro-
phylactic measure in the early diagnosis and treatment of a debilitating disease.
B-mode US has been identified as the primary tool for diagnosing malignant
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Fig. 1. We propose the task of slice-to-shape registration. Our method successfully
localizes ultrasound images to 3D thyroid shapes from the same individual (a) and the
mean of a statistical shape model (b). The ground truth image plane is depicted in
green, and the prediction in yellow. (Color figure online)

thyroid nodules for its ease of use, lack of harmful ionizing radiation [2], and
exceptional soft-tissue resolution [8]. A rise in the prevalence of thyroid can-
cer over the past decades has been mainly attributed to an increase in early
detection with the help of more frequent US screenings [18]. However, US is
highly operator-dependent and requires significant training to generate clear
and accurate images. Furthermore, US images are abundant with noise and
artifacts induced by physical properties such as phase aberrations and attenua-
tion, which can introduce uncertainty and yield inconsistent diagnoses in thyroid
nodule classification [8] and thyroid volume [22] estimation. Methods that could
improve thyroid scanning and US image quality are therefore highly sought after
to increase early detection rates of thyroid cancer worldwide.

Observing a thyroid nodule’s evolution is a critical diagnostic protocol [8].
To understand how a nodule changes over time and if it is potentially developing
into a malignant tumor, clinicians meticulously match the thyroid morphology
to a previous US acquisition. Such a procedure requires significant dexterity,
elaborate training, and a cognitive 3D reconstruction while simultaneously con-
ducting a complex medical evaluation. Providing automated support for this
procedure could not only alleviate the cognitive burden on clinicians but also
reduce costs by enabling less experienced individuals to conduct these scans
semi-autonomously. Furthermore, this technological aid could extend potentially
life-saving diagnoses to remote communities that lack specialized medical exper-
tise [6,26,34]. A fundamental challenge in automating such a procedure is intra-
organ localization.

To address this problem generally, we therefore propose a framework for
slice-to-shape registration. Existing 2D–3D registration methods in the medical
domain either register image slices to individual 3D volumes [24,30] or aggre-
gated volumes in the form of a medical atlas [33]. While image-atlas-based meth-
ods have been demonstrated effective for navigational support, deformable image
registration is ill-conditioned and difficult to regularize [13]. Furthermore, reg-
istration inaccuracies can yield unrepresentative voxel intensities in the atlas,
adversely affecting downstream slice-to-atlas registration. We propose the task
of slice-to-shape registration, by registering US slices to a 3D shape representa-
tion either directly obtained from an individual’s organ segmentation contour,
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or aggregated shapes in the form of a statistical shape model (SSM) for a more
general localization approach which does not require pre-operative acquisitions.

The medical imaging literature has not explored the registration of medi-
cal images to 3D organ shapes, particularly for statistical point distributions
(see Fig. 1). We thus propose a self-supervised metric learning pipeline to enable
matching and registration across US images and a 3D mesh representation of
an organ. We leverage unsupervised correspondence estimation to generate a
point distribution model (PDM) [4] and use these correspondences to map image
patches to a corresponding location on SSM shapes during training. Patch fea-
tures are extracted using separate deep neural networks, and their cross-modal
representations are used to localize a US query slice inside the SSM. Despite
having limited supervision and learning on a geometric surface representation,
our pipeline for partial thyroid registration successfully localizes US slices from
unseen subjects in an SSM.

Our main contributions can be summarized as follows:

– We propose the task of slice-to-shape registration in medical imaging for 3D
organ shapes and SSMs.

– Our slice-to-shape correspondence pipeline enables registration of ultrasound
slices to 3D thyroid shapes through multi-modal contrastive metric learning.

– We evaluate the capabilities of our model for US slice localization on patient-
specific 3D thyroid meshes and SSMs, demonstrating for the first time that
2D US images can be localized within a geometric statistical distribution
without prior patient-specific acquisitions.

2 Related Work

2.1 SSMs and Image Atlases in Medical Imaging

Statistical Shape Models (SSMs) and Image Atlases have distinct yet intercon-
nected roles in medical imaging. Since the early 1990s, SSMs have been widely
employed for their efficient encapsulation of shape variations and usefulness in
enhancing the robustness of segmentation techniques [19]. Both methodologies
have found utility in diverse applications such as segmentation [27], registra-
tion [5,10], shape classification [16,23], and image augmentation [31,32]. More
recently, SSMs have been used as priors to improve the robustness of medical
image segmentation in deep neural networks [27], enhance myocardial motion
tracking [21], and facilitate the segmentation of the prostate in trans-rectal
ultrasound [28]. In these applications, SSMs typically need to be deformably
registered with an organ instance in the image space [27]. However, SSMs have
also been employed in a broader context of registration tasks, such as in percu-
taneous ultrasound [7], as a regularization tool in radiation planning [5], or in
the correction of cardiac slices [3].

Medical image atlases provide an integrated representation of shape and
appearance, offering additional features beneficial for registration. However,
building and utilizing an image atlas can be computationally intensive, and the
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quality heavily depends on accurate image registration, which can incur signif-
icant manual labor [13]. Automated methods for deformable registration have
been extensively explored [13]. However, less-than-perfect registration results can
yield voxels that are not representative of any actual human anatomy, adversely
affecting downstream applications. This work focuses on SSMs in the form of
point distribution models (PDMs) obtained through unsupervised correspon-
dence estimation [4], which are preferred in some applications as a generalizable
and lightweight statistical organ representation [1].

2.2 Multi-modal Registration

Multi-modal registration has been established as a cornerstone for surgical nav-
igation as well as pre-operative and general acquisition planning [20]. Several
data modalities have been proposed for navigational support, including multi-
template medical atlases [17], or using MRI for US acquisition planning [20].
Deep-learning-based methods have recently proven useful for multi-modal regis-
tration due to their robustness to initialization and accuracy [24]. Markova et al.
propose to learn dense features from MRI and US modalities, which are combined
in a matching module using a confidence threshold and processed with RANSAC
to retrieve the pose. Alternatively, learning modality-invariant features can be
achieved by sampling triplets and driving together similar latent descriptions of
two deep neural networks through a contrastive or triplet loss [11].

While multi-modal slice-to-volume registration is of high interest to the med-
ical community [12,24], the registration of image slices to statistical shape rep-
resentations has not been explored extensively. Ghanavati et al. first proposed
registering US slices to an image atlas generated by deformable registration of
CT images [14,15]. More recently, Yeung et al. proposed localizing slices within
an atlas of the fetal brain [33]. In contrast to these methods, we propose to
localize slices within a PDM. This incurs significant challenges, as PDMs lack
image intensity features and, unlike image atlases, only contain sparse and noisy
surface samples. The localization of slices to a PDM could overcome the deficits
image atlases suffer due to registration inaccuracies, as surface correspondence
estimation is generally less ill-posed than the deformable registration of dense
volumes. Unlike previous works, we therefore propose the task of slice-to-shape
registration. We use a triplet-learning loss to construct a common cross-domain
embedding space between US images and organ contours, enabling image local-
ization with respect to a 3D statistical geometry.

3 Method

In the following, we propose a deep learning framework to register a US image
slice to a 3D shape of the same organ. We first leverage self-supervised contrastive
learning to learn a common latent feature space between patches extracted from
compounded 3D US data and patches representing local portions of the 3D organ
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surface. We then sample patches from both modalities during inference, estab-
lishing an optimal matching via distance in the latent space. The slice location
can then be approximated based on these matches through several iterations of
a refinement algorithm, eliminating false-positive matches and narrowing down
the region on the surface where the slice is likely located.

We use a discretized signed distance field (SDF) to represent the 3D thyroid
surface. The SDF is constructed from one of three possible sources, depending
on the task:

– a patient-specific mesh created from the 3D ultrasound segmentation labels
(registering a US slice to the 3D SDF of the same patient)

– the SSM’s mean shape
– a shape sampled from the SSM distribution

For the SSM, we construct a point distribution model (PDM) to use as a
registration target for US patch features. Points are first brought into corre-
spondence using S3M [4] to form a matrix X ∈ Rn×d, with d point coordinates
for each of the n samples. One can then form the mean shape X̄ ∈ Rd and
covariance matrix S ∈ Rd×d over the n samples. Since S has rank n − 1, the
matrix has n − 1 eigenvectors vj with eigenvalues λj . Considering the sum

s = X̄ +
n−1∑

j=1

αjλjvj , αj ∼ N (0, 1) (1)

then s ∼ N (
X̄, S

)
, which describes the desired distribution of the SSM. Next,

we use the correspondences X to register the US scan with the SDF voxel grid.
We proceed by learning a joint embedding space between the compounded

US images and the SDF for each of the three tasks. During inference, an unseen
US scan can be localized within the learned embedding space of the SDF by
comparing patches in the embedding space of both networks. For inference, we
use axis-aligned slices extracted from the compounded volume instead of raw B-
mode US slices and make the simplifying assumption that slices have a certain
thickness in the longitudinal (z-axis) direction. Figure 2 depicts the proposed
method.

3.1 Encoder Training

Two 3D CNN encoders [9] are used to encode cube-shaped patches from each
modality into a common embedding space. These are trained with a weighted
soft-margin triplet loss [11] to ensure that geometrically corresponding patches
are mapped to similar regions in the embedding space. Our triplets consist of
anchor patches sampled from the US data and corresponding positive/negative
patches sampled from the SDF grid. All patches are sampled near the thyroid
surface. Anchor patches from the US data and positive/negative patches from
the SDF are then fed into the two respective encoders. Given the embeddings
e0 of a US anchor patch and e+, e− of the corresponding positive/negative SDF
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Fig. 2. Our framework for US localization within a PDM. The input comprises US data
and a 3D shape model (a). Anchor, positive, and negative patches are sampled from US
and SDF modalities (b), after which we learn a joint embedding across modalities with
a triplet loss (c). During inference, sampled patches are encoded and matched based
on their similarity in the embedding space (d). We employ Kernel Density Estimation
(KDE) and an iterative refinement to localize the position of a candidate slice on the
3D shape model (e).

patches, respectively, as well as a hyperparameter α, the weighted soft-margin
loss is

L(e0, e+, e−) = log(1 + exp(α (||e0 − e+|| − ||e0 − e−||))) (2)

To generate an approximately uniform distribution of samples across the organ’s
surface, we first use farthest point sampling [25] on the vertices of the scan-
specific segmentation label mesh (whose coordinates agree with the US image
space). A positive SDF patch is then defined as being in the same position as the
US anchor patch: For the SSM samples, this requires transferring the coordinates
to the semantically corresponding location in the SDF grid, which we achieve by
using the learned point-to-point correspondences of S3M [4]. For each positive
sample, a negative SDF patch is sampled uniformly from the SDF mesh vertices
among a percentile (e.g., 50%) of vertices furthest away from the positive patch
center.

3.2 Slice Localization

During inference, we proceed by regressing a US image slice based on simi-
lar patches across the two embedding spaces. We first sample patch centers
from the two modalities to localize a US image in the SDF representation. SDF
patches are sampled via farthest point sampling of the mesh vertices. We sample
patches from the US slice near the thyroid surface using the available ground-
truth segmentation labels. In practice, these could be obtained by a real-time
segmentation network as in [22].

Next, patches are fed through the respective encoders to obtain patch embed-
dings, to which we apply the Hungarian matching algorithm using the Euclidean
distance to establish cross-modality matches between similar patches in the
embedding space. From these matches, we then estimate the slice location using
the Procrustes algorithm [29].
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To reduce the impact of false-positive matches, we run an iterative search,
narrowing down the search space based on the matches of the previous iteration.
To this end, we employ a kernel density estimation along the longitudinal axis
of the thyroid, and several local maxima are taken as candidate locations. For
each candidate location, the cross-modality matching algorithm is repeated using
SDF patches only sampled around this neighborhood, and a slice candidate is
generated via the Procrustes algorithm. The final prediction is the candidate
slice with the lowest Procrustes loss.

In detail, the iterative algorithm works as follows: the coordinates of the
SDF patches identified as matches are projected to the longitudinal axis (z axis
in our coordinate system), and a kernel density estimation (KDE) that fits a
Gaussian mixture density to the projected coordinates is computed. The mKDE

largest local maxima of the density are found and taken as candidate locations.
For each candidate z-coordinate zj , a restricted mesh is computed that only
contains vertices with a z coordinate in the range [zj ± wrestr]. This restricted
mesh is used to sample SDF patches near the mesh surface for this candidate in
the next iteration. The process is repeated until mstep restriction steps have been
performed. The slice transformation with the lowest Procrustes loss is output
as the algorithm’s prediction. The hyperparameters mKDE, wrestr and mstep as
well as the number of sampled SDF and US patches, are tuned on a subset of
the data.

In the above, we restrict ourselves to slices parallel to the axial image plane,
a restriction imposed by the kernel density estimation algorithm we require for
outlier elimination. However, this is the same direction in which the thyroid
is typically scanned during diagnosis and should, therefore, not be limiting in
practice.

4 Experiments

Thyroid Dataset. We evaluate our method on a publically available dataset
of freehand US scans of healthy thyroids acquired from volunteers aged
24–39 years [22]. Each US sweep is compounded to a 3D resolution of
0.12× 0.12× 0.12 mm. We use the right thyroid lobes of a subset of 16 patients
for which ground truth segmentation maps are available. Although the US slices
were labeled under the supervision of radiologists, the segmentation boundaries
contain significant noise, making the correspondence and matching tasks chal-
lenging. Figure 1 (a) depicts various right thyroid lobes from the patient dataset.
The thyroid dataset has high variance in the segmentation contours of a given
sample and in the overall anatomical size and morphology between samples [22].

4.1 Multi-modal Registration

We evaluate the proposed multi-modal registration method by matching US
slices to three types of 3D surface representations (c.f. Fig. 1): patient-specific
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3D labels, the mean shape of an SSM, and shapes sampled from an SSM, as
described in Sect. 3.

All experiments in this section are carried out with a 4-fold cross-validation
over the 16 samples. The slice localization accuracy is also tested with two input
voxel patch sizes at the 0.12 mm compounding resolution: (32, 32, 32) and (64,
64, 8). The first two dimensions correspond to the x-y axes of the axial plane,
while the longitudinal axis (z coordinate) projects into the axial image plane. The
longitudinal axis is the direction along which all US sweeps are acquired. The
patches protrude 3.84 mm and 0.96 mm into the longitudinal axis, respectively.

The following experiments are conducted to evaluate the proposed method.
For US image to patient-SDF registration, we learn to match US slices to the 3D
SDF representation of the same US acquisition. We also ablate over two training
strategies to train an encoder that enables matching from the US slices to the
shape model. We train the 3D SDF encoder with patches from the mean shape
or shapes sampled from the SSM, with αj ∼ N (0, 0.5) according to Eq. 1. The
latter strategy could be considered a form of data augmentation.

To evaluate the generalization capability of our model to the slice matching
task, we generate 50 slices evenly spaced along the longitudinal axis (parallel
to the axial image plane) for each validation thyroid lobe. The models trained
to match US image patches to SSM samples are all evaluated for their slice
prediction capabilities on the mean shape. We report the following metrics for the
proposed matching method: the translational error and absolute rotational error
between the predicted and ground truth slice and the percentage of predictions
with translational error less than 10% and 15% of the longitudinal-axis length
of the mean thyroid lobe. The mean shapes generated from the train set of each
cross-validation fold have a length of 39.5 ± 0.655 mm.

5 Results and Discussion

Multi-modal Registration. Table 1 depicts the results of our multi-modal reg-
istration model. The model can accurately register US slices to the 3D SDF con-
tours from the same patient anatomy for both input embedding patch sizes. The
accuracy obtained for this registration is as low as 1.21± 0.08 mm translational
error and 2.27◦ rotational error, with 96.47% of slices predicted within 10% of
the thyroid lobe length for the (64, 64, 8) patch shape. These results demonstrate
that it is possible to match US acquisition slices to a patient-specific topological
thyroid representation with an accuracy sufficient for acquisition and surgical
planning [8].

The best overall slice matching performance on registration to the mean
shape is achieved with a patch shape of (32, 32, 32), yielding an average transla-
tional error of 4.60 mm and a rotational error of 2.39◦, with 75.59% of predicted
slices located within 15% of the ground truth slice, and 51.16% within 10%.

Both of these slice-matching methods have noteworthy practical ramifications
in a clinical setting. For example, if a nodule detected in a patient’s thyroid is
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Table 1. Results for the US slice registration to either an SDF representation of
the patient anatomy or the mean shape from our SSM for two encoder patch sizes.
We evaluate the translational (mm) and rotational error (in absolute degrees) of the
predicted slice to the ground truth US slice and the percentage of slices within 10%
and 15% distance along the z-axis of the mean shape in mm. For all experiments, the
registration target is either the SDF of an individual patient (Patient SDF) or the
mean shape of an SSM (Mean Shape). During training, we ablate over learning to
match features to a Patient SDF, Mean Shape, or SSM samples with α ∼ N(0, 0.5)
(see Sect. 3).

Patch

Dimension

Train

Source/Reg.

Target

Trans. error

(mm)

Rot. error (◦) 10% thresh 15% thresh

(32, 32, 32) Patient SDF 1.82 ± 0.10 2.32 ± 0.15 90.97% ± 1.02 95.71% ± 0.77

Mean Shape 4.60 ± 0.42 2.39 ± 0.25 51.16% ± 7.28 75.59% ± 4.27

SSM/Mean

Shape

5.08 ± 0.40 2.64 ± 0.48 42.38% ± 9.70 68.75% ± 6.13

(64, 64, 8) SDF Patient 1.21 ± 0.08 2.27 ± 0.08 96.47% ± 0.46 98.75% ± 0.49

Mean Shape 4.95 ± 0.41 3.90 ± 1.52 44.38% ± 10.33 71.50% ± 3.51

SSM/Mean

Shape

5.38 ± 0.54 4.12 ± 1.05 40.38% ± 9.04 68.38% ± 5.91

suspected to be malignant, the patient will be recommended for biopsy or follow-
up screenings. Furthermore, our methodology generalizes to the more general
mean shape representation, albeit with lower registration accuracy. Localizing
US slices in this manner could enable acquisition planning with respect to an
SSM without additional patient-specific acquisitions. SSMs can be easily shared
and deployed in acquisition systems. They can be represented compactly and do
not contain possibly identifying information. This could ease the accessibility of
such a system for clinics that do not have the resources to curate large medical
atlases.

5.1 Limitations and Future Work

To sample image patches corresponding to the SDF’s surface, our method
requires a segmentation contour of the thyroid lobe during training and infer-
ence. In future work, this could be mitigated during inference by learning to
segregate features on the boundary of the organ from other parts of the image
during training. Furthermore, our US slice to SSM matching considers only the
mean shape and samples from the distribution during inference. Using samples
from the SSM as data augmentation proves inferior to matching directly to the
PDM mean shape. However, future works could explore learning to encode the
entire SSM distribution for patch correspondence and general slice localization,
as this could increase localization accuracy.
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6 Conclusion

This work presents an automated method for US slice localization to aid in
surgical and acquisition planning. By formulating the localization problem as
a 2D-to-3D registration to a 3D SDF, the proposed method localizes 2D US
slices within two different geometric representations of the patient’s anatomy.
We demonstrate that our unsupervised correspondence method is robust to the
heterogenous and noisy thyroid topology across a set of individuals. Furthermore,
we propose a pipeline that enables registration of a US slice to not only the sur-
face of the patient anatomy but also a more general statistical representation
across a population. Consistent localization of 2D US slices without a previ-
ous acquisition could enable several applications, including improved automated
robotic scanning, sonographic acquisition planning, or guidance for hands-on US
or anatomical training. Perhaps a glimpse into the complex thyroid anatomy in
the form of a single US image can yield more insight than previously realized.
We are confident this work will advance research in automated thyroid scanning
and diagnosis, which has the potential to improve the quality of life of millions
suffering from thyroid disorders worldwide.
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Abstract. Morphological changes in the glomerulus play a vital role in
the diagnosis of kidney diseases. However, the detection of the glomerulus
in the actual medical situation is challenging due to various factors such
as lesions, tissue changes, and staining. These factors raise problems like
high foreground-background similarity, blurred contours, and irregular
shapes, thus pose difficulties for both physicians and Automatic com-
puter detection. To address these challenges, we propose a foreground-
aware feature extraction method, which is used to fully extract fore-
ground information. Furthermore, we design the Foreground and Shape
Joint Perception Network (FSJP-Net), a detection network that inte-
grates object foreground information and shapes information, which
improves the recall and precision of glomerular detection by fusing the
extracted foreground and elliptical shape information from different fea-
ture extraction branches. The experiments demonstrate the effectiveness
and superiority of our proposed method in detecting various categories
of glomeruli.

Keywords: Glomerulus detection · Feature fusion · Foreground
perception · Ellipse

1 Introduction

Observation of glomeruli is a fundamental basis for pathological diagnosis of
kidney disease. The morphology, size, structure of the glomerulus exhibit dis-
tinctive characteristics among different types of kidney diseases [1]. Particularly,
The elliptical shape of the glomerulus, a prominent characteristic of the glomeru-
lus, can be altered due to glomerular lesions [2]. For instance, the alterations in
the glomerular flatness or the long-to-short axis ratio can indicate glomerular
injury or inflammation, whereas diabetic nephropathy may exhibit glomerular
deformation or flattening [3]. Therefore, analyzing the elliptical shape of the
glomerulus not only enables physicians to discern the type and extent of the
lesion, but also facilitate precise diagnosis. Thus, it is a meaningful task to accu-
rately describe the elliptical characteristics of the glomerulus.
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With a considerable number of glomeruli that approximately 1 million to 1.5
million in the adult kidney [4], the number of observable glomeruli in a single
kidney section sample even can be a few hundred. Traditional glomerulus obser-
vation is based on a manual search and a microscope, which is time-consuming
and prone to errors [5]. The use of computer-assisted physicians for observa-
tion and diagnosis can greatly improve the efficiency of testing, enable accurate
diagnosis, and support treatment decisions. With the utilization of whole slide
scanners can form kidney section sample slides into high-resolution images of
kidney section samples, facilitating computer-based observations. However, effi-
cient automated glomerular detection methods are still required to effectively
observate and precisely analyse the glomerulus.

In recent works, morphological processing methods have been used for
glomerular detection. Kato et al. [6] proposed an improved HOG descriptor that
enables comprehensive detection of numerous glomeruli in whole kidney section
images. Simon et al. [7] employed the Local Binary Patterns (LBP) to extract
informative glomerular features, which were subsequently classified using Sup-
port Vector Machines (SVM). Ginley et al. [8] utilized Gabor filters to detect
the boundaries of the glomerulus. But these methods still have limitations of
over-reliance on graphic and pixel features of the images.

With the rapid development of deep learning and computer vision, research
efforts of glomerular pathology image have predominantly focused on the fol-
lowing areas. Refined contour segmentation of the glomerulus using segmenta-
tion networks, such as UNet [9], AlexNet [10]. The detection and localization of
glomerulus using anchor-based object detection networks, including CNN [11],
Faster-Rcnn [12], and Yolo [13]. The classification works of glomerulus using
methods such as ResNet [14], and GoogleNet [15]. Most of these existing meth-
ods are typically pre-trained on datasets consisting of non-medical images, so
they cannot fully account for the unique characteristics of medical images and
the specific detection environment of the glomerulus.

Yang et al. [16] have noted the contour shape of the glomerulus and tried
to detect glomeruli with a bonding circle. However, it should be noted that the
majority of glomerular contours in Whole-slide Images (WSIs) exhibit an ellip-
tical shape rather than a standard circle. Therefore, the simplistic use of stan-
dard circles to describe glomerular contour characteristics is clearly inadequate
in capturing the diverse nature of glomerular shapes. Furthermore, the current
study did not fully address the situation of a number of glomeruli with complex
morphologies, which are usually caused by lesions, biological tissue changes,
and staining variations. These complexities manifest as blurred edges, irregular
shapes, and significant similarities between foreground and background in actual
medical observations. Consequently, the automatic detection of glomerulus faces
significant challenges in accurately identifying such intricate structures.

To address the aforementioned questions, we propose a detection model
that fuses the foreground information and the elliptical contours information,
enabling the detection of both normal and complex morphology glomeruli.
For the issue of unclear glomerular contours and irregular shapes, a multi-
scale foreground-aware module is optimally designed to leverage foreground cue
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Fig. 1. Major challenges in glomerular detection. (a)(b) high similarity of foreground
and background. (c) irregular shapes. (d) blurred edges.

vectors for enhance the discrimination between foreground and background in
the feature map, thereby improving the accuracy of glomerular detection. Our
contributions can be summarized as follows:

1. We design a foreground-aware feature extraction module for complex mor-
phological glomerulus.

2. We propose FSJP-Net, a novel lightweight anchor-free detection network that
fuses object foreground information and contour shape information, effec-
tively integrating the advantages of different feature extraction branches to
improve the recall and precision of complex glomerular detection. Experimen-
tal results demonstrate its superiority over many commonly used glomerular
detection methods.

3. We propose to use ellipse as bounding ellipse for deep learning to automat-
ically detect and describe glomerulus, which reduces the arithmetic power
waste caused by accurate edge segmentation, but maximizes the restoration
of glomerular structural information and provides a good foundation for sub-
sequent quantitative pathological analysis.

2 Method

2.1 Overview of the Framework

The overview of our proposed FSJP-Net is shown in Fig. 2, which comprises two
distinct feature extraction branches, namely the foreground perception branch
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Fig. 2. Overview of FSJP-Net. (a) Foreground perception branch for extracting fore-
ground information. (b) Shape perception branch for extracting shape information. (c)
Multiscale fusion module for a fusion of different branch features. (d) Ellipse detection
module.

and the shape perception branch. Additionally, we incorporate a multiscale fea-
ture fusion module and an ellipse detection module. The pre-processed input
image is extracted from complementary feature information through the fore-
ground perception branch and shape perception branch. The obtained feature
maps from both branches are then through the multiscale fusion module to pro-
duce a novel feature map encompassing both foreground and shape information.
All modules, including the ellipse detection module, are jointly trained in an
end-to-end manner utilizing the anchor-free network [17].

2.2 Foreground Perception Branch

As shown in Fig. 1(c), it is observed that the contours of certain glomeruli
exhibit distortions that cannot be accurately approximated as ellipses. Moreover,
Fig. 1(d) depicts glomerulus with highly blurred contours, rendering them devoid
of any useful shape information. In order to tackle these challenges, relying on
a simple feature extraction method for glomerular images is evidently insuffi-
cient. Recognizing the presence of additional distinctive image features within
the glomerular contours, we propose a novel method that extracts the foreground
information of the glomerulus at multiple scales within the foreground percep-
tion branch, thus generating foreground cue vectors. In particular, when faced
with inadequate glomerular contour features, the foreground cue vectors are
weighted and embedded to enhance the final feature map with foreground cues.
This empowers the network to pay greater attention to potential foreground
regions, consequently improving the recall of glomerular detection.

As shown in Fig. 3, in order to generate a foreground-aware feature map that
contains foreground information. Following data pre-processing, an input image
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Fig. 3. Details of foreground perception branch.

of size H ×W is first encoded by a structure based on a feature pyramid network
(FPN) [18]. The encoding structure performs downsampling with sampling mul-
tiples of ×4, ×8, ×16, and ×32, resulting in a 4-layer pyramidal feature map.
To incorporate higher-level context, a top-down upsampling process is applied,
and the encoded feature map fi is obtained by merging the upper-level feature
map with the corresponding lateral connection. To introduce learnable matrix
parameters, a 1x1 convolution is applied to fi, as represented by Eq. 1.

f∗
i = θ (fi) , i = 1, 2, 3, 4 (1)

where θ (·) is an operation that includes 1 × 1 convolution, normalization, and
ReLU function. f∗ ∈ Rd×H×W denoted the learnable vector matrix of fi. A one-
dimensional foreground information vector ei is generated from the foreground
content through two 1 × 1 convolution operations. Both fi and ei encompass
relevant information, with fi containing background information regarding non-
glomerulus regions, and ei capturing the foreground information associated with
glomerulus.

The similarity of two vectors can be described as the magnitude of the scalar
value of the dot product, where a higher scalar value indicates a stronger resem-
blance or parallel trends. The calculation of the dot product of f∗

i and ei not only
generates a learnable similarity matrix but also weights the foreground informa-
tion according to the feature that the vector similarity increases with the scalar
value of the dot product, as shown in Eq. 2.

Pi = δ (f∗
i , ei) =

H∑

n

W∑

m

ei · f∗
i (n,m) , i = 1, 2, 3, 4 (2)

where δ (·) is the calculation of the dot product. Then ei is dotted with the
vectors in the f∗

i ∈ RH×W matrix respectively. This process yields the foreground
information weighted feature map Pi, which encapsulates relevant foreground
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information, as shown in Eq. 3.

F
(n)
i = F

(n−1)
i + T (δ (f∗

i , ei) , Pi) = F
(n−1)
i +

k (fi)
1 + e(−Pi)

, i = 1, 2, 3, 4 (3)

where T (·) is the foreground-weighted embedding formula containing the sig-
moid function. k (·) is the encoder with fi as a parameter [19]. The sigmoid
function introduces non-linear units to increase the feature representation of
embedded information. The final pyramidal feature map, denoted Fi, contains
valuable foreground information and is generated recursively by summing F

(n−1)
i

and T (·).

2.3 Shape Perception Branch

The shape perception branch is responsible for extracting image features that
encompass contour information. To achieve effective key point feature extraction,
we leverage the deep layer aggregation (DLA) method, which has demonstrated
promising results [20]. By employing the DLA structure, we conduct feature
extraction at various resolutions and perceptual field sizes. Furthermore, a hierar-
chical feature fusion strategy is applied to aggregate features from different levels
for generates 13 distinct levels of feature maps denoted as {Sij | i, j = 1, 2, 3, 4},
as shown in Fig 4.

Fig. 4. Details of shape perception branch.

Contour information can be described as a fit to the edges of the image.
Edge information extracted from the input image by different edge detection
algorithms is summed up with different weights [21], which can superimpose the
advantages of different edge extraction algorithms. The edge information are
fused into the training process with a certain probability so that the features
extracted by the shape perception branch can contain contour information to
some extent.
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2.4 Multiscale Fusion Module

As shown in Fig. 2(c), the multiscale fusion module performs a deep multiscale
fusion of the output results from two feature extraction branches. Foreground
information feature maps Fi and shape information feature maps Sij are summed
element by element in full dimensionality, thereby the final output feature map
Mapfusion contains sufficient learnable information.

Algorithm 1. Multiscale Fusion Method
Input: Foreground information features Fi, Shape information features Sij ;
Output: Multiscale fusion feature Mapfusion;
1: for i ∈ [1, 4] do
2: Mapfusion i = Fi + Si,5−i;
3: end for
4: Mapfusion =

∑4
i Mapfusion i

5: return Mapfusion.

2.5 Ellipse Detection Module

The elliptical shape allows the maximum depiction of the glomerular structure
while saving arithmetic power. In regressing the bounding ellipse of the glomeru-
lus, the focal loss function and the smooth-L1 loss function were respectively used
as Lcenter and La,b to predict the center (x, y) and the long and short axes a, b
of the ellipse.

As shown in Fig. 2(d). Heat maps are introduced to represent the probabil-
ity of center locations, while heat map loss is used to further refine the center
locations. Meanwhile, increasing the learning of the elliptical object mask map
helps to improve the regression accuracy of the rotation angle. The mask graph
consists of only pixel values 0 and 1, so BCE with Logits Loss, which has high
applicability and convergence speed for the bifurcated zero tasks, is chosen as
the mask loss, as shown in Eq. 4.

Lmask =
1
n

n∑

1

(Mg · log (sigmoid (Mp) + (1 − Mg) · log (1 − sigmoid (Mp))))

(4)
where Mg represents the label mask, while Mp denotes the predicted value. In
addition, the object is more similar to the standard circle while the aspect ratio
becomes closer to 1. Consequently, reducing the learning weight assigned to the
rotation angle can enhance the detection efficiency to some extent for balancing
the relationship between rotation angle and aspect ratio a

b . The loss of rotation
angle Ltheta is shown in Eq. 5.

Ltheta = wt · smoothL1 (Tp, Tg) (5)
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where wt is the adaptive weight of the loss of rotation angle, Tp is the predicted
value, while Tgis the label value. A Gaussian intersection over union (IoU) loss
is also added during training to improve the model performance.

3 Experiments

3.1 Dataset and Implementation Details

The dataset was made with 100 complete WSIs stained with periodic acid-Schiff
(PAS) and periodic acid-Silver Methenamine (PASM). The WSIs were first pro-
cessed using openslide, where we applied a sliding window approach with a step
size of 600 and a size of 1200 × 1200. A total of 1690 valid dataset images were
selected, ensuring that each image contains at least one glomeruli, of which 250
contained glomeruli with diseased or complex morphology. 1300 images were
randomly chosen as the training set while 390 images as the test set. The long
and short axes, center coordinates, and deflection angle of the ellipse were used
as parameters for the labeling of the data set.

To mitigate the impact of diverse coloring techniques on the color appearance
of sample images, we adopt a coloring normalization procedure on both dataset
and subsequent test images. Initially, we calculated the color mean and variance
of the stained sample images. The target images undergo a grayscale transforma-
tion followed by a color reconstitution process, employing the statistics derived
from the color mean and variance of stained samples.

Our study is based on the Pytorch framework, using the NVIDIA GeForce
RTX 3090 to facilitate training. The dataset adhered to the coco format and
underwent 100 epochs of training with the Adam optimizer. The batch size was
set to 8 with a learning rate of 1.25× 10−4. We set different training weights for
accurately estimate the elliptical parameters of the glomerulus. Specifically, the
center coordinates, mask, long and short axes, deflection angle, and Gaussian
IoU were assigned training weights of 5, 5, 0.1, 0.1, and 15.

3.2 Comparison Experiments

To demonstrate the effectiveness of our proposed FSJP-Net in glomerular detec-
tion tasks, we selected several models for comparison. Including YoLov5 [22],
which has demonstrated state-of-the-art performance in various object detection
tasks, CircleNet [16], which focuses specifically on glomerular shape detection,
as well as ElDet [21] and Ellipesenet [20], both specialized in ellipse detection.
The evaluation metrics were recall, precision, and mAP with a threshold of 50 to
represent as accurately as possible the ability of the network to detect glomeruli.

As shown in Table 1, our method exhibits notable advantages in compar-
ison to conventional object detection methods and glomerulus-specific detec-
tion methods, by using the same dataset. Furthermore, as shown in Fig. 5, our
method consistently demonstrates superior results in the practical evaluation
of glomerular images, including both normal glomeruli and those with intricate
morphological features.



FSJP-Net for Glomerulus Detection 153

Table 1. Results of the comparison experiment.

Methods Recall Precision mAP50

CircleNet 87.75 83.46 86.00

EllipseNet 86.39 84.25 79.76

ElDet 91.42 96.70 90.33

YoLov5 89.06 96.81 92.19

FSJP-Net(Ours) 94.41 97.65 94.27

3.3 Ablation Experiments

To evaluate the effectiveness of the modules in the network, we conducted abla-
tion experiments on the foreground-aware branch, the shape-aware branch, and
the multiscale fusion module in FSJP-Net.

Table 2. Ablation experiments of the feature extraction branch.

Methods Recall Precision mAP50

Foreground-only 93.89 91.07 92.79

Shape-only 89.32 97.22 89.31

Joint-Perception 94.41 97.65 94.27

As shown in Table 2, the results are presented for different feature extrac-
tion methods. Foreground-only means separately utilized foreground perception
branches, while Shape-only means using shape perception branches solely. Addi-
tionally, Joint-Perception represents the outcomes of the feature fusion method.
Foreground-only exhibits notably higher recall compared to Shape-only with
its precision considerably lower. Each branch possesses distinct advantages in
that the foreground perception branch fully captures foreground information to
enhance recall, while the shape perception branch employs shape information
as a constraint to improve accuracy. Consequently, the Joint-Perception results
demonstrate a simultaneous enhancement in both recall and precision.

Table 3. Ablation experiments of the feature fusion method.

Methods Recall Precision mAP50

End-add 88.73 89.56 87.24

Multiscale-fusion 94.41 97.65 94.27

Furthermore, we conducted ablation experiments to evaluate the different
feature fusion methods. As shown in Table 3, End-add refers to the simple addi-
tion of feature maps from both branches at the last layer, while Multiscale-fusion
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Fig. 5. Visualization results of FSJP-Net. The first column represents Ground Truth,
while the subsequent three columns correspond to the outcomes obtained from YoLov5,
ElDet, and CircleNet. All three methods exhibit missed detection and imprecise object
localization. The fifth column displays the outcome of FSJP-Net, which shows superior
performance.

denotes the multiscale feature fusion approach. Remarkably, the multiscale fusion
approach yields significantly better results compared to the simple feature map
summation at the last layer.

3.4 Morphological Analysis

Given the significance of assessing lesions through variations in glomerular vol-
ume and internal tissue area, an accurate description of the long and short axes
and area of the glomerulus is imperative. Precise edge segmentation is compu-
tationally intensive and lacks the ability to quickly capture the long and short
axes. Therefore, use a more efficient bounding representation method for detec-
tion result to depict the glomerular structure is necessary. Existing bounding
representation method of glomerulus detection predominantly comprise rectan-
gular or circular shapes, which inadequately accommodate the majority of ellip-
tical glomeruli. We propose to use bounding ellipse instead of bounding box and
bounding circle. To quantify the suitability of the object bounding representation
methods in relation to the glomerular structure, we introduce the ratio Rarea,
which compares the glomerular foreground content to the object bounding box
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Fig. 6. Fitting of different object frame shapes to glomerular structures.

area. As depicted in Fig. 6, the bounding ellipse exhibits a closer fit to the outer
contour of the glomerulus, thus providing a more precise representation of the
glomerular structure.

4 Conclusion

In this paper, we propose FSJP-Net, a lightweight anchor-free detection network
that combines object foreground perception and shape analysis for glomerular
detection of various morphologies, including healthy, diseased and structurally
deformed glomeruli. The foreground perception feature extraction module is
designed for address the issue of high similarity between glomerular foreground
and background. Comparative experiments demonstrate the significant superi-
ority of our proposed network that compared to current mainstream glomerular
detection methods. Ablation experiments are conducted to validate the effec-
tiveness of individual modules within our network, indicating the potential for
broader applications in other scenarios. Finally, we calculate the ratio between
the area of the foreground content and the area of the object bounding box to
evaluate the effectiveness of the bounding ellipse in describing the structure of
glomeruli.
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Abstract. Statistical shape modeling (SSM) is an enabling quantita-
tive tool to study anatomical shapes in various medical applications.
However, directly using 3D images in these applications still has a long
way to go. Recent deep learning methods have paved the way for reduc-
ing the substantial preprocessing steps to construct SSMs directly from
unsegmented images. Nevertheless, the performance of these models is
not up to the mark. Inspired by multiscale/multiresolution learning, we
propose a new training strategy, progressive DeepSSM, to train image-to-
shape deep learning models. The training is performed in multiple scales,
and each scale utilizes the output from the previous scale. This strategy
enables the model to learn coarse shape features in the first scales and
gradually learn detailed fine shape features in the later scales. We lever-
age shape priors via segmentation-guided multi-task learning and employ
deep supervision loss to ensure learning at each scale. Experiments show
the superiority of models trained by the proposed strategy from both
quantitative and qualitative perspectives. This training methodology can
be employed to improve the stability and accuracy of any deep learning
method for inferring statistical representations of anatomies from med-
ical images and can be adopted by existing deep learning methods to
improve model accuracy and training stability.

Keywords: Statistical Shape Modeling · Progressive Learning ·
Medical Imaging · Deep Supervision

1 Introduction

Statistical shape modeling (SSM) has become vital for quantitative studies of
biological and medical data by providing a statistically consistent geometrical
description for each shape across a given population. Recent progress in this
field has enabled a wide range of clinical and scientific SSM applications, such as
bone reconstruction in orthopedics from 2D or 3D medical images [13,18], atrial
fibrillation in cardiology [7,15], brain ventricle analysis in neuroscience [8,16,29].
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Several shape representations have been introduced and utilized. Among
them, deformation-based and correspondence-based models are the most popu-
lar [4,10]. While deformation fields can represent shapes directly from images,
in this work, we have opted for correspondence-based shape representation as it
does not require a reference/atlas. Nevertheless, the proposed training strategy
can also be adapted to deformation-based shape representation. Correspondence-
based models (also known as point distribution models or PDMs) utilize an
ordered set of landmarks or correspondence points placed on the shape surface
in a consistent manner across the population. Several algorithms are available
for these types of shape representation [10,11,25]. Each algorithm follows a set
of time-consuming and labor-intensive preprocessing steps which require domain
expertise, including shape segmentation, resampling, smoothing, and alignment.
Furthermore, PDM optimization processes and inference on new shapes are com-
putationally expensive and time-consuming.

To ease the burden of manpower and heavy-duty preprocessing, deep
learning-based models have been proposed to harness the power of data to
learn a functional mapping directly from images to statistical representations
of shapes [1–3,5,6]. These works provide a considerable advantage over conven-
tional PDM methods in inference, as they do not require prohibitive, manual
preprocessing steps and computationally complex re-optimization. Once a deep
network is trained, a PDM can be inferred from a new unsegmented image in sec-
onds. However, in terms of accuracy performance, existing deep learning models
have yet to be up to the mark. Here, we propose a training strategy based on
progressive learning, deep supervision, and multi-task learning to improve the
performance of existing deep learning models.

The proposed methodology draws inspiration from three key concepts: pro-
gressive learning that builds on knowledge from prior learned tasks [19], deep
supervision that applies loss to intermediate neural network layers [26], and
multi-task learning [30] that leverages commonalities and differences across
related tasks to improve generalization. The model consists of several progressive
blocks, and each block is trained to predict an increasing number of correspon-
dence points, i.e., a shape descriptor or representation at a specific scale. In
other words, we predict the correspondence points in a multiscale training pro-
cess, where each scale leverages the previous scales’ output to predict the points.
We provide a thorough architecture investigation, exploring the advantages and
disadvantages of shared block backbones and the inclusion of an auxiliary seg-
mentation task for improved PDM prediction. Furthermore, we have employed
deep supervision to train our models and explored three loss calculation strate-
gies that depend on the intermediate layers where the loss is applied. Finally,
we demonstrate that the proposed training strategies significantly improved per-
formance during the training and testing of the existing models. These training
strategies can provide effective deep learning-based PDMs for accurate shape
representation from images.
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2 Related Works

We discuss the related works from three points of view: deep learning-based
SSMs, progressive learning, and deep supervision.

Deep Learning-Based SSM Methods: DeepSSM is a state-of-the-art model
that can provide statistical shape representations directly from images [5,6]. It
uses a principal component analysis (PCA) based data augmentation scheme
and has achieved good results on downstream tasks [7]. Probabilistic variants of
DeepSSM that add uncertainty quantification have been proposed. For example,
Uncertain-DeepSSM focuses on predicting data-dependent and model-dependent
uncertainties to overcome the overconfident estimation of the deep learning mod-
els [1]. Recently, VIB-DeepSSM and it’s fully Bayesian extension have been pro-
posed, which utilize variational information bottleneck to capture the latent rep-
resentation rather than regressing PCA scores [2]. All of these works supervise
the entire dense set of correspondence points compared to the iterative process
of incrementally predicting correspondence points of the conventional PDMs.
This single-step regression process is error-prone in complex shape regions. The
proposed training method can be used in addition to any of these methodologies
to achieve more stable training and better performance.

Progressive Learning: Since its introduction in 2017, progressive learning [19]
has revolutionized the training process for generative adversarial networks (GAN)
and learning applications such as shape representation [23], speech recognition [12,
14], and person re-identification [27]. This incremental training process allows the
model to learn a high-level, coarse output representation first, then gradually move
on to detailed low-level, fine features. In the context of our task, rather than map-
ping the feature vectors directly to the final number of correspondence points, pro-
gressive learning allows us to map it to a lower number of points first, then gradu-
ally increase it to the final number to provide a better shape representation. Here,
the mapped points in each scale cover the whole shape.

Deep Supervision: Deep supervision has improved training performances by
adding losses in intermediate network layers in a wide range of applications, such
as edge detection [21], image segmentation [28], 2D/3D keypoint localization [20],
and image classification [20,26]. We leverage this approach by adding supervision
in each level of correspondence point prediction, allowing the model to converge
better than existing methods.

3 Methodology

3.1 Datasets

We showcase the proposed training method using two datasets: femur and left
atrium.

Femur Dataset: The femur dataset comprises 59 CT scans, with 49 identi-
fied as control scans, showcasing healthy subjects without any morphological
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irregularities in the femur bone. The remaining 10 scans are diagnosed with
CAM-FAI, which is a morphological abnormality of the femur characterized by
a lack of normal concavity at the femoral head-neck junction [18]. From this
pool, we randomly incorporate 42 control images and 8 CAM-FAI images into
the training set, reserving the remaining images for testing. Image downsampling
is performed at a rate of 50%, resulting in an image size of 130 × 92 × 117 and
maintaining a uniform voxel spacing of 1.0 mm.

Left Atrium Dataset: The left atrium dataset encompasses 206 late gadolin-
ium enhancement (LGE) MRI images from patients diagnosed with atrial fibril-
lation (AF), which results in irregular heart rhythm due to abnormal electrical
impulses firing in the atrium. Similar to the femur data processing, we downsam-
ple these images by 50%, reaching a resolution of 118 × 69 × 88 with a uniform
voxel spacing of 1.25 mm. We randomly split the instances into 176 images for
training, leaving 30 images for the testing phase.

3.2 Training Data

In constructing the multi-scale training data, we first determine the desired
number of scales for the progressive training architectures based on the num-
ber of correspondence points in the first and last scales. The initial number of
points is set at 256 to ensure enough coverage to capture coarse shape features.
The maximum number of correspondence points (1024) for specific anatomy is
selected empirically, as per the anatomy’s size, curvature, and morphological
variations. This process is executed using ShapeWorks [9] coarse-to-fine particle
splitting strategy until the final correspondence points representation adequately
captured the given anatomy’s detail. We have selected ShapeWorks to generate
PDMs at each scale (256, 512, 1024) because of its ability to generate PDMs
with consistent qualitative and quantitative performance [17]. The ground truth
PDMs for the test dataset are generated using the pre-optimized shape models
of the training data.

Due to the low-sample size that is typical in medical imaging, we have applied
model-based data augmentation [1,5] to generate additional realistic training
examples. To do so, we applied principal component analysis (PCA) at each
level of correspondence point density. A set of M 3D correspondence points for
N samples, denoted by

{
yn

}N

n=1
where yn ∈ R

3M , is reduced to L dimensional
PCA scores zn ∈ R

L where L is relatively low (between 15 and 25). These
PCA scores can be expressed by a mean vector μ ∈ R

3M , a diagonal matrix of
eigenvalues λ ∈ R

L×L and matrix of eigenvectors v ∈ R
3M×L by the equation:

zn = vT (yn − μ). A distribution is fit to the PCA scores via kernel density
estimation (KDE). For the femur data, we use 20 PCA modes (which captured
around 99% of the population variability), and for the left atrium, we used
25 PCA modes (which captured around 97% of the variability).To generate a
synthetic image, we first draw a random sample from the KDE distribution and
then use a technique that involves finding the closest example from a set of input
images. This is the same augmentation technique as DeepSSM, and more details
can be found there [5].
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We have generated 5000 augmented image/correspondence point pairs for the
femur dataset and 4000 for the left atrium dataset. The augmented and original
images are used for training and validation in an 80:20 ratio.

Fig. 1. Proposed model architecture with (a) Base-Backbone, (b) Shared-Backbone,
(c) Progressive-Backbone and (d) Unet-Backbone.

3.3 Model Architecture

In this work, we have adopted DeepSSM [6] as the primary building block to
underscore the impact of the training strategy. DeepSSM and its various off-
shoots use a single deep network to estimate the complete set of correspondence
points at the highest resolution/scale directly from unsegmented images. This
work aims to demonstrate the efficacy of a multi-scale, progressive learning strat-
egy when used to train these models. Although we demonstrate the proposed
work using the original DeepSSM network, the proposed training and loss strate-
gies can be readily applied to other variants. The presented investigation entails
four variants of architecture, each contingent on the backbone of every scale.

– Base-Backbone: To obtain evidence of the progressive training’s improved
performance, we need to conduct a proof of concept. Hence, we have experi-
mented with the base progressive architecture (Fig. 1(a)), whereby each scale
is predicted by an individual DeepSSM block. From the second scale onwards,
every block incorporates latent features from preceding blocks as an auxil-
iary input. This base architecture, applied initially and subsequently, utilizes
a Convolutional Neural Network (CNN) backbone, comprising five convolu-
tional and three max-pooling layers. Following each backbone, an encoder-
decoder network is deployed. The encoder is built from three fully-connected
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layers, with the final layer containing the same number of nodes as the num-
ber of PCA modes (L). The decoder comprises a single layer with 3M nodes,
where M corresponds to the number of correspondence points for that partic-
ular scale. The decoder is initialized with the eigenvalues (vzn + μ) derived
from the principal components serving as weights and the mean shape acting
as bias.

– Shared-Backbone: Once we have the proof of concept, our goal evolves to
explore whether all scales share predictive image features for shape features
at different scales, or if each scale requires its own feature extraction. To
achieve this, we have implemented an approach of dividing the backbone into
two parts: one common for all blocks and the other distinctive for each block.
Specifically, we utilize two convolutional and one max-pooling layer from the
backbone of the base architecture as the shared backbone, while the remain-
ing three convolution and two map-pooling layers are used individually for
each block. The encoder-decoder network is the same as the Base-Backbone
architecture. This architecture is shown in Fig. 1(b).

– Progressive-Backbone: The previous network utilizes an identical architec-
ture for all scales. However, we are curious to explore the potential benefits
of incorporating more layers as the number of correspondence points rises
with each scale. Therefore, we have conducted experiments with a progres-
sive backbone, where the number of layers in the shared backbone increases
as we progress to later scales (Fig. 1(c)). Despite these changes, the encoder-
decoder architecture remains consistent.

– Unet-Backbone: Along with weight sharing between the blocks, we want
to explore multitasking capabilities and investigate the performance of these
models. Specifically, we focus on the task of segmentation, which is a fun-
damental prerequisite for non deep learning based methods. To achieve this,
we have integrated the Progressive-Backbone model into the popular U-net
segmentation architecture and pass a fusion of the bottleneck and decoder
features to predict each scale of correspondence points (Fig. 1(d)) [24]. Moti-
vation for fusing the bottleneck and decoder features is provided in Sect. 5.
The segmentation-guided backbone provides the network with a shape prior,
increasing correspondence prediction accuracy. The fused bottleneck and
decoder features are passed to a feature extractor consisting of convolution
and max-pooling layers to acquire the feature space for each scale. The fea-
ture space is connected to an encoder-decoder network, similar to previous
architectures, to predict their respective correspondence points. However, in
this case, we have not initialized the decoder using PCA, as this imposes
linearity on the shape, which may hurt accuracy in the case of complicated
shapes.

Each of these architectures uses a filter size of 5 for the convolutional layers
and 2 for the max-pooling layers, which are chosen empirically. To ensure opti-
mal performance, we have applied batch normalization after each convolution
operation, followed by parametric ReLU (PReLU) activation.
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3.4 Loss Function

Our model employs mean squared error (MSE) loss for the predicted correspon-
dence points for each scale. For the ground truth yk and predictions ŷk for any
scale k and N number of samples, the MSE loss is defined as:

Lk =
1
N

N∑

n=1

(yk
n − ŷk

n)2 (1)

We have employed three loss variants in our methodology. They are defined
as follows:

– Fixed: For any scale k, the previous scales’ weights are frozen and the total
loss is defined as:

LFixed = Lk (2)

– Shallow-Supervision: For any scale k, the total loss is defined as the sum
of the MSE loss of that scale and the previous scale. Here, during the training
of each scale, the loss is backpropagated until the previous scale.

LShallow−Supervision =

{
Lk + Lk−1, if k > 0
Lk, k = 0

(3)

– Deep-Supervision: For any scale k, the total loss is defined as the summa-
tion of the MSE loss of the initial scale to that scale.

LDeep−Supervision =
k∑

i=0

Li (4)

In addition to the aforementioned correspondence loss, we have incorporated
a segmentation loss for the Unet-Backbone models. Consequently, the cumulative
loss is quantified using the subsequent formula:

Ltotal = α ∗ Lseg + (1 − α) ∗ LPDM (5)

In this context, α represents an empirically determined hyperparameter
designed to balance the weights between the segmentation and correspondence
losses. Lseg corresponds to the binary cross-entropy (BCE) loss between the
original and the predicted segmentation, and LPDM refers to any one of the
aforementioned loss variants (Fixed, Shallow-Supervision, Deep-Supervision).

3.5 Evaluation Metric

We use two key metrics to evaluate the effectiveness of the proposed methodol-
ogy: Root Mean Square Error (RMSE) and surface-to-surface distance (in mm).
RMSE is calculated as the square root of the average squared differences between
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the predicted and actual observations. Specifically, we average the RMSE for the
x, y, and z coordinates, where N is the total number of 3D correspondences:

RMSE =
1
3

(RMSEx + RMSEy + RMSEz) (6)

where, for N sets of ground truth and predicted correspondence points at scale

k, RMSEx =
√

|yk
nx−ŷk

nx|22
N and similar for y and z coordinates.

Fig. 2. Surface-to-surface distance comparison of our proposed models with DeepSSM
[5] in (a) femur and (b) left atrium dataset. The black line in each boxplot marks the
median value, and the blue horizontal line represents the voxel spacing of the images.
(Color figure online)

Surface-to-surface distance is computed by converting the ground truth and
predicted points to meshes and calculating the euclidean distance from each
vertex of the ground truth mesh to the closest face of the predicted mesh. The
reported values are the average of the vertex-wise surface-to-surface distance
from the ground truth to the predicted shapes.

3.6 Training Procedure

We have employed a multiscale, progressive training strategy to ensure better
convergence. This means we train one scale at a time, and only after that scale
reaches convergence do we move on to the next scale. We have used a Cosine
Annealing learning rate scheduler [22] to update each epoch’s learning rate.
The rapid change in the learning rate of this scheduler has helped to make
sure the learning process is not stuck at a local minimum during training. The
initial learning rate is set to 0.001, and Adam optimization is used. Each scale
is trained for a maximum of 50 epochs with a batch size of six. However, to
avoid overfitting, we have employed an early stopping strategy, where we stop
the training if the validation loss is not improved after 15 consecutive epochs.

In the case of the Unet-Backbone models, the segmentation component is
trained first for five epochs to ensure a good shape prior to the correspondence



Progressive DeepSSM 165

prediction. Then each scale is trained as previously explained. The value of the
α parameter for the Ltotal is empirically set to 0.1.

The training process is implemented in PyTorch, and training is performed
on a 12th Gen Intel(R) Core(TM) i9-12900K Desktop with 128 GB RAM and
NVIDIA RTX A5000 GPU.

Table 1. The comparison between DeepSSM and the proposed models on the Deep
Supervision loss in test data in terms of RMSE.

Dataset RMSE on Test Data (Mean ± Standard Deviation)

DeepSSM Base-Backbone Shared-

Backbone

Progressive-

Backbone

Unet-Backbone

Femur 1.37 ± 0.72 1.15 ± 0.52 1.07 ± 0.41 0.93 ± 0.34 0.78 ± 0.21

Left Atrium 1.72 ± 0.8 1.65 ± 0.42 1.62 ± 0.45 1.55 ± 0.43 1.48 ± 0.28

4 Results

4.1 Femur

We have trained each model for three different loss functions as described in
Sect. 3.4. The surface-to-surface distance comparison is shown in a boxplot in
Fig. 2(a). The y-axis shows the two baselines (DeepSSM [5] and Unet for segmen-
tation) and the three loss variants. For each loss variant column, different box-
plots denote different model architectures. The blue and orange boxplot repre-
sents the baseline DeepSSM and Unet results, whereas the green, red, purple, and
brown boxplots represent the Base-Backbone, Shared-Backbone, Progressive-
Backbone, and Unet-Backbone, respectively.

We observe a consistent trend in Fig. 2(a) across all model architectures,
namely that deep supervision enables the model to make more accurate predic-
tions of correspondence points, resulting in more accurate shapes. This suggests
that the progressive training strategy is benefitting from the deep supervision, as
the gradients from the later scales, which capture fine-scale shape features, are
used to fine-tune the earlier scales. This allows for improved conditions for the
input signal for the finer scales, as the scales are not independent; each training
iteration contributes to learning the fine-shape features.

The model performance remains consistently high across various architec-
tures. Generally, the Base-Backbone models have shown slightly better results
than the baseline, indicating that progressive architectures can yield improved
outcomes. Furthermore, the Shared-Backbone and Progressive-Backbone mod-
els outperform the Base-Backbone. Notably, multitasking with a progressive
backbone proves most effective in enhancing performance, as evidenced by the
results of the Unet-Backbone. We have also sought to compare our approach
with standard segmentation architecture, which calculates the surface-to-surface
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Fig. 3. Reconstruction error of the models’ output is shown as a heatmap on the
ground truth meshes for DeepSSM’s best and worst output in the test data. The
models reported in the figure are trained with Deep-Supervision losses.

distance between original and predicted segmentations. The proposed SSM mod-
els fared much better than segmentation-based models in reconstructing shapes
from images.

We have compared the proposed models with the DeepSSM in terms of
RMSE (Table 1) which, unlike surface-to-surface distance, captures whether or
not the points are in correspondence. We can see a significant improvement in
RMSE error for the Progressive-Backbone (32.12%) and Unet-Backbone models
(43.06%). This improvement shows the superiority of the proposed models in
the test data.

Additionally, we quantitatively evaluate the performance of our proposed
models for 3D mesh reconstruction by comparing the reconstruction errors via
heatmaps on the ground truth meshes. Specifically, we select the best and worst
outputs of DeepSSM on the test data based on surface-to-surface distance and
compare them with the proposed models’ predictions. From this analysis, we
generate error maps for our models’ prediction on the ground truth mesh for the
selected samples. The results of the comparison are shown in Fig. 3. Our findings
show a significant improvement in the proposed models’ prediction, particularly
for the Progressive-Backbone and Unet-Backbone models for both cases.

Downstream Task - Group Differences: It is clinically significant to cap-
ture the statistical morphological difference between the CAM-FAI shape and
the typical femur bone shape. In this experiment, we have employed models
trained with Deep-Supervision loss. Our approach involves the construction of
two groups - one for controls and one for pathology (CAM-FAI) - and computing
the difference between their means (μnormal and μcam). By doing so, we were able
to showcase this difference on a mesh, which is known as group difference [18].
To achieve this, we utilize the ShapeWorks’ PDM model, DeepSSM and the
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Fig. 4. Group Difference comparison of our proposed models with the original
DeepSSM [5] and ShapeWorks [9].

proposed models’ predicted particles, using the entire data for testing and train-
ing. Our findings demonstrate a strong similarity between the ShapeWorks
and the proposed models’ group differences, particularly for the Progressive-
Backbone and Unet-backbone models (Fig. 4). This suggests that the proposed
models can effectively obtain correspondences without the need for heavy pre-
processing and segmentation steps. This ability to characterize the CAM defor-
mity is crucial in observing the expected outcome of femur anatomy smoothly
exhibiting inward motion around the CAM lesion as observed in clinical prac-
tice. Our results indicate that the proposed models have the potential to be a
valuable tool in the analysis of femur anatomy and can aid in the diagnosis and
treatment of CAM deformities.

4.2 Left Atrium

The left atrium MRI dataset presents significant variations in intensity and
quality, influenced by the topological differences related to the arrangements
of pulmonary veins. Similar to the femur dataset, we have trained our models
for all loss variants explained in 3.4. The results are shown in Fig. 2(b). We
can see that the Deep-Supervision loss helps in the case of this dataset as the
surface-to-surface distance is much better for this loss compared to the Fixed
and Shallow-Supervision.

All of the models proposed outperformed the baseline results. Interestingly,
the SSM-based methods seem to be generating better 3D shapes compared to
the standard segmentation baseline. The high variability of the dataset is likely
contributing to the Unet model’s underwhelming performance. Regarding differ-
ent model architectures, the proposed models have demonstrated similar perfor-
mance for a specific loss type, with Unet-Backbone slightly edging ahead. The
trend in performance is consistent with the femur dataset, where the Progressive-
Backbone and Unet-Backbone models surpass the Base-Progressive and Shared-
Progressive models. By examining Table 1, it is apparent that the suggested mod-
els have shown significant improvement, particularly the Progressive-Backbone
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(9.88%) and Unet-Backbone (13.95%) models concerning RMSE in the test
data. These enhancements in both evaluation metrics highlight the advanta-
geous impact of the proposed training techniques, especially when dealing with
complex datasets.

Furthermore, we have conducted a thorough analysis of the reconstruction
error comparison for the best and worst output of DeepSSM in the test data with
respect to surface-to-surface distance. Our findings indicate that the output for
both the best and worst case of the proposed models have significantly enhanced
DeepSSM’s outputs, as illustrated in Fig. 5. This outcome is consistent with the
femur dataset, which further validates the effectiveness of the proposed models
in improving the accuracy of surface reconstruction.

Fig. 5. Reconstruction error of the models’ output is shown as a heatmap on the ground
truth meshes for DeepSSM’s best and worst output in the test data.

Downstream Task - Atrial Fibrillation Recurrence Prediction: Atrial
Fibrillation (AF) is a medical condition characterized by an irregular heart-
beat. To treat AF, doctors often use a therapeutic procedure called catheter
ablation. Unfortunately, some patients may experience a recurrence of AF even
after undergoing ablation. The left atrium dataset includes binary labels for each
patient indicating whether they had AF recurrence following ablation.

To train a multi-layer perceptron (MLP) model for classifying AF recur-
rence, we utilized PCA scores from ground truth data and the latent features of
the encoder-decoder network for both the DeepSSM and proposed models. Our
experiments employ the same training, validation, and test sets, and we use the
Deep-Supervision trained models. The results, presented in Table 2, demonstrate
a significant performance improvement compared to the DeepSSM. Notably, our
Unet-Backbone model even outperforms the ShapeWorks accuracy. We believe
that the Unet-Backbone’s encoding of image-based features, not available in
PDM, contributes to its success in this downstream task.
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Table 2. The comparison between baselines and the proposed models’ accuracy on AF
recurrence.

Metric (%) ShapeWorks DeepSSM Base-
Backbone

Shared-
Backbone

Progressive-
Backbone

Unet-
Backbone

Accuracy 63.33 56.66 58.7 60.0 61.66 73.33

5 Ablation Studies

We have conducted an ablation study to analyze the impact of different compo-
nents within our Unet-Backbone architecture. The study focuses on three key
areas: the decoder, the bottleneck, and a fusion of the bottleneck and decoder fea-
tures. The decoder plays a crucial role in reconstructing the spatial information
lost during the encoding process. However, when used alone, it may not capture
complex object details due to the lack of context. In contrast, the bottleneck
condenses the input image information into a more manageable form, making it
easier to extract high-level features. However, relying only on the bottleneck for
feature extraction may result in a loss of information, especially for larger and
more complex inputs. Our study shows that the fusion of bottleneck and decoder
features produces the best results in the Unet-Backbone models (Fig. 6). This
approach combines the strengths of the decoder and the bottleneck, resulting in
a more robust representation.

Fig. 6. Surface-to-surface distance comparison of different features in femur dataset.

6 Conclusion

Performing statistical shape modeling directly on images is a difficult task. Many
image quality complications, such as artifacts, spatial resolution, signal-to-image
ratio, etc., make it challenging to perform shape modeling. Hence, our work
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proposes a multiscale training methodology to learn the features gradually. The
proposed training method utilizes multi-tasking based progressive learning and
deep supervision to provide better performance. We have tested our methodology
on two different datasets with different types of images (CT and MRI scans),
and the proposed models provide improved results in both cases. This training
method can be integrated into any deep learning-based shape models and achieve
better performance. These contributions will help accelerate the adoption of
automated statistical shape modeling from images in clinical use cases.
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Abstract. Muscle volume is a useful quantitative biomarker in sports,
but also for the follow-up of degenerative musculo-skelletal diseases. In
addition to volume, other shape biomarkers can be extracted by segment-
ing the muscles of interest from medical images. Manual segmentation is
still today the gold standard for such measurements despite being very
time-consuming. We propose a method for automatic segmentation of 18
muscles of the lower limb on 3D Magnetic Resonance Images to assist
such morphometric analysis. By their nature, the tissue of different mus-
cles is undistinguishable when observed in MR Images. Thus, muscle
segmentation algorithms cannot rely on appearance but only on con-
tour cues. However, such contours are hard to detect and their thickness
varies across subjects. To cope with the above challenges, we propose a
segmentation approach based on a hybrid architecture, combining con-
volutional and visual transformer blocks. We investigate for the first
time the behaviour of such hybrid architectures in the context of muscle
segmentation for shape analysis. Considering the consistent anatomical
muscle configuration, we rely on transformer blocks to capture the long-
range relations between the muscles. To further exploit the anatomical
priors, a second contribution of this work consists in adding a regulari-
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sation loss based on an adjacency matrix of plausible muscle neighbour-
hoods estimated from the training data. Our experimental results on a
unique database of elite athletes show it is possible to train complex
hybrid models from a relatively small database of large volumes, while
the anatomical prior regularisation favours better predictions.

Keywords: Vision transformers · Muscle segmentation · MRI ·
Anatomical prior

1 Introduction

Skeletal muscles are composed of muscle fibers, usually arranged in bundles sur-
rounded by connective tissue. Different to other organs in the body, their shape
can change relatively fast under physical training, injuries or under the effect
of certain diseases. Therefore, the evolution, shape and volume of muscles have
been studied in the sports and medical literature as biomarkers [8,15,20,21].
Such measurements can be extracted in a non-intrusive way through medical
imaging. Magnetic Resonance Imaging (MRI) is well suited for the task for its
ability to image soft tissues with high contrast [13,15]. An important intermedi-
ate step to go from images to biomarkers is the segmentation. Once segmented
it is possible to make comparisons between athletes, find trends according to
discipline, sex, height, weight, or even within an individual, e.g. by detecting
muscular asymmetries between the legs [8,20]. In this study, our main focus is
the sports domain. However, muscle segmentation is also useful in the context
of skeleto-muscular diseases like Duchenne’s dystrophy, where monitoring mus-
cle development is crucial. Therein, muscle segmentation helps track the disease
progression, assess its impact on muscle tissue, or adapting treatment strategies.

Fig. 1. Example of input MRI (left), and output labelmap (middle) The table (right)
lists all the muscles to segment and their associated label.

We aim to segment muscles from 3D MR images for subsequent shape anal-
ysis in elite sports (see Fig. 1). Previous studies relied on manual annotations,
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which are very time-consuming and laborious [15,20]. Indeed, segmenting MR
images from elite athletes poses several challenges. In a broader context, the high
number of muscles to be segmented is a major constraint. Also, these muscles
are interconnected and influence each other. Unlike multi-organ segmentation
where diverse labels are present, muscles have similar tissue types, so texture
information is not discriminating. Instead, muscle segmentation primarily relies
on often thin or imperceptible boundaries. Elite athletes, with more developed
muscles and less in-between fat, present an additional challenge. Finally, working
with the full 3D data preserves important contextual information but necessi-
tates memory management for large volumes. These specific considerations high-
light the need for tailored segmentation approaches that account for the distinct
characteristics and requirements of sports-related imaging analysis. In order to
automate the segmentation task while tackling these challenges, we rely on the
UNETR architecture [11] to leverage the strengths of both Convolutional Neural
Networks (CNN)s and transformers. Furthermore, medical and sports profession-
als have extensive knowledge of human anatomy, including muscle structure and
their spatial collocation. Leveraging this expertise, we incorporate prior knowl-
edge into the learning process through a regularization loss inspired by [6] that
enforces feasible muscle adjacencies. This loss leverages our knowledge of muscle
anatomy to improve the accuracy and reliability of the segmentation model.

2 Related Work

Image segmentation is relevant in various sports-related applications. Miller et
al. [15], examine and compare the variations in muscle volume between male elite
sprinters and sub-elite sprinters. Furthermore, the study investigates the rela-
tionship between muscle volumes, strength, and sprint performances, all based
on manual segmentations. The delineation of muscle boundaries and regions of
interest are also performed by human experts in [20] to characterize the ham-
string muscles with a statistical shape model. Alternative methods have emerged,
including semi-automatic approaches. For instance, Hansdfield et al. [8], manu-
ally revised the output of an automatic algorithm to investigate the distribution
of muscle volumes in the lower limb among elite sprinters. Gilles et al. [7], focus
on the registration and segmentation of hip and thigh muscles using deformable
discrete models. More recently, automatic methods such as Yokota et al. [21]
utilize multi-atlas techniques to automate the segmentation of hip and thigh
muscles from CT scans. Cheng et al. [5] rely on a U-Net for segmenting the
quadriceps and patella from MRI scans, but primarily focusing on pediatric
medical applications. Ni et al. [17] proposed an automatic method for segment-
ing lower limb muscles of collegiate athletes (basketball, football, and soccer)
using a cascaded 3-D CNN. The approach comprises two independently trained
networks to address the muscle localization task on low-resolution images and
the subsequent segmentation task on cropped high-resolution images. Agosti et
al. [1] also propose a two-phase method for segmenting leg muscles on a database
comprising both healthy subjects and patients. The initial phase relies on a clas-
sification network to identify the specific leg area being segmented, followed by
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a second phase involving the segmentation of the muscles of interest through a
deep learning network. To the best of our knowledge, apart from the methods
mentioned earlier, there are only a limited number of automated approaches
specifically designed for muscle segmentation. This is particularly true in the
sports domain, where the task presents its own challenges. However, given the
amount of time required for a manual segmentation (∼40 h/subject in our case)
there is a clear need to automate this task. Therefore, we propose an automatic
method on a unique database of elite athletes, which is difficult to acquire and
collect given the athletes’ profiles, but also to annotate due to the significant
muscle development and little adipose tissue.

The U-Net [19] architecture is considered the reference for automating seg-
mentation tasks in medical imaging [13]. However, the emergence of transformers
in recent years has opened up new possibilities. While CNNs excel at capturing
local structures, they have limitations when it comes to capturing long-range
relationships among different regions in an image. As CNNs go deeper, their
receptive field gradually expands, leading to distinct features extracted at differ-
ent stages. In contrast, transformer blocks leverage the power of Multi-head Self-
attention (MSA) to establish a global receptive field, even at the lowest layer of
models like the Vision Transformer (ViT). In this sense, transformer-based mod-
els, are well-suited for medical image segmentation since long-range dependencies
are common within the human body. Another asset is the flexibility of their net-
work architecture. Indeed, several architectures that combine transformers and
CNNs have been proposed [13], by offering various ways to integrate transformers
into U-Net like networks. Petit et al. [18] introduced transformers in the decoder
of U-Net. Transformers can also be incorporated into the bottleneck section of
the U-Net architecture, as demonstrated in TransUnet [4]. Another approach
involves independently processing the image through transformer blocks and
convolutional layers, and subsequently merging the information obtained at each
encoding step, as in [12]. UNETR [11] combines the strengths of CNNs and trans-
formers by replacing the encoder of the U-Net architecture with a series of trans-
former blocks. A transformer block at the input reformulates the segmentation
problem as a 1D sequence-to-sequence inference task, similar to transformers
in natural language processing [13]. While more recent architectures have been
deemed powerful, e.g. Swin-Unetr [10], they are usually associated to higher
training complexities, requiring larger computational resources and longer train-
ing times compared to traditional Transformers. Based on our data limitations
and Hasany et al. [9] findings showing that UNETR captures global information
fast, i.e., even at the third layer of transformers, we opt for a UNETR model.

As mentioned above, one of the challenges we face is that the tissue of dif-
ferent muscles appears identical when observed in MR Images, making texture
information irrelevant. On the contrary, contextual information can be a major
asset. Multiple approaches can be employed to incorporate such relevant context,
including modeling it with a loss function. Such functions can be constructed
based on the morphology of the objects being segmented e.g. star-shaped [16]
or vertebrae like [2]. However, such shape priors are difficult to apply to our
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segmentation problem, since simple priors do not adequately capture the mus-
cle variations and given there is no known atlas available. From a more topo-
logical perspective, BenTaieb et al. [3] addressed the issue of region exclusion
and inclusion by penalizing incorrect label hierarchy. They noticed constraints
between certain regions in their specific application and developed solutions to
enforce inter-region connectivity. Since the muscles are separate entities, Ben-
Taieb’s method does not apply either. Finally, Ganaye et al. [6], proposed a
method based on multiple-organ and brain region adjacencies. Given that the
positions of muscles remain consistent within the legs, the adjacency relation-
ships among athletes’ muscles are also expected to be preserved. Therefore, we
adapt the idea of an adjacency constraint from [6] to regularize the training of
our automatic segmentation method.

3 Methodology

The purpose of this work is to design an automatic tool to segment muscles
from MR images of the lower-limbs. More specifically, the approach receives as
input 2 MR scans of the same subject (hip and thighs) and provides as output
the semantic segmentation labelmaps (a probability of each voxel to belong to
one of the 18 considered muscles), as shown in Fig. 1. To address the above
problem we rely on a hybrid (ViT + CNN) UNETR architecture [11], and in
this way capture long range dependencies within a muscle and between muscles.
To further reinforce the anatomical priors we first built an adjacency matrix
from our training data, by estimating the probability of two muscles being next
to each other. Then, we rely on this adjacency matrix to define a penalizing loss
that forces the model to make predictions that respect the prior connectivities.
Next we describe the details of the architecture and loss.

3.1 Model

Lets define the input to the model to be an image x ∈ R
H×W×D (with H×W ×D

the image size) and the associated ground truth labelmap as the function
lab : i ∈ RH×W×D �−→ [0, ..., C], with C the number of labels. We also denote
as ̂lab(i) the predicted labelmap obtained as output of the model. The chosen
UNETR [11] architecture is based on a U-Net, whose encoder has been replaced
by a succession of T transformer blocks. These T blocks retain global informa-
tion (e.g. on fairly long muscles), thanks to self-attention modules, while the
architecture keeps access to more local information through the convolutional
layers. Next, we follow [11] to describe details of each block. Since transformer
blocks work on 1D sequences, we convert our 3D input data x into a sequence
of flattened non-overlapping patches xN

v of equal resolution (P × P × P ), as
shown in Fig. 2; thus, the sequence has length N = (H × W × D)/P 3. A linear
layer, E ∈ R

(P 3.C)×K , is then used to project each patch into a K dimensional
embedding space, which is the same throughout the transformers layers. A 1D
learnable positional embedding Epos ∈ R

N×K is added to the sequence of the
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Fig. 2. Overview of our method during training phase for muscle segmentation from
MR volumes.

projected patch embeddings in order to keep the spatial information and help
reconstruct back the image. We denote the result of patch projections and posi-
tional embedding as:

z0 = [x1
vE;x2

vE; ...;xN
v E] + Epos (1)

After the embedding, the sequence z0 passes through a stack of transformer
blocks as shown in Fig. 3. A typical transformer block is composed of a multi-
head self-attention (MSA) and a multi-layer perceptron (MLP) (c.f. Eq (6)
in [11]). The data is then passed through a normalisation layer, Norm().

z′
t = MSA(Norm(zt−1)) + zt−1, t = 1...T, (2)

zt = MLP (Norm(z′
t)) + z′

t, t = 1...T, (3)

The UNETR architecture incorporates a direct connection between the trans-
former encoder and the CNN decoder block through skip-connections at different
resolutions, enabling the calculation of the final semantic segmentation output.
In the architecture bottleneck, a deconvolutional layer is employed to increase
the resolution of the transformed feature map by a factor of 2. This upscaled
feature map is then concatenated with the feature map from the previous trans-
former output (e.g. zt9 in Fig. 3). Next, consecutive 3×3×3 convolutional layers
are applied, followed by an upsampling using a deconvolutional layer, until the
output reaches the original input resolution. Finally, a 1 × 1 × 1 convolutional
layer with a softmax activation generates the voxel-wise semantic prediction.
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Fig. 3. Architecture of UNETR, modified figure from [11]. The transformer blocks
containing MSA and MLP blocks is repeated 12 times. The output of the transformer
blocks are zt. Only 4 of these outputs are illustrated here in a manner of clarity.

3.2 Prior Anatomical Knowledge

The relative location of a muscle with respect to others is overall consistent
across participants, especially for healthy subjects. Therefore, we propose to
exploit such anatomical knowledge to further guide the training. In practice, we
represent the relative positioning of the muscles with a probabilistic adjacency
matrix. Similarly to [6], we employ this matrix within a regularizing loss term
that penalizes predictions that do not respect the known adjacencies.

To create a probabilistic matrix, we extracted binary adjacency matrices for
each subject in the database. To do this, three 4-neighbour filters are applied to
the subject’s manual segmentation labelmap lab. These derivative filters perform
the difference di,j between the value lab(i) of a given voxel i and its neighbour
j ∈ N (i) (where N (i) corresponds to the neighborhood voxels of i), such that
di,j = lab(i) − lab(j). These filters are applied separately in the 3 directions
of the labelmap. Any non-zero difference (di,j �=0), indicates the presence of a
boundary between these two neighboring voxels. Once di,j has been calculated,
and the boundaries found, we associate each boundary with the respective pair
of labels (muscles). We then fill 1 in the corresponding location of the Nmuscles×
Nmuscles adjacency matrix if a boundary between a pair of labels was detected in
any direction. After extracting the binary adjacency matrices for all subjects, we
sum them up and normalise the result by the number of muscles. The resultant
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Fig. 4. Probabilistic adjacency matrix providing prior knowledge on muscle anatomy.
The rows and columns of the matrix correspond to each label (muscles and back-
ground). Each element of the matrix has a value between 0 and 1. The higher the value
is, the more likely the adjacency between 2 muscles.

probabilistic adjacency matrix A is shown in Fig. 4. The process is summed up
in the following equation:

abc(lab) =
∑

i

∑

j∈N (i)

δb,lab(i)δc,lab(j), (4)

where b, c ∈ [0, ..., C] are 2 different labels and δb,lab(i) is the Kronecker delta
function equal to 1 when voxel i has label b (or 0 otherwise). Here, abc is the adja-
cency function calculated on the ground-truth labelmap lab and ãbc = (abc > 0)
is its binarized version, which is summed-up and normalised to obtain A. The
same function is computed during training but instead on the predicted proba-
bilistic labelmap ̂lab, as discussed in Sect. 3.3.

Unlike [6], we have chosen to keep the ground truth matrix probabilistic to
consider the variability across subjects and the likelihood of the muscles connec-
tions. Two muscles are considered adjacent if at least one of their voxels is in
contact in the labelmap.

3.3 Loss Function

The loss function combines a common segmentation loss function, the softdice
cross-entropy loss with a regularization loss to consider the prior anatomical
information of muscle adjacency.

Lfinal = Lseg(lab, ̂lab) + λLNonAdjLoss(lab, ̂lab) (5)
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A weighting lambda is applied to the regularization loss so as not to penalise
the model too much while incorporating the anatomical constraint.

Soft Dice Cross Entropy Loss is a combination of soft dice loss and cross-entropy:

Lseg(lab, ̂lab) = (1 − 2

C

∑C

c=1

∑I
i=1 lab, ̂lab

∑I
i=1 lab2 +

∑I
i=1

̂lab
2 )(−1

I

∑I

i=1

∑C

c=1
lab log ̂lab),

(6)
where I is the number of voxels (I = H × W × D); C is the number of classes;
lab and ̂lab denote respectively, the probabilistic prediction and ground-truth
encoded in one-hot.

NonAdjLoss is the proposed regularisation loss enforcing the segmentation pre-
dictions to satisfy the anatomical constraints.

LNonAdjLoss(lab, ̂lab) =
∑

∀(b,c)∈[0,...,C]

(1 − abc(lab))abc(̂lab), (7)

where abc(̂lab) is the adjacency function calculated during training from apply-
ing Eq. 4 to ̂lab. If the model predicts a wrong adjacency, we penalize it with
the inverse of the probability of this link existing. Thus, using the network with
abc(̂lab) as a differentiable adjacency matrix, allows us to penalize the forbidden
connectivities of any prediction.

4 Experimental Validation

4.1 Experimental Settings

Dataset. The dataset, composed of 18 3D registered MRI (pelvis and thighs)
of low-limb muscles from elite-athletes, was acquired at the medical imaging
centre of the INSEP. We split the dataset into 15:1:2 for training, validation and
test. The MR images were manually annotated to obtain the labelmaps of the
18 muscles in Fig. 1, which took between 30 to 40 h per subject. The MRI are
cropped to show only one leg for the training and inference. The average volume
is 467.2 × 450.2 × 1556.2 pixels for a spacing of 0.55 × 0.55 × 0.55. The spacing
for training is resized to 1×1×1 for memory reasons. Intensities are normalised
between 0 and 1 and data augmentation is performed before the training on the
patches (flips, rotations, intensity). During inference, we post-process the output
of all compared methods to identify the largest predicted connected component
and fill any holes.

Evaluation Metrics. The first objective of this project is to recover the
volume of each muscle. To this end, we mesure the volumetric error of each
muscle, in cm3 and percentage as:

Volerrcm3 = |VGT − Vpred| Volerr% = 100 × |VGT − Vpred|
VGT

, (8)
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where VGT and Vpred correspond to the ground-truth and predicted volumes of
a given muscle respectively. Note that Volerr% takes into account the size of the
muscle from which we are extracting the volume, which Volerrcm3 does not. We
also rely on the Dice Score (DSC) and the 95% Hausdorff Distance (HD95) to
evaluate the performance of the model.

Implementation Details. The implementation relies on MONAI, a
PyTorch-based open-source framework1. Training was done on an NVIDIA
GeForce RTX 3090 Ti (24 GB) graphic card. Training included two phases.
During the first phase, the model was trained without NonAdjLoss for 6667
epochs. Then, the model was fine-tuned with the regularisation loss for 5000
epochs. The regularization weight was set to λ = 0.3. Each model (pretrained
and fine-tuned) was trained with a batch size of 1, using the AdamW optimizer
and an initial learning rate of 0.0001. Full training took 48 hours (11667 epochs).
The UNETR architecture was configured with 12 transformer blocks (T = 12)
and has an embedding size of K = 768 [11]. To match the size of the data, we
set the patch size to 128 × 128 × 128.

4.2 Quantitative Results

Regarding the volumetric error (%), we report the results in Fig. 5. Most of the
muscles have an error under 5% for the training set. As expected, the values
for the test set are higher but in average bellow 10%. Higher errors for the
Pectineus can be explained by its small size and for the Gluteus minimus by its
more challenging boundaries. In addition, we compared our method against a
U-Net architecture. We also investigated the impact of the regularization cost

Fig. 5. Volumetric error (%) for all subjects and muscles. Validation and Test subjects
are indicated in orange and red. (Color figure online)

1 https://monai.io/.

https://monai.io/
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Fig. 6. Boxplot of the test results for UNET, UNETR and UNETR + NonAdjLoss.
The volumetric error (%) (upper left), the Dice Score Coefficient (bottom left)
and the Hausdorff Distance (mm) (right) of the two test subjects (FULGUR 006 and
FULGUR 099) are shown here. The boxplots are computed across the 18 muscles of
interest for each of the test subjects.

function on the learning process. To visualize the results, we present boxplots
of the volumetric error, Dice coefficient, and Hausdorff distance 95 in Fig. 6, on
the test dataset.

The methods based on UNETR show an overall decrease in the number of
outliers across metrics, indicating improved performance in terms of reducing
extreme errors. Moreover, both UNETR and the fine-tuned method with Non-
AdjLoss reduce either the mean volumetric error or its variance. The transition
to UNETR also results in a reduction of the 95HD error. For example, in the case
of F006, the average Hausdorff distance decreased from approximately 175 mm
to around 6mm with UNETR. Similarly, for F099, the average Hausdorff dis-
tance was reduced from 125 mm to an average of 4 mm with UNETR. Moreover,
the NonAdjLoss regularization further reduces the average Hausdorff distance,
resulting in an average of 5 mm for F006 and 3 mm for F099. These results con-
firm that the inclusion of anatomical constraints enabled the learning process to
generate predictions closer to the ground truth. The NonAdjLoss regularization
has effectively guided the model to capture the anatomical characteristics and
spatial relationships of the muscles, leading to improved segmentations. Finally,
there is an increase in Dice (DSC) with the methods incorporating transformers.
We observe an average DSC of around 0.86 for U-Net, while U-Net with trans-
formers (UNETR) achieves an average DSC of 0.9. Furthermore, when combin-
ing UNETR with NonAdjLoss, the average DSC further improves to 0.92. These
results highlight the enhanced segmentation performance (Fig. 6 and 7).
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4.3 Qualitative Results

Regarding the qualitative results, one notable observation is that when providing
the MRI scans of both legs, the model is capable of segmenting both legs suc-
cessfully, even if it was only trained on one of them as shown in Fig. 7. This can
be attributed to the inherent symmetry found in human anatomy, the utilization
of data augmentations during training and the sequential inference process. The
model has learned to generalize well to the other leg, leveraging the common
features and structures These results demonstrate the adaptability of the model
to handle variations such as symmetries and multiple instances.

When we examine the predictions, we observe plausible and overall good
quality labelmaps. The remaining errors, resemble human mistakes made during
the manual segmentation, which unfortunately can still be found in the ground
truth of this dataset. Such errors include, voxels belonging to other labels be
present within a muscle, and mixing the boundaries of muscles belonging to a
group (such as adductor groups). Figure 8-right shows an example of the TFL
that influences the gluteus maximus in the prediction, which further explains the
quantitative results for that muscle. Additionally, we observe less anatomically
accurate ground-truth label shapes in small ambiguous regions. Therefore, the
presence of some errors in both the manual annotations and the model predic-
tions is expected.

We can also observe that most errors occur at the boundaries of the seg-
mentations as shown in Fig. 8-left. This is particularly noticeable in the case of
athletes since they have a significant muscle development, and the presence of
adipose tissue between their muscles is reduced. However, suboptimal predic-
tions can have a direct impact on adjacent predictions. For example, if a muscle

Fig. 7. Comparison of the Ground Truth (left) given as input to the model and the
prediction of our trained model when we give an MRI with both legs (right).
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Fig. 8. Comparison of the predicted labelmap on a test subject and the GT labelmap,
where blue color is the missing volume from the prediction and red color is the volume
that is added comparatively to the GT (left). Prediction of the TFL (electric blue)
and gluteus medius (turquoise green) that influence each other, supperposed with the
comparison from the left part (right). (Color figure online)

is segmented slightly outside its boundaries, its neighboring muscle will have a
reduced segmentation, resulting in a predicted decrease in muscle volume. This
phenomenon occurs particularly in muscle groups such as the adductors (longus,
magnus and brevis), where the boundaries are difficult to discern even to the
naked eye and remain a challenge even to human experts.

5 Conclusion

We have proposed a method that leverages long-range shape dependencies and
prior anatomical information to segment muscles of elite athletes. Our experi-
mental validation demonstrates that by incorporating anatomical priors as con-
straints into the segmentation process, our method achieves improved accuracy
and captures the nuances of muscle boundaries more effectively. By accurately
segmenting muscles, our method provides a valuable tool for quantitative analy-
sis, allowing for a more comprehensive assessments of muscle morphology. This
information can be valuable in identifying potential asymmetries or variations,
guiding personalized training programs, injury prevention strategies, and per-
formance optimization in sports and athletic settings. Moreover, a prediction
is significantly faster that the manual segmentation method initially applied,
which took approximately 30 to 40 h per subject. Since, the significant amount
of time required for manual segmentation and the challenging nature of the task
have limited the size of the database, we plan to evaluate the revision time when
starting from our method’s predictions to confirm the acceleration of the labeling
process for new subjects.

To further advance and explore potential improvements, several directions
can be considered. The exploration of methods based on unlabelled data could
be pursued. Another possibility is to investigate the application of newer archi-
tecture designs that combine CNNs and transformers, such as Swin Transform-
ers [14]. A third avenue for improvement is to explore the reduction of the number
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of transformer blocks in the network [9], to gain insights on the optimal bal-
ance between model complexity and segmentation accuracy. Finally, we plan to
study the learned positional encodings and attention maps to better understand
where the model focuses during the segmentation process. Analyzing attention
maps can provide valuable insights into the features and regions that contribute
most significantly to accurate muscle segmentation and to identify correlations
between muscle groups. This understanding can guide future refinement of the
model architecture and its performance optimization. Finally, with some adap-
tions our method could be used for the morphological study of muscles from
patient with muskuloskeletal diseases.
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Abstract. Non-specific lower back pain (LBP) is a world-wide public
health problem that affects people of all ages. Despite the high preva-
lence of non-specific LBP and the associated economic burdens, the
pathoanatomical mechanisms for the development and course of the con-
dition remain unclear. While intervertebral disc degeneration (IDD) is
associated with LBP, there is overlapping occurrence of IDD in symp-
tomatic and asymptomatic individuals, suggesting that degeneration
alone cannot identify LBP populations. Previous work has been done
trying to relate linear measurements of compression obtained from Mag-
netic Resonance Imaging (MRI) to pain unsuccessfully. To bridge this
gap, we propose to use advanced non-Euclidean statistical shape analy-
sis methods to develop biomarkers that can help identify symptomatic
and asymptomatic adults who might be susceptible to standing-induced
LBP. We scanned 4 male and 7 female participants who exhibited lower
back pain after prolonged standing using an Open Upright MRI. Supine
and standing MRIs were obtained for each participant. Patients reported
their pain intensity every fifteen minutes within a period of 2 h. Using
our proposed geodesic logistic regression, we related the structure of
their lower spine to pain and computed a regression model that can
delineate lower spine structures using reported pain intensities. These
results indicate the feasibility of identifying individuals who may suffer
from lower back pain solely based on their spinal anatomy. Our pro-
posed spinal shape analysis methodology have the potential to provide
powerful information to the clinicians so they can make better treatment
decisions.

Keywords: geodesic logistic regression · intervertebral disc
degeneration · longitudinal shape analysis

1 Introduction

Low back pain has a large worldwide prevalence and it affects people of all gen-
ders and ages [12]. Studies estimate that at least 75–85% of Americans experience
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some form of back pain during their life, with the highest prevalence happen-
ing in females and in adults aged 40–65 [11]. Work disabilities in adults aged
40 to 65 years of age costs employers an estimated $7.4 billion/year, with LBP
exacerbation accounting for a disproportionate share of lost productivity [15].

Despite of the incredible burden of nonspecific LBP, no recent research effort
has yet succeeded to relate clinical variables such as pain to anatomy [21]. Other
investigators have looked at LBP with ultrasound, but always while the person is
in supine position [20]. Some investigators have related pain with local anatomy
in the case of evident pathology using MRI, but this is more challenging in the
case of nonspecific LBP.

One particularly interesting group of individuals are those that are otherwise
back-healthy with no prior history of LBP, but that develop clinically signif-
icant LBP symptoms after prolonged standing [5,13,16,17]. Individuals with
jobs that involve standing for periods of more than 30 min of each hour is one of
the strongest predictors of work-related LBP [1,18]. Moreover, individuals who
develop LBP symptoms during prolonged standing (PD - Pain Developers) are
three times more likely to develop chronic LBP compared to those that do not
develop pain (NPD - Non-pain developers). Diagnostic imaging routinely taken
of the lower back traditionally involves having the subject lying down, which
will not reflect the anatomy present during LBP development after prolongued
standing. Positional MRI technology allows signal acquisition in an open config-
uration, and it enables the acquisition of scans reflecting the spinal anatomy of
an individual while standing and other positions [19].

We propose using positional MRI techniques combined with advanced shape
statistics in order to characterize the changes of the lumbar spine from supine to
standing in young, back-healthy individuals that develop LBP after prolonged
standing. Our hypothesis is that methods that take into account the entire
anatomy of the lower back as well as its progression between different positions
will be capable of relating subject-specific spinal anatomy to clinical variables
such as pain.

2 Materials

2.1 Demographics

Eleven human participants (4 male/7 female) were recruited for this study with
informed consent under approval of Washington University Institutional Review
Board approval. The participants were between 18 and 30 years old with a Body
Mass Index lower than 30 kg/m2. These participants were recruited from the
community surrounding the Saint Louis, Missouri area, and were included in our
study if they reported LBP after prolonged standing in a supervised clinic [7,19].

Following the standing MRI acquisition, the participants were instructed to
continue standing for up to two hours, but they were allowed to end the standing
regimen if they could not tolerate the pain or discomfort. Every 15 min, the
participant reported the extent of their LBP symptoms on a visual analogue
scale (VAS). A VAS rating was made by marking the location along a 100 mm
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horizontal line corresponding to the current level of pain, with 0 being no pain
and 100 being worst pain, which was collected for each patient at each time
point of each repeated MRI. Table 1 shows the patient data we use in this study.
The VAS values of 11 subjects are recorded in supine and standing positions at
15-min intervals.

Table 1. Subject VAS values at each time point. Highly variable VAS values are
reported by each subject.

Subject VAS

id Supine T0 T1 T2 T3 T4 T5 T6 T7

03 0 5 8 4 13 16 9 13 12

05 0 0 0 2 4 5 10 11 15

15 0 0 0 0 0 0 0 7 14

16 0 0 0 5 9 10 3 10 6

18 0 0 0 0 0 0 0 8

19 0 0 0 0 0 0 0 17 11

25 0 0 0 0 3 0 7 20 8

28 0 9 0 17 25 20 10 19

29 0 0 5 20 17 23 28 34 44

31 0 0 0 0 0 0 0 5 6

33 0 0 0 0 3 3 3 5 4

2.2 MRI Acquisition and Segmentation

Images of the lumbar spine (L1-S1) were obtained using the 0.6T Open Upright R©
MRI (Fonar, New York, NY) system. A 3-plane localizer was used to acquire
sagittal T2 weighted images with the following acquisition parameters: repetition
time = 610 ms, echo time = 17 ms, field of view = 24 cm, acquisition matrix =
210 × 210, slice thickness = 3 mm, no gap, scan duration = 2 min). This sequence
was optimized for reducing scan time and motion artifacts [19]. The table was
adjusted to a horizontal position of 180◦. The participant was positioned in
supine for 10 min prior to the first scan. The MRI table then was moved to a
vertical position with a 84◦ table tilt where participants were then standing. The
table tilt of 84◦ stablizes the participant and prevent motion artifacts during the
imaging in standing. Participants were told to stand normally without leaning
on the sides of the magnet, back of the scanner or on the VersaRestTM during
the scan in standing.

The exported DICOM files were then manually segmented using 3D Slicer [9]
by a single expert rater. Each sagittal slice was evaluated and the intervertebral
disc (IVD) contour was defined for each lumbar segment and the combined into
a set of discrete volumes. Figure 1 shows an example snapshot of the MRI image
and the segmented IVDs.
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Fig. 1. An MRI acquisition of the lumbar spine region. Two of the segmented IVD
shapes have holes on the side due to the limited size of scanning window.

2.3 Correspondence Estimation

The first step in establishing correspondence is the construction of a prototype
shape complex, as in [4]. The prototype shape defines the topology as well
as the density of sampling across the surface of each shape, and serves as the
common shared representation across the population. A mesh of the prototype
shape complex for the intervertebral discs is shown in the left of Fig. 2. For
each subject, the prototype shape complex is aligned to the supine observation
by diffeomorphic surface registration. This brings the prototype shape complex
into the subject-specific coordinate system and closely matches the geometry
of the raw observations. This has the added benefit of preserving the topology
defined by the prototype shape, dealing with holes or missing structures in the
observations, as shown with the red arrow in Fig. 2.

Next, for each subject, the aligned supine shape complex is propagated across
the time-series by diffeomorphic piecewise geodesic registration. This carries the
common topology and sampling to match each raw observation in the time-
series. Starting from a prototype shape configuration with a dense sampling,
this establishes correspondence across the population and across time [4]. The
shape alignment procedure was implemented using deformetrica [2].
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Fig. 2. Overview of correspondence estimation. The prototype shape complex is a com-
mon representation across the population which defines topology and shape sampling.
First, the prototype shape complex is aligned to the supine observation of each sub-
ject by diffeomorphic registration by φi

Supine. The red arrow shows a hole in the raw
observation which will be replaced with the consistent topology of the prototype shape.
The results are propagated across the time-series by diffeomorphic piecewise geodesic
registration φi

t which establish correspondence across the time-series as well as the
population of subjects i. (Color figure online)

After the correspondence is established, we adopt partial procrustes align-
ment to obtained aligned IVDs (Fig. 3) for geodesic logistic shape analysis which
is described in details in the next section.

3 Methods

3.1 Shape Space and Geodesics

The IVD shapes analyzed by geodesic logistic regression (GLR) are obtained
through partial procrustes alignment and lie on shape space defined as the pre-
shape space of Kendall space [10], in which translation, rotation, and similarity
components are all removed. The shape space is formed as a high dimensional
sphere which can be treated as a Riemannian manifold M . A geodesic on M is
a zero-acceleration curve with the property that no shorter curve exists between
any two points within a small neighborhood other than the geodesic. We use two
manifold specific operations in this work, namely the exponential map and the
log map. An exponential map Exp(p, v) = q maps a shape p ∈ M to another
shape q ∈ M along a geodesic path in the direction and magnitude of a tangent
vector v. A log map Log(p, q) = v is the inverse operation of the exponential
map in which a unique tangent vector that maps p to q along a geodesic path
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Fig. 3. Procrustes aligned IVD shapes for a single individual in (a) supine position and
at time points (b) T0 and (c) T7 of the time series.

is obtained given two shapes p and q. The geodesic distance between the two
shapes is then defined as the L2-norm of their log map dist(p, q) = ||Log(p, q)||.
More rigorous and complete definitions of related concepts are available in [3].

3.2 Logistic Regression in Shape Space

A logistic regression model can be written as

p(x) =
1

1 + e
−(x−u)

s

(1)

where p(x) is the probability of explanatory variables x having certain label, u
is the decision boundary and s is the scale parameter representing the sharpness
of the decision boundary.

In shape space, we also want the decision boundary which splits the space
into two subspaces. Similar to the concept of principal nested spheres [8], the
splitting boundary for a n + 1 sphere Sn+1 could be a n sphere Sn, the sphere
that is one dimension lower than Sn+1. We define the decision boundary as such
a sphere with two parameters C(u, d), where u is a point on Sn+1 and d is the
geodesic distance between u and the decision boundary C. Thus, if we create
a scalar field on Kendall space based on the geodesic distance to u, C is the
isocontour with value d. In terms of value, u is equivalent to the normal vector
of C.
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Given the above definition of a decision boundary C(u, d) on Sn+1 and a
shape x, we define the geodesic logistic regression model as

p(x) =
1

1 + e
−(dist(x,u)−d)

s

(2)

where dist(x, u) is the geodesic distance between x and u, and s is the scale
parameter.

3.3 Parameter Estimation

Let y ∈ {0, 1} be the label of corresponding x, the unified negative log-likelihood
function is formulated as

l = −y ln p − (1 − y) ln(1 − p). (3)

Given an input data set, we would like to minimize this negative likelihood
function to obtain fitted parameters of the logistic regression model. To facilitate
calculation, we apply the chain rule and define intermediate variable z as

z =
dist(x, u) − d

s
. (4)

Then p and the partial derivatives can then be derived as:

p =
1

1 + e−z
, (5)

∂l

∂p
= −y

p
+

1 − y

1 − p
, (6)

∂p

∂z
= p(1 − p), (7)

∂z

∂u
=

ˆ−Logux

s
, (8)

∂z

∂d
= −1

s
, (9)

∂z

∂s
= −dist(x, u) − d

s2
= −z

s
, (10)

where ˆLogux is the normalized tangent vector from u to x.
The shape space is not Euclidean, hence we estimate the parameters by using

iterative gradient descent. The ith iteration is calculated on the local tangent
hyperplane at ui and the parameters are updated as:

ui+1 = Exp(ui,−α
∂l

∂ui
), (11)
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di+1 = di − α
∂l

∂di
, (12)

si+1 = si − α
∂l

∂si
, (13)

where α is the step size.
Given a dataset with K shapes, the negative log-likelihood function L is

simply the summation of the individual l’s and the parameter estimation process
would be the same as the above in the summation form.

4 Results and Discussions

4.1 Test on Low Dimensional Synthetic Data

To validate our GLR model, we first test our implementation on the unit 3D
sphere. Points on the unit sphere represent shapes with only one 3D point and
the sphere is the corresponding shape space. Figure 4 shows the progress of esti-
mating GLR model parameters from 9 labeled input points at various iterations.
The red and the green are the input points with labels 1 and 0 respectively. The
blue and the black background points indicate the sub-regions around the input
points labeled with 1 and 0 from the GLR model at the ith iteration. We set the
optimization parameters as 0.0001 and 1 × 10−8 for the step size and the step
termination tolerance. The initial d, s and u are chosen as 0.5, 1 and the Fréchet
mean [14] of all input points. As shown in Fig. 4, the decision boundary moves
fast in the first 5000 iterations with some overshooting due to the large gradient
and the linearized iterative optimization scheme. The decision boundary then
gradually conform to the input points until convergence at iteration i = 23395.

4.2 Analysis of IVD Data

We further applied our GLR model to the obtained IVD data set described in
Sect. 2. For both tests on the cross-subject supine shapes and on the IVD shapes
within individual subjects, we select the same parameters for GLR model param-
eter estimation: step size = 0.01, max iteration = 10000 and step termination
tolerance = 1 × 10−8.

Cross-Subject Supine Shapes. We first test our GLR model on the supine
shapes from the input data set. We adopted three types of labeling strategies to
explore, under our GLR model, whether there is potential separation between
individual subjects that relates their supine IVD shape characteristics to the
development of LBP. First, to test separation between significant pain develop-
ers versus non-significant pain developers, we use the maximum VAS values in
time series data as the labeling criteria. Thresholds of 15 and 20 are adopted
(max(VAS) ≥ 15/20). Second, we try separating easy pain developers from non-
easy pain developers by labeling subjects using total numbers of time points that
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Fig. 4. The progress of estimating GLR model parameters from 9 labeled input points
on a 3D sphere at various iterations. The red and the blue background points are
labeled with 1, and the green and black background points are labeled with 0 in the
input and the GLR model respectively. The parameter fitting iterations terminate at
i = 23395 due to the step size being smaller than the preset step tolerance. (Color
figure online)

has VAS values greater than certain threshold of low VAS value. 4 or more entries
with 5 or greater VAS values within a single subject’s time series data is adopted
as the labeling criterion (sum(VAS≥5) ≥ 4). Last, to distinguish between early
pain developers and late pain developers, number of non-zero entries is used and
we choose 4 as the labeling criterion (sum(VAS = 0) ≥ 4). All the labeling crite-
ria are chosen such that the label distribution are relatively balanced. Otherwise,
a uniform label of the majority population could yield a very decent regression
result.

Table 2 shows the regression results from fitted GLR model on the supine
shapes using different labeling criteria. All fitted GLR models yield labeling
result with 72.7% or higher accuracy, indicating the likely separation between
individual subject’s supine shapes under the proposed GLR model and the
selected labeling criteria i.e. self reported pain intensity after standing. We deem
results to be very promising considering the heterogeneity present in the input
data set.
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Table 2. Regression results from fitted GLR model.

Labeling criteria Mislabeled subjects Accuracy

03 05 15 16 18 19 25 28 29 31 33

max(VAS) ≥ 15 x x 81.8%

max(VAS) ≥ 20 x x x 72.7%

sum(VAS≥5) ≥ 4 x x x 72.7%

sum(VAS=0) ≥ 4 x x x 72.7%

Patient-Specific Supine and Time Series Data. We further applied GLR
to each patient supine and standing time series data to test whether there is a
possible separation of the IVD anatomy of a single patient based on pain (VAS =
0) and non-pain (VAS �= 0). The results from fitting GLR models on individual
subjects are shown in Table 3. Note that the logistic regression model is different
from other classification paradigms like support vector machine which searches
for maximizing the separation margin between data points with different labels.
Instead, the parameter estimation process would generate a GLR model that
minimizes the overall negative log-likehood function. If there is a cut-off on the
GLR outputs that clearly separates the inputs with different labels, a unique
distance d can then be inferred accordingly based on Eq. 2 and thus the boundary
separating each population can be derived. As indicated from the results, we
find almost perfect cut-offs for most of the subjects. Only three subjects have a
single missclassified time point data. These results are very encouraging because
our GLR formulation can consistently separate between pain and non-pain IVD
shapes for almost all patients, especially considering the heterogeneous nature

Table 3. Outputs from fitted GLR model on individual time series data (mislabeled
shapes in red using manual cut-offs).

Subject Fitted GLR model outputs (mislabeled in red) Cut-off Accuracy

id Supine T0 T1 T2 T3 T4 T5 T6 T7

03 0.621 0.966 0.971 0.977 0.980 0.973 0.978 0.978 0.975 0.7 100%

05 0.506 0.606 0.595 0.808 0.853 0.801 0.821 0.791 0.810 0.7 100%

15 0.171 0.219 0.187 0.146 0.155 0.145 0.226 0.259 0.257 0.24 100%

16 0.532 0.690 0.647 0.743 0.749 0.725 0.685 0.793 0.749 0.7 88.9%

18 0.026 0.014 0.014 0.016 0.018 0.022 0.040 0.461 0.2 100%

19 0.004 0.018 0.029 0.195 0.125 0.183 0.137 0.439 0.453 0.3 100%

25 0.338 0.448 0.323 0.457 0.497 0.467 0.463 0.484 0.475 0.47 88.9%

28 0.541 0.896 0.688 0.909 0.879 0.900 0.891 0.884 0.7 100%

29 0.185 0.013 0.999 0.999 1.000 1.000 0.999 0.997 1.000 0.5 100%

31 0.122 0.188 0.045 0.034 0.169 0.265 0.194 0.245 0.403 0.23 88.9%

33 0.185 0.589 0.519 0.544 0.682 0.701 0.684 0.633 0.761 0.6 100%
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of the IVD shapes and the limitations in the data acquisition and preparation
i.e. the incompletely scanned IVDs, the low resolution from the positional MRI
and the manual segmentation.

4.3 Limitations and Future Work

Below we list several limitations of our current study that, if improved in future,
could be further used to refine our understanding of the geometric characteristics
of LBP.

1. Some of the field of views of the positional MRI scans employed in this study
were too small to capture the entire IVD geometry. This means that the IVD
shapes had non-closed boundaries on the left and/or right sides and thus were
incomplete. We artificially closed them with flat planes in order to carry our
GLR analysis.

2. The VAS values are subjectively self-reported with limited positional consis-
tency. Subjective assessment of VAS may cause shift in the perceived VAS
value over the duration of the study (∼2 h) as a patient may become more
used to the standing position. Meanwhile, even if the scan data was generated
in a way that the patients remained in the same standing position as much as
possible, minor positional adjustment may still be possible during the study.
The non monotonic changes in the VAS value potentially reflect the above
aspects of the data set.

3. A more sophisticated version of the GLR model may yield better fitting results
on the data set. It is possible to parameterize the boundary distance d as a
function of the tangent vector at u. Parametric generalization of the decision
boundary, an Sn sphere, to spline based geodesic curves [6] is also feasible to
be used to create decision boundary with closed topology.

5 Conclusions

In this paper we present a novel application of a GLR model targeted to analyze
the anatomy of the spine of patients that suffer LBP after prolonged standing
as captured by positional MRI both in supine and standing positions. The GLR
model has demonstrated very positive results in delineating IVD shapes based
on VAS values on the cross population supine data set as well as the individual,
subject-specific supine and standing data sets.

LBP happens in otherwise healthy individuals, and it first appears after
prolonged standing. The appearance of LBP during standing is a strong predictor
to the development of chronic LBP, that has the potential to cause an incredible
human and financial burden to individuals that suffer it. Thus, we believe our
proposed tool will be important to prevent patient from suffering and loss of
productivity. Also importantly, this system has the potential to optimize work
performance on individuals that are required to stand for prolonged times at
their jobs by predicting the time before pain develops.
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We plan to continue this work by improving data acquisition and process-
ing, increasing our sample size and refining our non-Euclidean shape modeling
techniques.

Acknowledgements. This work is supported by the National Institute of Health
R01EB021391 “Shape Analysis Toolbox: From medical images to quantitative insights
of anatomy” (SlicerSALT).
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2. Bône, A., Louis, M., Martin, B., Durrleman, S.: Deformetrica 4: an open-source
software for statistical shape analysis. In: Reuter, M., Wachinger, C., Lombaert,
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Abstract. Three-dimensional (3D) shape lies at the core of understand-
ing the physical objects that surround us. In the biomedical field, shape
analysis has been shown to be powerful in quantifying how anatomy
changes with time and disease. The Shape AnaLysis Toolbox (SALT)
was created as a vehicle for disseminating advanced shape methodology
as an open source, free, and comprehensive software tool. We present new
developments in our shape analysis software package, including easy-to-
interpret statistical methods to better leverage the quantitative infor-
mation contained in SALT’s shape representations. We also show Slicer-
Pipelines, a module to improve the usability of SALT by facilitating the
analysis of large-scale data sets, automating workflows for non-expert
users, and allowing the distribution of reproducible workflows.

Keywords: Shape analysis · Statistics · Open-source software

1 Introduction

Statistical shape analysis is an essential area of research in computer science and
mathematics, with application areas as diverse as biology, anatomy, agriculture,
or paleontology. Shape represents critical morphometric features not encoded in
simple derived measurements such as volume or linear distances. Over the past
three decades, our research team and others have been developing shape anal-
ysis methodologies that are widely used within their own labs. However, these
methods have not fully transitioned into clinical applications due to requiring
the users to be experts in computer science or statistics.

SlicerSALT was created with the vision to integrate recent methodological
advancements into a user-friendly toolkit. SlicerSALT meets the critical need
of the broad scientific community to have access to technologies otherwise only
available to specific computer science research labs, all while encouraging repro-
ducibility and transparency. It benefits from a large international user commu-
nity by making use of the 3D Slicer ecosystem as well as Kitware’s open source
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libraries such as the Insight Toolkit (ITK) [10] and the Visualization Toolkit
(VTK) [12]. SALT follows strict quality standards for software development and
testing. These factors position SlicerSALT as one of the leaders in shape analy-
sis software development and dissemination and create conventions and quality
standards for future work.

SlicerSALT fills a niche for researchers interested in a broad range of biomed-
ical shape analysis tasks. Most other packages focus on tasks such as image
segmentation (itkSNAP [16]) or specific neuroimaging pipelines (FreeSurfer [5],
FSL [6]). There are only a few freely distributed toolkits for generic shape anal-
ysis tasks, including ShapeWorks [3], Deformetrica [4] or Statismo [1]. However,
those packages each have a relatively narrow focus. Deformetrica deals with
deformations of the 2D or 3D ambient space while ShapeWorks and Statismo
are only designed for point distribution models (PDMs) or principal component
analysis (PCA). SALT, on the other hand, provides users with a wide variety of
tools for both creating different shape representations and performing statistical
analysis to accomodate a wider range of applications.

This paper is intended to present the new features in SlicerSALT v4.0, as com-
pared with previous versions [15]. Over the past six years SlicerSALT has pro-
vided biomedical researchers with access to sophisticated shape analysis method-
ology otherwise reserved for computer science experts. In this new release, we
intend to expand this toolkit towards novel and interpretable shape statistics, in
order to maximize the potential benefits of the geometric information contained
in medical data and expand its use in order to support impactful biomedical
research.

2 Shape Representations and Correspondence

In addition to standard PDM models computed using SPHARM-PDM, Slicer-
SALT 4.0 has improved support for skeletal shape models and producing corre-
spondence via registration. We have also updated various visualization tools for
examining shape populations for quality control.

2.1 Skeletal Representations

The functionality for creating, displaying, analyzing, and storing skeletal rep-
resentations (s-reps) was completely re-engineered for SlicerSALT 4.0. These
updates were necessary to make the tools easier to use as well as allowing reuse
of the code in other modules.

We have developed a new SRep module that allows users to see basic infor-
mation about s-reps as well as modify their display properties. The user can
easily change spoke and skeletal grid thicknesses, colors, opacity, and visibility
for different parts of the s-rep.

This module also adds a new Medical Reality Modeling Language (MRML)
data node for s-reps. This allows modules in this and other extensions to easily
use, manipulate, and display s-rep data as it would with other data types native
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Fig. 1. Skeletal representations module in SlicerSALT with an s-rep visualization.

to 3D Slicer. Additionally, this makes it easier to save, load and share s-rep
files as they can be read and written via the standard 3D Slicer Save and Load
buttons as well as loaded via drag-and-drop. The new JSON-based file format is
also more human readable and allows the data to be read using standard JSON
parsing libraries.

S-reps are fit to objects using the SRepCreator and SRepRefiner modules.
First, an input surface is given to the SRepCreator which generates an s-rep using
a method based on surface curvature flow to estimate a best-fitting ellipsoid [8].
An s-rep is analytically computed from the ellipsoid and propagated back to the
original surface via thin-plate splines. The SRepRefiner takes this initial s-rep
and uses an optimization process to improve its fit to the original object surface
as well as geometric properties such as ensuring that s-rep spokes are orthogonal
to the object boundary.

Other modules in SlicerSALT that work on s-reps have been modified to
support this new format. These modifications will be detailed in the following
relevant sections.

2.2 Registration Based Correspondence

Common techniques for creating shape representations, such as SPHARM-PDM,
attempt to create models that already have inherent correspondence across a
population. This works well for objects with simple topologies. However, for
objects with more complicated geometries or topologies, other approaches are
required. A variety of techniques have been developed to address this problem,
but many of them do not have implementations that are available for wide use
and do not come with groups of associated tools for analyzing the resulting
representations.

SlicerSALT 4.0 now includes a module for creating corresponding represen-
tations of objects with complex geometry or non-spherical topology [14]. It takes
a mesh of a representative object as a template and deforms this template to
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match other objects of the population via registration to create correspondence.
We use ITK’s registration framework with the option of either a b-spline or dif-
feomorphic demons [13] registration to register a template surface mesh to each
of the target objects. For this, we first create level-set representations of the tem-
plate and target meshes by computing distance functions from each object. The
template distance function is then registered to the target using the diffeomor-
phic demons registration algorithm. The resulting transform is then applied to
the original template mesh, yielding a mesh that conforms to the target object’s
boundary but has the topology of the template for all of the population. Figure 2
shows correspondences generated using this module.

Fig. 2. Corresponding femur models computed via registration-based correspondence.
Similar coloring at similar anatomical locations show the quality of the correspondence.

2.3 Shape Population Viewer

Shape Population Viewer is a module that allows the user to quickly visualize
an entire population of objects simultaneously. This allows the user to quickly
assess population-wide correspondences such as in Fig. 2 or verify there are no
ill-formed meshes. This module has been extended to support s-reps as seen in
Fig. 3.

3 Shape Analysis Methods

SlicerSALT 4.0 introduces changes to several existing shape analysis modules as
well as introducing several new ones.
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Fig. 3. ShapePopulationViewer displaying a set of 15 s-reps.

3.1 Shape Variation Analyzer

The Shape Variation Analyzer (SVA) module is designed to take in a set of
corresponding PDMs or s-reps and use principal component analysis (PCA) or
composite principal nested spheres (CPNS) [11] to compute a mean shape and
its major modes of variation. The user can then visualize the mean shape as well
as how moving along each principal component changes the shape of the object.
This module allows for a quantitative comparison of the generated shape space to
those created by other methods by examining the percent of variation explained
by the modes of variation as well as computing generalization, specificity, and
compactness measures on the distribution.

PCA. For Euclidean shape representations such as PDMs, SVA allows the com-
putation of PCA directly on the point positions of the shape representation. SVA
also allows the user to view the mean shape and explore the modes of variation
of the PCA shape space and to evaluate the quality of the generated models as
seen in Fig. 4.

The inputs are a list of VTK mesh files that are in correspondence. PCA
results can be saved using the “Save Exploration” button and loaded using the
“JSON File” entry.

Principal Nested Spheres. Because s-reps are non-Euclidean, the s-rep data
must first be Euclideanized using principal nested spheres (PNS) [7] before PCA
can be computed. This approach is known as composite principal nested spheres
(CPNS) and has been shown to produce more compact representations with
more meaningful modes of variations for s-reps. After CPNS is computed the
user can interact with the mean s-rep and its modes of variation similarly to
the PCA tools for PDMs. The module automatically chooses to use CPNS when
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Fig. 4. A screenshot of the SVA module in SlicerSALT. The left panel shows controls,
the middle shows a mean shape (gray, transparent) alongside a shape (blue) deformed
along its first principal component, and the right shows a PCA scree plot. (Color figure
online)

s-reps are provided so that the user can not accidentally use the wrong analysis
tools.

3.2 Distance Weighted Discrimination

Distance Weighted Discrimination (DWD) is a binary classification method
designed to address shortcomings with support vector machine (SVM) perfor-
mance when applied to high-dimension, low-sample-size (HDLSS) data [9] . We
have created a module in SlicerSALT that allows the user to perform PDM clas-
sification based on one categorical variable. Similarly to SVM, DWD performs
classification by computing the distance of each sample to a separating hyper-
plane, with samples lying on the same side of the hyperplane being classified
together. It improves over SVM by considering the effects of all of the data on
the separating hyperplane rather than just a limited set of support vectors.

3.3 Deep Learning for Geometry: FlyBy CNN

Building upon recent work to start bringing powerful deep learning method-
ologies to 3D Slicer, SlicerSALT now includes a projection-based convolutional
learner called FlyBy CNN [2]. Specifically, 2D projection snapshots are acquired
at locations along a predefined path on an encompassing sphere. The collection
of snapshots forms an ordered 2.5D dataset that is analyzed via existing time
series CNN approaches. An implementation via LSTM (Long Short-Term Mem-
ory) networks has been developed and applied to condylar surfaces. The results
showed improved disease diagnosis performance when compared to a traditional
dense network. The main advantage of this approach is that it can be applied to
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any general surface without the need for an existing correspondence or a consis-
tent topology across surfaces. The disadvantage is that highly folded surfaces are
not well represented with a projection approach, although shape-aware snapshot
pathways are a planned extension to address this.

4 Infrastructure

In addition to new methods for creating and analyzing shapes, SlicerSALT 4.0
introduces key new application and infrastructure features to further support
community research efforts.

4.1 Pipelines

SlicerPipelines is a new extension that allows the creation and use of simple
modules in 3D Slicer without coding. This extension was developed as part of
SlicerSALT and has been added to the Slicer Extensions Index for the broader
research community to use.

Pipelines are pieces of logic that take a single MRML node as input (a model,
a volume, etc.) and returns a single MRML node as output. Pipelines are cre-
ated by stringing together individual existing 3D Slicer modules to produce a
new derived workflow. Some examples of modules that could become parts of a
pipeline are converting a model to a segmentation, using the 3D Slicer Segment
Editor’s hollow, margin, and thresholding effects, and methods like decimation
and smoothing from the 3D Slicer Surface Toolbox.

Because they currently can only take a single node as input and return a
single node as output, Pipelines are best for simple, repetitive workflows (e.g.
threshold an image, apply smoothing, convert to a model, repeat for the next
image). For more complicated workflows that depend on multiple MRML inputs
or user interaction, manually coding a new module is currently still required,
though integration with the automated pipeline creation is planned for the
future.

4.2 Sample Data and Tutorials

To aid new users in understanding how to use the methods deployed in Slicer-
SALT, we have integrated tutorials and example data for many modules directly
into the SlicerSALT interface. Tutorials are given as links to slides on Google
Drive which give the user a brief introduction to the method deployed in a mod-
ule as well as walking them through its typical use. For sample data, data is
automatically downloaded and verified. The user is able to inspect the data to
better understand the input formats required for the module. The module UI
is automatically populated with paths to the downloaded data so that the user
can understand how to load their own data into the module. The user can run
then run the module and inspect the sample output. An example of the Tutori-
als panel showing sample data being downloaded and paths automatically set is
shown in Fig. 5.
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Fig. 5. The Tutorials panel showing a link to an online tutorial as well as sample data
download buttons.

5 Discussion

The structures captured in 3D images coming from the biomedical fields have
brought shape processing methods into the spotlight. The complex and time-
varying phenomena contained in geometric structures require higher sensitivity
to local variations relative to traditional markers, such as the volume of struc-
tures. In this new project period, SlicerSALT will continue providing biomedical
researchers with access to sophisticated shape analysis methodology otherwise
reserved for computer science experts. In addition, with the expansion towards
novel and interpretable shape statistics, we will maximize the potential benefits
of the geometric information contained in medical data and expand its use in
order to support impactful biomedical research.

SlicerSALT development is ongoing and there are several plans for future
improvements. As deep learning becomes increasingly important in the medi-
cal imaging and shape analysis communities, we plan to build upon the work
described in Sect. 3.3 to introduce improved support for creating and analyzing
shapes using deep learning. Our ultimate goal is to create blueprint modules
for both training deep learning models and using existing models to perform
inference. This will allow users to rapidly create new modules by giving them a
starting point which they can customize rather than requiring module develop-
ment from scratch.

To demonstrate the power of the SlicerPipelines extension for creating
reusable and reproducible workflows, we plan to create example pipelines using
public datasets for carrying out end-to-end shape analysis tasks. One example



SlicerSALT: From Medical Images to Quantitative Insights of Anatomy 209

could be to start from a set of segmentations, create a population of PDMs
using SPHARM-PDM, compute and visualize a shape space using SVA, and
finally classify the inputs into two groups using DWD. These pipelines will help
non-expert users quickly try various analysis methods on their own data and
give more advanced researchers a way to distribute their workflows in a way
that they can be easily resused.

Acknowledgements. SlicerSALT development has been funded by NIH NIBIB
awards R01EB021391 and R56EB021391 as well as NHLBI award R01HL153166.
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Doğa Türkseven1, Islem Rekik1,2 , Christoph von Tycowicz4 ,
and Martin Hanik3,4(B)

1 BASIRA Lab, Istanbul Technical University, Istanbul, Turkey
2 Computing, I-X and Department of Computing, Imperial College London,

London, UK
i.rekik@imperial.ac.uk

3 Freie Universität Berlin, Berlin, Germany
4 Zuse Institute Berlin, Berlin, Germany

{vontycowicz,hanik}@zib.de

Abstract. Predicting the future development of an anatomical shape
from a single baseline observation is a challenging task. But it can be
essential for clinical decision-making. Research has shown that it should
be tackled in curved shape spaces, as (e.g., disease-related) shape changes
frequently expose nonlinear characteristics. We thus propose a novel pre-
diction method that encodes the whole shape in a Riemannian shape
space. It then learns a simple prediction technique founded on hierarchi-
cal statistical modeling of longitudinal training data. When applied to
predict the future development of the shape of the right hippocampus
under Alzheimer’s disease and to human body motion, it outperforms
deep learning-supported variants as well as state-of-the-art.

Keywords: Shape development Prediction · Regression · Riemannian
manifold

1 Introduction

Shapes of anatomical structures are of considerable medical interest, and they
are encountered particularly often in the analysis of medical images. Studies
have shown that they should be modeled as elements of curved manifolds—shape
spaces—instead of ordinary Euclidean space [18]. Thus, it is imperative to develop
methods for such spaces when working on problems involving anatomical shapes.

A particularly interesting and relevant task is the prediction of the future
development of a shape—“How will an anatomical structure look like after a
certain amount of time has passed?” This question is of great interest as shapes of
anatomical structures are often correlated with (states of) diseases; see, e.g., [6,
16,18]. Predicting how a shape will develop in the future could thus play a
significant role in diagnosis and prevention as well as aid physicians in their
choice of treatment.

One important example is the relation between the shape of the hippocampus
and Alzheimer’s disease, as previous studies have shown that the former can be
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used to discriminate between Alzheimer’s and normal aging [11]. Thus, if the
longitudinal development of the hippocampus’ shape can be predicted, a better
prognosis can be achieved; and with Alzheimer’s improved early diagnosis can
have a serious positive impact [19].

To uncover developmental trends in populations, longitudinal studies that
involve repeated observations of individuals play an essential role. The variabil-
ity in such data can be distinguished as cross-sectional (i.e., between individ-
uals) and longitudinal (i.e., within a single individual over time). The latter
is highly correlated, violating the independence assumption of standard sta-
tistical tools like mean-variance analysis and regression, thus requiring infer-
ential approaches that can disentangle cross-sectional and longitudinal effects.
For shape-valued data, another challenge that warrants attention is that curved
spaces lack a global system of coordinates. Assessing differences in longitudinal
trends requires a notion of transport between tangent spaces to spatially align
subject-specific trajectories. For manifolds, parallel transport has been shown to
provide highly consistent transports [14,16] with improved sensitivity over other
methods. Specifically, in [5] the adequateness of geodesic subject-wise models
for the progression of subcortical brain structures in Alzheimer’s disease and
the potential for prognosis via parallel transport of individual trends has been
shown.

To assess longitudinal and cross-sectional shape variation jointly, hierarchical
statistical models pose an adequate and very flexible framework [12]. In recent
years, various generalizations of such models to manifold-valued data have been
proposed based on probabilistic [3] and least-squares theoretic [13,15,17] formu-
lations. These approaches account for the inherent interrelations by describing
each subject with its own parametric spatiotemporal model—most prominently
geodesics. Additionally, the subject-specific trends are assumed to be perturba-
tions of a population-average trend, which is referred to as the “fixed” effect and
is often of primary interest.

Population-level analysis apart, a few studies have focused on shape develop-
ment prediction for individuals. A deep learning pipeline for predicting longitu-
dinal bone shape changes in the femur to diagnose knee osteoarthritis was intro-
duced in [6]. This approach utilizes a spherical encoding to map a 3D point cloud
of the bone into a 2D image. It thereby relies on the assumption that the femora
are (approximately) star-shaped. While the proposed pipeline produces accurate
predictions of future bone shape, anatomies in general (e.g., hippocampi) are not
star-shaped prohibiting a spherical encoding. A further limitation of the method
is that it needs 3 separate observations for its prediction—a requirement that
strongly hinders early diagnosis.

A varifold-based learning approach for predicting infant cortical surface
development has been proposed in [20]. The method uses regression on varifold
representations [9] to learn typical shape changes and uses the latter to predict
from a single baseline. Although the method partly uses the curved space of dif-
feomorphisms, it only employs it for pre- and post-processing. It further requires
the user to set several data-dependent parameters as optimal as possible (i.e.,
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two data-dependent kernel sizes, a weighting between terms in the loss of the
regression, the concentration of time points, and the number of neighbors to be
considered in a nearest neighbor search), leading to a relatively high entry-barrier
for users.

In this work, we propose a novel method based on hierarchical statis-
tical modeling to predict shape evolution. In contrast to previous geodesic
approaches [5] that relied on hand-picked reference individuals, we provide a
data-driven approach for learning shape progression. Representing subject-wise
trends as geodesics in shape space allows us to learn from longitudinal observa-
tions while respecting within-subject correlations. After training on whole trajec-
tories, the prediction requires only a single shape making it applicable when only
the baseline observation of the longitudinal development is given. Conceptually,
our prediction is very simple as it only consists of a parallel translation of the
initial velocity of the mean trend and a subsequent evaluation of a geodesic. It
thus provides a high degree of interpretability. Furthermore, no data-dependent
parameters need to be set, which makes the method very user-friendly.

To validate our approach, we apply it to two real-world problems. We use
it to predict the development of the shape of the right hippocampus under
Alzheimer’s. To the best of our knowledge, this is the first approach that applies
longitudinal statistical modeling to the prediction of shape developments from
a single baseline. We also use our method to predict human body motion as an
example of an application in which large shape changes occur. In both appli-
cations, we outperform state-of-the-art by a considerable margin. Our method
even slightly outperforms deep-learning-enriched variants. The source code for
the geometric components used in the proposed method is available in the Mor-
phomatics library [1]. An implementation of our proposed method can be found
on https://github.com/morphomatics/ShapePrediction.

2 Method

We first recall the necessary basics from Riemannian geometry and geometric
statistics; a good reference on them is [18].

A Riemannian manifold is a differentiable manifold M together with a Rie-
mannian metric 〈·, ·〉p that assigns a smoothly1 varying scalar product to every
tangent space TpM . The metric also yields a (geodesic) distance function d on
M . A further central object is the Levi-Civita connection ∇ of M . Given two
vector fields X,Y on M , it is used to differentiate Y along X; the result is again
a vector field, which we denote by ∇XY . With a connection one can define a
geodesic γ as a curve without acceleration, i.e., ∇γ′γ′ = 0, where γ′ := d

dtγ.
It is a fundamental fact that each element of M has a so-called normal convex
neighborhood U in which any two points p, q ∈ U can be joined by a unique
length-minimizing geodesic [0, 1] � t �→ γ(t; p, q) that does not leave U . Since
it is the solution of a second-order differential equation, p, and γ′(0) determine
γ completely. Indeed, for every p ∈ U there are the Riemannian exponential
1 Whenever we say “smooth” we mean “infinitely often differentiable”.

https://github.com/morphomatics/ShapePrediction
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Fig. 1. Depiction of the shape prediction method in a shape space M .

expp : TpM → U and logarithm logp := exp−1 : U → TpM with exp(v) := q
such that γ′(0; p, q) = v and logp(q) = γ′(0; p, q).

A further important fact is that in a Riemannian manifold, one usually can-
not identify tangent spaces with each other. Therefore, tangent vectors must be
transported explicitly along curves between points—the so-called parallel trans-
port. This process depends on the chosen path; however, in U , we can always
transport along the geodesic that connects the origin and destination. Therefore,
whenever we speak of parallel-translating a vector v from some p ∈ U to q ∈ U
transport along the geodesic from p to q is meant; the resulting vector (which is
in TqM) is denoted by Πq

p(v).
Whenever we work with data, means are of interest. Given q1, . . . , qn ∈

M , their Frechet mean is the minimizer of the Frechet variance F (p) :=∑n
i=1 d(p, qi)2.
Interestingly, the set of all geodesics G(U) := {γ : [0, 1] → U | γ geodesic}

in U can also be given the structure of a Riemannian manifold imposing a
functional-based Riemannian metric [17]. As a consequence, we can compute
Frechet means of geodesics in G(U) if they are sufficiently localized; we assume
the latter throughout this work.

We are now ready to introduce our model for shape prediction, which we will
use for hippocampi. For this let M be any shape space that is a Riemannian
manifold and U ⊆ M a normal convex neighborhood consisting of the shapes of
interest to us. Given a shape p∗ ∈ U observed at time t0 our goal is to predict
its future form q∗ ∈ U at time point t1. For simplicity of exposition, we assume
in the following that t0 = 0 and t1 = 1. This can always be achieved when the
times are viewed relative to an interval that contains them.
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Our fundamental assumption is that p∗ develops along a geodesic through U ,
i.e., there is γp∗ ∈ G(U) such that the longitudinal development of p∗ at time t is
given by γp∗(t). Several works have shown that this is often an adequate choice
when modeling shape developments in the medical context [16,18]. Then, since
geodesics are determined by their starting point and initial velocity, we need to
find γ′

p∗(0); because then
q∗ = expp∗(γ′

p∗(0)). (1)

In other words, to predict the development of any shape p∗ ∈ U that is of interest
to us we need to approximate a vector field on U that encodes the direction and
speed of change that p∗ undergoes until time 1.

In the following, we propose an approach that infers this vector field from
data. Assume N shapes similar to p∗ (i.e., close to p∗ in U), which are expected
to show analogous progression and are observed at a possibly varying number
of time points, hence, yielding (training) data (t(j)i , q

(j)
i ) ∈ [0, 1] × U , for i =

1, . . . , nj and j = 1, . . . , N. Now, using geodesic regression [10] we can approx-
imate the individual trajectories γ(1), . . . , γ(N) ∈ G(U) of the training shapes.
Utilizing the manifold structure of G(U) from [13], the (Frechet) mean geodesic
γ of γ(1), . . . , γ(N) can be computed. Note that γ(0) and v := γ′(0) ∈ Tγ(0)M can
be interpreted as the mean starting point and the average initial velocity of the
trajectories of the training data, respectively. The geodesic γ is further the cen-
tral fixed effect that describes the data in a geodesic hierarchical model [15,17].

The fact that the training shapes are close to p∗ suggests that the parallel
transport of v to p∗ is a good approximation of our target γ′

p∗(0). We thus propose
to use the approximation γ′

p∗(0) ≈ Πp∗

γ(0)(v) in Eq. (1). Being a comparatively
simple approach, our experiments show that it can be a very good choice. The
processing pipeline is shown in Fig. 1.

3 Experiments

3.1 Data and Methodology

Datasets: To evaluate our model we applied it to two data sets. The first was
shape data of right hippocampi derived from 3D label fields provided by the
Alzheimer’s Disease Neuroimaging Initiative2 (ADNI). The ADNI database con-
tains, amongst others, 1632 brain MRI scans with segmented hippocampi. From
them, we assembled three distinct groups: subjects with Alzheimer’s (AD), Mild
Cognitive Impairment (MCI), and cognitive normal (CN) controls. The groups
contained data from 86, 201, and 116 subjects, respectively; for each subject,
there were three MR images taken (approximately) six months apart. In the
experiments below, we always predicted the shape after one year from the base-
line. Since the experiments were performed group-wise, the fact that the groups
were not balanced did not matter. Correspondence of the surfaces (2280 ver-
tices, 4556 triangles) was established in a fully automatic manner by registering

2 https://adni.loni.usc.edu.

https://adni.loni.usc.edu
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Fig. 2. GAN-enhanced prediction method.

extracted isosurfaces using the functional map–based approach of [8]. As the
final preprocessing step, all meshes were aligned using generalized Procrustes
analysis.

The second data set was taken from Dynamic FAUST [2], which is publicly
available and contains the motion data of 10 subjects. The data is given as
triangle meshes in correspondence (subject-wise and between subjects). For each
subject, we used three meshes (6890 vertices, 13776 triangles) that constitute a
raising of the left leg from the initial part of the “one leg loose” pattern. More
precisely, we used scans 0, 20, and 40 for subjects 50002, 50004, 50020, and
50027; scans 16, 24, and 32 for subjects 50009 and 50021; scans 90, 110, and 130
for subject 50007; scans 0, 22, and 44 for subject 50022; scans 40, 48, and 56 for
subject 50025; and scans 10, 30, and 50 for subject 50026.
Shape Space: We used the differential coordinate model (DCM) shape space
from [21]. The DCM space works with triangular mesh representations and allows
for explicit and fast computations.
Comparison Methods:

For the ADNI experiment, we used the following comparison methods. The
first was the varifold-based (Varifold) method from [20]. To test whether incor-
porating a deep neural network improves the prediction, we also tested the fol-
lowing variation of our proposed method on the ADNI data: We tried3 both
a generative adversarial network (GAN) and a cyclic GAN (cGAN) to learn a
correction wp∗ ∈ Tγ(0)M of v. The idea was that shapes from different regions in
U might show systematic differences in their development. Both the GAN and
cGAN are designed to map the coordinate vector4 of the cross-sectional differ-
ence [logγ(0)(p∗)] ∈ R

d to the correction vector [wp∗ ] ∈ R
d. They were trained

on the baselines {q
(j)
1 | j = 1, . . . , N} using three-fold cross validation. We then

3 Standard multi-layer perceptrons showed similar performance to GANs.
4 We denote the coordinate representation in R

d of a tangent vector v w.r.t. a fixed
but arbitrary basis by [v].
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used γ′
p∗(0) ≈ Πp∗

γ(0)(v + wp∗) in Eq. (1), i.e., the prediction then became

q∗
GAN := expp∗(Πp∗

γ(0)(v + wp∗)).

The method using the GAN is illustrated in Fig. 2.
The generators in the GAN and cGAN networks consisted of four linear

layers, with dropout layers and ReLU activation functions between them; the
discriminators were composed of two linear layers without dropout. Both the
GAN and cGAN used the sum of the binary cross entropy and the difference
‖Π

γ(0)

γ(j)(0)
(v(j))− v −wp∗‖γ(0) (with the norm that is induced by the Riemannian

metric) as loss; for the cGAN the standard forward cycle consistency loss was
also added. When referencing results obtained with the GAN and cGAN while
using the DCM space as shape space, we use the notations (DCM+GAN) and
(DCM+cGAN), respectively.

To evaluate how important the DCM space is to the prediction, we replaced
it with the flat point distribution model (PDM) space from [7].

Finally, to further differentiate the behavior of our proposed and the varifold-
based approach, we tested how well the regressed geodesics in the DCM space
and the space of diffeomorphisms approximate the data. We report for all groups
the averages of the mean vertex-wise error (MVE) between the mesh belonging
to γ(j)(1) and the corresponding data mesh of q

(j)
2 after rigid alignment.

In the experiment with the dynamic FAUST data, we compared our method
against the varifold-based method. We did not use these deep-learning refine-
ments for the FAUST data since only ten subjects were available. (Note that an
advantage of our approach is also that it can handle such small datasets.)
Software: The computations in the DCM and PDM space were performed in
Morphomatics v1.1 [1]. The GAN and cGAN were implemented in PyTorch.
During training, we used ADAM optimizer for both the generators and the dis-
criminators. All computations involving varifolds were performed in Deformet-
rica 4.3.0rc0 [4], where we used the “landmarks” option as attachment type for
a fair comparison since all meshes were in correspondence. In the ADNI exper-
iment, we used the L-BFGS algorithm in Deformetrica, and gradient ascent or
the Faust data as L-BFGS had stability problems there.
Parameter Settings: In the ADNI experiment (where measurements are in
millimeters), we used Varifold with a smoothing kernel width of 2.5, a defor-
mation kernel width of 5, t0 = 0.5, a concentration of time points of 1, and
the number of points used from the cloud was set to 25. The GAN and cGAN
used a dropout probability of 0.2; the learning rates of both the generators and
discriminators were set to 0.0001. For each fold, we trained the network with
400 epochs. In the FAUST experiment (where measurements are in meters), we
used Varifold with a smoothing kernel width of 0.1, a deformation kernel width
of 0.1, t0 = 0.5, a concentration of time points of 1; the number of points used
from the cloud was also set to 25.

All parameters were determined through exploration. All results were
obtained through three-fold cross-validation whose averages are reported.
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Evaluation Measures: To assess the effectiveness of our model, we employed
the MVE by calculating how much (after rigid alignment) each vertex deviates
from its corresponding ground truth vertex. Moreover, to compare the DCM
and PDM spaces, we contrasted the MVE (which can be viewed as the intrinsic
distance of PDM space) with the geodesic distance d (GD) of DCM space.

Table 1. Comparison of (variants of) our and the varifold-based prediction method
w.r.t. average mean vertex-wise error (MVE) and average geodesic distance (GD).

Metric Group DCM PDM DCM+GAN DCM+cGAN Varifold

MVE AD 0.70 ± 0.07 0.71 ± 0.02 0.73 ± 0.02 0.75 ± 0.02 1.23 ± 0.14

MCI 0.64 ± 0.05 0.64 ± 0.03 0.67 ± 0.03 0.75 ± 0.04 1.27 ± 0.02

CN 0.71 ± 0.01 0.72 ± 0.08 0.74 ± 0.07 0.80 ± 0.05 1.33 ± 0.06

GD AD 15.51 ± 0.88 37.50 ± 0.79 16.20 ± 0.60 16.42 ± 0.47 17.63 ± 1.97

MCI 15.23 ± 0.87 34.55 ± 1.81 15.91 ± 0.89 16.22 ± 0.50 18.36 ± 0.25

CN 16.44 ± 0.22 38.39 ± 4.44 17.35 ± 1.66 18.35 ± 1.27 19.07 ± 1.13

3.2 Results

The results of our prediction comparison for the hippocampi are shown in
Table 1. Our proposed method outperformed the other methods in all categories.
Even though the proposed method is a relatively simple approach, it not only
performed better than GAN methods but was also faster and did not involve
hyperparameter tuning. Also, differently structured GANs did not improve the
results by a noticeable amount. Furthermore, we can see that using the DCM
space is superior to using the PDM space as its results are close w.r.t. MVE (the
intrinsic PDM distance) but significantly worse w.r.t. the GD of the DCM space.
Note that the magnitude of the prediction errors of our method is probably close
to the resolution of the scanner. However, the longitudinal changes in shape over
the course of one year are also only small.

In comparison to the varifold-based approach, the proposed method achieves
superior results. The difference in prediction is visualized in Fig. 3 using a hip-
pocampus from the AD group for which the MVE of our method was very close
(≈0.69) to its mean MVE. The MVE of the varifold-based method was slightly
smaller (≈1.03) than its MVE.

A reason why our approach works better than the varifold-based one could
be the difference in approximation power of geodesic regression: Results for the

Table 2. Regression fidelity in terms of MVE.

Group AD MCI CN

DCM 0.16 ± 0.06 0.17 ± 0.16 0.18 ± 0.18

Varifold 0.68 ± 0.58 0.62 ± 0.47 0.73 ± 0.74
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Fig. 3. Prediction comparison for a hippocampus from the AD group. Upper left: base
shape at t = 0; upper right: the same hippocampus at t = 1, i.e., after one year
(the ground truth for our prediction); bottom left: varifold-based prediction; bottom
right: our prediction. The colors encode the vertex-wise differences to the ground truth
according to the color map (0 mm 2.25 mm).

fitting quality of regression in DCM and the space of diffeomorphisms are shown
in Table 2. Clearly, the approximation is better when the DCM space is used,
thus, demonstrating an improved fidelity of DCM geodesics over diffeomorphic
representations.

The results for the FAUST dataset reinforce the above findings. Our proposed
method (DCM) achieves an MVE of 0.03 ± 0.003 and a GD of 0.54 ± 0.03;
Varifold has an MVE of 0.07 ± 0.008 and a GD of 1.16 ± 0.04. Figure 4 shows
the predictions for subject 500021. While the result of our method is close to the
ground truth, the human is barely recognizable in the varifold-based prediction.
A reason is the high inter- and intra-subject variability in the motion. Since point
trajectories from different subjects are mixed to produce the varifold prediction,
relatively unlikely leg configurations are obtained. Moreover, the formation of a
male face in the varifold case highlights the advantage of a differential encoding
of shape changes (i.e. tangent vectors) together with a consistent transport over
combinations of absolute configurations.
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Fig. 4. Prediction of human body motion for FAUST dataset. From left to right: Base-
line, ground truth, and predicted shapes using our and the Varifold method [20].

4 Conclusion

In this paper, we proposed a novel method for predicting shape development
based on hierarchical statistical modeling in Riemannian shape spaces. It out-
performed state-of-the-art in two experiments by a clear margin. Furthermore,
it performed better than deep learning–supported variants when predicting the
future development of the hippocampus shape. Our approach is thus a good fit
for shapes whose progression follows geodesics (such as hippocampi) and who
are well captured by population-average trends. As the latter assumption will
not always be valid, it is still a promising approach to incorporate deep learning:
Whenever the development depends strongly on the individual characteristics of
the baseline shape, we expect that deep learning methods can be used to find
adjustments to our prediction (direction) that take the dependence into account.
A path for future work is thus to test this hypothesis on further anatomical struc-
tures.
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Abstract. This paper presents a novel method for the automatic reg-
istration of Intra Oral Scans (IOS). Our approach uses deep learning
techniques and alignment algorithms such as the Iterative Closest Point
(ICP) to automatically align IOS at different time points for the same
subject. For the proposed registration methods; firstly, crown segmenta-
tion is performed using the DentalModelSeg extension in 3D Slicer allow-
ing for the identification of specific dental crowns and the determination
of their centroids. The source and target IOS are initially aligned using
a common set of centroids. Next, we segment a region of interest (ROI)
in the palate using a deep learning algorithm based on a multi-view 3D
shape analysis technique. The ROI ground truths used for training the
palate segmentation algorithm were manually generated by expert clin-
icians and a developer. Finally, the ICP algorithm is applied to register
the upper jaw scans, using the predicted ROI as the registration tar-
get. The method is designed to handle different clinical conditions. The
performance of the proposed method was tested using IOS from growing
subjects acquired at two-time points for each subject. The results demon-
strate the effectiveness of the automated registration approach, with min-
imal errors observed between the automated registration and the expert
clinician’s registration. The average angular and linear errors ranged
from 0.01 ± 1.04 to 0.32 ± 1.03◦ and from 0.02 ± 0.13 to 0.18 ± 0.71 mm.
Registration of IOS from growing subjects before and after treatment
were the most challenging. The integration of the method into 3D Slicer
through the SlicerAutomatedDentalTools extension enhances its acces-
sibility and usability. The proposed method offers an automated and
efficient solution for Intra Oral Scan registration. The approach show-
cases promising results, reducing the workload. The code is available:
https://github.com/DCBIA-OrthoLab/SlicerAutomatedDentalTools.
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1 Introduction

In dentistry, the use of intraoral scanners has revolutionized the digitization of
gums and teeth by capturing and computing their vertex through light-based
triangulation [9]. Intraoral scanning provides an alternative to traditional dental
casts, enabling clinicians to digitize patient data in 3D, and facilitating record
keeping, treatment planning, and saving space through virtual storage. Conse-
quently, intraoral scanning offers clinicians a new opportunity to gain deeper
insights into patient progress and make more informed decisions. The advance-
ments in machine learning (ML) and its growing prominence in the field of
medicine further enhance this potential by facilitating faster and more efficient
task completion and decision-making processes over time.

Standardized orientation plays a crucial role in normalizing the position of
IOS scans in the virtual world and enables accurate measurement comparisons
among patients. With the advent of intraoral scanners, dentoalveolar measure-
ments have transitioned from 2D radiographs to 3D dental model assessments [5].
Standardized orientation plays a crucial role in normalizing the position of the
IOS scans and enables accurate measurement comparisons among patients. To
further comprehend the dentoalveolar movement, registration becomes a neces-
sary step. Manual registration, which involves matching scans before and after
treatment, has challenges as clinicians need to identify a non-moving reference
region unaffected by treatment or growth. Some structures on the palate, includ-
ing the third palatal rugae, have been identified as stable regions of the max-
illa [5,7,11]. However, achieving consistent manual registration poses difficulties
due to observer variability in rugae location and landmarks placement. Besides,
approaches are time-consuming and can be prone to error. While methods have
been proposed to establish standardized registration, finding a universally appli-
cable technique remains challenging.

The aim of this study is to evaluate and validate a newly developed open-
source automated tool for the registration of IOS. The tool incorporates the
DentalModelSeg [2,4] algorithm and a multi-view 3D shape segmentation algo-
rithm that uses a U-Net [10] to detect a stable surface mesh ROI. This allows
for the accurate alignment of scans obtained at different time points. The study
assessed the effectiveness and reproducibility of the automated tool by comparing
its measurements to those made manually by expert users employing previously
validated manual tools.

2 Related Work

Related work in registering IOS involves addressing the challenge of selecting
reliable and stable landmarks or ROI. In the context of the maxillary arch,
the palatal rugae have been widely recognized as a stable reference region and
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have been utilized for registration purposes [1,6,12]. Registration plays a crucial
role in assessing tooth movement and involves aligning two scans by applying a
transformation matrix using specialized software. However, a limitation of this
method is that the registration of scans depends on the subjective perspective of
the clinician, lacking a standardized approach due to the considerable individual
variability in the shape of palatal rugae [6].

To overcome this limitation, several papers have proposed methods to
improve the reliability and standardization of registration [1,6,11,12]. One app-
roach involves using landmarks as reference points, ensuring that all clinicians
can reproduce the same registration [1]. Another approach involves using patches
or ROI to guide the registration process [1,6,12]. These methods aim to establish
consistent and reproducible registration techniques across different clinicians.

In this paper, we adopted a similar approach to segment the palate ROI
using a multi-view approach. By rendering the mesh from different perspectives,
we capture 2D images and use a UNET [10] for the segmentation task. The
segmentation output is then mapped back to individual faces in the mesh. We
apply an algorithm to label faces that were not captured during the rendering
process. In the next section, we explain in detail the steps of our approach.

3 Method

3.1 Data

The overall dataset comprised 164 scans. From these, Forty-eight scans were used
to evaluate the performance of the Areg method. All the scans were acquired
using 3Shape Trios and iTero scanners at a University Clinic. The University of
Michigan Institutional Review Board (IRB) HUM00238038 waived the require-
ment for informed consent and granted IRB exemption for this study.

3.2 Automated Standardized Orientation (ASO)

In the process of automated IOS orientation, a template-oriented scan is required
as preliminary data to guide the algorithm. In the proposed algorithm both the
non-oriented and oriented scans need to have the crowns segmented, which is
achieved by DentalModelSeg, an available extension in the 3D Slicer.

Then we compute the centroids of each crown and select the 4 predefined
crowns and use them to roughly orient the upper jaw the algorithm computes
the centroid of the segmented crowns of four teeth that were selected on both
the oriented and non-oriented scans. The right and left first molars, and the
right and left first premolars. Three lines of reference are then created using
these centroids: the LR (Left-Right) line passing through the second molars, the
AP (Anterior-Posterior) line passing through the middle between the centroid of
the premolars and perpendicular to the LR line, and the SI (Superior-Inferior)
line, perpendicular to both the LR and SI lines. We compute a transformation
that rotates the mesh on the plane spanned by the LR lines and their angle.
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A second rotation transformation is computed with the AP lines. Finally, we
translate the mesh by the difference between the centroids of the scans and apply
an Iterative Closest Point (ICP) [3] algorithm to further refine the alignment of
the upper arches. We compute a single transformation by concatenating the two
rotations, the translation, and the ICP transform. This transformation could
then be applied to the lower arch as well for future analysis (Fig. 1).

Fig. 1. Orientation workflow.

3.3 Pre-processing: Training Reference Patch

Each upper dental arch scan in the dataset was initially labeled with a surface
patch in a shape similar to a Butterfly. The Butterfly patch includes a triangular
mesh region on the palate. It extends over a specific area or region, encompassing
the stable and reference regions, rather than isolated landmarks. The selection
of the triangular mesh region considers the stability of the palate and the third
rugae as a reliable references during treatment and growth. [5,7]. The Butterfly
patch provides control over yaw by extending laterally, control over pitch by
extending posteriorly with minimal anterior extension, as changes in anterior
alveolar region are observed during treatment and growth [8]. It also offers con-
trol over roll through bilateral symmetry in the patch, aligning with the shape
of the palate Fig. 2d.

First, an outline is generated (Figs. 2a, b and c), and then the patch is filled
(Fig. 2d). The contour of the anterior part is formed between the left and right
first premolars, while the posterior part is created between the left and right first
molars, with the length of the posterior part being longer than the anterior part
(Fig. 2a). The lateral contour is formed using a Bézier curve [13] connecting the
endpoints of the anterior and posterior lines and the midpoint of the posterior
line (Fig. 2b).
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(a) Step 1 Patch (b) Step 2 Patch (c) Step 3 Patch

(d) Step 4 Patch

Fig. 2. Creation Butterfly’s patch.

Bézier curve : ∀t ∈ [0, 1], B(t) =
n∑

i=0

(
n
i

)
(1 − t)n−itiPi (1)

Next, the Bézier curve is symmetrically projected with respect to the lateral
lines (Fig. 2c). The lines are defined by assigning labels to the vertices, where the
yellow color represents label 1 and the blue color represents label 0. The lines
are given a radius, which facilitates the use of an algorithm for filling the patch.
The filling algorithm starts by labeling one vertex inside of the outline, and then
the label propagation algorithm is applied to propagate the label throughout the
mesh until the entire patch is filled. Starting from the first vertex, its neighboring
vertices with label 0 are identified and labeled as 1. Then, the algorithm continues
to identify neighboring vertices with label 0 and converts them to label 1 until
there are no more neighboring vertices with label 0 remaining. This process
ensures that the entire patch is filled (Fig. 2d).

3.4 Training Butterfly Patch

The first step of the training involves normalizing the meshes by rescaling
and translating them to fit within the unit sphere. The meshes are also ori-
ented to ensure consistent viewing of the palate from the same viewpoint. To
increase the amount of data and improve the robustness of the neural network,
data augmentation techniques are applied. This includes random rotation and
random translation. The random orientation is limited up to 360◦C around
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a vector belonging to the set {(x, y, 1)|∀(x, y) ∈ [−0.25, 0.25]2} to ensure the
palate remains visible. Similarly, the vector of translation belongs to the set
{(x, y, z)|∀(x, y, z) ∈ [−0.25, 0.25]3} to maintain visibility. Additionally, the nor-
mals of the vertices are computed to provide texture to the mesh.

To simplify the problem from 3D meshes to 2D images, rendering is per-
formed using the PyTorch3D framework. The rendering process involves using
the FoVPersepectiveCameras with an OpenGL perspective and NDC coordinate
system to capture images of size 320 × 320 pixels. The HardPhongShader is used
as the shader, resulting in images with 4 channels. The first 3 channels represent
the texture, while the 4th channel represents the depth map. Three cameras are
positioned at the top of the palate at different positions, pointing towards the
central point. The rendered images are then fed to the neural network for further
processing.

The neural network used in this training process is UNet, a CNN imported
from MONAI. It consists of 5 down-sampling steps and 5 up-sampling steps, with
a kernel size of 3 × 3 and a stride of 2. The number of features increases progres-
sively from 16 up to 256. The ground truth for the training is the segmentation
of the patch, created using the method explained in the previous paragraph. The
segmentation of the patch is linked to the image using the pixel-to-face mapping,
which associates the faces with the corresponding pixels in the rendered image.

The loss for the UNet prediction is computed using the DiceCELoss from
MONAI, which is a linear combination of the Dice coefficient and cross-entropy.
The training of the UNet model is optimized using AdamW, which includes
regularization and weight decay regularization with a learning rate of 1e−4. The
training process was conducted on a system equipped with an NVIDIA RTX
A6000 GPU with 48 GB of RAM memory and CUDA version 11.7. The system
also includes an Intel R© Xeon R© Gold 6226R CPU with 32 cores and a frequency
of 2.90 GHz. The training process took approximately 3 days to complete (Fig. 3).

Fig. 3. Pipeline Training.

3.5 Butterfly Patch Prediction

First, the mesh undergoes a normalization process, which involves orienting,
rescaling, and translating. This step aims to place the mesh within the unit
sphere and ensure optimal visibility of the palate by the cameras. During the
rendering process, a larger number of cameras is used compared to the training
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phase. This is done to capture more information from the different areas of the
rugae region and palate region.

Next, the trained UNet model predicts the patch on the image, and the pixel-
to-face mapping is utilized to establish the correspondence between the mesh and
the images, enabling vertex labeling. After this step, there may be holes present
in the predicted Butterfly patch due to the limited coverage of the mesh faces
by the image pixels.

To address these holes, an “island approach” is employed, which assigns the
closest-connected label to fill the gaps. Additionally, a morphological closing
operation is performed to further ensure the complete filling of any remaining
small holes in the patch (Fig. 4).

Fig. 4. Pipeline Prediction.

3.6 Automatic Registration (AReg)

Once the butterfly patch is predicted for the upper dental arches in both T1 and
T2 scans, the Iterative Closest Point (ICP) algorithm is applied to register the
T1 and T2 upper scans using the patches, automatically created in the previous
steps, as ROI for registration. The T1 scan serves as the source (fixed), while
the T2 scan serves as the target (moving). To reach this final automated step,
it was necessary to initially perform steps 3.3 to 3.5 in the process (Fig. 5).

Fig. 5. Iterative Closest Point (ICP) using the predicted butterfly patch in the T1
(pink) and T2 (yellow) scans. (Color figure online)
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3.7 Evaluation Metrics

Differences between measurements obtained with the automated process and
the manual orientation/registration process were used to assess the error of the
proposed methods. The quantifications were computed in the Automated Quan-
titative 3D Components (AQ3DC) extension of 3D Slicer. Landmarks placed in
tooth surfaces were used to calculate the measurements.

Two types of measurements were computed for orientation and registration:
linear (in millimeters) and angular (in degrees). Linear distance was calculated
between selected landmarks for each component: right-left, anterior-posterior,
superior-inferior and the 3D distance. For the angular measurement, two lines
(one created at T1/pre-treatment and another at T2/post-treatment) were used
to calculate the angular errors of yaw, pitch and roll.

Orientation. The dataset used to evaluate the orientation error consisted of 48
scans, all of which were oriented by an expert clinician. One scan was selected
as the gold standard for the method, while the remaining 47 scans were used to
calculate the error.

Butterfly Patch. The accuracy of the butterfly patch was determined by calcu-
lating the Dice coefficient for segmentation. The dataset used for the evaluation
consisted of 48 scans that were not included in the training and validation tasks.
The patch was developed together by a developer and a clinician, with the devel-
oper responsible for creating the patch and the clinician verifying the accuracy
of the patch’s superimposition.

Registration. The computation of the registration error calculation included a
dataset of 24 growing patients (mean age of 8 years and 2 months) who were not
included in the validation or training dataset during the patch learning process.
The scans of these patients were registered manually by an expert clinician. The
time interval between the T1 and T2 scans was 12 months.

4 Result

4.1 Orientation

Table 1 shows the average angular error ± standard deviation of the orientation
method. The average angular error ranged from 0.44± 0.48 (Roll) to 1.19± 2.33
(Pitch) degrees.
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Table 1. Angular error for the automatic orientation method.

Landmarks Yaw Pitch Roll

Mid UR6O UL6O - UR1O 0.75◦ ± 1.15◦ NA NA

UR6O - UR6CB NA −1.19◦ ± 2.33◦ −0.44◦ ± 0.48◦

UL6O UL6CB NA −0.78◦ ± 2.30◦ −0.44◦ ± 0.49◦

UR1O UR1CB NA −1.05◦ ± 2.29◦ −0.69◦ ± 0.68◦

Yaw, Pitch and Roll orientation components. Yaw rotation around the S-I axis
Pitch rotation around the R-L axis Roll rotation around the A-P axis

4.2 Butterfly Patch

The Dice coefficient for the segmented Butterfly patch was between 0.75 to
0.95 Fig. 6a. In addition, the confusion matrix shows that the butterfly patch
could be predicted with an agreement above 97.7% Fig. 6b.

Fig. 6. Dice coefficient (a) and Confusion Matrix (b) for the segmented Butterfly patch.
The label 1 represent the Butterfly patch and the label 0 the rest of the segmentation.

4.3 Registration

Tables 2 show the average error angular and linear average errors ± standard
deviations of the automated registration method respectively. The average angu-
lar error ranged from 0.44 ± 0.48 (Roll) to 1.19 ± 2.33 (Pitch) degrees.

The average angular and linear errors ranged from 0.01±1.04 (Roll) to 0.32±
1.03 (Yaw) degrees and from 0.02 ± 0.13 (Right-Left) to 0.18 ± 0.71 (Superior-
Inferior) millimeters (Figs. 7 and 8 and Table 3).
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Table 2. Angular error for the automatic registration method.

Landmarks Yaw Pitch Roll

Mid UR6O UL6O - UR1O −0.32◦ ± 1.03◦ NA NA

UR6O - UR6CB NA 0.10◦ ± 1.28◦ 0.01◦ ± 1.04◦

UL6O - UL6CB NA 0.23◦ ± 1.44◦ −0.02◦ ± 1.05◦

UR1O - UR1CB NA 0.18◦ ± 1.29◦ 0.01◦ ± 1.19◦

Yaw, Pitch and Roll orientation components. Yaw rotation around the S-I axis
Pitch rotation around the R-L axis Roll rotation around the A-P axis

Table 3. Linear error for the automatic registration method (in mm).

Landmarks R-L A-P S-I 3D Distance

UR1O T1 - UR1O T2 −0.13 ± 0.56 −0.04 ± 0.35 −0.18 ± 0.71 0.52 ± 0.32

UR6MBT1 - UR6MBT2 0.02 ± 0.14 0.11 ± 0.52 −0.09 ± 0.50 0.39 ± 0.28

UL6MBT1 - UL6MBT2 0.02 ± 0.13 −0.03 ± 0.46 −0.03 ± 0.46 0.39 ± 0.30

Linear: Right (R) displacement (+), Left (L) displacement (−), Anterior (A)
displacement (+), Posterior (P) displacement (−), Superior (S) displacement (+),
Inferior (I) displacement (−)

Fig. 7. Demonstration of automatic registration.
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Fig. 8. Automatic Registration of 9 patients.

5 Discussion

ASO, which is already deployed on 3D Slicer as the SlicerAutomatedDentalTools
extension, offers a more flexible approach compared to the proposed method. It
allows users to choose the teeth for orientation and the gold standard scan.
Additionally, ASO has the capability to orient the mandibular arch based on
the orientation of the maxillary arch.

The crown segmentation is a fundamental step in the orientation process, as
it helps identify the centroids of the teeth. The DentalModelSeg extension in
3D Slicer is used for crown segmentation, and it performs better in segmenting
the crown of adult patients rather than those with growth and in the mixed
dentition. It should be also noted that the performance of DentalModelSeg is
better for incisors teeth compared to molars. In our method, we utilize the first
premolars and first molars.

AReg introduces a new automatic registration method for Intra Oral Scan
that can be applied to various types of cases. It has been observed that the regis-
tration works well for non-growing patients, but it becomes more challenging for
growing patients or when there is a significant time difference between T1 and T2
scans. The automatic registration may be questionable under such circumstances
and need a double check by the user in view of the standard deviation.

One limitation of our method is that if the palate is missing in the scan,
registration becomes impossible as the neural network relies on the presence of
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the palate to predict the ROI. Several methods for registration of maxillary IOS
have been reported [11]. Only a few of them tried to control the challenge of
having pitch, yaw and roll rotations [1,6,12]. In addition, there is no method
that reported automated registration of IOS. Further research needs to be done
with other automated methods to compare our results.

AReg presents a novel approach to register Intra Oral Scans, which exhibits
low error rates. However, it is important for users to review the results due
to the variability observed in some challenging cases. The method is available
in the SlicerAutomatedDentalTools extension of 3D Slicer. The results demon-
strate promising performance, minimizing errors in scan alignment and registra-
tion. Compared to manual registration, the automated approach offers improved
speed, efficiency, and reduced human errors. Integration into 3D Slicer software,
specifically SlicerAutomatedDentalTools, enhances accessibility and usability for
researchers and clinicians. The open-source nature of the code facilitates col-
laboration and potential future enhancements. Challenges remain for growing
patients or significant time gaps between scans, warranting further research and
refinement.

6 Conclusion

This paper presents an automated method to register Intra Oral Scans using
advanced algorithms, including crown segmentation, neural network predictions,
and the Iterative Closest Point (ICP) algorithm. Overall, the proposed auto-
mated registration method provides a promising and efficient solution for Intra
Oral Scan registration, with potential applications in treatment planning, mon-
itoring, and assessment in dentistry (Table 4).

Table 4. Description of landmarks.

Landmark

name

Landmark description

UR10 Center of the incisal edge of the Upper Right permanent central incisor (UR1)

UR1CB Midpoint of the cervico-buccal part of the crown of the UR1

UR6MB Mesial buccal cusp tip of the Upper Right permanent first molar (UR6)

UR6O Occlusal limit of the mesiobuccal groove of the UR6

UR6CB Cervical limit of the buccal groove of the UR6

UL6MB Mesial buccal cusp tip of the Upper Left permanent first molar (UL6)

UL6O Occlusal limit of the mesiobuccal groove of the UL6

UL6CB Cervical limit of the buccal groove of the UL6
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Abstract. Glaucoma causes progressive visual field deterioration and
is the leading cause of blindness worldwide. Glaucomatous damage is
irreversible and greatly impacts quality of life. Therefore, it is critically
important to detect glaucoma early and closely monitor progression to
preserve functional vision. Glaucoma is routinely monitored in the clini-
cal setting using optical coherence tomography (OCT) for derived mea-
sures such as the thickness of important visual structures. There is not
a consensus of what measures represent the most relevant biomarkers
of glaucoma progression. Further, despite the increasing availability of
longitudinal OCT data, a quantitative model of 3D structural change
over time associated with glaucoma does not exist. In this paper we
present an algorithm that will perform hierarchical geodesic modeling at
the imaging level, considering 3D OCT images as observations of struc-
tural change over time. Hierarchical modeling includes subject-wise tra-
jectories as geodesics in the space of diffeomorphisms and population
level (glaucoma vs control) trajectories are also geodesics which explain
subject-wise trajectories as deviations from the mean. Our preliminary
experiments demonstrate a greater magnitude of structural change asso-
ciated with glaucoma compared to normal aging. Our algorithm has the
potential application in patient-specific monitoring and analysis of glau-
coma progression as well as a statistical model of population trends and
population variability.

Keywords: longitudinal shape analysis · hierarchical modeling ·
diffeomorphic regression · optical coherence tomography · glaucoma
progression

1 Introduction

Glaucoma causes progressive and irreversible visual field deterioration and is the
leading cause of blindness worldwide [17]. Therefore, it is critically important to
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detect glaucoma early and closely monitor patients in order to slow progression
and preserve functional vision. Optical coherence tomography (OCT) is currently
used clinically in order to monitor disease progression. Regularly used imaging
biomarkers derived from OCT include the thickness of the retinal nerve fiber
layer (RNFL) [3,4,9,13,25], as well as optic nerve head, lamina cribrosa and
macula measurements, but there is not a consensus whether one or a combina-
tion of measures increase the sensitivity in detecting damage [15,29]. Previous
methodology and analysis strategies have not focused on quantitative models of
3D structural and shape change associated with disease progression using OCT.

With continuing advances in OCT technology, an increasing number of clin-
ical studies collect longitudinal repeated scans of individual subjects to track
glaucoma progression. However, to our knowledge, nobody has developed strate-
gies to account for the inherent correlation within OCT observations of a sin-
gle subject. This is crucial, as cross-sectional approaches, which assume that
all observations are independent, may give misleading or wrong results such as
those observed as Simpson’s paradox.

In this work, we propose a longitudinal modeling scheme which treats obser-
vations as 3D OCT images themselves, rather than modeling derived measures.
Such high dimensional observations limit the use of traditional statistical meth-
ods and require specialized approaches depending on the data representation.
Here we consider a hierarchical modeling approach composed of a subject-wise
level and a population level. At the subject level, individual trajectories are
modeled as geodesics in the space of diffeomorphisms, which are transforma-
tions which deform OCT images over time. At the population level, a group-wise
geodesic trend describes the average or mean trajectory taking into account the
subject-wise trajectories.

We believe that models of continuous glaucoma progression based on trajec-
tories of OCT structural images can be used for comparison, monitoring, and
prediction of patient progress. The work presented here has the potential to have
a positive impact in the ophthalmology research community, providing new clin-
ically relevant information about this degenerative disease as well as support the
development of better preventative strategies so glaucoma patients can preserve
their vision longer.

2 Methodology

Hierarchical models are widely used in statistics when data comes with a hier-
archical structure, such as longitudinal data of subjects from different groups
(e.g. disease vs. control). Such data can be modeled at the subject-specific level,
following individual trajectories and also at the population level, taking into
account the group membership of each individual. Longitudinal study design
also comes with several challenges associated with modeling and analysis. It is
common for participants to reschedule imaging sessions, miss one or more scans
over the duration of the study, or dropout completely. This leads to a dataset
with missing data, a different number of observations per subject, and acquisi-
tions at staggered time points.
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Hierarchical and mixed-effects models are ubiquitous in Euclidean statistics
and the medical imaging research community has made considerable effort in
extending methods to high dimensional spaces such as Riemannian manifolds,
for their application to 3D medical images and the shapes derived from them.
The majority of previous work focuses on shapes with manifold representations.
This includes methods based on Kendall’s shape space [18], where shapes are
parameterized by landmarks in anatomical correspondence and mixed-effects
models are designed for this data representation [6,22]. Additionally, several
methods are considered intrinsic Riemannian models which can be implemented
for a variety of manifold representations [11,12,14,20,21,23]. The manifold of
diffeomorphic transformations has seen considerable attention in longitudinal
modeling based on relatively low dimensional shape representations [2,7], with
relatively few methods focusing on 3D medical images which contain millions of
voxels and are computationally expensive to work with. In contrast to methods
with explicit models, learning based methods for longitudinal image analysis
have been proposed [5,16,19,26,30] as data driven approaches.

Here we propose to model structural change of OCT by a hierarchical model
of image change based on the large deformation diffeomorphic metric mapping
(LDDMM) framework [1]. Image change is modeled as a smooth deformation of
the ambient image space by diffeomorphic flow which is smooth and has a smooth
inverse. The smoothness properties of diffeomorphisms are a natural choice for
modeling anatomical change as they preserve topology, preventing any image
folding or deletion of structures. By the analogy with linear hierarchical models,
we will model all time trajectories as geodesics, which are parameterized by an
initial/baseline image (intercept) and a tangent vector (slope).

The hierarchical model consists of two levels: a subject-wise level and a popu-
lation level. The subject-wise level describes individual trajectories by a geodesic
trend for each subject. Likewise, the population level incorporates the subject-
wise geodesics in the estimation of a geodesic which represents the mean trend
of the population. An overview of our longitudinal modeling framework is shown
in Fig. 1. Next, we present the formulation for the subject-wise and population
models first suggested in [28].

2.1 Subject-Wise Level

At this level, each of M total subjects i = 1, ...,M comes with a time-series
of images Ii = {Ii,t0 , ..., Ii,tN−1} consisting of N ≥ 2 images. The dynamics of
subject-wise image evolution are modeled as the geodesic flow of diffeomorphisms
of an initial image Îi(0) with trajectory Îi(t) = Îi(0) ◦ φ−1

i (t). Subject-specific
trajectory φ−1

i (t) is a geodesic defined by a tangent vector mi(0) located at Îi(0)
which in practice is a voxel-wise vector field referred to as momenta [24,27].
For ease of understanding, by analogy with linear regression, we will use the
shorthand intercept for the initial image Îi(0) and slope for the momenta vector
field mi(0).
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Fig. 1. Overview of the hierarchical geodesic model. Each dark gray circle represents
a time-indexed image from a given subject. Subject-wise trajectories are geodesics
parameterized by a initial image Îi(0) (intercept) and tangent vector mi(0) (slope)
which define the image trajectory φi(t). The red line represents the population level
model which captures the average trajectory, also parameterized by an initial image
ÎP (0) and tangent vector mP (0). The population level geodesic takes subject-wise
intercepts and slopes into account and also seeks to minimize residual distances ψi.
(Color figure online)

The subject-wise intercepts and slopes are estimated to minimize the least
squares criterion

E(Îi(0),mi(0)) = γ

N−1∑

j=0

d2(Îi(t) − Ii,tj
) + Reg(mi(0)) (1)

where d2 is a squared distance between images, Reg is a regularity norm term on
the initial momenta, and γ is a hyper-parameter to balance the trade-off between
data-matching and regularity. Intuitively, we seek the geodesic trajectory Îi(t)
which closely matches image observations Ii,tj

according to the image distance
term d2. Subject-wise intercepts and slopes can be obtained by M geodesic
regression estimation procedures, as in [8,27].

2.2 Population Level

At the population level, we seek to estimate a mean geodesic trajectory that
takes all subject-wise geodesic trends into account. As shown in Fig. 1, the pop-
ulation geodesic φP (t) is defined in the same way as subject-wise geodesics, with
an initial image ÎP (0) and momenta mP (0). This gives the trajectory of the pop-
ulation average as ÎP (t) = ÎP (0)◦φ−1

P (t), which also minimizes residual geodesic
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distances between ψi and φP (t). The goal is to estimate the ψi’s, intercept ÎP (0),
and slope mP (0) which minimizes

E(ψi, ÎP (0),mP (0)) = γÎP (0)

M∑

i=1

(
d2(ψi · ÎP (ti) − Îi(0)) + Reg(ψi)

)

+ γmP (0)

M∑

i=1

d2(ψi · φP (ti) · mP (0) − mi(0))

+ Reg(mP (0))

(2)

where the first term represents the distance between the population model and
the intercepts of the subject-wise models Îi(0), the second term represents the
distance between the population level slope the subject-wise slopes, and the
last term is the regularity norm term on the population level initial momenta.
The weights γÎP (0) and γmP (0) balance the contribution of the intercept and
slope terms, respectively. Intuitively, the two terms incorporate not only the
difference between the population model and the subject-wise initial images,
but also includes differences in subject-wise trajectories via the slope tangent
vectors. The parameters of the population model can be estimated by gradient
descent including constraints that ψi’s are geodesics, as in [28].

3 Experimental Results

3.1 Data Description

To validate hierarchical diffeomorphic geodesic modeling for analysis of struc-
tural change of OCT, we utilize a clinical OCT dataset acquired at NYU Langone
Health. The dataset consists of 10 controls and 10 patients with glaucoma. Each
subject has at least 3 time-points covering a timespan of approximately 2 to
4 years, with most subjects having 5 or more OCT observations. OCT images
are acquired from a clinical Cirrus scanner with dimension 200× 200× 1024. All
images were downsampled to 100 × 100× 512 for full 3D analysis, and addition-
ally all scans are preprocessed by subject-wise affine alignment.

3.2 Subject-Wise Geodesic Regression

First, we validate the diffeomorphic geodesic regression model on subject-specific
trajectories. Here, we test for feasibility of model fit given clinical OCT acquired
overall several years, with challenges such as different fields of view during imag-
ing and noise, which is common in OCT. This is essential to establish a baseline
for the model in capturing possible structural change associated with disease
progression.

We estimate the subject-wise diffeomorphic models for all controls and glau-
coma patients, which involves estimating the baseline image and initial momenta
parameters described in Sect. 2.1. From these intercept and slope parameters,
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Fig. 2. Subject-wise trajectory of a glaucoma subject over a 30 month observation
period. Top row) The estimated model parameters of initial image Îi(0) and the mag-
nitude of the initial momenta vectors mi(0). 2nd row) Five frames of the continuous
trajectory of image change shows an increase in the size of the optic cup. 3rd row) A
zoomed in view of the trajectory which highlights tissue deformation. Bottom row) A
deforming grid over time highlights the non-linear structural changes over the course
of 30 months follow-up from baseline.

the full trajectory of OCT structural change can be computed as in geodesic
shooting in the LDDMM framework [1]. Figure 2 shows a model estimated for
a randomly selected glaucoma subject. The model parameters are shown in the
top row, with the initial image along with the initial momenta, which highlight
areas in the image which change most over time. Here we display 5 frames of
the continuous model of OCT structural change which cover the timespan of
30 months from the baseline acquisition. A zoomed in view shows deformation
around the optic cup, as the structure increases in size over time. The non-linear
changes are most evident in the bottom row, which shows a deforming grid of
increasing complexity over time.
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Fig. 3. Subject-wise trajectory of a control subject over a 35 month observation period.
Top row) The estimated model parameters of initial image Îi(0) and the magnitude of
the initial momenta vectors mi(0), along with the deformation grid corresponding to
the final time-point at 35 months Bottom row) Five frames of the continuous trajectory
highlight consistent anatomy and very little measurable structural change.

We also illustrate the trajectory of a randomly chosen control subject over
time, shown in Fig. 3. There is essentially no discernible structural change over
the 35 months, even when the continuous trajectory is viewed as an animation
the structure is consistent. A zoomed in view of the deformation at the final
time-point of 35 months also shows negligible deformation.

3.3 Longitudinal Modeling at the Population Level

With subject-wise models consisting of initial images and initial momenta esti-
mated, we can estimate population level parameters by minimizing Eq. 2. At
this level, we estimate population-wise initial images and initial momenta which
describe the trajectory of the average of the population, which takes into account
the subject-wise intercepts and slopes.
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Fig. 4. Population-level model of glaucoma subjects. Top row) Several snapshots of
the average trajectory of OCT over time associated with glaucoma. The red line helps
to illustrate the magnitude of shape change. Bottom row) Deformation of the image
grid starting from identity. Note there is a larger magnitude of structural change in
the glaucoma population compared to the control population (Fig. 5), suggesting the
hierarchical model is able to capture the effect of glaucoma in addition to normal aging.
(Color figure online)

The average trajectory for the glaucoma population is shown in Fig. 4, which
shows 5 frames of the estimated continuous image sequence from 64 to 78 years.
The red line serves as a visual guide to see a widening over time associated
with the glaucoma population. The grid deformation is also shown in Fig. 4 to
illustrate structural change starting from the identity at the initial image. Note
that this model represents an unknown mixture of age and glaucoma effects on
the optic disc.

To explore the impact of age separate from the effect of glaucoma, we also
estimate a population level model for the control subjects. This average tra-
jectory can be considered as a reference model of aging. Several frames of the
estimated OCT sequence are shown in Fig. 5. We observe there is age related
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Fig. 5. Population-level model of the control group. Top row) Several snapshots of
the average trajectory of OCT over time associated with normal aging. Bottom row)
Deformation of the image grid starting from identity. Note there is a lower magnitude
of structural change in the control population compared to the glaucoma population.

change in structure, shown in the OCT sequence as well as the deforming grid
starting from identity. In comparison to the average population level model from
the glaucoma group, the structural change due to normal aging is of lower mag-
nitude. This promising result suggest hierarchical modeling of OCT has the
potential to capture structural changes of key anatomical structures associated
with glaucoma progression. Future work will focus on validation on a large cohort
to measure the impact of between-subject variability on population level models
and better distinguish between age and disease effects.
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4 Conclusion

In this paper, we propose hierarchical diffeomorphic geodesic modeling for the
longitudinal analysis of 3D OCT. Our driving clinical application is the study of
glaucoma, with the goal to develop and test methods and tools which can be used
to characterize and predict disease progression. Hierarchical modeling consists
of a subject-wise level which captures the within-subject correlation of repeated
OCT acquisitions. To model changes associated with group membership, the
hierarchical model has a population level model which takes into account all
subject-wise trends in the estimation of a mean trajectory. Experimentation
on a real clinical OCT cohort of controls and glaucoma patients show a larger
magnitude of structural change associated with glaucoma patients than with
normal aging. Results show that longitudinal models of shape change captured
by OCT imaging have the potential to monitor and quantify the progression of
glaucoma.

Our experiments show that population-level models are sensitive to between-
subject variability. This can be seen in the relatively blurry appearance and some
ghosting artifacts in population models as compared to much sharper subject-
wise models. This is due to anatomical variability, but also due to the choice
of initial alignment. We chose to use an affine alignment strategy to normal-
ize for size variability and isolate more subtle non-linear anatomical changes.
However, due to natural anatomical variability and differences associated with
image acquisition, such as different fields of view, this topic needs further inves-
tigation. One possible improvement would involve cropping to a consistent pop-
ulation wide region of interest by a clinical expert and pre-alignment driven by
segmentation based landmarks. Future work will also focus on decoupling age
and disease effects on structural change.
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1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2),
139–157 (2005)
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Abstract. In this study, we introduce a novel approach for the analysis and
interpretation of 3D shapes, particularly applied in the context of neuroscientific
research. Our method captures 2D perspectives from various vantage points of a
3D object. These perspectives are subsequently analyzed using 2D Convolutional
Neural Networks (CNNs), uniquely modified with custom pooling mechanisms.

We sought to assess the efficacy of our approach through a binary classifi-
cation task involving subjects at high risk for Autism Spectrum Disorder (ASD).
The task entailed differentiating between high-risk positive and high-risk negative
ASD cases. To do this, we employed brain attributes like cortical thickness, sur-
face area, and extra-axial cerebral spinal measurements. We then mapped these
measurements onto the surface of a sphere and subsequently analyzed them via
our bespoke method.

One distinguishing feature of our method is the pooling of data from diverse
views using our icosahedron convolution operator. This operator facilitates the
efficient sharing of information between neighboring views. A significant con-
tribution of our method is the generation of gradient-based explainability maps,
which can be visualized on the brain surface. The insights derived from these
explainability images align with prior research findings, particularly those detail-
ing the brain regions typically impacted by ASD. Our innovative approach thereby
substantiates the known understanding of this disorder while potentially unveiling
novel areas of study.

1 Introduction

Autism Spectrum Disorder (ASD) is a condition related to the development of the brain
that causes differences in neurological functioning. Subjects with ASD have deficits in
social communication skills and behavior, the presence of repetitive behavior, restricted
interests, hyper- or hypo-sensitivity to sensory stimuli, and an insistence on sameness
or strict adherence to routine [21, 24].

Diagnosis of ASD is difficult as there is no medical/lab test to reliably assess the con-
dition. Various studies have found the average age of diagnosis to be 3 years, although the
vast majority of children manifest developmental problems between 12 and 24 months,
with some showing abnormalities before 12 months [3]. Early diagnosis of ASD before
2.5 years of age is associated with considerable benefits for children who may “outgrow”
the condition through therapy [10].
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Detecting ASD bio-markers from neuroimaging data is a challenging task owing to
the considerable variability in cortical shape and functional organization across individ-
uals, which hinders the ability to make accurate comparisons of brains [11, 14]. There is
a clear need for precision analysis tools that are robust to these factors and the discovery
of distinct features to characterize ASD.

The main contribution of this paper can be summarized into two key aspects. Firstly, it
introduces a new deep-learning framework for general shape analysis that utilizes a multi-
view approach. Secondly, it incorporates an explainability component that identifies
crucial brain regions at the vertex level and visualizes them on the cortical surface
highlighting relevant brain regions for the classification task.

The proposed method was evaluated using Precision, Recall, F1-score, and Accuracy
metrics through five fivefold cross-validation experiments on a cohort of High-Risk
Positive (HR+) ASD versus High-Risk Negative (HR−) ASD patients. We implement
different pooling layers for our model and compare them against Spherical-U-Net [37]
and Spectformer [2], methods designed for brain shape analysis and spectral analysis
respectively. We also test our approach against a Random Forest classifier that uses
learned shape features and demographic information combined.

2 Related Work

2.1 ASD Classification

Several studies have addressed the question of ASD classification using Machine Learn-
ing (ML) models. The majority of studies used the ABIDE I/II [13] data set which
includes resting state functional (rsfMRI), structural T1/T2 (sMRI) Magnetic Resonance
Images, and Diffusion (dMRI) Magnetic Resonance Images. This data set contains data
from individuals with autism spectrum disorder (ASD) and typically developing indi-
viduals. We point the reader to [8, 19] for a comprehensive review of the literature on
ASD classification. It has been demonstrated that different machine learning models
can effectively distinguish between individuals with typical development and those with
ASD. However, the data used in our study differs, as it includes HR subjects who have
not yet developed the condition. This adds a layer of complexity to the analysis, as it
requires the identification of biomarkers that can reliably predict ASD in the future.

2.2 3D Shape Analysis

Among the different approaches for shape analysis, learning-based methods are currently
the most sophisticated ones. There are mainly 4 types of learning-based methods: multi-
view, volumetric, parametric, and multi-layer-perceptrons (MLP).

Multi-view approaches adapt state-of-the-art 2D CNNs to work on 3D shapes as
the arbitrary structures of 3D models, which are usually represented by point clouds or
triangular meshes, are incompatible with convolutional operators that require regular
grid-like structures. By rendering 3D objects from different view- points, features are
extracted using 2D CNNs [18, 32]. On the other hand, volumetric approaches use 3D
voxel grids to represent the shape and apply 3D convolutions to learn shape features [28,
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35]. Parametric methods require shapes with spherical topology and the convolution
is applied directly to the spherical representation of the shape [15, 37]. Finally, other
approaches consume the point clouds directly and implement multi-layer-perceptrons
and/or transformer architectures [23, 34].

Our method falls in the multi-view category. We render the object and capture 2D
images from different viewpoints following an icosahedron subdivision. The multiple
captures ensure coverage of the whole object. One of the primary benefits of multi-view
approaches is their ability to operate on surfaces with any topology, including those
with missing data or holes. Our method is tested on spheres derived from brain cortical
gray/white matter surfaces.

2.3 Explainable Artificial Intelligence

ML systems are becoming increasingly ubiquitous and they outperform humans on a
variety of specific tasks. There is increasing concern related to the deployment of such
complex applications that have a direct impact on human lives. Such systems must be able
to explain the basis for their decision to any impacted individual in terms understandable
to a layperson, this is especially the case in the field of medical imaging. Explainability
methods fall into 3 categories: visualization, model distillation, and intrinsic [26]. To the
best of our knowledge, we found 2 methods for cortical surface analysis and explainabil-
ity. First, a perturbation-based method for geometric deep learning of retinotopy through
systematic manipulations of the input data and measurement of changes in the model’s
output [27]. Second, NeuroExplainer [36] a method that uses spherical surfaces of the
brain hemispheres with cortical attributes (thickness, mean curvature, and convexity),
and a spherical convolution block in an encoder/decoder architecture that propagates the
vertex-wise attributes and captures fine-grained explanations for a classification task.

Our explainability model is agnostic to the input data and does not require system-
atic perturbations to produce explanations. Moreover, it does not require subsampling
the input data through encoder/decoder architectures and does not require shapes with
a spherical topology or specialized operators such as spherical convolutions. In our
experiments, we use spheres of +160,000 vertex at full resolution.

3 Materials

Infants at high and low familial risk for ASD were enrolled at four clinical sites (Univer-
sity of North Carolina, University of Washington, Washington University, and Children’s
Hospital of Philadelphia) [12, 30]. HR infants had an older sibling with a clinical diagno-
sis of ASD, corroborated by the Autism Diagnostic Interview–Revised [17]. LR infants
had a typically developing older sibling and no first- or second-degree relatives with
intellectual/psychiatric disorders [9]. Infants were assessed at 6, 12, and 24 months with
magnetic resonance imaging (MRI) scans and a behavioral battery that included mea-
sures of cognitive development [20] and adaptive functioning [31]. DSM-IV-TR criteria
[1] and the Autism Diagnostic Observation Schedule–Generic [16] were administered
to all participants at 24 months. The Autism Diagnostic Interview–Revised was admin-
istered at 24 months to all parents of high-risk infants and to all low-risk infants with
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clinical concerns. At 24 months, infants were classified as having ASD based on expert
clinical judgment and all available clinical information.

In our experiments, we use a subset of HR infants only and compare a group of
760 HR+ v.s. 202 HR−. We include demographic data in our analysis by combining
image features and demographics through a separate branch that concatenates with the
output of the features computed by the NN.

The demographics include gender, visit age for MRI, volume measurements for
subcortical structures (amygdala, hippocampus, lateral ventricles), intracranial volume
(ICV), and cerebrum and cerebellum volume.

4 Method Description

Fig. 1. Architecture for the ASD classification task. To initiate our analysis, we begin by capturing
views of the unique characteristics of each cerebral hemisphere - the left and the right - as they are
projected onto the spherical surface. The vantage point follow an icosahedron subdivision. We use
a feature extraction network (resnet18, SpectFormer) on each individual view. We experiment with
different IcoConv (IcoConv for icosahedron and convolution) operators that pool the information
from all views. Finally, we concatenate the left/right outputs and normalized demographics. We
perform a final linear layer for the classification

Fig. 2. Different IcoConv operators. IcoConv2D arranges the features extracted from adjacent
views in 3 × 3 grid and performs an additional 2D Convolution. IcoConv1D aranges the features
and performs a 1D Convolution followed by Average/Max poolo ing. IcoLinear stacks the features
and performs a Linear layer



252 U. Rodriguez et al.

4.1 Rendering the 2D Views

The Pytorch3D1 framework allows rendering and training in an end-to-end fashion. The
rendering engine provides a map that relates pixels (pix2face) in the images to faces in the
mesh and allows rapid extraction of point data as well as setting information back into the
mesh after inference. We use pix2face to extract values for the 3 brain features namely:
extra-axial cerebral spinal fluid (EA-CSF), surface area (SA), and cortical thickness. The
EACSF features are precomputed via a probabilistic brain tissue segmentation, cortical
surface reconstruction, and streamline-based local EA-CSF quantification [7]. SA and
CT are precomputed via CIVET [6]. The pix2face map allows us to extract the vertex
information and map them into 2D images set to 224px resolution. These images are
then fed to the NN for feature extraction.

4.2 Architecture

We developed a novel NN architecture called BrainIcoNet and perform extensive
experiments with a variety of feature extraction layers and IcoConv operators.

Figure 1 shows the general architecture of our approach which consists of a feature
extraction step followed by our IcoConv operator. Figure 2 shows the different IcoConv
operators.

In our experimental setup, we change the number of views, evaluating both 12 and
42 perspectives, and alter the radius of the icosahedron to adjust the proximity to the
3D object. A smaller radius sets the view closer to the 3D object thereby restricting the
breadth of the captured view but acquiring finer detailed information.

The captured views are then fed to the feature extraction layer. We use two distinct
branches, each dedicated to a specific hemisphere. The assumption is that the left and
right hemispheres exhibit unique features that should be treated separately.

Each branch uses resnet18 or a SpectFormer block for feature extraction. The fea-
tures are then arranged and passed to the IcoConv block. We experiment with 2D/1D
Convolutions and a Linear layer. The IcoConv2D operator was designed to allow sharing
of information across adjacent views only. As demonstrated by the results, the explain-
ability maps are localized and corroborate previous findings about brain regions affected
by ASD.

Finally, we use a linear layer for the binary classification task.
Additional experiments were conducted including demographic information which

is normalized and concatenated to the left/right brain hemispheres. We train a random
forest classifier and perform a feature importance analysis.

4.3 Training the Models

We perform a fivefold cross-validation training for every model. We use a series of
augmentation techniques including random rotations of the input sphere, a dropout layer
with p = 20% just before our linear layer for classification, and Gaussian noise applied

1 https://pytorch3d.org/

https://pytorch3d.org/
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on each image as well as the coordinates of the sphere points, i.e., a small perturbation
which is then normalized back on the spherical surface.

Training is done on an NVIDIA RTX6000 GPU with a batch size of 10, learning
rate 1e−4, the AdamW optimizer, and use the early stopping criteria to stop training
automatically (patience 100) and keep the best performing model. To account for the
highly imbalanced nature of our dataset classes during training, we utilize a sampling
approach and ensure that each batch is balanced during training.

4.4 Explainability Maps

To find out what are the relevant areas for the classification task we use Grad-Cam
[29]. This technique utilizes the gradients of the classification score with respect to the
final feature map, thus, identifying which regions of the image contribute to the final
classification score. We project each explainability map back to the 3D-object/sphere and
apply a median filter with neighboring vertices to remove noise. The projection of these
maps onto the spherical surface enables the visualization of explainability maps directly
on the inflated cortical surfaces. This approach simplifies the task of identifying the
regions impacted by the condition under study. By utilizing this 3D spatial representation,
we are effectively able to correlate the intricate details from our explainability maps with
specific locations on the brain’s surface, providing a clear illustration of affected areas.

5 Results

The results in this section are computed using the test set from each fold and are reported
for the whole population.

Table 1 shows the mean and standard deviation for precision, recall, f1-score, and
accuracy for the 5 folds.

We perform extensive experiments with S-Unet, each IcoConv operator, different
feature extraction layers namely resnet18 and SpectFormer, and increasing the number
of views and reducing the radius to capture finer details.

The task of classifying HR+ v.s. HR− subjects presents a challenge. This is largely
due to the fact that at this early stage, the brains of the subjects often do not exhibit explicit
or easily distinguishable characteristics associated with the condition. Consequently,
subtle nuances and variations may be critical in this classification task, underscoring the
need for advanced and sensitive analytical methods.

We underscore that this dataset is highly imbalanced and achieving a high recall
ensures that the model does not merely predict the majority class and miss the minority
class instances.

The best performing model is the IcoConv2D with 42 views and the explainability
maps are generated with it.

The explainability maps are shown in Fig. 3. Interestingly, the model favors features
from the right hemisphere over the left ones. Furthermore, our findings support previous
research [12] that highlights the significance of similar brain regions sensitive to this
classification task.
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Table 1. Classification report for the 5 folds. We report the mean and standard deviation for each
metric. 42V = 42 views (icoshedron subdivision level 2). MAR = Macro Average Recall

Approach Class Precision Recall F1 Score MAR Accuracy

S-Unet No
ASD
ASD

0.83 ± 0.02
0.37 ± 0.13

0.88 ± 0.05
0.29 ± 0.07

0.85 ± 0.02
0.33 ± 0.08

0.585 ± 0.04 0.76 ± 0.03

IcoCo2D No
ASD
ASD

0.83 ± 0.01
0.38 ± 0.19

0.88 ± 0.05
0.28 ± 0.07

0.86 ± 0.03
0.32 ± 0.11

0.58 ± 0.05 0.76 ± 0.04

IcoCo1D No
ASD
ASD

0.84 ± 0.02
0.37 ± 0.15

0.87 ± 0.05
0.32 ± 0.11

0.85 ± 0.03
0.34 ± 0.11

0.595 ± 0.05 0.76 ± 0.05

IcoCoLinear No
ASD
ASD

0.84 ± 0.03
0.37 ± 0.12

0.84 ± 0.04
0.37 ± 0.17

0.84 ± 0.01
0.37 ± 0.13

0.605 ± 0.07 0.75 ± 0.02

IcoCoLinearinf No
ASD
ASD

0.85 ± 0.01
0.39 ± 0.11

0.85 ± 0.04
0.39 ± 0.07

0.85 ± 0.02
0.39 ± 0.09

0.62 ± 0.04 0.75 ± 0.03

Spect 42V No
ASD
ASD

0.84 ± 0.03
0.38 ± 0.12

0.86 ± 0.05
0.35 ± 0.07

0.85 ± 0.02
0.36 ± 0.05

0.605 ± 0.02 0.76 ± 0.03

SpectICo 42V No
ASD
ASD

0.85 ± 0.02
0.37 ± 0.1

0.83 ± 0.05
0.41 ± 0.05

0.84 ± 0.02
0.39 ± 0.05

0.62 ± 0.02 0.74 ± 0.03

IcoCo2D 42V No
ASD
ASD

0.85 ± 0.03
0.42 ± 0.08

0.86 ± 0.05
0.41 ± 0.1

0.85 ± 0.02
0.42 ± 0.06

0.635 ± 0.04 0.77 ± 0.02

We use the Desikan parcellation [25] to identify the affected brain regions that appear
in our explainability maps. Similar activation maps appear on both hemispheres centered
on the entorhinal spreading to the parahippocampal, temporal pole, and fusiform. The
right hemisphere present higher activity in the lingual and occipital lobe, with some
activation in the right and left for the inferior parietal and superior frontal regions. These
specific areas have been reported in previous studies, the entorhinal cortex, lingual and
fusiform have been reported respectively by [5, 22, 33] to be areas impacted by ASD.

Finally, we test the feature importance with a random forest classifier trained using
scikit-learn version 1.1.1. Figure 4 shows that gender is the most important demographic
and amygdala is the most important if the gender is removed from the analysis.
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Fig. 3. Left, posterior, right views for the left hemisphere above and right hemisphere below. The
gradcam maps are generated using only the correctly classified HR + subjects and using HR +
as the target class. It indicates that features from the right hemisphere are preferred over the left
ones. The name of the area are based on this labeling map [25]

Fig. 4. The top left figure shows a plot of importance for features concatenated with normalized
demographic values. The bottom left is only demographics to highlight that gender is the most
important feature for the Random Forest classifier. The right plot shows an experiment with the
gender removed from the analysis and shows that the amygdala is the most important feature in
the demographics for the classification task

6 Conclusion

In conclusion, we have created a framework for shape analysis and explainability that is
agnostic to the neural network model and the shape topology of the input meshes.
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Our first contribution is a novel approach for shape analysis that does not require
shapes with specific spherical topology or any form of subsampling of the mesh. Our
shape analysis framework offers a significant advantage as it can handle meshes that
are not in spherical topology or have holes, which is a requirement for S-Unet. We
demonstrate this crucial feature by performing an experiment using subject specific
inflated cortical surfaces.

Our second contribution is the visualization of explainability maps on complex
shapes such as cortical surfaces. We tested our approach on a challenging classifica-
tion task using subjects with high risk of developing autism and comparing HR+ v.s.
HR−.

Our study utilized distinct neural networks for each hemisphere of the brain. Our
results reveal that certain characteristics in the right hemisphere of the brain play a
significant role in the classification of ASD. Our approach has identified brain regions
and corroborate previous findings [5, 22, 33] of ASD-affected brain regions.

Finally, our approach allows including demographic information and highlights the
amygdala volume as an important predictor for ASD. This finding also been corroborated
in a previous study [4].

In future work, we will extend our analysis to other neuro-psychiatric disorders such
as schizophrenia, attention deficit hyper-activity disorder, and bipolar.
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Abstract. DeCA (Dense Correspondence Analysis) is an open-source toolkit for
biologists that integrates biological insights in the form of homologous landmark
points with dense surface registration to provide highly detailed shape analysis
of smooth and complex structures that are typically challenging to analyze with
sparse manual landmarks alone. In this work we demonstrate the use of DeCA
by analyzing morphological differences of the skull in a dataset of 60 laboratory
mice from different background strains.

Keywords: morphometrics · registration · phenotyping

1 Introduction

Concepts of “homology” and “developmental origin” are integral to many fields of
biological research to establish equivalency of anatomical structures, regardless how
different they may look (and possibly function) in different taxa. The former establishes
similarity due to shared ancestry (e.g., bones in the forelimbs of bats and whales are
homologous because they are both mammals). The latter focuses on the cellular origin
of tissue types (e.g., in mammalian development basioccipital bone of the cranium
originate from the mesoderm, whereas frontal bone derives from neural crest cells).

In the context of 3D shape analysis, one way to codify this biological insight is to
segment individual structures based on both their evolutionary homologies and devel-
opmental origins and conduct the analysis of these units. In addition to being time
consuming, these relationships may be hard to delineate in 3D scans of adult specimens.
For example, while a single rigid structure, an adult mammalian skull is composed of
over 20 different bones with different developmental origins [1]. While anatomical land-
marks that delineate tissue boundaries remain an easy way to infuse expert knowledge
of anatomy into analysis, they tend to be too sparse to capture the anatomical arrange-
ment of a complex structure like skull. On the other hand, most dense correspondence
analyses assume the equivalency of structures being analyzed (e.g., “mid face”), while
this makes sense in context of a single species studies, it may or may not be correct to
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assume in context of multiple species, or studies that involve organisms whose normal
development is perturbed by genetic modifications (either through selective breeding or
more directly editing genomes).

Here we introduce DeCA, a toolkit that allows to easily combine both approaches, in
which the expert evolutionary and developmental knowledge can be incorporated in the
process by annotating landmarks, from which the dense correspondence is automatically
interpolated. DeCA is based on a dense surface correspondence method introduced in
Hutton, et al. [2]. This and similar methods have been generally accepted for analysis
of shape and asymmetry of the human face, which has a combination of smooth shapes
and a small number of identifiable features that can be reliably landmarked [3–6].

DeCA is implemented as an extension on the 3D Slicer platform to provide the
maximum ease of use for the biologists working with genetic mutants of model organisms
or with multiple species. The DeCA module contains workflows to guide rigid alignment,
generating a mean model from a group, creation of registered, mirrored models, and
execution of dense surface registration for shape or symmetry analysis. It also supports
error checking, extraction of dense semi-landmark sets from the points correspondences
and visualization of heatmaps showing average and individual differences in shape.
In this paper, we demonstrate the shape analysis workflow for a dataset of digitized
skulls from 60 laboratory mice of differing genetic backgrounds and compare the results
produced by DeCA results to typical sparse landmark analysis.

2 Methods

Each step in the shape analysis workflow in this work is implemented in the DeCA mod-
ule and is freely available (https://github.com/smrolfe/DeCA). All analysis and eval-
uations can be run entirely within the 3D Slicer application via user-friendly module
interfaces [7]. The DeCA module is shown in Fig. 1. The DeCA module is implemented
as a tabbed workflow, where each tab is modular and can be used separately or combined
into customized workflows.

Fig. 1: The DeCA workflow implemented as a module in 3D Slicer.

https://github.com/smrolfe/DeCA
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Placing Manual Landmarks: The first step in establishing the dense surface mapping
is to place a small number of manual landmark points on each of the specimens. The
selection of landmark points is an integral step in the experiment design as the land-
marks define the reference frame for the shape differences measured and provides a
way to capture expert knowledge of points of biological homology in a dataset. The first
consideration is to select points that can be reliably placed at true locations of homology.
The distribution of the points can also impact the analysis, as points disproportionately
selected from one area of the model will result in the alignment of this region to dominate
the surface mapping. Regions containing high curvature or variability that is not well
modeled by a smooth curve should be resampled to improve the surface alignment. The
number of manual landmarks needed is dependent on the geometry of the sample. The
user may need to experiment to find the correct number of landmark points to optimally
align the shapes for their application. The method outlined in the “Error checking”
section can be used to identify and troubleshoot alignment issues due to insufficient
landmark sets.

To produce landmark position files in a format compatible with the DeCA module,
placing the landmarks in 3D Slicer is recommended. 3D Slicer supports the creation
of landmark templates with a fixed set of pre-named points to standardize this process.
For large datasets, initializing the landmark positions using the automated landmarking
module ALPACA, provided as part of the SlicerMorph extension to 3D Slicer, and
adjusting the placement by hand can help significantly reduce manual landmarking time
and avoid mistakes [8, 9].

Rigid Alignment of Models: The first tab in the DeCA workflow will align all speci-
mens to a selected reference subject using a rigid body transform (rotation and translation
only). The output of this step is a directory of transformed models and landmark files in
aligned space.

DeCA Point Correspondence Assignment for Shape Analysis: The DeCA tab pro-
duces the set of point correspondences for a directory of rigidly aligned models. A
reference model can be selected, or alternatively, an average template model can be gen-
erated from the dataset (see mean template building section). The models are aligned
using Procrustes alignment to their mutual mean, removing positional and scale differ-
ences. The aligned landmarks are then transformed to the mean shape using a thin plate
spline (TPS) transformation [10]. After this step, the landmarks are in absolute alignment
and a transform is interpolated between the points by minimizing the bending energy
of a theoretical spline placed between points. This transform preserves the homology at
the manual landmark locations and while optimizing for smoothness and minimization
of variation in the neighborhood around the landmark points. The final step to assign
point correspondences for each point on the reference model to a point on each subject
model using the iterative closest point (ICP) algorithm. The point correspondences are
transformed back to the rigidly aligned subject space, generating a vector for each point
on the template surface between the spatial location of the corresponding points on the
template and model. The magnitude of each vector is extracted and saved in a point array
of the output result model.
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DeCA Point Correspondence Assignment for Asymmetry Analysis: In the DeCA
tab, the user can select “Symmetry analysis” instead of the default “Shape analysis”
from the Dense Correspondence options. When the “Symmetry analysis” is selected
and directories are required containing for the mirrored landmarks and models for each
subject in the analysis (see creating mirrored data section). The DeCA point correspon-
dences will be run for both the original and mirrored models. For each point on the
reference model, the asymmetry vector is defined between corresponding points on the
subject mesh and its mirrored copy and represents the transformation due to asymmetry.
The magnitude of these vectors is displayed as a heatmap on the template image to
visualize the spatial distribution of asymmetry.

Error Checking: The DeCA tab provides an option to create an output directory where
the TPS-warped meshes in Procrustes aligned space are saved for each subject and
the reference template. Comparing these deformably warped meshes before the point
correspondences are assigned in the ICP step allows the users to confirm that the surfaces
of the model are in close alignment. If the surfaces are misaligned at this step, more
manual landmarks should be added to improve the accuracy of the ICP step.

Mean Template Building: In the “Generate Mean” tab, a group mean template is
generated from the rigidly aligned models and landmarks. A reference model is chosen
from the dataset. We recommend that this reference subject is close to the group mean
and that the mesh has good connectivity since the mesh vertices will serve as the index
of point correspondences. The DeCA point correspondence is run to generate the point
correspondences between the reference model and every subject in the dataset. The mean
template model is constructed by moving each point in the reference model to the mean
position of the corresponding points. The mean template output from this step can be
directly used as the reference model in the DeCA tab. Optionally, the mean template
model can first be smoothed to remove unwanted local shape variation or decimated to
reduce the number of point correspondences calculated to simplify the mesh and improve
computational time.

Creating Mirrored Data: The DeCA symmetry analysis pipeline requires aligned,
mirrored models for each specimen in the dataset, with corresponding landmarks. The
Mirror Data tab guides the user through creating these outputs. The user selects the axis
of symmetry to mirror the model across and specifies the point ordering of the new
mirrored point lists, in which the order of bilaterally paired points is reversed while
centerline points are left in place.

DeCAL: DeCAL is an extension of DeCA that can be used to generate dense semi-
landmarks from the point correspondences. The DeCA point correspondences are
assigned across a dataset, and then spatially filtered at a threshold set by the user to
select the number of points needed, and a landmark position file is output for each sub-
ject and the base mesh. Although the DeCAL point correspondences are guided by the
position of the manual landmarks, these manual landmark positions are not included in
the output semi-landmark set. The DeCAL points can be used in traditional analysis of
landmarks including GPA, PCA and other statistical methods. GPA and PCA analysis
can be run directly in 3D Slicer using the GPA module from the SlicerMorph exten-
sion [9]. Other statistical methods can be accessed by exporting the landmarks into R
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and using functions implemented in toolboxes such as geomorph and Morpho [11, 12].
DeCAL is also a useful tool for evaluating the shape information provided by DeCA,
by comparing the relationship between landmark analysis of the DeCAL and manual
landmark sets.

Visualization: In the Visualize Results tab, the user can select a result model from a
previous run of DeCA for shape or symmetry analysis. The results model is stored as the
template mesh geometry, with an array of the shape difference or asymmetry magnitude
for each subject stored at each point on the template mesh. The user can browse through
the subject magnitude arrays and display the selected subject array as a heat map on the
surface of the results model. Further visualization controls, such as color map selection
and color legend display are available in the 3D Slicer “Models” module.

3 Experimental Results

Data: To demonstrate the use of the DeCA toolbox, we have used the shape analysis
workflow to visualize the shape differences between models extracted from microCT
scans of skulls from 60 inbred mouse strains. Mouse models are key to understanding
the genotype-phenotype interactions. Such studies are routinely carried out on any of a
large number of inbred background strains. While the difference in anatomy between
background strains can have an impact on the morphological traits measured, the differ-
ences in morphology are not well understood. This dataset was collected to quantify and
characterize shape differences between commonly used background strains of laboratory
mice with the goal of better understanding of how this piece of the experimental design
influences the definition of “normal morphology” and to better inform comparisons of
studies done on different background strains.

The microCT scans were manually annotated by an expert with a set of 51 anatomical
landmarks. This number reflects both the complexity of the skull geometry and the
number of available points that can be reliably placed at known points of homology (i.e.
skull sutures). A higher density of points was placed on the cranial due to the larger
number of identifiable features. This also incorporates the expert knowledge that this
region should dominate the image registration, as it is expected to contain the least
variation.

DeCA for Assessment of Shape Differences
The DeCA toolkit was used to create a rigidly aligned set of images. A reference strain
with good connectivity (C57BL/6J) was selected as the base model for generating the
mean model and landmark points. Heatmaps showing the mean magnitude and standard
deviation across the entire group are shown in Fig. 2. As expected, the lowest variation
is seen at the cranial base. The largest differences in shape are seen at the posterior of the
skull, premaxilla, and nasal region, on the order of 0.5mm. There is also a localized area
of high levels of shape difference near the squamosal suture, capturing height differences
of the zygomatic arch.

The magnitude arrays were extracted for each subject and ranked by the highest mean
values. The top 5 specimens with the highest average magnitude of shape difference
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Fig. 2: Mean (a and b) and standard deviation (c and d) of the shape difference magnitude over
all mouse strains. Color legend units are in mm.

are reported in Table 1. The average magnitude for an anatomical feature can also be
reported for each subject by segmenting the region of interest on the DeCA output model.
In Fig. 3, the nasal bone was segmented using the Dynamic Modeler module in 3D. The
top 5 specimens with the highest magnitude of shape difference in the nasal bone region
are reported in Table 2. Comparing Tables 1 and 2, the specimens with the highest
levels of shape difference overall also have the highest levels of shape difference in the
nasal region. However, the ordering of the specimen ranked by nasal shape difference
has changed, with the highest ranked specimen NZBWF1/J in Fig. 3(b) showing the
larger difference in the nasal bone compared to SF/CamEiJ, the specimen with the
highest overall difference. Note that in this example, where only the magnitude of shape
difference is used, we do not distinguish between the direction of these differences.

Table 1. Top 5 strains ranked by overall magnitude of shape difference.

Strain name Average magnitude (mm)

SF/CamEiJ 1.468

PERC/EiJ 1.326

NZBWF1/J 1.324

CAST/EIJ 1.151

MOLG/DnJ 1.007
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Table 2. Top 5 strains ranked by nasal bone magnitude of shape difference.

Strain name Average magnitude (mm)

NZBWF1/J 1.468

PERC/EiJ 1.326

CAST/EIJ 1.324

MOLG/DnJ 1.151

SF/CamEiJ 1.007

Fig. 3: Nasal region extracted from the DeCA result model used to generate shape difference
rankings based only on this region (a). The top ranked specimen is the NZBWF1/J strain (purple),
shown overlaid with the mean model (yellow) in (b). This specimen shows greater difference
in the nasal bone region compared to the top ranked specimen for overall shape difference, (c)
SF/CamEiJ which is shown (blue) overlaying with the mean template model (yellow).

DeCAL Comparison to Manual Landmark Analysis
To validate the results of the shape differences found, DeCAL was used to extract 459
semi-landmark points from the DeCA assigned point correspondences. GPA, followed
by PCA were applied using the GPA module of the SlicerMorph extension within 3D
Slicer. The DeCAL landmarks differ from semi-landmark points which are sampled
regularly on a surface, as they represent corresponding points across the dataset. Due to
this, we did not choose to use sliding semi-landmark algorithms applied prior to analysis.
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Results from the DeCAL analysis are compared to GPA and PCA analysis of the
51 manual landmarks. Given that the placement of the DeCAL points is guided by the
manual landmark points but includes shape information from the regions between these
points, we expect that the DeCAL results would be similar, but provide more detailed
information. In the case that the point correspondences have low accuracy, including such
a large number of semi-landmark points would introduce noise that would be expected
to obscure the shape information provided by the manual landmarks alone.

A projection of the specimens onto the first two projections of the PCA shape space is
shown in Fig. 4 for both the manual and DeCAL landmark sets. In the manual landmark
analysis, PC 1 accounts for 19.0 percent of the variation in the dataset and PC 2 accounts
for 9.4 percent. This is comparable to the DeCAL analysis, where PC 1 accounts for
24.0 percent of the variation and PC 2 accounts for 11.8. In each projection, the outliers
along each PC are consistent, with C57BL/6J at the negative extrema of PC 1 and PC
2, C57BLKS/J at the negative extrema of PC 1, SF/CamEij at the positive extrema of
PC 1, and SPRET/EiJ at the positive extrema of PC 2. The positioning of these outliers
differed in their separation from the primary cluster of points. With manual landmarks
alone, SF/CamEij is the furthest from the remainder of the group along the PC 2 axis.
When the DeCAL landmarks are used, C57BL/6J is furthest from the group along the
PC2 axis. Greater separation of an outlier from the mean of the other specimen suggests
that the outlier has more shape variability in regions outside of the manual landmark
points.

To explore the accuracy of the use of the additional shape information provided by
the DeCAL analysis, we compare at how well the deformation of the template model
along the principal components matches the actual specimens at the extrema of those
PC’s. Figure 5 shows this comparison for SF/CamEiJ and deformation of the reference
model in the positive direction along the first PC. In Fig. 5 (b) and (c), widening of the
skull and shortening of the snout can be observed for both the manual landmark and
DeCAL warping along PC 1 when compared to the template model in Fig. 5 (a). This
is consistent with the skull morphology of SF/CamEiJ. However, the DeCAL warped
model produces a more realistic warping of the nasal bone, due to the additional points
that provide more localized shape information than the interpolated warping generated
from the manual landmarks alone.

A similar effect can be observed when comparing the deformations along the second
principal component where the basicranium becomes more flexed in the negative PC 2
direction. This can be seen in Fig. 6, in both the (c) manual landmark and (d) DeCAL
warping along PC 2, but compared to the (b) C57BL/6J specimen that lies on the negative
extreme of PC 2, the DeCAL warping is capable of producing a cranial base angle that
is strikingly more similar to the C57BL/6J specimen.
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Fig. 4: Projection of each specimen onto the first two principal components for the (a) manual
landmark points (b) dense semi-landmarks extracted by DeCAL.
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Fig. 5: Comparison between the (a) template model, (b) manual landmark model warped in the
positive PC1 direction, (c) DeCAL model warped in the positive PC 1 direction and (d) SF/CamiEiJ
specimen that is an outlier on the positive PC 1 axis. The warped models in (b) and (c) show similar
changes in morphology to the specimen in (d), including wider skull and shortened snout, but the
DeCAL warped model shows a more realistic warping of the nasal region.

Fig. 6: Comparison between the (a) template model, (b) C57BL/6J specimen that is an outlier
on the negative PC 2 axis, (c) manual landmark model warped in the negative PC 2 direction, and
(d) DeCAL model warped in the negative PC 2 direction. The DeCAL warped model represents
basicranial flexion seen in the C57BL/6J specimen more accurately compared to the PC2 warped
model.

Discussion
In this work we have introduced a fully open-source toolkit for shape analysis via dense
surface registration. While methods for dense surface registration are well established,
they have typically required significant time and programming expertise to use. The
DeCA module, packaged as a module on the 3D Slicer image analysis platform removes
these barriers and provides a modular tool that can support a variety of workflows. We
applied this to an example application to look at the shape differences in a group of mice
from a large number of inbred strains. The analysis provided by DeCA was consistent
with the information provided by the manual landmarks alone but offered more detailed
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spatial information about the distribution of the shape changes. GPA and PCA analysis
of the semi-landmarks extracted by DeCAL were reliably able to estimate more realistic
approximations of the variation seen in this dataset.

These experiments within a single species with some known differences help to val-
idate DeCA for complex shape analysis applications. We plan to move towards apply-
ing DeCA for more challenging tasks such as comparisons across species which are
not typically feasible with registration methods that rely on a high level of geometric
similarity.

Future Development: In the current implementation of the DeCA module, the pri-
mary output is the magnitude of the shape difference vectors. These values can be viewed
as a heatmap, output as an array, or averaged over a region defined on the output results
model. The toolkit is still under construction and features we plan to add soon are angular
measurements as described in our previous work [6] and the ability to quantify differ-
ences in pointwise geometric surface properties such as surface curvature and local mesh
features such as color and texture.

Acknowledgement. Parts of this research were funded by the National Science Foundation Award
[OAC 2118240] (Imageomics Institute) and National Institute of Dental and Craniofacial Research
(DE027110) to AMM.
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Abstract. Scoliosis is typically measured in 2D in the coronal plane,
although it is a three-dimensional (3D) condition. Our objective in this
work is to analyse the 3D geometry of the spine and its relationship to
the vertebral canal. To this end, we make three contributions: first, we
extract the 3D space curve of the spine automatically from low-resolution
whole-body Dixon MRIs and obtain coronal, sagittal and axial projec-
tions for various degrees of scoliosis; second, we also extract the vertebral
canal as a 3D curve from the MRIs, and examine the relationship between
the two 3D curves; and third, we measure the angle of rotation of the
spine and examine the correlation between this 3D measurement and
the 2D curvature of the coronal projection. For this study, we use 48,384
MRIs from the UK Biobank.

Keywords: MRI · Spine Geometry · 3D/2D Correspondences

1 Introduction

Scoliosis is defined as a lateral deformation of the spine in the coronal plane,
usually manually diagnosed on anteroposterior (AP) X-rays, by measuring the
Cobb angle, where an angle over 10◦C is considered scoliotic [4]. More recently,
it has been shown that scoliosis can also be diagnosed from DXA (Dual-energy
X-ray Absorptiometry) scans, which are less costly and involve a 10 times lower
radiation dose than conventional X-rays [23]. However, both X-rays and DXAs
do not capture the complex 3D deformation of the spine [8]. The convenience
of using coronal radiographs to measure scoliosis has meant that the axial and
sagittal planes have been widely disregarded.

In this work, we explore scoliosis in 3D by analysing the 3D shape of the
space curve of the spine, and its relationship to the 3D space curve of the verte-
bral canal. For this study, we use the Dixon MRIs available in the UK Biobank.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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We segment both the spine and the vertebral canal in axial slices. These seg-
mentations allow us to extract 3D curves for the spine and canal, as illustrated
in Fig. 1.

Fig. 1. Overview of the geometry pipeline. The spine (yellow) and the vertebral canal
(red) are segmented in each axial slice. The centroids of the spine segments over all axial
slices form a 3D space curve (similarly for the canal). The space curve is projected onto
the coronal and sagittal planes, and a 2D spline curve fitted to the projected points.
Curvature and angles are computed from the spline curve. (Color figure online)

Our objective is to study how the 3D spine curve deforms for a scoliotic spine,
and also how the vertebral canal adapts to scoliosis. We analyse the 3D spine
curve by projecting it onto coronal, sagittal and axial planes, and determine the
severity of scoliosis on the coronal plane. It is worth noting that the MRIs from
the UK Biobank are uniquely suitable for scoliosis measurement in 3D as there
exists an established scoliosis measurement on the paired MRI to 2D DXA for
the coronal projection which serves as our point of reference [2,9].

We then investigate the relationship between the spine and vertebral canal
curves on the three planes, and also measure the deviation between the two
curves. In addition, we measure the curvature of the coronal projection and the
angle of axial rotation of the spine; and investigate their relation.

Sect. 2 outlines our method for extracting the geometry of the spine and
vertebral canal from MRIs, and describes the measures we use for the analysis
of the geometry. Then, Sect. 3 describes the dataset, and presents the results of
the analysis, together with several visualizations of the geometry. Finally, Sect. 4
summarises the findings and the implications of this research.

1.1 Related Work

Research on the relationship between deformations on the sagittal, axial and
coronal planes is still in its early phase [11,14].

The UK Biobank dataset used in this paper is of adults. However, most
work on scoliosis focuses on adolescent idiopathic scoliosis (AIS), while scolio-
sis in adults has been relatively unexplored in past literature. Grown adults
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can develop degenerative scoliosis as a result of wear and tear on the discs of
the spine. It has been shown that the right thoracic curves are predominant in
AIS [13] but this kind of shape analysis of the spine in adult scoliosis is rare.

To date, the vast majority of scoliosis research has focused on 2D shape
analysis of the spine, but not in 3D at a large scale. Limitations of 2D spine
analysis arise particularly in classifying curve shape. Indeed, deviations are not
limited to the coronal plane. They include twisting of the spine in multiple
directions [18]. The closest work to ours is by Pasha et al. [15,16] in which they
look at 3D curves in scoliosis; the main differences between their work and ours
are: they used EOS which is quite a niche imaging modality compared to MRIs,
they focused on AIS as opposed to degenerative scoliosis, and the number of
samples is small (n=103).

Though we use MRIs in our work, it is worth noting that most works on spinal
MRIs focus on non-scoliosis spinal disorders and as such put more emphasis on
segmenting the vertebral bodies and discs individually rather than the spine as
a whole [10–12,14,24].

2 The 3D Geometry of the Spine and Vertebral Canal

It is essential for the 3D geometrical analysis of scoliosis that we capture the
whole shape of the spine. To this end, we segment the two main structures that
can be seen in the axial Dixon MRIs: these are (i) the “spine” itself, which
is comprised of the vertebral bodies and the intervertebral discs, and (ii) the
“vertebral canal”, which is the space occupied by the spinal cord and filled with
cerebrospinal fluid. We do this segmentation on a per-slice basis for each axial
image in a given scan volume. The centroid (a 2D point) of each segmentation
can now be extracted from each slice and stacked vertically according to axial
slice numbering, and spaced appropriately with the axial slice thickness, for a
given volume.

A spline curve can then be fitted in 3D (or to the 2D projections), to smooth
out the noise in the measurements. The full implementation details are given in
the appendix, and the process is summarised in Fig. 1. The spine segmentation
gives us the 3D spine curve and the vertebral canal segmentation gives us the
3D vertebral canal curve. These 3D space curves can be projected to the coronal
(X,Z), the sagittal (Y,Z), as well as the axial (X,Y) plane. Figure 2 shows an
example of two curves in our dataset rotating in space.

2.1 Measuring the Deviation of the Curves

Now that the 3D curves of the spine and the vertebral canal have been extracted,
we can then proceed to the analysis of the curves. For a given normal spine,
it can be observed that two curves should overlap when projected onto the
coronal plane and should be parallel in the sagittal plane. As such, the simplest
measurement that is indicative of how far away from the norm a given pair of
curves are is to measure the deviation between these two curves. Simply put, to
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Fig. 2. Spine and Canal 2D Projections for every 30◦C of rotation for a severe ‘S
shape’ spine. This example is in Fig. 1. The 0◦C projection corresponds to the sagittal
projection, and the 90 projection to the coronal projection.

measure the distance, ‘d’, between the two curves we can simply compute the
vector joining each point of the spine (xspine, yspine) to the vertebral canal curve
(xcanal, ycanal) (see Fig. 3). If we project these vectors to the coronal plane, then
the sum of their magnitudes measures the ‘deviation’ between the two curves.
For a normal ideal spine, the ‘deviation’ will be zero in the coronal plane (since
the spine and vertebral canal will project on top of one another), and in the
sagittal plane, the point-wise difference between the two curves will have a set
but constant ‘deviation’.

For a given pair of spine and vertebral canal curves, we compute the point-
to-point distance in the axial plane:

δspine−canal =
N∑

i=1

√
(xispine

− xicanal
)2 + (yispine

− yicanal
)2 (1)

where i is the slice index and N is the total number of axial slices containing
the spine and canal for a given scan.

Then, we can obtain the maximum deviation by taking the maximum of the
point-wise distances of the spine-canal deviation (1). For a normal spine, the
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maximum deviation will be zero on the coronal plane. For the sagittal plane, a
normal spine has inward curvature (lordosis) for the cervical and lumbar sec-
tions, and outward spinal curvature (kyphosis) for the thoracic section. Sagittal
malalignment is as an exaggeration or deficiency of the normal lordosis or kypho-
sis curves. Therefore, we measure how parallel the spine and canal curves are on
the sagittal plane by taking the standard deviation of the spine-canal deviations.

Fig. 3. Measurement of deviation between spine (yellow) and canal (red) curves. Shown
is a coronal projection (left) and sagittal projection (right) and a zoom in on the
maximum coronal curvature point. (Color figure online)

2.2 Curvature of the Spine Curve

The spline is continuous everywhere, as are its first and second derivatives. This is
sufficient to determine the curvature κ with the standard mathematical formula:

κ =
(y

′′
x

′ − x
′′
y

′
)

(x′2 + y′2)

3
2

(2)

For the results in Sect. 3 the maximum absolute curvature in the coronal
plane is used to define three classes of scoliosis severity (normal, mild, severe)
according to thresholds obtained on a set of 2K DXA scans annotated for Cobb
angles. The threshold for scoliosis is |κ| = 0.083, mild scoliosis is: 0.083 < |κ| ≤
0.118; and |κ| > 0.208 is severe scoliosis.

2.3 Angle of Spinal Axial Rotation

Aside from measuring the deviation of the two curves, we can also evaluate the
lateral shift of the spine relative to the vertebral canal by measuring the angle of
rotation. This is done by using two landmarks: the centroid of the spine and the
centroid of the vertebral canal (see Fig. 4). The angle between the line through
these centroids and the vertical is the axial rotation (under the assumption that
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the patient is lying on their back). Note, there are several definitions of the angle
of axial rotation. They all rely on measuring the relative positions of anatomical
landmarks such as the pedicles, vertebral body, and spinous processes. We use a
similar approach to that of [1] and [6], but choose to detect the vertebral canal
as a landmark on our axial slices as it is continuous throughout the spine.

Fig. 4. The angle of axial rotation, α, is the angle between the line through the centroids
of the spine (yellow) and vertebral canal (red), and the vertical direction. (Color figure
online)

3 Results and Discussion

In this section, we compare the 2D projected curvature in relation to the 3D
spine. We investigate how the canal curve varies with respect to the spine in
Subsect. 3.2. And in Sect. 3.3, we analyse the coronal and sagittal curvatures
and their relation to the angle of maximum axial rotation.

3.1 Dataset

Our dataset is comprised of 48,384 whole-body MRIs from the UK Biobank, a
large open-access medical dataset with scans from more than 500,000 volunteers
[21]. MRIs in the UKBiobank are of much lower resolution than standard clinical
scans. Scans are resampled to be isotropic and cropped to a consistent resolution
(501 × 156 × 224). The dataset is split into 80:10:10 for training (38,707),
validation (4,838), and testing (4,839) for the segmentation task. 250–200-200
MRI scans are annotated for train-validation-testing for spine and vertebral canal
for the baseline segmentation model and checked by an expert clinician. A part
of the testing set (1,929) has been annotated by experts for Cobb angles using
a modified Ferguson method in whole-body DXA scans as described in [23]. We
use this annotated set to define the threshold for scoliosis in our experiment;
otherwise this test set is unused in the training of our pipeline. Appendix A.1
gives details of the segmentation.
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Fig. 5. Comparison of coronal, sagittal and axial 2D projections from 3D curve for
normal (A), mild (B) and severe C shape (C) and severe S shape (D) scoliosis cases.
Spine curve is in yellow and vertebral canal curve in red. (Color figure online)
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Fig. 6. Comparison of coronal, sagittal and axial 2D projections from 3D curve for a
severe S shape (top), and a severe C shape (bottom) scoliosis case. The axial curves
(3rd column) are more challenging to interpret. Spines are colour-coded on the z axis
to visually indicate the order of the curve in the other projections.

3.2 Geometry of the Spine: Deviation of the Spine and Vertebral
Canal

For a normal case, the spine and canal overlap in coronal, and are at a constant
separation in sagittal (see Fig. 5). By comparing the curves of the spine and canal
for normal versus scoliosis cases, we observe that the curves on coronal for scolio-
sis cases no longer overlap. We also observe that the vertebral canal is less curved
than the spine suggesting that it deforms less than the spine. On the sagittal
plane, the curves straighten from normal to scoliosis cases (see Figs. 5 and 6).

We study how the 3D deviation measurements relate to 2D. The results
confirm a strong correlation in deviations between the spine and vertebral canal
in 2D coronal and 3D curves (see Fig. 7A). The threshold for scoliosis is |κ| =
0.083. We define mild scoliosis as: 0.083 < |κ| ≤ 0.118; and |κ| > 0.208 for severe
scoliosis. Distribution of spine-canal deviations can be discretised according to
scoliosis severity (see Fig. 7B). This suggests that spine-canal deviations (mm)
can potentially be used as another quantitative measurement of scoliosis. We
then investigate how the vertebral canal is varying for different scoliosis severities
ranging from normal, mild to severe C and S shape curves (Fig. 8).
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Fig. 7. (A) Scatter plot of spine-canal point-wise deviations (mm) from 2D coronal
projection versus 3D (mm) (Pearson’s ρ = 0.86, p-value < 0.05, n = 48,384). (B)
Histogram with density function displaying the distribution of 2D spine-canal deviation
values (n = 48,384) for normal, mild and severe scoliosis cases. (C) Zoom in on mild
and severe scoliosis cases from plot in (B). The threshold for scoliosis based on human
angles (> 6◦ in whole body DXA as defined by [23]) in terms of curvature is 0.083.
This threshold corresponds to 2.5 mm of spine-canal deviation.

We can now investigate the properties of the spine that are obtained from
the projections of the 3D space curve (see Fig. 2 for a severe S shape curve).
Coronal vs Sagittal. We measured the deviation of the spine and canal at the
point of maximum coronal curvature. Comparing the MRI coronal and sagittal
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Fig. 8. Visualisation of Spine and Canal Deviations for a normal (A), mild (B) and
severe (C) scoliosis cases on the coronal plane. Spine in yellow, vertebral canal in red,
and deviations between the spine and vertebral canal in blue. (Color figure online)

spine-canal deviations at point of maximum coronal curvature, we observe an
inverse correlation (Pearson’s ρ = -0.64, n = 48,384). Curves on the sagittal plane
are challenging to accurately assess due to the natural variations of the spine. We
notice that severe scoliosis cases tend to have straighter spines in the sagittal
plane (see Fig. 5). This inverse correlation between coronal and sagittal plane
deviations is in accordance with past studies on biplanar radiographs curvature
measurements [5]. Moreover, we observe a correspondence between the coronal
plane and axial plane. The spine and vertebral canal deviation is greater on the
axial projection for severe cases (see Fig. 5).

3.3 Curvature Measurement in MRI and Relation to Axial Plane

The correlation between maximum coronal curvature and angle of maximum
axial rotation is moderately strong (ρ = 0.77, n = 48,384) which may suggest
a critical role of the axial plane in relation to curvature on the coronal plane.
This is in line with recent research on reconstructed 3D images [7,11]. Previous
work suggested a causal link between axial deformations and onset of coronal
deformations due to compensatory mechanical factors [17].

We show the scatter plot between the MRI axial angle of rotation at the
point of maximum coronal curvature and the maximum of the MRI spine coro-
nal projection in Fig. 9A, for all 48,384 scans in the UK Biobank. The correlation
is relatively good (Pearson’s ρ = 0.79) between coronal curvature and axial rota-
tion at point of maximal curvature. This confirms the findings of Sect. 3.2, at a
large scale.
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Fig. 9. (A) Scatter plot of angle of axial rotation vs MRI coronal maximum absolute
curvature (Pearson’s ρ = 0.79, n = 48,384). Angle is given in degrees. (B) and (C) Axial
slices corresponding to point of max MRI coronal curvature (yellow and brown circles
in (A)). Spine (red) lateral deviation is more prominent on (C) for severe scoliosis case
than (B) for mild scoliosis. (Color figure online)

As a qualitative example, we compare the spine and vertebral canal masks for
a mild scoliosis case (max. abs. curvature = 0.18, brown circle in Fig. 9A), and a
more severe scoliosis case (max. abs. curvature = 0.29, yellow circle in Fig. 9A).
Axial slices corresponding to these two cases are shown in Fig. 9B and 9C.

4 Conclusion

In this work, we investigated the geometry of scoliosis in 3D, while most prior
work has focused on 2D deformations. We measured the curvature of the spine
on one of the largest datasets of MRIs. One of the most remarkable outcomes



282 E. Bourigault et al.

of the visualizations is to see how the vertebral canal arranges itself to have
less severe curvature than the spine itself. We also show that the axial plane
is quite relevant for the assessment of scoliosis as suggested by the relatively
high correlation between the angle of axial rotation and coronal curvature. By
considering the spine as a 3D curve, we compared the projected 2D curves of the
spine and canal on the coronal and sagittal plane. This efficient method could
be used to measure the severity of the spine’s deformation.

Ultimately, the goal of this research is to provide an accurate and consis-
tent interpretation of spinal deformations in order to support clinicians in their
decision-making process. Prior to the work in this paper, the link between coro-
nal and sagittal curves was not well defined. Also, the role of the axial plane
in relation to the coronal and sagittal planes was not yet known. However, one
possible future analysis could be to use the relationship between the coronal,
sagittal and axial curves as a 3D classification method, without the need to
explicitly model the spine in 3D, thus facilitating its adoption in clinics.

Acknowledgements. This work was supported by the Centre for Doctoral Train-
ing in Sustainable Approaches to Biomedical Science: Responsible and Reproducible
Research (SABS: R3), University of Oxford (EP/S024093/1), and by the EPSRC Pro-
gramme Grant Visual AI (EP/T025872/1). We are also grateful for the support from
the Novartis-BDI Collaboration for AI in Medicine.

A Segmentation

There are four separate aligned sequences in the MRI Dixon scans used here.
These are in-phase, opposed-phase, fat-only and water-only. The fat-only and
water-only sequences are best suited to our task, see Fig. 10. Note, the MRI scans
in the UK Biobank have a lower resolution compared to typical clinical spine
scans. We segment the spine using axial slices as they have higher resolution,
and also support larger receptive fields for training the deep network.

A.1 Segmentation Network

A U-Net based network architecture is used for the segmentation task [19,26].
We use a U-Net++ [27] network with a ResNet-34 encoder. The input is 224
× 160 × 6, where we stack three adjacent MRI image slices of the spine region
for the two MRI sequences (fat-only and water-only). To avoid partial volume
effects, and also to benefit from more context, we ingest three adjacent slices,
with the middle slice as output. The output has size 224 × 160 ×2, where 2
refers to the segmentation maps for the spine and vertebral canal.

For training, the loss function is a weighted sum of categorical cross-entropy
loss [25] and dice loss [22] computed over a foreground/background/uncertain
tri-map to mitigate potentially noisy boundaries in our labels which we define
as ± 2px from the foreground boundary. Networks are trained for a maximum
of 500 epochs with early stopping when the validation Dice does not increase
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Fig. 10. Coronal, sagittal and axial projections for fat-only and water-only Dixon MRI
sequences.

by e−4. We use self-training to leverage the whole training set i.e. n = 38,707.
Inspired from the recent work on confirmation bias reduction in self-training [3],
we use an independent head for pseudo-label generation to prevent potentially
inaccurate pseudo-label backpropagation (Fig. 11).

B Spline Fitting

B.1 2D Spline Fitting

The 2D projected points (in the coronal or sagittal planes) are approximated
by a piecewise cubic spline to smooth out any noise due to sampling. For this
fitting, we use the method described in [2].

Using a parametrised curve, we construct polynomial piecewise cubic curves.
A single cubic curve has only one inflection point, but scoliosis curves may have
one or more. A solution could be to add extra control points and using higher
order polynomials. However, higher order polynomials are known to be very
sensitive to the locations of the control points. A common alternative in computer
vision is to construct cubic curves pieced together with a greater number of
inflection points. Each pair of control points form one segment of the curve,
where each curve segment is a cubic with its own coefficients.

fi(x) = ai + bix + cix
2 + dix

3 (3)
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Fig. 11. Visualisation of spine and vertebral canal segmentation masks and midpoint
curves on the coronal and sagittal plane.

where f is the function representing the curve between control points i and i + 1.
We ensure C0, C1, C2 continuity conditions.

– C0: Each segment is required to pass through its control points. That is,
fi(xi) = yi, and fi(xi+1) = yi+1

– C1: Each curve segment has the same slope at each junction, f
′
i (xi+1) =

f
′
i+1(xi+1)

– Each curve segment has the same curvature at each junction, f
′′
i (xi+1) =

f
′′
i+1(xi+1)

We improve the method in [2] by changing the uniform placement of a
fixed number of knots by automatic knot selection using penalised regression
splines [20]. The spline curve is composed of n − 1 piecewise cubic polynomials
where n is the total number of knots. The number of knots is selected in the
range from 2 to 10.

n is optimised using a penalty to balance goodness-of-fit and smoothness.
The selection of knots is such that the model chooses from a bigger selection of
functions. As the number of knots increases, the model overfits the data. Too
few knots on the other hand gives a more restrictive function.

B.2 3D Spline Fitting

We now extend the 2D spline fitting to three-dimensional space. We have two
systems of linear equations for x and y: Mxbx = x and Myby = y, where b is
the vector of curve coefficients, y is the vector of constants, and M is a matrix of
continuity conditions i.e. C0, C1, and C2. Each system is solved similarly as in
2D section above, except that we are solving two linear systems instead of one.
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Abstract. 3D image reconstruction from a limited number of 2D images
has been a long-standing challenge in computer vision and image analy-
sis. While deep learning-based approaches have achieved impressive per-
formance in this area, existing deep networks often fail to effectively
utilize the shape structures of objects presented in images. As a result,
the topology of reconstructed objects may not be well preserved, leading
to the presence of artifacts such as discontinuities, holes, or mismatched
connections between different parts. In this paper, we propose a shape-
aware network based on diffusion models for 3D image reconstruction,
named SADIR, to address these issues. In contrast to previous methods
that primarily rely on spatial correlations of image intensities for 3D
reconstruction, our model leverages shape priors learned from the train-
ing data to guide the reconstruction process. To achieve this, we develop
a joint learning network that simultaneously learns a mean shape under
deformation models. Each reconstructed image is then considered as a
deformed variant of the mean shape. We validate our model, SADIR, on
both brain and cardiac magnetic resonance images (MRIs). Experimen-
tal results show that our method outperforms the baselines with lower
reconstruction error and better preservation of the shape structure of
objects within the images.

1 Introduction

The reconstruction of 3D images from a limited number of 2D images is funda-
mental to various applications, including object recognition and tracking [12],
robot navigation [44], and statistical shape analysis for disease detection [4,36].
However, inferring the complete 3D geometry and structure of objects from
one or multiple 2D images has been a long-standing ill-posed problem [25]. A
bountiful literature has been investigated to recover the data from a missing
dimension [9,32,34,37]. Initial approaches to address this challenge focused on
solving an inverse problem of projecting 3D information onto 2D images from
geometric aspects [8]. These solutions typically require images captured from
different viewing angles using precisely calibrated cameras or medical imaging
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Wachinger et al. (Eds.): ShapeMI 2023, LNCS 14350, pp. 287–300, 2023.
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machines [7,28]. In spite of producing a good quality of 3D reconstructions, such
methods are often impractical or infeasible in many real-world scenarios.

Recent advancements have leveraged deep learning (DL) techniques to over-
come the limitations posed in previous methods [5,15,27]. Extensive research has
explored various network architectures for 3D image reconstruction, including
UNets [30], transformers [14,22], and state-of-the-art generative diffusion mod-
els [37]. These works have significantly improved the reconstruction efficiency
by learning intricate mappings between stacks of 2D images and their corre-
sponding 3D volumes. While the DL-based approaches have achieved impressive
results in reconstructing detailed 3D images, they often lack explicit considera-
tion of shape information during the learning process. Consequently, important
geometric structures of objects depicted in the images may not be well preserved.
This may lead to the occurrence of artifacts, such as discontinuities, holes, or
mismatched connections between different parts, that break the topology of the
reconstructed objects.

Motivated by recent studies highlighting the significance of shape in enhanc-
ing image analysis tasks using deep networks [6,20,26,39,43], we introduce a
novel shape-aware 3D image reconstruction network called SADIR. Our method-
ology builds upon the foundation of diffusion models while incorporating shape
learning as a key component. In contrast to previous methods that mainly rely
on spatial correlations of image intensities for 3D reconstruction, our SADIR
explicitly incorporates the geometric shape information aiming to preserve the
topology of reconstructed images. To achieve this goal, we develop a joint deep
network that simultaneously learns a shape prior (also known as a mean shape)
from a given set of full 3D volumes. In particular, an atlas building network
based on deformation models [39] is employed to learn a mean shape repre-
senting the average information of training images. With the assumption that
each reconstructed object is a deformed variant of the estimated mean shape,
we then utilize the mean shape as a prior knowledge to guide the diffusion pro-
cess of reconstructing a complete 3D image from a stack of sparse 2D slices.
To evaluate the effectiveness of our proposed approach, we conduct experiments
on both real brain and cardiac magnetic resonance images (MRIs). The exper-
imental results show the superiority of SADIR over the baseline approaches, as
evidenced by substantially reduced reconstruction errors. Moreover, our method
successfully preserves the topology of the images during the shape-aware 3D
image reconstruction process.

2 Background: Fréchet Mean via Atlas Building

In this section, we briefly review an unbiased atlas building algorithm [21], a
widely used technique to estimate the Fréchet mean of group-wise images. With
the underlying assumption that objects in many generic classes can be described
as deformed versions of an ideal template, descriptors in this class arise naturally
by matching the mean (also referred as atlas) to an input image [21,38,42,45,46].
The resulting transformation is then considered as a shape that reflects geometric
changes.
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Given a number of N images {Y1, · · · ,YN}, the problem of atlas building
is to find a mean or template image S and deformation fields φ1, · · · φN with
derived initial velocity fields v1, · · · vt that minimize the energy function

E(S, φn) =
N∑

n=1

1
σ2

Dist[S ◦ φn(vt),Yn] + Reg[φn(vt)], (1)

where σ2 is a noise variance and ◦ denotes an interpolation operator that deforms
image Yn with an estimated transformation φn. The Dist[·, ·] is a distance func-
tion that measures the dissimilarity between images, i.e., sum-of-squared dif-
ferences [3], normalized cross correlation [2], and mutual information [40]. The
Reg[·] is a regularizer that guarantees the smoothness of transformations.

Given an open and bounded d-dimensional domain Ω ⊂ R
d, we use Diff(Ω)

to denote a space of diffeomorphisms (i.e., a one-to-one smooth and invertible
smooth transformation) and its tangent space V = TDiff(Ω). A well-developed
algorithm, large deformation diffeomorphic metric mapping (LDDMM) [3], pro-
vides a regularization that guarantees the smoothness of deformation fields and
preserves the topological structures of objects for the atlas building framework
(Eq. (1)). Such a regularization is formulated as an integral of the Sobolev norm
of the time-dependent velocity field vn(t) ∈ V (t ∈ [0, 1]) in the tangent space, i.e.,

Reg[φn(vt)] =
∫ 1

0

(Lvt, vt) dt, with
dφn(t)

dt
= −Dφn(t) · vn(t), (2)

where L : V → V ∗ is a symmetric, positive-definite differential operator that
maps a tangent vector vt ∈ V into its dual space as a momentum vector mt ∈ V ∗.
We write mt = Lvt, or vt = Kmt, with K being an inverse operator of L. The
operator D denotes a Jacobian matrix and · represents element-wise matrix mul-
tiplication. In this paper, we use a metric of the form L = (−αΔ+γI)3, in which
Δ is the discrete Laplacian operator, α is a positive regularity parameter that
controls the smoothness of transformation fields, γ is a weighting parameter, and
I denotes an identity matrix.

The minimum of Eq. (2) is uniquely determined by solving an Euler-Poincaré
differential equation (EPDiff) [1,29] with a given initial condition of velocity
fields, noted as v0. This is known as the geodesic shooting algorithm [35], which
nicely proves that the deformation-based shape descriptor φn can be fully char-
acterized by an initial velocity field vn(0). The mathematical formulation of the
EPDiff equation is

∂vn(t)
∂t

= −K
[
(Dvn(t))T · mn(t) + Dmn(t) · vn(t) + mn(t) · div vn(t)

]
, (3)

where the operator D denotes a Jacobian matrix, div is the divergence, and ·
represents element-wise matrix multiplication.

We are now able to equivalently minimize the atlas building energy function
in Eq. (1) as

E(S, φn) =
N∑

n=1

1

σ2
Dist[S ◦ φn(vn(t)), Yn] + (Lvn(0), vn(0)), s.t. Eq. (2)& (3). (4)

For notation simplicity, we will drop the time index in the following sections.
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3 Our Method: SADIR

In this section, we present SADIR, a novel reconstruction network that incor-
porates shape information in predicting 3D volumes from a limited number of
input 2D images. We introduce a sub-module of the atlas building framework,
which enables us to learn shape priors from a given set of full 3D images. It
is worth mentioning that while the backbone of our proposed SADIR is a dif-
fusion model [16], the methodology can be generalized to a variety of network
architectures such as UNet [33], UNet++ [47], and Transformer [11].

3.1 Shape-Aware Diffusion Models Based on Atlas Building
Network

Given a number of N training data {In,Yn}N
n=1, where In is a stack of sparse

2D images with its associated full 3D volume Yn. Our model SADIR consists of
two submodules:

(i) An atlas building network, parameterized by θa, that provides a mean image
S of {Yn}. In this paper, we employ the network architecture of Geo-SIC [39];

(ii) A reconstruction network, parameterized by θr, that considers each recon-
structed image Ŷn as a deformed variant of the obtained atlas, i.e., Ŷn

Δ=
S ◦ φn(vn(θr)). In contrast to current approaches learning the reconstruc-
tion process based on image intensities, our model is developed to learn the
geometric shape variations represented by the predicted velocity field vn.

Next, we introduce the details of our shape-aware diffusion models for recon-
struction, which is a key component of SADIR. Similar to existing diffusion
models [16,37], we develop a forward diffusion and a reverse diffusion process to
predict the velocity fields associated with the pair of input training images and
an atlas image. For the purpose of simplified math notations, we omit the index
n for each subject in the following sections.

Forward Diffusion Process. Let y0 denote the original 3D image with full
volumes and τ denote the time point of the diffusion process. We assume the
data distribution of yτ is a normal distribution with mean μ and variance β, i.e.,
yτ ∼ N (μ, β). The forward diffusion of yτ−1 to yτ is then recursively given by

p(yτ | yτ−1) = N (yτ ;
√

1 − βτyτ−1, βτ I), (5)

where I denotes an identity matrix, and βτ ∈ [0, 1] denotes a known variance
increased along the time steps with β1 < β2 < · · · < βτ . The forward diffusion
process is repeated for a fixed, predefined number of time steps.

It is shown in [16] that repeated application of Eq. (5) to the original image
y0 and setting ατ = 1 − βτ and ᾱτ =

∏τ
i=1 αi yields

p(yτ | y0) = N (yτ ;
√

ᾱτy0, (1 − ᾱτ )I).
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Therefore, we can write yτ in terms of y0 as

yτ =
√

ᾱτy0 +
√

1 − ᾱτ ε with ε ∼ N (0, I).

Reverse Diffusion Process. Given a concatenation of a sparse stack of 2D
images I, an atlas image S, and yτ from the forward process, our diffusion
model is designed to remove the added noise in the reverse process. Following
the work of [41], we will now predict yτ−1 from the input yτ . The joint probability
distribution p(yτ−1 | yτ ) is predicted by a trained neural network (e.g., UNet) in
each reverse time step for all τ ∈ {1, · · · , T}, where T is the maximal time step.
With the network model parameters denoted by θr, we can write the reverse
process as

pθr (yτ−1 | yτ ) = N (yτ−1;μθr (yτ , τ),Σθr (yτ , τ)).

Similarly, we can write yτ−1 backward in terms of yτ as

yτ−1 =
1√
ατ

(yτ 1 − ατ

√
1 − ᾱτ

εθr (yτ , τ)) + σtz,

where στ is the variance scheme the model can learn, the component z is a
stochastic sampling process. The model is trained with input yτ to subtract the
noise scheme εθr (yτ , τ) from yτ to produce yτ−1.

The output of this reverse process is a predicted velocity field v(θr), which is
then used to generate its associated transformation φ(v(θr)) to deform the atlas
S. Such a deformed atlas is the reconstructed image Ŷ = S ◦ φ(v(θr)).

An overview of the proposed SADIR network architecture is shown in Fig. 1.

3.2 Network Loss and Optimization

The network loss function of our model, SADIR, is a joint loss of the atlas
building network and the diffusion reconstruction network. We first define the
atlas building loss as

L(θa) =
N∑

n=1

1
σ2

‖S(θa) ◦ (φn(vn)) − Yn‖2
2 + (Lvn, vn) + reg(θa), (6)

where reg(·) denotes a regularization on the network parameters.
We then define the loss function of the diffusion reconstruction network as

a combination of sum-of-squared differences and Sørensen−Dice coefficient [10]
loss (for distinct anatomical structure, e.g., brain ventricles or myocardium)
between the predicted reconstruction and ground-truth in following

L(θr) =
N∑

n=1

‖S◦φn(vn(θr))−Yn‖2
2+η [1−Dice(S◦φn(vn(θr)),Yn)]+reg(θr), (7)
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Fig. 1. An overview of our proposed 3D reconstruction model SADIR.

where η is the weighting parameter, and Dice(Ŷ ,Yn) = 2(|Ŷ|∩|Yn|)/(|Ŷ|+|Yn|),
considering Ŷn

Δ= S ◦ φn(vn(θr)). Defining λ as a weighting parameter, we are
now ready to write the joint loss of SADIR as

L = L(θa) + λL(θr).

Joint Network Learning with an Alternative Optimization. We use an
alternative optimization scheme [31] to minimize the total loss L in Eq. (3.2).
More specifically, we jointly optimize all network parameters by alternating
between the training of the atlas building and diffusion reconstruction network,
making it end-to-end learning. A summary of our joint training of SADIR is
presented in Algorithm 1.

4 Experimental Evaluation

We demonstrate the effectiveness of our proposed model, SADIR, for 3D image
reconstruction from 2D slices on both brain and cardiac MRI scans.

3D Brain MRIs: For 3D real brain MRI scans, we include 214 public T1-
weighted longitudinal brain scans from the latest released Open Access Series of
Imaging Studies (OASIS-III) [23]. All subjects include both healthy and disease
individuals, aged from 42 to 95. All MRIs were pre-processed as 256×256×256,
1.25 mm3 isotropic voxels, and underwent skull-stripped, intensity normalized,
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Algorithm 1: Joint Training of SADIR.
Input : A group of N input images with full 3D volumes {Yn} and a stack of

sparse 2D images {In}.
Output: Generate mean shape or atlas S, initial velocity fields vn, and

reconstructed images Ŷn

1 for i = 1 to p do
/* Train geometric shape learning network */

2 Minimize the atlas building loss in Eq. (6)
3 Output the atlas S

/* Train diffusion network */

4 Minimize the diffusion reconstruction loss in Eq. (7)

5 Output the initial velocity fields {vn} and the reconstructed images Ŷn

6 end
7 Until convergence

bias field corrected and pre-aligned with affine transformation. To further vali-
date the performance of our proposed model on specific anatomical shapes, we
select left and right brain ventricles available in the OASIS-III dataset [23].

3D Cardiac MRIs: For 3D real cardiac MRI, we include 215 publicly available
3D myocardium mesh data from MedShapeNet dataset [24]. We convert the mesh
data to binary label maps using 3D slicer [13]. All the images were pre-processed
as 222 × 222 × 222 and pre-aligned with affine transformation.

4.1 Experimental Settings

We first validate our proposed model, SADIR, on reconstructing 3D brain ven-
tricles, as well as brain MRIs from a sparse stack of eight 2D slices. We com-
pare our model’s performance with three state-of-the-art deep learning-based
reconstruction models: 3D-UNet [9]; DDPM, a probabilistic diffusion model [16];
and DISPR, a diffusion model based shape reconstruction model with geometric
topology considered [37]. Three evaluation metrics, including the Sørensen-Dice
coefficient (DSC) [10], Jaccard Similarity [19], and RHD95 score [18], are used to
validate the prediction accuracy of brain ventricles for all methods. For brain MR
images, we show the error maps of reconstructed images for all the experiments.

To further validate the performance of SADIR on different datasets, we
run tests on a relatively small dataset of cardiac MRIs to reconstruct 3D
myocardium.

Parameter Setting: We set the mean and standard deviation of the forward
diffusion process to be 0 and 0.1, respectively. The scheduling is linear for the
noising process and is scaled to reach an isotropic Gaussian distribution irrespec-
tive of the value of T . For the atlas building network, we set the depth of the
UNet architecture as 4. We set the number of time steps for Euler integration
in EPDiff (Eq. (3)) as 10, and the noise variance σ = 0.02. For the shooting, we
use a kernel map valued [0.5, 0, 1.0]. Besides, we set the parameter α = 3 for the
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operator L. Similar to [37], we set the batch size as 1 for all experiments. We
utilize the cosine annealing learning rate scheduler that starts with a learning
rate of η = 1e−3 for network training. We run all models on training and val-
idation images using the Adam optimizer and save the networks with the best
validation performance.

In the reverse process of the diffusion network, we set the depth of the 3D
attention-UNet backbone as 6. We introduce the attention mechanism via spatial
excitation channels [17], with ReLU (Rectified Linear Unit) activation. The UNet
backbone has ELU activation (Exponential Linear Unit) in the hidden convolu-
tion layers and GeLU (Gaussian error Linear Unit) activation with tanh approx-
imation. For each training experiment, we utilize Rivanna (high-performance
computing servers of the University of Virginia) with NVIDIA A100 and V100
GPUs for ∼18 h (till convergence). For all the experimental datasets, we split
all the training datasets into 70% training, 15% validation, and 15% testing. For
both training and testing, we downsample all the image resolutions to 64×64×64.

4.2 Experimental Results

Figure 2 visualizes examples of ground truth and reconstructed 3D volumes of
brain ventricles from all methods. It shows that SADIR outperforms all baselines
in well preserving the structural information of the brain ventricles. In particular,
models without considering the shape information of the images (i.e., 3D-UNet
and DDPM) generate unrealistic shapes such as those with joint ventricles, holes
in the volume, and deformed ventricle tails. While the other algorithm, DISPR,
shows improved performance of enforcing topological consistency on the object
surface, its predicted results of 3D volumes are inferior to SADIR.

Fig. 2. Top to bottom: examples of reconstructed 3D brain ventricles from sparse 2D
slices; Left to right: a comparison of brain ventricles of all reconstruction models with
ground truth.
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Table 1. A comparison of 3D brain ventricle reconstruction for all methods.

Model DSC ↑ Jaccard similarity ↑ RHD95 ↓
3D-Unet 0.878 ± 0.0128 0.804 ± 0.0204 4.366 ± 1.908

DDPM 0.731 ± 0.0292 0.652 ± 0.0365 8.827 ± 9.212

DISPR 0.918 ± 0.0097 0.861 ± 0.0158 1.041 ± 0.130

SADIR 0.934 ± 0.013 0.900 ± 0.021 1.414 ± 0.190

Table 1 reports the average scores along with the standard deviation of the
Dice similarity coefficient (DSC), Jaccard similarity, and Hausdorff distance com-
puted between the brain ventricles reconstructed by all the models and the
ground truth. Compared to all the baselines, SADIR achieves the best perfor-
mance with a 1.6%–5.6% increase in the average DSC with the lowest standard
deviations across all metrics.

Figure 3 visualizes the ground truth and reconstructed 3D brain MRIs as a
result of evaluating DDMP and our method SADIR on the test data, along with
their corresponding error maps. The error map is computed as absolute values
of an element-wise subtraction between the ground truth and the reconstructed
image. The images reconstructed by SADIR outperform the DDPM with a low
absolute reconstruction error. Our method also preserves crucial anatomical fea-
tures such as the shape of the ventricles, corpus callosum and gyri, which cannot
be seen in the images reconstructed by the DDPM. This can be attributed to the
lack of incorporating the shape information to guide the 3D MRI reconstruction.
Moreover, our model has little to no noise in the background as compared to the
DDPM.

Fig. 3. Left to right: a comparison of ground truth, DDPM, and SADIR along with
the error map.

Table 2 reports the average scores of DSC, Jaccard similarity, and Hausdorff
distance evaluated between the reconstructed myocardium from all algorithms
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and the ground truth. Our method proves to be competent in reconstructing 3D
volumes without discontinuities, artifacts, jagged edges or amplified structures,
as can be seen in results from the other models. Compared to the baselines,
SADIR achieves the best performance in terms of DSC, Jaccard similarity, and
RHD95 with the lowest standard deviations across all metrics.

Table 2. A comparison of 3D myocardium reconstruction for all methods.

Model DSC ↑ Jaccard similarity ↑ RHD95 ↓
3D-Unet 0.870 ± 0.0158 0.771 ± 0.024 0.840 ± 0.202

DDPM 0.823 ± 0.014 0.668 ± 0.019 1.027 ± 0.093

DISPR 0.950 ± 0.017 0.906 ± 0.031 0.347 ± 0.032

SADIR 0.978 ± 0.016 0.957 ± 0.031 0.341 ± 0.023

Figure 4 visualizes a comparison of the reconstructed 3D myocardium
between the ground truth and all models. It shows that our method consis-
tently produces reconstructed volumes that preserve the original shape of the
organ with less artifacts.

Fig. 4. A comparison of reconstructed 3D myocardium between ground truth, 3D-
UNet, DDPM, DISPR, and SADIR over four different views.

Figure 5 shows examples of the superior, left, anterior and left-anterior views
of the 3D ground truth and SADIR-reconstructed volumes of the myocardium
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for different subjects. We observe that the results predicted by SADIR have
little to no difference from the ground truth, thereby efficiently preserving the
anatomical structure of the myocardium.

Fig. 5. 3D myocardium reconstructed from sparse 2D slices by SADIR over four dif-
ferent views.

5 Conclusion

This paper introduces a novel shape-aware image reconstruction framework
based on diffusion model, named as SADIR. In contrast to previous approaches
that mainly rely on the information of image intensities, our model SADIR
incorporates shape features in the deformation spaces to preserve the geometric
structures of objects in the reconstruction process. To achieve this, we develop
a joint deep network that simultaneously learns the underlying shape represen-
tations from the training images and utilize it as a prior knowledge to guide the
reconstruction network. To the best of our knowledge, we are the first to con-
sider deformable shape features into the diffusion model for the task of image
reconstruction. Experimental results on both 3D brain and cardiac MRI show
that our model efficiently produces 3D volumes from a limited number of 2D
slices with substantially low reconstruction errors while better preserving the
topological structures and shapes of the objects.

Acknowledgement. This work was supported by NSF CAREER Grant 2239977 and
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