Xi Wang
ZhiWu Li

Scheduling and
Reconfiguration
of Real-Time
Systems

A Supervisory Control Approach

@ Springer

Scheduling and Reconfiguration of Real-Time
Systems

Xi Wang ¢ ZhiWu Li

Scheduling and
Reconfiguration of
Real-Time Systems

A Supervisory Control Approach

@ Springer

Xi Wang ZhiWu Li
School of Electro-Mechanical Engineering Institute of Systems Engineering
Xidian University Macau University of Science and
Xi’an, China Technology

Tapei, Macau SAR, China

ISBN 978-3-031-41968-3 ISBN 978-3-031-41969-0 (eBook)
https://doi.org/10.1007/978-3-031-41969-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-6427-8090
https://orcid.org/0000-0003-1547-5503
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0

In memory of my parents, Shuhua Zhao

and Fuyou Wang
For my family, Jun Guo and Peilin Jesse

Wang
(XW)

For my family, Tongling Feng and Buzi Li
(ZWL)

Foreword

This monograph provides a newly identified research topic, namely real-time
scheduling and reconfiguration based on supervisory control theory (SCT). SCT,
also known as the R-W method, initiated by Ramadge and Wonham in the 1980s,
offers a systematic treatment to the modelling, analysis, and control of discrete-
event systems (DES) that are a technical generalization of many contemporary
technological systems, and explores generic principles to a wide range of application
domains. Generally, any system can be viewed as a real-time system (RTS) if it
performs real-time application functions and behaves correctly depending on given
logical activities and satisfying specified deadlines for the activities. In the past
decades, as a popular and topical research topic, real-time scheduling and recon-
figuration have far-reaching influences in academia and industrial implementations.

This monograph provides broad views and detailed introductions to SCT and its
application in real-time scheduling and reconfiguration. Based on three popular SCT
modelling frameworks, DES, timed DES (TDES), and state-tree structures (STS),
the authors provide RTS modelling frameworks; thereafter, SCT is used to find their
safe execution sequences. For STS, as a newly identified hierarchical modelling
framework, in Chap. 2, the authors explain their semantics, notions, and concepts in
a straightforward and easy to understand way with plenty of examples. Along with
the deepening of understanding of the RTS modelling problem, the authors provide
three RTS modelling methodologies based on DES, TDES, and STS in Chaps. 4, 5,
and 7, respectively. Finally, the main differences among the three SCT modelling
frameworks are vividly illustrated in Chap. 8, which also show that the cores of all
the presented modelling approaches are identical.

Intuitively, it is trivial to find out that “time” is a critical criterion and vital
attribute to both TDES and RTS. Hence, as the first step, the authors provide a
TDES-based RTS modelling, scheduling, and reconfiguration formalism in Chap. 4
for RTS running on uni-processors. In order to schedule and reconfigure RTS in a
uniformed model, a multi-period periodic RTS task is modelled by a TDES. Initially,
a task is assigned with the shortest period. By implementing SCT, the multi-periods
of tasks are used to reconfigure an RTS when its initial safe execution sequence set

vii

viii Foreword

is empty. During the real-time scheduling/reconfiguration process, the supervisor
proposes all the safe execution sequences.

An RTS modelling approach is presented in Chap.5, which uses (untimed)
events to represent the execution and preemption of each individual RTS task. This
modelling formalism brings the possibilities to model the preemptions of tasks’
executions. Furthermore, in some cases, priorities cannot be assigned to real-time
tasks. In order to solve this problem, a matrix-based priority-free conditional-
preemption (PFCP) relation is provided in Chap. 5, which generalizes fixed-priority
(FP) RTS scheduling. By defining the preemption relation among any two tasks
running in a processor, a preemption matrix is utilized to describe all the possible
FP preemption relations and other user-specified preemption relations. By SCT,
the synthesized supervisor provides all the safe real-time execution sequences. As
a natural extension, a generalized modular modelling framework is proposed in
Chap. 6 to model the task parameters instead of the global real-time task. The
modular models are taken to be generic entities, which also considers the exact
execution time of real-time tasks.

STS are undoubtedly recognized as a computationally efficient SCT framework
which manages the state explosion problem significantly. Clearly, the synthesized
supervisors based on the modelling methodologies stated in Chaps. 4, 5, and 6 can
provide all the possible safe execution sequences of an RTS. As a natural extension,
it is theoretically significant and practically invaluable to find a few best sequences.
To this end, Chap.7 uses STS to model RTS and assigns dynamic priorities as
specified optimality criteria such that a set of safe execution sequences is selected.
This provides the possibilities for large-scale industrial implementations.

This monograph is a comprehensive and solid work on SCT-based real-time
scheduling and reconfiguration. The two authors have been working in this area
for years. I am pleasantly surprised to state that there are several highlights in
this monograph; in particular, “untimed” events are used to represent the “timing”
behaviors of RTS tasks. This insight gives vitality to this interdisciplinary research
topic and brings it to a new horizon.

February 2023 Maria Pia Fanti
Politecnico di Bari

Preface

Adequate responses to predictable and specific constraints are a critical criterion
to both real-time systems (RTS) and supervisory control of discrete-event
systems (DES). RTS satisfying the (predefined) specific time constraints mean
that they can respond to events, such as a task’s arrival/release and the
start/completion/preemption of its execution, within preset time. DES are event-
driven instead of clock-driven, which are asynchronous in event executions and
discrete in state space. Hence, properly representing the “events” of RTS by DES
frameworks is the key of the modelling methods provided in this monograph. This
motivates us to investigate the RTS scheduling and reconfiguration problems from
the perspective of supervisory control of DES.

Supervisory control theory (SCT, known as the R-W method), initiated by
Ramadge and Wonham in the 1980s, is a methodology to automatically synthesize
supervisors of DES, which restricts the behavior of a plant such that the given
specifications are fulfilled in a minimally restrictive manner. Based on three
popular SCT modelling frameworks: DES, timed DES (TDES), and state-tree
structures (STS), uniformed frameworks to model, schedule, and reconfigure RTS,
are provided in this monograph. Given an RTS modelled by any framework, user-
defined RTS scheduling and reconfiguration requests are described using proper
specifications. By SCT, all the safe execution sequences of an RTS are embodied in
its optimal supervisor.

Based on TDES, DES, and STS frameworks, multi-period periodic real-time
task models are provided for integrating real-time scheduling and reconfiguration
in uniformed models. A multi-period is a period set varying between a lower bound
and an upper bound. The default period for a task is the shortest one. In the case
that an RTS is non-schedulable, the multi-period is used to reconfigure the RTS
automatically. By SCT, an RTS is claimed to be non-schedulable if its supervisor is
empty.

Normally, in a real-time scheduling process, fixed or dynamic priorities are
assigned to real-time tasks. However, in some special cases, scheduling priorities
cannot be assigned to tasks properly. As a solution, based on DES and STS
frameworks, by defining the preemption relation among any two tasks running in

ix

X Preface

a processor, a priority-free conditionally-preemptive (PFCP) scheduling method
is provided, which generalizes priority-based preemption. In particular, based on
the STS modelling and supervisory control mechanism, by assigning dynamic
priorities, a set of safe execution sequences is selected, which rank at the top
according to specified optimality criteria. Generally, the provided dynamic priority
specifications can be combined with the PFCP specifications.

Historically, RTS scheduling and reconfiguration are associated with two prob-
lems: schedulability checking and safe execution sequence searching. In compari-
son, SCT-based real-time scheduling and reconfiguration do not need to check the
schedulability and find safe execution sequences separately. As a general extension,
all the possible (instead of only one in general) safe execution sequences are
provided by the optimal supervisors.

The outline of this monograph is as follows: Chap. 1 reports the overviews
of this monograph, SCT, and the real-time scheduling theory. The motivation,
contribution, and the outline of this book are also provided. Chapter 2 presents
the preliminaries of SCT and three DES modelling frameworks: DES, TDES,
and STS. From the perspective of RTS scheduling, Chap. 3 reviews the real-time
scheduling and reconfiguration of periodic RTS. Chapter 4 recalls the seminal
work on SCT-based real-time scheduling. Thereafter, based on it, in order to
dynamically reconfigure RTS, a new formalism is presented to assign multi-
periods to periodic tasks. Chapter 5 points out that using DES to model RTS is
more general than using TDES, and provides the possibility of preemptive SCT-
based scheduling of RTS, where a DES-based periodic real-time task modelling
method is presented. The timing constraints of RTS tasks are represented by
different events. In the light of the multi-period reported in Chap.4 and building
on Chap.5, a DES version modular multi-period is presented in Chap.6. A task
is represented by an automaton synchronized by the required modular models, in
which a multi-period task is assigned with a set of possible periods between a
minimum period and a maximum period. The only difference of a task’s model
before and after its reconfiguration is the upper bound of its multi-period. Based
on nonblocking supervisory control of STS, a hierarchical RTS model is presented
in Chap. 7, where both conditionally-preemptive and dynamic priority scheduling
are addressed in the real-time scheduling. The proposed modular models are taken
to be generic entities, which are utilized to model a problem domain such as
“hard real-time manufacturing and reconfigurations” and manage its manufacturing
production process. Finally, Chap. 8 concludes the contributions of this monograph
and proposes some possible future extensions. The main differences among the three
SCT modelling frameworks are also discussed in this chapter.

Preface xi

The primary audiences are the researchers and practitioners in SCT or RTS,
equipped with the basic SCT knowledge. Also, they should be familiar with the
SCT synthesis tools TCT, TTCT, STS, or other related ones. This book will appeal
specifically to a reader concerned with how to model, schedule, and reconfigure an
RTS.

Xi’an, China Xi Wang
Macau SAR, China ZhiWu Li
February 2023

Acknowledgments

We would like to take this opportunity express our sincere gratitude and appreciation
to Professor W. M. Wonham, Department of Electrical and Computer Engineering,
University of Toronto. Since 2013, we have been collaborating in supervisory
control of DES, TDES, and STS and their implementation on real-time scheduling
and reconfiguration. We are very grateful to Professor Thomas Moor, Lehrstuhl fiir
Regelungstechnik, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany.
Since 2018, we have been jointly working in supervisory control of DES and STS
and their application in real-time scheduling and reconfiguration.

We extend very special thanks to our colleagues Dr. Chan Gu, School of
Electrical and Control Engineering, Shaanxi University of Science and Technology
(China), and Dr. Deguang Wang, School of Electrical Engineering, Guizhou
University (China). The continuing interaction and stimulating discussions with
them have been a constant source of encouragement and inspiration.

This monograph was in part supported by the National Natural Science Founda-
tion of China under Grant Nos. 61703322, 61374068, 61673309, and 61603285,
the Fundamental Research Funds for the Central Universities under Grant Nos.
ZYTS23016, XJS17071, IBX170413, JB160401, and JB160416, the Science and
Technology Development Fund, Macau Special Administrative Region (MSAR),
under Grant No. 0012/2019/A1, the Natural Sciences and Engineering Research
Council of Canada (NSERC) under Grant DG480599, and Alexander von Humboldt
Foundation.

Finally, we are deeply in debited to Jun Guo (the first author’s wife) and Tongling
Feng (the second author’s wife), for their care and encouragement throughout the
writing of this monograph.

xiii

Contents

1 Introduction
1.1 Overview of This Monographccceiiiiiiiiiiiiiiiiiien...
1.2 Supervisory Control Theoryoovviiiiiii e,
1.3 Real-Time Scheduling Theory.............cccviiiiiiiiiiiiiiiiiie...
1.4 Motivation and Contributioncccviiiiiiiiiiiiiiiiee...
1.4.1 RTS Modelling Methodscooceiiiiiiiiiiiiiiiii.
1.4.2 RTS Scheduling and Reconfiguration..........................
1.5 Monograph Outlinec..oeeiiiiiiiiiiiiiiiiiii e
REferenCes . ouneeeee e
2 Preliminaries of Supervisory Control Theory
2.1 Discrete-Event Systems........oovviiiiiiiiiiiiiiiea.
2.2 Timed Discrete-Event Systemsoovvviiiiiiiiiiiiiiiiiennnnn...
2.3 State-Tree StIUCIUIES ...oonnnttttetttie ettt eeaieeeees
231 SUPCTSIALES toeeeeeeeeeeee ettt
232 HOIONS .. eetii e
233 State-TIEES «.uuueteetet et
2.3.4 State-Tree StrUCIUIESuveeeerrniiieeeeiiiieeeaninae
235 PrediCates ..ottt
2.3.6 State Feedback Controloooiiiiiiiiiiiiiinninn.
2.3.7 Compact Representation of Predicates

2.4 Real-Time Scheduling/Reconfiguration Based on
Supervisory Control........ooviiiiiiiiiii e
REfETeNCeSttt
3 Real-Time Scheduling and Reconfiguration
3.1 Real-Time SYStemS ..oveeiiiiiieiiiiiii e,
3.2 Fixed Priority Scheduling.................oooi
3.3 Dynamic Priority Scheduling.....................n,
3.3.1 Earliest Deadline First Scheduling.............................
3.3.2 Least Laxity First Scheduling
3.4 Elastic Period Model for Reconfiguration

R erenCes ..o

~N W N = =

XVi Contents

4 Non-Preemptive Scheduling/Reconfiguration Based on

Supervisory Control of TDESo...
4.1 IntroduCtioncooeiiiiiiiiiii i
4.2 RTS Modelled by Timed Discrete-Event Systems
4.2.1 Multi-Period RTS Task Modelcooooiiiian,
4.2.2 Real-Time Tasks Modelled by Timed Discrete-Event
N 1S5 11
4.2.3 Global RTS Execution Modelcoooiiiinn.
4.2.4 Timed Discrete-Event System Generators.....................
4.3 Dynamic Scheduling and Reconfiguration of Multi-Period
RS o
4.4 Case Study: Supervisor Synthesis of Motor Network
4.4.1 Real-Time Schedulingcccooviiiiiiiiiiiiiiiiiieninn,
4.4.2 Dynamic Reconfigurationccooeviiiiiiiieiinan.
4.4.3 Multi-Periods in the Safe Execution Sequences...............
4.5 ConClUSION ..ottt
Referencesooueiiiiii i

5 Priority-Free Conditionally-Preemptive Real-Time

Scheduling Based on R-W Method...

5.1 INtroductionueeeiiii e

5.2 Task Models and Preemption Policiese.

5.2.1 TaskModel.....oouuiiiiiiii

5.2.2 Priority-Free Real-Time Scheduling

5.2.3 Preemption MatriCes........vvvviiiiiiiiiiiiiiiiiiieieeneeenenns

5.2.4 Task-Centered Conditional-Preemption Constraints

5.2.5 Response Time Constraintscceevvvviiiiieienieeennnns

5.3 Tasks Modelled by Discrete-Event Systems

5.4 Specifications Modelled by Discrete-Event Systems..................

5.4.1 Nonblocking Specificationsccovvvviiiiiiiiiiinnnnnns
5.4.2 Matrix-Based Priority-Free Conditional-Preemption

Specificationsoovviiiiiiiiii e

5.4.3 Task-Centered Specificationscccvvviiiiiiiiennnn...

5.4.4 Response Time Constraint Specifications

5.5 Case Study I: Supervisor Synthesis of Motor Network

5.5.1 Work Plan T ..o

552 Work Plan IL. ...

5.6 Case Study II: Supervisor Synthesis of Manufacturing Cell..........

5.7 ConClUSION ..inniiitt ittt

REferenCes . o.uueeee e

6 Modular Scheduling/Reconfiguration with Exact Execution
Time Based on R-W Method...................................ll.

6.1 INtrodUCHiONouniiie ettt e
6.2 Modular RTS Models ..o i i
6.2.1 RIS TasKS . .uuiiietiie e

Contents XVii

6.2.2 Periodic/Sporadic Task Execution Time Models.............. 136
6.2.3 Non-Repetitive Execution Time Models....................... 138
6.2.4 Deadline Models........ccoooiiiiiiiiii i 139
6.2.5 Release and Multi-Period Models.............................. 141
6.3 Global RTS Execution Modelscoiiiiiiiiiiiiiiiineean 143
6.3.1 Approachl o 143
6.3.2 Approach II 145
6.3.3 Global RTS Behavior...........coooiiiiiiiiiiiiin ... 148
6.4 Scheduling Based on Supervisory Control..................oooeeee... 151
6.5 Case Study: Manufacturing Cell ..., 153
6.5.1 Task Models with Worst Case Execution Time 153
6.5.2 Task Models with Exact Execution Time...................... 159
6.6 CONCIUSION ...ttt e 160
ReferencCes . ..o 161

7 Scheduling/Reconfiguration Based on Supervisory Control of STS.... 163

7.1 INtroductionuuieeiii e 163
7.2 RTS Modelled by State-Tree Structuresooevveeeeeennn... 164
7.2.1 RTS Tasks .oooii e 165
7.2.2 Execution Time Modelsccooiiiiiiiiiiiiiiiiinn 166
7.2.3 Deadline Modelsc.oooiiiiiiiiiiiiiiiiii i 168
7.2.4 Release Time and Period Modelsooeeeeet. 170
7.2.5 Task ModelS....oo.uuuiiiiiiii i 171
7.2.6 Global RTS Execution ModelS...........ccoovvviiiiiiiinnn.... 173
7.3 Conditionally-Preemptive Specifications 173
7.3.1 Matrix-Based Conditional-Preemption Specifications........ 174
7.3.2 Task-Centered Specificationsccccvvvvviiiiiiinnnn... 175
7.4 Dynamic SpecificationS.........oovveieiiiiiiiiiiiiiiiiiiieeeiaaaaaann. 176
7.4.1 Earliest-Deadline First Task Selection at Arrival.............. 176
7.4.2 Partially Preemptive Earliest-Deadline First
Scheduling ...t 177
7.4.3 Partially Non-Preemptive Earliest-Deadline First Scheduling 177
7.5 Supervisor Synthesis with a Case Study: Manufacturing Cell......... 178
7.5.1 Compact Encoding of the Manufacturing Cell 179
7.5.2 Conditionally-Preemptive Scheduling 180
7.5.3 Preemptive and Non-Preemptive Earliest-Deadline
First Scheduling..........cooiiiiiiiii 182
7.5.4 Non-Preemptive Earliest-Deadline First Scheduling
SEUEINCES «oetttitit ettt 183
7.6 Large RTSExample..........oooviiiiiiiiiiiiii e 184
7.7 ConClUSION ..ottt 185
REferencCes .. o.ueee e 186
8 Conclusion and Future Workcoooiiiiiiiiiiiiiiiiii 189
8.1 CONCIUSION .uuuettet et 189

8.1.1 RTS Modelling Methodscoooviiiiiiiiinin.... 189

XViii Contents

8.1.2 An Overview of Specifications Describing RTS

Scheduling Requirementsccooviiiiiiiiiiiiee... 195

8.2 Future Work ... 197
REferenCes . o..uee e 197
GlOSSALY 199

Acronyms

ATG
BCET
BDD
B-W
DES
DM
DP
EDF
FP
FSM
HFSM
LLF
LM
MNSC
NCA
NSC
oS
PFCP
PS
RM
RTS
R-W
SCT
SM
STS
TDES
TS
TTG
WCET
WCRT

Active transition graph

Best-case execution time

Binary decision diagram
Brandin-Wonham

Discrete-event system

Deadline monotonic

Dynamic priority

Earliest deadline first

Fixed priority

Finite state machine

Hierarchical finite state machine

Least laxity first

Release map

Marking nonblocking supervisory control
Nearest common ancestor

Nonblocking supervisory control

Other user-defined specification
Priority-free conditional-preemption
Priority-free conditional-preemptive specification
Rate-monotonic

Real-time system

Ramdge-Wonham

Supervisory control theory

Scheduling map

State-tree structure

Timed discrete-event system
Task-centered conditional-preemption specification
Timed transition graph

Worst-case execution time

Worst-case response time

Xix

Chapter 1 ®
Introduction Check for

1.1 Overview of This Monograph

Initiated by Ramadge and Wonham in the 1980s [38, 48], supervisory control theory
(SCT) of discrete-event systems (DES) aims to provide a general treatment for
modelling and control of a wide class of man-made systems that nowadays are
usually computer-integrated, including many contemporary information extensive
infrastructures of human society, such as manufacturing systems, smart city traffic
management, communication protocols, computer networks, etc. In general, timing
constraints are a vital attribute and a critical criterion to operate these systems,
whose technical generalization leads to the notion of real-time systems (RTS).
Roughly speaking, the behavioral correctness of an RTS does not depends only on
logical activities occurring in it, but also on the satisfiability of specified deadlines
for the activities, i.e., the correct functioning of an RTS is attributed to the hard
or soft timing requirements on the tasks to be executed. To this end, real-time
scheduling and reconfiguration are treated as an effective vehicle for an RTS to
carry out the tasks such that a correct function is guaranteed.

In 1973, the seminal work by Liu and Layland [28] touched upon the real-time
scheduling problem for multi-program on a single processor, showing that a fixed
priority scheduler possesses an upper bound to processor utilization. It is also shown
that full processor utilization can be achieved by dynamically assigning priorities in
terms of the current deadlines of tasks to be executed. Over the past half century,
there has been a fair amount of significant work from researchers and practitioners
on real-time scheduling and reconfiguration of RTS [16, 37,40, 49, 51]. Interestingly
and surprisingly, a suite of documented methodologies on the modelling, control,
and scheduling of these systems [12-15, 21, 22, 34-36, 43-47] are from the
perspective of supervisory control of DES [4, 29, 30, 38, 48].

As an interdisciplinary approach, SCT-based real-time scheduling and reconfigu-
ration are a newly-identified research topic. In this monograph, an RTS is modelled
by the SCT modelling frameworks and user-defined scheduling/reconfiguration

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1

2 1 Introduction

requests are described by the corresponding specifications. Currently, there are
three popular SCT modelling frameworks: DES [38, 48] (known as the R-W
method), timed DES (TDES) [4], and state-tree structures (STS) [29, 30]. In this
monograph, RTS are modelled by all the three frameworks. Users are invited
to propose scheduling or reconfiguration requirements at will. These schedul-
ing/reconfiguration requirements, whether priority-based or not, from the per-
spective of either processor or individual task, are converted into formal SCT
specifications offline. With such specifications assigned, all the safe execution
sequences of an RTS are embodied in its optimal supervisor. In particular, as
stated in Chap. 7, by assigning dynamic priorities (DP) to RTS tasks, a few safe
execution sequences are selected based on the STS modelling and supervisory
control mechanism, which rank at the top according to specified optimality criteria.

Historically, in the real-time scheduling research area, both the RTS scheduling
and reconfiguration are associated with two problems [39]: schedulability checking
and safe execution sequences searching. Usually, if an RTS is schedulable, one
random safe execution sequence is provided by a scheduling algorithm for its
processor. In comparison, SCT-based real-time scheduling and reconfiguration do
not need to check the schedulability and find safe execution sequences separately. As
a general extension, all the possible (instead of only one) safe execution sequences
are provided by the optimal supervisors.

1.2 Supervisory Control Theory

This section provides a brief overview of the basic principles of SCT. Interested
readers are suggested to refer to monographs [48] and [29] for a systematic
understanding. The detailed preliminaries of SCT with examples are presented in
Chap. 2. Unlike in [29], we introduce STS by starting from superstates and holons.
The latter are natural extensions of DES diagrams.

The DES framework is language-based. Generally, a plant is modelled as a
DES, denoted by G, which can be considered as a dynamic system equipped
with a discrete state space and a state-transition structure. The system behavior
is described as a formal language L(G) that is generated by an automaton over
an alphabet (or event set, usually finite) denoted by X, which models the plant.
Generally, event set X' is partitioned into two disjoint subsets: controllable events,
denoted by X,,, that can be disabled by external controllers, and uncontrollable
events, denoted by X, that cannot be disabled. With this control mechanism,
a controller (or supervisor) can be used to restrict the system behavior only by
disabling controllable events.

Given the desired behavior of a plant G, i.e., a specification, represented by a
formal language E, a supervisor can be designed to restrict G’s behavior such that
the controlled system behavior is a sublanguage of E. Many efforts have been made
to synthesize an optimal nonblocking supervisor for DES. Here “optimal” means
“minimally restrictive”.

1.3 Real-Time Scheduling Theory 3

By incorporating timing features, the notion of timed DES (TDES) is proposed
in [4]. The active transition graphs (ATG), identical with DES diagrams, are
assigned with modelling enhancements like program variables, transformations,
and transition guards; the timed transition graphs (TTG) of TDES are the detailed
global transition graphs. The nature of temporal logic is addressed in the languages
describing TDES’ behavior. For instance, the concept “eventuality”, i.e., liveness in
the long run, over sets of infinite strings, is considered in the supervisory control
of TDES, which is also integrated into the TTG construction process starting from
ATG.

As a top-down modelling approach, STS are proposed in [42] for the purpose
of incorporating the hierarchical (vertical) and concurrent (horizontal) structures
of a complex DES into a compact and natural model. In STS, as a modelling tool,
statecharts [20] are used to provide a compact representation of the hierarchical
transition structure. The system transition structures on successive layers are
represented by holons (based on [23] and [19]). Thereafter, the STS framework is
extended in [29] and [30], which is well-developed to manage the state explosion
problem. The STS model and its specifications are represented by predicates. Prior
to calculating the predicate representing the optimal controlled behavior, maximally
permissive predicates are presented for disabling controllable events in the transition
structure. For controllable events, their control logics are represented by binary
decision diagrams (BDD) [1, 5] that represent a boolean function. A BDD is a
directed acyclic graph that has two terminal nodes 1 and O representing true and
false, respectively.

1.3 Real-Time Scheduling Theory

The seminal work of real-time scheduling was proposed by Liu and Layland in the
1970s. Some basic concepts are introduced in this section, and the preliminaries
of classical RTS scheduling algorithms and examples are detailed in Chap.3. A
preliminary real-time task is time triggered, which satisfies the following facts
[39]:

* all the tasks are periodic;

« all the tasks are released at the beginning of periods and have deadlines equal to
their periods;

* all the tasks are independent, i.e., they have no resource or precedence relation-
ships;

« all the tasks have fixed execution time, or at least fixed upper bounds on their
computation time, which is less than or equal to their periods;

* no task may voluntarily suspend itself;

« all the tasks are fully preemptable;

¢ all the overheads are assumed to be zero;

* there is only one processor.

4 1 Introduction

In reality, it is possible that a task has an offset, between the system start-up and
the first release of its job. A set of real-time tasks is synchronous if they have the
same offsets. Otherwise, the tasks in this task set are asynchronous [39]. A periodic
task is associated with a regular period, which means that the time interval between
any two successive jobs is constant. Every job has a deadline that assigns the latest
time of its execution to be completed. A task is associated with a hard deadline if
every job must meet its corresponding deadline. Otherwise, it is associated with
a soft deadline. A deadline can be expressed relative to the release time (i.e.,
relative deadline) or as an absolute time (i.e., absolute deadline). Throughout
this monograph, we only consider hard deadlines, i.e., deadlines which must be
kept unconditionally. Generally, a task’s processing time is between its best-case
execution time (BCET) and worst-case execution time (WCET) [40]. Nassor and
Bres propose a task model in [33], with a deadline less than or equal to its period
but greater than the WCET. In the theoretical analysis of real-time scheduling,
researchers focus on the WCET to guarantee the feasibility of real-time scheduling.
The modelling and scheduling of RTS based on the exact execution time is studied in
[46]. A uni-processor system is nonschedulable in the case that there is an overload
[39].

Suppose that two periodic tasks 71 and 1, are running in an RTS, both are released
at the system start-up, i.e., time t = 0, and their WCETs are equal to one and two,
respectively. In the analysis, normally, only WCETsS are considered to guarantee the
feasibility. The deadline and period for processing 7 are four and five, respectively.
In parallel, the deadline and period for 15 are both four. Two possible schedulings
are visualized in Fig. 1.1. Since the tasks depicted in Fig. 1.1a have no offsets, the

Fig. 1.1 Real-time task under .
scheduling of periodic tasks. arrival execution dcadline
(a) Tasks without offsets. (b) a period

Task t; with an offset

01 23 456 7 8 910
()

1.3 Real-Time Scheduling Theory 5

scheduling is synchronous. Both of t;’s relative deadline and absolute deadline are
four time units. The deadline of t; is equal to its period, i.e., Dy = T».

Suppose that the offset of 7] is one time unit, i.e., it is released at time ¢ = 1.
A possible asynchronous scheduling is shown in Fig. 1.1b. It represents that after
the system starts up for one time unit, task 7; releases its first job. With its offset
assigned, the absolute deadline for the first job of 71 is changed from four to five
time units.

RTS may also contain tasks that do not have periodic releases or predictable
execution time, and may have large variations in the sequential release times or
execution time, including aperiodic tasks [39], sporadic tasks [39], or non-repetitive
tasks [46]. They are formally introduced in [32] and differ from periodic tasks
only in the release time. Clearly, it will be impractical to assign enough processor
capacity/resource to guarantee a feasible scheduling. Generally, the lowest priorities
are assigned to such tasks. Typical application cases are low-priority background
operations such as garbage collection. The absence of a deadline may lead to
unboundedly postponed execution.

As depicted in Fig. 1.2, which is built on Fig. 1.1a, a non-repetitive task 3 with
its WCET equal to two is added to the RTS. Task 73 is assigned with the lowest
priority, i.e., it is under execution only if the executions of the current jobs of 7] and
7, are complete and before their next arrivals.

According to [17] and [9], preemptive and non-preemptive real-time scheduling
do not depend on any assumed scheduling algorithm. Given a set of real-time
tasks, if the execution of a job (belonging to a real-time task) is allowed to
be preempted by other (real-time tasks’) jobs before its execution finishes, the
scheduling is preemptive; otherwise, it is non-preemptive. The only assumption is
that the execution cannot be preempted by idle operations.

For example, the real-time scheduling in Fig. 1.1a is preemptive and that in
Fig. 1.1b is non-preemptive. At time ¢ = 1 in Fig. 1.1b, the execution of task 1,
is preempted by task 71. However, as illustrated in Fig. 1.1b, no job of task 7 is
under execution in the time interval [5, 6), and it is illegal to preempt the execution
of task 1, by idle operations at time t = 5.

Generally, the well-known priority-based real-time scheduling algorithms can
be divided into two categories: fixed priorities (FP) and dynamic priorities (DP).
The real-time scheduling fails when no schedulable sequence can be found. The
priorities of a real-time task set are commonly used to order their accesses to the
processor and other shared resources.

Fig. 1.2 Real-time ,_,,,,4,1,,_,,,,{,,'
scheduling with a g
non-repetitive task o _1 ____1

T 1 1

}T; 77777 — —— -

01 2 3 456 7 8 910

6 1 Introduction

In parallel with the seminal work of real-time scheduling, the FP scheduling is
proposed in [28]. As a classical fixed priority scheduling algorithm, rate-monotonic
(RM) scheduling requires that the deadline of a real-time task should be equal to
its period. The task with a short period is assigned with the highest priority. Later
deadline monotonic (DM) scheduling is proposed in [27] to schedule RTS that may
contain periodic tasks with deadlines less than their periods. A DM policy assigns a
higher priority to the tasks with shorter deadlines.

The feasibility analysis of periodic task sets, such as earliest deadline first
(EDF) scheduling, is also proposed in [28], which is usually regarded as the
most widely-used DP real-time scheduling algorithm. Under the same simplified
assumptions used for RM scheduling, a set of periodic tasks is schedulable by the
EDF algorithm, if and only if the processor utilization is less than or equal to one (the
processor is fully occupied). In [11], the author shows that, among all preemptive
scheduling algorithms, EDF is optimal. If there exists a feasible scheduling for a
task set, then the scheduling produced by EDF is also feasible. Under the EDF
scheduling, the analysis of periodic tasks with the deadlines less than their periods is
proposed in [3].

For example, the real-time scheduling in Fig. 1.1b is EDF scheduling. At time
t = 1, the absolute deadline of task t; equals five time units and that of 15 is four
time units. Hence, task 1> is currently with a higher priority than t;.

Least laxity first (LLF), as another optimal scheduling algorithm, is proposed by
Mok in [32], which assigns the processor to the active task with the smallest laxity.
However, LLF has a larger overhead than EDF due to a larger number of context
switches caused by laxity changes at run time. Detailed examples can be found in
Chap. 3.

Real-time reconfiguration is of critical importance to RTS. A reconfiguration
scenario can be the addition/removal/update of the tasks at run-time in order to save
the whole system when random disturbances occur. There has been a fair amount
of significant work from academia and industry [16, 37, 40, 49, 51] for real-time
reconfiguration, which are based on the RM/EDF scheduling with preemptive/non-
preemptive schemes. In principle, two types of reconfiguration policies can be
identified:

* fixed policies: applied offline before any system’s cold start [2], and
e dynamic policies: applied at run-time [52].

As an RTS reconfiguration approach, job skipping reconfiguration [24] can be
utilized by an RTS to execute “occasionally skippable” tasks, such as video recep-
tion, telecommunications, packet communication, and aircraft control. However,
industrial production lines should avoid job skipping since it will increase the
manufacturing costs. Another approach, called the elastic scheduling model [6—
8, 31], is utilized to guarantee that no deadline is missed during a manufacturing
process in industrial applications [18].

In [6-8, 31], an elastic period task model is proposed to handle the overload
of an RTS by decreasing its processor utilization via adapting the tasks’ periods.
As illustrated in Fig. 1.3, the period of a task is assumed with a lower bound and an

1.4 Motivation and Contribution 7

Fig 13 Redtime T
scheduling with an elastic . pull
period m |

K——n
oo
lower upper

bound bound

01 2 3 456 7 8 910

upper bound. In the case that an RTS is non-schedulable, a reconfiguration approach
is used to enlarge the periods of the tasks with elastic periods. This reconfiguration
approach deals with such tasks as springs. Hence, enlarging the periods is just like
pulling a spring. In this monograph, if necessary, we follow a similar approach to
reconfigure an RTS.

Several model checkers, such as Cheddar! [41], Kronos [50], PRISM [25], have
been developed to model an RTS and check its schedulability or other performance
criteria. This monograph focuses on the real-time scheduling of periodic and
sporadic tasks. As Cheddar matches most closely the scheduling problems discussed
in this monograph, in what follows, we choose Cheddar as the RTS model checker
and scheduler.

1.4 Motivation and Contribution

SCT-based real-time scheduling and reconfiguration [10, 22, 34, 43—47] are a newly-
identified research topic. Based on three popular SCT modelling frameworks, TDES
[10, 22, 34, 43], DES [44], and STS [47], this monograph provides SCT-based real-
time scheduling and reconfiguration mechanisms.

1.4.1 RTS Modelling Methods

The study in the seminal work [10] proposes a TDES-based task model and an SCT-
based non-preemptive scheduling scheme. Supervisory control of TDES is able to
model and schedule two types of RTS processing:

* resource-sharing tasks, i.e., resources are available to execute multiple tasks
concurrently; or

* independent periodic tasks with their deadlines less than or equal to the corre-
sponding periods.

Uhttp://beru.univ-brest.fr/cheddar/.

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/

8 1 Introduction

Even though the resource-sharing tasks are not as popular as independent tasks,
the supervisory control of TDES can provide all the possible safe executions for
both in a uniformed approach. An RTS is claimed to be non-schedulable if the
supervisor is empty. Thereafter, for the independent periodic tasks, SCT-based real-
time scheduling is extended to:

¢ the scheduling of RTS preemptively or non-preemptively [22],

* the scheduling of RTS processing sporadic tasks [34], and

* the dynamic reconfiguration of RTS when no safe execution sequences are found
[43].

In the past two decades, fruitful works on real-time scheduling and reconfiguration
are reported, in which RTS are mainly modelled by:

e TDES [12-15, 21, 22, 34-36, 43]: The timing constraints of RTS tasks are
represented by time bounds of active events, representing task release/arrival,
starting, and finishing. As a consequence, the timing for the idle operations of
processors and for the execution of any real-time task is represented by the global
clock tick (represented by event).

* DES [44-46]: The execution of each individual RTS task and idle operations are
represented by different events in the DES models. Hence, in the DES modelling
mechanism, the execution of different tasks will always happen asynchronously.
This model is more realistic, i.e., it can describe the sequential execution of real-
time tasks in a uni-processor properly. As a natural extension, preemptive real-
time scheduling of RTS is studied in [44—47].

e STS [47]: RTS tasks are modelled hierarchically by STS, which are built on a
DES model. The task release/arrival, starting, and finishing are on the higher
level, and the task execution is on the lower level. This modelling mechanism
provides the possibility of assigning DP to the real-time tasks under execution.

We assume that a set of n RT'S tasks processed by a uni-processor RTS is represented
by a task set S = {1, ,..., T, ..., Ty}. For periodic real-time scheduling, the
hyper-period [26] of a set of periodic tasks equals the least common multiple of
their periods. For simplicity, we consider traditional RTS tasks only. As defined in
[44],1eti € n := {1,2, ..., n}. From the perspective of each individual task t;, in
each hyper-period, all the processor time units are partitioned into:

* busy time: the processor is occupied by other tasks, and thus 7; cannot be
executed;

* running time: T; is in process;

» preemption time (if any): after r; has started, its execution is interrupted by (a
subset of) other tasks; and

* free time: the execution of 7; is completed or it has not arrived yet. These
processor time units can be idle or utilized to execute other tasks.

As depicted in Fig. 1.4, such partitions of time units can be applied to the
scheduling shown in Fig. 1.1a as follows:

1.4 Motivation and Contribution 9

Fig. 1.4 Processor time units busy time running time of 7; and free time
partition of 71 preemption time of 7o of 7; and T

01 23 4567 8 910

e time interval [0, 1), i.e., time = 0 and the following time unit, is the busy time
of task t; and the running time of task 75;

e time interval [1, 2) is the running time of task 7 and preemption time of task t3;

* time interval [2, 3) is the busy time of task 7 and the running time of task t7;

e time intervals [3, 4) and [7, 8) are the free time of both 7| and 1;

 time intervals [4, 6) and [8, 10) are both the running time of task 7, and the busy
time of task ty; and

* time interval [6, 7) is the running time of 71 and busy time of task 7.

The preemption scheduling addressed in this monograph is on two levels: from the
perspective of the processor and individual task. Generally, a processor-preemption
relation assigns the priority to tasks without considering their execution details.
Once a task is under execution, all the tasks with higher priorities can preempt its
execution. However, from the perspective of an individual real-time task, a rask-
preemption relation is depicted by DES specifications directly in order to assign the
exact preemption relation at the exact relative execution time. The presented two
general conditional-preemption specifications are utilized to customize scheduling
and preemption requirements.

The research in [44] and [45] shows that, on the processor level, both preemptive
and non-preemptive priority scheduling policies may be conservative. As a solution,
a matrix-based priority-free conditionally-preemptive (PFCP, detailed in Chap.5)
scheduling policy is developed, which generalizes the priority-based preemption,
such as:

e non-preemptive [10, 12—15, 21, 22, 35, 36, 43],
e preemptive [13, 34], and
* both non-preemptive and preemptive [44-47].

In other words, a priority-free scheduling policy can be utilized to schedule all the
periodic tasks randomly, i.e., for a real-time task, its busy time and preemption time
can be occupied by any other tasks.

On the processor level, most studies of SCT-based real-time scheduling focus on
FP or PFCP scheduling. To the best of our knowledge, the work in Chap. 7 is the first
attempt to schedule RTS with DP. This means that the preemption relation defined
in Chap. 7 is two-fold:

10 1 Introduction

* The developed scheduling framework can find the optimal behavior (all the safe
execution sequences) of an RTS by the supervisory control of STS.

* A few sequences are selected, which rank at the top according to some specified
optimality criteria. For example, such an optimality criterion could be defined
according to EDF: at any time, only the sequences executing tasks with the
shortest deadlines are retained.

A controller for each controllable event of the STS is obtained by the supervisory
control of STS, which provides the expected safe execution sequences.

For the purpose of dynamic RTS reconfiguration, multi-period periodic task
models are proposed in Chaps. 4, 6, and 7, which can be utilized to model RTS tasks
with periods varying between a lower bound and an upper bound. In the light of the
elastic period model, the main idea of a multi-period is to assign all the possible
periods between its lower bound and upper bound. For the real-time task shown in
Fig. 1.3, in the model of TDES, DES or STS, we assign four possible periods to
it: four, five, six, and seven. The default period for a task is the shortest one. In the
case that the RTS is non-schedulable, based on nonblocking supervisory control, the
multi-period is used to reconfigure the RTS automatically. Generally, a traditional
RTS task is viewed as special cases of the corresponding multi-period models. The
only difference of a task’s model before and after its reconfiguration is the upper
bound of its multi-period.

1.4.2 RTS Scheduling and Reconfiguration

For an RTS represented by TDES, DES, or STS, its optimal supervisor is syn-
thesized, which provides all the possible scheduling/reconfiguration sequences.
Any of the scheduling plans embodied in the supervisor can be utilized to sched-
ule/reconfigure the RTS. In these sequences, all the possible DP or FP sequences
are included. If the supervisor is empty, the RTS is claimed to be non-schedulable.
Otherwise, the users can choose any sequence to schedule the RTS. In particular,
as stated in Chap. 7, based on the supervisory control of STS, a few sequences are
selected, which rank at the top according to some specified (dynamic) optimality
criteria.

In this monograph, a reconfigurable real-time task t; is assigned with a multi-
period. By modelling such RTS tasks using TDES, DES, or STS, with dynamic
reconfiguration integrated, all the safe execution sequences (possible reconfigura-
tion scenarios) are found by supervisory control.

The SCT-based reconfiguration process of RTS in this monograph is illustrated
in Fig. 1.5, which is a two-step approach. At the first step, we select the RTS
task models running in the same processor and their corresponding specifications
(denoted by “execution spec”), which are followed by calculating the synchronous
products using procedure sync (introduced in [48]); thereafter, the supervisor is
calculated by supcon (introduced in [48]). If the supervisor is empty and the

1.4 Motivation and Contribution 11

Task An execution
execution sequence

|
|
Task 1 Task 2 LA Task n : Timer —|
|
|

1 offline I

|
: L Tasl.(.| sync _| Composite Sequepce :
| selection task model selection \
| ? T |
| |
| 4 !
! Composite N All sa.fe !
| ; > supcon | — » execution | |
| execution spec I
X sequences | |

|
| T y |
: sync :
: / T Non- :
| schedulable |
! Spec 1 Spec2 | o Spec n |
| |
: Remodel :
| tasks |
l |

Fig. 1.5 Procedures for real-time scheduling

tasks are not running in the multi-period model (denoted by “M-period”), we will
reconfigure the tasks and repeat the scheduling process at the second step. Finally,
the users can select a safe execution sequence from the supervisor to schedule the
RTS online.

Suppose that in every scheduling plan only a subset of tasks executed by an RTS
enters the uni-processor for execution. Initially the tasks are running in the periodic
version with lower bounds. If no safe execution sequence can be found at the highest
processor utilization, SCT is utilized to provide all the possible safe execution
sequences by offline supervisory control. Hence, during the reconfiguration process,
the exact processor utilization of any task assigned with multi-period lies between
its lower and upper bounds.

By SCT, all possible safe execution sequences are found, resulting in a decrease
of processor utilization. The users should take the responsibility to provide the
tolerable lowest processor utilization. Consequently, any safe execution sequence
in the supervisor can be selected as a guide to schedule the RTS by dynamically
reconfiguring the period of a task. If the supervisor is still empty, we claim that the
system is non-schedulable.

For industrial production lines or manufacturing processes, the technique pre-
sented in this monograph reconfigures an RTS that executes a set of tasks with the

12 1 Introduction

same task scale studied in [6-8, 10, 22, 31]. We suggest that the users predefine an
acceptable processor utilization interval for every task.

For SCT, a method for speeding up the calculation is to reduce the number of
states in the plant and specification. The presented synthesis speeding up approach
can be applied to Chaps. 5 and 6. In this book, we mainly divide the calculations
into three steps. Each step considers different specifications as follows.

e Step 1: Spec 1 (S1), from the perspective of processors, PFCP specifications are
touched upon;

e Step 2: Spec 2 (S2), from the perspective of individual tasks, task-centered
conditional-preemption specifications are considered; and

* Step 3: Spec 3 (S3), other user defined specifications are taken into account.

As the commutative diagram shown in Fig. 1.6, PS, TS, and OS represent PFCP
specifications, task-centered conditional-preemption specifications, and other user
defined specifications, respectively. In Fig. 1.6, the synthesis steps represented by
thick lines can speed up the synthesis process. According to [29] and [30], the
STS framework (rooted in BDD) is well-developed to manage the state explosion
problem. Hence, the presented “speeding up” approach is not so necessary for STS-
based real-time scheduling and reconfiguration.

According to [48], the software packages’ TCT and TTCT are developed
to create DES and TDES generators, respectively. Moreover, STS can also be
synthesized in a software package STSLib®, which utilizes BDD as the basis for
efficient computation. The procedures TCT/TTCT utilized in this monograph can be
found in [48]. All the operations and the generated files are recorded in an annotated
file MAKEIT.TXT.

S1=PS —————— Superl
sync (S1, TS) supcon (Superl, TS)
w

S2 ——— Super2

sync (S2, OS) supcon (Super2, OS)

W

S3 —— Super3

Fig. 1.6 A commutative diagram

2 http://www.control.utoronto.ca/DES.
3 https://github.com/chuanma/STSLib.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib

1.5 Monograph Outline 13
1.5 Monograph Outline

The remainder of this monograph is organized as follows. Chapter 2 reports the
preliminaries of SCT and three DES modelling frameworks: DES, TDES, and STS.
In this monograph, they are all utilized to model the behavior of RTS. By SCT, their
expected safe execution sequences are synthesized with user-defined specifications
taken into account.

From the perspective of RTS scheduling, Chap. 3 reviews the real-time schedul-
ing and reconfiguration of periodic RTS. Moreover, basic concepts such as classical
DP scheduling, FP scheduling, and elastic period task models are presented. These
models and scheduling algorithms will be represented and handled by DES, TDES,
and STS in the rest of this monograph.

Chapter 4 reviews the seminal work on SCT-based real-time scheduling. There-
after, based on it to dynamically reconfigure RTS, a new formalism is presented
to assign multi-periods to periodic tasks. For a periodic task, its release/arrival,
starting, and finishing are represented by active events, and their timing constraints
are converted to the time bounds of such events. Thus, the dynamics of a real-
time task is depicted in a TTG. A multi-period task is assigned with a set of
possible periods between a minimum period and a maximum period. Initially, a
task is assigned with the shortest period, which can be viewed as a special case
of the corresponding multi-period. By implementing SCT, an RTS is dynamically
reconfigured when its initial safe execution sequence set is empty. During the
real-time scheduling/reconfiguration process, the supervisor proposes all the safe
execution sequences.

Chapter 5 points out that DES are more general for modelling RTS than TDES,
and provide the possibility of preemptive SCT-based scheduling of RTS. A DES-
based periodic real-time task modelling method is presented. The timing constraints
of RTS tasks are represented by different events. A preemption policy, namely
conditional-preemption, is presented. On the processor level, the task preemption
relations are described by preemption matrices. Thereafter, DES specifications are
designed accordingly. On the task level, the task preemption relations are depicted
by DES specifications directly. The presented preemption relation generalizes
priority-based preemption. In fact, for some real-time scheduling requirements,
priorities cannot be assigned to real-time tasks. Considering the processor behavior
related to each individual task’s execution and the user-defined specifications,
by implementing supervisory control of DES, we synthesize a supervisor which
provides all the safe real-time execution sequences. Based on this idea, by consid-
ering the exact execution time of real-time tasks, a general modular DES model
representing RTS tasks is presented in Chap. 6.

In the light of the multi-period reported in Chap.4 and building on Chap.S5,
a DES version modular multi-period is presented in Chap. 6. For the purpose of
integrating real-time scheduling and reconfiguration into a uniformed framework,
a multi-period model is presented, which contains a set of possible periods. A task
is represented by an automaton synchronized by the required modular models, in

14 1 Introduction

which a multi-period task is assigned with a set of possible periods between a
minimum period and a maximum period. The only difference of a task’s model
before and after its reconfiguration is the upper bound of its multi-period. The DES
model depicting the RTS is synchronized by the DES representing these tasks. As a
consequence, we introduce the main contributions without distinguishing real-time
scheduling and reconfiguration.

A hierarchical RTS model is presented in Chap. 7, based on nonblocking super-
visory control of STS, where both conditionally-preemptive and DP scheduling are
addressed in the SCT-based real-time scheduling. This chapter reports on a unified
STS-based framework to model and schedule RTS by addressing PFCP and DP.
A formal constructive method is presented to model an RTS that processes multi-
period and sporadic tasks, in which a multi-period task is assigned with a set of
possible periods between a minimum period and a maximum period. The proposed
modular models are taken to be generic entities, which are utilized to model a
problem domain such as “hard real-time manufacturing and reconfigurations” and
manage its manufacturing production process.

Finally, Chap. 8 concludes the contributions of this monograph and proposes
some possible future extensions. The main differences among the three SCT
modelling frameworks are also discussed in Chap. 8. Through an RTS example, this
chapter shows that the core of all the presented modelling approaches is identical:
the real-time tasks’ behavior is represented by formal languages that are generated
by TDES, DES, or the holons in STS. Thereafter, for either real-time scheduling or
dynamic reconfiguration, SCT is utilized to find out the safe execution sequences.

References

—

. Andersen, H.R.: An Introduction to Binary Decision Diagrams. Lecture Notes, IT University of
Copenhagen (1997). http://web.archive.org/web/20140222052815/http:/configit.com/configit_
wordpress/wp-content/uploads/2013/07/bdd-eap.pdf

2. Angelov, C., Sierszecki, K., Marian, N.: Design models for reusable and reconfigurable state
machines. In: International Conference on Embedded and Ubiquitous Computing, pp. 152—
163. Springer, Berlin (2005)

3. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2(4), 301-324
(1990)

4. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event systems. IEEE
Trans. Autom. Control 39(2), 329-342 (1994)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 100(8), 677-691 (1986)

6. Buttazzo, G., Abeni, L.: Adaptive workload management through elastic scheduling. Real-
Time Syst. 23, 7-24 (2002)

7. Buttazzo, G.C., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In: IEEE
Real-Time Systems Symposium, pp. 286295 (1998)

8. Buttazzo, G.C., Lipari, G., Caccamo, M., Abeni, L.: Elastic scheduling for flexible workload

management. IEEE Trans. Comput. 51(3), 289-302 (2002)

http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf

References 15

9.

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-time systems:
a survey. IEEE Trans. Ind. Inf. 9(1), 315 (2013)

Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183-208 (2002)

Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: IF IP
Congress, pp. 807-813 (1974)

Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant preemptive aperiodic RT scheduling by
supervisory control of TDES on multiprocessors. ACM Trans. Embed. Comput. Syst. 16(3),
1-25 (2017)

Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant scheduling of non-preemptive periodic tasks
using SCT of timed DES on uniprocessor systems. IFAC-PapersOnLine 50(1), 9315-9320
(2017)

Devaraj, R., Sarkar, A., Biswas, S.: Real-time scheduling of non-preemptive sporadic tasks
on uniprocessor systems using supervisory control of timed DES. In: American Control
Conference, pp. 3212-3217. IEEE (2017)

Devaraj, R., Sarkar, A., Biswas, S.: Supervisory control approach and its symbolic computation
for power-aware RT scheduling. IEEE Trans. Ind. Inf. 15(2), 787-799 (2018)

Gaujal, B., Navet, N.: Dynamic voltage scaling under EDF revisited. Real-Time Syst. 37(1),
77-97 (2007)

George, L., Voluceau, D.D., France, B.L.C.C.: Preemptive and non-preemptive real-time
uniprocessor scheduling. INRIA Res. Rep. 2966 (1996)

. Girbea, A., Suciu, C., Nechifor, S., Sisak, F.: Design and implementation of a service-oriented

architecture for the optimization of industrial applications. IEEE Trans. Ind. Inf. 10(1), 185-
196 (2014)

Gou, L., Hasegawa, T., Luh, P.B., Tamura, S., Oblak, J.M.: Holonic planning and scheduling
for a robotic assembly testbed. In: International Conference on Computer Integrated Manufac-
turing and Automation Technology, pp. 142-149. IEEE (1994)

Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231-274 (1987)

Janarthanan, V., Gohari, P.: Multiprocessor scheduling in supervisory control of discrete-event
systems framework. Control Intell. Syst. 35(4), 360 (2007)

Janarthanan, V., Gohari, P., Saffar, A.: Formalizing real-time scheduling using priority-based
supervisory control of discrete-event systems. IEEE Trans. Autom. Control 51(6), 1053-1058
(2006)

Koestler, A.: The Ghost in the Machine. Henry Regnery, Washington (1989)

Koren, G., Shasha, D.: Skip-over: algorithms and complexity for overloaded systems that allow
skips. In: IEEE Real-Time Systems Symposium, pp. 110-117 (1995)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time
systems. In: International Conference on Computer Aided Verification, pp. 585-591. Springer,
Berlin (2011)

Leung, J.Y.T., Merrill, M.L.: A note on preemptive scheduling of periodic, real-time tasks. Inf.
Process. Lett. 11(3), 115-118 (1980)

Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2(4), 237-250 (1982)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46-61 (1973)

Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317.
Springer, Berlin (2005)

Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans.
Autom. Control 51(5), 782-793 (2006)

Marinoni, M., Buttazzo, G.: Elastic DVS management in processors with discrete volt-
age/frequency modes. IEEE Trans. Ind. Inf. 3(1), 51-62 (2007)

16

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

SI.

52.

1 Introduction

Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (1983)

Nassor, E., Bres, G.: Hard real-time sporadic task scheduling for fixed priority schedulers. In:
International Workshop on Responsive Systems, pp. 44—47 (1991)

Park, S.J., Cho, K.H.: Real-time preemptive scheduling of sporadic tasks based on supervisory
control of discrete event systems. Inf. Sci. 178, 3393-3401 (2008)

Park, S.J., Cho, K.H.: Supervisory control for fault-tolerant scheduling of real-time multipro-
cessor systems with aperiodic tasks. Int. J. Control 82(2), 217-227 (2009)

Park, S.J., Yang, J.M.: Supervisory control for real-time scheduling of periodic and sporadic
tasks with resource constraints. Automatica 45(11), 2597-2604 (2009)

Quan, G., Hu, X.S.: Minimal energy fixed-priority scheduling for variable voltage processors.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(8), 1062-1071 (2003)

Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM 1J. Control Optim. 25(1), 206-230 (1987)

Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101-155 (2004)

Shin, Y., Choi, K.: Power conscious fixed priority scheduling for hard real-time systems. In:
Design Automation Conference, pp. 134—139. IEEE, New Orlenas (1999)

Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling
framework. ACM SIGada Ada Lett. 4, 1-8 (2004)

Wang, B.: Top-down design for RW supervisory control theory. Master’s Thesis, Department
of Electrical and Computer Engineering, University of Toronto (1996)

Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101-111
(2016)

Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47, 1082-1098 (2017)

Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of
modular sporadic real-time systems. Automatica 89, 392-397 (2018)

Wang, X., Li, Z., Moor, T.: SCT-based priority-free conditionally-preemptive scheduling of
modular real-time systems with exact task execution time. Discrete Event Dyn. Syst. Theory
Appl. 29, 501-520 (2019)

Wang, X., Li, Z., Wonham, W.M.: Real-time scheduling based on nonblocking supervisory
control of state-tree structures. IEEE Trans. Autom. Control 66(9), 4230-4237 (2021)
Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering, Springer, Berlin (2018)

Yao, F.,, Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Annul
Symposium on Founation Computer Science, pp. 374-382 (1995)

Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools Technol.
Transf. 1(1-2), 123-133 (1997)

Yun, H., Kim, J.: On energy-optimal voltage scheduling for fixed-priority hard real-time
systems. ACM Trans. Embed. Comput. Syst. 2(3), 393—430 (2003)

Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Alahmari, A.M.: R-TNCES: a novel formalism
for reconfigurable discrete event control systems. IEEE Trans. Syst. Man Cybern. Syst. 43(4),
757-772 (2013)

Chapter 2 ®
Preliminaries of Supervisory Control oo
Theory

2.1 Discrete-Event Systems

In the language-based Ramdge-Wonham (R-W) framework [13, 17], discrete-event
systems (DES) are represented by automata. A finite state DES plant is a generator

G = (Q, E’ 87 11(), Qm),

where

e (Q is the finite state set,
e XY is the finite event set (alphabet), partitioned into the disjoint controllable event
subset X, and the uncontrollable event subset X, i.e.,

Y= Zconozunm

e §:0Q x X — Q isthe partial state transition function,
e qo is the initial state, and
¢ QO C Q is the subset of marker states.

In accordance with [17], ¥ denotes the set of all finite sequences that consists of
the events in X. By adjoining the empty string €, the set of finite strings over the
alphabet X' is written as X'*, i.e.,

I* =Xt Ul{e).

The operation of catenation of strings

cat: X* x ¥* —» ¥*

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 17
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2

18 2 Preliminaries of Supervisory Control Theory

is defined as
cat(e, s) = cat(s, €) = 5,5 € X*
and
cat(s,t) = st,s,t € >+,
Operation cat(-, -) is associative, i.e.,
cat(cat(s, t), u) = cat(s, cat(t, u)), s, t,u € .
Function § can be extended to
§:0xX*— Q
by defining 6(q, €) = ¢q and §(q, so) = §(5(q, s), o), where ¢ € Q is a state and

s € X*is astring. Write 8(g, s)! if 8(q, s) is defined. The length of a string s € X*,
denoted by |[s|, is defined below.

15| = 0, ifs =€
"k, ifs=o010p--rop e I

Fort € X* wesay s € X* is a prefix of t. Write s < ¢, if t = su for some
ue X* Clearly e <tandr <t forallt € X*. A language over X is any subset
of X*, i.e., an element of the power set Pwr(X*). The closed behavior of G is
represented by

L(G) := {s € Z*|8(qo. !} 2.1)

and the marked behavior is represented by
Ly (G) :={s € L(G)|8(qo0, 5) € Om} S L(G). (2.2)
The (prefix) closure of L,,(G) is denoted by L,,(G). A DES is nonblocking if

L(G) = L,,(G). In the transition graph describing a DES, the initial state is labelled
with an entering arrow, and a marker state is represented by a double circle.

Example A DES generator G1 = (Q1, 21, 81, 0.1, Om,1) is depicted in Fig.2.1,
in which

* 01={0,1},

o X = {a, B} with Xy o, = {ar} and 2 une = (B},
e 81(0,) =1andé(1,8) =0,

e state 0 is the initial state, and

 state set {0} is the marker state subset.

2.1 Discrete-Event Systems 19

Fig. 2.1 DES generator G| i o
0 B 1

The closed behavior of G is
L(Gy) = {e,a, af, aBa, ...} = {(@B)*, (aB)*a},
where
@B)* ={e. @B)', (@B)*. ...},
and the marked behavior of G is
Ln(G1) = {€,a, aBap, ...} = {(aB)*}.

We have L(G1) = L,,(G1) = {€, o, aB, aBa, afap, ...}, and the DES depicted in
Fig. 2.1 is nonblocking. O

Synchronous product [17] is a standard approach to combine a finite set of DES
into a single and more complex one. Suppose that there are n languages L; € X
corresponding to n DES, respectively, with

2=U2,~,n:={1,2,...,n}.

ien

The natural projection P; : ¥* — X7 is defined by

* Pi(e) =e¢,
€, ifo ¢ X
o P — s d
1) {U, ifoeX; an
e Pi(so)=Pi(s)P;(0),s € X*, 0 € X.

The inverse image function of P; is
_1 .
P Pwr(X]) — Pwr(Z%),
where Pwr(X*) denotes the power set of X*. For H C X, we have
P (H) = {s € *|P;(s) € H). (2.3)

The synchronous product of a family of languages Ly, L», ..., and L,, denoted
by L1||L2]|| - - - ||Ly, is defined as

20 2 Preliminaries of Supervisory Control Theory

LillLal| -~ 1Ly == P 'Lin Py Ly 00 PV, (2.4)

Example Suppose that another DES generator G; = (Q2, X2, 62, q0.2, Om,2) is
depicted in Fig. 2.2, in which

* 0,={0,1,2},

° Z4‘2 = {,3»)”} with 22,(‘()}’1 = {)L} and 22,14110 = {:3}»

e 50,8 =1,801,8)=2,and 52, A) =0,

« state 0 is the initial state, i.e., go,2 = 0, and

* state set {0} is the subset of marker states, i.e., Q,,2 = {0}.

By computing the synchronous product of G and G», we have the global event
set as

Y =X1UX={a B,A}

The automata representing P, 'L, and P2_1L2 are depicted in Fig.2.3, in which
the newly added events in the automata are represented by selfloops. Finally, the
synchronous product of G and G is

L(G) = L(G1]IG2) = P, 'Ly N Py ' Ls.

The DES diagram corresponding to G is depicted in Fig. 2.4. (]
Fig. 2.2 DES generator G» L
0
: B A
1 & 2
'
0 o
b o« 5 2
B
0 B 1 1 2
(@) (b)

Fig. 2.3 Two DES generators with selfloops. (a) DES representing PI_ILI. (b) DES representing
P 'Ly

2.1 Discrete-Event Systems 21

Fig. 2.4 Synchronous product G = G{||G2

The DES synthesis tool TCT! is a software package that provides several proce-
dures for DES. The synchronous product L(G) = L(G1||G2) can be calculated in
TCT as listed below, in which events «, 8, and A are represented by integers 1, 2,
and 3, respectively. The utilized procedures are introduced in [17].

G1 = create (G1, [mark 0], [tran [0, 1, 1], [1, 2, O]]) (2, 2)
G2 = create (G2, [mark 0], [tran [0, 2, 1], [1, 2, 2], [2, 3, 0]]) (3, 3)
T1 = selfloop (G1, [3]) (2, 4)
T2 = selfloop (G2, [1]) (3, 6)
G =meet (T1, T2) (6, 7)

TCT also provides a procedure sync to calculate the synchronous product of up
to 20 DES directly. In TCT, the synchronous product of G; and G3, denoted by
TEST, is calculated below.

TEST = sync (G1, G2) (6, 7)
Finally, the identity of the two approaches above is verified by
true = isomorph (G, TEST; identity),
which shows that the synchronous products obtained by the two approaches given
above are identical. (]

Suppose that a DES model is nonempty. Under supervisory control, all the

uncontrollable events are automatically enabled. After adjoining a particular subset

of the controllable events to be enabled, a set of control patterns is defined as

@ ={¢ € Pwr(X)|¢ 2 Zync}- (2.5)

Uhttp://www.control.utoronto.ca/DES.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

22 2 Preliminaries of Supervisory Control Theory

The supervisory control for G is any map
V:L(G) — &.

DES G under the supervision of V is written as V /G. The closed behavior of V /G
is defined to be L(V/G) € L(G) described as

» the empty string € € L(V/G),
e ifse L(V/G),o € V(s),and so € L(G), thenso € L(V/G), and
* no other strings belong to L(V /G).

The marked behavior of V /G is denoted by
L,(V/G)=L(V/G)N Ly(G). (2.6)
The control map V is said to be nonblocking for G if
Lu(V/G) = L(V/G).
A language K C X'* is said to be controllable (with respect to G) if
KX,NLG)CK
ie.,
(Vse XYoo e X)secK &o € Zype &so € L(G) = so € K.

Let K € L(G) be nonempty and closed. There exists a supervisory control V for
G such that

L(V/G) =K

iff K is controllable with respect to G; this is referred to as a nonblocking
supervisory control (NSC). Generally, if marking is also considered, then we select
a sublanguage M C L,,(G). A marking NSC (MNSC) with respect to G exists if it
isamap V : L(G) — @ satisfying the behavior

Ln(V/G)=L(V/G)N M. 2.7

Suppose that a specification language is given by E C X*. Let ¥ (E) be the
family of sublanguages of E that are controllable with respect to G. € (E) is
nonempty and is closed under arbitrary unions. Since ¥ € E, the (unique) supremal
element within €' (E), denoted by sup% (E), always exists.

2.1 Discrete-Event Systems 23

~-O=-O—0—0—

Fig. 2.5 Specification

Example For the DES G portrayed in Fig. 2.4, we have

e L(G) = {e, a, aB, aBa, afaf, aBaBr, afafa, ...}, and
* Ln(G) = Ln(GDIILn(G2) = {(@B)" H{(BBL)*} = {(a(BaBar)* Bapr)*}.

Now we assign a specification S as shown in Fig. 2.5. It satisfies L(S) = L,,(S) and

Ln(S) = {(aBapr)”, (afapl) aBapo}.

Let E = L(S). First, we check the controllability of E; = {efaBa} C E with
Yune = {B} as follows:

E = {e, a, aB, afa, afaf, afafal,
° ﬂzunc = {ﬂv Olﬁ, aﬁﬂ’ (1/30[/3, 05,3&8,3, (X,BO(ﬂOl/S}, and
Elzunc N L(G) = {Ol,B, algaﬂ} C El-

Let K = Ej. We say that K is controllable and there exists an NSC V such that
L(V/G)=K.Let M = L,,(G). We have

Ln(V/G) = L(V/G)NM = §.

Clearly, the MNSC with respect to K is empty.
Second, let K = E» = {(aBaBr)*aBaBal. It is true that K C L(G) and there
does not exist s € K such that s € L,,(G). Hence there exists an NSC V such that

L(V/G) =K

and there exists an empty MNSC with respect to K .
At the next step, we check the controllability of E3 = {(¢Baf)1)*}:

s E3 = {(aBapr)*} = {(aBaBr)*, (afapr)*a, (afaBr)*af, (aBaBr)* afa,
(@Bapr)*apap),

* E3Xuye = {(@BaBr)*B, (aBapr)*aB, (aBaBr)*epfp, (aBaBlr)*efap,
(xBaBr)*apapp}, and

* E3Xunc NL(G) = {(aBapr)*ap, (afapr)*afaB} C E3.

Clearly, E3 is controllable. Let K = E3. As depicted in Fig. 2.6, there exists a DES
namely SUPER that implements V. It is easy to check that

24 2 Preliminaries of Supervisory Control Theory

QOO0

Fig. 2.6 A supervisor SUPER

L(V/G) =K.
Let M = E3. We conclude that M C L,,(G) and
L,(V/G)=L(V/G)NM

hold. We say that the supervisor illustrated in Fig. 2.6 is an MNSC. It is clear that it
is also an NSC.

By repeating the same approach, we can reach a conclusion that specification
K = L(S) is an NSC but not an MNSC.

The operations in TCT to synthesize the optimal MNSC are listed below.

SPEC = edit (G, [mark +[5]], [trans —[5, 3, 1]]) (6, 6)
SUPER = supcon (G, SPEC) (5, 5)
SUPER = condat (G, SUPER) Controllable
Clearly, as illustrated in Fig. 2.6, SUPER is the optimal MNSC. Following the

condat procedure (introduced in [17]) in TCT, we find that SUPER disables event
«a at state 4 in Fig. 2.6. O

2.2 Timed Discrete-Event Systems

By adjoining time bounds to the R-W framework (on the transitions), the Brandin-
Wonham (B-W) framework [2] of a timed DES (TDES) is obtained. From the
perspective of TDES, a DES under the R-W framework is viewed as an (untimed)
activity transition graph (ATG) of a TDES. In other words, a TDES G can be
modelled starting from an untimed ATG represented by a five-tuple:

Gact = (Aa Eact’ 5act, ap, Am)

that is essentially an untimed DES with its state set being replaced by an activity
set A. The elements of A are called “activities”, usually denoted by a. Let N =

2.2 Timed Discrete-Event Systems 25

{0,1,2,...} and 0 € X,;. Every event o in X, is equipped with a timer, defined
by a lower time bound I, € N and an upper time bound u, € NU{oo} with respect to
which the timer is “tick down”. X, is partitioned into two subsets, which satisfies
Zact = Z:A‘peL.JZ:rem,
where X, and X, are the prospective and remote event sets with finite and
infinite upper time bounds, respectively.
By defining a timer interval to tick down event o, represented by T, such that

Tz =[0,us) and T, = [0, [5] for o in Xy, and Xy, respectively, a TDES state
is denoted by

q = (a,{tslo € Zyer})
with 7, € T,, which shows that a TDES state g consists of an activity a and a
tuple assigning to each event o in X, an integer in its timer interval 7. Hence,
t, is called the timer of event o in state g. Thus, the TDES state set is built as the

Cartesian product of the activity set and the timer intervals of all the activity events
appeared in X, i.e.,

0= Ax[[{T;l0 € Zacr).
The initial state of a TDES is

qo := (ao, {tsolo € Xucr}),

where #,(0 equals u, and I, for a prospective and a remote state, respectively. The
marker state set is a user-defined subset

Om S Ay X H{TG|U € Xyer}-

The global tick event tick (t) representing “tick of the global clock” is adjoined to
X 4ct to form the full alphabet denoted by

X = 2, Ufr).
Thus a TDES is represented by
G =(0,%,48,90, Om)-
Example We consider the automaton depicted in Fig. 2.1 as an ATG

Gact = (A, Zycr, Sacr» a0, Am)

26 2 Preliminaries of Supervisory Control Theory

with

A ={0,1},

* Yuer = {a, B} with Zypp, = {a} and Espe = {B},

* Sact(0,) = 1 and 84¢: (1, B) =0,

¢ state 0 is the initial activity, i.e., ag = 0, and

 state set {0} is the marker activity set, i.e., A, = {0}.

We assign time bounds to « and $ to be

e Iy =1,

¢ Uy = 00,

* Ig=1,and
* ug =2,

written as («, [1, oo]) and (B, [1, 2]), respectively. Then, we have a TDES

G =(Q.X.48.90. Om)

where

e 0 =1{0,1} x{0, 1} x {0, 1, 2} is the Cartesian product of the activity set and the
non-negative integers (the timer intervals) to tick down events « and S,

e Y= Eacto{t} = {Ol,ﬁ,l},

* qo = (0, {1, 2}) is the initial state, and

e 0O, ={(0,{1,2})} is a (user defined) marker state set.

We have size |Q| = 12 and we take (0, {1, 2}) and {(0, {1, 2})} as the initial state
and marker state set, respectively. State go = (0, {1, 2}) is the initial state of the
TDES, where state O is the initial activity, and {1, 2} is the set of the user-defined
initial (timing) labels for events « and S, respectively. The marker state set Q,, is
singleton containing gg = (0, {1, 2}), in which state O is the unique marking activity,
and {1, 2} is also the set of the user-defined marking (timing) labels for events « and
B, respectively. (]

In accordance with [17], an event 0 € X, is enabled at g if §4¢(a, o) is
defined, written as 8,4 (a, 0)!; it is eligible if its timer is also defined, i.e., §(¢q, 0)!,
in accordance with the following rules:

e o=tand (VT € Xsp.)duci(a, T)! =tz > 0, or
¢ o€ Espe» Sact(a,0),0 <t; <us — Iy, or
* 0 € Xrem, Sact(a, o), te =0.

Formally, § is defined as 8(g, o) = g’ with
q = (a, {t:|t € Xyet}) and 61/ = (d, {t-“f € Xaet)s

where the entrance q' is defined by the following rules:

1. Leto =1t.

2.2 Timed Discrete-Event Systems 27

In the entrance ¢’ we have a’ := a, and

Ur, if not 8, (a, 7)!
o ifte Xt = ' act (2, 7) , and
tr — 1, ifd,(a,) and t; > 0
It if not 8,4 (a, 7)!
o ift e Xiemt, =9t —1, ifSu(a,)l andt; > 0.
0, if 64cr(a, T)!and t; =0
2. Leto € Eact.
In the entrance ¢’ we have a’ := 8,.;(a, o), and
ur, ifnotd,q(a, v)!
s ift#oandt e Xy, 1] = ! act (3, 7)
tr, ifduc(a, T)!
e ift=candt € Xy, 1 := u,,
l;, ifnotd,(a, T)!
e ift#candt € Zyep, 1 := ' act (),and
tr» if(sacl(av t)'
e ift=candt € T, 1, :=15.

In accordance with [17], only an eligible event can actually occur. If o is not
enabled, it is said to be disabled; if o is not eligible, it is ineligible; an enabled
but ineligible event is called a pending event . A TDES should satisfy activity-
loop-free , i.e.,

(Vg € Q)(Vs € Z5.)8(q.5) #q.

Example For the ATG Gyt discussed in the previous example, we have its
corresponding timed transition graph (TTG) G depicted in Fig.2.7, which shows
that:

e Atstate (0, {1, 2}) where items 0, 1, and 2 are respectively the activity 0 in Gyct,
the lower time bound /, = 1 for event o, and the upper time bound ug = 2 for
event f:

(0,{1,2}) & (L{12h) ({11} (1,{1,0})
o

Fig. 27 ATTG

28 2 Preliminaries of Supervisory Control Theory

— event « is enabled but not eligible to occur since #, = 0 is violated, i.e., it is
pending,

— event B is disabled since 8, (0, B)! is not satisfied, and

— event t is eligible to occur since 844 (0, B)! = 15 > 0 holds.

e At state (0, {0, 2}):

— event « is enabled and eligible to occur since 4. (0, @)! and ¢, = 0 hold,
— event B is disabled, and
— event t is eligible to occur since 844 (0, B)! = 15 > 0 holds.

e Atstate (1, {1, 2}):

— event « is disabled,

— event B is pending since §,¢ (1, B)! and tg = 2 violates 0 < 15 <ug—Ig =1,
and

— event ¢t is eligible to occur since 844 (0, B)! = 15 > 0 holds.

e Atstate (1, {1, 1}):

— event « is disabled,

— event B is enabled and eligible to occur since 8,4 (1, B)! and tg = 1 satisfies
Oftﬂ fulg—lﬂz 1, and

— event ¢ is eligible to occur since 8,4¢; (0, B)! = tg > 0 holds.

e Atstate (1, {1,0}):

— event « is disabled,
— event B is enabled and eligible to occur, and
— event ¢ is disabled since 8,4 (0, B)! = tg > 0 is violated.

After the occurrence of event « at state (0, {0, 2}), the system arrives state (1, {1, 2})
which resets the timer for event « to be [, = 1. Event 8 is eligible to occur at both
states (1, {1, 1}) and (1, {1, O}). After the occurrence of event B, the system returns
to the initial state with the timer for event B defined as ug = 2.

By using the procedure timed_graph procedure in the TDES synthesis tool
TTCT,? a TTG G can be generated from the corresponding ATG Gy, which is
shown in Fig.2.7.]

The closed behavior of a TDES G is represented by language
L(G) := {s € X*|8(qo, $)'}. (2.8)
In addition, the marked behavior of G is

Ln(G) :={s € L(G)|8(q0, 5) € Om}- (2.9)

2 http://www.control.utoronto.ca/DES.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

2.2 Timed Discrete-Event Systems 29

A TDES G is nonblocking if L,,(G) satisfies
Lu(G) = L(G),

where L,, (G) denotes the (prefix) closure of L,,(G). An ATG can be converted into
a TTG by incorporating the tick (represented by event ¢) transition explicitly.

A subset X, C X, represents the prohibitable event set, in which each
event can be disabled by a supervisor. Furthermore, another subset X ¢, C X,
namely forcible event set, is defined, which can preempt the occurrence of event
t. For example, suppose that at a state g, several forcible events and ¢ are eligible.
By SCT, event ¢ can be effectively erased from the current event list. There is no
particular relation postulated a priori between X ¢, and any of Xp;p, Xyem, OF Xpe.
In particular an event in X, might be both forcible and prohibitable.

In a TDES plant G, the eligible event set Eligg(s) < X at a state g
corresponding to a string s € L(G) is defined by

Eligg(s) := {0 € XY|so € L(G)}. (2.10)
For an arbitrary language K C L(G), lets € K,
Eligk(s) :={o € X|so € K}. 2.11)
The language K is controllable w.r.t. G if for any string s in K,

Eligg (s) N (Zync U {t)), if Eligx(s)N Efur =0

Eligg(s) 2)
Eligk (s) N Zune, if Eligk (s) N Zfor # 0

2.12)

Thus an event o € X is eligible to occur w.r.t. K if o is eligible in G and

e o is uncontrollable, or
e o =t and no forcible event is currently eligible in K.

Obviously, the significance of “controllable” differs from the definition in (untimed)
DES: even though event tick is controllable, it can be preempted only by a forcible
event that is eligible to occur. The set of all controllable sublanguages of K is
denoted by €’ (K) that is nonempty (the empty set belongs to it) and closed under
arbitrary set unions. Hence, a unique supremal (i.e., largest) element exists, denoted
by sup@(K).

Suppose that a specification language is represented by E € X*. Let

KCLGNE
be nonempty and closed. There exists a supervisory control V for G such that

L(V/G) =K

30 2 Preliminaries of Supervisory Control Theory

iff K is controllable with respect to G; this is referred to as an NSC. Formally, a
supervisory control is a map

V:L(G) - 2%
such that, for all s € L(G),

Zune V{t} N Eligg (s)}, if V(s) N Eligg(s) N Yfor = @

Vi(s) 2 :
Zuncs it V() NEligg(s) N Xyor 0

(2.13)

The closed behavior of G under the supervision of V, denoted by L(V/G), is
defined as:

* e L(V/G),
e ifs e L(V/G),o € V(s),and so € L(G), thenso € L(V/G), and
* no other strings belong to L(V/G).

Generally, if marking is also considered, then we select a sublanguage M C L,,(G).
A marking nonblocking supervisory control (MNSC) with respect to G exists, which
isamap V : L(G) — @ with the behavior

Ln(V/G) = L(V/G) N M. (2.14)

Example The TTG depicted in Fig.2.7 is nonblocking, which is considered as a
plant with a forcible event «. A user-defined specification S is depicted in Fig. 2.8.
Let E = L(S). We have a TTG representing K = L(G) N E shown in Fig.2.9.

Let s; = tt, so = ttat, and s3 = ttatt. We have

* 51 € K, and Eligg(s1) = Eligg (s1) = {a},
* 52 € K, and Eligg(s2) = Eligk (s2) = {B}, and
e s3€ K,and Eligg(s3) = Eligg (s3) = {B}.

Strings s1, 52, and s3 are controllable since Eq. (2.12) is satisfied. Furthermore, it is
easy to check that K is controllable since all the strings s in K satisfy Eq. (2.12).
Hence K is controllable. More precisely, it is both an NSC and an MNSC.

This conclusion can also be verified by using the TTCT procedure supcon.
Considering the TTG depicted in Figs.2.7 and 2.8 as plants and specifications,
respectively, as shown in Fig.2.9, a TTG supervisor, denoted by SUPER, is
obtained. The operations in TTCT to synthesize the optimal MNSC are listed below:

Fig. 2.8 A TDES ; ; o
specification g >

2.3 State-Tree Structures 31

~-O—O0—0—=0O~

Fig. 2.9 A TDES supervisor

G = acreate (G1, [mark 0], [time bounds [1, 1, inf], [2, 1, 2]], [forcible 1],
[tran [0, 1, 1], [1, 2,0]]) (2, 2)

G = timed_graph (G) (5, 7)

SPEC = create (SPEC, [mark 0], [tran [0, O, 1], [1, O, 2], [2, 1, 3], [3, O, 3],
[3, 2, 011, [forcible 1]) (4, 5)

SUPER = supcon (G, SPEC) (6, 7) O

2.3 State-Tree Structures

Similar to the hierarchical organizations in the real world, state-tree structures
(STS) are proposed in [14] for the purpose of incorporating the hierarchical and
concurrent structures of complex DES (or finite state machines, FSM) into a
compact and natural model. Thereafter, it is completed in [10] and [11]. STS are
viewed as hierarchical finite state machines (HFSM) [6, 7, 12]. In other words, an
STS is equally considered as a set of DES with multi-levels. In this monograph,
we introduce STS by starting from superstates as defined in statecharts [8]. A
superstate, similar to a hierarchical organization or hierarchy, is generally made of
several subordinates that may also be hierarchical organizations.

2.3.1 Superstates

A superstate, as known as the abstraction of a system or a sub-system, is an
aggregation (or abstraction) of its components [8, 10]. Let X be a finite collection
of sets that are called states of a system. Given a state x € X and a non-empty set

Y:{'x15x27""xn}§x

32 2 Preliminaries of Supervisory Control Theory

with x ¢ Y, i.e., Y is a proper subset of X that does not contain x. As stated below,
x 1is said to be a superstate in X expanded by Y if x can be obtained by one of the
two expansions.

e OR expansion: x is the disjoint union of the states in Y, i.e.,

X = U Xi.
x;eY

In this case, x is called an OR superstate of X and x; is called an OR-component
of x in X. Disjointness means that the semantics of x is the exclusive-or of x;,
i.e., a system at state x implies that it is at exactly one state of Y.

* AND expansion: x is the Cartesian product of states in Y, i.e.,

x = (xX1,X2,...,Xp).
For simplification, write
r= Hxieri
or
X=X XX2 X ...X Xp.
In this case, x is called an AND superstate and x; (i € [1,n] = {1,2,...,n})

is called an AND-component of x € X. The semantics of an AND superstate x
means that a system at state x is at all the states of ¥ simultaneously.

If x € X is not a superstate, it is said to be a simple state, denoted by SIM, i.e., there
does not exist a non-empty set ¥ = {xy, x2, ..., X,} g X that expands x.
Formally, given a state set X, the type function

7 : X — {AND, OR, SIM}

is defined by

AND, if x is an AND superstate
T (x) == {OR, if x is an OR superstate - (2.15)
SIM, otherwise

Moreover, the expansion function
&: X — 2%

is defined by

2.3 State-Tree Structures 33

Fig. 2.10 States in (A)

statecharts

a

@ @ O b
O C

£(x) = Y, if 7(x) e {AND, OR} (2.16)
@, if 7 (x)=S8IM

withx € X, C Y C X,andx ¢ Y, which is, for x € X with 7 (x) # SIM, there
exists a set Y C X such that &(x) = Y; for x € X with 7 (x) = SIM, &(x) = 0.

Intuitively, a simple state has no children. An OR superstate has several children,
and the system is only allowed to stay at exactly one child at a time. An AND
superstate also has several children, but the system must stay at all of its children
simultaneously.

Example The diagram depicted in Fig.2.10 has a state collection X =
{A,a,b,c,ay,ay}, in which

* state A is an OR superstate expanded by states a, b, and c;
* state a is an AND superstate expanded by states a, and ay;
 states b and c are two simple states without children.

As presented in Fig.2.10, a superstate is represented by a box with round corners
and a simple state is depicted by a circle. Generally, the components of a superstate
are on the adjacent lower-level. Superstate A is expanded by three states a, b, and
¢, i.e., &(A) = {a, b, c}, in which the AND superstate a is further expanded by two
OR superstates a; and ay, i.e., &(a) = {ai, az}. The dashed line between the two
boxes labelled with a; and a; represents that they are the expansions of superstate
a. Based on a top-down modelling approach, the expansions of superstates are
built inside the boxes iteratively. The state set X is continually growing during the
modelling of an STS. We require that any state in X should only appear once.
Clearly, from the perspective of superstate A, the system must be at exactly one
state of a, b, or c; from the perspective of superstate a, the system must be at states
a1 and a, simultaneously. Holons defined below describe the internal structures of
superstates a1 and a;. O

After building the local transitions among the OR components, holons [10, 11]
are created. Automatically, a set of superstates (or holons) structured in this way is
nested.

34 2 Preliminaries of Supervisory Control Theory
2.3.2 Holons

Both the hierarchy and horizontal transition relations of an STS are described in a
family of holons. A holon consists of an internal structure and a (possibly empty)
external structure. The internal structure of a holon that matches an OR superstate
x is denoted by H™*. Its internal state set X7 is equal to the expansion of superstate
x. Formally, &(x) = X7 is true.

The external structure of a holon is defined in the adjacent higher level to build
transitions with other states. Hierarchically, a holon H is defined as a five-tuple

H:= (X, X,8, X0, X;n).

Here,

e X is the nonempty state set, structured as the disjoint union of the (possibly
empty) external state set X g and the nonempty internal state set Xy, i.e.,

X = XpUX;.

e X is the event set, structured as the disjoint union of the boundary event set Xp
and the internal event set Xy, i.e.,

X =3Ux;.
¢ the transition structure
:XxXY—->X

is a partial function. In accordance with DES and TDES, we write §(x, o)! if
8(x, o) is defined. § is the disjoint union of two transition structures, the internal
transition structure 87 . X1 x X; — X and the boundary transition structure 5
which is again the disjoint union of two transition structures: dp; : Xg X X¥p —
X1 (incoming boundary transitions) and épo : X; x Y¥Xp — Xg (outgoing
boundary transitions).

* Xo C Xjistheinitial state set, where X has exactly the target states of incoming
boundary transitions if §p; is defined; otherwise X is a nonempty subset of X;
selected for convenience.

* X, € Xj is the terminal state set, where X, has exactly the source states of
the outgoing boundary transitions if §p ¢ is defined; otherwise X, is a selected
nonempty subset of X;.

For a holon H, its event set X~ can also be partitioned into the disjoint union of
controllable events X.,, and uncontrollable events X, i.e.,

2= Xeon L.Jz‘uncw

2.3 State-Tree Structures 35

Fig. 2.11 Three superstates
x Ty
|
|
|
|
Fig. 2.12 Two DES |
generators. (a) DES G*. (b)
DES G” Yo
| 5
X0 > tt\ X2
Y1
c
()
Fig. 2.13 A set of two

holons (x Iy N
|
! Yo
|
|
|
b
SN - b b
|
Xo 1) |
¢ | Ayl
l J

A holon with an empty external structure is identical with the DES proposed in [17].
The initial (resp., terminal) states of the holons without external states are marked
by incoming (resp., outgoing) arrows. A family of holons is denoted by .77

Example Given an HFSM G as the synchronous product of an HFSM x and an
FSM y, which can be viewed as three superstates structured in Fig.2.11. State T
is an AND superstate and it is expanded by two superstates x and y. Suppose
that the inner behavior of superstates x and y are respectively identical with two
DES generators G* and G”, as depicted in Fig.2.12. In Fig.2.12a, superstate xi
is dashed by north west lines, which represents that its inner structure can be
constructed afterwards. As a consequence, x and y are OR superstates, and HFSM
GT is reformed as the two holons H* and H” illustrated in Fig. 2.13. In particular,
we consider that G* shown in Fig. 2.12a (isomorphic with holon H* in Fig.2.13)
is hierarchical. Superstate x; illustrated in Fig.2.13 is represented by a square
dashed with north west lines. Note that superstate T has internal structures. In this
monograph, as illustrated in Fig. 2.10, such a superstate is represented by a square
with round corners.

36 2 Preliminaries of Supervisory Control Theory

Q a

X0

Fig. 2.14 Holon H*!

X0

-

Fig. 2.15 Monolithic dynamic structure of GT (1)

On the one hand, suppose that superstate x| is an OR superstate, and its internal
behavior is depicted by holon H*! as shown in Fig.2.14. Then, by plugging H*!
into superstate x| appeared in Fig. 2.13, we obtain the monolithic dynamic structure
of GT as illustrated in Fig.2.15. The set of the holons describing the dynamics of
GT is denoted by s#T = {H*, HY, H"'}. Holon H*' shown in Fig.2.14 is with
internal and external structures, i.e.,

¢ X" is a nonempty state set structured as the disjoint union of the external state
set X! = {x0, x2} and internal state set X;' = {0, 1,2, 3, 4}. Formally, X*! =
XFUXT' = {x0,x2,0,1,2,3,4} with X}! N X}' = 6;

e X is the event set, structured as the disjoint union of the boundary event set
X4 and the internal event set X;' with X' = {a,b} and X;' = {a, B, A}.
Formally, %1 = X3'UX" = {a, b, a, B, A} with Z3' N X' = 0;

» there exist an incoming boundary transition 8;11 (xp,a) = 0 and an outgoing
boundary transition 82‘0 4, b) = xy;

* X = {0} is the initial state set;

* X,, = {4} is the terminal state set.

2.3 State-Tree Structures 37

Fig. 2.16 Holons describing
internal behavior of
superstate x|

X0

-

Fig. 2.17 Monolithic dynamic structure of GT (2

On the other hand, suppose that superstate x; shown in Fig.2.13 is an AND
superstate, and its internal behavior is depicted by holons H*!! and H*!2 as shown
in Fig. 2.16. Then, by plugging the holons into superstate x; in Fig.2.13, we obtain
the monolithic dynamic structure of GT as illustrated in Fig. 2.17. The set of holons
describing the dynamics of GT is denoted by T = {H*, HY, H*1\ H*12}, O

G