
Xi Wang
ZhiWu Li

Scheduling and
Reconfiguration
of Real-Time
Systems
A Supervisory Control Approach

Scheduling and Reconfiguration of Real-Time
Systems

Xi Wang • ZhiWu Li

Scheduling and
Reconfiguration of
Real-Time Systems
A Supervisory Control Approach

Xi Wang
School of Electro-Mechanical Engineering
Xidian University
Xi’an, China

ZhiWu Li
Institute of Systems Engineering
Macau University of Science and
Technology
Tapei, Macau SAR, China

ISBN 978-3-031-41968-3 ISBN 978-3-031-41969-0 (eBook)
https://doi.org/10.1007/978-3-031-41969-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-6427-8090
https://orcid.org/0000-0003-1547-5503
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0

In memory of my parents, Shuhua Zhao
and Fuyou Wang
For my family, Jun Guo and Peilin Jesse
Wang

(XW)

For my family, Tongling Feng and Buzi Li
(ZWL)

Foreword

This monograph provides a newly identified research topic, namely real-time
scheduling and reconfiguration based on supervisory control theory (SCT). SCT,
also known as the R-W method, initiated by Ramadge and Wonham in the 1980s,
offers a systematic treatment to the modelling, analysis, and control of discrete-
event systems (DES) that are a technical generalization of many contemporary
technological systems, and explores generic principles to a wide range of application
domains. Generally, any system can be viewed as a real-time system (RTS) if it
performs real-time application functions and behaves correctly depending on given
logical activities and satisfying specified deadlines for the activities. In the past
decades, as a popular and topical research topic, real-time scheduling and recon-
figuration have far-reaching influences in academia and industrial implementations.

This monograph provides broad views and detailed introductions to SCT and its
application in real-time scheduling and reconfiguration. Based on three popular SCT
modelling frameworks, DES, timed DES (TDES), and state-tree structures (STS),
the authors provide RTS modelling frameworks; thereafter, SCT is used to find their
safe execution sequences. For STS, as a newly identified hierarchical modelling
framework, in Chap. 2, the authors explain their semantics, notions, and concepts in
a straightforward and easy to understand way with plenty of examples. Along with
the deepening of understanding of the RTS modelling problem, the authors provide
three RTS modelling methodologies based on DES, TDES, and STS in Chaps. 4, 5,
and 7, respectively. Finally, the main differences among the three SCT modelling
frameworks are vividly illustrated in Chap. 8, which also show that the cores of all
the presented modelling approaches are identical.

Intuitively, it is trivial to find out that “time” is a critical criterion and vital
attribute to both TDES and RTS. Hence, as the first step, the authors provide a
TDES-based RTS modelling, scheduling, and reconfiguration formalism in Chap. 4
for RTS running on uni-processors. In order to schedule and reconfigure RTS in a
uniformed model, a multi-period periodic RTS task is modelled by a TDES. Initially,
a task is assigned with the shortest period. By implementing SCT, the multi-periods
of tasks are used to reconfigure an RTS when its initial safe execution sequence set

vii

viii Foreword

is empty. During the real-time scheduling/reconfiguration process, the supervisor
proposes all the safe execution sequences.

An RTS modelling approach is presented in Chap. 5, which uses (untimed)
events to represent the execution and preemption of each individual RTS task. This
modelling formalism brings the possibilities to model the preemptions of tasks’
executions. Furthermore, in some cases, priorities cannot be assigned to real-time
tasks. In order to solve this problem, a matrix-based priority-free conditional-
preemption (PFCP) relation is provided in Chap. 5, which generalizes fixed-priority
(FP) RTS scheduling. By defining the preemption relation among any two tasks
running in a processor, a preemption matrix is utilized to describe all the possible
FP preemption relations and other user-specified preemption relations. By SCT,
the synthesized supervisor provides all the safe real-time execution sequences. As
a natural extension, a generalized modular modelling framework is proposed in
Chap. 6 to model the task parameters instead of the global real-time task. The
modular models are taken to be generic entities, which also considers the exact
execution time of real-time tasks.

STS are undoubtedly recognized as a computationally efficient SCT framework
which manages the state explosion problem significantly. Clearly, the synthesized
supervisors based on the modelling methodologies stated in Chaps. 4, 5, and 6 can
provide all the possible safe execution sequences of an RTS. As a natural extension,
it is theoretically significant and practically invaluable to find a few best sequences.
To this end, Chap. 7 uses STS to model RTS and assigns dynamic priorities as
specified optimality criteria such that a set of safe execution sequences is selected.
This provides the possibilities for large-scale industrial implementations.

This monograph is a comprehensive and solid work on SCT-based real-time
scheduling and reconfiguration. The two authors have been working in this area
for years. I am pleasantly surprised to state that there are several highlights in
this monograph; in particular, “untimed” events are used to represent the “timing”
behaviors of RTS tasks. This insight gives vitality to this interdisciplinary research
topic and brings it to a new horizon.

February 2023 Maria Pia Fanti
Politecnico di Bari

Preface

Adequate responses to predictable and specific constraints are a critical criterion
to both real-time systems (RTS) and supervisory control of discrete-event
systems (DES). RTS satisfying the (predefined) specific time constraints mean
that they can respond to events, such as a task’s arrival/release and the
start/completion/preemption of its execution, within preset time. DES are event-
driven instead of clock-driven, which are asynchronous in event executions and
discrete in state space. Hence, properly representing the “events” of RTS by DES
frameworks is the key of the modelling methods provided in this monograph. This
motivates us to investigate the RTS scheduling and reconfiguration problems from
the perspective of supervisory control of DES.

Supervisory control theory (SCT, known as the R-W method), initiated by
Ramadge and Wonham in the 1980s, is a methodology to automatically synthesize
supervisors of DES, which restricts the behavior of a plant such that the given
specifications are fulfilled in a minimally restrictive manner. Based on three
popular SCT modelling frameworks: DES, timed DES (TDES), and state-tree
structures (STS), uniformed frameworks to model, schedule, and reconfigure RTS,
are provided in this monograph. Given an RTS modelled by any framework, user-
defined RTS scheduling and reconfiguration requests are described using proper
specifications. By SCT, all the safe execution sequences of an RTS are embodied in
its optimal supervisor.

Based on TDES, DES, and STS frameworks, multi-period periodic real-time
task models are provided for integrating real-time scheduling and reconfiguration
in uniformed models. A multi-period is a period set varying between a lower bound
and an upper bound. The default period for a task is the shortest one. In the case
that an RTS is non-schedulable, the multi-period is used to reconfigure the RTS
automatically. By SCT, an RTS is claimed to be non-schedulable if its supervisor is
empty.

Normally, in a real-time scheduling process, fixed or dynamic priorities are
assigned to real-time tasks. However, in some special cases, scheduling priorities
cannot be assigned to tasks properly. As a solution, based on DES and STS
frameworks, by defining the preemption relation among any two tasks running in

ix

x Preface

a processor, a priority-free conditionally-preemptive (PFCP) scheduling method
is provided, which generalizes priority-based preemption. In particular, based on
the STS modelling and supervisory control mechanism, by assigning dynamic
priorities, a set of safe execution sequences is selected, which rank at the top
according to specified optimality criteria. Generally, the provided dynamic priority
specifications can be combined with the PFCP specifications.

Historically, RTS scheduling and reconfiguration are associated with two prob-
lems: schedulability checking and safe execution sequence searching. In compari-
son, SCT-based real-time scheduling and reconfiguration do not need to check the
schedulability and find safe execution sequences separately. As a general extension,
all the possible (instead of only one in general) safe execution sequences are
provided by the optimal supervisors.

The outline of this monograph is as follows: Chap. 1 reports the overviews
of this monograph, SCT, and the real-time scheduling theory. The motivation,
contribution, and the outline of this book are also provided. Chapter 2 presents
the preliminaries of SCT and three DES modelling frameworks: DES, TDES,
and STS. From the perspective of RTS scheduling, Chap. 3 reviews the real-time
scheduling and reconfiguration of periodic RTS. Chapter 4 recalls the seminal
work on SCT-based real-time scheduling. Thereafter, based on it, in order to
dynamically reconfigure RTS, a new formalism is presented to assign multi-
periods to periodic tasks. Chapter 5 points out that using DES to model RTS is
more general than using TDES, and provides the possibility of preemptive SCT-
based scheduling of RTS, where a DES-based periodic real-time task modelling
method is presented. The timing constraints of RTS tasks are represented by
different events. In the light of the multi-period reported in Chap. 4 and building
on Chap. 5, a DES version modular multi-period is presented in Chap. 6. A task
is represented by an automaton synchronized by the required modular models, in
which a multi-period task is assigned with a set of possible periods between a
minimum period and a maximum period. The only difference of a task’s model
before and after its reconfiguration is the upper bound of its multi-period. Based
on nonblocking supervisory control of STS, a hierarchical RTS model is presented
in Chap. 7, where both conditionally-preemptive and dynamic priority scheduling
are addressed in the real-time scheduling. The proposed modular models are taken
to be generic entities, which are utilized to model a problem domain such as
“hard real-time manufacturing and reconfigurations” and manage its manufacturing
production process. Finally, Chap. 8 concludes the contributions of this monograph
and proposes some possible future extensions. The main differences among the three
SCT modelling frameworks are also discussed in this chapter.

Preface xi

The primary audiences are the researchers and practitioners in SCT or RTS,
equipped with the basic SCT knowledge. Also, they should be familiar with the
SCT synthesis tools TCT, TTCT, STS, or other related ones. This book will appeal
specifically to a reader concerned with how to model, schedule, and reconfigure an
RTS.

Xi’an, China Xi Wang
Macau SAR, China ZhiWu Li
February 2023

Acknowledgments

We would like to take this opportunity express our sincere gratitude and appreciation
to Professor W. M. Wonham, Department of Electrical and Computer Engineering,
University of Toronto. Since 2013, we have been collaborating in supervisory
control of DES, TDES, and STS and their implementation on real-time scheduling
and reconfiguration. We are very grateful to Professor Thomas Moor, Lehrstuhl für
Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
Since 2018, we have been jointly working in supervisory control of DES and STS
and their application in real-time scheduling and reconfiguration.

We extend very special thanks to our colleagues Dr. Chan Gu, School of
Electrical and Control Engineering, Shaanxi University of Science and Technology
(China), and Dr. Deguang Wang, School of Electrical Engineering, Guizhou
University (China). The continuing interaction and stimulating discussions with
them have been a constant source of encouragement and inspiration.

This monograph was in part supported by the National Natural Science Founda-
tion of China under Grant Nos. 61703322, 61374068, 61673309, and 61603285,
the Fundamental Research Funds for the Central Universities under Grant Nos.
ZYTS23016, XJS17071, JBX170413, JB160401, and JB160416, the Science and
Technology Development Fund, Macau Special Administrative Region (MSAR),
under Grant No. 0012/2019/A1, the Natural Sciences and Engineering Research
Council of Canada (NSERC) under Grant DG480599, and Alexander von Humboldt
Foundation.

Finally, we are deeply in debited to Jun Guo (the first author’s wife) and Tongling
Feng (the second author’s wife), for their care and encouragement throughout the
writing of this monograph.

xiii

Contents

1 Introduction . 1
1.1 Overview of This Monograph . 1
1.2 Supervisory Control Theory . 2
1.3 Real-Time Scheduling Theory. 3
1.4 Motivation and Contribution . 7

1.4.1 RTS Modelling Methods . 7
1.4.2 RTS Scheduling and Reconfiguration. 10

1.5 Monograph Outline . 13
References . 14

2 Preliminaries of Supervisory Control Theory . 17
2.1 Discrete-Event Systems. 17
2.2 Timed Discrete-Event Systems . 24
2.3 State-Tree Structures . 31

2.3.1 Superstates . 31
2.3.2 Holons . 34
2.3.3 State-Trees . 38
2.3.4 State-Tree Structures . 42
2.3.5 Predicates . 47
2.3.6 State Feedback Control . 48
2.3.7 Compact Representation of Predicates . 51

2.4 Real-Time Scheduling/Reconfiguration Based on
Supervisory Control. 53

References . 53

3 Real-Time Scheduling and Reconfiguration . 55
3.1 Real-Time Systems . 55
3.2 Fixed Priority Scheduling. 58
3.3 Dynamic Priority Scheduling . 60

3.3.1 Earliest Deadline First Scheduling . 62
3.3.2 Least Laxity First Scheduling . 64

3.4 Elastic Period Model for Reconfiguration . 67
References . 68

xv

xvi Contents

4 Non-Preemptive Scheduling/Reconfiguration Based on
Supervisory Control of TDES . 71
4.1 Introduction . 71
4.2 RTS Modelled by Timed Discrete-Event Systems . 73

4.2.1 Multi-Period RTS Task Model . 73
4.2.2 Real-Time Tasks Modelled by Timed Discrete-Event

Systems. 74
4.2.3 Global RTS Execution Model . 80
4.2.4 Timed Discrete-Event System Generators . 81

4.3 Dynamic Scheduling and Reconfiguration of Multi-Period
RTS . 84

4.4 Case Study: Supervisor Synthesis of Motor Network 85
4.4.1 Real-Time Scheduling . 86
4.4.2 Dynamic Reconfiguration . 88
4.4.3 Multi-Periods in the Safe Execution Sequences. 91

4.5 Conclusion . 92
References . 92

5 Priority-Free Conditionally-Preemptive Real-Time
Scheduling Based on R-W Method . 95
5.1 Introduction . 95
5.2 Task Models and Preemption Policies . 97

5.2.1 Task Model . 97
5.2.2 Priority-Free Real-Time Scheduling . 98
5.2.3 Preemption Matrices . 99
5.2.4 Task-Centered Conditional-Preemption Constraints 100
5.2.5 Response Time Constraints . 101

5.3 Tasks Modelled by Discrete-Event Systems . 101
5.4 Specifications Modelled by Discrete-Event Systems. 106

5.4.1 Nonblocking Specifications . 107
5.4.2 Matrix-Based Priority-Free Conditional-Preemption

Specifications . 108
5.4.3 Task-Centered Specifications . 109
5.4.4 Response Time Constraint Specifications . 111

5.5 Case Study I: Supervisor Synthesis of Motor Network 112
5.5.1 Work Plan I . 113
5.5.2 Work Plan II. 118

5.6 Case Study II: Supervisor Synthesis of Manufacturing Cell 123
5.7 Conclusion . 125
References . 129

6 Modular Scheduling/Reconfiguration with Exact Execution
Time Based on R-W Method. 131
6.1 Introduction . 131
6.2 Modular RTS Models . 133

6.2.1 RTS Tasks . 134

Contents xvii

6.2.2 Periodic/Sporadic Task Execution Time Models 136
6.2.3 Non-Repetitive Execution Time Models. 138
6.2.4 Deadline Models . 139
6.2.5 Release and Multi-Period Models. 141

6.3 Global RTS Execution Models . 143
6.3.1 Approach I . 143
6.3.2 Approach II . 145
6.3.3 Global RTS Behavior . 148

6.4 Scheduling Based on Supervisory Control. 151
6.5 Case Study: Manufacturing Cell . 153

6.5.1 Task Models with Worst Case Execution Time 153
6.5.2 Task Models with Exact Execution Time . 159

6.6 Conclusion . 160
References . 161

7 Scheduling/Reconfiguration Based on Supervisory Control of STS 163
7.1 Introduction . 163
7.2 RTS Modelled by State-Tree Structures . 164

7.2.1 RTS Tasks . 165
7.2.2 Execution Time Models . 166
7.2.3 Deadline Models . 168
7.2.4 Release Time and Period Models . 170
7.2.5 Task Models . 171
7.2.6 Global RTS Execution Models . 173

7.3 Conditionally-Preemptive Specifications . 173
7.3.1 Matrix-Based Conditional-Preemption Specifications 174
7.3.2 Task-Centered Specifications . 175

7.4 Dynamic Specifications . 176
7.4.1 Earliest-Deadline First Task Selection at Arrival. 176
7.4.2 Partially Preemptive Earliest-Deadline First

Scheduling . 177
7.4.3 Partially Non-Preemptive Earliest-Deadline First Scheduling 177

7.5 Supervisor Synthesis with a Case Study: Manufacturing Cell 178
7.5.1 Compact Encoding of the Manufacturing Cell 179
7.5.2 Conditionally-Preemptive Scheduling . 180
7.5.3 Preemptive and Non-Preemptive Earliest-Deadline

First Scheduling. 182
7.5.4 Non-Preemptive Earliest-Deadline First Scheduling

Sequences . 183
7.6 Large RTS Example. 184
7.7 Conclusion . 185
References . 186

8 Conclusion and Future Work . 189
8.1 Conclusion . 189

8.1.1 RTS Modelling Methods . 189

xviii Contents

8.1.2 An Overview of Specifications Describing RTS
Scheduling Requirements . 195

8.2 Future Work . 197
References . 197

Glossary . 199

Index . 201

Acronyms

ATG Active transition graph
BCET Best-case execution time
BDD Binary decision diagram
B-W Brandin-Wonham
DES Discrete-event system
DM Deadline monotonic
DP Dynamic priority
EDF Earliest deadline first
FP Fixed priority
FSM Finite state machine
HFSM Hierarchical finite state machine
LLF Least laxity first
LM Release map
MNSC Marking nonblocking supervisory control
NCA Nearest common ancestor
NSC Nonblocking supervisory control
OS Other user-defined specification
PFCP Priority-free conditional-preemption
PS Priority-free conditional-preemptive specification
RM Rate-monotonic
RTS Real-time system
R-W Ramdge-Wonham
SCT Supervisory control theory
SM Scheduling map
STS State-tree structure
TDES Timed discrete-event system
TS Task-centered conditional-preemption specification
TTG Timed transition graph
WCET Worst-case execution time
WCRT Worst-case response time

xix

Chapter 1
Introduction

1.1 Overview of This Monograph

Initiated by Ramadge and Wonham in the 1980s [38, 48], supervisory control theory
(SCT) of discrete-event systems (DES) aims to provide a general treatment for
modelling and control of a wide class of man-made systems that nowadays are
usually computer-integrated, including many contemporary information extensive
infrastructures of human society, such as manufacturing systems, smart city traffic
management, communication protocols, computer networks, etc. In general, timing
constraints are a vital attribute and a critical criterion to operate these systems,
whose technical generalization leads to the notion of real-time systems (RTS).
Roughly speaking, the behavioral correctness of an RTS does not depends only on
logical activities occurring in it, but also on the satisfiability of specified deadlines
for the activities, i.e., the correct functioning of an RTS is attributed to the hard
or soft timing requirements on the tasks to be executed. To this end, real-time
scheduling and reconfiguration are treated as an effective vehicle for an RTS to
carry out the tasks such that a correct function is guaranteed.

In 1973, the seminal work by Liu and Layland [28] touched upon the real-time
scheduling problem for multi-program on a single processor, showing that a fixed
priority scheduler possesses an upper bound to processor utilization. It is also shown
that full processor utilization can be achieved by dynamically assigning priorities in
terms of the current deadlines of tasks to be executed. Over the past half century,
there has been a fair amount of significant work from researchers and practitioners
on real-time scheduling and reconfiguration of RTS [16, 37, 40, 49, 51]. Interestingly
and surprisingly, a suite of documented methodologies on the modelling, control,
and scheduling of these systems [12–15, 21, 22, 34–36, 43–47] are from the
perspective of supervisory control of DES [4, 29, 30, 38, 48].

As an interdisciplinary approach, SCT-based real-time scheduling and reconfigu-
ration are a newly-identified research topic. In this monograph, an RTS is modelled
by the SCT modelling frameworks and user-defined scheduling/reconfiguration

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1
https://doi.org/10.1007/978-3-031-41969-0_1

2 1 Introduction

requests are described by the corresponding specifications. Currently, there are
three popular SCT modelling frameworks: DES [38, 48] (known as the R-W
method), timed DES (TDES) [4], and state-tree structures (STS) [29, 30]. In this
monograph, RTS are modelled by all the three frameworks. Users are invited
to propose scheduling or reconfiguration requirements at will. These schedul-
ing/reconfiguration requirements, whether priority-based or not, from the per-
spective of either processor or individual task, are converted into formal SCT
specifications offline. With such specifications assigned, all the safe execution
sequences of an RTS are embodied in its optimal supervisor. In particular, as
stated in Chap. 7, by assigning dynamic priorities (DP) to RTS tasks, a few safe
execution sequences are selected based on the STS modelling and supervisory
control mechanism, which rank at the top according to specified optimality criteria.

Historically, in the real-time scheduling research area, both the RTS scheduling
and reconfiguration are associated with two problems [39]: schedulability checking
and safe execution sequences searching. Usually, if an RTS is schedulable, one
random safe execution sequence is provided by a scheduling algorithm for its
processor. In comparison, SCT-based real-time scheduling and reconfiguration do
not need to check the schedulability and find safe execution sequences separately. As
a general extension, all the possible (instead of only one) safe execution sequences
are provided by the optimal supervisors.

1.2 Supervisory Control Theory

This section provides a brief overview of the basic principles of SCT. Interested
readers are suggested to refer to monographs [48] and [29] for a systematic
understanding. The detailed preliminaries of SCT with examples are presented in
Chap. 2. Unlike in [29], we introduce STS by starting from superstates and holons.
The latter are natural extensions of DES diagrams.

The DES framework is language-based. Generally, a plant is modelled as a
DES, denoted by . G, which can be considered as a dynamic system equipped
with a discrete state space and a state-transition structure. The system behavior
is described as a formal language .L(G) that is generated by an automaton over
an alphabet (or event set, usually finite) denoted by . Σ , which models the plant.
Generally, event set . Σ is partitioned into two disjoint subsets: controllable events,
denoted by .Σcon, that can be disabled by external controllers, and uncontrollable
events, denoted by .Σunc, that cannot be disabled. With this control mechanism,
a controller (or supervisor) can be used to restrict the system behavior only by
disabling controllable events.

Given the desired behavior of a plant . G, i.e., a specification, represented by a
formal language E, a supervisor can be designed to restrict . G’s behavior such that
the controlled system behavior is a sublanguage of E. Many efforts have been made
to synthesize an optimal nonblocking supervisor for DES. Here “optimal” means
“minimally restrictive”.

1.3 Real-Time Scheduling Theory 3

By incorporating timing features, the notion of timed DES (TDES) is proposed
in [4]. The active transition graphs (ATG), identical with DES diagrams, are
assigned with modelling enhancements like program variables, transformations,
and transition guards; the timed transition graphs (TTG) of TDES are the detailed
global transition graphs. The nature of temporal logic is addressed in the languages
describing TDES’ behavior. For instance, the concept “eventuality”, i.e., liveness in
the long run, over sets of infinite strings, is considered in the supervisory control
of TDES, which is also integrated into the TTG construction process starting from
ATG.

As a top-down modelling approach, STS are proposed in [42] for the purpose
of incorporating the hierarchical (vertical) and concurrent (horizontal) structures
of a complex DES into a compact and natural model. In STS, as a modelling tool,
statecharts [20] are used to provide a compact representation of the hierarchical
transition structure. The system transition structures on successive layers are
represented by holons (based on [23] and [19]). Thereafter, the STS framework is
extended in [29] and [30], which is well-developed to manage the state explosion
problem. The STS model and its specifications are represented by predicates. Prior
to calculating the predicate representing the optimal controlled behavior, maximally
permissive predicates are presented for disabling controllable events in the transition
structure. For controllable events, their control logics are represented by binary
decision diagrams (BDD) [1, 5] that represent a boolean function. A BDD is a
directed acyclic graph that has two terminal nodes 1 and 0 representing true and
false, respectively.

1.3 Real-Time Scheduling Theory

The seminal work of real-time scheduling was proposed by Liu and Layland in the
1970s. Some basic concepts are introduced in this section, and the preliminaries
of classical RTS scheduling algorithms and examples are detailed in Chap. 3. A
preliminary real-time task is time triggered, which satisfies the following facts
[39]:

• all the tasks are periodic;
• all the tasks are released at the beginning of periods and have deadlines equal to

their periods;
• all the tasks are independent, i.e., they have no resource or precedence relation-

ships;
• all the tasks have fixed execution time, or at least fixed upper bounds on their

computation time, which is less than or equal to their periods;
• no task may voluntarily suspend itself;
• all the tasks are fully preemptable;
• all the overheads are assumed to be zero;
• there is only one processor.

4 1 Introduction

In reality, it is possible that a task has an offset, between the system start-up and
the first release of its job. A set of real-time tasks is synchronous if they have the
same offsets. Otherwise, the tasks in this task set are asynchronous [39]. A periodic
task is associated with a regular period, which means that the time interval between
any two successive jobs is constant. Every job has a deadline that assigns the latest
time of its execution to be completed. A task is associated with a hard deadline if
every job must meet its corresponding deadline. Otherwise, it is associated with
a soft deadline. A deadline can be expressed relative to the release time (i.e.,
relative deadline) or as an absolute time (i.e., absolute deadline). Throughout
this monograph, we only consider hard deadlines, i.e., deadlines which must be
kept unconditionally. Generally, a task’s processing time is between its best-case
execution time (BCET) and worst-case execution time (WCET) [40]. Nassor and
Bres propose a task model in [33], with a deadline less than or equal to its period
but greater than the WCET. In the theoretical analysis of real-time scheduling,
researchers focus on the WCET to guarantee the feasibility of real-time scheduling.
The modelling and scheduling of RTS based on the exact execution time is studied in
[46]. A uni-processor system is nonschedulable in the case that there is an overload
[39].

Suppose that two periodic tasks . τ1 and . τ2 are running in an RTS, both are released
at the system start-up, i.e., time .t = 0, and their WCETs are equal to one and two,
respectively. In the analysis, normally, only WCETs are considered to guarantee the
feasibility. The deadline and period for processing . τ1 are four and five, respectively.
In parallel, the deadline and period for . τ2 are both four. Two possible schedulings
are visualized in Fig. 1.1. Since the tasks depicted in Fig. 1.1a have no offsets, the

Fig. 1.1 Real-time
scheduling of periodic tasks.
(a) Tasks without offsets. (b)
Task . τ1 with an offset

0 1 2 3 4 5 6 7 8 9 10

t1

task
arrival deadlineunder

execution
a period

t2

(a)

0 1 2 3 4 5 6 7 8 9 10

t1

an offset

t2

(b)

1.3 Real-Time Scheduling Theory 5

scheduling is synchronous. Both of . τ1’s relative deadline and absolute deadline are
four time units. The deadline of . τ2 is equal to its period, i.e., .D2 = T2.

Suppose that the offset of . τ1 is one time unit, i.e., it is released at time .t = 1.
A possible asynchronous scheduling is shown in Fig. 1.1b. It represents that after
the system starts up for one time unit, task . τ1 releases its first job. With its offset
assigned, the absolute deadline for the first job of . τ1 is changed from four to five
time units.

RTS may also contain tasks that do not have periodic releases or predictable
execution time, and may have large variations in the sequential release times or
execution time, including aperiodic tasks [39], sporadic tasks [39], or non-repetitive
tasks [46]. They are formally introduced in [32] and differ from periodic tasks
only in the release time. Clearly, it will be impractical to assign enough processor
capacity/resource to guarantee a feasible scheduling. Generally, the lowest priorities
are assigned to such tasks. Typical application cases are low-priority background
operations such as garbage collection. The absence of a deadline may lead to
unboundedly postponed execution.

As depicted in Fig. 1.2, which is built on Fig. 1.1a, a non-repetitive task . τ3 with
its WCET equal to two is added to the RTS. Task . τ3 is assigned with the lowest
priority, i.e., it is under execution only if the executions of the current jobs of . τ1 and
. τ2 are complete and before their next arrivals.

According to [17] and [9], preemptive and non-preemptive real-time scheduling
do not depend on any assumed scheduling algorithm. Given a set of real-time
tasks, if the execution of a job (belonging to a real-time task) is allowed to
be preempted by other (real-time tasks’) jobs before its execution finishes, the
scheduling is preemptive; otherwise, it is non-preemptive. The only assumption is
that the execution cannot be preempted by idle operations.

For example, the real-time scheduling in Fig. 1.1a is preemptive and that in
Fig. 1.1b is non-preemptive. At time .t = 1 in Fig. 1.1b, the execution of task . τ2
is preempted by task . τ1. However, as illustrated in Fig. 1.1b, no job of task . τ1 is
under execution in the time interval .[5, 6), and it is illegal to preempt the execution
of task . τ2 by idle operations at time .t = 5.

Generally, the well-known priority-based real-time scheduling algorithms can
be divided into two categories: fixed priorities (FP) and dynamic priorities (DP).
The real-time scheduling fails when no schedulable sequence can be found. The
priorities of a real-time task set are commonly used to order their accesses to the
processor and other shared resources.

Fig. 1.2 Real-time
scheduling with a
non-repetitive task

0 1 2 3 4 5 6 7 8 9 10

t1

t2

t3

6 1 Introduction

In parallel with the seminal work of real-time scheduling, the FP scheduling is
proposed in [28]. As a classical fixed priority scheduling algorithm, rate-monotonic
(RM) scheduling requires that the deadline of a real-time task should be equal to
its period. The task with a short period is assigned with the highest priority. Later
deadline monotonic (DM) scheduling is proposed in [27] to schedule RTS that may
contain periodic tasks with deadlines less than their periods. A DM policy assigns a
higher priority to the tasks with shorter deadlines.

The feasibility analysis of periodic task sets, such as earliest deadline first
(EDF) scheduling, is also proposed in [28], which is usually regarded as the
most widely-used DP real-time scheduling algorithm. Under the same simplified
assumptions used for RM scheduling, a set of periodic tasks is schedulable by the
EDF algorithm, if and only if the processor utilization is less than or equal to one (the
processor is fully occupied). In [11], the author shows that, among all preemptive
scheduling algorithms, EDF is optimal. If there exists a feasible scheduling for a
task set, then the scheduling produced by EDF is also feasible. Under the EDF
scheduling, the analysis of periodic tasks with the deadlines less than their periods is
proposed in [3].

For example, the real-time scheduling in Fig. 1.1b is EDF scheduling. At time
.t = 1, the absolute deadline of task . τ1 equals five time units and that of . τ2 is four
time units. Hence, task . τ2 is currently with a higher priority than . τ1.

Least laxity first (LLF), as another optimal scheduling algorithm, is proposed by
Mok in [32], which assigns the processor to the active task with the smallest laxity.
However, LLF has a larger overhead than EDF due to a larger number of context
switches caused by laxity changes at run time. Detailed examples can be found in
Chap. 3.

Real-time reconfiguration is of critical importance to RTS. A reconfiguration
scenario can be the addition/removal/update of the tasks at run-time in order to save
the whole system when random disturbances occur. There has been a fair amount
of significant work from academia and industry [16, 37, 40, 49, 51] for real-time
reconfiguration, which are based on the RM/EDF scheduling with preemptive/non-
preemptive schemes. In principle, two types of reconfiguration policies can be
identified:

• fixed policies: applied offline before any system’s cold start [2], and
• dynamic policies: applied at run-time [52].

As an RTS reconfiguration approach, job skipping reconfiguration [24] can be
utilized by an RTS to execute “occasionally skippable” tasks, such as video recep-
tion, telecommunications, packet communication, and aircraft control. However,
industrial production lines should avoid job skipping since it will increase the
manufacturing costs. Another approach, called the elastic scheduling model [6–
8, 31], is utilized to guarantee that no deadline is missed during a manufacturing
process in industrial applications [18].

In [6–8, 31], an elastic period task model is proposed to handle the overload
of an RTS by decreasing its processor utilization via adapting the tasks’ periods.
As illustrated in Fig. 1.3, the period of a task is assumed with a lower bound and an

1.4 Motivation and Contribution 7

Fig. 1.3 Real-time
scheduling with an elastic
period

0 1 2 3 4 5 6 7 8 9 10

t
lower
bound

upper
bound

pull

upper bound. In the case that an RTS is non-schedulable, a reconfiguration approach
is used to enlarge the periods of the tasks with elastic periods. This reconfiguration
approach deals with such tasks as springs. Hence, enlarging the periods is just like
pulling a spring. In this monograph, if necessary, we follow a similar approach to
reconfigure an RTS.

Several model checkers, such as Cheddar1 [41], Kronos [50], PRISM [25], have
been developed to model an RTS and check its schedulability or other performance
criteria. This monograph focuses on the real-time scheduling of periodic and
sporadic tasks. As Cheddar matches most closely the scheduling problems discussed
in this monograph, in what follows, we choose Cheddar as the RTS model checker
and scheduler.

1.4 Motivation and Contribution

SCT-based real-time scheduling and reconfiguration [10, 22, 34, 43–47] are a newly-
identified research topic. Based on three popular SCT modelling frameworks, TDES
[10, 22, 34, 43], DES [44], and STS [47], this monograph provides SCT-based real-
time scheduling and reconfiguration mechanisms.

1.4.1 RTS Modelling Methods

The study in the seminal work [10] proposes a TDES-based task model and an SCT-
based non-preemptive scheduling scheme. Supervisory control of TDES is able to
model and schedule two types of RTS processing:

• resource-sharing tasks, i.e., resources are available to execute multiple tasks
concurrently; or

• independent periodic tasks with their deadlines less than or equal to the corre-
sponding periods.

1 http://beru.univ-brest.fr/cheddar/.

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/

8 1 Introduction

Even though the resource-sharing tasks are not as popular as independent tasks,
the supervisory control of TDES can provide all the possible safe executions for
both in a uniformed approach. An RTS is claimed to be non-schedulable if the
supervisor is empty. Thereafter, for the independent periodic tasks, SCT-based real-
time scheduling is extended to:

• the scheduling of RTS preemptively or non-preemptively [22],
• the scheduling of RTS processing sporadic tasks [34], and
• the dynamic reconfiguration of RTS when no safe execution sequences are found

[43].

In the past two decades, fruitful works on real-time scheduling and reconfiguration
are reported, in which RTS are mainly modelled by:

• TDES [12–15, 21, 22, 34–36, 43]: The timing constraints of RTS tasks are
represented by time bounds of active events, representing task release/arrival,
starting, and finishing. As a consequence, the timing for the idle operations of
processors and for the execution of any real-time task is represented by the global
clock tick (represented by event t).

• DES [44–46]: The execution of each individual RTS task and idle operations are
represented by different events in the DES models. Hence, in the DES modelling
mechanism, the execution of different tasks will always happen asynchronously.
This model is more realistic, i.e., it can describe the sequential execution of real-
time tasks in a uni-processor properly. As a natural extension, preemptive real-
time scheduling of RTS is studied in [44–47].

• STS [47]: RTS tasks are modelled hierarchically by STS, which are built on a
DES model. The task release/arrival, starting, and finishing are on the higher
level, and the task execution is on the lower level. This modelling mechanism
provides the possibility of assigning DP to the real-time tasks under execution.

We assume that a set of n RTS tasks processed by a uni-processor RTS is represented
by a task set .S = {τ1, τ2, . . . , τi , . . . , τn}. For periodic real-time scheduling, the
hyper-period [26] of a set of periodic tasks equals the least common multiple of
their periods. For simplicity, we consider traditional RTS tasks only. As defined in
[44], let .i ∈ n := {1, 2, . . . , n}. From the perspective of each individual task . τi , in
each hyper-period, all the processor time units are partitioned into:

• busy time: the processor is occupied by other tasks, and thus . τi cannot be
executed;

• running time: . τi is in process;
• preemption time (if any): after . τi has started, its execution is interrupted by (a

subset of) other tasks; and
• free time: the execution of . τi is completed or it has not arrived yet. These

processor time units can be idle or utilized to execute other tasks.

As depicted in Fig. 1.4, such partitions of time units can be applied to the
scheduling shown in Fig. 1.1a as follows:

1.4 Motivation and Contribution 9

Fig. 1.4 Processor time units
partition

0 1 2 3 4 5 6 7 8 9 10

t1

busy time
of t1

running time of t1 and
preemption time of t2

free time
of t1 and t2

t2

• time interval .[0, 1), i.e., time .t = 0 and the following time unit, is the busy time
of task . τ1 and the running time of task . τ2;

• time interval .[1, 2) is the running time of task . τ1 and preemption time of task . τ2;
• time interval .[2, 3) is the busy time of task . τ1 and the running time of task . τ2;
• time intervals .[3, 4) and .[7, 8) are the free time of both . τ1 and . τ2;
• time intervals .[4, 6) and .[8, 10) are both the running time of task . τ2 and the busy

time of task . τ1; and
• time interval .[6, 7) is the running time of . τ1 and busy time of task . τ2.

The preemption scheduling addressed in this monograph is on two levels: from the
perspective of the processor and individual task. Generally, a processor-preemption
relation assigns the priority to tasks without considering their execution details.
Once a task is under execution, all the tasks with higher priorities can preempt its
execution. However, from the perspective of an individual real-time task, a task-
preemption relation is depicted by DES specifications directly in order to assign the
exact preemption relation at the exact relative execution time. The presented two
general conditional-preemption specifications are utilized to customize scheduling
and preemption requirements.

The research in [44] and [45] shows that, on the processor level, both preemptive
and non-preemptive priority scheduling policies may be conservative. As a solution,
a matrix-based priority-free conditionally-preemptive (PFCP, detailed in Chap. 5)
scheduling policy is developed, which generalizes the priority-based preemption,
such as:

• non-preemptive [10, 12–15, 21, 22, 35, 36, 43],
• preemptive [13, 34], and
• both non-preemptive and preemptive [44–47].

In other words, a priority-free scheduling policy can be utilized to schedule all the
periodic tasks randomly, i.e., for a real-time task, its busy time and preemption time
can be occupied by any other tasks.

On the processor level, most studies of SCT-based real-time scheduling focus on
FP or PFCP scheduling. To the best of our knowledge, the work in Chap. 7 is the first
attempt to schedule RTS with DP. This means that the preemption relation defined
in Chap. 7 is two-fold:

10 1 Introduction

• The developed scheduling framework can find the optimal behavior (all the safe
execution sequences) of an RTS by the supervisory control of STS.

• A few sequences are selected, which rank at the top according to some specified
optimality criteria. For example, such an optimality criterion could be defined
according to EDF: at any time, only the sequences executing tasks with the
shortest deadlines are retained.

A controller for each controllable event of the STS is obtained by the supervisory
control of STS, which provides the expected safe execution sequences.

For the purpose of dynamic RTS reconfiguration, multi-period periodic task
models are proposed in Chaps. 4, 6, and 7, which can be utilized to model RTS tasks
with periods varying between a lower bound and an upper bound. In the light of the
elastic period model, the main idea of a multi-period is to assign all the possible
periods between its lower bound and upper bound. For the real-time task shown in
Fig. 1.3, in the model of TDES, DES or STS, we assign four possible periods to
it: four, five, six, and seven. The default period for a task is the shortest one. In the
case that the RTS is non-schedulable, based on nonblocking supervisory control, the
multi-period is used to reconfigure the RTS automatically. Generally, a traditional
RTS task is viewed as special cases of the corresponding multi-period models. The
only difference of a task’s model before and after its reconfiguration is the upper
bound of its multi-period.

1.4.2 RTS Scheduling and Reconfiguration

For an RTS represented by TDES, DES, or STS, its optimal supervisor is syn-
thesized, which provides all the possible scheduling/reconfiguration sequences.
Any of the scheduling plans embodied in the supervisor can be utilized to sched-
ule/reconfigure the RTS. In these sequences, all the possible DP or FP sequences
are included. If the supervisor is empty, the RTS is claimed to be non-schedulable.
Otherwise, the users can choose any sequence to schedule the RTS. In particular,
as stated in Chap. 7, based on the supervisory control of STS, a few sequences are
selected, which rank at the top according to some specified (dynamic) optimality
criteria.

In this monograph, a reconfigurable real-time task . τi is assigned with a multi-
period. By modelling such RTS tasks using TDES, DES, or STS, with dynamic
reconfiguration integrated, all the safe execution sequences (possible reconfigura-
tion scenarios) are found by supervisory control.

The SCT-based reconfiguration process of RTS in this monograph is illustrated
in Fig. 1.5, which is a two-step approach. At the first step, we select the RTS
task models running in the same processor and their corresponding specifications
(denoted by “execution spec”), which are followed by calculating the synchronous
products using procedure sync (introduced in [48]); thereafter, the supervisor is
calculated by supcon (introduced in [48]). If the supervisor is empty and the

1.4 Motivation and Contribution 11

Fig. 1.5 Procedures for real-time scheduling

tasks are not running in the multi-period model (denoted by “M-period”), we will
reconfigure the tasks and repeat the scheduling process at the second step. Finally,
the users can select a safe execution sequence from the supervisor to schedule the
RTS online.

Suppose that in every scheduling plan only a subset of tasks executed by an RTS
enters the uni-processor for execution. Initially the tasks are running in the periodic
version with lower bounds. If no safe execution sequence can be found at the highest
processor utilization, SCT is utilized to provide all the possible safe execution
sequences by offline supervisory control. Hence, during the reconfiguration process,
the exact processor utilization of any task assigned with multi-period lies between
its lower and upper bounds.

By SCT, all possible safe execution sequences are found, resulting in a decrease
of processor utilization. The users should take the responsibility to provide the
tolerable lowest processor utilization. Consequently, any safe execution sequence
in the supervisor can be selected as a guide to schedule the RTS by dynamically
reconfiguring the period of a task. If the supervisor is still empty, we claim that the
system is non-schedulable.

For industrial production lines or manufacturing processes, the technique pre-
sented in this monograph reconfigures an RTS that executes a set of tasks with the

12 1 Introduction

same task scale studied in [6–8, 10, 22, 31]. We suggest that the users predefine an
acceptable processor utilization interval for every task.

For SCT, a method for speeding up the calculation is to reduce the number of
states in the plant and specification. The presented synthesis speeding up approach
can be applied to Chaps. 5 and 6. In this book, we mainly divide the calculations
into three steps. Each step considers different specifications as follows.

• Step 1: Spec 1 (S1), from the perspective of processors, PFCP specifications are
touched upon;

• Step 2: Spec 2 (S2), from the perspective of individual tasks, task-centered
conditional-preemption specifications are considered; and

• Step 3: Spec 3 (S3), other user defined specifications are taken into account.

As the commutative diagram shown in Fig. 1.6, PS, TS, and OS represent PFCP
specifications, task-centered conditional-preemption specifications, and other user
defined specifications, respectively. In Fig. 1.6, the synthesis steps represented by
thick lines can speed up the synthesis process. According to [29] and [30], the
STS framework (rooted in BDD) is well-developed to manage the state explosion
problem. Hence, the presented “speeding up” approach is not so necessary for STS-
based real-time scheduling and reconfiguration.

According to [48], the software packages2 TCT and TTCT are developed
to create DES and TDES generators, respectively. Moreover, STS can also be
synthesized in a software package STSLib3 , which utilizes BDD as the basis for
efficient computation. The procedures TCT/TTCT utilized in this monograph can be
found in [48]. All the operations and the generated files are recorded in an annotated
file MAKEIT.TXT.

S1=PS

S2

S3

Super1

Super2

Super3

sync (S1, TS)

sync (S2, OS)

supcon (Super1, TS)

supcon (Super2, OS)

Fig. 1.6 A commutative diagram

2 http://www.control.utoronto.ca/DES.
3 https://github.com/chuanma/STSLib.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib

1.5 Monograph Outline 13

1.5 Monograph Outline

The remainder of this monograph is organized as follows. Chapter 2 reports the
preliminaries of SCT and three DES modelling frameworks: DES, TDES, and STS.
In this monograph, they are all utilized to model the behavior of RTS. By SCT, their
expected safe execution sequences are synthesized with user-defined specifications
taken into account.

From the perspective of RTS scheduling, Chap. 3 reviews the real-time schedul-
ing and reconfiguration of periodic RTS. Moreover, basic concepts such as classical
DP scheduling, FP scheduling, and elastic period task models are presented. These
models and scheduling algorithms will be represented and handled by DES, TDES,
and STS in the rest of this monograph.

Chapter 4 reviews the seminal work on SCT-based real-time scheduling. There-
after, based on it to dynamically reconfigure RTS, a new formalism is presented
to assign multi-periods to periodic tasks. For a periodic task, its release/arrival,
starting, and finishing are represented by active events, and their timing constraints
are converted to the time bounds of such events. Thus, the dynamics of a real-
time task is depicted in a TTG. A multi-period task is assigned with a set of
possible periods between a minimum period and a maximum period. Initially, a
task is assigned with the shortest period, which can be viewed as a special case
of the corresponding multi-period. By implementing SCT, an RTS is dynamically
reconfigured when its initial safe execution sequence set is empty. During the
real-time scheduling/reconfiguration process, the supervisor proposes all the safe
execution sequences.

Chapter 5 points out that DES are more general for modelling RTS than TDES,
and provide the possibility of preemptive SCT-based scheduling of RTS. A DES-
based periodic real-time task modelling method is presented. The timing constraints
of RTS tasks are represented by different events. A preemption policy, namely
conditional-preemption, is presented. On the processor level, the task preemption
relations are described by preemption matrices. Thereafter, DES specifications are
designed accordingly. On the task level, the task preemption relations are depicted
by DES specifications directly. The presented preemption relation generalizes
priority-based preemption. In fact, for some real-time scheduling requirements,
priorities cannot be assigned to real-time tasks. Considering the processor behavior
related to each individual task’s execution and the user-defined specifications,
by implementing supervisory control of DES, we synthesize a supervisor which
provides all the safe real-time execution sequences. Based on this idea, by consid-
ering the exact execution time of real-time tasks, a general modular DES model
representing RTS tasks is presented in Chap. 6.

In the light of the multi-period reported in Chap. 4 and building on Chap. 5,
a DES version modular multi-period is presented in Chap. 6. For the purpose of
integrating real-time scheduling and reconfiguration into a uniformed framework,
a multi-period model is presented, which contains a set of possible periods. A task
is represented by an automaton synchronized by the required modular models, in

14 1 Introduction

which a multi-period task is assigned with a set of possible periods between a
minimum period and a maximum period. The only difference of a task’s model
before and after its reconfiguration is the upper bound of its multi-period. The DES
model depicting the RTS is synchronized by the DES representing these tasks. As a
consequence, we introduce the main contributions without distinguishing real-time
scheduling and reconfiguration.

A hierarchical RTS model is presented in Chap. 7, based on nonblocking super-
visory control of STS, where both conditionally-preemptive and DP scheduling are
addressed in the SCT-based real-time scheduling. This chapter reports on a unified
STS-based framework to model and schedule RTS by addressing PFCP and DP.
A formal constructive method is presented to model an RTS that processes multi-
period and sporadic tasks, in which a multi-period task is assigned with a set of
possible periods between a minimum period and a maximum period. The proposed
modular models are taken to be generic entities, which are utilized to model a
problem domain such as “hard real-time manufacturing and reconfigurations” and
manage its manufacturing production process.

Finally, Chap. 8 concludes the contributions of this monograph and proposes
some possible future extensions. The main differences among the three SCT
modelling frameworks are also discussed in Chap. 8. Through an RTS example, this
chapter shows that the core of all the presented modelling approaches is identical:
the real-time tasks’ behavior is represented by formal languages that are generated
by TDES, DES, or the holons in STS. Thereafter, for either real-time scheduling or
dynamic reconfiguration, SCT is utilized to find out the safe execution sequences.

References

1. Andersen, H.R.: An Introduction to Binary Decision Diagrams. Lecture Notes, IT University of
Copenhagen (1997). http://web.archive.org/web/20140222052815/http:/configit.com/configit_
wordpress/wp-content/uploads/2013/07/bdd-eap.pdf

2. Angelov, C., Sierszecki, K., Marian, N.: Design models for reusable and reconfigurable state
machines. In: International Conference on Embedded and Ubiquitous Computing, pp. 152–
163. Springer, Berlin (2005)

3. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2(4), 301–324
(1990)

4. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event systems. IEEE
Trans. Autom. Control 39(2), 329–342 (1994)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 100(8), 677–691 (1986)

6. Buttazzo, G., Abeni, L.: Adaptive workload management through elastic scheduling. Real-
Time Syst. 23, 7–24 (2002)

7. Buttazzo, G.C., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In: IEEE
Real-Time Systems Symposium, pp. 286–295 (1998)

8. Buttazzo, G.C., Lipari, G., Caccamo, M., Abeni, L.: Elastic scheduling for flexible workload
management. IEEE Trans. Comput. 51(3), 289–302 (2002)

http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf

References 15

9. Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-time systems:
a survey. IEEE Trans. Ind. Inf. 9(1), 3–15 (2013)

10. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002)

11. Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: IF IP
Congress, pp. 807–813 (1974)

12. Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant preemptive aperiodic RT scheduling by
supervisory control of TDES on multiprocessors. ACM Trans. Embed. Comput. Syst. 16(3),
1–25 (2017)

13. Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant scheduling of non-preemptive periodic tasks
using SCT of timed DES on uniprocessor systems. IFAC-PapersOnLine 50(1), 9315–9320
(2017)

14. Devaraj, R., Sarkar, A., Biswas, S.: Real-time scheduling of non-preemptive sporadic tasks
on uniprocessor systems using supervisory control of timed DES. In: American Control
Conference, pp. 3212–3217. IEEE (2017)

15. Devaraj, R., Sarkar, A., Biswas, S.: Supervisory control approach and its symbolic computation
for power-aware RT scheduling. IEEE Trans. Ind. Inf. 15(2), 787–799 (2018)

16. Gaujal, B., Navet, N.: Dynamic voltage scaling under EDF revisited. Real-Time Syst. 37(1),
77–97 (2007)

17. George, L., Voluceau, D.D., France, B.L.C.C.: Preemptive and non-preemptive real-time
uniprocessor scheduling. INRIA Res. Rep. 2966 (1996)

18. Girbea, A., Suciu, C., Nechifor, S., Sisak, F.: Design and implementation of a service-oriented
architecture for the optimization of industrial applications. IEEE Trans. Ind. Inf. 10(1), 185–
196 (2014)

19. Gou, L., Hasegawa, T., Luh, P.B., Tamura, S., Oblak, J.M.: Holonic planning and scheduling
for a robotic assembly testbed. In: International Conference on Computer Integrated Manufac-
turing and Automation Technology, pp. 142–149. IEEE (1994)

20. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

21. Janarthanan, V., Gohari, P.: Multiprocessor scheduling in supervisory control of discrete-event
systems framework. Control Intell. Syst. 35(4), 360 (2007)

22. Janarthanan, V., Gohari, P., Saffar, A.: Formalizing real-time scheduling using priority-based
supervisory control of discrete-event systems. IEEE Trans. Autom. Control 51(6), 1053–1058
(2006)

23. Koestler, A.: The Ghost in the Machine. Henry Regnery, Washington (1989)
24. Koren, G., Shasha, D.: Skip-over: algorithms and complexity for overloaded systems that allow

skips. In: IEEE Real-Time Systems Symposium, pp. 110–117 (1995)
25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time

systems. In: International Conference on Computer Aided Verification, pp. 585–591. Springer,
Berlin (2011)

26. Leung, J.Y.T., Merrill, M.L.: A note on preemptive scheduling of periodic, real-time tasks. Inf.
Process. Lett. 11(3), 115–118 (1980)

27. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2(4), 237–250 (1982)

28. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

29. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317.
Springer, Berlin (2005)

30. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans.
Autom. Control 51(5), 782–793 (2006)

31. Marinoni, M., Buttazzo, G.: Elastic DVS management in processors with discrete volt-
age/frequency modes. IEEE Trans. Ind. Inf. 3(1), 51–62 (2007)

16 1 Introduction

32. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (1983)

33. Nassor, E., Bres, G.: Hard real-time sporadic task scheduling for fixed priority schedulers. In:
International Workshop on Responsive Systems, pp. 44–47 (1991)

34. Park, S.J., Cho, K.H.: Real-time preemptive scheduling of sporadic tasks based on supervisory
control of discrete event systems. Inf. Sci. 178, 3393–3401 (2008)

35. Park, S.J., Cho, K.H.: Supervisory control for fault-tolerant scheduling of real-time multipro-
cessor systems with aperiodic tasks. Int. J. Control 82(2), 217–227 (2009)

36. Park, S.J., Yang, J.M.: Supervisory control for real-time scheduling of periodic and sporadic
tasks with resource constraints. Automatica 45(11), 2597–2604 (2009)

37. Quan, G., Hu, X.S.: Minimal energy fixed-priority scheduling for variable voltage processors.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(8), 1062–1071 (2003)

38. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25(1), 206–230 (1987)

39. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101–155 (2004)

40. Shin, Y., Choi, K.: Power conscious fixed priority scheduling for hard real-time systems. In:
Design Automation Conference, pp. 134–139. IEEE, New Orlenas (1999)

41. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling
framework. ACM SIGada Ada Lett. 4, 1–8 (2004)

42. Wang, B.: Top-down design for RW supervisory control theory. Master’s Thesis, Department
of Electrical and Computer Engineering, University of Toronto (1996)

43. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101–111
(2016)

44. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47, 1082–1098 (2017)

45. Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of
modular sporadic real-time systems. Automatica 89, 392–397 (2018)

46. Wang, X., Li, Z., Moor, T.: SCT-based priority-free conditionally-preemptive scheduling of
modular real-time systems with exact task execution time. Discrete Event Dyn. Syst. Theory
Appl. 29, 501–520 (2019)

47. Wang, X., Li, Z., Wonham, W.M.: Real-time scheduling based on nonblocking supervisory
control of state-tree structures. IEEE Trans. Autom. Control 66(9), 4230–4237 (2021)

48. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering, Springer, Berlin (2018)

49. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Annul
Symposium on Founation Computer Science, pp. 374–382 (1995)

50. Yovine, S.: Kronos: a verification tool for real-time systems. Int. J. Softw. Tools Technol.
Transf. 1(1–2), 123–133 (1997)

51. Yun, H., Kim, J.: On energy-optimal voltage scheduling for fixed-priority hard real-time
systems. ACM Trans. Embed. Comput. Syst. 2(3), 393–430 (2003)

52. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Alahmari, A.M.: R-TNCES: a novel formalism
for reconfigurable discrete event control systems. IEEE Trans. Syst. Man Cybern. Syst. 43(4),
757–772 (2013)

Chapter 2
Preliminaries of Supervisory Control
Theory

2.1 Discrete-Event Systems

In the language-based Ramdge-Wonham (R-W) framework [13, 17], discrete-event
systems (DES) are represented by automata. A finite state DES plant is a generator

. G = (Q,Σ, δ, q0,Qm),

where

• Q is the finite state set,
• . Σ is the finite event set (alphabet), partitioned into the disjoint controllable event

subset .Σcon and the uncontrollable event subset .Σunc, i.e.,

. Σ = Σcon∪̇Σunc,

• .δ : Q × Σ → Q is the partial state transition function,
• . q0 is the initial state, and
• .Qm ⊆ Q is the subset of marker states.

In accordance with [17], .Σ+ denotes the set of all finite sequences that consists of
the events in . Σ . By adjoining the empty string . ϵ, the set of finite strings over the
alphabet . Σ is written as . Σ∗, i.e.,

. Σ∗ = Σ+ ∪ {ϵ}.

The operation of catenation of strings

. cat : Σ∗ × Σ∗ → Σ∗

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2
https://doi.org/10.1007/978-3-031-41969-0_2

18 2 Preliminaries of Supervisory Control Theory

is defined as

. cat(ϵ, s) = cat(s, ϵ) = s, s ∈ Σ∗

and

. cat(s, t) = st, s, t ∈ Σ+.

Operation .cat(·, ·) is associative, i.e.,

. cat(cat(s, t), u) = cat(s, cat(t, u)), s, t, u ∈ Σ+.

Function . δ can be extended to

. δ : Q × Σ∗ → Q

by defining .δ(q, ϵ) = q and .δ(q, sσ) = δ(δ(q, s), σ), where .q ∈ Q is a state and
.s ∈ Σ∗ is a string. Write .δ(q, s)! if .δ(q, s) is defined. The length of a string .s ∈ Σ∗,
denoted by . |s|, is defined below.

. |s| =
{
0, if s = ϵ

k, if s = σ1σ2 · · · σk ∈ Σ+

For .t ∈ Σ∗, we say .s ∈ Σ∗ is a prefix of t . Write .s ≤ t , if .t = su for some
.u ∈ Σ∗. Clearly .ϵ ≤ t and .t ≤ t for all .t ∈ Σ∗. A language over . Σ is any subset
of . Σ∗, i.e., an element of the power set .Pwr(Σ∗). The closed behavior of . G is
represented by

.L(G) := {s ∈ Σ∗|δ(q0, s)!} (2.1)

and the marked behavior is represented by

.Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). (2.2)

The (prefix) closure of .Lm(G) is denoted by .Lm(G). A DES is nonblocking if
.L(G) = Lm(G). In the transition graph describing a DES, the initial state is labelled
with an entering arrow, and a marker state is represented by a double circle.

Example A DES generator .G1 = (Q1,Σ1, δ1, q0,1,Qm,1) is depicted in Fig. 2.1,
in which

• .Q1 = {0, 1},
• .Σ1 = {α, β} with .Σ1,con = {α} and .Σ1,unc = {β},
• .δ1(0, α) = 1 and .δ1(1, β) = 0,
• state 0 is the initial state, and
• state set . {0} is the marker state subset.

2.1 Discrete-Event Systems 19

Fig. 2.1 DES generator . G1

The closed behavior of . G1 is

. L(G1) = {ϵ, α, αβ, αβα, . . .} = {(αβ)∗, (αβ)∗α},

where

. (αβ)∗ = {ϵ, (αβ)1, (αβ)2, . . .},

and the marked behavior of . G1 is

. Lm(G1) = {ϵ, αβ, αβαβ, . . .} = {(αβ)∗}.

We have .L(G1) = Lm(G1) = {ϵ, α, αβ, αβα, αβαβ, . . .}, and the DES depicted in
Fig. 2.1 is nonblocking. . □

Synchronous product [17] is a standard approach to combine a finite set of DES
into a single and more complex one. Suppose that there are n languages . Li ⊆ Σ∗

i

corresponding to n DES, respectively, with

. Σ =
⋃
i∈n

Σi,n := {1, 2, . . . , n}.

The natural projection .Pi : Σ∗ → Σ∗
i is defined by

• .Pi(ϵ) = ϵ,

• .Pi(σ) =
{

ϵ, if σ /∈ Σi

σ, if σ ∈ Σi
, and

• .Pi(sσ) = Pi(s)Pi(σ), .s ∈ Σ∗, .σ ∈ Σ .

The inverse image function of . Pi is

. P −1
i : Pwr(Σ∗

i) → Pwr(Σ∗),

where .Pwr(Σ∗) denotes the power set of . Σ∗. For .H ⊆ Σ∗
i , we have

.P −1
i (H) := {s ∈ Σ∗|Pi(s) ∈ H }. (2.3)

The synchronous product of a family of languages . L1, . L2, , and . Ln, denoted
by .L1||L2|| · · · ||Ln, is defined as

20 2 Preliminaries of Supervisory Control Theory

.L1||L2|| · · · ||Ln := P −1
1 L1 ∩ P −1

2 L2 ∩ · · · ∩ P −1
n Ln. (2.4)

Example Suppose that another DES generator .G2 = (Q2,Σ2, δ2, q0,2,Qm,2) is
depicted in Fig. 2.2, in which

• .Q2 = {0, 1, 2},
• .Σ2 = {β, λ} with .Σ2,con = {λ} and .Σ2,unc = {β},
• .δ2(0, β) = 1, .δ2(1, β) = 2, and .δ(2, λ) = 0,
• state 0 is the initial state, i.e., .q0,2 = 0, and
• state set . {0} is the subset of marker states, i.e., .Qm,2 = {0}.

By computing the synchronous product of . G1 and . G2, we have the global event
set as

. Σ = Σ1 ∪ Σ2 = {α, β, λ}.

The automata representing .P −1
1 L1 and .P −1

2 L2 are depicted in Fig. 2.3, in which
the newly added events in the automata are represented by selfloops. Finally, the
synchronous product of . G1 and . G2 is

. L(G) = L(G1||G2) = P −1
1 L1 ∩ P −1

2 L2.

The DES diagram corresponding to . G is depicted in Fig. 2.4. . □

Fig. 2.2 DES generator . G2

Fig. 2.3 Two DES generators with selfloops. (a) DES representing .P −1
1 L1. (b) DES representing

.P −1
2 L2

2.1 Discrete-Event Systems 21

Fig. 2.4 Synchronous product . G = G1||G2

The DES synthesis tool TCT1 is a software package that provides several proce-
dures for DES. The synchronous product .L(G) = L(G1||G2) can be calculated in
TCT as listed below, in which events . α, . β, and . λ are represented by integers 1, 2,
and 3, respectively. The utilized procedures are introduced in [17].

. G1 = create (G1, [mark 0], [tran [0, 1, 1], [1, 2, 0]]) (2, 2)

. G2 = create (G2, [mark 0], [tran [0, 2, 1], [1, 2, 2], [2, 3, 0]]) (3, 3)

. T1 = selfloop (G1, [3]) (2, 4)

. T2 = selfloop (G2, [1]) (3, 6)

. G = meet (T1, T2) (6, 7)

TCT also provides a procedure sync to calculate the synchronous product of up
to 20 DES directly. In TCT, the synchronous product of . G1 and . G2, denoted by
TEST, is calculated below.

. TEST = sync (G1, G2) (6, 7)

Finally, the identity of the two approaches above is verified by

. true = isomorph (G, TEST; identity),

which shows that the synchronous products obtained by the two approaches given
above are identical. . □

Suppose that a DES model is nonempty. Under supervisory control, all the
uncontrollable events are automatically enabled. After adjoining a particular subset
of the controllable events to be enabled, a set of control patterns is defined as

.Φ = {φ ∈ Pwr(Σ)|φ ⊇ Σunc}. (2.5)

1 http://www.control.utoronto.ca/DES.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

22 2 Preliminaries of Supervisory Control Theory

The supervisory control for . G is any map

. V : L(G) → Φ.

DES . G under the supervision of V is written as .V/G. The closed behavior of . V/G
is defined to be .L(V/G) ⊆ L(G) described as

• the empty string .ϵ ∈ L(V/G),
• if .s ∈ L(V/G), .σ ∈ V (s), and .sσ ∈ L(G), then .sσ ∈ L(V/G), and
• no other strings belong to .L(V/G).

The marked behavior of .V/G is denoted by

.Lm(V/G) = L(V/G) ∩ Lm(G). (2.6)

The control map V is said to be nonblocking for . G if

. Lm(V/G) = L(V/G).

A language .K ⊆ Σ∗ is said to be controllable (with respect to . G) if

. KΣu ∩ L(G) ⊆ K

i.e.,

. (∀s ∈ Σ∗)(∀σ ∈ Σ)s ∈ K & σ ∈ Σunc & sσ ∈ L(G) ⇒ sσ ∈ K.

Let .K ⊆ L(G) be nonempty and closed. There exists a supervisory control V for
. G such that

. L(V/G) = K

iff K is controllable with respect to . G; this is referred to as a nonblocking
supervisory control (NSC). Generally, if marking is also considered, then we select
a sublanguage .M ⊆ Lm(G). A marking NSC (MNSC) with respect to . G exists if it
is a map .V : L(G) → Φ satisfying the behavior

.Lm(V/G) = L(V/G) ∩ M. (2.7)

Suppose that a specification language is given by .E ⊆ Σ∗. Let .C (E) be the
family of sublanguages of E that are controllable with respect to . G. .C (E) is
nonempty and is closed under arbitrary unions. Since .∅ ⊆ E, the (unique) supremal
element within .C (E), denoted by .supC (E), always exists.

2.1 Discrete-Event Systems 23

Fig. 2.5 Specification

Example For the DES . G portrayed in Fig. 2.4, we have

• .L(G) = {ϵ, .α, .αβ, .αβα, .αβαβ, .αβαβλ, .αβαβα,}, and
• .Lm(G) = Lm(G1)||Lm(G2) = {(αβ)∗}||{(ββλ)∗} = {(α(βαβαλ)∗βαβλ)∗}.
Now we assign a specification . S as shown in Fig. 2.5. It satisfies .L(S) = Lm(S) and

. Lm(S) = {(αβαβλ)∗, (αβαβλ)∗αβαβα}.

Let .E = L(S). First, we check the controllability of .E1 = {αβαβα} ⊂ E with
.Σunc = {β} as follows:
• .E1 = {ϵ, .α, .αβ, .αβα, .αβαβ, .αβαβα},
• .E1Σunc = {β, .αβ, .αββ, .αβαβ, .αβαββ, .αβαβαβ}, and
• .E1Σunc ∩ L(G) = {αβ, .αβαβ} ⊂ E1.

Let .K = E1. We say that K is controllable and there exists an NSC V such that
.L(V/G) = K . Let .M = Lm(G). We have

. Lm(V/G) = L(V/G) ∩ M = ∅.

Clearly, the MNSC with respect to K is empty.
Second, let .K = E2 = {(αβαβλ)∗αβαβα}. It is true that .K ⊂ L(G) and there

does not exist .s ∈ K such that .s ∈ Lm(G). Hence there exists an NSC V such that

. L(V/G) = K

and there exists an empty MNSC with respect to K .
At the next step, we check the controllability of .E3 = {(αβαβλ)∗}:

• .E3 = {(αβαβλ)∗} = {(αβαβλ)∗, .(αβαβλ)∗α, .(αβαβλ)∗αβ, .(αβαβλ)∗ . αβα,

.(αβαβλ)∗αβαβ},
• .E3Σunc = {(αβαβλ)∗β, .(αβαβλ)∗aβ, (αβαβλ)∗αββ, . (αβαβλ)∗αβαβ,

.(αβαβλ)∗αβαββ}, and
• .E3Σunc ∩ L(G) = {(αβαβλ)∗aβ, .(αβαβλ)∗αβαβ} ⊂ E3.

Clearly, . E3 is controllable. Let .K = E3. As depicted in Fig. 2.6, there exists a DES
namely SUPER that implements V . It is easy to check that

24 2 Preliminaries of Supervisory Control Theory

Fig. 2.6 A supervisor SUPER

. L(V/G) = K.

Let .M = E3. We conclude that .M ⊆ Lm(G) and

. Lm(V/G) = L(V/G) ∩ M

hold. We say that the supervisor illustrated in Fig. 2.6 is an MNSC. It is clear that it
is also an NSC.

By repeating the same approach, we can reach a conclusion that specification
.K = L(S) is an NSC but not an MNSC.

The operations in TCT to synthesize the optimal MNSC are listed below.

. SPEC = edit (G, [mark +[5]], [trans –[5, 3, 1]]) (6, 6)

. SUPER = supcon (G, SPEC) (5, 5)

. SUPER = condat (G, SUPER) Controllable

Clearly, as illustrated in Fig. 2.6, SUPER is the optimal MNSC. Following the
condat procedure (introduced in [17]) in TCT, we find that SUPER disables event
. α at state 4 in Fig. 2.6. . □

2.2 Timed Discrete-Event Systems

By adjoining time bounds to the R-W framework (on the transitions), the Brandin-
Wonham (B-W) framework [2] of a timed DES (TDES) is obtained. From the
perspective of TDES, a DES under the R-W framework is viewed as an (untimed)
activity transition graph (ATG) of a TDES. In other words, a TDES . G can be
modelled starting from an untimed ATG represented by a five-tuple:

. Gact = (A,Σact , δact , a0, Am)

that is essentially an untimed DES with its state set being replaced by an activity
set A. The elements of A are called “activities”, usually denoted by a. Let .N =

2.2 Timed Discrete-Event Systems 25

{0, 1, 2, . . .} and .σ ∈ Σact . Every event . σ in .Σact is equipped with a timer, defined
by a lower time bound .lσ ∈ N and an upper time bound .uσ ∈ N∪{∞}with respect to
which the timer is “tick down”. .Σact is partitioned into two subsets, which satisfies

. Σact = Σspe∪̇Σrem,

where .Σspe and .Σrem are the prospective and remote event sets with finite and
infinite upper time bounds, respectively.

By defining a timer interval to tick down event . σ , represented by . Tσ , such that
.Tσ = [0, uσ] and .Tσ = [0, lσ] for .σ in Σspe and .Σrem, respectively, a TDES state
is denoted by

. q = (a, {tσ |σ ∈ Σact })

with .tσ ∈ Tσ , which shows that a TDES state q consists of an activity a and a
tuple assigning to each event . σ in .Σact an integer in its timer interval . Tσ . Hence,
. tσ is called the timer of event . σ in state q. Thus, the TDES state set is built as the
Cartesian product of the activity set and the timer intervals of all the activity events
appeared in .Σact , i.e.,

. Q := A ×
∏

{Tσ |σ ∈ Σact }.

The initial state of a TDES is

. q0 := (a0, {tσ0|σ ∈ Σact }),

where . tσ0 equals . uσ and . lσ for a prospective and a remote state, respectively. The
marker state set is a user-defined subset

. Qm ⊆ Am ×
∏

{Tσ |σ ∈ Σact }.

The global tick event tick (t) representing “tick of the global clock” is adjoined to
.Σact to form the full alphabet denoted by

. Σ := Σact ∪̇{t}.

Thus a TDES is represented by

. G = (Q,Σ, δ, q0,Qm).

Example We consider the automaton depicted in Fig. 2.1 as an ATG

.Gact = (A,Σact , δact , a0, Am)

26 2 Preliminaries of Supervisory Control Theory

with

• .A = {0, 1},
• .Σact = {α, β} with .Σrem = {α} and .Σspe = {β},
• .δact (0, α) = 1 and .δact (1, β) = 0,
• state 0 is the initial activity, i.e., .a0 = 0, and
• state set . {0} is the marker activity set, i.e., .Am = {0}.
We assign time bounds to . α and . β to be

• .lα = 1,
• .uα = ∞,
• .lβ = 1, and
• .uβ = 2,

written as .(α, [1,∞]) and .(β, [1, 2]), respectively. Then, we have a TDES

. G = (Q,Σ, δ, q0,Qm)

where

• .Q = {0, 1}× {0, 1}× {0, 1, 2} is the Cartesian product of the activity set and the
non-negative integers (the timer intervals) to tick down events . α and . β,

• .Σ = Σact ∪̇{t} = {α, β, t},
• .q0 = (0, {1, 2}) is the initial state, and
• .Qm = {(0, {1, 2})} is a (user defined) marker state set.

We have size .|Q| = 12 and we take .(0, {1, 2}) and .{(0, {1, 2})} as the initial state
and marker state set, respectively. State .q0 = (0, {1, 2}) is the initial state of the
TDES, where state 0 is the initial activity, and .{1, 2} is the set of the user-defined
initial (timing) labels for events . α and . β, respectively. The marker state set .Qm is
singleton containing .q0 = (0, {1, 2}), in which state 0 is the unique marking activity,
and .{1, 2} is also the set of the user-defined marking (timing) labels for events . α and
. β, respectively. . □

In accordance with [17], an event .σ ∈ Σact is enabled at q if .δact (a, σ) is
defined, written as .δact (a, σ)!; it is eligible if its timer is also defined, i.e., .δ(q, σ)!,
in accordance with the following rules:

• .σ = t and .(∀τ ∈ Σspe)δact (a, τ)! ⇒ tτ > 0, or
• .σ ∈ Σspe, .δact (a, σ)!, .0 ≤ tσ ≤ uσ − lσ , or
• .σ ∈ Σrem, .δact (a, σ)!, .tσ = 0.

Formally, . δ is defined as .δ(q, σ) = q ' with

. q = (a, {tτ |τ ∈ Σact }) and q ' = (a', {t 'τ |τ ∈ Σact }),

where the entrance . q ' is defined by the following rules:

1. Let .σ = t .

2.2 Timed Discrete-Event Systems 27

In the entrance . q ' we have .a' := a, and

• if .τ ∈ Σspe, .t 'τ :=
{

uτ , if not δact (a, τ)!
tτ − 1, if δact (a, τ)! and tτ > 0

, and

• if .τ ∈ Σrem, .t 'τ :=

⎧⎪⎪⎨
⎪⎪⎩

lτ , if not δact (a, τ)!
tτ − 1, if δact (a, τ)! and tτ > 0

0, if δact (a, τ)! and tτ = 0

.

2. Let .σ ∈ Σact .
In the entrance . q ' we have .a' := δact (a, σ), and

• if .τ /= σ and .τ ∈ Σspe, .t 'τ :=
{

uτ , if not δact (a, τ)!
tτ , if δact (a, τ)! ,

• if .τ = σ and .τ ∈ Σspe, .t 'τ := uσ ,

• if .τ /= σ and .τ ∈ Σrem, .t 'τ :=
{

lτ , if not δact (a, τ)!
tτ , if δact (a, τ)! , and

• if .τ = σ and .τ ∈ Σrem, .t 'τ := lσ .

In accordance with [17], only an eligible event can actually occur. If . σ is not
enabled, it is said to be disabled; if . σ is not eligible, it is ineligible; an enabled
but ineligible event is called a pending event . A TDES should satisfy activity-
loop-free , i.e.,

. (∀q ∈ Q)(∀s ∈ Σ+
act)δ(q, s) /= q.

Example For the ATG .Gact discussed in the previous example, we have its
corresponding timed transition graph (TTG) . G depicted in Fig. 2.7, which shows
that:

• At state .(0, {1, 2}) where items 0, 1, and 2 are respectively the activity 0 in .Gact,
the lower time bound .lα = 1 for event . α, and the upper time bound .uβ = 2 for
event . β:

(0,{1,2})

(0,{0,2})

(1,{1,2}) (1,{1,1}) (1,{1,0})
t α

t

t t

β
β

Fig. 2.7 A TTG

28 2 Preliminaries of Supervisory Control Theory

– event . α is enabled but not eligible to occur since .tα = 0 is violated, i.e., it is
pending,

– event . β is disabled since .δact (0, β)! is not satisfied, and
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds.

• At state .(0, {0, 2}):
– event . α is enabled and eligible to occur since .δact (0, α)! and .tα = 0 hold,
– event . β is disabled, and
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds.

• At state .(1, {1, 2}):
– event . α is disabled,
– event . β is pending since .δact (1, β)! and .tβ = 2 violates .0 ≤ tβ ≤ uβ − lβ = 1,

and
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds.

• At state .(1, {1, 1}):
– event . α is disabled,
– event . β is enabled and eligible to occur since .δact (1, β)! and .tβ = 1 satisfies

.0 ≤ tβ ≤ uβ − lβ = 1, and
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds.

• At state .(1, {1, 0}):
– event . α is disabled,
– event . β is enabled and eligible to occur, and
– event t is disabled since .δact (0, β)! ⇒ tβ > 0 is violated.

After the occurrence of event . α at state .(0, {0, 2}), the system arrives state . (1, {1, 2})
which resets the timer for event . α to be .lα = 1. Event . β is eligible to occur at both
states .(1, {1, 1}) and .(1, {1, 0}). After the occurrence of event . β, the system returns
to the initial state with the timer for event . β defined as .uβ = 2.

By using the procedure timed_graph procedure in the TDES synthesis tool
TTCT,2 a TTG . G can be generated from the corresponding ATG .Gact, which is
shown in Fig. 2.7. . □

The closed behavior of a TDES . G is represented by language

.L(G) := {s ∈ Σ∗|δ(q0, s)!}. (2.8)

In addition, the marked behavior of . G is

.Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm}. (2.9)

2 http://www.control.utoronto.ca/DES.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

2.2 Timed Discrete-Event Systems 29

A TDES . G is nonblocking if .Lm(G) satisfies

. Lm(G) = L(G),

where .Lm(G) denotes the (prefix) closure of .Lm(G). An ATG can be converted into
a TTG by incorporating the tick (represented by event t) transition explicitly.

A subset .Σhib ⊆ Σact represents the prohibitable event set, in which each
event can be disabled by a supervisor. Furthermore, another subset .Σf or ⊆ Σact ,
namely forcible event set, is defined, which can preempt the occurrence of event
t . For example, suppose that at a state q, several forcible events and t are eligible.
By SCT, event t can be effectively erased from the current event list. There is no
particular relation postulated a priori between .Σf or and any of .Σhib, .Σrem, or .Σspe.
In particular an event in .Σrem might be both forcible and prohibitable.

In a TDES plant . G, the eligible event set .EligG(s) ⊆ Σ at a state q
corresponding to a string .s ∈ L(G) is defined by

.EligG(s) := {σ ∈ Σ |sσ ∈ L(G)}. (2.10)

For an arbitrary language .K ⊆ L(G), let .s ∈ K ,

.EligK(s) := {σ ∈ Σ |sσ ∈ K}. (2.11)

The language K is controllable w.r.t. G if for any string s in . K ,

.EligK(s) ⊇
{

EligK(s) ∩ (Σunc ∪ {t}), if EligK(s) ∩ Σf or = ∅
EligK(s) ∩ Σunc, if EligK(s) ∩ Σf or /= ∅ . (2.12)

Thus an event .σ ∈ Σ is eligible to occur w.r.t. K if . σ is eligible in . G and

• . σ is uncontrollable, or
• .σ = t and no forcible event is currently eligible in K .

Obviously, the significance of “controllable” differs from the definition in (untimed)
DES: even though event tick is controllable, it can be preempted only by a forcible
event that is eligible to occur. The set of all controllable sublanguages of K is
denoted by .C (K) that is nonempty (the empty set belongs to it) and closed under
arbitrary set unions. Hence, a unique supremal (i.e., largest) element exists, denoted
by sup.C (K).

Suppose that a specification language is represented by .E ⊆ Σ∗. Let

. K ⊆ L(G) ∩ E

be nonempty and closed. There exists a supervisory control V for . G such that

.L(V/G) = K

30 2 Preliminaries of Supervisory Control Theory

iff K is controllable with respect to . G; this is referred to as an NSC. Formally, a
supervisory control is a map

. V : L(G) → 2Σ

such that, for all .s ∈ L(G),

.V (s) ⊇
{

Σunc ∪ {{t} ∩ EligK(s)}, if V (s) ∩ EligK(s) ∩ Σf or = ∅
Σunc, if V (s) ∩ EligK(s) ∩ Σf or /= ∅ . (2.13)

The closed behavior of . G under the supervision of V , denoted by .L(V/G), is
defined as:

• .ϵ ∈ L(V/G),
• if .s ∈ L(V/G), .σ ∈ V (s), and .sσ ∈ L(G), then .sσ ∈ L(V/G), and
• no other strings belong to .L(V/G).

Generally, if marking is also considered, then we select a sublanguage .M ⊆ Lm(G).
A marking nonblocking supervisory control (MNSC) with respect to . G exists, which
is a map .V : L(G) → Φ with the behavior

.Lm(V/G) = L(V/G) ∩ M. (2.14)

Example The TTG depicted in Fig. 2.7 is nonblocking, which is considered as a
plant with a forcible event . α. A user-defined specification . S is depicted in Fig. 2.8.
Let .E = L(S). We have a TTG representing .K = L(G) ∩ E shown in Fig. 2.9.

Let .s1 = t t, .s2 = t tαt , and .s3 = t tαtt . We have

• .s1 ∈ K , and .EligG(s1) = EligK(s1) = {α},
• .s2 ∈ K , and .EligG(s2) = EligK(s2) = {β}, and
• .s3 ∈ K , and .EligG(s3) = EligK(s3) = {β}.
Strings . s1, . s2, and . s3 are controllable since Eq. (2.12) is satisfied. Furthermore, it is
easy to check that K is controllable since all the strings s in . K satisfy Eq. (2.12).
Hence K is controllable. More precisely, it is both an NSC and an MNSC.

This conclusion can also be verified by using the TTCT procedure supcon.
Considering the TTG depicted in Figs. 2.7 and 2.8 as plants and specifications,
respectively, as shown in Fig. 2.9, a TTG supervisor, denoted by SUPER, is
obtained. The operations in TTCT to synthesize the optimal MNSC are listed below:

Fig. 2.8 A TDES
specification

2.3 State-Tree Structures 31

Fig. 2.9 A TDES supervisor

.
G = acreate (G1, [mark 0], [time bounds [1, 1, inf], [2, 1, 2]], [forcible 1],

[tran [0, 1, 1], [1, 2, 0]]) (2, 2)

. G = timed_graph (G) (5, 7)

.
SPEC = create (SPEC, [mark 0], [tran [0, 0, 1], [1, 0, 2], [2, 1, 3], [3, 0, 3],

[3, 2, 0]], [forcible 1]) (4, 5)

.SUPER = supcon (G, SPEC) (6, 7) . □

2.3 State-Tree Structures

Similar to the hierarchical organizations in the real world, state-tree structures
(STS) are proposed in [14] for the purpose of incorporating the hierarchical and
concurrent structures of complex DES (or finite state machines, FSM) into a
compact and natural model. Thereafter, it is completed in [10] and [11]. STS are
viewed as hierarchical finite state machines (HFSM) [6, 7, 12]. In other words, an
STS is equally considered as a set of DES with multi-levels. In this monograph,
we introduce STS by starting from superstates as defined in statecharts [8]. A
superstate, similar to a hierarchical organization or hierarchy, is generally made of
several subordinates that may also be hierarchical organizations.

2.3.1 Superstates

A superstate, as known as the abstraction of a system or a sub-system, is an
aggregation (or abstraction) of its components [8, 10]. Let X be a finite collection
of sets that are called states of a system. Given a state .x ∈ X and a non-empty set

.Y = {x1, x2, . . . , xn} ⊊ X

32 2 Preliminaries of Supervisory Control Theory

with .x /∈ Y , i.e., Y is a proper subset of X that does not contain x. As stated below,
x is said to be a superstate in X expanded by Y if x can be obtained by one of the
two expansions.

• .OR expansion: x is the disjoint union of the states in Y , i.e.,

. x =
⋃̇

xi∈Y
xi .

In this case, x is called an .OR superstate of X and . xi is called an .OR-component
of x in X. Disjointness means that the semantics of x is the exclusive-or of . xi ,
i.e., a system at state x implies that it is at exactly one state of Y .

• .AND expansion: x is the Cartesian product of states in Y , i.e.,

. x = (x1, x2, . . . , xn).

For simplification, write

. x =
∏

xi∈Y
xi

or

. x = x1 × x2 × . . . × xn.

In this case, x is called an .AND superstate and . xi (.i ∈ [1, n] = {1, 2, . . . , n})
is called an .AND-component of .x ∈ X. The semantics of an .AND superstate x
means that a system at state x is at all the states of Y simultaneously.

If .x ∈ X is not a superstate, it is said to be a simple state, denoted by .SIM, i.e., there
does not exist a non-empty set .Y = {x1, . x2,, .xn} ⊊ X that expands x.

Formally, given a state set X, the type function

. T : X → {AND, OR, SIM}

is defined by

.T (x) :=

⎧⎪⎪⎨
⎪⎪⎩
AND, if x is an AND superstate

OR, if x is an OR superstate

SIM, otherwise

. (2.15)

Moreover, the expansion function

. E : X → 2X

is defined by

2.3 State-Tree Structures 33

Fig. 2.10 States in
statecharts

b

c

a1
a

A

a2

.E (x) :=
{

Y, if T (x) ∈ {AND, OR}
∅, if T (x) = SIM

(2.16)

with .x ∈ X, .∅ ⊆ Y ⊂ X, and .x /∈ Y , which is, for .x ∈ X with .T (x) /= SIM, there
exists a set .Y ⊂ X such that .E (x) = Y ; for .x ∈ X with .T (x) = SIM, .E (x) = ∅.

Intuitively, a simple state has no children. An .OR superstate has several children,
and the system is only allowed to stay at exactly one child at a time. An . AND
superstate also has several children, but the system must stay at all of its children
simultaneously.

Example The diagram depicted in Fig. 2.10 has a state collection . X =
{A, a, b, c, a1, a2}, in which
• state A is an .OR superstate expanded by states a, b, and c;
• state a is an .AND superstate expanded by states . a1, and . a2;
• states b and c are two simple states without children.

As presented in Fig. 2.10, a superstate is represented by a box with round corners
and a simple state is depicted by a circle. Generally, the components of a superstate
are on the adjacent lower-level. Superstate A is expanded by three states a, b, and
c, i.e., .E (A) = {a, b, c}, in which the .AND superstate a is further expanded by two
.OR superstates . a1 and . a2, i.e., .E (a) = {a1, a2}. The dashed line between the two
boxes labelled with . a1 and . a2 represents that they are the expansions of superstate
a. Based on a top-down modelling approach, the expansions of superstates are
built inside the boxes iteratively. The state set X is continually growing during the
modelling of an STS. We require that any state in X should only appear once.

Clearly, from the perspective of superstate A, the system must be at exactly one
state of a, b, or c; from the perspective of superstate a, the system must be at states
. a1 and . a2 simultaneously. Holons defined below describe the internal structures of
superstates . a1 and . a2. . □

After building the local transitions among the .OR components, holons [10, 11]
are created. Automatically, a set of superstates (or holons) structured in this way is
nested.

34 2 Preliminaries of Supervisory Control Theory

2.3.2 Holons

Both the hierarchy and horizontal transition relations of an STS are described in a
family of holons. A holon consists of an internal structure and a (possibly empty)
external structure. The internal structure of a holon that matches an .OR superstate
x is denoted by . Hx . Its internal state set . Xx

I is equal to the expansion of superstate
x. Formally, .E (x) = Xx

I is true.
The external structure of a holon is defined in the adjacent higher level to build

transitions with other states. Hierarchically, a holon H is defined as a five-tuple

. H := (X,Σ, δ,X0, Xm).

Here,

• X is the nonempty state set, structured as the disjoint union of the (possibly
empty) external state set . XE and the nonempty internal state set . XI , i.e.,

. X = XE∪̇XI .

• . Σ is the event set, structured as the disjoint union of the boundary event set . ΣB

and the internal event set . ΣI , i.e.,

. Σ = ΣB ∪̇ΣI .

• the transition structure

. δ : X × Σ → X

is a partial function. In accordance with DES and TDES, we write .δ(x, σ)! if
.δ(x, σ) is defined. . δ is the disjoint union of two transition structures, the internal
transition structure .δI : XI ×ΣI → XI and the boundary transition structure . δB

which is again the disjoint union of two transition structures: . δBI : XE × ΣB →
XI (incoming boundary transitions) and .δBO : XI × ΣB → XE (outgoing
boundary transitions).

• .X0 ⊆ XI is the initial state set, where . X0 has exactly the target states of incoming
boundary transitions if .δBI is defined; otherwise . X0 is a nonempty subset of . XI

selected for convenience.
• .Xm ⊆ XI is the terminal state set, where .Xm has exactly the source states of

the outgoing boundary transitions if .δBO is defined; otherwise .Xm is a selected
nonempty subset of . XI .

For a holon H , its event set . Σ can also be partitioned into the disjoint union of
controllable events .Σcon and uncontrollable events .Σunc, i.e.,

.Σ = Σcon∪̇Σunc.

2.3 State-Tree Structures 35

Fig. 2.11 Three superstates

x y
T

Fig. 2.12 Two DES
generators. (a) DES . Gx . (b)
DES . Gy

x0

x1

x2
a b

c

(a)

y0

y1

b b

(b)

Fig. 2.13 A set of two
holons

x0 x1 x2

a b

c

y0

y1

b b

x
T

y

A holon with an empty external structure is identical with the DES proposed in [17].
The initial (resp., terminal) states of the holons without external states are marked
by incoming (resp., outgoing) arrows. A family of holons is denoted by . H .

Example Given an HFSM . GT as the synchronous product of an HFSM x and an
FSM y, which can be viewed as three superstates structured in Fig. 2.11. State . T
is an .AND superstate and it is expanded by two superstates x and y. Suppose
that the inner behavior of superstates x and y are respectively identical with two
DES generators . Gx and . Gy , as depicted in Fig. 2.12. In Fig. 2.12a, superstate . x1
is dashed by north west lines, which represents that its inner structure can be
constructed afterwards. As a consequence, x and y are .OR superstates, and HFSM
. GT is reformed as the two holons . Hx and . Hy illustrated in Fig. 2.13. In particular,
we consider that . Gx shown in Fig. 2.12a (isomorphic with holon .Hx in Fig. 2.13)
is hierarchical. Superstate . x1 illustrated in Fig. 2.13 is represented by a square
dashed with north west lines. Note that superstate . T has internal structures. In this
monograph, as illustrated in Fig. 2.10, such a superstate is represented by a square
with round corners.

36 2 Preliminaries of Supervisory Control Theory

Fig. 2.14 Holon . Hx1

Fig. 2.15 Monolithic dynamic structure of . GT (1)

On the one hand, suppose that superstate . x1 is an .OR superstate, and its internal
behavior is depicted by holon .Hx1 as shown in Fig. 2.14. Then, by plugging . Hx1

into superstate . x1 appeared in Fig. 2.13, we obtain the monolithic dynamic structure
of . GT as illustrated in Fig. 2.15. The set of the holons describing the dynamics of
. GT is denoted by .H T = {Hx,Hy,Hx1}. Holon .Hx1 shown in Fig. 2.14 is with
internal and external structures, i.e.,

• .Xx1 is a nonempty state set structured as the disjoint union of the external state
set .Xx1

E = {x0, x2} and internal state set .Xx1
I = {0, 1, 2, 3, 4}. Formally, . Xx1 =

X
x1
E ∪̇X

x1
I = {x0, x2, 0, 1, 2, 3, 4} with .X

x1
E ∩ X

x1
I = ∅;

• .Σx1 is the event set, structured as the disjoint union of the boundary event set
.Σ

x1
B and the internal event set .Σx1

I with .Σx1
B = {a, b} and .Σx1

I = {α, β, λ}.
Formally, .Σx1 = Σ

x1
B ∪̇Σ

x1
I = {a, b, α, β, λ} with .Σ

x1
B ∩ Σ

x1
I = ∅;

• there exist an incoming boundary transition .δx1
BI (x0, a) = 0 and an outgoing

boundary transition .δ
x1
BO(4, b) = x2;

• .X0 = {0} is the initial state set;
• .Xm = {4} is the terminal state set.

2.3 State-Tree Structures 37

Fig. 2.16 Holons describing
internal behavior of
superstate . x1

Fig. 2.17 Monolithic dynamic structure of . GT (2)

On the other hand, suppose that superstate . x1 shown in Fig. 2.13 is an . AND
superstate, and its internal behavior is depicted by holons .Hx11 and .Hx12 as shown
in Fig. 2.16. Then, by plugging the holons into superstate . x1 in Fig. 2.13, we obtain
the monolithic dynamic structure of . GT as illustrated in Fig. 2.17. The set of holons
describing the dynamics of . GT is denoted by .H T = {Hx,Hy,Hx11 ,Hx12}. . □

Generally, for a holon . Hx , its external state set .Xx
E belongs to . Xy

I of holon . Hy

on the adjacent higher level. The occurrence of .σ ∈ Σx
B leads the system from . Hx

to .Hy or vice versa. We say that superstate x satisfies .x ∈ X
y
I , i.e., a lower level

holon .Hx is considered as an internal state of . Hy . We require that . Σx
I ∩ Σ

y
I = ∅

should hold. In this monograph, for a holon with a nonempty external state set, say
.Hx1 , its internal states are graphically dashed with crosshatch dots.

Example Holon .Hx1 illustrated in Fig. 2.14 is with .Xx1
E = {x0, x2}. The state set

of holon . Hx shown in Fig. 2.13 is .Hx = {x0, x1, x2}. Clearly, .Hx1 is viewed as an
internal state of . Hx . Moreover, with event sets .Σx1

B = {a, b} and . Σx
I = {a, b, c}

assigned, we have that .Σx1
E ⊂ Σx

I and .Σ
x1
I ∩ Σx

I = ∅ hold. .□

38 2 Preliminaries of Supervisory Control Theory

2.3.3 State-Trees

Both the hierarchical and horizontal transition relations in an STS are described by
a family of holons. The internal structure of a holon matches an .OR superstate x
and its expansion, and the external structure of a holon connects its internal behavior
with the exosystem (outside world) [5, 16] that is on the adjacent higher level. The
global state space of a set of holons is represented by a state-tree that is hierarchical.
Note that the holons with the same state space (and possibly different transition
relations) match the same state-tree.

Given a structured state set X, the reflexive and transitive closure of . E is written
as

. E ∗ : X → 2X.

Consequently, given a superstate x, the unfolding of .E (x) is denoted by

. E +(x) = E ∗(x) − {x}.

Recursively, a state-tree is a four-tuple

. ST = (X, x0,T ,E),

where X is a finite state set with .X = E ∗(x0) and .x0 ∈ X is the root state. . ST =
(X, x0,T ,E) is a state-tree satisfying:

1. (terminal case) .X = {x0} represents that X contains only one simple state, or
2. (recursive case) .(∀y ∈ E (x0))ST y = (E ∗(y), y,TE ∗(y), .EE ∗(y)) is also a state-

tree, where

. (∀y, y' ∈ E (x0))(y /= y' ⇒ E ∗(y) ∩ E ∗(y') = ∅)

and

.
⋃̇

y∈E (x0)
E ∗(y) = E +(x0).

Example The holons shown in Fig. 2.15 match the state-tree .ST T depicted in
Fig. 2.18. In a state-tree, the symbol . × (resp., . ∪̇) is placed between any two adjacent
.AND (resp., . OR) components. In state-tree .ST T, we have

• state collection: .XT = {T, x, y, x0, x1, x2, y0, y1, 0, 1, 2, 3, 4},
• type function: .T (T) = AND,
• type functions: .T (x) = T (y) = T (x1) = OR,
• type functions: . T (x0) = T (x2) = T (y0) = T (y1) = T (0) = T (1) =

T (2) = T (3) = T (4) = SIM, and

2.3 State-Tree Structures 39

Fig. 2.18 State-tree
matching holons in Fig. 2.15

T

x

x0 x1

0 1 2 3 4

x2

y

y0 y1

×

∪̇ ∪̇ ∪̇

∪̇ ∪̇ ∪̇ ∪̇

• expansion functions:

– .E (T) = {x, y},
– .E (x) = {x0, x1, x2},
– .E (y) = {y0, y1},
– .E (x1) = {0, 1, 2, 3, 4},
– .E (x0) = ∅,
– .E (x2) = ∅,
– .E (y0) = ∅,
– .E (y1) = ∅,
– .E (0) = ∅,
– .E (1) = ∅,
– .E (2) = ∅,
– .E (3) = ∅, and
– .E (4) = ∅.

For the state-tree .ST T depicted in Fig. 2.18, we have

• .E ∗(T) = {T, x, y, x0, x1, x2, y0, y1, 0, 1, 2, 3, 4}, and
• .E +(T) = {x, y, x0, x1, x2, y0, .y1, 0, 1, 2, 3, 4}. . □

Say that .ST y is a child-state-tree of . x0 in . ST , rooted by y. For convenience, if
.y ∈ E +(x), we call y a descendant of x and x an ancestor of y, which is denoted
by .x < y. States x and y are incomparable if x is neither the ancestor nor the
descendant of y. An .OR superstate y is .AND-adjacent to an .AND superstate x,
denoted by .x <× y, if

.x < y & T (x) = AND & [(∀z)x < z < y ⇒ T (z) = AND]. (2.17)

State z is the nearest common ancestor (NCA) of x and y if

.z < x & z < y & [¬(∃a ∈ E +(z))a < x & a < y]. (2.18)

40 2 Preliminaries of Supervisory Control Theory

x

x0 x1

0 1 2 3 4

x2∪̇ ∪̇

∪̇ ∪̇ ∪̇ ∪̇
(a)

x1

0 1 2 3 4∪̇ ∪̇ ∪̇ ∪̇
(b)

y

y0 y1∪̇
(c)

Fig. 2.19 Child-state-trees. (a) .ST x . (b) .ST x1 . (c) . ST y1

Example For the state-tree .ST T depicted in Fig. 2.18, we have .T <× x0, .T <× y1,
and the NCA of states 0 and . y1 is state . T. Moreover, as depicted in Fig. 2.19, for the
state-tree .ST T, we can obtain three child-state-trees .ST x , .ST x1 , and .ST y rooted by
states x, . x1, and y, respectively. . □

A sub-state-tree is denoted by

. subST = (Y, x0,T
',E ')

with .E ' : Y → 2Y defined for .y ∈ Y as

.

{
E '(y) = E (y), if T '(y) /= OR

∅ ⊂ E '(y) ⊆ E (y), if T '(y) = OR
. (2.19)

A well-formed state-tree is a basic-state-tree if any of its .OR superstates has
exactly one expansion (or child).

Example The state-tree illustrated in Fig. 2.20 is a sub-state-tree of .ST T depicted
in Fig. 2.18 and it is also a basic-state-tree. . □

A state-tree is well-formed if

• for any two states x and y, one of the following statements is satisfied:

– .x ≤ y or .y ≤ x, or
– . x|y, namely the NCA of incomparable states x and y is an .AND superstate, or
– .x ⊕ y, namely the NCA of incomparable states x and y is an .OR superstate;

• .(∀x, y ∈ X)T (x) = AND& y ∈ E (x) ⇒ T (x) /= SIM, i.e., .AND components
cannot be simple states; and

• all the leaf states are simple states.

2.3 State-Tree Structures 41

Fig. 2.20 A basic-state-tree
of the state-tree in Fig. 2.18

T

x

x1

1

y

y1

×

Fig. 2.21 Superstate
expansions x

x1 x2

y

· · ·

A

A

x

x1 x2

y×

∪̇
(a)

A

x

x2

y×

(b)

Fig. 2.22 Matching state-tree and a sub-state-tree. (a) The matching tree. (b) A sub-state-tree

Example The state-tree .ST T depicted in Fig. 2.18 is a well-formed state-tree.
Moreover, suppose that an .AND superstate A is expanded by two .OR superstates x
and y, i.e., .E (A) = {x, y}, and the superstate x is further expanded by two simple
states . x1 and . x2, i.e., .E (x) = {x1, x2}. The global expansion relation structured
in Fig. 2.21 can be represented by the state-tree .ST A illustrated in Fig. 2.22a.
Figure 2.22b depicts a sub-state-tree of .ST A. Neither of them is well-formed if the
child-state-tree rooted by superstate y is not well-formed. . □

In accordance with [15], the state aggregation bonded with a superstate x is
denoted by .XA (x). Formally,

.XA (x) :=
{

E (x), if T (x) = OR⋃
x<×y E (y), if T (x) = AND

. (2.20)

42 2 Preliminaries of Supervisory Control Theory

Example For the state-tree .ST T depicted in Fig. 2.18, we have four state aggrega-
tions listed below:

• .XA (T) = {x0, x1, x2, y0, y1},
• .XA (x) = {x0, x1, x2},
• .XA (y) = {y0, y1}, and
• .XA (x1) = {0, 1, 2, 3, 4}. . □
Given a proper sub-state-tree .T = (Y, x0,T ',E '), with the full state-tree in mind,
it can be equivalently represented by its leaf state set

.V (T) = {x ∈ Y |E '(x) = ∅}. (2.21)

For simplification, the corresponding key leaf state set is defined below.

. V (T) :=
{

V (T), if (�x)XA (x) ⊆ V (T)

V (T) − ⋃
(∀x∈X)XA (x)⊆V (T) XA (x), otherwise

(2.22)

It shows that the key leaf states in .V (T) only record the proper subsets of . OR
expansions. Given a state-tree and .V (T), T can be restored.

Example The key leaf state set of the basic-state-tree shown in Fig. 2.20 is denoted
by .V (T) = {y1, 1}. No matter what is the expansion of the .OR superstate y in the
sub-state-tree depicted in Fig. 2.22b, .V (ST A) = {x2} is always true. . □

2.3.4 State-Tree Structures

With holons and state-trees defined, now we are ready to present the definition of
STS formally. An STS is a six-tuple

. G = (ST ,H ,Σ,Δ,ST0,STm),

where

• . ST is a state-tree,
• . H is the set of holons,
• . Σ is the union of events appearing in . H ,
• . Δ is the global forward transition function .S T (ST) × Σ → S T (ST), where

.S T (ST) is the set of all sub-state-trees,
• .ST0 is the initial state-tree, and
• .STm is the marker state-tree set.

2.3 State-Tree Structures 43

Example The holons shown in Fig. 2.15 and the matching state-tree .ST T depicted
in Fig. 2.18 together form an STS with .V (ST T

0) = V (ST T
m) = {x0, y0}. . □

An STS . G is well-formed if it satisfies:

• . ST is a well-formed state-tree;
• the states in any holon . Hx are boundary consistency, i.e., state .y ∈ Xx

I satisfies
.y ∈ E (x) and .y ∈ Xx

E satisfies .(∃z, ∃w ∈ X)z <× w & x, y ∈ E (w); and
• the states in any holon are local coupling, i.e., for holons .Hx,Hy ∈ H , they

satisfy

. Σx
I ∩ Σ

y
I /= ∅ ⇒ (∃z)z <× x & z <× y.

The boundary consistency requires that the boundary transitions in a holon should
not skip holon levels. The local coupling requires that only the holons that have
an .AND superstate as the NCA of their matching superstates should share events.
Hence, this NCA superstate is viewed as the synchronous product of these holons.
Unless otherwise stated, in this monograph, the STS under analysis are well-formed.

The synchronous product principle (the shared event . σ occurring in local
coupling holons simultaneously) [17] is integrated in the largest eligible state-tree
and largest next state-tree, denoted by

. EligG : Σ → S T (ST)

and

. NextG : Σ → S T (ST),

respectively. The key leaf states of .EligG(σ) and .NextG(σ) are the exits and
entrances of event . σ in all the holons where it appears, respectively. As stated
before, the forward transitions are defined as

. Δ : S T (ST) × Σ → S T (ST).

Given any sub-state-tree .T ∈ S T (ST), .T ' = Δ(T , σ) is obtained via replacing the
source states of . σ in .T ∧ EligG by the corresponding target states simultaneously.
The backward transitions are defined as

. Γ : S T (ST) × Σ → S T (ST)

in a dual route.

Example For all the events . σ appearing in the holons shown in Fig. 2.15, . EligG(σ)

and .NextG(σ) are depicted in Figs. 2.23 and 2.24, respectively. Moreover, all the
corresponding key leaf state sets are listed in Table 2.1.

44 2 Preliminaries of Supervisory Control Theory

Fig. 2.23 .EligG(σ) for .σ ∈ Σ . (a) .EligG(a). (b) .EligG(b). (c) .EligG(c). (d) .EligG(α). (e)
.EligG(β). (f) . EligG(λ)

We have .ST0 ∈ S T (ST) and .a ∈ Σ . Moreover, we obtain

. ST0 ∧ EligG(a) /= ∅

and

.Δ(ST0, a) = ST1

2.3 State-Tree Structures 45

Fig. 2.24 .NextG(σ) for .σ ∈ Σ . (a) .NextG(a). (b) .NextG(b). (c) .NextG(c). (d) .NextG(α). (e)
.NextG(β). (f) . NextG(λ)

Table 2.1 .EligG(σ) and
. NextG(σ)

Event .σ .EligG(σ) . NextG(σ)

a .{x0} . {0}
b .{4} . {x2}
c .{x2} . {x0}
.α .{0, 2} . {1, 3}
.β .{2, 3} . {4}
.λ .{0, 1} .{2, 4}

46 2 Preliminaries of Supervisory Control Theory

Table 2.2 Enabled events at
each sub-state-tree in . ST

Sub-state-tree Key leaf states Enabled event set

.ST0 .{x0} . {a}

.ST1 .{0} . {α, λ}

.ST2 .{1} . {λ}

.ST3 .{2} . {α, β}

.ST4 .{3} . {β}

.ST5 .{4} . {b}

.ST6 .{x2} . {c}

Fig. 2.25 Initial state-tree T

x

x0

y

y0

×

that is .NextG(a) shown in Fig. 2.24a. For all the other events .σ ∈ Σ −{a}, we have

. T ∧ EligG(σ) = ∅

and

. Δ(ST0, σ) = ∅.

We say that at state-tree . ST0, event a is enabled. By repeating this process iteratively,
we obtain all the individual sub-state-trees in . ST and the corresponding enabled
event sets, which are listed in Table 2.2. The computation of the total function . Γ is
started from .STm in an opposite way. The details are omitted. . □

Given an HFSM, there always exists an equivalent single level DES representing
its global behavior [1, 10, 11]. Similarly, given an STS, the set of its basic-state-
trees is denoted by .B(ST), in which an element T corresponds to a state in a single
level DES representing its global behavior. The presented transition relations . Δ or . Γ
maps an element .T ∈ B(ST) to another. In this monograph, these basic-state-trees
are symbolically encoded into predicates that are represented by binary decision
diagrams (BDD).

Example For the STS shown in Figs. 2.15 and 2.18, its initial state-tree being a
basic-state-tree is depicted in Fig. 2.25. Suppose that there exists an equivalent
single level DES with its initial state representing this initial state-tree. Clearly, such
a DES can be built by tracking the transition relations in the STS. .□

2.3 State-Tree Structures 47

2.3.5 Predicates

Given an STS . G, the components of .B(ST) are symbolically encoded into pred-
icates that are represented by BDD. Intuitively, a predicate P (or a characteristic
function) is defined over .B(ST), i.e.,

. P : B(ST) → {0, 1}.

The truth-value 1 (resp., 0) represents logical true (resp., false). The predicate
containing all the basic-state-trees is denoted by a predicate

. PST := {b ∈ B(ST)|P(b) = 1}.

Formally,

. P(b) = 1

is represented by

. b |= P.

Propositional logic operators are defined by:

• .(¬P)(b) = 1 iff .P(b) = 0,
• .(P1 ∧ P2)(b) = 1 iff .P1(b) = 1 and .P2(b) = 1, and
• .(P1 ∨ P2)(b) = 1 iff .P1(b) = 1 or .P2(b) = 1.

Example The initial state-tree .ST0 and the marker state-tree set .STm are represented
by two predicates

. P0 := {b ∈ B(ST0)|P(b) = 1}

and

. Pm := {b ∈ B(STm)|P(b) = 1},

respectively. The predicate containing all the basic-state-trees is denoted by a
predicate

.PST := {b|b ∈ B(ST)|P(b) = 1}. . □
The set of all predicates on .B(ST) is defined by .Pred(ST). The partial order

for subset containment is defined by .P1 ≼ P2 iff .P1 ∧ P2 = P1. It is clear that . P1
is stronger than . P2 and .(P red(ST),≼) is a complete lattice. The top and bottom
elements of a predicate are denoted as true (. ⏉) and false (. ⊥), respectively.

48 2 Preliminaries of Supervisory Control Theory

Fig. 2.26 Predicate
containment

P0 Pm
PST

Example By definition, we have .P0 ≼ PST and .Pm ≼ PST . As shown in Fig. 2.26,
.PST is the weakest predicate which is identified by all the basic-state-trees in
.B(ST). . □

Let .P ∈ Pred(ST). According to [10] and [11], the reachability predicate
.R(G, P) is true for a basic-state-tree if it can be reached in . G, from some . b0 |=
P ∧ P0, via a sequence of basic-state-trees satisfying P . Formally,

• .P ∧ P0 = ⊥ ⇒ R(G, P) = ⊥,
• .(b0 |= P ∧ P0) ⇒ (b0 |= R(G, P)),
• . b |= R(G, P) & σ ∈ Σ & Δ(b, σ) /= ∅ & Δ(b, σ) |= P ⇒ Δ(b, σ) |=

R(G, P), and
• no other basic-state-trees satisfy .R(G, P).

Dually, the coreachability predicate .CR(G, P) is true for a basic-state-tree if it can
reach some .bm |= P ∧ Pm in . G by a sequence of basic-state-trees satisfying P .
Formally,

• .P ∧ Pm = ⊥ ⇒ CR(G, P) = ⊥,
• .(bm |= P ∧ Pm) ⇒ (bm |= CR(G, P)),
• . b |= CR(G, P) & σ ∈ Σ & Γ (b, σ) /= ∅ & Γ (b, σ) |= P ⇒ Γ (b, σ) |=

CR(G, P), and
• no other basic-state-trees satisfy .CR(G, P).

Given a predicate P , a predicate transformer .[P] in . G is defined by

1. .b |= P ⇒ b |= [P],
2. .b |= P & σ ∈ Σu ⇒ Γ (b, σ) |= [P], and
3. no other basic-state-trees satisfy . [P].

2.3.6 State Feedback Control

Nonblocking supervisory control of STS utilizes predicates to record the system’s
behavior. The weakest liberal precondition .Mσ (P) is defined in [10] and [11] as

.b |= Mσ (P)

2.3 State-Tree Structures 49

iff

. Δ(b, σ) |= P.

Let . G be an STS, .T ∈ B(ST), and .σ ∈ Σ . In STS [10, 11], according to state
feedback control (SFBC), the act of preventing the occurrence of an uncontrollable
event . σ at T is denoted by .(T , σ), where sub-state-tree T is considered as an illegal
sub-state-tree. By integrating all such sub-state-trees with user predefined other
illegal sub-state-trees, an illegal predicate is obtained.

Given an illegal predicate P , a predicate transformer . [·] is utilized to find all the
basic-state-trees that can reach P through uncontrollable paths. As a consequence,
the family of weakly controllable subpredicates of P is denoted by

.supC P(¬P) = ¬[P]. (2.23)

Given an illegal predicate P , by SFBC, the supremal element of weakly
controllable and coreachable behavior, i.e., optimal behavior of . G, is denoted
by a nonblocking subpredicate .supC 2P(¬P). It is synthesized iteratively by the
following steps:

1. Let .K0 := ¬P ,
2. compute .Ki+1 := ¬P ∧ CR(G,¬[Ki]), and
3. If .Ki+1 = Ki , then .supC 2P(¬P) = Ki ; otherwise, go back to step 2.

The corresponding calculation is detailed in [10] and [11], based on which the
control function . fσ for each controllable event .σ ∈ Σc is obtained. Function . fσ is
represented by a predicate, which contains all the basic-state-trees where event . σ is
allowed to occur. Let

. f : B(ST) → Π

denote the SFBC for . G, where

.Π := {Σ ' ⊆ Σ |Σu ⊆ Σ '}. (2.24)

Hence, the closed-loop transition function is represented by

. Δf (b, σ) = Δ(b, σ)

iff

. fσ (b) = 1.

Let

.P ∈ Pred(ST)

50 2 Preliminaries of Supervisory Control Theory

and .P ∧ P0 /= ⊥. The STS under control is

. Gf = (ST ,H ,Σ,Δf , P
f

0 , P
f
m)

with

. P
f

0 = P ∧ P0

and

. P
f
m = P ∧ Pm.

As shown in Fig. 2.27, given a specification predicate P , the optimal behavior of
STS . G is represented by .supC 2P(P) that is viewed as an agent .Gtracker . For the
current status (a basic-state-tree b) of . G, a set of decision makers . fσi

is provided
by .Gtracker with .σi ∈ Σcon and .i = 1, 2, . . . , n, which makes the decisions by
applying b as the argument. If

. fσi
(b) = 1,

then . σi is allowed to occur; otherwise, it is disabled.

Example As stated in [10] and [11], let us take the transfer line shown in Fig. 2.28
as an example. Suppose that the capacities of the buffers . B1 and . B2 are both one.
A test unit is represented by TU. As depicted in Fig. 2.29, the system behavior of
machines . M1 and . M2 are described by two holons. The corresponding state-tree is
shown in Fig. 2.30. The events denoted by odd and even numbers are controllable
and uncontrollable events, respectively. For nonblocking supervisory control, the
controllers with positive BDD node sizes are shown in Fig. 2.31 in which only the
BDD true parts are depicted to clearly show the control logic.

The control patterns for the controllable events are:

• event 1 is enabled at: {. B10, . B20, .M10, .TU0},

Fig. 2.27 STS control
diagram

G

Gtracker

fσ2fσ1
. . . fσn

Σ

b

Enabled events

s

2.3 State-Tree Structures 51

M1 B1 M2 B2 TU
1 2 3 4 5 6

8

Fig. 2.28 Transfer line

0

1

0

1

0

1

0

1

0

1

1 2 3 4 5 6,8 2,8 3 4 5

M1 M2 TU B1 B2
TL

Fig. 2.29 Holons of transfer line

TL

M1

M10 M11

M2

M20 M21

TU

TU0 TU1

B1

B10 B11

B2

B20 B21

× × × ×

∪̇ ∪̇ ∪̇ ∪̇ ∪̇

Fig. 2.30 State-tree of transfer line

• event 3 is enabled at: {. B11}, and
• event 5 is enabled at: {. B21}.

The control patterns show that:

• event 1 is allowed to occur only when machine . M2 is idle,
• event 3 is allowed to occur only when buffer . B1 is occupied, and
• event 5 is allowed to occur only when buffer . B2 is occupied. . □

2.3.7 Compact Representation of Predicates

In the STS framework, the predicates of an STS are encoded into BDD. Given
an STS, its BDD variables are ordered in a top-down approach according to the
subordination relation among STS nests. According to STS [10], we require that:

• the encoding for each transition labelled event . σ should be linear in the number
of transitions, and

52 2 Preliminaries of Supervisory Control Theory

Fig. 2.31 Control functions
for transfer line. (a) . f1. (b)
. f3. (c) . f5

B2

M2

TU

1

B1

(a)

B1

1

(b)

B2

1

(c)

Table 2.3 BDD vectors
encoding states

State BDD vector

.M10 . < M1 : 0 >

.M11 . < M1 : 1 >

.M20 . < M2 : 0 >

.M21 . < M2 : 1 >

.T U0 . < T U : 0 >

.T U1 . < T U : 1 >

.B10 . < B1 : 0 >

.B11 . < B1 : 1 >

.B20 . < B2 : 0 >

.B21 . < B2 : 1 >

• in the case that holon . Hy is subordinate to holon . Hx , the BDD variables of . Hx

should precede those of holon . Hy .

The computational complexity of supervisor synthesis is polynomial in the number
of BDD nodes in use. Usually, it is much smaller than the states of an STS.

As proposed in [3] and [4], the states in the state set . Xx of a holon .Hx are
encoded by BDD nodes (variables). Consider a state set .Xx with a state space
.|Xx | = N . Each element y in . Xx is encoded as a vector of n binary values, where
.n = ⎾log2 N⏋. The encoding process is denoted by a function . f : Xx → {0, 1}n
that maps each element y in . Xx to a distinct n-bit binary vector. According to [10],
the n variables are denoted by .x_i with .0 ≤ i < n.

Example As shown in Fig. 2.29, there are two states in holon .HM1, i.e., . XM1 =
{M10,M11}. As a consequence, one BDD node M1 is required. For example, let
.M1 : 0 and .M1 : 1 denote that M1 is encoded as 0 and 1, respectively. The encoding
pairs for the states in the transfer line example are shown in Table 2.3.

The control functions of events 1, 3, and 5 are denoted by . f1, . f3, and . f5,
respectively. The truth table for these control functions is obtained, as shown in
Table 2.4, where “. ∗” denotes a variable that can be assigned 0 or 1. .□

References 53

Table 2.4 Truth table of
control functions

Control functions M1 M2 T U B1 B2

.f1 .∗ 1 1 1 1

.f3 .∗ .∗ .∗ 1 . ∗

.f5 .∗ .∗ .∗ .∗ 1

2.4 Real-Time Scheduling/Reconfiguration Based on
Supervisory Control

In Chap. 4, supervisory control of TDES is implemented in the non-preemptive
scheduling of RTS processing two types of tasks: resource-sharing tasks or indepen-
dent tasks. The TDES framework is utilized to model each RTS task as a monolithic
TTG. For the purpose of reconfiguring independent tasks, a multi-period periodic
task model is proposed in Chap. 4, which provides a set of possible periods varying
between a lower bound and an upper bound. The default period for an independent
task is the shortest one. In the case that an RTS is non-schedulable, based on NSC,
the multi-period is used to reconfigure the RTS automatically. A uni-processor RTS’
execution model is the synchronous product of all the tasks running in it. For both
scheduling and reconfiguration, supervisory control of TDES is utilized to find all
the safe execution sequences.

Thereafter, RTS processing independent tasks are modelled by DES frameworks
monolithically (Chap. 5) and modularly (Chap. 6). The latter also provides the
DES version multi-periods. Priorities in real-time scheduling are generalized as
priority-free conditional-preemption (PFCP, presented in Chap. 5) relations. Based
on SCT, for real-time scheduling and reconfiguration, all the possible safe execution
sequences are found.

Finally, in Chap. 7, an RTS processing independent tasks is modelled in an
STS hierarchically. By assigning specifications for the STS model, the PFCP and
a classical dynamic scheduling earliest-deadline first (EDF) scheme, proposed in
[9], are addressed. Finally, the RTS can be scheduled or reconfigured according
to the computed controllers for the controllable events. In particular, with the
dynamic specifications assigned, a few sequences are selected, which rank at the
top according to some specified (dynamic) optimality criteria.

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines. In:
International Colloquium on Automata, Languages, and Programming, pp. 169–178. Springer,
Berlin (1999)

2. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event systems. IEEE
Trans. Autom. Control 39(2), 329–342 (1994)

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 100(8), 677–691 (1986)

54 2 Preliminaries of Supervisory Control Theory

4. Chao, W., Gan, Y., Wang, Z., Wonham, W.M.: Modular supervisory control and coordination
of state tree structures. Int. J. Control 86(1), 9–21 (2013)

5. Francis, B.A., Wonham, W.M.: The internal model principle of control theory. Automatica
12(5), 457–465 (1976)

6. Gaudin, B., Marchand, H.: Supervisory control of product and hierarchical discrete event
systems. Eur. J. Control 10(2), 131–145 (2004)

7. Gaudin, B., Marchand, H.: Safety control of hierarchical synchronous discrete event systems:
a state-based approach. In: IEEE International Symposium on, Mediterrean Conference on
Control and Automation Intelligent Control, pp. 889–895. IEEE (2005)

8. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

9. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

10. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317.
Springer, Berlin (2005)

11. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans.
Autom. Control 51(5), 782–793 (2006)

12. Marchand, H., Gaudin, B.: Supervisory control problems of hierarchical finite state machines.
In: IEEE Conference on Decision and Control, vol. 2, pp. 1199–1204. IEEE (2002)

13. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25(1), 206–230 (1987)

14. Wang, B.: Top-down design for RW supervisory control theory. Master’s Thesis, Department
of Electrical and Computer Engineering, University of Toronto (1996)

15. Wang, X., Moor, T., Li, Z.: Top-down nested supervisory control of state-tree structures based
on state aggregations. In: IFAC-PapersOnLine, vol. 53, pp. 11175–11180. Elsevier, Amsterdam
(2020)

16. Wonham, W.M.: Towards an abstract internal model principle. IEEE Trans. Syst. Man Cybern.
SMC-6(11), 735–740 (1976)

17. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering. Springer, Berlin (2018)

Chapter 3
Real-Time Scheduling and
Reconfiguration

3.1 Real-Time Systems

In this monograph, a real-time system (RTS) is denoted by . S. We assume that a
set of n RTS tasks processed by a uni-processor RTS is represented by a task set
.S = {τ1, τ2, . . . , τi , . . . , τn}. In accordance with [3], we refer to task instantiations
as task release and to the respective instances as a job. Let .i ∈ n := {1, 2, . . . , n}.
Each task . τi is of a specific type that determines the mechanism of its release. On the
basis of [23–26], this monograph addresses the task types non-repetitive, sporadic,
and periodic. Depending on its type, a task refers to a parameter tuple that specifies
the quantitative timing of its instantiation, the processing time required for each
job, and a deadline that the job completion must satisfy. We first go through the
parameters relevant to all types under consideration and then turn our attention to
the individual types.

First-release time . Ri . By the optional parameter .Ri ∈ N, we specify the absolute
clock time at which the task . τi is first released. When not explicitly given, the first
release can occur at any time.

Execution time . Ci . Once the task . τi is released, the processing unit needs to be
allocated to the respective job for a particular number time units in order for the job
to be completed. As stated in Chap. 6, generally, the exact execution time of an RTS
task is considered unknown but is guaranteed to be within the non-empty integer
interval

. Ci = [Cl
i , C

u
i] ∈ N × N,

where . Cl
i and . Cu

i are referred to as the best-case execution time (BCET) and the
worst-case execution time (WCET), respectively. Clearly, this includes the special
case of .Cl

i = Cu
i where the exact amount of time units is a known constant. In

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3
https://doi.org/10.1007/978-3-031-41969-0_3

56 3 Real-Time Scheduling and Reconfiguration

this case, in Chaps. 4, 5, and 7, the execution time of task . τi is denoted by . Ci , i.e.,
.Ci = Cl

i = Cu
i .

Relative deadline . Di . Referring to the absolute clock time at which a task . τi is
instantiated as the release time, the relative deadline .Di ∈ N is given as the
maximum number of time units that may elapse from the release time until the
respective job is completed. Throughout this monograph, we only consider hard
deadlines, i.e., deadlines which must be kept unconditionally.

Period . Ti . The basic case for a periodic task . τi is parameterized by a strict period
(the time interval between two successive arrivals) of .Ti ∈ N time units between
any two successive releases. This is addressed by the classical real-time scheduling
theory with deadline .Di = Ti (see [15]) and deadlines .Di ≤ Ti (see [18]). In
Chaps. 4 and 7, considering the dynamic reconfiguration in the modelling phase, we
use the generalization of the so called multi-period periodic tasks, i.e., the period is
specified by a non-empty interval

. Ti = [T l
i , T u

i] ∈ N × N,

where the number of time units that elapses between any two successive releases
lies within . Ti .

Periodic tasks. Given any periodic task . τi , its deadline .Di ≤ T l
i guarantees job

completion before the next release. We consider multi-period periodic tasks as a
general case. For deadline .Di ∈ (T l

i , T u
i], we impose the additional assumption that

the task can arrive only when the previously instantiated job is completed. Deadlines
.Di > T u

i are of no practical value and, hence, are not considered. Obviously, as
studied in Chap. 4, our discussion includes strict periods by .Ti = T l

i = T u
i as a

special case and, hence, we from now on use the terminology periodic task as a
concise synonym for multi-period periodic task and we refer to . Ti as its period.

Sporadic tasks. A sporadic task . τi can be released at any time, provided that the
job from the previous instantiation is completed, i.e., we do not consider queueing.
Typical use cases are low-priority background operations like garbage collection.
Parameters for this type are given as either

. τi = (Ci , Di)

or

. τi = (Ci),

i.e., the deadline is optional. In contrast to non-repetitive tasks, we here implicitly
refer to the first-release time .Ri = 0. Again, the absence of a deadline may lead
to an unboundedly postponed execution. Based on supervisory control theory, the
presented scheduling policies ensure eventual job completion.

3.1 Real-Time Systems 57

Non-repetitive tasks. Similar to sporadic tasks, a non-repetitive task can be released
at any time. A non-repetitive task arrives only once, and hence it is viewed as a
special case of a sporadic task.

We conclude by a summary of the task configurations that are addressed
throughout this monograph:

• sporadic or non-repetitive task without a deadline: .τi = (Ci),
• sporadic or non-repetitive task with a deadline: .τi = (Ci , Di), and
• periodic tasks with a deadline: .τi = (Ri,Ci , Di,Ti).

Notice that in the case of .Ci = Cl
i = Cu

i or .Ti = T l
i = T u

i , . Ci and . Ti are
replaced by . Ci and . Ti , respectively. Formally, a periodic task . τi consists of an
infinite sequence of jobs

. Ji,j = (ri,j , Ci, di,j , pi,j)

repeated periodically. The subscript “. i, j” of .Ji,j with .i, j ∈ N represents the j -th
execution of task . τi . For each j , .Ji,j requests the processor at absolute clock time
. ri,j . The absolute deadline . di,j denotes the global clock time at which the execution
of .Ji,j must be completed. Similarly, we define the absolute release time (resp.,
period) . ri,j (resp., . pi,j) to mean the global clock time at which . τi must be released
(resp., start the next period). The execution of .Ji,j takes . Ci time units, which must
be completed no later than . di,j . The absolute deadline .di,j occurs no later than the
absolute period . pi,j .

In order to introduce the classical real-time scheduling and reconfiguration
policies, the examples in this chapter are in the case of .Ci = Cl

i = Cu
i and

.Ti = T l
i = T u

i . Hence, such a periodic task with deadline is denoted by

. τi = (Ri, Ci,Di, Ti).

Suppose that an RTS . S is a uni-processor system. The processor utilization of a
periodic task . τi is the fraction of processor time spent on its execution [15], i.e.,

.Ui = Ci

Ti

. (3.1)

The total processor utilization of . S is

.US =
n∑

i=1

Ui. (3.2)

A processor is non-schedulable in the case that there is overload [20], i.e., . US >

1.

Example Suppose that a uni-processor RTS . S executes four synchronous periodic
tasks . τ1, . τ2, . τ3, and . τ4. Their parameters are shown in Table 3.1. .□

58 3 Real-Time Scheduling and Reconfiguration

In past decades, most of the existing real-time scheduling algorithms are based
on dynamic or fixed priorities [2, 7–9, 11–15, 17, 20, 27]. Leaving out the assigned
scheduling policies, when real-time tasks are under execution, the processing of
each individual job (belonging to a real-time task) falls into the following two
categories:

• preemptive: a running job can be interrupted by the execution of other jobs, and
• non-preemptive: the execution of a running job cannot be interrupted.

3.2 Fixed Priority Scheduling

The studies in both [9] and [15] provide a sufficient utilization-based condition for
feasibility scheduling of RTS when a set of tasks is assigned priorities according to a
rate-monotonic (RM) policy. The work in [12] considers deadline monotonic (DM)
scheduling, a fixed-priority scheduling of sets of tasks, which may have deadlines
less than their periods. A DM policy assigns higher priorities to the tasks with
shorter deadlines.

We choose a classical fixed priority scheduling algorithm, RM scheduling, to
show the main idea of the scheduling policy. RM scheduling requires that the
deadline of any task should be equal to its period. By RM, the task with a short
period is assigned with the highest priority. Hence, the priorities of the tasks shown
in Table 3.1 are provided in Table 3.2, in which the highest priority is labelled by 1
and the lowest priority is labelled by 4.

Example For the example shown in Table 3.1, by revising the deadlines to be equal
to the periods, a preemptive uni-processor real-time RM scheduling is shown in the
Gantt chart depicted in Fig. 3.1 (simulated by scheduling simulator Cheddar1 [22]).
According to the assigned priority, we have:

• in time interval .[0, 15), the tasks are processed in the order of . τ4, . τ1, . τ2, and . τ3;

Table 3.1 Parameters of four
synchronous tasks

Task .Ri .Ci .Di . Ti

.τ1 0 4 12 20

.τ2 0 5 16 25

.τ3 0 5 18 30

.τ4 0 4 9 15

Table 3.2 Priorities of tasks Task Priority

.τ1 2

.τ2 3

.τ3 4

.τ4 1

1 http://beru.univ-brest.fr/cheddar/.

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/

3.2 Fixed Priority Scheduling 59

F
ig
. 3

.1

R
M
 s
ch
ed
ul
in
g
of
 a
 s
yn
ch
ro
no
us
 ta
sk
 s
et
 w
ith

 p
re
em

pt
iv
e
sc
he
m
e

60 3 Real-Time Scheduling and Reconfiguration

• at time .t = 15, the second job of task . τ4, denoted by . J4,2, arrives, which is
assigned with the highest priority;

• in time interval .[15, 19), the execution of the first job of task . τ3, denoted by . J3,1,
is preempted by job . J4,2;

• at time .t = 19, the execution of .J4,2 completes and its next job .J4,3 has not
arrived. Now task . τ3 has the highest priority among all the available tasks. It
enters the processor for execution again;

• in time interval .[20, 24), job .J3,1 is preempted by . J1,2;
• in time interval .[25, 30), job .J3,1 is preempted by . J2,2;
• in time interval .[30, 34), job .J3,1 is preempted by . J4,3;
• in time intervals .[19, 20), .[24, 25), and .[34, 35), job .J3,1 is under execution;
• at time .t = 35, the execution of job .J3,1 completes, which misses its deadline

.d3,1 = 30.

We say that the task set shown in Table 3.1 is non-schedulable, in which the
execution of the job missing its deadline is coloured brown. The Gantt charts in
this monograph describing RTS scheduling follow the display interface of Cheddar.

In comparison, as depicted in Fig. 3.2, under the RM scheduling with non-
preemptive scheme, the tasks shown in Table 3.1 are schedulable. For example, at
time .t = 15, even though task . τ4 has a higher priority than task . τ3, the execution of
the latter is not preempted. Then the execution of task . τ3 completes at time .t = 18,
which does not miss its deadline.

According to the work in [2], if a synchronous RTS is feasible, then, any derived
asynchronous RTS is feasible too. In this case, for any asynchronous system, we
can study its schedulability by analyzing the schedulability of its synchronous
counterpart. However, it is not true on the other way round. As shown in Figs. 3.3
and 3.4, if we reset .R4 = 6, by RM scheduling, the real-time tasks are schedulable
with both preemptive and non-preemptive schemes. . □

3.3 Dynamic Priority Scheduling

In [8], the author shows that, among all preemptive scheduling algorithms, the
earliest deadline first (EDF) scheduling policy is optimal. If there exists a feasible
scheduling for a task set, then the scheduling produced by EDF is also feasible.
Under EDF scheduling, the analysis of periodic tasks with deadlines less than
periods is proposed in [2]. Least laxity first (LLF), as another optimal algorithm,
is proposed by Mok in [17], which assigns the processor to the active tasks with
the smallest laxity. However, LLF has a larger overhead than EDF due to a larger
number of context switches caused by laxity changes at run time.

3.3 Dynamic Priority Scheduling 61

F
ig
. 3

.2

R
M
 s
ch
ed
ul
in
g
of
 a
 s
yn
ch
ro
no
us
 ta
sk
 s
et
 w
ith

 a
 n
on
-p
re
em

pt
iv
e
sc
he
m
e

62 3 Real-Time Scheduling and Reconfiguration

Fig. 3.3 RM scheduling of an asynchronous task set with a preemptive scheme

Fig. 3.4 RM scheduling of an asynchronous task set with a non-preemptive scheme

3.3.1 Earliest Deadline First Scheduling

EDF is a dynamic scheduling policy, where in any time unit, the tasks with the
earliest deadlines have the highest dynamic priorities [15]. The EDF scheduling
algorithm assigns the priority of a job based on the absolute deadlines: at each time
unit, the job with the highest priority enters the processor. If the execution of a job is
allowed to be preempted by other jobs before its execution finishes, the scheduling
is preemptive; otherwise, it is non-preemptive.

Example Consider the four synchronous tasks shown in Table 3.1. The preemptive
EDF scheduling result is depicted in Fig. 3.5. According to EDF scheduling scheme,
we have:

• in time interval .[0, 15), the tasks are processed in the order of . τ4, . τ1, . τ2, and . τ3;
• at time .t = 15, the second job of task . τ4, denoted by . J4,2, arrives, and its deadline

is equal to .d4,2 = 15 + 9 = 24 which is later than . J3,1’s deadline .d3,1 = 18.
Hence, . τ3 has the highest priority;

• in time interval .[15, 18), job .J3,1 continues its execution;
• at time .t = 18, after the execution of job .J3,1 completes, the second job of task

. τ4, denoted by job . J4,2, enters the processor for execution;
• at time .t = 20, when job .J1,2 is released, its deadline .d1,2 = 20 + 12 = 32 is

later than .d4,2 = 24. Hence, the execution of job .J1,2 cannot preempt job . J4,2
until its execution completes;

• in time interval .[18, 22), job .J4,2 is under execution;
• at time .t = 22, after the execution of job .J4,2 completes, job .J1,2 enters the

processor for execution;

3.3 Dynamic Priority Scheduling 63

F
ig
. 3

.5

E
D
F
sc
he
du
lin

g
of
 a
 s
yn
ch
ro
no
us
 ta
sk
 s
et
 w
ith

 p
re
em

pt
iv
e
sc
he
m
e

64 3 Real-Time Scheduling and Reconfiguration

• at time .t = 25, when job .J2,2 is released, its deadline .d2,2 = 25 + 16 = 41 is
later than .d1,2 = 32. Hence, the execution of job .J2,2 cannot preempt job . J1,2
until its execution completes;

• in time interval .[22, 26), job .J1,2 is under execution;
• in time interval .[26, 30), job .J2,2 is under execution;
• in particular, at time .t = 30, job .J2,2 is still under execution at the arrival of jobs

.J3,2 and . J4,3. We have .d2,2 = 41, .d3,2 = 30+18 = 48, and . d4,3 = 15×2+9 =
39. Clearly, job .J4,3 has the highest priority. Hence, the execution of job .J2,2 is
preempted by job . J4,3;

• in time interval .[30, 34), job .J4,3 is under execution;
• at time .t = 34, we have .d2,2 = 41 and .d3,2 = 48. Clearly, job .J2,2 has the highest

priority. Hence, the execution of job .J2,2 continues in time interval .[34, 35);
• at time .t = 35, after the execution of job .J2,2 completes, job .J3,2 enters the

processor for execution;
• in time interval .[35, 40), job .J3,2 is under execution;
• at time .t = 40, job .J1,3 has the highest priority since no other jobs are under

execution or preempted;
• in time interval .[40, 44), job .J1,3 is under execution.

In comparison, the non-preemptive EDF scheduling result is depicted in Fig. 3.6.
At time .t = 30, the execution of job .J2,2 cannot be preempted by job . J4,3. Job
.J4,3 can only enter the processor by time .t = 31 at which the execution of job
.J2,2 completes. By EDF scheduling, the real-time tasks are schedulable with both
preemptive and non-preemptive schemes.

Suppose .R4 = 6. The EDF scheduling of the four tasks under preemptive and
non-preemptive schemes is depicted in Figs. 3.7 and 3.8, respectively. By EDF
scheduling, the real-time tasks are schedulable with both preemptive and non-
preemptive schemes. . □

3.3.2 Least Laxity First Scheduling

Mok presented another optimal algorithm least laxity first (LLF) in [17], which
assigns the processor to the active task with the smallest laxity. The laxity of a job
is the difference between its absolute deadline and the remaining time units needed
for finishing its execution.

Example For the same example shown in Table 3.1, between .t = 0 and .t = 18,
we provide the laxity of each task in Table 3.3, in which the laxity is denoted by
a number, and “exe” represents that, in the following time unit, the corresponding
task is under execution. For example, at time .t = 0, tasks . τ1, . τ2, . τ3, and . τ4 are
released synchronously with laxity of .12 − 4 = 8, .16 − 5 = 11, .18 − 5 = 13, and
.9 − 4 = 5, respectively. Hence, task . τ4 has the least laxity and enters the processor
for execution. At .t = 5, the execution of . τ4 completes. It is not an active task until

3.3 Dynamic Priority Scheduling 65

F
ig
. 3

.6

E
D
F
sc
he
du
lin

g
of
 a
 s
yn
ch
ro
no
us
 ta
sk
 s
et
 w
ith

 a
 n
on
-p
re
em

pt
iv
e
sc
he
m
e

66 3 Real-Time Scheduling and Reconfiguration

Fig. 3.7 EDF scheduling of an asynchronous task set with preemptive scheme

Fig. 3.8 EDF scheduling of an asynchronous task set with a non-preemptive scheme

Table 3.3 Laxity of four synchronous tasks

Time units 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

.τ1 8 7 6 5 5 4 4 4 – – – – – – – – – – –

.τ2 11 10 9 8 7 6 5 4 3 3 3 3 2 2 1 – – – –

.τ3 13 12 11 10 9 8 7 6 5 4 3 2 2 1 1 0 0 0 –

.τ4 5 5 5 5 4 – – – – – – – – – – 5 4 3 2

exe .τ4 .τ4 .τ4 .τ1 .τ4 .τ1 .τ1 .τ1 .τ2 .τ2 .τ2 .τ3 .τ2 .τ3 .τ2 .τ3 .τ3 .τ3 . τ4

Fig. 3.9 LLF scheduling of a synchronous task set with a preemptive scheme

the next job releases. As a result, it is not under consideration, denoted by “–” in
Table 3.3. Finally, the real-time LLF scheduling under preemptive scheme is shown
in Fig. 3.9. Note that at time .t = 3, .t = 7, .t = 10, .t = 12, and .t = 14, there is
more than one task that has the least laxity. It is clear that we can assign the highest
priority to any of them. Obviously, Fig. 3.9 only provides one of many schedulable
sequences. If we keep tracking the scheduling sequence, we find that some task
deadlines will be missed. Hence, the task set is not schedulable.

Suppose .R4 = 6. We provide the laxity of each task in Table 3.4. Due to the
same approach, their laxities between .t = 0 and .t = 18 are given in Table 3.3, and
the corresponding LLF scheduling is depicted in Fig. 3.10. Note that at time .t = 3,

3.4 Elastic Period Model for Reconfiguration 67

Table 3.4 Laxity of four asynchronous tasks

Time units 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

.τ1 8 8 8 8 – – – – – – – – – – – – – – –

.τ2 11 10 9 8 7 7 7 6 5 5 4 3 3 2 1 – – – –

.τ3 13 12 11 10 9 8 7 6 5 4 4 3 2 2 1 0 0 0 –

.τ4 – – – – – – 5 5 5 4 3 3 2 1 – – – – –

exe .τ1 .τ1 .τ1 .τ1 .τ2 .τ2 .τ4 .τ4 .τ2 .τ3 .τ4 .τ2 .τ3 .τ4 .τ2 .τ3 .τ3 .τ3 –

Fig. 3.10 LLF scheduling of an asynchronous task set with a preemptive scheme

.t = 6, .t = 7, .t = 8, .t = 10, .t = 11, .t = 12, and .t = 13, there is more than one task
that has the least laxity. It is clear that we can assign the highest priority to any of
them. Obviously, Fig. 3.10 only provides one of many schedulable sequences. The
real-time tasks are schedulable. . □

The non-preemptive LLF scheduling and the EDF scheduling of either the
synchronous task set or the asynchronous task set are identical, as depicted in
Figs. 3.6 and 3.8, respectively. Although both LLF and EDF are optimal algorithms,
LLF has a larger overhead due to a larger number of context switches caused by
laxity changes at run time.

3.4 Elastic Period Model for Reconfiguration

Real-time reconfigurations are of critical importance to RTS. A reconfiguration
scenario can be the addition/removal/update of the tasks at run-time in order to save
the whole system when random disturbances occur. There has been a fair amount
of significant research from academia and industry [10, 19, 21, 28, 29] for real-
time reconfiguration, which are based on fixed or dynamic priority-based scheduling
with preemptive/non-preemptive schemes. In principle, two sets of reconfiguration
scenarios can be identified:

• static reconfiguration scenario applied offline before any system’s cold start [1],
and

• dynamic reconfiguration scenario applied at run-time [30].

As a dynamic reconfiguration scenario, the elastic period task model is proposed
in [4–6, 16] to handle the overload of an RTS by decreasing its task processor

68 3 Real-Time Scheduling and Reconfiguration

Table 3.5 Parameters of four
synchronous tasks

Task .Ri .Ci .Di . Ti

.τ1 0 4 12 [20, 25]

.τ2 0 5 16 [25, 30]

.τ3 0 5 18 [30, 35]

.τ4 0 4 9 [15, 20]

0 5 10 15 20 25

T1 = 20

T1 = 21

T1 = 22

T1 = 23

T1 = 24

T1 = 25

T l
1 Tu

1

Fig. 3.11 Task . τ1 with an elastic period

utilization. The main idea is to consider the period of each task running in the RTS
as a spring with a given rigidity coefficient and length constraints. To reconfigure
each task is to modify its period, so that its processor utilization can be changed
within a specified range. Hence, the proposed model can be used to handle overload
situations in a flexible way.

Example While new tasks arrive, instead of rejecting them, we can remodel the
tasks listed in Table 3.1 by assigning periods with upper bounds. Now the tasks in
Table 3.1 are reconfigured to be elastic period tasks. Their parameters are listed in
Table 3.5, in which .Ti = [T l

i , T u
i] indicates a lower bound . T l

i and an upper bound
. T u

i . In particular, . T
l
i is identical with . Ti in Table 3.1. Without considering the exact

execution time of task . τ1, we depict its six possible periods in Fig. 3.11. Clearly, for
task . τ1, its processor utilization . 425 (with . T u

i assigned) is smaller than . 420 (with . T l
i

assigned). . □

References

1. Angelov, C., Sierszecki, K., Marian, N.: Design models for reusable and reconfigurable state
machines. In: International Conference on Embedded and Ubiquitous Computing, pp. 152–
163. Springer, Berlin (2005)

2. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2(4), 301–324
(1990)

References 69

3. Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algorithms and
applications, vol. 24. Springer Science & Business Media (2011)

4. Buttazzo, G., Abeni, L.: Adaptive workload management through elastic scheduling. Real-
Time Syst. 23, 7–24 (2002)

5. Buttazzo, G.C., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In: IEEE
Real-Time Systems Symposium, pp. 286–295 (1998)

6. Buttazzo, G.C., Lipari, G., Caccamo, M., Abeni, L.: Elastic scheduling for flexible workload
management. IEEE Trans. Comput. 51(3), 289–302 (2002)

7. Davis, R.I.: A review of fixed priority and EDF scheduling for hard real-time uniprocessor
systems. ACM SIGBED Rev. 11(1), 8–19 (2014)

8. Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: IF IP
Congress, pp. 807–813 (1974)

9. Fineberg, M.S., Serlin, O.: Multiprogramming for hybrid computation. In: Fall Joint Comput-
ing Conference, pp. 1–13 (1967)

10. Gaujal, B., Navet, N.: Dynamic voltage scaling under EDF revisited. Real-Time Syst. 37(1),
77–97 (2007)

11. Howell, R.R., Venkatrao, M.K.: On non-preemptive scheduling of recurring tasks using
inserted idle times. Inf. Comput. 117(1), 50–62 (1995)

12. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2(4), 237–250 (1982)

13. Li, J., Shu, L., Chen, J., Li, G.: Energy-efficient scheduling in nonpreemptive systems with
real-time constraints. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 332–344 (2013)

14. Li, D., Li, M., Meng, X., Tian, Y.: A hyperheuristic approach for intercell scheduling with
single processing machines and batch processing machines. IEEE Trans. Syst. Man Cybern.
Syst. 45(2), 315–325 (2015)

15. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

16. Marinoni, M., Buttazzo, G.: Elastic DVS management in processors with discrete volt-
age/frequency modes. IEEE Trans. Ind. Inf. 3(1), 51–62 (2007)

17. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge (1983)

18. Nassor, E., Bres, G.: Hard real-time sporadic task scheduling for fixed priority schedulers. In:
International Workshop on Responsive Systems, pp. 44–47 (1991)

19. Quan, G., Hu, X.S.: Minimal energy fixed-priority scheduling for variable voltage processors.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(8), 1062–1071 (2003)

20. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101–155 (2004)

21. Shin, Y., Choi, K.: Power conscious fixed priority scheduling for hard real-time systems. In:
Design Automation Conference, pp. 134–139. IEEE, New Orlenas (1999)

22. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling
framework. ACM SIGada Ada Lett. 4, 1–8 (2004)

23. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic low-power
reconfiguration of real-time systems with periodic and probabilistic tasks. IEEE Trans. Autom.
Sci. Eng. 12(1), 258–271 (2015)

24. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101–111
(2016)

25. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47(7), 1082–1098 (2017)

26. Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of
modular sporadic real-time systems. Automatica 89, 392–397 (2018)

70 3 Real-Time Scheduling and Reconfiguration

27. Xia, Y., Zhou, M., Luo, X., Pang, S., Zhu, Q.: A stochastic approach to analysis of energy-
aware DVS-enabled cloud datacenters. IEEE Trans. Syst. Man Cyber. Syst. 45(1), 73–83
(2015)

28. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Annul
Symposium on Founation Computer Science, pp. 374–382 (1995)

29. Yun, H.S., Kim, J.: On energy-optimal voltage scheduling for fixed-priority hard real-time
systems. ACM Trans. Embed. Comput. Syst. 2(3), 393–430 (2003)

30. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Alahmari, A.M.: R-TNCES: a novel formalism
for reconfigurable discrete event control systems. IEEE Trans. Syst. Man Cybern. Syst. 43(4),
757–772 (2013)

Chapter 4
Non-Preemptive
Scheduling/Reconfiguration Based on
Supervisory Control of TDES

4.1 Introduction

Historically, real-time systems (RTS) were constructed in an ad hoc manner, which
is scheduled by cyclic executives [8]. An RTS consists of a number of tasks with
explicit timing requirements, which could be a water vessel system, computer
numerical control machine, a robot, or an assembly-line worker. In the literature,
RTS are usually scheduled by two approaches. One is to divide the scheduling
problem in two steps:

• determine whether the RTS is schedulable, and
. find an algorithm to generate a safe execution sequence.

The other approach works in reverse: a candidate (existing) schedule scheme is
first generated, and then it is checked whether all the tasks in the RTS meet their
deadlines.

The study in [5] is the first work to combine RTS scheduling and supervisory
control theory (SCT). Based on the nonblocking supervisory control of timed
discrete-event systems (TDES), Chen and Wonham treat the overall scheduling
problem as an integral problem. In the proposed method, solving the schedulability
problem of an RTS implies solving its scheduling-algorithm problem and vice versa.

In [5], Chen and Wonham propose a TDES-based task model and a real-time
scheduling technique. The behavior of real-time tasks, such as task release/arrival
and their execution starting/completion, is represented by active events. The tem-
poral characteristics are considered to build a timed transition graph (TTG) that
describes the possible behavior of real-time tasks. Any RTS tasks with deadlines
less than or equal to their periods can be modelled by TTG in this approach.
Given an RTS processing such tasks, with user-defined non-preemptive scheduling
specifications, the safe execution sequences are found by the supervisory control of
TDES. An RTS is claimed to be non-schedulable if the supervisor is empty. The

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4
https://doi.org/10.1007/978-3-031-41969-0_4

72 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

proposed scheduling approach is different from the traditional real-time scheduling
approaches:

. The work in [5] does not check the schedulability and find safe scheduling
sequences separately. Since the found safe scheduling sequences are included
in a proper supervisor for the TDES, their timing characteristics do not need to
be verified.

. The traditional scheduling algorithms only provide one safe execution for the
real-time scheduling. However, the work in [5] provides all the possible safe
execution sequences.

The research in [5] is a significant improvement over real-time scheduling. However,
the authors do not reconfigure the system in the case of nonschedulability. Later,
dynamic reconfigurations of RTS are addressed in [10] and we summarize it in this
chapter.

In [2–4, 7], an elastic period task model is proposed to handle the overload of an
RTS by decreasing the task processor utilization. Building on the two latter studies,
we present a new modelling technique to endow the real-time tasks with multi-
periods. To handle the overload of an RTS, SCT is utilized to find all the possible
solutions based on different periods of each task. For any solution, all the safe
execution sequences are provided. The presented dynamic reconfiguration approach
consists of two steps:

. The initial model of any task is assigned with the shortest period (i.e., assigned
with the highest processor utilization), and by utilizing SCT, all the RTS’ safe
execution sequences (if any) are found.

. For the purpose of reconfiguring the RTS in the case of nonschedulability, this
monograph reconfigures the RTS’ composite task model by assigning multi-
periods to the tasks.

The multi-period provides multiple processor utilization for a task. Consequently, a
processor utilization interval for the RTS is obtained. SCT is utilized again to find all
the safe execution sequences (possible reconfiguration scenarios) in the predefined
processor utilization interval. If the supervisor is still empty, we claim that the RTS
is non-schedulable. A real-world example is implemented in this chapter. The results
illustrate that, in the dynamic reconfiguration approach, the presented method finds
a set of safe execution sequences.

Clearly, the presented multi-period model is a uniformed model that can schedule
and reconfigure RTS (if necessary). Building on this idea, in the following chapters,
we present similar multi-period models to schedule and/or reconfigure RTS based
on supervisory control of discrete-event systems (Chaps. 5 and 6) and supervisory
control of state-tree structures (Chap. 7).

The rest of this chapter is structured as follows. The TDES model for RTS
scheduling and reconfiguration is defined in Sect. 4.2. Section 4.3 reports method-
ologies of dynamic scheduling and reconfiguration of RTS. A real-world example
is implemented in Sect. 4.4 to verify the dynamic scheduling and reconfiguration.
Conclusions are provided in Sect. 4.5.

4.2 RTS Modelled by Timed Discrete-Event Systems 73

4.2 RTS Modelled by Timed Discrete-Event Systems

In [5], Chen and Wonham propose a TDES modelling mechanism to model real-
time tasks running in uni-processor RTS and schedule them non-preemptively. Later
the TDES model is generalized in [10]. A generalized TDES modelling method is
provided to assign a multi-period that is a set of possible periods for a real-time task.
The default period for a task is the shortest one. In the case that the RTS is non-
schedulable, based on supervisory control, the multi-period is used to reconfigure
the RTS automatically. Generally, the TDES task model proposed in [5] can be
viewed as a special case of the one presented in [10].

4.2.1 Multi-Period RTS Task Model

In this section, we provide a general TDES modelling mechanism to represent
the execution of periodic real-time tasks. Such a TDES model can be utilized to
schedule or reconfigure RTS. Similar to the elastic task model [2–4, 7], we assume
that a task is associated with a multi-period, i.e., having a lower bound and an upper
bound. By assigning multi-periods to real-time tasks, the presented TDES model
generalizes the TDES model proposed in [5].

Suppose that a periodic RTS . S processes n tasks, i.e., .S = {τ1, τ2, . . . , τi , . . . , τn},
.i ∈ n = {1, 2, . . . , n}. The execution model of an RTS is a set of tasks processed in
a uni-processor, in which a task . τi is described by

. τi = (Ri, Ci,Di,Ti)

with

. a release time . Ri ,

. a worst-case execution time (WCET) . Ci ,

. a deadline . Di , and

. a multi-period . Ti .

A multi-period is specified by a non-empty interval

. Ti = [T l
i , T u

i] ∈ N × N,

where the number of time units that elapse between any two successive releases lies
within . Ti . Hence a multi-period has a lower bound (i.e., shortest one) represented by
. T l

i and an upper bound (i.e., longest one) represented by . T u
i . As stated in Sect. 3.1,

a periodic task . τi consists of an infinite sequence of jobs repeated periodically that
are represented by a corresponding four-tuple

. Ji,j = (ri,j , Ci, di,j , pi,j).

The subscript “. i, j” of .Ji,j represents the j -th job execution of task . τi .

74 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

During the real-time scheduling process, for task . τi , only one period T satisfying

. T l
i ≤ T ≤ T u

i

is selected in a scheduling period. The processor utilization .Ui of task . τi is
calculated by

.Ui = Ci

T
. (4.1)

The total processor utilization of . S is

.US =
n∑

i=1

Ui. (4.2)

According to [8], an RTS . S is non-schedulable if .US > 1.
A task is non-reconfigurable if its multi-period satisfies .T l

i = T u
i , which is

considered as a traditional RTS task. In particular, such a task is identical with the
task model proposed by Chen and Wonham in [5]. The dynamic reconfiguration of
a real-time task consists of two steps given below:

. Initially, a task with .T = T l
i plays the role of the task proposed in [5]. In this

case, task . τi always stays at the highest processor utilization.
. If the RTS is non-schedulable, the multi-period model with .Ti = [T l

i , T u
i] is

utilized to provide all the possibilities to compress the processor utilization. By
integrating dynamic reconfigurations, our study in Chaps. 6 and 7 is built on
multi-periods.

4.2.2 Real-Time Tasks Modelled by Timed Discrete-Event
Systems

Given a real-time periodic task .τi = (Ri, Ci,Di,Ti) with .i ∈ n and .Di ≤ Ti ,
represented by a TDES, as depicted in Fig. 4.1 (from [5]), its corresponding activity
transition graph (ATG) is

. Gact,i = (Ai,Σact,i , δact,i , a0,i , Am,i).

States . Ii , . Ai , and . Wi represent idle, arrival, and work, respectively. The events
in the alphabet .Σact,i are

. . γi : the event that . τi is released,

. . αi : the event that the execution of . τi is started, and

. . βi : the event that the execution of . τi is completed.

4.2 RTS Modelled by Timed Discrete-Event Systems 75

Fig. 4.1 ATG of a real-time
task from [5]

Event . αi is controllable and events . γi and . βi are uncontrollable. Moreover, all the
events in .Σact,i are forcible [1]. In this monograph, a state filled with gray, say . Wi ,
represents that the corresponding task is under execution.

An ATG describes only the logical behavior of a TDES. In the transition graph
of the ATG, the initial state is labeled with an entering arrow, and a marker state is
represented by a double circle.

Suppose that, after enabling, events . γi , . αi , and . βi should wait for . tγi
, . tαi

, and . tβi

ticks, respectively, until they are eligible to occur. Thus, . tαi
is the time at which . τi

starts its execution. Furthermore, in the TDES model, we have

. tβi
= Ci.

A TDES model describing an RTS task’s behavior has the following two features:

. . γi signals that after . ri,1, . τi will release periodically, and

. . βi must occur before . τi is released again.

The time interval between the occurrences of events . βi and . γi is the remaining time
of the current period, which decreases along with the increase of . tαi

. Hence, in two
adjacent periods, the values of . tγi

could be different. Formally, let .T l
i ≤ T ≤ T u

i ;
we have:

. . γi has time bounds .

⎧
⎪⎪⎨

⎪⎪⎩

[0, 0], if τi releases at ri,1

[T − tαi
− tβi

, T − tαi
− tβi

], if (∀j > 1) τi

releases at ri,j

,

. . αi has time bounds .[0,Di − tβi
], and

. . βi has time bounds .[tβi
, tβi

].
Generally, the presented task model assigns a lower and an upper period bound
for each task to dynamically reconfigure an RTS . S. At each time, a task’s period
is assigned with a value between the two bounds . T l

i and . T u
i . Consequently, the

processor utilization of an elastic periodic task . τi has a lower bound .Ul
i and an

upper bound . Uu
i . Formally, we conclude that the processor utilization of . τi is in an

interval

.Ui = [Ul
i , U

u
i]

76 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

with

. Ul
i = Ci

T u
i

and

. Uu
i = Ci

T l
i

.

The system processor utilization of . S is in an interval

. US = [Ul, Uu]

with

. Ul =
n∑

i=1

Ul
i

and

. Uu =
n∑

i=1

Uu
i .

In the possible processor utilization interval .[Ul, Uu], there may exist multiple
safe execution sequences (reconfiguration scenarios) that correspond to different
processor utilizations.

From the perspective of TDES, on the occurrence of event . αi , the processor starts
the processing of the current job of . τi . After the global tick event t occurs . Ci times,
the execution of . τi is completed. The next occurrence of event . γi drives . τi into the
next execution period.

In this section, a multi-period RTS task represented by the TTG of a TDES

. Gi = (Qi,Σi, δi, q0,i ,Qm,i)

is depicted in Fig. 4.2. Let .w = min{Di, T
l
i }. We have

. . yI is the initial state, representing that the processor is in an idle operation,

. state . yα
k with .0 ≤ k ≤ w − Ci : before starting the execution of task . τi , k time

units have passed since the recent release of task . τi ,
. state .yk,p with .0 ≤ k ≤ w − Ci and .0 ≤ p ≤ Ci : starting the p-th time unit

execution of task . τi at the k-th time unit,
. state . yβ

k with .Ci ≤ k ≤ w: the targeting state of event . βi , representing that the
execution of . τi is completed at the k-time unit,

4.2 RTS Modelled by Timed Discrete-Event Systems 77

Fig. 4.2 General TTG model for multi-period tasks

. states . yk with .w < k < T u
i : the execution of task . τi is completed and k time

units have elapsed since the recent release of task . τi , and
. .{yβ

w, yw+1, , yT u
i −1, yI }: the marker state set.

A marker state represents that . τi has finished the current execution of job .Ji,j and is
ready for the release of the next job .Ji,j+1. Marker state . yI represents that job . Ji,j

finishes its operation at time .t = T u
i or has never been invoked. Marker states . yβ

w,
.yw+1, and .yT u

i −1 represent that job .Ji,j finishes its operation at time units .t = Tw,
.t = Tw+1, and .t = T u

i − 1, respectively, with .Ci ≤ w ≤ Ti . Transition . δ(y0,0, t) =
y1,1 leads the system from a normal state to a state filled with gray, which represents
that the task . τi is under execution for one tick (or equally one time unit). Throughout
this monograph, any state filled with gray represents that the corresponding task is
under execution.

The remaining time between the occurrences of events . βi and . γi equals 0 if

. .Di = Ti , and

. . αi occurs at time .Di − tβi
.

As a result, the occurrence of . βi may lead the TDES model to state . yI directly.

78 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

Fig. 4.3 TTG . G1 for task . τ1

Example A non-reconfigurable periodic task . τ1 is defined as .τ1 = (0, 1, 4, [5, 5]).
The processor utilization of task . τ1 is fixed to be .U1 = 1

5 . The TTG model . G1 for
task . τ1 is depicted in Fig. 4.3. For the events in .Σact,1,

. . γ1 has time bounds .

{
[0, 0], if τ1 releases at r1,1

[4 − tα1 , 4 − tα1], if (∀j > 1) τ1 releases at r1,j

,

. . α1 has time bounds .[0, 4 − tβ1], and

. . β1 has time bounds .[1, 1].
Suppose that we have two other tasks .τ2 = (0, 2, 6, [4, 6]) and . τ3 =

(0, 2, 5, [3, 5]). The corresponding TTG models .G2 and .G3 are illustrated in
Figs. 4.4 and 4.5, respectively, in which events . β2 and . β3 lead the TDES model to
the initial states directly. All the possible processor utilizations of . τ2 are . 24 , . 25 , and
. 26 ; and all the possible processor utilizations of . τ3 are . 23 , . 24 , and . 25 . . □

Remarks

1. In this monograph, in the TDES or DES representing the behavior of RTS tasks,
all the states are named as . y_.

2. In the presented TDES model, the time bounds .[T l
i − tαi

− tβi
, T u

i − tαi
− tβi

] for
event . γi with .j ≥ 1 are dynamic, which decrease while . tαi

increases. However,
the TDES synthesis tool TTCT1 can convert an ATG into a TTG only if the

1 http://www.control.utoronto.ca/DES.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

4.2 RTS Modelled by Timed Discrete-Event Systems 79

Fig. 4.4 TTG . G2 for task . τ2

Fig. 4.5 TTG . G3 for task .τ3

80 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

events have fixed time bounds. Hence, according to the presented TDES model,
users need to create the TTG for every real-time task directly. . □

4.2.3 Global RTS Execution Model

Suppose that there exists a set of tasks to be executed in an RTS. A TDES
representing its monolithic behavior is required. One standard way to construct
such a “composite” TDES for a set of tasks represented by TTGs is to apply the
synchronous product [11] over the individual TTG.

Suppose that two tasks . τ1 and . τ2 are executed in an RTS . G. Their system behav-
iors are represented by .L(G1) and .L(G2), respectively; their marked behaviors
are represented by .Lm(G1) and .Lm(G2), respectively. Through the synchronous
product, the TTG of . τ1 and . τ2 are combined into a TTG representing the system
behavior of . G. Formally, we have

. L(G) = L(G1)||L(G2)

and

. Lm(G) = Lm(G1)||Lm(G2).

Note that the only shared event between .L(G1) and .L(G2) is event t . The obtained
composite task contains all execution sequences that meet the deadlines of the two
tasks, but with the following two implicit assumptions:

. Resource-sharing tasks . τi satisfying .Di = T l
i = T u

i : resources are available
to execute the tasks concurrently. This result is illustrated in the example stated
below.

. Independent tasks . τi satisfying .T l
i ≤ T u

i and .Di < T u
i : As illustrated in Fig. 4.2,

string . t∗ (a string consists of .n ≥ 0 tick events) may occur between events . βi

and . γi . Given two tasks . τi and . τj , there may exist a string . βj t
∗(αi t

Ci βi)t
∗γj

representing that they are executed in sequence.

Example Figure 4.6 depicts the TTG of two tasks .τ1 = (0, 2, 2, 2) and
.τ2 = (0, 1, 1, 1). The composite task execution model, obtained by . L(G) =
L(G1)||L(G2) and .Lm(G) = Lm(G1)||Lm(G2), has 20 states and 29 transitions,
which is illustrated in Fig. 4.7. In the TDES synthesis procedures (introduced in
[11]), the synchronous product is computed using the procedure sync. . □

Clearly, the execution sequences shown in the TTG depicted in Fig. 4.7 allow the
resources to be available to execute tasks . τ1 and . τ2 concurrently. It shows that for
each duration of two ticks, a total of one . τ1 and two . τ2 are executed.

4.2 RTS Modelled by Timed Discrete-Event Systems 81

Fig. 4.6 Tasks . τ1 and . τ2. (a) Task . τ1. (b) Task . τ2

Fig. 4.7 Synchronous product of tasks . τ1 and . τ2

4.2.4 Timed Discrete-Event System Generators

The modelling, scheduling, and reconfiguration of RTS based on supervisory control
of TDES, using TTCT, are presented below. The possible behaviors of tasks . τ1, . τ2,
and . τ3 are represented by . G1, . G2, and . G3, respectively. The parameters of these
created tasks are presented in Table 4.1. In the TDES models, events . γi , . αi , . βi ,
and tick are represented by i0, i1, i2, and 0, respectively. A task with a superscript
“l” (resp., “u”) represents that it possesses the lower (resp., upper) period bound;
the corresponding task name in TTCT is prefixed by an L (resp., U). Taking . Gl

2 as
an example, the lower and upper bounds of its multi-period are equal to the lower
bound of . T2. Evidently, we have

82 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

Table 4.1 Parameters of
RTS tasks

Task TDES TTCT .Ri .Ci .Di . Ti

.τ1 .G1 TASK1 0 1 4 [5, 5]

.τ2 .G2 TASK2 0 2 6 [4, 6]

.τ3 .G3 TASK3 0 2 5 [3, 5]

.τ l
2 .Gl

2 LTASK2 0 2 4 [4, 4]

.τu
2 .Gu

2 UTASK2 0 2 6 [6, 6]

.τ l
3 .Gl

3 LTASK3 0 2 3 [3, 3]

.τu
3 .Gu

3 UTASK3 0 2 5 [5, 5]

. L(Gl
2) ⊆ L(G2), L(Gu

2) ⊆ L(G2), L(Gl
3) ⊆ L(G3), L(Gu

3) ⊆ L(G3);

and

. Lm(Gl
2) ⊆ Lm(G2), Lm(Gu

2) ⊆ Lm(G2), Lm(Gl
3) ⊆ Lm(G3), Lm(Gu

3) ⊆ Lm(G3).

The corresponding TTCT MAKEIT.TXT file for all the created tasks are listed
below. In TTCT, the edit procedure can be utilized to convert a multi-period periodic
task to a task with a fixed-period or vice-versa.

TASK1 = create (TASK1, [mark 0], [tran [0, 10, 1], [1, 0, 5], [1, 11, 2], [2, 0, 3],
[3, 12, 4], [4, 0, 8], [5, 0, 9], [5, 11, 6], [6, 0, 7], [7, 12, 8], [8, 0, 12], [9, 0, 13], [9,
11, 10], [10, 0, 11], [11, 12, 12], [12, 0, 16], [13, 11, 14], [14, 0, 15], [15, 12, 16],
[16, 0, 0]], [forcible 10, 11, 12]) (17, 20)

TASK2 = create (TASK2, [mark 0, 15, 20], [tran [0, 20, 1], [1, 0, 6], [1, 21, 2], [2,
0, 3], [3, 0, 4], [4, 22, 5], [5, 0, 10], [6, 0, 11], [6, 21, 7], [7, 0, 8], [8, 0, 9], [9, 22,
10], [10, 0, 15], [11, 0, 16], [11, 21, 12], [12, 0, 13], [13, 0, 14], [14, 22, 15], [15, 0,
20], [15, 20, 1], [16, 0, 21], [16, 21, 17], [17, 0, 18], [18, 0, 19], [19, 22, 20], [20,
0, 0], [20, 20, 1], [21, 21, 22], [22, 0, 23], [23, 0, 24], [24, 22, 0]], [forcible 20, 21,
22]) (25, 32)

LTASK2 = edit (TASK2, [trans -[11, 0, 16], -[15, 0, 20]]) (25, 29)

LTASK2 = trim (LTASK2) (16, 18)

LTASK2 = minstate (LTASK2) (15, 17)

UTASK2 = edit (TASK2, [mark -[15], -[20]], [trans -[15, 20, 1], -[20, 20, 1]])
(25, 29)

LTASK3 = create (LTASK3, [mark 0], [tran [0, 30, 1], [1, 0, 6], [1, 31, 2], [2, 0, 3],
[3, 0, 4], [4, 32, 5], [5, 0, 0], [6, 31, 7], [7, 0, 8], [8, 0, 9], [9, 32, 0]], [forcible 30,
31, 32]) (10, 11)

4.2 RTS Modelled by Timed Discrete-Event Systems 83

TASK3 = edit (LTASK3, [mark +[10], +[15]], [trans +[5, 0, 10], +[6, 0, 11], +[9,
32, 10], +[10, 0, 15], +[10, 30, 1], +[11, 0, 16], +[11, 31, 12], +[12, 0, 13], +[13, 0,
14], +[14, 32, 15], +[15, 0, 0], +[15, 30, 1], +[16, 31, 17], +[17, 0, 18], +[18, 0, 19],
+[19, 32, 0], -[5, 0, 0], -[9, 32, 0]]) (20, 25)

UTASK3 = edit (TASK3, [mark -[10], -[15]], [trans -[10, 30, 1], -[15, 30, 1]])
(20, 23)

The composite model of an RTS is generated by the synchronous product of
all the processed tasks [5, 11]. Suppose that tasks . τ1 and . τ2 are running in RTS
. S0. We generate . S0 by the following TTCT procedures (all the sync operations in
the original MAKEIT.TXT file are reported with the message “Blocked_events =
None”, eliminated in this monograph for readability):

. SYS0 = sync (TASK1, TASK2) (425, 644)

where “(425, 644)” denotes that . S0, represented by SYS0, has 425 states and 644
transitions. Suppose that another RTS . S1, represented by SYS1, contains . τ1, . τ2, and
. τ3. It is generated based on . S0 as follows.

. SYS1 = sync (SYS0, TASK3) (8500, 16367)

The composite task model of traditional periodic RTS is generated by the
technique proposed by Chen and Wonham in [5]. By choosing the periodic tasks
with the lower (resp., upper) bound of periods, we generate . Sl

0 (LSYS0), . Sl
1

(LSYS1), and . Su
1 (USYS1) as follows. They are the counterparts of . S0 and . S1 with

fixed-periods.

. LSYS0 = sync (TASK1, LTASK2) (255, 364)

. LSYS1 = sync (LSYS0, LTASK3) (2550, 4475)

. USYS1 = sync (TASK1, UTASK2) (425, 610)

. USYS1 = sync (USYS1, UTASK3) (1750, 3064)

Finally, the five generated RTS are listed in Table 4.2. They will be utilized in the
supervisory control and evaluation of the closed behavior of the controlled RTS.

Table 4.2 RTS with
multi-periods

RTS TTCT Tasks

.S0 SYS0 . τ1, . τ2

.S1 SYS1 . τ1, . τ2, . τ3

.S0
l LSYS0 . τ1, . τ l

2

.S1
l LSYS1 . τ1, . τ l

2, . τ l
3

.S1
u USYS1 . τ1, . τu

2 , .τu
3

84 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

4.3 Dynamic Scheduling and Reconfiguration of
Multi-Period RTS

The event controllability and the supervisory control of TDES in this chapter follow
the principles proposed in [5] and [11]. In this present chapter, instead of utilizing
the method proposed in [5] to dynamically modify the specification for the tasks
running in the uni-processor, a general specification . S with

. L(S) = L(S1)||L(S2)|| · · · ||L(Sn)

is defined with event set .Σ = ⋃
1≤i≤n Σi , the union of the event sets of all the

potential tasks which may be called by the processor. Let .L(S) = E ⊆ Σ∗. In
addition, .Lm(G) ⊆ Σ∗ is always satisfied. Hence, let .E ⊆ Σ∗ and

. K = supC (E ∩ Lm(G)).

If .K /= ∅, there exists a marking nonblocking supervisory control (MNSC) for . G
such that

. Lm(V/G) = K.

Clearly, K can be found by the procedure supcon (introduced in [11]).
In order to utilize SCT to schedule the RTS non-preemptively, the specifications

are defined to ensure that after the occurrence of an event . αi , no other event . αj with
.j /= i can occur to preempt it. Hence, the TDES model of specification . Si for task
. τi is illustrated in Fig. 4.8, in which . αj and . βj with .j /= i represent events . α and
. β for any other task, respectively. The symbol . ∗ represents the other events in . Σ .
The specifications for . G1, . G2, and . G3 are created by TTCT. Thereafter, by utilizing
sync, the general specification . S presented in Fig. 4.10 is generated.

According to [11], given any RTS represented by . G, for any specification,
selfloops of events appeared in . G but not in the specification must be adjoined
to account for all the events that are irrelevant to the specification but probably
executed in the plant. For simplification, we only focus on the specification created
by procedure create; thereafter the selfloops are adjoined by the procedures
allevents and sync. As listed below, allevents is utilized to generate a TTG
representing . Σ∗. As shown in Fig. 4.9, the nonblocking specification for . G is a
generator with only one state at which all the events appeared in . G are enabled. The

Fig. 4.8 Task
non-preemptive specification

4.4 Case Study: Supervisor Synthesis of Motor Network 85

Fig. 4.9 Nonblocking
specification for RTS

Fig. 4.10 General
non-preemptive specification

generated files for the specifications are recorded below, where the SPEC shown in
Fig. 4.10 with 4 states and 22 transitions is the general one.

SPEC1 = create (SPEC1, [mark 0], [tran [0, 11, 1], [0, 21, 0], [0, 22, 0], [0, 31, 0],
[0, 32, 0], [1, 12, 0]], [forcible 11, 12, 21, 22, 31, 32]) (2, 6)

SPEC2 = create (SPEC2, [mark 0], [tran [0, 11, 0], [0, 12, 0], [0, 21, 1], [0, 31, 0],
[0, 32, 0], [1, 22, 0]], [forcible 11, 12, 21, 22, 31, 32]) (2, 6)

SPEC3 = create (SPEC3, [mark 0], [tran [0, 11, 0], [0, 12, 0], [0, 21, 0], [0, 22, 0],
[0, 31, 1], [1, 32, 0]], [forcible 11, 12, 21, 22, 31, 32]) (2, 6)

ALLSYS1 = allevents (SYS1) (1, 10)

SPEC1 = sync (SPEC1, ALLSYS1) (2, 14)

SPEC = sync (SPEC1, SPEC2) (3, 18)

SPEC = sync (SPEC, SPEC3) (4, 22)

4.4 Case Study: Supervisor Synthesis of Motor Network

As illustrated in Fig. 4.11, the example of a motor network studied in [5] is revised
and considered as a reconfigurable RTS. Suppose that three electric motors are
controlled by a uni-processor. As depicted in Fig. 4.11, their deadlines and periods
are represented by . Di and . Ti , respectively. At any time instant, only a subset of
these motors is called by the processor. Their parameters coincide with those of the
tasks shown in Table 4.1 as

86 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

Fig. 4.11 A motor network
example

Computation:
Motor 1: 1 ms
Motor 2: 2 ms
Motor 3: 3 ms

Motor
Selection

Motor 2
D: 6 ms

T: [4, 6] ms

Motor 1
D: 4 ms

T: [5, 5] ms

Motor 3
D: 5 ms

T: [3, 5] ms

. Motor 1: . τ1,

. Motor 2: . τ2, and

. Motor 3: . τ3.

Suppose that the motor network has two work plans, coinciding with the defined
RTS . S0 and . S1:

Plan 1: uses only Motors 1 and 2, and
Plan 2: uses all three motors.

4.4.1 Real-Time Scheduling

Take . Sl
0 (LSYS0) as an example. All the safe execution sequences are calculated by

the procedure supcon, i.e.,

. LSUPER0 = supcon (LSYS0, SPEC) (153, 190).

Since LSUPER0 is not empty, . Sl
0 is schedulable at processor utilization

. Uu = 1

5
+ 2

4
= 0.7.

The safe execution sequence set in LSUPER0 is represented by a TDES with
153 states and 190 transitions. By projecting out all events but . αi , as depicted in
Fig. 4.12, which contains 12 states and 15 transitions. We have

. PJLSUPER0 = project (LSUPER0, Image [11, 21]) (12, 15).

We obtain the scheduling map illustrated in the Gantt chart depicted in Fig. 4.13.
PJLSUPER0 provides eight safe execution sequences to schedule the RTS with
processor utilization being 0.7:

4.4 Case Study: Supervisor Synthesis of Motor Network 87

Fig. 4.12 Scheduling map of . Sl
0

.

1. α1α2α2α1α2α1α2α1α2

2. α1α2α2α1α2α1α2α2α1

3. α1α2α1α2α2α1α2α1α2

4. α1α2α1α2α2α1α2α2α1

5. α2α1α2α1α2α1α2α1α2

6. α2α1α2α1α2α1α2α2α1

7. α2α1α1α2α2α1α2α1α2

8. α2α1α1α2α2α1α2α2α1

For comparison, the earliest deadline first (EDF) scheduling [6] result of . Sl
0 by

Cheddar 2 [9] is displayed in Fig. 4.13, which coincides with Sequence (1.) above
within PJLSUPER0. Sequence (8.), depicted in Fig. 4.14, can never be generated by
EDF. By comparing the two sequences in Figs. 4.13 and 4.14, if . τ l

2 (with the earliest
deadline) cannot arrive on time at .t = 4, then according to the multiple sequences
users can choose another available sequence shown in Fig. 4.13 to schedule task
. τ1 first. Thus, recalculating the scheduling sequences is unnecessary. However,
there is no EDF sequence to schedule task . τ1 first. If . τ2 cannot arrive on time, the
EDF scheduling cannot schedule . Sl

0 successfully. The supervisory control technique
provides a greater number of safe execution sequences as compared with EDF
scheduling. Intuitively, thanks to .L(Gl

2) ⊂ L(G2) and .Lm(Gl
2) ⊂ Lm(G2), the safe

execution sequences in . Sl
0 should be a proper subset of the safe execution sequences

of . S0. This is proved as follows.
By calling procedure supcon, all the safe execution sequences of the multi-

period version RTS . S0 are obtained. By using the procedure complement, we
obtain the set of the behaviors prohibited by SUPER0, which is contained in
CSUPER0. By computing the meet of CSUPER0 and LSUPER0, if the trim version

2 http://beru.univ-brest.fr/cheddar/.

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/

88 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

Fig. 4.13 EDF scheduling map of . Sl
0

Fig. 4.14 Scheduling of Sequence (8.)

of meet is empty, this represents that the reachable and coreachable sequences
within LSUPER0 are not in CSUPER0. Hence, LSUPER0 is a proper subset of
SUPER0. The corresponding TTCT operations are listed below.

. SUPER0 = supcon (SYS0, SPEC) (263, 362)

. CSUPER0 = complement (SUPER0, []) (264, 1848)

. TEST = meet (CSUPER0, LSUPER0) (156, 195)

. TEST = trim (TEST) (0, 0)

The scheduling map for . S0 is more complex than that for . Sl
0, which has 50 states

and 86 transitions, i.e.,

. PJSUPER0 = project (SUPER0, Image [11, 21]) (50, 86).

Evidently, even though the supervisor for . Sl
0 excludes some safe execution

sequences of . S0, the scheduling map still provides more choices than the EDF
scheduling algorithm.

4.4.2 Dynamic Reconfiguration

The set of safe execution sequences of . Sl
1 (LSYS1) found by the procedure supcon

is empty, i.e.,

.LSUPER1 = supcon (LSYS1, SPEC) (0, 0).

4.4 Case Study: Supervisor Synthesis of Motor Network 89

Clearly, . Sl
1 is non-schedulable at processor utilization

. Uu = 1

5
+ 2

4
+ 2

3
> 1.

Thus, we need to reconfigure the system to be the multi-period model . S1 (SYS1)
and utilize SCT again to find the safe execution sequences by

. SUPER1 = supcon (SYS1, SPEC) (2180, 3681).

This represents that supcon finds all the possible safe execution sequences
between the processor utilization

. Ul = 1

5
+ 2

6
+ 2

5
< 1

and the full processor utilization 1.
The system is finally schedulable since SUPER1 is nonempty. In order to find

the scheduling map after the reconfiguration, we need to call the procedure project.
However, since the reconfigured periods provide more than one reconfiguration
scenarios, TTCT fails to output the result of projecting SUPER1 onto events . αi ,
which shows that the dynamic reconfiguration of the periods (event . γi) violates the
observer property discussed in [11]. However, we choose the following method to
view a part of the scheduling map of the reconfigured RTS . S1:

Step 1
We choose . Su

1 as a subset of the composite task model of . S1, based on which we
find the safe execution sequence set, which contains 417 states and 574 transitions.
The scheduling map is calculated by projecting the safe execution sequences onto
events . α1, . α2, and . α3; it contains 37 states and 54 transitions, as seen in Fig. 4.15.
The corresponding TTCT operations are given as follows.

. USUPER1 = supcon (USYS1, SPEC) (417, 574)

. PJUSUPER1 = project (USUPER1, Image [11, 21, 31]) (37, 54)

Step 2
We can verify that . Su

1 is a proper subset of . S1 via the following TTCT procedures:

. CSUPER1 = complement (SUPER1, []) (2181, 21,810)

. TEST = meet (CSUPER1, USUPER1) (417, 574)

.TEST = trim (TEST) (0, 0)

90 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

Fig. 4.15 Scheduling map of . Su
1

Finally, we claim that, after the reconfiguration, the scheduling map of . S1 is
at least as complex as that presented in Fig. 4.15. More precisely, SUPER1 (resp.,
USUPER1) contains 2180 (resp., 417) states and 3681 (resp., 574) transitions.
Intuitively, the scheduling map of SUPER1 should be more complex than that
depicted in Fig. 4.15, in which the periods are dynamically reconfigured. The EDF
scheduling of . Su

1 by Cheddar is illustrated in the Gantt chart depicted in Fig. 4.16. It
can find only one schedulable sequence. Moreover, no sequence for the multi-period
RTS can be found by EDF scheduling in Cheddar.

4.4 Case Study: Supervisor Synthesis of Motor Network 91

Fig. 4.16 Scheduling map of . Su
1 in Cheddar

4.4.3 Multi-Periods in the Safe Execution Sequences

In Sect. 4.4.1, before the reconfiguration, every scheduling sequence is based on
the fixed periods of the real-time tasks, with the scheduling stated in LSUPER0.
The processor utilization of a task is fixed permanently. For example, we randomly
choose a sequence

. γ1α1γ2tβ2tα2t tβ2γ2

By projecting out events . γ1, . α1, and . β1, we obtain

. γ2tβ2tα2t tβ2γ2

We note that a period of task . τ2 equals four time units and its processor utilization
is equal to .U2 = 1

2 .
In SUPER0 (the reconfigured RTS with multi-periods), we randomly choose two

sequences as follows:

1. .γ1α1γ2tβ1α2t tβ2t tγ2
2. .γ1α1γ2tβ1t tα2tγ1tβ2γ2α2t tβ2α1tβ1tγ2

By projecting out . γ1, . α1, and . β1 in Sequence (1.), we obtain

. γ2tα2t tβ2t tγ2

Obviously, a period of task . τ2 equals five time units. Then the processor utilization
of . τ2 is . 25 .

By projecting out . γ1, . α1, and . β1 in Sequence (2.), we obtain

. γ2t t tα2t tβ2γ2α2t tβ2t tγ2

Evidently, in two adjacent periods of task . τ2, its periods are five and four time
units, respectively. Hence, in the second period of the execution of . τ2, its processor
utilization is changed from . 25 to . 12 to speed up the scheduling process. This means
that, according to the processor utilization interval predefined by the users, the
processor utilization of the RTS is dynamically changed at run-time.

92 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

By comparing Sequences (1.) and (2.), we see that after the occurrence of
substring .γ1α1γ2tβ1, the controller provides at least two subsequences in Sequences
(1.) and (2.) to schedule . τ2. However, neither the non-preemptive scheduling
proposed in [5] nor the EDF scheduling can provide such scheduling plans.

4.5 Conclusion

As summarized in this chapter, based on supervisory control of TDES, Chen and
Wonham propose a formal constructive method in [5], for the purpose of scheduling
the non-preemptive execution of a set of periodic tasks on a processor, which
could be either resource-sharing or independent. Thereafter, in order to address the
reconfiguration problem, the proposed model is generalized in [10]. This model
can be used to schedule or reconfigure RTS. As a consequence, the formal SCT of
TDES can be considered as a rigorous analysis and synthesis tool to dynamically
schedule and reconfigure the non-preemptive scheduling of RTS. Suppose that in
every scheduling plan only a subset of tasks of an RTS is called by the processor.
Instead of dynamically updating the specification for the tasks running in the uni-
processor, a general specification is presented, which guarantees that all the potential
tasks called by the processor can be scheduled non-preemptively. In the case of
the RTS claimed by [5] to be non-schedulable, the presented two-step dynamic
reconfiguration approach can be utilized to find all the safe execution sequences
(possible reconfiguration scenarios) of each task in the RTS. These sequences
provide more choices than the EDF scheduling algorithm. The processor and the
real-time tasks are general models for real-world RTS. The multi-period model can
be utilized to describe the behavior of a manual assembly process or a robotic pick-
and-place operation executed by a processor that could be a water vessel system,
computer numerical control machine, a robot, or an assembly-line worker. This
leads to the possibility that the offline reconfiguration method can be implemented
in practical contexts based on reconfigurable real-time scheduling. Building on
the multi-period framework, and for the purpose of solving the problem of the
TDES model faced, the presented RTS modelling tool is generalized in Chaps. 5
and 6 as modular discrete-event system (DES) models (based on the nonblocking
supervisory control of DES) and Chap. 7 as a hierarchical DES model (based on the
nonblocking supervisory control of state-tree structures).

References

1. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event systems. IEEE
Trans. Autom. Control 39(2), 329–342 (1994)

2. Buttazzo, G., Abeni, L.: Adaptive workload management through elastic scheduling. Real-
Time Syst. 23, 7–24 (2002)

References 93

3. Buttazzo, G.C., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In: IEEE
Real-Time Systems Symposium, pp. 286–295 (1998)

4. Buttazzo, G.C., Lipari, G., Caccamo, M., Abeni, L.: Elastic scheduling for flexible workload
management. IEEE Trans. Comput. 51(3), 289–302 (2002)

5. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002)

6. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

7. Marinoni, M., Buttazzo, G.: Elastic DVS management in processors with discrete volt-
age/frequency modes. IEEE Trans. Ind. Inf. 3(1), 51–62 (2007)

8. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101–155 (2004)

9. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling
framework. ACM SIGada Ada Lett. 4, 1–8 (2004)

10. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Indust. Inf. 12(1), 101–111
(2016)

11. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering. Springer. Berlin (2018)

Chapter 5
Priority-Free Conditionally-Preemptive
Real-Time Scheduling Based on R-W
Method

5.1 Introduction

Real-time systems (RTS) can be loosely defined as systems whose response time
is an important determinant of correct functioning [8]. Historically, RTS were
constructed in an ad hoc manner, and scheduled by cyclic executives [16]. An RTS
consists of a number of tasks with explicit timing requirements, which could be a
water vessel system, a computer numerical control machine, a robot, or an assembly-
line worker. In the literature, most of the existing classical real-time scheduling
algorithms are based on dynamic or fixed priorities [1, 4–7, 9–12, 15, 16, 21]. The
study in [5] shows that, when the tasks’ periods are equal to their deadlines, the
preemptive earliest deadline first (EDF) scheduling algorithm is optimal.

As stated in Chap. 4, in the seminal work [3], Chen and Wonham propose a
timed discrete-event system (TDES) modelling mechanism to model real-time tasks
running in uni-processor RTS and schedule them non-preemptively. Later the TDES
model is generalized in [18] for the purpose of dynamic reconfigurations of RTS
when they are non-schedulable.

In this chapter, a discrete-event system (DES)-based real-time task model is
presented to schedule the real-time tasks running in uni-processor RTS. The timing
constraints of RTS tasks are represented by different events in the DES model.
Hence, in the DES modelling mechanism, the execution of different tasks will
always happen sequentially, which is more realistic. Clearly, a DES is more general
for modelling RTS than TDES, which provides the possibility of preemptive SCT-
based scheduling of RTS.

Compared with non-preemptive scheduling, preemptability can provide more
flexibility to real-time scheduling. In fully preemptive systems, at any time, the
execution of a running task can be interrupted by tasks with higher priorities, and it
continues when all tasks with higher priorities have been completed [2]. However,
in some special cases, both preemptive and non-preemptive scheduling policies
are conservative. Users may customize specific preemption plans that are neither

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_5

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5
https://doi.org/10.1007/978-3-031-41969-0_5

96 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

preemptive nor non-preemptive. In fact, for such real-time scheduling requirements,
priorities cannot be assigned to real-time tasks.

The behavior of periodic RTS tasks is described by formal language [20]. Each
language can be represented by a DES generator. The synchronous product [20] of
these DES generators can integrate the models of the tasks running in a processor
into a complex generator to represent the global processor behavior.

This chapter presents priority-free conditionally-preemptive (PFCP) scheduling,
which generalizes priority-based preemption. By defining the preemption relation
among any two tasks running in a processor, a preemption matrix can be utilized
to describe all the possible fixed-priority (FP) preemption relations and other
user-specified preemption relations. Based on this matrix, the corresponding DES
specifications are designed accordingly. From the perspective of a task’s execution,
between any two adjacent processor time units, the task-centered conditional-
preemption relations are also depicted by DES specifications. Clearly, the two
presented general conditional-preemption specifications are utilized to customize
scheduling and preemption requirements conditionally. The worst-case response
time (WCRT, no later than the corresponding deadline) of a real-time task is used to
evaluate the schedulability of the tasks processed in an RTS [17]. In this chapter,
WCRT can also be restricted by a specification. Furthermore, the nonblocking
preemptive scheduling of real-time tasks is also addressed, which provides all the
dynamic priority scheduling sequences.

Similar to Chap. 4, all the safe execution sequences generated by the synchro-
nized specifications with respect to the tasks running in an RTS can be synthesized
offline by SCT. Users can choose any sequence to schedule the processor. The
real-time scheduling with conditional-preemption is applied to the real-world uni-
processor systems.

In comparison with the TDES-based RTS scheduling frameworks proposed in
[3, 18], the DES modelling framework and the PFCP scheduling specifications
presented in this chapter are more realistic:

• The task behavior is modelled by DES, and thus the execution of each real-time
task’s processing is represented by an individual event instead of the global tick
event t in TDES.

• The priorities of tasks are not treated and the preemption relations are described
by a matrix.

• The specifications are imposed from the perspective of both the processor
and individual task. Based on this scheduling principle, some classic real-time
scheduling policies such as FP or partially FP scheduling [1, 4, 7, 9, 12, 15, 16]
are treated as special cases of the PFCP specifications.

The rest of this chapter is organized as follows. The system model and priority-
free real-time scheduling with conditional-preemption principles are described
in Sect. 5.2. The DES model for the periodic tasks and the RTS are proposed
in Sect. 5.3. The specifications are formalized and established in Sect. 5.4. Sec-
tions 5.5 and 5.6 report methodologies for the real-time scheduling with conditional-
preemption applied to real-world systems. Finally, Sect. 5.7 reaches conclusions.

5.2 Task Models and Preemption Policies 97

5.2 Task Models and Preemption Policies

In this section, the behavior of a periodic real-time task is represented by a DES
diagram. Three types of specifications are provided. The presented PFCP real-time
scheduling algorithm generalizes priority-based preemption scheduling. In addition,
from the perspective of each individual task, task-centered conditional-preemption
specification is presented, which allows the task execution to be preempted by a
subset of other tasks between any two adjacent processor time units. Furthermore,
theWCRT of a task no later than its deadline can also be restricted by a specification.

5.2.1 Task Model

Consider the regular periodic tasks with regular periods, i.e., the time intervals
between any two adjacent arrivals are constant. Suppose that a periodic RTS . S
processes n tasks, i.e., .S = {τ1, τ2, . . . , τi , . . . , τn}, .i ∈ n = {1, 2, . . . , n}. A
periodic task is specified as a four-tuple

. τi = (Ri, Ci,Di, Ti)

with

• a release time . Ri ,
• a worst-case execution time (WCET) . Ci ,
• a deadline . Di , and
• a regular period . Ti .

As stated in Sect. 3.1, a periodic task . τi consists of an infinite sequence of jobs
repeated periodically that are represented by a corresponding four-tuple

. Ji,j = (ri,j , Ci, di,j , pi,j).

The subscript “. i, j” of .Ji,j represents the j -th execution of task . τi .

Motivating Example
Suppose that a uni-processor RTS . S executes four periodic tasks . τ1, . τ2, . τ3, and . τ4.
Their parameters are shown in Table 5.1. We assume that the execution of . τ1 can
be preempted only by . τ2, . τ2 only by . τ4, and . τ4 only by . τ1; moreover, . τ3 cannot
be preempted. Clearly, no priorities can be assigned to these tasks. In this case, the
EDF and FP algorithms cannot be utilized to schedule this RTS. In order to solve
such problems, we discard the priorities and consider the real-time scheduling as
priority-free. .□

98 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Table 5.1 Parameters of four
tasks

Task .Ri .Ci .Di . Ti

.τ1 0 3 9 9

.τ2 3 3 6 6

.τ3 0 1 4 5

.τ4 0 2 14 18

5.2.2 Priority-Free Real-Time Scheduling

For some real-world preemption policies, the tasks running in a processor cannot
be assigned with priorities [19]. Hence, for both preemptive and non-preemptive
scheduling, from the perspective of the processor, conditional-preemption among
real-time tasks is presented. By a preemption matrix that will be defined later,
users can define any preemption relation among all the tasks running in the same
processor.

Definition 5.1 [priority-free] A scheduling policy is said to be priority-free if all
the released tasks in a processor can be processed in any order. . ♢
As discussed in Sect. 1.4.1, in each hyper-period, all the processor time units are
partitioned into:

• busy time: the processor is occupied by other tasks, and thus . τi cannot be
executed,

• running time: . τi is in process,
• preemption time (if any): after the execution of . τi has started, its execution is

interrupted by (a subset of) other tasks, and
• free time: the execution of . τi is completed or . τi has not arrived yet. These

processor time units can be idle or utilized to execute other tasks.

A priority-free scheduling policy can be utilized to schedule all the periodic tasks
randomly, i.e., for a real-time task, its busy time and preemption time can be
occupied by any other tasks. Moreover, in accordance with traditional real-time
scheduling, a task is not allowed to be interrupted if the system would thereby
come to an idle operation. In this case, the free time is also allowed to be in an
idle operation only when no task is in process.

Example For task . τ2 shown in Table 5.1, a possible conditionally-preemptive real-
time scheduling is illustrated in the Gantt chart depicted in Fig. 5.1. By allowing
preemption of other tasks, the first nine processor time units are partitioned into:

• busy time: time interval .[3, 4),
• running time: time intervals .[4, 6) and .[7, 8),
• preemption time: time interval .[6, 7), and
• free time: time intervals .[0, 3) and .[8, 9).

5.2 Task Models and Preemption Policies 99

Fig. 5.1 Real-time
scheduling of task . τ2

The time intervals .[0, 4), .[6, 7), and .[8, 9) can be occupied by other tasks running
in the same processor. In addition, only time intervals .[0, 3] and .[8, 9] could
alternatively be idle. . □

From the perspective of processor and individual tasks, two sets of general
scheduling policies are presented, respectively, which can be applied to any specific
conditional-preemption plan.

5.2.3 Preemption Matrices

From the perspective of a processor, its preemption matrix is defined to describe the
preemption relations among the tasks running in it.

Definition 5.2 [preemption matrix] An .n × n matrix . A is said to be a preemption
matrix if .Ai,j = 1 (resp., .Ai,j = 0) represents that a task . τi is allowed (resp., not
allowed) to be preempted by task . τj . . ♢
The preemption matrix . A of an RTS . S is in the form

.A =

⎛
⎜⎜⎜⎝

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...

∗ ∗ · · · 0

⎞
⎟⎟⎟⎠ (5.1)

where . ∗, either 0 or 1, can be predefined by users.
Definition 5.3 [matrix-based PFCP] A preemption policy is said to be matrix-based
PFCP if it can be represented by a preemption matrix. . ♢
For a uni-processor, according to the preemption matrix, a running task . τi can be
interrupted by the execution of a specified task set . Aτi

that is a subset of the other
tasks processed in . S, i.e.,

. Aτi
= {τj ∈ S| the execution of τi is allowed to be preempted by τj }.

Example Consider the real-time tasks shown in Table 5.1. Suppose that every task
can be preempted by other tasks, i.e., the tasks are preemptive. All the variable
entries in its corresponding preemption matrix . A are replaced by 1, as shown in . A1.

100 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

In contrast, suppose that the tasks are non-preemptive, i.e., no task can be
preempted by other tasks. Thus, all the . ∗’s in its corresponding preemption matrix
. A are replaced by 0, as shown in . A2.

Moreover, in accordance with the FP real-time scheduling by assigning priorities
to tasks . τ1, . τ2, . τ3, and . τ4 in an ascending order, preemption matrix .A3 is
customized, which shows that

• . τ1 can be preempted by . τ2, . τ3, and . τ4,
• . τ2 can be preempted by . τ3 and . τ4, and
• . τ3 can be preempted by . τ4.

Similarly, we can assign priorities to tasks . τ1, . τ2, . τ3, and . τ4 in a descending
order, as shown in . A4. By assigning partial preemption relation to real-time tasks
conditionally, . A5 is customized. Moreover, the preemption matrix for the motivating
example is stated in . A6. . □

. A1 =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ ,A2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

. A3 =

⎛
⎜⎜⎝

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,A4 =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎞
⎟⎟⎠ ,

. A5 =

⎛
⎜⎜⎝

0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,A6 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ .

5.2.4 Task-Centered Conditional-Preemption Constraints

Focusing on any task’s execution, a general preemption policy, namely task-centered
conditional-preemption specification, is presented. It can be utilized to designate
how long after its execution is started, a task can be preempted by other tasks. In
each processing period, from the perspective of an individual task, between any two
adjacent processor time units, the execution of . τi can be preempted by a user-defined
set of other tasks running in the same processor.

Example According to . A1 in the previous example, . τ2 can be preempted by . τ1, . τ3,
and . τ4, which represents that the execution of . τ2 can be interrupted by . τ1, . τ3, or
. τ4 immediately upon their arrival. As shown in Table 5.1, we have .C2 = 3, i.e., the

5.3 Tasks Modelled by Discrete-Event Systems 101

execution of . τ2 takes three time units. Thus we can define two different task-centered
conditional-preemption preemption plans for the execution of . τ2, e.g., between the
first two time units, only . τ1 and . τ3 can interrupt the execution of . τ2. . □

5.2.5 Response Time Constraints

The WCRT of a real-time task is a procedure provided by RTS scheduler Cheddar1

[17] to evaluate the schedulability of the tasks processed in an RTS. From the
perspective of supervisory control, WCRT is restricted by a specification.

Example For task . τ2, we have .D2 = 9. A WCRT specification can be customized
to restrict the execution of . τ2 to be completed no later than 7 time units. Formally,
we have .W2 = 7. . □

Then, all the safe execution sequences generated by the synchronized specifi-
cations with respect to the tasks running in a uni-processor RTS can be calculated
offline by the supervisory control of DES. Users can choose any sequence to sched-
ule the processor. In the case that task-centered conditional-preemption relations do
not exist, the preemption relations defined in the matrix are applied to the real-time
scheduling throughout the execution. Otherwise, the real-time scheduling should
take both the task-centered conditional-preemption and PFCP specifications into
account simultaneously.

5.3 Tasks Modelled by Discrete-Event Systems

In this section, DES generators are utilized to describe the processor behavior
to execute periodic real-time tasks. As stated in Sect. 4.2.2, the states filled with
gray represent that the corresponding task is under execution. Eventually, the
synchronized language, represented by a more complex DES generator, is utilized to
describe the global processor behavior for real-time scheduling. In a synchronized
DES generator, all the enabled events can occur without considering their priorities.
Thus, if two or more events are eligible simultaneously, their synchronous product
allows them to occur in any order. Since the synchronous product can provide all
the possible sequences that are not related to priorities, conditional-preemption is
possible. Each DES generator can be represented by a regular language, which is
stated in the Appendix of this chapter.

The DES generator for an RTS task . τi is represented by

.Gi = (Qi,Σi, δi, q0,i ,Qm,i),

1 http://beru.univ-brest.fr/cheddar/.

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/

102 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

where

• . Qi is the finite state set,
• . Σi is the alphabet with .Σi = Σcon,i∪̇Σunc,i :

– .Σcon,i := {αi, c1, c2, . . . , ci , . . . , cn}: controllable event subset , and
– .Σunc,i := {βi, γi, l}: uncontrollable event subset,

• .δi : Qi × Σi → Qi is the (partial) transition function,
• .q0,i is the initial state, and
• .Qm,i is the subset of marker states.

Furthermore, for . Gi , its alphabet (event labels), written as . Σi to describe the
behavior of . Gi , is the disjoint union of .Σo,i and . Σe, i.e., .Σi = Σo,i∪̇Σe with
.Σo,i ∩ Σe = ∅, .Σo,i = {γi, αi, βi}, and .Σe = {c1, c2, . . . , ci , . . . , cn, l}, where
• .Σo,i is the operation event set of task . τi , with

– . γi : task . τi is released,
– . αi : the execution of . τi is started, and
– . βi : the execution of . τi is completed,

• . Σe is the execution event set, with

– .(i ∈ n) . ci : task . τi is under execution in the processor, and
– l: no task is under execution in the processor, i.e., the corresponding processor

time unit is in an idle operation.

The global event set of an RTS . S is denoted by

. Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn.

Clearly, . Σ is partitioned into

• .Σcon = {αi, ci |i ∈ n}: the controllable event set, and
• .Σunc = {βi, γi, l|i ∈ n}: the uncontrollable event set;
and also partitioned into

• .Σo = {γi, αi, βi |i ∈ n}: the operation event set, and
• .Σe = {ci, l|i ∈ n}: the execution event set.
The controllability of event . αi (resp., . ci), .i ∈ n, endows the uni-processor RTS with
the authority to choose and execute (resp., interrupt) any task among all the released
ones. The controllable event . αi is disabled in order to delay the execution of task . τi

for the purpose of avoiding blocking. The general DES model for real-time periodic
tasks is presented in Fig. 5.2, in which . ∗ represents the events in .Σe − {ci}. All the
states and transitions are defined by:

• states .y−Ri
, .y−Ri+1 ,, .y−1, and . yγ form the state set before task . τi is released

for the first time,
• state . yγ : . τi is ready for execution,

5.3 Tasks Modelled by Discrete-Event Systems 103

• state . yα
k with .0 ≤ k ≤ Di − Ci : k time units have passed since the recent release

of task . τi ,
• state .yk,p with .0 ≤ k ≤ Di − Ci and .0 ≤ p ≤ Ci : starting the p-th time unit

execution of task . τi at the k-th time unit in a period,
• state . y

β
k with .Ci ≤ k ≤ Di : the targeting state of event . βi ,

• states . yk with .Di < k < Ti : the execution of task . τi is completed and k time
units have elapsed since the recent release of task . τi ,

• .Di = Ti .⇒ .y
β
Di

= yγ ,
• the state with an entering arrow is the initial state .y−Ri

,
• the states represented by double circles are the marker states .Qm,i ,
• . ci (resp., . cj) represents the execution of . τi (resp., .τj ∈ S, .j /= i), and
• the function . δi satisfies

– .(−Ri ≤ k ≤ −1) .δi(yk, l) = yk+1: the processor is in an idle operation,
– .(−Ri ≤ k ≤ −1) δi(yk, cj) = yk+1: task . τj is in process,
– .δ(yγ , γi) = yα

0 : . τi is released,
– .(0 ≤ k ≤ Di −Ci) .δi(y

α
k , αi) = yk,0: at state . yα

k , the execution of . τi is started,

– .(Ci ≤ k ≤ Di) .δi(yk,Ci
, βi) = y

β
k : at state .yk,Ci

, the processing of . τi is
completed,

– .(0 ≤ k < Di , .0 ≤ p < Ci) .δi(yk,p, ci) = yk+1,p+1: task . τi is in process,
– .(0 ≤ k < Di , .0 ≤ p < Ci) .δi(yk,q , cj) = yk+1,q : the execution of task . τi is

preempted by . τj ,

– .(Ci ≤ k < Di), .δi(y
β
k , cj) = y

β
k : after the occurrence of . βi , . τj is in process,

– .(Ci ≤ k < Di), .δi(y
β
k , l) = y

β
k : after the occurrence of . βi , the processor is in

an idle operation,
– .δi(y

β
Di

, cj) = yDi+1: after the occurrence of . βi , . τj is in process,

– .δi(y
β
Di

, l) = yDi+1: after the occurrence of . βi , the processor is in an idle
operation,

– .(Di < k ≤ Ti − 1), .δi(yk, cj) = yk+1: task . τj is in process, and
– .(Di < k ≤ Ti − 1), .δi(yk, l) = yk+1: the processor is in an idle operation.

Example The DES model . G2 corresponding to tasks . τ2 is depicted in Fig. 5.3.
Since .R2 = 3, event . γ2 occurs at the end of the third processor time unit. After
a period of . τ2 is finished, . γ2 occurs immediately to repeat the process. . □

All the operations in TCT2 and the names of the generated files are recorded in
an annotated file MAKEIT.TXT. In TCT, . G1, . G2, . G3, and . G4 are named as TASK1,
TASK2, TASK3, and TASK4, respectively. The creation of TASK2 is reported
below, in which for .i ∈ n, events . γi , . αi , . βi , and . ci are renamed i0, i1, i2, and
i9, respectively. Moreover, event l is represented by 0. The corresponding system

2 http://www.control.utoronto.ca/DES.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

104 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.2 General DES model for task . τi

behavior is calculated by the synchronous product procedure. In accordance with
Sect. 4.3, the utilized TCT procedures are introduced in [20].

TASK2 = create (TASK2, [mark 0, 1, 2, 3, 4, 9, 10, 15, 16, 21, 22], [tran [0, 0, 1],
[0, 19, 1], [0, 39, 1], [0, 49, 1], [1, 0, 2], [1, 19, 2], [1, 39, 2], [1, 49, 2], [2, 0, 3], [2,
19, 3], [2, 39, 3], [2, 49, 3], [3, 20, 4], [4, 19, 10], [4, 21, 5], [4, 39, 10], [4, 49, 10],
[5, 19, 11], [5, 29, 6], [5, 39, 11], [5, 49, 11], [6, 19, 12], [6, 29, 7], [6, 39, 12], [6,
49, 12], [7, 19, 13], [7, 29, 8], [7, 39, 13], [7, 49, 13], [8, 22, 9], [9, 0, 15], [9, 19,
15], [9, 39, 15], [9, 49, 15], [10, 19, 16], [10, 21, 11], [10, 39, 16], [10, 49, 16], [11,
19, 17], [11, 29, 12], [11, 39, 17], [11, 49, 17], [12, 19, 18], [12, 29, 13], [12, 39,
18], [12, 49, 18], [13, 19, 19], [13, 29, 14], [13, 39, 19], [13, 49, 19], [14, 22, 15],
[15, 0, 21], [15, 19, 21], [15, 39, 21], [15, 49, 21], [16, 19, 22], [16, 21, 17], [16, 39,
22], [16, 49, 22], [17, 19, 23], [17, 29, 18], [17, 39, 23], [17, 49, 23], [18, 19, 24],
[18, 29, 19], [18, 39, 24], [18, 49, 24], [19, 19, 25], [19, 29, 20], [19, 39, 25], [19,
49, 25], [20, 22, 21], [21, 0, 3], [21, 19, 3], [21, 39, 3], [21, 49, 3], [22, 21, 23], [23,
29, 24], [24, 29, 25], [25, 29, 26], [26, 22, 3]]) (27, 81)

5.3 Tasks Modelled by Discrete-Event Systems 105

Fig. 5.3 DES model . G2

Suppose that we have an RTS . S that possesses only one processor; three
scheduling plans are discussed below.

Plan 1: . τ1 and . τ2 in Process
Suppose that tasks . τ1 and . τ2 are processed in an RTS . S, denoted by . S1. It is
generated by the procedure sync provided by TCT. Since tasks . τ3 and . τ4 are not
in . S1, within . τ1 and . τ2, we can eliminate . c3 and . c4 (events 39 and 49) by relabelling
them to be . c2 (event 29) and . c1 (event 19), respectively. Thereafter, the DES
model representing . S1 can be generated by a synchronous product. In TCT, . S1 is
represented by SYS1 that contains 71 states and 98 transitions. The corresponding
TCT procedures are (all the sync operations in the original MAKEIT.TXT file are
reported with the message “Blocked_events = None”, eliminated in this monograph
for readability):

. TEST1 = relabel (TASK1, [[39, 29], [49, 29]]) (42, 72)

. TEST2 = relabel (TASK2, [[39, 19], [49, 19]]) (27, 45)

.SYS1 = sync (TEST1, TEST2) (71, 98)

106 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Plan 2: . τ1, . τ2, and . τ4 in Process
Suppose that tasks . τ1, . τ2, and . τ4 are processed in RTS . S, denoted by . S2. It is
represented by SYS2 in TCT, and can be generated in a similar way, i.e.,

. TEST1 = relabel (TASK1, [[39, 29]]) (42, 102)

. TEST2 = relabel (TASK2, [[39, 19]]) (27, 63)

. TEST4 = relabel (TASK4, [[39, 19]]) (69, 173)

. SYS2 = sync (TEST1, TEST2, TEST4) (170, 279)

Plan 3: . τ1, . τ2, . τ3, and . τ4 in Process
Suppose that all four tasks . τ1, . τ2, . τ3, and . τ4 are processed in RTS . S, denoted by . S3.
Represented by SYS3 in TCT, . S3 can be generated in a similar way, i.e.,

SYS3 = sync (TASK1, TASK2, TASK3, TASK4) (952, 2056) Blocked_events = [0]

This shows that there is a blocked event 0 (l) in SYS3 (. S3), which represents that
in the real-time scheduling, there is no idle time unit. This means that the processor
utilization of . S3 is .U3 ≥ 1 [12]. By calculating the processor utilization of . S3, we
obtain

. U3 = 3

9
+ 3

6
+ 1

5
+ 2

14
> 1.

Thus, . S3 is non-schedulable. Hence, it can be reconfigured by following the
approach proposed in Chap. 4. Furthermore, based on a modular modelling
approach, the scheduling/reconfiguration approach is generalized in Chap. 6.

In the modelling phase, “bad decisions” made by the synchronous product
procedure may block the PFCP real-time scheduling. As a solution, in the rest of
this chapter, SCT is utilized to supervise the RTS to be nonblocking.

5.4 Specifications Modelled by Discrete-Event Systems

In accordance with [20], all possible behaviors in a processor of an RTS are
generated by a DES, called the plant. Hence, the behavior of an RTS under control
is a subset of the generated languages with respect to certain constraints that are
provided by some specification languages. In order to schedule the processor to
be nonblocking and conditionally-preemptive, we shall impose the synchronous
product of proper specifications on the behavior of the processor. For each task
running in a processor, four types of specifications are defined:

• nonblocking specifications: nonblocking preemptive scheduling of real-time
tasks,

• PFCP specifications: the preemption relation among all the tasks,

5.4 Specifications Modelled by Discrete-Event Systems 107

• task-centered conditional-preemption specifications : during the execution of
each task, the exact preemption plan between two adjacent time units, and

• WCRT-based specifications: the WCRT in all the periods.

According to the study in [20] and Chap. 4, given any RTS represented by . G, for
any specification, selfloops of events appeared in . G but not in the specification
must be adjoined to account for all the events that are irrelevant to the specification
but possibly executed in the plant. For simplification, in this section, we build the
specification by the create procedure in TCT; thereafter the selfloops are adjoined
by the procedures allevents and sync. The selfloop of events for . τi is viewed as its
nonblocking specification.

5.4.1 Nonblocking Specifications

In order to control the RTS to be nonblocking, the specification . SN
i for task . τi should

allow the occurrence of any strings over . Σi . Formally, we have:

. L(SN
i) = Σ∗

i .

The TCT procedure allevents can be utilized to generate a DES representing . Σ∗
i .

As shown in Fig. 5.4, the nonblocking specification for task . τi is a generator with
only one state at which all the events appeared in . Σi are enabled.

The corresponding TCT operations to create such specifications are provided.
SN1, SN2, SN3, and SN4 are the nonblocking specifications . SN

1 , . S
N
2 , . S

N
3 , and

. SN
4 , respectively. In TCT, the monolithic nonblocking specification for an RTS . S

is denoted by SN. The corresponding TCT operations are given below.

. SN1 = allevents (TASK1) (1, 8)

. SN2 = allevents (TASK2) (1, 8)

. SN3 = allevents (TASK3) (1, 8)

. SN4 = allevents (TASK4) (1, 8)

Fig. 5.4 Nonblocking
specification for task .τi

108 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

5.4.2 Matrix-Based Priority-Free Conditional-Preemption
Specifications

In a processor, all the possible preemptions that may occur during the execution
of task . τi are defined in the i-th row of the preemption matrix . A. More precisely,
task . τi can be preempted by . τj if .Ai,j = 1. The preemption occurs between the
occurrences of . αi and . βi . Thus, a matrix-based PFCP specification . SAi is defined for
a task . τi with a generator

. SAi = (QA
i , ΣA

i , δAi , qA
0i ,Q

A
mi).

Here

• . QA
i : the state set that contains two states:

– . y0: task . τi is not in process and
– . y1: task . τi is in process,

• .ΣA
i = ⋃

i∈n Σi : the set of all the events appearing in the processor,
• . δAi : the (partial) transition function:

– .δAi (y0, σ) = y0, .σ ∈ Σe − {ci}: . τi is not in process, and the time unit can be
taken by other tasks or idle,

– .δAi (y1, ci) = y1: task . τi is in process,
– .δAi (y1, cj) = y1: task . τi can be preempted by . τj , i.e., .Ai,j = 1,
– .δAi (y0, αi) = y1: the execution of . τi is started, and
– .δAi (y1, βi) = y0: the execution of . τi is completed,

• .qA
0,i = y0 is the initial state, and

• .QA
m,i = {qA

0,i} is the subset of marker states.

The DES model of specification . SAi for . τi is illustrated in Fig. 5.5, where

• . ∗ represents the events in .Σe − {ci}, and
• . cj represents the execution of task . τj that is allowed to preempt the execution

of . τi .

As a result, the TCT operations to create the specifications corresponding to
matrix . A2 are listed below, in which 1NP, 2NP, 3NP, and 4NP are the non-
preemptive specifications . SA1 , . S

A
2 , . S

A
3 , and . SA4 for task . τ1, . τ2, . τ3, and . τ4, respectively.

Each specification represents that the execution of the corresponding task cannot be
preempted.

Fig. 5.5 Matrix-based
conditional-preemption
specification

5.4 Specifications Modelled by Discrete-Event Systems 109

1NP = create (1NP, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49,
0], [1, 12, 0], [1, 19, 1]]) (2, 7)

2NP = create (2NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 39, 0], [0, 49, 0], [0, 21,
1], [1, 22, 0], [1, 29, 1]]) (2, 7)

3NP = create (3NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 31, 1], [0, 49,
0], [1, 32, 0], [1, 39, 1]]) (2, 7)

4NP = create (4NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 41,
1], [1, 42, 0], [1, 49, 1]]) (2, 7)

Moreover, the matrix-based PFCP specifications are created for matrix . A5:

• 1B34: the execution of task. τ1 can be preempted by . τ3 and . τ4, and
• 2B4: the execution of task . τ2 can be preempted by . τ4.

The corresponding TCT operations are listed below.

. 1B34 = edit (1NP, [trans +[1, 39, 1], +[1, 49, 1]]) (2, 9)

. 2B4 = edit (2NP, [trans +[1, 49, 1]]) (2, 8)

Similarly, the PFCP specifications are created for matrix . A6:

• 1B2: the execution of task . τ1 can be preempted by . τ2,
• 2B4: the execution of task . τ2 can be preempted by . τ4 (DES created already), and
• 4B1: the execution of task . τ4 can be preempted by . τ1.

The TCT operations are given below.

. 1B2 = edit (1NP, [trans +[1, 29, 1]]) (2, 8)

. 4B1 = edit (4NP, [trans +[1, 19, 1]]) (2, 8)

5.4.3 Task-Centered Specifications

From the perspective of each individual task, task-centered specifications define
the exact preemption plans between the occurrences of two adjacent time units
(. ci’s) representing the execution of task . τi . A task-centered conditional-preemption
specification . SC

i is defined for each task . τi with a generator

.SC
i = (QC

i ,ΣC
i , δC

i , qC
0i ,Q

C
mi).

110 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Here . ∗ represents the events in .Σe − {ci}, and
• . QC

i : the state set containing .Ci + 2 states,
• .ΣC

i = ⋃
i∈n Σi : the set of all the events appearing in the processor,

• .(0 ≤ k < Ci)Σ
k
e : user defined unempty subset of . Σe that contains several events

. cj representing the preemption of task . τj ,
• . δC

i : the (partial) transition function:

– .(σ ∈ Σe − {ci}) .δC
i (yα

0 , σ) = yα
0 and .δC

i (yCi
, σ) = yCi

: . τi is not in process;
the time unit can be occupied by other tasks or idle,

– .δC
i (yα

0 , αi) = y0: task . τi has arrived,
– .(0 ≤ k < Ci) .δC

i (yk, ci) = yk+1: task . τi is in process,
– .(0 ≤ k < Ci, cj ∈ Σk

e) .δC
i (yk, cj) = yk: . τi is preempted by the execution of

. τj , and
– .δC

i (yCi
, βi) = yα

0 : the execution of . τi is completed,

• .qC
0,i = yα

0 : the initial state, and

• .QC
m,i = {yα

0 }: the subset of marker states.

The DES model of specification . SC
i for . τi is shown in Fig. 5.6, in which the selfloops

are labelled by event . cj in . Σe corresponding to task . τj , .j /= i, that can preempt the
execution of task . τi . Let .0 ≤ k < Ci . The preemption of the k-th execution time
unit is defined at state . yk . More preciously, if event . cj is in event set .Σk

e that is
selflooped at state . yk , then the k-th execution time unit is allowed to be preempted
by . τj .

The corresponding task-centered conditional-preemption specifications are:

• ST1: the last time unit of . τ1 cannot be preempted by . τ2,
• ST2: the last time unit of . τ2 cannot be preempted by . τ1,
• ST3: the last time unit of . τ1 cannot be preempted by . τ4, and
• ST4: the last time unit of . τ2 cannot be preempted by . τ4.

The corresponding TCT operations to create specifications are listed below.

ST1 = create (ST1, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49,
0], [1, 19, 2], [1, 29, 1], [1, 39, 1], [1, 49, 1], [2, 19, 3], [2, 39, 2], [2, 49, 2], [3, 12,
0], [3, 19, 3], [3, 29, 3], [3, 39, 3], [3, 49, 3]]) (4, 17)

Fig. 5.6 Task-centered conditional-preemption specification

5.4 Specifications Modelled by Discrete-Event Systems 111

ST2 = create (ST2, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 21, 1], [0, 39, 0], [0, 49,
0], [1, 19, 1], [1, 29, 2], [1, 39, 1], [1, 49, 1], [2, 19, 2], [2, 29, 3], [2, 39, 2], [2, 49,
2], [3, 29, 4], [3, 39, 3], [3, 49, 3], [4, 19, 4], [4, 22, 0], [4, 39, 4], [4, 49, 4]]) (5, 20)

ST3 = edit (ST1, [trans +[2, 29, 2], -[2, 49, 2]]) (4, 17)

ST4 = edit (ST2, [trans +[3, 19, 3], -[3, 49, 3]]) (5, 20)

5.4.4 Response Time Constraint Specifications

The preemption of real-time execution increases the response time of task . τi . In
order to constrain that the execution time of task . τi is not longer than a value of
WCRT . Wi , i.e., in a period . Ti , the execution time between the occurrences of events
. γi and . βi is limited to be no greater than . Wi time units, a WCRT-based specification
. SWi is defined for task . τi with a generator

. SWi = (QW

i , ΣW

i , δWi , qW

0,i ,Q
W

m,i),

where

• . QW

i : the state set containing .Wi + 2 states,
• .ΣW

i = Σi − {l}: the set of all the events except l appearing in . Gi ,
• . δWi : the (partial) transition function:

– .δWi (yγ , σ) = yγ , .σ ∈ Σe − {ci}: . τi is not in process, and the time unit can be
taken by other tasks or idle,

– .δWi (yγ , γi) = y0: . τi is released,
– .(0 ≤ k < Wi , σ ∈ Σe − {l}) .δWi (yk, σ) = yk+1: task . τj is in process, and
– .(0 < k < Wi) .δWi (yk, βi) = yk+1: the execution of . τi is completed,

• .qW

0,i = yγ : the initial state, and

• .QW

m,i = {yγ }: the subset of marker states.

The DES model of specification .SWi for . τi is shown in Fig. 5.7, where . ∗ and . ∗∗
represents the events in .Σe − {ci} and .Σe − {l}, respectively.
Example For the RTS tasks shown in Table 5.1, a possible set of WCRT-based
specifications are:

• SR1: the WCRT of task . τ1 is .W1 = 4, and
• SR4: the WCRT of task . τ4 is .W4 = 2.

The corresponding TCT operations to create specifications are listed below.

112 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.7 WCRT-based conditional-preemption specification

SR1 = create (SR1, [mark 0], [tran [0, 0, 0], [0, 10, 1], [0, 29, 0], [0, 39, 0], [0, 49,
0], [1, 19, 2], [1, 29, 2], [1, 39, 2], [1, 49, 2], [2, 12, 0], [2, 19, 3], [2, 29, 3], [2, 39,
3], [2, 49, 3], [3, 12, 0], [3, 19, 4], [3, 29, 4], [3, 39, 4], [3, 49, 4], [4, 12, 0], [4, 19,
5], [4, 29, 5], [4, 39, 5], [4, 49, 5], [5, 12, 0]]) (6, 25)

SR4 = create (SR4, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 40,
1], [1, 19, 2], [1, 29, 2], [1, 39, 2], [1, 49, 2], [2, 19, 3], [2, 29, 3], [2, 39, 3], [2, 42,
0], [2, 49, 3], [3, 42, 0]]) (4, 16) . □

5.5 Case Study I: Supervisor Synthesis of Motor Network

So far, the priority-free scheduling policy with conditional-preemption is described
in regular languages that can be represented by DES. It is well known that
SCT can be used to find the supremal controllers that provide the minimally
restricted controller of the systems. By utilizing the procedure sync in TCT, all the
specifications can be integrated into a unique one. The procedure supcon in TCT
finds all the safe execution sequences within an RTS satisfying the synchronized
specification. Users need not be concerned with the mathematical calculations; by
utilizing TCT, all the safe execution sequences are provided in the supervisor. Each
sequence can be utilized by users to schedule the RTS. All the EDF, FP, and other
sequences can be found in the synthesized supervisor.

As illustrated in Fig. 5.8, an example motor network similar to the one studied in
[3] is considered as an RTS. Suppose that four electric motors are controlled by a
uni-processor. Their deadlines and periods are represented by D and T , respectively.
These parameters coincide with those of the tasks in the previous examples as

• Motor 1: . τ1,
• Motor 2: . τ2,
• Motor 3: . τ3, and
• Motor 4: . τ4.

The work plans of the motor network also coincide with the RTS models presented
in Sect. 5.3. Since .R2 = 3, Motor 2 will be ready three ms later than other tasks. We

5.5 Case Study I: Supervisor Synthesis of Motor Network 113

Fig. 5.8 A motor network
example

Computation:
Motor 1: 3 ms Motor 2: 3 ms
Motor 3: 1 ms Motor 4: 2 ms

Motor 1
D: 9 ms
T: 9 ms

Motor 2
D: 6 ms
T: 6 ms

Motor 3
D: 4 ms
T: 5 ms

Motor 4
D: 14 ms
T: 18 ms

Table 5.2 Uni-processor
scheduler behaviors of . S1

Plan Spec Super LM SM

1 .A1 (71, 98) (6, 7) (24, 33)

2 .A2 (58, 70) (6, 7) (20, 21)

3 .A3 (69, 87) (6, 7) (24, 27)

4 .A4 (69, 87) (6, 7) (24, 27)

5 . A1, ST1, ST2 (68, 90) (6, 7) (23, 27)

6 . A3, ST1 (65, 82) (6, 7) (22, 24)

take work plans I and II of . S, denoted by . S1 and . S2, to find all the safe execution
sequences under priority-free conditionally-preemptive scheduling.

5.5.1 Work Plan I

Since .τ1, τ2 ∈ S1, we only consider the specifications corresponding to tasks . τ1 and
. τ2. The synthesized supervisor is shown in Table 5.2, in which LM and SM represent
the release map and the scheduling map, respectively. The numbers of the states and
transitions are recorded in the form (number of states, number of transitions). Based
on supervisory control of DES, several other examples of different specifications
are also listed in Table 5.2. For . S1, we have

• . A1: SN1 and SN2,
• . A2: 1NP, 2NP, SN1, and SN2,
• . A3: 2NP, SN1, and SN2, and
• . A4: 1NP, SN1, and SN2.

RTS Scheduling Plan 1
The scheduling corresponding to Plan 1 (. A1) is preemptive. Thus, we only need to
control the RTS to be nonblocking. Denote this specification by PS1. In TCT, it is
calculated by

. PS1 = sync (SN1, SN2) (1, 11).

All the safe preemptive execution sequences are calculated by the TCT procedure
supcon, i.e.,

114 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.9 Release map of . S1

. SUPER1 = supcon (SYS1, PS1) (71, 98).

The safe execution sequences in SUPER1 are represented by a DES with 71
states and 98 transitions. By projecting out all events but . αi , i.e.,

. PMSUPER1 = project (SUPER1, Image [11, 21]) (6, 7).

We obtain the preemptive release map of . S1 in the trimmed version of PMSUPER1
as follows:

. PMSUPER1 = trim (PMSUPER1) (6, 7).

All the safe release sequences are shown in Fig. 5.9. In SUPER1, by projecting out
all events but . ci , i.e.,

. PJSUPER1 = project (SUPER1, Image [19, 29]) (24, 33).

In the trimmed version below, i.e.,

. PJSUPER1 = trim (PJSUPER1) (24, 33),

we obtain the preemptive scheduling map of . S1, as shown in Fig. 5.10a, that contains
all the safe execution sequences of . c1 and . c2. The other marker states except the
initial states in PMSUPER1 and PJSUPER1 represent that the corresponding task
is ready to be released, which is redundant information for the users. Thus they
are unmarked, similar to such diagrams of other scheduling plans. PMSUPER1 and
PJSUPER1 are unmarked below.

. PMSUPER1 = edit (PMSUPER1, [mark -[all]]) (6, 7)

. PMSUPER1 = edit (PMSUP1, [mark +[0]]) (6, 7)

. PJSUPER1 = edit (PMSUPER1, [mark -[all]]) (24, 33)

.PJSUPER1 = edit (PJSUP1, [mark +[0]]) (24, 33)

5.5 Case Study I: Supervisor Synthesis of Motor Network 115

Fig. 5.10 Scheduling map of . S1. (a) . A1. (b) . A2. (c) . A3. (d) . A4. (e) . A1, SC1, and SC2. (f) . A3 and
SC1

116 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

RTS Scheduling Plan 2
The scheduling corresponding to Plan 2 (. A2) shown in Table 5.2 is non-preemptive.
The corresponding TCT operations are listed below.

. PS2 = sync (1NP, 2NP, SN1, SN2) (4, 21)

. SUPER2 = supcon (SYS1, PS2) (58, 70)

. PMSUPER2 = project (SUPER2, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER1, PMSUPER2; identity)

. PJSUPER2 = project (SUPER2, Image [19, 29]) (20, 21)

RTS Scheduling Plan 3
The corresponding TCT operations for Plan 3 (. A3) shown in Table 5.2 are listed
below.

. PS3 = sync (2NP, SN1, SN2) (2, 15)

. SUPER3 = supcon (SYS1, PS3) (69, 87)

. PMSUPER3 = project (SUPER3, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER1, PMSUPER3; identity)

. PJSUPER3 = project (SUPER3, Image [19, 29]) (24, 27)

RTS Scheduling Plan 4
The corresponding TCT operations for Plan 4 (. A4) shown in Table 5.2 are listed
below.

. PS4 = sync (1NP, SN1, SN2) (2, 15)

. SUPER4 = supcon (SYS1, PS4) (69, 87)

. PMSUPER4 = project (SUPER4, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER4, PMSUPER1; identity)

. PJSUPER4 = project (SUPER4, Image [19, 29]) (24, 27)

.false = isomorph (PJSUPER4, PJSUPER3)

5.5 Case Study I: Supervisor Synthesis of Motor Network 117

RTS Scheduling Plan 5
The corresponding TCT operations for Plan 5 shown in Table 5.2 are listed below.

. PS5 = sync (PS1, ST1, ST2) (19, 116)

. SUPER5 = supcon (SYS1, PS5) (68, 90)

. PMSUPER5 = project (SUPER5, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER5, PMSUPER1; identity)

. PJSUPER5 = project (SUPER5, Image [19, 29]) (23, 27)

RTS Scheduling Plan 6
The corresponding TCT operations for Plan 6 shown in Table 5.2 are listed below.

. PS6 = sync (PS3, ST1) (8, 43)

. SUPER6 = supcon (SYS1, PS6) (65, 82)

. PMSUPER6 = project (SUPER6, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER6, PMSUPER1; identity)

. PJSUPER6 = project (SUPER6, Image [19, 29]) (22, 24)

Supcon Results
All the release maps are isomorphic with the release map depicted in Fig. 5.9.
Moreover, all the scheduling maps are depicted in Fig. 5.10. This means that, based
on a supremal release map, according to different preemption plans, the priority-
free conditionally-preemptive scheduling policy can provide different results. To
the best of our knowledge, no other scheduling algorithms can schedule an RTS by
considering . A3 and ST1 simultaneously.

In an RTS, under EDF, the tasks with the earliest deadlines are assigned with
the highest priority. EDF scheduling chooses only one task among them to execute
without considering other possibilities. Other released tasks have no chance to be
executed by the processor.

As a comparison, the preemptive EDF scheduling result of . S1 by Cheddar [17]
is depicted in Fig. 5.11, which can also be found in Fig. 5.10a. The execution
sequence in Fig. 5.11 looks like a non-preemptive scheduling sequence. However,
none of the exact preemptive scheduling sequences in Fig. 5.10a can be generated by
EDF. Hence, as a reconfiguration scenario, in Fig. 5.11, if task . τ2 (with the earliest
deadline) cannot arrive on time at the ninth time unit, according to the multiple

118 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.11 Preemptive scheduling map of . S1

Table 5.3 Uni-processor
scheduler behaviors of . S1

Plant Spec Super LM SM

SYS1 PS3 SUPER1 (69, 87) (6, 7) (24, 27)

SUPER1 ST1, PS1 SUPER2 (65, 82) (6, 7) (22, 24)

SUPER2 SR1, PS1 SUPER3 (45, 52) (5, 5) (15, 15)

Fig. 5.12 Preemptive scheduling with . W1 = 4

sequences, users can choose another available sequence shown in Fig. 5.10a to
schedule task . τ1 first. Thus, recalculating the scheduling sequences is unnecessary.
However, at the ninth time unit, there is no EDF sequence to execute . τ1 first. If
. τ2 cannot arrive on time, the EDF scheduling cannot schedule . S1 successfully. The
supervisory control technique provides a larger number of safe execution sequences,
compared with EDF scheduling.

The WCRT of . τ1 in the scheduling sequence shown in the Gantt chart depicted
in Fig. 5.11 is .W1 = 6. By comparison, in the scheduling map shown in Fig. 5.10a,
when tasks . τ1 and . τ2 are released simultaneously, one can preempt another
randomly. In all of these scheduling sequences, we have .W1 ≤ 6.

By following the speeding up approach presented in Chap. 1, the scheduling of
. S1 based on . A3 and ST1 can be calculated in the first two steps as listed in Table 5.3.
Moreover, if we require that the WCRT of task . τ1 be .W1 = 4, only one such
sequence exists, as stated in SUPER3 in Table 5.3, which is shown in Fig. 5.12.
Accordingly, . S1 can be scheduled in the order .τ1τ2τ1τ2τ2. Notice that specifications
ST1 and SR1 are synchronized with specification PS1 since it guarantees that the
synthesis procedure is nonblocking.

5.5.2 Work Plan II

By .τ1, τ2, τ4 ∈ S2, we only consider the specifications corresponding to tasks . τ1, . τ2,
and . τ4. Several supervisors are calculated and listed in Table 5.4. The release maps
are isomorphic with each other, as shown in Fig. 5.13. The scheduling maps of RTS

5.5 Case Study I: Supervisor Synthesis of Motor Network 119

Table 5.4 Uni-processor
scheduler behaviors of . S2

Plan Spec Super LM SM

7 .A5 (128, 186) (9, 12) (34, 41)

8 . A5, ST3, ST4 (119, 173) (9, 12) (32, 37)

9 .A6 (145, 215) (9, 12) (44, 54)

10 . A6, ST1 (140, 204) (9, 12) (39, 47)

Fig. 5.13 Release map of . S2

. S2 are depicted in Figs. 5.14 and 5.15. To the best of our knowledge, no sequence in
Figs. 5.14b and 5.15b can be achieved by other scheduling algorithms.

RTS Scheduling Plan 7
The corresponding TCT operations for Plan 7 shown in Table 5.4 are listed below.

. PS7 = sync (SN1, SN2, SN4, 1B34, 2B4, 4NP) (8, 57)

. SUPER7 = supcon (SYS2, PS7) (128, 186)

. PMSUPER7 = project (SUPER7, Image [11, 21, 41]) (9, 12)

. PMSUPER7 = trim (PMSUPER7) (9, 12)

. PJSUPER7 = project (SUPER7, Image [19, 29, 49]) (34, 41)

RTS Scheduling Plan 8
The corresponding TCT operations for Plan 8 shown in Table 5.4 are listed below.

. PS8 = sync (PS7, ST3, ST4) (28, 159) Blocked_events = None

.SUPER8 = supcon (SYS2, PS8) (119, 173)

120 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

c1

c4

c1

c4

c1

c4

c2

c4

c2

c4

c2

c4 c4

c4c4c4c4c4c4c4

c1 c1 c1 c2 c2 c2

c1

c2 c1c1c2c2

c2

c2c2c1c1c1c2c2

c2

(a)

c1

c4

c1 c1

c4

c2

c4

c2

c4

c2

c4

c4c4c4c4c4

c1 c1 c1 c2 c2 c2

c1

c2 c1c1c2c2

c2

c2c2c1c1c1c2c2

c2

(b)

Fig. 5.14 Scheduling map of . S2 (1). (a) . A5. (b) . A5, SC3, and SC4

. PMSUPER8 = project (SUPER8, Image [11, 21, 41]) (9, 12)

. true = isomorph (PMSUPER8, PMSUPER7; identity)

.PJSUPER8 = project (SUPER8, Image [19, 29, 49]) (32, 37)

5.5 Case Study I: Supervisor Synthesis of Motor Network 121

c1

c4

c1

c1

c2

c4

c2

c4

c2

c4

c4 c4

c4

c4

c4

c1

c1

c4
c1 c1

c1

c2

c1

c2

c2

c2

c2

c2

c2

c1

c2

c2

c1
c1

c1

c1

c2

c2

c2

c2

c2

c2

c2

c2

c2

c2

c2

c2

c1

c1

c1

c2c2
c2

(a)

c1

c4

c1

c1

c2

c4

c2

c4

c2

c4

c4 c4

c4

c4

c4

c1

c1

c4
c1 c1

c1

c1

c2

c2

c2

c2

c2

c2

c1
c1

c1

c1

c2

c2

c2

c1

c2

c2

c2

c2

c2

c2

c1

c1

c2c2
c2

(b)

Fig. 5.15 Scheduling map of . S2 (2). (a) . A6. (b) . A6 and SC1

RTS Scheduling Plan 9
The corresponding TCT operations for Plan 9 shown in Table 5.4 are listed below.

. PS9 = sync (SN1, SN2, SN4, SP12, 2B4, 4B1) (8, 56)

. SUPER9 = supcon (SYS2, PS9) (149, 215)

. PMSUPER9 = project (SUPER9, Image [11, 21, 41]) (9, 12)

. true = isomorph (PMSUPER9, PMSUPER7; identity)

.PJSUPER9 = project (SUPER9, Image [19, 29, 49]) (44, 54)

122 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

RTS Scheduling Plan 10
The corresponding TCT operations for Plan 10 shown in Table 5.4 are listed below.

. PS10 = sync (PS9, ST1) (16, 101)

. SUPER10 = supcon (SYS2, PS10) (140, 204)

. PMSUPER10 = project (SUPER10, Image [11, 21, 41]) (9, 12)

. true = isomorph (PMSUPER10, PMSUPER9; identity)

. PJSUPER10 = project (SUPER10, Image [19, 29, 49]) (39, 47)

Supcon Results
The supervisor synthesized according to Plan 7 provides all the partial preemption
scheduling sequences. For instance, the Gantt chart representing a partial preemp-
tion scheduling result of . S2 is depicted in Fig. 5.16, which can also be found in
Fig. 5.14a. Evidently, SCT provides a greater number of safe execution sequences
w.r.t. partial preemption scheduling. By also considering SR4 as a specification, we
obtain a supervisor with 83 states and 118 transitions. The corresponding release
map is isomorphic with the one shown in Fig. 5.13. Two scheduling sequences are
depicted in Fig. 5.17; they form a subset of the safe executions shown in Fig. 5.14a.
The sequence in Fig. 5.16 can be found in Fig. 5.17.

Fig. 5.16 PTS scheduling map of . S2

Fig. 5.17 Partial preemtion and WCRT scheduling map of .S2

5.6 Case Study II: Supervisor Synthesis of Manufacturing Cell 123

5.6 Case Study II: Supervisor Synthesis of Manufacturing
Cell

Consider a manufacturing cell as an example. As shown in Fig. 5.18, a robot R is
utilized to transport two types of workpieces, W1 and W2, to a conveyor. Two pieces
of W1 (resp., W2) are released to the input buffer . B1 (resp., . B2) simultaneously in
every six (resp., three) seconds. The robot R has capacity one; transporting a piece
takes 1 second. Thus, we define task .τ1 = (0, 2, 6, 6) (resp., .τ2 = (0, 2, 3, 3)) to
represent the transportation of the two pieces of W1 (resp., W2) by R. Consequently,
we have a system .S = {τ1, τ2}.

Suppose that the preemption matrix with respect to . S is

. A1 =
(
0 0
1 0

)
.

The scheduling can be considered as an FP scheduling, i.e., task . τ1 cannot be
preempted by . τ2, and . τ2 is allowed to be preempted by . τ1. In other words, the robot
must transport the two pieces of W1 in two adjacent seconds, but it is not necessary
for transporting W2. By utilizing SCT, the supervisor calculated by supcon is
represented by a DES with 21 states and 27 transitions. As shown in Fig. 5.19,
the release (resp., scheduling) map is represented by a generator with three (resp.,
six) states and three (resp., six) transitions. As shown in Fig. 5.19b, no preemption

Fig. 5.18 Manufacturing cell

Fig. 5.19 FP scheduling. (a) Release map. (b) Scheduling map

124 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.20 Preemptive scheduling. (a) Release map. (b) Scheduling map

scheduling sequences are found. This requires that the robot R should transport the
workpieces in the following order periodically:

. W2, W2, W1, W1, W2, W2.

Suppose that the preemption matrix is

. A2 =
(
0 1
1 0

)
,

i.e., the real-time scheduling is preemptive. This means that the robot can transport
W1 and W2 in any order. SCT is used to calculate the supervisor, and it is
represented by a DES with 37 states and 55 transitions. As shown in Fig. 5.20, the
release map (resp., scheduling map) is represented by a generator with four (resp.,
ten) states and five (resp., 14) transitions. The scheduling map in Fig. 5.20b provides
nine safe execution sequences.

If we also require that, based on . A2, the WCRT of task . τ1 be .W1 = 5, i.e., the
two pieces of W1 must be transported in the first 5 seconds after their release, then
we obtain a supervisor that is represented by a DES with 63 states and 91 transitions.

5.7 Conclusion 125

c1

c2

c2

c1

c2

c2

c2

c1

c1

c2

c1

c2

c2

c1

c1

c2

c2

c1

Fig. 5.21 Preemptive scheduling with . W1 = 5

The release map is isomorphic with the map depicted in Fig. 5.20a; the scheduling
map is visualized in Fig. 5.21.

5.7 Conclusion

This chapter reports a formal constructive method for real-time periodic tasks
via a DES model. The behavior of a processor can be established by the syn-
chronous product of the DES models of all tasks running in it. The tasks can be
scheduled without considering their priorities. This chapter presents two sets of
conditional-preemption specifications, i.e., PFCP specifications, and task-centered
conditional-preemption specifications. Moreover, in order to control the system to
be nonblocking and also limit the WCRT of the tasks, two corresponding sets
of specifications are presented. The formal supervisory control of DES can be
considered as a rigorous analysis and synthesis tool to schedule the RTS satisfying
the deadlines. The procedure sync in TCT is utilized to generate the plant and
global specifications. By utilizing the procedure supcon, all the conditionally-
preemptive safe execution sequences can be calculated. These sequences can
provide more choices than the classical scheduling algorithms and the real-time
scheduling proposed in Chap. 4 based on the supervisory control of TDES. The
offline scheduling algorithm presented in this chapter can be applied to a practical
context to schedule the real-world uni-processor systems.

126 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

The multi-period proposed in Chap. 4 aims to reconfigure the RTS when no
safe execution sequences can be found. Based on this idea, by considering the
exact execution time of real-time tasks, a general modular DES model is presented
in Chap. 6. Finally, a hierarchical RTS model is presented in Chap. 7. Based on
nonblocking supervisory control of state-tree structures [13, 14], both conditionally-
preemptive and dynamic priority scheduling are addressed in the SCT-based real-
time scheduling. Moreover, the three-step speeding up approach stated in Chap. 1
can be applied to this chapter.

Appendix

In this chapter, regular languages are utilized to describe the processor behavior
related to any periodic real-time task execution. Thereafter, each language will
be followed by a DES generator representation. For any task .τi ∈ S arriving
periodically, its execution is represented by a DES generator . Gi with marked
language .Lm(Gi) and (prefix) closed language .L(Gi) satisfying

.L(Gi) = Lm(Gi) (5.2)

that describes all possible executions and random preemptions of task . τi .
For any execution event .σ ∈ Σe, the occurrence of . σ takes a single processor

time unit. The marked language .Lm(Gi) describes all the possible execution
sequences of task . τi’s execution within a period . Ti . We have

.Lm(Gi) = LR
i (γiL

T
i)∗. (5.3)

This expression contains two parts:

• . LR
i : the processor behavior before the first time release of task . τi , and

• . LT
i : the processor behavior within a period . Ti between the occurrence of two

adjacent . γi’s.

The event occurrences within a string . sr in . LR
i take . Ri time units in total, i.e.,

.LR
i = {sr | |sr | = Ri}. (5.4)

If . τi is associated with .Ri = 0, then . LR
i is empty. Otherwise, . LR

i represents that
the processor could be idle or taken by other tasks before the first time release of
task . τi . For any .σ ∈ Σi , let .#σ(sr) represent the number of occurrences of . σ in a
string . sr . We have

.LR
i = {sr |#l(sr) +

n∑
j=1,j /=i

#cj (sr) = Ri}. (5.5)

Appendix 127

In a period . Ti , events . αi and . βi must occur only once. Since their occurrences
are instantaneous (taking no time), and the events occurrences within .s ∈ LT

i take
. Ti time units in total, the length of every string in a period equals .Ti + 2. Formally,

.LT
i = {s| |s| = Ti + 2}. (5.6)

For any .s ∈ LT
i representing the complete execution of task . τi , the number of

. ci’s is . Ci , i.e.,

.#ci(s) = Ci. (5.7)

In a period . Ti , i.e., in . LT
i , the processor runs . Ti processor time units that are

occupied by all the execution events. Formally, s satisfies

.#l(s) +
n∑

j=1

#cj (s) = Ti. (5.8)

Any string .s ∈ γiL
T
i contains a substring .s' = γis

eβi , in which . se represents
the system behavior since the arrival of . τi until its execution is completed. Thus the
response time of task . τi is the processor time spent between the occurrences of . γi

and . βi . Since the occurrence of . αi is instantaneous, the response time of . τi in s is

.Pi = |se| − 1. (5.9)

The set of strings, .S1 ⊆ (Σe − {l, ci})∗, occurring earlier than . αi is utilized to
represent the busy time. Moreover, the preemption time, occurring between . αi and
. βi randomly, is represented by a set of strings .S2 ⊆ (Σe − {l, ci})∗. Furthermore, a
set of strings .S3 ⊆ (Σe − {ci})∗ that occur later than . βi , is utilized to represent the
free time. Consequently, for any .s ∈ LT

i , s is structurally represented by

.s = s1αi(s2cis2) . . . (s2ci)βis3 (5.10)

with .s1 ∈ S1, .s2 ∈ S2, and .s3 ∈ S3. The strings in .(Σe − {l, ci})∗ represent the
system behavior corresponding to the random preemption by other tasks. String . s2
occurs between . αi and . ci or any two adjacent . ci’s and represents that the execution
of . τi can be preempted at any time. After the occurrence of the last . ci , . βi occurs
immediately in order not to delay the response time.

The strings in .(Σe − {ci})∗ represent the system behavior in the free time. These
processor time units can be idle, or utilized to execute other tasks. In order to satisfy
the deadline . Di , all the . ci’s must occur before . βi . Thus, before the occurrence of
. βi , the preemption time cannot be longer than .Di − Ci . Formally, strings . s1 and . s2
in Eq. (5.10) form sublanguages . S1 and . S2 that also satisfy Eqs. (5.11) and (5.12)
listed below.

128 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

.S1 = {s1|0 ≤
n∑

j=1,j /=i

#cj (s1) ≤ Di − Ci} (5.11)

.S2 = {s2|0 ≤
n∑

j=1,j /=i

#cj (s2) ≤ Di − Ci} (5.12)

By Eq. (5.8), the free time cannot be longer than .Ti − Ci . Formally, sublanguage
. S3 in Eq. (5.10) must also satisfy

.S3 = {s3|0 ≤ #l(s3) +
n∑

j=1,j /=i

#cj (s3) ≤ Ti − Ci}. (5.13)

Example The closed and marked languages to describe the processor behavior to
execute task . τ1 are respectively

. L(G1) = Lm(G1)

and

. Lm(G1) = LR
1 (γ1L

T
1)∗.

Sublanguage . LT
1 satisfies

. LR
1 = ϵ,∀s ∈ LT

1 , |s| = 8, #c1(s) = 2, and

. #l(s) +
3∑

j=1

#cj (s) = 6.

String s is structured as

. s = s1α1s2c1s2c1β1s3

with .s1 ∈ S1, .s2 ∈ S2, and .s3 ∈ S3 as follows:

• .S1 = {s1 ∈ {c2, c3}∗|0 ≤
3∑

j=2
#cj (s1) ≤ 4},

• .S2 = {s2 ∈ {c2, c3}∗|0 ≤
3∑

j=2
#cj (s2) ≤ 4}, and

• .S3 = {s3 ∈ {c2, c3, l}∗|0 ≤ #l(s3) +
3∑

j=2
#cj (s3) ≤ 4}. .□

References 129

References

1. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2(4), 301–324
(1990)

2. Buttazzo, G.C., Bertogna, M., Yao, G.: Limited preemptive scheduling for real-time systems:
a survey. IEEE Trans. Indust. Inf. 9(1), 3–15 (2013)

3. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002)

4. Davis, R.I.: A review of fixed priority and EDF scheduling for hard real-time uniprocessor
systems. ACM SIGBED Rev. 11(1), 8–19 (2014)

5. Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: IF IP
Congress, pp. 807–813 (1974)

6. Fineberg, M.S., Serlin, O.: Multiprogramming for hybrid computation. In: AFIPS Fall Joint
Computing Conference, pp. 1–13 (1967)

7. Howell, R.R., Venkatrao, M.K.: On non-preemptive scheduling of recurring tasks using
inserted idle times. Inf. Comput. 117(1), 50–62 (1995)

8. Krishna, C.M.: Real-time systems. Wiley Encyclopedia of Electrical and Electronics Engineer-
ing. McGraw-Hill, New York (2001)

9. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2(4), 237–250 (1982)

10. Li, J., Shu, L., Chen, J., Li, G.: Energy-efficient scheduling in nonpreemptive systems with
real-time constraints. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 332–344 (2013)

11. Li, D., Li, M., Meng, X., Tian, Y.: A hyperheuristic approach for intercell scheduling with
single processing machines and batch processing machines. IEEE Trans. Syst. Man Cybern.
Syst. 45(2), 315–325 (2015)

12. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

13. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317.
Springer-Verlag, Berlin (2005)

14. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans.
Autom. Control 51(5), 782–793 (2006)

15. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts, (1983)

16. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101–155 (2004)

17. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time scheduling
framework. ACM SIGada Ada Lett. 4, 1–8 (2004)

18. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Indust. Inf. 12(1), 101–111
(2016)

19. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47(7), 1082–1098 (2017)

20. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering. Springer, Berlin (2018)

21. Xia, Y., Zhou, M., Luo, X., Pang, S., Zhu, Q.: A stochastic approach to analysis of energy-
aware DVS-enabled cloud datacenters. IEEE Trans. Syst. Man Cyber. Syst. 45(1), 73–83
(2015)

Chapter 6
Modular Scheduling/Reconfiguration
with Exact Execution Time Based on
R-W Method

6.1 Introduction

Supervisory control theory (SCT)-based real-time scheduling and reconfiguration
[3, 6, 13, 16, 17, 19] are a newly-identified research topic. As summarized in Chap. 4,
the study in [3] proposes a timed discrete-event systems (TDES) model; based on
SCT, periodic real-time systems (RTS) are scheduled non-preemptively. In [3], the
RTS modelled by TDES assume that the processors are resources that are available
to execute several real-time tasks concurrently. Thereafter, the TDES-based real-
time scheduling approach is extended to:

• schedule the RTS preemptively or non-preemptively [6],
• schedule the RTS processing sporadic tasks [13], and
• dynamically reconfigure the periodic RTS when no safe execution sequences are

found [16].

The TDES-based non-preemptive scheduling is studied in [3, 6, 13] and [16], and
the discrete-event systems (DES)-based sequential RTS scheduling is investigated
in [17], which are reported in Chap. 5. By assigning different execution events
for different tasks, the RTS model proposed in Chap. 5 is utilized to describe the
sequential executions of independent tasks. The RTS models presented in Chap. 5
are more realistic.

Based on a modular modelling approach, this chapter deals with RTS processing
sporadic and/or multi-period tasks simultaneously. A sporadic task running in an
RTS may have an irregular arrival time, with or without a deadline; a periodic task
has a regular arrival time and a deadline. The period of a periodic task could be:

• equal to the corresponding deadline [10],
• greater than or equal to the deadline [12], or
• multiple [16].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_6

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6
https://doi.org/10.1007/978-3-031-41969-0_6

132 6 Modular Scheduling with Exact Execution Time Based on R-W Method

According to the study in [2], the execution instance of a real-time task is referred to
as a job. In real world, the execution time of a job always varies over time. In order
to describe such variations, the lower bounds and upper bounds of such a task are
estimated, which are referred to as its best-case execution time (BCET) and worst-
case execution time (WCET), respectively. The exact execution time of a task lies
between its BCET and WCET.

Based on DES, an RTS can be built via a three-step approach:

• the parameters of the tasks are represented by modular DES models,
• the task behavior is constrained by the necessary modular DES models, and
• the global RTS model is constrained by the DES real-time task models corre-

sponding to the running tasks.

A scheduling principle, namely priority-free conditionally-preemptive (PFCP) real-
time scheduling, is presented in Chap. 5 by considering that both preemptive and
non-preemptive scheduling policies are conservative. Based on the PFCP real-time
scheduling principle, all the safe execution sequences in an RTS processing both
multi-period and sporadic tasks can be found. The proposed modelling framework
and the PFCP scheduling principle are general in the following respects:

• the task behavior is modelled by DES, and thus the processing of different tasks
is represented by different events instead of a unique time event,

• the priorities of tasks are not treated and the preemption relations are described
by a matrix, and

• the specifications are imposed on both processor and task levels.

Based on the presented modelling framework and scheduling principle, classic fixed
priorities (FP) real-time scheduling policies [1, 4, 5, 7–11, 14, 21] can be considered
as consequences of the presented specifications.

For the purpose of integrating real-time scheduling and reconfiguration in one
general model, a DES-based multi-period model is presented in this chapter. The
only difference of a period’s model before and after its reconfiguration is the upper
bound of its multi-period. A DES model depicting the RTS is synchronized by
the DES representing these tasks. The related details and examples for dynamic
reconfigurations of RTS can be found in Chap. 4. For the RTS tasks with multi-
periods, they are endowed with the following features:

• a task arrives periodically but the length of its period is selected randomly
between a lower bound and an upper bound, and

• a task is associated with or without a deadline that is not earlier than the WCET
and no later than the longest period.

Two approaches are presented in this chapter to obtain the local behavior of any
real-time task. Users are free to choose any one at will. On the one hand, given a real-
time task, one approach views its deadline as a parameter that is used to compute
the synchronous product of the necessary modular generators. On the other hand, by
viewing the deadline of a real-time task as a timing specification, the local behavior
of a real-time task is synthesized as a supervisor. In other words, the latter applies

6.2 Modular RTS Models 133

a formal specification to enforce the deadlines in order to obtain local supervisors,
one for each individual task. Afterwards, it is ready to construct a candidate for the
RTS overall behavior by the synchronous product of all real-time task modules. This
candidate may be blocking and does not yet implement a PFCP scheduling policy.
Both issues are then resolved by a global supervisor that we synthesize at the second
stage. The presented RTS model is implemented in a manufacturing example.

The rest of this chapter is structured as follows. The presented RTS model
is discussed in Sect. 6.2. Two approaches are detailed in Sect. 6.3 to obtain the
global RTS execution models based on the modular RTS models. The developed
formal specifications and supervisor synthesis are reported in Sect. 6.4. The PFCP
is applied to a real-world RTS in Sect. 6.5. Conclusions and possible extensions are
given in Sect. 6.6.

6.2 Modular RTS Models

A DES-based periodic real-time task model is proposed in Chap. 5. By the
supervisory control of DES, all the safe execution sequences of an RTS are found
by PFCP real-time scheduling. However, this model is conservative:

• the model can only describe periodic tasks,
• the model cannot be reconfigured dynamically when no safe execution sequences

can be found, and
• the model is monolithic (global), i.e., from the perspective of an RTS task, all the

possible processor behaviors are enumerated in a unique DES generator. One
must rebuild a monolithic DES generator whenever the parameters of the task
are edited by the user.

Motivated by these drawbacks, this chapter presents a formal and unified modular
DES-based real-time task model, in which DES generators represent the parameters
of a sporadic or multi-period task. The corresponding monolithic task model is the
synchronous product of these DES models.

A DES plant is a generator

. G = (Q,Σ, δ, q0,Qm)

where

• Q is the finite state set,
• . Σ is the finite event set (alphabet),
• .δ : Q × Σ → Q is the partial state transition function,
• . q0 is the initial state, and
• .Qm ⊆ Q is the subset of marked states.

134 6 Modular Scheduling with Exact Execution Time Based on R-W Method

6.2.1 RTS Tasks

In accordance with [15–18] and [2], an RTS is assumed to process a set of non-
repetitive, sporadic, and/or multi-period tasks. All the real-time tasks run in an RTS
simultaneously and the unpredictable exact execution time of a task falls between its
BCET and WCET. For a periodic task, its arrival time is regular, which is considered
as a period that could be:

• equal to its deadline [10],
• greater than or equal to its deadline [12], or
• multiple [16, 18], i.e., a period set that has a lower bound and an upper bound.

A non-repetitive task arrives only once, and a sporadic or periodic task arrives
periodically. A non-repetitive or sporadic task may arrive at any time, which means
that no periodical constraint is assigned. As defined in Chap. 4, a multi-period is a
period set that has a lower bound and an upper bound. Any period of a real-time
task, i.e., the difference between any two adjacent arrivals, lies between the two
bounds. If the lower bound is equal to the upper bound, the task is a traditional
periodic one. We consider a traditional periodic task as a special case of a multi-
period. Consequently, our analysis is based on multi-period tasks. Unless otherwise
stated, in the rest of this chapter, “period task” means “multi-period task”.

An RTS . S is assumed to process a set of real-time tasks. Formally, write
.S = {τ1, τ2, . . . , τi , . . . , τn}. For .i ∈ n = {1, 2, . . . , n}, a periodic task . τi ∈ S

is represented by a four-tuple

. τi = (Ri,Ci , Di,Ti)

with

• a release time . Ri ,
• an execution time interval . Ci ,
• a deadline . Di , and
• a multi-period . Ti ,

where . Ri and . Di are non-negative integers. As stated in Chap. 4, a multi-period

. Ti = [T l
i , T u

i] ∈ N × N,

is specified by a non-empty interval where the number of time units that elapse
between any two successive releases lies within . Ti . Hence a multi-period has a
lower bound (i.e., shortest one) represented by . T l

i and an upper bound (i.e., longest
one) represented by . T u

i .
Only an exact execution time C (resp., period T) in . Ci (resp., . Ti) of task . τi is

actually taken. For deadline .Di ∈ (T l
i , T u

i], we impose an additional assumption
that the task can arrive only when the previously instantiated job is completed. The

6.2 Modular RTS Models 135

lower (resp., upper) bound of the execution interval . Ci is the BCET (resp., WCET)
of task . τi , denoted by . Cl

i (resp., . C
u
i), i.e.,

. Ci = [Cl
i , C

u
i] ∈ N × N.

For simplification, we write . Ci (resp., . Ti , in accordance with Chap. 5) instead of . Ci

(resp., . Ti) in the case of .Cl
i = Cu

i (resp., .T l
i = T u

i).
Any execution period of a real-time task, i.e., the difference between any two

adjacent arrivals, lies between . T l
i and . T u

i . For deadline .Di ∈ (T l
i , T u

i], we impose an
additional assumption that the task can arrive only when the previously instantiated
job is completed. An RTS . S is an asynchronous task set if there exist at least two
different tasks . τi and . τj in . S with .Ri /= Rj ; otherwise . S is synchronous.

The following different types of real-time tasks are addressed in this chapter:

• a sporadic/non-repetitive task without a deadline: .τi = (Ci),
• a sporadic/non-repetitive task with a deadline: .τi = (Ci , Di),
• a periodic task with its deadline not equal to . T u

i : .τi = (Ri,Ci , Di,Ti), and
• a periodic task with its deadline equal to . T u

i : .τi = (Ri,Ci ,Ti).

A periodic or sporadic task produces an infinite sequence of jobs that arrive
repetitively. And a non-repetitive task produces only one job. As stated in Chap. 3,
a periodic task . τi consists of an infinite sequence of jobs repeated periodically that
are represented by a corresponding four-tuple

. Ji,j = (ri,j , Ci, di,j , pi,j).

The subscript “. i, j” of .Ji,j represents the j -th execution of task . τi .
Leaving out the selected scheduling policies, when the real-time tasks are under

execution, the processing of each individual job (belong to a real-time task) falls
into the following two categories:

• preemptive: a running task can be interrupted by the execution of other released
tasks;

• non-preemptive: the execution of a running task cannot be interrupted.

Based on Chap. 5, the alphabet (set of event labels) . Σi describing the processor’s
behavior to execute task . τi is:

• . γi : task . τi is released,
• . αi : the execution of . τi is started,
• . βi : the execution of . τi is completed,
• . ρi : the execution of . τi is not completed,
• . ci .(i ∈ n): the processor starts to execute . τi for one processor time unit, and
• l: empty action, i.e., the processor is in an idle operation for one time unit.

136 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Let .σ = ci (resp., .σ = l). The occurrence of . σ represents that one processor time
unit is utilized to execute task . τi (resp., in an idle operation for one processor time
unit while it stays in state . q ').

Formally, for an RTS, its event set is defined as

. Σ = Σcon∪̇Σunc,

with

• .Σcon = {αi, ci |i ∈ n}: the controllable event subset, and
• .Σunc = {βi, ρi, γi, l|i ∈ n}: the uncontrollable event subset.
Moreover, . Σ is also partitioned into

• .Σo = {γi, αi, βi, ρi, |i ∈ n}: the operation event set, and
• .Σe = {ci, l|i ∈ n}: the execution event set.

6.2.2 Periodic/Sporadic Task Execution Time Models

An RTS . S is assumed to process n sporadic/periodic/non-repetitive tasks. A sporadic
(resp., periodic) task . τi describes an infinite stream of jobs arriving at irregular
(resp., regular) time intervals. Suppose that n sporadic/periodic tasks are running
in an RTS. We present a DES model for . Ci of periodic and sporadic tasks. Let . i ∈ n
and .τi ∈ S. This model mainly shows the processor behavior while it is executing
task . τi . Naturally, before the execution of . τi is started and after its execution is
finished, the processor is allowed to be in an idle operation. The execution time . Ci

of a sporadic or periodic task is described by a DES generator

. GC
i = (QC

i , ΣC
i , δCi , qC

0,i ,Q
C
m,i).

Suppose that .s ∈ ΣC∗
i is a string over the event set . ΣC

i . Then we have . s∗
representing .ϵ + s + s2 + Let . Cl

i and . Cu
i represent the lower bound (BCET) and

upper bound (WCET) of task . τi , respectively. The possible execution sequences of
task . τi are described by the marked language .Lm(GC

i) over . ΣC
i .

This process can be represented as a regular expression

.LC
i := Ll(LaLl)

∗ ⊆ Σ∗
i (6.1)

with

• .Ll = l∗, and
• .La = ∑Cu

i

k=Cl
i

γiαici
Cl

i (ρici)
k−Cl

i βi .

6.2 Modular RTS Models 137

Fig. 6.1 Execution model for sporadic or periodic tasks

In the above formula . La represents that the execution of a job takes exactly . k ∈
[Cl

i , C
u
i] time units. We provide a realization of . LC

i as the marked behavior of a
DES . GC

i , i.e., we have .Lm(GC
i) = LC

i for the DES illustrated in Fig. 6.1.
Technically, . GC

i is defined over the alphabet .ΣC
i = {αi, ci, βi, ρi, γi} with

• state . yγ : before the arrival of task . τi ,
• state . yα

0 : the processor is ready to process . τi ,
• state . y0: the execution of . τi is started,
• state .(0 < k ≤ Cu

i) . yk: . τi has been executed for k time units,
• state .(Cl

i ≤ k < Cu
i) . zk: the execution of . τi is not completed after being executed

for k time units,
• the state with an entering arrow is the initial state . yγ ,
• the state set .{yγ } is the singleton marker state set represented by a double circle,

and
• the transition function . δCi satisfies

– .δCi (yγ , l) = yγ : the processor is in an idle operation,
– .δCi (yγ , γi) = yα

0 : . τi is released,
– .δCi (yα

0 , αi) = y0: the processor starts to execute . τi ,
– .(0 ≤ k < Cl

i) .δCi (yk, ci) = yk+1: . τi is being executed for the .(k + 1)-th time
unit,

– .(Cl
i ≤ k < Cu

i) .δCi (yk, ρi) = zk: the execution of . τi is not completed in the
k-th time unit,

– .(Cl
i ≤ k < Cu

i) .δCi (zk, ci) = yk+1: . τi is being executed for the .(k +1)-th time
unit, and

– .(Cl
i ≤ k ≤ Cu

i) .δCi (yk, βi) = yγ : the execution of . τi is completed in k
processor time units.

138 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.2 Generator . GC
1

Fig. 6.3 Generator . GC
2

Example Suppose that there are two tasks . τ1 and . τ2 running in a uni-processor
RTS, i.e., .S = {τ1, τ2}. Let .C1 = [1, 2]. Then .GC

1 is shown in Fig. 6.2. Let . Cl
2 =

Cu
2 = 2. Then . GC

2 is shown in Fig. 6.3. . □

6.2.3 Non-Repetitive Execution Time Models

The task execution model for non-repetitive tasks is the counterpart of the task
execution model for periodic and sporadic tasks. The only difference is that the
execution process is non-repetitive.

Let .τi ∈ S, .i ∈ n, denote a non-repetitive task with an execution time parameter

. Ci = [Cl
i , C

u
i]

to represent the lower bound and upper bound. The formal language to model task
execution is then obtained as

.L
C,nr
i := LC

i − Σ∗
i γiΣ

∗
i γiΣ

∗
i ⊆ Σ∗

i (6.2)

with . LC
i as defined in Eq. (6.1). We provide a realization of .LC,nr

i as the marked

behavior of a DES .GC,nr
i , i.e., we have

. Lm(GC,nr
i) = L

C,nr
i

for the DES illustrated in Fig. 6.4.

6.2 Modular RTS Models 139

Fig. 6.4 Non-repetitive execution model

Fig. 6.5 Generator . GC,nr
1

Fig. 6.6 Generator . GC,nr
2

Technically, .GC,nr
i is defined exactly as . GC

i , except that

• there is an additional marked state .yf in with a self-loop .δCi (yf in, l) = yf in, and
• any transition .δCi (yk, βi) = yα defined in .GC

i for k with .Cl
i ≤ k ≤ Cu

i , is

substituted by a transition .δCi (yk, βi) = yf in in .GC,nr
i .

Example Let .C1 = [1, 2]. Then .GC,nr
1 is shown in Fig. 6.5. Let .Cl

2 = Cu
2 = 2.

Then .GC,nr
2 is shown in Fig. 6.6. . □

6.2.4 Deadline Models

Generally, for any periodic or sporadic real-time task . τi , .Ch
i ≤ Di is assigned. Let

.Cl
i ≤ C ≤ Ch

i . The execution of . τi in an execution period takes C processor time
units. This process must be completed with the deadline . Di satisfied. This means

140 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.7 Deadline model

that during the time interval between the occurrence of events . γi and . βi , C time
units are utilized to process . τi ; the other (at most) .Di − C time units are in idle
operations or occupied by the execution of other tasks. For a periodic or sporadic
task . τi with a deadline . Di , the deadline . Di is represented by a DES generator . GD

i

that recognizes the following marked language

.LD
i = Lf (γiLdβiLf)∗ ⊆ (Σe ∪ {γi, βi})∗ (6.3)

with

• .Lf = Σe
∗, and

• .Ld = {s|s ∈ (Σe − {l})∗ & |s| ≤ Di}.
Language . Lf represents that, prior to the release of task . τi , an arbitrary amount
of time units may elapse. Furthermore, . Ld represents that after a release of task . τi

(the occurrence of event . αi), no more than . Di time units may elapse until the job
completion (the occurrence of event . βi). We require that between the occurrences
of . α and . βi , the processor should not be in an idle operation. The release time and
period are realized by the DES

. GD
i = (QD

i ,ΣD
i , δD

i , qD
0,i ,Q

D
m,i)

shown in Fig. 6.7, which illustrates a realization .GD
i with

. LD
i = Lm(GD

i).

In Fig. 6.7, “. ∗” and “. ∗∗” represent events in .Σe − {l} and .Σe − {ci}, respectively.
Technically, .GD

i is defined over the alphabet .ΣD
i := Σe ∪ {γi, βi} with

• state . yγ : the processor is ready to execute . τi ,
• state .(0 ≤ k ≤ Di) . yk: k time units in an execution period have elapsed,
• the state with an entering arrow is the initial state . yγ ,
• the state set .{yγ } is the singleton marker state set represented by a double circle,

and

6.2 Modular RTS Models 141

Fig. 6.8 Generator . GD
1

• let .i, j ∈ n, the transition function . δD
i satisfies

– .δD
i (yγ , l) = yγ : the processor is in an idle operation,

– .(i /= j) .δD
i (yγ , cj) = yγ : task . τj is under execution,

– .δD
i (yγ , γi) = y0: task . τi releases,

– .(0 ≤ k < Di) .δD
i (yk, cj) = yn+1: the .(k + 1)-th time unit is occupied by . τj ,

and
– .(0 ≤ k ≤ Di) .δD

i (yk, βi) = yγ : the execution of . τi is completed.

Example Suppose that there are two tasks . τ1 and . τ2 running in a uni-processor
RTS, i.e., .S = {τ1, τ2}. Let .D1 = 3. Generator .GD

1 is depicted in Fig. 6.8. . □

6.2.5 Release and Multi-Period Models

In this section, DES diagrams are utilized to describe the release time and the
periods of periodic real-time tasks. As stated previously, an RTS is assumed to
process sporadic/periodic/non-repetitive tasks. In the release time and a period, the
processor time units can be occupied by all the tasks running in the RTS or in an
idle operation.

As defined in [16], a period of task . τi is a period set that has a lower bound
and an upper bound. Formally, .Ti = [T l

i , T u
i]. Let T be an arbitrary period, i.e.,

.T l
i ≤ T ≤ T u

i . Let C be an exact execution time, i.e., .Cl
i ≤ C ≤ Cu

i . Generally,
we have .Cu

i ≤ T l
i . In a period, after task . τi is released, the processor will use C

time units to execute . τi . Moreover, in the other .T −C time units, the processor is in
an idle operation or occupied by the execution of other tasks. For task . τi , its release
time and period are described by a DES generator . GT

i . Formally, we have its marked
language as

.LT
i = Lr + Lr(γiLt)

∗ ⊆ (Σe ∪ {γi})∗ (6.4)

142 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.9 Release time and period model

with

• .Lr := {s|s ∈ (Σe − {ci})∗ & |s| = Ri}, and
• .Lt := {s|s ∈ Σe

∗ & T l
i ≤ |s| ≤ T u

i }.
Language . Lr represents that, prior to the first release of . τi , the . Ri processor time
units are allowed to be in an idle operation or alternatively occupied to execute other
tasks. Furthermore, . Lt represents that in a processing period of . τi , the processor can
be in an idle operation or alternatively occupied by the execution of any task in . S.
The execution of task . τi takes no less than . T l

i time units and no more than . T u
i time

units.
The release time and period are realized by the DES

. GT
i = (QT

i , ΣT
i , δTi , qT

0,i ,Q
T
m,i)

as illustrated by Fig. 6.9, where “. ∗” and “. ∗∗” represent the events in . Σe and . Σe −
{ci}, respectively, and we have

. LT
i = Lm(GT

i).

Technically, . GT
i is defined over the alphabet .ΣT

i := Σe ∪ {γi} with
• state . y−k , .0 < k ≤ Ri : k time units until the first release of . τi ,
• state . yγ : the processor is ready to execute . τi ,
• state .(0 ≤ k < T u

i) . yk: k time units in a period have elapsed,
• the states represented by double circles are the marker states,
• the state with an entering arrow is the initial state .y−Ri

,
• the state set .{y−Ri

, y−Ri+1, . . . , y−1, yγ , T l
i , . . . , T u

i } is the marker state set, in
which each state is represented by a double circle, and

• let .i, j ∈ n, the transition function . δTi satisfies

– .(1 < k ≤ Ri, i /= j) .δTi (y−k, cj) = y−k+1: the processor is occupied by . τj ,
– .(1 < k ≤ Ri) .δTi (y−k, l) = y−k+1: the processor is in an idle operation,
– .(i /= j)δTi (y−1, cj) = yγ : the processor is occupied by . τj ,

6.3 Global RTS Execution Models 143

Fig. 6.10 Generator . GT
1

– .(i /= j)δTi (y−1, l) = yγ : the processor is in an idle operation,
– .δTi (yγ , γi) = y0: . τi is released,
– .(0 ≤ k < T u

i − 1) .δTi (yk, cj) = yk+1: the .(k + 1)-th time unit is occupied by
. τj ,

– .(0 ≤ k < T u
i − 1)δTi (yk, l) = yk+1: the .(k + 1)-th time unit is in an idle

operation,
– .δTi (yT u

i −1, cj) = yγ : the processor is occupied by . τj ,

– .δTi (yT u
i −1, l) = yγ : the processor is in an idle operation, and

– .(T l
i ≤ k < T u

i) .δTi (yk, γi) = y0: . τi releases for the next time.

Remark The naming rule for all the states in Fig. 6.9 is similar to that for the states
in Fig. 6.1. The only differences are: (1) state .(0 < k ≤ Ri) .y−k represents that
there is still k processor time units until the first arrival of . τi ; (2) state . (0 ≤ k < T u

i)

represents the k-th processor time unit in a period. . □
Example Suppose that there are two tasks . τ1 and . τ2 running in a uni-processor
RTS, i.e., .S = {τ1, τ2}. Let .R1 = 1 and .T1 = [3, 5]. Generator . GT

1 for task . τ1 is
depicted in Fig. 6.10. . □

6.3 Global RTS Execution Models

This section presents two approaches to obtain the global RTS execution models
based on the modular RTS models presented above.

6.3.1 Approach I

Similar to the execution time models, we address the deadline model as a parameter
of a real-time task, which is used to compute the synchronous product of the

144 6 Modular Scheduling with Exact Execution Time Based on R-W Method

necessary modular generators. Then, it is ready to construct a candidate for the
RTS overall behavior by the synchronous product of all real-time task modules.
This candidate may be blocking but it can be resolved by the final global supervisor
synthesized later.

The global behavior of an RTS is represented by a monolithic DES generator
. G that is the synchronous product of all the running tasks’ parameters. Generator
. Gi representing a real-time task . τi is constrained by the synchronous product of
the modular generators defined above, which falls into one of the following six
categories generated by TCT1 as follows:2

• sporadic without a (hard) deadline, .Lm(Gi) = Lm(GC
i):

. Gi = GC
i ,

• non-repetitive without a deadline, .Lm(Gi) = Lm(GC,nr
i):

. Gi = GC,nr
i ,

• sporadic with a deadline, .Lm(Gi) = Lm(GC
i)||Lm(GD

i)):

. Gi = sync (GC
i ,GD

i),

• non-repetitive with a deadline, .Lm(Gi) = Lm(GC,nr
i)||Lm(GD

i)):

. Gi = sync (GC,nr
i ,GD

i),

• periodic with a deadline .Di < T u
i , .Lm(Gi) = Lm(GC

i)||Lm(GT
i)||Lm(GD

i):

. Gi = sync (GC
i ,GT

i ,GD
i),

• periodic with a deadline .Di = T u
i , .Lm(Gi) = Lm(GC

i)||Lm(GT
i):

. Gi = sync (GC
i ,GT

i).

The procedures utilized in this chapter are introduced in [20].

1 http://www.control.utoronto.ca/DES.
2 For simplification, unlike in the previous chapters, we write the generator names, say . GC

i , as the
input of TCT procedures directly.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES

6.3 Global RTS Execution Models 145

Example Suppose that .S = {τ1, τ2}. For simplification, we assume . Cl
1 = Cu

1 =
2. Several possible models for task . τ1 (assigned with different parameters) in the
previous examples are displayed in Fig. 6.11, in which the corresponding parameters
are listed in the captions. Accordingly, we have

• Fig. 6.11a: a sporadic task with a deadline,
• Fig. 6.11b: a periodic task with its deadline less than or equal to its period,
• Fig. 6.11c: a multi-periodic task with its deadline less than or equal to its longest

period,
• Fig. 6.11d: a multi-periodic task with its deadline equal to its longest period,
• Fig. 6.11e: a traditional periodic task with its deadline equal to its period, and
• Fig. 6.11f: a non-repetitive task with a deadline. . □

6.3.2 Approach II

In order to describe the behavior of an RTS . S by DES diagrams, the behavior of
a task . τi is specified as a set of regular languages that are represented by modular
DES generators, in which the deadline is considered as a specification. Based on
the nonblocking supervisory control of DES, the real-time tasks are represented
by a DES diagram. Suppose that an RTS processes a set of real-time tasks. The
corresponding DES diagram can be obtained by the synchronous product procedure.

In this approach, DES diagrams are utilized to describe the deadline of a real-
time task . τi , which requires that, after the arrival of . τi , the execution of task . τi

should be completed in . Di time units. This model applies to both periodic/sporadic
and non-repetitive task models.

After creating all the modular DES models, the real-time task models are
obtained. All the possible behavior of a processor to execute a real-time task . τi is
described by a generator . Gi that is the synchronous product of the DES generators
corresponding to the defined parameters, which falls into one of the six categories
generated by TCT as follows:

• sporadic without a deadline, .Lm(Gi) = Lm(GC
i):

. Gi = GC
i ,

• non-repetitive without a deadline, .Lm(Gi) = Lm(GC,nr
i):

.Gi = GC,nr
i ,

146 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.11 Generators for . τ1. (a) Sporadic, .C1 = 2, and .D1 = 3. (b) Periodic, .R1 = 1, .C1 = 2,
.D1 = 3, and .T1 = [4, 4]. (c) Periodic, .R1 = 1, .C1 = 2, .D1 = 3, and .T1 = [3, 5]. (d) Periodic,
.R1 = 1, .C1 = 2, and .T1 = [3, 5]. (e) Periodic, .R1 = 1, .C1 = 2, and .T1 = [4, 4]. (f) Non-
repetitive, .Cnr

1 = 2, and .D1 = 3

6.3 Global RTS Execution Models 147

• sporadic with a deadline, .Lm(Gi) = Lm(GC
i)||Lm(GD

i):

. GALLC = allevent (GC
i),

. GALLD = allevent (GD
i),

. GALL = sync (GALLC,GALLD),

. GC
i = sync (GC

i ,GALL),

. GD
i = sync (GD

i ,GALL),

. Gi = supcon (GC
i ,GD

i),

. Gi = minstate (Gi),

• non-repetitive with a deadline, .Lm(Gi) = Lm(GC,nr
i)||Lm(GD

i):

. GALLC = allevent (GC,nr
i),

. GALLD = allevent (GD
i),

. GALL = sync (GALLC,GALLD),

. GC,nr
i = sync (GC,nr

i ,GALL),

. GD
i = sync (GD

i ,GALL),

. Gi = supcon (GC,nr
i ,GD

i),

. Gi = minstate (Gi),

• periodic with a deadline .Di < T u
i , .Lm(Gi) = Lm(GC

i)||Lm(GT
i)||Lm(GD

i):

. Gi = sync (GC
i ,GT

i),

. GALL = allevent (Gi),

. GD
i = sync (GD

i ,GALL),

. Gi = supcon (Gi ,GD
i),

.Gi = minstate (Gi),

148 6 Modular Scheduling with Exact Execution Time Based on R-W Method

• periodic with a deadline .Di = T u
i , .Lm(Gi) = Lm(GC

i)||Lm(GT
i):

. Gi = sync (GC
i ,GT

i),

. GALL = allevent (Gi),

. Gi = supcon (Gi ,GALL),

. Gi = minstate (Gi).

Remark For a periodic task . τi with a deadline .Di = T u
i , the obtained generator

. Gi = sync (GC
i ,GT

i)

may contain blocked behavior that should be removed by the supervisory control of
DES. Formally, it is possible that .L(Gi) /= Lm(Gi) holds. In order to provide a neat
DES diagram, the operations .Gi = supcon (Gi ,GALL) and . Gi = minstate (Gi)

are addressed in the modelling process of . Gi to provide its optimal behavior. . □
Finally, generator . Gi for the task . τi has marked language .Lm(Gi) and (prefix)

closed language .L(Gi), satisfying

. L(Gi) = Lm(Gi).

Example Suppose that .S = {τ1, τ2}. Six possible models for task . τ1 with . C1 =
[1, 2] (assigned with different parameters) in the previous examples are displayed in
Figs. 6.12 and 6.13, in which the corresponding parameters are listed in the captions.
Accordingly, we have

• Fig. 6.12a: a sporadic task with a deadline,
• Fig. 6.12b: a periodic task with its deadline less than or equal to its period,
• Fig. 6.12c: a multi-periodic task with its deadline less than or equal to its longest

period,
• Fig. 6.12d: a multi-periodic task with its deadline equal to its longest period,
• Fig. 6.13a: a traditional periodic task with its deadline equal to its period, and
• Fig. 6.13b: a non-repetitive task with a deadline. . □

6.3.3 Global RTS Behavior

Assume that n real-time tasks . τi , .i ∈ n, are executed in an RTS . S; its behavior is
denoted by

.Lm(G) = Lm(G1)||Lm(G2)|| · · · ||Lm(Gn).

6.3 Global RTS Execution Models 149

Fig. 6.12 Local closed-loop models for . τ1 (1). (a) Sporadic, .C1 = [1, 2], and .D1 = 3. (b)
Periodic, .R1 = 1, .C1 = [1, 2], .D1 = 3, and .T1 = [5, 5]. (c) periodic, .R1 = 1, .C1 = [1, 2],
.D1 = 3, and .T1 = [3, 5]. (d) Periodic, .R1 = 1, .C1 = [1, 2], .D1 = 5, and . T1 = [3, 5]

This results in the respective closed and marked behaviors

. Lm(G) := Lm(G1)||Lm(G2)|| · · · ||Lm(Gn) ⊆ Σ∗,

. L(G) := L(G1)||L(G2)|| · · · ||L(Gn) ⊆ Σ∗,

where .Σ := Σ1 ∪ Σ2 ∪ · · · ∪ Σn denotes the overall alphabet.

150 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.13 Local closed-loop models for . τ1 (2). (a) Periodic, .R1 = 1, .C1 = [1, 2], and .T1 = [5, 5].
(b) Non-repetitive, .Cnr

2 = [1, 2], and . D2 = 4

Example Suppose that the task behavior of the two tasks in the previous example
is represented by .Lm(G1) and .Lm(G2). We have the system behavior of . S, denoted
by . G, as

.Lm(G) = Lm(G1)||Lm(G2). . □

The software package TCT is a tool utilized to create the modular DES generator
related to an RTS task. By following Chap. 5, for all .i ∈ n, events . γi , . αi , . βi , . ρi , and
. ci are renamed i0, i1, i2, i8, and i9, respectively. Moreover, event l is represented
by 0. More operations to edit the models and/or compute the supervisor can also be
executed in TCT. The utilized procedures are introduced in [20].

An overall model of the RTS is denoted by

. S = {τ1, τ2, . . . , τn}.

By construction, the effective set of shared events in the above synchronous product
is the set of execution events, and, hence, is a subset of the controllable events.
Consequently, the generated behavior .L(G) is controllable w.r.t. the synchronous
product of the local behavior generated by the relevant plant components . GC

i , .G
C,nr
i ,

. GD
i , and/or . GT

i , depending on the respective task type. In this sense, controllability
is not a concern at this point. However, the synchronous product may introduce
blocking, i.e., there may exist strings .s ∈ L(S) such that .st /∈ Lm(G) for all
.t ∈ Σ∗. This implies there might be jobs that are never completed, which is not

6.4 Scheduling Based on Supervisory Control 151

acceptable. Also, the composed RTS model may include schedules where tasks
might be preempted by any other task. We resolve both issues by setting up a
specification to address a preemption relation and then synthesizing a nonblocking
supervisor for that specification.

6.4 Scheduling Based on Supervisory Control

Previously, PFCP real-time scheduling is proposed in Chap. 5. By PFCP, a periodic
task is independently assigned to a subset of tasks that are allowed to preempt
its execution, based on which the released periodic tasks in a processor can
be scheduled according to the predefined preemption relations assigned in the
preemption matrix. In Chap. 5, three types of specifications are defined as follows:

• Nonblocking specification: it requires that the RTS should be nonblocking and it
should be synchronized with other specifications (if any).

• Matrix-based conditional-preemption specification: it defines the preemption
relation among the periodic tasks running in the same processor, represented by
a matrix . A, where .Ai,j = 1 represents that task . τi can be preempted by . τj .
According to matrix . A, Chap. 5 creates a specification for a task . τi that describes
all the tasks which preempt its execution.

• WCET-based conditional-preemption specification: it defines task sets that can
preempt the execution of . τi between its any two adjacent running time units (. cis).

The first two specification types are assigned from the perspective of the processor;
and the last one is assigned for an RTS task during its execution. All the detailed
definitions of these specifications can be found in Chap. 5. Generally, based on
SCT, they can be utilized to find the supervisors for an RTS processing sporadic
tasks and periodic tasks simultaneously. The scheduling sequences contained in the
found supervisors can be utilized to schedule the RTS offline.

As defined in Chap. 5, the preemption matrix . A of . S is in the form

.A =

⎛

⎜
⎜
⎜
⎝

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...

∗ ∗ · · · 0

⎞

⎟
⎟
⎟
⎠

(6.5)

where . ∗, either 0 or 1, describes the preemption relations among tasks. A task . τi

cannot preempt itself in default. According to the rows in . A, a DES specification
can be generated.

Example Suppose that we have the following two tasks that are running in an
RTS . S:

.τ1 = (1, [1, 2], 3, [3, 5])

152 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Table 6.1 Task
configurations

Task parameters Task type

.τ1 = (1, [1, 2], 3, [3, 5]) Periodic

.τ2 = ([1, 2], 4) Non-repetitive with deadline

Fig. 6.14 Specifications corresponding to . A1. (a) . τ1 can not be preempted. (b) . τ2 can not be
preempted

and

. τ2 = ([1, 2], 4).

They are a periodic task and a non-repetitive task, respectively. The task configura-
tions are given in Table 6.1. Their behavior is represented by .Lm(G1) and .Lm(G2);
we obtain the RTS behavior as follows:

. Lm(G) = Lm(G1)||Lm(G2)

and

. L(G) = L(G1)||L(G2).

We assume the following preemption matrices

. A1 =
(
0 0
0 0

)

and A2 =
(
0 1
1 0

)

describing that the real-time scheduling of the RTS is non-preemptive or preemptive,
respectively. According to Chap. 5, the specifications can be generated accordingly.
The DES generators corresponding to . A1 and . A2 are depicted in Figs. 6.14 and 6.15,
respectively. Since matrix . A2 describes that the scheduling of both . τ1 and . τ2 are
preemptive, the specifications depicted in Figs. 6.15a and 6.15b can be ignored.

Supervisory controller synthesis is then carried out using the same procedures as
synthesizing the local models. After state minimization, we obtain overall closed-
loop realizations with 53 states and 84 transitions (when addressing . P1) and with
151 states and 298 transitions (when addressing . P2). The transition relation for the
former supervisor is given below.

6.5 Case Study: Manufacturing Cell 153

Fig. 6.15 Specifications corresponding to . A2. (a) . τ1 can be preempted. (b) . τ2 can be preempted

Fig. 6.16 Manufacturing cell
B1 B2 B3 B4

Conveyor

R

SUPER = (SUPER, [mark, 0, 1, 6, 14, 46, 48, 52], [tran [0, l, 52], [0, . γ2, 27], [1, l,
52], [1, . γ1, 20], [1, . γ2, 39], [2, . c2, 4], [3, l, 15], [3, . γ2, 33], [4, . α1, 37], [4, . β2, 13],
[5, . β1, 44], [7, . γ1, 38], [7, . β2, 14], [8, . β1, 33], [8, . ρ1, 9], [9, . c1, 11], [10, . α2, 44],
[11, . β1, 10], [11, . α2, 5], [12, . β2, 35], [13, . α1, 40], [14, l, 46], [14, . γ1, 36], [15, l,
6], [15, . γ2, 10], [16, l, 23], [17, . β1, 15], [17, . γ2, 11], [18, . β1, 3], [18, . ρ1, 45], [18,
. γ2, 8], [19, . c1, 18], [19, . γ2, 51], [20, . α1, 19], [20, . γ2, 41], [21, . γ1, 22], [21, . β2, 48],
[21, . ρ2, 24], [22, . β2, 36], [22, . ρ2, 2], [23, l, 48], [24, . γ1, 2], [24, . c2, 7], [25, . γ1, 22],
[25, . β2, 46], [25, . ρ2, 42], [26, . c2, 25], [27, . α2, 26], [28, . β1, 23], [29, . β1, 23], [29,
. ρ1, 30], [30, . c1, 47], [31, . β2, 23], [31, . ρ2, 50], [32, . c2, 31], [33, . α2, 32], [34, . β1, 16],
[34, . ρ1, 43], [35, . c1, 34], [36, . α1, 35], [37, . β2, 40], [38, . α1, 12], [38, . β2, 36], [39,
. γ1, 41], [40, . c1, 29], [41, . α1, 51], [42, . γ1, 2], [43, . c1, 28], [44, . c2, 21], [45, . c1, 17],
[45, . γ2, 9], [46, . γ1, 36], [47, . β1, 48], [48, l, 14], [48, . γ1, 36], [49, . γ1, 38], [49, . β2,
48], [50, . c2, 49], [51, . c1, 8], [52, . γ1, 20], [52, . γ2, 39], [6, l, 1], [6, . γ1, 20], [6, . γ2,
39]]) (53, 84) . □

6.5 Case Study: Manufacturing Cell

Consider an extension of the manufacturing cell studied in Chap. 5 as an example,
which is viewed as an RTS processing multi-period periodic tasks, traditional
periodic tasks, and sporadic tasks. The robot depicted in Fig. 6.16 is considered as
a processor, which transports four types of workpieces W1, W2, W3, and W4 to a
conveyor. The four processes are modelled as four real-time tasks. Hence, we obtain
a system .S = {τ1, τ2, τ3, τ4}.

154 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Table 6.2 Tasks with WCET Task .Ri .Ci .Di . Ti

.τ1 – 2 – –

.τ2 – 2 6 –

.τ3 1 2 7 [8, 8]

.τ4 0 2 6 [4, 6]

6.5.1 Task Models with Worst Case Execution Time

Suppose that in the manufacturing cell, the production rate varies, i.e., every
time one or two pieces of workpieces W1, W2, W3, and W4 arrive at buffers
. B1, . B2, . B3, and . B4, respectively. Workpieces W1 and W2 arrive irregularly; the
arrivals of W3 and W4 are represented by period sets .[8, 8] and .[4, 6], respectively.
Transporting each workpiece costs one second; we assign the deadlines of the
tasks representing the transportations of W2, W3, and W4 to be six, seven, and
six seconds, respectively. As a consequence, the parameters of the four tasks are
visualized in Table 6.2. Suppose that we have three work plans, i.e.,

• .S1 = {τ1, τ2, τ3}: workpieces W1, W2, and W3 are in production,
• .S2 = {τ1, τ2, τ4}: workpieces W1, W2, and W4 are in production, and
• .S3 = {τ1, τ2, τ3, τ4}: workpieces W1, W2, W3, and W4 are in production.

The DES model for a task in the RTS is established as the synchronous product
of the generated DES models. By following Approach I presented in Sect. 6.3.1, the
parameters of the RTS tasks are created as follows.

C1 = create (C1, [mark 0], [tran [0, 0, 0], [0, 10, 1], [1, 11, 2], [2, 19, 3], [3, 19, 4],
[4, 12, 0]]) (5, 6)

C2 = relabel (C1, [[10, 20], [11, 21], [12, 22], [19, 29]]) (5, 6)

C3 = relabel (C2, [[20, 30], [21, 31], [22, 32], [29, 39]]) (5, 6)

C4 = relabel (C3, [[30, 40], [31, 41], [32, 42], [39, 49]]) (5, 6)

D2 = create (D2, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 20, 1], [0, 39, 0], [0, 49, 0],
[1, 19, 2], [1, 22, 0], [1, 39, 2], [1, 49, 2], [2, 19, 3], [2, 22, 0], [2, 39, 3], [2, 49, 3],
[3, 19, 4], [3, 22, 0], [3, 39, 4], [3, 49, 4], [4, 19, 5], [4, 22, 0], [4, 39, 5], [4, 49, 5],
[5, 22, 0]]) (6, 22)

D3 = relabel (D2, [[20, 30], [22, 32], [39, 29]]) (6, 22)

D3 = edit (D3, [trans +[5, 19, 6], +[5, 29, 6], +[5, 49, 6], +[6, 32, 0]]) (7, 26)

6.5 Case Study: Manufacturing Cell 155

D4 = relabel (D2, [[20, 40], [22, 42], [49, 29]]) (6, 22)

T3 = create (T3, [mark 0, 1], [tran [0, 0, 1], [0, 19, 1], [0, 29, 1], [0, 49, 1], [1, 30, 2
], [2, 0, 3], [2, 19, 3], [2, 29, 3], [2, 49, 3], [3, 0, 4], [3, 19, 4], [3, 29, 4], [3, 49, 4],
[4, 0, 5], [4, 19, 5], [4, 29, 5], [4, 49, 5], [5, 0, 6], [5, 19, 6], [5, 29, 6], [5, 49 , 6], [6,
0, 7], [6, 19, 7], [6, 29, 7], [6, 49, 7], [7, 0, 1], [7, 19, 1], [7, 29, 1], [7, 49, 1]]) (8, 29)

T4 = create (T4, [mark all], [tran [0, 41, 1], [1, 0, 2], [1, 19, 2], [1, 29, 2], [1, 39, 2
], [2, 0, 3], [2, 19, 3], [2, 29, 3], [2, 39, 3], [3, 0, 4], [3, 19, 4], [3, 29, 4], [3, 39, 4],
[3, 41, 1], [4, 0, 0], [4, 19, 0], [4, 29, 0], [4, 41, 1], [4, 49, 0]]) (5, 19)

The DES model for the RTS is the synchronous product of that for all tasks. More
operations to edit the models and/or compute the supervisor can also be executed in
TCT. The DES models representing a task’s behavior are listed below.

. TASK2 = sync (C2, D2) (21, 73)

. TASK3 = sync (C3, D3, T3) (32, 113)

. TASK4 = sync (C4, D4, T4) (25, 87)

Suppose that four preemption matrices are considered as specifications:

. A1 =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1

⎞

⎟
⎟
⎠ ,A2 =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

. A3 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠ ,A4 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .

The nonblocking specifications and matrix-based conditional-preemption speci-
fications are assigned for the manufacturing cell example, which are created in TCT
as listed below.

Nonblocking Specifications
In order to guarantee that the RTS is nonblocking, the nonblocking specification
. SN

i for . τi should allow the occurrence of any string .s ∈ Σ∗
i , i.e., .L(SN

i) = Σ∗
i . The

procedure allevents can be utilized to generate a DES representing . Σ∗
i . For instance,

as depicted in Fig. 6.17, the nonblocking specification for task . τi is represented by
a generator with .∗ = Σi allowing all the events in . Σi to occur at the only state.

156 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.17 Nonblocking
specification for .τi

∗

Fig. 6.18 Specification for . A3. (a) .A1,2 = 1. (b) .A2,3 = 1 and .A2,4 = 1. (c) .A31 = 1. (d) . A41 = 1

The corresponding TCT operations to create such specifications are listed below.
SN1, SN2, SN3, and SN4 are the nonblocking specifications . SN

1 , . S
N
2 , . S

N
3 , and

. SN
4 , respectively. In TCT, the monolithic nonblocking specification for an RTS . S

is denoted by SN. The corresponding TCT operations are given below.

. SN1 = allevents (C1) (1, 5)

. SN2 = allevents (TASK2) (1, 8)

. SN3 = allevents (TASK3) (1, 8)

. SN4 = allevents (TASK4) (1, 8)

. SN = sync (SN1, SN2, SN3, SN4) (1, 17)

Matrix-Based PFCP Conditional-Preemption Specifications
According to [17], the matrix-based PFCP conditional-preemption specifications
can be generated by TCT. For example, matrix-based specification . A3 represents
that task . τ1 is allowed to be preempted by task . τ2. The corresponding specification
is depicted in a DES diagram 1B2. As depicted in Fig. 6.18, all such specifications
are created below.

1B2 = create (1B2, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49,
0], [1, 12, 0], [1, 19, 1], [1, 29, 1]]) (2, 8)

6.5 Case Study: Manufacturing Cell 157

2B3 = create (2B3, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 21, 1], [0, 39, 0], [0, 49,
0], [1, 22, 0], [1, 29, 1], [1, 39, 1]]) (2, 8)

3B1 = create (3B1, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 31, 1], [0, 49,
0], [1, 19, 1], [1, 32, 0], [1, 39, 1]]) (2, 8)

4B1 = create (4B1, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 41,
1], [1, 19, 1], [1, 42, 0], [1, 49, 1]]) (2, 8)

The DES generators corresponding to .A4 are depicted in Fig. 6.19. The
corresponding TCT operations are given below. Each specification represents that
the corresponding task cannot be preempted. For example, 1NP represents that the
execution of task . τ1 cannot be preempted.

1NP = create (1NP, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49,
0], [1, 12, 0], [1, 19, 1]]) (2, 7)

2NP = create (2NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 21, 1], [0, 39, 0], [0, 49,
0], [1, 22, 0], [1, 29, 1]]) (2, 7)

3NP = create (3NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 31, 1], [0, 49,
0], [1, 32, 0], [1, 39, 1]]) (2, 7)

4NP = create (4NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 41,
1], [1, 42, 0], [1, 49, 1]]) (2, 7)

By supervisory control of DES, for different scheduling plans with different
specifications, we obtain the states and transitions of the corresponding supervisors
as listed in Table 6.3 under “Super 1”, in which notation .(·, ·) represents the number

Fig. 6.19 Specification for . A4. (a) . τ1 cannot be preempted. (b) . τ2 cannot be preempted. (c) . τ3
cannot be preempted. (d) . τ4 cannot be preempted

158 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Table 6.3 Supervisors of
RTS

.G .S Super 1 Super 2

.S1 .A1 (3055, 8363) (2791,7310)

.S1 .A2 (2725, 6533) (2512,5759)

.S1 .A3 (2132, 4815) (2083,4454)

.S1 .A4 (1069, 2252) (1126,2219)

.S2 .A1 (2425, 6559) (2335,6034)

.S2 .A2 (2170, 5131) (2092,4723)

.S2 .A3 (1632, 3635) (1695,3559)

.S2 .A4 (810, 1674) (903,1736)

.S3 .A1 (62952, 197655) (72397,218029)

.S3 .A2 (36057, 90381) (42006,100880)

.S3 .A3 (13300, 30071) (17043,36174)

.S3 .A4 (10076, 21868) (13819,27971)

of the states and transitions in the supervisor. For each supervisor in Table 6.3, one
can use the method developed in [16] (stated in Chap. 4) to view the release and
scheduling maps that represent their task release orders and scheduling processes,
respectively. Suppose that task . τ1 in Table 6.3 is replaced by a non-repetitive task
.τ '
1 = ([2, 2], 4). The corresponding supervisors are listed in Table 6.3 under “Super
2”.

The DES generators corresponding to the specifications of an RTS are synchro-
nized into a monolithic one. Some specifications listed in Table 6.3 under . S are
synchronized as follows.

. SPEC2 = sync (3NP, SN1, SN2, SN) (2, 27)

. SPEC3 = sync (SN, 1B2, 2B3, 3B1) (8, 80)

. SPEC4 = sync (1NP, 2NP, 3NP, SN) (8, 77)

. SPEC6 = sync (SN, 4NP) (2, 27)

. SPEC7 = sync (SN, 1B2, 2B4, 4B1) (8, 80)

. SPEC8 = sync (SN, 1NP, 2NP, 4NP) (8, 77)

. SPEC10 = sync (SN, 3NP, 4NP) (4, 45)

. SPEC11 = sync (SN, 1B2, 2B3, 2B4, 3B1, 4B1) (16, 137)

.SPEC12 = sync (SN, 1NP, 2NP, 3NP, 4NP) (16, 133)

6.5 Case Study: Manufacturing Cell 159

Finally, the supervisors under “Super 1” are calculated as follows.

. SUPER1 = supcon (SYS1, SN) (3055, 8363)

. SUPER2 = supcon (SYS1, SPEC2) (2725, 6533)

. SUPER3 = supcon (SYS1, SPEC3) (2132, 4815)

. SUPER4 = supcon (SYS1, SPEC4) (1069, 2252)

. SUPER5 = supcon (SYS2, SN) (2425, 6559)

. SUPER6 = supcon (SYS2, SPEC6) (2170, 5131)

. SUPER7 = supcon (SYS2, SPEC7) (1632, 3635)

. SUPER8 = supcon (SYS2, SPEC8) (810, 1674)

. SUPER9 = supcon (SYS3, SN) (62952, 197655)

. SPUER10 = supcon (SYS3, SPEC10) (36057, 90381)

. SUPER11 = supcon (SYS3, SPEC11) (13300, 30071)

. SUPER12 = supcon (SYS3, SPEC12) (10076, 21868)

6.5.2 Task Models with Exact Execution Time

Suppose that, as stated in Table 6.4, the BCETs and WCETs of all the tasks are
equal to one and two time units, respectively. For different specifications of a
scheduling plan, the numbers of the states and transitions of the supervisors are
listed in Table 6.5 under “Super 1” in the form (number of states, number of
transitions). Suppose that task . τ1 in Table 6.5 is replaced by a non-repetitive task
.τ '
1 = ([1, 2], 4). The corresponding supervisors are listed in Table 6.5 under “Super
2”. The supervisor .(0, 0) in Table 6.5 represents that no safe execution sequences
are found.

Table 6.4 Task parameters Task .Ri .Ci .Di . Ti

.τ1 – [1, 2] – –

.τ2 – [1, 2] 6 –

.τ3 1 [1, 2] 7 [8, 8]

.τ4 0 [1, 2] 6 [4, 6]

160 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Table 6.5 Supervisors

Plant Spec Super 1 Super 2

.S1 . A1, .D2 = 6, .D3 = 7 (5593, 17392) (6196, 18170)

.S1 . A2, .D2 = 6, .D3 = 5 (3577, 9630) (2615, 6559)

.S1 . A3, .D2 = 6, .D3 = 5 (1129, 2728) (861,1804)

.S1 . A4, .D2 = 6, .D3 = 7 (745, 1502) (541, 1051)

.S2 . A1, .D2 = 6, .D4 = 6 (4500, 14317) (7770, 23301)

.S2 . A2, .D2 = 6, .D4 = 5 (3264, 9221) (3537, 9241)

.S2 . A3, .D2 = 6, .D4 = 5 (1533, 4023) (1755, 4264)

.S2 . A4, .D2 = 6, .D4 = 6 (582, 1258) (525, 1076)

.S3 . A1, .D2 = 6, .D3 = 7, .D4 = 6 (147277, 574215) (171171, 607542)

.S3 . A2, .D2 = 6, .D3 = 5, .D4 = 5 (0, 0) (0, 0)

.S3 . A3, .D2 = 6, .D3 = 5, .D4 = 5 (0, 0) (0, 0)

.S3 . A4, .D2 = 6, .D3 = 7, .D4 = 6 (8646, 20307) (4167, 8220)

As stated in Chap. 1, a method that speeds up the calculation reduces the
number of states in the plant and specification. The presented synthesis speeding
up approach can be applied to this chapter.

6.6 Conclusion

This chapter reports a unified DES-based framework to build RTS by modular
models and scheduling/reconfiguring RTS by SCT. This framework can be utilized
to model an RTS that processes multi-period and sporadic tasks, in which a multi-
period task is assigned with a set of possible periods between a minimum period
and a maximum period. The proposed modular models are taken to be generic
entities, which are utilized to model a problem domain such as “hard real-time
manufacturing or reconfigurations” and manage its manufacturing process.

In practice, the execution time of a real-time task is expected to vary over time,
within guaranteed bounds referred to as the BCET and WCET respectively. This
motivates our further development of SCT-based RTS scheduling of real-time tasks
previously proposed in Chap. 5. Building on the idea of exact execution time,
this chapter provides a modular scheduling/reconfiguration methodology for RTS
processing non-repetitive, sporadic, and (multi-period) periodic tasks, subject to a
PFCP scheduling policy. Moreover, the three-step speeding up algorithm stated in
Chap. 1 can be applied to this chapter. We illustrate our modelling framework in the
context of a realistic manufacturing system.

A hierarchical RTS model is presented in Chap. 7, based on nonblocking supervi-
sory control of state-tree structures (STS), where both conditionally-preemptive and
dynamic priority scheduling are addressed in the SCT-based real-time scheduling.
The task release/arrival, starting, and finishing are on the higher level, and the

References 161

task execution is on the lower level. This modelling mechanism provides the
possibility of assigning dynamic priorities for the real-time tasks under execution.
The computational complexity of the STS framework is polynomial with respect
to the number of the nodes in a binary decision diagram that describes the RTS’s
behavior. Hence, the nonblocking supervisory control of STS may return results for
the cases where the TCT algorithm fails.

References

1. Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemp-
tive scheduling of periodic, real-time tasks on one processor. Real-Time Syst. 2(4), 301–324
(1990)

2. Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Scheduling Algorithms and
Applications, vol. 24. Springer Science & Business Media (2011)

3. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002)

4. Davis, R.I.: A review of fixed priority and EDF scheduling for hard real-time uniprocessor
systems. ACM SIGBED Rev. 11(1), 8–19 (2014)

5. Howell, R.R., Venkatrao, M.K.: On non-preemptive scheduling of recurring tasks using
inserted idle times. Inf. Comput. 117(1), 50–62 (1995)

6. Janarthanan, V., Gohari, P., Saffar, A.: Formalizing real-time scheduling using priority-based
supervisory control of discrete-event systems. IEEE Trans. Autom. Control 51(6), 1053–1058
(2006)

7. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic, real-
time tasks. Perform. Eval. 2(4), 237–250 (1982)

8. Li, J., Shu, L., Chen, J., Li, G.: Energy-efficient scheduling in nonpreemptive systems with
real-time constraints. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 332–344 (2013)

9. Li, D., Li, M., Meng, X., Tian, Y.: A hyperheuristic approach for intercell scheduling with
single processing machines and batch processing machines. IEEE Trans. Syst. Man Cybern.
Syst. 45(2), 315–325 (2015)

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

11. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts (1983)

12. Nassor, E., Bres, G.: Hard real-time sporadic task scheduling for fixed priority schedulers. In:
International Workshop on Responsive Systems, pp. 44–47 (1991)

13. Park, S.J., Cho, K.H.: Real-time preemptive scheduling of sporadic tasks based on supervisory
control of discrete event systems. Inf. Sci. 178(17), 3393–3401 (2008)

14. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101–155 (2004)

15. Wang, X., Khemaissia, I., Khalgui, M., Li, Z., Mosbahi, O., Zhou, M.: Dynamic low-power
reconfiguration of real-time systems with periodic and probabilistic tasks. IEEE Trans. Autom.
Sci. Eng. 12(1), 258–271 (2015)

16. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101–111
(2016)

162 6 Modular Scheduling with Exact Execution Time Based on R-W Method

17. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47(7), 1082–1098 (2017)

18. Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of
modular sporadic real-time systems. Automatica 89, 392–397 (2018)

19. Wang, X., Li, Z., Wonham, W.M.: Real-time scheduling based on nonblocking supervisory
control of state-tree structures. IEEE Trans. Autom. Control 66(9), 4230–4237 (2021)

20. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering, Springer, Berlin (2018)

21. Xia, Y., Zhou, M., Luo, X., Pang, S., Zhu, Q.: A stochastic approach to analysis of energy-
aware DVS-enabled cloud datacenters. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 73–83
(2015)

Chapter 7
Scheduling/Reconfiguration Based on
Supervisory Control of STS

7.1 Introduction

Supervisory control theory (SCT)-based real-time scheduling and reconfiguration
[6, 7, 12, 15–18] are a newly-identified research topic. Based on timed discrete-
event systems (TDES) or discrete-event systems (DES), multi-period tasks have
been proposed in Chaps. 4 and 6, which can be utilized to model periodic tasks
processed in real-time systems (RTS) with periods varying between a lower bound
and an upper bound. As a consequence, it is a uniformed model which integrates
real-time scheduling and reconfiguration. The only difference of a task’s model
before and after its reconfiguration is the upper bound of its multi-period.

Chapter 5 shows that both preemptive and non-preemptive scheduling policies
may be conservative. As a solution, based on supervisory control of DES, a real-time
scheduling principle is presented, namely priority-free conditionally-preemptive
(PFCP) scheduling. Based on the PFCP real-time scheduling principle and the
specifications provided by users, all the safe execution sequences of an RTS
processing both multi-period periodic and sporadic tasks can be found.

As a top-down state-based modelling framework with the state explosion prob-
lem managed, state-tree structures (STS) are defined in [8] and [9] for the purpose
of incorporating the hierarchical (vertical) and concurrent (horizontal) structures
of complex DES into a natural and compact model. The holons in STS represent
hierarchical and concurrent transition structures of DES with structured state
spaces; for details see Chap. 2, [8], and [9].

In this chapter, RTS are modelled starting from holons. The RTS model is
converted into an STS automatically. The controller for each controllable event
in the STS is obtained by the supervisory control of STS to provide the expected
safe execution sequences. A task is associated with a constant worst-case execution
time (WCET). WCET and the corresponding deadlines, release time, and periods
(if any) are modelled by child-state-trees and holons in STS. As a consequence, a
sporadic RTS is modelled by an STS. Based on this unified STS-based framework,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_7

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7
https://doi.org/10.1007/978-3-031-41969-0_7

164 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

the scheduling requirements of an RTS are described by STS specifications that
require only a small-sized state space.

The PFCP specifications proposed in Chap. 5 are converted to STS specifications
in a compact form such that the state explosion problem is effectively managed.
Moreover, a partially non-preemptive specification is given to partially define the
preemption relation among tasks. As an optimal dynamic priority scheduling,
partially preemptive and non-preemptive earliest deadline first (EDF) scheduling
is also addressed in this chapter. From a large number of safe execution sequences,
a set of optimal sequences can be found by the EDF scheduler.

The STS model and its specifications are represented by predicates. Prior to
calculating the predicate representing the optimal controlled behavior, maximally
permissive predicates are presented for disabling controllable events in the transition
structure. The PFCP scheduling reported in this chapter is applied to a practical
context to schedule a real-world RTS. For a controllable event, the controller is
represented by a binary decision diagram (BDD) [2, 3] representing a boolean
function. A BDD is a rooted directed acyclic graph that has two terminal nodes
1 and 0 that represent true and false, respectively.

In this chapter, the RTS are modelled according to the following principles:

• an RTS is modelled in a hierarchical (vertical) and concurrent (horizontal)
structure by using STS,

• the conditionally-preemptive and dynamic priority scheduling requirements are
converted into STS specifications which need much less storage space than the
automata of the DES framework, and

• with the state explosion problem managed significantly, the nonblocking super-
visory control of STS finds all the safe execution sequences.

The methodology in this chapter guarantees that:

• the presented scheduling framework can find the optimal behavior (all the safe
execution sequences) of an RTS by the supervisory control of STS, and

• a few sequences are selected, which rank at the top according to some specified
optimality criteria.

The remainder of this chapter is organized as follows. The STS-based real-time
task model is described in Sect. 7.2. The conditionally-preemptive and dynamic
priority scheduling specifications are reported in Sects. 7.3 and 7.4, respectively.
As an example, the nonblocking supervisory control of Manufacturing Cell and a
large example are presented in Sects. 7.5 and 7.6. Finally, conclusions are drawn in
Sect. 7.7.

7.2 RTS Modelled by State-Tree Structures

This chapter presents an approach to model RTS processing sporadic and/or periodic
tasks by STS, which can be viewed as an STS counterpart of the DES model

7.2 RTS Modelled by State-Tree Structures 165

presented in Chap. 6. For simplification, we consider the WCET of each real-time
task only. Nevertheless, there is no technical problem to extend the approach to the
exact execution time (studied in Chap. 6) with both the best case execution time
(BCET) and WCET addressed. The preliminaries on STS can be found in Sect. 2.3.

7.2.1 RTS Tasks

Suppose that a periodic RTS . S processes n tasks, i.e., .S = {τ1, τ2, . . . , τi , . . . , τn},
.i ∈ n = {1, 2, . . . , n}. Generally, a periodic task . τi is specified as a four-tuple

. τi = (Ri, Ci,Di,Ti)

with

• a release time . Ri ,
• a WCET . Ci ,
• a deadline . Di , and
• a multi-period . Ti ,

where . Ri , . Ci , and . Di are non-negative integers. A deadline . Di is hard if its violation
is unacceptable; otherwise it is soft, which is not treated in this chapter. As stated in
Chap. 4, a multi-period is specified by a non-empty interval

. Ti = [T l
i , T u

i] ∈ N × N,

where the number of time units that elapse between any two successive releases lies
within . Ti . Hence a multi-period has a lower bound (i.e., shortest one) represented
by . T l

i and an upper bound (i.e., longest one) represented by . T u
i . Only a period T in

. Ti of task . τi is selected in a scheduling period.
The following different types of real-time tasks are addressed in this chapter:

• a sporadic/non-repetitive task without a deadline: .τi = (Ci),
• a sporadic/non-repetitive task with a deadline: .τi = (Ci,Di),
• a periodic task with its deadline not equal to . T u

i : .τi = (Ri, Ci,Di,Ti), and
• a periodic task with its deadline equal to . T u

i : .τi = (Ri, Ci,Ti).

Example Suppose that four asynchronous tasks are running in an RTS . S. We
consider the WCET of the tasks stated in the example of Chap. 6 only, and their
parameters are listed in Table 7.1, i.e.,

• . τ1: a sporadic task without a deadline,
• . τ2: a sporadic task with a deadline,
• . τ3: a traditional periodic task, and
• . τ4: a multi-period periodic task.

166 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Table 7.1 Parameters of four
tasks

Task .Ri .Ci .Di . Ti

.τ1 – 2 – –

.τ2 – 2 6 –

.τ3 1 2 7 [8, 8]

.τ4 0 2 6 [4, 6]

Unless stated otherwise, all the exemplifications are based on this example. There
is no technical problem to design STS counterparts for the RTS model presented in
Chap. 6. . □

7.2.2 Execution Time Models

The execution time of a real-time task . τi is modelled hierarchically by two holons
.HCi and .HWi . Holon .HCi is on a higher level, and hence holon .HWi is considered
as a superstate [8, 9] in holon .HCi . The initial (resp., terminal) states of the holons
without external states are marked by incoming (resp., outgoing) arrows.

Definition 7.1 [holon .HCi] The execution time . Ci of task . τi is described by a
holon .HCi := (XCi ,ΣCi , δCi , X

Ci

0 , X
Ci
m) with state set .XCi = X

Ci

I = {Ii, Ai,Wi},
event set .ΣCi = Σ

Ci

I := {γi, αi, βi}, transitions .δCi

I (Ii, l) = Ii , .δ
Ci

I (Ii, γi) = Ai ,

.δ
Ci

I (Ai, αi) = Wi , .δ
Ci

I (Wi, βi) = Ii , and the initial and terminal state set . X
Ci

0 =
X

Ci
m = {Ii}. . ♢

Example By zooming into state . Wi in Fig. 7.1, a lower-level holon .HWi and the
matching state-tree representing the inner structure of . Wi are shown in Fig. 7.2.
Clearly, before the arrival of . τi and after the completion of its execution, the
processor is allowed to be in an idle operation. Moreover, holon .HWi represents
the system behavior inside state . Wi . The states in Fig. 7.1 are defined as:

• . Ii : idle, i.e., before the arrival of task . τi ,
• . Ai : arrival, i.e., task . τi has arrived in the system, and
• . Wi : working, i.e., task . τi is being executed by the processor. . □

The lower-level holon .HWi is defined as follows.

Definition 7.2 [holon .HWi] Let .0 ≤ k < Ci . The system behavior in state
. Wi is described by a holon .HWi := (XWi ,ΣWi , δWi , X

Wi

0 , X
Wi
m) with state set

.XWi := {Ii, Ai, w
0
i , w

1
i , , w

Ci

i } partitioned into .XWi

E = {Ii, Ai} and . XWi

I =
{w0

i , w
1
i , . . . , w

Ci

i }, event set .ΣWi := {αi, βi, ci} partitioned into . ΣWi

B := {αi, βi}
and .ΣWi

I := {ci}, transitions .δBI (Ai, αi) = w0
i , .δBO(w

Ci

i , βi) = Ii , and

.δI (w
k
i , ci) = wk+1

i , the initial state set .XCi

0 = {w0
i }, and the terminal state set

.X
Ci
m = {wCi

i }. .♢

7.2 RTS Modelled by State-Tree Structures 167

Fig. 7.1 Higher-level model of WCET. (a) Holon .HCi . (b) Child-state-tree . ST Ci

Fig. 7.2 Lower-level model of WCET. (a) Holon .HWi . (b) Child-state-tree .ST Wi .

Example For task . τi , as shown in Fig. 7.1, its WCET . Ci is represented by a holon
and a matching state-tree depicted in Figs. 7.1a and 7.1b, respectively. In accordance
with Fig. 2.13, superstate . Wi is represented by a square dashed with north west
lines. . □

The state spaces of the holons form child-state-trees. For instance, in Fig. 7.2, a
holon .HWi contains .Ci +1 states, which represents the system behavior inside state
. Wi . According to Sect. 2.3.2, a superstate in a holon is represented by a box. Let
.0 ≤ k ≤ Ci . State . wk

i represents that task . τi has been processed for k time units.

Example By plugging the holon illustrated in Fig. 7.2a into Fig. 7.1a, a two-level
holon that represents . Ci is depicted in Fig. 7.3a. It is matched with a child-state-tree
.ST Ci depicted in Fig. 7.3b. In accordance with both Sects. 2.3.2 and 4.2.2, the states
filled with gray or crosshatch dots represent that they are in a lower level holon, and
the states filled with crosshatch dots represent that the corresponding task is under
execution. . □

Remark The holon depicted in Fig. 7.1 is similar to the TDES active transition
graph illustrated in Fig. 4.1 but more general. Their semantics is different. For

168 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Fig. 7.3 Hierarchical STS model of . Ci . (a) Holon .HCi
with two levels. (b) Child-state-tree . ST Ci

example, the occurrences of event . βi in Figs. 4.1 and 7.1 are “ticked down” by
a global tick event t and a local event . ci representing task . τi under execution,
respectively. Clearly, event t represents any possible operation in a time unit;
however, event . ci represents that a time unit is utilized to execute task . τi . . □

7.2.3 Deadline Models

The deadline . Di of a task . τi is an integer denoting the maximal time difference
between its arrival (the occurrence of . γi) and its execution completion (the occur-
rence of . βi). In STS, deadline . Di is represented by a holon .HDi that matches a
child-state-tree .ST Di , which is defined below.

Definition 7.3 [deadline holon] Let .0 ≤ k < Di , .Ci ≤ p ≤ Di , and .1 ≤ j ≤ n.
The deadline . Di of task . τi is represented by a holon . HDi := (XDi ,ΣDi , δDi , X

Di

0 ,

X
Di
m) with state set .XDi = X

Di

I := {dR
i , d0

i , d1
i , . . . , d

Di

i }, event set . ΣDi = Σ
Di

I :=
{γi, βi, c1, c2, . . . , .cn, l}, transitions .(j /= i)δ

Di

I (dR
i , cj) = dR

i , .δDi

I (dR
i , l) = dR

i ,

.δ
Di

I (dR
i , γi) = d0

i , .δ
Di

I (dk
i , cj) = dk+1

i , .δDi

I (dk
i , l) = dk+1

i , and .δDi

I (d
p
i , βi) = dR

i ,

and the initial and terminal state set .XDi

0 = X
Di
m = {dR

i }. . ♢
For task . τi , the deadline . Di is represented by holon .HDi shown in Fig. 7.4, in which
“. ∗” and “. ∗∗” represent the events in . Σe and .Σe − {ci}, respectively. For simplicity,
the states between . d1

i and .d
Di

i (except . dCi

i) are omitted in this figure. The omissions
are represented by arrows with dashed lines. The states in Fig. 7.4 are defined as:

• . dR
i : the execution of task . τi is completed or has not started, and

• . dk
i : the k-th time unit is being utilized to process real-time tasks or in an idle
operation.

7.2 RTS Modelled by State-Tree Structures 169

The deadline . Di of task . τi is an integer denoting the maximal time difference
between its arrival (the occurrence of . γi) and its execution completion (the
occurrence of . βi).

According to Chap. 5, the alphabet (set of event labels) . Σi describing the
processor’s behavior to execute task . τi is:

• . γi : task . τi is released,
• . αi : the execution of . τi is started,
• . βi : the execution of . τi is completed,
• . ci .(i ∈ n): the processor starts to execute . τi for one processor time unit, and
• l: empty action, i.e., the processor is in an idle operation for one time unit.

Let .σ = ci (resp., .σ = l). The occurrence of . σ represents that one processor time
unit is utilized to execute task . τi (resp., in an idle operation for one processor time
unit while it stays in state . q ,).

Formally, for an RTS, its event set is defined as

. Σ = Σcon∪̇Σunc,

with

• .Σcon = {αi, ci |i ∈ n}: the controllable event subset, and
• .Σunc = {βi, γi, l|i ∈ n}: the uncontrollable event subset.
Moreover, . Σ is also partitioned into

• .Σo = {γi, αi, βi |i ∈ n}: the operation event set, and
• .Σe = {ci, l|i ∈ n}: the execution event set.
Example In Fig. 7.4, the transition

. (Ci ≤ p ≤ Di)δ
Di

I (d
p
i , βi) = dR

i

represents all the possible occurrences of event . βi . Figure 7.4a matches the child-
state-tree .ST Di as depicted in Fig. 7.4b. . □

Fig. 7.4 STS model of . Di . (a) Holon .HDi . (b) Child-state-tree .ST Di

170 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

7.2.4 Release Time and Period Models

For a periodic task . τi , the occurrence of event . γi represents the end of its current
processing period (if any) and the start of the next period. In STS, the release time
. Ri and period . Ti of a task . τi are represented by a holon .HTi that matches a child-
state-tree .ST Ti , which is defined below.

Definition 7.4 [release time and period holon] Let .0 < k ≤ Ri , .0 ≤ p < T u
i − 1,

.T l
i ≤ q < T u

i , and .1 ≤ j ≤ n. The release time . Ri and period . Ti of a task

. τi are represented by a holon .HTi := (XTi , ΣTi , δTi , X
Ti

0 , X
Ti
m) with state set

.XTi = X
Ti

I := {rRi

i , r
Ri−1
i , . . . , r0i , t0i , t1i , . . . , t

T u
i −1

i }; event set . ΣTi = Σ
Ti

I :=
{γi, c1, c2, . . . , , cn, l}; transitions .(j /= i)δ

Ti

I (rk
i , cj) = rk−1

i , .δTi

I (rk
i , l) = rk−1

i ,

.δ
Ti

I (r0i , γi) = t0i , .δ
Ti

I (t
p
i , cj) = t

p+1
i , .δTi

I (t
p
i , l) = t

p+1
i , .δTi

I (t
T u

i −1
i , cj) = r0i ,

.δ
Ti

I (t
T u

i −1
i , l) = r0i , and .δ

Ti

I (t
q
i , γi) = t0i ; the initial state set .X

Ti

0 = {rRi

i } and the
terminal state set .XTi

m = {rRi

i , r
Ri−1
i , . . . , r0i }. . ♢

For a task . τi , the release time . Ri and period . Ti are represented by the holon shown in
Fig. 7.5, in which “. ∗” and “. ∗∗” represent the events in . Σe and .Σe−{ci}, respectively.
Let .0 ≤ k ≤ Ri and .0 ≤ p < T u

i . The states in Fig. 7.5 are defined as:

• . rk
i : k time units before the arrival of task . τi , and

• . t
p
i : the k-th time unit is being utilized to process real-time tasks or in an idle
operation.

For a periodic task . τi , the occurrence of event . γi represents the end of its current
processing period (if any) and the start of the next period. Let .T l

i ≤ q < T u
i . In

Fig. 7.5, the transitions

. δ
Ti

I (r0i , γi) = t0i

and

. δ
Ti

I (t
q
i , γi) = t0i

represent all the possible occurrences of event . γi .

Example Figure 7.5a represents the possible multi-period of task . τi , which matches
a child-state-tree .ST Ti , as depicted in Fig. 7.5b. Since the RTS may process any task
or remain idle within the period of a task . τi or before its deadline, we allow event
. ci (.i ∈ n) to occur if the system is at states . dk

i , .0 ≤ k < Di and . t
p
i , .0 ≤ p < T u

i ,
simultaneously. .□

7.2 RTS Modelled by State-Tree Structures 171

Fig. 7.5 STS model of . Ti .
(a) Holon .HTi . (b)
Child-state-tree . ST Ti

7.2.5 Task Models

Finally, as depicted in Fig. 7.6a, the parameters of task . τi are modelled by (at most)
the following four holons:

• holon .HCi (contains .HWi): execution time . Ci ,
• holon .HWi : execution process of task . τi ,
• holon .HDi : deadline . Di , and
• holon .HTi : release time . Ri and period . Ti .

In Fig. 7.6a, “. ∗” and “. ∗∗” represent the events in . Σe and .Σe −{ci}, respectively. For
task . τi , superstates . Ci , . Di , and . Ti are the expansions of an .AND superstate .T Ki .
Hence, the main structure of the state-tree rooted by superstate .T Ki is illustrated
in Fig. 7.6b. The global child-state-tree representing real-time task . τi is obtained by
plugging the necessary holons (shown in Figs. 7.3b, 7.4b, and 7.5b) into Fig. 7.6b.
Notice that state . Di (or . Ti) is deleted from Fig. 7.6b if the matching holon .HDi (or
.HTi) is not needed. The root state . Ci is replaced by .T Ki directly if only holon . HCi

is necessary. As a consequence, holon .HCi is renamed to be .HT Ki .

172 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Fig. 7.6 Global model of real-time tasks. (a) Holons. (b) Child-state-tree

Remarks

1. The STS model depicted in Fig. 7.6 represents that all the holons are running
synchronously.

2. The RTS model of task . τi is the synchronous product of (at most) holons .HCi ,
.HDi , and .HTi . Holons .HDi or .HTi in Fig. 7.6a can be removed in the case that
they are unnecessary or not defined. For example, the deadline of periodic task
. τ4 in Table 7.1 is equal to its maximum period . T u

i . Thus holon .H
D4 is ignored

when building the model of . τ4.
3. The condition for an event . σ to occur is: . σ is eligible to occur in all the holons

where it appears. For example, event . γi in Fig. 7.6a can occur only if the system
is at states . Ii , . r0i , and . dR

i simultaneously.

4. From the perspective of holon .HCi , .HWi is an internal state in . X
Ci

I .

7.3 Conditionally-Preemptive Specifications 173

Fig. 7.7 Global model of . S. (a) Holons modelling . S. (b) Child-state-tree modelling . S

5. By following the presented approach, there is no technology barrier for address-
ing the exact execution time (discussed in Chap. 6) in holon .HWi . Users only
need to revise .HWi accordingly.

6. In this section, .{Ii, d
R
i , r

Ri

i } is defined as the initial state set of the STS depicted
in Fig. 7.6a. . □

7.2.6 Global RTS Execution Models

The monolithic RTS execution model is the synchronous product of the models
of all the RTS tasks under execution. In STS, the holons and state-tree representing
RTS . S are depicted in Figs. 7.7a and 7.7b, respectively. By plugging the task models
presented above into the RTS model we obtain the global RTS model, in which the
global RTS behavior is represented by an .AND superstate, namely .RTS.

Example Suppose that the four tasks given in Table 7.1 are running in an RTS . S.
The corresponding holons and the structure of the state-tree are depicted in Figs. 7.8
and 7.9, respectively. . □

7.3 Conditionally-Preemptive Specifications

According to the STS framework, two types of state-based specifications1 are
defined:

Type 1: mutual exclusion .{x1, x2, . . . , xn}: a system should avoid occupying
states . x1, . x2,, . xn in an STS model simultaneously;

Type 2: forbidden events at non-empty state sets .({x1, x2, . . . , .xn}, σ): at a state
set .{x1, x2, . . . , xn} in an STS model, event . σ is not allowed to occur.

As a consequence, the following two types of RTS real-time scheduling specifi-
cations are defined.

1 The states . x1, . x2,, . xn in these specifications can belong to different holons.

174 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Fig. 7.8 Holons of RTS . S

7.3.1 Matrix-Based Conditional-Preemption Specifications

In order to define the preemption relations among the tasks executed in a uni-
processor, a preemption matrix . A is presented in Chap. 5 taking the form

7.3 Conditionally-Preemptive Specifications 175

Fig. 7.9 State-tree of RTS .S RTS

TK1 TK2

C2 D2

TK3

C3 D3 T3

TK4

C4 T4

× × ×

× × × ×

.A =

⎛
⎜⎜⎜⎝

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...

∗ ∗ · · · 0

⎞
⎟⎟⎟⎠ (7.1)

where . ∗, equal to either 0 or 1, can be predefined by users. Accordingly, a task . τi

is (resp., is not) allowed to be interrupted by the execution of . τj if .Ai,j = 1 (resp.,
.Ai,j = 0) for .i /= j .

In a preemption matrix . A, if .i /= j , .Ai,j = 0 is equivalently represented by a Type
2 specification .({Wi}, αj). In particular, if two tasks . τi and . τj are not allowed to
preempt each other, the specification is denoted by a Type 1 specification .{Wi,Wj }.
It forbids a system from visiting . Wi and . Wj simultaneously.

Example Suppose that the execution of task . τ3 is not allowed to be preempted
by . τ1, i.e., .A3,1 = 0. The PFCP specifications are represented by .({W3}, α1) and
.({W3}, c1), which represents that while task . τ3 is under execution, the occurrences
of events . α1 and . c1 are prohibited. Moreover, if .A1,3 = A3,1 = 0, we have a
specification .{W1,W3}, which shows that tasks . τ1 and . τ3 are not allowed to stay in
holons .HW1 and .HW3 to process them simultaneously. . □

7.3.2 Task-Centered Specifications

Let .i, j ∈ n, .i /= j , and .0 ≤ k ≤ Ci . More specifically, a specification . ({wk
i }, cj)

represents that at state . wk
i the occurrence of event . cj is forbidden, which shows that

at state . wk
i the execution of task . τi cannot be preempted by task . τj .

Example Suppose that, at states . w0
1 and . w1

1, the execution of . τ1 is not allowed to
be preempted by . τ3. Then the state-based specifications are denoted by . ({w0

1}, c3)
and .({w1

1}, c3). .□

176 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

7.4 Dynamic Specifications

EDF scheduling is a dynamic priority scheduling strategy [14]. At every processor
time unit, EDF dynamically assigns the highest priority to the tasks with the earliest
deadlines. Least laxity first (LLF) scheduling, as another optimal algorithm, is
proposed by Mok in [10], which assigns the processor to the active task with the
smallest laxity. LLF has a larger overhead than EDF due to a larger number of
context switches caused by laxity changes at run time. This section mainly focuses
on the EDF specifications.

7.4.1 Earliest-Deadline First Task Selection at Arrival

Generally, suppose that two tasks . τi and . τj with .Di > Dj arrive simultaneously at
time unit .t ≥ 0. The tasks other than the one with the earliest deadline are prevented
from entering the processor for execution. Such an example is depicted in the Gantt
chart depicted in Fig. 7.10.2 Before executing . τi or . τj , i.e., at state set {. t0i , . t

0
j },

the system should prevent task . τi from entering the processor (at state set {. w0
i })

while task . τj is at state set {. Aj}. We have a Type 2 specification . {Aj ,w
0
i , t

0
i , t0j } =

{Aj }∪{w0
i }∪{t0i , t0j }. Consequently, the EDF task selection is described in Fact 7.1.

Fact 7.1 (EDF Task Selection) Let .S ⊆ S and .S /= ∅. The EDF task selection
specification for the tasks in S is equivalently represented by a state-based
specification set .{{Aj ,w

0
i , t

0
i , t0j } .|τi, τj ∈ S,Di > Dj }. . ♢

Example For the tasks given in Table 7.1, we have .D2 < D3 and .D4 < D3. The
EDF task selection specification is .{{A2, w

0
3, t

0
2 , t03 }, {A4, w

0
3, t

0
4 , t03 }}. Notice that

no period is assigned to task . τ2, and the specification .{A2, w
0
3, t

0
2 , t03 } is invalid.

However, there is no problem for assigning such a specification for STS since state
set .{A2, w

0
3, t

0
2 , t03 } is neither reachable nor coreachable. . □

Fig. 7.10 EDF task selection
at arrival

2 The two tasks in Figs. 7.10, 7.11, and 7.12 are assigned randomly as .τi = (_, 2, 6, [6, 6]) and
.τj = (_, 2, 4, [4, 4]).

7.4 Dynamic Specifications 177

Fig. 7.11 Partially
preemptive EDF

7.4.2 Partially Preemptive Earliest-Deadline First Scheduling

Let .S ⊆ S, .S /= ∅, .τi, τj ∈ S, .0 ≤ k ≤ Di , and .0 ≤ p ≤ Dj . States . dk
i

and . dp
j represent that during the execution of tasks . τi and . τj , k and p time units

have elapsed, respectively. As depicted in Fig. 7.11, during (or at least starting) the
execution of any two tasks . τi and . τj (at state set .{Ai,Aj ,Wi,Wj , d

k
i , d

p
j }), i.e., at

any time unit .t = k ≥ 0, the execution of . τi should be preempted if the deadline of
. τj is earlier (i.e., .Di − dk

i > Dj − d
p
j). Accordingly, the partially preemptive EDF

scheduling specification is described in Fact 7.2.

Fact 7.2 (Partially Preemptive EDF) Let .S ⊆ S, .S /= ∅, .τi, τj ∈ S, .0 ≤ k ≤ Di ,
and .0 ≤ p ≤ Dj . The state-based specification set .{({Ai,Aj , .Wi,Wj , d

k
i , d

p
j }, . αi),

.({Ai,Aj ,Wi,Wj , d
k
i , d

p
j }, ci)| .τi, τj ∈ S, .Di −dk

i > Dj −d
p
j } specifies a partially

preemptive EDF scheduling strategy for the tasks in S. . ♢
Remarks

1. The specifications generated in Facts 7.1 and 7.2 form the complete partially
preemptive EDF scheduling strategy.

2. The partially preemptive EDF specifications can be combined with the PFCP
specifications.

3. The specifications .{({Ai,Aj ,Wi,Wj , d
k
i , d

p
j }, αi)|τi, τj ∈ S, . Di − dk

i > Dj −
d

p
j } can be ignored if some scheduling scenarios place no constraints on the start
of any task’s execution. In this case, the EDF scheduling is still satisfied since
in any execution period, event . αi occurs prior to the occurrence of event . ci (the
execution of task . τi). . □

7.4.3 Partially Non-Preemptive Earliest-Deadline First
Scheduling

Non-preemptive EDF specifications are very common in industrial implementa-
tions. For instance a manufacturing process may require that, after a task . τi enters
the processor and before its execution is completed, the processing of . τi cannot be
preempted even if another task . τj is assigned with a higher priority.

178 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Fig. 7.12 Partially
non-preemptive EDF

Let .S ⊆ S with .S /= ∅, .τi, τj ∈ S, .0 ≤ k ≤ Di , and .0 ≤ p ≤ Dj . As depicted
in Fig. 7.12, the system is not allowed to visit state set .{Wi,Wj }. Moreover, after
the arrival of any two tasks . τi and . τj (at state set .{Ai,Aj , d

k
i , d

p
j }), i.e., at time

.t = k ≥ 0, the execution of . τi will be preempted if the deadline of . τj comes earlier
(.Di − dk

i > Dj − d
p
j). Accordingly, the partially non-preemptive EDF scheduling

specification is described in Fact 7.3.

Fact 7.3 (Partially Non-Preemptive EDF) Let .S ⊆ S with .S /= ∅, .τi, τj ∈ S,
.0 ≤ k ≤ Di , and .0 ≤ p ≤ Dj . The state-based specification sets . {{Wi,Wj }|
.τi ∈ S, τj ∈ S, .i /= j} and .{({Ai,Aj , d

k
i , d

p
j }, αi)| . τi, τj ∈ S,Di − dk

i > Dj − d
p
j }

specify a partially non-preemptive EDF strategy for the tasks in S. . ♢
Remarks

1. The specifications generated in Facts 7.1 and 7.3 form the complete partially
non-preemptive EDF scheduling strategy.

2. The partially preemptive/non-preemptive EDF (dynamic) specifications can be
combined with the PFCP specifications.

3. The partially preemptive/non-preemptive LLF scheduling specifications can be
designed similarly, which is not touched upon in this chapter. . □

7.5 Supervisor Synthesis with a Case Study: Manufacturing
Cell

By assigning dynamic priorities to RTS tasks, based on the STS modelling and
supervisory control mechanism, a few safe execution sequences are selected, which
rank at the top according to specified optimality criteria. The presented RTS models
using STS can be synthesized in a software package STSLib,3 which utilizes BDD
as the basis of efficient computation.

Thanks to the supervisory control of STS [8, 9, 19], the controllers for the
controllable events are obtained to provide the expected safe execution sequences.
Briefly, this process is depicted in the diagram in Fig. 7.13.

3 https://github.com/chuanma/STSLib.

https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib

7.5 Supervisor Synthesis with a Case Study: Manufacturing Cell 179

Fig. 7.13 RTS scheduling
diagram RTS

STS
Model

Specifications

STS
Specifications

Supervisory
control of STS

Scheduler

Modelling Modelling

Output

Input

Case studies on the manufacturing cell studied in Chaps. 5 and 6 are recalled in
this section. Based on the nonblocking supervisory control of STS, the controller
for each controllable event in the RTS is calculated, which provides all the expected
safe execution sequences.

7.5.1 Compact Encoding of the Manufacturing Cell

Consider the manufacturing cell studied in Sect. 6.5 as an example. Two pieces of
W1 (resp., W2) are released to the input buffer B1 (resp., B2) simultaneously every
6 (resp., 3) seconds. The robot . R has capacity one; transporting each piece takes
1 second. Thus, we define a task .τ1 = (0, 2, 6, [6, 6]) (resp., .τ2 = (0, 2, 3, [3, 3])) to
represent the transportation of the two pieces of W1 (resp., W2) by . R. Consequently,
we have a system .S = {τ1, τ2}, whose holons are shown in Fig. 7.14.

In the STS framework, the manufacturing cell is encoded into BDD. As proposed
in [4] and [5], the states in the state set . Xx of a holon . Hx are encoded by BDD nodes
(variables). Consider a state set . Xx with a state space .|Xx | = N . An element y in
. Xx is encoded as a vector of n binary values, where .n = ⎾log2 N⏋. The encoding
process is denoted by a function .f : Xx → {0, 1}n that maps an element y in . Xx to
a distinct n-bit binary vector. According to [8], the n variables are denoted by . x_i
with .0 ≤ i < n.

As shown in Fig. 7.14, seven states form the state set of holon .HT1 , i.e., . XT1 =
{r01 , t01 , t11 , . . . , t51 }. As a consequence, three BDD nodes .T 1_i with . 0 ≤ i < 3
are needed to encode the states in .XT1 . (In the encoding process, superstate . T1 is
represented by RT 1.) Let .T 1_i : 0 and .T 1_i : 1 denote that .T 1_i is encoded as 0
and 1, respectively. The encoding pairs are shown in Table 7.2. Similarly, the states
in holons .HC2 and .HW2 are encoded as shown in Table 7.3.

180 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Fig. 7.14 Holons of manufacturing cell

Table 7.2 BDD vectors
encoding the states in . HT1

State BDD vector

.r01 . < RT 1_2 : 0, RT 1_1 : 0, RT 1_0 : 0 >

.t01 . < RT 1_2 : 0, RT 1_1 : 0, RT 1_0 : 1 >

.t11 . < RT 1_2 : 0, RT 1_1 : 1, RT 1_0 : 0 >

.t21 . < RT 1_2 : 0, RT 1_1 : 1, RT 1_0 : 1 >

.t31 . < RT 1_2 : 1, RT 1_1 : 0, RT 1_0 : 0 >

.t41 . < RT 1_2 : 1, RT 1_1 : 0, RT 1_0 : 1 >

.t51 . < RT 1_2 : 1, RT 1_1 : 1, RT 1_0 : 0 >

Table 7.3 BDD vectors
encoding the states in . HC2

and . HW2

State BDD vector

.I2 . < C2_1 : 0, C2_0 : 0 >

.A2 . < C2_1 : 0, C2_0 : 1 >

.W2 . < C2_1 : 1, C2_0 : 0 >

.w0
2 . < W2_1 : 0,W2_0 : 0 >

.w1
2 . < W2_1 : 0,W2_0 : 1 >

.w2
2 . < W2_1 : 1,W2_0 : 0 >

7.5.2 Conditionally-Preemptive Scheduling

Suppose that a matrix-based specification is denoted by

7.5 Supervisor Synthesis with a Case Study: Manufacturing Cell 181

Fig. 7.15 SFBC controllers. (a) . fα1 . (b) . fα2 . (c) . fc1

Table 7.4 Truth table of . fα1

.fα1 .RT 1_0 .RT 1_1 .RT 1_2 .C2_0 .C2_1 .W2_0 . W2_1

1 0 .∗ .∗ .∗ .∗ .∗ . ∗
1 1 1 .∗ .∗ .∗ .∗ . ∗
1 1 0 .∗ 0 1 .∗ 0

0 1 0 .∗ 0 1 .∗ 1

0 1 0 .∗ 0 0 .∗ . ∗
0 1 0 .∗ 1 .∗ .∗ . ∗

. A =
(
0 0
1 0

)
,

i.e., the execution of task . τ1 cannot be preempted by . τ2. The corresponding STS
specification is .({W1}, α2, {W1}, c2). By the state feedback control (SFBC) [8, 9],
event . c2 can occur at any basic-state-tree whenever it is eligible to occur. The
control functions of events . α1, . α2, and . c1, denoted by . fα1 , . fα2 , and . fc1 , respectively,
are shown in Fig. 7.15. A dashed (resp., solid) branch denotes that the variable is
assigned 0 (resp., 1). According to Fig. 7.15a, the truth table for control function
.fα1 is obtained, as shown in Table 7.4, where “. ∗” denotes a variable that can be
assigned 0 or 1.

The controllers display that:

• event . α1 can occur at state sets .{A1, t
2
1 , t21 , w2

2} and .{A1, I2, t
2
1 , t22 },

• event .c1 can occur at state sets .{I2, t21 , t22 , w0
1}, .{t21 , t22 , w0

1, w
2
2}, and

.{A2, t
3
1 , t02 , w1

1},
• event .α2 can occur at state sets .{A1, A2, t

0
1 , t02 }, .{I1, A2, r

0
1 , t

0
2 }, and

.{I1, A2, t
4
1 , t12 }, and

182 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Fig. 7.16 EDF scheduling sequences

• event . c2 can occur at state sets .{A1, t
1
1 , t12 , w1

2}, .{A1, t
0
1 , t02 , w0

2}, .{I1, t51 , t22 , w1
2},

and .{I1, t41 , t12 , w0
2}.

The RTS under control can reach the following 24 sub-state-trees: {. I1, . I2, . r01 , . r
0
2 },

{. I1, . A2, . r01 , . t
0
2 }, {. A1, . I2, . t01 , . r

0
2 }, {. t

0
1 , . t

0
2 , . w

0
1, . w

0
2}, {. t

1
1 , . t

1
2 , . w

0
1, . w

1
2}, {. t

1
1 , . t

1
2 , . w

1
1,

. w0
2}, {. t

2
1 , . t

2
2 , . w

0
1, . w

2
2}, {. t

2
1 , . t

2
2 , . w

1
1, . w

1
2}, {. t

3
1 , . r

0
2 , . w

1
1, . w

2
2}, {. t

4
1 , . t

1
2 , . w

0
2}, {. t

5
1 , . t

2
2 , . w

1
2},

{. I1, . r01 , . t
0
2 , . w

0
2}, {. A1, . t11 , . t

1
2 , . w

1
2}, {. I1, . r

0
1 , . r

0
2 , . w

2
2}, {. I1, . A2, . t41 , . t

1
2 }, {. A1, . A2, . t01 , . t

0
2 },

{. A1, . t01 , . t
0
2 , . w

0
2}, {. A1, . t01 , . r

0
2 , . w

2
2}, {. A1, . t21 , . t

2
2 , . w

2
2}, {. A1, . I2, . t21 , . t

2
2 }, {. I2, . t

2
1 , . t

2
2 , . w

0
1},

{. A2, . t31 , . t
0
2 , . w

1
1}, {. I2, . t

3
1 , . r

0
2 , . w

1
1}, and {. A2, . t41 , . t

1
2 , . w

2
1}.

7.5.3 Preemptive and Non-Preemptive Earliest-Deadline First
Scheduling

For given preemptive/non-preemptive EDF specifications, the controllers for all the
controllable events are calculated. All the EDF scheduling sequences are shown
in Fig. 7.16, where the paths made by the states dashed by north east lines denote
the non-preemptive EDF sequences. In other words, the diagram shown in Fig. 7.16
contains the three possible EDF sequences depicted in Fig. 7.17. Since in the time
interval .[3, 6] the deadlines of . τ1 and . τ2 are equal to each other, . τ1 and . τ2 can be
processed in any order. The sequence shown in Fig. 7.17a is the non-preemptive
EDF sequence. The preemptive EDF specification for the RTS is given as follows.

Type 1: {{. A2, . w0
1, . t

0
1 , . t

0
2 }};

Type 2: {({. W1, . W2, . A1, . A2, . t01 , . t
0
2 }, . α1), ({. W1, . W2, . A1, . A2, . t01 , . t

0
2 }, . c1), ({. W1,

. W2, . A1, . A2, . t01 , . t
1
2 }, . α1), ({. W1, . W2, . A1, . A2, . t01 , . t

1
2 }, . c1), ({. W1, . W2, . A1, . A2, . t01 , . t

2
2 },

. α1), ({. W1, . W2, . A1, . A2, . t01 , . t
2
2 }, . c1), ({. W1, . W2, . A1, . A2, . t11 , . t

0
2 }, . α1), ({. W1, . W2, . A1,

7.5 Supervisor Synthesis with a Case Study: Manufacturing Cell 183

Fig. 7.17 EDF scheduling logics shown in Fig. 7.16. (a) Scheduler 1. (b) Scheduler 2. (c)
Scheduler 3

. A2, . t11 , . t
0
2 }, . c1), ({. W1, . W2, . A1, . A2, . t11 , . t

1
2 }, . α1), ({. W1, . W2, . A1, . A2, . t11 , . t

1
2 }, . c1), ({. W1,

. W2, . A1, . A2, . t11 , . t
2
2 }, . α1), ({. W1, . W2, . A1, . A2, . t11 , . t

2
2 }, . c1), ({. W1, . W2, . A1, . A2, . t21 , . t

0
2 },

. α1), ({. W1, . W2, . A1, . A2, . t21 , . t
0
2 }, . c1), ({. W1, . W2, . A1, . A2, . t21 , . t

1
2 }, . α1), ({. W1, . W2, . A1,

. A2, . t21 , . t
1
2 }, . c1), ({. W1, . W2, . A1, . A2, . t21 , . t

2
2 }, . α1), ({. W1, . W2, . A1, . A2, . t21 , . t

2
2 }, . c1), ({. W1,

. W2, . A1, . A2, . t31 , . t
1
2 }, . α1), ({. W1, . W2, . A1, . A2, . t31 , . t

1
2 }, . c1), ({. W1, . W2, . A1, . A2, . t31 , . t

2
2 },

. α1), ({. W1, . W2, . A1, . A2, . t31 , . t
2
2 }, . c1), ({. W1, . W2, . A1, . A2, . t41 , . t

0
2 }, . α2), ({. W1, . W2, . A1,

. A2, . t41 , . t
0
2 }, . c2), ({. W1, . W2, . A1, . A2, . t41 , . t

2
2 }, . α1), ({. W1, . W2, . A1, . A2, . t41 , . t

2
2 }, . c1), ({. W1,

. W2, . A1, . A2, . t51 , . t
0
2 }, . α2), ({. W1, . W2, . A1, . A2, . t51 , . t

0
2 }, . c2), ({. W1, . W2, . A1, . A2, . t51 , . t

1
2 },

. α2), ({. W1, . W2, . A1, . A2, . t51 , . t
1
2 }, . c2)}.

The non-preemptive EDF specification for the RTS is given as follows.

Type 1: {{. A2, . w0
1, . t

0
1 , . t

0
2 }, {. W1,. W2}};

Type 2: {({. A1, . A2, . t01 , . t
0
2 }, . α1), ({. A1, . A2, . t01 , . t

1
2 }, . α1), ({. A1, . A2, . t01 , . t

2
2 }, . α1),

({. A1, . A2, . t11 , . t
0
2 }, . α1), ({. A1, . A2, . t11 , . t

1
2 }, . α1), ({. A1, . A2, . t11 , . t

2
2 }, . α1), ({. A1, . A2, . t21 ,

. t02 }, . α1), ({. A1, . A2, . t21 , . t
1
2 }, . α1), ({. A1, . A2, . t21 , . t

2
2 }, . α1), ({. A1, . A2, . t31 , . t

1
2 }, . α1), ({. A1,

. A2, . t31 , . t
2
2 }, . α1), ({. A1, . A2, . t41 , . t

0
2 }, . α2), ({. A1, . A2, . t41 , . t

2
2 }, . α1), ({. A1, . A2, . t51 , . t

0
2 }, . α2),

({. A1, . A2, . t51 , . t
1
2 }, . α2)}.

7.5.4 Non-Preemptive Earliest-Deadline First Scheduling
Sequences

Suppose that we have four real-time tasks with the parameters listed in Table 7.5.
By non-preemptive EDF scheduling, the following periodic execution sequence is
found:

.

s1c1c1β1α2c2c2c2β2α3c3c3c3c3β3α4c4γ1c4c4c4c4β4α1c1γ2c1

β1α2c2c2c2β2ls2c1c1β1α3c3c3c3c3β3lllls3c1c1β1α2c2c2c2β2

α4c4c4c4c4c4s4c1c1β1α3c3c3c3γ2c3β3α2c2c2c2β2lγ1α1c1c1β1llllllll

with

184 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

Table 7.5 Parameters of four
tasks

Task .Ri .Ci .Di . Ti

.τ1 0 2 8 [10, 10]

.τ2 0 3 10 [15, 15]

.τ3 0 4 15 [20, 20]

.τ4 0 5 20 [30, 30]

Fig. 7.18 A part of non-preemptive EDF scheduling sequence

• .s1 = (γ1α1)||γ2||γ3||γ4,
• .s2 = (γ1α1)||γ3,
• .s3 = (γ1α1)||γ2||γ4, and
• .s4 = β4||(γ1α1)||γ3.

Here . s1 denotes the synchronous product of sequences .γ1α1, . γ2, . γ3, and . γ4. In
every 60 time units, without blocking the arrival of any task, among all the safe
executions the STS scheduler finds the following order to schedule the RTS tasks
shown in Table 7.5 periodically:

. τ1τ2τ3τ4τ1τ2lτ1τ3llllτ1τ2τ4τ1τ3τ2lτ1llllllll.

The scheduling of the RTS from the 0-th to the 30-th time unit is depicted in
Fig. 7.18.

7.6 Large RTS Example

Suppose that we have an RTS that processes the regular periodic tasks shown in
Table 7.6. For a task . τi , .Di = T l

i = T u
i holds. The state space of the corresponding

STS . G is in the order of .2 × 1030.4 Suppose that the following two specifications
are assigned by users:

S1: Preemptive scheduling, and
S2: Non-preemptive scheduling.

4 This is calculated based on the synchronous product of all the holons appeared in the RTS model.

7.7 Conclusion 185

Table 7.6 Tasks of a large RTS

Task .Ci .Ti Task .Ci .Ti Task .Ci . Ti

.τ11 1 [40, 40] .τ21 1 [40, 40] .τ31 1 [20, 20]

.τ12 1 [30, 30] .τ22 1 [40, 40] .τ32 1 [25, 25]

.τ13 2 [40, 40] .τ23 2 [40, 40] .τ33 1 [20, 20]

.τ14 1 [50, 50] .τ24 1 [40, 40] .τ34 1 [25, 25]

.τ15 1 [30, 30] .τ25 1 [50, 50] .τ35 1 [25, 25]

By the supervisory control of STS, for S1, the controllers allow all the con-
trollable events to occur whenever they are eligible. However, no safe execution
sequences with respect to S2 are found.

7.7 Conclusion

STS are a complex DES framework with compact representation. As stated in
Chap. 2, [8], and [9], the state explosion problem faced by the SCT community is to
some extent managed in STS. The efficiency of the proposed method is due in part
to BDD [2] and symbolic computation. In the case of large-scale DES the required
computer memory is more likely to be acceptable than the case that an explicit state
transition enumeration is employed.

This chapter reports on a unified STS-based framework to model and schedule
RTS by addressing conditionally-preemptive and dynamic priority scheduling speci-
fications. A formal constructive method is presented to model an RTS that processes
multi-period and sporadic tasks, in which a multi-period task is assigned with a
set of possible periods between a minimum period and a maximum period. Based
on this framework, the PFCP specifications proposed in [16] are converted to STS
specifications in a compact representation that often manages the state explosion
problem for practical purposes. As a classical dynamic priority scheduling, partially
preemptive or non-preemptive earliest deadline first (EDF) scheduling is also
addressed in this chapter. Moreover, there is no technology barrier for designing
specifications for LLF scheduling. The PFCP scheduling presented in this chapter
is applied to a real-world RTS example.

The dynamic specifications presented in Sect. 7.4 are all state-based, which
avoids using memories (specification holons) to record the system behavior. Thus
the approach provided in this chapter avoids building a large group of memories,
which is normally very laborious for the classical supervisory control of DES.

186 7 Scheduling/Reconfiguration Based on Supervisory Control of STS

If other SCT synthesis tools, such as TCT5 [19], libFAUDES6 [11], Desuma7

[13], and Supremica8 [1], are able to handle the state-based specifications presented
in Sects. 7.3 and 7.4, then they can also be used to find the safe execution sequences
of the RTS with respect to dynamic specifications.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica-an integrated environment for
verification, synthesis and simulation of discrete event systems. In: International Workshop
on Discrete Event Systems, pp. 384–385. IEEE (2006)

2. Andersen, H.R.: An Introduction to Binary Decision Diagrams. Lecture Notes, (available
online), IT University of Copenhagen (1997). http://web.archive.org/web/20140222052815/
http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 100(8), 677–691 (1986)

4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3), 293–318 (1992)

5. Chao, W., Gan, Y., Wang, Z., Wonham, W.M.: Modular supervisory control and coordination
of state tree structures. Int. J. Control 86(1), 9–21 (2013)

6. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002)

7. Janarthanan, V., Gohari, P., Saffar, A.: Formalizing real-time scheduling using priority-based
supervisory control of discrete-event systems. IEEE Trans. Autom. Control 51(6), 1053–1058
(2006)

8. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317.
Springer-Verlag, Berlin (2005)

9. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans.
Autom. Control 51(5), 782–793 (2006)

10. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts (1983)

11. Moor, T., Schmidt, K., Perk, S.: libFAUDES–An open source C++ library for discrete event
systems. In: 2008 9th International Workshop on Discrete Event Systems, pp. 125–130. IEEE
(2008)

12. Park, S.J., Cho, K.H.: Real-time preemptive scheduling of sporadic tasks based on supervisory
control of discrete event systems. Inf. Sci. 178(17), 3393–3401 (2008)

13. Ricker, L., Lafortune, S., Genc, S.: Desuma: A tool integrating giddes and umdes. In: 8th
International Workshop on Discrete Event Systems, pp. 392–393. IEEE (2006)

14. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky,
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2),
101–155 (2004)

15. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101–111
(2016)

5 The software tool TCT is available at http://www.control.utoronto.ca/DES.
6 The software libFAUDES incl. luafaudes is available at https://www.rt.tf.fau.de/FGdes.
7 The software Desuma is available at https://wiki.eecs.umich.edu/desuma/index.php/DESUMA.
8 The software Supremica is available at https://supremica.org/.

http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://supremica.org/
https://supremica.org/
https://supremica.org/

References 187

16. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47(7), 1082–1098 (2017)

17. Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of
modular sporadic real-time systems. Automatica 89, 392–397 (2018)

18. Wang, X., Li, Z., Wonham, W.M.: Real-time scheduling based on nonblocking supervisory
control of state-tree structures. IEEE Trans. Autom. Control 66(9), 4230–4237 (2021)

19. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering. Springer, Berlin (2018)

Chapter 8
Conclusion and Future Work

8.1 Conclusion

As an interdisciplinary approach, SCT-based real-time scheduling and reconfigura-
tion are a newly-identified research topic. This monograph provides several formal
real-time systems (RTS) construction approaches based on discrete-event systems
(DES) [18, 25], timed DES (TDES) [2], and state-tree structures (STS) [12, 13].
Based on TDES, DES, and STS, this monograph reports unified supervisory control
theory (SCT)-based frameworks to build and dynamically schedule/reconfigure
RTS. The presented frameworks can be utilized to model an RTS that processes
multi-period and sporadic tasks, in which a multi-period task is assigned with a
set of possible periods between a minimum and a maximum period. The proposed
modular models are taken to be generic entities, which are utilized to model a
problem domain such as “hard real-time manufacturing and reconfigurations” and
manage its manufacturing production process. A processor could be a robot or an
assembly-line worker, and a task could be an industrial operation performed by
manufacturing lines.

8.1.1 RTS Modelling Methods

In this monograph, an RTS is denoted by . S. We assume that a set of n
RTS tasks processed by a uni-processor RTS is represented by a task set
.S = {τ1, τ2, . . . , τi , . . . , τn} with .i ∈ n := {1, 2, . . . , n}. The main differences
among the three SCT modelling frameworks are stated in Table 8.1, in which, for
the execution of a real-time task . τi , both events t and . ci represent that one time unit
is utilized to process a real-time task . τi . Event t is a global tick event and . ci is a
local event, both representing task . τi under execution. As stated in Table 8.1, in the
TDES (resp., DES or STS) model, the execution of different tasks is considered as

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0_8

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-41969-0protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8
https://doi.org/10.1007/978-3-031-41969-0_8

190 8 Conclusion and Future Work

Table 8.1 SCT-based RTS models

SCT
model . τi in process

Idle
operation

Resource
sharing

Resource
preemption Preemption

Hierarchical
modelling

TDES t t Y Y N N

DES .ci l N Y Y N

STS .ci l N Y Y Y

the same (resp., different) events. Hence, in the synchronous product, they will occur
simultaneously (resp., separately). The idle operation of processor is represented
by t and l in TDES and DES (and also STS), respectively. Moreover, “Y” and “N”
in Table 8.1 represent “yes” and “no”, respectively.

For a periodic RTS task . τi , any of its task execution models can be considered as
a special case of a general reconfigurable task model described by

. τi = (Ri,Ci , Di,Ti)

with

• a release time . Ri ,
• an execution time interval . Ci ,
• a deadline . Di , and
• a multi-period . Ti ,

where . Ri and . Di are non-negative integers. As stated in Chap. 4, a multi-period

. Ti = [T l
i , T u

i] ∈ N × N,

is specified by a non-empty interval where the number of time units that elapses
between any two successive releases lies within . Ti . Hence a multi-period has a
lower bound (i.e., shortest one) represented by . T l

i and an upper bound (i.e., longest
one) represented by . T u

i . In an execution period, only an exact execution time C
(resp., period T) in . Ci (resp., . Ti) of task . τi is actually taken. Only a period T in . Ti

of task . τi is selected. The lower and upper bounds of the execution interval . Ci are
the best-case execution time (BCET) and the worst-case execution time (WCET) of
task . τi , denoted by . Cl

i and . Cu
i , respectively, i.e.,

. Ci = [Cl
i , C

u
i].

For simplification, we write . Ci (resp., . Ti , in accordance with Chap. 5) instead of . Ci

(resp., . Ti) in the case of .Cl
i = Cu

i (resp., .T l
i = T u

i).
A general TDES model is proposed to represent periodic real-time tasks. A task

is represented by a TDES

.Gi = (Qi,Σi, δi, q0,i ,Qm,i)

8.1 Conclusion 191

where . Σi consists of

• t : the tick event,
• . γi : the release event of . τi ,
• . αi : the execution of . τi is started, and
• . βi : the execution of . τi is finished.

According to supervisory control of TDES, a monolithic RTS execution model
(as the plant) and a user-defined specification are required. However, the proposed
TDES-based monolithic RTS execution model may be conservative. This discussion
contains three parts:

• Task model: Generally, in quite limited cases, resources are available to execute
several RTS tasks concurrently (e.g., Fig. 4.7). The reason is that this assumption
violates a basic rule for RTS in [11]: all the tasks are independent.

• Synchronous product: The timing parameters of RTS tasks are represented by
time bounds of events representing release/arrival, starting, and finishing. Hence,
the execution of a task is represented by the global tick event t . Clearly, in the
synchronous product, they will occur simultaneously. As discussed above, this
case is very rare in RTS scheduling.

• Preemption is impossible: Since the execution of any task is represented by the
global tick event t , task execution preemption (event t for a task’s execution
preempts the occurrence of another task) is impossible.

For instance, as stated in Chaps. 5, 6, and 7, based on DES and STS, suppose that
we have two tasks . τ1 and . τ2 and their executions are represented by . c1 in . Σ1 and . c2
in . Σ2, respectively. Moreover, assume that we have two substrings .s1 = c1c1 and
.s2 = c2 under the condition that there exist

. w1, v1 ∈ Σ∗
1 , w1s1v1 ∈ L(G1)

and

. w2, v2 ∈ Σ∗
2 , w2s2v2 ∈ L(G2).

Intuitively, the execution of . s1 and . s2 within a uni-processor needs to take three
time units. Let .L1 = {s1} ⊂ Σ '∗

1 and .L2 = {s2} ⊂ Σ '∗
2 with .Σ '

1 = {c1} ⊂ Σ1 and
.Σ '

2 = {c2} ⊂ Σ2. Their synchronous product is

. L1||L2 = {c2c1c1, c1c2c1, c1c1c2};

it represents all the possible executions correctly. However, according to the TDES
model presented in Chap. 4, we have

• .s1 = t t ,
• .s2 = t ,
• .L1 = {s1} ⊂ Σ '∗

1 ,

192 8 Conclusion and Future Work

Fig. 8.1 Event assignments in TDES, DES, and STS

• .L2 = {s2} ⊂ Σ '∗
2 ,

• .Σ '
1 = {t} ⊂ Σ1, and

• .Σ '
2 = {t} ⊂ Σ2.

The synchronous product of . L1 and . L2 is .L1||L2 = ∅. Evidently, the TDES model
cannot actually represent general resource preemption real-time scheduling.

All the SCT frameworks discussed above model the RTS behaviors related to task
execution properly. As illustrated in Fig. 8.1, (built on Fig. 1.1a), for any real-time
task . τi with .i ∈ N, (summarized from [21–24]), six behaviors are defined below.

• arrival of task . τi : in TDES, DES, and STS, represented by event . γi ,
• execution of . τi starting: in TDES, DES, and STS, represented by event . αi ,
• execution of . τi : in TDES, represented by global clock t ; in DES and STS, by

event . ci ,
• execution of . τi preempted by another task . τj : in DES and STS, represented by

event . cj ; no such assumption in TDES,
• execution of . τi completing: in TDES, DES, and STS, represented by event . βi ,

and
• execution of . τi is not completed (considering the exact execution time): in DES,

represented by event . ρi .

Assume that in theGantt chart depicted in Fig. 8.1, we have . τ1 = (0, [1, 1], 4, [5, 5])
and .τ2 = (0, [1, 2], 4, [4, 4]), in which . τ2 is associated with a BCET and a WCET
being equal to 1 and 2 time units, respectively. Consequently, event . ρ2 occurs at
time .t = 1, .t = 5, and .t = 9 since the execution is not competed at the BCET.
Clearly, it is trivial to extend it into an STS model, which is ignored in Chap. 7.

Suppose that n tasks are running in an RTS. Its global behavior is represented by
a DES/STS modelling framework denoted by . G with a global event set denoted by
. Σ . The alphabet . Σ can be partitioned into controllable events and uncontrollable
events. Formally,

.Σ = Σcon∪̇Σunc,

8.1 Conclusion 193

with

• .Σcon = {αi, ci |i ∈ n}: the controllable event subset, and
• .Σunc = {βi, ρi, γi, l|i ∈ n}: the uncontrollable event subset.
Moreover, . Σ is also partitioned into

• .Σo = {γi, αi, βi |i ∈ n}: the operation event set, and
• .Σe = {ci, l|i ∈ n}: the execution event set.
The occurrence of any event . σ in . Σ leads the system from one state q to another
state . q '. Formally, write .δ(q, σ) = q '. Let .σ = ci . The execution of a task . τi during
one processor time unit occurs in state . q '. Otherwise, letting .σ = l, the processor is
in an idle operation for one processor time unit when it stays in state . q '.

In DES, the semantics of all the events in . Σe is similar to the tick event defined
in TDES [2], i.e., the occurrence of an event . ci or l in DES (or an event t in TDES)
represents that a processor time unit is utilized to execute a real-time task or in an
idle operation. However, since the events in . Σe are not represented by a unique
global tick event t , the synchronous product of several RTS task models over . Σe

will not result in the concurrent execution of real-time tasks. As a consequence,
in comparison with [3, 10, 15], and [20], the DES/STS-based RTS model is more
general.

Based on the three frameworks and the modelling methodology discussed above,
in the literature, RTS tasks are modelled in three different ways:

• RTS execution models (describing WCETs or exact execution times) as plants
and other parameter as specifications [5–10, 16, 17, 20, 23],

• the monolithic task behavior as a plant [20, 21] (as stated in Chaps. 4 and 5), and
• individual parameters as modular plants [22–24] (as stated in Chaps. 6 and 7).

Essentially, the cores of all the modelling approaches discussed above are identical:
the real-time tasks’ behavior is represented by formal languages that are generated
by TDES, DES, or holons in STS. Then, SCT is utilized to find out the safe execution
sequences. For the scheduling of tasks . τ1 and . τ2 shown in Fig. 8.3 (identical with
Fig. 1.1b), a TDES sub-diagram and a DES sub-diagram representing the processor
behavior are illustrated in Figs. 8.4 and 8.2, respectively. The states in Figs. 8.4
and 8.2 are marked with the corresponding time units shown in Fig. 8.3. According
to Sect. 4.2.2, the states in Figs. 8.4 and 8.2 filled with gray represent that a task is
under execution. Notice that state x in Fig. 8.2 is special:

• if the system enters state x by event . c2, task . τ2 is under execution, or
• if the system enters state x by event . α1, the execution of task . τ1 starts in the next

state.

The latter shows that, after task . τ1 arrives at time .t = 1, the execution of task . τ1
satisfies one of the following two cases:

• the execution of . τ1 is started at .t = 1: the processor considers that the execution
of task . τ1 is started at .t = 1, but it is preempted in time interval .[1, 2), or

194 8 Conclusion and Future Work

Fig. 8.2 A DES sub-diagram

Fig. 8.3 Real-time
scheduling of . τ1 with an
offset and . τ2

• the execution of . τ1 is started at .t = 2: the execution of task . τ1 is delayed to .t = 2.
At the same time, it is under execution immediately.

Actually, in both DES modelling and real-time scheduling, it is not so necessary to
consider the first case. For simplicity, in this monograph, we do not distinguish such
cases, i.e., we directly fill any state with an entry . ci with gray.

Remarks

1. Notice that the real-time scheduling shown Fig. 8.1 can be represented by DES.
However, TDES is not able to describe such a preemptive real-time scheduling
sequence.

2. In this monograph, all the DES models can be converted into STS holons. . □
In real world, the execution time of a job always varies over time. The exact

execution time of a task lies between its BCET and WCET. By addressing the exact
execution time of real-time tasks, Chap. 7 presents a modular modelling framework
to describe the parameters of real-time tasks, conforming to the pertinent concepts
and techniques of DES. For a periodic task . τi , between its BCET and WCET, two
uncontrollable events . βi and . ρi in the corresponding DES execution model represent
that the execution is completed or not. DES will “check” the execution process until
event . βi occurs. A sub-diagram is provided in Fig. 8.5. It shows that, at state 1,
if the execution of task . τi is completed, then event . βi occurs. Otherwise, event .ρi

8.1 Conclusion 195

Fig. 8.4 A TDES sub-diagram

Fig. 8.5 A sub-diagram for exact execution time

occurs, which leads the system from state 0 to 1 for the next time unit execution and
checking.

Users are suggested to propose scheduling or reconfiguration requirements
according to their will. These scheduling/reconfiguration requirements, either
priority-based or not, from the perspective of either processor or individual task, are
converted to formal SCT specifications offline. With these specifications assigned,
all the safe execution sequences of an RTS can be found in its optimal supervisor.

8.1.2 An Overview of Specifications Describing RTS
Scheduling Requirements

In this monograph, we distinguish conditionally-preemptive and dynamic real-time
scheduling policies. As stated in Chap. 5, conditionally-preemptive scheduling
policies are assigned from the perspective of both the processor and individual
tasks. The preemption relations do not change while the tasks are under execution.
In the literature, dynamic scheduling policies are more feasible. In [4], the author
shows that, among all preemptive scheduling algorithms, the famous dynamic
priority scheduling earliest deadline first (EDF) is optimal. If there exists a feasible
scheduling for a task set, then the scheduling produced by EDF is also feasible.

196 8 Conclusion and Future Work

On the processor level, conditionally-preemptive specifications are represented
by a preemption matrix. By defining the preemption relation among any two tasks
running in a processor, a preemption matrix can be utilized to describe all the pos-
sible fixed-priority (FP) preemption relations and other user-specified preemption
relations. Based on this matrix, the corresponding DES specifications are designed
accordingly. On the task level, the task preemption relations are depicted by DES
specifications directly. Clearly, the presented two general conditional-preemption
specifications are utilized to customize scheduling and preemption requirements
conditionally.

The dynamic priority specifications presented in Chap. 7 are state-based, which
avoids using memories (specification holons) to record the system behavior. Thus
the provided approach avoids building a large group of memories, which is normally
very laborious for the classical supervisory control of DES.

To the best of our knowledge, by modelling RTS in a hierarchical (vertical) and
concurrent (horizontal) structure, Chap. 7 is an attempt to provide an SCT-based
framework such that an RTS can be scheduled by addressing both conditionally-
preemptive and dynamic scheduling requirements. As seen, the presented schedul-
ing framework can find the optimal behavior (all the safe execution sequences) of
an RTS by the supervisory control of STS; a few quantitatively optimal schedule
sequences are selected, from perhaps a large number of safe execution sequences,
which rank at the top according to some specified optimality criteria.

If other SCT synthesis tools, such as TCT1 [25], libFAUDES2 [14], Desuma3

[19], and Supremica4 [1], are able to handle the state-based specifications presented
in Sects. 7.3 and 7.4, then they can also be used to find the safe execution sequences
of the RTS with respect to dynamic specifications.

From the perspective of SCT, an approach that can speed up the supervisor
synthesis reduces the number of states in the plant and specification. For TDES
and DES, the presented synthesis speeding up approach can be applied to Chaps. 5
and 6. This monograph divides the calculations into three steps. Each step considers
different specifications as follows.

• Step 1: from the perspective of processors, matrix-based conditional-preemption
specifications are taken into account.

• Step 2: from the perspective of individual tasks, WCET-based conditional-
preemption specifications are considered.

• Step 3: other user defined specifications are touched upon.

According to [12] and [13], the STS framework (rooted in binary decision diagrams)
is well-developed to manage the state explosion problem. Hence, the “speeding up”

1 The software tool TCT is available at http://www.control.utoronto.ca/DES.
2 The software libFAUDES incl. luafaudes is available at https://www.rt.tf.fau.de/FGdes.
3 The software Desuma is available at https://wiki.eecs.umich.edu/desuma/index.php/DESUMA.
4 The software Supremica is available at https://supremica.org/.

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://supremica.org/
https://supremica.org/
https://supremica.org/

References 197

approach is not so necessary for STS-based real-time scheduling and reconfigura-
tion.

8.2 Future Work

Future work includes two parts: supervisory control theory (SCT) and real-time
scheduling.

For SCT, a possible topic is hierarchical (nested) supervisory control of STS.
With the state explosion problem managed, STS are a powerful framework to model
complex dynamic systems in a compact and natural way. In an STS, such a system
is hierarchically abstracted to be superstates with layered internal structures. In our
future work, we will focus on hierarchical supervisory control of STS. The main
idea is: we decompose an STS into a set of STS nests (the largest flat fragments) in
the hierarchical layers automatically; thereafter, at any fixpoint, an STS nest tracks
the system dynamics partially. Finally, given an STS framework with multiple STS
nests, without tracking its global dynamics to synthesize the optimal behavior, a
nested optimal nonblocking supervisor is obtained. It is interesting to investigate
the modelling and supervisory control of timed STS by building on their nested
structure.

For real-time scheduling, SCT-based multi-processor scheduling/reconfiguration
policies and their industrial implementations are worth further exploration. Possible
research topics include: soft scheduling and reconfiguration, low-power scheduling
and reconfiguration, resource constrained scheduling and reconfiguration, resource
sharing scheduling and reconfiguration, job skipping reconfiguration, resource
allocation during scheduling and reconfiguration, feedback scheduling and recon-
figuration, multi-class resource scheduling and reconfiguration, and distributed
scheduling and reconfiguration.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica-an integrated environment for
verification, synthesis and simulation of discrete event systems. In: International Workshop
on Discrete Event Systems, pp. 384–385. IEEE (2006)

2. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event systems. IEEE
Trans. Autom. Control 39(2), 329–342 (1994)

3. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002)

4. Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: IF IP
Congress, pp. 807–813 (1974)

5. Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant preemptive aperiodic RT scheduling by
supervisory control of TDES on multiprocessors. ACM Trans. Embed. Comput. Syst. 16(3),
1–25 (2017)

198 8 Conclusion and Future Work

6. Devaraj, R., Sarkar, A., Biswas, S.: Fault-tolerant scheduling of non-preemptive periodic tasks
using SCT of timed DES on uniprocessor systems. IFAC-PapersOnLine 50(1), 9315–9320
(2017)

7. Devaraj, R., Sarkar, A., Biswas, S.: Real-time scheduling of non-preemptive sporadic tasks
on uniprocessor systems using supervisory control of timed DES. In: American Control
Conference, pp. 3212–3217. IEEE (2017)

8. Devaraj, R., Sarkar, A., Biswas, S.: Supervisory control approach and its symbolic computation
for power-aware RT scheduling. IEEE Trans. Ind. Inf. 15(2), 787–799 (2019)

9. Janarthanan, V., Gohari, P.: Multiprocessor scheduling in supervisory control of discrete-event
systems framework. Control Intell. Syst. 35(4), 360 (2007)

10. Janarthanan, V., Gohari, P., Saffar, A.: Formalizing real-time scheduling using priority-based
supervisory control of discrete-event systems. IEEE Trans. Autom. Control 51(6), 1053–1058
(2006)

11. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20(1), 46–61 (1973)

12. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317.
Springer, Berlin (2005)

13. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans.
Autom. Control 51(5), 782–793 (2006)

14. Moor, T., Schmidt, K., Perk, S.: libFAUDES–An open source C++ library for discrete event
systems. In: 2008 9th International Workshop on Discrete Event Systems, pp. 125–130. IEEE
(2008)

15. Park, S.J., Cho, K.H.: Real-time preemptive scheduling of sporadic tasks based on supervisory
control of discrete event systems. Inf. Sci. 178, 3393–3401 (2008)

16. Park, S.J., Cho, K.H.: Supervisory control for fault-tolerant scheduling of real-time multipro-
cessor systems with aperiodic tasks. Int. J. Control 82(2), 217–227 (2009)

17. Park, S.J., Yang, J.M.: Supervisory control for real-time scheduling of periodic and sporadic
tasks with resource constraints. Automatica 45(11), 2597–2604 (2009)

18. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM J. Control Optim. 25(1), 206–230 (1987)

19. Ricker, L., Lafortune, S., Genc, S.: Desuma: A tool integrating giddes and umdes. In: 8th
International Workshop on Discrete Event Systems, pp. 392–393. IEEE (2006)

20. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101–111
(2016)

21. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern.
Syst. 47(7), 1082–1098 (2017)

22. Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of
modular sporadic real-time systems. Automatica 89, 392–397 (2018)

23. Wang, X., Li, Z., Moor, T.: SCT-based priority-free conditionally-preemptive scheduling of
modular real-time systems with exact task execution time. Discrete Event Dyn. Syst. Theory
Appl. 29, 501–520 (2019)

24. Wang, X., Li, Z., Wonham, W.M.: Real-time scheduling based on nonblocking supervisory
control of state-tree structures. IEEE Trans. Autom. Control 66(9), 4230–4237 (2021)

25. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series
Communications and Control Engineering. Springer (2018)

Glossary

.[P] Predicate transformer to compute . supC 2(P)

.B(ST) Set of all basic-state-trees of . ST

.C 2(P) Family of weakly controllable and coreachable subpredicates of P

.C (E) Family of controllable sublanguages of E

.E Expansion function of a superstate

.E ∗ Reflexive and transitive closure of . E

.E +(x) Unfolding of . E (x)

.H Family of holons

.S Real-time system

.S T (ST) Set of all sub-state-trees of . ST

.T Type function of a given state

.V (T) Key leaf state set of state-tree T

.Wi Worst-case response time of . τi

.fσ Control function for event . σ

.lσ Lower time bound for event . σ

.q0 Initial state of generator . G

.supC (E) (unique) Supremal element within . C (E)

.supC 2P(P) (unique) Supremal element within . C 2P(P)

.uσ Upper time bound for event . σ

.Ci Worst-case execution time of . τi

.Ci Exact execution time interval of . τi

.Di Deadline of . τi

.CR(G, P) Coreachability predicate of P
E Specification language
.EligG Largest eligible state-tree
.HCi Higher level holon describing the execution time of . τi

.HDi Holon describing deadline of . τi

.HWi Lower level holon describing the execution time of . τi

.HTi Holon describing the release time and periods of . τi

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0

199

https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0

200 Glossary

.Ji,j j -th job of real-time task . τi

.L(G) Closed behavior of . G

.Lm(G) Marked behavior of . G

.Lm(G) (prefix) Closure of . Lm(G)

.Mσ (P) Weakest liberal precondition of P

.NextG Largest next state-tree
P Predicate
.Pred(ST) Set of all predicates on . B(ST)

.Pwr(Σ) Power set of . Σ

Q State set of generator . G
.R(G, P) Reachability predicate of P
.Ri Release time of . τi

.Ti Period of . τi

.Tσ Timer interval for event . σ
U Processor utilization
.V/G . G under supervision of V
.X0 Initial state set
.Xm Terminal state set
.XE External state set
.XI Internal state set
.XA (x) State aggregation bonded with superstate x
.A Preemption matrix
.G Generator or state-tree structure
.ST State-tree
.ST0 Initial state-tree
.STm Marker state-tree set
.Ti Multi-period of . τi

.δ Transition function

.δBI Incoming boundary transitions

.δBO Outgoing boundary transitions

.ε Empty string

.τ Real-time task

.Γ Global backward transition function

.Δ Global forward transition function

.Σ Event set of generator . G

.Σ∗ Set of strings over . Σ

.Σact Activity event set of a timed discrete-event system

.Σcon Controllable event set

.Σe Execution event set of generator . G

.Σo Operation event set of generator . G

.Σrem Remote event set

.Σspe Prospective event set

.Σunc Uncontrollable event set

.ΣB Boundary event set

.ΣI Internal event set

.Φ Set of control patterns

Index

A
Absolute clock time, 55
Absolute deadline, 57
Absolute release time, 57
Abstraction, 31
Active event, 71
Active task, 60
Activity-loop-free, 27
Activity set, 24
Activity transition graph, 24
Ad hoc, 71
Adjacent higher level, 34
Agent, 50
Aggregation, 31
Alphabet, 17
Ancestor, 39
.AND-adjacent, 39
.AND-component, 32
.AND superstate, 32
Aperiodic task, 5
Arbitrary union, 22
Arrival, 74
Arrival time, 134
Ascending order, 100
Asynchronous real-time system, 60
Automaton, 2

B
Backward transition, 43
Basic-state-tree, 40
Best-case execution time, 55
Binary decision diagram, 164
Binary decision diagram node, 179

Binary decision diagram variable, 51
Binary value, 52
Boolean function, 3
Bottom element, 47
Boundary consistency, 43
Boundary event set, 34
Boundary transition structure, 34
Brandin-Wonham framework, 24
Busy time, 98

C
Cartesian product, 25
Catenation, 17
Characteristic function, 47
Child-state-tree, 39
Closed behavior, 18
Cold start, 67
Compact representation, 3
Complete lattice, 47
Complex discrete event system, 163
Computational complexity, 52
Concurrent (horizontal) structure, 163
Concurrent transition structure, 163
Control function, 49
Controllability, 23
Controllable event, 2
Controllable event subset, 102
Controllable subpredicate, 49
Controller, 2
Control logic, 3
Control map, 22
Control pattern, 21
Coreachability predicate, 48

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2023
X. Wang, Z. Li, Scheduling and Reconfiguration of Real-Time Systems,
https://doi.org/10.1007/978-3-031-41969-0

201

https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0
https://doi.org/10.1007/978-3-031-41969-0

202 Index

Correct functioning, 95
Current status, 50
Cyclic executive, 71

D
Deadline, 4
Deadline monotonic scheduling, 6
Decision maker, 50
Descendant, 39
Descending order, 100
Directed acyclic graph, 164
Discrete-event system, 1
Discrete-event system diagram, 141
Discrete-event system synthesis tool, 21
Disjoint union, 32
Distributed scheduling, 197
Double circle, 18
Dynamic reconfiguration, 72
Dynamic system, 2

E
Earliest deadline first, 60
Earliest deadline first scheduling sequence, 182
Elastic period, 7
Eligible event, 26
Empty string, 17
Enabled event, 26
Encoding process, 179
Entering arrow, 18
Entrance, 26
Event occurrence, 126
Event set, 2
Exact execution time, 55
Exclusive-or, 32
Execution completion, 71
Execution process, 138
Execution starting, 71
Execution time, 55
Exit, 43
Exosystem, 38
Expansion function, 32
External state set, 34
External structure, 34

F
False, 164
Feasibility analysis, 6
Feedback scheduling, 197
Finite event set, 17
Finite sequence, 17
Finite state set, 17

First-release time, 55
Fixed-priority scheduling, 58
Fixed period, 91
Fixed priority, 5
Forcible event, 29
Forcible event set, 29
Formal language, 2
Formal specification, 133
Forward transition, 43
Free time, 98

G
Gantt chart, 58
Garbage collection, 5
Generator, 17
Global clock, 25
Global dynamic, 197
Global forward transition function, 42

H
Hard deadline, 4
Hierarchical finite state machine, 31
Hierarchical (vertical) structure, 163
Hierarchical (nested) supervisory control, 197
Hierarchical transition relation, 38
Hierarchical transition structure, 163
Higher level, 166
Highest priority, 58
Highest processor utilization, 72
Holon, 33
Horizontal transition relation, 38
Hyper-period, 8

I
Idle, 74
Idle operation, 5
Incoming arrow, 35
Incoming boundary transition, 34
Independent task, 53
Industrial implementation, 197
Ineligible event, 27
Infinite stream, 136
Infinite string, 3
Initial state, 17
Initial state-tree, 42
Initial state set, 34
Internal event set, 34
Internal state set, 34
Internal structure, 34
Internal transition structure, 34
Inverse image function, 19
Irregular arrival time, 131

Index 203

J
Job, 55
Job skipping reconfiguration, 6

K
Key leaf state set, 42

L
Language, 18
Largest eligible state-tree, 43
Largest next state-tree, 43
Layer, 3
Layered internal structure, 197
Leaf state, 40
Leaf state set, 42
Least common multiple, 8
Least laxity first, 60
Length of string, 18
Local coupling, 43
Local transition, 33
Lower bound, 73
Lower-level holon, 166
Lower time bound, 25
Lowest priority, 5

M
Manufacturing cell, 123
Marked behavior, 18
Marked language, 126
Marker state, 17
Marker state-tree set, 42
Marker state set, 25
Marking nonblocking supervisory control, 22
Maximally permissive predicate, 164
Maximum period, 189
Minimally restricted controller, 112
Minimum period, 189
Model checker, 7
Modular model, 189
Motor network, 85
Multi-class resource, 197
Multi-period periodic task, 56
Multi-period task, 134
Mutual exclusion, 173

N
Natural projection, 19
n-bit binary vector, 179
Nearest common ancestor, 39
Nonblocking specification, 106

Nonblocking supervisory control, 22
Non-empty state set, 173
Non-negative integer, 134
Non-preemptive earliest deadline first

scheduling, 183
Non-preemptive earliest deadline first

specification, 182
Non-preemptive scheduling, 5
Non-preemptive scheduling specification, 71
Non-reconfigurable task, 74
Non-repetitive task, 57
Non-schedulable real-time system, 71

O
Offline, 67
Offset, 4
Optimal behavior, 49
.OR-component, 32
.OR superstate, 32
Outgoing arrow, 35
Outgoing boundary transition, 34
Overload, 67

P
Parameter, 132
Partially non-preemptive earliest deadline first

specification, 178
Partially non-preemptive specification, 164
Partially preemptive earliest deadline first

specification, 177
Partial state transition function, 17
(Partial) transition function, 102
Pending event, 27
Period, 56
Periodic task, 56
Plant, 17
Power set, 19
Predicate, 47
Preemption matrix, 98
Preemption policy, 99
Preemption relation, 151
Preemption time, 98
Preemptive earliest deadline first scheduling,

95
Preemptive earliest deadline first specification,

182
Preemptive release map, 114
Preemptive scheduling, 5
Preemptive scheduling map, 114
Prefix, 18
(Prefix) closed language, 126
Prefix closure, 18

204 Index

Priority-free conditionally-preemptive
real-time scheduling, 106

Priority-free conditionally-preemptive
specification, 106

Priority-free scheduling, 98
Processing period, 170
Processing time, 55
Processor behavior, 101
Processor time unit, 96
Processor utilization, 57
Processor utilization interval, 72
Prohibitable event set, 29
Prospective event set, 25

R
Ramdge-Wonham framework, 17
Random disturbance, 6
Rate-monotonic scheduling, 6
Reachability predicate, 48
Real-time reconfiguration, 67
Real-time scheduling, 3
Real-time system, 1
Real-time task, 3
Real-time task execution, 126
Reconfigurable real-time system, 85
Reconfiguration scenario, 67
Reflexive and transitive closure, 38
Regular arrival time, 131
Regular language, 126
Relative deadline, 56
Remote event set, 25
Resource, 131
Resource-sharing task, 53
Resource allocation, 197
Response time, 95
Root state, 38
Running time, 98

S
Safe execution sequence, 71
Safe release sequence, 114
Schedulability, 2
Scheduling algorithm, 5
Scheduling map, 89
Scheduling policy, 99
Selfloop, 20
Shortest period, 72
Simple state, 32
Smallest laxity, 64
Soft deadline, 4
Source state, 34
Specification language, 22

Sporadic task, 56
State aggregation, 41
State-based specification, 173
Statechart, 31
State explosion problem, 163
State feedback control, 181
State set, 102
State space, 38
State-transition structure, 2
State-tree, 38
State-tree structure, 31
State-tree structure nest, 197
State-tree structure specification, 164
Storage space, 164
Stronger, 47
Structured state set, 38
Structured state space, 163
Sublanguage, 22
Sub-state-tree, 40
Superstate, 31
Supervisor, 2
Supervisor synthesis, 52
Supervisory control, 21
Supervisory control of state-tree structure, 163
Supervisory control theory, 1
Supremal element, 22
Synchronized specification, 101
Synchronous product, 19
Synchronous real-time system, 60
Synchronous task set, 4
System behavior, 2
System start-up, 4

T
Target state, 34
Task arrival, 71
Task behavior, 132
Task-centered conditional-preemption

specification, 107
Task execution model, 138
Task release, 71
TCT, 21
TCT operation, 108
Temporal characteristic, 71
Terminal nodes, 164
Terminal state, 166
Terminal state set, 34
Tick down, 25
Tick event, 25
Time bounds, 24
Timed discrete-event system, 2
Timed discrete-event system synthesis tool, 28
Timed transition graph, 29

Index 205

Time difference, 168
Time interval, 58
Timer, 25
Timer interval, 25
Timing requirement, 71
Top-down state-based modelling framework,

163
Top element, 47
Traditional periodic task, 134
Transition graph, 18
Transition structure, 3
True, 164
Truth-value, 47
Truth table, 52
TTCT, 28
Type function, 32

U
Unboundedly postponed execution, 5
Uncontrollable event, 2

Uncontrollable event subset, 102
Uncontrollable path, 49
Unfolding, 38
Uni-processor real-time system, 138
Upper bound, 73
Upper time bound, 25

V
Vector, 52

W
Weakest liberal precondition, 48, 49
Weakest predicate, 48
Weakly controllable and coreachable behavior,

49
Well-formed, 40
Work, 74
Worst-case execution time, 55
Worst-case response time, 96

	Foreword
	Preface
	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Overview of This Monograph
	1.2 Supervisory Control Theory
	1.3 Real-Time Scheduling Theory
	1.4 Motivation and Contribution
	1.4.1 RTS Modelling Methods
	1.4.2 RTS Scheduling and Reconfiguration

	1.5 Monograph Outline
	References

	2 Preliminaries of Supervisory Control Theory
	2.1 Discrete-Event Systems
	2.2 Timed Discrete-Event Systems
	2.3 State-Tree Structures
	2.3.1 Superstates
	2.3.2 Holons
	2.3.3 State-Trees
	2.3.4 State-Tree Structures
	2.3.5 Predicates
	2.3.6 State Feedback Control
	2.3.7 Compact Representation of Predicates

	2.4 Real-Time Scheduling/Reconfiguration Based on Supervisory Control
	References

	3 Real-Time Scheduling and Reconfiguration
	3.1 Real-Time Systems
	3.2 Fixed Priority Scheduling
	3.3 Dynamic Priority Scheduling
	3.3.1 Earliest Deadline First Scheduling
	3.3.2 Least Laxity First Scheduling

	3.4 Elastic Period Model for Reconfiguration
	References

	4 Non-Preemptive Scheduling/Reconfiguration Based on Supervisory Control of TDES
	4.1 Introduction
	4.2 RTS Modelled by Timed Discrete-Event Systems
	4.2.1 Multi-Period RTS Task Model
	4.2.2 Real-Time Tasks Modelled by Timed Discrete-Event Systems
	4.2.3 Global RTS Execution Model
	4.2.4 Timed Discrete-Event System Generators

	4.3 Dynamic Scheduling and Reconfiguration of Multi-Period RTS
	4.4 Case Study: Supervisor Synthesis of Motor Network
	4.4.1 Real-Time Scheduling
	4.4.2 Dynamic Reconfiguration
	4.4.3 Multi-Periods in the Safe Execution Sequences

	4.5 Conclusion
	References

	5 Priority-Free Conditionally-Preemptive Real-Time Scheduling Based on R-W Method
	5.1 Introduction
	5.2 Task Models and Preemption Policies
	5.2.1 Task Model
	5.2.2 Priority-Free Real-Time Scheduling
	5.2.3 Preemption Matrices
	5.2.4 Task-Centered Conditional-Preemption Constraints
	5.2.5 Response Time Constraints

	5.3 Tasks Modelled by Discrete-Event Systems
	5.4 Specifications Modelled by Discrete-Event Systems
	5.4.1 Nonblocking Specifications
	5.4.2 Matrix-Based Priority-Free Conditional-Preemption Specifications
	5.4.3 Task-Centered Specifications
	5.4.4 Response Time Constraint Specifications

	5.5 Case Study I: Supervisor Synthesis of Motor Network
	5.5.1 Work Plan I
	5.5.2 Work Plan II

	5.6 Case Study II: Supervisor Synthesis of Manufacturing Cell
	5.7 Conclusion
	Appendix
	References

	6 Modular Scheduling/Reconfiguration with Exact Execution Time Based on R-W Method
	6.1 Introduction
	6.2 Modular RTS Models
	6.2.1 RTS Tasks
	6.2.2 Periodic/Sporadic Task Execution Time Models
	6.2.3 Non-Repetitive Execution Time Models
	6.2.4 Deadline Models
	6.2.5 Release and Multi-Period Models

	6.3 Global RTS Execution Models
	6.3.1 Approach I
	6.3.2 Approach II
	6.3.3 Global RTS Behavior

	6.4 Scheduling Based on Supervisory Control
	6.5 Case Study: Manufacturing Cell
	6.5.1 Task Models with Worst Case Execution Time
	6.5.2 Task Models with Exact Execution Time

	6.6 Conclusion
	References

	7 Scheduling/Reconfiguration Based on Supervisory Control of STS
	7.1 Introduction
	7.2 RTS Modelled by State-Tree Structures
	7.2.1 RTS Tasks
	7.2.2 Execution Time Models
	7.2.3 Deadline Models
	7.2.4 Release Time and Period Models
	7.2.5 Task Models
	7.2.6 Global RTS Execution Models

	7.3 Conditionally-Preemptive Specifications
	7.3.1 Matrix-Based Conditional-Preemption Specifications
	7.3.2 Task-Centered Specifications

	7.4 Dynamic Specifications
	7.4.1 Earliest-Deadline First Task Selection at Arrival
	7.4.2 Partially Preemptive Earliest-Deadline First Scheduling
	7.4.3 Partially Non-Preemptive Earliest-Deadline First Scheduling

	7.5 Supervisor Synthesis with a Case Study: Manufacturing Cell
	7.5.1 Compact Encoding of the Manufacturing Cell
	7.5.2 Conditionally-Preemptive Scheduling
	7.5.3 Preemptive and Non-Preemptive Earliest-Deadline First Scheduling
	7.5.4 Non-Preemptive Earliest-Deadline First Scheduling Sequences

	7.6 Large RTS Example
	7.7 Conclusion
	References

	8 Conclusion and Future Work
	8.1 Conclusion
	8.1.1 RTS Modelling Methods
	8.1.2 An Overview of Specifications Describing RTS Scheduling Requirements

	8.2 Future Work
	References

	Glossary
	Index

