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Foreword 

This monograph provides a newly identified research topic, namely real-time 
scheduling and reconfiguration based on supervisory control theory (SCT). SCT, 
also known as the R-W method, initiated by Ramadge and Wonham in the 1980s, 
offers a systematic treatment to the modelling, analysis, and control of discrete-
event systems (DES) that are a technical generalization of many contemporary 
technological systems, and explores generic principles to a wide range of application 
domains. Generally, any system can be viewed as a real-time system (RTS) if it 
performs real-time application functions and behaves correctly depending on given 
logical activities and satisfying specified deadlines for the activities. In the past 
decades, as a popular and topical research topic, real-time scheduling and recon-
figuration have far-reaching influences in academia and industrial implementations. 

This monograph provides broad views and detailed introductions to SCT and its 
application in real-time scheduling and reconfiguration. Based on three popular SCT 
modelling frameworks, DES, timed DES (TDES), and state-tree structures (STS), 
the authors provide RTS modelling frameworks; thereafter, SCT is used to find their 
safe execution sequences. For STS, as a newly identified hierarchical modelling 
framework, in Chap. 2, the authors explain their semantics, notions, and concepts in 
a straightforward and easy to understand way with plenty of examples. Along with 
the deepening of understanding of the RTS modelling problem, the authors provide 
three RTS modelling methodologies based on DES, TDES, and STS in Chaps. 4, 5, 
and 7, respectively. Finally, the main differences among the three SCT modelling 
frameworks are vividly illustrated in Chap. 8, which also show that the cores of all 
the presented modelling approaches are identical. 

Intuitively, it is trivial to find out that “time” is a critical criterion and vital 
attribute to both TDES and RTS. Hence, as the first step, the authors provide a 
TDES-based RTS modelling, scheduling, and reconfiguration formalism in Chap. 4 
for RTS running on uni-processors. In order to schedule and reconfigure RTS in a 
uniformed model, a multi-period periodic RTS task is modelled by a TDES. Initially, 
a task is assigned with the shortest period. By implementing SCT, the multi-periods 
of tasks are used to reconfigure an RTS when its initial safe execution sequence set
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viii Foreword

is empty. During the real-time scheduling/reconfiguration process, the supervisor 
proposes all the safe execution sequences. 

An RTS modelling approach is presented in Chap. 5, which uses (untimed) 
events to represent the execution and preemption of each individual RTS task. This 
modelling formalism brings the possibilities to model the preemptions of tasks’ 
executions. Furthermore, in some cases, priorities cannot be assigned to real-time 
tasks. In order to solve this problem, a matrix-based priority-free conditional-
preemption (PFCP) relation is provided in Chap. 5, which generalizes fixed-priority 
(FP) RTS scheduling. By defining the preemption relation among any two tasks 
running in a processor, a preemption matrix is utilized to describe all the possible 
FP preemption relations and other user-specified preemption relations. By SCT, 
the synthesized supervisor provides all the safe real-time execution sequences. As 
a natural extension, a generalized modular modelling framework is proposed in 
Chap. 6 to model the task parameters instead of the global real-time task. The 
modular models are taken to be generic entities, which also considers the exact 
execution time of real-time tasks. 

STS are undoubtedly recognized as a computationally efficient SCT framework 
which manages the state explosion problem significantly. Clearly, the synthesized 
supervisors based on the modelling methodologies stated in Chaps. 4, 5, and 6 can 
provide all the possible safe execution sequences of an RTS. As a natural extension, 
it is theoretically significant and practically invaluable to find a few best sequences. 
To this end, Chap. 7 uses STS to model RTS and assigns dynamic priorities as 
specified optimality criteria such that a set of safe execution sequences is selected. 
This provides the possibilities for large-scale industrial implementations. 

This monograph is a comprehensive and solid work on SCT-based real-time 
scheduling and reconfiguration. The two authors have been working in this area 
for years. I am pleasantly surprised to state that there are several highlights in 
this monograph; in particular, “untimed” events are used to represent the “timing” 
behaviors of RTS tasks. This insight gives vitality to this interdisciplinary research 
topic and brings it to a new horizon. 

February 2023 Maria Pia Fanti 
Politecnico di Bari



Preface 

Adequate responses to predictable and specific constraints are a critical criterion 
to both real-time systems (RTS) and supervisory control of discrete-event 
systems (DES). RTS satisfying the (predefined) specific time constraints mean 
that they can respond to events, such as a task’s arrival/release and the 
start/completion/preemption of its execution, within preset time. DES are event-
driven instead of clock-driven, which are asynchronous in event executions and 
discrete in state space. Hence, properly representing the “events” of RTS by DES 
frameworks is the key of the modelling methods provided in this monograph. This 
motivates us to investigate the RTS scheduling and reconfiguration problems from 
the perspective of supervisory control of DES. 

Supervisory control theory (SCT, known as the R-W method), initiated by 
Ramadge and Wonham in the 1980s, is a methodology to automatically synthesize 
supervisors of DES, which restricts the behavior of a plant such that the given 
specifications are fulfilled in a minimally restrictive manner. Based on three 
popular SCT modelling frameworks: DES, timed DES (TDES), and state-tree 
structures (STS), uniformed frameworks to model, schedule, and reconfigure RTS, 
are provided in this monograph. Given an RTS modelled by any framework, user-
defined RTS scheduling and reconfiguration requests are described using proper 
specifications. By SCT, all the safe execution sequences of an RTS are embodied in 
its optimal supervisor. 

Based on TDES, DES, and STS frameworks, multi-period periodic real-time 
task models are provided for integrating real-time scheduling and reconfiguration 
in uniformed models. A multi-period is a period set varying between a lower bound 
and an upper bound. The default period for a task is the shortest one. In the case 
that an RTS is non-schedulable, the multi-period is used to reconfigure the RTS 
automatically. By SCT, an RTS is claimed to be non-schedulable if its supervisor is 
empty. 

Normally, in a real-time scheduling process, fixed or dynamic priorities are 
assigned to real-time tasks. However, in some special cases, scheduling priorities 
cannot be assigned to tasks properly. As a solution, based on DES and STS 
frameworks, by defining the preemption relation among any two tasks running in
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a processor, a priority-free conditionally-preemptive (PFCP) scheduling method 
is provided, which generalizes priority-based preemption. In particular, based on 
the STS modelling and supervisory control mechanism, by assigning dynamic 
priorities, a set of safe execution sequences is selected, which rank at the top 
according to specified optimality criteria. Generally, the provided dynamic priority 
specifications can be combined with the PFCP specifications. 

Historically, RTS scheduling and reconfiguration are associated with two prob-
lems: schedulability checking and safe execution sequence searching. In compari-
son, SCT-based real-time scheduling and reconfiguration do not need to check the 
schedulability and find safe execution sequences separately. As a general extension, 
all the possible (instead of only one in general) safe execution sequences are 
provided by the optimal supervisors. 

The outline of this monograph is as follows: Chap. 1 reports the overviews 
of this monograph, SCT, and the real-time scheduling theory. The motivation, 
contribution, and the outline of this book are also provided. Chapter 2 presents 
the preliminaries of SCT and three DES modelling frameworks: DES, TDES, 
and STS. From the perspective of RTS scheduling, Chap. 3 reviews the real-time 
scheduling and reconfiguration of periodic RTS. Chapter 4 recalls the seminal 
work on SCT-based real-time scheduling. Thereafter, based on it, in order to 
dynamically reconfigure RTS, a new formalism is presented to assign multi-
periods to periodic tasks. Chapter 5 points out that using DES to model RTS is 
more general than using TDES, and provides the possibility of preemptive SCT-
based scheduling of RTS, where a DES-based periodic real-time task modelling 
method is presented. The timing constraints of RTS tasks are represented by 
different events. In the light of the multi-period reported in Chap. 4 and building 
on Chap. 5, a DES version modular multi-period is presented in Chap. 6. A task  
is represented by an automaton synchronized by the required modular models, in 
which a multi-period task is assigned with a set of possible periods between a 
minimum period and a maximum period. The only difference of a task’s model 
before and after its reconfiguration is the upper bound of its multi-period. Based 
on nonblocking supervisory control of STS, a hierarchical RTS model is presented 
in Chap. 7, where both conditionally-preemptive and dynamic priority scheduling 
are addressed in the real-time scheduling. The proposed modular models are taken 
to be generic entities, which are utilized to model a problem domain such as 
“hard real-time manufacturing and reconfigurations” and manage its manufacturing 
production process. Finally, Chap. 8 concludes the contributions of this monograph 
and proposes some possible future extensions. The main differences among the three 
SCT modelling frameworks are also discussed in this chapter.



Preface xi

The primary audiences are the researchers and practitioners in SCT or RTS, 
equipped with the basic SCT knowledge. Also, they should be familiar with the 
SCT synthesis tools TCT, TTCT, STS, or other related ones. This book will appeal 
specifically to a reader concerned with how to model, schedule, and reconfigure an 
RTS. 

Xi’an, China Xi Wang 
Macau SAR, China ZhiWu Li 
February 2023
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Chapter 1 
Introduction 

1.1 Overview of This Monograph 

Initiated by Ramadge and Wonham in the 1980s [38, 48], supervisory control theory 
(SCT) of discrete-event systems (DES) aims to provide a general treatment for 
modelling and control of a wide class of man-made systems that nowadays are 
usually computer-integrated, including many contemporary information extensive 
infrastructures of human society, such as manufacturing systems, smart city traffic 
management, communication protocols, computer networks, etc. In general, timing 
constraints are a vital attribute and a critical criterion to operate these systems, 
whose technical generalization leads to the notion of real-time systems (RTS). 
Roughly speaking, the behavioral correctness of an RTS does not depends only on 
logical activities occurring in it, but also on the satisfiability of specified deadlines 
for the activities, i.e., the correct functioning of an RTS is attributed to the hard 
or soft timing requirements on the tasks to be executed. To this end, real-time 
scheduling and reconfiguration are treated as an effective vehicle for an RTS to 
carry out the tasks such that a correct function is guaranteed. 

In 1973, the seminal work by Liu and Layland [28] touched upon the real-time 
scheduling problem for multi-program on a single processor, showing that a fixed 
priority scheduler possesses an upper bound to processor utilization. It is also shown 
that full processor utilization can be achieved by dynamically assigning priorities in 
terms of the current deadlines of tasks to be executed. Over the past half century, 
there has been a fair amount of significant work from researchers and practitioners 
on real-time scheduling and reconfiguration of RTS [16, 37, 40, 49, 51]. Interestingly 
and surprisingly, a suite of documented methodologies on the modelling, control, 
and scheduling of these systems [12–15, 21, 22, 34–36, 43–47] are from the 
perspective of supervisory control of DES [4, 29, 30, 38, 48]. 

As an interdisciplinary approach, SCT-based real-time scheduling and reconfigu-
ration are a newly-identified research topic. In this monograph, an RTS is modelled 
by the SCT modelling frameworks and user-defined scheduling/reconfiguration 
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requests are described by the corresponding specifications. Currently, there are 
three popular SCT modelling frameworks: DES [38, 48] (known as the R-W 
method), timed DES (TDES) [4], and state-tree structures (STS) [29, 30]. In this 
monograph, RTS are modelled by all the three frameworks. Users are invited 
to propose scheduling or reconfiguration requirements at will. These schedul-
ing/reconfiguration requirements, whether priority-based or not, from the per-
spective of either processor or individual task, are converted into formal SCT 
specifications offline. With such specifications assigned, all the safe execution 
sequences of an RTS are embodied in its optimal supervisor. In particular, as 
stated in Chap. 7, by assigning dynamic priorities (DP) to RTS tasks, a few safe 
execution sequences are selected based on the STS modelling and supervisory 
control mechanism, which rank at the top according to specified optimality criteria. 

Historically, in the real-time scheduling research area, both the RTS scheduling 
and reconfiguration are associated with two problems [39]: schedulability checking 
and safe execution sequences searching. Usually, if an RTS is schedulable, one 
random safe execution sequence is provided by a scheduling algorithm for its 
processor. In comparison, SCT-based real-time scheduling and reconfiguration do 
not need to check the schedulability and find safe execution sequences separately. As 
a general extension, all the possible (instead of only one) safe execution sequences 
are provided by the optimal supervisors. 

1.2 Supervisory Control Theory 

This section provides a brief overview of the basic principles of SCT. Interested 
readers are suggested to refer to monographs [48] and [29] for a systematic 
understanding. The detailed preliminaries of SCT with examples are presented in 
Chap. 2. Unlike in [29], we introduce STS by starting from superstates and holons. 
The latter are natural extensions of DES diagrams. 

The DES framework is language-based. Generally, a plant is modelled as a 
DES, denoted by . G, which can be considered as a dynamic system equipped 
with a discrete state space and a state-transition structure. The  system behavior 
is described as a formal language .L(G) that is generated by an automaton over 
an alphabet (or event set, usually finite) denoted by . Σ , which models the plant. 
Generally, event set . Σ is partitioned into two disjoint subsets: controllable events, 
denoted by .Σcon, that can be disabled by external controllers, and uncontrollable 
events, denoted by .Σunc, that cannot be disabled. With this control mechanism, 
a controller (or supervisor) can be used to restrict the system behavior only by 
disabling controllable events. 

Given the desired behavior of a plant . G, i.e., a specification, represented by a 
formal language E, a supervisor can be designed to restrict . G’s behavior such that 
the controlled system behavior is a sublanguage of E. Many efforts have been made 
to synthesize an optimal nonblocking supervisor for DES. Here “optimal” means 
“minimally restrictive”.
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By incorporating timing features, the notion of timed DES (TDES) is proposed 
in [4]. The active transition graphs (ATG), identical with DES diagrams, are 
assigned with modelling enhancements like program variables, transformations, 
and transition guards; the timed transition graphs (TTG) of TDES are the detailed 
global transition graphs. The nature of temporal logic is addressed in the languages 
describing TDES’ behavior. For instance, the concept “eventuality”, i.e., liveness in 
the long run, over sets of infinite strings, is considered in the supervisory control 
of TDES, which is also integrated into the TTG construction process starting from 
ATG. 

As a top-down modelling approach, STS are proposed in [42] for the purpose 
of incorporating the hierarchical (vertical) and concurrent (horizontal) structures 
of a complex DES into a compact and natural model. In STS, as a modelling tool, 
statecharts [20] are used to provide a compact representation of the hierarchical 
transition structure. The system transition structures on successive layers are 
represented by holons (based on [23] and [19]). Thereafter, the STS framework is 
extended in [29] and [30], which is well-developed to manage the state explosion 
problem. The STS model and its specifications are represented by predicates. Prior  
to calculating the predicate representing the optimal controlled behavior, maximally 
permissive predicates are presented for disabling controllable events in the transition 
structure. For controllable events, their control logics are represented by binary 
decision diagrams (BDD) [1, 5] that represent a boolean function. A BDD is a 
directed acyclic graph that has two terminal nodes 1 and 0 representing true and 
false, respectively. 

1.3 Real-Time Scheduling Theory 

The seminal work of real-time scheduling was proposed by Liu and Layland in the 
1970s. Some basic concepts are introduced in this section, and the preliminaries 
of classical RTS scheduling algorithms and examples are detailed in Chap. 3. A  
preliminary real-time task is time triggered, which satisfies the following facts 
[39]: 

• all the tasks are periodic; 
• all the tasks are released at the beginning of periods and have deadlines equal to 

their periods; 
• all the tasks are independent, i.e., they have no resource or precedence relation-

ships; 
• all the tasks have fixed execution time, or at least fixed upper bounds on their 

computation time, which is less than or equal to their periods; 
• no task may voluntarily suspend itself; 
• all the tasks are fully preemptable; 
• all the overheads are assumed to be zero; 
• there is only one processor.
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In reality, it is possible that a task has an offset, between the system start-up and 
the first release of its job. A set of real-time tasks is synchronous if they have the 
same offsets. Otherwise, the tasks in this task set are asynchronous [39]. A periodic 
task is associated with a regular period, which means that the time interval between 
any two successive jobs is constant. Every job has a deadline that assigns the latest 
time of its execution to be completed. A task is associated with a hard deadline if 
every job must meet its corresponding deadline. Otherwise, it is associated with 
a soft deadline. A deadline can be expressed relative to the release time (i.e., 
relative deadline) or as an absolute time (i.e., absolute deadline). Throughout 
this monograph, we only consider hard deadlines, i.e., deadlines which must be 
kept unconditionally. Generally, a task’s processing time is between its best-case 
execution time (BCET) and worst-case execution time (WCET) [40]. Nassor and 
Bres propose a task model in [33], with a deadline less than or equal to its period 
but greater than the WCET. In the theoretical analysis of real-time scheduling, 
researchers focus on the WCET to guarantee the feasibility of real-time scheduling. 
The modelling and scheduling of RTS based on the exact execution time is studied in 
[46]. A uni-processor system is nonschedulable in the case that there is an overload 
[39]. 

Suppose that two periodic tasks . τ1 and . τ2 are running in an RTS, both are released 
at the system start-up, i.e., time .t = 0, and their WCETs are equal to one and two, 
respectively. In the analysis, normally, only WCETs are considered to guarantee the 
feasibility. The deadline and period for processing . τ1 are four and five, respectively. 
In parallel, the deadline and period for . τ2 are both four. Two possible schedulings 
are visualized in Fig. 1.1. Since the tasks depicted in Fig. 1.1a have no offsets, the 

Fig. 1.1 Real-time 
scheduling of periodic tasks. 
(a) Tasks without offsets. (b) 
Task . τ1 with an offset 
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scheduling is synchronous. Both of . τ1’s relative deadline and absolute deadline are 
four time units. The deadline of . τ2 is equal to its period, i.e., .D2 = T2. 

Suppose that the offset of . τ1 is one time unit, i.e., it is released at time .t = 1. 
A possible asynchronous scheduling is shown in Fig. 1.1b. It represents that after 
the system starts up for one time unit, task . τ1 releases its first job. With its offset 
assigned, the absolute deadline for the first job of . τ1 is changed from four to five 
time units. 

RTS may also contain tasks that do not have periodic releases or predictable 
execution time, and may have large variations in the sequential release times or 
execution time, including aperiodic tasks [39], sporadic tasks [39], or non-repetitive 
tasks [46]. They are formally introduced in [32] and differ from periodic tasks 
only in the release time. Clearly, it will be impractical to assign enough processor 
capacity/resource to guarantee a feasible scheduling. Generally, the lowest priorities 
are assigned to such tasks. Typical application cases are low-priority background 
operations such as garbage collection. The absence of a deadline may lead to 
unboundedly postponed execution. 

As depicted in Fig. 1.2, which is built on Fig. 1.1a, a non-repetitive task . τ3 with 
its WCET equal to two is added to the RTS. Task . τ3 is assigned with the lowest 
priority, i.e., it is under execution only if the executions of the current jobs of . τ1 and 
. τ2 are complete and before their next arrivals. 

According to [17] and [9], preemptive and non-preemptive real-time scheduling 
do not depend on any assumed scheduling algorithm. Given a set of real-time 
tasks, if the execution of a job (belonging to a real-time task) is allowed to 
be preempted by other (real-time tasks’) jobs before its execution finishes, the 
scheduling is preemptive; otherwise, it is  non-preemptive. The only assumption is 
that the execution cannot be preempted by idle operations. 

For example, the real-time scheduling in Fig. 1.1a is preemptive and that in 
Fig. 1.1b is non-preemptive. At time .t = 1 in Fig. 1.1b, the execution of task . τ2
is preempted by task . τ1. However, as illustrated in Fig. 1.1b, no job of task . τ1 is 
under execution in the time interval .[5, 6), and it is illegal to preempt the execution 
of task . τ2 by idle operations at time .t = 5. 

Generally, the well-known priority-based real-time scheduling algorithms can 
be divided into two categories: fixed priorities (FP) and dynamic priorities (DP). 
The real-time scheduling fails when no schedulable sequence can be found. The 
priorities of a real-time task set are commonly used to order their accesses to the 
processor and other shared resources. 

Fig. 1.2 Real-time 
scheduling with a 
non-repetitive task 
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In parallel with the seminal work of real-time scheduling, the FP scheduling is 
proposed in [28]. As a classical fixed priority scheduling algorithm, rate-monotonic 
(RM) scheduling requires that the deadline of a real-time task should be equal to 
its period. The task with a short period is assigned with the highest priority. Later 
deadline monotonic (DM) scheduling is proposed in [27] to schedule RTS that may 
contain periodic tasks with deadlines less than their periods. A DM policy assigns a 
higher priority to the tasks with shorter deadlines. 

The feasibility analysis of periodic task sets, such as earliest deadline first 
(EDF) scheduling, is also proposed in [28], which is usually regarded as the 
most widely-used DP real-time scheduling algorithm. Under the same simplified 
assumptions used for RM scheduling, a set of periodic tasks is schedulable by the 
EDF algorithm, if and only if the processor utilization is less than or equal to one (the 
processor is fully occupied). In [11], the author shows that, among all preemptive 
scheduling algorithms, EDF is optimal. If there exists a feasible scheduling for a 
task set, then the scheduling produced by EDF is also feasible. Under the EDF 
scheduling, the analysis of periodic tasks with the deadlines less than their periods is 
proposed in [3]. 

For example, the real-time scheduling in Fig. 1.1b is EDF scheduling. At time 
.t = 1, the absolute deadline of task . τ1 equals five time units and that of . τ2 is four 
time units. Hence, task . τ2 is currently with a higher priority than . τ1. 

Least laxity first (LLF), as another optimal scheduling algorithm, is proposed by 
Mok in [32], which assigns the processor to the active task with the smallest laxity. 
However, LLF has a larger overhead than EDF due to a larger number of context 
switches caused by laxity changes at run time. Detailed examples can be found in 
Chap. 3. 

Real-time reconfiguration is of critical importance to RTS. A reconfiguration 
scenario can be the addition/removal/update of the tasks at run-time in order to save 
the whole system when random disturbances occur. There has been a fair amount 
of significant work from academia and industry [16, 37, 40, 49, 51] for real-time 
reconfiguration, which are based on the RM/EDF scheduling with preemptive/non-
preemptive schemes. In principle, two types of reconfiguration policies can be 
identified: 

• fixed policies: applied offline before any system’s cold start [2], and 
• dynamic policies: applied at run-time [52]. 

As an RTS reconfiguration approach, job skipping reconfiguration [24] can be 
utilized by an RTS to execute “occasionally skippable” tasks, such as video recep-
tion, telecommunications, packet communication, and aircraft control. However, 
industrial production lines should avoid job skipping since it will increase the 
manufacturing costs. Another approach, called the elastic scheduling model [6– 
8, 31], is utilized to guarantee that no deadline is missed during a manufacturing 
process in industrial applications [18]. 

In [6–8, 31], an elastic period task model is proposed to handle the overload 
of an RTS by decreasing its processor utilization via adapting the tasks’ periods. 
As illustrated in Fig. 1.3, the period of a task is assumed with a lower bound and an
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Fig. 1.3 Real-time 
scheduling with an elastic 
period 
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upper bound. In the case that an RTS is non-schedulable, a reconfiguration approach 
is used to enlarge the periods of the tasks with elastic periods. This reconfiguration 
approach deals with such tasks as springs. Hence, enlarging the periods is just like 
pulling a spring. In this monograph, if necessary, we follow a similar approach to 
reconfigure an RTS. 

Several model checkers, such as Cheddar1 [41], Kronos [50], PRISM [25], have 
been developed to model an RTS and check its schedulability or other performance 
criteria. This monograph focuses on the real-time scheduling of periodic and 
sporadic tasks. As Cheddar matches most closely the scheduling problems discussed 
in this monograph, in what follows, we choose Cheddar as the RTS model checker 
and scheduler. 

1.4 Motivation and Contribution 

SCT-based real-time scheduling and reconfiguration [10, 22, 34, 43–47] are  a newly-
identified research topic. Based on three popular SCT modelling frameworks, TDES 
[10, 22, 34, 43], DES [44], and STS [47], this monograph provides SCT-based real-
time scheduling and reconfiguration mechanisms. 

1.4.1 RTS Modelling Methods 

The study in the seminal work [10] proposes a TDES-based task model and an SCT-
based non-preemptive scheduling scheme. Supervisory control of TDES is able to 
model and schedule two types of RTS processing: 

• resource-sharing tasks, i.e., resources are available to execute multiple tasks 
concurrently; or 

• independent periodic tasks with their deadlines less than or equal to the corre-
sponding periods.

1 http://beru.univ-brest.fr/cheddar/. 
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Even though the resource-sharing tasks are not as popular as independent tasks, 
the supervisory control of TDES can provide all the possible safe executions for 
both in a uniformed approach. An RTS is claimed to be non-schedulable if the 
supervisor is empty. Thereafter, for the independent periodic tasks, SCT-based real-
time scheduling is extended to: 

• the scheduling of RTS preemptively or non-preemptively [22], 
• the scheduling of RTS processing sporadic tasks [34], and 
• the dynamic reconfiguration of RTS when no safe execution sequences are found 

[43]. 

In the past two decades, fruitful works on real-time scheduling and reconfiguration 
are reported, in which RTS are mainly modelled by: 

• TDES [12–15, 21, 22, 34–36, 43]: The timing constraints of RTS tasks are 
represented by time bounds of active events, representing task release/arrival, 
starting, and finishing. As a consequence, the timing for the idle operations of 
processors and for the execution of any real-time task is represented by the global 
clock tick (represented by event t). 

• DES [44–46]: The execution of each individual RTS task and idle operations are 
represented by different events in the DES models. Hence, in the DES modelling 
mechanism, the execution of different tasks will always happen asynchronously. 
This model is more realistic, i.e., it can describe the sequential execution of real-
time tasks in a uni-processor properly. As a natural extension, preemptive real-
time scheduling of RTS is studied in [44–47]. 

• STS [47]: RTS tasks are modelled hierarchically by STS, which are built on a 
DES model. The task release/arrival, starting, and finishing are on the higher 
level, and the task execution is on the lower level. This modelling mechanism 
provides the possibility of assigning DP to the real-time tasks under execution. 

We assume that a set of n RTS tasks processed by a uni-processor RTS is represented 
by a task set .S = {τ1, τ2, . . . , τi , . . . , τn}. For periodic real-time scheduling, the 
hyper-period [26] of a set of periodic tasks equals the least common multiple of 
their periods. For simplicity, we consider traditional RTS tasks only. As defined in 
[44], let .i ∈ n := {1, 2, . . . , n}. From the perspective of each individual task . τi , in  
each hyper-period, all the processor time units are partitioned into: 

• busy time: the processor is occupied by other tasks, and thus . τi cannot be 
executed; 

• running time: . τi is in process; 
• preemption time (if any): after . τi has started, its execution is interrupted by (a 

subset of) other tasks; and 
• free time: the execution of . τi is completed or it has not arrived yet. These 

processor time units can be idle or utilized to execute other tasks. 

As depicted in Fig. 1.4, such partitions of time units can be applied to the 
scheduling shown in Fig. 1.1a as follows:
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Fig. 1.4 Processor time units 
partition 

0 1 2 3 4 5 6  7 8 9  10  

t1 

busy time 
of t1 

running time of t1 and 
preemption time of t2 

free time 
of t1 and t2 

t2 

• time interval .[0, 1), i.e., time .t = 0 and the following time unit, is the busy time 
of task . τ1 and the running time of task . τ2; 

• time interval .[1, 2) is the running time of task . τ1 and preemption time of task . τ2; 
• time interval .[2, 3) is the busy time of task . τ1 and the running time of task . τ2; 
• time intervals .[3, 4) and .[7, 8) are the free time of both . τ1 and . τ2; 
• time intervals .[4, 6) and .[8, 10) are both the running time of task . τ2 and the busy 

time of task . τ1; and 
• time interval .[6, 7) is the running time of . τ1 and busy time of task . τ2. 

The preemption scheduling addressed in this monograph is on two levels: from the 
perspective of the processor and individual task. Generally, a processor-preemption 
relation assigns the priority to tasks without considering their execution details. 
Once a task is under execution, all the tasks with higher priorities can preempt its 
execution. However, from the perspective of an individual real-time task, a task-
preemption relation is depicted by DES specifications directly in order to assign the 
exact preemption relation at the exact relative execution time. The presented two 
general conditional-preemption specifications are utilized to customize scheduling 
and preemption requirements. 

The research in [44] and [45] shows that, on the processor level, both preemptive 
and non-preemptive priority scheduling policies may be conservative. As a solution, 
a matrix-based priority-free conditionally-preemptive (PFCP, detailed in Chap. 5) 
scheduling policy is developed, which generalizes the priority-based preemption, 
such as: 

• non-preemptive [10, 12–15, 21, 22, 35, 36, 43], 
• preemptive [13, 34], and 
• both non-preemptive and preemptive [44–47]. 

In other words, a priority-free scheduling policy can be utilized to schedule all the 
periodic tasks randomly, i.e., for a real-time task, its busy time and preemption time 
can be occupied by any other tasks. 

On the processor level, most studies of SCT-based real-time scheduling focus on 
FP or PFCP scheduling. To the best of our knowledge, the work in Chap. 7 is the first 
attempt to schedule RTS with DP. This means that the preemption relation defined 
in Chap. 7 is two-fold:
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• The developed scheduling framework can find the optimal behavior (all the safe 
execution sequences) of an RTS by the supervisory control of STS. 

• A few sequences are selected, which rank at the top according to some specified 
optimality criteria. For example, such an optimality criterion could be defined 
according to EDF: at any time, only the sequences executing tasks with the 
shortest deadlines are retained. 

A controller for each controllable event of the STS is obtained by the supervisory 
control of STS, which provides the expected safe execution sequences. 

For the purpose of dynamic RTS reconfiguration, multi-period periodic task 
models are proposed in Chaps. 4, 6, and 7, which can be utilized to model RTS tasks 
with periods varying between a lower bound and an upper bound. In the light of the 
elastic period model, the main idea of a multi-period is to assign all the possible 
periods between its lower bound and upper bound. For the real-time task shown in 
Fig. 1.3, in the model of TDES, DES or STS, we assign four possible periods to 
it: four, five, six, and seven. The default period for a task is the shortest one. In the 
case that the RTS is non-schedulable, based on nonblocking supervisory control, the 
multi-period is used to reconfigure the RTS automatically. Generally, a traditional 
RTS task is viewed as special cases of the corresponding multi-period models. The 
only difference of a task’s model before and after its reconfiguration is the upper 
bound of its multi-period. 

1.4.2 RTS Scheduling and Reconfiguration 

For an RTS represented by TDES, DES, or STS, its optimal supervisor is syn-
thesized, which provides all the possible scheduling/reconfiguration sequences. 
Any of the scheduling plans embodied in the supervisor can be utilized to sched-
ule/reconfigure the RTS. In these sequences, all the possible DP or FP sequences 
are included. If the supervisor is empty, the RTS is claimed to be non-schedulable. 
Otherwise, the users can choose any sequence to schedule the RTS. In particular, 
as stated in Chap. 7, based on the supervisory control of STS, a few sequences are 
selected, which rank at the top according to some specified (dynamic) optimality 
criteria. 

In this monograph, a reconfigurable real-time task . τi is assigned with a multi-
period. By modelling such RTS tasks using TDES, DES, or STS, with dynamic 
reconfiguration integrated, all the safe execution sequences (possible reconfigura-
tion scenarios) are found by supervisory control. 

The SCT-based reconfiguration process of RTS in this monograph is illustrated 
in Fig. 1.5, which is a two-step approach. At the first step, we select the RTS 
task models running in the same processor and their corresponding specifications 
(denoted by “execution spec”), which are followed by calculating the synchronous 
products using procedure sync (introduced in [48]); thereafter, the supervisor is 
calculated by supcon (introduced in [48]). If the supervisor is empty and the
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Fig. 1.5 Procedures for real-time scheduling 

tasks are not running in the multi-period model (denoted by “M-period”), we will 
reconfigure the tasks and repeat the scheduling process at the second step. Finally, 
the users can select a safe execution sequence from the supervisor to schedule the 
RTS online. 

Suppose that in every scheduling plan only a subset of tasks executed by an RTS 
enters the uni-processor for execution. Initially the tasks are running in the periodic 
version with lower bounds. If no safe execution sequence can be found at the highest 
processor utilization, SCT is utilized to provide all the possible safe execution 
sequences by offline supervisory control. Hence, during the reconfiguration process, 
the exact processor utilization of any task assigned with multi-period lies between 
its lower and upper bounds. 

By SCT, all possible safe execution sequences are found, resulting in a decrease 
of processor utilization. The users should take the responsibility to provide the 
tolerable lowest processor utilization. Consequently, any safe execution sequence 
in the supervisor can be selected as a guide to schedule the RTS by dynamically 
reconfiguring the period of a task. If the supervisor is still empty, we claim that the 
system is non-schedulable. 

For industrial production lines or manufacturing processes, the technique pre-
sented in this monograph reconfigures an RTS that executes a set of tasks with the
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same task scale studied in [6–8, 10, 22, 31]. We suggest that the users predefine an 
acceptable processor utilization interval for every task. 

For SCT, a method for speeding up the calculation is to reduce the number of 
states in the plant and specification. The presented synthesis speeding up approach 
can be applied to Chaps. 5 and 6. In this book, we mainly divide the calculations 
into three steps. Each step considers different specifications as follows. 

• Step 1: Spec 1 (S1), from the perspective of processors, PFCP specifications are 
touched upon; 

• Step 2: Spec 2 (S2), from the perspective of individual tasks, task-centered 
conditional-preemption specifications are considered; and 

• Step 3: Spec 3 (S3), other user defined specifications are taken into account. 

As the commutative diagram shown in Fig. 1.6, PS, TS, and OS represent PFCP 
specifications, task-centered conditional-preemption specifications, and other user 
defined specifications, respectively. In Fig. 1.6, the synthesis steps represented by 
thick lines can speed up the synthesis process. According to [29] and [30], the 
STS framework (rooted in BDD) is well-developed to manage the state explosion 
problem. Hence, the presented “speeding up” approach is not so necessary for STS-
based real-time scheduling and reconfiguration. 

According to [48], the software packages2 TCT and TTCT are developed 
to create DES and TDES generators, respectively. Moreover, STS can also be 
synthesized in a software package STSLib3 , which utilizes BDD as the basis for 
efficient computation. The procedures TCT/TTCT utilized in this monograph can be 
found in [48]. All the operations and the generated files are recorded in an annotated 
file MAKEIT.TXT. 

S1=PS 

S2 

S3 

Super1 

Super2 

Super3 

sync (S1, TS) 

sync (S2, OS) 

supcon (Super1, TS) 

supcon (Super2, OS) 

Fig. 1.6 A commutative diagram

2 http://www.control.utoronto.ca/DES. 
3 https://github.com/chuanma/STSLib. 

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
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1.5 Monograph Outline 

The remainder of this monograph is organized as follows. Chapter 2 reports the 
preliminaries of SCT and three DES modelling frameworks: DES, TDES, and STS. 
In this monograph, they are all utilized to model the behavior of RTS. By SCT, their 
expected safe execution sequences are synthesized with user-defined specifications 
taken into account. 

From the perspective of RTS scheduling, Chap. 3 reviews the real-time schedul-
ing and reconfiguration of periodic RTS. Moreover, basic concepts such as classical 
DP scheduling, FP scheduling, and elastic period task models are presented. These 
models and scheduling algorithms will be represented and handled by DES, TDES, 
and STS in the rest of this monograph. 

Chapter 4 reviews the seminal work on SCT-based real-time scheduling. There-
after, based on it to dynamically reconfigure RTS, a new formalism is presented 
to assign multi-periods to periodic tasks. For a periodic task, its release/arrival, 
starting, and finishing are represented by active events, and their timing constraints 
are converted to the time bounds of such events. Thus, the dynamics of a real-
time task is depicted in a TTG. A multi-period task is assigned with a set of 
possible periods between a minimum period and a maximum period. Initially, a 
task is assigned with the shortest period, which can be viewed as a special case 
of the corresponding multi-period. By implementing SCT, an RTS is dynamically 
reconfigured when its initial safe execution sequence set is empty. During the 
real-time scheduling/reconfiguration process, the supervisor proposes all the safe 
execution sequences. 

Chapter 5 points out that DES are more general for modelling RTS than TDES, 
and provide the possibility of preemptive SCT-based scheduling of RTS. A DES-
based periodic real-time task modelling method is presented. The timing constraints 
of RTS tasks are represented by different events. A preemption policy, namely 
conditional-preemption, is presented. On the processor level, the task preemption 
relations are described by preemption matrices. Thereafter, DES specifications are 
designed accordingly. On the task level, the task preemption relations are depicted 
by DES specifications directly. The presented preemption relation generalizes 
priority-based preemption. In fact, for some real-time scheduling requirements, 
priorities cannot be assigned to real-time tasks. Considering the processor behavior 
related to each individual task’s execution and the user-defined specifications, 
by implementing supervisory control of DES, we synthesize a supervisor which 
provides all the safe real-time execution sequences. Based on this idea, by consid-
ering the exact execution time of real-time tasks, a general modular DES model 
representing RTS tasks is presented in Chap. 6. 

In the light of the multi-period reported in Chap. 4 and building on Chap. 5, 
a DES version modular multi-period is presented in Chap. 6. For the purpose of 
integrating real-time scheduling and reconfiguration into a uniformed framework, 
a multi-period model is presented, which contains a set of possible periods. A task 
is represented by an automaton synchronized by the required modular models, in
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which a multi-period task is assigned with a set of possible periods between a 
minimum period and a maximum period. The only difference of a task’s model 
before and after its reconfiguration is the upper bound of its multi-period. The DES 
model depicting the RTS is synchronized by the DES representing these tasks. As a 
consequence, we introduce the main contributions without distinguishing real-time 
scheduling and reconfiguration. 

A hierarchical RTS model is presented in Chap. 7, based on nonblocking super-
visory control of STS, where both conditionally-preemptive and DP scheduling are 
addressed in the SCT-based real-time scheduling. This chapter reports on a unified 
STS-based framework to model and schedule RTS by addressing PFCP and DP. 
A formal constructive method is presented to model an RTS that processes multi-
period and sporadic tasks, in which a multi-period task is assigned with a set of 
possible periods between a minimum period and a maximum period. The proposed 
modular models are taken to be generic entities, which are utilized to model a 
problem domain such as “hard real-time manufacturing and reconfigurations” and 
manage its manufacturing production process. 

Finally, Chap. 8 concludes the contributions of this monograph and proposes 
some possible future extensions. The main differences among the three SCT 
modelling frameworks are also discussed in Chap. 8. Through an RTS example, this 
chapter shows that the core of all the presented modelling approaches is identical: 
the real-time tasks’ behavior is represented by formal languages that are generated 
by TDES, DES, or the holons in STS. Thereafter, for either real-time scheduling or 
dynamic reconfiguration, SCT is utilized to find out the safe execution sequences. 
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Chapter 2 
Preliminaries of Supervisory Control 
Theory 

2.1 Discrete-Event Systems 

In the language-based Ramdge-Wonham (R-W) framework [13, 17], discrete-event 
systems (DES) are represented by automata. A finite state DES plant is a generator 

. G = (Q,Σ, δ, q0,Qm),

where 

• Q is the finite state set, 
• . Σ is the finite event set (alphabet), partitioned into the disjoint controllable event 

subset .Σcon and the uncontrollable event subset .Σunc, i.e., 

. Σ = Σcon∪̇Σunc,

• .δ : Q × Σ → Q is the partial state transition function, 
• . q0 is the initial state, and 
• .Qm ⊆ Q is the subset of marker states. 

In accordance with [17], .Σ+ denotes the set of all finite sequences that consists of 
the events in . Σ . By adjoining the empty string . ϵ, the set of finite strings over the 
alphabet . Σ is written as . Σ∗, i.e., 

. Σ∗ = Σ+ ∪ {ϵ}.

The operation of catenation of strings 

. cat : Σ∗ × Σ∗ → Σ∗
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is defined as 

. cat(ϵ, s) = cat(s, ϵ) = s, s ∈ Σ∗

and 

. cat(s, t) = st, s, t ∈ Σ+.

Operation .cat(·, ·) is associative, i.e., 

. cat(cat(s, t), u) = cat(s, cat(t, u)), s, t, u ∈ Σ+.

Function . δ can be extended to 

. δ : Q × Σ∗ → Q

by defining .δ(q, ϵ) = q and .δ(q, sσ ) = δ(δ(q, s), σ ), where .q ∈ Q is a state and 
.s ∈ Σ∗ is a string. Write .δ(q, s)! if .δ(q, s) is defined. The length of a string .s ∈ Σ∗, 
denoted by . |s|, is defined below. 

. |s| =
{
0, if s = ϵ

k, if s = σ1σ2 · · · σk ∈ Σ+

For .t ∈ Σ∗, we say  .s ∈ Σ∗ is a prefix of t . Write .s ≤ t , if  .t = su for some 
.u ∈ Σ∗. Clearly .ϵ ≤ t and .t ≤ t for all .t ∈ Σ∗. A  language over . Σ is any subset 
of . Σ∗, i.e., an element of the power set .Pwr(Σ∗). The  closed behavior of . G is 
represented by 

.L(G) := {s ∈ Σ∗|δ(q0, s)!} (2.1) 

and the marked behavior is represented by 

.Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G). (2.2) 

The (prefix) closure of .Lm(G) is denoted by .Lm(G). A DES is  nonblocking if 
.L(G) = Lm(G). In the  transition graph describing a DES, the initial state is labelled 
with an entering arrow, and a marker state is represented by a double circle. 

Example A DES generator .G1 = (Q1,Σ1, δ1, q0,1,Qm,1) is depicted in Fig. 2.1, 
in which 

• .Q1 = {0, 1}, 
• .Σ1 = {α, β} with .Σ1,con = {α} and .Σ1,unc = {β}, 
• .δ1(0, α) = 1 and .δ1(1, β) = 0, 
• state 0 is the initial state, and 
• state set . {0} is the marker state subset.
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Fig. 2.1 DES generator . G1

The closed behavior of . G1 is 

. L(G1) = {ϵ, α, αβ, αβα, . . .} = {(αβ)∗, (αβ)∗α},

where 

. (αβ)∗ = {ϵ, (αβ)1, (αβ)2, . . .},

and the marked behavior of . G1 is 

. Lm(G1) = {ϵ, αβ, αβαβ, . . .} = {(αβ)∗}.

We have .L(G1) = Lm(G1) = {ϵ, α, αβ, αβα, αβαβ, . . .}, and the DES depicted in 
Fig. 2.1 is nonblocking. . □

Synchronous product [17] is a standard approach to combine a finite set of DES 
into a single and more complex one. Suppose that there are n languages . Li ⊆ Σ∗

i

corresponding to n DES, respectively, with 

. Σ =
⋃
i∈n

Σi,n := {1, 2, . . . , n}.

The natural projection .Pi : Σ∗ → Σ∗
i is defined by 

• .Pi(ϵ) = ϵ, 

• .Pi(σ ) =
{

ϵ, if σ /∈ Σi

σ, if σ ∈ Σi
, and 

• .Pi(sσ ) = Pi(s)Pi(σ ), .s ∈ Σ∗, .σ ∈ Σ . 

The inverse image function of . Pi is 

. P −1
i : Pwr(Σ∗

i ) → Pwr(Σ∗),

where .Pwr(Σ∗) denotes the power set of . Σ∗. For .H ⊆ Σ∗
i , we have  

.P −1
i (H) := {s ∈ Σ∗|Pi(s) ∈ H }. (2.3) 

The synchronous product of a family of languages . L1, . L2, .. . . , and . Ln, denoted 
by .L1||L2|| · · · ||Ln, is defined as
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.L1||L2|| · · · ||Ln := P −1
1 L1 ∩ P −1

2 L2 ∩ · · · ∩ P −1
n Ln. (2.4) 

Example Suppose that another DES generator .G2 = (Q2,Σ2, δ2, q0,2,Qm,2) is 
depicted in Fig. 2.2, in which 

• .Q2 = {0, 1, 2}, 
• .Σ2 = {β, λ} with .Σ2,con = {λ} and .Σ2,unc = {β}, 
• .δ2(0, β) = 1, .δ2(1, β) = 2, and .δ(2, λ) = 0, 
• state 0 is the initial state, i.e., .q0,2 = 0, and 
• state set . {0} is the subset of marker states, i.e., .Qm,2 = {0}. 

By computing the synchronous product of . G1 and . G2, we have the global event 
set as 

. Σ = Σ1 ∪ Σ2 = {α, β, λ}.

The automata representing .P −1
1 L1 and .P −1

2 L2 are depicted in Fig. 2.3, in which 
the newly added events in the automata are represented by selfloops. Finally, the 
synchronous product of . G1 and . G2 is 

. L(G) = L(G1||G2) = P −1
1 L1 ∩ P −1

2 L2.

The DES diagram corresponding to . G is depicted in Fig. 2.4. . □

Fig. 2.2 DES generator . G2

Fig. 2.3 Two DES generators with selfloops. (a) DES representing .P −1
1 L1. (b) DES representing 

.P −1
2 L2
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Fig. 2.4 Synchronous product . G = G1||G2

The DES synthesis tool TCT1 is a software package that provides several proce-
dures for DES. The synchronous product .L(G) = L(G1||G2) can be calculated in 
TCT as listed below, in which events . α, . β, and . λ are represented by integers 1, 2, 
and 3, respectively. The utilized procedures are introduced in [17]. 

. G1 = create (G1, [mark 0], [tran [0, 1, 1], [1, 2, 0]]) (2, 2)

. G2 = create (G2, [mark 0], [tran [0, 2, 1], [1, 2, 2], [2, 3, 0]]) (3, 3)

. T1 = selfloop (G1, [3]) (2, 4)

. T2 = selfloop (G2, [1]) (3, 6)

. G = meet (T1, T2) (6, 7)

TCT also provides a procedure sync to calculate the synchronous product of up 
to 20 DES directly. In TCT, the synchronous product of . G1 and . G2, denoted by 
TEST, is calculated below. 

. TEST = sync (G1, G2) (6, 7)

Finally, the identity of the two approaches above is verified by 

. true = isomorph (G, TEST; identity),

which shows that the synchronous products obtained by the two approaches given 
above are identical. . □

Suppose that a DES model is nonempty. Under supervisory control, all the 
uncontrollable events are automatically enabled. After adjoining a particular subset 
of the controllable events to be enabled, a set of control patterns is defined as 

.Φ = {φ ∈ Pwr(Σ)|φ ⊇ Σunc}. (2.5)

1 http://www.control.utoronto.ca/DES. 

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
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The supervisory control for . G is any map 

. V : L(G) → Φ.

DES . G under the supervision of V is written as .V/G. The  closed behavior of . V/G
is defined to be .L(V/G) ⊆ L(G) described as 

• the empty string .ϵ ∈ L(V/G), 
• if .s ∈ L(V/G), .σ ∈ V (s), and .sσ ∈ L(G), then .sσ ∈ L(V/G), and 
• no other strings belong to .L(V/G). 

The marked behavior of .V/G is denoted by 

.Lm(V/G) = L(V/G) ∩ Lm(G). (2.6) 

The control map V is said to be nonblocking for . G if 

. Lm(V/G) = L(V/G).

A language .K ⊆ Σ∗ is said to be controllable (with respect to . G) if  

. KΣu ∩ L(G) ⊆ K

i.e., 

. (∀s ∈ Σ∗)(∀σ ∈ Σ)s ∈ K & σ ∈ Σunc & sσ ∈ L(G) ⇒ sσ ∈ K.

Let .K ⊆ L(G) be nonempty and closed. There exists a supervisory control V for 
. G such that 

. L(V/G) = K

iff K is controllable with respect to . G; this is referred to as a nonblocking 
supervisory control (NSC). Generally, if marking is also considered, then we select 
a sublanguage .M ⊆ Lm(G). A  marking NSC (MNSC) with respect to . G exists if it 
is a map .V : L(G) → Φ satisfying the behavior 

.Lm(V/G) = L(V/G) ∩ M. (2.7) 

Suppose that a specification language is given by .E ⊆ Σ∗. Let  .C (E) be the 
family of sublanguages of E that are controllable with respect to . G. .C (E) is 
nonempty and is closed under arbitrary unions. Since .∅ ⊆ E, the (unique) supremal 
element within .C (E), denoted by .supC (E), always exists.
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Fig. 2.5 Specification 

Example For the DES . G portrayed in Fig. 2.4, we have  

• .L(G) = {ϵ, .α, .αβ, .αβα, .αβαβ, .αβαβλ, .αβαβα, . . . .}, and 
• .Lm(G) = Lm(G1)||Lm(G2) = {(αβ)∗}||{(ββλ)∗} = {(α(βαβαλ)∗βαβλ)∗}. 
Now we assign a specification . S as shown in Fig. 2.5. It satisfies .L(S) = Lm(S) and 

. Lm(S) = {(αβαβλ)∗, (αβαβλ)∗αβαβα}.

Let .E = L(S). First, we check the controllability of .E1 = {αβαβα} ⊂ E with 
.Σunc = {β} as follows: 
• .E1 = {ϵ, .α, .αβ, .αβα, .αβαβ, .αβαβα}, 
• .E1Σunc = {β, .αβ, .αββ, .αβαβ, .αβαββ, .αβαβαβ}, and 
• .E1Σunc ∩ L(G) = {αβ, .αβαβ} ⊂ E1. 

Let .K = E1. We say that K is controllable and there exists an NSC V such that 
.L(V/G) = K . Let .M = Lm(G). We have  

. Lm(V/G) = L(V/G) ∩ M = ∅.

Clearly, the MNSC with respect to K is empty. 
Second, let .K = E2 = {(αβαβλ)∗αβαβα}. It is true that .K ⊂ L(G) and there 

does not exist .s ∈ K such that .s ∈ Lm(G). Hence there exists an NSC V such that 

. L(V/G) = K

and there exists an empty MNSC with respect to K . 
At the next step, we check the controllability of .E3 = {(αβαβλ)∗}: 

• .E3 = {(αβαβλ)∗} = {(αβαβλ)∗, .(αβαβλ)∗α, .(αβαβλ)∗αβ, .(αβαβλ)∗ . αβα,

.(αβαβλ)∗αβαβ}, 
• .E3Σunc = {(αβαβλ)∗β, .(αβαβλ)∗aβ, (αβαβλ)∗αββ, . (αβαβλ)∗αβαβ,

.(αβαβλ)∗αβαββ}, and 
• .E3Σunc ∩ L(G) = {(αβαβλ)∗aβ, .(αβαβλ)∗αβαβ} ⊂ E3. 

Clearly, . E3 is controllable. Let .K = E3. As depicted in Fig. 2.6, there exists a DES 
namely SUPER that implements V . It is easy to check that
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Fig. 2.6 A supervisor SUPER 

. L(V/G) = K.

Let .M = E3. We conclude that .M ⊆ Lm(G) and 

. Lm(V/G) = L(V/G) ∩ M

hold. We say that the supervisor illustrated in Fig. 2.6 is an MNSC. It is clear that it 
is also an NSC. 

By repeating the same approach, we can reach a conclusion that specification 
.K = L(S) is an NSC but not an MNSC. 

The operations in TCT to synthesize the optimal MNSC are listed below. 

. SPEC = edit (G, [mark +[5]], [trans –[5, 3, 1]]) (6, 6)

. SUPER = supcon (G, SPEC) (5, 5)

. SUPER = condat (G, SUPER) Controllable

Clearly, as illustrated in Fig. 2.6, SUPER is the optimal MNSC. Following the 
condat procedure (introduced in [17]) in TCT, we find that SUPER disables event 
. α at  state 4 in Fig. 2.6. . □

2.2 Timed Discrete-Event Systems 

By adjoining time bounds to the R-W framework (on the transitions), the Brandin-
Wonham (B-W) framework [2] of a timed DES (TDES) is obtained. From the 
perspective of TDES, a DES under the R-W framework is viewed as an (untimed) 
activity transition graph (ATG) of a TDES. In other words, a TDES . G can be 
modelled starting from an untimed ATG represented by a five-tuple: 

. Gact = (A,Σact , δact , a0, Am)

that is essentially an untimed DES with its state set being replaced by an activity 
set A. The elements of A are called “activities”, usually denoted by a. Let  .N =
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{0, 1, 2, . . .} and .σ ∈ Σact . Every event . σ in .Σact is equipped with a timer, defined 
by a lower time bound .lσ ∈ N and an upper time bound .uσ ∈ N∪{∞}with respect to 
which the timer is “tick down”. .Σact is partitioned into two subsets, which satisfies 

. Σact = Σspe∪̇Σrem,

where .Σspe and .Σrem are the prospective and remote event sets with finite and 
infinite upper time bounds, respectively. 

By defining a timer interval to tick down event . σ , represented by . Tσ , such that 
.Tσ = [0, uσ ] and .Tσ = [0, lσ ] for .σ in Σspe and .Σrem, respectively, a TDES state 
is denoted by 

. q = (a, {tσ |σ ∈ Σact })

with .tσ ∈ Tσ , which shows that a TDES state q consists of an activity a and a 
tuple assigning to each event . σ in .Σact an integer in its timer interval . Tσ . Hence, 
. tσ is called the timer of event . σ in state q. Thus, the TDES state set is built as the 
Cartesian product of the activity set and the timer intervals of all the activity events 
appeared in .Σact , i.e., 

. Q := A ×
∏

{Tσ |σ ∈ Σact }.

The initial state of a TDES is 

. q0 := (a0, {tσ0|σ ∈ Σact }),

where . tσ0 equals . uσ and . lσ for a prospective and a remote state, respectively. The 
marker state set is a user-defined subset 

. Qm ⊆ Am ×
∏

{Tσ |σ ∈ Σact }.

The global tick event tick (t) representing “tick of the global clock” is adjoined to 
.Σact to form the full alphabet denoted by 

. Σ := Σact ∪̇{t}.

Thus a TDES is represented by 

. G = (Q,Σ, δ, q0,Qm).

Example We consider the automaton depicted in Fig. 2.1 as an ATG 

.Gact = (A,Σact , δact , a0, Am)



26 2 Preliminaries of Supervisory Control Theory

with 

• .A = {0, 1}, 
• .Σact = {α, β} with .Σrem = {α} and .Σspe = {β}, 
• .δact (0, α) = 1 and .δact (1, β) = 0, 
• state 0 is the initial activity, i.e., .a0 = 0, and 
• state set . {0} is the marker activity set, i.e., .Am = {0}. 
We assign time bounds to . α and . β to be 

• .lα = 1, 
• .uα = ∞, 
• .lβ = 1, and 
• .uβ = 2, 

written as .(α, [1,∞]) and .(β, [1, 2]), respectively. Then, we have a TDES 

. G = (Q,Σ, δ, q0,Qm)

where 

• .Q = {0, 1}× {0, 1}× {0, 1, 2} is the Cartesian product of the activity set and the 
non-negative integers (the timer intervals) to tick down events . α and . β, 

• .Σ = Σact ∪̇{t} = {α, β, t}, 
• .q0 = (0, {1, 2}) is the initial state, and 
• .Qm = {(0, {1, 2})} is a (user defined) marker state set. 

We have size .|Q| = 12 and we take .(0, {1, 2}) and .{(0, {1, 2})} as the initial state 
and marker state set, respectively. State .q0 = (0, {1, 2}) is the initial state of the 
TDES, where state 0 is the initial activity, and .{1, 2} is the set of the user-defined 
initial (timing) labels for events . α and . β, respectively. The marker state set .Qm is 
singleton containing .q0 = (0, {1, 2}), in which state 0 is the unique marking activity, 
and .{1, 2} is also the set of the user-defined marking (timing) labels for events . α and 
. β, respectively. . □

In accordance with [17], an event .σ ∈ Σact is enabled at q if .δact (a, σ ) is 
defined, written as .δact (a, σ )!; it is  eligible if its timer is also defined, i.e., .δ(q, σ )!, 
in accordance with the following rules: 

• .σ = t and .(∀τ ∈ Σspe)δact (a, τ )! ⇒ tτ > 0, or  
• .σ ∈ Σspe, .δact (a, σ )!, .0 ≤ tσ ≤ uσ − lσ , or  
• .σ ∈ Σrem, .δact (a, σ )!, .tσ = 0. 

Formally, . δ is defined as .δ(q, σ ) = q ' with 

. q = (a, {tτ |τ ∈ Σact }) and q ' = (a', {t 'τ |τ ∈ Σact }),

where the entrance . q ' is defined by the following rules: 

1. Let .σ = t .
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In the entrance . q ' we have .a' := a, and 

• if .τ ∈ Σspe, .t 'τ :=
{

uτ , if not δact (a, τ )!
tτ − 1, if δact (a, τ )! and tτ > 0

, and 

• if .τ ∈ Σrem, .t 'τ :=

⎧⎪⎪⎨
⎪⎪⎩

lτ , if not δact (a, τ )!
tτ − 1, if δact (a, τ )! and tτ > 0

0, if δact (a, τ )! and tτ = 0

. 

2. Let .σ ∈ Σact . 
In the entrance . q ' we have .a' := δact (a, σ ), and 

• if .τ /= σ and .τ ∈ Σspe, .t 'τ :=
{

uτ , if not δact (a, τ )!
tτ , if δact (a, τ )! , 

• if .τ = σ and .τ ∈ Σspe, .t 'τ := uσ , 

• if .τ /= σ and .τ ∈ Σrem, .t 'τ :=
{

lτ , if not δact (a, τ )!
tτ , if δact (a, τ )! , and 

• if .τ = σ and .τ ∈ Σrem, .t 'τ := lσ . 

In accordance with [17], only an eligible event can actually occur. If . σ is not 
enabled, it is said to be  disabled; if  . σ is not eligible, it is  ineligible; an  enabled 
but ineligible event is called a pending event . A TDES should satisfy activity-
loop-free , i.e., 

. (∀q ∈ Q)(∀s ∈ Σ+
act )δ(q, s) /= q.

Example For the ATG .Gact discussed in the previous example, we have its 
corresponding timed transition graph (TTG) . G depicted in Fig. 2.7, which shows 
that: 

• At state .(0, {1, 2}) where items 0, 1, and 2 are respectively the activity 0 in .Gact, 
the lower time bound .lα = 1 for event . α, and the upper time bound .uβ = 2 for 
event . β: 

(0,{1,2}) 

(0,{0,2}) 

(1,{1,2}) (1,{1,1}) (1,{1,0}) 
t α 

t 

t t 

β 
β 

Fig. 2.7 A TTG
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– event . α is enabled but not eligible to occur since .tα = 0 is violated, i.e., it is 
pending, 

– event . β is disabled since .δact (0, β)! is not satisfied, and 
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds. 

• At state .(0, {0, 2}): 
– event . α is enabled and eligible to occur since .δact (0, α)! and .tα = 0 hold, 
– event . β is disabled, and 
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds. 

• At state .(1, {1, 2}): 
– event . α is disabled, 
– event . β is pending since .δact (1, β)! and .tβ = 2 violates .0 ≤ tβ ≤ uβ − lβ = 1, 

and 
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds. 

• At state .(1, {1, 1}): 
– event . α is disabled, 
– event . β is enabled and eligible to occur since .δact (1, β)! and .tβ = 1 satisfies 

.0 ≤ tβ ≤ uβ − lβ = 1, and 
– event t is eligible to occur since .δact (0, β)! ⇒ tβ > 0 holds. 

• At state .(1, {1, 0}): 
– event . α is disabled, 
– event . β is enabled and eligible to occur, and 
– event t is disabled since .δact (0, β)! ⇒ tβ > 0 is violated. 

After the occurrence of event . α at state .(0, {0, 2}), the system arrives state . (1, {1, 2})
which resets the timer for event . α to be .lα = 1. Event . β is eligible to occur at both 
states .(1, {1, 1}) and .(1, {1, 0}). After the occurrence of event . β, the system returns 
to the initial state with the timer for event . β defined as .uβ = 2. 

By using the procedure timed_graph procedure in the TDES synthesis tool 
TTCT,2 a TTG . G can be generated from the corresponding ATG .Gact, which is 
shown in Fig. 2.7. . □

The closed behavior of a TDES . G is represented by language 

.L(G) := {s ∈ Σ∗|δ(q0, s)!}. (2.8) 

In addition, the marked behavior of . G is 

.Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm}. (2.9)

2 http://www.control.utoronto.ca/DES. 

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
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A TDES . G is nonblocking if .Lm(G) satisfies 

. Lm(G) = L(G),

where .Lm(G) denotes the (prefix) closure of .Lm(G). An ATG can be converted into 
a TTG by incorporating the tick (represented by event t) transition explicitly. 

A subset .Σhib ⊆ Σact represents the prohibitable event set, in which each 
event can be disabled by a supervisor. Furthermore, another subset .Σf or ⊆ Σact , 
namely forcible event set, is defined, which can preempt the occurrence of event 
t . For example, suppose that at a state q, several forcible events and t are eligible. 
By SCT, event t can be effectively erased from the current event list. There is no 
particular relation postulated a priori  between .Σf or and any of .Σhib, .Σrem, or .Σspe. 
In particular an event in .Σrem might be both forcible and prohibitable. 

In a TDES plant . G, the eligible event set .EligG(s) ⊆ Σ at a state q 
corresponding to a string .s ∈ L(G) is defined by 

.EligG(s) := {σ ∈ Σ |sσ ∈ L(G)}. (2.10) 

For an arbitrary language .K ⊆ L(G), let .s ∈ K , 

.EligK(s) := {σ ∈ Σ |sσ ∈ K}. (2.11) 

The language K is controllable w.r.t. G if for any string s in . K , 

.EligK(s) ⊇
{

EligK(s) ∩ (Σunc ∪ {t}), if EligK(s) ∩ Σf or = ∅
EligK(s) ∩ Σunc, if EligK(s) ∩ Σf or /= ∅ . (2.12) 

Thus an event .σ ∈ Σ is eligible to occur w.r.t. K if . σ is eligible in . G and 

• . σ is uncontrollable, or  
• .σ = t and no forcible event is currently eligible in K . 

Obviously, the significance of “controllable” differs from the definition in (untimed) 
DES: even though event tick is controllable, it can be preempted only by a forcible 
event that is eligible to occur. The set of all controllable sublanguages of K is 
denoted by .C (K) that is nonempty (the empty set belongs to it) and closed under 
arbitrary set unions. Hence, a unique supremal (i.e., largest) element exists, denoted 
by sup.C (K). 

Suppose that a specification language is represented by .E ⊆ Σ∗. Let  

. K ⊆ L(G) ∩ E

be nonempty and closed. There exists a supervisory control V for . G such that 

.L(V/G) = K
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iff K is controllable with respect to . G; this is referred to as an NSC. Formally, a 
supervisory control is a map 

. V : L(G) → 2Σ

such that, for all .s ∈ L(G), 

.V (s) ⊇
{

Σunc ∪ {{t} ∩ EligK(s)}, if V (s) ∩ EligK(s) ∩ Σf or = ∅
Σunc, if V (s) ∩ EligK(s) ∩ Σf or /= ∅ . (2.13) 

The closed behavior of . G under the supervision of V , denoted by .L(V/G), is  
defined as: 

• .ϵ ∈ L(V/G), 
• if .s ∈ L(V/G), .σ ∈ V (s), and .sσ ∈ L(G), then .sσ ∈ L(V/G), and 
• no other strings belong to .L(V/G). 

Generally, if marking is also considered, then we select a sublanguage .M ⊆ Lm(G). 
A marking nonblocking supervisory control (MNSC) with respect to . G exists, which 
is a map .V : L(G) → Φ with the behavior 

.Lm(V/G) = L(V/G) ∩ M. (2.14) 

Example The TTG depicted in Fig. 2.7 is nonblocking, which is considered as a 
plant with a forcible event . α. A user-defined specification . S is depicted in Fig. 2.8. 
Let .E = L(S). We have a TTG representing .K = L(G) ∩ E shown in Fig. 2.9. 

Let .s1 = t t, .s2 = t tαt , and .s3 = t tαtt . We have  

• .s1 ∈ K , and .EligG(s1) = EligK(s1) = {α}, 
• .s2 ∈ K , and .EligG(s2) = EligK(s2) = {β}, and 
• .s3 ∈ K , and .EligG(s3) = EligK(s3) = {β}. 
Strings . s1, . s2, and . s3 are controllable since Eq. (2.12) is satisfied. Furthermore, it is 
easy to check that K is controllable since all the strings s in . K satisfy Eq. (2.12). 
Hence K is controllable. More precisely, it is both an NSC and an MNSC. 

This conclusion can also be verified by using the TTCT procedure supcon. 
Considering the TTG depicted in Figs. 2.7 and 2.8 as plants and specifications, 
respectively, as shown in Fig. 2.9, a TTG supervisor, denoted by SUPER, is 
obtained. The operations in TTCT to synthesize the optimal MNSC are listed below: 

Fig. 2.8 A TDES  
specification
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Fig. 2.9 A TDES supervisor 

. 
G = acreate (G1, [mark 0], [time bounds [1, 1, inf], [2, 1, 2]], [forcible 1],

[tran [0, 1, 1], [1, 2, 0]]) (2, 2)

. G = timed_graph (G) (5, 7)

. 
SPEC = create (SPEC, [mark 0], [tran [0, 0, 1], [1, 0, 2], [2, 1, 3], [3, 0, 3],

[3, 2, 0]], [forcible 1]) (4, 5)

.SUPER = supcon (G, SPEC) (6, 7) . □

2.3 State-Tree Structures 

Similar to the hierarchical organizations in the real world, state-tree structures 
(STS) are proposed in [14] for the purpose of incorporating the hierarchical and 
concurrent structures of complex DES (or finite state machines, FSM) into a 
compact and natural model. Thereafter, it is completed in [10] and [11]. STS are 
viewed as hierarchical finite state machines (HFSM) [6, 7, 12]. In other words, an 
STS is equally considered as a set of DES with multi-levels. In this monograph, 
we introduce STS by starting from superstates as defined in statecharts [8]. A 
superstate, similar to a hierarchical organization or hierarchy, is generally made of 
several subordinates that may also be hierarchical organizations. 

2.3.1 Superstates 

A superstate, as known as the abstraction of a system or a sub-system, is an 
aggregation (or abstraction) of its components [8, 10]. Let X be a finite collection 
of sets that are called states of a system. Given a state .x ∈ X and a non-empty set 

.Y = {x1, x2, . . . , xn} ⊊ X
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with .x /∈ Y , i.e., Y is a proper subset of X that does not contain x. As stated below, 
x is said to be a superstate in X expanded by Y if x can be obtained by one of the 
two expansions. 

• .OR expansion: x is the disjoint union of the states in Y , i.e., 

. x =
⋃̇

xi∈Y
xi .

In this case, x is called an .OR superstate of X and . xi is called an .OR-component 
of x in X. Disjointness means that the semantics of x is the exclusive-or of . xi , 
i.e., a system at state x implies that it is at exactly one state of Y . 

• .AND expansion: x is the Cartesian product of states in Y , i.e., 

. x = (x1, x2, . . . , xn).

For simplification, write 

. x =
∏

xi∈Y
xi

or 

. x = x1 × x2 × . . . × xn.

In this case, x is called an .AND superstate and . xi (.i ∈ [1, n] = {1, 2, . . . , n}) 
is called an .AND-component of .x ∈ X. The semantics of an .AND superstate x 
means that a system at state x is at all the states of Y simultaneously. 

If .x ∈ X is not a superstate, it is said to be a simple state, denoted by .SIM, i.e., there 
does not exist a non-empty set .Y = {x1, . x2, . . . ., .xn} ⊊ X that expands x. 

Formally, given a state set X, the  type function 

. T : X → {AND, OR, SIM}

is defined by 

.T (x) :=

⎧⎪⎪⎨
⎪⎪⎩
AND, if x is an AND superstate

OR, if x is an OR superstate

SIM, otherwise

. (2.15) 

Moreover, the expansion function 

. E : X → 2X

is defined by
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Fig. 2.10 States in 
statecharts 

b 

c 

a1 
a 

A 

a2 

.E (x) :=
{

Y, if T (x) ∈ {AND, OR}
∅, if T (x) = SIM

(2.16) 

with .x ∈ X, .∅ ⊆ Y ⊂ X, and .x /∈ Y , which is, for .x ∈ X with .T (x) /= SIM, there 
exists a set .Y ⊂ X such that .E (x) = Y ; for .x ∈ X with .T (x) = SIM, .E (x) = ∅. 

Intuitively, a simple state has no children. An .OR superstate has several children, 
and the system is only allowed to stay at exactly one child at a time. An . AND
superstate also has several children, but the system must stay at all of its children 
simultaneously. 

Example The diagram depicted in Fig. 2.10 has a state collection . X =
{A, a, b, c, a1, a2}, in which 
• state A is an .OR superstate expanded by states a, b, and c; 
• state a is an .AND superstate expanded by states . a1, and . a2; 
• states b and c are two simple states without children. 

As presented in Fig. 2.10, a superstate is represented by a box with round corners 
and a simple state is depicted by a circle. Generally, the components of a superstate 
are on the adjacent lower-level. Superstate A is expanded by three states a, b, and 
c, i.e., .E (A) = {a, b, c}, in which the .AND superstate a is further expanded by two 
.OR superstates . a1 and . a2, i.e., .E (a) = {a1, a2}. The dashed line between the two 
boxes labelled with . a1 and . a2 represents that they are the expansions of superstate 
a. Based on a top-down modelling approach, the expansions of superstates are 
built inside the boxes iteratively. The state set X is continually growing during the 
modelling of an STS. We require that any state in X should only appear once. 

Clearly, from the perspective of superstate A, the system must be at exactly one 
state of a, b, or  c; from the perspective of superstate a, the system must be at states 
. a1 and . a2 simultaneously. Holons defined below describe the internal structures of 
superstates . a1 and . a2. . □

After building the local transitions among the .OR components, holons [10, 11] 
are created. Automatically, a set of superstates (or holons) structured in this way is 
nested.
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2.3.2 Holons 

Both the hierarchy and horizontal transition relations of an STS are described in a 
family of holons. A holon consists of an internal structure and a (possibly empty) 
external structure. The internal structure of a holon that matches an .OR superstate 
x is denoted by . Hx . Its internal state set . Xx

I is equal to the expansion of superstate 
x. Formally, .E (x) = Xx

I is true. 
The external structure of a holon is defined in the adjacent higher level to build 

transitions with other states. Hierarchically, a holon H is defined as a five-tuple 

. H := (X,Σ, δ,X0, Xm).

Here, 

• X is the nonempty state set, structured as the disjoint union of the (possibly 
empty) external state set . XE and the nonempty internal state set . XI , i.e., 

. X = XE∪̇XI .

• . Σ is the event set, structured as the disjoint union of the boundary event set . ΣB

and the internal event set . ΣI , i.e., 

. Σ = ΣB ∪̇ΣI .

• the transition structure 

. δ : X × Σ → X

is a partial function. In accordance with DES and TDES, we write .δ(x, σ )! if 
.δ(x, σ ) is defined. . δ is the disjoint union of two transition structures, the internal 
transition structure .δI : XI ×ΣI → XI and the boundary transition structure . δB

which is again the disjoint union of two transition structures: . δBI : XE × ΣB →
XI (incoming boundary transitions) and .δBO : XI × ΣB → XE (outgoing 
boundary transitions). 

• .X0 ⊆ XI is the initial state set, where . X0 has exactly the target states of incoming 
boundary transitions if .δBI is defined; otherwise . X0 is a nonempty subset of . XI

selected for convenience. 
• .Xm ⊆ XI is the terminal state set, where .Xm has exactly the source states of 

the outgoing boundary transitions if .δBO is defined; otherwise .Xm is a selected 
nonempty subset of . XI . 

For a holon H , its event set . Σ can also be partitioned into the disjoint union of 
controllable events .Σcon and uncontrollable events .Σunc, i.e., 

.Σ = Σcon∪̇Σunc.
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Fig. 2.11 Three superstates 
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Fig. 2.12 Two DES 
generators. (a) DES . Gx . (b) 
DES . Gy
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Fig. 2.13 A set  of  two  
holons 
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A holon with an empty external structure is identical with the DES proposed in [17]. 
The initial (resp., terminal) states of the holons without external states are marked 
by incoming (resp., outgoing) arrows. A family of holons is denoted by . H . 

Example Given an HFSM . GT as the synchronous product of an HFSM x and an 
FSM y, which can be viewed as three superstates structured in Fig. 2.11. State . T
is an .AND superstate and it is expanded by two superstates x and y. Suppose 
that the inner behavior of superstates x and y are respectively identical with two 
DES generators . Gx and . Gy , as depicted in Fig. 2.12. In Fig. 2.12a, superstate . x1
is dashed by north west lines, which represents that its inner structure can be 
constructed afterwards. As a consequence, x and y are .OR superstates, and HFSM 
. GT is reformed as the two holons . Hx and . Hy illustrated in Fig. 2.13. In particular, 
we consider that . Gx shown in Fig. 2.12a (isomorphic with holon .Hx in Fig. 2.13) 
is hierarchical. Superstate . x1 illustrated in Fig. 2.13 is represented by a square 
dashed with north west lines. Note that superstate . T has internal structures. In this 
monograph, as illustrated in Fig. 2.10, such a superstate is represented by a square 
with round corners.
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Fig. 2.14 Holon . Hx1

Fig. 2.15 Monolithic dynamic structure of . GT (1) 

On the one hand, suppose that superstate . x1 is an .OR superstate, and its internal 
behavior is depicted by holon .Hx1 as shown in Fig. 2.14. Then, by plugging . Hx1

into superstate . x1 appeared in Fig. 2.13, we obtain the monolithic dynamic structure 
of . GT as illustrated in Fig. 2.15. The set of the holons describing the dynamics of 
. GT is denoted by .H T = {Hx,Hy,Hx1}. Holon .Hx1 shown in Fig. 2.14 is with 
internal and external structures, i.e., 

• .Xx1 is a nonempty state set structured as the disjoint union of the external state 
set .Xx1

E = {x0, x2} and internal state set .Xx1
I = {0, 1, 2, 3, 4}. Formally, . Xx1 =

X
x1
E ∪̇X

x1
I = {x0, x2, 0, 1, 2, 3, 4} with .X

x1
E ∩ X

x1
I = ∅; 

• .Σx1 is the event set, structured as the disjoint union of the boundary event set 
.Σ

x1
B and the internal event set .Σx1

I with .Σx1
B = {a, b} and .Σx1

I = {α, β, λ}. 
Formally, .Σx1 = Σ

x1
B ∪̇Σ

x1
I = {a, b, α, β, λ} with .Σ

x1
B ∩ Σ

x1
I = ∅; 

• there exist an incoming boundary transition .δx1
BI (x0, a) = 0 and an outgoing 

boundary transition .δ
x1
BO(4, b) = x2; 

• .X0 = {0} is the initial state set; 
• .Xm = {4} is the terminal state set.
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Fig. 2.16 Holons describing 
internal behavior of 
superstate . x1

Fig. 2.17 Monolithic dynamic structure of . GT (2) 

On the other hand, suppose that superstate . x1 shown in Fig. 2.13 is an . AND
superstate, and its internal behavior is depicted by holons .Hx11 and .Hx12 as shown 
in Fig. 2.16. Then, by plugging the holons into superstate . x1 in Fig. 2.13, we obtain 
the monolithic dynamic structure of . GT as illustrated in Fig. 2.17. The set of holons 
describing the dynamics of . GT is denoted by .H T = {Hx,Hy,Hx11 ,Hx12}. . □

Generally, for a holon . Hx , its external state set .Xx
E belongs to . Xy

I of holon . Hy

on the adjacent higher level. The occurrence of .σ ∈ Σx
B leads the system from . Hx

to .Hy or vice versa. We say that superstate x satisfies .x ∈ X
y
I , i.e., a lower level 

holon .Hx is considered as an internal state of . Hy . We require that . Σx
I ∩ Σ

y
I = ∅

should hold. In this monograph, for a holon with a nonempty external state set, say 
.Hx1 , its internal states are graphically dashed with crosshatch dots. 

Example Holon .Hx1 illustrated in Fig. 2.14 is with .Xx1
E = {x0, x2}. The state set 

of holon . Hx shown in Fig. 2.13 is .Hx = {x0, x1, x2}. Clearly, .Hx1 is viewed as an 
internal state of . Hx . Moreover, with event sets .Σx1

B = {a, b} and . Σx
I = {a, b, c}

assigned, we have that .Σx1
E ⊂ Σx

I and .Σ
x1
I ∩ Σx

I = ∅ hold. .□
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2.3.3 State-Trees 

Both the hierarchical and horizontal transition relations in an STS are described by 
a family of holons. The internal structure of a holon matches an .OR superstate x 
and its expansion, and the external structure of a holon connects its internal behavior 
with the exosystem (outside world) [5, 16] that is on the adjacent higher level. The 
global state space of a set of holons is represented by a state-tree that is hierarchical. 
Note that the holons with the same state space (and possibly different transition 
relations) match the same state-tree. 

Given a structured state set X, the  reflexive and transitive closure of . E is written 
as 

. E ∗ : X → 2X.

Consequently, given a superstate x, the  unfolding of .E (x) is denoted by 

. E +(x) = E ∗(x) − {x}.

Recursively, a state-tree is a four-tuple 

. ST = (X, x0,T ,E ),

where X is a finite state set with .X = E ∗(x0) and .x0 ∈ X is the root state. . ST =
(X, x0,T ,E ) is a state-tree satisfying: 

1. (terminal case) .X = {x0} represents that X contains only one simple state, or 
2. (recursive case) .(∀y ∈ E (x0))ST y = (E ∗(y), y,TE ∗(y), .EE ∗(y)) is also a state-

tree, where 

. (∀y, y' ∈ E (x0))(y /= y' ⇒ E ∗(y) ∩ E ∗(y') = ∅)

and 

. 
⋃̇

y∈E (x0)
E ∗(y) = E +(x0).

Example The holons shown in Fig. 2.15 match the state-tree .ST T depicted in 
Fig. 2.18. In a state-tree, the symbol . × (resp., . ∪̇) is placed between any two adjacent 
.AND (resp., . OR) components. In state-tree .ST T, we have  

• state collection: .XT = {T, x, y, x0, x1, x2, y0, y1, 0, 1, 2, 3, 4}, 
• type function: .T (T) = AND, 
• type functions: .T (x) = T (y) = T (x1) = OR, 
• type functions: . T (x0) = T (x2) = T (y0) = T (y1) = T (0) = T (1) =

T (2) = T (3) = T (4) = SIM, and
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Fig. 2.18 State-tree 
matching holons in Fig. 2.15 
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y0 y1 
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∪̇ ∪̇ ∪̇ 

∪̇ ∪̇ ∪̇ ∪̇ 

• expansion functions: 

– .E (T) = {x, y}, 
– .E (x) = {x0, x1, x2}, 
– .E (y) = {y0, y1}, 
– .E (x1) = {0, 1, 2, 3, 4}, 
– .E (x0) = ∅, 
– .E (x2) = ∅, 
– .E (y0) = ∅, 
– .E (y1) = ∅, 
– .E (0) = ∅, 
– .E (1) = ∅, 
– .E (2) = ∅, 
– .E (3) = ∅, and 
– .E (4) = ∅. 

For the state-tree .ST T depicted in Fig. 2.18, we have  

• .E ∗(T) = {T, x, y, x0, x1, x2, y0, y1, 0, 1, 2, 3, 4}, and 
• .E +(T) = {x, y, x0, x1, x2, y0, .y1, 0, 1, 2, 3, 4}. . □

Say that .ST y is a child-state-tree of . x0 in . ST , rooted by y. For convenience, if 
.y ∈ E +(x), we call y a descendant of x and x an ancestor of y, which is denoted 
by .x < y. States x and y are incomparable if x is neither the ancestor nor the 
descendant of y. An  .OR superstate y is .AND-adjacent to an .AND superstate x, 
denoted by .x <× y, if  

.x < y & T (x) = AND & [(∀z)x < z < y ⇒ T (z) = AND]. (2.17) 

State z is the nearest common ancestor (NCA) of x and y if 

.z < x & z < y & [¬(∃a ∈ E +(z))a < x & a < y]. (2.18)
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x 
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y0 y1∪̇ 
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Fig. 2.19 Child-state-trees. (a) .ST x . (b) .ST x1 . (c) . ST y1

Example For the state-tree .ST T depicted in Fig. 2.18, we have .T <× x0, .T <× y1, 
and the NCA of states 0 and . y1 is state . T. Moreover, as depicted in Fig. 2.19, for  the  
state-tree .ST T, we can obtain three child-state-trees .ST x , .ST x1 , and .ST y rooted by 
states x, . x1, and y, respectively. . □

A sub-state-tree is denoted by 

. subST = (Y, x0,T
',E ')

with .E ' : Y → 2Y defined for .y ∈ Y as 

.

{
E '(y) = E (y), if T '(y) /= OR

∅ ⊂ E '(y) ⊆ E (y), if T '(y) = OR
. (2.19) 

A well-formed state-tree is a basic-state-tree if any of its .OR superstates has 
exactly one expansion (or child). 

Example The state-tree illustrated in Fig. 2.20 is a sub-state-tree of .ST T depicted 
in Fig. 2.18 and it is also a basic-state-tree. . □

A state-tree is well-formed if 

• for any two states x and y, one of the following statements is satisfied: 

– .x ≤ y or .y ≤ x, or  
– . x|y, namely the NCA of incomparable states x and y is an .AND superstate, or 
– .x ⊕ y, namely the NCA of incomparable states x and y is an .OR superstate; 

• .(∀x, y ∈ X)T (x) = AND& y ∈ E (x) ⇒ T (x) /= SIM, i.e., .AND components 
cannot be simple states; and 

• all the leaf states are simple states.
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Fig. 2.20 A basic-state-tree 
of the state-tree in Fig. 2.18 
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Fig. 2.21 Superstate 
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Fig. 2.22 Matching state-tree and a sub-state-tree. (a) The matching tree. (b) A sub-state-tree 

Example The state-tree .ST T depicted in Fig. 2.18 is a well-formed state-tree. 
Moreover, suppose that an .AND superstate A is expanded by two .OR superstates x 
and y, i.e., .E (A) = {x, y}, and the superstate x is further expanded by two simple 
states . x1 and . x2, i.e., .E (x) = {x1, x2}. The global expansion relation structured 
in Fig. 2.21 can be represented by the state-tree .ST A illustrated in Fig. 2.22a. 
Figure 2.22b depicts a sub-state-tree of .ST A. Neither of them is well-formed if the 
child-state-tree rooted by superstate y is not well-formed. . □

In accordance with [15], the state aggregation bonded with a superstate x is 
denoted by .XA (x). Formally, 

.XA (x) :=
{

E (x), if T (x) = OR⋃
x<×y E (y), if T (x) = AND

. (2.20)
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Example For the state-tree .ST T depicted in Fig. 2.18, we have four state aggrega-
tions listed below: 

• .XA (T) = {x0, x1, x2, y0, y1}, 
• .XA (x) = {x0, x1, x2}, 
• .XA (y) = {y0, y1}, and 
• .XA (x1) = {0, 1, 2, 3, 4}. . □
Given a proper sub-state-tree .T = (Y, x0,T ',E '), with the full state-tree in mind, 
it can be equivalently represented by its leaf state set 

.V (T ) = {x ∈ Y |E '(x) = ∅}. (2.21) 

For simplification, the corresponding key leaf state set is defined below. 

. V (T ) :=
{

V (T ), if (�x)XA (x) ⊆ V (T )

V (T ) − ⋃
(∀x∈X)XA (x)⊆V (T ) XA (x), otherwise

(2.22) 

It shows that the key leaf states in .V (T ) only record the proper subsets of . OR
expansions. Given a state-tree and .V (T ), T can be restored. 

Example The key leaf state set of the basic-state-tree shown in Fig. 2.20 is denoted 
by .V (T ) = {y1, 1}. No matter what is the expansion of the .OR superstate y in the 
sub-state-tree depicted in Fig. 2.22b, .V (ST A) = {x2} is always true. . □

2.3.4 State-Tree Structures 

With holons and state-trees defined, now we are ready to present the definition of 
STS formally. An STS is a six-tuple 

. G = (ST ,H ,Σ,Δ,ST0,STm),

where 

• . ST is a state-tree, 
• . H is the set of holons, 
• . Σ is the union of events appearing in . H , 
• . Δ is the global forward transition function .S T (ST ) × Σ → S T (ST ), where 

.S T (ST ) is the set of all sub-state-trees, 
• .ST0 is the initial state-tree, and 
• .STm is the marker state-tree set.
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Example The holons shown in Fig. 2.15 and the matching state-tree .ST T depicted 
in Fig. 2.18 together form an STS with .V (ST T

0 ) = V (ST T
m) = {x0, y0}. . □

An STS . G is well-formed if it satisfies: 

• . ST is a well-formed state-tree; 
• the states in any holon . Hx are boundary consistency, i.e., state .y ∈ Xx

I satisfies 
.y ∈ E (x) and .y ∈ Xx

E satisfies .(∃z, ∃w ∈ X)z <× w & x, y ∈ E (w); and 
• the states in any holon are local coupling, i.e., for holons .Hx,Hy ∈ H , they  

satisfy 

. Σx
I ∩ Σ

y
I /= ∅ ⇒ (∃z)z <× x & z <× y.

The boundary consistency requires that the boundary transitions in a holon should 
not skip holon levels. The local coupling requires that only the holons that have 
an .AND superstate as the NCA of their matching superstates should share events. 
Hence, this NCA superstate is viewed as the synchronous product of these holons. 
Unless otherwise stated, in this monograph, the STS under analysis are well-formed. 

The synchronous product principle (the shared event . σ occurring in local 
coupling holons simultaneously) [17] is integrated in the largest eligible state-tree 
and largest next state-tree, denoted by 

. EligG : Σ → S T (ST )

and 

. NextG : Σ → S T (ST ),

respectively. The key leaf states of .EligG(σ ) and .NextG(σ ) are the exits and 
entrances of event . σ in all the holons where it appears, respectively. As stated 
before, the forward transitions are defined as 

. Δ : S T (ST ) × Σ → S T (ST ).

Given any sub-state-tree .T ∈ S T (ST ), .T ' = Δ(T , σ ) is obtained via replacing the 
source states of . σ in .T ∧ EligG by the corresponding target states simultaneously. 
The backward transitions are defined as 

. Γ : S T (ST ) × Σ → S T (ST )

in a dual route. 

Example For all the events . σ appearing in the holons shown in Fig. 2.15, . EligG(σ )

and .NextG(σ ) are depicted in Figs. 2.23 and 2.24, respectively. Moreover, all the 
corresponding key leaf state sets are listed in Table 2.1.
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Fig. 2.23 .EligG(σ ) for .σ ∈ Σ . (a) .EligG(a). (b) .EligG(b). (c) .EligG(c). (d) .EligG(α). (e) 
.EligG(β). (f) . EligG(λ)

We have .ST0 ∈ S T (ST ) and .a ∈ Σ . Moreover, we obtain 

. ST0 ∧ EligG(a) /= ∅

and 

.Δ(ST0, a) = ST1
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Fig. 2.24 .NextG(σ ) for .σ ∈ Σ . (a) .NextG(a). (b) .NextG(b). (c) .NextG(c). (d) .NextG(α). (e) 
.NextG(β). (f) . NextG(λ)

Table 2.1 .EligG(σ ) and 
. NextG(σ )

Event .σ .EligG(σ ) . NextG(σ )

a .{x0} . {0}
b .{4} . {x2}
c .{x2} . {x0}
.α .{0, 2} . {1, 3}
.β .{2, 3} . {4}
.λ .{0, 1} .{2, 4}
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Table 2.2 Enabled events at 
each sub-state-tree in . ST

Sub-state-tree Key leaf states Enabled event set 

.ST0 .{x0} . {a}

.ST1 .{0} . {α, λ}

.ST2 .{1} . {λ}

.ST3 .{2} . {α, β}

.ST4 .{3} . {β}

.ST5 .{4} . {b}

.ST6 .{x2} . {c}

Fig. 2.25 Initial state-tree T 

x 

x0 

y 

y0 

× 

that is .NextG(a) shown in Fig. 2.24a. For all the other events .σ ∈ Σ −{a}, we have  

. T ∧ EligG(σ ) = ∅

and 

. Δ(ST0, σ ) = ∅.

We say that at state-tree . ST0, event a is enabled. By repeating this process iteratively, 
we obtain all the individual sub-state-trees in . ST and the corresponding enabled 
event sets, which are listed in Table 2.2. The computation of the total function . Γ is 
started from .STm in an opposite way. The details are omitted. . □

Given an HFSM, there always exists an equivalent single level DES representing 
its global behavior [1, 10, 11]. Similarly, given an STS, the set of its basic-state-
trees is denoted by .B(ST ), in which an element T corresponds to a state in a single 
level DES representing its global behavior. The presented transition relations . Δ or . Γ
maps an element .T ∈ B(ST ) to another. In this monograph, these basic-state-trees 
are symbolically encoded into predicates that are represented by binary decision 
diagrams (BDD). 

Example For the STS shown in Figs. 2.15 and 2.18, its initial state-tree being a 
basic-state-tree is depicted in Fig. 2.25. Suppose that there exists an equivalent 
single level DES with its initial state representing this initial state-tree. Clearly, such 
a DES can be built by tracking the transition relations in the STS. .□
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2.3.5 Predicates 

Given an STS . G, the components of .B(ST ) are symbolically encoded into pred-
icates that are represented by BDD. Intuitively, a predicate P (or a characteristic 
function) is defined over .B(ST ), i.e., 

. P : B(ST ) → {0, 1}.

The truth-value 1 (resp., 0) represents logical true (resp., false). The predicate 
containing all the basic-state-trees is denoted by a predicate 

. PST := {b ∈ B(ST )|P(b) = 1}.

Formally, 

. P(b) = 1

is represented by 

. b |= P.

Propositional logic operators are defined by: 

• .(¬P)(b) = 1 iff .P(b) = 0, 
• .(P1 ∧ P2)(b) = 1 iff .P1(b) = 1 and .P2(b) = 1, and 
• .(P1 ∨ P2)(b) = 1 iff .P1(b) = 1 or .P2(b) = 1. 

Example The initial state-tree .ST0 and the marker state-tree set .STm are represented 
by two predicates 

. P0 := {b ∈ B(ST0)|P(b) = 1}

and 

. Pm := {b ∈ B(STm)|P(b) = 1},

respectively. The predicate containing all the basic-state-trees is denoted by a 
predicate 

.PST := {b|b ∈ B(ST )|P(b) = 1}. . □
The set of all predicates on .B(ST ) is defined by .Pred(ST ). The partial order 

for subset containment is defined by .P1 ≼ P2 iff .P1 ∧ P2 = P1. It is clear that . P1
is stronger than . P2 and .(P red(ST ),≼) is a complete lattice. The top and bottom 
elements of a predicate are denoted as true (. ⏉) and false (. ⊥), respectively.
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Fig. 2.26 Predicate 
containment 

P0 Pm 
PST 

Example By definition, we have .P0 ≼ PST and .Pm ≼ PST . As shown in Fig. 2.26, 
.PST is the weakest predicate which is identified by all the basic-state-trees in 
.B(ST ). . □

Let .P ∈ Pred(ST ). According to [10] and [11], the reachability predicate 
.R(G, P ) is true for a basic-state-tree if it can be reached in . G, from some . b0 |=
P ∧ P0, via a sequence of basic-state-trees satisfying P . Formally, 

• .P ∧ P0 = ⊥ ⇒ R(G, P ) = ⊥, 
• .(b0 |= P ∧ P0) ⇒ (b0 |= R(G, P )), 
• . b |= R(G, P ) & σ ∈ Σ & Δ(b, σ ) /= ∅ & Δ(b, σ ) |= P ⇒ Δ(b, σ ) |=

R(G, P ), and 
• no other basic-state-trees satisfy .R(G, P ). 

Dually, the coreachability predicate .CR(G, P ) is true for a basic-state-tree if it can 
reach some .bm |= P ∧ Pm in . G by a sequence of basic-state-trees satisfying P . 
Formally, 

• .P ∧ Pm = ⊥ ⇒ CR(G, P ) = ⊥, 
• .(bm |= P ∧ Pm) ⇒ (bm |= CR(G, P )), 
• . b |= CR(G, P ) & σ ∈ Σ & Γ (b, σ ) /= ∅ & Γ (b, σ ) |= P ⇒ Γ (b, σ ) |=

CR(G, P ), and 
• no other basic-state-trees satisfy .CR(G, P ). 

Given a predicate P , a predicate transformer .[P ] in . G is defined by 

1. .b |= P ⇒ b |= [P ], 
2. .b |= P & σ ∈ Σu ⇒ Γ (b, σ ) |= [P ], and 
3. no other basic-state-trees satisfy . [P ]. 

2.3.6 State Feedback Control 

Nonblocking supervisory control of STS utilizes predicates to record the system’s 
behavior. The weakest liberal precondition .Mσ (P ) is defined in [10] and [11] as  

.b |= Mσ (P )
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iff 

. Δ(b, σ ) |= P.

Let . G be an STS, .T ∈ B(ST ), and .σ ∈ Σ . In STS  [10, 11], according to state 
feedback control (SFBC), the act of preventing the occurrence of an uncontrollable 
event . σ at T is denoted by .(T , σ ), where sub-state-tree T is considered as an illegal 
sub-state-tree. By integrating all such sub-state-trees with user predefined other 
illegal sub-state-trees, an illegal predicate is obtained. 

Given an illegal predicate P , a  predicate transformer . [·] is utilized to find all the 
basic-state-trees that can reach P through uncontrollable paths. As a consequence, 
the family of weakly controllable subpredicates of P is denoted by 

.supC P(¬P) = ¬[P ]. (2.23) 

Given an illegal predicate P , by SFBC, the supremal element of weakly 
controllable and coreachable behavior, i.e., optimal behavior of . G, is denoted 
by a nonblocking subpredicate .supC 2P(¬P). It is synthesized iteratively by the 
following steps: 

1. Let .K0 := ¬P , 
2. compute .Ki+1 := ¬P ∧ CR(G,¬[Ki]), and 
3. If .Ki+1 = Ki , then .supC 2P(¬P) = Ki ; otherwise, go back to step 2. 

The corresponding calculation is detailed in [10] and [11], based on which the 
control function . fσ for each controllable event .σ ∈ Σc is obtained. Function . fσ is 
represented by a predicate, which contains all the basic-state-trees where event . σ is 
allowed to occur. Let 

. f : B(ST ) → Π

denote the SFBC for . G, where 

.Π := {Σ ' ⊆ Σ |Σu ⊆ Σ '}. (2.24) 

Hence, the closed-loop transition function is represented by 

. Δf (b, σ ) = Δ(b, σ )

iff 

. fσ (b) = 1.

Let 

.P ∈ Pred(ST )
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and .P ∧ P0 /= ⊥. The STS under control is 

. Gf = (ST ,H ,Σ,Δf , P
f

0 , P
f
m )

with 

. P
f

0 = P ∧ P0

and 

. P
f
m = P ∧ Pm.

As shown in Fig. 2.27, given a specification predicate P , the optimal behavior of 
STS . G is represented by .supC 2P(P ) that is viewed as an agent .Gtracker . For  the  
current status (a basic-state-tree b) of  . G, a set of  decision makers . fσi

is provided 
by .Gtracker with .σi ∈ Σcon and .i = 1, 2, . . . , n, which makes the decisions by 
applying b as the argument. If 

. fσi
(b) = 1,

then . σi is allowed to occur; otherwise, it is disabled. 

Example As stated in [10] and [11], let us take the transfer line shown in Fig. 2.28 
as an example. Suppose that the capacities of the buffers . B1 and . B2 are both one. 
A test unit is represented by TU. As depicted in Fig. 2.29, the system behavior of 
machines . M1 and . M2 are described by two holons. The corresponding state-tree is 
shown in Fig. 2.30. The events denoted by odd and even numbers are controllable 
and uncontrollable events, respectively. For nonblocking supervisory control, the 
controllers with positive BDD node sizes are shown in Fig. 2.31 in which only the 
BDD true parts are depicted to clearly show the control logic. 

The control patterns for the controllable events are: 

• event 1 is enabled at: {. B10, . B20, .M10, .TU0}, 

Fig. 2.27 STS control 
diagram 

G 

Gtracker  

fσ2fσ1 
. . .  fσn 

Σ 

b 

Enabled events 

s
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M1 B1 M2 B2 TU 
1 2 3 4 5 6 

8 

Fig. 2.28 Transfer line 
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Fig. 2.29 Holons of transfer line 
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Fig. 2.30 State-tree of transfer line 

• event 3 is enabled at: {. B11}, and 
• event 5 is enabled at: {. B21}. 

The control patterns show that: 

• event 1 is allowed to occur only when machine . M2 is idle, 
• event 3 is allowed to occur only when buffer . B1 is occupied, and 
• event 5 is allowed to occur only when buffer . B2 is occupied. . □

2.3.7 Compact Representation of Predicates 

In the STS framework, the predicates of an STS are encoded into BDD. Given 
an STS, its BDD variables are ordered in a top-down approach according to the 
subordination relation among STS nests. According to STS [10], we require that: 

• the encoding for each transition labelled event . σ should be linear in the number 
of transitions, and
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Fig. 2.31 Control functions 
for transfer line. (a) . f1. (b) 
. f3. (c) . f5
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Table 2.3 BDD vectors 
encoding states 

State BDD vector 

.M10 . < M1 : 0 >

.M11 . < M1 : 1 >

.M20 . < M2 : 0 >

.M21 . < M2 : 1 >

.T U0 . < T U : 0 >

.T U1 . < T U : 1 >

.B10 . < B1 : 0 >

.B11 . < B1 : 1 >

.B20 . < B2 : 0 >

.B21 . < B2 : 1 >

• in the case that holon . Hy is subordinate to holon . Hx , the BDD variables of . Hx

should precede those of holon . Hy . 

The computational complexity of supervisor synthesis is polynomial in the number 
of BDD nodes in use. Usually, it is much smaller than the states of an STS. 

As proposed in [3] and [4], the states in the state set . Xx of a holon .Hx are 
encoded by BDD nodes (variables). Consider a state set .Xx with a state space 
.|Xx | = N . Each element y in . Xx is encoded as a vector of n binary values, where 
.n = ⎾log2 N⏋. The encoding process is denoted by a function . f : Xx → {0, 1}n
that maps each element y in . Xx to a distinct n-bit binary vector. According to [10], 
the n variables are denoted by .x_i with .0 ≤ i < n. 

Example As  shown in Fig. 2.29, there are two states in holon .HM1, i.e., . XM1 =
{M10,M11}. As a consequence, one BDD node M1 is required. For example, let 
.M1 : 0 and .M1 : 1 denote that M1 is encoded as 0 and 1, respectively. The encoding 
pairs for the states in the transfer line example are shown in Table 2.3. 

The control functions of events 1, 3, and 5 are denoted by . f1, . f3, and . f5, 
respectively. The truth table for these control functions is obtained, as shown in 
Table 2.4, where “. ∗” denotes a variable that can be assigned 0 or 1. .□
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Table 2.4 Truth table of 
control functions 

Control functions M1 M2 T U  B1 B2 

.f1 .∗ 1 1 1 1 

.f3 .∗ .∗ .∗ 1 . ∗

.f5 .∗ .∗ .∗ .∗ 1 

2.4 Real-Time Scheduling/Reconfiguration Based on 
Supervisory Control 

In Chap. 4, supervisory control of TDES is implemented in the non-preemptive 
scheduling of RTS processing two types of tasks: resource-sharing tasks or indepen-
dent tasks. The TDES framework is utilized to model each RTS task as a monolithic 
TTG. For the purpose of reconfiguring independent tasks, a multi-period periodic 
task model is proposed in Chap. 4, which provides a set of possible periods varying 
between a lower bound and an upper bound. The default period for an independent 
task is the shortest one. In the case that an RTS is non-schedulable, based on NSC, 
the multi-period is used to reconfigure the RTS automatically. A uni-processor RTS’ 
execution model is the synchronous product of all the tasks running in it. For both 
scheduling and reconfiguration, supervisory control of TDES is utilized to find all 
the safe execution sequences. 

Thereafter, RTS processing independent tasks are modelled by DES frameworks 
monolithically (Chap. 5) and modularly (Chap. 6). The latter also provides the 
DES version multi-periods. Priorities in real-time scheduling are generalized as 
priority-free conditional-preemption (PFCP, presented in Chap. 5) relations. Based 
on SCT, for real-time scheduling and reconfiguration, all the possible safe execution 
sequences are found. 

Finally, in Chap. 7, an RTS processing independent tasks is modelled in an 
STS hierarchically. By assigning specifications for the STS model, the PFCP and 
a classical dynamic scheduling earliest-deadline first (EDF) scheme, proposed in 
[9], are addressed. Finally, the RTS can be scheduled or reconfigured according 
to the computed controllers for the controllable events. In particular, with the 
dynamic specifications assigned, a few sequences are selected, which rank at the 
top according to some specified (dynamic) optimality criteria. 
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Chapter 3 
Real-Time Scheduling and 
Reconfiguration 

3.1 Real-Time Systems 

In this monograph, a real-time system (RTS) is denoted by . S. We assume that a 
set of n RTS tasks processed by a uni-processor RTS is represented by a task set 
.S = {τ1, τ2, . . . , τi , . . . , τn}. In accordance with [3], we refer to task instantiations 
as task release and to the respective instances as a job. Let  .i ∈ n := {1, 2, . . . , n}. 
Each task . τi is of a specific type that determines the mechanism of its release. On the 
basis of [23–26], this monograph addresses the task types non-repetitive, sporadic, 
and periodic. Depending on its type, a task refers to a parameter tuple that specifies 
the quantitative timing of its instantiation, the processing time required for each 
job, and a deadline that the job completion must satisfy. We first go through the 
parameters relevant to all types under consideration and then turn our attention to 
the individual types. 

First-release time . Ri . By the optional parameter .Ri ∈ N, we specify the absolute 
clock time at which the task . τi is first released. When not explicitly given, the first 
release can occur at any time. 

Execution time . Ci . Once the task . τi is released, the processing unit needs to be 
allocated to the respective job for a particular number time units in order for the job 
to be completed. As stated in Chap. 6, generally, the exact execution time of an RTS 
task is considered unknown but is guaranteed to be within the non-empty integer 
interval 

. Ci = [Cl
i , C

u
i ] ∈ N × N,

where . Cl
i and . Cu

i are referred to as the best-case execution time (BCET) and the 
worst-case execution time (WCET), respectively. Clearly, this includes the special 
case of .Cl

i = Cu
i where the exact amount of time units is a known constant. In 
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this case, in Chaps. 4, 5, and 7, the execution time of task . τi is denoted by . Ci , i.e., 
.Ci = Cl

i = Cu
i . 

Relative deadline . Di . Referring to the absolute clock time at which a task . τi is 
instantiated as the release time, the  relative deadline .Di ∈ N is given as the 
maximum number of time units that may elapse from the release time until the 
respective job is completed. Throughout this monograph, we only consider hard 
deadlines, i.e., deadlines which must be kept unconditionally. 

Period . Ti . The basic case for a periodic task . τi is parameterized by a strict period 
(the time interval between two successive arrivals) of .Ti ∈ N time units between 
any two successive releases. This is addressed by the classical real-time scheduling 
theory with deadline .Di = Ti (see [15]) and deadlines .Di ≤ Ti (see [18]). In 
Chaps. 4 and 7, considering the dynamic reconfiguration in the modelling phase, we 
use the generalization of the so called multi-period periodic tasks, i.e., the period is 
specified by a non-empty interval 

. Ti = [T l
i , T u

i ] ∈ N × N,

where the number of time units that elapses between any two successive releases 
lies within . Ti . 

Periodic tasks. Given any periodic task . τi , its deadline .Di ≤ T l
i guarantees job 

completion before the next release. We consider multi-period periodic tasks as a 
general case. For deadline .Di ∈ (T l

i , T u
i ], we impose the additional assumption that 

the task can arrive only when the previously instantiated job is completed. Deadlines 
.Di > T u

i are of no practical value and, hence, are not considered. Obviously, as 
studied in Chap. 4, our discussion includes strict periods by .Ti = T l

i = T u
i as a 

special case and, hence, we from now on use the terminology periodic task as a 
concise synonym for multi-period periodic task and we refer to . Ti as its period. 

Sporadic tasks. A sporadic task . τi can be released at any time, provided that the 
job from the previous instantiation is completed, i.e., we do not consider queueing. 
Typical use cases are low-priority background operations like garbage collection. 
Parameters for this type are given as either 

. τi = (Ci , Di)

or 

. τi = (Ci ),

i.e., the deadline is optional. In contrast to non-repetitive tasks, we here implicitly 
refer to the first-release time .Ri = 0. Again, the absence of a deadline may lead 
to an unboundedly postponed execution. Based on supervisory control theory, the 
presented scheduling policies ensure eventual job completion.
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Non-repetitive tasks. Similar to sporadic tasks, a non-repetitive task can be released 
at any time. A non-repetitive task arrives only once, and hence it is viewed as a 
special case of a sporadic task. 

We conclude by a summary of the task configurations that are addressed 
throughout this monograph: 

• sporadic or non-repetitive task without a deadline: .τi = (Ci ), 
• sporadic or non-repetitive task with a deadline: .τi = (Ci , Di), and 
• periodic tasks with a deadline: .τi = (Ri,Ci , Di,Ti ). 

Notice that in the case of .Ci = Cl
i = Cu

i or .Ti = T l
i = T u

i , . Ci and . Ti are 
replaced by . Ci and . Ti , respectively. Formally, a periodic task . τi consists of an 
infinite sequence of jobs 

. Ji,j = (ri,j , Ci, di,j , pi,j )

repeated periodically. The subscript “. i, j” of  .Ji,j with .i, j ∈ N represents the j -th 
execution of task . τi . For each j , .Ji,j requests the processor at absolute clock time 
. ri,j . The  absolute deadline . di,j denotes the global clock time at which the execution 
of .Ji,j must be completed. Similarly, we define the absolute release time (resp., 
period) . ri,j (resp., . pi,j ) to mean the global clock time at which . τi must be released 
(resp., start the next period). The execution of .Ji,j takes . Ci time units, which must 
be completed no later than . di,j . The absolute deadline .di,j occurs no later than the 
absolute period . pi,j . 

In order to introduce the classical real-time scheduling and reconfiguration 
policies, the examples in this chapter are in the case of .Ci = Cl

i = Cu
i and 

.Ti = T l
i = T u

i . Hence, such a periodic task with deadline is denoted by 

. τi = (Ri, Ci,Di, Ti).

Suppose that an RTS . S is a uni-processor system. The processor utilization of a 
periodic task . τi is the fraction of processor time spent on its execution [15], i.e., 

.Ui = Ci

Ti

. (3.1) 

The total processor utilization of . S is 

.US =
n∑

i=1

Ui. (3.2) 

A processor is non-schedulable in the case that there is overload [20], i.e., . US >

1. 

Example Suppose that a uni-processor RTS . S executes four synchronous periodic 
tasks . τ1, . τ2, . τ3, and . τ4. Their parameters are shown in Table 3.1. .□
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In past decades, most of the existing real-time scheduling algorithms are based 
on dynamic or fixed priorities [2, 7–9, 11–15, 17, 20, 27]. Leaving out the assigned 
scheduling policies, when real-time tasks are under execution, the processing of 
each individual job (belonging to a real-time task) falls into the following two 
categories: 

• preemptive: a running job can be interrupted by the execution of other jobs, and 
• non-preemptive: the execution of a running job cannot be interrupted. 

3.2 Fixed Priority Scheduling 

The studies in both [9] and [15] provide a sufficient utilization-based condition for 
feasibility scheduling of RTS when a set of tasks is assigned priorities according to a 
rate-monotonic (RM) policy. The work in [12] considers deadline monotonic (DM) 
scheduling, a fixed-priority scheduling of sets of tasks, which may have deadlines 
less than their periods. A DM policy assigns higher priorities to the tasks with 
shorter deadlines. 

We choose a classical fixed priority scheduling algorithm, RM scheduling, to 
show the main idea of the scheduling policy. RM scheduling requires that the 
deadline of any task should be equal to its period. By RM, the task with a short 
period is assigned with the highest priority. Hence, the priorities of the tasks shown 
in Table 3.1 are provided in Table 3.2, in which the highest priority is labelled by 1 
and the lowest priority is labelled by 4. 

Example For the example shown in Table 3.1, by revising the deadlines to be equal 
to the periods, a preemptive uni-processor real-time RM scheduling is shown in the 
Gantt chart depicted in Fig. 3.1 (simulated by scheduling simulator Cheddar1 [22]). 
According to the assigned priority, we have: 

• in time interval .[0, 15), the tasks are processed in the order of . τ4, . τ1, . τ2, and . τ3; 

Table 3.1 Parameters of four 
synchronous tasks 

Task .Ri .Ci .Di . Ti

.τ1 0 4 12 20 

.τ2 0 5 16 25 

.τ3 0 5 18 30 

.τ4 0 4 9 15 

Table 3.2 Priorities of tasks Task Priority 

.τ1 2 

.τ2 3 

.τ3 4 

.τ4 1

1 http://beru.univ-brest.fr/cheddar/. 

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
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• at time .t = 15, the second job of task . τ4, denoted by . J4,2, arrives, which is 
assigned with the highest priority; 

• in time interval .[15, 19), the execution of the first job of task . τ3, denoted by . J3,1, 
is preempted by job . J4,2; 

• at time .t = 19, the execution of .J4,2 completes and its next job .J4,3 has not 
arrived. Now task . τ3 has the highest priority among all the available tasks. It 
enters the processor for execution again; 

• in time interval .[20, 24), job .J3,1 is preempted by . J1,2; 
• in time interval .[25, 30), job .J3,1 is preempted by . J2,2; 
• in time interval .[30, 34), job .J3,1 is preempted by . J4,3; 
• in time intervals .[19, 20), .[24, 25), and .[34, 35), job .J3,1 is under execution; 
• at time .t = 35, the execution of job .J3,1 completes, which misses its deadline 

.d3,1 = 30. 

We  say that  the task set  shown in Table  3.1 is non-schedulable, in which the 
execution of the job missing its deadline is coloured brown. The Gantt charts in 
this monograph describing RTS scheduling follow the display interface of Cheddar. 

In comparison, as depicted in Fig. 3.2, under the RM scheduling with non-
preemptive scheme, the tasks shown in Table 3.1 are schedulable. For example, at 
time .t = 15, even though task . τ4 has a higher priority than task . τ3, the execution of 
the latter is not preempted. Then the execution of task . τ3 completes at time .t = 18, 
which does not miss its deadline. 

According to the work in [2], if a synchronous RTS is feasible, then, any derived 
asynchronous RTS is feasible too. In this case, for any asynchronous system, we 
can study its schedulability by analyzing the schedulability of its synchronous 
counterpart. However, it is not true on the other way round. As shown in Figs. 3.3 
and 3.4, if we reset .R4 = 6, by RM scheduling, the real-time tasks are schedulable 
with both preemptive and non-preemptive schemes. . □

3.3 Dynamic Priority Scheduling 

In [8], the author shows that, among all preemptive scheduling algorithms, the 
earliest deadline first (EDF) scheduling policy is optimal. If there exists a feasible 
scheduling for a task set, then the scheduling produced by EDF is also feasible. 
Under EDF scheduling, the analysis of periodic tasks with deadlines less than 
periods is proposed in [2]. Least laxity first (LLF), as another optimal algorithm, 
is proposed by Mok in [17], which assigns the processor to the active tasks with 
the smallest laxity. However, LLF has a larger overhead than EDF due to a larger 
number of context switches caused by laxity changes at run time.
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Fig. 3.3 RM scheduling of an asynchronous task set with a preemptive scheme 

Fig. 3.4 RM scheduling of an asynchronous task set with a non-preemptive scheme 

3.3.1 Earliest Deadline First Scheduling 

EDF is a dynamic scheduling policy, where in any time unit, the tasks with the 
earliest deadlines have the highest dynamic priorities [15]. The EDF scheduling 
algorithm assigns the priority of a job based on the absolute deadlines: at each time 
unit, the job with the highest priority enters the processor. If the execution of a job is 
allowed to be preempted by other jobs before its execution finishes, the scheduling 
is preemptive; otherwise, it is non-preemptive. 

Example Consider the four synchronous tasks shown in Table 3.1. The preemptive 
EDF scheduling result is depicted in Fig. 3.5. According to EDF scheduling scheme, 
we have: 

• in time interval .[0, 15), the tasks are processed in the order of . τ4, . τ1, . τ2, and . τ3; 
• at time .t = 15, the second job of task . τ4, denoted by . J4,2, arrives, and its deadline 

is equal to .d4,2 = 15 + 9 = 24 which is later than . J3,1’s deadline .d3,1 = 18. 
Hence, . τ3 has the highest priority; 

• in time interval .[15, 18), job .J3,1 continues its execution; 
• at time .t = 18, after the execution of job .J3,1 completes, the second job of task 

. τ4, denoted by job . J4,2, enters the processor for execution; 
• at time .t = 20, when job .J1,2 is released, its deadline .d1,2 = 20 + 12 = 32 is 

later than .d4,2 = 24. Hence, the execution of job .J1,2 cannot preempt job . J4,2
until its execution completes; 

• in time interval .[18, 22), job .J4,2 is under execution; 
• at time .t = 22, after the execution of job .J4,2 completes, job .J1,2 enters the 

processor for execution;
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• at time .t = 25, when job .J2,2 is released, its deadline .d2,2 = 25 + 16 = 41 is 
later than .d1,2 = 32. Hence, the execution of job .J2,2 cannot preempt job . J1,2
until its execution completes; 

• in time interval .[22, 26), job .J1,2 is under execution; 
• in time interval .[26, 30), job .J2,2 is under execution; 
• in particular, at time .t = 30, job .J2,2 is still under execution at the arrival of jobs 

.J3,2 and . J4,3. We have .d2,2 = 41, .d3,2 = 30+18 = 48, and . d4,3 = 15×2+9 =
39. Clearly, job .J4,3 has the highest priority. Hence, the execution of job .J2,2 is 
preempted by job . J4,3; 

• in time interval .[30, 34), job .J4,3 is under execution; 
• at time .t = 34, we have .d2,2 = 41 and .d3,2 = 48. Clearly, job .J2,2 has the highest 

priority. Hence, the execution of job .J2,2 continues in time interval .[34, 35); 
• at time .t = 35, after the execution of job .J2,2 completes, job .J3,2 enters the 

processor for execution; 
• in time interval .[35, 40), job .J3,2 is under execution; 
• at time .t = 40, job  .J1,3 has the highest priority since no other jobs are under 

execution or preempted; 
• in time interval .[40, 44), job .J1,3 is under execution. 

In comparison, the non-preemptive EDF scheduling result is depicted in Fig. 3.6. 
At time .t = 30, the execution of job .J2,2 cannot be preempted by job . J4,3. Job  
.J4,3 can only enter the processor by time .t = 31 at which the execution of job 
.J2,2 completes. By EDF scheduling, the real-time tasks are schedulable with both 
preemptive and non-preemptive schemes. 

Suppose .R4 = 6. The EDF scheduling of the four tasks under preemptive and 
non-preemptive schemes is depicted in Figs. 3.7 and 3.8, respectively. By EDF 
scheduling, the real-time tasks are schedulable with both preemptive and non-
preemptive schemes. . □

3.3.2 Least Laxity First Scheduling 

Mok presented another optimal algorithm least laxity first (LLF) in [17], which 
assigns the processor to the active task with the smallest laxity. The laxity of a job 
is the difference between its absolute deadline and the remaining time units needed 
for finishing its execution. 

Example For the same example shown in Table 3.1, between .t = 0 and .t = 18, 
we provide the laxity of each task in Table 3.3, in which the laxity is denoted by 
a number, and “exe” represents that, in the following time unit, the corresponding 
task is under execution. For example, at time .t = 0, tasks . τ1, . τ2, . τ3, and . τ4 are 
released synchronously with laxity of .12 − 4 = 8, .16 − 5 = 11, .18 − 5 = 13, and 
.9 − 4 = 5, respectively. Hence, task . τ4 has the least laxity and enters the processor 
for execution. At .t = 5, the execution of . τ4 completes. It is not an active task until
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Fig. 3.7 EDF scheduling of an asynchronous task set with preemptive scheme 

Fig. 3.8 EDF scheduling of an asynchronous task set with a non-preemptive scheme 

Table 3.3 Laxity of four synchronous tasks 

Time units 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

.τ1 8 7 6 5 5 4 4 4 – – – – – – – – – – – 

.τ2 11 10 9 8 7 6 5 4 3 3 3 3 2 2 1 – – – – 

.τ3 13 12 11 10 9 8 7 6 5 4 3 2 2 1 1 0 0 0 – 

.τ4 5 5 5 5 4 – – – – – – – – – – 5 4 3 2 

exe .τ4 .τ4 .τ4 .τ1 .τ4 .τ1 .τ1 .τ1 .τ2 .τ2 .τ2 .τ3 .τ2 .τ3 .τ2 .τ3 .τ3 .τ3 . τ4

Fig. 3.9 LLF scheduling of a synchronous task set with a preemptive scheme 

the next job releases. As a result, it is not under consideration, denoted by “–” in 
Table 3.3. Finally, the real-time LLF scheduling under preemptive scheme is shown 
in Fig. 3.9. Note that at time .t = 3, .t = 7, .t = 10, .t = 12, and .t = 14, there is 
more than one task that has the least laxity. It is clear that we can assign the highest 
priority to any of them. Obviously, Fig. 3.9 only provides one of many schedulable 
sequences. If we keep tracking the scheduling sequence, we find that some task 
deadlines will be missed. Hence, the task set is not schedulable. 

Suppose .R4 = 6. We provide the laxity of each task in Table 3.4. Due to the 
same approach, their laxities between .t = 0 and .t = 18 are given in Table 3.3, and 
the corresponding LLF scheduling is depicted in Fig. 3.10. Note that at time .t = 3,
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Table 3.4 Laxity of four asynchronous tasks 

Time units 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

.τ1 8 8 8 8 – – – – – – – – – – – – – – – 

.τ2 11 10 9 8 7 7 7 6 5 5 4 3 3 2 1 – – – – 

.τ3 13 12 11 10 9 8 7 6 5 4 4 3 2 2 1 0 0 0 – 

.τ4 – – – – – – 5 5 5 4 3 3 2 1 – – – – – 

exe .τ1 .τ1 .τ1 .τ1 .τ2 .τ2 .τ4 .τ4 .τ2 .τ3 .τ4 .τ2 .τ3 .τ4 .τ2 .τ3 .τ3 .τ3 – 

Fig. 3.10 LLF scheduling of an asynchronous task set with a preemptive scheme 

.t = 6, .t = 7, .t = 8, .t = 10, .t = 11, .t = 12, and .t = 13, there is more than one task 
that has the least laxity. It is clear that we can assign the highest priority to any of 
them. Obviously, Fig. 3.10 only provides one of many schedulable sequences. The 
real-time tasks are schedulable. . □

The non-preemptive LLF scheduling and the EDF scheduling of either the 
synchronous task set or the asynchronous task set are identical, as depicted in 
Figs. 3.6 and 3.8, respectively. Although both LLF and EDF are optimal algorithms, 
LLF has a larger overhead due to a larger number of context switches caused by 
laxity changes at run time. 

3.4 Elastic Period Model for Reconfiguration 

Real-time reconfigurations are of critical importance to RTS. A reconfiguration 
scenario can be the addition/removal/update of the tasks at run-time in order to save 
the whole system when random disturbances occur. There has been a fair amount 
of significant research from academia and industry [10, 19, 21, 28, 29] for real-
time reconfiguration, which are based on fixed or dynamic priority-based scheduling 
with preemptive/non-preemptive schemes. In principle, two sets of reconfiguration 
scenarios can be identified: 

• static reconfiguration scenario applied offline before any system’s cold start [1], 
and 

• dynamic reconfiguration scenario applied at run-time [30]. 

As a dynamic reconfiguration scenario, the elastic period task model is proposed 
in [4–6, 16] to handle the overload of an RTS by decreasing its task processor
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Table 3.5 Parameters of four 
synchronous tasks 

Task .Ri .Ci .Di . Ti

.τ1 0 4 12 [20, 25] 

.τ2 0 5 16 [25, 30] 

.τ3 0 5 18 [30, 35] 

.τ4 0 4 9 [15, 20] 

0 5 10 15 20 25 

T1 = 20 

T1 = 21 

T1 = 22 

T1 = 23 

T1 = 24 

T1 = 25 

T l 
1 Tu 

1 

Fig. 3.11 Task . τ1 with an elastic period 

utilization. The main idea is to consider the period of each task running in the RTS 
as a spring with a given rigidity coefficient and length constraints. To reconfigure 
each task is to modify its period, so that its processor utilization can be changed 
within a specified range. Hence, the proposed model can be used to handle overload 
situations in a flexible way. 

Example While new tasks arrive, instead of rejecting them, we can remodel the 
tasks listed in Table 3.1 by assigning periods with upper bounds. Now the tasks in 
Table 3.1 are reconfigured to be elastic period tasks. Their parameters are listed in 
Table 3.5, in which .Ti = [T l

i , T u
i ] indicates a lower bound . T l

i and an upper bound 
. T u

i . In particular, . T
l
i is identical with . Ti in Table 3.1. Without considering the exact 

execution time of task . τ1, we depict its six possible periods in Fig. 3.11. Clearly, for 
task . τ1, its processor utilization . 425 (with . T u

i assigned) is smaller than . 420 (with . T l
i

assigned). . □
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Chapter 4 
Non-Preemptive 
Scheduling/Reconfiguration Based on 
Supervisory Control of TDES 

4.1 Introduction 

Historically, real-time systems (RTS) were constructed in an ad hoc manner, which 
is scheduled by cyclic executives [8]. An RTS consists of a number of tasks with 
explicit timing requirements, which could be a water vessel system, computer 
numerical control machine, a robot, or an assembly-line worker. In the literature, 
RTS are usually scheduled by two approaches. One is to divide the scheduling 
problem in two steps: 

• determine whether the RTS is schedulable, and
. find an algorithm to generate a safe execution sequence. 

The other approach works in reverse: a candidate (existing) schedule scheme is 
first generated, and then it is checked whether all the tasks in the RTS meet their 
deadlines. 

The study in [5] is the first work to combine RTS scheduling and supervisory 
control theory (SCT). Based on the nonblocking supervisory control of timed 
discrete-event systems (TDES), Chen and Wonham treat the overall scheduling 
problem as an integral problem. In the proposed method, solving the schedulability 
problem of an RTS implies solving its scheduling-algorithm problem and vice versa. 

In [5], Chen and Wonham propose a TDES-based task model and a real-time 
scheduling technique. The behavior of real-time tasks, such as task release/arrival 
and their execution starting/completion, is represented by active events. The  tem-
poral characteristics are considered to build a timed transition graph (TTG) that 
describes the possible behavior of real-time tasks. Any RTS tasks with deadlines 
less than or equal to their periods can be modelled by TTG in this approach. 
Given an RTS processing such tasks, with user-defined non-preemptive scheduling 
specifications, the safe execution sequences are found by the supervisory control of 
TDES. An RTS is claimed to be non-schedulable if the supervisor is empty. The 
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proposed scheduling approach is different from the traditional real-time scheduling 
approaches:

. The work in [5] does not check the schedulability and find safe scheduling 
sequences separately. Since the found safe scheduling sequences are included 
in a proper supervisor for the TDES, their timing characteristics do not need to 
be verified.

. The traditional scheduling algorithms only provide one safe execution for the 
real-time scheduling. However, the work in [5] provides all the possible safe 
execution sequences. 

The research in [5] is a significant improvement over real-time scheduling. However, 
the authors do not reconfigure the system in the case of nonschedulability. Later, 
dynamic reconfigurations of RTS are addressed in [10] and we summarize it in this 
chapter. 

In [2–4, 7], an elastic period task model is proposed to handle the overload of an 
RTS by decreasing the task processor utilization. Building on the two latter studies, 
we present a new modelling technique to endow the real-time tasks with multi-
periods. To handle the overload of an RTS, SCT is utilized to find all the possible 
solutions based on different periods of each task. For any solution, all the safe 
execution sequences are provided. The presented dynamic reconfiguration approach 
consists of two steps:

. The initial model of any task is assigned with the shortest period (i.e., assigned 
with the highest processor utilization), and by utilizing SCT, all the RTS’ safe 
execution sequences (if any) are found.

. For the purpose of reconfiguring the RTS in the case of nonschedulability, this 
monograph reconfigures the RTS’ composite task model by assigning multi-
periods to the tasks. 

The multi-period provides multiple processor utilization for a task. Consequently, a 
processor utilization interval for the RTS is obtained. SCT is utilized again to find all 
the safe execution sequences (possible reconfiguration scenarios) in the predefined 
processor utilization interval. If the supervisor is still empty, we claim that the RTS 
is non-schedulable. A real-world example is implemented in this chapter. The results 
illustrate that, in the dynamic reconfiguration approach, the presented method finds 
a set of safe execution sequences. 

Clearly, the presented multi-period model is a uniformed model that can schedule 
and reconfigure RTS (if necessary). Building on this idea, in the following chapters, 
we present similar multi-period models to schedule and/or reconfigure RTS based 
on supervisory control of discrete-event systems (Chaps. 5 and 6) and supervisory 
control of state-tree structures (Chap. 7). 

The rest of this chapter is structured as follows. The TDES model for RTS 
scheduling and reconfiguration is defined in Sect. 4.2. Section 4.3 reports method-
ologies of dynamic scheduling and reconfiguration of RTS. A real-world example 
is implemented in Sect. 4.4 to verify the dynamic scheduling and reconfiguration. 
Conclusions are provided in Sect. 4.5.
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4.2 RTS Modelled by Timed Discrete-Event Systems 

In [5], Chen and Wonham propose a TDES modelling mechanism to model real-
time tasks running in uni-processor RTS and schedule them non-preemptively. Later 
the TDES model is generalized in [10]. A generalized TDES modelling method is 
provided to assign a multi-period that is a set of possible periods for a real-time task. 
The default period for a task is the shortest one. In the case that the RTS is non-
schedulable, based on supervisory control, the multi-period is used to reconfigure 
the RTS automatically. Generally, the TDES task model proposed in [5] can be 
viewed as a special case of the one presented in [10]. 

4.2.1 Multi-Period RTS Task Model 

In this section, we provide a general TDES modelling mechanism to represent 
the execution of periodic real-time tasks. Such a TDES model can be utilized to 
schedule or reconfigure RTS. Similar to the elastic task model [2–4, 7], we assume 
that a task is associated with a multi-period, i.e., having a lower bound and an upper 
bound. By assigning multi-periods to real-time tasks, the presented TDES model 
generalizes the TDES model proposed in [5]. 

Suppose that a periodic RTS . S processes n tasks, i.e., .S = {τ1, τ2, . . . , τi , . . . , τn}, 
.i ∈ n = {1, 2, . . . , n}. The execution model of an RTS is a set of tasks processed in 
a uni-processor, in which a task . τi is described by 

. τi = (Ri, Ci,Di,Ti )

with

. a release time . Ri ,

. a worst-case execution time (WCET) . Ci ,

. a deadline . Di , and

. a multi-period . Ti . 

A multi-period is specified by a non-empty interval 

. Ti = [T l
i , T u

i ] ∈ N × N,

where the number of time units that elapse between any two successive releases lies 
within . Ti . Hence a multi-period has a lower bound (i.e., shortest one) represented by 
. T l

i and an upper bound (i.e., longest one) represented by . T u
i . As stated in Sect. 3.1, 

a periodic task . τi consists of an infinite sequence of jobs repeated periodically that 
are represented by a corresponding four-tuple 

. Ji,j = (ri,j , Ci, di,j , pi,j ).

The subscript “. i, j” of .Ji,j represents the j -th job execution of task . τi .
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During the real-time scheduling process, for task . τi , only one period T satisfying 

. T l
i ≤ T ≤ T u

i

is selected in a scheduling period. The processor utilization .Ui of task . τi is 
calculated by 

.Ui = Ci

T
. (4.1) 

The total processor utilization of . S is 

.US =
n∑

i=1

Ui. (4.2) 

According to [8], an RTS . S is non-schedulable if .US > 1. 
A task is non-reconfigurable if its multi-period satisfies .T l

i = T u
i , which is 

considered as a traditional RTS task. In particular, such a task is identical with the 
task model proposed by Chen and Wonham in [5]. The dynamic reconfiguration of 
a real-time task consists of two steps given below:

. Initially, a task with .T = T l
i plays the role of the task proposed in [5]. In this 

case, task . τi always stays at the highest processor utilization.
. If the RTS is non-schedulable, the multi-period model with .Ti = [T l

i , T u
i ] is 

utilized to provide all the possibilities to compress the processor utilization. By 
integrating dynamic reconfigurations, our study in Chaps. 6 and 7 is built on 
multi-periods. 

4.2.2 Real-Time Tasks Modelled by Timed Discrete-Event 
Systems 

Given a real-time periodic task .τi = (Ri, Ci,Di,Ti ) with .i ∈ n and .Di ≤ Ti , 
represented by a TDES, as depicted in Fig. 4.1 (from [5]), its corresponding activity 
transition graph (ATG) is 

. Gact,i = (Ai,Σact,i , δact,i , a0,i , Am,i).

States . Ii , . Ai , and . Wi represent idle, arrival, and work, respectively. The events 
in the alphabet .Σact,i are

. . γi : the event that . τi is released,

. . αi : the event that the execution of . τi is started, and

. . βi : the event that the execution of . τi is completed.
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Fig. 4.1 ATG of a real-time 
task from [5] 

Event . αi is controllable and events . γi and . βi are uncontrollable. Moreover, all the 
events in .Σact,i are forcible [1]. In this monograph, a state filled with gray, say . Wi , 
represents that the corresponding task is under execution. 

An ATG describes only the logical behavior of a TDES. In the transition graph 
of the ATG, the initial state is labeled with an entering arrow, and a marker state is 
represented by a double circle. 

Suppose that, after enabling, events . γi , . αi , and . βi should wait for . tγi
, . tαi

, and . tβi

ticks, respectively, until they are eligible to occur. Thus, . tαi
is the time at which . τi

starts its execution. Furthermore, in the TDES model, we have 

. tβi
= Ci.

A TDES model describing an RTS task’s behavior has the following two features:

. . γi signals that after . ri,1, . τi will release periodically, and

. . βi must occur before . τi is released again. 

The time interval between the occurrences of events . βi and . γi is the remaining time 
of the current period, which decreases along with the increase of . tαi

. Hence, in two 
adjacent periods, the values of . tγi

could be different. Formally, let .T l
i ≤ T ≤ T u

i ; 
we have:

. . γi has time bounds .

⎧
⎪⎪⎨

⎪⎪⎩

[0, 0], if τi releases at ri,1

[T − tαi
− tβi

, T − tαi
− tβi

], if (∀j > 1) τi

releases at ri,j

,

. . αi has time bounds .[0,Di − tβi
], and

. . βi has time bounds .[tβi
, tβi

]. 
Generally, the presented task model assigns a lower and an upper period bound 
for each task to dynamically reconfigure an RTS . S. At each time, a task’s period 
is assigned with a value between the two bounds . T l

i and . T u
i . Consequently, the 

processor utilization of an elastic periodic task . τi has a lower bound .Ul
i and an 

upper bound . Uu
i . Formally, we conclude that the processor utilization of . τi is in an 

interval 

.Ui = [Ul
i , U

u
i ]
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with 

. Ul
i = Ci

T u
i

and 

. Uu
i = Ci

T l
i

.

The system processor utilization of . S is in an interval 

. US = [Ul, Uu]

with 

. Ul =
n∑

i=1

Ul
i

and 

. Uu =
n∑

i=1

Uu
i .

In the possible processor utilization interval .[Ul, Uu], there may exist multiple 
safe execution sequences (reconfiguration scenarios) that correspond to different 
processor utilizations. 

From the perspective of TDES, on the occurrence of event . αi , the processor starts 
the processing of the current job of . τi . After the global tick event t occurs . Ci times, 
the execution of . τi is completed. The next occurrence of event . γi drives . τi into the 
next execution period. 

In this section, a multi-period RTS task represented by the TTG of a TDES 

. Gi = (Qi,Σi, δi, q0,i ,Qm,i)

is depicted in Fig. 4.2. Let .w = min{Di, T
l
i }. We have

. . yI is the initial state, representing that the processor is in an idle operation,

. state . yα
k with .0 ≤ k ≤ w − Ci : before starting the execution of task . τi , k time 

units have passed since the recent release of task . τi ,
. state .yk,p with .0 ≤ k ≤ w − Ci and .0 ≤ p ≤ Ci : starting the p-th time unit 

execution of task . τi at the k-th time unit,
. state . yβ

k with .Ci ≤ k ≤ w: the targeting state of event . βi , representing that the 
execution of . τi is completed at the k-time unit,
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Fig. 4.2 General TTG model for multi-period tasks

. states . yk with .w < k < T u
i : the execution of task . τi is completed and k time 

units have elapsed since the recent release of task . τi , and
. .{yβ

w, yw+1, .. . . , yT u
i −1, yI }: the marker state set. 

A marker state represents that . τi has finished the current execution of job .Ji,j and is 
ready for the release of the next job .Ji,j+1. Marker state . yI represents that job . Ji,j

finishes its operation at time .t = T u
i or has never been invoked. Marker states . yβ

w, 
.yw+1, and .yT u

i −1 represent that job .Ji,j finishes its operation at time units .t = Tw, 
.t = Tw+1, and .t = T u

i − 1, respectively, with .Ci ≤ w ≤ Ti . Transition . δ(y0,0, t) =
y1,1 leads the system from a normal state to a state filled with gray, which represents 
that the task . τi is under execution for one tick (or equally one time unit). Throughout 
this monograph, any state filled with gray represents that the corresponding task is 
under execution. 

The remaining time between the occurrences of events . βi and . γi equals 0 if

. .Di = Ti , and

. . αi occurs at time .Di − tβi
. 

As a result, the occurrence of . βi may lead the TDES model to state . yI directly.
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Fig. 4.3 TTG . G1 for task . τ1

Example A non-reconfigurable periodic task . τ1 is defined as .τ1 = (0, 1, 4, [5, 5]). 
The processor utilization of task . τ1 is fixed to be .U1 = 1

5 . The TTG model . G1 for 
task . τ1 is depicted in Fig. 4.3. For the events in .Σact,1,

. . γ1 has time bounds .

{
[0, 0], if τ1 releases at r1,1

[4 − tα1 , 4 − tα1 ], if (∀j > 1) τ1 releases at r1,j

,

. . α1 has time bounds .[0, 4 − tβ1 ], and

. . β1 has time bounds .[1, 1]. 
Suppose that we have two other tasks .τ2 = (0, 2, 6, [4, 6]) and . τ3 =

(0, 2, 5, [3, 5]). The corresponding TTG models .G2 and .G3 are illustrated in 
Figs. 4.4 and 4.5, respectively, in which events . β2 and . β3 lead the TDES model to 
the initial states directly. All the possible processor utilizations of . τ2 are . 24 , . 25 , and 
. 26 ; and all the possible processor utilizations of . τ3 are . 23 , . 24 , and . 25 . . □

Remarks 

1. In this monograph, in the TDES or DES representing the behavior of RTS tasks, 
all the states are named as . y_. 

2. In the presented TDES model, the time bounds .[T l
i − tαi

− tβi
, T u

i − tαi
− tβi

] for 
event . γi with .j ≥ 1 are dynamic, which decrease while . tαi

increases. However, 
the TDES synthesis tool TTCT1 can convert an ATG into a TTG only if the

1 http://www.control.utoronto.ca/DES. 

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
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Fig. 4.4 TTG . G2 for task . τ2

Fig. 4.5 TTG . G3 for task .τ3



80 4 Non-Preemptive Scheduling/Reconfiguration Based on SCT of TDES

events have fixed time bounds. Hence, according to the presented TDES model, 
users need to create the TTG for every real-time task directly. . □

4.2.3 Global RTS Execution Model 

Suppose that there exists a set of tasks to be executed in an RTS. A TDES 
representing its monolithic behavior is required. One standard way to construct 
such a “composite” TDES for a set of tasks represented by TTGs is to apply the 
synchronous product [11] over the individual TTG. 

Suppose that two tasks . τ1 and . τ2 are executed in an RTS . G. Their system behav-
iors are represented by .L(G1) and .L(G2), respectively; their marked behaviors 
are represented by .Lm(G1) and .Lm(G2), respectively. Through the synchronous 
product, the TTG of . τ1 and . τ2 are combined into a TTG representing the system 
behavior of . G. Formally, we have 

. L(G) = L(G1)||L(G2)

and 

. Lm(G) = Lm(G1)||Lm(G2).

Note that the only shared event between .L(G1) and .L(G2) is event t . The obtained 
composite task contains all execution sequences that meet the deadlines of the two 
tasks, but with the following two implicit assumptions:

. Resource-sharing tasks . τi satisfying .Di = T l
i = T u

i : resources are available 
to execute the tasks concurrently. This result is illustrated in the example stated 
below.

. Independent tasks . τi satisfying .T l
i ≤ T u

i and .Di < T u
i : As illustrated in Fig. 4.2, 

string . t∗ (a string consists of .n ≥ 0 tick events) may occur between events . βi

and . γi . Given two tasks . τi and . τj , there may exist a string . βj t
∗(αi t

Ci βi)t
∗γj

representing that they are executed in sequence. 

Example Figure 4.6 depicts the TTG of two tasks .τ1 = (0, 2, 2, 2) and 
.τ2 = (0, 1, 1, 1). The composite task execution model, obtained by . L(G) =
L(G1)||L(G2) and .Lm(G) = Lm(G1)||Lm(G2), has 20 states and 29 transitions, 
which is illustrated in Fig. 4.7. In the TDES synthesis procedures (introduced in 
[11]), the synchronous product is computed using the procedure sync. . □

Clearly, the execution sequences shown in the TTG depicted in Fig. 4.7 allow the 
resources to be available to execute tasks . τ1 and . τ2 concurrently. It shows that for 
each duration of two ticks, a total of one . τ1 and two . τ2 are executed.
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Fig. 4.6 Tasks . τ1 and . τ2. (a) Task . τ1. (b) Task . τ2

Fig. 4.7 Synchronous product of tasks . τ1 and . τ2

4.2.4 Timed Discrete-Event System Generators 

The modelling, scheduling, and reconfiguration of RTS based on supervisory control 
of TDES, using TTCT, are presented below. The possible behaviors of tasks . τ1, . τ2, 
and . τ3 are represented by . G1, . G2, and . G3, respectively. The parameters of these 
created tasks are presented in Table 4.1. In the TDES models, events . γi , . αi , . βi , 
and tick are represented by i0, i1, i2, and 0, respectively. A task with a superscript 
“l” (resp., “u”) represents that it possesses the lower (resp., upper) period bound; 
the corresponding task name in TTCT is prefixed by an L (resp., U). Taking . Gl

2 as 
an example, the lower and upper bounds of its multi-period are equal to the lower 
bound of . T2. Evidently, we have
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Table 4.1 Parameters of 
RTS tasks 

Task TDES TTCT .Ri .Ci .Di . Ti

.τ1 .G1 TASK1 0 1 4 [5, 5] 

.τ2 .G2 TASK2 0 2 6 [4, 6] 

.τ3 .G3 TASK3 0 2 5 [3, 5] 

.τ l
2 .Gl

2 LTASK2 0 2 4 [4, 4] 

.τu
2 .Gu

2 UTASK2 0 2 6 [6, 6] 

.τ l
3 .Gl

3 LTASK3 0 2 3 [3, 3] 

.τu
3 .Gu

3 UTASK3 0 2 5 [5, 5] 

. L(Gl
2) ⊆ L(G2), L(Gu

2) ⊆ L(G2), L(Gl
3) ⊆ L(G3), L(Gu

3) ⊆ L(G3);

and 

. Lm(Gl
2) ⊆ Lm(G2), Lm(Gu

2) ⊆ Lm(G2), Lm(Gl
3) ⊆ Lm(G3), Lm(Gu

3) ⊆ Lm(G3).

The corresponding TTCT MAKEIT.TXT file for all the created tasks are listed 
below. In TTCT, the edit procedure can be utilized to convert a multi-period periodic 
task to a task with a fixed-period or vice-versa. 

TASK1 = create (TASK1, [mark 0], [tran [0, 10, 1], [1, 0, 5], [1, 11, 2], [2, 0, 3], 
[3, 12, 4], [4, 0, 8], [5, 0, 9], [5, 11, 6], [6, 0, 7], [7, 12, 8], [8, 0, 12], [9, 0, 13], [9, 
11, 10], [10, 0, 11], [11, 12, 12], [12, 0, 16], [13, 11, 14], [14, 0, 15], [15, 12, 16], 
[16, 0, 0]], [forcible 10, 11, 12]) (17, 20) 

TASK2 = create (TASK2, [mark 0, 15, 20], [tran [0, 20, 1], [1, 0, 6], [1, 21, 2], [2, 
0, 3], [3, 0, 4], [4, 22, 5], [5, 0, 10], [6, 0, 11], [6, 21, 7], [7, 0, 8], [8, 0, 9], [9, 22, 
10], [10, 0, 15], [11, 0, 16], [11, 21, 12], [12, 0, 13], [13, 0, 14], [14, 22, 15], [15, 0, 
20], [15, 20, 1], [16, 0, 21], [16, 21, 17], [17, 0, 18], [18, 0, 19], [19, 22, 20], [20, 
0, 0], [20, 20, 1], [21, 21, 22], [22, 0, 23], [23, 0, 24], [24, 22, 0]], [forcible 20, 21, 
22]) (25, 32) 

LTASK2 = edit (TASK2, [trans -[11, 0, 16], -[15, 0, 20]]) (25, 29) 

LTASK2 = trim (LTASK2) (16, 18) 

LTASK2 = minstate (LTASK2) (15, 17) 

UTASK2 = edit (TASK2, [mark -[15], -[20]], [trans -[15, 20, 1], -[20, 20, 1]]) 
(25, 29) 

LTASK3 = create (LTASK3, [mark 0], [tran [0, 30, 1], [1, 0, 6], [1, 31, 2], [2, 0, 3], 
[3, 0, 4], [4, 32, 5], [5, 0, 0], [6, 31, 7], [7, 0, 8], [8, 0, 9], [9, 32, 0]], [forcible 30, 
31, 32]) (10, 11)
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TASK3 = edit (LTASK3, [mark +[10], +[15]], [trans +[5, 0, 10], +[6, 0, 11], +[9, 
32, 10], +[10, 0, 15], +[10, 30, 1], +[11, 0, 16], +[11, 31, 12], +[12, 0, 13], +[13, 0, 
14], +[14, 32, 15], +[15, 0, 0], +[15, 30, 1], +[16, 31, 17], +[17, 0, 18], +[18, 0, 19], 
+[19, 32, 0], -[5, 0, 0], -[9, 32, 0]]) (20, 25) 

UTASK3 = edit (TASK3, [mark -[10], -[15]], [trans -[10, 30, 1], -[15, 30, 1]]) 
(20, 23) 

The composite model of an RTS is generated by the synchronous product of 
all the processed tasks [5, 11]. Suppose that tasks . τ1 and . τ2 are running in RTS 
. S0. We generate . S0 by the following TTCT procedures (all the sync operations in 
the original MAKEIT.TXT file are reported with the message “Blocked_events = 
None”, eliminated in this monograph for readability): 

. SYS0 = sync (TASK1, TASK2) (425, 644)

where “(425, 644)” denotes that . S0, represented by SYS0, has 425 states and 644 
transitions. Suppose that another RTS . S1, represented by SYS1, contains . τ1, . τ2, and 
. τ3. It is generated based on . S0 as follows. 

. SYS1 = sync (SYS0, TASK3) (8500, 16367)

The composite task model of traditional periodic RTS is generated by the 
technique proposed by Chen and Wonham in [5]. By choosing the periodic tasks 
with the lower (resp., upper) bound of periods, we generate . Sl

0 (LSYS0), . Sl
1

(LSYS1), and . Su
1 (USYS1) as follows. They are the counterparts of . S0 and . S1 with 

fixed-periods. 

. LSYS0 = sync (TASK1, LTASK2) (255, 364)

. LSYS1 = sync (LSYS0, LTASK3) (2550, 4475)

. USYS1 = sync (TASK1, UTASK2) (425, 610)

. USYS1 = sync (USYS1, UTASK3) (1750, 3064)

Finally, the five generated RTS are listed in Table 4.2. They will be utilized in the 
supervisory control and evaluation of the closed behavior of the controlled RTS. 

Table 4.2 RTS with 
multi-periods 

RTS TTCT Tasks 

.S0 SYS0 . τ1, . τ2

.S1 SYS1 . τ1, . τ2, . τ3

.S0
l LSYS0 . τ1, . τ l

2

.S1
l LSYS1 . τ1, . τ l

2, . τ l
3

.S1
u USYS1 . τ1, . τu

2 , .τu
3
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4.3 Dynamic Scheduling and Reconfiguration of 
Multi-Period RTS 

The event controllability and the supervisory control of TDES in this chapter follow 
the principles proposed in [5] and [11]. In this present chapter, instead of utilizing 
the method proposed in [5] to dynamically modify the specification for the tasks 
running in the uni-processor, a general specification . S with 

. L(S) = L(S1)||L(S2)|| · · · ||L(Sn)

is defined with event set .Σ = ⋃
1≤i≤n Σi , the union of the event sets of all the 

potential tasks which may be called by the processor. Let .L(S) = E ⊆ Σ∗. In  
addition, .Lm(G) ⊆ Σ∗ is always satisfied. Hence, let .E ⊆ Σ∗ and 

. K = supC (E ∩ Lm(G)).

If .K /= ∅, there exists a marking nonblocking supervisory control (MNSC) for . G
such that 

. Lm(V/G) = K.

Clearly, K can be found by the procedure supcon (introduced in [11]). 
In order to utilize SCT to schedule the RTS non-preemptively, the specifications 

are defined to ensure that after the occurrence of an event . αi , no other event . αj with 
.j /= i can occur to preempt it. Hence, the TDES model of specification . Si for task 
. τi is illustrated in Fig. 4.8, in which . αj and . βj with .j /= i represent events . α and 
. β for any other task, respectively. The symbol . ∗ represents the other events in . Σ . 
The specifications for . G1, . G2, and . G3 are created by TTCT. Thereafter, by utilizing 
sync, the general specification . S presented in Fig. 4.10 is generated. 

According to [11], given any RTS represented by . G, for any specification, 
selfloops of events appeared in . G but not in the specification must be adjoined 
to account for all the events that are irrelevant to the specification but probably 
executed in the plant. For simplification, we only focus on the specification created 
by procedure create; thereafter the selfloops are adjoined by the procedures 
allevents and sync. As listed below, allevents is utilized to generate a TTG 
representing . Σ∗. As shown in Fig. 4.9, the nonblocking specification for . G is a 
generator with only one state at which all the events appeared in . G are enabled. The 

Fig. 4.8 Task 
non-preemptive specification
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Fig. 4.9 Nonblocking 
specification for RTS 

Fig. 4.10 General 
non-preemptive specification 

generated files for the specifications are recorded below, where the SPEC shown in 
Fig. 4.10 with 4 states and 22 transitions is the general one. 

SPEC1 = create (SPEC1, [mark 0], [tran [0, 11, 1], [0, 21, 0], [0, 22, 0], [0, 31, 0], 
[0, 32, 0], [1, 12, 0]], [forcible 11, 12, 21, 22, 31, 32]) (2, 6) 

SPEC2 = create (SPEC2, [mark 0], [tran [0, 11, 0], [0, 12, 0], [0, 21, 1], [0, 31, 0], 
[0, 32, 0], [1, 22, 0]], [forcible 11, 12, 21, 22, 31, 32]) (2, 6) 

SPEC3 = create (SPEC3, [mark 0], [tran [0, 11, 0], [0, 12, 0], [0, 21, 0], [0, 22, 0], 
[0, 31, 1], [1, 32, 0]], [forcible 11, 12, 21, 22, 31, 32]) (2, 6) 

ALLSYS1 = allevents (SYS1) (1, 10) 

SPEC1 = sync (SPEC1, ALLSYS1) (2, 14) 

SPEC = sync (SPEC1, SPEC2) (3, 18) 

SPEC = sync (SPEC, SPEC3) (4, 22) 

4.4 Case Study: Supervisor Synthesis of Motor Network 

As illustrated in Fig. 4.11, the example of a motor network studied in [5] is revised  
and considered as a reconfigurable RTS. Suppose that three electric motors are 
controlled by a uni-processor. As depicted in Fig. 4.11, their deadlines and periods 
are represented by . Di and . Ti , respectively. At any time instant, only a subset of 
these motors is called by the processor. Their parameters coincide with those of the 
tasks shown in Table 4.1 as
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Fig. 4.11 A motor network 
example 

Computation: 
Motor 1: 1 ms 
Motor 2: 2 ms 
Motor 3: 3 ms 

Motor 
Selection 

Motor 2 
D: 6 ms 

T: [4, 6] ms 

Motor 1 
D: 4 ms 

T: [5, 5] ms 

Motor 3 
D: 5 ms 

T: [3, 5] ms

. Motor 1: . τ1,

. Motor 2: . τ2, and

. Motor 3: . τ3. 

Suppose that the motor network has two work plans, coinciding with the defined 
RTS . S0 and . S1: 

Plan 1: uses only Motors 1 and 2, and 
Plan 2: uses all three motors. 

4.4.1 Real-Time Scheduling 

Take . Sl
0 (LSYS0) as an example. All the safe execution sequences are calculated by 

the procedure supcon, i.e., 

. LSUPER0 = supcon (LSYS0, SPEC) (153, 190).

Since LSUPER0 is not empty, . Sl
0 is schedulable at processor utilization 

. Uu = 1

5
+ 2

4
= 0.7.

The safe execution sequence set in LSUPER0 is represented by a TDES with 
153 states and 190 transitions. By projecting out all events but . αi , as depicted in 
Fig. 4.12, which contains 12 states and 15 transitions. We have 

. PJLSUPER0 = project (LSUPER0, Image [11, 21]) (12, 15).

We obtain the scheduling map illustrated in the Gantt chart depicted in Fig. 4.13. 
PJLSUPER0 provides eight safe execution sequences to schedule the RTS with 
processor utilization being 0.7:
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Fig. 4.12 Scheduling map of . Sl
0

. 

1. α1α2α2α1α2α1α2α1α2

2. α1α2α2α1α2α1α2α2α1

3. α1α2α1α2α2α1α2α1α2

4. α1α2α1α2α2α1α2α2α1

5. α2α1α2α1α2α1α2α1α2

6. α2α1α2α1α2α1α2α2α1

7. α2α1α1α2α2α1α2α1α2

8. α2α1α1α2α2α1α2α2α1

For comparison, the earliest deadline first (EDF) scheduling [6] result of . Sl
0 by 

Cheddar 2 [9] is displayed in Fig. 4.13, which coincides with Sequence (1.) above 
within PJLSUPER0. Sequence (8.), depicted in Fig. 4.14, can never be generated by 
EDF. By comparing the two sequences in Figs. 4.13 and 4.14, if . τ l

2 (with the earliest 
deadline) cannot arrive on time at .t = 4, then according to the multiple sequences 
users can choose another available sequence shown in Fig. 4.13 to schedule task 
. τ1 first. Thus, recalculating the scheduling sequences is unnecessary. However, 
there is no EDF sequence to schedule task . τ1 first. If . τ2 cannot arrive on time, the 
EDF scheduling cannot schedule . Sl

0 successfully. The supervisory control technique 
provides a greater number of safe execution sequences as compared with EDF 
scheduling. Intuitively, thanks to .L(Gl

2) ⊂ L(G2) and .Lm(Gl
2) ⊂ Lm(G2), the safe  

execution sequences in . Sl
0 should be a proper subset of the safe execution sequences 

of . S0. This is proved as follows.  
By calling procedure supcon, all the safe execution sequences of the multi-

period version RTS . S0 are obtained. By using the procedure complement, we  
obtain the set of the behaviors prohibited by SUPER0, which is contained in 
CSUPER0. By computing the meet of CSUPER0 and LSUPER0, if the trim version

2 http://beru.univ-brest.fr/cheddar/. 

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
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Fig. 4.13 EDF scheduling map of . Sl
0

Fig. 4.14 Scheduling of Sequence (8.) 

of meet is empty, this represents that the reachable and coreachable sequences 
within LSUPER0 are not in CSUPER0. Hence, LSUPER0 is a proper subset of 
SUPER0. The corresponding TTCT operations are listed below. 

. SUPER0 = supcon (SYS0, SPEC) (263, 362)

. CSUPER0 = complement (SUPER0, []) (264, 1848)

. TEST = meet (CSUPER0, LSUPER0) (156, 195)

. TEST = trim (TEST) (0, 0)

The scheduling map for . S0 is more complex than that for . Sl
0, which has 50 states 

and 86 transitions, i.e., 

. PJSUPER0 = project (SUPER0, Image [11, 21]) (50, 86).

Evidently, even though the supervisor for . Sl
0 excludes some safe execution 

sequences of . S0, the scheduling map still provides more choices than the EDF 
scheduling algorithm. 

4.4.2 Dynamic Reconfiguration 

The set of safe execution sequences of . Sl
1 (LSYS1) found by the procedure supcon 

is empty, i.e., 

.LSUPER1 = supcon (LSYS1, SPEC) (0, 0).
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Clearly, . Sl
1 is non-schedulable at processor utilization 

. Uu = 1

5
+ 2

4
+ 2

3
> 1.

Thus, we need to reconfigure the system to be the multi-period model . S1 (SYS1) 
and utilize SCT again to find the safe execution sequences by 

. SUPER1 = supcon (SYS1, SPEC) (2180, 3681).

This represents that supcon finds all the possible safe execution sequences 
between the processor utilization 

. Ul = 1

5
+ 2

6
+ 2

5
< 1

and the full processor utilization 1. 
The system is finally schedulable since SUPER1 is nonempty. In order to find 

the scheduling map after the reconfiguration, we need to call the procedure project. 
However, since the reconfigured periods provide more than one reconfiguration 
scenarios, TTCT fails to output the result of projecting SUPER1 onto events . αi , 
which shows that the dynamic reconfiguration of the periods (event . γi) violates the 
observer property discussed in [11]. However, we choose the following method to 
view a part of the scheduling map of the reconfigured RTS . S1: 

Step 1 
We choose . Su

1 as a subset of the composite task model of . S1, based on which we 
find the safe execution sequence set, which contains 417 states and 574 transitions. 
The scheduling map is calculated by projecting the safe execution sequences onto 
events . α1, . α2, and . α3; it contains 37 states and 54 transitions, as seen in Fig. 4.15. 
The corresponding TTCT operations are given as follows. 

. USUPER1 = supcon (USYS1, SPEC) (417, 574)

. PJUSUPER1 = project (USUPER1, Image [11, 21, 31]) (37, 54)

Step 2 
We can verify that . Su

1 is a proper subset of . S1 via the following TTCT procedures: 

. CSUPER1 = complement (SUPER1, []) (2181, 21,810)

. TEST = meet (CSUPER1, USUPER1) (417, 574)

.TEST = trim (TEST) (0, 0)
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Fig. 4.15 Scheduling map of . Su
1

Finally, we claim that, after the reconfiguration, the scheduling map of . S1 is 
at least as complex as that presented in Fig. 4.15. More precisely, SUPER1 (resp., 
USUPER1) contains 2180 (resp., 417) states and 3681 (resp., 574) transitions. 
Intuitively, the scheduling map of SUPER1 should be more complex than that 
depicted in Fig. 4.15, in which the periods are dynamically reconfigured. The EDF 
scheduling of . Su

1 by Cheddar is illustrated in the Gantt chart depicted in Fig. 4.16. It  
can find only one schedulable sequence. Moreover, no sequence for the multi-period 
RTS can be found by EDF scheduling in Cheddar.
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Fig. 4.16 Scheduling map of . Su
1 in Cheddar 

4.4.3 Multi-Periods in the Safe Execution Sequences 

In Sect. 4.4.1, before the reconfiguration, every scheduling sequence is based on 
the fixed periods of the real-time tasks, with the scheduling stated in LSUPER0. 
The processor utilization of a task is fixed permanently. For example, we randomly 
choose a sequence 

. γ1α1γ2tβ2tα2t tβ2γ2 . . . .

By projecting out events . γ1, . α1, and . β1, we obtain 

. γ2tβ2tα2t tβ2γ2 . . . .

We note that a period of task . τ2 equals four time units and its processor utilization 
is equal to .U2 = 1

2 . 
In SUPER0 (the reconfigured RTS with multi-periods), we randomly choose two 

sequences as follows: 

1. .γ1α1γ2tβ1α2t tβ2t tγ2 . . .. 
2. .γ1α1γ2tβ1t tα2tγ1tβ2γ2α2t tβ2α1tβ1tγ2 . . .. 

By projecting out . γ1, . α1, and . β1 in Sequence (1.), we obtain 

. γ2tα2t tβ2t tγ2 . . . .

Obviously, a period of task . τ2 equals five time units. Then the processor utilization 
of . τ2 is . 25 . 

By projecting out . γ1, . α1, and . β1 in Sequence (2.), we obtain 

. γ2t t tα2t tβ2γ2α2t tβ2t tγ2 . . . .

Evidently, in two adjacent periods of task . τ2, its periods are five and four time 
units, respectively. Hence, in the second period of the execution of . τ2, its processor 
utilization is changed from . 25 to . 12 to speed up the scheduling process. This means 
that, according to the processor utilization interval predefined by the users, the 
processor utilization of the RTS is dynamically changed at run-time.
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By comparing Sequences (1.) and (2.), we see that after the occurrence of 
substring .γ1α1γ2tβ1, the controller provides at least two subsequences in Sequences 
(1.) and (2.) to schedule . τ2. However, neither the non-preemptive scheduling 
proposed in [5] nor the EDF scheduling can provide such scheduling plans. 

4.5 Conclusion 

As summarized in this chapter, based on supervisory control of TDES, Chen and 
Wonham propose a formal constructive method in [5], for the purpose of scheduling 
the non-preemptive execution of a set of periodic tasks on a processor, which 
could be either resource-sharing or independent. Thereafter, in order to address the 
reconfiguration problem, the proposed model is generalized in [10]. This model 
can be used to schedule or reconfigure RTS. As a consequence, the formal SCT of 
TDES can be considered as a rigorous analysis and synthesis tool to dynamically 
schedule and reconfigure the non-preemptive scheduling of RTS. Suppose that in 
every scheduling plan only a subset of tasks of an RTS is called by the processor. 
Instead of dynamically updating the specification for the tasks running in the uni-
processor, a general specification is presented, which guarantees that all the potential 
tasks called by the processor can be scheduled non-preemptively. In the case of 
the RTS claimed by [5] to be non-schedulable, the presented two-step dynamic 
reconfiguration approach can be utilized to find all the safe execution sequences 
(possible reconfiguration scenarios) of each task in the RTS. These sequences 
provide more choices than the EDF scheduling algorithm. The processor and the 
real-time tasks are general models for real-world RTS. The multi-period model can 
be utilized to describe the behavior of a manual assembly process or a robotic pick-
and-place operation executed by a processor that could be a water vessel system, 
computer numerical control machine, a robot, or an assembly-line worker. This 
leads to the possibility that the offline reconfiguration method can be implemented 
in practical contexts based on reconfigurable real-time scheduling. Building on 
the multi-period framework, and for the purpose of solving the problem of the 
TDES model faced, the presented RTS modelling tool is generalized in Chaps. 5 
and 6 as modular discrete-event system (DES) models (based on the nonblocking 
supervisory control of DES) and Chap. 7 as a hierarchical DES model (based on the 
nonblocking supervisory control of state-tree structures). 
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Chapter 5 
Priority-Free Conditionally-Preemptive 
Real-Time Scheduling Based on R-W 
Method 

5.1 Introduction 

Real-time systems (RTS) can be loosely defined as systems whose response time 
is an important determinant of correct functioning [8]. Historically, RTS were 
constructed in an ad hoc manner, and scheduled by cyclic executives [16]. An RTS 
consists of a number of tasks with explicit timing requirements, which could be a 
water vessel system, a computer numerical control machine, a robot, or an assembly-
line worker. In the literature, most of the existing classical real-time scheduling 
algorithms are based on dynamic or fixed priorities [1, 4–7, 9–12, 15, 16, 21]. The 
study in [5] shows that, when the tasks’ periods are equal to their deadlines, the 
preemptive earliest deadline first (EDF) scheduling algorithm is optimal. 

As stated in Chap. 4, in the seminal work [3], Chen and Wonham propose a 
timed discrete-event system (TDES) modelling mechanism to model real-time tasks 
running in uni-processor RTS and schedule them non-preemptively. Later the TDES 
model is generalized in [18] for the purpose of dynamic reconfigurations of RTS 
when they are non-schedulable. 

In this chapter, a discrete-event system (DES)-based real-time task model is 
presented to schedule the real-time tasks running in uni-processor RTS. The timing 
constraints of RTS tasks are represented by different events in the DES model. 
Hence, in the DES modelling mechanism, the execution of different tasks will 
always happen sequentially, which is more realistic. Clearly, a DES is more general 
for modelling RTS than TDES, which provides the possibility of preemptive SCT-
based scheduling of RTS. 

Compared with non-preemptive scheduling, preemptability can provide more 
flexibility to real-time scheduling. In fully preemptive systems, at any time, the 
execution of a running task can be interrupted by tasks with higher priorities, and it 
continues when all tasks with higher priorities have been completed [2]. However, 
in some special cases, both preemptive and non-preemptive scheduling policies 
are conservative. Users may customize specific preemption plans that are neither 
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preemptive nor non-preemptive. In fact, for such real-time scheduling requirements, 
priorities cannot be assigned to real-time tasks. 

The behavior of periodic RTS tasks is described by formal language [20]. Each 
language can be represented by a DES generator. The  synchronous product [20] of  
these DES generators can integrate the models of the tasks running in a processor 
into a complex generator to represent the global processor behavior. 

This chapter presents priority-free conditionally-preemptive (PFCP) scheduling, 
which generalizes priority-based preemption. By defining the preemption relation 
among any two tasks running in a processor, a preemption matrix can be utilized 
to describe all the possible fixed-priority (FP) preemption relations and other 
user-specified preemption relations. Based on this matrix, the corresponding DES 
specifications are designed accordingly. From the perspective of a task’s execution, 
between any two adjacent processor time units, the task-centered conditional-
preemption relations are also depicted by DES specifications. Clearly, the two 
presented general conditional-preemption specifications are utilized to customize 
scheduling and preemption requirements conditionally. The worst-case response 
time (WCRT, no later than the corresponding deadline) of a real-time task is used to 
evaluate the schedulability of the tasks processed in an RTS [17]. In this chapter, 
WCRT can also be restricted by a specification. Furthermore, the nonblocking 
preemptive scheduling of real-time tasks is also addressed, which provides all the 
dynamic priority scheduling sequences. 

Similar to Chap. 4, all the safe execution sequences generated by the synchro-
nized specifications with respect to the tasks running in an RTS can be synthesized 
offline by SCT. Users can choose any sequence to schedule the processor. The 
real-time scheduling with conditional-preemption is applied to the real-world uni-
processor systems. 

In comparison with the TDES-based RTS scheduling frameworks proposed in 
[3, 18], the DES modelling framework and the PFCP scheduling specifications 
presented in this chapter are more realistic: 

• The task behavior is modelled by DES, and thus the execution of each real-time 
task’s processing is represented by an individual event instead of the global tick 
event t in TDES. 

• The priorities of tasks are not treated and the preemption relations are described 
by a matrix. 

• The specifications are imposed from the perspective of both the processor 
and individual task. Based on this scheduling principle, some classic real-time 
scheduling policies such as FP or partially FP scheduling [1, 4, 7, 9, 12, 15, 16] 
are treated as special cases of the PFCP specifications. 

The rest of this chapter is organized as follows. The system model and priority-
free real-time scheduling with conditional-preemption principles are described 
in Sect. 5.2. The DES model for the periodic tasks and the RTS are proposed 
in Sect. 5.3. The specifications are formalized and established in Sect. 5.4. Sec-
tions 5.5 and 5.6 report methodologies for the real-time scheduling with conditional-
preemption applied to real-world systems. Finally, Sect. 5.7 reaches conclusions.
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5.2 Task Models and Preemption Policies 

In this section, the behavior of a periodic real-time task is represented by a DES 
diagram. Three types of specifications are provided. The presented PFCP real-time 
scheduling algorithm generalizes priority-based preemption scheduling. In addition, 
from the perspective of each individual task, task-centered conditional-preemption 
specification is presented, which allows the task execution to be preempted by a 
subset of other tasks between any two adjacent processor time units. Furthermore, 
theWCRT of a task no later than its deadline can also be restricted by a specification. 

5.2.1 Task Model 

Consider the regular periodic tasks with regular periods, i.e., the time intervals 
between any two adjacent arrivals are constant. Suppose that a periodic RTS . S
processes n tasks, i.e., .S = {τ1, τ2, . . . , τi , . . . , τn}, .i ∈ n = {1, 2, . . . , n}. A  
periodic task is specified as a four-tuple 

. τi = (Ri, Ci,Di, Ti)

with 

• a release time . Ri , 
• a worst-case execution time (WCET) . Ci , 
• a deadline . Di , and 
• a regular period . Ti . 

As stated in Sect. 3.1, a periodic task . τi consists of an infinite sequence of jobs 
repeated periodically that are represented by a corresponding four-tuple 

. Ji,j = (ri,j , Ci, di,j , pi,j ).

The subscript “. i, j” of .Ji,j represents the j -th execution of task . τi . 

Motivating Example 
Suppose that a uni-processor RTS . S executes four periodic tasks . τ1, . τ2, . τ3, and . τ4. 
Their parameters are shown in Table 5.1. We assume that the execution of . τ1 can 
be preempted only by . τ2, . τ2 only by . τ4, and . τ4 only by . τ1; moreover, . τ3 cannot 
be preempted. Clearly, no priorities can be assigned to these tasks. In this case, the 
EDF and FP algorithms cannot be utilized to schedule this RTS. In order to solve 
such problems, we discard the priorities and consider the real-time scheduling as 
priority-free. .□
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Table 5.1 Parameters of four 
tasks 

Task .Ri .Ci .Di . Ti

.τ1 0 3 9 9 

.τ2 3 3 6 6 

.τ3 0 1 4 5 

.τ4 0 2 14 18 

5.2.2 Priority-Free Real-Time Scheduling 

For some real-world preemption policies, the tasks running in a processor cannot 
be assigned with priorities [19]. Hence, for both preemptive and non-preemptive 
scheduling, from the perspective of the processor, conditional-preemption among 
real-time tasks is presented. By a preemption matrix that will be defined later, 
users can define any preemption relation among all the tasks running in the same 
processor. 

Definition 5.1 [priority-free] A scheduling policy is said to be priority-free if all 
the released tasks in a processor can be processed in any order. . ♢
As discussed in Sect. 1.4.1, in each hyper-period, all the processor time units are 
partitioned into: 

• busy time: the processor is occupied by other tasks, and thus . τi cannot be 
executed, 

• running time: . τi is in process, 
• preemption time (if any): after the execution of . τi has started, its execution is 

interrupted by (a subset of) other tasks, and 
• free time: the execution of . τi is completed or . τi has not arrived yet. These 

processor time units can be idle or utilized to execute other tasks. 

A priority-free scheduling policy can be utilized to schedule all the periodic tasks 
randomly, i.e., for a real-time task, its busy time and preemption time can be 
occupied by any other tasks. Moreover, in accordance with traditional real-time 
scheduling, a task is not allowed to be interrupted if the system would thereby 
come to an idle operation. In this case, the free time is also allowed to be in an 
idle operation only when no task is in process. 

Example For task . τ2 shown in Table 5.1, a possible conditionally-preemptive real-
time scheduling is illustrated in the Gantt chart depicted in Fig. 5.1. By allowing 
preemption of other tasks, the first nine processor time units are partitioned into: 

• busy time: time interval .[3, 4), 
• running time: time intervals .[4, 6) and .[7, 8), 
• preemption time: time interval .[6, 7), and 
• free time: time intervals .[0, 3) and .[8, 9).
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Fig. 5.1 Real-time 
scheduling of task . τ2

The time intervals .[0, 4), .[6, 7), and .[8, 9) can be occupied by other tasks running 
in the same processor. In addition, only time intervals .[0, 3] and .[8, 9] could 
alternatively be idle. . □

From the perspective of processor and individual tasks, two sets of general 
scheduling policies are presented, respectively, which can be applied to any specific 
conditional-preemption plan. 

5.2.3 Preemption Matrices 

From the perspective of a processor, its preemption matrix is defined to describe the 
preemption relations among the tasks running in it. 

Definition 5.2 [preemption matrix] An .n × n matrix . A is said to be a preemption 
matrix if .Ai,j = 1 (resp., .Ai,j = 0) represents that a task . τi is allowed (resp., not 
allowed) to be preempted by task . τj . . ♢
The preemption matrix . A of an RTS . S is in the form 

.A =

⎛
⎜⎜⎜⎝

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...

∗ ∗ · · · 0

⎞
⎟⎟⎟⎠ (5.1) 

where . ∗, either 0 or 1, can be predefined by users. 
Definition 5.3 [matrix-based PFCP] A preemption policy is said to be matrix-based 
PFCP if it can be represented by a preemption matrix. . ♢
For a uni-processor, according to the preemption matrix, a running task . τi can be 
interrupted by the execution of a specified task set . Aτi

that is a subset of the other 
tasks processed in . S, i.e., 

. Aτi
= {τj ∈ S| the execution of τi is allowed to be preempted by τj }.

Example Consider the real-time tasks shown in Table 5.1. Suppose that every task 
can be preempted by other tasks, i.e., the tasks are preemptive. All the variable 
entries in its corresponding preemption matrix . A are replaced by 1, as shown in . A1.
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In contrast, suppose that the tasks are non-preemptive, i.e., no task can be 
preempted by other tasks. Thus, all the . ∗’s in its corresponding preemption matrix 
. A are replaced by 0, as shown in . A2. 

Moreover, in accordance with the FP real-time scheduling by assigning priorities 
to tasks . τ1, . τ2, . τ3, and . τ4 in an ascending order, preemption matrix .A3 is 
customized, which shows that 

• . τ1 can be preempted by . τ2, . τ3, and . τ4, 
• . τ2 can be preempted by . τ3 and . τ4, and 
• . τ3 can be preempted by . τ4. 

Similarly, we can assign priorities to tasks . τ1, . τ2, . τ3, and . τ4 in a descending 
order, as shown  in  . A4. By assigning partial preemption relation to real-time tasks 
conditionally, . A5 is customized. Moreover, the preemption matrix for the motivating 
example is stated in . A6. . □

. A1 =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ ,A2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

. A3 =

⎛
⎜⎜⎝

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,A4 =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎞
⎟⎟⎠ ,

. A5 =

⎛
⎜⎜⎝

0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ,A6 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ .

5.2.4 Task-Centered Conditional-Preemption Constraints 

Focusing on any task’s execution, a general preemption policy, namely task-centered 
conditional-preemption specification, is presented. It can be utilized to designate 
how long after its execution is started, a task can be preempted by other tasks. In 
each processing period, from the perspective of an individual task, between any two 
adjacent processor time units, the execution of . τi can be preempted by a user-defined 
set of other tasks running in the same processor. 

Example According to . A1 in the previous example, . τ2 can be preempted by . τ1, . τ3, 
and . τ4, which represents that the execution of . τ2 can be interrupted by . τ1, . τ3, or  
. τ4 immediately upon their arrival. As shown in Table 5.1, we have  .C2 = 3, i.e., the
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execution of . τ2 takes three time units. Thus we can define two different task-centered 
conditional-preemption preemption plans for the execution of . τ2, e.g., between the 
first two time units, only . τ1 and . τ3 can interrupt the execution of . τ2. . □

5.2.5 Response Time Constraints 

The WCRT of a real-time task is a procedure provided by RTS scheduler Cheddar1 

[17] to evaluate the schedulability of the tasks processed in an RTS. From the 
perspective of supervisory control, WCRT is restricted by a specification. 

Example For task . τ2, we have  .D2 = 9. A WCRT specification can be customized 
to restrict the execution of . τ2 to be completed no later than 7 time units. Formally, 
we have .W2 = 7. . □

Then, all the safe execution sequences generated by the synchronized specifi-
cations with respect to the tasks running in a uni-processor RTS can be calculated 
offline by the supervisory control of DES. Users can choose any sequence to sched-
ule the processor. In the case that task-centered conditional-preemption relations do 
not exist, the preemption relations defined in the matrix are applied to the real-time 
scheduling throughout the execution. Otherwise, the real-time scheduling should 
take both the task-centered conditional-preemption and PFCP specifications into 
account simultaneously. 

5.3 Tasks Modelled by Discrete-Event Systems 

In this section, DES generators are utilized to describe the processor behavior 
to execute periodic real-time tasks. As stated in Sect. 4.2.2, the states filled with 
gray represent that the corresponding task is under execution. Eventually, the 
synchronized language, represented by a more complex DES generator, is utilized to 
describe the global processor behavior for real-time scheduling. In a synchronized 
DES generator, all the enabled events can occur without considering their priorities. 
Thus, if two or more events are eligible simultaneously, their synchronous product 
allows them to occur in any order. Since the synchronous product can provide all 
the possible sequences that are not related to priorities, conditional-preemption is 
possible. Each DES generator can be represented by a regular language, which is 
stated in the Appendix of this chapter. 

The DES generator for an RTS task . τi is represented by 

.Gi = (Qi,Σi, δi, q0,i ,Qm,i),

1 http://beru.univ-brest.fr/cheddar/. 

http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
http://beru.univ-brest.fr/cheddar/
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where 

• . Qi is the finite state set, 
• . Σi is the alphabet with .Σi = Σcon,i∪̇Σunc,i : 

– .Σcon,i := {αi, c1, c2, . . . , ci , . . . , cn}: controllable event subset , and 
– .Σunc,i := {βi, γi, l}: uncontrollable event subset, 

• .δi : Qi × Σi → Qi is the (partial) transition function, 
• .q0,i is the initial state, and 
• .Qm,i is the subset of marker states. 

Furthermore, for . Gi , its alphabet (event labels), written as . Σi to describe the 
behavior of . Gi , is the disjoint union of .Σo,i and . Σe, i.e., .Σi = Σo,i∪̇Σe with 
.Σo,i ∩ Σe = ∅, .Σo,i = {γi, αi, βi}, and .Σe = {c1, c2, . . . , ci , . . . , cn, l}, where 
• .Σo,i is the operation event set of task . τi , with 

– . γi : task . τi is released, 
– . αi : the execution of . τi is started, and 
– . βi : the execution of . τi is completed, 

• . Σe is the execution event set, with 

– .(i ∈ n) . ci : task . τi is under execution in the processor, and 
– l: no task is under execution in the processor, i.e., the corresponding processor 

time unit is in an idle operation. 

The global event set of an RTS . S is denoted by 

. Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn.

Clearly, . Σ is partitioned into 

• .Σcon = {αi, ci |i ∈ n}: the  controllable event set, and 
• .Σunc = {βi, γi, l|i ∈ n}: the  uncontrollable event set; 
and also partitioned into 

• .Σo = {γi, αi, βi |i ∈ n}: the  operation event set, and 
• .Σe = {ci, l|i ∈ n}: the  execution event set. 
The controllability of event . αi (resp., . ci), .i ∈ n, endows the uni-processor RTS with 
the authority to choose and execute (resp., interrupt) any task among all the released 
ones. The controllable event . αi is disabled in order to delay the execution of task . τi

for the purpose of avoiding blocking. The general DES model for real-time periodic 
tasks is presented in Fig. 5.2, in which . ∗ represents the events in .Σe − {ci}. All the 
states and transitions are defined by: 

• states .y−Ri
, .y−Ri+1 , . . . ., .y−1, and . yγ form the state set before task . τi is released 

for the first time, 
• state . yγ : . τi is ready for execution,
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• state . yα
k with .0 ≤ k ≤ Di − Ci : k time units have passed since the recent release 

of task . τi , 
• state .yk,p with .0 ≤ k ≤ Di − Ci and .0 ≤ p ≤ Ci : starting the p-th time unit 

execution of task . τi at the k-th time unit in a period, 
• state . y

β
k with .Ci ≤ k ≤ Di : the targeting state of event . βi , 

• states . yk with .Di < k < Ti : the execution of task . τi is completed and k time 
units have elapsed since the recent release of task . τi , 

• .Di = Ti .⇒ .y
β
Di

= yγ , 
• the state with an entering arrow is the initial state .y−Ri

, 
• the states represented by double circles are the marker states .Qm,i , 
• . ci (resp., . cj ) represents the execution of . τi (resp., .τj ∈ S, .j /= i), and 
• the function . δi satisfies 

– .(−Ri ≤ k ≤ −1) .δi(yk, l) = yk+1: the processor is in an idle operation, 
– .(−Ri ≤ k ≤ −1) δi(yk, cj ) = yk+1: task . τj is in process, 
– .δ(yγ , γi) = yα

0 : . τi is released, 
– .(0 ≤ k ≤ Di −Ci) .δi(y

α
k , αi) = yk,0: at state . yα

k , the execution of . τi is started, 

– .(Ci ≤ k ≤ Di) .δi(yk,Ci
, βi) = y

β
k : at state .yk,Ci

, the  processing of . τi is 
completed, 

– .(0 ≤ k < Di , .0 ≤ p < Ci) .δi(yk,p, ci) = yk+1,p+1: task . τi is in process, 
– .(0 ≤ k < Di , .0 ≤ p < Ci) .δi(yk,q , cj ) = yk+1,q : the execution of task . τi is 

preempted by . τj , 

– .(Ci ≤ k < Di), .δi(y
β
k , cj ) = y

β
k : after the occurrence of . βi , . τj is in process, 

– .(Ci ≤ k < Di), .δi(y
β
k , l) = y

β
k : after the occurrence of . βi , the processor is in 

an idle operation, 
– .δi(y

β
Di

, cj ) = yDi+1: after the occurrence of . βi , . τj is in process, 

– .δi(y
β
Di

, l) = yDi+1: after the occurrence of . βi , the processor is in an idle 
operation, 

– .(Di < k ≤ Ti − 1), .δi(yk, cj ) = yk+1: task . τj is in process, and 
– .(Di < k ≤ Ti − 1), .δi(yk, l) = yk+1: the processor is in an idle operation. 

Example The DES model . G2 corresponding to tasks . τ2 is depicted in Fig. 5.3. 
Since .R2 = 3, event . γ2 occurs at the end of the third processor time unit. After 
a period of . τ2 is finished, . γ2 occurs immediately to repeat the process. . □

All the operations in TCT2 and the names of the generated files are recorded in 
an annotated file MAKEIT.TXT. In TCT, . G1, . G2, . G3, and . G4 are named as TASK1, 
TASK2, TASK3, and TASK4, respectively. The creation of TASK2 is reported 
below, in which for .i ∈ n, events . γi , . αi , . βi , and . ci are renamed i0, i1, i2, and 
i9, respectively. Moreover, event l is represented by 0. The corresponding system

2 http://www.control.utoronto.ca/DES. 

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
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Fig. 5.2 General DES model for task . τi

behavior is calculated by the synchronous product procedure. In accordance with 
Sect. 4.3, the utilized TCT procedures are introduced in [20]. 

TASK2 = create (TASK2, [mark 0, 1, 2, 3, 4, 9, 10, 15, 16, 21, 22], [tran [0, 0, 1], 
[0, 19, 1], [0, 39, 1], [0, 49, 1], [1, 0, 2], [1, 19, 2], [1, 39, 2], [1, 49, 2], [2, 0, 3], [2, 
19, 3], [2, 39, 3], [2, 49, 3], [3, 20, 4], [4, 19, 10], [4, 21, 5], [4, 39, 10], [4, 49, 10], 
[5, 19, 11], [5, 29, 6], [5, 39, 11], [5, 49, 11], [6, 19, 12], [6, 29, 7], [6, 39, 12], [6, 
49, 12], [7, 19, 13], [7, 29, 8], [7, 39, 13], [7, 49, 13], [8, 22, 9], [9, 0, 15], [9, 19, 
15], [9, 39, 15], [9, 49, 15], [10, 19, 16], [10, 21, 11], [10, 39, 16], [10, 49, 16], [11, 
19, 17], [11, 29, 12], [11, 39, 17], [11, 49, 17], [12, 19, 18], [12, 29, 13], [12, 39, 
18], [12, 49, 18], [13, 19, 19], [13, 29, 14], [13, 39, 19], [13, 49, 19], [14, 22, 15], 
[15, 0, 21], [15, 19, 21], [15, 39, 21], [15, 49, 21], [16, 19, 22], [16, 21, 17], [16, 39, 
22], [16, 49, 22], [17, 19, 23], [17, 29, 18], [17, 39, 23], [17, 49, 23], [18, 19, 24], 
[18, 29, 19], [18, 39, 24], [18, 49, 24], [19, 19, 25], [19, 29, 20], [19, 39, 25], [19, 
49, 25], [20, 22, 21], [21, 0, 3], [21, 19, 3], [21, 39, 3], [21, 49, 3], [22, 21, 23], [23, 
29, 24], [24, 29, 25], [25, 29, 26], [26, 22, 3]]) (27, 81)
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Fig. 5.3 DES model . G2

Suppose that we have an RTS . S that possesses only one processor; three 
scheduling plans are discussed below. 

Plan 1: . τ1 and . τ2 in Process 
Suppose that tasks . τ1 and . τ2 are processed in an RTS . S, denoted by . S1. It is  
generated by the procedure sync provided by TCT. Since tasks . τ3 and . τ4 are not 
in . S1, within . τ1 and . τ2, we can eliminate . c3 and . c4 (events 39 and 49) by relabelling 
them to be . c2 (event 29) and . c1 (event 19), respectively. Thereafter, the DES 
model representing . S1 can be generated by a synchronous product. In TCT, . S1 is 
represented by SYS1 that contains 71 states and 98 transitions. The corresponding 
TCT procedures are (all the sync operations in the original MAKEIT.TXT file are 
reported with the message “Blocked_events = None”, eliminated in this monograph 
for readability): 

. TEST1 = relabel (TASK1, [[39, 29], [49, 29]]) (42, 72)

. TEST2 = relabel (TASK2, [[39, 19], [49, 19]]) (27, 45)

.SYS1 = sync (TEST1, TEST2) (71, 98)
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Plan 2: . τ1, . τ2, and . τ4 in Process 
Suppose that tasks . τ1, . τ2, and . τ4 are processed in RTS . S, denoted by . S2. It is  
represented by SYS2 in TCT, and can be generated in a similar way, i.e., 

. TEST1 = relabel (TASK1, [[39, 29]]) (42, 102)

. TEST2 = relabel (TASK2, [[39, 19]]) (27, 63)

. TEST4 = relabel (TASK4, [[39, 19]]) (69, 173)

. SYS2 = sync (TEST1, TEST2, TEST4) (170, 279)

Plan 3: . τ1, . τ2, . τ3, and . τ4 in Process 
Suppose that all four tasks . τ1, . τ2, . τ3, and . τ4 are processed in RTS . S, denoted by . S3. 
Represented by SYS3 in TCT, . S3 can be generated in a similar way, i.e., 

SYS3 = sync (TASK1, TASK2, TASK3, TASK4) (952, 2056) Blocked_events = [0] 

This shows that there is a blocked event 0 (l) in SYS3 (. S3), which represents that 
in the real-time scheduling, there is no idle time unit. This means that the processor 
utilization of . S3 is .U3 ≥ 1 [12]. By calculating the processor utilization of . S3, we  
obtain 

. U3 = 3

9
+ 3

6
+ 1

5
+ 2

14
> 1.

Thus, . S3 is non-schedulable. Hence, it can be reconfigured by following the 
approach proposed in Chap. 4. Furthermore, based on a modular modelling 
approach, the scheduling/reconfiguration approach is generalized in Chap. 6. 

In the modelling phase, “bad decisions” made by the synchronous product 
procedure may block the PFCP real-time scheduling. As a solution, in the rest of 
this chapter, SCT is utilized to supervise the RTS to be nonblocking. 

5.4 Specifications Modelled by Discrete-Event Systems 

In accordance with [20], all possible behaviors in a processor of an RTS are 
generated by a DES, called the plant. Hence, the behavior of an RTS under control 
is a subset of the generated languages with respect to certain constraints that are 
provided by some specification languages. In order to schedule the processor to 
be nonblocking and conditionally-preemptive, we shall impose the synchronous 
product of proper specifications on the behavior of the processor. For each task 
running in a processor, four types of specifications are defined: 

• nonblocking specifications: nonblocking preemptive scheduling of real-time 
tasks, 

• PFCP specifications: the preemption relation among all the tasks,
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• task-centered conditional-preemption specifications : during the execution of 
each task, the exact preemption plan between two adjacent time units, and 

• WCRT-based specifications: the WCRT in all the periods. 

According to the study in [20] and Chap. 4, given any RTS represented by . G, for  
any specification, selfloops of events appeared in . G but not in the specification 
must be adjoined to account for all the events that are irrelevant to the specification 
but possibly executed in the plant. For simplification, in this section, we build the 
specification by the create procedure in TCT; thereafter the selfloops are adjoined 
by the procedures allevents and sync. The selfloop of events for . τi is viewed as its 
nonblocking specification. 

5.4.1 Nonblocking Specifications 

In order to control the RTS to be nonblocking, the specification . SN
i for task . τi should 

allow the occurrence of any strings over . Σi . Formally, we have: 

. L(SN
i ) = Σ∗

i .

The TCT procedure allevents can be utilized to generate a DES representing . Σ∗
i . 

As shown in Fig. 5.4, the nonblocking specification for task . τi is a generator with 
only one state at which all the events appeared in . Σi are enabled. 

The corresponding TCT operations to create such specifications are provided. 
SN1, SN2, SN3, and SN4 are the nonblocking specifications . SN

1 , . S
N
2 , . S

N
3 , and 

. SN
4 , respectively. In TCT, the monolithic nonblocking specification for an RTS . S

is denoted by SN. The corresponding TCT operations are given below. 

. SN1 = allevents (TASK1) (1, 8)

. SN2 = allevents (TASK2) (1, 8)

. SN3 = allevents (TASK3) (1, 8)

. SN4 = allevents (TASK4) (1, 8)

Fig. 5.4 Nonblocking 
specification for task .τi
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5.4.2 Matrix-Based Priority-Free Conditional-Preemption 
Specifications 

In a processor, all the possible preemptions that may occur during the execution 
of task . τi are defined in the i-th row of the preemption matrix . A. More precisely, 
task . τi can be preempted by . τj if .Ai,j = 1. The preemption occurs between the 
occurrences of . αi and . βi . Thus, a matrix-based PFCP specification . SAi is defined for 
a task . τi with a generator 

. SAi = (QA
i , ΣA

i , δAi , qA
0i ,Q

A
mi).

Here 

• . QA
i : the state set that contains two states: 

– . y0: task . τi is not in process and 
– . y1: task . τi is in process, 

• .ΣA
i = ⋃

i∈n Σi : the set of all the events appearing in the processor, 
• . δAi : the (partial) transition function: 

– .δAi (y0, σ ) = y0, .σ ∈ Σe − {ci}: . τi is not in process, and the time unit can be 
taken by other tasks or idle, 

– .δAi (y1, ci) = y1: task . τi is in process, 
– .δAi (y1, cj ) = y1: task . τi can be preempted by . τj , i.e., .Ai,j = 1, 
– .δAi (y0, αi) = y1: the execution of . τi is started, and 
– .δAi (y1, βi) = y0: the execution of . τi is completed, 

• .qA
0,i = y0 is the initial state, and 

• .QA
m,i = {qA

0,i} is the subset of marker states. 

The DES model of specification . SAi for . τi is illustrated in Fig. 5.5, where 

• . ∗ represents the events in .Σe − {ci}, and 
• . cj represents the execution of task . τj that is allowed to preempt the execution 

of . τi . 

As a result, the TCT operations to create the specifications corresponding to 
matrix . A2 are listed below, in which 1NP, 2NP, 3NP, and 4NP are the non-
preemptive specifications . SA1 , . S

A
2 , . S

A
3 , and . SA4 for task . τ1, . τ2, . τ3, and . τ4, respectively. 

Each specification represents that the execution of the corresponding task cannot be 
preempted. 

Fig. 5.5 Matrix-based 
conditional-preemption 
specification
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1NP = create (1NP, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49, 
0], [1, 12, 0], [1, 19, 1]]) (2, 7) 

2NP = create (2NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 39, 0], [0, 49, 0], [0, 21, 
1], [1, 22, 0], [1, 29, 1]]) (2, 7) 

3NP = create (3NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 31, 1], [0, 49, 
0], [1, 32, 0], [1, 39, 1]]) (2, 7) 

4NP = create (4NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 41, 
1], [1, 42, 0], [1, 49, 1]]) (2, 7) 

Moreover, the matrix-based PFCP specifications are created for matrix . A5: 

• 1B34: the execution of task. τ1 can be preempted by . τ3 and . τ4, and 
• 2B4: the execution of task . τ2 can be preempted by . τ4. 

The corresponding TCT operations are listed below. 

. 1B34 = edit (1NP, [trans +[1, 39, 1], +[1, 49, 1]]) (2, 9)

. 2B4 = edit (2NP, [trans +[1, 49, 1]]) (2, 8)

Similarly, the PFCP specifications are created for matrix . A6: 

• 1B2: the execution of task . τ1 can be preempted by . τ2, 
• 2B4: the execution of task . τ2 can be preempted by . τ4 (DES created already), and 
• 4B1: the execution of task . τ4 can be preempted by . τ1. 

The TCT operations are given below. 

. 1B2 = edit (1NP, [trans +[1, 29, 1]]) (2, 8)

. 4B1 = edit (4NP, [trans +[1, 19, 1]]) (2, 8)

5.4.3 Task-Centered Specifications 

From the perspective of each individual task, task-centered specifications define 
the exact preemption plans between the occurrences of two adjacent time units 
(. ci’s) representing the execution of task . τi . A task-centered conditional-preemption 
specification . SC

i is defined for each task . τi with a generator 

.SC
i = (QC

i ,ΣC
i , δC

i , qC
0i ,Q

C
mi).
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Here . ∗ represents the events in .Σe − {ci}, and 
• . QC

i : the state set containing .Ci + 2 states, 
• .ΣC

i = ⋃
i∈n Σi : the set of all the events appearing in the processor, 

• .(0 ≤ k < Ci)Σ
k
e : user defined unempty subset of . Σe that contains several events 

. cj representing the preemption of task . τj , 
• . δC

i : the (partial) transition function: 

– .(σ ∈ Σe − {ci}) .δC
i (yα

0 , σ ) = yα
0 and .δC

i (yCi
, σ ) = yCi

: . τi is not in process; 
the time unit can be occupied by other tasks or idle, 

– .δC
i (yα

0 , αi) = y0: task . τi has arrived, 
– .(0 ≤ k < Ci) .δC

i (yk, ci) = yk+1: task . τi is in process, 
– .(0 ≤ k < Ci, cj ∈ Σk

e ) .δC
i (yk, cj ) = yk: . τi is preempted by the execution of 

. τj , and 
– .δC

i (yCi
, βi) = yα

0 : the execution of . τi is completed, 

• .qC
0,i = yα

0 : the initial state, and 

• .QC
m,i = {yα

0 }: the subset of marker states. 

The DES model of specification . SC
i for . τi is shown in Fig. 5.6, in which the selfloops 

are labelled by event . cj in . Σe corresponding to task . τj , .j /= i, that can preempt the 
execution of task . τi . Let  .0 ≤ k < Ci . The preemption of the k-th execution time 
unit is defined at state . yk . More preciously, if event . cj is in event set .Σk

e that is 
selflooped at state . yk , then the k-th execution time unit is allowed to be preempted 
by . τj . 

The corresponding task-centered conditional-preemption specifications are: 

• ST1: the last time unit of . τ1 cannot be preempted by . τ2, 
• ST2: the last time unit of . τ2 cannot be preempted by . τ1, 
• ST3: the last time unit of . τ1 cannot be preempted by . τ4, and 
• ST4: the last time unit of . τ2 cannot be preempted by . τ4. 

The corresponding TCT operations to create specifications are listed below. 

ST1 = create (ST1, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49, 
0], [1, 19, 2], [1, 29, 1], [1, 39, 1], [1, 49, 1], [2, 19, 3], [2, 39, 2], [2, 49, 2], [3, 12, 
0], [3, 19, 3], [3, 29, 3], [3, 39, 3], [3, 49, 3]]) (4, 17) 

Fig. 5.6 Task-centered conditional-preemption specification
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ST2 = create (ST2, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 21, 1], [0, 39, 0], [0, 49, 
0], [1, 19, 1], [1, 29, 2], [1, 39, 1], [1, 49, 1], [2, 19, 2], [2, 29, 3], [2, 39, 2], [2, 49, 
2], [3, 29, 4], [3, 39, 3], [3, 49, 3], [4, 19, 4], [4, 22, 0], [4, 39, 4], [4, 49, 4]]) (5, 20) 

ST3 = edit (ST1, [trans +[2, 29, 2], -[2, 49, 2]]) (4, 17) 

ST4 = edit (ST2, [trans +[3, 19, 3], -[3, 49, 3]]) (5, 20) 

5.4.4 Response Time Constraint Specifications 

The preemption of real-time execution increases the response time of task . τi . In  
order to constrain that the execution time of task . τi is not longer than a value of 
WCRT . Wi , i.e., in a period . Ti , the execution time between the occurrences of events 
. γi and . βi is limited to be no greater than . Wi time units, a WCRT-based specification 
. SWi is defined for task . τi with a generator 

. SWi = (QW

i , ΣW

i , δWi , qW

0,i ,Q
W

m,i),

where 

• . QW

i : the state set containing .Wi + 2 states, 
• .ΣW

i = Σi − {l}: the set of all the events except l appearing in . Gi , 
• . δWi : the (partial) transition function: 

– .δWi (yγ , σ ) = yγ , .σ ∈ Σe − {ci}: . τi is not in process, and the time unit can be 
taken by other tasks or idle, 

– .δWi (yγ , γi) = y0: . τi is released, 
– .(0 ≤ k < Wi , σ ∈ Σe − {l}) .δWi (yk, σ ) = yk+1: task . τj is in process, and 
– .(0 < k < Wi ) .δWi (yk, βi) = yk+1: the execution of . τi is completed, 

• .qW

0,i = yγ : the initial state, and 

• .QW

m,i = {yγ }: the subset of marker states. 

The DES model of specification .SWi for . τi is shown in Fig. 5.7, where . ∗ and . ∗∗
represents the events in .Σe − {ci} and .Σe − {l}, respectively. 
Example For the RTS tasks shown in Table 5.1, a possible set of WCRT-based 
specifications are: 

• SR1: the WCRT of task . τ1 is .W1 = 4, and 
• SR4: the WCRT of task . τ4 is .W4 = 2. 

The corresponding TCT operations to create specifications are listed below.



112 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.7 WCRT-based conditional-preemption specification 

SR1 = create (SR1, [mark 0], [tran [0, 0, 0], [0, 10, 1], [0, 29, 0], [0, 39, 0], [0, 49, 
0], [1, 19, 2], [1, 29, 2], [1, 39, 2], [1, 49, 2], [2, 12, 0], [2, 19, 3], [2, 29, 3], [2, 39, 
3], [2, 49, 3], [3, 12, 0], [3, 19, 4], [3, 29, 4], [3, 39, 4], [3, 49, 4], [4, 12, 0], [4, 19, 
5], [4, 29, 5], [4, 39, 5], [4, 49, 5], [5, 12, 0]]) (6, 25) 

SR4 = create (SR4, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 40, 
1], [1, 19, 2], [1, 29, 2], [1, 39, 2], [1, 49, 2], [2, 19, 3], [2, 29, 3], [2, 39, 3], [2, 42, 
0], [2, 49, 3], [3, 42, 0]]) (4, 16) . □

5.5 Case Study I: Supervisor Synthesis of Motor Network 

So far, the priority-free scheduling policy with conditional-preemption is described 
in regular languages that can be represented by DES. It is well known that 
SCT can be used to find the supremal controllers that provide the minimally 
restricted controller of the systems. By utilizing the procedure sync in TCT, all the 
specifications can be integrated into a unique one. The procedure supcon in TCT 
finds all the safe execution sequences within an RTS satisfying the synchronized 
specification. Users need not be concerned with the mathematical calculations; by 
utilizing TCT, all the safe execution sequences are provided in the supervisor. Each 
sequence can be utilized by users to schedule the RTS. All the EDF, FP, and other 
sequences can be found in the synthesized supervisor. 

As illustrated in Fig. 5.8, an example motor network similar to the one studied in 
[3] is considered as an RTS. Suppose that four electric motors are controlled by a 
uni-processor. Their deadlines and periods are represented by D and T , respectively. 
These parameters coincide with those of the tasks in the previous examples as 

• Motor 1: . τ1, 
• Motor 2: . τ2, 
• Motor 3: . τ3, and 
• Motor 4: . τ4. 

The work plans of the motor network also coincide with the RTS models presented 
in Sect. 5.3. Since .R2 = 3, Motor 2 will be ready three ms later than other tasks. We
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Fig. 5.8 A motor network 
example 

Computation: 
Motor 1: 3 ms Motor 2: 3 ms 
Motor 3: 1 ms Motor 4: 2 ms 

Motor 1 
D: 9 ms 
T: 9 ms 

Motor 2 
D: 6 ms 
T: 6 ms 

Motor 3 
D: 4 ms 
T: 5 ms 

Motor 4 
D: 14 ms 
T: 18 ms 

Table 5.2 Uni-processor 
scheduler behaviors of . S1

Plan Spec Super LM SM 

1 .A1 (71, 98) (6, 7) (24, 33) 

2 .A2 (58, 70) (6, 7) (20, 21) 

3 .A3 (69, 87) (6, 7) (24, 27) 

4 .A4 (69, 87) (6, 7) (24, 27) 

5 . A1, ST1, ST2  (68, 90) (6, 7) (23, 27) 

6 . A3, ST1 (65, 82) (6, 7) (22, 24) 

take work plans I and II of . S, denoted by . S1 and . S2, to find all the safe execution 
sequences under priority-free conditionally-preemptive scheduling. 

5.5.1 Work Plan I 

Since .τ1, τ2 ∈ S1, we only consider the specifications corresponding to tasks . τ1 and 
. τ2. The synthesized supervisor is shown in Table 5.2, in which LM and SM represent 
the release map and the scheduling map, respectively. The numbers of the states and 
transitions are recorded in the form (number of states, number of transitions). Based 
on supervisory control of DES, several other examples of different specifications 
are also listed in Table 5.2. For . S1, we have  

• . A1: SN1 and SN2, 
• . A2: 1NP, 2NP, SN1, and SN2, 
• . A3: 2NP, SN1, and SN2, and 
• . A4: 1NP, SN1, and SN2. 

RTS Scheduling Plan 1 
The scheduling corresponding to Plan 1 (. A1) is preemptive. Thus, we only need to 
control the RTS to be nonblocking. Denote this specification by PS1. In TCT, it is 
calculated by 

. PS1 = sync (SN1, SN2) (1, 11).

All the safe preemptive execution sequences are calculated by the TCT procedure 
supcon, i.e.,
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Fig. 5.9 Release map of . S1

. SUPER1 = supcon (SYS1, PS1) (71, 98).

The safe execution sequences in SUPER1 are represented by a DES with 71 
states and 98 transitions. By projecting out all events but . αi , i.e., 

. PMSUPER1 = project (SUPER1, Image [11, 21]) (6, 7).

We obtain the preemptive release map of . S1 in the trimmed version of PMSUPER1 
as follows: 

. PMSUPER1 = trim (PMSUPER1) (6, 7).

All the safe release sequences are shown in Fig. 5.9. In SUPER1, by projecting out 
all events but . ci , i.e., 

. PJSUPER1 = project (SUPER1, Image [19, 29]) (24, 33).

In the trimmed version below, i.e., 

. PJSUPER1 = trim (PJSUPER1) (24, 33),

we obtain the preemptive scheduling map of . S1, as shown in Fig. 5.10a, that contains 
all the safe execution sequences of . c1 and . c2. The other marker states except the 
initial states in PMSUPER1 and PJSUPER1 represent that the corresponding task 
is ready to be released, which is redundant information for the users. Thus they 
are unmarked, similar to such diagrams of other scheduling plans. PMSUPER1 and 
PJSUPER1 are unmarked below. 

. PMSUPER1 = edit (PMSUPER1, [mark -[all]]) (6, 7)

. PMSUPER1 = edit (PMSUP1, [mark +[0]]) (6, 7)

. PJSUPER1 = edit (PMSUPER1, [mark -[all]]) (24, 33)

.PJSUPER1 = edit (PJSUP1, [mark +[0]]) (24, 33)



5.5 Case Study I: Supervisor Synthesis of Motor Network 115

Fig. 5.10 Scheduling map of . S1. (a) . A1. (b) . A2. (c) . A3. (d) . A4. (e) . A1, SC1, and  SC2.  (f) . A3 and 
SC1
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RTS Scheduling Plan 2 
The scheduling corresponding to Plan 2 (. A2) shown in Table 5.2 is non-preemptive. 
The corresponding TCT operations are listed below. 

. PS2 = sync (1NP, 2NP, SN1, SN2) (4, 21)

. SUPER2 = supcon (SYS1, PS2) (58, 70)

. PMSUPER2 = project (SUPER2, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER1, PMSUPER2; identity)

. PJSUPER2 = project (SUPER2, Image [19, 29]) (20, 21)

RTS Scheduling Plan 3 
The corresponding TCT operations for Plan 3 (. A3) shown in Table 5.2 are listed 
below. 

. PS3 = sync (2NP, SN1, SN2) (2, 15)

. SUPER3 = supcon (SYS1, PS3) (69, 87)

. PMSUPER3 = project (SUPER3, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER1, PMSUPER3; identity)

. PJSUPER3 = project (SUPER3, Image [19, 29]) (24, 27)

RTS Scheduling Plan 4 
The corresponding TCT operations for Plan 4 (. A4) shown in Table 5.2 are listed 
below. 

. PS4 = sync (1NP, SN1, SN2) (2, 15)

. SUPER4 = supcon (SYS1, PS4) (69, 87)

. PMSUPER4 = project (SUPER4, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER4, PMSUPER1; identity)

. PJSUPER4 = project (SUPER4, Image [19, 29]) (24, 27)

.false = isomorph (PJSUPER4, PJSUPER3)
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RTS Scheduling Plan 5 
The corresponding TCT operations for Plan 5 shown in Table 5.2 are listed below. 

. PS5 = sync (PS1, ST1, ST2) (19, 116)

. SUPER5 = supcon (SYS1, PS5) (68, 90)

. PMSUPER5 = project (SUPER5, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER5, PMSUPER1; identity)

. PJSUPER5 = project (SUPER5, Image [19, 29]) (23, 27)

RTS Scheduling Plan 6 
The corresponding TCT operations for Plan 6 shown in Table 5.2 are listed below. 

. PS6 = sync (PS3, ST1) (8, 43)

. SUPER6 = supcon (SYS1, PS6) (65, 82)

. PMSUPER6 = project (SUPER6, Image [11, 21]) (6, 7)

. true = isomorph (PMSUPER6, PMSUPER1; identity)

. PJSUPER6 = project (SUPER6, Image [19, 29]) (22, 24)

Supcon Results 
All the release maps are isomorphic with the release map depicted in Fig. 5.9. 
Moreover, all the scheduling maps are depicted in Fig. 5.10. This means that, based 
on a supremal release map, according to different preemption plans, the priority-
free conditionally-preemptive scheduling policy can provide different results. To 
the best of our knowledge, no other scheduling algorithms can schedule an RTS by 
considering . A3 and ST1 simultaneously. 

In an RTS, under EDF, the tasks with the earliest deadlines are assigned with 
the highest priority. EDF scheduling chooses only one task among them to execute 
without considering other possibilities. Other released tasks have no chance to be 
executed by the processor. 

As a comparison, the preemptive EDF scheduling result of . S1 by Cheddar [17] 
is depicted in Fig. 5.11, which can also be found in Fig. 5.10a. The execution 
sequence in Fig. 5.11 looks like a non-preemptive scheduling sequence. However, 
none of the exact preemptive scheduling sequences in Fig. 5.10a can be generated by 
EDF. Hence, as a reconfiguration scenario, in Fig. 5.11, if task  . τ2 (with the earliest 
deadline) cannot arrive on time at the ninth time unit, according to the multiple
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Fig. 5.11 Preemptive scheduling map of . S1

Table 5.3 Uni-processor 
scheduler behaviors of . S1

Plant Spec Super LM SM 

SYS1 PS3 SUPER1 (69, 87) (6, 7) (24, 27) 

SUPER1 ST1, PS1 SUPER2 (65, 82) (6, 7) (22, 24) 

SUPER2 SR1, PS1 SUPER3 (45, 52) (5, 5) (15, 15) 

Fig. 5.12 Preemptive scheduling with . W1 = 4

sequences, users can choose another available sequence shown in Fig. 5.10a to  
schedule task . τ1 first. Thus, recalculating the scheduling sequences is unnecessary. 
However, at the ninth time unit, there is no EDF sequence to execute . τ1 first. If 
. τ2 cannot arrive on time, the EDF scheduling cannot schedule . S1 successfully. The 
supervisory control technique provides a larger number of safe execution sequences, 
compared with EDF scheduling. 

The WCRT of . τ1 in the scheduling sequence shown in the Gantt chart depicted 
in Fig. 5.11 is .W1 = 6. By comparison, in the scheduling map shown in Fig. 5.10a, 
when tasks . τ1 and . τ2 are released simultaneously, one can preempt another 
randomly. In all of these scheduling sequences, we have .W1 ≤ 6. 

By following the speeding up approach presented in Chap. 1, the scheduling of 
. S1 based on . A3 and ST1 can be calculated in the first two steps as listed in Table 5.3. 
Moreover, if we require that the WCRT of task . τ1 be .W1 = 4, only one such 
sequence exists, as stated in SUPER3 in Table 5.3, which is shown in Fig. 5.12. 
Accordingly, . S1 can be scheduled in the order .τ1τ2τ1τ2τ2. Notice that specifications 
ST1 and SR1 are synchronized with specification PS1 since it guarantees that the 
synthesis procedure is nonblocking. 

5.5.2 Work Plan II 

By .τ1, τ2, τ4 ∈ S2, we only consider the specifications corresponding to tasks . τ1, . τ2, 
and . τ4. Several supervisors are calculated and listed in Table 5.4. The release maps 
are isomorphic with each other, as shown in Fig. 5.13. The scheduling maps of RTS
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Table 5.4 Uni-processor 
scheduler behaviors of . S2

Plan Spec Super LM SM 

7 .A5 (128, 186) (9, 12) (34, 41) 

8 . A5, ST3, ST4 (119, 173) (9, 12) (32, 37) 

9 .A6 (145, 215) (9, 12) (44, 54) 

10 . A6, ST1 (140, 204) (9, 12) (39, 47) 

Fig. 5.13 Release map of . S2

. S2 are depicted in Figs. 5.14 and 5.15. To the best of our knowledge, no sequence in 
Figs. 5.14b and 5.15b can be achieved by other scheduling algorithms. 

RTS Scheduling Plan 7 
The corresponding TCT operations for Plan 7 shown in Table 5.4 are listed below. 

. PS7 = sync (SN1, SN2, SN4, 1B34, 2B4, 4NP) (8, 57)

. SUPER7 = supcon (SYS2, PS7) (128, 186)

. PMSUPER7 = project (SUPER7, Image [11, 21, 41]) (9, 12)

. PMSUPER7 = trim (PMSUPER7) (9, 12)

. PJSUPER7 = project (SUPER7, Image [19, 29, 49]) (34, 41)

RTS Scheduling Plan 8 
The corresponding TCT operations for Plan 8 shown in Table 5.4 are listed below. 

. PS8 = sync (PS7, ST3, ST4) (28, 159) Blocked_events = None

.SUPER8 = supcon (SYS2, PS8) (119, 173)
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Fig. 5.14 Scheduling map of . S2 (1). (a) . A5. (b) . A5, SC3, and  SC4  

. PMSUPER8 = project (SUPER8, Image [11, 21, 41]) (9, 12)

. true = isomorph (PMSUPER8, PMSUPER7; identity)

.PJSUPER8 = project (SUPER8, Image [19, 29, 49]) (32, 37)
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Fig. 5.15 Scheduling map of . S2 (2). (a) . A6. (b) . A6 and SC1 

RTS Scheduling Plan 9 
The corresponding TCT operations for Plan 9 shown in Table 5.4 are listed below. 

. PS9 = sync (SN1, SN2, SN4, SP12, 2B4, 4B1) (8, 56)

. SUPER9 = supcon (SYS2, PS9) (149, 215)

. PMSUPER9 = project (SUPER9, Image [11, 21, 41]) (9, 12)

. true = isomorph (PMSUPER9, PMSUPER7; identity)

.PJSUPER9 = project (SUPER9, Image [19, 29, 49]) (44, 54)
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RTS Scheduling Plan 10 
The corresponding TCT operations for Plan 10 shown in Table 5.4 are listed below. 

. PS10 = sync (PS9, ST1) (16, 101)

. SUPER10 = supcon (SYS2, PS10) (140, 204)

. PMSUPER10 = project (SUPER10, Image [11, 21, 41]) (9, 12)

. true = isomorph (PMSUPER10, PMSUPER9; identity)

. PJSUPER10 = project (SUPER10, Image [19, 29, 49]) (39, 47)

Supcon Results 
The supervisor synthesized according to Plan 7 provides all the partial preemption 
scheduling sequences. For instance, the Gantt chart representing a partial preemp-
tion scheduling result of . S2 is depicted in Fig. 5.16, which can also be found in 
Fig. 5.14a. Evidently, SCT provides a greater number of safe execution sequences 
w.r.t. partial preemption scheduling. By also considering SR4 as a specification, we 
obtain a supervisor with 83 states and 118 transitions. The corresponding release 
map is isomorphic with  the one  shown in Fig. 5.13. Two scheduling sequences are 
depicted in Fig. 5.17; they form a subset of the safe executions shown in Fig. 5.14a. 
The sequence in Fig. 5.16 can be found in Fig. 5.17. 

Fig. 5.16 PTS scheduling map of . S2

Fig. 5.17 Partial preemtion and WCRT scheduling map of .S2
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5.6 Case Study II: Supervisor Synthesis of Manufacturing 
Cell 

Consider a manufacturing cell as an example. As shown in Fig. 5.18, a robot R is 
utilized to transport two types of workpieces, W1 and W2, to a conveyor. Two pieces 
of W1 (resp., W2) are released to the input buffer . B1 (resp., . B2) simultaneously in 
every six (resp., three) seconds. The robot R has capacity one; transporting a piece 
takes 1 second. Thus, we define task .τ1 = (0, 2, 6, 6) (resp., .τ2 = (0, 2, 3, 3)) to  
represent the transportation of the two pieces of W1 (resp., W2) by R. Consequently, 
we have a system .S = {τ1, τ2}. 

Suppose that the preemption matrix with respect to . S is 

. A1 =
(
0 0
1 0

)
.

The scheduling can be considered as an FP scheduling, i.e., task . τ1 cannot be 
preempted by . τ2, and . τ2 is allowed to be preempted by . τ1. In other words, the robot 
must transport the two pieces of W1 in two adjacent seconds, but it is not necessary 
for transporting W2. By utilizing SCT, the supervisor calculated by supcon is 
represented by a DES with 21 states and 27 transitions. As shown in Fig. 5.19, 
the release (resp., scheduling) map is represented by a generator with three (resp., 
six) states and three (resp., six) transitions. As shown in Fig. 5.19b, no preemption 

Fig. 5.18 Manufacturing cell 

Fig. 5.19 FP scheduling. (a) Release map. (b) Scheduling map



124 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

Fig. 5.20 Preemptive scheduling. (a) Release map. (b) Scheduling map 

scheduling sequences are found. This requires that the robot R should transport the 
workpieces in the following order periodically: 

. W2, W2, W1, W1, W2, W2.

Suppose that the preemption matrix is 

. A2 =
(
0 1
1 0

)
,

i.e., the real-time scheduling is preemptive. This means that the robot can transport 
W1 and W2 in any order. SCT is used to calculate the supervisor, and it is 
represented by a DES with 37 states and 55 transitions. As shown in Fig. 5.20, the  
release map (resp., scheduling map) is represented by a generator with four (resp., 
ten) states and five (resp., 14) transitions. The scheduling map in Fig. 5.20b provides 
nine safe execution sequences. 

If we also require that, based on . A2, the WCRT of task . τ1 be .W1 = 5, i.e., the 
two pieces of W1 must be transported in the first 5 seconds after their release, then 
we obtain a supervisor that is represented by a DES with 63 states and 91 transitions.



5.7 Conclusion 125

c1 

c2 

c2 

c1 

c2 

c2 

c2 

c1 

c1 

c2 

c1 

c2 

c2 

c1 

c1 

c2 

c2 

c1 

Fig. 5.21 Preemptive scheduling with . W1 = 5

The release map is isomorphic with the map depicted in Fig. 5.20a; the scheduling 
map is visualized in Fig. 5.21. 

5.7 Conclusion 

This chapter reports a formal constructive method for real-time periodic tasks 
via a DES model. The behavior of a processor can be established by the syn-
chronous product of the DES models of all tasks running in it. The tasks can be 
scheduled without considering their priorities. This chapter presents two sets of 
conditional-preemption specifications, i.e., PFCP specifications, and task-centered 
conditional-preemption specifications. Moreover, in order to control the system to 
be nonblocking and also limit the WCRT of the tasks, two corresponding sets 
of specifications are presented. The formal supervisory control of DES can be 
considered as a rigorous analysis and synthesis tool to schedule the RTS satisfying 
the deadlines. The procedure sync in TCT is utilized to generate the plant and 
global specifications. By utilizing the procedure supcon, all the conditionally-
preemptive safe execution sequences can be calculated. These sequences can 
provide more choices than the classical scheduling algorithms and the real-time 
scheduling proposed in Chap. 4 based on the supervisory control of TDES. The 
offline scheduling algorithm presented in this chapter can be applied to a practical 
context to schedule the real-world uni-processor systems.
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The multi-period proposed in Chap. 4 aims to reconfigure the RTS when no 
safe execution sequences can be found. Based on this idea, by considering the 
exact execution time of real-time tasks, a general modular DES model is presented 
in Chap. 6. Finally, a hierarchical RTS model is presented in Chap. 7. Based on 
nonblocking supervisory control of state-tree structures [13, 14], both conditionally-
preemptive and dynamic priority scheduling are addressed in the SCT-based real-
time scheduling. Moreover, the three-step speeding up approach stated in Chap. 1 
can be applied to this chapter. 

Appendix 

In this chapter, regular languages are utilized to describe the processor behavior 
related to any periodic real-time task execution. Thereafter, each language will 
be followed by a DES generator representation. For any task .τi ∈ S arriving 
periodically, its execution is represented by a DES generator . Gi with marked 
language .Lm(Gi ) and (prefix) closed language .L(Gi ) satisfying 

.L(Gi ) = Lm(Gi ) (5.2) 

that describes all possible executions and random preemptions of task . τi . 
For any execution event .σ ∈ Σe, the occurrence of . σ takes a single processor 

time unit. The marked language .Lm(Gi ) describes all the possible execution 
sequences of task . τi’s execution within a period . Ti . We have  

.Lm(Gi ) = LR
i (γiL

T
i )∗. (5.3) 

This expression contains two parts: 

• . LR
i : the processor behavior before the first time release of task . τi , and 

• . LT
i : the processor behavior within a period . Ti between the occurrence of two 

adjacent . γi’s. 

The event occurrences within a string . sr in . LR
i take . Ri time units in total, i.e., 

.LR
i = {sr | |sr | = Ri}. (5.4) 

If . τi is associated with .Ri = 0, then . LR
i is empty. Otherwise, . LR

i represents that 
the processor could be idle or taken by other tasks before the first time release of 
task . τi . For any .σ ∈ Σi , let  .#σ(sr ) represent the number of occurrences of . σ in a 
string . sr . We have  

.LR
i = {sr |#l(sr ) +

n∑
j=1,j /=i

#cj (sr ) = Ri}. (5.5)
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In a period . Ti , events . αi and . βi must occur only once. Since their occurrences 
are instantaneous (taking no time), and the events occurrences within .s ∈ LT

i take 
. Ti time units in total, the length of every string in a period equals .Ti + 2. Formally, 

.LT
i = {s| |s| = Ti + 2}. (5.6) 

For any .s ∈ LT
i representing the complete execution of task . τi , the number of 

. ci’s is . Ci , i.e., 

.#ci(s) = Ci. (5.7) 

In a period . Ti , i.e., in . LT
i , the processor runs . Ti processor time units that are 

occupied by all the execution events. Formally, s satisfies 

.#l(s) +
n∑

j=1

#cj (s) = Ti. (5.8) 

Any string .s ∈ γiL
T
i contains a substring .s' = γis

eβi , in which . se represents 
the system behavior since the arrival of . τi until its execution is completed. Thus the 
response time of task . τi is the processor time spent between the occurrences of . γi

and . βi . Since the occurrence of . αi is instantaneous, the response time of . τi in s is 

.Pi = |se| − 1. (5.9) 

The set of strings, .S1 ⊆ (Σe − {l, ci})∗, occurring earlier than . αi is utilized to 
represent the busy time. Moreover, the preemption time, occurring between . αi and 
. βi randomly, is represented by a set of strings .S2 ⊆ (Σe − {l, ci})∗. Furthermore, a 
set of strings .S3 ⊆ (Σe − {ci})∗ that occur later than . βi , is utilized to represent the 
free time. Consequently, for any .s ∈ LT

i , s is structurally represented by 

.s = s1αi(s2cis2) . . . (s2ci)βis3 (5.10) 

with .s1 ∈ S1, .s2 ∈ S2, and .s3 ∈ S3. The strings in .(Σe − {l, ci})∗ represent the 
system behavior corresponding to the random preemption by other tasks. String . s2
occurs between . αi and . ci or any two adjacent . ci’s and represents that the execution 
of . τi can be preempted at any time. After the occurrence of the last . ci , . βi occurs 
immediately in order not to delay the response time. 

The strings in .(Σe − {ci})∗ represent the system behavior in the free time. These 
processor time units can be idle, or utilized to execute other tasks. In order to satisfy 
the deadline . Di , all the . ci’s must occur before . βi . Thus, before the occurrence of 
. βi , the preemption time cannot be longer than .Di − Ci . Formally, strings . s1 and . s2
in Eq. (5.10) form sublanguages . S1 and . S2 that also satisfy Eqs. (5.11) and (5.12) 
listed below.



128 5 Priority-Free Conditionally-Preemptive RTS Scheduling Based on R-W Method

.S1 = {s1|0 ≤
n∑

j=1,j /=i

#cj (s1) ≤ Di − Ci} (5.11) 

.S2 = {s2|0 ≤
n∑

j=1,j /=i

#cj (s2) ≤ Di − Ci} (5.12) 

By Eq. (5.8), the free time cannot be longer than .Ti − Ci . Formally, sublanguage 
. S3 in Eq. (5.10) must also satisfy 

.S3 = {s3|0 ≤ #l(s3) +
n∑

j=1,j /=i

#cj (s3) ≤ Ti − Ci}. (5.13) 

Example The closed and marked languages to describe the processor behavior to 
execute task . τ1 are respectively 

. L(G1) = Lm(G1)

and 

. Lm(G1) = LR
1 (γ1L

T
1 )∗.

Sublanguage . LT
1 satisfies 

. LR
1 = ϵ,∀s ∈ LT

1 , |s| = 8, #c1(s) = 2, and

. #l(s) +
3∑

j=1

#cj (s) = 6.

String s is structured as 

. s = s1α1s2c1s2c1β1s3

with .s1 ∈ S1, .s2 ∈ S2, and .s3 ∈ S3 as follows: 

• .S1 = {s1 ∈ {c2, c3}∗|0 ≤
3∑

j=2
#cj (s1) ≤ 4}, 

• .S2 = {s2 ∈ {c2, c3}∗|0 ≤
3∑

j=2
#cj (s2) ≤ 4}, and 

• .S3 = {s3 ∈ {c2, c3, l}∗|0 ≤ #l(s3) +
3∑

j=2
#cj (s3) ≤ 4}. .□
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Chapter 6 
Modular Scheduling/Reconfiguration 
with Exact Execution Time Based on 
R-W Method 

6.1 Introduction 

Supervisory control theory (SCT)-based real-time scheduling and reconfiguration 
[3, 6, 13, 16, 17, 19] are a newly-identified research topic. As summarized in Chap. 4, 
the study in [3] proposes a timed discrete-event systems (TDES) model; based on 
SCT, periodic real-time systems (RTS) are scheduled non-preemptively. In [3], the 
RTS modelled by TDES assume that the processors are resources that are available 
to execute several real-time tasks concurrently. Thereafter, the TDES-based real-
time scheduling approach is extended to: 

• schedule the RTS preemptively or non-preemptively [6], 
• schedule the RTS processing sporadic tasks [13], and 
• dynamically reconfigure the periodic RTS when no safe execution sequences are 

found [16]. 

The TDES-based non-preemptive scheduling is studied in [3, 6, 13] and [16], and 
the discrete-event systems (DES)-based sequential RTS scheduling is investigated 
in [17], which are reported in Chap. 5. By assigning different execution events 
for different tasks, the RTS model proposed in Chap. 5 is utilized to describe the 
sequential executions of independent tasks. The RTS models presented in Chap. 5 
are more realistic. 

Based on a modular modelling approach, this chapter deals with RTS processing 
sporadic and/or multi-period tasks simultaneously. A sporadic task running in an 
RTS may have an irregular arrival time, with or without a deadline; a periodic task 
has a regular arrival time and a deadline. The period of a periodic task could be: 

• equal to the corresponding deadline [10], 
• greater than or equal to the deadline [12], or 
• multiple [16]. 
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According to the study in [2], the execution instance of a real-time task is referred to 
as a job. In real world, the execution time of a job always varies over time. In order 
to describe such variations, the lower bounds and upper bounds of such a task are 
estimated, which are referred to as its best-case execution time (BCET) and worst-
case execution time (WCET), respectively. The exact execution time of a task lies 
between its BCET and WCET. 

Based on DES, an RTS can be built via a three-step approach: 

• the parameters of the tasks are represented by modular DES models, 
• the task behavior is constrained by the necessary modular DES models, and 
• the global RTS model is constrained by the DES real-time task models corre-

sponding to the running tasks. 

A scheduling principle, namely priority-free conditionally-preemptive (PFCP) real-
time scheduling, is presented in Chap. 5 by considering that both preemptive and 
non-preemptive scheduling policies are conservative. Based on the PFCP real-time 
scheduling principle, all the safe execution sequences in an RTS processing both 
multi-period and sporadic tasks can be found. The proposed modelling framework 
and the PFCP scheduling principle are general in the following respects: 

• the task behavior is modelled by DES, and thus the processing of different tasks 
is represented by different events instead of a unique time event, 

• the priorities of tasks are not treated and the preemption relations are described 
by a matrix, and 

• the specifications are imposed on both processor and task levels. 

Based on the presented modelling framework and scheduling principle, classic fixed 
priorities (FP) real-time scheduling policies [1, 4, 5, 7–11, 14, 21] can be considered 
as consequences of the presented specifications. 

For the purpose of integrating real-time scheduling and reconfiguration in one 
general model, a DES-based multi-period model is presented in this chapter. The 
only difference of a period’s model before and after its reconfiguration is the upper 
bound of its multi-period. A DES model depicting the RTS is synchronized by 
the DES representing these tasks. The related details and examples for dynamic 
reconfigurations of RTS can be found in Chap. 4. For the RTS tasks with multi-
periods, they are endowed with the following features: 

• a task arrives periodically but the length of its period is selected randomly 
between a lower bound and an upper bound, and 

• a task is associated with or without a deadline that is not earlier than the WCET 
and no later than the longest period. 

Two approaches are presented in this chapter to obtain the local behavior of any 
real-time task. Users are free to choose any one at will. On the one hand, given a real-
time task, one approach views its deadline as a parameter that is used to compute 
the synchronous product of the necessary modular generators. On the other hand, by 
viewing the deadline of a real-time task as a timing specification, the local behavior 
of a real-time task is synthesized as a supervisor. In other words, the latter applies
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a formal specification to enforce the deadlines in order to obtain local supervisors, 
one for each individual task. Afterwards, it is ready to construct a candidate for the 
RTS overall behavior by the synchronous product of all real-time task modules. This 
candidate may be blocking and does not yet implement a PFCP scheduling policy. 
Both issues are then resolved by a global supervisor that we synthesize at the second 
stage. The presented RTS model is implemented in a manufacturing example. 

The rest of this chapter is structured as follows. The presented RTS model 
is discussed in Sect. 6.2. Two approaches are detailed in Sect. 6.3 to obtain the 
global RTS execution models based on the modular RTS models. The developed 
formal specifications and supervisor synthesis are reported in Sect. 6.4. The PFCP 
is applied to a real-world RTS in Sect. 6.5. Conclusions and possible extensions are 
given in Sect. 6.6. 

6.2 Modular RTS Models 

A DES-based periodic real-time task model is proposed in Chap. 5. By the  
supervisory control of DES, all the safe execution sequences of an RTS are found 
by PFCP real-time scheduling. However, this model is conservative: 

• the model can only describe periodic tasks, 
• the model cannot be reconfigured dynamically when no safe execution sequences 

can be found, and 
• the model is monolithic (global), i.e., from the perspective of an RTS task, all the 

possible processor behaviors are enumerated in a unique DES generator. One  
must rebuild a monolithic DES generator whenever the parameters of the task 
are edited by the user. 

Motivated by these drawbacks, this chapter presents a formal and unified modular 
DES-based real-time task model, in which DES generators represent the parameters 
of a sporadic or multi-period task. The corresponding monolithic task model is the 
synchronous product of these DES models. 

A DES plant is a generator 

. G = (Q,Σ, δ, q0,Qm)

where 

• Q is the finite state set, 
• . Σ is the finite event set (alphabet), 
• .δ : Q × Σ → Q is the partial state transition function, 
• . q0 is the initial state, and 
• .Qm ⊆ Q is the subset of marked states.
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6.2.1 RTS Tasks 

In accordance with [15–18] and [2], an RTS is assumed to process a set of non-
repetitive, sporadic, and/or multi-period tasks. All  the real-time tasks  run in an RTS  
simultaneously and the unpredictable exact execution time of a task falls between its 
BCET and WCET. For a periodic task, its arrival time is regular, which is considered 
as a period that could be: 

• equal to its deadline [10], 
• greater than or equal to its deadline [12], or 
• multiple [16, 18], i.e., a period set that has a lower bound and an upper bound. 

A non-repetitive task arrives only once, and a sporadic or periodic task arrives 
periodically. A non-repetitive or sporadic task may arrive at any time, which means 
that no periodical constraint is assigned. As defined in Chap. 4, a multi-period is a 
period set that has a lower bound and an upper bound. Any period of a real-time 
task, i.e., the difference between any two adjacent arrivals, lies between the two 
bounds. If the lower bound is equal to the upper bound, the task is a traditional 
periodic one. We consider a traditional periodic task as a special case of a multi-
period. Consequently, our analysis is based on multi-period tasks. Unless otherwise 
stated, in the rest of this chapter, “period task” means “multi-period task”. 

An RTS . S is assumed to process a set of real-time tasks. Formally, write 
.S = {τ1, τ2, . . . , τi , . . . , τn}. For  .i ∈ n = {1, 2, . . . , n}, a periodic task . τi ∈ S

is represented by a four-tuple 

. τi = (Ri,Ci , Di,Ti )

with 

• a release time . Ri , 
• an execution time interval . Ci , 
• a deadline . Di , and 
• a multi-period . Ti , 

where . Ri and . Di are non-negative integers. As stated in Chap. 4, a multi-period 

. Ti = [T l
i , T u

i ] ∈ N × N,

is specified by a non-empty interval where the number of time units that elapse 
between any two successive releases lies within . Ti . Hence a multi-period has a 
lower bound (i.e., shortest one) represented by . T l

i and an upper bound (i.e., longest 
one) represented by . T u

i . 
Only an exact execution time C (resp., period T ) in  . Ci (resp., . Ti) of task  . τi is 

actually taken. For deadline .Di ∈ (T l
i , T u

i ], we impose an additional assumption 
that the task can arrive only when the previously instantiated job is completed. The
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lower (resp., upper) bound of the execution interval . Ci is the BCET (resp., WCET) 
of task . τi , denoted by . Cl

i (resp., . C
u
i ), i.e., 

. Ci = [Cl
i , C

u
i ] ∈ N × N.

For simplification, we write . Ci (resp., . Ti , in accordance with Chap. 5) instead of . Ci

(resp., . Ti) in the case of .Cl
i = Cu

i (resp., .T l
i = T u

i ). 
Any execution period of a real-time task, i.e., the difference between any two 

adjacent arrivals, lies between . T l
i and . T u

i . For deadline .Di ∈ (T l
i , T u

i ], we impose an 
additional assumption that the task can arrive only when the previously instantiated 
job is completed. An RTS . S is an asynchronous task set if there exist at least two 
different tasks . τi and . τj in . S with .Ri /= Rj ; otherwise . S is synchronous. 

The following different types of real-time tasks are addressed in this chapter: 

• a sporadic/non-repetitive task without a deadline: .τi = (Ci ), 
• a sporadic/non-repetitive task with a deadline: .τi = (Ci , Di), 
• a periodic task with its deadline not equal to . T u

i : .τi = (Ri,Ci , Di,Ti ), and 
• a periodic task with its deadline equal to . T u

i : .τi = (Ri,Ci ,Ti ). 

A periodic or sporadic task produces an infinite sequence of jobs that arrive 
repetitively. And a non-repetitive task produces only one job. As stated in Chap. 3, 
a periodic task . τi consists of an infinite sequence of jobs repeated periodically that 
are represented by a corresponding four-tuple 

. Ji,j = (ri,j , Ci, di,j , pi,j ).

The subscript “. i, j” of .Ji,j represents the j -th execution of task . τi . 
Leaving out the selected scheduling policies, when the real-time tasks are under 

execution, the processing of each individual job (belong to a real-time task) falls 
into the following two categories: 

• preemptive: a running task can be interrupted by the execution of other released 
tasks; 

• non-preemptive: the execution of a running task cannot be interrupted. 

Based on Chap. 5, the  alphabet (set of event labels) . Σi describing the processor’s 
behavior to execute task . τi is: 

• . γi : task . τi is released, 
• . αi : the execution of . τi is started, 
• . βi : the execution of . τi is completed, 
• . ρi : the execution of . τi is not completed, 
• . ci .(i ∈ n): the processor starts to execute . τi for one processor time unit, and 
• l: empty action, i.e., the processor is in an idle operation for one time unit.
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Let .σ = ci (resp., .σ = l). The occurrence of . σ represents that one processor time 
unit is utilized to execute task . τi (resp., in an idle operation for one processor time 
unit while it stays in state . q '). 

Formally, for an RTS, its event set is defined as 

. Σ = Σcon∪̇Σunc,

with 

• .Σcon = {αi, ci |i ∈ n}: the  controllable event subset, and 
• .Σunc = {βi, ρi, γi, l|i ∈ n}: the  uncontrollable event subset. 
Moreover, . Σ is also partitioned into 

• .Σo = {γi, αi, βi, ρi, |i ∈ n}: the  operation event set, and 
• .Σe = {ci, l|i ∈ n}: the  execution event set. 

6.2.2 Periodic/Sporadic Task Execution Time Models 

An RTS . S is assumed to process n sporadic/periodic/non-repetitive tasks. A sporadic 
(resp., periodic) task . τi describes an infinite stream of jobs arriving at irregular 
(resp., regular) time intervals. Suppose that n sporadic/periodic tasks are running 
in an RTS. We present a DES model for . Ci of periodic and sporadic tasks. Let . i ∈ n
and .τi ∈ S. This model mainly shows the processor behavior while it is executing 
task . τi . Naturally, before the execution of . τi is started and after its execution is 
finished, the processor is allowed to be in an idle operation. The execution time . Ci

of a sporadic or periodic task is described by a DES generator 

. GC
i = (QC

i , ΣC
i , δCi , qC

0,i ,Q
C
m,i).

Suppose that .s ∈ ΣC∗
i is a string over the event set . ΣC

i . Then we have . s∗
representing .ϵ + s + s2 + . . .. Let . Cl

i and . Cu
i represent the lower bound (BCET) and 

upper bound (WCET) of task . τi , respectively. The possible execution sequences of 
task . τi are described by the marked language .Lm(GC

i ) over . ΣC
i . 

This process can be represented as a regular expression 

.LC
i := Ll(LaLl)

∗ ⊆ Σ∗
i (6.1) 

with 

• .Ll = l∗, and 
• .La = ∑Cu

i

k=Cl
i

γiαici
Cl

i (ρici)
k−Cl

i βi .
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Fig. 6.1 Execution model for sporadic or periodic tasks 

In the above formula . La represents that the execution of a job takes exactly . k ∈
[Cl

i , C
u
i ] time units. We provide a realization of . LC

i as the marked behavior of a 
DES . GC

i , i.e., we have .Lm(GC
i ) = LC

i for the DES illustrated in Fig. 6.1. 
Technically, . GC

i is defined over the alphabet .ΣC
i = {αi, ci, βi, ρi, γi} with 

• state . yγ : before the arrival of task . τi , 
• state . yα

0 : the processor is ready to process . τi , 
• state . y0: the execution of . τi is started, 
• state .(0 < k ≤ Cu

i ) . yk: . τi has been executed for k time units, 
• state .(Cl

i ≤ k < Cu
i ) . zk: the execution of . τi is not completed after being executed 

for k time units, 
• the state with an entering arrow is the initial state . yγ , 
• the state set .{yγ } is the singleton marker state set represented by a double circle, 

and 
• the transition function . δCi satisfies 

– .δCi (yγ , l) = yγ : the processor is in an idle operation, 
– .δCi (yγ , γi) = yα

0 : . τi is released, 
– .δCi (yα

0 , αi) = y0: the processor starts to execute . τi , 
– .(0 ≤ k < Cl

i ) .δCi (yk, ci) = yk+1: . τi is being executed for the .(k + 1)-th time 
unit, 

– .(Cl
i ≤ k < Cu

i ) .δCi (yk, ρi) = zk: the execution of . τi is not completed in the 
k-th time unit, 

– .(Cl
i ≤ k < Cu

i ) .δCi (zk, ci) = yk+1: . τi is being executed for the .(k +1)-th time 
unit, and 

– .(Cl
i ≤ k ≤ Cu

i ) .δCi (yk, βi) = yγ : the execution of . τi is completed in k 
processor time units.
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Fig. 6.2 Generator . GC
1

Fig. 6.3 Generator . GC
2

Example Suppose that there are two tasks . τ1 and . τ2 running in a uni-processor 
RTS, i.e., .S = {τ1, τ2}. Let  .C1 = [1, 2]. Then .GC

1 is shown in Fig. 6.2. Let  . Cl
2 =

Cu
2 = 2. Then . GC

2 is shown in Fig. 6.3. . □

6.2.3 Non-Repetitive Execution Time Models 

The task execution model for non-repetitive tasks is the counterpart of the task 
execution model for periodic and sporadic tasks. The only difference is that the 
execution process is non-repetitive. 

Let .τi ∈ S, .i ∈ n, denote a non-repetitive task with an execution time parameter 

. Ci = [Cl
i , C

u
i ]

to represent the lower bound and upper bound. The formal language to model task 
execution is then obtained as 

.L
C,nr
i := LC

i − Σ∗
i γiΣ

∗
i γiΣ

∗
i ⊆ Σ∗

i (6.2) 

with . LC
i as defined in Eq. (6.1). We provide a realization of .LC,nr

i as the marked 

behavior of a DES .GC,nr
i , i.e., we have 

. Lm(GC,nr
i ) = L

C,nr
i

for the DES illustrated in Fig. 6.4.
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Fig. 6.4 Non-repetitive execution model 

Fig. 6.5 Generator . GC,nr
1

Fig. 6.6 Generator . GC,nr
2

Technically, .GC,nr
i is defined exactly as . GC

i , except that 

• there is an additional marked state .yf in with a self-loop .δCi (yf in, l) = yf in, and 
• any transition .δCi (yk, βi) = yα defined in .GC

i for k with .Cl
i ≤ k ≤ Cu

i , is  

substituted by a transition .δCi (yk, βi) = yf in in .GC,nr
i . 

Example Let .C1 = [1, 2]. Then .GC,nr
1 is shown in Fig. 6.5. Let  .Cl

2 = Cu
2 = 2. 

Then .GC,nr
2 is shown in Fig. 6.6. . □

6.2.4 Deadline Models 

Generally, for any periodic or sporadic real-time task . τi , .Ch
i ≤ Di is assigned. Let 

.Cl
i ≤ C ≤ Ch

i . The execution of . τi in an execution period takes C processor time 
units. This process must be completed with the deadline . Di satisfied. This means
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Fig. 6.7 Deadline model 

that during the time interval between the occurrence of events . γi and . βi , C time 
units are utilized to process . τi ; the other (at most) .Di − C time units are in idle 
operations or occupied by the execution of other tasks. For a periodic or sporadic 
task . τi with a deadline . Di , the deadline . Di is represented by a DES generator . GD

i

that recognizes the following marked language 

.LD
i = Lf (γiLdβiLf )∗ ⊆ (Σe ∪ {γi, βi})∗ (6.3) 

with 

• .Lf = Σe
∗, and 

• .Ld = {s|s ∈ (Σe − {l})∗ & |s| ≤ Di}. 
Language . Lf represents that, prior to the release of task . τi , an arbitrary amount 
of time units may elapse. Furthermore, . Ld represents that after a release of task . τi

(the occurrence of event . αi), no more than . Di time units may elapse until the job 
completion (the occurrence of event . βi). We require that between the occurrences 
of . α and . βi , the processor should not be in an idle operation. The release time and 
period are realized by the DES 

. GD
i = (QD

i ,ΣD
i , δD

i , qD
0,i ,Q

D
m,i)

shown in Fig. 6.7, which illustrates a realization .GD
i with 

. LD
i = Lm(GD

i ).

In Fig. 6.7, “. ∗” and “. ∗∗” represent events in .Σe − {l} and .Σe − {ci}, respectively. 
Technically, .GD

i is defined over the alphabet .ΣD
i := Σe ∪ {γi, βi} with 

• state . yγ : the processor is ready to execute . τi , 
• state .(0 ≤ k ≤ Di) . yk: k time units in an execution period have elapsed, 
• the state with an entering arrow is the initial state . yγ , 
• the state set .{yγ } is the singleton marker state set represented by a double circle, 

and
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Fig. 6.8 Generator . GD
1

• let .i, j ∈ n, the transition function . δD
i satisfies 

– .δD
i (yγ , l) = yγ : the processor is in an idle operation, 

– .(i /= j) .δD
i (yγ , cj ) = yγ : task . τj is under execution, 

– .δD
i (yγ , γi) = y0: task . τi releases, 

– .(0 ≤ k < Di) .δD
i (yk, cj ) = yn+1: the  .(k + 1)-th time unit is occupied by . τj , 

and 
– .(0 ≤ k ≤ Di) .δD

i (yk, βi) = yγ : the execution of . τi is completed. 

Example Suppose that there are two tasks . τ1 and . τ2 running in a uni-processor 
RTS, i.e., .S = {τ1, τ2}. Let .D1 = 3. Generator .GD

1 is depicted in Fig. 6.8. . □

6.2.5 Release and Multi-Period Models 

In this section, DES diagrams are utilized to describe the release time and the 
periods of periodic real-time tasks. As stated previously, an RTS is assumed to 
process sporadic/periodic/non-repetitive tasks. In the release time and a period, the 
processor time units can be occupied by all the tasks running in the RTS or in an 
idle operation. 

As defined in [16], a period of task . τi is a period set that has a lower bound 
and an upper bound. Formally, .Ti = [T l

i , T u
i ]. Let  T be an arbitrary period, i.e., 

.T l
i ≤ T ≤ T u

i . Let  C be an exact execution time, i.e., .Cl
i ≤ C ≤ Cu

i . Generally, 
we have .Cu

i ≤ T l
i . In a period, after task . τi is released, the processor will use C 

time units to execute . τi . Moreover, in the other .T −C time units, the processor is in 
an idle operation or occupied by the execution of other tasks. For task . τi , its release 
time and period are described by a DES generator . GT

i . Formally, we have its marked 
language as 

.LT
i = Lr + Lr(γiLt )

∗ ⊆ (Σe ∪ {γi})∗ (6.4)



142 6 Modular Scheduling with Exact Execution Time Based on R-W Method

Fig. 6.9 Release time and period model 

with 

• .Lr := {s|s ∈ (Σe − {ci})∗ & |s| = Ri}, and 
• .Lt := {s|s ∈ Σe

∗ & T l
i ≤ |s| ≤ T u

i }. 
Language . Lr represents that, prior to the first release of . τi , the  . Ri processor time 
units are allowed to be in an idle operation or alternatively occupied to execute other 
tasks. Furthermore, . Lt represents that in a processing period of . τi , the processor can 
be in an idle operation or alternatively occupied by the execution of any task in . S. 
The execution of task . τi takes no less than . T l

i time units and no more than . T u
i time 

units. 
The release time and period are realized by the DES 

. GT
i = (QT

i , ΣT
i , δTi , qT

0,i ,Q
T
m,i)

as illustrated by Fig. 6.9, where “. ∗” and “. ∗∗” represent the events in . Σe and . Σe −
{ci}, respectively, and we have 

. LT
i = Lm(GT

i ).

Technically, . GT
i is defined over the alphabet .ΣT

i := Σe ∪ {γi} with 
• state . y−k , .0 < k ≤ Ri : k time units until the first release of . τi , 
• state . yγ : the processor is ready to execute . τi , 
• state .(0 ≤ k < T u

i ) . yk: k time units in a period have elapsed, 
• the states represented by double circles are the marker states, 
• the state with an entering arrow is the initial state .y−Ri

, 
• the state set .{y−Ri

, y−Ri+1, . . . , y−1, yγ , T l
i , . . . , T u

i } is the marker state set, in 
which each state is represented by a double circle, and 

• let .i, j ∈ n, the transition function . δTi satisfies 

– .(1 < k ≤ Ri, i /= j) .δTi (y−k, cj ) = y−k+1: the processor is occupied by . τj , 
– .(1 < k ≤ Ri) .δTi (y−k, l) = y−k+1: the processor is in an idle operation, 
– .(i /= j)δTi (y−1, cj ) = yγ : the processor is occupied by . τj ,
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Fig. 6.10 Generator . GT
1

– .(i /= j)δTi (y−1, l) = yγ : the processor is in an idle operation, 
– .δTi (yγ , γi) = y0: . τi is released, 
– .(0 ≤ k < T u

i − 1) .δTi (yk, cj ) = yk+1: the .(k + 1)-th time unit is occupied by 
. τj , 

– .(0 ≤ k < T u
i − 1)δTi (yk, l) = yk+1: the  .(k + 1)-th time unit is in an idle 

operation, 
– .δTi (yT u

i −1, cj ) = yγ : the processor is occupied by . τj , 

– .δTi (yT u
i −1, l) = yγ : the processor is in an idle operation, and 

– .(T l
i ≤ k < T u

i ) .δTi (yk, γi) = y0: . τi releases for the next time. 

Remark The naming rule for all the states in Fig. 6.9 is similar to that for the states 
in Fig. 6.1. The only differences are: (1) state .(0 < k ≤ Ri) .y−k represents that 
there is still k processor time units until the first arrival of . τi ; (2) state . (0 ≤ k < T u

i )

represents the k-th processor time unit in a period. . □
Example Suppose that there are two tasks . τ1 and . τ2 running in a uni-processor 
RTS, i.e., .S = {τ1, τ2}. Let  .R1 = 1 and .T1 = [3, 5]. Generator . GT

1 for task . τ1 is 
depicted in Fig. 6.10. . □

6.3 Global RTS Execution Models 

This section presents two approaches to obtain the global RTS execution models 
based on the modular RTS models presented above. 

6.3.1 Approach I 

Similar to the execution time models, we address the deadline model as a parameter 
of a real-time task, which is used to compute the synchronous product of the
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necessary modular generators. Then, it is ready to construct a candidate for the 
RTS overall behavior by the synchronous product of all real-time task modules. 
This candidate may be blocking but it can be resolved by the final global supervisor 
synthesized later. 

The global behavior of an RTS is represented by a monolithic DES generator 
. G that is the synchronous product of all the running tasks’ parameters. Generator 
. Gi representing a real-time task . τi is constrained by the synchronous product of 
the modular generators defined above, which falls into one of the following six 
categories generated by TCT1 as follows:2 

• sporadic without a (hard) deadline, .Lm(Gi ) = Lm(GC
i ): 

. Gi = GC
i ,

• non-repetitive without a deadline, .Lm(Gi ) = Lm(GC,nr
i ): 

. Gi = GC,nr
i ,

• sporadic with a deadline, .Lm(Gi ) = Lm(GC
i )||Lm(GD

i )): 

. Gi = sync (GC
i ,GD

i ),

• non-repetitive with a deadline, .Lm(Gi ) = Lm(GC,nr
i )||Lm(GD

i )): 

. Gi = sync (GC,nr
i ,GD

i ),

• periodic with a deadline .Di < T u
i , .Lm(Gi ) = Lm(GC

i )||Lm(GT
i )||Lm(GD

i ): 

. Gi = sync (GC
i ,GT

i ,GD
i ),

• periodic with a deadline .Di = T u
i , .Lm(Gi ) = Lm(GC

i )||Lm(GT
i ): 

. Gi = sync (GC
i ,GT

i ).

The procedures utilized in this chapter are introduced in [20].

1 http://www.control.utoronto.ca/DES. 
2 For simplification, unlike in the previous chapters, we write the generator names, say . GC

i , as the  
input of TCT procedures directly. 

http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
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Example Suppose that .S = {τ1, τ2}. For simplification, we assume . Cl
1 = Cu

1 =
2. Several possible models for task . τ1 (assigned with different parameters) in the 
previous examples are displayed in Fig. 6.11, in which the corresponding parameters 
are listed in the captions. Accordingly, we have 

• Fig. 6.11a: a sporadic task with a deadline, 
• Fig. 6.11b: a periodic task with its deadline less than or equal to its period, 
• Fig. 6.11c: a multi-periodic task with its deadline less than or equal to its longest 

period, 
• Fig. 6.11d: a multi-periodic task with its deadline equal to its longest period, 
• Fig. 6.11e: a traditional periodic task with its deadline equal to its period, and 
• Fig. 6.11f: a non-repetitive task with a deadline. . □

6.3.2 Approach II 

In order to describe the behavior of an RTS . S by DES diagrams, the behavior of 
a task  . τi is specified as a set of regular languages that are represented by modular 
DES generators, in which the deadline is considered as a specification. Based on 
the nonblocking supervisory control of DES, the real-time tasks are represented 
by a DES diagram. Suppose that an RTS processes a set of real-time tasks. The 
corresponding DES diagram can be obtained by the synchronous product procedure. 

In this approach, DES diagrams are utilized to describe the deadline of a real-
time task . τi , which requires that, after the arrival of . τi , the execution of task . τi

should be completed in . Di time units. This model applies to both periodic/sporadic 
and non-repetitive task models. 

After creating all the modular DES models, the real-time task models are 
obtained. All the possible behavior of a processor to execute a real-time task . τi is 
described by a generator . Gi that is the synchronous product of the DES generators 
corresponding to the defined parameters, which falls into one of the six categories 
generated by TCT as follows: 

• sporadic without a deadline, .Lm(Gi ) = Lm(GC
i ): 

. Gi = GC
i ,

• non-repetitive without a deadline, .Lm(Gi ) = Lm(GC,nr
i ): 

.Gi = GC,nr
i ,
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Fig. 6.11 Generators for . τ1. (a) Sporadic, .C1 = 2, and  .D1 = 3. (b) Periodic, .R1 = 1, .C1 = 2, 
.D1 = 3, and  .T1 = [4, 4]. (c) Periodic, .R1 = 1, .C1 = 2, .D1 = 3, and  .T1 = [3, 5]. (d) Periodic, 
.R1 = 1, .C1 = 2, and  .T1 = [3, 5]. (e) Periodic, .R1 = 1, .C1 = 2, and  .T1 = [4, 4]. (f) Non-
repetitive, .Cnr

1 = 2, and .D1 = 3
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• sporadic with a deadline, .Lm(Gi ) = Lm(GC
i )||Lm(GD

i ): 

. GALLC = allevent (GC
i ),

. GALLD = allevent (GD
i ),

. GALL = sync (GALLC,GALLD),

. GC
i = sync (GC

i ,GALL),

. GD
i = sync (GD

i ,GALL),

. Gi = supcon (GC
i ,GD

i ),

. Gi = minstate (Gi ),

• non-repetitive with a deadline, .Lm(Gi ) = Lm(GC,nr
i )||Lm(GD

i ): 

. GALLC = allevent (GC,nr
i ),

. GALLD = allevent (GD
i ),

. GALL = sync (GALLC,GALLD),

. GC,nr
i = sync (GC,nr

i ,GALL),

. GD
i = sync (GD

i ,GALL),

. Gi = supcon (GC,nr
i ,GD

i ),

. Gi = minstate (Gi ),

• periodic with a deadline .Di < T u
i , .Lm(Gi ) = Lm(GC

i )||Lm(GT
i )||Lm(GD

i ): 

. Gi = sync (GC
i ,GT

i ),

. GALL = allevent (Gi ),

. GD
i = sync (GD

i ,GALL),

. Gi = supcon (Gi ,GD
i ),

.Gi = minstate (Gi ),
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• periodic with a deadline .Di = T u
i , .Lm(Gi ) = Lm(GC

i )||Lm(GT
i ): 

. Gi = sync (GC
i ,GT

i ),

. GALL = allevent (Gi ),

. Gi = supcon (Gi ,GALL),

. Gi = minstate (Gi ).

Remark For a periodic task . τi with a deadline .Di = T u
i , the obtained generator 

. Gi = sync (GC
i ,GT

i )

may contain blocked behavior that should be removed by the supervisory control of 
DES. Formally, it is possible that .L(Gi ) /= Lm(Gi ) holds. In order to provide a neat 
DES diagram, the operations .Gi = supcon (Gi ,GALL) and . Gi = minstate (Gi )

are addressed in the modelling process of . Gi to provide its optimal behavior. . □
Finally, generator . Gi for the task . τi has marked language .Lm(Gi ) and (prefix) 

closed language .L(Gi ), satisfying 

. L(Gi ) = Lm(Gi ).

Example Suppose that .S = {τ1, τ2}. Six possible models for task . τ1 with . C1 =
[1, 2] (assigned with different parameters) in the previous examples are displayed in 
Figs. 6.12 and 6.13, in which the corresponding parameters are listed in the captions. 
Accordingly, we have 

• Fig. 6.12a: a sporadic task with a deadline, 
• Fig. 6.12b: a periodic task with its deadline less than or equal to its period, 
• Fig. 6.12c: a multi-periodic task with its deadline less than or equal to its longest 

period, 
• Fig. 6.12d: a multi-periodic task with its deadline equal to its longest period, 
• Fig. 6.13a: a traditional periodic task with its deadline equal to its period, and 
• Fig. 6.13b: a non-repetitive task with a deadline. . □

6.3.3 Global RTS Behavior 

Assume that n real-time tasks . τi , .i ∈ n, are executed in an RTS . S; its behavior is 
denoted by 

.Lm(G) = Lm(G1)||Lm(G2)|| · · · ||Lm(Gn).
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Fig. 6.12 Local closed-loop models for . τ1 (1). (a) Sporadic, .C1 = [1, 2], and  .D1 = 3. (b) 
Periodic, .R1 = 1, .C1 = [1, 2], .D1 = 3, and  .T1 = [5, 5]. (c) periodic, .R1 = 1, .C1 = [1, 2], 
.D1 = 3, and .T1 = [3, 5]. (d) Periodic, .R1 = 1, .C1 = [1, 2], .D1 = 5, and . T1 = [3, 5]

This results in the respective closed and marked behaviors 

. Lm(G) := Lm(G1)||Lm(G2)|| · · · ||Lm(Gn) ⊆ Σ∗,

. L(G) := L(G1)||L(G2)|| · · · ||L(Gn) ⊆ Σ∗,

where .Σ := Σ1 ∪ Σ2 ∪ · · · ∪ Σn denotes the overall alphabet.
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Fig. 6.13 Local closed-loop models for . τ1 (2). (a) Periodic, .R1 = 1, .C1 = [1, 2], and .T1 = [5, 5]. 
(b) Non-repetitive, .Cnr

2 = [1, 2], and . D2 = 4

Example Suppose that the task behavior of the two tasks in the previous example 
is represented by .Lm(G1) and .Lm(G2). We have the system behavior of . S, denoted 
by . G, as  

.Lm(G) = Lm(G1)||Lm(G2). . □

The software package TCT is a tool utilized to create the modular DES generator 
related to an RTS task. By following Chap. 5, for all .i ∈ n, events . γi , . αi , . βi , . ρi , and 
. ci are renamed i0, i1, i2, i8, and i9, respectively. Moreover, event l is represented 
by 0. More operations to edit the models and/or compute the supervisor can also be 
executed in TCT. The utilized procedures are introduced in [20]. 

An overall model of the RTS is denoted by 

. S = {τ1, τ2, . . . , τn}.

By construction, the effective set of shared events in the above synchronous product 
is the set of execution events, and, hence, is a subset of the controllable events. 
Consequently, the generated behavior .L(G) is controllable w.r.t. the synchronous 
product of the local behavior generated by the relevant plant components . GC

i , .G
C,nr
i , 

. GD
i , and/or . GT

i , depending on the respective task type. In this sense, controllability 
is not a concern at this point. However, the synchronous product may introduce 
blocking, i.e., there may exist strings .s ∈ L(S) such that .st /∈ Lm(G) for all 
.t ∈ Σ∗. This implies there might be jobs that are never completed, which is not
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acceptable. Also, the composed RTS model may include schedules where tasks 
might be preempted by any other task. We resolve both issues by setting up a 
specification to address a preemption relation and then synthesizing a nonblocking 
supervisor for that specification. 

6.4 Scheduling Based on Supervisory Control 

Previously, PFCP real-time scheduling is proposed in Chap. 5. By PFCP, a periodic 
task is independently assigned to a subset of tasks that are allowed to preempt 
its execution, based on which the released periodic tasks in a processor can 
be scheduled according to the predefined preemption relations assigned in the 
preemption matrix. In Chap. 5, three types of specifications are defined as follows: 

• Nonblocking specification: it requires that the RTS should be nonblocking and it 
should be synchronized with other specifications (if any). 

• Matrix-based conditional-preemption specification: it defines the preemption 
relation among the periodic tasks running in the same processor, represented by 
a matrix  . A, where .Ai,j = 1 represents that task . τi can be preempted by . τj . 
According to matrix . A, Chap. 5 creates a specification for a task . τi that describes 
all the tasks which preempt its execution. 

• WCET-based conditional-preemption specification: it defines task sets that can 
preempt the execution of . τi between its any two adjacent running time units (. cis). 

The first two specification types are assigned from the perspective of the processor; 
and the last one is assigned for an RTS task during its execution. All the detailed 
definitions of these specifications can be found in Chap. 5. Generally, based on 
SCT, they can be utilized to find the supervisors for an RTS processing sporadic 
tasks and periodic tasks simultaneously. The scheduling sequences contained in the 
found supervisors can be utilized to schedule the RTS offline. 

As defined in Chap. 5, the  preemption matrix . A of . S is in the form 

.A =

⎛

⎜
⎜
⎜
⎝

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...

∗ ∗ · · · 0

⎞

⎟
⎟
⎟
⎠

(6.5) 

where . ∗, either 0 or 1, describes the preemption relations among tasks. A task . τi

cannot preempt itself in default. According to the rows in . A, a DES specification 
can be generated. 

Example Suppose that we have the following two tasks that are running in an 
RTS . S: 

.τ1 = (1, [1, 2], 3, [3, 5])
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Table 6.1 Task 
configurations 

Task parameters Task type 

.τ1 = (1, [1, 2], 3, [3, 5]) Periodic 

.τ2 = ([1, 2], 4) Non-repetitive with deadline 

Fig. 6.14 Specifications corresponding to . A1. (a) . τ1 can not be preempted. (b) . τ2 can not be 
preempted 

and 

. τ2 = ([1, 2], 4).

They are a periodic task and a non-repetitive task, respectively. The task configura-
tions are given in Table 6.1. Their behavior is represented by .Lm(G1) and .Lm(G2); 
we obtain the RTS behavior as follows: 

. Lm(G) = Lm(G1)||Lm(G2)

and 

. L(G) = L(G1)||L(G2).

We assume the following preemption matrices 

. A1 =
(
0 0
0 0

)

and A2 =
(
0 1
1 0

)

describing that the real-time scheduling of the RTS is non-preemptive or preemptive, 
respectively. According to Chap. 5, the specifications can be generated accordingly. 
The DES generators corresponding to . A1 and . A2 are depicted in Figs. 6.14 and 6.15, 
respectively. Since matrix . A2 describes that the scheduling of both . τ1 and . τ2 are 
preemptive, the specifications depicted in Figs. 6.15a and 6.15b can be ignored. 

Supervisory controller synthesis is then carried out using the same procedures as 
synthesizing the local models. After state minimization, we obtain overall closed-
loop realizations with 53 states and 84 transitions (when addressing . P1) and with 
151 states and 298 transitions (when addressing . P2). The transition relation for the 
former supervisor is given below.
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Fig. 6.15 Specifications corresponding to . A2. (a) . τ1 can be preempted. (b) . τ2 can be preempted 

Fig. 6.16 Manufacturing cell 
B1 B2 B3 B4 

Conveyor 

R 

SUPER = (SUPER, [mark, 0, 1, 6, 14, 46, 48, 52], [tran [0, l, 52], [0, . γ2, 27], [1, l, 
52], [1, . γ1, 20], [1, . γ2, 39], [2, . c2, 4], [3, l, 15], [3, . γ2, 33], [4, . α1, 37], [4, . β2, 13], 
[5, . β1, 44], [7, . γ1, 38], [7, . β2, 14], [8, . β1, 33], [8, . ρ1, 9], [9, . c1, 11], [10, . α2, 44], 
[11, . β1, 10], [11, . α2, 5], [12, . β2, 35], [13, . α1, 40], [14, l, 46], [14, . γ1, 36], [15, l, 
6], [15, . γ2, 10], [16, l, 23], [17, . β1, 15], [17, . γ2, 11], [18, . β1, 3], [18, . ρ1, 45], [18, 
. γ2, 8], [19, . c1, 18], [19, . γ2, 51], [20, . α1, 19], [20, . γ2, 41], [21, . γ1, 22], [21, . β2, 48], 
[21, . ρ2, 24], [22, . β2, 36], [22, . ρ2, 2], [23, l, 48], [24, . γ1, 2], [24, . c2, 7], [25, . γ1, 22], 
[25, . β2, 46], [25, . ρ2, 42], [26, . c2, 25], [27, . α2, 26], [28, . β1, 23], [29, . β1, 23], [29, 
. ρ1, 30], [30, . c1, 47], [31, . β2, 23], [31, . ρ2, 50], [32, . c2, 31], [33, . α2, 32], [34, . β1, 16], 
[34, . ρ1, 43], [35, . c1, 34], [36, . α1, 35], [37, . β2, 40], [38, . α1, 12], [38, . β2, 36], [39, 
. γ1, 41], [40, . c1, 29], [41, . α1, 51], [42, . γ1, 2], [43, . c1, 28], [44, . c2, 21], [45, . c1, 17], 
[45, . γ2, 9], [46, . γ1, 36], [47, . β1, 48], [48, l, 14], [48, . γ1, 36], [49, . γ1, 38], [49, . β2, 
48], [50, . c2, 49], [51, . c1, 8], [52, . γ1, 20], [52, . γ2, 39], [6, l, 1], [6, . γ1, 20], [6, . γ2, 
39]]) (53, 84) . □

6.5 Case Study: Manufacturing Cell 

Consider an extension of the manufacturing cell studied in Chap. 5 as an example, 
which is viewed as an RTS processing multi-period periodic tasks, traditional 
periodic tasks, and sporadic tasks. The robot depicted in Fig. 6.16 is considered as 
a processor, which transports four types of workpieces W1, W2, W3, and W4 to a 
conveyor. The four processes are modelled as four real-time tasks. Hence, we obtain 
a system .S = {τ1, τ2, τ3, τ4}.
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Table 6.2 Tasks with WCET Task .Ri .Ci .Di . Ti

.τ1 – 2 – – 

.τ2 – 2 6 – 

.τ3 1 2 7 [8, 8] 

.τ4 0 2 6 [4, 6] 

6.5.1 Task Models with Worst Case Execution Time 

Suppose that in the manufacturing cell, the production rate varies, i.e., every 
time one or two pieces of workpieces W1, W2, W3, and W4 arrive at buffers 
. B1, . B2, . B3, and . B4, respectively. Workpieces W1 and W2 arrive irregularly; the 
arrivals of W3 and W4 are represented by period sets .[8, 8] and .[4, 6], respectively. 
Transporting each workpiece costs one second; we assign the deadlines of the 
tasks representing the transportations of W2, W3, and W4 to be six, seven, and 
six seconds, respectively. As a consequence, the parameters of the four tasks are 
visualized in Table 6.2. Suppose that we have three work plans, i.e., 

• .S1 = {τ1, τ2, τ3}: workpieces W1, W2, and W3 are in production, 
• .S2 = {τ1, τ2, τ4}: workpieces W1, W2, and W4 are in production, and 
• .S3 = {τ1, τ2, τ3, τ4}: workpieces W1, W2, W3, and W4 are in production. 

The DES model for a task in the RTS is established as the synchronous product 
of the generated DES models. By following Approach I presented in Sect. 6.3.1, the  
parameters of the RTS tasks are created as follows. 

C1 = create (C1, [mark 0], [tran [0, 0, 0], [0, 10, 1], [1, 11, 2], [2, 19, 3], [3, 19, 4], 
[4, 12, 0]]) (5, 6) 

C2 = relabel (C1, [[10, 20], [11, 21], [12, 22], [19, 29]]) (5, 6) 

C3 = relabel (C2, [[20, 30], [21, 31], [22, 32], [29, 39]]) (5, 6) 

C4 = relabel (C3, [[30, 40], [31, 41], [32, 42], [39, 49]]) (5, 6) 

D2 = create (D2, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 20, 1], [0, 39, 0], [0, 49, 0], 
[1, 19, 2], [1, 22, 0], [1, 39, 2], [1, 49, 2], [2, 19, 3], [2, 22, 0], [2, 39, 3], [2, 49, 3], 
[3, 19, 4], [3, 22, 0], [3, 39, 4], [3, 49, 4], [4, 19, 5], [4, 22, 0], [4, 39, 5], [4, 49, 5], 
[5, 22, 0]]) (6, 22) 

D3 = relabel (D2, [[20, 30], [22, 32], [39, 29]]) (6, 22) 

D3 = edit (D3, [trans +[5, 19, 6], +[5, 29, 6], +[5, 49, 6], +[6, 32, 0]]) (7, 26)
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D4 = relabel (D2, [[20, 40], [22, 42], [49, 29]]) (6, 22) 

T3 = create (T3, [mark 0, 1], [tran [0, 0, 1], [0, 19, 1], [0, 29, 1], [0, 49, 1], [1, 30, 2 
], [2, 0, 3], [2, 19, 3], [2, 29, 3], [2, 49, 3], [3, 0, 4], [3, 19, 4], [3, 29, 4], [3, 49, 4], 
[4, 0, 5], [4, 19, 5], [4, 29, 5], [4, 49, 5], [5, 0, 6], [5, 19, 6], [5, 29, 6], [5, 49 , 6], [6, 
0, 7], [6, 19, 7], [6, 29, 7], [6, 49, 7], [7, 0, 1], [7, 19, 1], [7, 29, 1], [7, 49, 1]]) (8, 29) 

T4 = create (T4, [mark all], [tran [0, 41, 1], [1, 0, 2], [1, 19, 2], [1, 29, 2], [1, 39, 2 
], [2, 0, 3], [2, 19, 3], [2, 29, 3], [2, 39, 3], [3, 0, 4], [3, 19, 4], [3, 29, 4], [3, 39, 4], 
[3, 41, 1], [4, 0, 0], [4, 19, 0], [4, 29, 0], [4, 41, 1], [4, 49, 0]]) (5, 19) 

The DES model for the RTS is the synchronous product of that for all tasks. More 
operations to edit the models and/or compute the supervisor can also be executed in 
TCT. The DES models representing a task’s behavior are listed below. 

. TASK2 = sync (C2, D2) (21, 73)

. TASK3 = sync (C3, D3, T3) (32, 113)

. TASK4 = sync (C4, D4, T4) (25, 87)

Suppose that four preemption matrices are considered as specifications: 

. A1 =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1

⎞

⎟
⎟
⎠ ,A2 =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

. A3 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠ ,A4 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .

The nonblocking specifications and matrix-based conditional-preemption speci-
fications are assigned for the manufacturing cell example, which are created in TCT 
as listed below. 

Nonblocking Specifications 
In order to guarantee that the RTS is nonblocking, the nonblocking specification 
. SN

i for . τi should allow the occurrence of any string .s ∈ Σ∗
i , i.e., .L(SN

i ) = Σ∗
i . The  

procedure allevents can be utilized to generate a DES representing . Σ∗
i . For instance, 

as depicted in Fig. 6.17, the nonblocking specification for task . τi is represented by 
a generator with .∗ = Σi allowing all the events in . Σi to occur at the only state.
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Fig. 6.17 Nonblocking 
specification for .τi

∗ 

Fig. 6.18 Specification for . A3. (a) .A1,2 = 1. (b) .A2,3 = 1 and .A2,4 = 1. (c) .A31 = 1. (d) . A41 = 1

The corresponding TCT operations to create such specifications are listed below. 
SN1, SN2, SN3, and SN4 are the nonblocking specifications . SN

1 , . S
N
2 , . S

N
3 , and 

. SN
4 , respectively. In TCT, the monolithic nonblocking specification for an RTS . S

is denoted by SN. The corresponding TCT operations are given below. 

. SN1 = allevents (C1) (1, 5)

. SN2 = allevents (TASK2) (1, 8)

. SN3 = allevents (TASK3) (1, 8)

. SN4 = allevents (TASK4) (1, 8)

. SN = sync (SN1, SN2, SN3, SN4) (1, 17)

Matrix-Based PFCP Conditional-Preemption Specifications 
According to [17], the matrix-based PFCP conditional-preemption specifications 
can be generated by TCT. For example, matrix-based specification . A3 represents 
that task . τ1 is allowed to be preempted by task . τ2. The corresponding specification 
is depicted in a DES diagram 1B2. As depicted in Fig. 6.18, all such specifications 
are created below. 

1B2 = create (1B2, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49, 
0 ], [1, 12, 0], [1, 19, 1], [1, 29, 1]]) (2, 8)
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2B3 = create (2B3, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 21, 1], [0, 39, 0], [0, 49, 
0 ], [1, 22, 0], [1, 29, 1], [1, 39, 1]]) (2, 8) 

3B1 = create (3B1, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 31, 1], [0, 49, 
0 ], [1, 19, 1], [1, 32, 0], [1, 39, 1]]) (2, 8) 

4B1 = create (4B1, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 41, 
1 ], [1, 19, 1], [1, 42, 0], [1, 49, 1]]) (2, 8) 

The DES generators corresponding to .A4 are depicted in Fig. 6.19. The  
corresponding TCT operations are given below. Each specification represents that 
the corresponding task cannot be preempted. For example, 1NP represents that the 
execution of task . τ1 cannot be preempted. 

1NP = create (1NP, [mark 0], [tran [0, 0, 0], [0, 11, 1], [0, 29, 0], [0, 39, 0], [0, 49, 
0 ], [1, 12, 0], [1, 19, 1]]) (2, 7) 

2NP = create (2NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 21, 1], [0, 39, 0], [0, 49, 
0 ], [1, 22, 0], [1, 29, 1]]) (2, 7) 

3NP = create (3NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 31, 1], [0, 49, 
0 ], [1, 32, 0], [1, 39, 1]]) (2, 7) 

4NP = create (4NP, [mark 0], [tran [0, 0, 0], [0, 19, 0], [0, 29, 0], [0, 39, 0], [0, 41, 
1 ], [1, 42, 0], [1, 49, 1]]) (2, 7) 

By supervisory control of DES, for different scheduling plans with different 
specifications, we obtain the states and transitions of the corresponding supervisors 
as listed in Table 6.3 under “Super 1”, in which notation .(·, ·) represents the number 

Fig. 6.19 Specification for . A4. (a) . τ1 cannot be preempted. (b) . τ2 cannot be preempted. (c) . τ3
cannot be preempted. (d) . τ4 cannot be preempted
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Table 6.3 Supervisors of 
RTS 

.G .S Super 1 Super 2 

.S1 .A1 (3055, 8363) (2791,7310) 

.S1 .A2 (2725, 6533) (2512,5759) 

.S1 .A3 (2132, 4815) (2083,4454) 

.S1 .A4 (1069, 2252) (1126,2219) 

.S2 .A1 (2425, 6559) (2335,6034) 

.S2 .A2 (2170, 5131) (2092,4723) 

.S2 .A3 (1632, 3635) (1695,3559) 

.S2 .A4 (810, 1674) (903,1736) 

.S3 .A1 (62952, 197655) (72397,218029) 

.S3 .A2 (36057, 90381) (42006,100880) 

.S3 .A3 (13300, 30071) (17043,36174) 

.S3 .A4 (10076, 21868) (13819,27971) 

of the states and transitions in the supervisor. For each supervisor in Table 6.3, one 
can use the method developed in [16] (stated in Chap. 4) to view the release and 
scheduling maps that represent their task release orders and scheduling processes, 
respectively. Suppose that task . τ1 in Table 6.3 is replaced by a non-repetitive task 
.τ '
1 = ([2, 2], 4). The corresponding supervisors are listed in Table 6.3 under “Super 
2”. 

The DES generators corresponding to the specifications of an RTS are synchro-
nized into a monolithic one. Some specifications listed in Table 6.3 under . S are 
synchronized as follows. 

. SPEC2 = sync (3NP, SN1, SN2, SN) (2, 27)

. SPEC3 = sync (SN, 1B2, 2B3, 3B1) (8, 80)

. SPEC4 = sync (1NP, 2NP, 3NP, SN) (8, 77)

. SPEC6 = sync (SN, 4NP) (2, 27)

. SPEC7 = sync (SN, 1B2, 2B4, 4B1) (8, 80)

. SPEC8 = sync (SN, 1NP, 2NP, 4NP) (8, 77)

. SPEC10 = sync (SN, 3NP, 4NP) (4, 45)

. SPEC11 = sync (SN, 1B2, 2B3, 2B4, 3B1, 4B1) (16, 137)

.SPEC12 = sync (SN, 1NP, 2NP, 3NP, 4NP) (16, 133)
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Finally, the supervisors under “Super 1” are calculated as follows. 

. SUPER1 = supcon (SYS1, SN) (3055, 8363)

. SUPER2 = supcon (SYS1, SPEC2) (2725, 6533)

. SUPER3 = supcon (SYS1, SPEC3) (2132, 4815)

. SUPER4 = supcon (SYS1, SPEC4) (1069, 2252)

. SUPER5 = supcon (SYS2, SN) (2425, 6559)

. SUPER6 = supcon (SYS2, SPEC6) (2170, 5131)

. SUPER7 = supcon (SYS2, SPEC7) (1632, 3635)

. SUPER8 = supcon (SYS2, SPEC8) (810, 1674)

. SUPER9 = supcon (SYS3, SN) (62952, 197655)

. SPUER10 = supcon (SYS3, SPEC10) (36057, 90381)

. SUPER11 = supcon (SYS3, SPEC11) (13300, 30071)

. SUPER12 = supcon (SYS3, SPEC12) (10076, 21868)

6.5.2 Task Models with Exact Execution Time 

Suppose that, as stated in Table 6.4, the BCETs and WCETs of all the tasks are 
equal to one and two time units, respectively. For different specifications of a 
scheduling plan, the numbers of the states and transitions of the supervisors are 
listed in Table 6.5 under “Super 1” in the form (number of states, number of 
transitions). Suppose that task . τ1 in Table 6.5 is replaced by a non-repetitive task 
.τ '
1 = ([1, 2], 4). The corresponding supervisors are listed in Table 6.5 under “Super 
2”. The supervisor .(0, 0) in Table 6.5 represents that no safe execution sequences 
are found. 

Table 6.4 Task parameters Task .Ri .Ci .Di . Ti

.τ1 – [1, 2] – – 

.τ2 – [1, 2] 6 – 

.τ3 1 [1, 2] 7 [8, 8] 

.τ4 0 [1, 2] 6 [4, 6]
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Table 6.5 Supervisors 

Plant Spec Super 1 Super 2 

.S1 . A1, .D2 = 6, .D3 = 7 (5593, 17392) (6196, 18170) 

.S1 . A2, .D2 = 6, .D3 = 5 (3577, 9630) (2615, 6559) 

.S1 . A3, .D2 = 6, .D3 = 5 (1129, 2728) (861,1804) 

.S1 . A4, .D2 = 6, .D3 = 7 (745, 1502) (541, 1051) 

.S2 . A1, .D2 = 6, .D4 = 6 (4500, 14317) (7770, 23301) 

.S2 . A2, .D2 = 6, .D4 = 5 (3264, 9221) (3537, 9241) 

.S2 . A3, .D2 = 6, .D4 = 5 (1533, 4023) (1755, 4264) 

.S2 . A4, .D2 = 6, .D4 = 6 (582, 1258) (525, 1076) 

.S3 . A1, .D2 = 6, .D3 = 7, .D4 = 6 (147277, 574215) (171171, 607542) 

.S3 . A2, .D2 = 6, .D3 = 5, .D4 = 5 (0, 0) (0, 0) 

.S3 . A3, .D2 = 6, .D3 = 5, .D4 = 5 (0, 0) (0, 0) 

.S3 . A4, .D2 = 6, .D3 = 7, .D4 = 6 (8646, 20307) (4167, 8220) 

As stated in Chap. 1, a method that speeds up the calculation reduces the 
number of states in the plant and specification. The presented synthesis speeding 
up approach can be applied to this chapter. 

6.6 Conclusion 

This chapter reports a unified DES-based framework to build RTS by modular 
models and scheduling/reconfiguring RTS by SCT. This framework can be utilized 
to model an RTS that processes multi-period and sporadic tasks, in which a multi-
period task is assigned with a set of possible periods between a minimum period 
and a maximum period. The proposed modular models are taken to be generic 
entities, which are utilized to model a problem domain such as “hard real-time 
manufacturing or reconfigurations” and manage its manufacturing process. 

In practice, the execution time of a real-time task is expected to vary over time, 
within guaranteed bounds referred to as the BCET and WCET respectively. This 
motivates our further development of SCT-based RTS scheduling of real-time tasks 
previously proposed in Chap. 5. Building on the idea of exact execution time, 
this chapter provides a modular scheduling/reconfiguration methodology for RTS 
processing non-repetitive, sporadic, and (multi-period) periodic tasks, subject to a 
PFCP scheduling policy. Moreover, the three-step speeding up algorithm stated in 
Chap. 1 can be applied to this chapter. We illustrate our modelling framework in the 
context of a realistic manufacturing system. 

A hierarchical RTS model is presented in Chap. 7, based on nonblocking supervi-
sory control of state-tree structures (STS), where both conditionally-preemptive and 
dynamic priority scheduling are addressed in the SCT-based real-time scheduling. 
The task release/arrival, starting, and finishing are on the higher level, and the
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task execution is on the lower level. This modelling mechanism provides the 
possibility of assigning dynamic priorities for the real-time tasks under execution. 
The computational complexity of the STS framework is polynomial with respect 
to the number of the nodes in a binary decision diagram that describes the RTS’s 
behavior. Hence, the nonblocking supervisory control of STS may return results for 
the cases where the TCT algorithm fails. 
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Chapter 7 
Scheduling/Reconfiguration Based on 
Supervisory Control of STS 

7.1 Introduction 

Supervisory control theory (SCT)-based real-time scheduling and reconfiguration 
[6, 7, 12, 15–18] are a newly-identified research topic. Based on timed discrete-
event systems (TDES) or discrete-event systems (DES), multi-period tasks have 
been proposed in Chaps. 4 and 6, which can be utilized to model periodic tasks 
processed in real-time systems (RTS) with periods varying between a lower bound 
and an upper bound. As a consequence, it is a uniformed model which integrates 
real-time scheduling and reconfiguration. The only difference of a task’s model 
before and after its reconfiguration is the upper bound of its multi-period. 

Chapter 5 shows that both preemptive and non-preemptive scheduling policies 
may be conservative. As a solution, based on supervisory control of DES, a real-time 
scheduling principle is presented, namely priority-free conditionally-preemptive 
(PFCP) scheduling. Based on the PFCP real-time scheduling principle and the 
specifications provided by users, all the safe execution sequences of an RTS 
processing both multi-period periodic and sporadic tasks can be found. 

As a top-down state-based modelling framework with the state explosion prob-
lem managed, state-tree structures (STS) are defined in [8] and [9] for the purpose 
of incorporating the hierarchical (vertical) and concurrent (horizontal) structures 
of complex DES into a natural and compact model. The holons in STS represent 
hierarchical and concurrent transition structures of DES with structured state 
spaces; for details see Chap. 2, [8], and [9]. 

In this chapter, RTS are modelled starting from holons. The RTS model is 
converted into an STS automatically. The controller for each controllable event 
in the STS is obtained by the supervisory control of STS to provide the expected 
safe execution sequences. A task is associated with a constant worst-case execution 
time (WCET). WCET and the corresponding deadlines, release time, and periods 
(if any) are modelled by child-state-trees and holons in STS. As a consequence, a 
sporadic RTS is modelled by an STS. Based on this unified STS-based framework, 
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the scheduling requirements of an RTS are described by STS specifications that 
require only a small-sized state space. 

The PFCP specifications proposed in Chap. 5 are converted to STS specifications 
in a compact form such that the state explosion problem is effectively managed. 
Moreover, a partially non-preemptive specification is given to partially define the 
preemption relation among tasks. As an optimal dynamic priority scheduling, 
partially preemptive and non-preemptive earliest deadline first (EDF) scheduling 
is also addressed in this chapter. From a large number of safe execution sequences, 
a set of optimal sequences can be found by the EDF scheduler. 

The STS model and its specifications are represented by predicates. Prior to 
calculating the predicate representing the optimal controlled behavior, maximally 
permissive predicates are presented for disabling controllable events in the transition 
structure. The PFCP scheduling reported in this chapter is applied to a practical 
context to schedule a real-world RTS. For a controllable event, the controller is 
represented by a binary decision diagram (BDD) [2, 3] representing a boolean 
function. A BDD is a rooted directed acyclic graph that has two terminal nodes 
1 and 0 that represent true and false, respectively. 

In this chapter, the RTS are modelled according to the following principles: 

• an RTS is modelled in a hierarchical (vertical) and concurrent (horizontal) 
structure by using STS, 

• the conditionally-preemptive and dynamic priority scheduling requirements are 
converted into STS specifications which need much less storage space than the 
automata of the DES framework, and 

• with the state explosion problem managed significantly, the nonblocking super-
visory control of STS finds all the safe execution sequences. 

The methodology in this chapter guarantees that: 

• the presented scheduling framework can find the optimal behavior (all the safe 
execution sequences) of an RTS by the supervisory control of STS, and 

• a few sequences are selected, which rank at the top according to some specified 
optimality criteria. 

The remainder of this chapter is organized as follows. The STS-based real-time 
task model is described in Sect. 7.2. The conditionally-preemptive and dynamic 
priority scheduling specifications are reported in Sects. 7.3 and 7.4, respectively. 
As an example, the nonblocking supervisory control of Manufacturing Cell and a 
large example are presented in Sects. 7.5 and 7.6. Finally, conclusions are drawn in 
Sect. 7.7. 

7.2 RTS Modelled by State-Tree Structures 

This chapter presents an approach to model RTS processing sporadic and/or periodic 
tasks by STS, which can be viewed as an STS counterpart of the DES model
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presented in Chap. 6. For simplification, we consider the WCET of each real-time 
task only. Nevertheless, there is no technical problem to extend the approach to the 
exact execution time (studied in Chap. 6) with both the best case execution time 
(BCET) and WCET addressed. The preliminaries on STS can be found in Sect. 2.3. 

7.2.1 RTS Tasks 

Suppose that a periodic RTS . S processes n tasks, i.e., .S = {τ1, τ2, . . . , τi , . . . , τn}, 
.i ∈ n = {1, 2, . . . , n}. Generally, a periodic task . τi is specified as a four-tuple 

. τi = (Ri, Ci,Di,Ti )

with 

• a release time . Ri , 
• a WCET . Ci , 
• a deadline . Di , and 
• a multi-period . Ti , 

where . Ri , . Ci , and . Di are non-negative integers. A deadline . Di is hard if its violation 
is unacceptable; otherwise it is soft, which is not treated in this chapter. As stated in 
Chap. 4, a multi-period is specified by a non-empty interval 

. Ti = [T l
i , T u

i ] ∈ N × N,

where the number of time units that elapse between any two successive releases lies 
within . Ti . Hence a multi-period has a lower bound (i.e., shortest one) represented 
by . T l

i and an upper bound (i.e., longest one) represented by . T u
i . Only a period T in 

. Ti of task . τi is selected in a scheduling period. 
The following different types of real-time tasks are addressed in this chapter: 

• a sporadic/non-repetitive task without a deadline: .τi = (Ci), 
• a sporadic/non-repetitive task with a deadline: .τi = (Ci,Di), 
• a periodic task with its deadline not equal to . T u

i : .τi = (Ri, Ci,Di,Ti ), and 
• a periodic task with its deadline equal to . T u

i : .τi = (Ri, Ci,Ti ). 

Example Suppose that four asynchronous tasks are running in an RTS . S. We  
consider the WCET of the tasks stated in the example of Chap. 6 only, and their 
parameters are listed in Table 7.1, i.e., 

• . τ1: a sporadic task without a deadline, 
• . τ2: a sporadic task with a deadline, 
• . τ3: a traditional periodic task, and 
• . τ4: a multi-period periodic task.
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Table 7.1 Parameters of four 
tasks 

Task .Ri .Ci .Di . Ti

.τ1 – 2 – – 

.τ2 – 2 6 – 

.τ3 1 2 7 [8, 8] 

.τ4 0 2 6 [4, 6] 

Unless stated otherwise, all the exemplifications are based on this example. There 
is no technical problem to design STS counterparts for the RTS model presented in 
Chap. 6. . □

7.2.2 Execution Time Models 

The execution time of a real-time task . τi is modelled hierarchically by two holons 
.HCi and .HWi . Holon .HCi is on a higher level, and hence holon .HWi is considered 
as a superstate [8, 9] in holon .HCi . The  initial (resp., terminal) states of the holons 
without external states are marked by incoming (resp., outgoing) arrows. 

Definition 7.1 [holon .HCi ] The execution time . Ci of task . τi is described by a 
holon .HCi := (XCi ,ΣCi , δCi , X

Ci

0 , X
Ci
m ) with state set .XCi = X

Ci

I = {Ii, Ai,Wi}, 
event set .ΣCi = Σ

Ci

I := {γi, αi, βi}, transitions .δCi

I (Ii, l) = Ii , .δ
Ci

I (Ii, γi) = Ai , 

.δ
Ci

I (Ai, αi) = Wi , .δ
Ci

I (Wi, βi) = Ii , and the initial and terminal state set . X
Ci

0 =
X

Ci
m = {Ii}. . ♢

Example By zooming into state . Wi in Fig. 7.1, a lower-level holon .HWi and the 
matching state-tree representing the inner structure of . Wi are shown in Fig. 7.2. 
Clearly, before the arrival of . τi and after the completion of its execution, the 
processor is allowed to be in an idle operation. Moreover, holon .HWi represents 
the system behavior inside state . Wi . The states in Fig. 7.1 are defined as: 

• . Ii : idle, i.e., before the arrival of task . τi , 
• . Ai : arrival, i.e., task . τi has arrived in the system, and 
• . Wi : working, i.e., task . τi is being executed by the processor. . □

The lower-level holon .HWi is defined as follows. 

Definition 7.2 [holon .HWi ] Let  .0 ≤ k < Ci . The system behavior in state 
. Wi is described by a holon .HWi := (XWi ,ΣWi , δWi , X

Wi

0 , X
Wi
m ) with state set 

.XWi := {Ii, Ai, w
0
i , w

1
i , .. . . , w

Ci

i } partitioned into .XWi

E = {Ii, Ai} and . XWi

I =
{w0

i , w
1
i , . . . , w

Ci

i }, event set .ΣWi := {αi, βi, ci} partitioned into . ΣWi

B := {αi, βi}
and .ΣWi

I := {ci}, transitions .δBI (Ai, αi) = w0
i , .δBO(w

Ci

i , βi) = Ii , and 

.δI (w
k
i , ci) = wk+1

i , the initial state set .XCi

0 = {w0
i }, and the terminal state set 

.X
Ci
m = {wCi

i }. .♢
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Fig. 7.1 Higher-level model of WCET. (a) Holon .HCi . (b) Child-state-tree . ST Ci

Fig. 7.2 Lower-level model of WCET.  (a) Holon .HWi . (b) Child-state-tree .ST Wi . 

Example For task . τi , as shown in Fig. 7.1, its WCET . Ci is represented by a holon 
and a matching state-tree depicted in Figs. 7.1a and 7.1b, respectively. In accordance 
with Fig. 2.13, superstate . Wi is represented by a square dashed with north west 
lines. . □

The state spaces of the holons form child-state-trees. For instance, in Fig. 7.2, a  
holon .HWi contains .Ci +1 states, which represents the system behavior inside state 
. Wi . According to Sect. 2.3.2, a superstate in a holon is represented by a box. Let 
.0 ≤ k ≤ Ci . State . wk

i represents that task . τi has been processed for k time units. 

Example By plugging the holon illustrated in Fig. 7.2a into Fig. 7.1a, a two-level 
holon that represents . Ci is depicted in Fig. 7.3a. It is matched with a child-state-tree 
.ST Ci depicted in Fig. 7.3b. In accordance with both Sects. 2.3.2 and 4.2.2, the states 
filled with gray or crosshatch dots represent that they are in a lower level holon, and 
the states filled with crosshatch dots represent that the corresponding task is under 
execution. . □

Remark The holon depicted in Fig. 7.1 is similar to the TDES active transition 
graph illustrated in Fig. 4.1 but more general. Their semantics is different. For
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Fig. 7.3 Hierarchical STS model of . Ci . (a) Holon .HCi
with two levels. (b) Child-state-tree . ST Ci

example, the occurrences of event . βi in Figs. 4.1 and 7.1 are “ticked down” by 
a global tick event t and a local event . ci representing task . τi under execution, 
respectively. Clearly, event t represents any possible operation in a time unit; 
however, event . ci represents that a time unit is utilized to execute task . τi . . □

7.2.3 Deadline Models 

The deadline . Di of a task . τi is an integer denoting the maximal time difference 
between its arrival (the occurrence of . γi) and its execution completion (the occur-
rence of . βi). In STS, deadline . Di is represented by a holon .HDi that matches a 
child-state-tree .ST Di , which is defined below. 

Definition 7.3 [deadline holon] Let .0 ≤ k < Di , .Ci ≤ p ≤ Di , and .1 ≤ j ≤ n. 
The deadline . Di of task . τi is represented by a holon . HDi := (XDi ,ΣDi , δDi , X

Di

0 ,

X
Di
m ) with state set .XDi = X

Di

I := {dR
i , d0

i , d1
i , . . . , d

Di

i }, event set . ΣDi = Σ
Di

I :=
{γi, βi, c1, c2, . . . , .cn, l}, transitions .(j /= i)δ

Di

I (dR
i , cj ) = dR

i , .δDi

I (dR
i , l) = dR

i , 

.δ
Di

I (dR
i , γi) = d0

i , .δ
Di

I (dk
i , cj ) = dk+1

i , .δDi

I (dk
i , l) = dk+1

i , and .δDi

I (d
p
i , βi) = dR

i , 

and the initial and terminal state set .XDi

0 = X
Di
m = {dR

i }. . ♢
For task . τi , the deadline . Di is represented by holon .HDi shown in Fig. 7.4, in which 
“. ∗” and “. ∗∗” represent the events in . Σe and .Σe − {ci}, respectively. For simplicity, 
the states between . d1

i and .d
Di

i (except . dCi

i ) are omitted in this figure. The omissions 
are represented by arrows with dashed lines. The states in Fig. 7.4 are defined as: 

• . dR
i : the execution of task . τi is completed or has not started, and 

• . dk
i : the  k-th time unit is being utilized to process real-time tasks or in an idle 
operation.
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The deadline . Di of task . τi is an integer denoting the maximal time difference 
between its arrival (the occurrence of . γi) and its execution completion (the 
occurrence of . βi). 

According to Chap. 5, the  alphabet (set of event labels) . Σi describing the 
processor’s behavior to execute task . τi is: 

• . γi : task . τi is released, 
• . αi : the  execution of . τi is started, 
• . βi : the execution of . τi is completed, 
• . ci .(i ∈ n): the processor starts to execute . τi for one processor time unit, and 
• l: empty action, i.e., the processor is in an idle operation for one time unit. 

Let .σ = ci (resp., .σ = l). The occurrence of . σ represents that one processor time 
unit is utilized to execute task . τi (resp., in an idle operation for one processor time 
unit while it stays in state . q ,). 

Formally, for an RTS, its event set is defined as 

. Σ = Σcon∪̇Σunc,

with 

• .Σcon = {αi, ci |i ∈ n}: the controllable event subset, and 
• .Σunc = {βi, γi, l|i ∈ n}: the uncontrollable event subset. 
Moreover, . Σ is also partitioned into 

• .Σo = {γi, αi, βi |i ∈ n}: the  operation event set, and 
• .Σe = {ci, l|i ∈ n}: the  execution event set. 
Example In Fig. 7.4, the transition 

. (Ci ≤ p ≤ Di)δ
Di

I (d
p
i , βi) = dR

i

represents all the possible occurrences of event . βi . Figure 7.4a matches the child-
state-tree .ST Di as depicted in Fig. 7.4b. . □

Fig. 7.4 STS model of . Di . (a) Holon .HDi . (b) Child-state-tree .ST Di
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7.2.4 Release Time and Period Models 

For a periodic task . τi , the occurrence of event . γi represents the end of its current 
processing period (if any) and the start of the next period. In STS, the release time 
. Ri and period . Ti of a task . τi are represented by a holon .HTi that matches a child-
state-tree .ST Ti , which is defined below. 

Definition 7.4 [release time and period holon] Let .0 < k ≤ Ri , .0 ≤ p < T u
i − 1, 

.T l
i ≤ q < T u

i , and .1 ≤ j ≤ n. The release time . Ri and period . Ti of a task 

. τi are represented by a holon .HTi := (XTi , ΣTi , δTi , X
Ti

0 , X
Ti
m ) with state set 

.XTi = X
Ti

I := {rRi

i , r
Ri−1
i , . . . , r0i , t0i , t1i , . . . , t

T u
i −1

i }; event set . ΣTi = Σ
Ti

I :=
{γi, c1, c2, . . . , , cn, l}; transitions .(j /= i)δ

Ti

I (rk
i , cj ) = rk−1

i , .δTi

I (rk
i , l) = rk−1

i , 

.δ
Ti

I (r0i , γi) = t0i , .δ
Ti

I (t
p
i , cj ) = t

p+1
i , .δTi

I (t
p
i , l) = t

p+1
i , .δTi

I (t
T u

i −1
i , cj ) = r0i , 

.δ
Ti

I (t
T u

i −1
i , l) = r0i , and .δ

Ti

I (t
q
i , γi) = t0i ; the initial state set .X

Ti

0 = {rRi

i } and the 
terminal state set .XTi

m = {rRi

i , r
Ri−1
i , . . . , r0i }. . ♢

For a task . τi , the release time . Ri and period . Ti are represented by the holon shown in 
Fig. 7.5, in which “. ∗” and “. ∗∗” represent the events in . Σe and .Σe−{ci}, respectively. 
Let .0 ≤ k ≤ Ri and .0 ≤ p < T u

i . The states in Fig. 7.5 are defined as: 

• . rk
i : k time units before the arrival of task . τi , and 

• . t
p
i : the  k-th time unit is being utilized to process real-time tasks or in an idle 
operation. 

For a periodic task . τi , the occurrence of event . γi represents the end of its current 
processing period (if any) and the start of the next period. Let .T l

i ≤ q < T u
i . In  

Fig. 7.5, the transitions 

. δ
Ti

I (r0i , γi) = t0i

and 

. δ
Ti

I (t
q
i , γi) = t0i

represent all the possible occurrences of event . γi . 

Example Figure 7.5a represents the possible multi-period of task . τi , which matches 
a child-state-tree .ST Ti , as depicted in Fig. 7.5b. Since the RTS may process any task 
or remain idle within the period of a task . τi or before its deadline, we allow event 
. ci (.i ∈ n) to occur if the system is at states . dk

i , .0 ≤ k < Di and . t
p
i , .0 ≤ p < T u

i , 
simultaneously. .□
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Fig. 7.5 STS model of . Ti . 
(a) Holon .HTi . (b) 
Child-state-tree . ST Ti

7.2.5 Task Models 

Finally, as depicted in Fig. 7.6a, the parameters of task . τi are modelled by (at most) 
the following four holons: 

• holon .HCi (contains .HWi ): execution time . Ci , 
• holon .HWi : execution process of task . τi , 
• holon .HDi : deadline . Di , and 
• holon .HTi : release time . Ri and period . Ti . 

In Fig. 7.6a, “. ∗” and “. ∗∗” represent the events in . Σe and .Σe −{ci}, respectively. For 
task . τi , superstates . Ci , . Di , and . Ti are the expansions of an .AND superstate .T Ki . 
Hence, the main structure of the state-tree rooted by superstate .T Ki is illustrated 
in Fig. 7.6b. The global child-state-tree representing real-time task . τi is obtained by 
plugging the necessary holons (shown in Figs. 7.3b, 7.4b, and 7.5b) into Fig. 7.6b. 
Notice that state . Di (or . Ti) is deleted from Fig. 7.6b if the matching holon .HDi (or 
.HTi ) is not needed. The root state . Ci is replaced by .T Ki directly if only holon . HCi

is necessary. As a consequence, holon .HCi is renamed to be .HT Ki .
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Fig. 7.6 Global model of real-time tasks. (a) Holons. (b) Child-state-tree 

Remarks 

1. The STS model depicted in Fig. 7.6 represents that all the holons are running 
synchronously. 

2. The RTS model of task . τi is the synchronous product of (at most) holons .HCi , 
.HDi , and .HTi . Holons .HDi or .HTi in Fig. 7.6a can be removed in the case that 
they are unnecessary or not defined. For example, the deadline of periodic task 
. τ4 in Table 7.1 is equal to its maximum period . T u

i . Thus holon .H
D4 is ignored 

when building the model of . τ4. 
3. The condition for an event . σ to occur is: . σ is eligible to occur in all the holons 

where it appears. For example, event . γi in Fig. 7.6a can occur only if the system 
is at states . Ii , . r0i , and . dR

i simultaneously. 

4. From the perspective of holon .HCi , .HWi is an internal state in . X
Ci

I .
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Fig. 7.7 Global model of . S. (a) Holons modelling . S. (b) Child-state-tree modelling . S

5. By following the presented approach, there is no technology barrier for address-
ing the exact execution time (discussed in Chap. 6) in holon .HWi . Users only 
need to revise .HWi accordingly. 

6. In this section, .{Ii, d
R
i , r

Ri

i } is defined as the initial state set of the STS depicted 
in Fig. 7.6a. . □

7.2.6 Global RTS Execution Models 

The monolithic RTS execution model is the synchronous product of the models 
of all the RTS tasks under execution. In STS, the holons and state-tree representing 
RTS . S are depicted in Figs. 7.7a and 7.7b, respectively. By plugging the task models 
presented above into the RTS model we obtain the global RTS model, in which the 
global RTS behavior is represented by an .AND superstate, namely .RTS. 

Example Suppose that the four tasks given in Table 7.1 are running in an RTS . S. 
The corresponding holons and the structure of the state-tree are depicted in Figs. 7.8 
and 7.9, respectively. . □

7.3 Conditionally-Preemptive Specifications 

According to the STS framework, two types of state-based specifications1 are 
defined: 

Type 1: mutual exclusion .{x1, x2, . . . , xn}: a system should avoid occupying 
states . x1, . x2, . . . ., . xn in an STS model simultaneously; 

Type 2: forbidden events at non-empty state sets .({x1, x2, . . . , .xn}, σ ): at a state  
set .{x1, x2, . . . , xn} in an STS model, event . σ is not allowed to occur. 

As a consequence, the following two types of RTS real-time scheduling specifi-
cations are defined.

1 The states . x1, . x2, . . . ., . xn in these specifications can belong to different holons. 
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Fig. 7.8 Holons of RTS . S

7.3.1 Matrix-Based Conditional-Preemption Specifications 

In order to define the preemption relations among the tasks executed in a uni-
processor, a preemption matrix . A is presented in Chap. 5 taking the form
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Fig. 7.9 State-tree of RTS .S RTS 

TK1 TK2 

C2 D2 

TK3 

C3 D3 T3 

TK4 

C4 T4 

× × ×  

× ×  × ×  

.A =

⎛
⎜⎜⎜⎝

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...

∗ ∗ · · · 0

⎞
⎟⎟⎟⎠ (7.1) 

where . ∗, equal to either 0 or 1, can be predefined by users. Accordingly, a task . τi

is (resp., is not) allowed to be interrupted by the execution of . τj if .Ai,j = 1 (resp., 
.Ai,j = 0) for .i /= j . 

In a preemption matrix . A, if .i /= j , .Ai,j = 0 is equivalently represented by a Type 
2 specification .({Wi}, αj ). In particular, if two tasks . τi and . τj are not allowed to 
preempt each other, the specification is denoted by a Type 1 specification .{Wi,Wj }. 
It forbids a system from visiting . Wi and . Wj simultaneously. 

Example Suppose that the execution of task . τ3 is not allowed to be preempted 
by . τ1, i.e., .A3,1 = 0. The PFCP specifications are represented by .({W3}, α1) and 
.({W3}, c1), which represents that while task . τ3 is under execution, the occurrences 
of events . α1 and . c1 are prohibited. Moreover, if .A1,3 = A3,1 = 0, we have a  
specification .{W1,W3}, which shows that tasks . τ1 and . τ3 are not allowed to stay in 
holons .HW1 and .HW3 to process them simultaneously. . □

7.3.2 Task-Centered Specifications 

Let .i, j ∈ n, .i /= j , and .0 ≤ k ≤ Ci . More specifically, a specification . ({wk
i }, cj )

represents that at state . wk
i the occurrence of event . cj is forbidden, which shows that 

at state . wk
i the execution of task . τi cannot be preempted by task . τj . 

Example Suppose that, at states . w0
1 and . w1

1, the execution of . τ1 is not allowed to 
be preempted by . τ3. Then the state-based specifications are denoted by . ({w0

1}, c3)
and .({w1

1}, c3). .□
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7.4 Dynamic Specifications 

EDF scheduling is a dynamic priority scheduling strategy [14]. At every processor 
time unit, EDF dynamically assigns the highest priority to the tasks with the earliest 
deadlines. Least laxity first (LLF) scheduling, as another optimal algorithm, is 
proposed by Mok in [10], which assigns the processor to the active task with the 
smallest laxity. LLF has a larger overhead than EDF due to a larger number of 
context switches caused by laxity changes at run time. This section mainly focuses 
on the EDF specifications. 

7.4.1 Earliest-Deadline First Task Selection at Arrival 

Generally, suppose that two tasks . τi and . τj with .Di > Dj arrive simultaneously at 
time unit .t ≥ 0. The tasks other than the one with the earliest deadline are prevented 
from entering the processor for execution. Such an example is depicted in the Gantt 
chart depicted in Fig. 7.10.2 Before executing . τi or . τj , i.e., at state set {. t0i , . t

0
j }, 

the system should prevent task . τi from entering the processor (at state set {. w0
i }) 

while task . τj is at state set {. Aj}. We have a Type 2 specification . {Aj ,w
0
i , t

0
i , t0j } =

{Aj }∪{w0
i }∪{t0i , t0j }. Consequently, the EDF task selection is described in Fact 7.1. 

Fact 7.1 (EDF Task Selection) Let .S ⊆ S and .S /= ∅. The EDF task selection 
specification for the tasks in S is equivalently represented by a state-based 
specification set .{{Aj ,w

0
i , t

0
i , t0j } .|τi, τj ∈ S,Di > Dj }. . ♢

Example For the tasks given in Table 7.1, we have  .D2 < D3 and .D4 < D3. The  
EDF task selection specification is .{{A2, w

0
3, t

0
2 , t03 }, {A4, w

0
3, t

0
4 , t03 }}. Notice that 

no period is assigned to task . τ2, and the specification .{A2, w
0
3, t

0
2 , t03 } is invalid. 

However, there is no problem for assigning such a specification for STS since state 
set .{A2, w

0
3, t

0
2 , t03 } is neither reachable nor coreachable. . □

Fig. 7.10 EDF task selection 
at arrival

2 The two tasks in Figs. 7.10, 7.11, and  7.12 are assigned randomly as .τi = (_, 2, 6, [6, 6]) and 
.τj = (_, 2, 4, [4, 4]). 
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Fig. 7.11 Partially 
preemptive EDF 

7.4.2 Partially Preemptive Earliest-Deadline First Scheduling 

Let .S ⊆ S, .S /= ∅, .τi, τj ∈ S, .0 ≤ k ≤ Di , and .0 ≤ p ≤ Dj . States . dk
i

and . dp
j represent that during the execution of tasks . τi and . τj , k and p time units 

have elapsed, respectively. As depicted in Fig. 7.11, during (or at least starting) the 
execution of any two tasks . τi and . τj (at state set .{Ai,Aj ,Wi,Wj , d

k
i , d

p
j }), i.e., at 

any time unit .t = k ≥ 0, the execution of . τi should be preempted if the deadline of 
. τj is earlier (i.e., .Di − dk

i > Dj − d
p
j ). Accordingly, the partially preemptive EDF 

scheduling specification is described in Fact 7.2. 

Fact 7.2 (Partially Preemptive EDF) Let .S ⊆ S, .S /= ∅, .τi, τj ∈ S, .0 ≤ k ≤ Di , 
and .0 ≤ p ≤ Dj . The state-based specification set .{({Ai,Aj , .Wi,Wj , d

k
i , d

p
j }, . αi),

.({Ai,Aj ,Wi,Wj , d
k
i , d

p
j }, ci)| .τi, τj ∈ S, .Di −dk

i > Dj −d
p
j } specifies a partially 

preemptive EDF scheduling strategy for the tasks in S. . ♢
Remarks 

1. The specifications generated in Facts 7.1 and 7.2 form the complete partially 
preemptive EDF scheduling strategy. 

2. The partially preemptive EDF specifications can be combined with the PFCP 
specifications. 

3. The specifications .{({Ai,Aj ,Wi,Wj , d
k
i , d

p
j }, αi)|τi, τj ∈ S, . Di − dk

i > Dj −
d

p
j } can be ignored if some scheduling scenarios place no constraints on the start 
of any task’s execution. In this case, the EDF scheduling is still satisfied since 
in any execution period, event . αi occurs prior to the occurrence of event . ci (the 
execution of task . τi). . □

7.4.3 Partially Non-Preemptive Earliest-Deadline First 
Scheduling 

Non-preemptive EDF specifications are very common in industrial implementa-
tions. For instance a manufacturing process may require that, after a task . τi enters 
the processor and before its execution is completed, the processing of . τi cannot be 
preempted even if another task . τj is assigned with a higher priority.
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Fig. 7.12 Partially 
non-preemptive EDF 

Let .S ⊆ S with .S /= ∅, .τi, τj ∈ S, .0 ≤ k ≤ Di , and .0 ≤ p ≤ Dj . As depicted 
in Fig. 7.12, the system is not allowed to visit state set .{Wi,Wj }. Moreover, after 
the arrival of any two tasks . τi and . τj (at state set .{Ai,Aj , d

k
i , d

p
j }), i.e., at time 

.t = k ≥ 0, the execution of . τi will be preempted if the deadline of . τj comes earlier 
(.Di − dk

i > Dj − d
p
j ). Accordingly, the partially non-preemptive EDF scheduling 

specification is described in Fact 7.3. 

Fact 7.3 (Partially Non-Preemptive EDF) Let .S ⊆ S with .S /= ∅, .τi, τj ∈ S, 
.0 ≤ k ≤ Di , and .0 ≤ p ≤ Dj . The state-based specification sets . {{Wi,Wj }|
.τi ∈ S, τj ∈ S, .i /= j} and .{({Ai,Aj , d

k
i , d

p
j }, αi)| . τi, τj ∈ S,Di − dk

i > Dj − d
p
j }

specify a partially non-preemptive EDF strategy for the tasks in S. . ♢
Remarks 

1. The specifications generated in Facts 7.1 and 7.3 form the complete partially 
non-preemptive EDF scheduling strategy. 

2. The partially preemptive/non-preemptive EDF (dynamic) specifications can be 
combined with the PFCP specifications. 

3. The partially preemptive/non-preemptive LLF scheduling specifications can be 
designed similarly, which is not touched upon in this chapter. . □

7.5 Supervisor Synthesis with a Case Study: Manufacturing 
Cell 

By assigning dynamic priorities to RTS tasks, based on the STS modelling and 
supervisory control mechanism, a few safe execution sequences are selected, which 
rank at the top according to specified optimality criteria. The presented RTS models 
using STS can be synthesized in a software package STSLib,3 which utilizes BDD 
as the basis of efficient computation. 

Thanks to the supervisory control of STS [8, 9, 19], the controllers for the 
controllable events are obtained to provide the expected safe execution sequences. 
Briefly, this process is depicted in the diagram in Fig. 7.13.

3 https://github.com/chuanma/STSLib. 

https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
https://github.com/chuanma/STSLib
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Fig. 7.13 RTS scheduling 
diagram RTS 

STS 
Model 

Specifications 

STS 
Specifications 

Supervisory 
control of STS 

Scheduler 

Modelling Modelling 

Output 

Input 

Case studies on the manufacturing cell studied in Chaps. 5 and 6 are recalled in 
this section. Based on the nonblocking supervisory control of STS, the controller 
for each controllable event in the RTS is calculated, which provides all the expected 
safe execution sequences. 

7.5.1 Compact Encoding of the Manufacturing Cell 

Consider the manufacturing cell studied in Sect. 6.5 as an example. Two pieces of 
W1 (resp., W2) are released to the input buffer B1 (resp., B2) simultaneously every 
6 (resp., 3) seconds. The robot . R has capacity one; transporting each piece takes 
1 second. Thus, we define a task .τ1 = (0, 2, 6, [6, 6]) (resp., .τ2 = (0, 2, 3, [3, 3])) to  
represent the transportation of the two pieces of W1 (resp., W2) by . R. Consequently, 
we have a system .S = {τ1, τ2}, whose holons are shown in Fig. 7.14. 

In the STS framework, the manufacturing cell is encoded into BDD. As proposed 
in [4] and [5], the states in the state set . Xx of a holon . Hx are encoded by BDD nodes 
(variables). Consider a state set . Xx with a state space .|Xx | = N . An element y in 
. Xx is encoded as a vector of n binary values, where .n = ⎾log2 N⏋. The  encoding 
process is denoted by a function .f : Xx → {0, 1}n that maps an element y in . Xx to 
a distinct n-bit binary vector. According to [8], the n variables are denoted by . x_i
with .0 ≤ i < n. 

As  shown in Fig. 7.14, seven states form the state set of holon .HT1 , i.e., . XT1 =
{r01 , t01 , t11 , . . . , t51 }. As a consequence, three BDD nodes .T 1_i with . 0 ≤ i < 3
are needed to encode the states in .XT1 . (In the encoding process, superstate . T1 is 
represented by RT 1.) Let .T 1_i : 0 and .T 1_i : 1 denote that .T 1_i is encoded as 0 
and 1, respectively. The encoding pairs are shown in Table 7.2. Similarly, the states 
in holons .HC2 and .HW2 are encoded as shown in Table 7.3.
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Fig. 7.14 Holons of manufacturing cell 

Table 7.2 BDD vectors 
encoding the states in . HT1

State BDD vector 

.r01 . < RT 1_2 : 0, RT 1_1 : 0, RT 1_0 : 0 >

.t01 . < RT 1_2 : 0, RT 1_1 : 0, RT 1_0 : 1 >

.t11 . < RT 1_2 : 0, RT 1_1 : 1, RT 1_0 : 0 >

.t21 . < RT 1_2 : 0, RT 1_1 : 1, RT 1_0 : 1 >

.t31 . < RT 1_2 : 1, RT 1_1 : 0, RT 1_0 : 0 >

.t41 . < RT 1_2 : 1, RT 1_1 : 0, RT 1_0 : 1 >

.t51 . < RT 1_2 : 1, RT 1_1 : 1, RT 1_0 : 0 >

Table 7.3 BDD vectors 
encoding the states in . HC2

and . HW2

State BDD vector 

.I2 . < C2_1 : 0, C2_0 : 0 >

.A2 . < C2_1 : 0, C2_0 : 1 >

.W2 . < C2_1 : 1, C2_0 : 0 >

.w0
2 . < W2_1 : 0,W2_0 : 0 >

.w1
2 . < W2_1 : 0,W2_0 : 1 >

.w2
2 . < W2_1 : 1,W2_0 : 0 >

7.5.2 Conditionally-Preemptive Scheduling 

Suppose that a matrix-based specification is denoted by
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Fig. 7.15 SFBC controllers. (a) . fα1 . (b) . fα2 . (c) . fc1

Table 7.4 Truth table of . fα1

.fα1 .RT 1_0 .RT 1_1 .RT 1_2 .C2_0 .C2_1 .W2_0 . W2_1

1 0 .∗ .∗ .∗ .∗ .∗ . ∗
1 1 1 .∗ .∗ .∗ .∗ . ∗
1 1 0 .∗ 0 1 .∗ 0 

0 1 0 .∗ 0 1 .∗ 1 

0 1 0 .∗ 0 0 .∗ . ∗
0 1 0 .∗ 1 .∗ .∗ . ∗

. A =
(
0 0
1 0

)
,

i.e., the execution of task . τ1 cannot be preempted by . τ2. The corresponding STS 
specification is .({W1}, α2, {W1}, c2). By the  state feedback control (SFBC) [8, 9], 
event . c2 can occur at any basic-state-tree whenever it is eligible to occur. The 
control functions of events . α1, . α2, and . c1, denoted by . fα1 , . fα2 , and . fc1 , respectively, 
are shown in Fig. 7.15. A dashed (resp., solid) branch denotes that the variable is 
assigned 0 (resp., 1). According to Fig. 7.15a, the truth table for control function 
.fα1 is obtained, as shown in Table 7.4, where “. ∗” denotes a variable that can be 
assigned 0 or 1. 

The controllers display that: 

• event . α1 can occur at state sets .{A1, t
2
1 , t21 , w2

2} and .{A1, I2, t
2
1 , t22 }, 

• event .c1 can occur at state sets .{I2, t21 , t22 , w0
1}, .{t21 , t22 , w0

1, w
2
2}, and 

.{A2, t
3
1 , t02 , w1

1}, 
• event .α2 can occur at state sets .{A1, A2, t

0
1 , t02 }, .{I1, A2, r

0
1 , t

0
2 }, and 

.{I1, A2, t
4
1 , t12 }, and
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Fig. 7.16 EDF scheduling sequences 

• event . c2 can occur at state sets .{A1, t
1
1 , t12 , w1

2}, .{A1, t
0
1 , t02 , w0

2}, .{I1, t51 , t22 , w1
2}, 

and .{I1, t41 , t12 , w0
2}. 

The RTS under control can reach the following 24 sub-state-trees: {. I1, . I2, . r01 , . r
0
2 }, 

{. I1, . A2, . r01 , . t
0
2 }, {. A1, . I2, . t01 , . r

0
2 }, {. t

0
1 , . t

0
2 , . w

0
1, . w

0
2}, {. t

1
1 , . t

1
2 , . w

0
1, . w

1
2}, {. t

1
1 , . t

1
2 , . w

1
1, 

. w0
2}, {. t

2
1 , . t

2
2 , . w

0
1, . w

2
2}, {. t

2
1 , . t

2
2 , . w

1
1, . w

1
2}, {. t

3
1 , . r

0
2 , . w

1
1, . w

2
2}, {. t

4
1 , . t

1
2 , . w

0
2}, {. t

5
1 , . t

2
2 , . w

1
2}, 

{. I1, . r01 , . t
0
2 , . w

0
2}, {. A1, . t11 , . t

1
2 , . w

1
2}, {. I1, . r

0
1 , . r

0
2 , . w

2
2}, {. I1, . A2, . t41 , . t

1
2 }, {. A1, . A2, . t01 , . t

0
2 }, 

{. A1, . t01 , . t
0
2 , . w

0
2}, {. A1, . t01 , . r

0
2 , . w

2
2}, {. A1, . t21 , . t

2
2 , . w

2
2}, {. A1, . I2, . t21 , . t

2
2 }, {. I2, . t

2
1 , . t

2
2 , . w

0
1}, 

{. A2, . t31 , . t
0
2 , . w

1
1}, {. I2, . t

3
1 , . r

0
2 , . w

1
1}, and {. A2, . t41 , . t

1
2 , . w

2
1}. 

7.5.3 Preemptive and Non-Preemptive Earliest-Deadline First 
Scheduling 

For given preemptive/non-preemptive EDF specifications, the controllers for all the 
controllable events are calculated. All the EDF scheduling sequences are shown 
in Fig. 7.16, where the paths made by the states dashed by north east lines denote 
the non-preemptive EDF sequences. In other words, the diagram shown in Fig. 7.16 
contains the three possible EDF sequences depicted in Fig. 7.17. Since in the time 
interval .[3, 6] the deadlines of . τ1 and . τ2 are equal to each other, . τ1 and . τ2 can be 
processed in any order. The sequence shown in Fig. 7.17a is the non-preemptive 
EDF sequence. The preemptive EDF specification for the RTS is given as follows. 

Type 1: {{. A2, . w0
1, . t

0
1 , . t

0
2 }}; 

Type 2: {({. W1, . W2, . A1, . A2, . t01 , . t
0
2 }, . α1), ({. W1, . W2, . A1, . A2, . t01 , . t

0
2 }, . c1), ({. W1, 

. W2, . A1, . A2, . t01 , . t
1
2 }, . α1), ({. W1, . W2, . A1, . A2, . t01 , . t

1
2 }, . c1), ({. W1, . W2, . A1, . A2, . t01 , . t

2
2 }, 

. α1), ({. W1, . W2, . A1, . A2, . t01 , . t
2
2 }, . c1), ({. W1, . W2, . A1, . A2, . t11 , . t

0
2 }, . α1), ({. W1, . W2, . A1,
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Fig. 7.17 EDF scheduling logics shown in Fig. 7.16. (a) Scheduler 1. (b) Scheduler 2. (c) 
Scheduler 3 

. A2, . t11 , . t
0
2 }, . c1), ({. W1, . W2, . A1, . A2, . t11 , . t

1
2 }, . α1), ({. W1, . W2, . A1, . A2, . t11 , . t

1
2 }, . c1), ({. W1, 

. W2, . A1, . A2, . t11 , . t
2
2 }, . α1), ({. W1, . W2, . A1, . A2, . t11 , . t

2
2 }, . c1), ({. W1, . W2, . A1, . A2, . t21 , . t

0
2 }, 

. α1), ({. W1, . W2, . A1, . A2, . t21 , . t
0
2 }, . c1), ({. W1, . W2, . A1, . A2, . t21 , . t

1
2 }, . α1), ({. W1, . W2, . A1, 

. A2, . t21 , . t
1
2 }, . c1), ({. W1, . W2, . A1, . A2, . t21 , . t

2
2 }, . α1), ({. W1, . W2, . A1, . A2, . t21 , . t

2
2 }, . c1), ({. W1, 

. W2, . A1, . A2, . t31 , . t
1
2 }, . α1), ({. W1, . W2, . A1, . A2, . t31 , . t

1
2 }, . c1), ({. W1, . W2, . A1, . A2, . t31 , . t

2
2 }, 

. α1), ({. W1, . W2, . A1, . A2, . t31 , . t
2
2 }, . c1), ({. W1, . W2, . A1, . A2, . t41 , . t

0
2 }, . α2), ({. W1, . W2, . A1, 

. A2, . t41 , . t
0
2 }, . c2), ({. W1, . W2, . A1, . A2, . t41 , . t

2
2 }, . α1), ({. W1, . W2, . A1, . A2, . t41 , . t

2
2 }, . c1), ({. W1, 

. W2, . A1, . A2, . t51 , . t
0
2 }, . α2), ({. W1, . W2, . A1, . A2, . t51 , . t

0
2 }, . c2), ({. W1, . W2, . A1, . A2, . t51 , . t

1
2 }, 

. α2), ({. W1, . W2, . A1, . A2, . t51 , . t
1
2 }, . c2)}. 

The non-preemptive EDF specification for the RTS is given as follows. 

Type 1: {{. A2, . w0
1, . t

0
1 , . t

0
2 }, {. W1,. W2}}; 

Type 2: {({. A1, . A2, . t01 , . t
0
2 }, . α1), ({. A1, . A2, . t01 , . t

1
2 }, . α1), ({. A1, . A2, . t01 , . t

2
2 }, . α1), 

({. A1, . A2, . t11 , . t
0
2 }, . α1), ({. A1, . A2, . t11 , . t

1
2 }, . α1), ({. A1, . A2, . t11 , . t

2
2 }, . α1), ({. A1, . A2, . t21 , 

. t02 }, . α1), ({. A1, . A2, . t21 , . t
1
2 }, . α1), ({. A1, . A2, . t21 , . t

2
2 }, . α1), ({. A1, . A2, . t31 , . t

1
2 }, . α1), ({. A1, 

. A2, . t31 , . t
2
2 }, . α1), ({. A1, . A2, . t41 , . t

0
2 }, . α2), ({. A1, . A2, . t41 , . t

2
2 }, . α1), ({. A1, . A2, . t51 , . t

0
2 }, . α2), 

({. A1, . A2, . t51 , . t
1
2 }, . α2)}. 

7.5.4 Non-Preemptive Earliest-Deadline First Scheduling 
Sequences 

Suppose that we have four real-time tasks with the parameters listed in Table 7.5. 
By non-preemptive EDF scheduling, the following periodic execution sequence is 
found: 

. 

s1c1c1β1α2c2c2c2β2α3c3c3c3c3β3α4c4γ1c4c4c4c4β4α1c1γ2c1

β1α2c2c2c2β2ls2c1c1β1α3c3c3c3c3β3lllls3c1c1β1α2c2c2c2β2

α4c4c4c4c4c4s4c1c1β1α3c3c3c3γ2c3β3α2c2c2c2β2lγ1α1c1c1β1llllllll

with
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Table 7.5 Parameters of four 
tasks 

Task .Ri .Ci .Di . Ti

.τ1 0 2 8 [10, 10] 

.τ2 0 3 10 [15, 15] 

.τ3 0 4 15 [20, 20] 

.τ4 0 5 20 [30, 30] 

Fig. 7.18 A part of non-preemptive EDF scheduling sequence 

• .s1 = (γ1α1)||γ2||γ3||γ4, 
• .s2 = (γ1α1)||γ3, 
• .s3 = (γ1α1)||γ2||γ4, and 
• .s4 = β4||(γ1α1)||γ3. 

Here . s1 denotes the synchronous product of sequences .γ1α1, . γ2, . γ3, and . γ4. In  
every 60 time units, without blocking the arrival of any task, among all the safe 
executions the STS scheduler finds the following order to schedule the RTS tasks 
shown in Table 7.5 periodically: 

. τ1τ2τ3τ4τ1τ2lτ1τ3llllτ1τ2τ4τ1τ3τ2lτ1llllllll.

The scheduling of the RTS from the 0-th to the 30-th time unit is depicted in 
Fig. 7.18. 

7.6 Large RTS Example 

Suppose that we have an RTS that processes the regular periodic tasks shown in 
Table 7.6. For a task . τi , .Di = T l

i = T u
i holds. The state space of the corresponding 

STS . G is in the order of .2 × 1030.4 Suppose that the following two specifications 
are assigned by users: 

S1: Preemptive scheduling, and 
S2: Non-preemptive scheduling.

4 This is calculated based on the synchronous product of all the holons appeared in the RTS model. 
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Table 7.6 Tasks of a large RTS 

Task .Ci .Ti Task .Ci .Ti Task .Ci . Ti

.τ11 1 [40, 40] .τ21 1 [40, 40] .τ31 1 [20, 20] 

.τ12 1 [30, 30] .τ22 1 [40, 40] .τ32 1 [25, 25] 

.τ13 2 [40, 40] .τ23 2 [40, 40] .τ33 1 [20, 20] 

.τ14 1 [50, 50] .τ24 1 [40, 40] .τ34 1 [25, 25] 

.τ15 1 [30, 30] .τ25 1 [50, 50] .τ35 1 [25, 25] 

By the supervisory control of STS, for S1, the controllers allow all the con-
trollable events to occur whenever they are eligible. However, no safe execution 
sequences with respect to S2 are found. 

7.7 Conclusion 

STS are a complex DES framework with compact representation. As stated in 
Chap. 2, [8], and [9], the state explosion problem faced by the SCT community is to 
some extent managed in STS. The efficiency of the proposed method is due in part 
to BDD [2] and symbolic computation. In the case of large-scale DES the required 
computer memory is more likely to be acceptable than the case that an explicit state 
transition enumeration is employed. 

This chapter reports on a unified STS-based framework to model and schedule 
RTS by addressing conditionally-preemptive and dynamic priority scheduling speci-
fications. A formal constructive method is presented to model an RTS that processes 
multi-period and sporadic tasks, in which a multi-period task is assigned with a 
set of possible periods between a minimum period and a maximum period. Based 
on this framework, the PFCP specifications proposed in [16] are converted to STS 
specifications in a compact representation that often manages the state explosion 
problem for practical purposes. As a classical dynamic priority scheduling, partially 
preemptive or non-preemptive earliest deadline first (EDF) scheduling is also 
addressed in this chapter. Moreover, there is no technology barrier for designing 
specifications for LLF scheduling. The PFCP scheduling presented in this chapter 
is applied to a real-world RTS example. 

The dynamic specifications presented in Sect. 7.4 are all state-based, which 
avoids using memories (specification holons) to record the system behavior. Thus 
the approach provided in this chapter avoids building a large group of memories, 
which is normally very laborious for the classical supervisory control of DES.
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If other SCT synthesis tools, such as TCT5 [19], libFAUDES6 [11], Desuma7 

[13], and Supremica8 [1], are able to handle the state-based specifications presented 
in Sects. 7.3 and 7.4, then they can also be used to find the safe execution sequences 
of the RTS with respect to dynamic specifications. 

References 

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica-an integrated environment for 
verification, synthesis and simulation of discrete event systems. In: International Workshop 
on Discrete Event Systems, pp. 384–385. IEEE (2006) 

2. Andersen, H.R.: An Introduction to Binary Decision Diagrams. Lecture Notes, (available 
online), IT University of Copenhagen (1997). http://web.archive.org/web/20140222052815/ 
http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf 

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put. 100(8), 677–691 (1986) 

4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM 
Comput. Surv. 24(3), 293–318 (1992) 

5. Chao, W., Gan, Y., Wang, Z., Wonham, W.M.: Modular supervisory control and coordination 
of state tree structures. Int. J. Control 86(1), 9–21 (2013) 

6. Chen, P.C.Y., Wonham, W.M.: Real-time supervisory control of a processor for non-preemptive 
execution of periodic tasks. Real-Time Syst. 23, 183–208 (2002) 

7. Janarthanan, V., Gohari, P., Saffar, A.: Formalizing real-time scheduling using priority-based 
supervisory control of discrete-event systems. IEEE Trans. Autom. Control 51(6), 1053–1058 
(2006) 

8. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures, vol. 317. 
Springer-Verlag, Berlin (2005) 

9. Ma, C., Wonham, W.M.: Nonblocking supervisory control of state tree structures. IEEE Trans. 
Autom. Control 51(5), 782–793 (2006) 

10. Mok, A.K.: Fundamental design problems of distributed systems for the hard-real-time 
environment. Ph.D. Thesis, Department of Electrical Engineering and Computer Science, 
Massachusetts Institute of Technology, Cambridge, Massachusetts (1983) 

11. Moor, T., Schmidt, K., Perk, S.: libFAUDES–An open source C++ library for discrete event 
systems. In: 2008 9th International Workshop on Discrete Event Systems, pp. 125–130. IEEE 
(2008) 

12. Park, S.J., Cho, K.H.: Real-time preemptive scheduling of sporadic tasks based on supervisory 
control of discrete event systems. Inf. Sci. 178(17), 3393–3401 (2008) 

13. Ricker, L., Lafortune, S., Genc, S.: Desuma: A tool integrating giddes and umdes. In: 8th 
International Workshop on Discrete Event Systems, pp. 392–393. IEEE (2006) 

14. Sha, L., Abdelzaher, T., Cervin, A., Baker, T., Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, 
J., Mok, A.K.: Real time scheduling theory: a historical perspective. Real-Time Syst. 28(2), 
101–155 (2004) 

15. Wang, X., Li, Z., Wonham, W.M.: Dynamic multiple-period reconfiguration of real-time 
scheduling based on timed DES supervisory control. IEEE Trans. Ind. Inf. 12(1), 101–111 
(2016)

5 The software tool TCT is available at http://www.control.utoronto.ca/DES. 
6 The software libFAUDES incl. luafaudes is available at https://www.rt.tf.fau.de/FGdes. 
7 The software Desuma is available at https://wiki.eecs.umich.edu/desuma/index.php/DESUMA. 
8 The software Supremica is available at https://supremica.org/. 

http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://web.archive.org/web/20140222052815/http:/configit.com/configit_wordpress/wp-content/uploads/2013/07/bdd-eap.pdf
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
http://www.control.utoronto.ca/DES
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://www.rt.tf.fau.de/FGdes
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://wiki.eecs.umich.edu/desuma/index.php/DESUMA
https://supremica.org/
https://supremica.org/
https://supremica.org/


References 187

16. Wang, X., Li, Z., Wonham, W.M.: Optimal priority-free conditionally-preemptive real-time 
scheduling of periodic tasks based on DES supervisory control. IEEE Trans. Syst. Man Cybern. 
Syst. 47(7), 1082–1098 (2017) 

17. Wang, X., Li, Z., Wonham, W.M.: Priority-free conditionally-preemptive scheduling of 
modular sporadic real-time systems. Automatica 89, 392–397 (2018) 

18. Wang, X., Li, Z., Wonham, W.M.: Real-time scheduling based on nonblocking supervisory 
control of state-tree structures. IEEE Trans. Autom. Control 66(9), 4230–4237 (2021) 

19. Wonham, W.M., Cai, K.: Supervisory Control of Discrete-Event Systems. Monograph Series 
Communications and Control Engineering. Springer, Berlin (2018)



Chapter 8 
Conclusion and Future Work 

8.1 Conclusion 

As an interdisciplinary approach, SCT-based real-time scheduling and reconfigura-
tion are a newly-identified research topic. This monograph provides several formal 
real-time systems (RTS) construction approaches based on discrete-event systems 
(DES) [18, 25], timed DES (TDES) [2], and state-tree structures (STS) [12, 13]. 
Based on TDES, DES, and STS, this monograph reports unified supervisory control 
theory (SCT)-based frameworks to build and dynamically schedule/reconfigure 
RTS. The presented frameworks can be utilized to model an RTS that processes 
multi-period and sporadic tasks, in which a multi-period task is assigned with a 
set of possible periods between a minimum and a maximum period. The proposed 
modular models are taken to be generic entities, which are utilized to model a 
problem domain such as “hard real-time manufacturing and reconfigurations” and 
manage its manufacturing production process. A processor could be a robot or an 
assembly-line worker, and a task could be an industrial operation performed by 
manufacturing lines. 

8.1.1 RTS Modelling Methods 

In this monograph, an RTS is denoted by . S. We assume that a set of n 
RTS tasks processed by a uni-processor RTS is represented by a task set 
.S = {τ1, τ2, . . . , τi , . . . , τn} with .i ∈ n := {1, 2, . . . , n}. The main differences 
among the three SCT modelling frameworks are stated in Table 8.1, in which, for 
the execution of a real-time task . τi , both events t and . ci represent that one time unit 
is utilized to process a real-time task . τi . Event t is a global tick event and . ci is a 
local event, both representing task . τi under execution. As stated in Table 8.1, in the  
TDES (resp., DES or STS) model, the execution of different tasks is considered as 
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Table 8.1 SCT-based RTS models 

SCT 
model . τi in process 

Idle 
operation 

Resource 
sharing 

Resource 
preemption Preemption 

Hierarchical 
modelling 

TDES t t Y Y N N 

DES .ci l N Y Y N 

STS .ci l N Y Y Y 

the same (resp., different) events. Hence, in the synchronous product, they will occur 
simultaneously (resp., separately). The idle operation of processor is represented 
by t and l in TDES and DES (and also STS), respectively. Moreover, “Y” and “N” 
in Table 8.1 represent “yes” and “no”, respectively. 

For a periodic RTS task . τi , any of its task execution models can be considered as 
a special case of a general reconfigurable task model described by 

. τi = (Ri,Ci , Di,Ti )

with 

• a release time . Ri , 
• an execution time interval . Ci , 
• a deadline . Di , and 
• a multi-period . Ti , 

where . Ri and . Di are non-negative integers. As stated in Chap. 4, a multi-period 

. Ti = [T l
i , T u

i ] ∈ N × N,

is specified by a non-empty interval where the number of time units that elapses 
between any two successive releases lies within . Ti . Hence a multi-period has a 
lower bound (i.e., shortest one) represented by . T l

i and an upper bound (i.e., longest 
one) represented by . T u

i . In an execution period, only an exact execution time C 
(resp., period T ) in . Ci (resp., . Ti) of task . τi is actually taken. Only a period T in . Ti

of task . τi is selected. The lower and upper bounds of the execution interval . Ci are 
the best-case execution time (BCET) and the worst-case execution time (WCET) of 
task . τi , denoted by . Cl

i and . Cu
i , respectively, i.e., 

. Ci = [Cl
i , C

u
i ].

For simplification, we write . Ci (resp., . Ti , in accordance with Chap. 5) instead of . Ci

(resp., . Ti) in the case of .Cl
i = Cu

i (resp., .T l
i = T u

i ). 
A general TDES model is proposed to represent periodic real-time tasks. A task 

is represented by a TDES 

.Gi = (Qi,Σi, δi, q0,i ,Qm,i)
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where . Σi consists of 

• t : the  tick event, 
• . γi : the release event of . τi , 
• . αi : the execution of . τi is started, and 
• . βi : the execution of . τi is finished. 

According to supervisory control of TDES, a monolithic RTS execution model 
(as the plant) and a user-defined specification are required. However, the proposed 
TDES-based monolithic RTS execution model may be conservative. This discussion 
contains three parts: 

• Task model: Generally, in quite limited cases, resources are available to execute 
several RTS tasks concurrently (e.g., Fig. 4.7). The reason is that this assumption 
violates a basic rule for RTS in [11]: all the tasks are independent. 

• Synchronous product: The timing parameters of RTS tasks are represented by 
time bounds of events representing release/arrival, starting, and finishing. Hence, 
the execution of a task is represented by the global tick event t . Clearly, in the 
synchronous product, they will occur simultaneously. As discussed above, this 
case is very rare in RTS scheduling. 

• Preemption is impossible: Since the execution of any task is represented by the 
global tick event t , task execution preemption (event t for a task’s execution 
preempts the occurrence of another task) is impossible. 

For instance, as stated in Chaps. 5, 6, and 7, based on DES and STS, suppose that 
we have two tasks . τ1 and . τ2 and their executions are represented by . c1 in . Σ1 and . c2
in . Σ2, respectively. Moreover, assume that we have two substrings .s1 = c1c1 and 
.s2 = c2 under the condition that there exist 

. w1, v1 ∈ Σ∗
1 , w1s1v1 ∈ L(G1)

and 

. w2, v2 ∈ Σ∗
2 , w2s2v2 ∈ L(G2).

Intuitively, the execution of . s1 and . s2 within a uni-processor needs to take three 
time units. Let .L1 = {s1} ⊂ Σ '∗

1 and .L2 = {s2} ⊂ Σ '∗
2 with .Σ '

1 = {c1} ⊂ Σ1 and 
.Σ '

2 = {c2} ⊂ Σ2. Their synchronous product is 

. L1||L2 = {c2c1c1, c1c2c1, c1c1c2};

it represents all the possible executions correctly. However, according to the TDES 
model presented in Chap. 4, we have  

• .s1 = t t , 
• .s2 = t , 
• .L1 = {s1} ⊂ Σ '∗

1 ,
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Fig. 8.1 Event assignments in TDES, DES, and STS 

• .L2 = {s2} ⊂ Σ '∗
2 , 

• .Σ '
1 = {t} ⊂ Σ1, and 

• .Σ '
2 = {t} ⊂ Σ2. 

The synchronous product of . L1 and . L2 is .L1||L2 = ∅. Evidently, the TDES model 
cannot actually represent general resource preemption real-time scheduling. 

All the SCT frameworks discussed above model the RTS behaviors related to task 
execution properly. As illustrated in Fig. 8.1, (built on Fig. 1.1a), for any real-time 
task . τi with .i ∈ N, (summarized from [21–24]), six behaviors are defined below. 

• arrival of task . τi : in TDES, DES, and STS, represented by event . γi , 
• execution of . τi starting: in TDES, DES, and STS, represented by event . αi , 
• execution of . τi : in TDES, represented by global clock t ; in DES and STS, by 

event . ci , 
• execution of . τi preempted by another task . τj : in DES and STS, represented by 

event . cj ; no such assumption in TDES, 
• execution of . τi completing: in TDES, DES, and STS, represented by event . βi , 

and 
• execution of . τi is not completed (considering the exact execution time): in DES, 

represented by event . ρi . 

Assume that in theGantt chart depicted in Fig. 8.1, we have . τ1 = (0, [1, 1], 4, [5, 5])
and .τ2 = (0, [1, 2], 4, [4, 4]), in which . τ2 is associated with a BCET and a WCET 
being equal to 1 and 2 time units, respectively. Consequently, event . ρ2 occurs at 
time .t = 1, .t = 5, and .t = 9 since the execution is not competed at the BCET. 
Clearly, it is trivial to extend it into an STS model, which is ignored in Chap. 7. 

Suppose that n tasks are running in an RTS. Its global behavior is represented by 
a DES/STS modelling framework denoted by . G with a global event set denoted by 
. Σ . The alphabet . Σ can be partitioned into controllable events and uncontrollable 
events. Formally, 

.Σ = Σcon∪̇Σunc,
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with 

• .Σcon = {αi, ci |i ∈ n}: the controllable event subset, and 
• .Σunc = {βi, ρi, γi, l|i ∈ n}: the uncontrollable event subset. 
Moreover, . Σ is also partitioned into 

• .Σo = {γi, αi, βi |i ∈ n}: the  operation event set, and 
• .Σe = {ci, l|i ∈ n}: the  execution event set. 
The occurrence of any event . σ in . Σ leads the system from one state q to another 
state . q '. Formally, write .δ(q, σ ) = q '. Let .σ = ci . The execution of a task . τi during 
one processor time unit occurs in state . q '. Otherwise, letting .σ = l, the processor is 
in an idle operation for one processor time unit when it stays in state . q '. 

In DES, the semantics of all the events in . Σe is similar to the tick event defined 
in TDES [2], i.e., the occurrence of an event . ci or l in DES (or an event t in TDES) 
represents that a processor time unit is utilized to execute a real-time task or in an 
idle operation. However, since the events in . Σe are not represented by a unique 
global tick event t , the synchronous product of several RTS task models over . Σe

will not result in the concurrent execution of real-time tasks. As a consequence, 
in comparison with [3, 10, 15], and [20], the DES/STS-based RTS model is more 
general. 

Based on the three frameworks and the modelling methodology discussed above, 
in the literature, RTS tasks are modelled in three different ways: 

• RTS execution models (describing WCETs or exact execution times) as plants 
and other parameter as specifications [5–10, 16, 17, 20, 23], 

• the monolithic task behavior as a plant [20, 21] (as stated in Chaps. 4 and 5), and 
• individual parameters as modular plants [22–24] (as stated in Chaps. 6 and 7). 

Essentially, the cores of all the modelling approaches discussed above are identical: 
the real-time tasks’ behavior is represented by formal languages that are generated 
by TDES, DES, or holons in STS. Then, SCT is utilized to find out the safe execution 
sequences. For the scheduling of tasks . τ1 and . τ2 shown in Fig. 8.3 (identical with 
Fig. 1.1b), a TDES sub-diagram and a DES sub-diagram representing the processor 
behavior are illustrated in Figs. 8.4 and 8.2, respectively. The states in Figs. 8.4 
and 8.2 are marked with the corresponding time units shown in Fig. 8.3. According 
to Sect. 4.2.2, the states in Figs. 8.4 and 8.2 filled with gray represent that a task is 
under execution. Notice that state x in Fig. 8.2 is special: 

• if the system enters state x by event . c2, task . τ2 is under execution, or 
• if the system enters state x by event . α1, the execution of task . τ1 starts in the next 

state. 

The latter shows that, after task . τ1 arrives at time .t = 1, the execution of task . τ1
satisfies one of the following two cases: 

• the execution of . τ1 is started at .t = 1: the processor considers that the execution 
of task . τ1 is started at .t = 1, but it is preempted in time interval .[1, 2), or



194 8 Conclusion and Future Work

Fig. 8.2 A DES sub-diagram 

Fig. 8.3 Real-time 
scheduling of . τ1 with an 
offset and . τ2

• the execution of . τ1 is started at .t = 2: the execution of task . τ1 is delayed to .t = 2. 
At the same time, it is under execution immediately. 

Actually, in both DES modelling and real-time scheduling, it is not so necessary to 
consider the first case. For simplicity, in this monograph, we do not distinguish such 
cases, i.e., we directly fill any state with an entry . ci with gray. 

Remarks 

1. Notice that the real-time scheduling shown Fig. 8.1 can be represented by DES. 
However, TDES is not able to describe such a preemptive real-time scheduling 
sequence. 

2. In this monograph, all the DES models can be converted into STS holons. . □
In real world, the execution time of a job always varies over time. The exact 

execution time of a task lies between its BCET and WCET. By addressing the exact 
execution time of real-time tasks, Chap. 7 presents a modular modelling framework 
to describe the parameters of real-time tasks, conforming to the pertinent concepts 
and techniques of DES. For a periodic task . τi , between its BCET and WCET, two 
uncontrollable events . βi and . ρi in the corresponding DES execution model represent 
that the execution is completed or not. DES will “check” the execution process until 
event . βi occurs. A sub-diagram is provided in Fig. 8.5. It shows that, at state 1, 
if the execution of task . τi is completed, then event . βi occurs. Otherwise, event .ρi



8.1 Conclusion 195

Fig. 8.4 A TDES sub-diagram 

Fig. 8.5 A sub-diagram for exact execution time 

occurs, which leads the system from state 0 to 1 for the next time unit execution and 
checking. 

Users are suggested to propose scheduling or reconfiguration requirements 
according to their will. These scheduling/reconfiguration requirements, either 
priority-based or not, from the perspective of either processor or individual task, are 
converted to formal SCT specifications offline. With these specifications assigned, 
all the safe execution sequences of an RTS can be found in its optimal supervisor. 

8.1.2 An Overview of Specifications Describing RTS 
Scheduling Requirements 

In this monograph, we distinguish conditionally-preemptive and dynamic real-time 
scheduling policies. As stated in Chap. 5, conditionally-preemptive scheduling 
policies are assigned from the perspective of both the processor and individual 
tasks. The preemption relations do not change while the tasks are under execution. 
In the literature, dynamic scheduling policies are more feasible. In [4], the author 
shows that, among all preemptive scheduling algorithms, the famous dynamic 
priority scheduling earliest deadline first (EDF) is optimal. If there exists a feasible 
scheduling for a task set, then the scheduling produced by EDF is also feasible.
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On the processor level, conditionally-preemptive specifications are represented 
by a preemption matrix. By defining the preemption relation among any two tasks 
running in a processor, a preemption matrix can be utilized to describe all the pos-
sible fixed-priority (FP) preemption relations and other user-specified preemption 
relations. Based on this matrix, the corresponding DES specifications are designed 
accordingly. On the task level, the task preemption relations are depicted by DES 
specifications directly. Clearly, the presented two general conditional-preemption 
specifications are utilized to customize scheduling and preemption requirements 
conditionally. 

The dynamic priority specifications presented in Chap. 7 are state-based, which 
avoids using memories (specification holons) to record the system behavior. Thus 
the provided approach avoids building a large group of memories, which is normally 
very laborious for the classical supervisory control of DES. 

To the best of our knowledge, by modelling RTS in a hierarchical (vertical) and 
concurrent (horizontal) structure, Chap. 7 is an attempt to provide an SCT-based 
framework such that an RTS can be scheduled by addressing both conditionally-
preemptive and dynamic scheduling requirements. As seen, the presented schedul-
ing framework can find the optimal behavior (all the safe execution sequences) of 
an RTS by the supervisory control of STS; a few quantitatively optimal schedule 
sequences are selected, from perhaps a large number of safe execution sequences, 
which rank at the top according to some specified optimality criteria. 

If other SCT synthesis tools, such as TCT1 [25], libFAUDES2 [14], Desuma3 

[19], and Supremica4 [1], are able to handle the state-based specifications presented 
in Sects. 7.3 and 7.4, then they can also be used to find the safe execution sequences 
of the RTS with respect to dynamic specifications. 

From the perspective of SCT, an approach that can speed up the supervisor 
synthesis reduces the number of states in the plant and specification. For TDES 
and DES, the presented synthesis speeding up approach can be applied to Chaps. 5 
and 6. This monograph divides the calculations into three steps. Each step considers 
different specifications as follows. 

• Step 1: from the perspective of processors, matrix-based conditional-preemption 
specifications are taken into account. 

• Step 2: from the perspective of individual tasks, WCET-based conditional-
preemption specifications are considered. 

• Step 3: other user defined specifications are touched upon. 

According to [12] and [13], the STS framework (rooted in binary decision diagrams) 
is well-developed to manage the state explosion problem. Hence, the “speeding up”

1 The software tool TCT is available at http://www.control.utoronto.ca/DES. 
2 The software libFAUDES incl. luafaudes is available at https://www.rt.tf.fau.de/FGdes. 
3 The software Desuma is available at https://wiki.eecs.umich.edu/desuma/index.php/DESUMA. 
4 The software Supremica is available at https://supremica.org/. 
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approach is not so necessary for STS-based real-time scheduling and reconfigura-
tion. 

8.2 Future Work 

Future work includes two parts: supervisory control theory (SCT) and real-time 
scheduling. 

For SCT, a possible topic is hierarchical (nested) supervisory control of STS. 
With the state explosion problem managed, STS are a powerful framework to model 
complex dynamic systems in a compact and natural way. In an STS, such a system 
is hierarchically abstracted to be superstates with layered internal structures. In our 
future work, we will focus on hierarchical supervisory control of STS. The main 
idea is: we decompose an STS into a set of STS nests (the largest flat fragments) in 
the hierarchical layers automatically; thereafter, at any fixpoint, an STS nest tracks 
the system dynamics partially. Finally, given an STS framework with multiple STS 
nests, without tracking its global dynamics to synthesize the optimal behavior, a 
nested optimal nonblocking supervisor is obtained. It is interesting to investigate 
the modelling and supervisory control of timed STS by building on their nested 
structure. 

For real-time scheduling, SCT-based multi-processor scheduling/reconfiguration 
policies and their industrial implementations are worth further exploration. Possible 
research topics include: soft scheduling and reconfiguration, low-power scheduling 
and reconfiguration, resource constrained scheduling and reconfiguration, resource 
sharing scheduling and reconfiguration, job skipping reconfiguration, resource 
allocation during scheduling and reconfiguration, feedback scheduling and recon-
figuration, multi-class resource scheduling and reconfiguration, and distributed 
scheduling and reconfiguration. 
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.[P ] Predicate transformer to compute . supC 2(P )

.B(ST ) Set of all basic-state-trees of . ST

.C 2(P ) Family of weakly controllable and coreachable subpredicates of P 

.C (E) Family of controllable sublanguages of E 

.E Expansion function of a superstate 

.E ∗ Reflexive and transitive closure of . E

.E +(x) Unfolding of . E (x)

.H Family of holons 

.S Real-time system 

.S T (ST ) Set of all sub-state-trees of . ST

.T Type function of a given state 

.V (T ) Key leaf state set of state-tree T 

.Wi Worst-case response time of . τi

.fσ Control function for event . σ

.lσ Lower time bound for event . σ

.q0 Initial state of generator . G

.supC (E) (unique) Supremal element within . C (E)

.supC 2P(P ) (unique) Supremal element within . C 2P(P )

.uσ Upper time bound for event . σ

.Ci Worst-case execution time of . τi

.Ci Exact execution time interval of . τi

.Di Deadline of . τi

.CR(G, P ) Coreachability predicate of P 
E Specification language 
.EligG Largest eligible state-tree 
.HCi Higher level holon describing the execution time of . τi

.HDi Holon describing deadline of . τi

.HWi Lower level holon describing the execution time of . τi

.HTi Holon describing the release time and periods of . τi
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.Ji,j j -th job of real-time task . τi

.L(G) Closed behavior of . G

.Lm(G) Marked behavior of . G

.Lm(G) (prefix) Closure of . Lm(G)

.Mσ (P ) Weakest liberal precondition of P 

.NextG Largest next state-tree  
P Predicate 
.Pred(ST ) Set of all predicates on . B(ST )

.Pwr(Σ) Power set of . Σ

Q State set of generator . G
.R(G, P ) Reachability predicate of P 
.Ri Release time of . τi

.Ti Period of . τi

.Tσ Timer interval for event . σ
U Processor utilization 
.V/G . G under supervision of V 
.X0 Initial state set 
.Xm Terminal state set 
.XE External state set 
.XI Internal state set 
.XA (x) State aggregation bonded with superstate x 
.A Preemption matrix 
.G Generator or state-tree structure 
.ST State-tree 
.ST0 Initial state-tree 
.STm Marker state-tree set 
.Ti Multi-period of . τi

.δ Transition function 

.δBI Incoming boundary transitions 

.δBO Outgoing boundary transitions 

.ε Empty string 

.τ Real-time task 

.Γ Global backward transition function 

.Δ Global forward transition function 

.Σ Event set of generator . G

.Σ∗ Set of strings over . Σ

.Σact Activity event set of a timed discrete-event system 

.Σcon Controllable event set 

.Σe Execution event set of generator . G

.Σo Operation event set of generator . G

.Σrem Remote event set 

.Σspe Prospective event set 

.Σunc Uncontrollable event set 

.ΣB Boundary event set 

.ΣI Internal event set 

.Φ Set of control patterns
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Absolute clock time, 55 
Absolute deadline, 57 
Absolute release time, 57 
Abstraction, 31 
Active event, 71 
Active task, 60 
Activity-loop-free, 27 
Activity set, 24 
Activity transition graph, 24 
Ad hoc, 71 
Adjacent higher level, 34 
Agent, 50 
Aggregation, 31 
Alphabet, 17 
Ancestor, 39 
.AND-adjacent, 39 
.AND-component, 32 
.AND superstate, 32 
Aperiodic task, 5 
Arbitrary union, 22 
Arrival, 74 
Arrival time, 134 
Ascending order, 100 
Asynchronous real-time system, 60 
Automaton, 2 

B 
Backward transition, 43 
Basic-state-tree, 40 
Best-case execution time, 55 
Binary decision diagram, 164 
Binary decision diagram node, 179 

Binary decision diagram variable, 51 
Binary value, 52 
Boolean function, 3 
Bottom element, 47 
Boundary consistency, 43 
Boundary event set, 34 
Boundary transition structure, 34 
Brandin-Wonham framework, 24 
Busy time, 98 

C 
Cartesian product, 25 
Catenation, 17 
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Child-state-tree, 39 
Closed behavior, 18 
Cold start, 67 
Compact representation, 3 
Complete lattice, 47 
Complex discrete event system, 163 
Computational complexity, 52 
Concurrent (horizontal) structure, 163 
Concurrent transition structure, 163 
Control function, 49 
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Controllable event, 2 
Controllable event subset, 102 
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Correct functioning, 95 
Current status, 50 
Cyclic executive, 71 

D 
Deadline, 4 
Deadline monotonic scheduling, 6 
Decision maker, 50 
Descendant, 39 
Descending order, 100 
Directed acyclic graph, 164 
Discrete-event system, 1 
Discrete-event system diagram, 141 
Discrete-event system synthesis tool, 21 
Disjoint union, 32 
Distributed scheduling, 197 
Double circle, 18 
Dynamic reconfiguration, 72 
Dynamic system, 2 

E 
Earliest deadline first, 60 
Earliest deadline first scheduling sequence, 182 
Elastic period, 7 
Eligible event, 26 
Empty string, 17 
Enabled event, 26 
Encoding process, 179 
Entering arrow, 18 
Entrance, 26 
Event occurrence, 126 
Event set, 2 
Exact execution time, 55 
Exclusive-or, 32 
Execution completion, 71 
Execution process, 138 
Execution starting, 71 
Execution time, 55 
Exit, 43 
Exosystem, 38 
Expansion function, 32 
External state set, 34 
External structure, 34 

F 
False, 164 
Feasibility analysis, 6 
Feedback scheduling, 197 
Finite event set, 17 
Finite sequence, 17 
Finite state set, 17 

First-release time, 55 
Fixed-priority scheduling, 58 
Fixed period, 91 
Fixed priority, 5 
Forcible event, 29 
Forcible event set, 29 
Formal language, 2 
Formal specification, 133 
Forward transition, 43 
Free time, 98 

G 
Gantt chart, 58 
Garbage collection, 5 
Generator, 17 
Global clock, 25 
Global dynamic, 197 
Global forward transition function, 42 

H 
Hard deadline, 4 
Hierarchical finite state machine, 31 
Hierarchical (vertical) structure, 163 
Hierarchical (nested) supervisory control, 197 
Hierarchical transition relation, 38 
Hierarchical transition structure, 163 
Higher level, 166 
Highest priority, 58 
Highest processor utilization, 72 
Holon, 33 
Horizontal transition relation, 38 
Hyper-period, 8 

I 
Idle, 74 
Idle operation, 5 
Incoming arrow, 35 
Incoming boundary transition, 34 
Independent task, 53 
Industrial implementation, 197 
Ineligible event, 27 
Infinite stream, 136 
Infinite string, 3 
Initial state, 17 
Initial state-tree, 42 
Initial state set, 34 
Internal event set, 34 
Internal state set, 34 
Internal structure, 34 
Internal transition structure, 34 
Inverse image function, 19 
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J 
Job, 55 
Job skipping reconfiguration, 6 

K 
Key leaf state set, 42 

L 
Language, 18 
Largest eligible state-tree, 43 
Largest next state-tree, 43 
Layer, 3 
Layered internal structure, 197 
Leaf state, 40 
Leaf state set, 42 
Least common multiple, 8 
Least laxity first, 60 
Length of string, 18 
Local coupling, 43 
Local transition, 33 
Lower bound, 73 
Lower-level holon, 166 
Lower time bound, 25 
Lowest priority, 5 

M 
Manufacturing cell, 123 
Marked behavior, 18 
Marked language, 126 
Marker state, 17 
Marker state-tree set, 42 
Marker state set, 25 
Marking nonblocking supervisory control, 22 
Maximally permissive predicate, 164 
Maximum period, 189 
Minimally restricted controller, 112 
Minimum period, 189 
Model checker, 7 
Modular model, 189 
Motor network, 85 
Multi-class resource, 197 
Multi-period periodic task, 56 
Multi-period task, 134 
Mutual exclusion, 173 

N 
Natural projection, 19 
n-bit binary vector, 179 
Nearest common ancestor, 39 
Nonblocking specification, 106 

Nonblocking supervisory control, 22 
Non-empty state set, 173 
Non-negative integer, 134 
Non-preemptive earliest deadline first 

scheduling, 183 
Non-preemptive earliest deadline first 

specification, 182 
Non-preemptive scheduling, 5 
Non-preemptive scheduling specification, 71 
Non-reconfigurable task, 74 
Non-repetitive task, 57 
Non-schedulable real-time system, 71 

O 
Offline, 67 
Offset, 4 
Optimal behavior, 49 
.OR-component, 32 
.OR superstate, 32 
Outgoing arrow, 35 
Outgoing boundary transition, 34 
Overload, 67 

P 
Parameter, 132 
Partially non-preemptive earliest deadline first 

specification, 178 
Partially non-preemptive specification, 164 
Partially preemptive earliest deadline first 

specification, 177 
Partial state transition function, 17 
(Partial) transition function, 102 
Pending event, 27 
Period, 56 
Periodic task, 56 
Plant, 17 
Power set, 19 
Predicate, 47 
Preemption matrix, 98 
Preemption policy, 99 
Preemption relation, 151 
Preemption time, 98 
Preemptive earliest deadline first scheduling, 

95 
Preemptive earliest deadline first specification, 

182 
Preemptive release map, 114 
Preemptive scheduling, 5 
Preemptive scheduling map, 114 
Prefix, 18 
(Prefix) closed language, 126 
Prefix closure, 18
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Priority-free scheduling, 98 
Processing period, 170 
Processing time, 55 
Processor behavior, 101 
Processor time unit, 96 
Processor utilization, 57 
Processor utilization interval, 72 
Prohibitable event set, 29 
Prospective event set, 25 

R 
Ramdge-Wonham framework, 17 
Random disturbance, 6 
Rate-monotonic scheduling, 6 
Reachability predicate, 48 
Real-time reconfiguration, 67 
Real-time scheduling, 3 
Real-time system, 1 
Real-time task, 3 
Real-time task execution, 126 
Reconfigurable real-time system, 85 
Reconfiguration scenario, 67 
Reflexive and transitive closure, 38 
Regular arrival time, 131 
Regular language, 126 
Relative deadline, 56 
Remote event set, 25 
Resource, 131 
Resource-sharing task, 53 
Resource allocation, 197 
Response time, 95 
Root state, 38 
Running time, 98 

S 
Safe execution sequence, 71 
Safe release sequence, 114 
Schedulability, 2 
Scheduling algorithm, 5 
Scheduling map, 89 
Scheduling policy, 99 
Selfloop, 20 
Shortest period, 72 
Simple state, 32 
Smallest laxity, 64 
Soft deadline, 4 
Source state, 34 
Specification language, 22 

Sporadic task, 56 
State aggregation, 41 
State-based specification, 173 
Statechart, 31 
State explosion problem, 163 
State feedback control, 181 
State set, 102 
State space, 38 
State-transition structure, 2 
State-tree, 38 
State-tree structure, 31 
State-tree structure nest, 197 
State-tree structure specification, 164 
Storage space, 164 
Stronger, 47 
Structured state set, 38 
Structured state space, 163 
Sublanguage, 22 
Sub-state-tree, 40 
Superstate, 31 
Supervisor, 2 
Supervisor synthesis, 52 
Supervisory control, 21 
Supervisory control of state-tree structure, 163 
Supervisory control theory, 1 
Supremal element, 22 
Synchronized specification, 101 
Synchronous product, 19 
Synchronous real-time system, 60 
Synchronous task set, 4 
System behavior, 2 
System start-up, 4 

T 
Target state, 34 
Task arrival, 71 
Task behavior, 132 
Task-centered conditional-preemption 

specification, 107 
Task execution model, 138 
Task release, 71 
TCT, 21 
TCT operation, 108 
Temporal characteristic, 71 
Terminal nodes, 164 
Terminal state, 166 
Terminal state set, 34 
Tick down, 25 
Tick event, 25 
Time bounds, 24 
Timed discrete-event system, 2 
Timed discrete-event system synthesis tool, 28 
Timed transition graph, 29
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Timer, 25 
Timer interval, 25 
Timing requirement, 71 
Top-down state-based modelling framework, 

163 
Top element, 47 
Traditional periodic task, 134 
Transition graph, 18 
Transition structure, 3 
True, 164 
Truth-value, 47 
Truth table, 52 
TTCT, 28 
Type function, 32 

U 
Unboundedly postponed execution, 5 
Uncontrollable event, 2 

Uncontrollable event subset, 102 
Uncontrollable path, 49 
Unfolding, 38 
Uni-processor real-time system, 138 
Upper bound, 73 
Upper time bound, 25 

V 
Vector, 52 

W 
Weakest liberal precondition, 48, 49 
Weakest predicate, 48 
Weakly controllable and coreachable behavior, 

49 
Well-formed, 40 
Work, 74 
Worst-case execution time, 55 
Worst-case response time, 96
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