ABSTRACT

The use of Radar devices in daily life has contributed to helping human life. Radar works

by sending electromagnetic signals which are then reflected back by objects that are directly

in front of the transmitter component. The reflected waves will then be captured by the receiver

component which will then be forwarded and processed into data in the form of position,

position, and movement of the object.

Radars in general have a limited scanning in one particular angle range, such a radar is

called one-dimensional radar. Multidimensional radars with multiple antennas integrated

within the module such as the phased array radar is capable on sensing the environment that

is not limited to a specific range of angle. The main consideration of why multidimensional

radar with several antennas is not preferred as the solution is because the price to procure

multidimensional radar that is considerably higher compared to conventional one-dimensional

radar.

Designing precise motion support to increase one-dimensional radar scanning range is

one of the solutions that can be taken to solve the problem. The results of this motion support

are expected to have the principle of expanding the scanning range, so that the work of a radar

can be more effective and the portable property in the device, mainly for its indoor use can be

maximized thus supporting the efficiency. The result of the integration of the radar with the

rotary system shows that while the radar rotates at 5 RPM, the scanning accuracy rate is shown

to be at 83.8%, 10 RPM at 63.9%, 20 RPM at 37% and 30 RPM at 34.5%.

Keywords: Dwell Time, Range, Radar, Receiver, Transmitter

xvi