
1

Layer-4 Load Balancer on Programmable Data Plane using IP Hash and Weighted
Round Robin

Muchlis Ramadhan Usman, Muhammad Arief Nugroho, Ibnu Asror,

1,2,3Fakultas Informatika, Universitas Telkom, Bandung
1muchlisramadhan@students.telkomuniversity.ac.id,

2arif.nugroho@telkomuniversity.ac.id,
3iasror@telkomuniversity.ac.id

Abstrak

Layer-4 Load balancer digunakan di data center untuk mendistribusikan permintaan yang datang

dari klien ke beberapa server yang terletak di data center. Ada dua persyaratan untuk membangun

penyeimbangan beban Layer-4 yang layak. Yang pertama adalah memastikan keseragaman distribusi

permintaan di beberapa server dan afinitas koneksi. IP Hash adalah algoritma load balancing yang

umum digunakan untuk mengimplementasikan penyeimbangan beban Layer-4 tetapi dapat

menyebabkan ketidakseimbangan beban di beberapa server. Weighted Round-Robin diusulkan untuk

mencegah ketidakseimbangan beban di beberapa server. Implementasi load balancing menggunakan

programmable data plane daripadamenggunakan penyeimbangan beban perangkat keras atau

perangkat lunak tambahan. Hasilnya menunjukkan bahwa WRR mampu mengurangi

ketidakseimbangan beban di beberapa server dengan mencapai distribusi permintaan yang seragam.

WRR mencapai throughput 13% lebih tinggi tetapi memberikan response time 2% lebih tinggi

daripada IP Hash dan memiliki lebih sedikit packet loss daripada IP Hash saat menangani permintaan

HTTP

Kata kunci: Layer-4, Load Balancer, Connection Affinity, IP Hash, Weighted Round Robin, Data

Plane

Abstract

Layer-4 load balancer used in data center to distribute requests coming from client to multiple servers

located in data center. There are two requirements to build proper Layer-4 load balancing. The first is

ensuring the uniformity of request distribution across multiple servers and connection affinity. IP Hash

is a common load balancing algorithm that is used to implement Layer-4 load balancing but can cause

load imbalances across multiple servers. Weighted Round-Robin is proposed to prevent load imbalance

across multiple servers. The implementation of load balacing is using a programmable data plane rather

than additional hardware or software load balancing. The result shows that WRR is able to mitigate

load imblance across multiple servers by achieving uniform request distribution. WRR achieves 13%

higher throughput but gives 2% higher response times than IP Hash and has less packet loss than IP

Hash when handling HTTP requests.

Keywords: keyword Layer-4, Load Balancer, Connection Affinity, IP Hash, Weighted Round

Robin, Data Plane

mailto:1mhs@students.telkomuniversity.ac.id
mailto:1mhs@students.telkomuniversity.ac.id
mailto:2pembimbing1@telkomuniversity.ac.id
mailto:3pembimbing2@telkomuniversity.ac.id

2

1. Introduction

1.1 Background

In the data center there are multiple servers operated to handle large requests from clients. To manage

this request load balancing is needed [1]. Layer-4 load balancer can be used to distribute requests across

multiple servers. Layer-4 load balancing makes the request load balancing decision based on information in

Layer-4 that is transport layer [2]. Layer-4 in this study refers to the fourth layer of the Open System

Interconnection System (OSI). Layer-4 Load Balancer sending a request to corresponding server by using 5-

tupple information of such as IP Address Source, IP Address Destination, Port Source, Port Destination, and

Transport protocol to determine the server to handle the request coming from client [2].

To build proper Layer-4 Load balancer there are two requirements that need to be met [3] [4]. First is

uniformly distributing requests from clients to servers in the data center. Second is ensuring packet forward to

the same server from the first packet forwarded to establish a session until the last packet to close a session

from client to server or called connection-affinity.

The first requirement that is uniformly distributing the packet is important to split large requests

coming from clients and distribute to multiple servers located in a data center to prevent load imbalance. The

second requirement is ensuring Connection-affinity [4] [5]. This concept is achieved when the set of packets

to establish a session or called flow sent consistently to the same server until the last packet to close the session

and not send it to different server. The purpose of ensuring Connection-affinity is to prevent request failure.

The IP Hash algorithm is used in load balancing systems such as Hardware, Software, and Software Defined

Network. The IP Hash algorithm is used for Layer-4 Load Balancing in data centers because of algorithm

capability in distributing request across multiple servers and ensure connection affinity [6] [7] [8].

1.2 Problem statement

However, IP Hash load balancing suffers from load imbalance [3]. IP Hash relies only on hash

calculation to determine server index, this can lead to load imbalance.

To mitigate IP Hash Problem WRR algorithm is proposed. The WRR algorithm works by distributing

the request in turn for each server but also takes consideration of server capability in handling n number of

requests from client [9]. By taking consideration of server capability in handling request, WRR can mitigate

load imbalance cause by IP Hash that only depend on hash function to determine server index.

1.3 Purpose

WRR is scheduling algorithm that derives from Round-Robin algorithm, In Round robin the request

is forwarded to the server in turn starting from the first server in index to the last server in index. WRR is

similar to Round Robin, but the difference in WRR is the weight is assigned to the servers [5]. The Weight is

determined by network administrator after observing the capability of servers in handling request, such as link

bandwidth from load balancer to the server and/or server specification. To maintain connection affinity in

WRR algorithm, Hash function from IP Hash is used and combined with WRR Algorithm.

Implementation of IP Hash and WRR algorithms can be done in hardware, software, or SDN load

balancing using F5 hardware, NGINX software, or Openflow Protocol for software-defined networks[6] [8]

[10]. But recently there is an emerging paradigm that is Programmable Data Plane. Programmable data plane

is a concept that allows programmability of packet processing network directly in data plane [11]. With this

concept load balancing can be applied directly in programmable switch without the need for middleware. IP

Hash and WRR algorithm can be implemented directly in Programmable switch using P4 (Programming

Protocol-independent Packet Processors) [12] programing language.

In this study WRR is proposed to mitigate load imbalance caused by IP Hash algorithm. By using

WRR, each server will be assigned weight to prevent load imbalance. Implementation of IP Hash and WRR

will be implemented using P4 programming language in BMv2 programmable switch.

3

2. Related study

This section covers some of related the study conduct in context of Layer-4 load balance. The related

study of this paper is presented in the form of a table. In Table 1 consists of Title of the paper, method used in

the paper, result of the paper, and the relevance of paper cited with the author paper.

Table 1 Cited paper

No

1 Title Cheetah: A High-Speed Programmable Load-Balancer Framework

With Guaranteed Per-Connection-Consistency [3]

 Method Stateful Cheetah load balancer

Stateless Cheetah load balancer

 Result Have comparable outcome performance and have 3.5x cycles per

packet less than state of the art load balancing

 Relevance Raise similar problem statement, state that hash mechanism load

balance cause imbalance in data center

Use P4 language to implement load balancing

2 Title Analisis Performansi Load Balancing menggunakan Algoritma

Round Robin dan Weighted Round Robin pada P4-Programmable

Switch [13]

 Method Round Robin algorithm

Weighted Round Robin algorithm

 Result As shown Weighted Round Robin algorithm perform better that

Round Robin in term of QoS parameter like Throughput, Jitter and

latency

 Relevance Use P4 language to realize the load balancing system

Use Weighted Round Robin algorithm

3 Title Increasing SDN Network Performance using Load Balancing

Scheme on Web Server [8]

 Method IP Hash algorithm

Least Connection IP algorithm

 Result IP Hash 17% more optimal than Least Connection Algorithm

 Relevance The algorithm used in the paper is IP hash algorithm.

IP Hash algorithm is used to maintain connection affinity

The implementation of load balancing is in context of Software

Defined Network using OpenFlow API, which dependent on the

control plane

4 Title Analysis of Load Balancing Performance using Round Robin and

IP Hash Algorithm on P4 [14]

 Method IP Hash algorithm

Round Robin algorithm

 Result Round Robin gives better results of fairness index. For throughput

the result is comparable between the two algorithms, while the

response time parameter result is very contrast in comparison, IP

Hash is 12,6 ms and Round Robin is 3,31 ms

 Relevance Implementation of algorithm load balance in data plane is the same

using IP Hash algorithm

5 Title SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap

Using Switching ASICs [15]

 Method Hashing method to reduce memmory usage

Table to store connection state

 Result Shows that a programmable swith asic able to replace thousand of

software load balancer

 Relevance Use P4 programming language to implement load balancing in

programmable switch

2.1 Layer-4 Load balancing in data center

4

Layer-4 Load balancing in multi-tier data center architecture is located in between router and backend

server [3]. Is figure 1 shows the traditional data center load balancing architecture. The architecture is organized

in 3 different tiers, the 1st tier consists of BGP Router using ECMP. The second tier is the layer-4 Load balancer

that will be the focus of this study. And the Third tier is Layer-7 load balancer that operates in the application

layer.

Figure 1 Traditional data center load balancer architecture

Request coming from client to specific service in data center is correspond to Virtual IP (VIP).

Multiple servers that provide the service in data center are identified with Direct IP Address (DIP) with unique

IP Address as identifier for each back-end server. Each DIPs are associated with a VIP to represent as one

services

2.1.1 Traditional Layer-4 Load Balancing

Implementation load balancing in data center using Hardware or Software load balancing is place in

between switch and back-end server. As shown in figure 2, additional hardware or software is used for load

balancing. This can add additional delay when handling requests from client to server.

Implementing load balancing system in programmable switch can remove the need for additional load

balancing hardware or software. As shown in figure 3, when the request comes from client through internet it

directly goes to switch, and the packet processing will be performed in the programmable switch. This resulting

in reduction of cost in provisioning additional hardware or software load balancing and increase the Throughput

and Response time because the packet is get processed in line rate [15].

5

Figure 2 Traditional Layer-4 Load Balancing

Figure 3 Programmable data plane load balancing using programmable switch

2.2 Layer-4 load balancing.

Multiple servers that are in data center being advertised to outside world by virtual IP address (VIP).

This can be achieved by leverage layer-4 load balancer by mapping the direct IP address (DIP) to load balancer.

Layer-4 load balancer distribute the packet from clients to multiple in data center and balance the load across

the server [16]

1. Uniformly distribute request

Uniformly distributing requests across multiple servers located in data center is important

because it can prevent a server from getting overload or underload. When a server is not overloaded

6

or underloaded it can give best overall performance such as High Throughtput, low response time and

avoid request failure.

2. Ensuring Connection Affinity

When a new connection is established to a server the subsequent packet needs to be sent to

same server as first establish packet, this called connection affinity [17]. Connection affinity is

required to build a layer-4 load balancing ensuring that connection sessions are maintained during

requesting service and not get terminated and reset.

2.3 IP Hash

In load balancing systems like hardware, software, and software-defined networks [6] [7] [8]. The IP

hash algorithm is used because the IP Hash algorithm can distribute requests among several servers in a data

center and guarantee connection affinity. It is utilized for Layer-4 Load Balancing in data centers. To create

the hash value, IP Hash takes 5-tuples information such IP Address Destination, IP Address Source, TCP Port

Destination, TCP Port Source, and Transport Protocol. Since the hash value produced from the five-tuple

information will remain constant for each packet of a flow arriving from the client, it will be utilized to

guarantee connection affinity.

2.4 WRR

The Round-Robin method is the source of the WRR scheduling algorithm. In Round-Robin, requests

are sent to each server in turn, starting with the first server in the index and ending with the last server in the

index. WRR and Round Robin are similar, WRR differs is that the servers are given a weight [5]. After

assessing the server capabilities to handle requests.

2.5 Programmable data plane

Programmable Data Plane is a concept that allows for direct programming of data plane hardware or

software to customize network device forwarding behavior [18]. Historically, firmware determined data plane

behavior, but with SDN popularity, data plane programmability is crucial for adapting network designs to

changing traffic patterns, application needs, and security risks.

2.6 Programmable Switch

A network switch with customizable packet processing operations is called a programmable switch in

a programmable data plane [2]. Network operators and developers can build and implement their own packet

processing logic using programmable switches, in contrast to standard switches that have fixed functions and

protocols hardcoded by suppliers.

2.7 Programming protocol-independent packet processors (P4)

P4 is a programming language that is specifically used to program data planes. By using P4 the

network operator can implement additional functionality and packet processing to the switch. It has the ability

to define packet header and match action for each packet that traverse the switch [19]

7

3. System design

3.1 Topology

The topology system used for this study is shown in figure 4, the client will make HTTP request from

the internet to load balancer IP Address (VIP Address) that represent as single service. In this case the load

balancer is. Programmable Switch that is BMv2 Switch.Behind VIP Address is consisting of multiple servers

to handle the request. The multiple servers are identified with unique IP address (DIP Address) that will be

chosen by load balancer to handling the request from client.

3 Server used in this study based on data center topology. Usually, data centers employ multiple

servers for applications that will be used by the client [20]. Also to analyze the load distribution and the fairness

of the load balancing system algorithm.

Figure 4 Topology

3.2 IP Hash load balancing

IP Hash load balancing works on programmable data plane by parsing the packet header first and

examine the field of the packet. In packet header there are 5 tuple information that is IP Source, IP Destination,

Port Source, Port Destination, And transport Protocol. Transport protocol particularly TCP is checked if it is

new connection or not. This can be done by looking at TCP flag and checking whether it is SYN flag. If it is a

new connection the P4 program will assign the connection to the server.

To assign new connections to the server, the Hash algorithm is used to generate hash value. The

parameter used to generate hash value is 5-tuple information. The next following packet after the first TCP

packet always be the same thus the hash value generated will remain the same. Therefore, the connection

affinity can be guaranteed.

In figure 2 shows how IP Hash algorithm mechanism. Starting when a request comes from client then

the TCP/IP protocol header is used for Hash parameters. Hash value generated will be used to maintain

connection affinity and to determine server index.

8

Figure 5 IP Hash mechanism

3.3 Weighted round robin load balancing

To achieve efficient load balancing system WRR distribute packet to server from client based on

determined weight set by network administrator [5].The parameter to determine server weight .This way can

help take consideration of varying resource of server and enhance system performance.

In Figure 3 shows WRR algorithm mechanism, starting by assigning server weight. The weight is

considered based on network administrator after observing the server specification, such as CPU, memory, link

bandwidth from switch to server, etc. When request comes from client, the packet get process directly by

programmable switch based on the P4 code and algorithm that have been deployed in programmable switch.

P4 code algorithm that executed in the programmable switch check whether the request exceed server index i

weight, if not send to server index i, and if the request is already exceed server index i weight the request get

send to server index i+1.

9

Figure 6 Weight Round-Robin mechanism

3.4 Block diagram of system implementation

This section describes the step by step in applying network load balancing system in virtual

environments

In Figure 4 show how load balancing system using P4 language set up in virtual environment

1. Install virtualbox on host machine, then install ubuntu in virtualbox

2. Install P4 development [21] tools in ubuntu

3. Creating topology of load balancing system using mininet python API

4. Writing IP Hash and WRR algorithm in P4 language

5. Compile P4 source code using P4 compiler

6. Creating routing table logic and configure the routing table logic in BMv2 switch

7. Simulate the load balancing system in mininet

8. If routing table logic accepted by BMv2 switch, then load balancing is ready to conduct the

performance test

10

Figure 7 Block diagram of system implementation

3.5 System specifications

The hardware and software that will be used to build load balancing systems listed in table 1 and 2 to

conduct the load balancing performance.

Table 2 Hardware specifications

No Hardware Description

1 CPU Intel i7 8750

2 GPU NVIDIA GTX 1060

3 RAM 24 GB DDR4

4 Storage 118 GB SSD + 256 SSD

Table 3 Software specifications

No Software Description

1 Operating system Ubuntu 22.04

2 Tools

P4 development tool

BMv2 Switch

Mininet

Apache bench

3.6 Test parameters

In this section test parameters used for test performance will be explained. Parameter for Quality of

Service (QoS) for test Load Balancing performance based on standatization [25]. To measure the load

imbalance in all the servers in the data center, the parameter that will be used is Request distribution and

Fairness index [26].

In this test scenario the parameters conducting performance analysis based that will be used is listed

below:

11

1. Throughput

Throughput measures the rate of packets that can be sent or received through a network in a specific

timeframe. Throughput results reflect the capacity or efficiency of a network. In table 4 shows the

categorization of Throughput qualities.

Table 4 Throughput standarization

Throughput category Throughput Index

Bad 0 – 338 kbps 0

Poor 338 - 700 kbps 1

Fair 700 - 1200 kbps 2

Good 1200 kbps – 2,1 Mbps 3

Excelent > 2,1 Mbps 4

2. Response time

Latency is used to measure the amount of time it takes from server to respond request from client.

In table 5 shows the categorization of Response time qualities

Table 5 Response time standarization

Response time category Delay

Excelent < 150 ms

Good 150 ms – 300 ms

Fair 300 ms – 450 ms

Poor > 450 ms

3. Packet loss

To measure the number of packets that failed to be sent to the client. Packet loss during packet

transmition to client or server can be caused by collision and congestion in the network. In table 6

show the categorization of Packet loss qualities.

Table 6 Packet loss standarization

Packet loss category Delay

Excelent 0 – 2 %

Good 3 – 14 %

Fair 12 – 24 %

Poor > 24 %

4. Request distribution

This metric is used for measuring the number of connections established and from client to server.

Analyze the packet header such as TCP SYN flag is captured to analyze the number of connections

established between client and server.

5. Jain fairness index

The Jain fairness index parameter is to measure that every server in the data center gets fair share of

requests coming from client. The value of the fainess index is from 0 meaning some of the servers get

higher or lower load to 1 meaning that all the servers get equal load. In figure 8 shows the formula of

Jain fairness index.

Figure 8 Jain fairness index formula

3.7 Test scenario

In this section will be explain how the test performance of load balancing of both IP Hash and WRR algorithm

will be conduct

12

1. Throughput and Response Time test scenario

To conduct Throughput and Response time test scenario for load balancing in performance in

Programmable Switch is by using Apache Bench software. In figure 5 shows the command used for

test load balancing performance, the number of reques from 20.000, 40.000, 60.000, 80.000 and

100.000 is performed to test load balancing performance. The amount of request is chosen based on the

amount of request used in data center load balancing to induce load inbalance in the server [3].

Figure 9 Throughput performance testing

2. Request loss test scenario

To conduct request loss of packet during test performance can be done by using tool

Wireshark, in Wireshark the network interface of server 1, 2 and 3 is captured during request test

performance. After request test performance done, the packet lost during test performance is observed

by using filter function in Wireshark tool. As shown in figure 6 is the command used to observe how

many packets are lost.

Figure 10 Filtering packet loss

3. Request distribution test scenario

To conduct Request distribution of client generated using Apache Bench tool to each server

running Python Simple HTTP server by capture first TCP packet when start a connection between client

13

and server. The first TCP captured during runtime test performance is TCP SYN, this is because SYN

is the first TCP Packet sent to establish a connection between client and server.

In figure 7 shows Wireshark tool capture first TCP SYN packet of every TCP session request

from client.

Figure 11 Wireshark tool filtering request distribution

14

4. Evaluation

4.1 Result and analysis of Throughput

To conduct Throughtput performance of load balancing algorithm, 20.000, 40.000, 60.000, 80.000 and

100.000 request is executed. Throughput performance result between IP Hash and WRR in figure 12 shows

that WRR algorithm give higher Throughput performance with value 13% bigger that IP Hash. WRR uniformly

distributes requests across server resulting in better Throughput performance than IP Hash. WRR preventing

the servers from getting overloaded thus server can perform more optimal in handling request

Figure 12 Troughput result

4.2 Result and analysis of response time

To conduct response time performance of load balancing algorithm, 20.000, 40.000, 60.000, 80.000

and 100.000 request is executed. In figure 13 shows that IP Hash perfom better by having 2% less Response

Time than WRR for every request. IP Hash perform better than WRR because when a request coming from

client, Hash value is used to determine server index, while in WRR needs to check first wheter a server can

accept request based on the weight assing to the server and then determine server index

Figure 13 Response time result

4.3 Result and analysis of Packet loss

216,68 218,18 216,91 218,09 217,99

247,55 247,31 249,35 250,49 249,15

190

200

210

220

230

240

250

260

 20.000 40.000 60.000 80.000 100.000

K
b

y
te

s/
se

c

Request

Throughput

IP Hash WRR

4,8
4,767

4,795
4,769 4,771

4,939 4,944

4,903
4,881

4,907

4,65

4,7

4,75

4,8

4,85

4,9

4,95

5

 20.000 40.000 60.000 80.000 100.000

R
es

p
o

n
se

 T
im

e
(m

s)

Request

Response time

IP Hash WRR

15

In figure 14 shows that IP Hash give less packet loss in majority request. But in 100.000 request it

shows that IP gives bigger packet loss, this indicates that when IP Hash get bigger request it cause load

imblance in the server and can cause network congestion.

Based on the packet loss standarization refer to section 3.6, it shows both algorithm gives beter packet

loss result because the value is less than 2%

Figure 14 Packet loss result

4.4 Result and analysis of Request distribution IP Hash and WRR

In figure 15 shows the result of request distribution of IP Hash algorithm and WRR after sending

20.000 request to 3 servers. It Shows that IP Hash cause imbalance in 3 of the servers. Server 1 receives fair

load, server 2 receive lower load, while server 3 receive higher load than other 2 server. When using WRR

algorithm it shows that WRR receive equal load and able to mitigate load imblance cause by IP Hash algorithm.

Result of request distribution of IP Hash and WRR for 40.000, 60.000, 80.000 and 100.000 request

can be seen in attachmet section. The result shows a similar pattern as discussed before; the result shows that

IP Hash cause imbalance in some servers while WRR distributes requests to the 3 servers equally.

Figure 15 IP Hash and WRR 20.000 request distribution result

4.5 Jain fairness index IP Hash and WRR

 20.000 40.000 60.000 80.000 100.000

IP Hash 0,00386 0,00466 0,00576 0,00693 0,01

WRR 0,00568 0,00591 0,00917 0,01364 0,004272727

0,00000
0,00200
0,00400
0,00600
0,00800
0,01000
0,01200
0,01400
0,01600

P
ac

ke
t

 lo
ss

 %

Request

Packet Loss

IP Hash WRR

6669 6667

6530

6666

6801

6667

6500

6550

6600

6650

6700

6750

6800

6850

IP Hash WRR

R
eq

u
es

t
D

is
tr

ib
u

ti
o

n

20.000 Request

IP Hash and WRR request distribution

Server 1 Server 2 Server 3

16

Based on the request distribution discussed before, the fairness index can be calculated from request

distributed to 3 servers. Index value for fairness index is between 0 to 1, 1 index value meaning that all servers

receive request equally while below 1 meaning that some servers get underloaded or overloaded.

In figure 16 shows the fairness index value of IP Hash for each request. IP Hash index is below 1

because some servers receive unequal requests.

Figure 16 IP Hash fairness index result

The fairness index value for WRR is 1 for all the requests as shown in figure, this is because WRR

can mitigate load imbalances and distribute request equally for every server.

Figure 17 WRR fairness index result

0,999725

0,999969

0,999871

0,999956

0,999831

0,999600

0,999650

0,999700

0,999750

0,999800

0,999850

0,999900

0,999950

1,000000

 20.000 40.000 60.000 80.000 100.000

In
d

ex

Request

IP Hash fairness Index

1 1 1 1 1

0

0,2

0,4

0,6

0,8

1

1,2

 20.000 40.000 60.000 80.000 100.000

In
d

ex

Request

WRR fariness index

WRR

17

5. Conclusion and suggestion

5.1 Conclusion

The load balancing algorithm was performed on multiple servers. The results showed that the WRR

algorithm performed better in throughput parameter, with a 13% higher percentage than the IP Hash. This is

because WRR uniformly distributes the requests across servers, preventing overloading in server and give

optimal performance in handling requests. The response time performance of the IP Hash algorithm shows 2%

less response time compared to the WRR algorithm. Packet loss is also analyzed, and the result shows that the

IP Hash algorithm caused imbalance in some servers, while the WRR algorithm distributed requests equally to

all servers. And the last test parameter is fairness index, for the IP Hash the value is below 1 and is WRR

algorithms is 1 for all requests, meaning that WRR was able to mitigate load imbalances and distribute requests

equally for all servers.

18

Daftar Pustaka

[1] “What is Layer 4 Load Balancing? | Avi Networks.” Accessed: Sep. 08, 2024. [Online].

Available: https://avinetworks.com/glossary/layer-4-load-balancing/

[2] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An Exhaustive Survey on P4 Programmable

Data Plane Switches: Taxonomy, Applications, Challenges, and Future Trends,” IEEE Access,

vol. 9, pp. 87094–87155, 2021, doi: 10.1109/ACCESS.2021.3086704.

[3] T. Barbette, E. Wu, D. Kostic, G. Q. Maguire, P. Papadimitratos, and M. Chiesa, “Cheetah: A

High-Speed Programmable Load-Balancer Framework With Guaranteed Per-Connection-

Consistency,” IEEEACM Trans. Netw., vol. 30, no. 1, Art. no. 1, Feb. 2022, doi:

10.1109/TNET.2021.3113370.

[4] S. M. Hosseini, A. H. Jahangir, and S. Daraby, “Session-persistent Load Balancing for

Clustered Web Servers without Acting as a Reverse-proxy,” in 2021 17th International

Conference on Network and Service Management (CNSM), Izmir, Turkey: IEEE, Oct. 2021,

pp. 360–364. doi: 10.23919/CNSM52442.2021.9615592.

[5] M. S. Almhanna, T. A. Murshedi, F. S. Al-Turaihi, R. M. Almuttairi, and R. Wankar,

“Dynamic Weight Assignment with Least Connection Approach for Enhanced Load Balancing

in Distributed Systems,” Aug. 07, 2023. doi: 10.21203/rs.3.rs-3216549/v1.

[6] “Persistence methods available in F5 BIG-IP.” Accessed: Aug. 24, 2024. [Online]. Available:

https://my.f5.com/manage/s/article/K26898044

[7] “Using nginx as HTTP load balancer.” Accessed: Jun. 08, 2023. [Online]. Available:

http://nginx.org/en/docs/http/load_balancing.html

[8] I. P. A. Suwandika, M. A. Nugroho, and M. Abdurahman, “Increasing SDN Network

Performance Using Load Balancing Scheme on Web Server,” in 2018 6th International

Conference on Information and Communication Technology (ICoICT), Bandung: IEEE, May

2018, pp. 459–463. doi: 10.1109/ICoICT.2018.8528803.

[9] S.-J. Hsu, C.-H. Ke, Y.-S. Chen, C.-F. Hung, and Y.-W. Lo, “Design and Performance

Evaluation of a P4 based Load Balancer,” in 2019 8th International Conference on Innovation,

Communication and Engineering (ICICE), Zhengzhou, Henan Province, China: IEEE, Oct.

2019, pp. 149–152. doi: 10.1109/ICICE49024.2019.9117548.

[10] “Using nginx as HTTP load balancer.” Accessed: Aug. 27, 2024. [Online]. Available:

https://nginx.org/en/docs/http/load_balancing.html

[11] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The Programmable Data Plane:

Abstractions, Architectures, Algorithms, and Applications,” ACM Comput. Surv., vol. 54, no.

4, Art. no. 4, May 2022, doi: 10.1145/3447868.

[12] “P4 – Language Consortium.” Accessed: Aug. 26, 2024. [Online]. Available: https://p4.org/

[13] G. S. Amru, S. Prabowo, and M. A. Nugroho, “Analisis Performansi Load Balancing

menggunakan Algoritma Round Robin dan Weighted Round Robin pada P4-Programmable

Switch,” Feb. 2022.

[14] M. R. Baihaqi, R. M. Negara, and R. Tulloh, “Analysis of Load Balancing Performance using

Round Robin and IP Hash Algorithm on P4,” in 2022 5th International Seminar on Research

of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia: IEEE,

Dec. 2022, pp. 93–98. doi: 10.1109/ISRITI56927.2022.10052975.

[15] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making Stateful Layer-4 Load

Balancing Fast and Cheap Using Switching ASICs,” in Proceedings of the Conference of the

ACM Special Interest Group on Data Communication, Los Angeles CA USA: ACM, Aug.

2017, pp. 15–28. doi: 10.1145/3098822.3098824.

[16] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making Stateful Layer-4 Load

Balancing Fast and Cheap Using Switching ASICs,” in Proceedings of the Conference of the

ACM Special Interest Group on Data Communication, Los Angeles CA USA: ACM, Aug.

2017, pp. 15–28. doi: 10.1145/3098822.3098824.

[17] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless Datacenter Load-balancing with

Beamer”.

19

[18] J. A. Brito, J. I. Moreno, L. M. Contreras, M. Alvarez-Campana, and M. Blanco Caamaño,

“Programmable Data Plane Applications in 5G and Beyond Architectures: A Systematic

Review,” Sensors, vol. 23, no. 15, p. 6955, Aug. 2023, doi: 10.3390/s23156955.

[19] S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-Programmable data planes:

Architecture, research efforts, and future directions,” Comput. Commun., vol. 170, pp. 109–

129, Mar. 2021, doi: 10.1016/j.comcom.2021.01.027.

[20] “Comparing Layer 4, Layer 7, and GSLB techniques.” Accessed: Sep. 10, 2024. [Online].

Available: https://www.loadbalancer.org/blog/comparing-layer-4-layer-7-and-gslb-load-

balancing-techniques/

[21] “jafingerhut/p4-guide: Guide to p4lang repositories and some other public info about P4.”

Accessed: Aug. 09, 2024. [Online]. Available: https://github.com/jafingerhut/p4-guide

[23] “nsg-ethz/p4-utils: Extension to Mininet that makes P4 networks easier to build.” Accessed:

Aug. 09, 2024. [Online]. Available: https://github.com/nsg-ethz/p4-utils

[24] p4lang/p4c. (Aug. 08, 2024). C++. p4language. Accessed: Aug. 09, 2024. [Online]. Available:

https://github.com/p4lang/p4c

[25] “Y.1541 : Network performance objectives for IP-based services.” Accessed: Sep. 10, 2024.

[Online]. Available: https://www.itu.int/rec/T-REC-Y.1541

[26] R. Jain, A. Durresi, and G. Babic, “Throughput Fairness Index: Throughput Fairness Index: An

An Explaination Explaination”.

20

Attachment

1. IP Hash and WRR 40.000 request distribution

2. IP Hash and WRR 60.000 request distribution

3. IP Hash and WRR 80.000 request distribution

13430

13334
13321 13333

13249

13333

13150

13200

13250

13300

13350

13400

13450

IP Hash WRR

R
eq

u
es

t
D

is
tr

ib
u

ti
o

n

40.000 Request

IP Hash and WRR request distribution

Request Server 1 Request Server 2 Request Server 3

20276

20000

19719

2000020005 20000

19400
19500
19600
19700
19800
19900
20000
20100
20200
20300
20400

IP Hash WRR

R
eq

u
es

t
D

is
tr

ib
u

ti
o

n

60.000 Request

IP Hash and WRR request distribution

Request Server 1 Request Server 2 Request Server 3

21

4. IP Hash and WRR 100.000 request distribution

26807

26667

26416

26666

26777

26667

26200

26300

26400

26500

26600

26700

26800

26900

IP Hash WRR

R
eq

u
es

t
D

is
tr

ib
u

ti
o

n

80.000 Request

IP Hash and WRR request distribution

Request Server 1 Request Server 2 Request Server 3

33679

33333

32723

33333

33598

33334

32200

32400

32600

32800

33000

33200

33400

33600

33800

IP Hash WRR

R
eq

u
es

t
D

is
tr

ib
u

ti
o

n

100.000 Request

IP Hash and WRR request distribution

Request Server 1 Request Server 2 Request Server 3

