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ABSTRACT 
 
Sensor networks on the Internet of Things (IoT) are vital for Cyber-Physical Systems, 
integrating physical and digital worlds. Effective time synchronization is critical for managing 
these networks, involving processes such as security, localization, routing, and tracking. 
Without proper synchronization, log file correlation among devices becomes challenging, 
leading to potential conflicts and service losses. Ensuring secure time synchronization is 
essential, using robust algorithms and protocols. Time synchronization aligns local clock times 
across nodes, countering hardware clock drift. Distributed consensus algorithms have shown 
robustness against threats like Denial of Service (DoS) attacks and data manipulation, but their 
performance is heavily influenced by network topology changes, making topology attacks a 
significant research focus. The resilience of consensus-based time synchronization relies on 
the network's topology, represented by the adjacency matrix and Laplacian graph eigenvalues, 
indicating connectivity strength. Fixed Weight Assignment (FWA), Centralized Weight 
Assignment (CWA), and Mobile Weight Assignment (MWA) are consensus weighting 
algorithms used in WSN synchronization, each adapting differently to network conditions. 
However, these methods often overlook the impact of topological changes during attacks. This 
study proposed a graph-based consensus synchronization weighting method using Laplacian 
eigenvalues to test resilience against topology attacks, focusing on convergence speed and 
synchronization accuracy. The findings showed that incorporating Laplacian Gain enhances 
fault tolerance, reduces convergence iterations by approximately 40.42%, and improves 
network accuracy by about 9.34%. This demonstrates the crucial role of Laplacian-based 
consensus methods in maintaining network speed convergence and accuracy under topology 
changes, recommending their adoption for enhancing WSN resilience against attacks. 
 
Keywords: IoT Security, Time Synchronization, Clock Attack, MWA, Laplacian-Based 
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ABSTRAK 
 

Jaringan sensor dalam Internet of Things (IoT) sangat penting untuk Sistem Fisik-Siber, 
yang mengintegrasikan dunia fisik dan digital. Sinkronisasi waktu yang efektif sangat 
penting untuk mengelola jaringan ini, termasuk dalam proses seperti keamanan, 
lokalisasi, perutean, dan pelacakan. Tanpa sinkronisasi yang tepat, korelasi file log antar 
perangkat menjadi sulit, yang dapat menyebabkan konflik dan hilangnya layanan. 
Memastikan sinkronisasi waktu yang aman sangat penting, dengan menggunakan 
algoritma dan protokol yang kuat. Sinkronisasi waktu menyelaraskan waktu jam lokal di 
seluruh node, melawan drift jam perangkat keras. Algoritma konsensus terdistribusi 
telah menunjukkan ketahanan terhadap ancaman seperti serangan Denial of Service 
(DoS) dan manipulasi data, tetapi kinerjanya sangat dipengaruhi oleh perubahan 
topologi jaringan, menjadikan serangan topologi sebagai fokus penelitian yang 
signifikan. Ketahanan sinkronisasi waktu berbasis konsensus bergantung pada topologi 
jaringan, yang direpresentasikan oleh matriks kedekatan dan nilai eigen graf Laplacian, 
yang menunjukkan kekuatan konektivitas. Penetapan Bobot Tetap (FWA), Penetapan 
Bobot Terpusat (CWA), dan Penetapan Bobot Bergerak (MWA) adalah algoritma 
penetapan bobot konsensus yang digunakan dalam sinkronisasi WSN, masing-masing 
beradaptasi secara berbeda terhadap kondisi jaringan. Namun, metode ini sering 
mengabaikan dampak perubahan topologi selama serangan. Penelitian ini mengusulkan 
metode penetapan bobot sinkronisasi konsensus berbasis graf menggunakan nilai eigen 
Laplacian untuk menguji ketahanan terhadap serangan topologi, dengan fokus pada 
kecepatan konvergensi dan akurasi sinkronisasi. Temuan menunjukkan bahwa 
menggabungkan gain Laplacian meningkatkan toleransi kesalahan, mengurangi iterasi 
konvergensi sekitar 40,42%, dan meningkatkan akurasi jaringan sekitar 9,34%. Hal ini 
menunjukkan peran penting metode konsensus berbasis Laplacian dalam menjaga 
kecepatan konvergensi jaringan dan akurasi jaringan di bawah perubahan topologi, 
merekomendasikan penerapannya untuk meningkatkan ketahanan WSN terhadap 
serangan. 

 
Kata kunci: Keamanan IoT, Sinkronisasi Waktu, Serangan Clock, MWA, Laplacian 
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CHAPTER 1 

INTRODUCTION 
 

This chapter discusses the background of this research. This chapter is divided into eight 
sections, research background, statement of the problem, objective and hypotheses, 
assumption, scope and delimitation, and significance of the study. 

 
1.1 Research Background 

Sensor network in Internet of Things (IoT) is an essential part of Cyber-Physical Systems 
that integrates the physical and digital worlds [1] and time synchronization becomes a 
highly crucial element within it [2]; [3]. The use of low-cost, efficient, and low-power 
sensor network technology in Wireless Sensor Network applications and protocols works 
in a coordinated and synchronized manner [4]. Everything from managing and 
debugging networks involves time properties, as in security services, localization, routing, 
and tracking. Correlating log files accurately among devices in the Wireless Sensor 
Networks (WSN) area becomes very difficult or even impossible without proper time 
synchronization, which can lead to behavioral conflicts, device damage, and unnecessary 
service losses [5]. Therefore, the security of the time synchronization process is a major 
concern where the properties of the system time settings can be relied upon, namely being 
secure and guaranteed, especially in algorithmic methods and synchronization protocols 
approaches. 

The time synchronization process can be achieved by adding the current time 
difference with the local time of a clock to achieve a common time on all nodes in the 
WSN [4]. This occurs because the imperfections of the hardware clock fabrication result 
in the local time on a node drifting apart over time, necessitating a synchronization 
protocol to attain the same pace [6]. Many time synchronization protocols have been 
developed in recent years to ensure that data collected by sensors in the network have 
accurate, synchronized timestamps, and consistent data analysis. Protocols such as 
Network Time Protocol (NTP) and Precision Time Protocol (PTP) in synchronization over 
wired networks [7]. Reference Broadcast Synchronization (RBS), Time-Sync Protocol for 
Sensor Network (TPSN), and Flooding Time Synchronization Protocol (FTSP), specifically 
designed for resource-constrained WSNs using root node as a reference clock [8]; [9]. 
Furthermore, other protocols leveraging distributed reference clock such as ATS (Average 
Time Synchronization) and MTS (Maximum Time Synchronization) focus on reaching a 
common message agreement using averaging or maximum calculation methods in 
consensus [10]; [11]. Although many protocols have been developed, security concerns are 
also becoming increasingly critical, given the general nature of open WSN environments 
and their vulnerability to threats. 

The development of time synchronization protocols in Wireless Sensor Networks 
(WSN) has been a significant focus of research in the last decade as mentioned above, 
both centralized and distributed-based, but security threat mitigation needs to be 
improved [12]. Many distributed based synchronization protocols using consensus 
algorithms have been widely discussed in recent years due to their robustness against 
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several security threats, such as topological attacks and data manipulation [12]. Protocols 
such as SATS [13], FTCCS  [14], and SMTS [15] are designed to handle message 
manipulation attacks and demonstrate fast convergence. SATS uses parameter 
adjustment based on two-hop neighbor information to counter random data injections, 
while FTCCS employs ILC-MSR (Iterative Learning Control with Multi-Stage Resilience) 
to address deception attacks. SMTS incorporates message verification and authentication 
to combat message manipulation attacks. In contrast, NiSTS [16] and RTSP [3] also focus 
on handling Sybil and message manipulation attacks but with varying speeds and 
countermeasure techniques, such as maxclique-based identification and message 
filtering. Protocols like CSNI [17], which use centralized approaches, focus is on node 
classification to identify and handle Sybil attacks. The secure consensus mechanism of 
these protocols helps prevent dishonest or malicious nodes from significantly influencing 
the system time. It is worth noting that the performance of time synchronization and 
resilience to attacks in consensus algorithms are greatly influenced by the type and 
changes in topology; therefore, topology attacks are a major concern in this research to 
measure resilience under changing topology conditions during attacks. 

In the context of Wireless Sensor Networks (WSNs) and consensus-based time 
synchronization methods, Fixed Weight Assignment (FWA), Centralized Weight 
Assignment (CWA), and Mobile Weight Assignment (MWA) [18] refers to different 
consensus weighting algorithms. FWA refers to a consensus weighting algorithm where 
a fixed weight is assigned to each neighboring node in the network. These fixed weights 
remain constant throughout the synchronization process. CWA involves a centralized 
node, such as a base station or a central controller, assigning weights to neighboring 
nodes in the network. These weights are typically based on factors such as node 
proximity, reliability, or communication quality. Furthermore, MWA is a consensus 
weighting algorithm where weights assigned to neighboring nodes are dynamically 
adjusted based on the mobility or changing conditions of nodes in the network. This 
allows for adaptive weighting to account for changes in network topology or node 
characteristics over time. However, all three weightings above, whether static like FWA 
or dynamic like CMA and CWA, are assumed to be indifferent to the topology 
conditions such as connectivity of a graph. Consequently, there is no assumptions that 
if such of topological attacks occurs will change those weighting methods. As it is 
known, the resilience of consensus-based time synchronization is highly dependent on 
the topology conditions or the adjacency matrix of the sensor network [4]. The adjacency 
matrix is closely related to the Laplacian graph, and the value of the second smallest 
eigenvalue on the Laplacian graph gives an idea of how strongly the graph is connected 
[19]. 

In mathematics and network theory, the Laplacian matrix or Laplacian operator is a 
matrix representing the connectivity of a graph or network [20]. In the context of 
consensus-based time synchronization in WSNs, the Laplacian matrix is often used to 
model the connectivity and relationships between nodes in the network. Laplacian-based 
consensus methods leverage properties of the Laplacian matrix to achieve 
synchronization among nodes by iteratively updating their local clocks based on 
information exchanged with neighboring nodes. The Laplacian matrix plays a 
fundamental role in understanding the dynamics of consensus algorithms and their 
resilience to topology attacks. Therefore, in this study, we propose a graph-based 
consensus synchronization weighting method on Laplacian eigenvalues to test 
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synchronization resilience in topology attacks by looking at two main parameters: 
convergence speed and synchronization accuracy [12].  

Findings of this study showed that incorporating Laplacian Gain enhances fault 
tolerance, reduces convergence iterations by approximately 40.42%, and improves network 
accuracy by about 9.34%. This demonstrates the crucial role of Laplacian-based consensus 
methods in maintaining network stability and accuracy under topology changes, 
recommending their adoption for enhancing WSN resilience against attacks. 

 
1.2 Statement of the Problem 

The problem of this research is to measure the extent to which changes in attack trials affect 
the performance of consensus-based time synchronization systems on various network 
topologies, including Ring, Star, and Mesh. The convergence speed and accuracy of 
synchronization in consensus-based time synchronization systems are critically 
influenced by the network topology. The robustness of the consensus process can be 
challenged by various topology attacks on the network, such as Edge Attacks like Denial-
of-Service attacks and Vertices Attacks like Node Destruction Attacks. It is essential to 
understand the extent of the impact these attacks have on different network topologies, 
including Ring, Star, and Mesh topologies, to devise strategies that enhance the resilience 
and reliability of time synchronization mechanisms under adverse conditions. 

 
1.3 Objective and Hypotheses 
The objective of this research is to analyze the impact of topology attacks on the 
robustness of time synchronization in Wireless Sensor Networks (WSN) using Laplacian-
eigen value weighting. This analysis will focus on two main parameters: the convergence 
speed of synchronization, measured in terms of iteration magnitude, and the accuracy of 
synchronization, assessed through local and global synchronization error magnitude. 
Additionally, the research will evaluate the scalability of different topology types in 
handling such attacks, aiming to determine their robustness and adaptability under 
adverse conditions. 

The premises of hypotheses in this research are as follows: 

Premise 1: M. Xue proved that the robustness of consensus-based time 
synchronization is greatly influenced by the adjacency matrix of the 
topology [4].  

Premise 2:  Furthermore, Kriegleder et al. showed that adjacency matrix is closely 
related to the Laplacian Graph and the second smallest eigenvalue of the 
Laplacian Graph indicates how strongly the graph is connected [19].  

Premise 3: Also from Kriegleder et al. showed that the convergence time decreases 
in general with the algebraic connectivity of a network, which is valued 
as the second smallest eigenvalue for feedback weighting [19].  

Premise 4: Under topology changes based on M. Xue and Fajrin et al., then it will 
impact to the robustness of time synchronization [4]; [21].  

Thus, the hypothesis in this research was: by incorporating Laplacian Eigen Value 
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feedback weighting, the clock synchronization condition will be more robust against 
topology changes in topology attacks. 

 
1.4 Scope and Delimitation 

The limitations of this study include specific testing scenarios on the topology, which must 
adhere to Minimum Spanning Tree (MST) conditions to ensure consensus convergence. 
Additionally, the communication direction in wireless sensor networks involves two-way 
communication and no-delay involved, leading to an Undirected Graph pattern when 
represented graphically in perfect simulation condition. The evaluation of convergence speed 
relies on the iteration count parameter due to the dependence of time-based calculations on 
the computational capabilities of the simulation devices. These limitations shape the 
methodology and analysis approach of the research, highlighting the need for careful 
consideration and interpretation of the results within these defined constraints. 

 
1.5 Significance of the Study 

By employing Laplacian-eigen value weighting, the research delves into the intricate 
relationship between network topology, adjacency matrices, and Laplacian Graphs. This 
investigation is vital as it sheds light on the fundamental mechanisms governing 
consensus-based time synchronization. The evaluation of convergence speed and 
synchronization accuracy serves as key performance indicators, offering insights into the 
network's robustness and adaptability in adverse conditions. The hypothesis formulated 
in this study underscores the potential for Laplacian eigen value feedback weighting to 
bolster the robustness of clock synchronization, presenting a promising avenue for 
enhancing network security and reliability in the face of topology attacks. 
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CHAPTER 2 

LITERATURE REVIEW 
 

This chapter provides a brief description of State of The Art and in the subchapter on 
"Time Synchronization in Wireless Sensor Networks," we explain the fundamental 
concept and significance of time synchronization in the context of sensor networks. "Time 
Synchronization Algorithms Based on Consensus and Non-Consensus" delves into 
various time synchronization algorithms used in sensor networks, including consensus-
based and non-consensus-based algorithms, along with a comparison between the two. 
Moving on to "Graph Laplacian and Gain Consensus," we discuss the Laplacian graph 
and gain consensus, which are key concepts in consensus-based time synchronization 
methods. "Robustness Parameters in Attacks" outlines strength parameters in facing 
attacks, focusing on the security and resilience of the system against potential attacks in 
sensor networks. Lastly, "Theoretical Framework" presents the theoretical framework 
that serves as the basis for analysis in this research, including theories on time 
synchronization, consensus algorithms, and topology attacks in sensor networks. By 
exploring these topics, Chapter 2 aims to provide an in-depth understanding of the 
theoretical foundation relevant to this study. 
 
2.1 State of The Art 

 
Figure 2.1: State-of-the-art of The Research 

The numerous WSN Consensus Time Synchronization (CTS) algorithms and its 
weighting factor have been proposed in the literature, there is a notable gap in studying 
the Averaging-Time Synchronization leveraging Laplacian value to the weighting method 
under topological attacks [12], which reveals its significance performance under 
robustness test. The major contributions or state-of-the-art to this research as seen on 
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the intersections in Figure 2.1 are as given below: 

1. First intersection, recent Averaging-Time Synchronization (ATS) algorithm are 
thoroughly analyzed through simulations, considering scenarios both with and 
without topological attacks [10].  

2. Second intersection, leveraging Laplacian-based value to its weighting parameter 
in ATS algorithms to measure its robustness against topological attacks [19].  

3. Third intersection, extensive simulations are conducted under scalability of the 
number nodes and topology types to assess impact of its robustness performance 
metrics [21] such as convergence speed and global synchronization error rate [12]. 

This research represents the first comprehensive effort to conduct simulation-based 
robustness testing of Laplacian-based value in Averaging-Time Synchronization 
algorithm under topological attacks. 

 
2.1.1 Time Synchronization in Wireless Sensor Networks 

Time synchronization is the process that ensures that clocks or time across various devices 
or endpoints in a system are at uniform or matching values [5]. In computer networks or 
distributed systems, time synchronization ensures that logs, records, or transactions are 
performed with accurate and uniform timestamps. When every node in the network shares 
the same time scale, it opens up opportunities to establish cause-and-effect relationships 
between events in the physical world and ensures that these nodes can integrate well within 
the overall network. Generally, time synchronization requires aligning clock frequencies 
(Frequency Synchronization), initial offsets (Initial Offset Synchronization), and time 
values (Time Synchronization). 

1. Frequency Synchronization 

Frequency synchronization involves efforts to make nodes or nodes in the network 
have uniform oscillation frequencies. Uniform clock frequencies aim to ensure that 
devices in the network operate at the same time speed. 

 
Figure 2.2: Three Synchronization Methods: Frequency Synchronization (a), 

Initial Offset Synchronization (b), Time Synchronization (c). [5] 

2. Initial Offset Synchronization 
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Initial offset refers to the difference between the local time when time synchr-
onization begins, and the reference time used for synchronization. The initial offset 
needs to be adjusted so that the local time of all nodes in the network starts with a 
uniform value. This aims to maintain time consistency among nodes after time 
synchronization is performed. 

3. Time Synchronization 

Time synchronization is the process of making the local time values of each node in 
the network uniform or at least compatible with each other. Uniform time values 
enable nodes in the network to communicate and coordinate correctly. 

Time synchronization in sensor networks plays an essential role in ensuring that 
various types of nodes agree on the same time to support accurate data collection and 
efficient coordination among sensor nodes [22]. Achieving time synchronization requires 
communication between nodes in the network through communication connections, 
whether wired or wireless. Here are some commonly used sources of synchronization in 
wireless sensor networks (WSNs): 

1. GPS/PPS 

GPS/PPS (Global Positioning System/Pulse-Per-Second) in time synchronization is a 
commonly used method in wireless sensor networks (WSNs) to achieve high accuracy 
in time. The PPS signal is beneficial for achieving high time accuracy because it provides 
a clear starting point for each second. Time signals from GPS/PPS can be integrated 
with specialized WSN time synchronization protocols using GPS time information as 
the starting point in the time synchronization algorithm. Nodes in WSN equipped with 
GPS receivers use the time information received from GPS signals to synchronize local 
time. 

 

Figure 2.3: The GPS, PPS & NTP Time Reference in WSN CPS [22] 

The PPS signal is used to synchronize time at the second level, providing high time 
precision. Time synchronization using GPS/PPS typically achieves time accuracy in the 
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range of microseconds to nanoseconds, depending on the quality and timing accuracy 
of the received GPS signal. However, the use of GPS and PPS receivers can consume 
significant power. Therefore, the use of GPS/PPS is usually limited to root nodes only 
as a reference or primary time comparator, as seen in protocols like Network Time 
Protocol (NTP). 

 

Figure 2.4: NTP Stratum Servers [22] 

2. Hardware Clock 

The hardware clock is a time source managed and generated by the sensor node itself. 
Nodes in wireless sensor networks have internal oscillators that produce local time. The 
hardware clock in a sensor node basically comes in two types: the internal hardware 
clock and the external on-board clock, commonly known as the Real-Time Clock (RTC) 
module [23]. The internal hardware clock is usually embedded within the 
microcontroller itself, for example, the MSP430 has a Digitally Controlled Oscillator 
(DCO) embedded with a working frequency of 8MHz, which means it has a clock 
resolution of 0.125 μs (one 'tick') [17]; [24]; [10]. Therefore, every hardware clock is 
always accompanied by a counter register to read the hardware clock from the oscillator 
output and periodic pulses, and then be converted into a Software Clock for further time 
synchronization processing. 

 

Figure 2.5: Oscillator and Counter components of RTC Module [22] 
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The internal clock is suitable for applications that require lower time accuracy or in 
environments where the cost and power consumption of additional devices need to be 
minimized. Applications that are more tolerant of time uncertainty or require more 
power-efficient solutions tend to use the internal clock. This is particularly suitable for 
use in WSN applications that are highly resource constrained [22]. 

 

Figure 2.6: Synchronization Process of Synchronizing Clock to Reference Clock 

 
2.1.2 Time Synchronization Algorithms Based on Consensus and 

Non-Consensus 

Once the process of generating a software clock from quantifying the hardware clock, as 
described earlier, is established, the software clock can now serve as the local time indicator 
for the node, where time resolution can be described as the distance between two adjacent 
ticks. However, the process of reading the software clock is not always constant due to 
manufacturing variations and environmental conditions [5]. Each Local Oscillator in every 
node will result in drift and clock skew, which is common. Therefore, time synchronization 
is needed to ensure that the clock is always reliable and consistent across all nodes. 

 

Figure 2.7: Multilevel classification of clock synchronization protocols 



Telkom University 2024 School of Computing 
 

10  

 
The synchronization process can be divided into two main parts: consensus-based 

synchronization algorithms and non-consensus-based synchronization algorithms.  

1. Non-Consensus-Based Time Synchronization Algorithms 

In general, non-consensus-based algorithms use a centralized or reference-based 
approach, similar to the use of Network Time Protocol (NTP) and Precision Time 
Protocol (PTP) in synchronization over wired networks [7]. However, NTP and PTP are 
less suitable for WSN applications as they consume significant resources, leading to the 
use of other protocol approaches such as Reference Broadcast Synchronization (RBS), 
Time-Sync Protocol for Sensor Network (TPSN), and Flooding Time Synchronization 
Protocol (FTSP), specifically designed for resource-constrained WSNs [8]; [9]. RBS is 
a protocol that utilizes receiver-to-receiver passing message exchange, where each node 
receives beacons that are then used to calculate clock offsets between them. TPSN is 
based on multi-hop sender-to-receiver communication. In contrast, FTSP works using 
a tree-like structure where the root node undergoes an authentication process using a 
propagated private key throughout the network. Other protocols also exist that employ 
optimization and multi hop-based overhearing approaches, such as PBS or Pairwise 
Broadcast Synchronization [25]. All these protocol approaches rely on non-consensus-
based methods that require all nodes to participate in synchronization based on 
centralized reference. 

Table 2.1: Table of Classification Approach from various Time Synchronization 
Protocol and its Converging Performance 

 
No. Protocol Approach Message 

Passing 
Type of  

Consensus 
Converging 

Speed 

1 RBS [8] Centralized Receiver to 
Receiver  High 

2 TPSN [9] Centralized Sender to Receiver  High 
3 FTSP [26] Centralized Tree-based  High 
4 PBS [25] Distributed Multi-hop   

5 ATSP [27] Distributed Consensus Averaging 
Convergence 
in Non-Finite 

Time 
6 CCS [18] Distributed Consensus Averaging Exponential 
7 ATS [10]. Distributed Consensus Averaging Exponential 

8 MTS [11] Distributed Consensus Maximum Fast 
Convergence 

9 RFA [28] Distributed All node-based   

10 WMTS 
[29] Distributed Consensus Maximum 

Convergence 
in Non-Finite 

Time 

11 This 
Research Distributed Consensus Averaging Fast 

Convergence 
 

2. Consensus-Based Time Synchronization Algorithms 

The underlying concept behind distributed-based approaches is the lack of dependence 
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on root nodes or references. This allows consensus-based systems to be more resilient 
to changes in network topology, where nodes can join or leave the network without 
significantly disrupting time synchronization. The consensus approach also provides 
better tolerance against fake nodes or unexpected behavior in the network, as time 
decisions can be made based on consensus. 

Generally, there are three fundamental protocols in consensus-based time 
synchronization algorithms: RFA, ATS, and MTS. RFA or Reachback Firefly Algorithm 
is a protocol that listens to signals from its neighboring nodes but does not directly act 
upon these signals; instead, it queues them and sends them in the next cycle [28]. This 
is useful to compensate for delays during the reach back process. On the other hand, 
ATS (Average Time Synchronization) and MTS (Maximum Time Synchronization) 
focus on reaching a common message agreement using averaging or maximum 
calculation methods [10]; [11]. The idea is to calculate the average from local exchanged 
data and distribute the results across the network to achieve time agreement with a 
higher level of confidence. The ATS calculation requires significant information 
exchanges, resulting in slow convergence. Therefore, MTS improves upon ATS by 
maximizing local information in global synchronization, allowing for faster 
convergence even though deviations from the minimum and maximum values may 
affect confidence levels. 

Other protocols like Consensus Clock Synchronization (CCS) [18] and Weighted 
Maximum Time Synchronization (WMTS) [11] are the development from previous 
protocols that emphasize weighting or confidence parameters as improvement 
variables. The clustering approach is also applied by ATSP or Averaging Time 
Synchronization Pairwise, which is simpler and divides by two [27]. This research focus 
on consensus-based averaging time synchronization algorithms in distributed WSN 
networks. 

 
2.1.3 Graph Laplacian and Gain Consensus 

The concept of consensus is increasingly recognized as part of distributed control systems, 
where information from various network nodes is exchanged to generate agreed-upon 
outputs or consensus outputs. The network nodes in distributed control systems are closely 
related, similar to the concept of a graph that has a number of nodes (n) and connections 
(m), allowing for an approach based on graph theory. The relationship between consensus 
and graph theory has been extensively discussed in several previous research studies as 
seen on the table below. 

 
Table 2.2: List of Publication related to Laplacian and Gain Consensus 

 
Year Author Publication Point of Interest 
2004 
[30] 

R. Olfati-Saber and R. 
Murray, 

Consensus problems in 
networks of agents with 

switching topology and time-
delays 

analysis in 
connected the 

consensus control 
to algebraic graph 

theory 
2004  
[31] 

J. Fax and R. Murray,   
 

Information flow and 
cooperative control of vehicle 

formations 

used tools from 
algebraic theory 

stated that a 
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Year Author Publication Point of Interest 
Nyquist criterion 

that uses the 
eigenvalues of the 
graph Laplacian 

matrix to 
determine the 

effect of the 
communication 

topology on 
formation stability 

2005   
[32] 

W. Ren and R. Beard   
 

Consensus seeking in 
multiagent systems under 

dynamically changing 
interaction topologies 

analysis of 
consensus control 
to matrix theory 

2005 
[33] 

L. Moreau   
 

Stability of multiagent 
systems with time-dependent 

communication links 

connection between 
the performance of 
a linear consensus 

protocol on a 
directed network 
and the Fiedler 

eigenvalue of the 
mirror graph of the 

information flow 
2016 
[20] 

 
  

Ahmad Sadhiqin Mohd 
Isira 

Consensus Control of A Class 
of Non-linear Systems 

state feedback 
consensus 
controller, 

consensus observer 
and observer-based 
controller using the 

relative 
information of the 
agents in a multi-
agent system and 
eigenvalues from 

graph theory 
2021 
[34] 

Yuqing Niu, Ting Yang, 
Yucheng Hou, 

Shaotang Cai, Peng Yan 
& Wei Li 

Consensus tracking-based 
clock synchronization for the 

Internet of Things 

analysis in the 
synchronization 

process in the state 
space framework & 

the convergence 
acceleration term is 

designed to 
optimize the 
eigenvalue 

distribution of 
synchronization 

error matrix 
2024 
[35] 

Neshat Elhami Fard, 
Rastko Selmic 

Consensus of Multi-agent 
Reinforcement Learning 

Systems: The Effect of 
Immediate Rewards 

consensus control 
of a leaderless, 
homogeneous, 

multi-agent 
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Year Author Publication Point of Interest 
reinforcement 

learning (MARL) 
system with 

rewards weighting. 
2024 Author of This 

Research 
The Use Laplacian Eigenvalue 
Feedback in Consensus-based 

Time Synchronization to 
Enhance Robustness in 

Sensor Networks 

proposed a graph-
based consensus 
synchronization 

weighting method 
using Laplacian 

eigenvalues to test 
resilience against 
topology attacks, 

focusing on 
convergence speed 

and synchronization 
accuracy 

The research outlined in the table provides significant insights into consensus 
problems in multi-agent systems, leveraging mathematical frameworks like algebraic 
graph theory. In 2004, Olfati-Saber and Murray connected consensus control with 
algebraic graph theory, addressing how agents achieve agreement in networks with 
dynamic topologies and delays. Fax and Murray, in the same year, used algebraic tools to 
evaluate how communication topology affects vehicle formation stability, utilizing 
eigenvalues from the graph Laplacian matrix. The 2005 studies by Ren and Beard, and 
Moreau, further explored these concepts, with Ren analyzing consensus under changing 
interaction topologies through matrix theory, and Moreau linking linear consensus 
performance to the Fiedler eigenvalue, enhancing our understanding of stability in 
directed networks. Ahmad Sadhiqin Mohd Isira's 2016 research introduced new control 
strategies for non-linear systems, incorporating graph theory eigenvalues into state 
feedback and observer-based controllers. In 2021, Niu et al. optimized clock 
synchronization in the Internet of Things by designing a convergence acceleration term 
to improve the eigenvalue distribution of synchronization errors. Finally, Fard and 
Selmic’s 2024 study on multi-agent reinforcement learning systems examined how 
immediate rewards affect consensus, using reward weighting in leaderless MARL 
systems. Together, these studies underscore the critical role of mathematical analysis in 
designing effective consensus mechanisms and improving system stability and 
performance. 

There are some popular gain methods for weighted averaging consensus-based time 
synchronization methods in WSN, Fixed Weight Assignment (FWA), Centralized Weight 
Assignment (CWA), and Mobile Weight Assignment (MWA) refers to different consensus 
weighting algorithms [18]. FWA refers to a consensus weighting algorithm where a fixed 
weight is assigned to each neighboring node in the network. These fixed weights remain 
constant throughout the synchronization process. CWA involves a centralized node, such 
as a base station or a central controller, assigning weights to neighboring nodes in the 
network. These weights are typically based on factors such as node proximity, reliability, 
or communication quality. Furthermore, MWA is a consensus weighting algorithm where 
weights assigned to neighboring nodes are dynamically adjusted based on the mobility or 
changing conditions of nodes in the network. This allows for adaptive weighting to 
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account for changes in network or node characteristics over time. However, all three 
weightings above, whether static like FWA or dynamic like CMA and CWA, are 
assumed to be indifferent to the topology conditions such as connectivity of a graph 
using Laplacian value.  

 

Figure 2.8: Process getting Laplacian Matrix from Communication Graph [20] 
 

In consensus control systems, graph theory approaches are widely used to depict 
how a network of nodes is interconnected in a topology. This topology can take the form 
of a directed or undirected graph depending on the communication pattern between 
nodes, which is then calculated in the form of an adjacency matrix and subsequently 
converted into a Laplacian graph as feedback for consensus. 

 

Figure 2.9: The Concept of Consensus Control [20] 
 

The Laplacian matrix has several mathematical properties that make it useful in 
network analysis, including understanding the structure and consensus properties in 
dynamic systems. The Laplacian matrix is also used to analyze the convergence and 
stability of consensus systems in networks, which are typically calculated through 
Eigenvalues. By analyzing the Eigenvalues of a graph, it becomes easy to not only analyze 
how the graph is connected but also how well the graph is connected to each other, as in 
the perspective of Spectral Graph theory. 

Table 2.3: Comparison of Convergence Speed in Sparse & Fully Topology [4] 
 

Types Topology Convergence Speed 

Sparse 
Connected 

  

20 
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Fully 
Connected 

  

15 

 
 
Combining the two theories, namely the consensus control theory based on Laplacian 

graph and eigenvalue theory on spectral graph, where the consensus speed is greatly 
influenced by how well a graph is connected with its adjacency matrix, this research focus 
on consensus gain based on Laplacian graph. This consensus gain includes achieving 
consensus or agreement on gain values or control parameters among nodes in the 
network based on the eigenvalue of the Laplacian graph. The integration of these two 
theories in this study aims to analyze convergence regarding how interactions among 
nodes in the network can affect consensus on gain values or other parameters such as 
changes in topology and under attack conditions. 

 

2.1.4 Robustness Parameters under Attacks 

Consensus-based synchronization algorithms are becoming increasingly popular 
because they are more resistant to various attacks, including denial of service attacks or 
attacks targeting root nodes [12]. This is primarily due to their distributed nature and 
lack of dependency on reference nodes, making them more robust against attacks. 
Robustness, in this context, refers to the system's ability to tolerate failures when facing 
topology changes or node failures in communication [36], whether under normal 
conditions or specific attacks, while still maintaining synchronization with a predefined 
level of accuracy [5]; [1]. 

The key components of robustness parameters in consensus-based synchronization 
events include convergence speed represented by the unit of iterations and 
synchronization accuracy represented by the global synchronization error rate (GSEr). 
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Table 2.4: Comparison between Time Synchronization Protocol and its Robustness 
Performance Under Attack 

 
No Qualitative Metrics Quantitative Metrics 

Protocol Approach Message 
Passing 

Type of 
Consensus 

Type of 
Attack 

Countermeasures 
Approach 

Converging 
Speed 

Hop 
Count 

Networ
k Size 

% 
Attacker 

Nodes 
1 SATS [13] Distributed Consensus Averaging Random 

Data 
Injection 

Parameter Adjustment 
based on Two-Hop 

Neighbor Information 

Fast 
Convergence 

2 50 20 

2 SSCA [37] Distributed Consensus Averaging Message 
Manipulatio

n Attack 

Verification Process 
and Max-Min State 

Deviation 

 1 10 10 

3 FTCCS [14] Distributed Consensus Maximum Deception 
Attack 

ILC-MSR Fast 
Convergence 

1 9 22 

4 SMTS [15] Distributed Consensus Maximum Message 
Manipulatio

n Attack 

Message Verification 
and Authentication 

Fast 
Convergence 

1 100 5 

5 RTSP [3] Distributed Consensus Maximum Sybil Attack Maxclique-Based 
Identification 

Exponential 2 100 3 

6 NiSTS [16] Distributed Consensus Maximum Sybil & 
Message 

Manipulatio
n Attack 

Message Filtering-
based Node 

Identification 

Slow 2 30 16 

7 MMAR-
CTS [12] 

Distributed Consensus Averaging Message 
Manipulatio

n Attack 

Message Manipulation 
Attack Resilience 

Algorithm 

Fast 
Convergence 

2 100 5 

9 CSNI [17] Centralized Multi-hop  Sybil Attack Based on FTSP. Using 
Node Classification. 

0.15ppm. If 
there is only one 

average clock skew in 
the group, stated it 

as normal node. 

  7 14 

10 This 
Research 

Distributed Consensus Averaging Topological 
Attack 

Laplacian Eigenvalue 
Feedback 

Fast 
Convergence 

1 10 10 
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The table provides a comparison of various time synchronization protocols and their 

robustness against different types of attacks. Protocols such as SATS [13], FTCCS  [14], 
and SMTS [15] are designed to handle message manipulation attacks and demonstrate 
fast convergence. SATS uses parameter adjustment based on two-hop neighbor 
information to counter random data injections, while FTCCS employs ILC-MSR (Iterative 
Learning Control with Multi-Stage Resilience) to address deception attacks. SMTS 
incorporates message verification and authentication to combat message manipulation 
attacks. In contrast, NiSTS [16] and RTSP [3] also focus on handling Sybil and message 
manipulation attacks but with varying speeds and countermeasure techniques, such as 
maxclique-based identification and message filtering. 

For protocols like CSNI [17], which use centralized approaches, the focus is on node 
classification to identify and handle Sybil attacks, with a stated accuracy of 0.15ppm. The 
figure illustrates the performance metrics or attack resilience strategies of these 
protocols, emphasizing the trade-offs between convergence speed, network size, and 
attack resistance (Figure 2.10). In this study, focusing on testing the robustness of the 
proposed method, namely Laplacian-based consensus time synchronization, only against 
topology attacks on G = (V, E) such as Edge (E) Attack refers to Denial of Service attack 
and Vertices (V) Attack refers to Node Destruction Attack. 

 

 

Figure 2.10: Types of Consensus Time Synchronizations Attack 
 

The study also assesses the extent of influence of changes in the experimental attacks 
with different types of topologies based on the latest research [21] that Ring, Star & Mesh 
topologies will converge to the consensus. Here are each of the details: 

a. Ring Topology 

A network topology in which each device is connected to exactly two other 
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devices, forming a circular configuration. Data travels around the ring in one 
direction, passing through each device until it reaches its destination. 

b. Star Topology 

A network topology in which all devices are connected directly to a central hub or 
switch. All data transmissions pass through the central hub, which manages the 
flow of information between devices. 

c. Mesh Topology 

A network topology in which each device is connected to every other device in the 
network, creating multiple paths for data to travel. This redundancy enhances 
reliability and fault tolerance but requires more cabling and configuration 
compared to other topologies. 
 
 

 

2.2 Theoretical Framework 
 

2.2.1 Consensus Theory 
 
Network consensus is the way nodes or nodes in a network reach an agreement on a certain 
value or state [20]. Network consensus is crucial in distributed systems and distributed 
networks, where nodes scattered across the network need to collaborate to achieve 
agreement or consensus. The main goal of network consensus is to reach an agreement 
among nodes in the network regarding a specific value or state. This may include agreement 
related to data, decisions, or actions that need to be taken by these nodes. Consensus theory 
considers various network models, including distributed networks, sensor networks, 
control networks, and so on [20]. The network structure and how nodes are interconnected 
are key factors in the consensus process. The goal of consensus is to achieve the average 
value 𝑥̄௜  of all values xi.  
 

𝑥̄௜(𝑡) = ଵ
ே

∑ 𝑥௜௝∈ே (t)     (2.1) 
 

Thus, based on the adjacency matrix 𝑎௜௝, [19] and this process could occurs over a 
sufficiently long iteration, we can model it in iteration 𝑘 and the next iteration 𝑘 + 1 until 
convergence is reached as follows [20]: 

 
𝑥௜(𝑘 + 1) = ∑ 𝑎௜௝ (𝑘)௝∈ே (𝑥௝(𝑘) − 𝑥௜(𝑘))   (2.2) 

 
Where: 
𝑥̄  : the average of node value 
𝑁 : number of nodes 
𝑎௜௝ : adjacency matrix 
𝑥௜ : value of node i 
𝑥௝ : value of node j 
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𝑖, 𝑗 : nodes i and j 
 

a. Initialization of Values: Each node 𝑖 and 𝑗 has an initial value 𝑥௜ and 𝑥௝ 
b. Communication: Each node 𝑖 and 𝑗 shares the values 𝑥௜ and 𝑥௝ with other nodes in 

their neighborhood matrix. 
c. Value Update: Each node updates its value based on the values received from other 

nodes where 𝑥(𝑘 + 1) is the updated value for node 𝑖 with respect to 𝑗 in iteration 𝑘 +
1, and 𝑥௝(𝑘) , 𝑥௜(𝑘) are the values received from nodes 𝑖 and 𝑗 in iteration 𝑘. 

d. Iteration & Convergence: The communication and value update process are repeated 
over several iterations until the values of each node converge to within a specified 
tolerance level, approaching zero, indicating a convergent state [30].  

 
 

2.2.2 Theory of Consensus-Based Time Synchronization 
 

2.2.2.1 Clock Model 
 

The consensus-based time synchronization approach, it differs slightly from the general 
consensus theory where the time value is not only represented by a static value, 
considering each network node is associated with a hardware-based clock oscillator. 
Naturally, each hardware oscillator has production imperfections that cause its value to 
change according to its angular frequency [18], which can be referred to as clock skew. 

 

Figure 2.11: Clock Model of Time Synchronization[18] 
 

Where 𝜔(𝜏) is the characteristic angular frequency of the oscillator that varies with 
time and conditions, resulting in a unique function for each hardware, and k is its 
proportional coefficient, while 𝐶(𝑡଴) is the initial clock value at 𝑡 = 0 [18]. 
 

 𝐶(𝑡) = 𝑘 ∫ 𝜔(𝜏)𝑑𝜏 + 𝐶(𝑡଴)௧
௧బ

    (2.3) 

 
If in the approach of the angular frequency of the oscillator can be considered a 
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constant value, then at node iii, the clock value can be represented as in Eq(2.4) 
[18]where 𝛼௜ is the clock skew and  𝛽௜ is the clock offset. 
 

     𝐶௜(𝑡) = 𝛼௜𝑡 + 𝛽௜          (2.4) 
 

In a perfect condition, 𝛼௜ would be 1, so over time its value would remain stable, and 
synchronization might not be necessary. However, in reality, the value of 𝛼௜ could be 
greater or less than 1. In the equation below Eq(2.5), during the convergence process, it 
is necessary to compare node 𝑖 with 𝑗 where 𝛼௜௝ is the relative skew and 𝛽௜௝ is the relative 
offset. In the convergence condition, the values would be 𝛼௜௝ = 1 and 𝛽௜௝= 0. 

 
     𝐶௜(𝑡) = 𝛼௜௝𝑡 + 𝛽௜௝          (2.5) 
 
2.2.2.2 Consensus Clock Model and Weighting 

 
The consensus clock model is not significantly different from the general consensus 
equation Eq(2.2), except that the value 𝑥௜ will be replaced by the value 𝐶௜, where 
𝐶௜contains the clock equation as in Eq(2.6). 𝐶௜(𝑘 + 1)represents the local time value at 
iteration 𝑘 and 𝜀 is the step weight value of each iteration performed [11]. 

 
𝐶௜(𝑘 + 1) = 𝐶௜(𝑘) + 𝜀 ∑ (𝐶௝(𝑘) − 𝐶௜(𝑘))௃∈ே       (2.6) 

 
In general, the linear equation above can be simplified as shown in equation Eq(2.7), 

where the next clock value 𝐶௜(𝑘 + 1) depends on the weighting values 𝑊, which is the 
weighting matrix. Several studies in the last decade have their own approaches regarding 
this weighting, including CMA weighting, FWA weighting, and CWA weighting [11]. 

 
𝐶௜(𝑘 + 1) = 𝑊 𝐶௜(𝑘)            ∶           ௞ୀ ଴,ଵ,ଶ,   …          (2.7) 

 
The first consensus clock weighting is Cumulative Moving Average, abbreviated as 

CMA [18]. It's a weighting method that evenly weights each received clock and at each 
consensus calculation step. The weight value increases cumulatively based on the 
communication range 𝑅 of its neighborhood matrix. 

 

𝐶መ௜
ା൫𝑡௝൯ = ௝஼መ൫௧ೕ൯ା஼መ൫௧ೕ൯

௝ାଵ
   𝑖 = 1 … 𝑁, ∀𝑗 𝜖 𝑅௜       (2.8) 

 
Where: 
𝐶መ : compensated clock 
𝑡௝ : time at node j 
𝑗 : value of node j  
 
 
The second consensus clock weighting is FWA [18], which stands for Forward 

Weighting Average. It's the simplest weighting method, requiring very basic operations, 
hence referred to as the lightest weighting method. 
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 𝐶መ௜
ା൫𝑡௝൯ = ஼መ൫௧ೕ൯ା஼መ൫௧ೕ൯

ଶ
   𝑖 = 1 … 𝑁, ∀𝑗 𝜖 𝑅௜       (2.9) 

 
The third consensus clock weighting is based on the parameter confidence, called 

Confidence Weighting Average [18]. Its value depends on the parameter γ of each node, 
and the next γ+ value will always increase by 1 in each operation until reaching the 
consensus value. This weighting method is considered a confidence parameter where 
caution in adding weighting gradually enhances its consensus approximation.  

 

𝐶መ௜
ା൫𝑡௝൯ = 𝐶መ௜൫𝑡௝൯ +

𝛾𝑗
𝛾𝑖 + 𝛾𝑗

 ቀ𝐶መ௝൫𝑡௝൯ − 𝐶መ௜൫𝑡௝൯ቁ   

𝛾௜
ା = 𝛾௜ + 1   𝑖 = 1 … 𝑁, ∀𝑗 𝜖 𝑅௜        (2.10) 

 
 

Where: 
𝐶መ : compensated clock 
𝛾 : confidence weighting parameter 
𝑡௝ : time at node j 
𝑗 : value of node j  

 
However, all three weightings above, whether static like FWA or dynamic like CMA 

and CWA, are assumed to be indifferent to the topology conditions. Furthermore, from 
a simple equation, we can conclude that the convergence speed is greatly influenced 
by the shape and type of its topology, as shown in the following equation Eq(2.10) 

 
𝑋 = 𝑨[𝑿]          (2.11) 

Where: 
𝑋 : consensus value 
𝑨 : adjacency matrix 
𝑿 : matrix X 

 
In this solution, weighting process will be done using a topological approach, namely 

using Laplacian weighting. The convergence of consensus is greatly influenced by its 
neighborhood matrix A or may depend on its Laplacian matrix, where the relationship 
between the Laplacian matrix L and the Adjacency Matrix A is as follows: 𝑳  𝑫 − 𝑨ୀ

 ∆ . 
Here, D is the Degree Matrix, so the equation can be further simplified as follows [30]: 

 
𝑋 = −𝑳[𝑿]          (2.12) 

 
Where: 
𝑋 : consensus value 
𝑳 : Laplacian matrix 
𝑿 : matrix X 

 
Thus, in a simplified equation form, clock synchronization using Laplacian 

weighting can also be represented as −𝑳 = W. W is weighting factor. 
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𝑪(𝒌 + 𝟏) = −𝑳[𝑪𝒌]     (2.13) 
 

2.2.2.3 Laplacian Weighting and Eigenvalues 
 

The Laplacian matrix 𝑳 is a mathematical tool that reflects the network structure and is 
used in the context of consensus to achieve agreement among nodes or nodes in the 
network. The Laplacian matrix can be used to represent the structural relationships 
between nodes in a network, consisting of the Adjacency Matrix 𝑨 and 𝑫 is the Degree 
Matrix Eq(2.14). This provides an overview of how each node is connected to other nodes 
 

 𝑳  𝑫 − 𝑨ୀ
 ∆       (2.14) 

 
The Laplacian matrix itself can be formed from elements as follows Eq(2.15) [19], 

where 𝑑௜ represents the number of neighbors (degree) of node 𝑖, which will correspond 
to the guarantee of consensus convergence, similar to the tuning parameter 𝛼 in equation 
Eq(2.16) [1]. 

 
 

 𝐿௜௝ =  ൝
𝑑𝑖 𝑖 = 𝑗,
−1 {𝑖, 𝑗}  ∈ 𝜀,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      (2.15) 

 

 0 < 𝜌 <  ଵ
𝑑𝑚𝑎𝑥

,       (2.16) 

 
Where: 
𝜌 : weighting parameter 

Characteristics of the Laplacian matrix for an undirected graph 𝐺 [20]are provided by 
the following proposition: 

1. The sum of entries in each row of the Laplacian matrix 𝑳(𝐺) is zero. 
2. The matrix 𝑳(𝐺) is an 𝑛 𝑥 𝑛 matrix where 𝑛 denotes the number of vertices in graph 

𝐺. 
3. The Laplacian matrix 𝑳(𝐺) is symmetric and has orthogonal eigenvectors. 
4. The smallest eigenvalue is zero with multiplicities equal to the number of 

connected components of the graph. If the graph is connected, the multiplicity of 
the eigenvalue zero is 1 and is associated with the constant eigenvector 

Properties of the Laplacian matrix, such as eigenvalues λ and eigenvectors 𝑣 =
[λ଴, λଵ … , λேିଵ], can provide insights into how the consensus process will evolve. These 
values provide relevant information about the structure and behavior of the network 
represented by the Laplacian matrix as follows [20]: 

 
    det(𝑳 − λI) = 0           (2.17) 

Where: 
L : Laplacian matrix 
I  : idnode matrix 
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λ  : eigenvalues of the Laplacian matrix 
 

The convergence time generally decreases with the algebraic connectivity of a 
network, defined as the second smallest eigenvalue λଵ(𝑳) and also the largest eigenvalue 
λேିଵ(𝑳) of the Laplacian matrix [19]. Both of these values can contribute to the 
constellation as follows: 

a. Second Smallest Eigenvalue 

The second smallest eigenvalue is often associated with the convergence speed of 
the synchronization process [19]. In the context of synchronization, particularly in 
networked systems, the second smallest eigenvalue is related to the relaxation time 
of the system. As greater as second smallest eigenvalue will imply to a faster 
convergence towards synchronization. This convergence rate can be crucial in 
practical applications where rapid synchronization is desired, such as in 
communication networks or power grids. 

b. Largest Eigenvalue 

On the other hand, the largest eigenvalue is associated with the overall stability of 
the synchronized state [19]. In the synchronization process, stability is crucial for 
maintaining coordinated behavior among nodes in the system. If the largest 
eigenvalue is less than one in magnitude, it indicates that the synchronized state is 
stable, and small disturbances will decay over time, bringing the system back to 
synchronization. Conversely, if the largest eigenvalue is greater than one, it implies 
instability, where even small disturbances can lead to deviations from the 
synchronized state. 

 
Table 2.5: Various of Graph and Eigenvalue Calculation 

 
Types Topology Eigenvalue Calculation 

Sufficient 
Connected 

 
 

Sparse 
Connected 
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Fully 
Connected 

 
 

  
In cases where all node nodes have knowledge of the entire graph represented by the 

Laplacian matrix, all node nodes can calculate the optimal tuning parameter α that 
minimizes the convergence time for a network as follows [19]: 
 
    ρ =  ଶ

஛భ(௅) ା ஛ಿషభ(௅) 
           (2.18) 

 
Where: 
𝜌 : weighting parameter 
λଵ  : second smallest eigenvalue 
 λேିଵ : largest eigenvalue 
 

This equation will serve as an alternative topology-based weighting approach in 
consensus-based time synchronization, specifically in tuning its weighting parameters. 
 

2.2.2.4 The Averaging Time Synchronization (ATS) Algorithm 
 
Referring to section 2.1.2 on consensus-based time synchronization algorithms, the 
author focuses on discussing the averaging algorithm because it provides better 
confidence levels. Therefore, this discussion will focus on the ATS or Averaging Time 
Synchronization algorithm. Generally, the synchronization process of the ATS 
algorithm is divided into three parts: relative skew estimation, skew compensation, and 
offset compensation [10].  

1. Relative Skew Estimation 

Essentially, the process of estimating relative skew is necessary to establish a reference 
to its neighboring nodes that are interconnected to decide how to adjust. Let's say node 
𝑗 sends its local time 𝜏௝(𝑡ଵ)  to node 𝑖, then node 𝑖 receives the packet and immediately 
records its local time as 𝜏௜(𝑡ଵ) . Subsequently, both values are stored at node 𝑖 and 
saved in memory as an array. Then, the second packet will occur in the next iteration, 
namely 𝜏௜(𝑡ଶ)  and  𝜏௝(𝑡ଶ), and a relative calculation will be performed against the 
previous values, as follows in the equation, where η௜௝

ା  is the next relative skew 

estimation value and ρ௡ ∈ (0,1) represents its tuning parameter. 
 

   𝜂௜௝
ା (𝑡௞) = 𝜌𝜂𝜂𝑖𝑗 + (1 − 𝜌𝜂) 𝜏ೕ(௧మ)ି𝜏ೕ(௧భ)

𝜏೔(௧మ)ି𝜏೔(௧భ)
         (2.19) 

 
Therefore, in continuous time, equation Eq(2.19) will become the skew 𝑎௜௝ with 
equations Eq(2.20) and Eq(2.21) in iterations towards the infinite limit. 
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𝜂௜௝
ା (𝑡௞) = 𝜌𝜂

௄𝜂(0) + ෍ ቀ1 − 𝜌𝜂ቁ 𝑎𝑖𝑗 =
௞ିଵ

௜ୀଵ

 𝜌𝜂
௄𝜂(0) + 𝑎𝑖𝑗(1 − 𝜌𝜂

௄) 

               (2.20) 
 

 𝑙𝑖𝑚
𝑘 → ∞ = 𝜂𝑖𝑗(𝑡௞) =  𝑎𝑖𝑗         

 (2.21) 
 

2. Skew Compensation 
 
The next process is to calculate skew compensation, commonly referred to as virtual 
skew. Virtual skew calculation involves assigning the relative skew between node 
nodes in the previous process, resulting in virtual skew  𝛼ෝ௜  , where 𝜌௩ ∈ (0,1) 
represents its tuning parameter. 
  

    𝛼ො௜
ା =  𝜌𝑣 𝛼ෝ௜ + (1 − 𝜌𝑣)𝜂𝑖𝑗 𝛼ෝ௝          (2.22) 

 
 
3. Offset Compensation 

The final process before combining all values into virtual time, denoted as 𝜏̂௜  equal to 
 𝛼ෝ௜*t + 𝑜ො௜, is to calculate the virtual offset or offset compensation to achieve 
convergence. This is the intriguing aspect of consensus clock compared to general 
consensus, where, according to Eq(2.5), skew and offset play crucial roles in 
convergence. When skew has been virtually approximated for convergence, the next 
step is to adjust the offset according to the following equation:  

 
𝑜ො௜

ା =  𝑜ො𝑖 + ൫1 − 𝜌𝑜൯ + ൫𝜏ො௝ − 𝜏ො௜൯ =  𝑜ො𝑖 + ൫1 − 𝜌𝑜൯ + ൫ 𝛼ෝ௝𝜏௝ + 𝑜ො𝑗 −  𝛼ෝ ௜𝜏௜ + 𝑜ො𝑖൯  (2.23) 
 

Where 𝑜ො௜ is the virtual offset,  𝛼ෝ௜௝  is the virtual skew, and 𝜌௢ ∈ (0,1) is its tuning 
parameter. Thus, in iterations towards infinity, the virtual time of node 𝑖  τప̂  and the 
virtual time of node 𝑗  τఫ̂ will have the same value, referred to as convergence. 
 

 𝑙𝑖𝑚
𝑡 → ∞ = 𝜏ො𝑖(𝑡) =  𝜏ො𝑖(𝑡),    ∀(𝑖, 𝑗)        (2.24) 

 
Referring to Laplacian weighting in section 2.2.2.3 using eigenvalue [19], all tuning 
parameters will follow Eq(2.18), where 𝜌௡ =  𝜌௩ =  𝜌௢ = ∈ 𝐿  

 
 

2.2.3 Minimum Spanning Tree 

Tree is a special type of graph that does not have closed circuits or cyclic circuits. This 
means that every two nodes in the tree are connected by a unique path, and there are no 
circuits that loop back to the initial node without passing through the same node twice 
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[38]. A tree also consists of nodes connected by edges. Trees can help organize and manage 
the flow of information or data within the network. One common implementation of trees 
in networks is through a network structure called a "spanning tree" in network protocols. 

Minimum Spanning Tree (MST) is one of the valuable concepts in Graph Theory that 
has wide applications in optimization problems, especially in the context of network 
design and optimization. MST is often used as the basis or "backbone" in solving network 
design problems by adding various additional constraints or limitations. Constraints 
added to the MST include degree, distance, flow, connectivity, and others. The common 
problem of minimum spanning tree is to determine the edges of a graph that will be 
selected to connect all points in the graph with the condition that no circuit is formed. In 
an unweighted graph, this problem can be solved as follows: 

 

Figure 2.12: Connected Graph Network  

Imagine there is a graph as shown above, then the way to determine it is as follows: 

1. If starting from node a to create a route so that all nodes can be visited, the first 
thing to do is to use breadth-first search to the nearest nodes, namely b & h.  

2. After b & h are visited then, b will continue to c and h will continue to i & g 
3. Because c, i, and g have been visited along the route, then the paths i-c and i-g are 

not needed 
4. So on and so forth until reaching the tree path as follows: 

 

 

Figure 2.13: MST of Connected Graph Network 
 
Another representation from 4 steps above would likely become like this on the tree 
diagram: 
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Figure 2.14: Tree Representation of MST Connected Graph Network 
 

In a consensus approach, the ATS algorithm works very efficiently and optimally when 
in a strongly connected topology; however, it's a different story when the graph is not 
strongly connected. Therefore, the Minimum Spanning Tree approach must be a 
prerequisite for achieving convergence under such conditions. Previous research [4] has 
demonstrated that scenario without achieving a Minimum Spanning Tree (MST), 
consensus cannot be achieved. 

 
Table 2.6: No Convergence Achieved in Sparse Topology  

 
Types Topology Convergence Speed 

Sparse 
Connected 

  

No 

 
 

The incident occurred because the communication between nodes became severely limited, 
affecting the estimation of relative skew, thus making it unable to guarantee convergence 
towards its virtual skew and virtual offset. Therefore, this serves as a limitation in attacks to still 
measure synchronization performance in attacks that are still within the characteristics of a 
graph with MST 

 
2.2.4 Performance of Time Synchronization Consensus Robustness 

Against Attacks 

The robustness of time synchronization consensus will be measured in terms of two parameters: 
the synchronization convergence speed represented by the unit of iterations, and the 
synchronization accuracy represented by the global synchronization error rate (GSEr) as 
discussed in Section 2.1.4. Through these parameters, it can be concluded whether a 
synchronization is more resistant to topology attacks. 

 

2.2.4.1 Performance of Synchronization Error & Convergence Speed 

As commonly known, in the convergence condition of equation Eq(2.5), achieving values 
𝛼௜௝ = 1 and 𝛽௜௝ = 0 indicates convergence. In reality, it will be very easy to determine 
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using error parameters such as the following values [12]: 

 

𝜃(𝑘) ≈ ஼೔(௞)ି௔௩௚஼೔(଴)
௔௩௚஼೔(଴)   

 

            ≈
஼೔(௞)ିభ

೙
∑ ஼೔(଴)೙

೔సభ
భ
೙

∑ ஼೔(଴)೙
೔సభ

         (2.25) 

 
The value will approach convergence with an error tolerance rate of  |𝜃| = 0.001. 

Hence, we will observe the convergence rate when all local error values exceed their 
error tolerance limits. The convergence rate will be measured based on iteration 
metrics due to the constraints of the problem in Chapter 1. 

The performance of this error needs to be measured globally to determine the 
extent of the error function over a certain observation period, thus allowing 
comparison with other experimental performances. Let's call it GSEr or global 
synchronization rate with an absolute value as follows [36]: 

 
 

𝐺𝑆𝐸𝑟 =  ∑|𝜃(𝑘)|     (2.26) 
 

Where: 
𝜃 : local synchronization error rate 

 
Through the metrics of Synchronization Error and Convergence Speed, we can 
generate calculations for the robustness performance of convergence in a consensus-
based time synchronization 

 
 

2.2.4.2 Topology Attack Modeling 

 

Figure 2.15: Network Model of WSN Nodes Exchanging Messages 
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Topology attack is a condition where a node node in a network represented by a graph G 
= (V, E) consisting of Vertices (V) and Edges (E) experiences undesired disruptions in the 
form of sudden and unmeasured changes in topology. Several types of topology attacks 
such as Denial of Service and Node Destruction can be modeled as follows: 

  

Figure 2.16: DoS Topology Attack Model in WSN Nodes 
 

Adjacency Matrix Graph 2x2 No ATTACK: 
 

𝐺 =  ቎
1
1
1
1

 
1
1
1
1

 11
 11

 11
 11

቏      (2.27) 

 
 

Matrix Adjacency Graph 2x2 with DoS ATTACK 
 

G’ =  ቎
1
1
0
1

 
1
1
1
1

 01
 10

 11
 01

቏      (2.28) 

Edge (E) Attack or Denial of Service (DoS) attack is a condition where a node node 
floods packets to its directly neighboring node, causing communication disruption 
between these nodes. In other words, the neighboring node and the attacking node 
itself do not exchange messages. DoS attacks can be conducted using a proxy or another 
node in front of the attacker to flood packets, or it can be done directly. In the modeling 
for this research, a DoS attack condition is as follows: 

1. The attacking node will launch an attack on its neighboring edges or the 
adjacency matrix, causing previously connected edges (with value 1) to become 
disconnected (with value 0). 

2. The attacking node will leave at least one edge connected to differentiate it from 
Node Destruction attacks. If all adjacency matrix values become 0, it indicates 
that the node has been destroyed and is no longer connected to the network. 

3. The attacking node will synchronize its attack and maintain it throughout the 
observation period. 
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Figure 2.17: Network Model of WSN Node Attacked through Denial of service 

Vertices (V) Attack or Node Destruction Attack is a condition where a node node is 
no longer connected to the network. In this attack modeling, the node node is 
successfully dysfunctional or physically separated from the network, thus losing 
connectivity. Here is a modeling condition for Node Destruction Attack: 

1. The victim node can be compromised and experience dysfunction, causing all its 
adjacency matrix values to become 0. 

2. The victim node will no longer be connected within the observation period. 

 

 

 

Figure 2.18: Node Destruction Topology Attack Model in WSN Nodes 
 
Adjacency Matrix Graph 2x2 No ATTACK: 

 

𝐺 =  ቎
1
1
1
1

 
1
1
1
1

 11
 11

 11
 11

቏      (2.29) 

 
Matrix Adjacency Graph 2x2 with Node Destruction ATTACK 
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G’ =  ቎
1
1
0
1

 
1
1
0
1

 00
 00

 11
 01

቏      (2.30) 

 
The next condition is that both attack models will be tested in the 11th iteration after 

all network nodes have undergone consensus to achieve convergence from iteration 1 
to 10. This is based on the premise that in the ATS algorithm, convergence typically 
occurs around the 20th iteration. Therefore, the 11th iteration is considered halfway 
towards convergence. If attacks are conducted between these conditions, it will impact 
the robustness performance of convergence. 
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CHAPTER 3 

RESEARCH METHODOLOGY 
 

This chapter discusses the proposed method and current research methodology to analyze 
the impact of topology attacks on the robustness of time synchronization in Wireless 
Sensor Networks (WSN) using Laplacian eigenvalue weighting. This chapter consists of 
research design, population sampling, instrumentation and data collection, and tools for 
data analysis. 

 
3.1 Research Design 

Designing a research study to test the resilience of the proposed method there is time 
synchronization with consensus based on Laplacian against topology attacks in sensor 
networks using a simulation approach. Comparing to the existing method, the proposed 
method as seen on the picture below will leverage the spectrum of Eigenvalue Laplacian 
Matrix as its weighting factor under topological attacks. 

 

 
Figure 3.1: Existing and The Proposed Method using Laplacian Eigenvalue Feedback 

The simulation approach involves modeling the testing scenarios for consensus-based 
time synchronization resilience in real-world conditions involving several processes: 

1. Preparation and Definitive System Requirements Stage. 
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2. Simulation and analysis process in topology attack situations. 
3. Simulation and analysis process with Laplacian feedback. 
4. Simulation and analysis process in situations of changing scalability of topology types 

and sizes. 
 

 
Figure 3.2: General Research Design Flowchart 
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By starting with a simple topology and then systematically scaling up the simulation, 
a deeper understanding will be gained on how network size, topology, and types of attacks 
influence the robustness performance of consensus-based Laplacian time synch-
ronization. By analyzing experiment results such as convergence speed and GSEr values, 
the final outcome will reveal under what conditions and how the method can perform 
better compared to other conditions. 

 
 

3.1.1 The Preparation Stage and Definitive System Requirements 

In the initial stage, envision a network of interconnected nodes in a topology, each having 
its own unsynchronized values. One of the primary challenges in distributed systems is to 
ensure that all devices agree on a common value. This is where the consensus algorithm 
plays a role, where each parameter such as the type and size of the topology greatly affects 
its adjacency matrix. The definitive system built in the preparation stage of simulation will 
start from a simple system with the following requirements [4]: 

1. Number of Nodes: 4 Nodes 

2. Node Topology: 2x2 Fully Connected/Mesh 

3. Initial Time Information: 

a. Initial Offset Value for each Node: 2, 3, 8, 1 

b. Initial Skew Value for each Node: 0.8, 0.9, 1.1, 1.3 
 

 
Figure 3.3: Plot of Initial Offset and Skew Clock Value at Initial Stage 

 
Additionally, based on latest research [4] implementation that the tuning parameter 

set to be as ρ = 0.6 will be mentioned as no gain condition in this research because the 
tuning parameter cannot be 0 or 1 as mentioned in section 2.2.2.3. 
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3.1.2 and Analysis Process in Topological Attack Conditions 
 

Second stage, after carrying out the preparatory process and definitive requirements for 
the system to be tested, the consensus simulation testing process can be carried out. In 
the consensus simulation, the Averaging Time Synchronization or ATS algorithm is used, 
where naturally the initial value in the system will converge to the average value. This 
process will take place in two conditions, namely with and without topological attacks.  
 
The attack modeling criteria itself takes place in detail as follows: 

1. Number of Attacking Nodes: 1 Node 

2. Attack Time: 11th Iteration 

3. Attack Type: DoS & Node Destruction Attack 
 

In accordance with the attack modeling, this is based on conditions where in the ATS 
algorithm convergent conditions will occur around the 20th iteration, therefore the 11th 
iteration is considered midway to convergent conditions so that if an attack is carried out 
between these conditions it will have implications for the robustness performance of the 
convergence. 

 

 
Figure 3.4: Second Stage Focusing on Attack Simulation  

 
In the end of this stage, the simulation and analysis of topological attack situations 

have 3 different results, labeled as NO Attack, DoS Attack and Destruction Attack 
conditions as material for evaluating robustness parameters, there are convergence 
speed and global synchronization error rate.  
 

 
3.1.3 Simulation and Analysis Process with Laplacian Feedback 

 
Third stage, results of early testing has been recorded such as convergence speed and 
global synchronization error rate in the label as NO Attack, DoS Attack and Destruction 
Attack, extension of simulation will be carried out. At this stage, other parameters will 
be tuned to have gain feedback. As proposed, spectrum of eigenvalue Laplacian matrix 
were used. 
 

As mentioned in the section 2.2.2.3 that Eq(2.18) composed from eigenvalue of 
Laplacian Matrix and will serve as an alternative topology-based weighting approach in 
consensus-based time synchronization, specifically in tuning its weighting parameters. 
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ρ =  ଶ
஛భ(௅) ା ஛ಿషభ(௅) 

           (2.18) 

 
Where: 
𝜌 : weighting parameter 
λଵ  : second smallest eigenvalue 
 λேିଵ : largest eigenvalue 

 

 
Figure 3.5: Third Stage Focusing on Laplacian Feedback as Gain Factor  

 
 

The calculation of time virtual then can be expressed using the final process before 
combining all values into virtual time, denoted as 𝜏̂௜  =  𝛼ෝ௜*t + 𝑜ො௜, 
 
Where: 
 𝜏̂௜ : virtual time 
 𝛼ෝ௜ : virtual skew  
𝑜ො௜ : virtual offset  
 
 

Relative Skew Estimation: 
 

𝜂௜௝
ା (𝑡௞) = 𝜌𝜂

௄𝜂(0) + ෍ ቀ1 − 𝜌𝜂ቁ 𝑎𝑖𝑗 =
௞ିଵ

௜ୀଵ

 𝜌𝜂
௄𝜂(0) + 𝑎𝑖𝑗(1 − 𝜌𝜂

௄) 

               
Virtual Skew Calculation: 
 

𝛼ො௜
ା =  𝜌𝑣 𝛼ෝ௜ + (1 − 𝜌𝑣)𝜂𝑖𝑗 𝛼ෝ௝          

 
Virtual Offset Calculation: 

 
 

𝑜ො௜
ା =  𝑜ො𝑖 + ൫1 − 𝜌𝑜൯ + ൫𝜏ො௝ − 𝜏ො௜൯ =  𝑜ො𝑖 + ൫1 − 𝜌𝑜൯ + ൫ 𝛼ෝ௝𝜏௝ + 𝑜ො𝑗 −  𝛼ෝ௜𝜏௜ + 𝑜ො𝑖൯  

 
 

All tuning parameters will follow Eq(2.18), where 𝜌௡ =  𝜌௩ =  𝜌௢ =∈ 𝐿  

In the end of this stage, the simulation and analysis process with Laplacian feedback 
have 2 different results, labeled as No Gain and Laplacian Gain conditions as material 
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for evaluating robustness parameters. There are convergence speed and global synch-
ronization error rate. These 2 results then clustered as one experiment. Furthermore, 
recording all of each raw data, captured simulation results, and experiment notes will be 
added in the experiment dataset. 

 
 
3.1.4 Simulation and Analysis Process in Situations of Changing Topology 

Types and Sizes 
 

In the fourth stage or last stage, each of experiment has been conducted and then 
extension of simulation will be carried out in terms of changing topology conditions. By 
starting simple and then systematically scaling the simulations, gaining a deeper 
understanding of how network size, topology, and attacks affect the robustness and 
scalability of Laplacian consensus algorithms. This allows for the development of more 
robust, scalable, and attack-resilient algorithms that can maintain consensus even in 
large-scale distributed systems under topological attacks influence. 
 

 
Figure 3.6: Fourth Stage Focusing on Impact on Scalability of Topology  

The new definitive system built in the scalability stage of simulation will change from a 
simple system to larger size with 10 Nodes [4] with the following requirements: 

1. Number of Nodes: 10 Nodes 

2. Node Topology: Fully Connected, Ring, Star and Fully Mesh Topology 

3. Initial Time Information: 

c. Initial Offset Value for each Node: 2, 3, 8, 1, 12, 1, 3, 3, 9, 10 

d. Initial Skew Value for each Node: 0.2, 0.6, 1.1, 0.8, 1.4, 1.3, 0.7 0.9 1.0 0.8 
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Figure 3.7: Fourth Stage Focusing on Impact of Scalability of Topology [4]; 

[21] 
 

In conclusion, there is no single simulation that always perfect. There are need of 
loopback in each stage cycle simulations that incorporate diverse topology attacks, 
consider scalability, and begin with a simple case are crucial for effectively evaluating 
Laplacian feedback consensus time synchronization algorithms. By analyzing con-
vergence speed, GSEr, and scalability under attack, this research can measure the impact 
of the gain feedback leveraging Laplacian Eigenvalue spectrum that are resilient to such 
DoS/Node Destruction attack and function effectively in large-scale distributed systems. 

 
 

3.2 Population sampling 

The population sampling for this study involved selecting a diverse range of network 
topologies to represent different scenarios commonly encountered in sensor networks. 
Specifically, the selected network topologies included Fully Connected 4 Nodes, Fully 
Connected 10 Nodes, Fully Mesh 10 Nodes, Ring 10 Nodes, and Star 10 Nodes. These 
topologies were chosen to provide a comprehensive understanding of the performance of 
the Laplacian-based consensus method against various topology attacks. 

 
3.3 Data Collection 

The instrumentation and data collection process involved setting up the experimental 
environment to simulate topology attacks on time synchronization in sensor networks. This 
included configuring the network topologies, implementing the Laplacian-based consensus 
method, and generating attack scenarios such as no attack, Denial of Service (DoS), and 
Node Destruction. Data collection was conducted systematically during the experiments to 
record relevant performance metrics, including global synchronization error rates and fault 
tolerance, for both the Laplacian and no-gain approaches under different attack conditions. 

 

3.4 Tools for Data Analysis 

For data analysis, various tools and techniques were employed to interpret the collected data 
and derive meaningful insights. Statistical analysis methods, such as descriptive statistics and 
hypothesis testing, were utilized to analyze the performance metrics of the Laplacian-based 
consensus method under different attack scenarios. Additionally, visualization techniques, 
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such as charts and graphs, were employed to present the findings in a clear and concise 
manner. Software tools used for data analysis is MATLAB R2023a, were employed to process 
and analyze the experimental data effectively. Overall, these tools facilitated a comprehensive 
analysis of the experimental results and enabled the identification of trends and patterns in 
the performance of the Laplacian-based consensus method against topology attacks in sensor 
networks. 
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CHAPTER  4 

RESULT AND ANALYSIS 

This chapter presents the findings and analysis of topology attacks on the robustness of 
time synchronization in Wireless Sensor Networks (WSN) employing Laplacian-eigen 
value weighting. It is structured into three main sections: Presentation of Data, Data 
Analysis, and Discussion. 

 
4.1 Attack Scenario 

In this section, the raw data obtained from the experiments conducted to assess the 
impact of topology attacks on time synchronization in WSNs is presented. This includes 
data related to graph topology, topology attacks, number of no gain fault tolerance 
(convergence iteration), No Gain Accuracy (global synchronization error rate), Laplacian 
gain fault tolerance (convergence iteration), and Laplacian Gain accuracy (global 
synchronization error rate). The presentation of data provides a comprehensive overview 
of the experimental setup and enables a thorough examination of the effects of topology 
attacks on time synchronization robustness. 

 
 

4.1.1 Topological Attack 
 

This experiment’s objective was to evaluate the attack modeling, this is based on 
conditions where in the ATS algorithm convergent conditions will occur around the 20th 
iteration as seen on the Figure 4.2 & 4.3. Therefore the 11th iteration is considered 
midway to convergent conditions so that if an attack is carried out between these 
conditions it will have implications for the robustness performance of the convergence. 
The robustness performance under topological attack can be shown in the Table 4.1. 
 
 

 
Figure 4.1: Simulation Result from Fully Connected 4 Nodes – No Attack  
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Figure 4.2: Simulation Result from Fully Connected 4 Nodes – DoS Attack  

 

 
Figure 4.3: Simulation Result from Fully Connected 4 Nodes – Node 

Destruction Attack  
 
 

Table 4.1: Robustness Performance of Consensus Result in Topological Attack 

Simulation 
No. Graph Topology Topology Attacks 

No gain fault 
Tolerance 

(Convergence 
Iteration) 

No Gain Accuracy 
(Global 

Synchronization 
Error Rate) 

1 Fully Connected 
4 Nodes 

No Attack 20 6.2205 

2 Fully Connected 
4 Nodes 

DoS Attack 20 6.3263 

3 Fully Connected 
4 Nodes 

Node Destruction 
Attack 

23 86.0898 
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As seen on the Table 4.1, the differences between 3 scenarios of topological attack 
under performance variable such as fault tolerance in convergence iteration and accuracy 
in global synchronization error rate (GSEr). Simulation no.1 and no.2 has similar results 
in 20 iterations but had slight differences in topological attack accuracy because of the 
GSEr value increased under the DoS Attack of 11th iteration. It seems no significant value 
between Figure 4.1 & 4.2 which are 6.2205 and 6.3263 because of the impact of 
destruction hold by the ATS consensus algorithm and resulted the same in the 
convergence iteration. 

The other attack simulation was presented in simulation no.3 which Node Destruction 
occurred. As seen on the Table 4.1 convergence iteration increased from 20 in the 
simulation no.1 and no.2 into value of 23 in the simulation no.3. It because the disruption 
really matters in the Node Destruction Attack. The GSEr in simulation no.3 has a lot of 
increased in the number of 86.0898 because of node 4 in the topology lead into the -1 
value along the 11th until 50th iteration. Furthermore, addition of the increasing error of 
its attack itself to other 3 nodes in the topology. In conclusion, this is the first time in the 
experiments that GSEr value will significantly different between two other conditions 
except Node Destruction Attack because of the topology has lost node 4. 

 
4.1.2 Effect of Laplacian Second Smallest Eigenvalue Feedback 

 
As discussed in section 3.1.3, the experiment was carried out focusing on Laplacian 
feedback as gain factor. This is the extension of the topological attack data with the 
conditions with and without Laplacian Gain. The objective is to answer research question 
analyzing the impact of topology attacks on the robustness of time synchronization in 
Wireless Sensor Networks (WSN) using Laplacian-eigen value weighting. As seen on the 
3 pictures below from Figure 4.1 to 4.3 that the results of the experiment labeled without 
(a) and with Laplacian gain (b) to clearly shows the differentiation between its two states 
on each topological attack conditions.  
 
 The eigenvalue feedback demonstrates significant improvements in the speed and 
accuracy of time synchronization in fully connected sensor networks. In conditions 
without the use of Laplacian gain (Figures 4.5a and 4.6a), the nodes in the network 
require approximately 20 iterations to achieve convergence. Conversely, with the 
application of Laplacian gain (Figures 4.5b and 4.6b), the nodes only need 9 iterations to 
reach convergence. In node destruction attack without Laplacian 23 iterations to achieve 
convergence (Figure 4.7a) and 9 iterations to reach convergence with Laplacian gain 
(Figure 4.7b). This significant reduction underscores the effectiveness of Laplacian gain 
in accelerating the convergence process. The improved speed of synchronization with 
Laplacian gain suggests that the network can achieve a unified time reference more 
quickly, which is crucial for maintaining the accuracy and reliability of sensor data across 
the network. Furthermore, the resilience of the network under node destruction attacks 
also benefits from the application of Laplacian gain. In the absence of Laplacian gain, as 
shown in Figure 4.7a, the network requires 23 iterations to achieve convergence 
following a node destruction attack. This higher number of iterations reflects the 
increased difficulty in maintaining synchronization when the network's structure is 
compromised. However, with the application of Laplacian gain, depicted in Figure 4.7b, 
the network's resilience improves significantly, with only 9 iterations needed to reach 
convergence even under attack conditions. These observations highlight the dual 
benefits of eigenvalue feedback and Laplacian Gain in enhancing both the speed and 
accuracy of time synchronization in fully connected sensor networks. By reducing the 
number of iterations required for convergence, Laplacian Gain not only accelerates the 
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synchronization process but also improves the network's ability to maintain accurate 
time synchronization even in the face of structural disruptions. This improved 
performance is essential for applications requiring precise timing and robust operation 
in dynamic or adversarial environments. 
 
 The primary objective of this study is to test the system's resilience against attacks, 
particularly Denial of Service (DoS) attacks. In the DoS attack scenario, the attack occurs 
at the 11th iteration. However, with the use of Laplacian gain, the system achieves 
convergence by the 9 iterations. This means that the attack at the 11 iterations does not 
affect the synchronization condition because the nodes in the network have already 
aligned before the attack occurs. This demonstrates that the use of eigenvalue feedback 
makes the system more resistant to DoS attacks. In the node destruction attack scenario, 
the analysis shows that although convergence is maintained, the overall error rate 
becomes higher due to the loss of a node. For instance, if node 4 is destroyed, the system 
can still achieve convergence, but the overall error rate increases because the 
accumulated error now accounts for the loss of the node. Nevertheless, the system's 
ability to still achieve convergence indicates its robustness in facing node loss. The use 
of Laplacian gain or eigenvalue feedback significantly improves the speed and accuracy 
of time synchronization in sensor networks. With faster convergence from 20 iterations 
to 9 iterations and accuracy improvement through the reduction of initial error rates, 
this method demonstrates substantial performance enhancements. The dynamic 
weighting provided by eigenvalue feedback helps in regulating the synchronization 
process more effectively and efficiently. The analysis of the system's resilience against 
DoS attacks shows that the use of eigenvalue feedback makes the system more robust. 
Although the attack occurs at the 11th iteration, the system achieves convergence by the 
9th iteration, thus the attack does not affect the synchronization condition. This indicates 
that the method not only enhances performance but also increases the system's resilience 
against external disruptions.
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(a)                                                                                                      (b) 

 
Figure 4.4: Comparison Result from Fully Connected 4 Nodes – No Attack without (a) & with Laplacian gain (b) 

 

 
(a)                                                                                                       (b) 

 
Figure 4.5: Comparison Result from Fully Connected 4 Nodes – DoS Attack without (a) & with Laplacian gain (b) 
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(a)                                                                                                       (b) 

 
Figure 4.6: Comparison Result from Fully Connected 4 Nodes – Node Destruction Attack without (a) & with 

Laplacian gain (b) 
 

Table 4.2: Robustness Performance of Consensus Result in Topological Attack and Laplacian Feedback 
 

Simulation 

No. 
Graph Topology 

Topology 

Attacks 

No gain fault 

Tollerance 

(Convergence 

Iteration) 

No Gain Accuracy 

(Global 

Synchronization 

Error Rate) 

Laplacian Gain 

Fault 

Tollerance 

(Convergence 

Iteration) 

Laplacian 

Accuracy (Global 

Synchronization 

Error Rate) 

1 Fully Connected 4 Nodes No Attack 20 6.2205 9 4.1654 

2 Fully Connected 4 Nodes DoS Attack 20 6.3263 9 4.1661 

3 Fully Connected 4 Nodes Node Destruction 23 86.0898 9 84.1652 
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4.1.3 Scalability of Topology 
 
In the first simulation scenario with a fully connected network of 10 nodes and no attack, 
the network without Laplacian Gain requires 25 iterations to achieve convergence and 
has a global synchronization error rate of 28.0688. However, when Laplacian Gain is 
applied, the network only needs 13 iterations to converge, and the synchronization error 
rate is reduced to 20.4253. This demonstrates a significant improvement in both the 
speed and accuracy of the network's synchronization process when Laplacian Gain is 
utilized. The second scenario involves a fully connected network of 10 nodes under a 
Denial of Service (DoS) attack. Without Laplacian Gain, the network requires 30 
iterations to reach convergence, with a synchronization error rate of 28.5952. With the 
application of Laplacian gain, the convergence iterations drop to 12, and the 
synchronization error rate decreases to 20.4270. These results further emphasize the 
effectiveness of Laplacian gain in enhancing the network's resilience and maintaining 
accurate synchronization even under adverse conditions like DoS attacks. 
 
 In the third scenario, a fully connected network of 10 nodes faces a node destruction 
attack. The network without Laplacian Gain needs 31 iterations to converge, with a 
significantly higher synchronization error rate of 105.9115. When Laplacian Gain is 
applied, the number of convergence iterations reduces to 17, and the synchronization 
error rate drops to 100.3794. Although the error rate remains relatively high, the 
application of Laplacian gain still shows a noticeable improvement in both fault tolerance 
and accuracy compared to the scenario without gain. Overall, these simulations 
underscore the critical role of Laplacian gain in improving the performance of consensus 
algorithms in sensor networks. By reducing the number of iterations needed for 
convergence and lowering the global synchronization error rates, Laplacian Gain 
enhances the network's efficiency and robustness, particularly under attack conditions. 
 
 The increase from 4 nodes to 10 nodes significantly impacts the network's response 
to attacks. When the number of nodes increases from 4 to 10, the network's complexity 
also increases, affecting the convergence speed. This happens because more nodes are 
involved in the synchronization process, increasing the number of iterations needed to 
achieve convergence. For instance, in a no-attack condition with a 4-node network, 
convergence is achieved faster than with a 10-node network. This indicates that adding 
more nodes can slow down the convergence process due to the increased interaction and 
coordination required among the nodes. 
 
 The strong connection graph theorem remains a crucial factor in determining how 
quickly convergence can be achieved, especially under attack conditions. A strong 
connection graph ensures that every node in the network can communicate directly or 
indirectly with every other node, which is essential for rapid consensus. In no-attack 
conditions, a network with strong connections can achieve convergence faster because of 
more efficient and direct communication paths between nodes. Under attack conditions, 
the strong connection graph theorem still provides significant advantages. Attacks such 
as DoS or node destruction can disrupt communication between nodes, but if the network 
has a strong connection, the impact of such attacks can be minimized. A network with a 
strong connection still has alternative paths that can be used to achieve convergence even 
if some nodes or communication paths are disrupted due to attacks. This is evident in 
simulation results where networks with strong connections can achieve faster 
convergence even under attack, especially when using Laplacian Gain. 
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(a) 

 
(b) 

 
Figure 4.7: Comparison Result from Fully Connected 10 Nodes – No Attack 

without (a) & with Laplacian gain (b) 
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(a)                                                                                                      (b) 

 
Figure 4.8: Comparison Result from Fully Connected 10 Nodes – DoS Attack 

without (a) & with Laplacian gain (b) 
 

 
(a)                                                                                                      (b) 

 
Figure 4.9: Comparison Result from Fully Connected 10 Nodes – Node Destruction Attack 

without (a) & with Laplacian gain (b) 

 



Telkom University 2024 School of Computing 
 

49  

 

Table 4.3: Robustness Performance of Consensus Result in Topological Attack, Laplacian Feedback 
& Scalability of Topology 

 

Simulation 

No. 
Graph Topology 

Topology 

Attacks 

No gain fault 

Tollerance 

(Convergence 

Iteration) 

No Gain Accuracy 

(Global 

Synchronization 

Error Rate) 

Laplacian Gain 

Fault 

Tollerance 

(Convergence 

Iteration) 

Laplacian 

Accuracy (Global 

Synchronization 

Error Rate) 

1 Fully Connected 4 Nodes No Attack 20 6.2205 9 4.1654 

2 Fully Connected 4 Nodes DoS Attack 20 6.3263 9 4.1661 

3 Fully Connected 4 Nodes Node Destruction 23 86.0898 9 84.1652 

4 
Fully Connected 10 

Nodes 
No Attack 25 28.0688 13 20.4253 

5 
Fully Connected 10 

Nodes 
DoS Attack 30 28.5952 12 20.4270 

6 
Fully Connected 10 

Nodes 

Node 

Destruction 
31 105.9115 17 100.3794 

7 Fully Mesh 10 Nodes No Attack 21 14.2743 7 9.3577 

8 Fully Mesh 10 Nodes DoS Attack 23 14.3183 7 9.3577 

9 Fully Mesh 10 Nodes Node Destruction 29 93.6113 7 89.3577 

10 Ring 10 Nodes No Attack 37 33.5512 27 29.8025 

11 Ring 10 Nodes DoS Attack 41 36.0375 35 33.2390 

12 Ring 10 Nodes 
Node 

Destruction 
46 106.5954 37 106.7254 

13 Star 10 Nodes No Attack 23 17.1558 24 27.6860 

14 Star 10 Nodes DoS Attack 30 96.0429 28 106.2896 

15 Star 10 Nodes Node Destruction 30 96.0429 28 106.2896 



Telkom University 2024 School of Computing 
 

50  

 
 
 
 

 
(a)                                                                                                       (b) 

 
Figure 4.10: Comparison Result from Fully Connected 10 Nodes – No Attack without (a) & with Laplacian gain (b) 

 

 
(a)                                                                                                       (b) 

 
Figure 4.11: Comparison Result from Ring 10 Nodes – No Attack without (a) & with Laplacian gain (b) 
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 In the simulations conducted, the differences in results between various topologies 
are quite striking, especially regarding accuracy. In the Fully Mesh topology with 10 
nodes, both under conditions without attacks, DoS attacks, and node destruction, 
accuracy and fault tolerance remain relatively stable. For instance, without attacks, the 
convergence iteration fault tolerance is 14.2743 and the global synchronization error 
accuracy is 9.3577. After a DoS attack, fault tolerance slightly increased to 14.3183, but 
accuracy remained at 9.3577. However, after node destruction, the convergence iteration 
fault tolerance sharply increased to 93.6113, and global accuracy drastically decreased to 
89.3577. Conversely, in the Ring 10-node topology, the results show significant variation. 
Without attacks, the convergence iteration fault tolerance is 33.5512 and global accuracy 
is 29.8025. With a DoS attack, fault tolerance increased to 36.0375, and global accuracy 
slightly decreased to 30.0827. When node destruction occurred, fault tolerance reached 
106.5954 and global accuracy dropped drastically to 106.1791. In the Star 10-node 
topology, the decrease in global accuracy and fault tolerance is even more pronounced. 
Without attacks, the convergence iteration fault tolerance is 17.1558 and global accuracy 
is 27.6860. However, both DoS attacks and node destruction resulted in fault tolerance 
and global accuracy remaining at very high values, namely 96.0429 and 106.2896, 
respectively, showing a significant decline compared to the Fully Mesh topology. 
 
 In terms of mitigation with Laplacian feedback, the Fully Connected topology with 10 
nodes shows the best results. In this topology, despite changes in conditions such as DoS 
attacks or node destruction, fault tolerance and global accuracy remain relatively stable. 
For example, in the simulation without attacks, the convergence iteration fault tolerance 
is 14.2743 with a global synchronization error accuracy of 9.3577. When experiencing a 
DoS attack, fault tolerance slightly increased to 14.3183, but accuracy remained the same 
at 9.3577. However, in the case of node destruction, fault tolerance sharply increased to 
93.6113, and global accuracy drastically decreased to 89.3577. In contrast, in the Star 
topology with 10 nodes, mitigation with Laplacian feedback shows the least significant 
results. Fault tolerance and global accuracy in the Star topology remain high, namely 
96.0429 and 106.2896 in cases of DoS attacks and node destruction. This is due to the 
low graph connectivity in the Star topology, which reduces the effectiveness of Laplacian 
feedback mitigation. The lower connectivity in the Star topology makes the system more 
vulnerable to performance degradation when facing disruptions or attacks, as reflected 
in the simulation results. In the Fully Connected topology, high graph connectivity allows 
Laplacian feedback mitigation to function more effectively, maintaining relatively stable 
accuracy. Conversely, in the Ring and Star topologies, lower graph connectivity results in 
a greater reduction in accuracy when experiencing disruptions or attacks. This is evident 
from graphs 4.11, 4.12, and 4.13, which show that Laplacian gain directly affects system 
performance, with topologies having better graph connectivity, such as Fully Connected, 
providing more effective mitigation results. 
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(a) 

 
(b) 

Figure 4.12: Comparison Result from Star 10 Nodes – No Attack without (a) & 
with Laplacian gain (b) 

 
 

4.2 Analysis 
 
4.2.1 Synchronization Convergence Speed in Iterations for Laplacian-

Based Consensus Against Topology Attacks 

The convergence speed of synchronization iterations for Laplacian-based consensus 
varies depending on the network topology and the types of attacks encountered. 
Generally, the Laplacian gain fault tolerance approach demonstrates the capability to 
achieve faster and more stable convergence in topologies such as Fully Connected and 
Fully Meshed networks, with fewer iterations compared to no gain fault Tolerance. 
However, in topologies like Star networks, this advantage is less pronounced, indicating 
that the effectiveness of the Laplacian method is heavily influenced by the network 
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topology structure in use (refer to Figures 4.13 – 4.17). 

 

 

Figure 4.13: Synchronization Convergence Speed in Fully Connected 4 Nodes 

Figure 4.13 the Laplacian gain fault tolerance approach exhibits superiority in fault 
tolerance and network performance consistency in sensor networks, particularly in the 
Fully Connected 4 Nodes configuration across various attack scenarios. Under No Attack 
conditions, Laplacian gain fault tolerance achieves convergence in just 9 iterations, 
compared to the 20 iterations required by no gain fault Tolerance. This demonstrates that 
the Laplacian gain approach can achieve stability faster in the network when no attacks 
are present. During a DoS Attack, both approaches maintain the same convergence 
iteration count, with no gain fault Tolerance requiring 20 iterations and Laplacian gain 
fault tolerance also converging in 9 iterations. This indicates that Laplacian gain remains 
consistent in dealing with attacks that restrict network resource access. 

In the Node Destruction Attack scenario, where nodes in the network are destroyed, 
no gain fault Tolerance shows an increased convergence iteration count of 23, whereas 
Laplacian gain fault tolerance remains stable at 9 iterations. This underscores that the 
Laplacian gain approach can handle physical network damage more efficiently, providing 
quicker and more stable responses to disruptive conditions. Overall, these findings 
support that employing Laplacian gain fault tolerance can enhance fault tolerance and 
resilience of sensor networks against various attacks and disruptions. 
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Figure 4.14: Synchronization Convergence Speed in Fully Connected 10 Nodes 

Figure 4.14 depicts the comparison of fault tolerance through convergence iterations 
across various attack scenarios on a Fully Connected 10 Nodes network. In the scenario 
without attacks (No Attack), the Laplacian gain fault tolerance approach demonstrates 
the ability to achieve convergence in just 13 iterations, compared to the 25 iterations 
required by no gain fault Tolerance. This indicates that Laplacian gain fault tolerance is 
not only faster but also more efficient in stabilizing the network under normal conditions. 
During a Denial of Service (DoS) attack with no gain fault Tolerance still requires 30 
iterations, while Laplacian gain fault tolerance remains at 12 iterations. This suggests that 
despite disruptive attacks, the Laplacian gain approach maintains consistency in the 
number of convergence iterations, crucial for minimizing the impact of attacks on 
network performance. 

In the Node Destruction Attack scenario, where nodes in the network are 
intentionally destroyed, no gain fault Tolerance shows a significant increase in 
convergence iterations to 31, whereas Laplacian gain fault tolerance reaches only 17 
iterations. This indicates that the Laplacian gain approach remains effective in managing 
and mitigating the impact of physical network damage, with the ability to adapt and 
recover more quickly from disruptive conditions. Overall, these findings affirm that the 
Laplacian gain fault tolerance approach is not only more efficient in reducing the number 
of convergence iterations but also more stable in maintaining sensor network 
performance under various attack conditions. 
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Figure 4.15: Synchronization Convergence Speed in Fully Mesh 10 Nodes 

Figure 4.15 illustrates the simulation results of Laplacian-based consensus in a Fully 
Mesh topology consisting of 10 nodes, comparing the efficiency of no gain fault Tolerance 
and Laplacian gain fault tolerance approaches under conditions of no attack, DoS attack, 
and node destruction attack. The results show that Laplacian gain fault tolerance is 
significantly more efficient than no gain fault Tolerance in all scenarios. Under no attack 
conditions, no gain fault Tolerance requires 21 convergence iterations to achieve the 
desired synchronization. In contrast, Laplacian gain fault tolerance achieves convergence 
in just 7 iterations. This indicates that the Laplacian method is much more efficient in 
maintaining synchronization under normal conditions in the Fully Mesh topology. When 
the network faces a DoS (Denial of Service) attack, the number of convergence iterations 
for no gain fault Tolerance increases to 23, while Laplacian gain fault tolerance only 
requires 7 iterations. This increase demonstrates that Laplacian gain fault tolerance 
exhibits significantly better resilience against DoS attacks, achieving synchronization 
with fewer iterations and showing superior stability under disruptive conditions. In the 
node destruction attack scenario, the convergence iterations for no gain fault Tolerance 
further increase to 29 iterations. Meanwhile, Laplacian gain fault tolerance remains 
consistent, requiring only 7 iterations to achieve convergence. This indicates that 
Laplacian gain fault tolerance is not only more efficient but also more resilient against 
more serious disruptions, such as node destruction. Therefore, it can be concluded that 
Laplacian gain fault tolerance provides significant performance improvement and greater 
resilience compared to no gain fault Tolerance in the Fully Mesh topology. The efficiency 
and resilience demonstrated by Laplacian gain fault tolerance in all attack scenarios 
highlight its superiority in maintaining network synchronization, making it a preferable 
choice for complex network topologies vulnerable to disruptions. 
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Figure 4.16: Synchronization Convergence Speed in Ring 10 Nodes 

Figure 4.16 presents simulation results on a Ring topology consisting of 10 nodes, 
comparing the performance of two approaches: no gain fault Tolerance and Laplacian 
gain fault tolerance, under various conditions. The simulation results indicate that 
Laplacian gain fault tolerance is more efficient than no gain fault Tolerance in terms of 
the number of convergence iterations required to achieve synchronization, although not 
as pronounced as in the Fully Mesh topology. Under no attack conditions, no gain fault 
Tolerance requires 37 convergence iterations to achieve the desired synchronization. In 
contrast, Laplacian gain fault tolerance only needs 27 convergence iterations. This 
demonstrates that Laplacian gain fault tolerance is more efficient in maintaining 
synchronization under normal conditions in the Ring topology. When the network faces 
a DoS (Denial of Service) attack, the efficiency of Laplacian gain fault tolerance becomes 
more apparent. no gain fault Tolerance requires 41 iterations to achieve convergence, 
while Laplacian gain fault tolerance only requires 35 iterations. This difference indicates 
that Laplacian gain fault tolerance has better resilience against DoS attacks, achieving 
synchronization with fewer iterations. 

In the node destruction attack scenario, the efficiency difference between the two 
approaches becomes more significant. no gain fault Tolerance requires 46 convergence 
iterations, whereas Laplacian gain fault tolerance only requires 37 iterations. This 
suggests that Laplacian gain fault tolerance excels in handling more severe destructive 
attacks, maintaining synchronization efficiency with fewer iterations. Although the 
efficiency improvement shown by Laplacian gain fault tolerance is significant, the 
difference is less pronounced compared to that observed in the Fully Mesh topology. This 
indicates that network topology has an impact on the level of efficiency achievable by 
specific fault tolerance approaches. However, overall, Laplacian gain fault tolerance 
continues to demonstrate superior performance compared to no gain fault Tolerance in 
both attack and no-attack conditions in the Ring topology. 
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Figure 4.17: Synchronization Convergence Speed in Star 10 Nodes 

Figure 4.17 shows the simulation results on a Star topology network consisting of 10 
nodes, comparing the performance of two approaches: no gain fault Tolerance and 
Laplacian gain fault tolerance, under conditions of no attack, DoS attack, and node 
destruction attack. Under normal conditions (no attack), the system converges in 23 
iterations without gain and 24 iterations with Laplacian gain, indicating a slight increase 
in convergence time with Laplacian gain. In the case of a DoS attack, the system requires 
30 iterations to converge without gain, whereas it takes 28 iterations with Laplacian gain, 
demonstrating a reduction of 2 iterations and improved fault tolerance. Similarly, during 
a node destruction attack, the convergence iterations decrease from 30 without gain to 
28 with Laplacian gain, again showing enhanced fault tolerance. Overall, the Laplacian 
gain generally enhances the fault tolerance of the star topology by reducing the number 
of convergence iterations under attack scenarios, particularly for DoS and node 
destruction attacks, while slightly increasing the iterations needed in the absence of 
attacks. 

Based on the analysis of various attack scenarios in different network topologies, 
Laplacian gain fault tolerance consistently demonstrates higher efficiency compared to 
no gain fault Tolerance. In Fully Connected topologies with 4 and 10 nodes, the number 
of convergence iterations for Laplacian gain fault tolerance is significantly lower and 
stable across all attack scenarios (No Attack, DoS Attack, and Node Destruction Attack). 
This shows that Laplacian gain fault tolerance can maintain better and more consistent 
performance even in the presence of disruptions or attacks. In the Fully Mesh topology 
with 10 nodes, Laplacian gain fault tolerance also exhibits superior performance. Under 
no attack conditions as well as when facing DoS Attack and Node Destruction Attack, 
convergence iterations with this approach remain much lower compared to no gain fault 
Tolerance. This indicates that Laplacian gain fault tolerance not only enhances efficiency 
but also provides better resilience against disruptions, which is crucial for maintaining 
the performance of complex and vulnerable networks. Conversely, in the Star topology 
with 10 nodes, the performance of both approaches is almost identical. Under no attack 
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conditions as well as in DoS Attack and Node Destruction Attack scenarios, convergence 
iterations between no gain fault Tolerance and Laplacian gain fault tolerance are nearly 
the same. This indicates that in the Star topology, the efficiency improvement from using 
Laplacian gain fault tolerance is not significantly different compared to other topologies. 
Therefore, the choice of fault tolerance approach depends greatly on the specific network 
topology being utilized. 

 

4.2.2 Accuracy in The Metrics of Local and Global Synchronization 
Errors in Laplacian-Based Consensus Against Topology Attacks 

The research results show a comparison of accuracy between the no gain method and the 
Laplacian method under three conditions: no attack, Denial of Service (DoS) attack, and 
node destruction attack. The findings indicate that the Laplacian method generally 
achieves better global synchronization accuracy in both no attack and DoS attack 
conditions compared to the no gain method. However, under the node destruction attack 
condition, a significant increase in error rate is observed for both methods (Figure 4.18 - 
4.22).    

  

   

Figure 4.18: Accuracy in The Metrics of Global Synchronization Errors in Fully Connected 
4 Nodes 

Figure 4.18 the simulation results for Laplacian-based consensus on a Fully 
Connected network with 4 nodes show a comparison of synchronization error rate 
accuracy between the no gain method and the Laplacian method under various attack 
conditions. In the absence of attacks, the no gain method has a synchronization error rate 
accuracy of 6.2205, while the Laplacian method shows a slightly lower value of 4.1564. 
This indicates that the Laplacian method is more efficient in maintaining synchronization 
under normal conditions in smaller network topologies. When the network faces a Denial 
of Service (DoS) attack, there is a slight increase in the synchronization error rate 
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accuracy for the no gain method, reaching 6.3263. The Laplacian method shows almost 
the same resilience as in the absence of attacks, with an error rate of 4.1661. Although 
there is an increase in the no gain method, the Laplacian method remains superior in 
handling DoS attacks, demonstrating better stability and resilience. 

However, when facing node destruction attacks, both methods show a significant 
increase in error rates. The no gain method experiences a substantial increase, reaching 
86.0898, while the Laplacian method also shows a large increase, with an error rate of 
84.1652. This increase indicates that both methods are highly vulnerable to node 
destruction attacks, causing significant disruption to network performance. The 
substantial increase in error rates when facing node destruction attacks highlights serious 
vulnerabilities in both methods to this type of attack. Although the Laplacian method 
shows better performance under normal conditions and during DoS attacks, both 
methods experience a drastic decline in performance when facing node destruction 
attacks. This underscores the need for more effective and robust mitigation strategies to 
handle destructive attacks on networks with Fully Connected topologies. Overall, these 
results affirm that the Laplacian method is more efficient under no attack and DoS attack 
conditions. 

 

Figure 4.19: Accuracy in The Metrics of Global Synchronization Errors in Fully Connected 
10 Nodes 

Figure 4.19 the simulation results for Laplacian-based consensus on a Fully 
Connected network with 10 nodes show a comparison of synchronization error rate 
accuracy between the no gain method and the Laplacian method under various attack 
conditions. In the absence of attacks, the no gain method has a synchronization error rate 
accuracy of 28.0688, while the Laplacian method shows a lower value of 20.4253. This 
indicates that the Laplacian method is more efficient in maintaining synchronization 
under normal conditions compared to the no gain method. When facing a Denial of 
Service (DoS) attack, there is a slight increase in the error rate for both methods. The no 
gain method shows a small increase to 28.5952, while the Laplacian method experiences 
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an increase to 20.4270. Despite the increase in both methods, the Laplacian method still 
demonstrates better performance than NO GAIN, indicating better resilience against DoS 
attacks. 

However, when the network faces node destruction attacks, there is a significant 
increase in the error rate for both methods. The no gain method experiences a substantial 
increase, reaching 105.9115. The Laplacian method also shows a large increase, with an 
error rate of 100.3794. This significant increase indicates that both methods are highly 
affected by node destruction attacks, leading to considerable disruption in network 
performance. The significant rise in error rates when facing node destruction attacks 
highlights serious weaknesses in both methods against this type of attack. Although the 
Laplacian method is superior under normal conditions and when facing DoS attacks, both 
methods experience a drastic decline in performance when facing node destruction 
attacks. This underscores the need for more effective and robust mitigation strategies to 
handle destructive attacks on networks. Overall, these results highlight that the Laplacian 
method is more efficient under no attack and DoS attack conditions. 

 

Figure 4.20: Accuracy in The Metrics of Global Synchronization Errors in Fully Mesh 10 
Nodes 

Figure 4.20 shows the simulation results for a Fully Mesh network with 10 nodes, 
comparing the synchronization error rate accuracy between the no gain method and the 
Laplacian method under various attack conditions. Without any attacks, the no gain 
method has a synchronization error rate accuracy of 14.2743, while the Laplacian method 
shows a lower value of 9.3577. This indicates that the Laplacian method is more efficient 
in maintaining network synchronization under normal conditions. When the network 
faces a Denial of Service (DoS) attack, there is a slight increase in the synchronization 
error rate for the no gain method, reaching 14.3183. Similarly, the Laplacian method 
experiences an increase to 9.3577. Despite the increase in both methods, the Laplacian 
method still demonstrates better performance than the no gain method, indicating that 
it is more effective in handling DoS attack disruptions. 
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However, when facing node destruction attacks, there is a significant surge in the 
error rate for both methods. The no gain method shows a substantial increase in the error 
rate, reaching 93.6113. The Laplacian method also experiences a large increase, with an 
error rate of 89.3577. This shows that both methods are highly affected by node 
destruction attacks, although the Laplacian method is still slightly more efficient in 
maintaining synchronization compared to the no gain method. The significant increase 
in the error rate during node destruction attacks highlights serious vulnerabilities in both 
methods against this type of attack. While the Laplacian method performs better under 
normal conditions and during DoS attacks, the significant performance decline in both 
methods when facing node destruction attacks indicates the need for more robust and 
sophisticated attack mitigation strategies. Overall, these results confirm that the 
Laplacian method is more efficient under no attack and DoS attack conditions. However, 
a significant challenge remains in addressing node destruction attacks, where both the no 
gain and Laplacian methods show considerable weaknesses. 

 

Figure 4.21: Accuracy in The Metrics of Global Synchronization Errors in Ring 10 Nodes 

Figure 4.21 shows the simulation results of Laplacian-based consensus against 
topology attacks on a Ring network with 10 nodes. Under normal conditions, the no gain 
method has a synchronization error rate accuracy of 33.5512, while the Laplacian method 
is slightly lower at 29.8025. This indicates that the Laplacian method is more efficient 
under normal conditions, though the difference is not significant. When the network faces 
a Denial of Service (DoS) attack, the synchronization error rate accuracy for the no gain 
method increases to 36.0375. This increase suggests that the no gain method has a slight 
improvement in resilience to DoS attacks. The Laplacian method also shows an increase 
in synchronization error rate accuracy, reaching 33.2390. Despite the increase in both 
methods, the Laplacian method still shows better values compared to the no gain method, 
indicating that it is more effective in maintaining synchronization even under attack. 

However, when the network faces node destruction attacks, there is a significant 
spike in the error rate for both methods. The synchronization error rate accuracy for the 
no gain method drastically increases to 106.5954. The Laplacian method also experiences 
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a large increase, with an error rate reaching 106.7254, slightly higher than no gain. This 
shows that both methods suffer a significant performance drop when nodes in the 
network are destroyed. The large increase in the error rate during node destruction 
attacks highlights serious vulnerabilities in both methods to destructive attacks. Although 
the Laplacian method performs better under normal conditions and DoS attacks, both 
methods need further improvement to handle more serious node destruction attacks. 
Overall, these results indicate that while the Laplacian method is more efficient under 
normal conditions and DoS attacks, a major challenge remains in addressing node 
destruction attacks. To enhance network resilience, more robust approaches or a 
combination of strategies are needed to mitigate the impact of destructive attacks on 
various network topologies. 

 

 

Figure 4.22: Accuracy in The Metrics of Global Synchronization Errors in Star 10 Nodes 

Figure 4.22 shows the simulation results of Laplacian-based consensus against 
topology attacks on a Star network with 10 nodes. In the absence of attacks, the system 
has a lower synchronization error rate without Laplacian Gain (17.1558) compared to with 
Laplacian gain (27.6860), indicating a decrease in accuracy when Laplacian Gain is 
applied. During a DoS attack, the error rate without gain is 96.0429, whereas with 
Laplacian gain, it increases to 106.2896, showing a similar decrease in accuracy. The 
same pattern is observed in the node destruction attack scenario, where the error rate 
rises from 96.0429 without gain to 106.2896 with Laplacian gain. Overall, the use of 
Laplacian gain generally results in higher synchronization error rates, indicating reduced 
accuracy of the star topology under both normal and attack conditions. 

 
  

17,1558

96,0429 96,0429

27,686

106,2896 106,2896

0

20

40

60

80

100

120

No Attack DoS Attack Node Destruction

ACCURACY IN LAPLACIAN-BASED CONSENSUS 
AGAINST TOPOLOGY ATTACKS

(Star 10 Nodes)

NO GAIN Accuracy (Global Synchronization Error Rate)

LAPLACIAN  Accuracy (Global Synchronization Error Rate)



Telkom University 2024 School of Computing 
 

63  

4.2.3 Topology and Attacker Scalability in Laplacian-Based Consensus 
Against Topology Attacks 

 

 
 

Figure 4.23: Speed in Laplacian-Based Consensus Against Topology Attacks 
 

Figure 4.23 illustrates the speed of convergence in a Laplacian-based consensus 
algorithm under different topological attacks. The analysis shows the effectiveness of 
Laplacian gain in improving the convergence speed, which is crucial for the robustness of 
network performance under topological attacks. In the fully connected network with 4 
nodes, the no-gain scenario takes 20 iterations to converge, while the Laplacian gain 
scenario is significantly faster, taking only 9 iterations. This trend continues in the fully 
connected network with 10 nodes, where no gain requires 25 iterations, and Laplacian 
Gain reduces it to 9 iterations. Further increasing the nodes in the fully connected 
network to 10 shows no gain taking 30 and 31 iterations, whereas Laplacian Gain reduces 
it to 13 and 17 iterations, respectively. These results highlight the substantial 
improvement in convergence speed due to Laplacian gain in fully connected topologies. 

The fully mesh network with 10 nodes also shows a remarkable improvement with 
Laplacian gain. Without gain, the network requires 21 and 23 iterations to converge, but 
with Laplacian gain, this is reduced to just 7 iterations. Similarly, in the ring network with 
10 nodes, the no-gain scenario takes 29 and 37 iterations, while the Laplacian gain 
scenario brings this down to 7 and 27 iterations, respectively. The mesh network with 10 
nodes shows the highest iterations without gain, at 46 and 41 iterations, which are 
significantly reduced to 35 and 37 iterations with Laplacian gain. This indicates the robust 
performance of the Laplacian gain across various mesh and ring network configurations. 
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Interestingly, the star network with 10 nodes demonstrates a consistent performance 
with Laplacian gain, showing minimal variation in the number of iterations required. In 
the no-gain scenario, the star network consistently requires 30 iterations, while with 
Laplacian gain, the iterations are reduced to 28, and 28 for the respective configurations. 
This consistency in the star topology suggests that Laplacian gain maintains its 
effectiveness even in centralized network structures. Overall, Laplacian Gain significantly 
enhances the speed of convergence in consensus algorithms across different network 
topologies, demonstrating its robustness against topological attacks and ensuring 
efficient and reliable network performance. 

 

 
Figure 4.24: Accuracy in Laplacian-Based Consensus Against Topology Attacks 

 

Figure 4.24 illustrates the accuracy of global synchronization in a Laplacian-based 
consensus algorithm under various topological attacks. The analysis reveals that 
incorporating Laplacian Gain generally improves synchronization accuracy by lowering 
error rates, which is vital for the reliable operation of consensus algorithms in diverse 
network environments. In the fully connected network with 4 nodes, the error rate 
without gain is 6.2205, while with Laplacian gain, it slightly lowers to 4.1654. This pattern 
continues in another fully connected network with 4 nodes, where the error rate drops 
from 6.3263 to 4.1661 with Laplacian gain. For a fully connected network with 10 nodes, 
the error rate without gain is 86.9898, and with Laplacian gain, it remains comparably 
high at 86.9152. Another configuration of 10 nodes in a fully connected network shows a 
more noticeable reduction in error rate from 105.9115 to 100.3794 with Laplacian gain. 
These results indicate that while Laplacian Gain generally improves accuracy, the extent 
of improvement varies across different configurations. 
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The fully mesh network with 10 nodes demonstrates a significant reduction in error rates 
with Laplacian gain. Without gain, the error rates are 28.0688 and 28.5952, which 
decrease to 20.4253 and 20.4270, respectively, with Laplacian gain. Further, in the fully 
mesh network, the error rates drop from 14.2743 and 14.3183 without gain to 9.3577 in 
both cases with Laplacian gain. The ring network also benefits from Laplacian Gain, with 
error rates from 33.5512 and 36.0375 without gain decreasing to 33.2390 and increasing 
106.7254, respectively. These results highlight that Laplacian gain consistently enhances 
synchronization accuracy in mesh and ring topologies by substantially reducing error 
rates. 

Interestingly, the star network with 10 nodes shows significant improvement with 
Laplacian gain. Without gain, the error rates are 17.1558 and 96.0429, which up to 
27.6860 and 106.2896, respectively, with Laplacian gain. This consistency in 
performance improvement is also observed across other topologies, indicating the 
robustness of Laplacian gain. Overall, the inclusion of Laplacian gain generally results in 
lower global synchronization error rates compared to scenarios without gain, indicating 
improved accuracy in global synchronization. The most notable improvements are seen 
in the fully mesh and star networks, where error rates are substantially reduced. The ring 
network also shows consistent performance with Laplacian gain, with minimal variation 
in error rates. In conclusion, Laplacian Gain enhances the accuracy of global 
synchronization in consensus algorithms across various network topologies. This 
improvement is crucial for maintaining accurate and reliable network synchronization, 
especially in complex or adversarial environments. By reducing synchronization errors, 
Laplacian Gain ensures more efficient and robust network performance, contributing to 
the stability and reliability of consensus algorithms in diverse network configurations. 

 

 
Figure 4.25: Topology Scalability in Laplacian-Based Consensus  

Figure 4.25 shows that, for a Fully Connected topology with 4 nodes, convergence 
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iterations reach 56.96% with a global synchronization error of 23.14%. This indicates that 
although this topology has a high convergence iteration rate, the global synchronization 
error remains at an acceptable level, reflecting good stability in smaller topologies. When 
the number of nodes increases to 10 in a Fully Connected topology, the convergence 
iterations decrease to 51.05% and the global synchronization error drops to 20.34%, 
indicating improved efficiency in larger topologies. In a Fully Mesh topology with 10 
nodes, the convergence iterations further increase to 70.70% and the global 
synchronization error to 24.54%, indicating higher efficiency in achieving 
synchronization. 

In a Ring topology with 10 nodes, the convergence iterations further decrease to 
20.41% and the global synchronization error to 6.27%, indicating higher efficiency in 
achieving synchronization. This suggests that a mesh topology allows for more efficient 
communication and requires fewer iterations to achieve stability, which is highly 
beneficial in sensor network applications. Most notably, the Star topology with 10 nodes 
shows a convergence iteration rate of 3% and an extremely low global synchronization 
error of -27.57%. These results demonstrate outstanding stability and efficiency, where 
the star topology significantly reduces convergence iterations and almost eliminates 
global synchronization errors, implying that the star structure may offer substantial 
advantages in synchronization performance for sensor networks. 

 

 
Figure 4.26: Attack Scalability in Laplacian-Based Consensus  

 

Figure 4.27: demonstrates attack scalability. In the scenario without any attack (No 
Attack), convergence iterations are at 38.5% with a global synchronization error of 8.9%, 
indicating stable performance under normal conditions. This approach can maintain 
synchronization stability and efficiency under ideal operational conditions. When a 
Denial of Service (DoS) attack occurs, convergence iterations slightly increase to 41.2%, 
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while the global synchronization error rises to 18.9%. This indicates that the DoS attack 
significantly impacts network synchronization, but the Laplacian gain fault tolerance 
approach still keeps convergence iterations within an acceptable range, indicating 
reasonable resilience to this type of attack. 

In the case of a Node Destruction attack, convergence iterations reach 41.6%, but 
the global synchronization error drastically decreases to 0.2%. This indicates that this 
method can recover well from significant physical damage, showing that even though this 
attack increases convergence iterations, Laplacian gain fault tolerance manages to keep 
global synchronization errors low. The dramatic decrease in global synchronization error 
under node destruction attack highlights the exceptional resilience of this method, 
allowing the network to continue functioning effectively even when some nodes are 
destroyed. 

 
4.3 Discussion 

 
4.3.1 Speed in Laplacian-Based Consensus Against Topology Attacks 

Based on the type of attack, the difference between Laplacian gain fault tolerance and no 
gain fault Tolerance is quite pronounced. In the case of a Denial of Service (DoS) attack, 
the Laplacian gain fault tolerance algorithm demonstrates a significant advantage in 
convergence speed compared to no gain fault Tolerance. In network topologies such as 
Fully Connected and Fully Mesh, Laplacian gain fault tolerance requires fewer iterations 
to achieve convergence, whether under normal conditions or during a DoS attack. This 
indicates that Laplacian gain fault tolerance maintains efficiency in convergence even 
when disrupted by DoS attacks. Furthermore, in the case of Node Destruction attacks, 
where some nodes in the network are destroyed, Laplacian gain fault tolerance also shows 
better performance. In the same topologies, Laplacian gain fault tolerance maintains a 
lower number of convergence iterations compared to no gain fault Tolerance, indicating 
that this approach is more effective in managing and recovering from physical network 
damage. This underscores that Laplacian gain fault tolerance excels not only in 
convergence speed under normal conditions but also in dealing with disruptions caused 
by attacks that physically damage the network. 

Based on Laplacian feedback, the performance comparison between Laplacian gain 
fault tolerance and no gain fault Tolerance reveals significant differences across various 
network topologies. In a Fully Connected topology with 4 nodes, Laplacian gain fault 
tolerance requires only 9 iterations to achieve convergence without attacks, while no gain 
fault Tolerance needs 20 iterations. During a DoS attack, both methods require the same 
number of iterations; however, in the case of a Node Destruction attack, Laplacian gain 
fault tolerance remains stable at 9 iterations, whereas no gain fault Tolerance increases 
to 23 iterations. For the same topology with 10 nodes, Laplacian gain fault tolerance 
demonstrates better convergence speed with 13 iterations without attacks, compared to 
25 iterations for no gain fault Tolerance. During a DoS attack, Laplacian gain fault 
tolerance requires 12 iterations, whereas no gain fault Tolerance needs 30 iterations. In 
the Node Destruction attack, Laplacian gain fault tolerance remains efficient with 17 
iterations, while no gain fault Tolerance rises to 31 iterations.  

Changing in other topologies in a Fully Mesh topology with 10 nodes, Laplacian 
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gain fault tolerance achieves convergence in just 7 iterations without attacks, compared 
to 21 iterations for no gain fault Tolerance. When facing DoS and Node Destruction 
attacks, Laplacian gain fault tolerance maintains efficiency with 7 iterations for both types 
of attacks, whereas no gain fault Tolerance shows an increase in iterations to 23 and 29, 
respectively. In a Ring topology with 10 nodes, Laplacian gain fault tolerance requires 27 
iterations without attacks, which is better than the 37 iterations needed by no gain fault 
Tolerance. During DoS and Node Destruction attacks, Laplacian gain fault tolerance 
demonstrates better efficiency with fewer iterations (24 and 26) compared to no gain fault 
Tolerance, which requires 41 and 46 iterations. In a Star topology with 10 nodes, 
Laplacian gain fault tolerance needs slightly more iterations (24) compared to no gain 
fault Tolerance (23 iterations) without attacks. However, during DoS and Node 
Destruction attacks, Laplacian gain fault tolerance shows a slight improvement in 
efficiency, requiring 28 iterations for both attacks compared to 30 iterations for no gain 
fault Tolerance.  

Although the difference is not substantial, Laplacian gain fault tolerance generally 
offers better performance in maintaining convergence efficiency under attack conditions. 
Overall, the Laplacian gain fault tolerance algorithm proves effective in mitigating attacks 
before they fully manifest, especially noticeable at iteration 11. This is particularly evident 
in Fully Connected topologies on a small scale and Fully Mesh topologies on a large scale, 
demonstrating that higher network connectivity and strength lead to faster and more 
effective responses and mitigation of attacks. Enhanced connectivity and topology 
strength contribute to accelerated convergence and strengthened mitigation capabilities, 
making the system more stable and responsive to potential disruptions. 

 
4.3.2 Accuracy in Laplacian-Based Consensus Against Topology 

Attacks 

The accuracy of the system generally worsens under different types of attacks. 
Specifically, in Node Destruction attacks, the accuracy of the Generalized State Estimator 
(GSEr) is significantly affected because the loss of nodes leads to increased error. This 
results in higher error rates and less accurate performance metrics, as the missing nodes 
contribute to larger inaccuracies in the system’s estimations. 

A higher speed of convergence does not always guarantee better accuracy. In 
topologies like Fully Connected (10 nodes) and Ring (10 nodes), there is a trade-off where 
faster convergence might be accompanied by increased accuracy spikes. These spikes can 
potentially harm synchronization processes in Wireless Sensor Networks (WSNs). This 
issue needs to be reviewed at the application level to determine sensitivity. High accuracy 
from GSEr might not be achievable if such spikes negatively affect real-time system 
performance. 

In the Ring topology, accuracy becomes negative due to instability caused by 
weighting. This instability compromises the accuracy of the system, leading to suboptimal 
performance and necessitating further investigation into how weighting affects stability 
and accuracy. Overall, while the Laplacian gain fault tolerance approach shows superior 
performance in convergence speed across various topologies and attack scenarios, the 
associated accuracy may be affected by the network's specific conditions and attacks. 
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4.3.3 Scalability in Laplacian-Based Consensus Against Topology 
Attacks 

The analysis of scalability in Laplacian-based consensus algorithms against topology 
attacks demonstrates a generally linear improvement in performance with the application 
of Laplacian gain across various network topologies. In fully connected networks with 4 
nodes, Laplacian Gain significantly reduces convergence iterations from 20 to 9, and in 
networks with 10 nodes, from 25 to 13, reflecting substantial efficiency gains. Accuracy 
also improves notably, with the error rate for the 4-node fully connected network 
decreasing from 6.2205 without gain to 4.1654 with Laplacian gain. In the 10-node fully 
connected network, the error rate drops from 86.9898 to 86.9152, with a more 
substantial reduction observed in another 10-node configuration, where it decreases from 
105.9115 to 100.3794.  

In fully mesh networks with 10 nodes, Laplacian Gain reduces convergence 
iterations from 21 and 23 to just 7, with accuracy improving as well. Error rates drop from 
28.0688 and 28.5952 without gain to 20.4253 and 20.4270, and further decrease from 
14.2743 and 14.3183 without gain to 9.3577 with gain. In Ring topologies, convergence 
iterations decrease from 37 and 41 to 27 and 35, with accuracy improving as error rates 
fall. For the star topology with 10 nodes, Laplacian Gain reduces convergence iterations 
from 30 to 23 under normal conditions and from 30 to 28 during attacks. Accuracy 
improvements are less pronounced, with error rates dropping from 27.6860 and 
106.2896 to 17.1558 and 96.0429, respectively. This suggests that while Laplacian Gain 
shows improvements, its impact is more significant in complex topologies compared to 
simpler star networks. The Laplacian gain significantly enhances convergence speed and 
accuracy in complex network topologies but shows more limited improvements in 
simpler star topologies. 

Table 4.4: Weigthing Parameter of Laplacian gain 

Graph 
Topology Topology Attacks Weigthing Parameter of 

Laplacian gain 

Fully Connected 4 
Nodes 

Before Attack 0.25 

DoS Attack 0.40 

Node Destruction 0.33 

Fully 
Connected 10 
Nodes 

Before Attack 0.25 
DoS Attack 0.2665 
Node Destruction 0.255 

Fully Mesh 10 
Nodes 

Before Attack 0.1 

DoS Attack 0.1818 

Node Destruction 0.111 

Ring 10 Nodes 
Before Attack 0.4721 
DoS Attack 0.5582 
Node Destruction 0.5102 

Star 10 Nodes Before Attack 0.1818 
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DoS Attack 0.2 

Node Destruction 0.2 

The table 4.4 above provides an overview of how the weighting parameter of 
Laplacian gain changes in various network topologies when under attack. In a fully 
connected topology with 4 nodes, the weighting parameter of Laplacian gain increases 
from 0.25 before the attack to 0.33 after node destruction, indicating that each node plays 
an important role and node destruction significantly impacts network connectivity. 
Meanwhile, in a 10-node network, the gain slightly increase from 0.25 to 0.255 after node 
destruction suggests that larger networks have better resistance to disruptions due to the 
presence of more alternative paths. The fully mesh topology with 10 nodes shows a low 
weighting parameter of Laplacian gain of 0.1 before the attack, slightly increase up to 
0.111 after node destruction, indicating that despite disruptions, high redundancy 
provides strong resilience. In the ring topology with 10 nodes, the weighting parameter 
of Laplacian gain rises from 0.4721 to 0.5582 during a DoS attack, but slightly decreases 
to 0.5102 after node destruction, indicating resistance to node destruction due to the ring 
structure. The star topology with 10 nodes shows a high dependence on the central node, 
with the weighting parameter of Laplacian gain increasing from 0.1818 to 0.2 during both 
DoS attacks and node destruction, emphasizing its vulnerability if the central node is 
compromised. Overall, this analysis shows that fully connected and fully mesh topologies 
are more resistant to attacks compared to other topologies, while the star topology is the 
most vulnerable, especially to disruptions at the central node. 

The Laplacian gain consistently improves fault tolerance across various network 
topologies and attack scenarios. Specifically, it reduces convergence iterations by 
approximately 40.42%, demonstrating a substantial acceleration in the time required for 
the network to stabilize after disruptions. Additionally, the incorporation of Laplacian 
gain enhances network accuracy by about 9.34%, which is crucial for maintaining reliable 
network performance. However, it is important to note that the effectiveness of Laplacian 
gain varies with the type of network topology, particularly in star networks due to their 
unique connectivity characteristics. In star topologies, which have a central hub 
connecting all nodes, the benefits of Laplacian gain are less pronounced compared to 
more complex topologies like fully connected or mesh networks. This variation highlights 
the need for tailored approaches when applying consensus methods across different 
network structures. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 
 

5.1 Conclusion 

In conclusion, the findings from the analysis of Laplacian-based consensus methods in 
addressing topology attacks on sensor networks highlight the efficacy of incorporating 
Laplacian Gain. Across various network topologies and attack scenarios, Laplacian Gain 
consistently enhances fault tolerance, reduces convergence iterations about 40.42%, and 
improves network accuracy about 9.34%. But it remains difference in the type of Nodes 
star with its connectivity characteristics in network accuracy. This underscores its crucial 
role in mitigating the impact of attacks and maintaining network speed convergence and 
accuracy in different situations such as a topology changes. Therefore, the adoption of 
Laplacian-based consensus methods is recommended for enhancing the resilience of 
sensor networks against topology attacks. 

 
5.2 Recommendations 

Based on the conclusions drawn from the analysis, several recommendations can be made 
to further strengthen the resilience of sensor networks against topology attacks. Firstly, 
it is advisable to integrate Laplacian-based consensus methods into the design and 
implementation of sensor network protocols to improve fault tolerance and mitigate the 
effects of attacks. Additionally, further research and development efforts should focus on 
optimizing the performance of Laplacian gain algorithms to enhance their effectiveness 
in diverse network environments. 

Furthermore, continuous monitoring and evaluation of network performance, 
especially during attack, are essential to identify vulnerabilities and implement timely 
countermeasures. Lastly, collaboration between researchers, industry stakeholders, and 
policymakers is crucial to promote the adoption of robust security measures and 
standards for safeguarding sensor networks against evolving threats. By implementing 
these recommendations, sensor networks can be better equipped to withstand topology 
attacks and ensure reliable operation in various deployment scenarios such as detecting 
and mitigating other topological attack such as sybil attack. 
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Internal 

 
 

Simulation 
No.8-b Fully Mesh 10 Nodes – DoS Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

7 9.3577 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
Before 
Attack 

1.6 
e-15 10 10 10 10 10 10 10 10 10 0.1 

After 
Attack 

1.5 
e-15 1 9 9 9 9 9 9 9 10 0.1818 
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Experiment 9 
 

Simulation 
No.9-a Fully Mesh 10 Nodes – Node Destruction Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

29 93.6113 
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Simulation 
No.9-b Fully Mesh 10 Nodes – Node Destruction Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

7 89.3577 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
Before 
Attack 

1.6 
e-15 10 10 10 10 10 10 10 10 10 0.1 

After 
Attack 

-2.2 
e-15 

2.2 
e-16 9 9 9 9 9 9 9 9 0.111 
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Experiment 10 
 

Simulation 
No.10-a Ring Mesh 10 Nodes – No Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

37 33.5512 
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Simulation 
No.10-b Ring Mesh 10 Nodes – No Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

27 29.8025 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
No  
Attack 

-4.9 
e-16 0.31 0.38 1.16 1.38 2.28 2.61 3.91 3.61 3.30 0.4721 
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Experiment 11 
 

Simulation 
No.11-a Ring Mesh 10 Nodes – DoS Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

41 36.0375 
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Simulation 
No.11-b Ring Mesh 10 Nodes – DoS Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

35 33.2390 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
Before 
Attack 

-4.9 
e-16 0.31 0.38 1.16 1.38 2.28 2.61 3.91 3.61 3.30 0.4721 

After 
Attack 0.12 3.53 2.34 1 3.73 3 2 1 -2.3 

e-17 0.26 0.5582 
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Experiment 12 
 

Simulation 
No.12-a Ring Mesh 10 Nodes – Node Destruction Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

46 106.5954 
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Internal 

 
 

Simulation 
No.12-b Ring Mesh 10 Nodes – Node Destruction Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

37 106.7254 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
Before 
Attack 

-4.9 
e-16 0.31 0.38 1.16 1.38 2.28 2.61 3.91 3.61 3.30 0.4721 

After 
Attack 3.73 3.24 3 2 1.55 1 -8.5 

e-17 0.19 0.26 0 0.5102 
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Experiment 13 
 

Simulation 
No.13-a Star 10 Nodes – No Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

23 17.1558 
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Simulation 
No.13-b Star 10 Nodes – No Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

24 27.6860 

 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
No  
Attack 

-7.2 
e-16 1 1 1 1 1 1 1 1 10 0.1818 
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Experiment 14 
 

Simulation 
No.14-a Star 10 Nodes – DoS Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

30 96.0429 
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Simulation 
No.14-b Star 10 Nodes – DoS Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

28 106.2896 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
Before 
Attack 

-7.2 
e-16 1 1 1 1 1 1 1 1 10 0.1818 

After 
Attack 

-1.1 
e-16 

-4.2 
e-92 1 1 1 1 1 1 1 9 0.2 
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Experiment 15 
 

Simulation 
No.15-a Star 10 Nodes – Node Destruction Attack GAIN 

Input 

  

No 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

30 96.0429 
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Simulation 
No.15-b Star 10 Nodes – Node Destruction Attack GAIN 

Input 

  

Lap-
lacian 
Gain 

Error Rate 
Graph Plot 

 

Results 

Raw Data Convergence 
Iteration 

Global 
Synchronization 

Error Rate 

 

28 106.2896 

 
 
Laplacian Gain Calculation 
 

Spectrum Laplacian Eigen Value rho = 2/SSE+LE 
Before 
Attack 

-7.2 
e-16 1 1 1 1 1 1 1 1 10 0.1818 

After 
Attack 

-1.1 
e-16 

-4.2 
e-92 1 1 1 1 1 1 1 9 0.2 
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APPENDIX B 

MATLAB Program 
 

Parts Algorithms Notes 

Initial 
Input 

%% MATLAB R2023a %% 
 
%Setting the Parameters 
TIME_ITER = .1; 
max_time_step = 50; 
 
%Case: Fully Connected 4 Nodes  
GRAPH = [ 1 1 1 1; 
          1 1 1 1; 
          1 1 1 1; 
          1 1 1 1; ]; 
 
%Changes Topology in Attacks Model 
GRAPH1 = [ 1 1 1 1; 
           1 1 1 1; 
           1 1 1 1; 
           1 1 1 1; ]; 
 
%Inital Parameters: 4 Nodes 
num_node = 4; 
beta_initial = [2 3 8 1] * TIME_ITER; % the initial offset for each node  
alpha = [0.8 0.9 1.1 1.3] * TIME_ITER; % local clock skew are per TIME_ITER 
 
%Inital Parameters: 10 Nodes 
%num_node = 10;            
%beta_initial = [2 3 8 1 12 1 3 3 9 10] * TIME_ITER;   
%alpha = [0.2 0.6 1.1 0.8 1.4 1.3 0.7 0.9 1.0 0.8] * TIME_ITER; 
 
% Laplacian Matrix Calculation 
DEG = diag(sum(GRAPH, 2)); 
 
LAPG = DEG - GRAPH; 
 
% Laplacian Eigen Value Calculation 
E = eig(LAPG); 
SSE = E(2); 
LE = max(E) 
 
% Tuning Parameter 
rho = 0.6; %USING Default Tuning Parameter – No Gain 
%rho = 2/(LE+SSE); % USING Laplacian Feedback – Laplacian Gain 
 

This part belongs to chapter 3 
– Phase 1 in requirement & 

parameter setup such as: 
Time Step, Graphs, Initial 

Clock and Tuning Parameter. 
The graph can be switched 

into 4 or 10 nodes. 

Before 
Attack 

 
% Applying the algorithm 
alpha_vir = zeros(max_time_step, num_node); % the virtual clock skew estimation  
alpha_rel = cell(max_time_step, 1); % the relative clock skew estimation  
tau = zeros(max_time_step, num_node); % the local time on each node 
time_vir = zeros(max_time_step, num_node);  
offset_vir = zeros(max_time_step, num_node); 
 
alpha_vir(1, :) = ones(1, num_node); 
alpha_rel(:) = {GRAPH}; 
tau(1, :) = beta_initial; 
time_vir(1, :) = tau(1,:); 
 
%%Before ATTACK%% 
 
% assuming that there is TX/RX between all nodes at each time step#1 
for t = 2:1:10 
    tau(t, :) = tau(t-1, :) + alpha;  

This part belongs to chapter 3 
– Phase 2 in accomplishing 

consensus calculation before 
the attack 
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    skew_rel(:)= {GRAPH}; 
    GRAPH = GRAPH; 
    % Go through the graph for links 
    for i=1:1:num_node 
        for j=1:1:num_node 
            if GRAPH(i, j) ~= 0 % link is found where i RXs from j 
                % update the relative skew estimation  
                alpha_rel{t}(i,j) = rho*alpha_rel{t-1}(i,j) + (1-rho) *(tau(t,j)-tau(t-1,j))/(tau(t,i)-tau(t-1,i)); 
                % update the skew compensation 
                alpha_vir(t,i) = rho*alpha_vir(t-1,i) + (1-rho)*alpha_rel{t-1}(i,j)*alpha_vir(t-1,j); 
                % compute the offset compension  
                offset_vir(t,i) = offset_vir(t-1,i) + (1-rho) * (alpha_vir(t-1,j)*tau(t-1,j)+ offset_vir(t-1, j) - 
alpha_vir(t-1,i)*tau(t-1,i) - offset_vir(t-1, i)); 
            end 
        end 
    end 
    time_vir(t, :) = alpha_vir(t, :).*tau(t, :) + offset_vir(t,:); 
end 
 

During 
Attack 

 
%%ATTACK Begin at 10th Iteration%% 
 
% Laplacian Matrix Calculation 
DEG = diag(sum(GRAPH1, 2)); 
 
LAPG = DEG - GRAPH1; 
 
% Laplacian Eigen Value Calculation 
E = eig(LAPG); 
SSE = E(2); 
LE = max(E) 
 
% Tuning Parameter 
rho = 0.6; %USING Default Tuning Parameter – No Gain 
%rho = 2/(LE+SSE); % USING Laplacian Feedback – Laplacian Gain 
 
% assuming that there is TX/RX between all nodes at each time step#2 
for t = 11:1:max_time_step 
    tau(t, :) = tau(t-1, :) + alpha;  
    skew_rel(:)= {GRAPH1}; 
    GRAPH = GRAPH1; 
    % Go through the graph for links 
    for i=1:1:num_node 
        for j=1:1:num_node 
            if GRAPH(i, j) ~= 0 % link is found where i RXs from j 
                % update the relative skew estimation  
                alpha_rel{t}(i,j) = rho*alpha_rel{t-1}(i,j) + (1-rho) *(tau(t,j)-tau(t-1,j))/(tau(t,i)-tau(t-1,i)); 
                % update the skew compensation 
                alpha_vir(t,i) = rho*alpha_vir(t-1,i) + (1-rho)*alpha_rel{t-1}(i,j)*alpha_vir(t-1,j); 
                % compute the offset compension  
                offset_vir(t,i) = offset_vir(t-1,i) + (1-rho) * (alpha_vir(t-1,j)*tau(t-1,j)+ offset_vir(t-1, j) - 
alpha_vir(t-1,i)*tau(t-1,i) - offset_vir(t-1, i)); 
            end 
        end 
    end 
    time_vir(t, :) = alpha_vir(t, :).*tau(t, :) + offset_vir(t,:); 
end 
 

This part belongs to chapter 3 
– Phase 3 in accomplishing 

consensus calculation during 
the attack 

Plot 
Output 

 
%%Plot of Results%% 
 
%Plot Virtual Offset Estimation within Nodes 
figure; 
error = zeros(max_time_step, num_node); 
for j=1:1:max_time_step 
    for i=1:1:num_node 
        error(j,i) = (time_vir(j,i) - mean(time_vir(j,:)))/mean(time_vir(j,:)); 
    end 

This part belongs to chapter 3 
– Phase 4 in plotting 

converging speed with 
convergence error tolerance 
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end 
for i=1:1:num_node 
    plot(1:1:max_time_step, error(:, i),'color', C{i},'marker','.'); 
    hold on; 
end 
title('Error from Instantaneous Mean of Local Times'); 
legend('node 1','node 2','node 3','node 4'); 
xlabel('Iterations'); 
ylabel('Local Synchronization Error'); 
grid on; 
hold off; 
 
%Plot Local Time of Each Node without Consensus 
time_step = 1:max_time_step; 
figure; 
for i=1:1:num_node 
    plot(time_step, tau(:, i),'-s','color', rand(1,3),'MarkerSize',3); 
    hold on; 
end 
title('Local Time within Nodes'); 
legend('node 1','node 2','node 3','node 4'); 
xlabel('Iterations'); 
ylabel('Time (s)'); 
grid on; 
hold off; 
 

GSEr 
Calcu- 
lation 

%Sum of Absolute Errors Value 
error2 = abs (error) 
GSE = sum (error2, 'all') 

This part belongs to chapter 3 
– Phase 4 in calculating 

accuracy in GSEr 
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 APPENDIX C 
 

CURRICULUM VITAE 
 

 
Personal Information      
Name    : Fakhmi Kemal Islamy ST., CHFI 
Interest  : Mobile, Satellite Telecommunication & Telco Security 
LinkedIn: www.linkedin.com/in/mashkemal  
Email      : fakhmi.kemal@student@telkomunivsersity.ac.id 
 
About 
 I have experience of more than 10 years in the telecommunication industry in 
Indonesia since I joined PT. Pasifik Satelit Nusantara in 2010. I have experience in the 
engineering fields, operation, and maintenance in satellite & terrestrial networks, also the 
latest mobile technology since I joined PT. Telkomsel in 2012 until now. Recently, I 
interested more studying master’s degree in cybersecurity & digital forensics fields in 
Telkom University that challenged me and my experiences beyond the future industry & 
research needs. 
 
Academic Background  
2006 – 2010 

 Bachelor’s degree - Telecommunication Engineering, Telkom University  
2021 – Now 

 Master’s degree - Cyber Security & Digital Forensics, Telkom University  
 
Expertise  

 Mobile Communications 
(Understand 2G, 3G, 4G & 5G Network. Operating using Huawei RAN & 
Monitoring)  

 IP Transport Network 
(Understand IP Network Elements such as Router, Hub & L2 Switches, Metro-
Ethernet, PON, and DWDM. Design and planning IP transport network such as 
Satellite, Microwave & OFDM Radio)  

 Cyber & Telco Security 
(Understand Offense, Defense, and Governance using NIST Framework. Able to 
perform Penetration Testing web & mobile infrastructure using Kali Linux and 
Windows OS and understand Network & Telco Security Signaling including 2G, 
3G, 4G & 5G Network) 

 Digital Forensics 
(Understand Evidence Collection, Preservation, Analysis in Computer Network & 
IoT) 

 
Papers  
2022 

 APPLE HOMEPOD MINI FORENSICS (Submitted at ICOICT, 2022)  

http://instagram.com/farahfirdausy
http://www.linkedin.com/in/mashkemal
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Fakhmi Kemal Islamy, Irwan Hariyanto, Wawan Setiawan 
 PEMODELAN ANCAMAN DAN PEMBANGUNAN USE CASE 

MONITORING PADA PT. TELKOMSEL (Capstone Project, 2022)  
Fakhmi Kemal Islamy 

2015 
 RANCANG BANGUN SISTEM PENERIMAAN DAN PEREKAMAN DATA 

SATELIT BERBASIS NOAA AUTOMATIC PICTURE TRANSMISSION 
(APT) SEBAGAI SARANA EDUKASI (LAPAN, 2015) 
Nurmajid Setyasaputra, Fakhmi Kemal Islamy, Sutan Takdir Ali Munawar 

2010 
 ANALISIS IMPLEMENTASI DETEKTOR ZERO-CROSSING 

MENGGUNAKAN HALF-CYCLE BANDPASS LIMITER PADA 
PENERIMA LORAN-C BERBASIS TMS (IT Telkom, 2010)  
Fakhmi Kemal Islamy 

 
 

Organization & Work Experiences 
2023  

 AFDI Member – Asosiasi Forensik Digital Indonesia (2023 – Present)  
Profesional member of Information Indonesia Digital Forensics Association 

 CDEF Community Member – CDEF (2023 – Present)  
Active member of Indonesia Cyber Defense Forum as Podcaster in Weekly Update 

2022  
 ICSFTU Student Member – ICSFTU Telkom University (2022 – Present)  

Vice President of Ikatan Cendikiawan Sains Forensik Telkom University 
 ISACA Student Member – ISACA Indonesia (2022 – Present)  

Student member of Information Systems Audit and Control Association Indonesia 
chapter 

 SKKNI Cryptography BSSN – BSSN (2022)  
Member of Drafting Team SKKNI Cryptography Represent Industry Sector 

2021  
 Network Security Defensive Engineer – Telkomsel (December 2021 – 

Present)  
Telkomsel Network Security Defensive Management. Conduct SOC & SIEM 
Development 

1. Developing Network Security Operation Center (NSOC) 
2. Adopted Tier-less SOC with 3 Departments: Inform, Develop, Respond 
3. IR & Forensics Leadership in Signalling & Telecom IT 
4. Shift-Left Strategy enablement with DevSecOps 
5. Vertical SOC Expansion using OpenAI 
6. Autonomic Security Operation Center 
7. Telco DFIR Lab Development 

 
 Cyber Security Talent – Telkomsel (April 2021 – Present)  

Telkomsel Digital Prodigy as Cyber Security talent. Implement security culture into 
DevSecOps and Data Loss Prevention (DLP) program. 

2012  
 Radio, Transport & Power Operation – Telkomsel (2012 – 2021)  
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Daily operation of Telkomsel Mobile Infrastructure. Handling fault of Radio, 
Transport and Power incident of 2G, 3G, 4G systems.  
Develop good collaboration with other departments and experience supervise to 
design & develop radio access brings me & my team many achievements such as: 

1. Best WLC National 2015 
2. Best Rollout Productivity 2016 
3. Best Payload CMON NARU & RAFI 2017 
4. Best Regional RTPO in 2017 & 2018 
5. Best Availability NARU 2019 

2011  
 Network Incident Management – Dimension Data (September – December 

2011)  
Handling incident management of Telkomsel national network. Escalation of 
Major and Critical severity to an impacted service area. Maintaining SLA & OLA to 
meet KPI.  
This pilot project of Dimension Data Indonesia brings comprehensive and agile 
incident management in Telkomsel with a structured ITIL framework. 

2010  
 Network Operation Center – Pasifik Satelit Nusantara (August 2010 – 2011)  

Monitoring & fault handling of PSN global satellite & terrestrial network services. 
The service including internet, private network & closed user group for banking & 
custodian. 
Awarded as the best NOC Fault Handler in H2 2011.  

 Amateur Radio Member – ORARI (September 2010 – 2011)  
Research and sharpening the skill of HAM Radio activities on many levels of 
frequencies. Including LF, HF, UHF, VHF & Microwave. Actively using Digital 
Signal Processing (DSP) to perform a Software Defined Radio (SDR) AMSAT 
receiver. 
More advanced technology comes from this community, for example, Internet 
Gateway, Automatic Position Reporting System, and Wireless Mesh Network. It 
brings my research as a hobby even further on amateur frequencies. 

2009  
 Satellite Association Student Member – ASSI (March 2009 – 2010)  

Defining slot and frequency management of national capacity requirements. 
Escalation to ITU-WRC of the Issues. Annually held an APSAT Conference from 
Asia-Pacific members. Promote Nanosatellite research in students of IT Telkom. 

 Laboratory Assistant – Antenna Laboratory IT Telkom (2009 – 2010)  
Handling lab activities including research of Smart Antenna & Nanosatellite. 
Organize annual Cellular Drive Test training of CDMA, 2G & 3G networks. Co-
Founded origins of two organizations, such as IT Telkom Satellite Society & 
Amateur Radio Club IT Telkom. 

 
Training & Certifications 

 ZeroFox Certified SE – ZeroFox (2023) 
(Certification for Sales Engineering in ZeroFox EMEA Region) 

 5G Security & Technology Deployment – HUAWEI (2023) 
(Bootcamp for 5G Security Threat Landscape, Countermeasure & Huawei 
Solution) 

 Certified DevOps Practitioner – Studi DevSecOps (2023) 
(Bootcamp & Certification of DevSecOps Development) 
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 Certified AppSec Practitioner (CAP) – The SecOps Group (2023) 
(Certification for App Security Practitioner) 

 Cyber Threat Intelligence 101 – ArcX (2023) 
(Certification for Foundation Level Threat Intelligence Analyst) 

 Google IT Support (Google ITS) – Google Coursera (2022) 
(Certification for IT Support Handling and Cyber Security) 

 NSE 7 – Fortinet (2022) 
(Certification for Fortinet NAC & IoT) 

 Computer Hacking Forensic Investigator (CHFI) – EC Council (2022) 
(Certification for Forensic Investigator of Cyber Crime in Computer Network & 
IoT) 

 Advanced Network Intelligence – Sandvine (2022) 
(Training for Deep Packet Inspection for Fraud Detection Analysis in Telco 
Environment) 

 5G Security & Privacy Practices – SkillSoft (2021) 
(Training about 5G Security Protocol and Handling Privacy Practices)  

 Sekolah Hacker – Cilsy Fiolution (2021) 
(Bootcamp for Penetration Testing of Web and Mobile apps using Kali Linux)  

 TED Cyber Security Academy – Telkomsel (2020) 
(Bootcamp of Cyber Security including Offensive, Defensive and Governance)  

 OFDM Transport – Cambium Networks (2020) 
(Design and Troubleshoot OFDM Non-LOS Transport for Urban and Rural 
Network)  

 4G Optimization – Telkomsel (2016) 
(OFDM structured frame in 4G and basic parameter tuning for optimization) 

 CCNA & CCNP Training – Telkomsel (2014 & 2015) 
(Cisco CCNA & CCNP Training of Fundamental IP Network Concepts)  

 GPRS/UMTS PS Fundamental – Huawei (2013) 
(Basic PS UMTS Operation of Fault Handling & Operation)  

 
Speakers  
2023 

 Microwave Application & Security Challenges in Mobile 
Communication Industry (ITERA, 2023)  

 Cyber Security Myth, Gaps & Modelling (Telkom University, 2023) 
2022 

 Information Security in Telecommunication System (Polinema, 2023)  
 

 
  


