LIST OF PICTURES

Figure 2.1: State-of-the-art of The Research	5
Figure 2.2: Three Synchronization Methods: Frequency Synchronization (a), Initial	
Offset Synchronization (b), Time Synchronization (c). [5]	6
Figure 2.3: The GPS, PPS & NTP Time Reference in WSN CPS [13]	7
Figure 2.4: NTP Stratum Servers [13]	8
Figure 2.5: Oscillator and Counter components of RTC Module [13]	8
Figure 2.6: Synchronization Process of Synchronizing Clock to Reference Clock	9
Figure 2.7: Multilevel classification of clock synchronization protocols	9
Figure 2.8: Process getting Laplacian Matrix from Communication Graph [10]	.14
Figure 2.9: The Concept of Consensus Control [10]	.14
Figure 2.10: Types of Consensus Time Synchronizations Attack	17
Figure 2.11: Clock Model of Time Synchronization	
Figure 2.12: Connected Graph Network	26
Figure 2.13: MST of Connected Graph Network	26
Figure 2.14: Tree Representation of MST Connected Graph Network	. 27
Figure 2.15: Network Model of WSN Nodes Exchanging Messages	28
Figure 2.16: DoS Topology Attack Model in WSN Nodes	29
Figure 2.17: Network Model of WSN Node Attacked through Denial of service	30
Figure 2.18: Node Destruction Topology Attack Model in WSN Nodes	.30
Figure 3.1: Existing and The Proposed Method using Laplacian Eigenvalue Feedback.	32
Figure 3.2: General Research Design Flowchart	33
Figure 3.3: Plot of Initial Offset and Skew Clock Value at Initial Stage	34
Figure 3.4: Second Stage Focusing on Attack Simulation	35
Figure 3.5: Third Stage Focusing on Laplacian Feedback as Gain Factor	36
Figure 3.6: Fourth Stage Focusing on Impact on Scalability of Topology	37
Figure 3.7: Fourth Stage Focusing on Impact of Scalability of Topology [4]; [11]	.38
Figure 4.1: Simulation Result from Fully Connected 4 Nodes - No Attack	40
Figure 4.2: Simulation Result from Fully Connected 4 Nodes – DoS Attack	.41
Figure 4.3: Simulation Result from Fully Connected 4 Nodes – Node Destruction Atta	ıck
	.41
Figure 4.4: Comparison Result from Fully Connected 4 Nodes – No Attack without (a	
with Laplacian gain (b)	
Figure 4.5: Comparison Result from Fully Connected 4 Nodes – DoS Attack without (
& with Laplacian gain (b)	44
Figure 4.6: Comparison Result from Fully Connected 4 Nodes – Node Destruction	
Attack without (a) & with Laplacian gain (b)	
Figure 4.7: Comparison Result from Fully Connected 10 Nodes – No Attack without (a & with Laplacian gain (b)	
a with Laplacian gain (v)	4/

Figure 4.8: Comparison Result from Fully Connected 10 Nodes – DoS Attack without
(a) & with Laplacian gain (b)48
Figure 4.9: Comparison Result from Fully Connected 10 Nodes – Node Destruction
Attack without (a) & with Laplacian gain (b)48
Figure 4.10: Comparison Result from Fully Connected 10 Nodes – No Attack without (a)
& with Laplacian gain (b)50
Figure 4.11: Comparison Result from Ring 10 Nodes – No Attack without (a) & with
Laplacian gain (b)50
Figure 4.12: Comparison Result from Star 10 Nodes – No Attack without (a) & with
Laplacian gain (b)52
Figure 4.13: Synchronization Convergence Speed in Fully Connected 4 Nodes 53
Figure 4.14: Synchronization Convergence Speed in Fully Connected 10 Nodes 54
Figure 4.15: Synchronization Convergence Speed in Fully Mesh 10 Nodes 55
Figure 4.16: Synchronization Convergence Speed in Ring 10 Nodes 56
Figure 4.17: Synchronization Convergence Speed in Star 10 Nodes 57
Figure 4.18: Accuracy in The Metrics of Global Synchronization Errors in Fully Connected
4 Nodes58
Figure 4.19: Accuracy in The Metrics of Global Synchronization Errors in Fully Connected
10 Nodes 59
Figure 4.20: Accuracy in The Metrics of Global Synchronization Errors in Fully Mesh 10
Nodes60
Figure 4.21: Accuracy in The Metrics of Global Synchronization Errors in Ring 10 Nodes .61
Figure 4.22: Accuracy in The Metrics of Global Synchronization Errors in Star 10 Nodes. 62
Figure 4.23: Speed in Laplacian-Based Consensus Against Topology Attacks 63
Figure 4.24: Accuracy in Laplacian-Based Consensus Against Topology Attacks 64
Figure 4.25: Topology Scalability in Laplacian-Based Consensus
Figure 4.26: Attack Scalability in Laplacian-Based Consensus