PERANCANGAN KEBIJAKAN PERSEDIAAN PERIODIC REVIEW (R,S) DENGAN PENDEKATAN MULTIVARIATE MARKOV DEMAND FORCASTING MODEL UNTUK MEMINIMASI BIAYA PERSEDIAAN PADA PT XYZ

1st Salwaa Salsabiila
Industrial Engineering Faculty
Telkom University
Bandung, Indonesia
salwaasalsabiila@student.telkomuniver
sity.ac.id

2nd Nia Novitasari

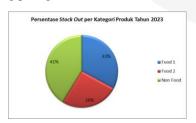
Industrial Engineering Faculty

Telkom University

Bandung, Indonesia

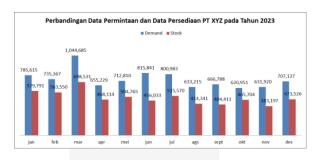
novitasarinia@student.telkomuniversity

.ac.id


3rd Seto Sumargo
Industrial Engineering Faculty
Telkom University
Bandung, Indonesia
setosumargo@student.telkomuniversity
.ac.id

Abstract— PT XYZ merupakan perusahaan ritel yang bergerak di sektor Fast Moving Consumer Goods (FMCG). Produk yang dijual oleh PT XYZ terbagi menjadi 3 kategori produk yaitu food 1, food 2 dan non food. Pada penelitian ini pemilihan kategori produk dipilih berdasarkan persentase produk stockout yang paling besar. Produk non food merupakan kategori produk dengan persentase stockout yang paling besar. Tingginya stockout menyebabkan biaya kekurangan yang tinggi sehingga berpengaruh kepada biaya persediaan perusahaan. Masalah utama meliputi kebijakan persediaan yang tidak optimal dan tidak ada metode peramalan permintaan. Penelitian ini merancang kebijakan persediaan optimal untuk produk non food dengan tujuan meminimasi total biaya persediaan. Proses dimulai dengan uji distribusi data menggunakan Kolmogorov Smirnov. Peramalan permintaan dilakukan dengan multivariate Markov demand forecasting model. Kebijakan persediaan dihitung menggunakan metode periodic review (R, S). Hasil menunjukkan penurunan total biaya persediaan sebesar 46% atau 131.601.820.076,03 dibandingkan biaya aktual. Analisis sensitivitas menunjukkan bahwa perubahan biaya beli memberikan dampak signifikan terhadap solusi optimal, sedangkan biaya pesan, simpan, dan kekurangan menunjukkan sensitivitas yang lebih rendah. Kesimpulannya, rancangan kebijakan persediaan dengan metode periodic review (R, S) dapat membantu PT XYZ dalam menentukan kuantitas pemesanan optimal, safety stock, titik pemesanan ulang optimal, dan meminimasi total biaya persediaan.

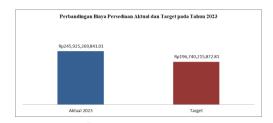
Kata kunci— Ritel, Kebijiakan persediaan, Peramalan Permintaan, Periodic Review (R,S), Markov Multivariate.


I. PENDAHULUAN

PT XYZ merupakan salah satu perusahaan ritel di Indonesia yang bergerak di sektor barang konsumsi cepat habis atau Fast Moving Consumer Goods (FMCG). Produk yang dijual oleh PT XYZ terbagi menjadi 3 kategori produk yaitu food 1, food 2 dan non food. Pada penelitian ini pemilihan kategori produk dipilih berdasarkan persentase produk stockout yang paling besar.

Gambar 1.1 Presentase Stockout Kategori Produk

Berdasarkan pada gambar 1.1, persentase *stockout* yang paling besar didapatkan oleh kategori produk *non food* yaitu sebesar 41%. Maka dari itu, penelitian ini akan berfokus pada produk kategori *non food*. Produk *stockout* yang terjadi diakibatkan oleh *gap* antara jumlah persediaan dan jumlah permintaan, yang mana jumlah data persediaan lebih sedikit dibanding dengan jumlah data permintaan.



Gambar 1.2 Grafik Perbandingan Data Permintaan dan Persediaan PT. XYZ 2023

Berdasarkan gambar 1.2, terlihat bahwa tingkat permintaan PT XYZ pada tahun 2023 mengalami fluktuasi dengan tingkat persediaan yang rendah. Hal ini terjadi karena perencanaan kebijakan persediaan yang dilakukan tidak optimal sehingga menyebabkan suatu *gap* yaitu *stockout*, *stockout* yang tinggi akan menimbulkan biaya kekurangan yang tinggi juga. Biaya kekurangan yang tinggi ini berpengaruh kepada biaya persediaan PT XYZ.

Gambar 1.3 Komponen Biaya Persediaan

Gambar 1.4 Perbandingan Biaya Persediaan Aktual dan Target

Biaya kekurangan (*stockout cost*) yang tinggi menyebabkan total biaya persediaan yang tinggi juga yaitu sebesar Rp. 245.925.269.841,01. Gambar 1.4 merupakan grafik perbandingan antara total biaya persediaan aktual dengan target penurunan biaya yang telah ditetapkan yaitu sebesar Rp. 196.740.215.872,81, dengan persentase penurunan sebesar 20% dari total biaya persediaan. Dari grafik diatas juga menjelaskan bahwa adanya *gap* antara total biaya persediaan aktual dengan target penurunan biaya yang telah ditetapkan yaitu sebesar Rp. 49.185.053.968,20.

Berdasarkan permasalahan yang ada pada penelitian ini, maka solusi yang dipilih untuk mengatasi masalah utama dalam penelitian ini yaitu perancangan kebijakan persediaan periodic review (R,S) dengan pendekatan multivariate Markov demand forecasting.

II. KAJIAN TEORI

A. Supply Chain Management

Menurut J. A. O'Brien (2006), supply chain management adalah sistem antar perusahaan lintas fungsi, yang menggunakan teknologi informasi untuk membantu mendukung, serta mengelola berbagai hubungan antara beberapa proses bisnis utama perusahaan dan dengan pemasok, pelanggan, dan para mitra bisnis. Supply chain management juga merupakan pondasi pendukung pemenuhan kebutuhan konsumen karena rangkaiannya yang meliputi proses pengelolaan, pemasok, dan pelanggan.

B. Persediaan

Persediaan merupakan suatu barang yang disimpan di suatu tempat yang mana barang tersebut akan dikeluarkan untuk suatu tujuan tertentu. Persediaan bahan baku didefinisikan sebagai suatu kegiatan untuk menjaga ketersediaan barang sehingga dapat mendukung berjalannya proses lain yang membutuhkan persediaan (Handayani & Afrianandra, 2022).

C. Forecasting

Menurut Ginting (2007) peramalan merupakan usaha untuk melihat situasi dan kondisi pada masa yang akan datang dengan cara memperkirakan pengaruh situasi dan kondisi pada masa yang akan datang terhadap perkembangan di masa yang akan datang. Peramalan tidak hanya digunakan untuk memperkirakan permintaan produk saja, namun dapat juga digunakan dalam sistem lainnya. Dalam suatu industri. peramalan dilakukan oleh berbagai departemen, seperti departemen pemasaran, produksi, persediaan, dan keuangan.

D. Markov Chain

Menurut Isaacson and Madson (1976) menyatakan bahwa Rantai Markov adalah suatu teknik yang digunakan dalam menganalisis perilaku saat ini dari beberapa variabel dengan tujuan untuk memprediksi perilaku dari variabel yang sama pada masa mendatang. Model rantai Markov dikembangkan oleh seorang ahli Rusia bernama A.A.Markov, pada tahun 1906. Markov membuat asumsi bahwa sistem dimulai pada kondisi awal (*state*).

E. Formulasi Model *Periodic Review* (R,S) dengan Pendekatan Model Markov Multivariat Menurut Ching dan Ng M (2002), total biaya persediaan optimal didapatkan dengan persamaan rumus berikut.

$$\overline{TC}n(Qn,Rn) = \sum_{n=1}^{N} \overline{TC}n(Qn,Rn)$$

$$= \sum_{n=1}^{N} [Cn E(Dn) + \frac{C_{n}^{(o)}(E(Dn))}{Qn} + hn\left[\frac{Qn}{2} + Rn - \overline{D}Ln \times Ln\right] + \frac{C_{n}^{(s)}E(Dn)\overline{S}Ln(Rn)}{Qn}$$

Dimana nilai Q* dan R* didapatkan dengan melakukan optimasi pada biaya persediaan, yaitu pada rumus sebagai berikut.

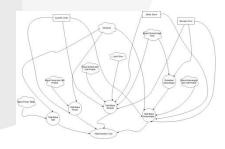
1. Mencari kuantitas pemesanan optimal Jumlah pemesanan optimal bisa didapatkan dari persamaan berikut:

$$Q^* = \sqrt{\frac{2 x C_n^{(o)} x Dn}{hn}}$$

2. Mencari nilai safety stock

Nilai *safety stock* bisa didapatkan dari persamaan berikut:

SS =
$$Za\sqrt{Ln \times \sigma n}$$


3. Mencari nilai R optimal

Nilai titik pemesanan optimal bisa didapatkan dari persamaan berikut:

$$R^* = \overline{DL}n + Za\sqrt{Ln \times \sigma n}$$

III. MODEL KONSEPTUAL

Model konspetual adalah suatu diagram yang menggambarkan hubungan antar variabel dalam penelitian. Berikut merupakan model konseptual dari penelitian ini.

Gambar 3.1 influence diagram

IV. HASIL DAN PEMBAHASAN

A. Perhitungan

1. Uji distribusi data permintaan

Pengujian data permintaan pada penelitian ini menggunakan uji one-sample Kolmogorov Smirnov yang bertujuan untuk mengetahui normal atau tidaknya data permintaan produk PT XYZ pada tahun 2023. Pengujian kenormalan data ini menggunakan bantuan software IBM SPSS. Uji distribusi data dapat dikonfirmasi dengan hipotesis sebagai berikut:

H0: Data permintaan selama 12 bulan terdistribusi normal

H1: Data permintan selama 12 bulan tidak terdistribusi normal

Dengan nilai signifikansi penelitian sebesar 0,05 sehingga diputuskan beberapa ketentuan yaitu sebagai berikut.

Jika nilai Sig.(p) > 0,05 maka H0 tidak ditolak Jika nilai Sig.(p) <= 0,05 maka H0 ditolak

N	VARSODE1 12	12	12	3AP100084	1/4/183005	VMR00306	VMR0008T	10753006	VMP08909	168930013
N	12									
				12	12	12	12	12	12	- 1
Sometheameters** Mean	184014167	12513-9167	16869 9167	1541.0133	13213.2580	18795.8333	19942.7500	134435657	67651667	14435.250
Std. Devis	ice 7109.96760	6063.84847	8500.49453	982633924	9089-30931	5109 20191	2879.25296	7254.00225	9016 30946	100623264
Wool Different Differences - Absolute	239	.574	.198	.172	224	.227	107	.139	.223	.16
Postio	.199	.193	.118	.172	.794	.168	.106	.525	.223	.33
Hegalius	- 239	576	915	1,967	-224	-227	-107	-539	-218	- 16
Test Statistic	229	.374	.198	.172	224	.221	107	.129	.223	.16
Asyrra, Sig. (2-baled)	.064*	26974	206***	3905.4	.097*	.899*	200**	2905.4	.107	.204*

Gambar 4.1 Uji Distribusi Data

VAR00045	VAR00046	VAR00047	VAR00048	VAR00049	VAR00050	VAR00051	VAR00052	VAR00053	VAR00054
12	12	12	12	12	12	12	12	12	12
12397.5833	14918.7500	14594.7500	22464.7500	9805.1667	16126.5833	14097.3333	5551.4167	16942.0000	13979.1667
10065.96674	5195.36003	10660.13601	8927.09109	5916.41633	12340.38724	2009.50113	2375.26544	6197.92630	9857.65132
.191	.159	.152	.160	.193	.198	.176	.139	.190	.174
.191	.122	.152	.160	.193	.198	.101	.104	.190	.174
113	159	129	146	156	137	176	139	133	150
.191	.159	.152	.160	.193	.198	.176	.139	.190	.174
200°.d	.200°.4	200°.4	.200°.4	200°.d	.200°.d	.200°.d	.200°.d	.200°.4	.200°.d

Gambar 4.1 Uji Distribusi Data

Berdasarkan gambar diatas dapat dilihat bahwa nilai signifikansi penelitian pada data permintaan PT XYZ 2023 lebih besar dari 0,05 sehingga untuk keputusan yang diambil adalah H0 tidak ditolak, dan dapat disimpulkan bahwa data yang telah teruji normal ini dapat digunakan untuk perhitungan kebijakan persediaan pada penelitian ini.

Perhitungan Biaya Aktual

Berikut merupakan contoh perhitungan biaya persediaan aktual untuk SKU 1:

1) Biaya Pembelian (Ob)

Ob =

Ob = Rp 22.894,15 × 124.817/tahun Rp 2.857.579.120,55/tahun Ob =

2) Biaya Pesan (Op)

Op = $f \times A$

Op = 96pesan/tahun×Rp

9.444,00/sekali pesan

Rp 906.624.00/tahun Op =

3) Biaya Simpan (Os)

Os = $m \times h$

= 86.563/tahun×Rp 1.373,65/tahun Os

Os = Rp 119.072.016,27/tahun

4) Biaya Kekurangan (Ok)

 $N\times C\boldsymbol{u}$ Ok =

Ok = 38.254/tahun×Rp

10.605,85/tahun

Ok = Rp 405.716.185,90/tahun 5) Total Biaya Persediaan Aktual (OT)

OT = Ob + Op + Os + Ok

OT = Rp 3.383.109.108,84/tahun

3. Perhitungan Kebijakan Persediaan Usulan

Perhitungan Nilai (Q), (R), dan (SS) yang Optimal

a) Mencari nilai Q optimal

$$Qn*= \sqrt{\frac{2 \times C_n^{(o)} \times Dn}{hn}}$$

$$Q1*= \sqrt{\frac{2 \times Rp \cdot 906.624 \times 124.817}{Rp \cdot 1.373,65}}$$

$$= 12.836$$

b) Mencari nilai SS optimal

$$SSn = Za\sqrt{Ln} x \sigma n$$

$$SSI = 1,04\sqrt{0.0082} x 33,029$$

$$= 3.114$$

c)
$$Rn^* = \overline{DL}n + Za\sqrt{Ln} x \sigma n$$

 $RI^* = 22,48 + 1,04\sqrt{0.0082} \times 33,029$
 $= 3.137$

Perhitungan Total Biaya Pesediaan

Perhitungan Total Biaya Pembelian

Ob =
$$Cn \times Dn$$

= Rp 9.444,00 × 124.817
= Rp 1.178.771.748

b) Perhitungan Total Biaya Pemesanan

Op =
$$\frac{c_n^{(o)} (Dn)}{Qn}$$
=
$$\frac{Rp 9.444 \times 124.817}{12.836}$$
=
$$Rp 8.816.036$$

c) Perhitungan Total Biaya Penyimpanan

Os =
$$hn \left[\frac{Qn}{2} + Rn - \overline{D}LnLn \right]$$

= $Rp 1.373,65 \left[\frac{1.232.250}{2} + 3.136 - 22,49 \times 0,0082 \right]$
= $Rp 850.647.883,10$

d) Perhitungan Total Biaya Kekurangan

Ok =
$$\frac{C_n^{(s)} (Dn) \bar{s} Ln (Rn)}{Qn}$$
=\frac{Rp \, 10.605,85 \times 124.817 \times 0.04 \, x \, 3.136}{12.835}
= \text{Rp \, 11.687.432,20}

e) Perhitungan Total Biaya Persediaan $\sum_{n=1}^{N} \overline{TC} n (Qn, Rn)$

TC =

$$= \frac{\sum_{n=1}^{N} [Cn Dn + \frac{C_{n}^{(o)}(Dn)}{Qn} + hn[\frac{Qn}{2} + Rn - \overline{D}Ln \times Ln] + \frac{C_{n}^{(s)}(Dn) \overline{S} Ln (Rn)}{On}$$

Rp 2.049.923.099,50

Perhitungan Peramalan Permintaan Dengan Markov Multivariat Model

Table 4.1 State

- 110-10 11- 011111						
SKU	JAN	FEB		NOV	DES	
SKU 1	2	2		3	3	
SKU 2	1	2		3	3	
SKU 3	2	3	•••	2	1	
SKU 4	3	2		3	2	
SKU 5	1	3		1	1	

2) Perhitungan Matriks Frekuensi Transisi Perhitungan matriks frekuensi transisi pada penelitian ini dibantu dengan Phyton. Berikut merupakan hasil perhitungan matriks frekuensi transisi untuk F^{11} pada SKU 1.

$$F^{11} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 3 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

Perhitungan Matriks Peluang Transisi Perhitungan matriks peluang transisi pada penelitian ini dibantu dengan Phyton. Berikut merupakan hasil perhitungan matriks peluang transisi untuk P¹¹ pada SKU 1.

$$P^{11} = \begin{vmatrix} 0 & 1 & 0 \\ 0.16 & 0.5 & 0.33 \\ 0 & 0.25 & 0.75 \end{vmatrix}$$

4) Perhitungan Bobot Peluang Perhitungan bobot peluang pada penelitian ini dibantu dengan Phyton. Berikut merupakan hasil perhitungan bobot peluang untuk SKU 1 ke SKU 1.

5) Perhitungan Vektor Peluang Keadaan Mendatang Perhitungan model rantai Markov multivariate pada penelitian ini dibantu dengan Phyton. Berikut merupakan hasil perhitungan model rantai multivariate untuk SKU 1.

Table 4.2 Perhitungan Xn+1

SKU	State	Xn+1
	State	0.71259185
	1	8
SKU 1	State	0.40964077
SKU I	2	5
	State	0.46198376
	3	

6) Perhitungan Expected Demand

Perhitungan expected demand pada penelitian ini dibantu dengan Phyton. Berikut merupakan hasil perhitungan expected demand untuk SKU 1.

Table 4.3 Perhitungan Expected Demand

SKU	Expected Demand						
SKU	State 1	State 2	State 3				
SKU 1	2,946	1,068	634				

Rekap Hasil Xn+1 dan Expected Demand Setelah dilakukan perhitungan rantai markov dan *expected demand* untuk keseluruhan item, berikut merupakan nilai Xn+1 dan expected demand yang didapat untuk SKU 1.

Table 4.4 rekap hasil Xn+1 & E(Dn)

SKU	State	Xn+1	E(Dn)
SKU 1	state	0.712591858	2,946
	1		

- Perhitungan Kebijakan Persediaan Usulan untuk Periode Selanjutnya
 - Perhitungan Nilai Qnk, Rnk, dan SSnk yang Optimal
 - a) Mencari kuantitas pemesanan optimal

$$Qn*= \sqrt{\frac{2 x C_n^{(o)} x E(Dn)}{hn}}$$

$$Q1*= \sqrt{\frac{2 x Rp 906.624 x 2.946}{Rp 1.373,65}}$$

$$= 1.972$$

b) Mencari nilai Safety Stock

$$SSn = Za\sqrt{Ln} x \sigma n$$

 $SSI = 1,04\sqrt{0,0082} x 519.95$
 $= 49,02$

c) Mencari nilai R optimal

$$Rn* = \overline{DL} + Za\sqrt{Ln x \sigma n}$$

 $RI* = 6,37 + 1,04\sqrt{0,0082} \times 7108,98$
 $= 49$

- b. Perhitungan Total Biaya Persediaan
 - Perhitungan total biaya pembelian

Ob =
$$Cn \times E(Dn)$$

= Rp 9.444,00 x 2.946
= Rp 27.822.909

b) Perhitungan total biaya pemesanan biaya pemesanan Total didapatkan dari persamaan berikut:

Op =
$$\frac{c_n^{(o)} E(Dn)}{Qn}$$

= $\frac{Rp 9.444 \times 2.946}{1.972}$

$$= \text{Rp } 1.354.440$$
c) Perhitungan total biaya penyimpanan
$$\text{Os} = hn \quad \left[\frac{Qn}{2} + Rn - \overline{D}Ln \right]$$

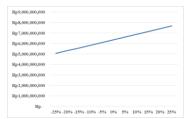
$$= Rp1.373,65 \left[\frac{189.315}{2} + 49,08 - 6,3 \times 0,0082 \right]$$

$$= \text{Rp } 130.093.583,34$$
d) Perhitungan total biaya kekurangan
$$\text{Ok} = \frac{C_n^{(s)} E(Dn) \overline{S} Ln (Rn)}{Qn}$$

$$= \frac{Rp }{10.605.85 \times 2.946 \times 0.03 \times 49,08}$$

$$= \frac{Rp }{1.972} = \text{Rp } 23.274$$
e) Perhitungan total biaya persediaan
$$\text{TC} = \sum_{n=1}^{N} \overline{TC} n (Qn, Rn)$$

$$= \sum_{n=1}^{N} [Cn E(Dn) + \frac{C_n^{(s)} E(Dn)}{Qn} + hn \left[\frac{Qn}{2} + Rn - \overline{D}Ln \times Ln \right] + \frac{C_n^{(s)} E(Dn) \overline{S} Ln (Rn)}{Qn}$$


$$= \text{Rp } 159.294.206,69$$

B. Analisis Sensitivitas

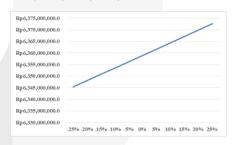
Analisis Sensitivitas dilakukan dengan tujuan agar dapat mengetahui dampak apa yang muncul jika terjadi perubahan nilai dari parameter terhadap model yang digunakan dan apa akibat yang bisa terjadi akibat perubahan-perubahan tersebut, sehingga dengan hal tersebut perusahaan dapat mengantisipasi masalah dari awal. Penilaian terhadap sensitivitas ini terdiri dari beberapa komponen biaya mulai dari biaya beli, biaya pesan, biaya simpan, dan biaya kekurangan dengan perubahan nilai sebesar 5%,10%,15%,20%, dan 25% baik itu penurunan maupun untuk kenaikan pada biaya persediaan.

a) Analisis Sensitivitas terhadap Total Biaya Beli

Analisis sensitivitas dilakukan terhadap hasil perhitungan kebijakan persediaan menggunakan metode periodic review (R,S) dengan pendekatan *multivariate Markov demand forcasting model*. Berikut merupakan hasil sensitivitas terhadap perubahan nilai parameter pada biaya simpan dengan nilai peningkatan dan penurunan sebesar 5%,10%,15%,20%, dan 25%.

Gambar 4.3 Analisis Sensitivitas Biaya Beli

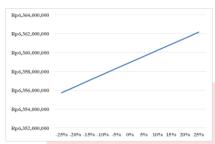
b) Analisis Sensitivitas terhadap Total Biaya Pesan


Analisis sensitivitas dilakukan terhadap hasil perhitungan kebijakan persediaan menggunakan metode periodic review (R,S) dengan pendekatan multivariate Markov demand forcasting model. Berikut merupakan hasil sensitivitas terhadap perubahan nilai parameter pada biaya simpan dengan nilai peningkatan dan penurunan sebesar 5%,10%,15%,20%, dan 25%.

Gambar 4.4 Analisis Sensitivitas Biaya Pesan

c) Analisis Sensitivitas terhadap Total Biaya Simpan

Analisis sensitivitas dilakukan terhadap hasil perhitungan kebijakan persediaan menggunakan metode *periodic review* (*R,S*) dengan pendekatan *multivariate* Markov *demand forcasting model*. Berikut merupakan hasil sensitivitas terhadap perubahan nilai parameter pada biaya simpan dengan nilai peningkatan dan penurunan sebesar 5%,10%,15%,20%, dan 25%.



Gambar 4.5 Analisis Sensitivitas Biaya Simpan

d) Analisis Sensitivitas terhadap Total Biaya Kekurangan

Analisis sensitivitas dilakukan terhadap hasil perhitungan kebijakan persediaan menggunakan metode *periodic review* (R,S) dengan pendekatan *multivariate* Markov *demand forcasting* model. Berikut merupakan hasil sensitivitas terhadap perubahan nilai parameter pada biaya kekurangan dengan nilai

peningkatan dan penurunan sebesar 5%,10%,15%,20%, dan 25%.

Gambar 4.6 Analisis Sensitivitas Biaya Kekurangan

V. KESIMPULAN

Perancangan kebijakan persediaan ini telah menghasilkan nilai *safety stock*, nilai titik pemesanan ulang (*reorder point*) yang optimal, dan nilai kuantitas pemesanan (*order quantity*) yang optimal. Kebijakan persediaan ini mampu memberikan penurunan total biaya persediaan aktual sebesar 46% dan menurunkan total biaya persediaan sebanyak Rp 114.232.449.764,98 sehingga biaya usulan optimal yang didapat yaitu sebesar Rp 131.601.820.076,03.

REFERENSI

- [1] Ahiska, S.S., Appaji, S.R., King, R.E. and Warsing Jr., D.P. (2013) 'A Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing', International Journal of Production Economics, Vol. 144, No. 2, pp.485–496.
- [2] Chen, J., & Chen, Z. (2019). A new optimal multiproduct (Q, R, SS) policy with . *Int. J. Mathematics in Operational Research, Vol. 14, No. 1.*
- [3] Chopra, S., & Meindl, P. (2004). Supply chain management: Strategy, planning, and operation. Pearson Education.