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CHAPTER 1 
INTRODUCTION 

This chapter provides a concise overview of the research in seven sections. It 
commences by presenting the background, identifying the problem, research 
objectives, and scope limitations. The chapter then proceeds to cover this thesis's 
methodology, research method, and contribution. The subsequent chapter will 
provide a comprehensive explanation. 

1.1 Background 

In the era of technological developments for autonomous vehicles and robotics, 
accurate and efficient localization is one of the key challenges. The ability to 
precisely determine position is essential to support safe autonomous navigation. 
With the development of sensor technologies such as cameras and LiDAR, 
combining LiDAR and camera data has become an effective approach to improve 
localization accuracy, especially by utilizing 3D point cloud data validated with 
image data to generate accurate depth maps [1]. LiDAR data provides a detailed 
spatial representation of the environment in the form of a 3D point cloud, while 
camera data helps provide additional visual information in the form of imagery that 
enriches the overall understanding of the environment [2]. 

One dataset that is often used for allocation is KITTI Odometry, which 
provides high-quality data from cameras and LiDAR to support research in the field 
of autonomous driving [3]. Here are some methods that use the KITTI Odometry 
dataset with 3D point cloud as input data: 

Table 1. 1 Literature Review Method using LiDAR KITTI Odometry Dataset 

LR Method Method Description Accuracy 

[4] CAE-LO 
(Convolutional 
Auto-Encoder 
based LiDAR 
Odometry) 

is to leverage a Convolutional Auto-
Encoder (CAE) to automatically detect 
and describe interest points from LiDAR 
scans, allowing for more robust and 
accurate odometry. 

0.86% 

[5] SuMa-MOS 
(Surfel based 
Mapping - 
Moving Object 
Segmentation) 

This extension allows the system to 
segment moving objects from the static 
environment, which is crucial for accurate 
mapping and localization in dynamic 
environments. 

0.99% 

[6] SuMa++ SuMa++ uses a network called 
RangeNet++ for real-time segmentation of 
LiDAR point clouds, which enables it to 
generate more accurate and detailed 
semantic maps. 

1.06% 

[7] ULF-ESGVI 
(Uncertainty-
aware Latent 

ESGVI optimizes state estimations using 
Gaussian Variational Inference, while 
ULF enhances this with uncertainty 

1.07% 
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Feature-based 
Exact Sparse 
Gaussian 
Variational 
Inference) 

handling, improving robustness to noise 
and outliers. 

[8] EfficientLO-Net It focuses on leveraging the 3D point 
cloud data generated by LiDAR sensors 
and incorporates a number of advanced 
techniques to improve both the speed and 
accuracy of odometry estimation. 

1.92 % 

[9] 
 
 

DeepCLR 
(Correspondence-
Less 
Architecture) 

Is designed for end-to-end point cloud 
registration without relying on explicit 
point correspondences. 

3.83% 

[10] D3dlo (Deep 3D 
Lidar Odometry) 

LiDAR odometry that processes 3D point 
clouds to estimate motion without the 
need to manually define corresponding 
points. 

5.4% 

 

Based on the data in table 1.1, the accuracy value obtained for position 
accuracy is less than 5.4%. So, another method is needed to improve the accuracy. 
One recent study proposed a CNN architecture specifically designed to fuse image 
data and 3D point clouds, which showed a significant improvement in localization 
accuracy over traditional methods [11].  

Although convolutional neural networks (CNNs) have been widely used in 
image processing for localization purposes, the accuracy achieved is still limited to 
the complexity of the network architecture and hyperparameter settings [12]. This 
research focuses on improving localization accuracy by modifying CNN using 
several additional components, namely Feature Pyramid Networks (FPN), Batch 
Normalization, and layer freezing techniques. FPN is known to be effective in 
improving the network's ability to detect objects at various scales [13], while batch 
normalization helps speed up the training process and improve model stability [14]. 
Layer freezing aims to lock down the initial part of the model so that the model can 
focus on the final layers that are more specific to the localization task. 

In the context of autonomous robotics, the combination of camera and LiDAR 
data has been shown to provide better results in 3D mapping compared to the use 
of single sensor data [3]. However, a big challenge remains on how to optimally 
combine these two data sources to improve localization and mapping accuracy. This 
research attempts to address this challenge by applying modifications to CNN to 
process 3D point clouds resulting from the combination of camera and LiDAR data. 
Previous research has also shown that by combining batch normalization techniques 
and architectural modifications such as FPN, the model can capture more details in 
the surrounding environment which helps improve model performance in complex 
scenarios [15]. In addition, the implementation of layer freezing techniques allows 
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the model to adapt more quickly to new data without losing generalization of 
previously learned data [16].  

1.2 Problem Identification 

Along with the rapid development of autonomous vehicles, the need for 
systems capable of accurate localization is increasing. Cameras and LiDAR sensors 
have become the main technologies used in the collection of surrounding 
environment data. However, combining data from these two sensors in localization 
tasks still faces various challenges, especially in terms of real-time 3D mapping 
accuracy [17]. The KITTI Odometry dataset has been widely used in autonomous 
driving research as it provides visual data from cameras and LiDAR that enables 
simulation of real environments. However, the use of this data in modeling 3D 
localization still has limitations, especially in capturing complex environmental 
details. This problem is even more pronounced when faced with dynamic scenarios, 
such as object scale differences and position uncertainty [18]. 

The use of Convolutional Neural Networks (CNN) has shown promising 
results in image processing for localization tasks. However, the accuracy of CNN 
models is highly dependent on the complexity of the network architecture and 
hyperparameter settings. Several studies have shown that while CNNs are quite 
good at handling camera data, their performance is still suboptimal when used to 
incorporate data from LiDAR, especially in dynamic 3D environmental scenarios 
[19]. To overcome these problems, modifications are needed to the CNN 
architecture that can capture more details from the surrounding environment. This 
modification can be done by adding Feature Pyramid Networks (FPN) architecture, 
which has been shown to improve object detection at various scales (Lin et al., 
2017). In addition, the application of batch normalization has been shown to 
improve stability and speed up model training [14]. Layer freezing techniques can 
also help the model to focus on the final layer, resulting in more accurate predictions 
in localization tasks [16]. 

Although various methods have been proposed, the problem of localization 
accuracy using combined camera and LiDAR data remains a challenge. This 
research aims to develop a modified CNN model with additional architecture to 
improve the accuracy of 3D point cloud-based localization on the KITTI Odometry 
dataset. 

1.3 Object 

This research aims to improve the accuracy of LiDAR and camera data-based 
localization using modified Convolutional Neural Networks (CNN). The KITTI 
Odometry dataset will be used as the experimental basis to test the proposed model. 
The LiDAR data used will be validated using image data to generate a depth map, 
which will then be processed by CNN to improve localization performance. 

The main focus of this research is to improve the accuracy of the modified 
CNN by integrating several new architectures. The modifications include the 
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addition of Feature Pyramid Network (FPN) to capture multi-scale features, Batch 
Normalization (BatchNorm) to improve training stability and speed, and Freeze 
Layer to reduce computational complexity. 

With these modifications, it is expected that the accuracy of 3D point cloud-
based localization generated from combined LiDAR and image data can be 
significantly improved compared to the original CNN. This research will evaluate 
each component of the modification to determine their respective contributions to 
the accuracy improvement, as well as explore the potential use of this technique in 
autonomous vehicle applications and robotics systems. 

1.4 Scope Limitation 

To keep the experiment from being too long, this thesis limits the works as 
follows: 

1. Data: This research uses the KITTI Odometry dataset which consists of 
LiDAR data and validated images to generate depth maps. This data is 
mainly used for autonomous vehicle localization tasks. 

2. Research Focus: This research focuses on evaluating the performance of 
CNN modifications on 3D point cloud-based localization accuracy. The 
tested CNN architecture includes the addition of FPN to handle multi-scale 
information, BatchNorm for training stability, and Freeze Layer for 
computational efficiency. 

3. Performance Evaluation: The performance of the modified model will be 
compared with the standard CNN, with the measured performance 
parameter being the prediction accuracy in the localization task. 

4. Accuracy result: The accuracy of the results achieved in this study is greatly 
influenced by the limited accuracy of the sensors used, such as LiDAR and 
cameras. Variability in sensor precision and sensitivity can affect the 
precision of the data obtained, thus affecting the final results of the model 
or system developed. 

1.5 Methodology 

In this thesis, we use fundamental study and experiment based on work-
packages (WP). These are the following WP for this thesis: 

 
- WP 1: Study of literature 

Collect and study sources and references related to research. A literature 
review is conducted to comprehend the fundamental concepts related to 
natural landmark recognition, localization robot, 3D laser range finder, and 
other relevant techniques. 

- WP 2: Model Selection and Configuration 
Choosing an appropriate localization method for natural landmark 
recognition using 3D laser range finder, Model configurations, including 
hyperparameters and training settings will be defined. 
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- WP 3: Implementation of Improvements 
Developing modifications and enhancements to the localization method to 
improve its ability to estimating the position of the robot efficiently, finding 
misidentified landmarks and large angle measurement errors. 

- WP 4: Performance Evaluation 
Conducting a series of experiments on various natural landmark recognition 
datasets using suitable localization method. The result will be used to measure 
the effectiveness of the proposed improvements. 

- WP 5: Result Analysis 
Analyzing experimental data to evaluate the extent to which the proposed 
improvements successfully address the issue of estimating the position of the 
robot efficiently, finding misidentified landmarks and large angle 
measurement errors. 
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