
ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.6 Desember 2024 | Page 6692

Evaluating the Performance of RESTful APIs

Under Large HTTP Requests with K6

1st Fajra Risqulla
School of Elictrical Engineering

Telkom University

Bandung, Indonesia
fajrarisqulla@student.telkomuniversity.

ac.id

2nd Casi Setianingsih
School of Elictrical Engineering

Telkom University

Bandung, Indonesia
setiacasie@telkomuniversity.ac.id

3rd Anggunmeka Luhur Prasasti
School of Elictrical Engineering

Telkom University

Bandung, Indonesia
anggunmeka@telkomuniversity.ac.id

Abstract— Application Programming Interfaces (APIs) are

integral to contemporary software development, facilitating

interoperability among various services without requiring

knowledge of their internal implementations. Among API

architectures, Representational State Transfer (REST) is widely

adopted, leveraging HTTP methods such as GET, POST, PUT,

and DELETE for client-server communication [1]. This paper

focuses on evaluating the performances of RESTful API,

specifically the dietary API, which employs image recognition to

detect foods and provide nutritional data. Stress testing assesses

the API’s performance under high-volume HTTP requests to

identify operational thresholds and improve reliability. Using

the K6 tool, test scenarios simulate peak traffic conditions to

measure critical metrics including response times, concurrency

capacity, and requests per second. Findings highlight the impact

of virtual user configurations and request parameters on API

performance, offering insights crucial for reliability in real-

world applications.

Keywords—API, Stress Test, REST, RESTful API, K6, Virtual

User

I. INTRODUCTION

API (Application Programming Interface) playing a
crucial role in modern software development by allowing
various services to integrated without needing to understand
the internal workings of each component.

One of the most common architecture of APIs is the REST
(Representational State Transfer). This architecture will run
over HTTP protocol, so the communication between web
services could accomplish by accessing HTTP methods, such
as GET, POST, PUT, and DELETE [1], to interact with
resources on a server. The API that implementing REST
architecture will be called as <RESTful API=. Furthermore,
RESTful APIs could consume by various programming
languages. These separating client and server components. To
ensure the reliability of RESTful API under large HTTP
requests, developer or QA must know the limitations of their
applications, so that developer could improve the performance
of their RESTful API. This paper will use a RESTful API that
already exists, which is dietary [2].

Dietary is an application to assist users in managing their
nutrition intake and helping them to choose healthier foods. It
can detect foods from an image and provide the nutrition of
foods.

This paper proposes a stress test to evaluate the
performances of dietary API under large HTTP requests. By

knowing the limitations of systems, it will help software
developers to improve the RESTful API (dietary API).
However, this paper is limited by several aspects, which are:

1. The RESTful API to testing or evaluating, which is
dietary.

2. The machine used to host the RESTful API.
3. This stress test will cover only one endpoint,

specifically the endpoint used to detecting foods
<https://api.dietary.cloud/food/predict=.

4. The number of images that used to detecting foods.

II. THEORITICAL REVIEW

A. API (Application Programming Interface)

API (Application Programming Interface) is an
abstraction or interface that allows a software application
(service) to communicate with other software applications
without knowing the complexities of systems behind it [3].
Theses communications could exchange information
between services. API has been used on web applications and
operating systems [4].

B. REST

One of the most common architecture of APIs is the REST
(Representational State Transfer). This architecture will run
over HTTP protocol, so that HTTP client (Dietary Android
Application) could access HTTP methods, such as GET,
POST, PUT, and DELETE, to interact with resources on a
server. JSON (JavaScript Object Notation) is used on REST
architecture as standards message for communication between
clients and servers. The API that implementing REST
architecture will be called as <RESTful API= [2],[1].

C. Stress Test

Stress test is type of performance test to ensure the
reliability of applications by testing applications under
extreme conditions. This test will help developers to
understand how their applications handle high traffic
activities [5]. In the context of RESTful API, one of examples
could be handling large HTTP requests. The objective of this
test is to identify the limitations of systems [5].

https://api.dietary.cloud/
https://api.dietary.cloud/
https://api.dietary.cloud/food/predict

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.6 Desember 2024 | Page 6693

D. K6

K6 is open-source testing tool, which is developed by
Grafana Labs and designed to measure the performance and
reliability of APIs, microservices, and websites [6]. It allows
software developers and QA to run tests that simulate heavy
loads on the applications by defining virtual users [7], [8].

K6 use JavaScript to define test scenarios and run the
tests. Furthermore, this tool support stress testing. It provides
metrics and reports to help software developer or QA to
understand the application behaviors and its limitations as
well as identify the areas for improvement.

III. RESEARCH METHODS

To ensure the reliability of RESTful APIs, developer must

evaluate the performances. Stress test can be used effectively
to find the limitations of RESTful APIs as well as the areas or
parts that could improve the performances. There are several
metrics that should be considered when evaluate the
performances of RESTful APIs, which are:

1. The time taken for a HTTP request to get a response
from RESTful APIs.

2. The number of users could be handled concurrently
by RESTful APIs.

3. The number of requests that could be made in a
second (Request Per Second).

This paper utilizes K6 as a tool to create and run stress test
scenarios. K6 has various built-in metrics that can be used to
evaluate the performances, which are [9]:

TABLE 1.

K6 METRICS

Metric Description

http_reqs
Counts the total number of
HTTP requests made
during the test.

http_req_duration

Measures the time taken for
an HTTP request to
complete, including
connection time, DNS
resolution, and data
transfer.

http_req_blocked

Time spent in waiting for
an available TCP
connection, including
connection retries.

http_req_connecting
Time spent in establishing
a TCP connection to the
server.

http_req_tls_handshaking
Time spent performing
TLS handshake.

http_req_sending
Time taken to send the
HTTP request to the server.

http_req_waiting Time spent waiting for the
first byte of the response.

http_req_receiving
Time taken to receive the
response data from the
server.

http_req_failed
Counts the number of
failed HTTP requests.

checks
Number of checks that
passed during the test.

vus
Number of active virtual
users.

vus_max
Maximum number of
active virtual users during
the test.

iterations
Counts the total number of
requests made during test
for each virtual user.

IV. STRESS TEST SCENARIOS AND SYSTEM

SPECIFICATIONS

This section discusses the scenarios of stress tests and

system specifications.
A. System Specifications

The RESTful API are deployed in Google Cloud Platform
and the machine that host RESTful API has Intel(R) Xeon(R)
@ 2.20GHz as CPU with 2GB of RAM. The machine uses
GNU/Linux Debian Bookworm as operating system.

B. Stress Test Scenarios

This paper uses several data in stress testing.
Furthermore, the data are images, it will use to detecting
foods.

TABLE. 2.
STRESS TEST DATA

No. Data

1

2

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.6 Desember 2024 | Page 6694

No. Data

3

4

5

6

7

No. Data

8

9

Each data will be used randomly in the stress test

scenarios. The stress test scenarios are as follows:

TABLE. 3.
Stress Test Scenarios

No.
Virtual

User (vus)

Request
Per Virtual

User
(iterations)

Total
Request

RESTful
API

Endpoint

1 10 100 1000

https://api
.dietary.cl
oud/food/
predict

2 15 50 750

https://api
.dietary.cl
oud/food/
predict

The testing results are expected to have the number of

failed HTTP requests, which are less than 10% and the
average time taken for all HTTP requests to complete must be
less than or equal to 1 seconds.

V. STRESS TEST SCRIPTS AND RESULTS

To fulfill the stress test scenarios, first developer must

write scenarios in JavaScript then run it with K6 CLI
(Command Line Interface).

https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict
https://api.dietary.cloud/food/predict

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.6 Desember 2024 | Page 6695

FIG. 1.

Load All The Data Before Run Testing

FIG. 2.

Define Virtual User And Iterations (Request Per Virtual User)

FIG. 3.

Define Checks During Testing
Now, the scripts could run it by K6 CLI. The results of these
stress tests are as follows:

TABLE. 4.
Overview Of Stress Test Results

No.

Average
Request
Duration

(http_req_
duration)

Number of Failed
Requests

(http_req_failed)

Request
Per Second
(http_reqs)

1 1s 0%

7.26 rps
(request

per
second)

2 1s 27%

8.96 rps
(request

per
second)

FIG. 4.

The K6 Result For First Scenario

FIG. 5.

The K6 Result For Second Scenario

VI. STRESS TEST SCENARIOS AND SYSTEM

SPECIFICATIONS

Based on the stress test results, the following analysis can
be drawn:
A. Request Duration (http_req_duration)

The average request duration for first scenarios is 1 second
with a maximum request duration of 3 seconds, whereas for
second scenario, the average request duration is still same but
with a maximum request duration of 9 seconds, indicating
greater variation in response times under heavier loads.
B. Number of Failed Requests (http_req_failed)

The first scenario is more reliable, with zero failed
requests compared to the 27% (0.27) failed requests per
second in the second scenario.
C. Request Per Second (http_reqs)

First scenario has 7.26 requests per second, while second
scenario has fewer total requests, but the requests per second
increase to 8.96. The increase in requests per second correlates
directly with the rise in virtual user count.

All these analyses highlight the importance of adjusting
virtual users and request parameters to simulate real-world
usage scenarios accurately. As the results, the first scenario
successfully satisfied the expected output, but the second one
is failed. These stress test results are affected by the
programming language, the tools and libraries, which are
used to build the RESTful API, and the AI model that chose
to detecting foods is also affecting the performance. By
analyzing response times, error rates, and overall metrics
across these scenarios, developers can effectively optimize
the RESTful API’s performance.

REFERENCES

[1] B. Xu, K. Mou, Institute of Electrical and Electronics

Engineers. Beijing Section, and Institute of Electrical
and Electronics Engineers, The Design of Embedded

Web System based on REST Architecture. 2019.

ISSN : 2355-9365 e-Proceeding of Engineering : Vol.11, No.6 Desember 2024 | Page 6696

[2] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D.
Mishra, <RESTful API Testing Methodologies:
Rationale, Challenges, and Solution Directions,=
Applied Sciences (Switzerland), vol. 12, no. 9. MDPI,
May 01, 2022. doi: 10.3390/app12094369.

[3] I. Rauf, E. Troubitsyna, and I. Porres, <Systematic
mapping study of API usability evaluation methods,=
Computer Science Review, vol. 33. Elsevier Ireland
Ltd, pp. 49–68, 2019. doi:
10.1016/j.cosrev.2019.05.001.

[4] E. Mosqueira-Rey, D. Alonso-Ríos, V. Moret-
Bonillo, I. Fernández-Varela, and D. Álvarez-
Estévez, <A systematic approach to API usability:
Taxonomy-derived criteria and a case study,= Inf

Softw Technol, vol. 97, pp. 46–63, May 2018, doi:
10.1016/j.infsof.2017.12.010.

[5] M. Hendayun, A. Ginanjar, and Y. Ihsan,
<ANALYSIS OF APPLICATION
PERFORMANCE TESTING USING LOAD
TESTING AND STRESS TESTING METHODS IN

API SERVICE,= JURNAL SISFOTEK GLOBAL, vol.
13, no. 1, p. 28, Mar. 2023, doi:
10.38101/sisfotek.v13i1.2656.

[6] <Garafana K6,= Grafana Labs. Accessed: Jul. 10,
2024. [Online]. Available:
https://grafana.com/docs/k6/latest/

[7] F. A. Julana, <Analyzing QoS Performance in
Kubernetes-Based High Scalability Clusters,= 2023.

[8] C. Konkel Bachelor’s Thesis, <Benchmarking
Scalability of Load Generator Tools,= 2023.

[9] I. Vals, <Understanding K6 Results.= Accessed: Jul.
10, 2024. [Online]. Available:
https://github.com/grafana/k6-
learn/blob/main/Modules/II-k6-Foundations/03-
Understanding-k6-results.md

.

