
across four separate datasets and a combined dataset. Specifi-
cally, the Mean Reciprocal Rank (MRR) values for individual
datasets were 0.7087 for BAB 1, 0.7255 for BAB 2, 0.8592
for BAB 3, and 0.8250 for BAB 4, with HITS@10 values of
0.9398, 0.9274, 0.9982, and 1.0 respectively. The combined
dataset achieved an MRR of 0.7695 and HITS@10 of 0.9570,
indicating strong performance in prioritizing and retrieving
relevant information. These results highlight the potential of
ChatGPT LLMs to transform unstructured text into dynamic,
interactive knowledge representations, significantly enhancing
the accessibility and utility of educational content. Future
work should focus on optimizing the extraction process and
expanding the dataset scope to further validate and improve
this approach, thereby enriching educational resources and
supporting data-driven decision-making in various domains.
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