DAFTAR GAMBAR

Gambar 2. 1 Cloud Service Models (SaasS, PaaS, IaaS) [25] 11
Gambar 2. 2 Ilustrasi Komputasi Serverless [39] 15
Gambar 3. 1 <i>Flowchart</i> Penelitian
Gambar 3. 2 Alur kerja aplikasi Flask
Gambar 3. 3 Alur mengemas <i>source code</i> menjadi Docker Image 22
Gambar 3. 4 Alur Tahapan <i>Deployment</i>
Gambar 3. 5 Diagram alur pengujian locust sisi <i>client</i>
Gambar 3. 6 Contoh Gambaran Skenario Pengujian Locust
Gambar 3. 7 Diagram alur analisis pada sisi server
Gambar 3. 8 Potongan Kode <i>endpoint</i> pada aplikasi
Gambar 3. 9 Fungsi <i>load_model_mobilenet</i> pada aplikasi model mobilenet. 28
Gambar 3. 10 Potongan Kode Pengolahan Gambar pada model_1.py
Gambar 3. 11 kode Output Prediksi pada aplikasi model mobilenet
Gambar 3. 12 Uji Aplikasi Flask Secara Lokal
Gambar 3. 13 Uji Endpoint "/" (Root) menggunakan ThunderClient
Gambar 3. 14 Uji Endpoint predict menggunakan ThunderClient 30
Gambar 3. 15 Kode pengolahan gambar aplikasi model VGG16 31
Gambar 3. 16 <i>Script</i> Dockerfile untuk kedua model
Gambar 3. 17 Perintah build docker image untuk model MobileNet
Gambar 3. 18 Perintah build docker image untuk model VGG16 33
Gambar 3. 19 Hasil proses build Docker Image model MobileNet 33
Gambar 3. 20 Hasil proses build Docker Image model VGG16
Gambar 3. 21 Contoh menjalankan container untuk model MobileNet 34
Gambar 3. 22 Memeriksa <i>container</i> yang sedang berjalan
Gambar 3. 23 Melihat <i>container</i> berjalan dari aplikasi desktop Docker 35
Gambar 3. 24 Pengujian Endpoint Prediksi dari container secara lokal 36
Gambar 3. 25 Alur sederhana dari Docker ke Artifact
Gambar 3. 26 Tampilan pada website GCP membuat repository
Gambar 3. 27 Membuat <i>repository</i> untuk Docker Image
Gambar 3. 28 Proses selesai membuat <i>repository</i> untuk Docker Image 38
Gambar 3. 29 Menampilkan bahwa Google Cloud CLI berhasil instalasi 38
Gambar 3. 30 Tampilan terminal jika akun berhasil login

Gambar 3. 31 Instruksi setup untuk konfigurasi push Docker pada GCP 39
Gambar 3. 32 Akses Docker terkonfigurasi ke Artifact Registry 40
Gambar 3. 33 Perintah penamaan tag Docker Image kepada 2 model 40
Gambar 3. 34 Proses push model kedalam repository Artifact Registry 41
Gambar 3. 35 Detail repository pada Artifact Registry
Gambar 3. 36 Alur <i>Deployment</i> Docker Image ke Cloud Run 42
Gambar 3. 37 Pull Image dan Deployment Ke Cloud Run model MobileNet43
Gambar 3. 38 Hasil pada <i>deployment</i> Cloud Run model MobileNet
Gambar 3. 39 Hasil pada <i>deployment</i> Cloud Run model VGG16 44
Gambar 3. 40 Alur Deployment Docker Image ke App Engine 45
Gambar 3. 41 Konfigurasi App Engine pada file app.yaml 45
Gambar 3. 42 Deployment App Engine menggunakan terminal Cloud SDK 46
Gambar 3. 43 Hasil Deployment Google App Engine model MobileNet 46
Gambar 3. 44 Hasil Deployment Google App Engine model VGG16 47
Gambar 3. 45 Login Credential untuk Remote Desktop Connection
Gambar 3. 46 Tampilan Setelah Login Remote Desktop Connection
Gambar 3. 47 Instalasi Visual Studio Code pada Virtual komputer
Gambar 3. 48 Instalasi Python pada Virtual komputer
Gambar 3. 49 Script Locust untuk pengujian
Gambar 3. 50 Menjalankan Script Locust
Gambar 3. 51 Tampilan Antarmuka Locust
Gambar 4. 1 Spesifikasi VPS Indonesia untuk simulasi
Gambar 4. 2 Load Testing untuk menguji Penggunaan CPU 56
Gambar 4. 3 Pemilihan Metrik pada Google untuk Cloud Run
Gambar 4. 4 Pemilihan Metrik pada Google untuk App Engine 57
Gambar 4. 5 Visualisasi Data dengan Grafik Garis
Gambar 4. 6 Total Pengeluaran Biaya Selama 17 Hari
Gambar 4. 7 Alur Deployment Aplikasi ke AWS
Gambar 4. 8 Grafik Line Cloud Run dan App Runner
Gambar 4. 9 Tampilan fitur prediksi pada aplikasi Ternakami