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The purpose of this paper is to propose a cascade complementary filter (CCF) for tracking abdominal or diaphragmatic movement
induced by respiratory activity. An inertial sensor (3 DOF accelerometer and 3 DOF gyroscope) is mounted on the upper
abdomen, allowing the tilt value of the upper abdomen to be measured. CCF is aimed at overcoming the limitations of the
linear CF method for online gyroscope estimation. Our proposed CCF algorithm compensates gyroscope bias with a nonlinear
filter and then fuses it with accelerometer angle to obtain abdominal inclination. The CCF method performed better than the
linear CF method in terms of respiratory rate error. While CCF increased estimation accuracy, it also appeared to be
independent of attitude estimation parameters. The frequency of the CCF respiratory signal remained steady between 0.2Hz
and 0.4Hz throughout the experiment, with a mean of 0.29Hz. In other words, the results range between 12 and 24 breaths
per minute, which is considered normal at 17 breaths per minute.

1. Introduction

By measuring airflow with a spirometer, the direct respira-
tion rate can be estimated. Due to the direct invasion of
the mouth or nose, this technique is often impracticable
and uncomfortable for patients during treatment [1]. For
continuous respiratory monitoring outside of a clinical envi-
ronment, the noncontact approach is suggested. Using an
accelerometer worn on the chest or upper abdomen to mea-
sure the movement of the chest wall and diaphragm is a
unique way for estimating respiratory rate.

As proposed by [2], the noncontact technique detects the
respiratory rate based on the movement of the chest surface
via an accelerometer sensor. During respiration, the move-
ment of the thorax and abdomen causes slight variations in
their inclination. Accelerometers worn on the upper abdo-
men and chest wall can detect changes in the inclination
angle and rotation of the chest wall during inhalation,
enabling the assessment of respiratory rates [2–4]. Torres
[5] evaluated the diaphragmatic movement by observing
the breathing muscles using an accelerometer. The acceler-

ometer sensor was then utilized to calculate the breathing
rate based on the diaphragmatic muscular contraction.

Accelerometers have been used extensively to detect and
evaluate respiratory signals, as proven by [6, 7], who put sen-
sors in a variety of location, including the upper abdomen,
sternum, and chest surface. Observations demonstrated that
various persons can create signals of differing quality (as
measured by signal-to-noise ratio (SNR)) from specific
places. The precision with which fiducial points on the respi-
ratory wave are recognized can be significantly affected by
factors such as the sensor’s location. According to [8], the
Euler angle was derived from respiratory movement using
an accelerometer and a gyro sensor (also known as an iner-
tial sensor). Another study [9] developed a device based on
tracking thoracic movement with a complementary filter to
track the Euler angle during inclination and detect respira-
tory patterns. To extract relevant information about the pos-
ture and pose of the limbs from accelerometer and
gyroscope signals, a proper sensor fusion technique was nec-
essary. Regardless of the sensor’s global orientation, sensor
fusion permits the assessment of changes in the chest surface

Hindawi
Journal of Sensors
Volume 2022, Article ID 7987159, 16 pages
https://doi.org/10.1155/2022/7987159

https://orcid.org/0000-0001-5677-2235
https://orcid.org/0000-0001-9712-965X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7987159


slope resulting from respiratory activity. Then, the Kalman
filter was used to integrate the acceleration and angular
velocity quaternions with the Euler angle given in quater-
nions [9]. However, there was still a significant amount of
noise in the output, making it difficult to identify the per-
son’s respiration rate.

The majority of sensor fusion techniques estimate the
unknown variables (such as the inclination angle) in discrete
time series, utilizing the prior estimate and current time
steps. Typically, two sensor fusion techniques are employed:
the complementary filter (CF) and the Kalman filter (KF)
[10, 11]. A value estimate can be generated by applying a
Kalman filter to the data. Numerous Kalman filter (KF) var-
iations, such as the extended Kalman filter (EKF) and parti-
cle filter (PF), have been proposed for sensor fusion (PF).
EKF, the nonlinear variation of KF, is a well-known method
for estimating posture that remains popular among
researchers. KF, EKF, and PF, however, require a mathemat-
ical model and include a complex matrix operation, which
increases the computing complexity. However, when applied
to embedded devices, the Kalman filter method’s mathemat-
ical model necessitates a lengthy computation time [12].

Numerous studies have been conducted to address some
of the issues associated with KF through the use of the com-
plementary filter (CF, also known as linear CF). No prior
knowledge of the system environment or complex system
model is required for CF. To increase the accuracy of the
estimate value, a nonlinear variant of CF was developed.
The nonlinear CF is implemented using a proportional-
integral feedback control system, with the proportional por-
tion controlling the frequency shift between two sensors and
the integral portion controlling the gyroscope bias [12]. Both
of linear and nonlinear CF estimate angular value obtained
from the accelerometer and gyroscope.

This work proposes the use of a cascade complementary
filter (CCF) to track the angle of inclination of the abdomen/
diaphragm produced by respiratory activity, by averaging
tridimensional thoracic movements, such as chest tilt, accel-
eration, and velocity, as the measurement parameters. The
processing stages in the works adopt stages in Carlton [13]:
extraction of respiratory signals, estimation of respiration
rate, and fusion of estimates. The CCF is aimed at solving
any shortcomings in the linear CF gyroscope estimation
method. CCF calculates abdominal/diaphragmatic inclina-
tion angle by using the corrected gyroscope readings and
accelerometer angle. CCF was able to correct the gyroscope
error, allowing it to provide a respiratory signal with less
harmonic frequency components. In addition, the experi-
mental results revealed that signal processing with CCF pro-
duced less error rate than the linear CF method.

2. Studies on Respiratory Rate Measurement

This section presents the literature review on the principles
of respiration rate measurements. Afterward, the inertial-
based measurement method for respiratory rate is techni-
cally presented according to the acquisition mechanism
and signal processing as well as the signal extraction algo-
rithm to obtain the respiratory rate from inertial sensors.

2.1. Principle and Measurement. When the breathing mus-
cles and diaphragm contract, respiration occurs. Respiration
is a two-step process consisting of inhalation and expiration.
The diaphragm contracts descends and creates a pressure
difference, allowing air to enter the lungs from the respira-
tory system. When the pectoral muscles contract, the ribs
rise and the chest cavity enlarges, allowing more air to enter.
As shown in Figure 1, the chest surface expands and con-
tracts to facilitate inhalation and expiration. Therefore, dur-
ing inhalation, the sternum is lifted by the respiratory
muscles. During exhalation, the diaphragm contracts, which
compresses the chest and forces air out of the lungs.

Numerous studies have been conducted to measure the
amount of air in the lungs that contributes to the expansion
of the chest surface movement. There are several analytical
techniques for monitoring and measuring respiratory rate
based on chest wall motion. These include the following:
(i) based on chest wall stretch caused by respiratory activity,
(ii) based on transthoracic impedance changes, and (iii)
based on three-dimensional thoracic motion (e.g., chest tilt,
acceleration, and velocity). The algorithm can be divided
into three stages based on the three analytical techniques:
respiratory signal extraction, respiratory rate estimation
(RR estimate), and RR estimate fusion [13]. The respiratory
signal is frequently extracted using AM, FM, or BW modu-
lation. The extraction can be based on features or on filters.
In this instance, feature-based technology outperforms filter-
based technology [13].

2.2. Inertial-Based Measurement. According to [14], an iner-
tial measurement that consists of an accelerometer and gyro-
scope placed around the chest and abdomen area is included
in the measurement of the chest wall movement area, as
illustrated in Figure 2.

An IMU worn around the chest, abdomen, or diaphragm
produces a signal with a very low-frequency component cor-
responding to the movement of the chest surface and a high-
frequency seismocardiogram (SCG) component that cap-
tures the chest vibrations caused by the heartbeat. The sig-
nificant sub-Hz component is caused by the movement of
the chest surface and diaphragm during the expansion and
contraction of the lungs. In contrast, the component with a
much smaller amplitude but a higher ripple frequency
(>5Hz) is the result of chest wall vibrations, which are espe-
cially noticeable in light of the acoustic waves generated by
the heart valves [15]. Acceleration and velocity variation
are two potential inputs for breathing data recording. Typi-
cally, the IMU sensor is attached to the chest wall in order
to detect breath-induced movement [14]. Figure 3 depicts a
common application of the IMU’s principle of respiratory
signal acquisition and respiratory rate measurement.

A respiratory signal can be obtained by measuring the
amplitude between the peak and trough of the pulse [16],
the beat-to-beat interval between fiduciary points [17], or
the peak and trough of the composite signal [16, 18]. In this
instance, the original signal is filtered to eliminate nonre-
spiratory frequency components, either with a band-pass fil-
ter (BPF) [19] or by examining signal patterns with a
continuous wavelet transform [20, 21].
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Lin et al. investigated the use of sensor fusion for respi-
ratory rate measurement [22]. It was accomplished through
the use of data from a three-axis accelerometer and a three-
axis gyroscope. Following that, the two sensors were
extracted to obtain the Euler angle and convert it to a qua-
ternion value. The results of this method indicated that the
algorithm used improved the accuracy of respiratory rate
detection by 4.6 percent for the treadmill and 9.54 percent
for the bicycle. Additionally, the Kalman filter process deter-
mined that there was an average time delay of approximately
0.638 seconds [22].

Another researcher [23] used sensor fusion in conjunc-
tion with the Euler and quaternion methods to determine
the accelerometer and gyroscope’s inertial rotation angle
due to respiratory movements. Both devices recorded the
respiration signal, which was then reconstructed using the
wavelet method. The next step was to identify the respiratory
phase automatically. The three-axis accelerometer and
three-axis gyro sensor can be used to calculate the Euler
angle based on respiratory system movement. Prior work
had been done on autosegmentation and denoising of accel-
erometer and gyroscope signals.

Another study [7] developed a method for determining
the respiration rate by converting accelerometer and gyro-
scope values to Euler and quaternion angles. In contrast to
[23], Shen [7] enhanced the quaternion signal using a Kal-
man filter in conjunction with naive Bayes. A band-pass fil-
ter with a cutoff frequency of 0.1–0.8Hz was then applied to
the quaternion signal. The experiment demonstrated that
when the volunteer was supine or in a static sitting position,
the variation in respiration frequency performed best, while
the amplitude variation of the respiratory signal performed
best during the ongoing experiment.

Noise attenuation is a technique for removing noise
from a signal. Widrow et al. [24] introduced the adaptive
noise canceler, which has been used in a variety of applica-
tions [25, 26], including communication systems [27, 28]
for noise cancellation in GSM, biomedical engineering
[29], and industrial applications [30]. Adaptive filters are
then frequently used to determine the input signal and
reduce the system’s noise level at the output. The adaptive

filter parameters are typically set automatically and do not
require prior knowledge of the signal or noise characteristics.

3. Material and Methods

This section discusses the methodology used in the research.
Figure 4 shows three blocks that summarize the research
methodology. The first block is focused on setting up the
environment and acquiring data. The second block presents
signal processing techniques, including digital filtering, cal-
culating Euler angles from accelerometer signals, and fusing
accelerometer and gyroscope signals using cascade comple-
mentary filters. The third block is about the detection of
peaks and the measurement of respiration rate. The follow-
ing subsections provide a more detailed explanation of each
block.

3.1. Data Acquisition. As illustrated in Figure 5, data collec-
tion was accomplished using the Mbient inertial measure-
ment unit (IMU) sensor, which consists of a three-axis
accelerometer and a three-axis gyroscope mounted on a flex-
ible belt. The sensor was connected via the Wi-Fi protocol to
a smartphone application or a computer for data transmis-
sion as a result of measurement. Mbient IMU made use of
a Bosch BMI 160 inertial measurement unit sensor. During
the experiment, an accelerometer with a resolution of 2 g
and a gyroscope with an angular velocity of 2000°/sec were
used, each with a sampling rate of 100Hz and data retrieval
lasting 60 seconds. The data were collected from 36 volun-
teers ranging in age from 19 to 47 years. The IMU sensor
was used exclusively in the diaphragm/abdomen for the
supine position, as recommended by [7], as illustrated in
Figure 5.

The movement of the chest wall during respiratory activ-
ity altered the angle of the IMU sensor attached to the dia-
phragm. Thus, accelerometers and gyroscopes were used to
determine the acceleration and angular velocity of the sur-
face walls during respiratory activity. Figure 6 depicts the
mechanics of breathing and the changes in the orientation
of the IMU sensor during exhalation. The figure’s right side
depicts the sensor’s raw signal.

As previously stated, data collection for this paper was
conducted on volunteers’ supine positions. Multiple mea-
surement positions and transitions between position
changes produced several similar respiratory signal patterns,
but with varying inclination angle amplitudes or magni-
tudes. Supine position, as recommended by [7], results from
a more dominant inclination angle and amplitude, as illus-
trated in Figure 7.

Changes in position from supine to right or to left
resulted in a decrease in the amplitude of the inclination
angle. Additionally, there is a short fluctuating angular
change during the position transition, but once the position
was stable, the respiratory signal produced became stable.
Figure 8 shows the respiratory signal pattern obtained from
the supine position.

3.2. Signal Characteristics. The IMU sensor outputs the
accelerometer and gyroscope signals in three axes of sensor

Inhale Exhale

Figure 1: Principle of breath mechanics.
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positions, based on the sensor placement shown in Figure 6.
However, during the respiration activity, the dominant value
of the accelerometer is the x-axis, and for the gyroscope is
the pitch axis. The example of the signals is depicted in
Figure 9. The upper portion of the figure depicts the raw
accelerometer signal on the x-axis, while the lower portion

depicts the gyroscope’s pitch axis. The accelerometer and
gyroscope’s three axes clearly showed that the respiration
signal was a low-frequency component, whereas noise gen-
erated during the measurement process was a high-
frequency component. The amplitude generated by mea-
surements taken in this position was quite large, particularly
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Figure 2: Chest wall movement area measurement [14].
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for the accelerometer with the x-axis and the gyroscope with
the pitch axis.

The frequency location of the respiration signal captured by
the sensor was identified using the fast Fourier transform of all
accelerometer axes. According to Figure 10, the dominant
amplitude of the respiration signal was in the range of 0.2Hz

to 0.4Hz for the sensor in the abdomen position. This is consis-
tent with the experiment’s recommendations [2]. The respira-
tion measurement results were approximately 0:2 × 60 to
0:4 × 60 respirations per minute (RPM) or 12 to 24 RPM.
The difference was evident in the resulting amplitude, which
indicated that the respiration signal generated by the

Sensor on diaphragm

Supine position

IMU
Y lateral

0°

zVertical

XLongitudinal

IMU

Figure 5: Sensor placement and its orientation in a supine position. The Mbient inertial measurement unit was placed on the upper
abdomen/diaphragm. Wi-Fi communication protocol was used to transfer data from IMU to PC.
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accelerometer’s x-axis had a relatively large amplitude when
compared to other accelerometer axes at the same measure-
ment position.

3.3. Cascade Complementary Filter. Cascade complementary
filtering (CCF) is a novel sensor fusion technique proposed
by [12]. Sensor fusion is a broad term that refers to the pro-
cess of combining data from two or more sensors in order to
achieve higher accuracy and specificity than is possible with
a single sensor. In this study, inertial sensors (gyroscope and
accelerometer) were used to estimate the angle of the three
sensor axes with respect to the position of the chest surface
during respiratory activities. When used to determine the
angular orientation, the gyroscope’s value drifted over time.
By fusing the data from the triaxial accelerometer, additional
information about the roll and pitch angles of the x- and y
-axes was obtained to compensate for the gyroscope’s drift-
ing values.

This paper proposes CCF as a fusion technique for
obtaining more stable IMU sensor respiration signals. CCF
estimated the attitudes of sensors in two stages. The nonlin-
ear component was used to correct for gyroscope error,
whereas the linear component was used to calculate the
overall attitude after gyroscope bias had been corrected. In
other words, CCF became a hybrid of linear and nonlinear
forms. Using a nonlinear complementary filter, the CCF
algorithm compensated for gyroscope bias and then esti-

mated attitude using bias-compensated gyroscope measure-
ments in a linear complementary filter. Figure 11 depicts
the CCF method, where θα represents the accelerometer
rotation angle (in this case, the longitudinal axis or x-axis)
as determined by the equation

θα = arctan Axffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ax2 + Az2

p
� �

, ð1Þ

where Ax and Az are the accelerometer values in x- and z
-axis.

As seen in Figure 11, the value of θg refers to the gyro-

scope angular; _θg refers to the angular velocity; _θ
e
g refers to

the gyroscope angular value containing the high-frequency

noise, and bθccf refers to the estimate value of the inclination
of diaphragm surface produced by the cascade complemen-
tary filter. This value represented the angular displacement
induced by the respiratory activity. The values of α, Kp (pro-
portional), and KI (integral) referred to the constants of cas-
cade complementary filter (CCF).

Based on the CCF block diagram as shown by Figure 11,
the error values between the estimation of the abdominal
inclination θccf and the accelerometer value θa were used
to compensate for the gyroscope error. The gyroscope error
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value is then represented by

δω = θa − θccfð Þ Kp+
ð
KIdt

� �
: ð2Þ

This error value was then subtracted from the velocity
value of the angular measurement, which was obtained using

a gyroscope. The gyroscope signal still contained noise. For
this, we obtained an error compensation as given by the
equation

_θg = _θ
e
g − δω: ð3Þ

This angular estimation was then integrated to obtain

the attitude of CCF, i.e., bθccf . In the CCF architecture, a lin-
ear complementary filter was subsequently used to fuse the
attitude angles from the gyroscope with the calculated accel-
erometer angle. Thus, the IMU angular attitude estimate was
obtained by the equation

bθccf = α
ð

_θ
e
g + Kp+

ð
KIdt

� �
θa − θccfð Þ

� �
dt

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nonlinear part

+ 1 − αð Þθa|fflfflfflfflffl{zfflfflfflfflffl}
Linear part

:

ð4Þ

As illustrated in Figure 11, the CCF algorithm used a
nonlinear complementary filter to compensate for gyroscope
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bias and then used the compensated gyroscope angular
velocity measurement in a linear complementary filter to
estimate the chest wall inclination due to respiratory activity.
In other words, CCF compensates for gyroscope error using
the NCF and calculates the attitude angle using the LCF. The
weighting factor varied between 0.8 and 0.98 in this experi-
ment for both CF and CCF. In this paper, the linear comple-
mentary filter method is also compared to the cascade
complementary filter method and the signals are shown in
Figure 12. This figure illustrates the difference in results
obtained when respiration signals are processed using CF
and CCF. The blue line, which is a CF-processed respiration
signal, demonstrates that it still contains gyroscope bias, par-
ticularly in the section exhale to inhale phase.

4. Results and Discussions

4.1. Estimation of Respiration Rate. Prior to using the CCF
model to process the signal, the accelerometer angle was cal-
culated using Equation (1). The accelerometer angle was
then denoted by the term θa and depicted in Figure 13 with
a red signal. The value for the parameter α was 0.98.

The CCF process was continued using the input θa and
the gyroscope angular velocity signal θg to estimate attitude
by tracking the inclination angle of the diaphragm during
respiratory activity. The comparison of respiration signals
produced by the CF and CCF methods as well as the estima-
tion result is shown in Figure 14. Figure 14(a) depicts the
results of the CCF process as a respiration signal, plotted
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by the red signal. The blue signal indicates the respiration
signal generated by the linear CF method.

To compute the respiratory rate value, a peak detection
procedure was used in conjunction with the estimate atti-
tude of the CCF angular value. It was intended to denote

the fiducial points, which corresponded to the peak of inhale
activity. Prior to peak detection, the data were filtered with a
Butterworth band-pass filter between 0.2 and 0.8Hz. Peaks
and fiducial points were detected automatically in this
research paper using the MATLAB application’s automatic
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Figure 15: FFT of respiration signal from 5 datasets: (a) using complementary filter (CF) and (b) using cascade complementary filter (CCF).
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peak detection function. The results of peak detection and
fiduciary point marking are shown in Figure 14(b). The cal-
culated respiratory rate was consistent with the manual mea-
surement of 13 rpm (respiration per minute).

4.2. Respiration Signal Analysis from Complementary Filter
and Cascade Complementary Filter Methods. This section
discusses the signal processing analysis of the sensor fusion
technique, specifically using the cascade complementary
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Figure 16: Distribution of data frequency from the location of respiration signal with the estimation of the CF and CFF method. It can be
seen that the frequency location of the respiration signal processed based on the CFF method tended to be more constant at the range of
0.29Hz.
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filter method. Additionally, a comparison between signal
analyses of complementary filter method will be discussed
as well. For the first step of analysis, FFT was performed
on the results of CF and CCF methods with constants α =
0:8, α = 0:9, α = 0:98. Figure 15 illustrates the comparison
of frequency spectrums of the two methods.

According to the frequency spectrum depicted in
Figure 15, sensor fusion technique with CCF produces a
dominant frequency of approximately 0.3Hz with an

amplitude of approximately 1 unit for α = 0:8 and α = 0:9
and 1.5 units for α = 0:98. Meanwhile, sensor fusion com-
bined with the CF method produces two dominant fre-
quencies, approximately 0.3Hz and 0.5Hz, with an
amplitude of approximately 0.6-0.8 units for α = 0:8 and
α = 0:9 and 1 unit for α = 0:98. This demonstrates that
the constant on the CCF plays a significant role in gener-
ating a single dominant frequency with a sufficiently large
amplitude.
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As illustrated in Figure 16, this also confirms the robust-
ness of location of respiration frequency in spectrum gener-
ated by sensor fusion using CCF methods. The curve of the
frequency spectrum distribution indicates that the CCF
method generates the respiration frequency with μ = 0:29
Hz for the three variations of α. Meanwhile, sensor fusion
technique with the CF method results in a frequency range
of 0.34Hz to 0.45Hz. By obtaining a single dominant fre-
quency spectrum from the respiratory frequency, the CCF
method produces a more stable respiratory signal than the
CF method.

This section concludes with a comparison of the respira-
tion signal with the generated spectrum of both conven-
tional complementary filter methods with cascade
complementary filters. As illustrated on Figure 17(a), the
CCF method produces a smoother inclination angle than
the CF method. Thus, when applying BPF with cutoff fre-
quency between 0.2Hz and 0.8Hz, the resulting respiration
signal is more stable and smoother, allowing the peak calcu-
lation process to easily calculate the entire respiratory period
using peak detection algorithm.

As an example of the comparison results between the CF
and CCF methods, Figure 18 shows the plots of 3 datasets of
respiration signal. It can be concluded that by performing
band-pass filtering on the output of the CCF method, the
respiration signal generated by the three sample datasets
can be clearly identified and the peaks and valleys can be
easily detected to calculate the respiration rate per minute.

4.3. Statistical Analysis of Respiration Rate Using CF and
CCF Methods. This section discusses a statistical analysis
on experimental data using the complementary filter (CF)
and cascade complementary filter (CCF). The purpose of
this analysis is to determine the system’s overall accuracy
when measuring various respiration rates using both
methods. As described previously in Data Acquisition, the
dataset was collected from 36 volunteers ranging in age from
19 to 47 years. The value variation was used in the experi-
ment to determine the extent to which weight had an effect
on the estimated value of the respiration rate. The distribu-
tion of age of volunteers is depicted in Figure 19(a). The
weight and height of volunteers are also recorded in the
dataset, and distribution of those volunteers’ data is plotted
in histogram as shown in Figures 19(b) and 19(c),
respectively.

The performance of CF and CCF at different respiration
rates from dataset ranges from 11 to 20 rpm. For further
analysis, the dataset is then plotted using correlation and
Bland–Altman plots as shown in Figures 20 and 21. The
Bland–Altman plots show estimated respiration rate per
minute (rpm) during supine position placing sensor on the
diaphragm of the chest. The CF and CCF parameter α is also
varied from 0.8 to 0.98 to obtain the best respiration signal
after fusion technique. Figures 20 and 21 illustrate the corre-
lation plot and Bland–Altman plots after applying band-pass
filter to the output of CF and CCF. The root mean square of
the difference between the estimated respiration rate and the
manually measured respiration rate was calculated to obtain
the root mean square error (RMSE) in all three α values. The

group RMSE for complementary filter CF with α = 0:8 is
2.24 rpm, with α = 0:9 is 1.79 rpm, and with α = 0:98 is
1.88 rpm. The group RMSE for cascade complementary filter
CCF with α = 0:8 is 0.81 rpm, with α = 0:9 is 0.87 rpm, and
with α = 0:98 is 0.74 rpm. Respiration rate estimation using
CCF had the best correlation at 0.96 for the CCF method.
Meanwhile, the concentration of estimate value was quite
significant for the CF method, resulting in the estimate value
being further from the linear line for all of α constants. How-
ever, for the CCF method, the distribution of respiration
values became more similar to the actual measurement
result. Respiration rate with the CCF method with α = 0:98
proved to have the highest accuracy, with the lowest RMSE
and a correlation with ground truth is 0.95. This is consis-
tent with physiological expectations since the shape of the
respiration waveform represents pulse during inhale and
exhale.

The probability density function of respiratory rate mea-
surement error between the CF and CCF methods is shown
in Figure 22. As seen from Figure 22, the change of α had
more significant effect of reducing error of respiration rate
estimation on the CF method compared to the CCF method.
Low value of α in CF significantly causes the larger error
deviation. Meanwhile, the effect of α has no significant effect
on the error distribution in the CCF method. Respiration
rate with the CCF method with α = 0:98 proved to have
the highest accuracy of estimate values. Therefore, it
increases the error probability value with μ = 0 and the value
of the measurement rate estimation was close to the ground
truth measurement value with the probability of almost 0.55
with ±0.73 rpm of standard deviation 1 and ±1.45 of stan-
dard deviation 2.

Based on the analysis in the preceding paragraph, it can
be concluded that the CCF method was more robust than
the CF method for estimating the respiration rate using iner-
tial measurement unit by means of measuring the inclina-
tion angle of chest diaphragm. These results of frequency
analysis show the location of the respiratory signal was more
stable around 0.29Hz for the CCF method compared to the
CF method. This increased the robustness of CCF relative to
CF. Statistical analysis also revealed that the robustness of
CCF is due to the estimate value of respiration rate, which
tends to less error rate and high correlation from the dataset
during measurement.

5. Conclusion

Complementary filtering (CF) combines accelerometer and
gyroscope readings, resulting in a more lightweight and
accurate angular motion estimation than that obtained
directly from accelerometer data. This paper describes a sen-
sor fusion technique based on an IMU and proposed the cas-
cade complementary filter (CCF) method for estimating the
sensor’s attitude toward the diaphragm inclination caused
by respiratory activity. An accelerometer and a gyroscope
are used in a sensor fusion system. CCF was compared to
CF, which demonstrate that CCF provides a more accurate
estimate of respiration rates. The CCF method was used to
monitor respiratory rate in the supine position. According
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to the experimental results, CCF produced greater accuracy
with a 1 rpm error compared to CF with a 5 rpm error. Var-
iation of filter parameters, i.e., decreased CF performance
significantly, while CCF tended to remain stable. While
CCF improved estimation accuracy, another significant
point was that CCF did not appear to be dependent on filter
parameters for attitude estimation. This was supported by
data indicating that the location of the respiratory signal fre-
quency generated by the CCF method was relatively con-
stant in the range of 0.29Hz, whereas the CF has still two
dominant frequencies, i.e., 0.3Hz and 0.5Hz. In CCF
methods, the nonlinear part with proportional integrals
was used to recalculate the online gyroscope bias, whereas
the linear version was used to estimate the attitude parame-
ters. The proposed CCF with α = 0:98 proved to have the
highest accuracy of estimate values. It has an error probabil-
ity value 0.55 with μ = 0 that indicates the value of the mea-
surement rate estimation was close to the ground truth
measurement value with the probability of almost 0.55 with
±0.73 rpm of standard deviation 1 and ±1.45 of standard
deviation 2.
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