
Applied Soft Computing 114 (2022) 108043

S
S

d
i
c
m
B
i
w

m
t
i
e
i
i
a

a
a

h
1
n

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

KomodoMlipir Algorithm✩

uyanto Suyanto ∗, Alifya Aisyah Ariyanto, Alifya Fatimah Ariyanto
chool of Computing, Telkom University, Bandung, Indonesia

a r t i c l e i n f o

Article history:
Received 15 March 2021
Received in revised form 18 October 2021
Accepted 4 November 2021
Available online 17 November 2021

Keywords:
Komodomlipir algorithm
Metaheuristic optimization
Self-adaptation of population
Exploitation–exploration balance
Scalable to thousand dimensions

a b s t r a c t

This paper proposes Komodo Mlipir Algorithm (KMA) as a new metaheuristic optimizer. It is inspired
by two phenomena: the behavior of Komodo dragons living in the East Nusa Tenggara, Indonesia,
and the Javanese gait named mlipir. Adopted the foraging and reproduction of Komodo dragons, the
population of a few Komodo individuals (candidate solutions) in KMA are split into three groups
based on their qualities: big males, female, and small males. First, the high-quality big males do
a novel movement called high-exploitation low-exploration to produce better solutions. Next, the
middle-quality female generates a better solution by either mating the highest-quality big male
(exploitation) or doing parthenogenesis (exploration). Finally, the low-quality small males diversify
candidate solutions using a novel movement called mlipir (a Javanese term defined as a walk on
the side of the road to reach a particular destination safely), which is implemented by following
the big males in a part of their dimensions. A self-adaptation of the population is also proposed
to control the exploitation–exploration balance. An examination using the well-documented twenty-
three benchmark functions shows that KMA outperforms the recent metaheuristic algorithms. Besides,
it provides high scalability to optimize thousand-dimensional functions. The source code of KMA is
publicly available at: https://suyanto.staff.telkomuniversity.ac.id/komodo-mlipir-algorithm and https:
//www.mathworks.com/matlabcentral/fileexchange/102514-komodo-mlipir-algorithm.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mathematical optimization techniques can be categorized into
eterministic and stochastic. The former relies on the gradient
nformation in the given problem to get the solution; hence it
ommonly works well for unimodal problems but not for multi-
odal ones. In contrast, the latter can handle both problem types.
esides, it is simple, flexible, gradient-free, and also problem-
ndependent. Therefore, it is more popular to tackle many real-
orld problems with non-linear and non-convex search spaces.
The stochastic methods, also known as the population-based

etaheuristic optimization algorithms, are commonly inspired by
he nature, such as evolutionary concepts, genetics, animal behav-
ors, phenomena in planets, cultures, societies, physical phenom-
na, or musical instruments. Many researchers have been propos-
ng hundreds algorithms and their variants, which can be grouped
nto three categories: (1) most well studied algorithms, such
s Genetic Algorithm (GA) [1,2], Differential Evolution (DE) [3],

✩ This research is funded by the Ministry of Education, Culture, Research and
Technology, Indonesia, based on Matching Fund Kedaireka Grant with contract
number: 3541/E3/SK.09/KL/2021.

∗ Corresponding author.
E-mail addresses: suyanto@telkomuniversity.ac.id (S. Suyanto),

lifyaaisyah@student.telkomuniversity.ac.id (A.A. Ariyanto),
lifyafatimah@student.telkomuniversity.ac.id (A.F. Ariyanto).
ttps://doi.org/10.1016/j.asoc.2021.108043
568-4946/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
Genetic Programming (GP) [4,5], Particle Swarm Optimization
(PSO) [6], and Ant System (AS) [7]; (2) almost recently developed
algorithms, such as Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [8], Success-History Based Parameter Adaptation
Differential Evolution (SHADE) [9], SHADE with linear population
size reduction (LSHADE) [10], LSHADE with Ensemble Sinusoidal
Differential Covariance Matrix Adaptation with Euclidean Neigh-
borhood (LSHADE-cnEpSin) [11], Firefly Algorithm (FA) [12,13],
Cuckoo Search (CS) [14,15], Bat Algorithm (BA) [16,17], Bacterial
Foraging Optimization (BFO) [18,19], Gravitational Search Algo-
rithm (GSA) [20], Salp Swarm Algorithm (SSA) [21], Teaching–
Learning-Based Optimization (TLBO) [22], Gray Wolf Optimizer
(GWO) [23,24], Dragonfly Algorithm (DA) [25,26], Ant Lion Op-
timizer (ALO) [27,28], Moth–Flame Optimization (MFO) [29,30],
and Artificial Algae Algorithm (AAA) [31,32]; and (3) recently cre-
ated algorithms, such as Atomic Search Optimization (ASO) [33],
Rao Algorithms (RAs) [34], Evolutionary Rao Algorithm (ERA) [35],
Equilibrium Optimizer (EO) [36], Marine Predators Algorithm
(MPA) [37,38], and Slime Mould Algorithm (SMA) [39,40].

All the metaheuristic algorithms look the same. They depend
on two similar concepts: the movement of an individual (candi-
date solution) and the interaction among individuals in the popu-
lation. In general, the movement uses the evolutionary operators
(crossover and mutation) or the random walk techniques with a
particular distribution, such as uniform, normal (Gaussian), Lévy,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.asoc.2021.108043
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.108043&domain=pdf
https://suyanto.staff.telkomuniversity.ac.id/komodo-mlipir-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/102514-komodo-mlipir-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/102514-komodo-mlipir-algorithm
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:suyanto@telkomuniversity.ac.id
mailto:alifyaaisyah@student.telkomuniversity.ac.id
mailto:alifyafatimah@student.telkomuniversity.ac.id
https://doi.org/10.1016/j.asoc.2021.108043
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

o
t
i
e
t
s

i
I
m
r
t
m
m
m
l
c
f
t
S
o
f
4
a
e
e
p
s
l
s
u
o
t

a
t
r
(
o
e
a
o
e
p
t
b
v
b

p
p
L
f
I
S
m
a
f

i
t
t
t
p
e
f

t
l

d
s
p
a
a
t
d
p

2

t
c
c
i

2

l
f
t
a
b

g
y
K
j
s

t
u
f
f
t
f

o
d
m

r Brownian. Meanwhile, the interaction commonly adopts the
heory of evolution, the natural phenomena, or the animal behav-
ors to create a searching strategy that produces an exploitation–
xploration balance. The exploration widely searches the space
o avoid the local optima. In contrast, the exploitation locally
earches around promising solutions.
Many recent algorithms are developed based on the similar

deas used in the former by introducing some improvements.
n other words, they are the improved versions of the previous
ethods. For instance, DE is an improved version of GA. It uses

eal-number individuals instead of the binary ones and introduces
wo evolutionary operators: binomial crossover and differential
utation with a scaling factor to controls the magnitude of the
utation. Compared to GA, DE generally gives higher perfor-
ances in solving continuous optimization problems. However,

ike other metaheuristic algorithms, its performance depends on
ontrol parameter settings, which are problem-dependent. There-
ore, many variants are proposed by providing a self-adaptation
o tune the control parameters adaptively during the evolution.
HADE, LSHADE, LSHADE-cnEpSin, jDE, and IMODE are some
f the state-of-the-art DE variants that give high performances
or classic benchmark functions [37] and CEC test suites [11,
1,42]. Unfortunately, all those algorithms are both unscalable
nd unstable. They need higher populations and more function
valuations (the number of individuals should be generated and
valuated during the evolution) to solve the higher-dimensional
roblems. For instance, the population size of LSHADE-cnEpSin
hould be set to 18 times the dimension of the given prob-
em [11]. Otherwise, its performance may decrease as the dimen-
ion increase. Another problem is that, for many cases, they are
nstable for some independent runs with different random seeds
f the initial populations. In other words, they do not guarantee
o obtain the global optimum solutions.

Hence, some recent algorithms are designed to be both scal-
ble and stable, such as EO, MPA, and SMA. EO is inspired by
he mass balance models to approximate dynamic and equilib-
ium states [36]. A particle in EO represents a candidate solution
search agent). Based on qualities or fitness values, a population
f some particles in EO is split into two groups: (1) the five
quilibrium candidates containing four fittest particles and their
verage, which exploit the promising area around the global
ptimum; and (2) the other particles that do exploration. An
valuation using 58 benchmark functions and three real-world
roblems shows that EO significantly outperforms six competi-
ors: GA, GSA, PSO, SSA, GWO, and CMA-ES but is slightly defeated
y SHADE and LSHADE-SPACMA. However, impressively, EO pro-
ides scalability from 10 to 200 dimensions, although for few
enchmark functions.
MPA is motivated by the broad foraging tactics in ocean

redators along with the optimum policy of contact rate in the
redator–prey interaction [37]. The strategy is developed using
évy and Brownian movements. Evaluation using 59 benchmark
unctions shows that MPA is competitive to the LSHADE-cnEpSin.
t significantly outperforms GA, GSA, PSO, SSA, CS, and CMA-ES.
tatistically, it can be categorized as a high-performance opti-
ization algorithm that reaches a similar performance as SHADE
nd LSHADE-cnEpSin. In addition, MPA also provides scalability
rom 100 to 500 dimensions for few benchmark functions.

Meanwhile, SMA imitates the oscillation mode of slime mold
n nature [39]. This method utilizes adaptive weights to mimic
he bio-oscillator feedback (negative and positive) throughout
he foraging to get an exploitation–exploration balance. It has
hree steps of evolution: random distribution (finding food), ex-
loration and adaptive transformation (approaching food), and
xploitation (wrapping food). An evaluation using 33 benchmark

unctions shows that, for some of those benchmark functions, a

2

SMA is stable and guarantees global optima. As with those recent
DE variants, EO, and MPA, the SMA is unscalable and unstable for
most benchmark functions.

Until now, none of the metaheuristic optimizers guarantees to
get the global optima for all problems and dimensionality sizes. It
is logically proven by the theorem of no free lunch [43]. Therefore,
many researchers are continuously encouraged to create a new
algorithm to solve as many problems as possible, as scalable as
possible, as stable as possible in giving the highest guarantee
rate. Motivating by those facts, a novel scalable and stable opti-
mizer named Komodo Mlipir Algorithm (KMA) is proposed here.
Mimicking the foraging and reproduction of Komodo dragons,
the population of a few individuals (candidate solutions) in KMA
are split into three groups: high-quality big males, one middle-
quality female, and low-quality small males. KMA introduces
two new movements, namely high-exploitation low-exploration
(HILE) to intensify high-quality solutions and mlipir movement
hat creates a low-exploitation high-exploration (LIHE) to avoid
ocal optima and tackle broad flat (plateaus) areas.

This paper is written in the following structure. A detailed
escription of KMA is given in Section 2. Next, Section 3 discusses
ome experimental results for the 23 benchmark functions com-
ared to six algorithms: GA, SHADE, LSHADE-cnEpSin, EO, MPA,
nd SMA. Furthermore, the convergence, scalability, and stability
nalysis for higher-dimensional functions are then provided for
he proposed KMA and those five algorithms. The comprehensive
iscussion is then given in Section 4. The conclusion is finally
rovided in Section 5.

. Proposed KMA

This section discusses two inspirations of the proposed KMA:
he Komodo behavior and the typical Javanese gait ‘‘mlipir ’’. The
oncept and mathematical model are then given in detail with a
lear illustration and formulation. Finally, the pseudocode of KMA
s provided.

.1. Komodo in the wild nature

The Komodo dragon (Varanus komodoensis) is a monitor
izard of the family Varanidae [44] living on Komodo Island and a
ew neighboring islands of the Lesser Sunda Islands nearby Flores,
he East Nusa Tenggara, Indonesia. It grows to 3 meters in length
nd about 135 kg (300 pounds) in weight [45]. It has unique
ehaviors in foraging and reproduction.
The big adult Komodo dragons eat large prey, such as deer,

oats, boar, and carrion. Besides, they cannibalize the smaller
oung ones and sometimes even other adults [46]. When a big
omodo eats prey, some other Komodo dragons are attracted to
oin [47]. However, the big Komodo can be willing or refuses to
hare the prey.
The female Komodo dragons may produce offspring by mating

he big adult male or sometimes through parthenogenesis (asex-
al reproduction) [44,48]. Some big males often do bloody combat
or prey or female. The winner can keep the prey or mate the
emale (if she wants) for the sexual reproduction [47]. Suppose
he female does not want to mate the winner. In that case, the
emale takes parthenogenesis [48].

Meanwhile, the small males do foraging by looking for left-
vers left by the big males. However, they should keep their
istance or will be cannibalized by the big males. Thus, they
ove aside from the big males. Once have an opportunity, they

pproach the leftovers.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

2

a
a
a
t
d

u
f
b
o

2

s
f
a
f

m
d
(
a
s

2

A
t
m
A
i
o
s
i
q
a
t
t
E
E
g
i
i
g

t
c
h
r
p
K
o
e
m
o
w
p
o
c

.2. Mlipir

‘‘Mlipir ’’ is a word in the Javanese language that can be defined
s ‘‘walk on the side of the road to avoid danger’’ or ‘‘moving
long the roadside carefully, without being noticed by anyone,
nd successfully reaching a certain destination safely’’. It is a
ypical Javanese gait (style of walking) in order to reach the
estination safely.
As described in Section 2.1, the small male Komodo dragons

se the movement strategy like mlipir during the foraging. They
ind leftovers left by the big males and avoid being cannibalized
y them. Thus, they sneaked around the big males. As soon as the
pportunity arises, they grab the leftovers safely.

.3. Concept of KMA

The concept of KMA can be simply illustrated in Fig. 1. Given a
imple optimization problem of two-dimensional function
(x1, x2) = x21+x22, where x1 and x2 are the horizontal and vertical
xes, respectively, and the global optimum solution (target) is

= 0 at x1 = 0 and x2 = 0. First, let an initial popu-
lation containing six Komodo individuals (candidate solutions):
k1, k2, . . . , k6 is randomly generated, where each Komodo only
represents a vector of position (with no velocity) of a candi-
date solution in the problem space. Next, the population is split
into three groups: high-quality big males, middle-quality female,
and low-quality small males. Here, the highest-quality big male
mimics the strongest Komodo that catches the only prey, which
represents the best-so-far solution.

The evolution is then performed in a particular order. First, the
big males interact with each other to do a high-exploitation low-
exploration (HILE). Next, using the normally distributed probabil-
ity of 0.5, the female either mates the best big male or partheno-
genesis (asexual reproduction), doing medium-exploitation or
medium-exploration (MIME). Finally, the small males do the pro-
posed novel mlipir movement to surround the search space to do
a low-exploitation high-exploration (LIHE).

As the big males, two Komodo dragons k1 and k2 fight with
each other. It is adopted in this model as attraction and distrac-
tion using a particular rule. A lower-quality big male should move
forward to the higher-quality big males. In contrast, a higher-
quality big male can either move forward or backward to the
lower-quality ones with the probability of 0.5. Hence, some big
males do a high-exploitation (intensification) in a narrow area
around the global optimum while the others do a low-exploration
(diversification) in a wider area. As illustrated in Fig. 1, k2 is
attracted to k1 (shown by w21) that makes it moves toward
the global optimum (exploitation). This movement mimics the
Komodo’s behavior to fight for seizing the prey kept by another
big male. In contrast, k1 is distracted from k2 (shown by w12)
randomly with a probability of 0.5 and do exploration. This move-
ment imitates the Komodo’s behavior to keep the prey for itself.
In addition, like most metaheuristic algorithms, KMA is designed
to keep the highest-quality big males.

Next, the female either mates the winner Komodo individual
(with the highest fitness) to generate two offsprings (shown by g1
and g2) or do parthenogenesis using a random movement (shown
by h). Hence, as middle-quality, the female searches for the
solution in a medium-exploitative medium-explorative manner.

Finally, as the low-quality small male, three Komodo dragons
k4, k5, and k6 do amlipir to move aside the big males by randomly
select a part of their dimensions. The dimensional selection is im-
plemented using the normal distribution with a fixed probability
of 0.5. This movement is a new method in the field of metaheuris-
tic optimization. Here, this movement is named ‘‘mlipir ’’ and the
probability of dimensional portion is called ‘‘mlipir rate’’. In Fig. 1,
3

the ‘‘mlipir rate’’ is 0.5, which means the small males follow the
big males only in half of the dimensions. For example, k4 moves
aside k1 and k2 using only the first dimension x1 (horizontal),
which are shown by w41 and w42, respectively. Hence, summing
the two vectors w creates a movement that makes k4 walks aside
and get a new position close to k2. In contrast, k5 moves aside k1
and k2 using only the second dimension x2 (vertical), which are
shown by w51 and w52, respectively. Summing the three vectors
w moves k5 to the above, surrounding the search space. Finally,
k6 vertically follows k1 and horizontally follows k2 (shown by
w61 and w62), which diagonally moves k6 forward to the global
optimum. Interestingly, this mlipir movement is not only doing
a high-exploration but may also do a low-exploitation. Hence,
the novel mlipir movement plays a critical role in the proposed
KMA. Since the population in the beginning generations has high
diversity, this mlipir movement makes the small males do a high-
exploration to cover the entire search space. In the last iterations,
they do a low-exploration.

All the three movements of big males, females, and small
males, can be extended to the high-dimensional spaces, such
as m-dimensions. The big males attract and distract each other
in the whole m-dimensions while the small males do a mlipir
ovement to the big males only in the dm dimensions, where
is the mlipir rate represented as a real number in the interval

0, 1) to select a part of the dimensions: 1, 2, . . . , (m−1). Besides,
ll new positions of the small males are kept without survivor
election since the big males have performed.

.4. Pseudocode of KMA

The concept of KMA can be explained using pseudocode in
lgorithm 1. First, three parameters of n, p, and d are set as
he number of Komodo, the portion of the big males, and the
lipir rate, respectively. Next, n Komodo are created randomly.
fter that, the evolution is performed until a stopping criterion
s reached. In each generation, all Komodo are evaluated based
n the objective of the given problem. The qualities are then
orted to define their ranks. Based on the ranks, the population
s split into three groups: q high-quality big males, one middle-
uality female, and s low-quality small males based on Eqs. (1)
nd (2), respectively. Each big male is moved using Eq. (4), and
he q best position is kept to survive in the next generation. Then,
he female does either sexual or asexual reproduction based on
q. (5) and (7), respectively. Next, each small male is moved using
q. (9), and all their new positions are kept to survive in the next
eneration (with no survivor selection). Finally, the population
s adaptively updated using Eq. (10). Once the stopping criterion
s reached, the highest-quality Komodo kbest is returned as the
lobal optimum solution.
The pseudocode of KMA is implemented in two phases to

ackle unimodal and multimodal functions effectively and effi-
iently. In the first phase, KMA uses a low population size with a
alf portion of big males and a maximummlipir rate. This phase is
un for 1000 generations to examine the complexity of the given
roblem. If the given problem has a low complexity (unimodal),
MA should obtain the global optimum swiftly. Once the global
ptimum is reached, KMA returns the solution and stops the
volution. Otherwise, the second phase is applied until the maxi-
um function evaluations are reached or KMA reaches the global
ptimum. In the second phase, KMA uses a higher population
ith a self-adaptation procedure to automatically online-tune the
opulation size during the evolution process with a half portion
f big males and a half mlipir rate. In this phase, KMA is expected
an solve complex (multimodal) benchmarks.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

S
I
w

e

v
p
k
K
v
i

2

g
q
1
a
o

q

s

Fig. 1. Concept of Komodo Mlipir Algorithm.
Algorithm 1: Komodo Mlipir Algorithm
Result: kbest as the global optimum solution
et n, p, and d as the number of Komodo individuals, the portion of big males, and the mlipir rate, respectively;
nitialization of n individuals with m dimensions;
hile StoppingCriterion = false do
for each Komodo, calculate its quality, and then rank them;
Based on their ranks and the portion p, split the population into three groups: q highest-quality big males, 1 middle-quality
female, and s low-quality small males using Eqs. (1) and (2);

for each big male, move it using Eq. (4), and keep the q highest-quality big males (best positions) to survive in the next
generation;

Update the female by either mating the winner big male using Eq. (5) or doing parthenogenesis using Eq. (7);
for each small male, move it using Eq. (9), and keep all their new positions to survive in the next generation;
Update the population size n using Eq. (10);
Select the highest-quality Komodo from the three groups as the best-so-far solution kbest

nd
c

w

2.5. Komodo individual representation

In KMA, a Komodo individual is expressed as a real-valued
ector k with m dimensions, which determines a position in the
roblem space. In Fig. 1, the population contains of six Komodo,
1, k2, . . . , k6 with dimension m = 2. Like a firefly in FA, each
omodo in KMA is designed to have only a position with no
elocity. It more dynamically moves in the search space since the
nertia is ignored in the movement.

.6. Three groups of individuals

The population of n Komodo individuals are split into three
roups: high-quality big males, middle-quality females, and low-
uality small males with a portion p, which is in the interval (0,
) and can be generally tuned as 0.5 for any given problem. Using
portion p, the population of n Komodo is split into q big males,
ne female, and s small males using the following formulas

= ⌊(p − 1)n⌋, (1)

= n − q, (2)

However, a too-small or a too-high portion p can produce zero
for q or s. Hence, a simple procedure is applied to enforce both
big males and small males with at least two Komodo interactions.
4

2.7. Movements of big males

The big males interact by attraction or distraction based on a
simple rule introduced in this research. A low-quality big male
should be attracted by the higher-quality one. In contrast, a
high-quality big male can be attracted or distracted by the lower-
quality ones randomly with the probability of 0.5 to get a new
position. This scheme ensures the chance of exploitation is always
higher than exploration. Therefore, this novel movement scheme
is named high-exploitation low-exploration (HILE).

The movement of a big male ki to produce a new position k′

i
an be defined using two following formulas

ij =

{
r1(kj − ki), if f (kj) < f (ki) or r2 < 0.5
r1(ki − kj), otherwise,

(3)

k′

i = ki +

q∑
j=1

wij, where j ̸= i, (4)

where f (ki) and f (kj) are fitness (or qualities) of the ith and the jth
big males, respectively, ki and kj are the ith and the jth big males
(where j ̸= i), respectively, r1 and r2 are random numbers in the
interval [0, 1] in the normal distribution, and q is the number of
big males.

If there are two big males, then the low-quality one should do
exploitation, and the high-quality one may do either exploitation
or exploration randomly with the probability of 0.5. Hence, there
are two possible movements of those big males as illustrated in
Fig. 2. In possible movement 1, both big males do an exploitative

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

s
s
b
1
t

s
p
t
2
a
o
H
e
e
o

t
w
e
e
b
b
c
e

2

e
p
i

w

k

Fig. 2. Two possible movements of two big males.

earch in areas nearby the global solution. Meanwhile, in the pos-
ible movement 2, the low-quality Big Male 2 does exploitation
y attracting the higher-quality Big Male 1. In contrast, Big Male
does exploration by distracting Big Male 2. Hence, in this case,

he probability of exploitation is higher than the exploration.
If the population contains three big males, there are eight pos-

ible movements of the three big males, as illustrated in Fig. 3. In
ossible movement 1, all the three big males do exploitation close
o the global optimum. Meanwhile, in the possible movement
, 3, 4, and 5, two big males do exploitation, and the rest does
n exploration. Finally, in the possible movements 6, 7, and 8,
nly one big male does exploitation, and the rests do exploration.
ence, in all possible movements, at least one big male is doing
xploitation. There is no possibility that all the three big males do
xploration. Therefore, it can be guaranteed that the probability
f exploitation should be higher than the exploration.
However, there must be an optimum number of big males

o do the interaction. Hypothetically, two or three big males
ill give an optimum interaction to balance exploitation and
xploration. To solve the unimodal functions, two big males are
nough. Nevertheless, to solve the multimodal functions, three
ig males will be better. The hypothesis is empirically proven
ased on several preliminary experiments. This interaction con-
ept is different from the EO [36] that uses five particles as the
quilibrium candidates to give optimum performance.

.8. Reproduction of female

As a middle-quality individual, a female is designed to do
ither exploitation or exploration in the same chance. It is im-
lemented using a fixed probability of 0.5. If the exploitation
s selected, the female intensifies the potential area around the
5

global optimum solution by mating the winner big male (the
highest-quality) to generate two offsprings (new positions). Oth-
erwise, it diversifies the solution in a wide area of search space
by doing parthenogenesis. Eventually, the female is updated by
the best-generated offspring. Furthermore, the mating procedure
(sexual reproduction) of two Komodo is formulated as

k′

il = rl · kil + (1 − rl) · kjl
k′

jl = rl · kjl + (1 − rl) · kil
(5)

where kil and kjl are the lth dimension of the ith the jth Komodo
as the winner big male and the female, respectively, k′

il and k′

jl
are the kth dimension of two offsprings produced by the mating
process, and rk is a random number in interval [0, 1] in the normal
distribution for the lth dimension. Since the mating is performed
randomly in each dimension, then many possible offsprings can
be generated. For example, two possible offsprings are generated
as illustrated in Fig. 4(a). Next, the female is updated by the best
offspring as shown in Fig. 4(b).

Meanwhile, the parthenogenesis procedure (asexual reproduc-
tion) is implemented by appending a small value to each female
dimension. The small number is randomly generated using the
symmetric normal distribution, which is defined as

(ki1, ki2, . . . , kim) → (k′

i1, k
′

i2, . . . , k
′

im), (6)

k′

ij = kij + (2r − 1)α|ubj − lbj|, (7)

where ki1, ki2, . . . , kim ∈ [lbj, ubj] is the vector element of m
dimensions of a Komodo individual k, lbj and ubj are the lower
and upper bounds of the jth dimension, r is a random value in
the normal distribution, and α is the radius of parthenogenesis
set to be a fixed value of 0.1, which means the new solution can
be generated in the radius of 10% of the search space. Fig. 5(a)
illustrates two of the many possible generated offsprings: p1 and
p2 in the radius of 0.1. Next, let p1 is selected, and the female is
then updated by the p1, as shown in Fig. 5(b).

2.9. Movements of small males

In wild nature, a small male Komodo has two objectives: (1)
look for leftovers left by the big males; and (2) avoid being
cannibalized by them by moving aside (mlipir). This behavior is
adopted in KMA by creating a novel movement called mlipir. As
low-quality individuals, the small males are designed to search
for the solution in a broad area but sometimes do a little ex-
ploitation. Each small male moves aside (mlipir) from the big
males, which is implemented by randomly selecting a part of
their dimensions with a particular probability (mlipir rate). With
a mlipir rate d in the interval (0, 1), the mlipir movement of the
ith Komodo to follow the jth one is formulated as

ij =

{∑m
l=1 r1(kjl − kil), if r2 < d

0, otherwise
(8)

′

i = ki +

q∑
j=1

wij, where j ̸= i, (9)

where r1 and r2 are randomly generated numbers in [0, 1] using
the normal distribution: r1 defines the velocity of the movement
while r2 selects the dimension to follow, m is the dimension, kil
and kjl is the lth dimension of the ith small male and the jth big
male, respectively, l is the randomly selected dimension, which
based on the normal distribution with a probability equals to the
mlipir rate d to select 1, 2, . . . , (m−1) dimensions of the big male,
and q is the number of big males.

If there are two small males and two big males, then there are
nine possible combinations of movements of the small males, as

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

i
b
a
l
6
m
b
(
e
e

2

s

s
o
i
v
o
2

Fig. 3. Eight possible movements of three big males.
t
o
v
p
c
h

llustrated in Fig. 6. In the four possible movements 1, 2, 4, and 5,
oth small males do an explorative search by moving horizontally
nd vertically to surround the big males: on the above, below,
eft, and right. Meanwhile, in the other possible movements 3,
, 7, 8, and 9, at least one small male does exploitation by
oving diagonally closer to the big male. If the movements of
oth small males are calculated separately, then 12 out of 18
66.67%) possible movements are exploration, and the rests are
xploitation. Hence, in this mlipir movement, the probability of
xploration is guaranteed to be higher than exploitation.

.10. Population adaptation scheme

As described above, KMA has three parameters: population
ize n, portion p, and mlipir rate d. Hypothetically, n is more
sensitive than p and d since it strongly controls the exploration
and exploitation strategies, while p and d can be defined as the
fixed values of 0.5 since the characteristics of the given problems
are unknown. Therefore, an adaptation scheme is proposed to
tune n adaptively during the evolution. If two successive best-
so-far fitness improvements, the population size n is decreased
by deleting five individuals. Otherwise, if they show stagnations,
n increases by generating five new individuals; here, the new
individual is created from the best-so-far big male that is moved
randomly. The new population size n′ is calculated as

n′
=

{
n − a, if δf1 > 0 and δf2 > 0
n + a, if δf1 = 0 and δf2 = 0

(10)

where a is the number of individuals to delete or generate, δf1 =
|f1−f2|

f1
and δf2 =

|f2−f3|

f2
are the fitness differences of two succes-

ive ith and (i − 1)th generations, respectively. Here, the value
f a is set to five, which represents a small population size used
n the first phase. Besides, the initial, minimum, and maximum
alues of n should be consequently defined. Some preliminary
bservations inform that the optimum values are 200, 20, and
00, respectively.
 a

6

2.11. Difference of KMA and other algorithms

The proposed KMA is different from the existing metaheuristic
algorithms since it combines three searching strategies: HILE,
MIME, and LIHE to find a global optimum swiftly and avoid the
local ones. Both HILE and LIHE movements are entirely different
from those used in the existing algorithms, while MIME is the
same as crossover and mutation in the GA.

HILE is designed by attraction and distraction between the
high-quality individuals with a probability of 0.5, which is dif-
ferent from the attraction and distraction in DFA [25] that are
always (with a probability of 1.0) performed based on two rules: a
dragonfly attracts to the better ones, and it distracts to the worst.
Meanwhile, LIHE performs low-intensification high-diversification
using mlipir movements of low-quality individuals to avoid lo-
cal optima. Unlike differential mutations in DE calculated from
indirect vectors of two to four best or randomly selected individ-
uals [49], the mlipir movement is composed of direct attraction
vectors of partial dimensions of one to three randomly selected
higher-quality individuals. As illustrated in Fig. 6, this mlipir
movement logically provides a higher exploitation strategy than
the differential mutations in DE.

2.12. Computational costs of KMA

The computational costs of KMA can be easily estimated based
on complexity analysis. The time complexity of KMA for one gen-
eration (iteration) is O(nm+nc+log n), where n,m, c , and log n are
he number of individuals in the population, the dimension, the
bjective function calculation, and the sorting process of fitness
alues, respectively. Compared to GA, EO, MPA, and SMA, the
roposed KMA is a little more complicated. It has an additional
omplexity of log p come from the sorting process. Besides, it also
as another complexity from the population adaptation scheme,

lthough it is quite low.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

e
s
t
w
p

Fig. 4. With a normally distributed probability of 0.5, the female mates the
winner big male, then the female is updated by the best offspring (if it is better
than the female).

3. Experimental results

The commonly used 23 classic benchmark functions: 7 high-
dimension unimodal (HDU), 6 high-dimension multimodal
(HDM), and 10 fixed-dimension multimodal (FDM) as described
in [34] are used here to examine the three capabilities of KMA:
exploitation, exploration, and scalability. The detailed descrip-
tions of the 23 classic benchmark functions and their plots in
two-dimensions are depicted in Table 6 and Fig. 8 in Appendix.

The seven unimodal benchmark functions: F1, F2, . . . , F7 (with
only one optimum value) examine the exploitation strategy. In
contrast, the multimodal functions: F8, F9, . . . , F13 (with many
local optima) will check the exploration. The ten fixed low-
dimension multimodal functions: F14, F15, . . . , F23 evaluate low-
dimension exploration ability. Moreover, the functions F1 to F13
will be scaled up into 50, 100, 500, and 1000 dimensions to assess
the scalability.

3.1. Parameter settings

The KMA is designed to has three easy-to-adjust parameters:
population size n, portion p, and mlipir rate d. In the first phase of
evolution, KMA uses a low population of five individuals (n1 = 5),
a half portion of big males (p1 = 0.5), and a maximum mlipir rate
(d1 =

(m−1)
m). This first phase is run for 1000 generations (or 5000

valuations) to quickly obtain the global optimum solution to a
imple (unimodal) problem. In the second phase, KMA is tuned
o use a high population of two hundred individuals (n2 = 200)
ith a self-adaptation procedure to automatically online-tune the
opulation size in the interval between 20 and 200 during the
7

Fig. 5. With a normally distributed probability of 0.5, the female does a
parthenogenesis to generate an offspring, then the female is updated if the
offspring is better than itself.

evolution process (n2,min = 20, n2,max = 200), a half portion of big
males (p2 = 0.5), and a half mlipir rate (d2 = 0.5). In the second
phase, KMA is expected can solve more complex (multimodal)
benchmark functions, which contain many local optima and flat
areas. All those parameter settings are based on some preliminary
experiments.

The optimum parameters for KMA and the competitors are
summarized in Table 1. The first six settings are adopted from
the previous researches in [9,11,36,37,37], and [39]. Here, all
the parameter settings are fixed for all the benchmark functions
to examine the scalability with a limited number of function
evaluations of 25000. GA is designed to use a high population
n = 100 of real-encoding chromosomes, tournament-based par-
ent selection with a tournament size of 10, a whole arithmetic
crossover with probability pc = 0.8, and a creep mutation with
probability pm = 0.05 to make it simple for thousand dimensions.
SHADE is also designed to exploit a high population n = 100,
with the probability to use the best individual of 0.1 and archive
rate of 2 (meaning that the maximum size of the archive is 2n).
As described in [11], LSHADE-cnEpSin is recommended to use a
variable population size of 18×m. However, its population size is
fixed to 18 × 5 = 90 since a big population size performs worse
for the limited function evaluations.

3.2. Comparison to other optimizers

Next, KMA is compared to six algorithms: GA, SHADE, LSHADE-
cnEpSin, EO, MPA, and SMA using the 23 benchmark functions
illustrated in Fig. 8, where their detailed descriptions can be
found in [36]. Here, the allowed number of evaluations (generated

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

T
P

r
a
g
t
s
b

g
u
l
f
l
s
F
c
t

t
m
I
s
F

Fig. 6. Nine possible movements of two small males.
able 1
arameter settings of KMA and the competitors.
Algorithm Parameter

GA [37] n = 100, tournament selection size = 10, whole arithmetic crossover pc = 0.8, creep mutation pm = 0.05
SHADE [9] n = 100, Pbest = 0.1, Arc rate = 2
LSHADE-cnEpSin [11] n = 90, nmin = 4, Pbest rate = 0.11, Arc rate = 1.4, Memory = 5, ps = 0.5, pc = 0.4
EO [36] n = 30, a1 = 2, a2 = 1, GP = 0.5
MPA [37] n = 50, FADs = 0.2, P = 0.5
SMA [39] n = 30, z = 0.03
KMA n1 = 5, n2 = 200, n2,min = 20, n2,max = 200, p1 = 0.5, p2 = 0.5, d1 =

(m−1)
m , d2 = 0.5
individuals) for each benchmark function is limited to 25000
with 30 independent runs to provide two meaningful statistical
results: average solution (Avg) and standard deviation (Std).

Table 2 shows the findings of the evaluation using both met-
ics (Met): Avg and Std. The bold number shows the best result
mong all the competitors, the underscored one informs the
lobal optimum solution is always reached by the algorithm with
he Std equals to zero or less than the decimal digits of the global
olution, and the bold-underscored one shows that it achieves the
est and the global optimum solution as well.
Based on the Avg and Std, the proposed KMA guarantees the

lobal optimum solutions for the most (17 of 23) functions: five
nimodal, two high-dimension multimodal, and all the ten fixed
ow-dimension multimodal. It almost reaches the global optima
or F7, F8, F10, F12, and F13. Impressively, although F7 has a high-
evel noise, KMA can reach a near-global optimum. KMA gives a
olution significantly different from the global optimum only for
5. The function F5 is quite hard to solve by KMA and all the
ompetitors since it has vast flat areas (plateaus) that make all
he algorithms trapped in stagnation.

Meanwhile, MPA guarantees to get the global optimum solu-
ions for thirteen functions: one unimodal, two high-dimension
ultimodal, and all the ten fixed low-dimension multimodal.

t produces the near-global optima for eight functions and the
olutions far from the global optima for two functions (F5 and
8). SMA guarantees to find the global optima for ten functions. It
8

gives solutions close to the global optima for the twelve functions
and worse solutions only for F5. Next, EO guarantees to reach
the global optima only for six functions. It produces solutions
close to the global optima for twelve functions and much worse
solutions for five functions. The three other algorithms SHADE,
LSHADE-cnEpSin, and GA produce much worse results.

Based on a statistical measure named Friedman Mean Rank
(FMR), GA gives the worst FMR of 5.13 following by LSHADE-
cnEpSin and SHADE that achieve 4.57 and 3.43, respectively. EO,
MPA, and SMA produce better ranks of 3.17, 2.35, and 2.13,
respectively. Finally, KMA achieves the best rank of 1.52, as il-
lustrated in Table 2. In general, KMA achieves better (or equal)
results than all the others for 18 out of 23 functions. It produces
a slightly worse solution than SMA only for F7 and F8 and much
worse than the competitors only for F5, F12, and F13. These
results show the superiority of KMA.

In terms of the global optimum guaranty (Gua), which is
defined as the certainty of finding the global optimum with Std
equals zero or more negligible than the decimal digits of the
global optimum, KMA is also much better than the competitors.
It guarantees to reach the global optimum solutions for 17 of
23 (73.91%) benchmark functions, which is much higher than
GA, SHADE, LSHADE-cnEpSin, EO, MPA, and SMA that provides
guaranties of 5 of 23 (21.74%), 9 of 23 (39.13%), 5 of 23 (21.74%),
7 of 23 (30.43%), 13 of 23 (56.52%), and 10 of 23 (43.48%).

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

T
C
2

c
m
c
E
h

able 2
omparison of KMA and the competitors for thirteen 50-dimensional (F1 to F13) and ten fixed low-dimensional (F14 to F23) benchmark functions for 30 runs, each
5000 function evaluations. Both symbols − and + (in the parentheses) inform that the current result is significantly worse and better than the KMA’s result based

on the Wilcoxon’s rank sum test (Wil) with a significance level of 0.05, respectively, while the symbol ≈ denotes an insignificant result.
Func Met GA SHADE LSHADE-cnEpSin EO MPA SMA KMA

F1 Avg 4.380E+ 01 (−) 5.484E−05 (−) 3.136E−06 (−) 2.334E−86 (−) 4.138E−21 (−) 0 (≈) 0
Std 5.257E+ 00 2.497E−05 3.016E−06 7.436E−86 4.086E−21 0 0

F2 Avg 3.063E+ 00 (−) 1.263E−02 (−) 1.314E−02 (−) 7.094E−49 (−) 3.256E−12 (−) 5.945E−174 (−) 0
Std 2.347E−01 3.780E−03 1.202E−02 1.583E−48 2.494E−12 0.000E+ 00 0

F3 Avg 4.114E+ 03 (−) 4.717E+ 02 (−) 6.163E+ 01 (−) 6.547E−13 (−) 4.149E−02 (−) 0 (≈) 0
Std 8.527E+ 02 1.674E+ 02 2.887E+ 01 3.408E−12 8.361E−02 0 0

F4 Avg 2.708E+ 00 (−) 1.066E+ 00 (−) 4.544E+ 00 (−) 2.193E−24 (−) 2.787E−08 (−) 6.137E−178 (−) 0
Std 3.018E−01 3.224E−01 1.151E+ 00 2.657E−24 1.409E−08 0.000E+ 00 0

F5 Avg 6.347E+ 02 (−) 5.217E+ 01 (−) 6.054E+ 01 (−) 4.480E+ 01 (+) 4.532E+ 01 (+) 7.075E+ 00 (+) 4.831E+ 01
Std 1.300E+ 02 1.958E+ 01 2.401E+ 01 2.024E−01 4.179E−01 1.401E+ 01 1.820E−01

F6 Avg 4.690E+ 01 (−) 0 (≈) 1.230E+ 01 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 9.159E+ 00 0 7.666E+ 00 0 0 0 0

F7 Avg 8.233E−02 (−) 2.189E−02 (−) 1.903E−02 (−) 1.135E−03 (−) 1.377E−03 (−) 1.456E−04 (+) 1.715E−04
Std 3.496E−02 4.702E−03 7.689E−03 4.641E−04 7.427E−04 1.583E−04 1.188E−04

F8 Avg −1.538E+ 04 (−) −1.059E+ 04 (−) −1.877E+ 04 (+) −1.491E+ 04 (−) −1.455E+ 04 (−) −2.095E+ 04 (+) −1.701E+ 04
Std 7.506E+ 02 5.241E+ 02 3.637E+ 02 8.352E+ 02 6.191E+ 02 6.814E−01 2.453E+ 03

F9 Avg 1.213E+ 02 (−) 2.617E+ 02 (−) 2.686E+ 01 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 1.509E+ 01 1.230E+ 01 5.255E+ 00 0 0 0 0

F10 Avg 2.588E+ 00 (−) 1.605E−03 (−) 1.499E+ 00 (−) 4.441E−15 (−) 1.060E−11 (−) 8.882E−16 (≈) 8.882E−16
Std 1.595E−01 5.147E−04 4.012E−01 0.000E+ 00 5.925E−12 0.000E+ 00 0

F11 Avg 1.391E+ 00 (−) 3.601E−04 (−) 5.434E−03 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 7.608E−02 1.366E−03 7.676E−03 0 0 0 0

F12 Avg 1.057E−01 (−) 2.077E−03 (+) 2.281E−02 (−) 2.083E−07 (+) 9.452E−04 (+) 4.413E−03 (−) 2.799E−03
Std 3.319E−02 1.136E−02 5.030E−02 2.463E−07 1.241E−03 6.600E−03 1.815E−03

F13 Avg 2.253E+ 00 (−) 4.633E−05 (+) 2.558E−02 (+) 6.054E−02 (−) 7.316E−02 (−) 5.307E−03 (+) 5.270E−02
Std 3.612E−01 2.131E−05 4.703E−02 5.858E−02 6.265E−02 4.593E−03 4.689E−02

F14 Avg 9.980E−01 (≈) 9.980E−01 (≈) 3.925E+ 00 (−) 1.064E+ 00 (−) 9.980E−01 (≈) 9.980E−01 (≈) 9.980E−01
Std 3.011E−05 4.123E−17 4.659E+ 00 3.622E−01 1.515E−16 3.680E−13 4.382E−16

F15 Avg 1.815E−03 (−) 3.075E−04 (≈) 5.947E−04 (−) 1.076E−03 (−) 3.075E−04 (≈) 5.400E−04 (−) 3.075E−04
Std 2.472E−03 1.135E−15 1.859E−04 3.650E−03 5.890E−15 3.337E−04 5.878E−15

F16 Avg −1.032E+ 00 (≈) −1.032E+ 00 (≈) −1.004E+ 00 (−) −1.032E+ 00 (≈) −1.032E+ 00 (≈) −1.032E+ 00 (≈) −1.032E+ 00
Std 8.681E−06 8.192E−06 1.490E−01 9.888E−06 9.302E−06 9.342E−06 9.779E−06

F17 Avg 3.979E−01 (≈) 3.979E−01 (≈) 3.979E−01 (≈) 3.979E−01 (≈) 3.979E−01 (≈) 3.979E−01 (≈) 3.979E−01
Std 2.863E−05 3.269E−05 2.967E−05 3.401E−05 3.393E−05 3.024E−05 3.514E−05

F18 Avg 3.000E+ 00 (≈) 3.000E+ 00 (≈) 3.989E+ 00 (−) 3.000E+ 00 (≈) 3.000E+ 00 (≈) 3.000E+ 00 (≈) 3.000E+ 00
Std 4.252E−05 1.327E−14 4.937E+ 00 1.473E−14 1.714E−14 1.601E−11 4.103E−10

F19 Avg −3.861E+ 00 (≈) −3.861E+ 00 (≈) −3.861E+ 00 (≈) −3.861E+ 00 (≈) −3.861E+ 00 (≈) −3.861E+ 00 (≈) −3.861E+ 00
Std 7.195E−04 6.576E−04 6.727E−04 1.273E−03 6.650E−04 7.448E−04 8.201E−04

F20 Avg −3.289E+ 00 (−) −3.317E+ 00 (+) −3.320E+ 00 (≈) −3.271E+ 00 (−) −3.320E+ 00 (≈) −3.238E+ 00 (−) −3.320E+ 00
Std 5.283E−02 2.145E−02 3.996E−04 6.234E−02 3.105E−04 5.478E−02 3.165E−04

F21 Avg −7.326E+ 00 (−) −9.9848 (−) −10.1532 (≈) −9.9618 (−) −10.1532 (≈) −10.1530 (−) −10.1532
Std 3.569E+ 00 9.224E−01 6.224E−15 9.236E−01 4.687E−11 1.528E−04 6.452E−15

F22 Avg −8.507E+ 00 (−) −10.4029 (≈) −10.4029 (≈) −9.3141 (−) −10.4029 (≈) −10.4027 (−) −10.4029
Std 3.233E+ 00 8.105E−06 1.117E−05 2.219E+ 00 9.030E−06 1.298E−04 1.014E−05

F23 Avg −8.165E+ 00 (−) −10.5364 (≈) −10.0985 (−) −10.5294 (−) −10.5364 (≈) −10.5362 (−) −10.5364
Std 3.460E+ 00 2.130E−06 1.694E+ 00 3.847E−02 2.172E−06 1.321E−04 2.538E−06

Friedman 5.13 3.43 4.57 3.17 2.35 2.13 1.52
Rank 7 5 6 4 3 2 1
Wil (−) 18 11 16 14 8 8
Wil (≈) 5 9 5 7 13 11
Wil (+) 0 3 2 2 2 4

Gua (%) 21.74 39.13 21.74 30.43 56.52 43.48 73.91
c
a
t
d
s
(
b

f
o
c
U
s

3.3. Convergence curves analysis

A detailed evaluation is then performed on the convergence
urves. First, the convergence curves are analyzed to the uni-
odal functions (F1 to F7). Fig. 7(a) shows the convergence
urves of the seven algorithms: GA, SHADE, LSHADE-cnEpSin,
O, MPA, SMA, and KMA for the function F1. The vertical and
orizontal axes represent the log of the average solution and the

generation (iteration), respectively. Since those algorithms have
various population sizes, they use different step sizes of 9, 9,
10, 30, 18, 30, and 180, respectively, on the horizontal axis to
get fairness. It can be seen that KMA converges most quickly
at the beginning generation. This result also happens on the
five other unimodal functions: F2, F3, F4, F6, and F7. KMA also
converges swiftly for F5 in the beginning generations. It shows
that the three proposed movements work very well in the first
9

phase of evolution. Unfortunately, it gets a stagnation until the
end of evolution and obtains a worse local optimum at around
1.68 (log 48.31), as illustrated in Fig. 7(b). The function F5 is
hallenging due to the flat areas, making KMA (and all other
lgorithms) are trapped in stagnation. This curve indicates that
he high population in the second phase of KMA evolution cannot
o proper coordination in the flat fitness landscape. It happens
ince most (or even all) individuals have the same fitness values
qualities), making KMA challenging to split the population into
ig males, females, and small males based on their qualities.
The convergence curves are then analyzed to the multimodal

unctions (F8 to F13). Fig. 7(c) illustrates the convergence curves
f all the algorithms for F8. Similar to SMA, the proposed KMA
onverges quickly than the others in the beginning generations.
nfortunately, it gets some stagnations and reaches a worse
olution than SMA that obtains the best one. In contrast, the

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

o
s
f
t
o
f
a
c
r
F

f
v
g
b
t
c
l
i
o
c
m
o
c
a

i
a
m
a
e
t

3

c
v
s
a
i
a
u
n
u
r
o
a

t
f
L
2
r
6
a
t

t
i
s
a
G
t
i
a

ther algorithms converge much slower and give much worse
olutions. Meanwhile, Fig. 7(d) shows the convergence curves
or F9. In this case, KMA converges most swiftly compared to
he competitors. It reaches the minimum solution of 0 (global
ptimum) in the beginning generations, with the lowest mean
unction evaluations of 145.33, where the red-dotted line is dis-
ppeared since log(0) is infinite. In contrast, EO, MPA, and SMA
onverge more slowly while GA, SHADE, LSHADE-cnEpSin cannot
each the global optimum. This convergence curve also occurs on
11.
The convergence analysis is finally performed for the ten

ixed-dimension multimodal functions. Fig. 7(e) plots the con-
ergence curves for F17. All the algorithms can converge to the
lobal solution. In this case, KMA converges more slowly in the
eginning generations since it only employs five individuals in
he first phase of evolution. The five individuals have difficulty
oordinating in some flat areas in F17. Once it changes the popu-
ation size into 200 individuals in the second phase of evolution,
t gets the global optimum swiftly. A similar result also happens
n F15, F16, and F18. Meanwhile, Fig. 7(f) shows the convergence
urves for F19. Similar to the curve of F17, KMA also converges
ore slowly in the early generations since, in the first phase
f evolution, it only uses five individuals that have difficulty
oordinating in the wide-flat fitness landscapes in F19. This result
lso applies to F14, F20, F21, F22, and F23.
Hence, it can be highlighted that all those convergence curves

ndicate that KMA is the most efficient metaheuristic algorithm
mong the competitors. These results prove that all the three
ovements (HILE, MIME, and LIHE strategies) and the population
daptation scheme proposed in KMA can provide an exploitation–
xploration balance and highly guarantee global optimum solu-
ions to various benchmark functions.

.4. Scalability analysis

The scalability is analyzed by examining KMA performance
ompared to the competitors to optimize the high-dimensional
ersions of the thirteen functions: F1 to F13, where their dimen-
ions (Dim) are scaled up from 50 into 100, 500, and 1000. The
llowed number of generated individuals (function evaluations)
s also limited to 25000 with 30 independent runs to get the
verage (Avg), standard deviation (Std), and mean function eval-
ations (MFE). Tables 3, 4, and 5 illustrate the results. The bold
umber represents the best result among the competitors. The
nderscored one shows the global optimum solution is always
eached with the Std equals to zero or less than the decimal digits
f the global optimum. The bold-underscored one informs that it
chieves the best and the global optimum solution as well.
In all high-dimensions (100, 500, and 1000), KMA guarantees

o get the global optimum for 7 out of 13 (53.85%) benchmark
unctions, which is much higher than SMA, EO, MPA, SHADE,
SHADE-cnEpSin, and GA that give guarantees 38.46%, 23.08%,
3.08%, 0%, 0%, and 0%, respectively. Moreover, KMA impressively
equires a tiny MFE. For instance, it needs only 55.83, 62.33, and
5.17 MFE to get the global optimum solution for the 100, 500,
nd 1000-dimensions unimodal function F6, which is much fewer
han EO, MPA, and SMA that require more than 1000 MFE.

For 5 out of 7 unimodal functions, KMA is stable and guaran-
ees the global optimum solutions (with Std = 0). Impressively, it
s stable with low MFE (from 55.83 to 4221.67) for all the dimen-
ions, much lower than all the competitors. For F7, KMA reaches
near-global solution with a low Std, which is much better than
A, SHADE, LSHADE-cnEpSin, EO, and MPA. It is competitive to
he SMA. It is slightly unstable only for F5. Fortunately, this result
s better than SHADE and LSHADE-cnEpSin and competitive to EO
nd MPA. Hence, these results imply that KMA is much better
10
than the competitors in terms of exploitation ability and stability
in optimizing the high-dimensional unimodal functions.

Meanwhile, for two multimodal functions: F9 and F11, KMA
guarantees the global optimum with a minimum Std (zero) for all
dimensions. Moreover, it needs extremely low MFEs (from 150.50
to 183.00). For the function F10, KMA is also relatively stable to
find the near-global solutions with a low Std, which is better than
(or the same as) the competitors. For F12 and F13, although stable
for all the high-dimensions, KMA is a little worse than SMA.

Statistically, for both 500 and 1000 dimensions, KMA gives the
best Friedman Mean Rank (FMR), as illustrated in Tables 4 and
5. Meanwhile, for 100 dimensions, KMA gives a lower FMR than
SMA, as illustrated in Table 3. Interestingly, it can be highlighted
that in terms of the global optimum guaranty, KMA is much better
than all the competitors. For 50, 100, 500, and 1000 dimensions,
KMA is stable to give a guaranty of the global optimum solutions
for 7 of 13 (53.85%) benchmark functions, which is much higher
than SMA, EO, and MPA that are unstable: the guaranties decrease
from 38.46% to 23.08%, from 23.08% to 15.38%, and from 23.08%
to 15.38%, respectively, and is much better than GA, SHADE,
and LSHADE-cnEpSin that do not provide any guaranty (0%).
These results empirically prove that KMA has high scalability and
robustness in the exploitation–exploration balance.

4. Discussion

As with other swarm-based algorithms, it is hard to provide
mathematical proof to show that KMA is capable of solving both
unimodal and multimodal problems effectively and efficiently
since it uses real number encoded individuals. Until now, only
GA with binary-encoding individuals can be mathematically ex-
plained using Holland’s schema theorem, and the building block
hypothesis [50]. However, the binary-encoding is not scalable to
optimize the thousands-dimensional problems needing high pre-
cision due to some reasons: managing long binary chromosomes
is too complex in space, decoding long chromosomes and then
evaluating fitness is time-consuming, mating pairs of long parent
chromosomes based on a single-point crossover only gives low
exploitation but creating a better multi-point crossover or other
schemes is too hard, and mutating a few binary genes will pro-
duce a low exploration. Hence, the best individual representation
for GA is the real number encoding, like used in KMA and other
algorithms. Consequently, the performances of GA, KMA, and all
the others can only be explained in this paper using qualitative
(subjective) analysis of exploitation and exploration balance.

First, the qualitative analysis is performed for GA that pro-
duces the lowest performance. A tournament selection creates
a proportional selection of parents based on their fitness re-
gardless of negative, zero, or positive values. Our experiments
show that the tournament size of 10 individuals, which is 10% of
the population size of 100, gives the optimum parent selection.
Next, since GA uses the real number encoding chromosomes, the
whole arithmetic crossover and creep mutation can be considered
to give medium exploitation medium exploration, respectively.
Our experimental results show that they are better than the
single-point crossover and mutation in binary or integer number
encodings. Furthermore, Table 2 shows that GA can guarantee
global optima for 5 out of 10 (50%) fixed low-dimensional bench-
mark functions (F14 and F16 to F19) and reach near global optima
for the five others. However, GA fails to optimize the thirteen
high-dimensional functions, even for 50 dimensions. These re-
sults indicate that the whole arithmetic crossover is not able to
create high exploitation to solve the seven unimodal functions
(F1 to F7). Likewise, the creep mutation cannot provide a high
exploration to optimize the six multimodal functions (F8 to F13).
In other words, all those operators cannot provide scalability to
GA.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

(
n
5
c
m
L
I
d
T
m
h
t
l

L
4
e
b
c
o
d
e
p

Fig. 7. Converge curves of KMA and the competitors for six representative functions for 30 independent runs, each 25000 function evaluations.
Furthermore, SHADE guarantees global optima for 8 out of 10
80%) fixed low-dimensional benchmark functions and reaches
ear global optima for the rests while LSHADE-cnEpSin only
0%, as shown in Table 2. However, both SHADE and LSHADE-
nEpSin also cannot give scalability. In 50-dimensional bench-
arks, SHADE guarantees the global optimum only for F6 while
SHADE-cnEpSin does not give any guaranty, as shown in Table 2.
n higher dimensions of 100, 500, and 1000, both algorithms
o not provide any guaranty, as depicted in Tables 3, 4, and 5.
hese facts indicate the differential mutations in DE, the base
odel used in both algorithms, cannot give high exploitation and
igh exploration. They are calculated from indirect vectors of two
o four best or randomly selected individuals [49] so that the
ow-quality individuals cannot directly follow the best one.

Meanwhile, EO obtains lower FMR than GA, SHADE, and
SHADE-cnEpSin. Although it guarantees global optima only for
0% of the fixed low-dimensional functions (F16 to F19), it inter-
stingly gives scalability for 2 out of 13 (15.38%) high-dimensional
enchmarks (F6 and F9), as can be seen in Table 5. These results
an be subjectively explained as follow. EO splits the population
f thirty particles (candidate solutions) into two groups with
ifferent search strategies. First, four high-quality particles (as
quilibrium candidates) with their arithmetic mean do high ex-
loitation. Second, twenty-six low-quality particles do a high
11
exploration. For the unimodal functions, the equilibrium can-
didates quickly find the global optimum of F6, even for 1000
dimensions, but fail for the six others. Meanwhile, for the multi-
modal benchmarks, the low-quality particles can explore to cover
the fitness landscape, and the equilibrium candidates can quickly
find the global optimum of F9 for all the dimensions. However,
for the five other multimodal functions, they fail. This issue arises
because EO lacks an adaptive strategy for automatically tuning
the number of equilibrium candidates. As explained in [36], three
equilibrium candidates make EO more exploitative to quickly find
the global optima of unimodal functions. In contrast, five or more
equilibrium candidates make EO more explorative to find the
global optima of multimodal functions rapidly. Unfortunately, the
type of the given function is unknown, and EO has no procedure
to automatically detect the function type. Creating such a pro-
cedure is quite challenging. The other problem probably comes
from the arithmetic mean calculated from the four equilibrium
candidates. It can make EO converge too early (premature) and
trapped in local optima in the cases of multimodal benchmarks.

Next, MPA achieves better performance than EO. It guarantees
global optima for all fixed low-dimensional functions (F14 to
F23) and also provides scalability for 2 out of 13 (15.38%) high-
dimensional benchmarks (F6 and F9). This achievement can be
subjectively explained as follow. First, MPA employs 50 individ-
uals: 25 high-quality predators and 25 low-quality prey with

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

T
C

i
l
a
F
s
d
l
s
t
l

g

able 3
omparison of the six algorithms for thirteen 100-dimensional benchmark functions for 30 runs, each 25000 function evaluations. Both symbols − and + (in the

parentheses) show that the current result is significantly worse and better than the KMA’s result based on the Wilcoxon’s rank sum test with a significance level of
0.05, respectively, while ≈ denotes an insignificant result.
Func Met GA SHADE LSHADE-cnEpSin EO MPA SMA KMA

F1 Avg 7.638E+ 02 (−) 2.432E−01 (−) 2.697E+ 00 (−) 1.166E−74 (−) 4.929E−19 (−) 0 (≈) 0
Std 6.477E+ 01 8.656E−02 1.040E+ 00 1.535E−74 3.687E−19 0 0
MFE 25000 25000 25001 25020 25000 21696 2087.17

F2 Avg 1.950E+ 01 (−) 8.981E−01 (−) 3.658E+ 00 (−) 7.151E−43 (−) 2.030E−11 (−) 4.393E−178 (−) 0
Std 1.131E+ 00 3.456E−01 8.951E−01 8.133E−43 1.244E−11 0.000E+ 00 0
MFE 25000 25000 25001 25020 25000 25007 3922.5

F3 Avg 2.453E+ 04 (−) 1.257E+ 04 (−) 2.629E+ 03 (−) 6.080E−05 (−) 4.333E+ 00 (−) 0 (≈) 0
Std 5.323E+ 03 2.378E+ 03 6.532E+ 02 2.100E−04 5.581E+ 00 0 0
MFE 25000 25000 25001 25020 25000 22382 2464.33

F4 Avg 8.272E+ 00 (−) 1.052E+ 01 (−) 1.242E+ 01 (−) 3.241E−07 (−) 2.702E−07 (−) 9.698E−160 (−) 0
Std 5.292E−01 1.221E+ 00 1.539E+ 00 1.774E−06 1.468E−07 5.312E−159 0
MFE 25000 25000 25001 25020 25000 25015 4144.17

F5 Avg 2.932E+ 04 (−) 3.233E+ 02 (−) 6.299E+ 02 (−) 9.531E+ 01 (≈) 9.626E+ 01 (−) 9.883E+ 00(+) 9.530E+ 01
Std 6.765E+ 03 8.492E+ 01 2.270E+ 02 6.363E−01 7.919E−01 1.878E+ 01 1.467E+ 01
MFE 25000 25000 25001 25020 25000 25020 25011.33

F6 Avg 7.714E+ 02 (−) 4.300E+ 00 (−) 8.920E+ 01 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 6.764E+ 01 2.718E+ 00 2.830E+ 01 0 0 0 0
MFE 25000 24910 25001 1785 2060 1222 55.83

F7 Avg 2.641E−01 (−) 1.005E−01 (−) 1.037E−01 (−) 1.675E−03 (−) 1.483E−03 (−) 2.025E−04 (+) 2.122E−04
Std 9.003E−02 2.357E−02 2.673E−02 7.879E−04 6.133E−04 1.722E−04 1.393E−04
MFE 25000 25000 25001 25020 25000 25020 25149.67

F8 Avg −2.413E+ 04 (−) −1.334E+ 04 (−) −2.321E+ 04 (−) −2.891E+ 04 (−) −2.615E+ 04 (−) −4.189E+ 04 (+) −3.259E+ 04
Std 1.268E+ 03 6.594E+ 02 6.562E+ 02 1.592E+ 03 9.166E+ 02 7.066E+ 00 4.765E+ 03
MFE 25000 25000 25001 25020 25000 25020 25045.83

F9 Avg 5.109E+ 02 (−) 7.234E+ 02 (−) 3.496E+ 02 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 3.177E+ 01 1.963E+ 01 2.985E+ 01 0 0 0 0
MFE 25000 25000 25001 5895 6891.67 5210 150.5

F10 Avg 4.960E+ 00 (−) 7.185E−01 (−) 2.672E+ 00 (−) 5.033E−15 (−) 6.508E−11 (−) 8.882E−16 (≈) 8.882E−16
Std 1.284E−01 4.472E−01 3.237E−01 1.347E−15 2.833E−11 0.000E+ 00 0.000E+ 00
MFE 25000 25000 25001 25020 25000 25020 25085

F11 Avg 8.017E+ 00 (−) 1.672E−01 (−) 7.733E−01 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 4.267E−01 4.487E−02 1.330E−01 0 0 0 0
MFE 25000 25000 25001 6611 7825 6700 169.83

F12 Avg 2.651E+ 00 (−) 3.780E−01 (−) 8.041E−01 (−) 5.759E−03 (−) 2.800E−02 (−) 1.216E−03 (+) 2.407E−03
Std 3.679E−01 2.931E−01 3.086E−01 5.622E−03 7.451E−03 2.333E−03 2.832E−03
MFE 25000 25000 25001 25020 25000 25020 25012.33

F13 Avg 5.324E+ 01 (−) 8.230E−01 (−) 1.171E+ 01 (−) 3.255E+ 00 (−) 5.419E+ 00 (−) 8.191E−02 (+) 1.741E−01
Std 5.268E+ 00 7.507E−01 8.421E+ 00 1.135E+ 00 2.842E+ 00 2.222E−01 3.133E−01
MFE 25000 25000 25001 25020 25000 25020 25009.17

Friedman 6.61 5.31 5.92 2.77 3.23 1.15 1.38
Rank 7 5 6 3 4 1 2
Wil (−) 13 13 13 9 10 2
Wil (≈) 0 0 0 4 3 6
Wil (+) 0 0 0 0 0 5

Gua (%) 0 0 0 23.08 23.08 38.46 53.85
a
s
m
t

different movement strategies of exploitation and exploration,
respectively. It uses the probability of the Fish Aggregating De-
vices (FADs) effects of 0.2, making predators take longer jumps
(explorations) in different dimensions randomly in 20% of the
number of iterations. This scheme can avoid trapping in local
optima. However, since MPA equally divides the evolution into
three phases: high exploration, equal exploration–exploitation,
and high exploitation, it cannot guarantee global optima for the
most unimodal functions. Additionally, it is susceptible to being
stuck in the local optima for higher-dimensional benchmarks.

Meanwhile, SMA obtains a lower FMR than MPA. Although
t guarantees global optima only for 5 out of 10 (50%) fixed
ow-dimensional functions (as shown in Table 2) but it gives scal-
bility for 3 out of 13 (23.08%) high-dimensional benchmarks (F6,
9, and F11), as shown in Table 5. These results can be achieved
ince SMA uses an adaptive weight W to manage a particular
isturbance rate while converging quickly. Hence, it can avoid
ocal optima during the fast convergence. Unfortunately, it is not
calable for some benchmarks since it uses a vibration parameter
o efficiently explore in early generation and highly exploit in the
ater iteration.

Finally, KMA significantly outperforms all the competitors. It
uarantees global optima for all (100%) fixed low-dimensional
12
functions, as shown in Table 2. Additionally, it guarantees global
optima and also scalability for 7 out of 13 (53.85%) high-
dimensional benchmarks, as depicted in Table 5. This result can
be achieved since KMA employs three following features.

First, different from EO, MPA, and SMA that utilize high ex-
ploration low exploitation in early generations (first stage) and
the opposite strategy in the end (second stage), KMA uses three
searching strategies: HILE, MIME, and LIHE in the whole evolution
(the first and the second stages). HILE is designed based on a
much different scheme used in EO regarding the movement for-
mula, probability, and less (one, two, or three) fittest individuals.
It can perform higher exploitation and converge to the global op-
tima more swiftly for the unimodal functions. Meanwhile, MIME
is implemented using similar schemes to the operators used
in GA. It employs the same whole arithmetic crossover as in
GA but a slightly different mutation by introducing a mutation
radius of 0.5 to make longer jumps. In contrast, LIHE is imple-
mented using mlipir movement, which is composed of direct
ttraction vectors of partial dimensions of one to three randomly
elected higher-quality individuals. As illustrated in Fig. 6, this
lipir movement logically provides a higher exploitation strategy
han the differential mutations in DE.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

T
C

u
e
(
0
p
T
b
t
h
F
g
t
t
d
(
i
s

a
o
A

able 4
omparison of the six algorithms for thirteen 500-dimensional benchmark functions for 30 runs, each 25000 function evaluations. Both symbols − and + (in the

parentheses) show that the current result is significantly worse and better than the KMA’s result based on the Wilcoxon’s rank sum test with a significance level of
0.05, respectively, while ≈ denotes an insignificant result.
Func Met GA SHADE LSHADE-cnEpSin EO MPA SMA KMA

F1 Avg 3.057E+ 04 (−) 1.498E+ 04 (−) 2.072E+ 04 (−) 1.587E−62 (−) 3.273E−16 (−) 0 (≈) 0
Std 1.267E+ 03 1.718E+ 03 2.374E+ 03 3.301E−62 2.702E−16 0 0
MFE 25000 25000 25000 25020 25000 22423 2139

F2 Avg 3.069E+ 02 (−) 2.112E+ 02 (−) 3.253E+ 02 (−) 5.498E−37 (−) 7.210E−10 (−) 5.355E−01 (−) 0
Std 7.687E+ 00 1.482E+ 01 6.976E+ 01 4.340E−37 6.922E−10 2.104E+ 00 0
MFE 25000 25000 25000 25020 25000 25020 3982.83

F3 Avg 9.780E+ 05 (−) 1.448E+ 06 (−) 1.508E+ 05 (−) 5.591E+ 04 (−) 5.933E+ 03 (−) 3.812E−303 (−) 0
Std 1.362E+ 05 1.682E+ 05 2.820E+ 04 7.208E+ 04 3.310E+ 03 0.000E+ 00 0
MFE 25000 25000 25000 25020 25000 23750 2539.83

F4 Avg 2.977E+ 01 (−) 3.982E+ 01 (−) 1.847E+ 01 (−) 9.501E+ 01 (−) 4.364E−05 (−) 6.143E−141 (−) 0
Std 7.773E−01 1.579E+ 00 2.791E+ 00 6.427E+ 00 4.672E−05 2.412E−140 0
MFE 25000 25000 25000 25020 25000 25020 4191.67

F5 Avg 6.899E+ 06 (−) 2.730E+ 06 (−) 2.238E+ 06 (−) 4.965E+ 02 (−) 4.965E+ 02 (−) 9.652E+ 01 (+) 4.715E+ 02
Std 6.357E+ 05 5.643E+ 05 9.571E+ 05 5.158E−01 3.831E−01 1.261E+ 02 7.375E+ 01
MFE 25000 25000 25000 25020 25000 25020 25045.33

F6 Avg 3.069E+ 04 (−) 1.475E+ 04 (−) 2.005E+ 04 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 1.397E+ 03 1.405E+ 03 2.008E+ 03 0 0 0 0
MFE 25000 25000 25000 2437 2451.67 1312 62.33

F7 Avg 5.312E+ 01 (−) 1.950E+ 01 (−) 2.130E+ 01 (−) 2.747E−03 (−) 1.931E−03 (−) 2.725E−04 (−) 2.643E−04
Std 5.177E+ 00 3.283E+ 00 2.040E+ 01 1.042E−03 6.748E−04 2.671E−04 1.781E−04
MFE 25000 25000 25000 25020 25000 25020 25103.33

F8 Avg −6.522E+ 04 (−) −2.556E+ 04 (−) −3.126E+ 04 (−) −9.022E+ 04 (−) −8.763E+ 04 (−) −2.094E+ 05 (+) −1.664E+ 05
Std 4.664E+ 03 1.780E+ 03 1.991E+ 03 4.873E+ 03 3.222E+ 03 1.806E+ 02 2.339E+ 04
MFE 25000 25000 25000 25020 25000 25020 25057

F9 Avg 4.469E+ 03 (−) 4.773E+ 03 (−) 4.404E+ 03 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 1.133E+ 02 4.481E+ 01 1.162E+ 02 0 0 0 0
MFE 25000 25000 25000 6792 7216.67 7546 157.67

F10 Avg 9.622E+ 00 (−) 7.980E+ 00 (−) 8.523E+ 00 (−) 7.046E−15 (−) 6.442E−10 (−) 8.882E−16 (≈) 8.882E−16
Std 1.319E−01 2.402E−01 3.125E−01 1.598E−15 1.770E−10 0.000E+ 00 0.000E+ 00
MFE 25000 25000 25000 25020 25000 25020 25085

F11 Avg 2.763E+ 02 (−) 1.297E+ 02 (−) 1.829E+ 02 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 1.158E+ 01 1.468E+ 01 2.420E+ 01 0 0 0 0
MFE 25000 25000 25000 7996 10531.67 8790 179.5

F12 Avg 5.889E+ 04 (−) 3.252E+ 02 (−) 1.103E+ 02 (−) 3.622E−01 (−) 3.359E−01 (−) 3.424E−03 (+) 1.197E−02
Std 3.413E+ 04 6.120E+ 02 5.415E+ 02 1.788E−02 2.141E−02 5.155E−03 9.172E−03
MFE 25000 25000 25000 25020 25000 25020 25010.67

F13 Avg 3.395E+ 06 (−) 5.172E+ 05 (−) 1.168E+ 05 (−) 4.885E+ 01 (−) 4.824E+ 01 (−) 4.239E−01 (+) 2.263E+ 00
Std 5.043E+ 05 2.135E+ 05 2.922E+ 05 3.293E−01 3.656E−01 7.088E−01 9.714E−01
MFE 25000 25000 25000 25020 25000 25020 25011.67

Friedman 6.46 5.77 5.54 3.15 2.77 1.46 1.31
Rank 7 6 5 4 3 2 1

Wil (−) 13 13 13 10 10 4
Wil (≈) 0 0 0 3 3 5
Wil (+) 0 0 0 0 0 4

Gua (%) 0 0 0 23.08 23.08 30.77 53.85
Second, KMA uses a procedure to detect the function type
sing a small population of 5 individuals in the first stage of
volution. This procedure is performed only for 100 generations
500 evaluations). If the fitness improvement rate is more than
.5 (a simple function is detected), it continues the evolution
rocess to the maximum of 1000 generations (5000 evaluations).
his result indicates HILE and MIME can effectively exploit the
owl-like landscape and quickly go to the global optimum. In-
erestingly, it also shows that LIHE can help HILE and MIME to
ighly explore the multimodal landscape (contained in F9 and
11) so that KMA finds the global optimum in less than 40
enerations (200 evaluations). Hence, it can be said that those
hree searching strategies are performed very well in this stage
o guarantee global optima and scalability for 53.85% of high-
imensional benchmarks efficiently in less than 1000 generations
5000 evaluations). In contrast, if the fitness improvement rate
s less than 0.5 (a complex function is detected), it jumps to the
econd stage.
Third, in the second stage of evolution, KMA utilizes a self-

daptation of a big population (20 to 200 individuals) based
n their fitness to provide an exploitation–exploration balance.
dding five individuals, randomly generated from the best-so-far
13
solution, to the population increases the exploration rate to avoid
the local optima or escape from the flat fitness landscapes. In
contrast, removing five individuals increase the exploitation rate
to find the global optimum swiftly. Therefore, this second stage
can guarantee global optima for all (100%) fixed low-dimensional
benchmarks.

However, KMA has a limitation for the problems with wide
flat areas, such as the function F5. It is caused by the two fixed
parameters in the first stage of evolution: a half big male portion
p1 = 0.5 and a high mlipir rate d1 =

(m−1)
m . The wide flat areas

make KMA has difficulty splitting the five individuals in the first
stage into big males, female, and small males since they may
have very similar (even the same) fitness. Hence, HILE cannot
effectively do the high exploitation. Instead, it works randomly
and selects any big male as a winner. Consequently, with the
randomly selected winner, the female cannot do the MIME strat-
egy. In contrast, small males are not affected by this situation
since they do LIHE by randomly selecting the big males to mlipir.
Likewise, in the second stage, those three strategies also cannot
work very well because of the two fixed parameters: a half big
male portion p2 = 0.5 and a high mlipir rate d2 = 0.5 throughout
the evolution, which make KMA cannot do higher exploration.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

T
C
p
0

a
(
e
a
c
d
e
t
a
c

5

m
p
a
(
F
o
a

able 5
omparison of the six algorithms for thirteen 1000-dimensional benchmark functions for 30 runs, each 25000 function evaluations. Both symbols − and + (in the
arentheses) show that the current result is significantly worse and better than the KMA’s result based on the Wilcoxon’s rank sum test with a significance level of
.05, respectively, while ≈ denotes an insignificant result.
Func Met GA SHADE LSHADE-cnEpSin EO MPA SMA KMA

F1 Avg 1.104E+ 05 (−) 9.927E+ 04 (−) 5.959E+ 04 (−) 2.879E−59 (−) 1.718E−15 (−) 3.413E−292 (−) 0
Std 4.031E+ 03 5.047E+ 03 9.258E+ 03 6.916E−59 1.340E−15 0.000E+ 00 0
MFE 25000 25000 25001 25020 25000 23518 2171.17

F2 Avg 8.338E+ 02 (−) 6.554E+ 04 (−) 6.554E+ 04 (−) 1.644E−35 (−) 1.136E+ 03 (−) 1.223E+ 00 (−) 0
Std 1.458E+ 01 6.554E+ 04 6.554E+ 04 1.931E−35 1.490E+ 02 4.522E+ 00 0
MFE 25000 25000 25001 25020 25000 25020 4021

F3 Avg 4.055E+ 06 (−) 6.989E+ 06 (−) 1.431E+ 06 (−) 1.001E+ 05 (−) 3.510E+ 04 (−) 2.115E−240 (−) 0
Std 6.387E+ 05 8.208E+ 05 3.607E+ 05 1.306E+ 05 1.980E+ 04 0.000E+ 00 0
MFE 25000 25000 25001 25020 25000 2.398E+ 04 2650.5

F4 Avg 4.335E+ 01 (−) 4.903E+ 01 (−) 3.560E+ 01 (−) 9.943E+ 01 (−) 3.442E−04 (−) 7.211E−147 (−) 0
Std 1.047E+ 00 2.192E+ 00 1.165E+ 01 2.702E−01 4.182E−04 3.950E−146 0
MFE 25000 25000 25001 25020 25000 25020 4221.67

F5 Avg 4.296E+ 07 (−) 3.468E+ 07 (−) 1.271E+ 07 (−) 9.965E+ 02 (−) 9.962E+ 02 (−) 1.374E+ 02 (+) 9.617E+ 02
Std 2.898E+ 06 4.123E+ 06 1.760E+ 07 1.888E−01 2.049E−01 2.225E+ 02 8.468E+ 01
MFE 25000 25000 25001 25020 25000 25020 25040.67

F6 Avg 1.087E+ 05 (−) 1.046E+ 05 (−) 5.698E+ 04 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 3.581E+ 03 7.069E+ 03 8.936E+ 03 0 0 0 0
MFE 25000 25000 25001 2673 2626.67 1919 65.17

F7 Avg 6.923E+ 02 (−) 4.583E+ 02 (−) 2.687E+ 02 (−) 3.268E−03 (−) 1.962E−03 (−) 4.483E−04 (−) 2.731E−04
Std 5.411E+ 01 7.016E+ 01 4.823E+ 02 1.420E−03 9.409E−04 3.325E−04 1.411E−04
MFE 25000 25000 25001 25020 25000 25020 25123.33

F8 Avg −9.853E+ 04 (−) −3.526E+ 04 (−) −3.573E+ 04 (−) −1.366E+ 05 (−) −1.368E+ 05 (−) −4.189E+ 05 (+) −3.279E+ 05
Std 7.907E+ 03 1.707E+ 03 2.873E+ 03 7.654E+ 03 5.031E+ 03 1.680E+ 02 4.762E+ 04
MFE 25000 25000 25001 25020 25000 25020 25059.67

F9 Avg 9.707E+ 03 (−) 9.976E+ 03 (−) 9.485E+ 03 (−) 0 (≈) 0 (≈) 0 (≈) 0
Std 1.339E+ 02 9.388E+ 01 1.358E+ 02 0 0 0 0
MFE 25000 25000 25001 7169 7386.67 8253 157.83

F10 Avg 1.155E+ 01 (−) 1.152E+ 01 (−) 9.241E+ 00 (−) 7.638E−15 (−) 1.232E−09 (−) 8.882E−16 (≈) 8.882E−16
Std 1.381E−01 2.372E−01 3.882E−01 1.084E−15 4.100E−10 0.000E+ 00 0.000E+ 00
MFE 25000 25000 25001 25020 25000 25020 25085

F11 Avg 9.932E+ 02 (−) 9.272E+ 02 (−) 5.022E+ 02 (−) 3.701E−18 (−) 9.992E−17 (−) 0 (≈) 0
Std 3.161E+ 01 7.810E+ 01 8.310E+ 01 2.027E−17 3.388E−17 0 0
MFE 25000 25000 25001 10828 24193.33 7146 183

F12 Avg 5.097E+ 06 (−) 4.692E+ 05 (−) 2.014E+ 05 (−) 6.439E−01 (−) 5.707E−01 (−) 3.577E−03 (+) 1.333E−02
Std 8.851E+ 05 2.195E+ 05 8.138E+ 05 2.257E−02 2.200E−02 1.080E−02 1.293E−02
MFE 25000 25000 25001 25020 25000 25020 25010.67

F13 Avg 5.130E+ 07 (−) 2.395E+ 07 (−) 4.123E+ 06 (−) 9.914E+ 01 (−) 9.776E+ 01 (−) 2.472E+ 00 (+) 4.218E+ 00
Std 6.384E+ 06 5.036E+ 06 1.086E+ 07 2.294E−01 4.164E−01 6.227E+ 00 2.215E+ 00
MFE 25000 25000 25001 25020 25000 25020 25013

Friedman 6.31 6.23 5.08 3.38 3.08 1.46 1.31
Rank 7 6 5 4 3 2 1
Wil (−) 13 13 13 11 11 5
Wil (≈) 0 0 0 2 2 4
Wil (+) 0 0 0 0 0 4

Gua (%) 0 0 0 15.38 15.38 23.08 53.85
Finally, it can be summarized that KMA can give a guaranty
nd scalability to quickly find the global optima for unimodal
or bowl-like multimodal) functions during the first phase of
volution since it employs three different strategies: HILE, MIME,
nd LIHE with a small population and a high mlipir rate. KMA
an also guarantee global optima for various complex fixed low-
imensional multimodal functions since, in the second phase of
volution, it uses an adaptively-tuned big population doing those
hree different strategies with a half mlipir rate. These qualitative
nalyses have been clearly visualized in the six convergence
urves of representative benchmark functions in Section 3.3.

. Conclusion

In this research, a novel metaheuristic optimizer named Ko-
odo Mlipir Algorithm (KMA) has been successfully developed to
rovide a higher guaranty to reach global optima and more scal-
bility to a thousand dimensions. Compared to recent algorithms
as competitors in this research), KMA has three advantages.
irst, during two stages of evolution, it employs three groups
f individuals: high-quality big males, middle-quality females,
nd low-quality small males that work in different ways (HILE,
14
MIME, and LIHE), providing a great adaptation for many types of
functions. Second, in the first stage of evolution, it uses a fixed
small population of five individuals (two big males, a female,
and two small males), with a high mlipir rate. This characteristic
gives the guarantee and scalability to reach the global optima of
the simple bowl-like unimodal and multimodal functions. Third,
in the second stage of evolution, it utilizes a self-adaptive big
population of 20 to 200 individuals and a half mlipir rate to
guarantee global optima of the complex fixed low-dimensional
multimodal functions. However, KMA has one disadvantage. Since
KMA utilizes two fixed parameters of big male portion and mlipir
rate throughout the two stages of evolution, it cannot guarantee
global optima of the functions containing wide flat areas.

Experimental results show that KMA significantly outperforms
the competitors: GA, SHADE, LSHADE-cnEpSin, EO, MPA, and
SMA in terms of average solution, mean function evaluations,
guaranty rate, and scalability. An evaluation of 23 benchmark
functions shows that all the proposed schemes give KMA an
exploitation–exploration balance that guarantees global optima
for most functions rapidly. It can guarantee global optima for 17
out of 23 (73.91%) functions, which is higher than MPA (56.52%),
SMA (43.48%), SHADE (39.13%), and the other competitors. A

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043
Fig. 8. Twenty three benchmark functions F1 to F23.
scalability evaluation informs that it can be scaled up to thousand
dimensions. It guarantees global optima for 7 out of 13 (53.85%)
functions efficiently in less than 5000 evaluations, which is sig-
nificantly higher than SMA (23.08%), MPA (15.38%), EO (15.38%),
and the other algorithms (0%). It is slightly unstable only for F5
(containing wide flat areas), but it is still better than GA, SHADE,
and LSHADE-cnEpSin and competitive to EO and MPA. Hence,
KMA is much better than all the competitors, making it a potential
metaheuristic swarm-based optimizer.

In the future, an advanced self-adaptation scheme can be
developed to dynamically update the two parameters: big male
15
portion and mlipir rate, giving KMA an adaptive higher explo-

ration to tackle the benchmarks with wide flat areas. Additionally,

this research has one limitation. KMA is only evaluated using

a small set of 13 simple high-dimensional and ten fixed low-

dimensional benchmarks and is focused on a few evaluation

metrics. Therefore, its performance should be investigated com-

prehensively using the more challenging benchmark functions

and real-world applications.

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043

T
T

M
A

D

c
t

A

a
K
T

A
t

R

able 6
wenty three benchmark functions: thirteen high-dimensional and ten fixed low-dimensional.
Func Name Type Dimension Range fmin x∗

i

F1 Sphere HDU {50, 100, 500, 1000} [−100, 100] 0 (0, 0, . . .)
F2 Schwefel 2.22 HDU {50, 100, 500, 1000} [−100, 100] 0 (0, 0, . . .)
F3 Schwefel 1.2 HDU {50, 100, 500, 1000} [−100, 100] 0 (0, 0, . . .)
F4 Schwefel 2.21 HDU {50, 100, 500, 1000} [−100, 100] 0 (0, 0, . . .)
F5 Rosenbrock HDU {50, 100, 500, 1000} [−30, 30] 0 (1, 1, . . .)
F6 Step HDU {50, 100, 500, 1000} [−100, 100] 0 (0, 0, . . .)
F7 Quartic HDU {50, 100, 500, 1000} [−1.28, 1.28] 0 (0, 0, . . .)
F8 Schwefel HDM {50, 100, 500, 1000} [−500, 500] −418.9829× Dim (420.9687, 420.9687, . . .)
F9 Rastrigin HDM {50, 100, 500, 1000} [−5.12, 5.12] 0 (0, 0, . . .)
F10 Ackley HDM {50, 100, 500, 1000} [−32, 32] 0 (0, 0, . . .)
F11 Griewank HDM {50, 100, 500, 1000} [−600, 600] 0 (0, 0, . . .)
F12 Penalized HDM {50, 100, 500, 1000} [−50, 50] 0 (−1, −1, . . .)
F13 Penalized2 HDM {50, 100, 500, 1000} [−50, 50] 0 (1, 1, . . .)
F14 Foxholes FDM 2 [−65, 65] 0.998 (−31.9783, −31.9783)
F15 Kowalik FDM 4 [−5, 5] 0.0003 (0.1928, 0.1908, 0.1231,0.1358)
F16 Six Hump Camel FDM 2 [−5, 5] −1.0316 (0.0898, −0.7126) , (−0.0898, 0.7126)
F17 Branin FDM 2 [−5, 5] 0.398 (−π , 12.275), (π , 2.275), (9.425, 2.275)
F18 GoldStein–Price FDM 2 [−2, 2] 3 (0, −1)
F19 Hartman 3 FDM 3 [0, 1] −3.86278 (0.1146, 0.5557, 0.8526)
F20 Hartman 6 FDM 6 [0, 1] −3.32 (0.202, 0.150, 0.477, 0.275, 0.312, 0.657)
F21 Shekel 5 FDM 4 [0, 10] −10.1532 (4, 4, 4, 4)
F22 Shekel 7 FDM 4 [0, 10] −10.4029 (4, 4, 4, 4)
F23 Shekel 10 FDM 4 [0, 10] −10.5364 (4, 4, 4, 4)
CRediT authorship contribution statement

Suyanto Suyanto: Principal investigator, Conceptualization,
ethodology, Data curation, Supervision, Writing – original draft.
lifya Aisyah Ariyanto: Investigation, Writing – review & editing.

Alifya Fatimah Ariyanto: Validation, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

As the first author, I would like to thank my parents, Saekan
nd Musripah, for inspiring the mlipir movement adopted in the
omodo Mlipir Algorithm and also my teenage daughter, Alima
asnim Ariyanto, for creating the Komodo cartoon.

ppendix. Specification of 23 benchmark functions and their
wo-dimensional views

See Table 6 and Fig. 8.

eferences

[1] J.H. Holland, Genetic algorithms, Sci. Am. 267 (1) (1992) 66–
72, http://dx.doi.org/10.1038/scientificamerican0792-66, URL https:
//www.scientificamerican.com/article/genetic-algorithms/.

[2] Suyanto, An Informed Genetic Algorithm for University Course and Student
Timetabling Problems, vol. 6114 LNAI, (PART 2) 2010, http://dx.doi.org/10.
1007/978-3-642-13232-2_28.

[3] J. Cheng, Z. Pan, H. Liang, Z. Gao, J. Gao, Differential evolution algorithm
with fitness and diversity ranking-based mutation operator, Swarm Evol.
Comput. 61 (May 2020) (2021) 100816, http://dx.doi.org/10.1016/j.swevo.
2020.100816, URL https://doi.org/10.1016/j.swevo.2020.100816.

[4] M.A. Bourouis, A. Zadjaoui, A. Djedid, Contribution of two artificial in-
telligence techniques in predicting the secondary compression index of
fine-grained soils, Innov. Infrast. Solut. 5 (3) (2020) http://dx.doi.org/10.
1007/s41062-020-00348-1.

[5] X. Yin, Z. Niu, Z. He, Z. Li, D. Lee, An integrated computational intelligence
technique based operating parameters optimization scheme for quality
improvement oriented process-manufacturing system, Comput. Ind. Eng.
140 (2020) http://dx.doi.org/10.1016/j.cie.2020.106284.
16
[6] V. Mp, B. Anand, Microprocessors and Microsystems Particle swarm op-
timization technique for multilevel inverters in solar harvesting micro
grid system, Microprocess. Microsyst. 79 (August) (2020) 103288, http:
//dx.doi.org/10.1016/j.micpro.2020.103288.

[7] S. Palacios, S. Chiriboga, W. Montalvo, PID-2DOF-ACO speed controller for
DC motor on ARM platform [Controlador de velocidad PID-2DOF-ACO para
motor DC sobre plataforma ARM], RISTI - Revista Iberica de Sistemas E
Tecnologias de Informacao 2020 (E30) (2020) 217–228.

[8] N. Hansen, S.D. Müller, P. Koumoutsakos, Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES), Genet. Evol. Comput. Ser. 11 (1) (2003) 1–18, http://dx.doi.org/
10.1162/106365603321828970.

[9] R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for
Differential Evolution, in: 2013 IEEE Congress on Evolutionary Compu-
tation, (ISSN: 1941-0026) 2013, pp. 71–78, http://dx.doi.org/10.1109/CEC.
2013.6557555.

[10] R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE
using linear population size reduction, in: IEEE Congress on Evolutionary
Computation (CEC), 2014.

[11] N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential
covariance matrix adaptation with euclidean neighborhood for solving
CEC2017 benchmark problems, in: 2017 IEEE Congress on Evolutionary
Computation (CEC), 2017, pp. 372–379, http://dx.doi.org/10.1109/CEC.2017.
7969336.

[12] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimiza-
tion, Int. J. Bio-Inspired Comput. 2 (2) (2010) 78–84, http://dx.doi.org/10.
1504/IJBIC.2010.032124, URL https://www.inderscienceonline.com/doi/pdf/
10.1504/IJBIC.2010.032124.

[13] V. Kumar, D. Kumar, A systematic review on firefly algorithm: Past,
present, and future, Arch. Comput. Methods Eng. (2020) http://dx.
doi.org/10.1007/s11831-020-09498-y, URL https://www.x-mol.com/paper/
1311351373626052608.

[14] X.-S. Yang, S. Deb, Cuckoo search via levy flights, 2010, arXiv:1003.1594.
[15] H. Ma, S. Li, E. Zhang, Z. Lv, J. Hu, X. Wei, Cooperative autonomous

driving oriented MEC-Aided 5G-V2X: Prototype system design, field tests
and AI-based optimization tools, IEEE Access 8 (2020) 54288–54302, http:
//dx.doi.org/10.1109/ACCESS.2020.2981463.

[16] X.-s. Yang, A new metaheuristic bat-inspired algorithm, in: Nature Inspired
Coop- Erative Strategies for Optimization (NISCO), 2010, pp. 65–74, arXiv:
arXiv:1004.4170v1, URL https://link.springer.com/chapter/10.1007/978-3-
642-12538-6_6.

[17] A.A. Fadhil, R.G.H. Alsarraj, A.M. Altaie, Software cost estimation based on
dolphin algorithm, IEEE Access 8 (2020) 75279–75287, http://dx.doi.org/
10.1109/ACCESS.2020.2988867.

[18] K.M. Passino, Biomimicry of bacterial foraging for distributed optimiza-
tion and control, IEEE Control Syst. 22 (3) (2002) 52–67, http://dx.doi.
org/10.1109/MCS.2002.1004010, URL https://ieeexplore.ieee.org/abstract/
document/1004010.

[19] X. Gan, B.X. B, Improved Bacterial Foraging Optimization Algorithm with
Comprehensive Swarm, Springer International Publishing, 2020, pp. 325–
334, http://dx.doi.org/10.1007/978-3-030-53956-6, URL http://dx.doi.org/
10.1007/978-3-030-53956-6_29.

http://dx.doi.org/10.1038/scientificamerican0792-66
https://www.scientificamerican.com/article/genetic-algorithms/
https://www.scientificamerican.com/article/genetic-algorithms/
https://www.scientificamerican.com/article/genetic-algorithms/
http://dx.doi.org/10.1007/978-3-642-13232-2_28
http://dx.doi.org/10.1007/978-3-642-13232-2_28
http://dx.doi.org/10.1007/978-3-642-13232-2_28
http://dx.doi.org/10.1016/j.swevo.2020.100816
http://dx.doi.org/10.1016/j.swevo.2020.100816
http://dx.doi.org/10.1016/j.swevo.2020.100816
https://doi.org/10.1016/j.swevo.2020.100816
http://dx.doi.org/10.1007/s41062-020-00348-1
http://dx.doi.org/10.1007/s41062-020-00348-1
http://dx.doi.org/10.1007/s41062-020-00348-1
http://dx.doi.org/10.1016/j.cie.2020.106284
http://dx.doi.org/10.1016/j.micpro.2020.103288
http://dx.doi.org/10.1016/j.micpro.2020.103288
http://dx.doi.org/10.1016/j.micpro.2020.103288
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb7
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1109/CEC.2013.6557555
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb10
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb10
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb10
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb10
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb10
http://dx.doi.org/10.1109/CEC.2017.7969336
http://dx.doi.org/10.1109/CEC.2017.7969336
http://dx.doi.org/10.1109/CEC.2017.7969336
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1504/IJBIC.2010.032124
https://www.inderscienceonline.com/doi/pdf/10.1504/IJBIC.2010.032124
https://www.inderscienceonline.com/doi/pdf/10.1504/IJBIC.2010.032124
https://www.inderscienceonline.com/doi/pdf/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1007/s11831-020-09498-y
http://dx.doi.org/10.1007/s11831-020-09498-y
http://dx.doi.org/10.1007/s11831-020-09498-y
https://www.x-mol.com/paper/1311351373626052608
https://www.x-mol.com/paper/1311351373626052608
https://www.x-mol.com/paper/1311351373626052608
http://arxiv.org/abs/1003.1594
http://dx.doi.org/10.1109/ACCESS.2020.2981463
http://dx.doi.org/10.1109/ACCESS.2020.2981463
http://dx.doi.org/10.1109/ACCESS.2020.2981463
http://arxiv.org/abs/1004.4170v1
https://link.springer.com/chapter/10.1007/978-3-642-12538-6_6
https://link.springer.com/chapter/10.1007/978-3-642-12538-6_6
https://link.springer.com/chapter/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1109/ACCESS.2020.2988867
http://dx.doi.org/10.1109/ACCESS.2020.2988867
http://dx.doi.org/10.1109/ACCESS.2020.2988867
http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1109/MCS.2002.1004010
https://ieeexplore.ieee.org/abstract/document/1004010
https://ieeexplore.ieee.org/abstract/document/1004010
https://ieeexplore.ieee.org/abstract/document/1004010
http://dx.doi.org/10.1007/978-3-030-53956-6
http://dx.doi.org/10.1007/978-3-030-53956-6_29
http://dx.doi.org/10.1007/978-3-030-53956-6_29
http://dx.doi.org/10.1007/978-3-030-53956-6_29

S. Suyanto, A.A. Ariyanto and A.F. Ariyanto Applied Soft Computing 114 (2022) 108043
[20] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search
algorithm, Inform. Sci. 179 (13) (2009) 2232–2248, http://dx.doi.org/10.
1016/j.ins.2009.03.004, URL http://www.sciencedirect.com/science/article/
pii/S0020025509001200, Special Section on High Order Fuzzy Sets.

[21] S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili,
Salp Swarm Algorithm: A bio-inspired optimizer for engineering design
problems, Adv. Eng. Softw. 114 (2017) 163–191, http://dx.doi.org/10.
1016/j.advengsoft.2017.07.002, URL http://www.sciencedirect.com/science/
article/pii/S0965997816307736.

[22] R. Rao, V. Savsani, D. Vakharia, Teaching–learning-based optimization:
A novel method for constrained mechanical design optimization prob-
lems, Comput. Aided Des. 43 (3) (2011) 303–315, http://dx.doi.org/10.
1016/j.cad.2010.12.015, URL http://www.sciencedirect.com/science/article/
pii/S0010448510002484.

[23] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw.
69 (2014) 46–61, http://dx.doi.org/10.1016/j.advengsoft.2013.12.007.

[24] S. Gupta, K. Deep, Enhanced leadership-inspired grey wolf optimizer for
global optimization problems, Eng. Comput. 36 (4) (2020) 1777–1800,
http://dx.doi.org/10.1007/s00366-019-00795-0.

[25] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization tech-
nique for solving single-objective, discrete, and multi-objective problems,
Neural Comput. Appl. 27 (4) (2016) 1053–1073, http://dx.doi.org/10.1007/
s00521-015-1920-1, URL https://doi.org/10.1007/s00521-015-1920-1.

[26] A.I. Hammouri, M. Mafarja, M.A. Al-Betar, M.A. Awadallah, I. Abu-Doush,
An improved Dragonfly Algorithm for feature selection, Knowl.-Based Syst.
203 (2020) 106131, http://dx.doi.org/10.1016/j.knosys.2020.106131, URL
http://www.sciencedirect.com/science/article/pii/S0950705120303889.

[27] S. Mirjalili, Advances in engineering software the ant lion optimizer, Adv.
Eng. Softw. 83 (2015) 80–98, http://dx.doi.org/10.1016/j.advengsoft.2015.
01.010, URL http://dx.doi.org/10.1016/j.advengsoft.2015.01.010.

[28] A.S. Assiri, A.G. Hussien, M. Amin, Ant lion optimization: Variants,
hybrids, and applications, IEEE Access 8 (2020) 77746–77764, http://
dx.doi.org/10.1109/ACCESS.2020.2990338, URL https://ieeexplore.ieee.org/
abstract/document/9078091.

[29] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm, Knowl.-Based Syst. 89 (2015) 228–249, http://dx.
doi.org/10.1016/j.knosys.2015.07.006, URL https://www.sciencedirect.com/
science/article/abs/pii/S0950705115002580.

[30] R. Zhang, Z. Qiu, Optimizing hyper-parameters of neural networks with
swarm intelligence: A novel framework for credit scoring, PLoS ONE 15
(6) (2020) http://dx.doi.org/10.1371/journal.pone.0234254.

[31] S.A. Uymaz, G. Tezel, E. Yel, Artificial algae algorithm (AAA) for nonlin-
ear global optimization, Appl. Soft Comput. 31 (2015) 153–171, http://
dx.doi.org/10.1016/j.asoc.2015.03.003, URL https://www.sciencedirect.com/
science/article/pii/S1568494615001465.

[32] S. Korkmaz, M.S. Kiran, An artificial algae algorithm with stigmergic behav-
ior for binary optimization, Appl. Soft Comput. 64 (2018) 627–640, http://
dx.doi.org/10.1016/j.asoc.2018.01.001, URL https://www.sciencedirect.com/
science/article/pii/S1568494618300061.

[33] W. Zhao, L. Wang, Z. Zhang, A novel atom search optimization for
dispersion coefficient estimation in groundwater, Future Gener. Comput.
Syst. (2018) http://dx.doi.org/10.1016/j.future.2018.05.037.

[34] R.V. Rao, Rao algorithms: Three metaphor-less simple algorithms for
solving optimization problems, Int. J. Ind. Eng. Comput. 11 (1) (2020)
107–130, http://dx.doi.org/10.5267/j.ijiec.2019.6.002.

[35] S. Suyanto, A.T. Wibowo, S.A. Faraby, S. Saadah, R. Rismala, Evolutionary
Rao algorithm, J. Comput. Sci. 53 (March) (2021) 101368, http://dx.doi.org/
10.1016/j.jocs.2021.101368.
17
[36] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium opti-
mizer: A novel optimization algorithm, Knowl.-Based Syst. 191 (2020) http:
//dx.doi.org/10.1016/j.knosys.2019.105190, URL https://www.sciencedirect.
com/science/article/abs/pii/S0950705119305295?via%3Dihub.

[37] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, Marine Predators
Algorithm: A nature-inspired metaheuristic, Expert Syst. Appl. 152 (2020)
http://dx.doi.org/10.1016/j.eswa.2020.113377.

[38] M.A. Elaziz, A.A. Ewees, D. Yousri, H.S.N. Alwerfali, Q.A. Awad, S. Lu, M.A.A.
Al-Qaness, An improved marine predators algorithm with fuzzy entropy
for multi-level thresholding: Real world example of COVID-19 CT image
segmentation, IEEE Access 8 (2020) 125306–125330, http://dx.doi.org/10.
1109/ACCESS.2020.3007928.

[39] S. Li, H. Chen, M. Wang, A.A. Heidari, S. Mirjalili, Slime mould algorithm:
A new method for stochastic optimization, Future Gener. Comput. Syst.
111 (2020) 300–323, http://dx.doi.org/10.1016/j.future.2020.03.055, URL
https://www.sciencedirect.com/science/article/pii/S0167739X19320941.

[40] R.-E. Precup, R.-C. David, R.-C. Roman, E.M. Petriu, A.-I. Szedlak-Stinean,
Slime mould algorithm-based tuning of cost-effective fuzzy controllers
for servo systems, Int. J. Comput. Intell. Syst. 14 (1) (2021) 1042–1052,
http://dx.doi.org/10.2991/ijcis.d.210309.001.

[41] J. Brest, M.S. Maučec, The 100-digit challenge : Algorithm jDE100, in: 2019
IEEE Congress on Evolutionary Computation (CEC), 2019, http://dx.doi.org/
10.1109/CEC.2019.8789904.

[42] K.M. Sallam, S.M. Elsayed, R.K. Chakrabortty, M.J. Ryan, Improved multi-
operator differential evolution algorithm for solving unconstrained prob-
lems, in: 2020 IEEE Congress on Evolutionary Computation (CEC), 2020,
pp. 1–8, http://dx.doi.org/10.1109/CEC48606.2020.9185577.

[43] D. Wolpert, W. Macready, No free lunch theorems for optimization,
IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82, http://dx.doi.org/10.1109/
4235.585893, URL https://www.scopus.com/inward/record.uri?eid=2-
s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=
fac8c56be911367d556066800e863066, cited By 5993.

[44] T.E. of Encyclopaedia, Komodo dragon, in: Britannica, 2020, URL https:
//www.britannica.com/animal/Komodo-dragon.

[45] J. Sartore, Komodo dragon, in: National Geographic, 2021, URL https:
//www.nationalgeographic.com/animals/reptiles/k/komodo-dragon/.

[46] A.L. Lind, Y.Y. Lai, Y. Mostovoy, A.K. Holloway, A. Iannucci, A.C. Mak, M.
Fondi, V. Orlandini, W.L. Eckalbar, M. Milan, et al., Genome of the Ko-
modo dragon reveals adaptations in the cardiovascular and chemosensory
systems of monitor lizards, Nat. Ecol. Evol. 3 (8) (2019) 1241–1252.

[47] C. Ciofi, The Komodo dragon, Sci. Am. 280 (3) (1999) 84–91.
[48] P.C. Watts, K.R. Buley, S. Sanderson, W. Boardman, C. Ciofi, R. Gibson,

Parthenogenesis in Komodo dragons, Nature 444 (7122) (2006) 1021–1022.
[49] K. Opara, J. Arabas, Comparison of mutation strategies in Differential

evolution – a probabilistic perspective, Swarm Evol. Comput. 39 (2018)
53–69, http://dx.doi.org/10.1016/j.swevo.2017.12.007, URL https://www.
sciencedirect.com/science/article/pii/S2210650217303310.

[50] C. Stephens, H. Waelbroeck, Schemata evolution and building blocks,
Genet. Evol. Comput. Ser. 7 (2) (1999) 109–124, http://dx.doi.org/10.1162/
evco.1999.7.2.109.

http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://www.sciencedirect.com/science/article/pii/S0020025509001200
http://www.sciencedirect.com/science/article/pii/S0020025509001200
http://www.sciencedirect.com/science/article/pii/S0020025509001200
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://www.sciencedirect.com/science/article/pii/S0965997816307736
http://www.sciencedirect.com/science/article/pii/S0965997816307736
http://www.sciencedirect.com/science/article/pii/S0965997816307736
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://www.sciencedirect.com/science/article/pii/S0010448510002484
http://www.sciencedirect.com/science/article/pii/S0010448510002484
http://www.sciencedirect.com/science/article/pii/S0010448510002484
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00366-019-00795-0
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1016/j.knosys.2020.106131
http://www.sciencedirect.com/science/article/pii/S0950705120303889
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1109/ACCESS.2020.2990338
http://dx.doi.org/10.1109/ACCESS.2020.2990338
http://dx.doi.org/10.1109/ACCESS.2020.2990338
https://ieeexplore.ieee.org/abstract/document/9078091
https://ieeexplore.ieee.org/abstract/document/9078091
https://ieeexplore.ieee.org/abstract/document/9078091
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.knosys.2015.07.006
https://www.sciencedirect.com/science/article/abs/pii/S0950705115002580
https://www.sciencedirect.com/science/article/abs/pii/S0950705115002580
https://www.sciencedirect.com/science/article/abs/pii/S0950705115002580
http://dx.doi.org/10.1371/journal.pone.0234254
http://dx.doi.org/10.1016/j.asoc.2015.03.003
http://dx.doi.org/10.1016/j.asoc.2015.03.003
http://dx.doi.org/10.1016/j.asoc.2015.03.003
https://www.sciencedirect.com/science/article/pii/S1568494615001465
https://www.sciencedirect.com/science/article/pii/S1568494615001465
https://www.sciencedirect.com/science/article/pii/S1568494615001465
http://dx.doi.org/10.1016/j.asoc.2018.01.001
http://dx.doi.org/10.1016/j.asoc.2018.01.001
http://dx.doi.org/10.1016/j.asoc.2018.01.001
https://www.sciencedirect.com/science/article/pii/S1568494618300061
https://www.sciencedirect.com/science/article/pii/S1568494618300061
https://www.sciencedirect.com/science/article/pii/S1568494618300061
http://dx.doi.org/10.1016/j.future.2018.05.037
http://dx.doi.org/10.5267/j.ijiec.2019.6.002
http://dx.doi.org/10.1016/j.jocs.2021.101368
http://dx.doi.org/10.1016/j.jocs.2021.101368
http://dx.doi.org/10.1016/j.jocs.2021.101368
http://dx.doi.org/10.1016/j.knosys.2019.105190
http://dx.doi.org/10.1016/j.knosys.2019.105190
http://dx.doi.org/10.1016/j.knosys.2019.105190
https://www.sciencedirect.com/science/article/abs/pii/S0950705119305295?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0950705119305295?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0950705119305295?via%3Dihub
http://dx.doi.org/10.1016/j.eswa.2020.113377
http://dx.doi.org/10.1109/ACCESS.2020.3007928
http://dx.doi.org/10.1109/ACCESS.2020.3007928
http://dx.doi.org/10.1109/ACCESS.2020.3007928
http://dx.doi.org/10.1016/j.future.2020.03.055
https://www.sciencedirect.com/science/article/pii/S0167739X19320941
http://dx.doi.org/10.2991/ijcis.d.210309.001
http://dx.doi.org/10.1109/CEC.2019.8789904
http://dx.doi.org/10.1109/CEC.2019.8789904
http://dx.doi.org/10.1109/CEC.2019.8789904
http://dx.doi.org/10.1109/CEC48606.2020.9185577
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031118203&doi=10.1109%2f4235.585893&partnerID=40&md5=fac8c56be911367d556066800e863066
https://www.britannica.com/animal/Komodo-dragon
https://www.britannica.com/animal/Komodo-dragon
https://www.britannica.com/animal/Komodo-dragon
https://www.nationalgeographic.com/animals/reptiles/k/komodo-dragon/
https://www.nationalgeographic.com/animals/reptiles/k/komodo-dragon/
https://www.nationalgeographic.com/animals/reptiles/k/komodo-dragon/
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb46
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb47
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb48
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb48
http://refhub.elsevier.com/S1568-4946(21)00963-7/sb48
http://dx.doi.org/10.1016/j.swevo.2017.12.007
https://www.sciencedirect.com/science/article/pii/S2210650217303310
https://www.sciencedirect.com/science/article/pii/S2210650217303310
https://www.sciencedirect.com/science/article/pii/S2210650217303310
http://dx.doi.org/10.1162/evco.1999.7.2.109
http://dx.doi.org/10.1162/evco.1999.7.2.109
http://dx.doi.org/10.1162/evco.1999.7.2.109

	Komodo Mlipir Algorithm
	Introduction
	Proposed KMA
	Komodo in the wild nature
	Mlipir
	Concept of KMA
	Pseudocode of KMA
	Komodo individual representation
	Three groups of individuals
	Movements of big males
	Reproduction of female
	Movements of small males
	Population adaptation scheme
	Difference of KMA and other algorithms
	Computational costs of KMA

	Experimental results
	Parameter settings
	Comparison to other optimizers
	Convergence curves analysis
	Scalability analysis

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Specification of 23 benchmark functions and their two-dimensional views
	References

