LIST OF FIGURES

Figure 2.1 Absorber design diagram.	5
Figure 2.2 Absorber as an anti-radar coating material.	6
Figure 2.3 Impedance difference between two medium causes wave reflection	7
Figure 2.4 Impedance adjustment circuit.	7
Figure 2.5 Impedance adjustment circuit model of the absorber.	8
Figure 3.1 Research flowchart.	12
Figure 3.2 (a) Square absorber, based on the approach with AMC resonant fre	quency
equation, and (b) SRR absorber	14
Figure 3.3 One absorber cell with double resonance.	15
Figure 3.4 Boundary configuration in the simulation.	16
Figure 3.5 Dimension Variables of one absorber cell.	17
Figure 3.6 Optimization scheme.	18
Figure 4.1 Absorber A, absorber B, absorber C, and checkerboard pattern	18
Figure 4.2 Simulation result for Absorber A, B, and C.	19
Figure 4.3 Simulation result for absorber A, B, and A-B.	20
Figure 4.4 Simulation result for Absorber A, C, and A-C.	21
Figure 4.5 Simulation result for Absorber B, C, and B-C.	21
Figure 4.6 Simulation of one absorber cell with varying incident wave polarization	ation.
	22
Figure 4.7 Simulation of checkerboard pattern absorber with varying incident	wave
polarization.	22
Figure 4.8 Modified absorber SRR pattern.	23
Figure 4.9 Simulation of modified SRR pattern absorber	23
Figure 4.10 Absorber A, absorber B, and A-B combination.	24
Figure 4.11 Simulation results of absorber A, absorber B, and A-B combination	on 24
Figure 4.12 Simulation results of absorber A-B toward variations in incident v	vave
polarization	25
Figure 4. 13 Polyimide absorber design simulation	26
Figure 4. 14 Absorptivity rate.	26
Figure 4.15 Reflection coefficient for a thickness of 0.3 mm toward the polaris	zation
angle of the incident wave	27

Figure 4.16	are 4.16 Reflection coefficient for a thickness of 0.4 mm toward the polarization	
	angle of the incident wave.	
Figure 4.17	Reflection coefficient for a thickness of 0.5 mm toward the polarization	
	angle of the incident wave.	
Figure 4.18	Reflection coefficient for a thickness of 0.6 mm toward the polarization	
	angle of the incident wave.	
Figure 4.19	Reflection coefficient for the absorber A and B in area difference (delta	
	area) of 0.8 mm ² toward the polarization angle of the incident wave 31	
Figure 4.20	Reflection coefficient for the absorber A and B in area difference (delta	
	area) of 1.2 mm ² toward the polarization angle of the incident wave 31	
Figure 4.21	Reflection coefficient for the absorber A and B in area difference (delta	
	area) of 3.4 mm ² toward the polarization angle of the incident wave 32	
Figure 4.22	Reflection coefficient for the absorber A and B in area difference (delta	
	area) of 4.3 mm ² toward the polarization angle of the incident wave 33	