DAFTAR GAMBAR

Gambar 2. 1. Antena Mikrostrip [11]	7
Gambar 2. 2. Bentuk umum antena bow-tie [14]	7
Gambar 2. 3. Rentang frekuensi yang menentukan bandwidth [15]	9
Gambar 2. 4. Antena Mikrostrip dengan Pencatu Microstrip Line [11]	11
Gambar 2. 5. Antena Mikrostrip dengan Pencatu coaxial probe [11]	11
Gambar 2. 6. Antena Mikrostrip dengan Pencatu aperture coupled [11]	12
Gambar 2. 7. Antena Mikrostrip dengan Pencatu EMC [11]	12
Gambar 2. 8. Antena Mikrostrip dengan pencatu CPW [10]	13
Gambar 2. 9. Software CST Studio	15
Gambar 3. 1. Diagram Alir Proses Perancangan Antena	16
Gambar 3. 2. Ikon software CST Studio 2019	25
Gambar 3. 3. template project baru	25
Gambar 3. 4. Pemilihan Create Project Template	25
Gambar 3. 5. Pemilihan opsi bentuk antena	26
Gambar 3. 6. Pemilihan solvers pada antena	26
Gambar 3. 7. Pemilihan satuan parameter yang digunakan pada antena	26
Gambar 3. 8. Setelan range frekuensi	27
Gambar 3. 9. Penjelasan setelan antena	27
Gambar 3. 10. Tampilan awal Software CST Studio	27
Gambar 3. 11. Tampilan daftar parameter antena	28
Gambar 3. 12. Tampilan kotak dialog Brick	28
Gambar 3. 13. Tampilan koordinat pada elemen groundplane	28
Gambar 3. 14. Tampilan koordinat pada elemen substrate	29
Gambar 3. 15. Tampilan koordinat pada elemen patch	29
Gambar 3. 16. History pada elemen patch	30
Gambar 3. 17. Tampilan koordinat pada elemen feedline	30
Gambar 3. 18. Tampilan Tampak depan dan belakang rancangan antena kupu-kupu.	30
Gambar 3. 19. Tampak Depan substrate 1 pada antena kupu-kupu	31
Gambar 3. 20. Tampak Belakang substrate 1 pada antena kupu-kupu	31
Gambar 3. 21. Tampak Depan substrate 2 pada antena kupu-kupu	32
Gambar 3. 22. Tampak Belakang substrate 2 pada antena kupu-kupu	32
Gambar 3. 23. Tampak Samping pada antena kupu-kupu	32
Gambar 3. 24. Tampak Bawah pada antena kupu-kupu	32
Gambar 3. 25. Tampak depan antena kupu-kupu yang telah di fabrikasi	33
Gambar 3. 26. Tampak belakang antena kupu-kupu yang telah di fabrikasi	33

Gambar 4. 1. Grafik Return Loss pada frekuensi 3.5 GHz	34
Gambar 4. 2. Grafik Return Loss pada frekuensi 7.5 GHz	35
Gambar 4. 3. Grafik VSWR pada frekuensi 3.5 GHz	36
Gambar 4. 4. Grafik VSWR pada frekuensi 7.5 GHz	36
Gambar 4. 5. Nilai Gain pada frekuensi 3.5 GHz	37
Gambar 4. 6. Hasil Pola Radiasi pada frekuensi 3.5 GHz	38
Gambar 4.7. Nilai Gain pada frekuensi 7.5 GHz	38
Gambar 4.8. Hasil Pola Radiasi pada frekuensi 7.5 GHz	39
Gambar 4.9. Hasil pengukuran S-Parameters S11 pada antena kupu-kupu	40
Gambar 4. 10. Hasil pengukuran S-Parameters S11 pada antena kupu-kupu	40