
Hans-Joachim Adam · Mathias Adam

PLC Programming 
In Instruction 
List According 
To IEC 61131-3
A Systematic And Action-Oriented 
Introduction In Structured Programming



PLC Programming In Instruction List According 
To IEC 61131-3



Hans-Joachim Adam • Mathias Adam

PLC Programming In  
Instruction List According  
To IEC 61131-3
A Systematic And Action-Oriented  
Introduction In Structured Programming



Hans-Joachim Adam
Bühl, Germany

Mathias Adam
Bühl, Germany

ISBN 978-3-662-65253-4    ISBN 978-3-662-65254-1 (eBook)
https://doi.org/10.1007/978-3-662-65254-1

© The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part 
of Springer Nature 2022, 2015
Originally published by Elektorverlag, Aachen, 1997, 2000, 2003
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the 
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does 
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective 
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are 
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give 
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that 
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This Springer imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer Nature.
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

https://doi.org/10.1007/978-3-662-65254-1


v

Preface to the Fourth Edition (german) 

This book is the result of teaching practice at vocational and general schools, in-house 
training and further education in a chemical company and the professional qualification of 
engineers to teach information technology at vocational schools in Baden-Württemberg 
(Germany).

The book is written as a textbook and exercise book. This means that you will be intro-
duced to new areas through explanation or examples. To consolidate your knowledge and 
to check your learning and success, we recommend that you do the exercises. Sample 
solutions are available for most exercises: Each exercise has a unique name under which 
the solution can be found on the authors’1 website.

An integral part of this book is the PLC simulation software “PLC-lite”, which was 
developed by the authors especially for this course. You can download it free of charge 
from the authors’ website. This gives you the opportunity to intensively test a control sys-
tem that conforms to the standards, regardless of limitations with real systems. The scope 
of commands, data types, structures, etc. has been selected in such a way that the special 
features of programming in instruction lists according to IEC 61131-3 can be easily under-
stood using the exercises from this book. In addition, “PLC-lite” contains a large number 
of processes as animated simulations. This allows you to test your programs in a practical 
and safe manner and to study the behavior of the controlled processes (even under extreme 
conditions or “errors”). Your PC is thus both a programming device and PLC automation 
device as well as a “technical system”.

At the beginning we will deal in detail with basics and digital technology in the first 
four chapters. This part serves primarily as preparation for PLC programming, which is 
covered in the second part. You will learn important basics for PLC technology here. In 
addition, digital technology is already PLC programming! In principle, nothing else is 
done in the “function block diagram” language than connecting the logical symbols to 
form the program. This looks very similar to creating a digital circuit.

1 www.adamis.de/plc/

https://www.adamis.de/plc/
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In the second part of the book we cover PLC technology. You will now quickly see the 
advantage of PLC programming: Changes don’t require cumbersome cable pulling, as was 
necessary with digital circuitry. You simply write the new instruction and that’s it.

In this book, programming is learned with the most universal language, the instruction 
list (IL). Compared to the often more popular graphical languages, it has the advantage of 
an exact, easily comprehensible and clear structure. With the second edition, IEC 61131–3 
is even more consistently oriented towards general programming languages.

With the book “SPS Programmierung mit IEC 61131” (“PLC Programming with IEC 
61131”) Karl Heinz John and Michael Tiegelkamp have created a reference that provides 
deep insights into the IEC 61131 standard. With this reference work, the fundamentals laid 
in this book can be systematically expanded.

Because this book is a textbook (and not a reference book), it is advisable to work 
through the book systematically. The subject matter and the exercises are arranged accord-
ing to didactic aspects in a very specific order, building on each other. Please do not skip 
any of the exercises and only continue working when you have fully understood them, so 
that any gaps do not become noticeable later in a negative way. The step-by-step procedure 
guarantees the highest possible learning success.

To work through it, we recommend one of the following three methods:

The 
thorough 
method

You work through everything in sequence, chronologically from the first page to 
the last. If you take the time and have the patience to work through the more than 
150 exercises, you will gain solid knowledge in both digital technology and PLC 
that goes far beyond simple basics. Especially if you have no prior knowledge of 
digital technology, this is the recommended approach. You will then learn digital 
technology first and then PLC technology

The 
parallel 
method

Alternatively, you can also learn digital technology and PLC technology at the 
same time by alternating between a chapter on digital technology and the 
corresponding PLC chapter. We recommend this procedure if you already know 
some digital technology, but are no longer completely sure. In this case, work 
through the chapters in the following order: 1, 2, 5, 3, 6, 7, 4, 8, 9, 10, 11, 12

The 
advanced 
method

If you are a digital technology “pro” and want to deal exclusively with PLC 
technology, you can simply start with the fifth chapter and then continue to the end 
of the book

Since the first edition of this book more than 13 years ago, the IEC 61131 standard has 
gained enormously in importance. The currently valid second edition of the standard 
brought numerous changes and additions, which have been taken into account in this 
fourth edition of the book. The flowchart illustrations in this book have been redrawn in 
accordance with DIN EN 60848.

Bühl, Germany Hans-Joachim Adam  
  Mathias Adam   Spring 2012

Preface to the Fourth Edition (german) 
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Preface to the Fifth, Expanded Edition

We have added another chapter to the book in which the control of a mountain railway is 
programmed. Of particular interest here is the visualization of the mountain railway in the 
newly designed PLC-lite simulation application. This allows you to run the cable car 
“properly” and test your programs realistically and safely. By simulating operating errors 
(interrupted or short-circuited sensor) you can test the stability of your solutions. 
Furthermore, we have extended the subject index by a listing of the exercise tasks.

Bühl, Germany Hans-Joachim Adam  
  Mathias Adam   Spring 2015
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In the first part of the book we cover digital technology. This section serves as preparation 
for PLC programming, which is covered in Part II.

You will learn important basics for PLC technology. In addition, digital technology is 
already PLC programming! In the language “function block diagram” (which is not used 
in this book, however), basically nothing else is done than connecting the digital symbols 
to the circuit (and thus to the program).

Part I

Digital Technology
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1Basics: Number Systems, Dual Numbers 
and Codes

Abstract

For most people today, the decimal number system commonly used in counting seems 
to be inherently given. It is seldom regarded as a pure invention of man. However, once 
the problems of counting and number systems are considered, the structure and neces-
sity of number systems other than decimal become understandable. In Sects. 1.1, 1.2, 
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 1.10 you will learn something about numbers and 
digits, what “counting” means and according to which laws numbers are constructed. 
The problem of coding (encoding) is ancient and – like counting – a basic element of 
human communication. The representation of dual numbers is a dual code; a pure 
binary code. In Sects. 1.11, 1.12, 1.13, 1.14 and 1.15, learn the difference between dual 
numbers on the one hand and digital information and codes on the other.

1.1  Decimal Number System

All number systems are built up according to the same regularity. It is always a matter of 
expressing a very specific number (= “quantity”) by a symbol, the “number”.

Consider Fig. 1.1: In the example, sets of points are drawn. For each set (= number), 
there is a different number sign (numeral) that stands for that number. For zero piece there 
is numeral “0”, for one piece there is numeral “1” etc. You can easily see that one cannot 
represent all arbitrary numbers in this way, because the infinitely many numbers would 
also require infinitely many sets of different characters.

Without special measures, one would therefore have to have as many different symbols 
as possible quantities, i.e. an infinite number! This is, of course, completely impossible. 
That is why the same symbols are used repeatedly. These basic symbols are the numerals.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
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Quantity: DigitFig. 1.1 Sets of points: 
Numbers stand as symbols or 
numerals for the number 
of points

Two complete bundles of ten

And four single pieces

Fig. 1.2 Bundle quantity of 
24 pieces

For larger quantities than nine pieces, new numerals are no longer used, but these num-
bers are formed by a composition of the familiar symbols 0 … 9. In the German  and 
English language, however, there are even more number words: Zehn (ten,  10), Elf 
(eleven, 11) and Zwölf (twelve, 12). Only after that the new number words are formed by 
compositions of the basic number words: Thirteen (three – ten), Fourteen (four – ten) etc.

Exercise 1.1

Put together the number of different number words for different foreign languages you 
know! Check how the numbers between “10” and “20” are formed in different 
languages!

1.2  Bundling

If the set is larger than the supply of introduced number symbols, one must bundle. In all 
languages, the larger numbers are composed of the finitely many number words of a basic 
supply. In the tens or decimal system, one must always form bundles of ten each. The 
resulting number (quantity) of “bundles of ten” is again expressed by one of the number 
symbols. In Fig. 1.2 a quantity of 24 points is bundled.

The complete bundles of ten are named with the number of bundles, adding the syllable 
“-ty” to identify them as bundles of ten. (e.g., forty, sixty). Exceptions apply to twenty 
(instead of twoty), thirty (instead of threety) and fifty (instead of fivety). The number in the 
example from Fig. 1.2 is therefore called “Twenty-four”.

1 Basics: Number Systems, Dual Numbers and Codes
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Single pieces
Bundles of ten
Bundles of hundreds

Fig. 1.3 Bundle for 
two-hundred-thirty-seven

Fig. 1.4 Bundle fields for 
Exercise 1.2

By bundling, one achieves that the complete bundles are created and the remaining 
numbers are always nine or smaller when bundling by tens. As a practical application, you 
can imagine that ten eggs are packed in an egg box. Ten of these boxes are packed in a 
carton, of which ten are again packed on a pallet. So the eggs, boxes, cartons or pallets are 
divided into bundles of 10. A box contains 10 eggs, a carton 100, a pallet again ten times 
as many, that is 1000 eggs. You can now divide any number of eggs among the pallets, 
cartons, boxes and remaining individual pieces. A maximum of nine of each container is 
required. In Fig. 1.3 you can see an example of bundling: For 237 eggs you need 2 cartons, 
3 boxes and 7 eggs remain single.

Exercise 1.2

Bundle the number of strokes in the field “0” to bundles of ten in Fig. 1.4. For each 
complete bundle that you cross out in the right-hand field “0”, write down a marker 
(flag) in the field “1” to the left as a mnemonic. If the field “1” contains more than ten 
strokes, the strokes in this field must also be bundled with bundles of ten! Draw for each 
10 strokes in the field “1” in the left field “2” again one stroke. (This counting rule must 
be continued until there are no more than 9 flags in any field). Write down the number 
of remaining flags under the respective field.

1.3  The Decimal Position System

Each digit of a number corresponds to a certain quantity, which is calculated from the digit 
multiplied by the place value. The difference between the place values is always the factor 
10, which is why such a number system is called “decadic” or “decimal”.

1.3  The Decimal Position System
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Table 1.1 Decimal system

… Position 5 Position 4 Position 3 Position 2 Position 1 Position 0
Thousands Hundreds Tens Ones

… 100,000 10,000 1000 100 10 1
… 105 104 103 102 101 100

Single position
Tens position
Hundreds position

Fig. 1.5 Decimal number

Our “numbers” represent the number of singles, tens, hundreds, thousands, etc. bun-
dles! Because there are at most nine elements in each case, the ten different number words 
“zero” to “nine” are sufficient to represent all numbers. The number two hundred and 
thirty-seven is shown in Fig. 1.5.

Table 1.1 lists the values of the individual positions in the decimal system. To simplify 
the notation, we only note the respective numbers for the numbers, but not the factors 1, 
10, 100, etc. (see Fig. 1.5). This procedure allows a compact representation of the num-
bers, but has some consequences:

Order The agreed order of the digits must be strictly adhered to. If you put the digits in a 
different order, the value of the number changes. Therefore, both the digit itself and the 
position of this digit within the number determines its numerical value. The number “one 
hundred twenty three” is written in digits as “123”. If you swap the order of the digits, the 
numerical value changes significantly. This is different from the Roman and Egyptian 
numbers! (see Sects. 1.4 and 1.5) Unfortunately, in the German language the order of the 
number words for the tens and ones digits are swapped: “ein-hundert-drei- und-zwanzig” 
instead of “einhundert-zwanzig-drei”. Because we have become accustomed to this from 
an early age, we do not notice it. In other languages it is often different, for example in 
English: “one-hundred-twenty-three”.

Numeral The respective number signs for the numbers may only be single digits. This is 
the case with the “normal”, decimal number system and therefore does not cause us any 
problems so far. With other systems, e.g. with hexadecimal numbers (Sect. 1.10), new 
number signs must be “invented” for this reason.

1 Basics: Number Systems, Dual Numbers and Codes
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Zero The numeral 0 is of special importance, without which a correct position representa-
tion is not possible. If no dashes remain in a field, this position must be occupied by the 
zero. Neither with the Roman nor with the Egyptian numbers is the zero necessary!

Exercise 1.3

In Fig. 1.4 of Exercise 1.2, write above each box the value that each of the dashes in that 
box represents. Write down the total number not only in numbers, but also in words!

1.4  Roman Numerals

As an example of a non-decimal number system, we would like to cite the Roman numeral 
symbols. Here the number symbols I, V, X, L, C, D and M mean the values 1, 5, 10, 50, 
100, 500 and 1000. Larger numbers are expressed by repeating the symbols, subtracting or 
adding the values.

The number four is represented by IV (−1 + 5), six by VI (5 + 1), the number nine 
by IX (−1 + 10), 1998 by MCMXCVIII (1000–100 + 1000–10 + 100 + 5 + 1 + 1 + 1) and 
2012 by MMXII (1000 + 1000 + 10 + 1 + 1).

We will not go into this number system in detail here. For further information we refer 
to the relevant literature.

1.5  Egyptian Numbers

The ancient Egyptian number system seems remarkable to us. The ancient Egyptians had 
a number system (Fig. 1.6), which is similar to our decimal system at first sight, because 
the basic digits differ by powers of ten. Each basic digit has its own symbol. The order in 

Basic character

Bundle

One hundred

Lotus flower

Curved finger

Tadpole

Fig. 1.6 Egyptian number 
system (hieroglyphs)

1.5  Egyptian Numbers
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Fig. 1.7 Example of an 
Egyptian hieroglyph

a

b

Fig. 1.8 For Exercise 1.4

Fig. 1.9 Example of bundling 
21 pieces as a two- 
piece bundle

which the various symbols are displayed is therefore irrelevant. The numerical value is not 
bound to the position. The symbols would therefore not need to be sorted as in Fig. 1.7, 
but could be arranged arbitrarily in the order.

Exercise 1.4

What is the value of the hieroglyphs in Fig. 1.8?

1.6  Binary System, Dual Number System

Bundling, as in the decimal system, can be done with any basic number. In earlier times, 
the division into 12 pieces (‘dozen’) and 12 dozen (‘gros’) was common. The smallest 
basic number with which bundling is possible is two. This system of twos or dual system 
is based on a bundle of twos. Figure 1.9 shows how dual numbers are produced by splitting 
them into bundles of two. The dual numbers are also called binary numbers.

The values of the individual positions in the dual system are summarized in Table 1.2.
The dual number 101011 is the number 43 in the decimal system (Fig. 1.10). This num-

ber representation is somewhat unwieldy for us humans because the numbers quickly 
become very long. For machines, however, there are great advantages.

1 Basics: Number Systems, Dual Numbers and Codes
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Table 1.2 Dual system

Position 5 Position 4 Position 3 Position 2 Position 1 Position 0
32 16 8 4 2 1
25 24 23 22 21 20

… Position 11 Position 10 Position 9 Position 8 Position 7 Position 6
… 2048 1024 512 256 128 64
… 211 210 29 28 27 26

Single-position
Two- position
Four-position
8-position
16-position
32-position

Fig. 1.10 Decimal number and dual number: for example 43dec and101011dual

Fig. 1.11 Bundling of two for 
Exercise 1.5

Exercise 1.5

Carry out a bundling of two in Fig. 1.11. For every two flags, a flag must be entered in 
the field to the left.

Exercise 1.6

Convert the dual numbers to decimals:

a. 011= b. 10101010 = c. 111 = d. 10010010 =
e. 100 = f. 01010101 = g. 10000 = h. 10100 =
i. 110 = j. 10000000 = k. 1111 = l. 10000101 =

1.7  Computers Work with Dual Numbers

Computers do not know numbers, only voltages (volts) and currents (amperes). One could 
assign the numbers to certain voltage values, e.g. 1 volt each. The number ‘two’ would 
then correspond to 2 volts, the number ‘thirteen’ to 13 volts, and so on. Technically, 

1.7  Computers Work with Dual Numbers



10

however, it is not possible to use voltages that are too large, nor is it possible to represent 
the voltages sufficiently accurately in arbitrarily small steps. Computers based on such an 
‘analogue’ number system do not achieve very great accuracy. Even a decimal system 
would still require ten different voltage values for each decimal place, which would not be 
technically easy to handle either.

To avoid such problems, one must use number systems that make do with fewer differ-
ent number symbols. The system with the smallest number of different symbols is the 
two-symbol system or dual system. The two different symbols 0 and 1 can then simply be 
expressed by “voltage present” or “voltage absent”.

1.8  Conversion of Decimal Numbers into Dual Numbers

Decimal numbers can be converted into dual numbers by bundling of two. However, one 
can also determine the power-of-two values contained in the decimal number (starting 
with the highest), determine the remainder value and here again determine the highest 
power-of-two contained.

Example 1.1 (Convert Decimal Number to Dual Number)

The decimal number 21 is to be converted into a dual number: The highest power of 
two contained is 16 = 1 * 24. In the remainder 21–16 = 5, the highest power of two is 
4 = 1 * 22. Now the remainder is: 5–4 = 1 = 1 * 20. The two powers of two 23 and 21 do 
not occur, i.e. we have the values 0 * 23 and 0 * 21. So the dual number is: 1*24 + 0*23 
+ 1*22 + 0*21 + 1*20 Only the digits are written: 21dec = 10101dual. ◄

Exercise 1.7

Calculate the corresponding dual numbers for the following numbers of the deci-
mal system:

a. 3 = b. 9 = c. 15 = d. 20 =
e. 31 = f. 45 = g. 99 = h. 189 =
i. 200 = j. 266 = k. 278 = l. 311 =
m. 499 = n. 556 =

1 Basics: Number Systems, Dual Numbers and Codes
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1.9  Other Number Bases, Hexadecimal Numbers (Base 16)

Except for bundling with 10 or 2, bundling can be on any basis. An example may be the 
packing of 12 eggs in a box. The number 12 is also called 1 dozen. If again 12 dozen are 
packed in one carton each, then 12 * 12 = 144 pieces are obtained. This number is a gross. 
This can be continued like this: 12 cartons on a pallet, 12 pallets in a truck, etc. In this case 
12 is the number base.

In computer technology, one likes to use the base 16, i.e. 24. This base is called hexa-
decimal or sedecimal base. Because the base 2 is contained in the power of 4, there is a 
particularly simple connection between the dual system and the hexadecimal system, 
which makes the conversion of a number from one system to the other very simple. We 
will look at this in more detail in Sect. 1.10.

The number signs of the hexadecimal system for the values starting from ‘Ten’ must be 
one-digit, so that an unambiguous assignment to the positions is possible. The decimal 
number ‘26’ is in hexadecimal form: 1*16 + 10*1. Since only the coefficients (here ‘1’ 
and ‘10’) are written in the position system, the number ‘110’ would result, which is not 
correct (110hex = 1*162 + 1*16 + 0 = 272dec). The number ‘ten’ must be written in one digit 
as ‘A’, so that the correct HEX-number is called for 26dec = 1Ahex.

The number signs (digits) in the hexadecimal system are listed in Table 1.3. The (decimal) 
valences of the digits of a HEX number are given in Table 1.4.

Since the hexadecimal system requires 16 different (one-digit!) number signs, the 
first letters of the alphabet are used from ‘Ten’ to ‘Fifteen’.

Table 1.3 HEX digits

HEX digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1.4 Hexadecimal system or sedecimal system

… Position 5 Position 4 Position 3 Position 2 Position 1 Position 0
… 10,048,576 65,536 4096 256 16 1
… 165 164 163 162 161 160

1.9  Other Number Bases, Hexadecimal Numbers (Base 16)
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Example 1.2 (HEX Number and Decimal Number)

The number 333hex means:

   
3 16 3 16 3 16 8192 1 0* * * .� � � dez    ◄

Exercise 1.8

Convert the following hexadecimal numbers to decimal numbers:

a. 110 = b. CD = c. 1234 = d. EF6A =
e. 3456 = f. 10F2 = g. 109 = h. AE29 =
i. 87E4 = j. 6E5B = k. AFFE =

Exercise 1.9

Convert the following decimal numbers to hexadecimal numbers:

a. 9 = b. 45 = c. 99 = d. 580 =
e. 910 = f. 3030 = g. 6550 = h. 8750 =
i. 11111 = j. 60000 =

1.10  Hexadecimal Numbers and Dual Numbers

Dual numbers (binary numbers) can be converted particularly easily into hexadecimal 
numbers, because in the base 16 the base 2 occurs as power 24. For every 4 binary digits, 
one hexadecimal digit is therefore obtained.

Example 1.3 (Binary Numbers (Dual Numbers) and Hexadecimal Number)

In Fig. 1.12 we see an example of converting the HEX number 9D3F to the dual number 
1001110100111111. ◄

Binary number:

HEX number:

Fig. 1.12 Binary number and 
hexadecimal number

1 Basics: Number Systems, Dual Numbers and Codes
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Exercise 1.10

Convert the binary numbers from Exercise 1.6 into hexadecimal numbers. Then convert 
the HEX numbers into decimal numbers and check the result with your earlier solution.

1.11  Binary Code

The decimal number 837 as a dual number is a pure binary code, the valences of the indi-
vidual digits correspond to the powers of two: 837dec = 1101000101dual. For further exam-
ples, see Exercise 1.6.

1.12  BCD Code

The coding of decimal numbers into dual numbers can be carried out more clearly if no 
pure binary code is used according to the powers of 2, but the decimal digits are coded 
digit by digit. This results in the BCD code. The abbreviation stands for Binary Coded 
Decimals.

Example 1.4 (Relationship Between Decimal Number, Dual Number and BCD Number)

The number 837dec = 1101000101dual looks like this as a BCD number: 100000110111BCD.

Decimal number: 8 3 7
BCD-coded number: 1000 0011 0111 BCD

◄

In contrast to the pure binary code representation with 10 digits, however, 12 digits are 
now necessary! The disadvantage that BCD numbers are longer than the corresponding 
pure binary ones is compensated by the better readability for humans. BCD representation 
is also more convenient for applications that need to display counter readings on a numeric 
display. However, for the computer it often means more complicated arithmetic opera-
tions – but we don’t mind that.

Exercise 1.11

Convert the numbers from the previous exercises into hexadecimal numbers and into 
BCD-coded dual numbers!

1.12  BCD Code
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Table 1.5 Examples for the ASCII code

Characters Bit sequence Dec Hex Characters Bit sequence Dec Hex
A 0100 0001 65 41 0 0011 0000 48 30
B 42 1 31
C 0100 0011 2 0011 0010
a 97 8 38
b 0110 0010 9 57
c 63 ( 0010 1000
. 46 ) 29

1.13  ASCII Code

The notation with only two different characters, “0” and “1”, is also suitable for an encod-
ing of arbitrary characters, letters and even actions (=commands). The position of the 
characters ‘0’ or ‘1’ gives then of course no statement about the (numerical) value, because 
they are not numbers!

An important code used to represent typewriter characters in binary form is the ASCII 
code. The abbreviation stands for American Standard Code for Information Interchange. 
This American Standard Code for Information Interchange is a code that consists of 7 
digits, is therefore a 7-bit code. Therefore, 27, i.e. 128 characters can be represented. It is 
possible to encode all letters, digits and some special characters with this code.

When setting up the 0,1 bit sequences representing the character, the assignment of the 
bit sequences is in principle arbitrary and has nothing to do with the numbers formed from 
the same bit sequences.

To remember the respective binary representation of the ASCII characters, it is usual to 
read the code like a numerical code, i.e. to assign the valences of the powers of two to the 
individual digits, i.e. to interpret the (arbitrary) bit sequence as a “number”. Therefore, the 
representation for “A” (0100 0001) can be read as like a dual number 41hex = 65dec. You say: 
the code for A is 41hex or 65dec, although this is actually wrong. You now know that the 
characters of the ASCII code are not numbers but symbols, codes!

Exercise 1.12

Add the missing values in the ASCII Table 1.5.

1 Basics: Number Systems, Dual Numbers and Codes
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1.14  Dual Code – Dual Number

A dual number is not the same as a dual code! Pay close attention to the difference between 
the two:

Dualcode In a dual code, such as the ASCII code, no specific numerical value is repre-
sented. The two different characters “0” and “1” are used, but they do not result in a value. 
The order of the characters in the code is “arbitrary”. By agreement in a standard, the 
meaning of the individual code characters is fixed.

Dual Number For a dual number, the two number signs “0” and “1” are used. Each digit 
is to be multiplied by the respective valence of the power of 2; this gives the value of the 
dual number.

1.15  Signals

Scientifically, a signal is the physical representation of a message. The signal transmits 
information from a transmitter to a receiver. The transmitter can be, for example, a ther-
mocouple or a level transmitter. These signal transmitters are also called “sensors”. The 
receiver is the computer or PLC automation device.

The signals enable an exchange of information. This is true for nature as well as for our 
technical world. Signals and signal transmission have always existed. Information 
exchange can take place over short distances through speech or gestures. Over longer dis-
tances, one uses smoke signals, drums, light signals, electrical impulses, etc.

Today, a computer that processes information, i.e. actually signals, can only deal with 
electrical signals. However, very few signals are originally in electrical form. In order for 
the computer to work with them, they must first be converted into electrical quantities such 
as voltage or current.

The electrical signals with which a computer works today have a binary character: they 
assume only two different states, namely ‘current’ or ‘no current’; ‘voltage’ or ‘no volt-
age’; ‘0’ or ‘1’; ‘low’ or ‘high’, because such binary signals are particularly easy to realize 
technically. These binary signals can be generated, for example, by limit signal generators. 
The signals could then be: maximum level reached or not reached.

1.15  Signals
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2Logical Functions and Boolean Algebra

Abstract

In the previous chapter we described how the digital signals can be used to represent 
dual numbers or binary codes. The digital signals assume exactly two different states, 
which can be assigned either to the number set (0,1) of the dual numbers or to the 
binary states (0,1) of the codes.

But also logic gets along with two different states: a statement can be true, thus be 
correct (true), or it can not be true, thus be incorrect (false). The two logical states ‘true’ 
and ‘false’ can therefore also be expressed, like the dual numbers, by binary signals. 
Because of this fact, binary numbers and logic signals are often confused.

In Sects. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11 you will learn about 
logical functions. You will see how the signals from sensors can be evaluated and 
linked. First of all, we will look at sensors that only give two different signals (e.g. 
‘On’/‘Off’, ‘Open’/‘Closed’, ‘Underrange’/‘Overrange’).

In Sects. 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18 and 2.19 you will learn some pos-
sibilities how a logical function can be realized by logical circuit elements. This proce-
dure is called “circuit synthesis”. The behaviour of the process can be recorded in a 
logic table. From this table the combination of logical circuit elements can be derived. 
In most cases, however, this does not directly result in the simplest circuit, i.e. the cir-
cuit with the smallest possible number of switching elements. You will get a small 
insight into the methods of circuit simplification in Sects. 2.20, 2.21 and 2.22.

From the basic functions: Negation, AND- and OR-operation all logical operations 
can be composed. Some of these composite functions are very important in technology 
and are therefore used like basic functions.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
H.-J. Adam, M. Adam, PLC Programming in Instruction list according to IEC 
61131-3, https://doi.org/10.1007/978-3-662-65254-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-65254-1_2&domain=pdf
https://doi.org/10.1007/978-3-662-65254-1_2
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Fig. 2.1 Negation

1 If you have a digital trainer (construction kit) available, you can perform the tasks with it. Instead 
of a hardware kit, you can also use a simulation program for the PC. For many exercises, you can 
find suggested solutions on the authors’ website under the name given in brackets after the exer-
cise number.

2.1  Negation (NOT Function)

 
Function equation oder: X a X a� � �  

This function always outputs the opposite of the input variable (Fig. 2.1). The output vari-
able X always has the opposite value to the input variable a. As an example, you could 
imagine the sentence ‘It is raining, then it is not dry’. The input variable ‘rain’ gives ‘dry’ 
as the output variable, but negated. The function equation marks the negation with an 
overstrike of the variable identifier. Say it like this: ‘X is equal to a not’, so the overstrike 
is spoken as an appended ‘not’.

2.2  Identity (EQUAL Function)

 
Function equation : X a=  

The output variable X has the same value as the input variable a (Fig. 2.2). At first, this 
seems to be senseless; however, it often happens that two negations occur one after the 
other for technical reasons, which then “cancel” each other out and thus represent the 
equal function altogether. Sometimes you need an amplifier for a too weak logical signal. 
If this amplifier is done as an equal-function, the logical signal is not changed but only 
amplified.

Exercise 2.1 (EQUAL21)1

Form the equal function from two non-functions!

2.3  Conjunction (AND Function)

 
Function equation : X a b� �  

The output variable is ‘1’ if all input variables are ‘1’ (Fig. 2.3). The AND operation states 
that an event only occurs if all conditions are fulfilled at the same time. Linguistically, you 
can express it like this, “If it rains AND I go outside, I’ll take the umbrella.”

2 Logical Functions and Boolean Algebra
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Fig. 2.2 Identity

2 The drawing associated with this exercise (Fig. 2.4) is not complete. It is part of your “homework” 
to complete the drawing for this and many other exercises. (For solutions, see the authors’ website).

In the function table for “AND” there is only one ‘1’ at the output. Note: The symbol 
“∧” for “AND” can be read as a simplified ‘A’.

Fig. 2.3 Conjunction

Exercise 2.2 (AND21)

Check the basic AND operation with the digital trainer. Make the assignments for the 
state of the lamp: 0 = ‘off’ and 1 = ‘on’.

2.4  Heating Control (Two-Point Control)

To keep the room temperature even, you can proceed as follows: switch off the heating 
whenever it is warm enough, and switch it on again when the temperature falls below the 
desired level. This is called two-point control. This control is very easy to realize; there-
fore it is used very often. A bimetal switch can be used as a sensor and actuator, which 
opens a contact when a maximum value is exceeded and closes the contact again when the 
temperature falls below a minimum value, thus switching on the heating. In this way, the 
temperature can be kept almost constant.

The two states of the sensor (switch open/closed) served me here however first only for 
the description of the principle. In reality, of course, the sensors must generate signals that 
correspond to the conditions for ‘1’ or ‘0’. So when used in a logic circuit, the sensor 
always gives a logic signal.

Exercise 2.3 (HEAT21).2

A reaction vessel is to be kept at a constant temperature with the heating switched on 
via a contact thermometer as a limit signal generator. Develop the function table, the 
logic diagram and the function equation. Check the result with the digital trainer.

2.4  Heating Control (Two-Point Control)
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Functional table Logic diagram

Functional equation:

Fig. 2.4 For Exercise 2.3

   Use the following assignments:
   S = 1: ON Heating main switch switched on
   t = 1: TIC temperature not reached
   Y = 1: Hzg heating up

Exercise 2.4 (MIXER21)

Let a LED indicate a “Process Ok” signal (x = 1) when a stirrer is running (a = 1) and 
the level is reached (b = 1). See Fig. 2.4 for function table and logic diagram.

2.5  Negation of the Input

 
Function equation : y a b� �  

Exercise 2.5 (ALARM21)

Create a function table, logic diagram and function equation for the following problem: 
An alarm (Y = 1) is to be triggered when a stirrer is switched on (a = 1) and the fill level 
has not yet been reached! (b = 1: level reached). In this task, the “opposite” is applied 
to input b as in the previous Exercise 2.4.

To solve, you can first set up the function table (see Fig. 2.5). Also add a column 
with ‘b not’ ( b ); then you can form the result column for y quite easily. In the result 
column, ‘zero’ appears three times and ‘one’ only once. Thus, the problem can be 
solved with an AND term. Test your result with the digital trainer!

2.6  More Than Two Input Variables

 
Function equation : X a b c� � �  

2 Logical Functions and Boolean Algebra
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Fig. 2.5 for Exercise 2.5

Fig. 2.6 Three inputs

Fig. 2.7 Function table with 
three variables

If only two input variables a and b occur, there are a total of four different combinations. 
You can combine these four combinations with a third input c (Fig. 2.6). If you first select 
this input as ‘0’ and then as ‘1’, you will get four combinations each (Fig. 2.7).

With three variables, you get eight different possible combinations, twice as many as 
with two inputs. The function table therefore consists of eight lines. With each additional 
variable, the number of combinations is doubled again.

2.7  AND Operation as Data Switch

With the help of the AND operation you can realize a “data switch”. That means you get 
the possibility to switch on and off another logical signal with a logical signal. Among 
other things, a sensible application for this is the switching of a periodic signal (flashing 
signal). The second signal can then be used to switch a light emitting diode to “flashing 
light” or to “off”.

Now how do you build such a switch? Look at the function table for the AND element 
and compare the output x with the input b (Fig. 2.8). First concentrate on the two lines 
where a = 0. The output x is always ‘zero’, the input b is thus “blocked” (Fig. 2.9).

Now look at the two lines with a = 1. Can you see that in this case it is always x = b; the 
input b is in a sense ‘connected through’ directly to the output x? In the other case, the 
output x is always ‘0’.

The AND element can serve as a switch for digital signals: The “switch” is the 
input a, the signal to be switched is applied to b. When switched off, the output is “0”.

2.7  AND Operation as Data Switch
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Fig. 2.9 Circuit diagram 
“Data switch”

Fig. 2.8 AND operation as 
data switch

Fig. 2.10 “Flasher”: the 
generator signal G can be 
switched on and off at input a

Fig. 2.11 Example of signal 
curve for a turn signal 
according to the circuit in 
Fig. 2.10

Example 2.1 (Switch Flashing Signal)

In order to switch a LED as a flashing signal, one needs a generator for the periodic 
signal and an on/off signal which is applied to the input a of the AND element. The 
circuit is shown in Fig. 2.10. The light emitting diode is connected to the output x. The 
time course of the individual signals can thus be shown: The signal from the generator 
reaches output x only as long as the signal a = 1. Figure 2.11 shows an exemplary 
course of the output signal: The pulses from the generator “get through” as long as the 
input a = 1. ◄

Exercise 2.6 (FLASH21)

Use the digital trainer to build a circuit where you can use a switch to turn the flashing 
signal on and off.

2.8  Disjunction (OR Function)

 
Function equation : X a b� �  

This function links two (or more) input variables. The output variable is always 1 if one or 
more input variables are 1. An event should therefore already occur if at least one of the 

2 Logical Functions and Boolean Algebra
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Fig. 2.12 Disjunction

Fig. 2.13 Function table for 
OR with three inputs

conditions is fulfilled. Linguistically, this corresponds to the sentence: “If it rains OR 
snows, I take the umbrella.” (Fig. 2.12).

You could also express the relationship between outputs and inputs the other way 
round: The output x is ‘zero’ if both inputs a and b are ‘zero’. But beware, if you see it this 
way, you might confuse the two links AND and OR. To avoid this danger of confusion, it 
is usual to consider only those cases in which the output x is equal to ‘one’.

More Than Two Input Variables

 
Function equation :Y a b c� � �  

Consider Fig. 2.13. As always with the OR function, there is only a single zero in the 
result column.

2.9  OR Operation as Data Switch

Now look at the function table for the OR operation to see how the output is controlled by 
the variable a. Again, concentrate on the two lines with a = 0 or a = 1! In the “not switched” 
state the output is ‘1’. The OR element can serve as a switch for digital signals. In the 
switched off state the output is ‘1’ (Fig. 2.14).

In the function table for “OR” there is only one ‘0’ at the output. In the function 
table for “OR”, everything is one at the output except in one line.

2.9  OR Operation as Data Switch
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Fig. 2.14 Data switch implemented with OR operation

Fig. 2.15 NAND

Exercise 2.7 (FLASH22)

Now build a flashing circuit with on/off switching capability using an OR element. 
Draw the time curve of the signals. Compare the signals with those from Sect. 2.7. Use 
the function tables to show the different effects on the output signal x when the AND or 
OR operation is used as a data switch.

2.10  NAND Function (Negation of the AND Function)

 
Function equation : X a b� �  

If you invert the output of an AND operation by a negator, you get the NOT-AND = NAND 
operation (Fig. 2.15).

Exercise 2.8 (NAND21)

Form a NAND function from an AND and a NOT function using the digital trainer and 
check the function table.

2.11  NOR Function (Negation of the OR Function)

 
Function equation : X a b� �  

If you invert the output of an OR operation by a negator, you get the NOT-OR = NOR 
operation (Fig. 2.16).

Exercise 2.9 (NOR21)

Form a NOR function from an OR and a NOT function with the digital trainer and 
check the function table.

2 Logical Functions and Boolean Algebra
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Fig. 2.16 NOR

Exercise 2.10 (LOGIC21)

For each of the following function tables, create the logic diagram and the function 
equation, or add the missing parts. Check the result each time with the aid of the digital 
trainer!

Function tables, logic diagrams and function equations for Exercise 2.10:

Function 1

Function table 1:

Functlon equation:

Logic Plan:

Functional equation:

Function table 2: Logic Plan:

Function 2

Function 3

Function 5

Function Table 5:

Functional equation:

Logic Plan:

Functional equation:

Logic Plan:Function table 6:

Function 6

Function 4

Function Table 3:

Functional equation:

Logic Plan:

Functional equation:

Function Table 4: Logic Plan:

 

2.11  NOR Function (Negation of the OR Function)
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Function 7 Function 8

Function Table 7:

Functional equation:

Logic Plan: Function Table 8:

Functional equation:

Logic Plan:

 

Exercise 2.11 (LOGIC22)

Compare the result from Exercise 2.5 with the function table 2 from Exercise 2.10. 
Formulate similar examples of use for other functions from Exercise 2.10!

2.12  Creating a Function from the Function Table

In the previous exercises with the AND or OR elements, only one ‘one’ or only one ‘zero’ 
occurred in the output column. If more than one ‘one’ occurs in the result, then the func-
tion cannot be realized by a simple AND or OR circuit, but only by a combination of both. 
Now how can we determine this combination circuit? This question leads us to the notion 
of minterms or maxterms. In practice, the application of these terms is quite simple: You 
only need to decompose the total function into partial functions (namely the min- or max-
terms), which are then combined.

Functions describe the relationship between output value and input value(s). In general, 
this relationship can be described symbolically by equations. The output value is usually 
written to the left of the equals sign, and the input values and their relationship are written 
to the right of the equals sign. For logical functions, the rules are described by “Boolean 
algebra”. Here, only a very specific number of values and their combination can occur. 
Therefore, in the case of logical functions, the relationship between outputs and inputs can 
also be represented in the form of function tables.

Example 2.2 (Agitator with Switch-On Protection)

An agitator may only be switched on (X = 1) when the level is reached (a = 1) and the 
inlet valve is closed (b = 0) or the level is not reached and the valve is open.

In this task, you get a ‘1’ twice in the output column for X. In order to obtain only 
one ‘1’ (and thus to be able to apply the AND operation), you decompose the function 
X into the “subfunctions” X1 and X2, each of which contains only one ‘1’ and can con-
sequently be realized by AND operations of the two inputs. If necessary, one or both 
inputs must be negated. You have already practiced creating these functions for two 
inputs in detail in Exercise 2.10.

To obtain the complete function for X, the partial functions must be combined with 
an OR function in a second step (Fig. 2.17). ◄

2 Logical Functions and Boolean Algebra



27

Fig. 2.17 Function table for the agitator circuit

Fig. 2.18 Solution for Example 2.2

Fig. 2.19 EXOR

For Example 2.2, the functional Eqs. (2.1), (2.2) and (2.3) are obtained in sequence, and 
the result is shown in Fig. 2.18.

 
X a b1 � �� �  (2.1)

 
X a b2 � �� �  (2.2)

 
X X X a b a b� � � �� �� �� �1 2  (2.3)

2.13  EXOR Function (Antivalence)

 
Function equation : X a b a b a b� �� �� �� � � �  

The function created in Example 2.2 is also known as EXOR. The name stands for 
Exclusive OR. It has its own switch character (Fig. 2.19). Note that with this function, 
unlike the “ordinary” OR, the output is ‘one’ only if either one or the other input is ‘one’.

If there is more than one ‘1’ in the result column of the function table, so many 
partial functions are formed that each contains only one ‘1’. The partial functions are 
linked with OR.

2.13  EXOR Function (Antivalence)
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Fig. 2.20 Logic diagram 
EXOR: display variants

2.14  Disjunctive Normal Form (AND-Before-OR), Minterms

Normally the function table is always created first. We have already seen how you can 
develop the circuit from this in the example ‘MIXER’. We got the EXOR or antivalence 
circuit (Figs. 2.18 and 2.20).

We had obtained the equation of the function by looking at the lines in which the result 
X = 1. These equations are called “minterms”. They are created by ANDing the input val-
ues; if an input value is ‘0’, the corresponding variable must be negated:

 X a b1 � �  (2.4)

 X a b2 � �  (2.5)

These two partial equations are then linked with OR. So we get an equation in the form 
AND-before-OR:

 X X X� �1 2  (2.6)

 
X a b a b� �� �� �� �  (2.7)

2.15  Brief Description of the Logic Diagram

For a clearer representation, the symbols of the individual switching elements can be 
drawn adjacent to each other. The negations can also be displayed directly at the input. The 
two circuits in Fig. 2.20 show both types of representation.

Exercise 2.12 (LOGIC23)

For each of the following functions 9 to 14, create the function table, the logic diagram 
and the function equation, or complete the missing parts. Check the result each time 
with the aid of the digital trainer!

2 Logical Functions and Boolean Algebra
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Function 9 for exercise 2.12

Function 10 for exercise 2.12

Function 11 for exercise 2.12

Function 12 for exercise 2.12

Function Table 9:

Function Table 10:

Function Table 11:

Function Table 12:

Functional equation:

Functional equation:

Functional equation:

Functional equation:

Logic Plan:

Logic Plan:

Logic Plan:

Logic Plan:

 

2.15  Brief Description of the Logic Diagram
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Function 13 for exercise 2.12

Function 14 for exercise 2.12

Function table 13:

Function table 14:

Functional equation:

Functional equation:

Logic Plan:

Logic Plan:

 

2.16  Two-Way Connection

You are certainly familiar with the application of a two-way connection: In a corridor, the 
light should be operable from two switches. Such a changeover circuit can be imple-
mented with two two-way switches, each of which emits the logical signals “0” or “1”. By 
changing the signal at one of the switches, the lamp is switched on or off.

Exercise 2.13 (SWITCH21)

Implement an alternating circuit with the aid of function elements. Create the function 
table, the logic diagram and the function equation. For realisation, assume that the lamp 
is off when both switches are in the ‘0’ position. First complete the function table in 
Fig. 2.21.

   Parts of the circuit:
   Switch a,
   Switch b,
   Lamp Y

2 Logical Functions and Boolean Algebra
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Fig. 2.21 Two-way connec-
tion for Exercise 2.13

Functional equation:

Fig. 2.22 Circuit and function 
table for Exercise 2.14

2.17  Creating the Function Equation with More Than Two Inputs

The procedure described in Sect. 2.12 for generating the function equation also works in 
the same way for function tables containing more than two input variables. Each partial 
function contains only one single line with a ‘1’. The result is the OR-operation of these 
minterms.

Exercise 2.14 (MINTERM21)

For the circuit shown in Fig. 2.22, first create the function table and then use the mint-
erms to create the function equation.

2.18  Cross Connection

If two switching points are not sufficient for light switching, then a two-way circuit can be 
extended with one or more “intermediate” cross over switches to a cross circuit so that a 
lamp can be switched from three and more points. If only one switch is toggled, the lamp 
is switched. If two switches are toggled at the same time, the state of the lamp does 
not change.

Exercise 2.15 (SWITCH22)

Implement a cross-circuit for three switches using function elements. Create the func-
tion table, the logic diagram and the function equation (Fig. 2.23).

Start again with the default: all switches in position ‘0’ means lamp off. Starting 
from this line, add further lines to the function table by searching for lines where only 

2.18  Cross Connection
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Functional equation:

Fig. 2.23 Function table and circuit for Exercise 2.15

one switch state changes. Then the lamp state must also change. In this way, you can 
gradually fill in all the lines of the function table.

   Parts of the circuit:
   Switch A,
   Switch B,
   Switch C,
   Lamp Y

2.19  Two- from Three-Sensors Logic

Very sensitive equipment may only be switched off in extreme emergencies, for example 
if an accident could occur. In other cases, safe monitoring must take place in any case, so 
that even faults in the monitoring equipment cannot have a negative influence. For both 
cases, the safety requirement can be met by using three different sensors for the same 
measured value. For example, if the exceeding of a critical temperature is to be monitored, 
three different thermometers would detect this value.

This safety circuit, in which a measured value or limit value is detected three times, is 
called a “two-out-of-three-sensors-logic”. If at least two of these measuring systems sig-
nal that the limit value has been exceeded, there is a high probability that there is no faulty 
measurement. The safety device should become effective. This can be done, for example, 
by switching off the system. If only one of the sensors signals that the limit value has been 
exceeded, a faulty measurement could be present. This case should only be indicated by a 
warning device. In this way, false alarms can be avoided.

This type of safety circuit is particularly important for monitoring processes that are to 
run continuously and may only be switched off in extreme emergencies.

2 Logical Functions and Boolean Algebra



33

Exercise 2.16 (ALARM22)

Only if at least two of the three measuring systems indicate that the limit value has been 
exceeded, the safety shutdown and alarm should be triggered. If only one of the mea-
suring systems indicates that the limit value has been exceeded, this “only” triggers 
the alarm.

Develop the function tables, logic diagrams, and functional equations for the safety 
shutdown and alarm (Fig. 2.24).

In the function table for the alarm Y there are many ‘1’s and only one single row with 
a ‘0’. The standard procedure with the minterms as you have learned it so far works of 
course, but requires a huge effort, namely 7 AND-members with 3 inputs each and one 
OR-member with 7(!!) inputs.

If you don’t want to drive this, you can consider by which simple function Y can be 
represented. Then only one switching element with 3 inputs is needed! Later we will 
learn a more entertaining method for this and similar cases. (If you are impatient, you 
can skip ahead to Sect. 2.22 for more information on ‘Maxterms’ and ‘Conjunctive 
Normal Form’).

Check the results found with the digital trainer. In addition, have a third output indi-
cate when all three measuring systems report that the limit has been exceeded.

2.20  Transforming and Simplifying Functions

To realize a certain function, different circuits are always possible. These circuits which 
result in the same function table are called “identical circuits”.

In the previous chapter, you determined the following functional equation in Exercise 
2.10, table of Functions 4:

 X a b1 � �  (2.8)

This function is identical to:

 X a b3 � �  (2.9)

Fig. 2.24 Safety circuit (two- from three-wire circuit): function table and circuit for Exercise 2.16

2.20  Transforming and Simplifying Functions
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Fig. 2.25 Checking the equality of 
two functions using a table

Fig. 2.26 Function table for 
Exercise 2.17

You can easily check this using the function table. Write in one column the results for X1, 
in a second column the results for X2 = a ∨ b and in the third column for X3 (Fig. 2.25). You 
now only need to check that the two columns X1 and X3 are the same. (The table in Fig. 2.25 
still has the column entered for X a b X2 3� � �  clarity). Because the two columns X1 and 
X3 are equal, you can conclude that the functions X a b1 � �  and X a b3 � �  are also equal!

Exercise 2.17 (LOGIC24)

Check the equality of the two functions Y1 (2.10) and Y2 (2.11) by first determining the 
function tables in Fig. 2.26 and then comparing the corresponding columns:

 
Y a b c a b c a b c a b c1 � � �� �� � �� �� � �� �� � �� �

 
(2.10)

 
Y a b a c b c2 � �� �� �� �� �� �  

(2.11)

Draw the logic diagram of the simplified function and plug it on the digital trainer! 
Check the results found with the digital trainer.

To check the equality of two functions, you can compare the output columns in 
the respective function tables.

2 Logical Functions and Boolean Algebra
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2.21  Boolean Algebra

The rules by which logical values can be calculated are described in Boolean algebra. 
These rules of logic were established by George Boole (1815–1864). Because Boolean 
algebra can be implemented in technology by means of switches, it is also called ‘switch-
ing algebra’. The values that are linked together by the Boolean functions are called vari-
ables. Logic operations can be represented by tables, formulas (equations) or graphical 
symbols.

Knowledge of the rules of Boolean algebra enables you to “convert” more complicated 
functions into simpler ones. Similar to “normal” algebra, there are calculation rules for 
term conversion, so that the term Y1 can be mathematically converted into the term Y2 from 
the example.

Using rules of Boolean algebra, you can transform Eq. (2.12) into Eq. (2.13). You are 
to perform the equality of these two terms in Exercise 2.18 by comparing tables.

 
x a b a b� �� �� �� �  (2.12)

 
� �� � � �� � �a b a b y  (2.13)

Because the “inner” parentheses must be calculated first, the representation of function x 
(Fig. 2.27) is called the AND-before-OR (the disjunctive) form, and function y is called the 
OR-before-AND (the conjunctive) form. We have already considered the former in Sect. 
2.14. The conjunctive form is discussed in the following Sect. 2.22.

Exercise 2.18 (LOGIC25)

Complete the columns for x and y in the function table from Fig. 2.27. Then determine 
the equality. Draw the logic diagram of the simplified function and plug it on the digital 
trainer! Check the results found with the digital trainer.

Fig. 2.27 Function table for Exercise 2.18 and for (2.12), (2.13)

2.21  Boolean Algebra
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Fig. 2.28 Function table for 
creating Eq. (2.14)

Example 2.3 (Term Transformation)

Here is a second example of term transformation: Given the function table from 
Fig. 2.28. Using the procedure you learned at the beginning of this chapter, evaluate the 
terms in the table to arrive at the function:

 
x a b a b a b� �� �� �� �� �� �

 
(2.14)

However, you already know that this function table represents the OR function, that 
is, it is expressed by x = a ∨ b. Therefore, it must be true:

 
x a b a b a b a b� �� �� �� �� �� � � �� �

 
(2.15)

 ◄

We would like to refrain from presenting the transformation of the terms in detail here; 
however, the transformation is possible by means of Boolean algebra. We limit ourselves 
here to proving the equality by comparing the two function tables, which you can certainly 
do on your own.

Exercise 2.19 (LOGIC26)

Prove the correctness of Eq. (2.16) by setting up and comparing the function tables:

 Y S R Y S R Yneu alt alt� � �� � � � �� �  (2.16)

This is a preliminary exercise for “memory devices”, which are examined in more 
detail in Sect. 3.2.

2.22  Conjunctive Normal Form (OR-Before-AND)

In Sect. 2.14 we saw that there is a “disjunctive normal form”. There is also a “conjunctive 
normal form”. This is created when you only look at the rows in the function table with a 
‘0’ in the result. To uniquely get a ‘0’, the input variables must be ORed. Only if both are 
‘0’, the result is also ‘0’. These terms are called ‘maxterms’. Thus, in Exercise 2.16, Y 
represents a maxterm.

2 Logical Functions and Boolean Algebra
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Fig. 2.29 EXOR: representation 
in disjunctive normal form 
(AND-before-OR) by means of 
function table

Fig. 2.30 EXOR: representa-
tion in conjunctive normal 
form (OR-before-AND) by 
means of function table

The terms must be combined with AND to the total result. For the example in Fig. 2.28 
the term x = a ∨ b, results directly because there is only one ‘0’ in the result column.

In this procedure, variables are thus first linked by OR, then the results are linked by 
AND. This is now called the OR-before-AND operation. The AND-before-OR can always 
be transformed into the OR-before-AND operation and vice versa.

Unfortunately, because we are not learning Boolean algebra in this course, we cannot 
use the switching algebra rules to prove the equality of the terms. However, you can prove 
the equality of the two terms by comparing the function tables.

To demonstrate the design procedure using the maxterms, we take the already familiar 
function of the EXOR element (Fig. 2.17). At that time we generated the disjunctive nor-
mal form, where the subfunctions Y1 and Y2 each contained only a single ‘1’ (Fig. 2.29).

Now here, in the table Fig. 2.30, we have created the functions Y3 and Y4 so that they 
each contain only a single ‘0’.

Look in Exercise 2.10, there you had created the functions in the function tables 5 and 8:

 Y a b3 � �  (2.17)

 Y a b4 � �  (2.18)

Y is ‘1’ whenever both Y3 and Y4 are ‘1’. Therefore, for Y:

 Y Y Y� �3 4  (2.19)

 
Y a b a b� �� � � �� �  (2.20)

You see, first the variables a and b in the brackets are linked with OR; only then the linkage 
results are linked with AND: the execution order is ‘OR before AND’! You have already 
proved the equality with the term (2.7) in Exercise 2.18.

2.22  Conjunctive Normal Form (OR-Before-AND)
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3Memory Elements

Abstract

What do you do if only very brief signals occur in a process or in a plant, or if the effect 
of a brief keystroke is to last over a longer period of time? Of course: logical signals, 
e.g. alarm signals, must be able to be stored!

Storing means that a circuit continuously delivers the logic signal at its output, even 
if the triggering pulse has already ended, i.e. the pulse must “write” a logic signal into 
a memory. In this chapter you will learn how such memory elements are constructed.

3.1  Flip-Flops and Static Memories

In contrast to the previous circuits, the same input signals will no longer always produce 
the same output signals. Depending on the history, the same input signals can produce dif-
ferent output signals. At first this sounds absurd and arbitrary! But of course the circuit 
does not work according to a random principle.

Since the past history must be taken into account, values from the past must be stored. 
So there must be switching elements which have a “memory”, a storage possibility. Here 
are two examples: A short press on a start button switches on a system, which should of 
course continue to run even if the button has been released and the input signals are again 
present as before. Or in counting tasks, the counting impulse (which is the same each time) 
must cause the circuit to display a number that is 1 higher; the numbers, i.e. the outputs of 
the circuit, are different each time, despite the same input impulses. The new number to be 
displayed depends on the previously stored past.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
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Save Binary Signals
For the storage of a binary digit (bit), a memory location is required which either holds the 
information logically ‘0’ (low, L-level) or logically ‘1’ (high, H-level). Because digital 
technology does not know any intermediate states, such memory locations must switch 
back and forth between the two permitted states as “lightning-like” as possible when 
switching. In DIN 40900, this memory is referred to as a bistable element. The terms 
bistable flip-flop and flip-flop (FF) are also commonly used.1

If plant sections are to be switched by pushbuttons, the button presses must be stored. 
A button press only lasts for a short time. Therefore, because the effect should last longer 
than the keystroke, you must store the signal. As seen, flip-flops can store signals. Thus, 
you can use a pushbutton to generate a set signal to set a flip-flop. The set flip-flop triggers 
the corresponding action: a valve is opened, a motor is running, or a lamp is on. To switch 
off the action, either another pushbutton switch or logic is provided that generates a 
reset signal.

We will learn about different types of binary memories. The differences lie in the dif-
ferent ways in which or at what time the information is stored.

3.2  The RS Flip-Flop

Consider Fig. 3.1. With this flip-flop, storing is done like this: a ‘1’ signal at the R input 
resets the output, i.e. to ‘0’; a ‘1’ at the S input sets the output to ‘1’. After setting or reset-
ting, ‘0’ must be applied to both inputs again. As long as both input signals a and b remain 
at ‘0’, the output signal Y does not change; the flip-flop outputs ‘0’ or ‘1’, depending on 
which signal was previously stored. So this is the memory position.

Attention:
It is not allowed to give both inputs ‘1’ signal at the same time. 
In this case the output may be undefined.

(No change)
(Set)
(Reset)
(Forbidden)

Fig. 3.1 RS bistable element

1 “Flip-Flop” is the American name. It is onomatopoeic and could be translated as “click-clack” 
in German.

3 Memory Elements
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Fig. 3.2 RS bistable element: 
function table with transi-
tion states

Fig. 3.3 RS bistable element: 
feedback with delay

An RS flip-flop can be constructed with two NOR links. We can derive this with the 
following considerations: Because the new state for the output depends on the previous 
one, we introduce the state Yold as the previous state and the Ynew new subsequent state 
in a function table in Fig. 3.2. In addition, we also entered R Y∧ old the column.

With Exercise 2.16 we have already somewhat prepared the problem shown here. If the 
forbidden cases are not considered, then ‘1’ is always Ynew when S = 1 or is. R Y� �old 1.

Therefore, for all permissible cases:

 Y S R Ynew old� � �� � (3.1)

This term can be transformed as in Exercise 2.16 to:

 
Y S R Ynew old� � �� � (3.2)

 
Y S R Ynew old� � �� � (3.3)

Now the question arises, how to get the ‘old’ state. Somehow the value of the output 
must be stored temporarily until it has been processed and the ‘new’ value has become 
stable. The simplest way to do this is to provide a delay (Fig. 3.3). The delay time τ must 
be long enough. Then the circuit already has the new value for Y at the input and the old 
value at the output for the time τ.

3.2 The RS Flip-Flop
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a bFig. 3.4 RS bistable element: 
structure with standard 
components (a) as Fig. 3.3 
without “feedback” (b) 
alternative representation

Fig. 3.5 Alarm circuit 1 for 
Exercise 3.2

2 Some of the tasks from this chapter will be performed later using the PLC. However, we recom-
mend that you work on the tasks here and test them with a digital training device or simulation 
program if possible, even if you are eager to finally start programming PLCs. First, it’s a preliminary 
exercise for programming because you can study the problems, procedures, and possible solutions 
using the more descriptive digital technology. And secondly, the graphical programming language 
“function block language” is practically identical to the digital technical representation.

If one assumes that in practice the delay present in the gates anyway because of the 
signal propagation times is large enough, then the separate delay element can simply be 
omitted and replaced by direct “feedback” of the output to the input, as shown in Fig. 3.4.

Exercise 3.1 (RSFF31)2

Use the digital trainer to construct an RS-FF circuit from two NOR links and test the 
function. On which elements are the R and S inputs? Show that the outputs of the NOR 
gates are always opposite if a and b are not both ‘1’.

3.3  Alarm Circuit 1

An alarm circuit is used to monitor a process. The process emits an “alarm signal” in 
the event of a fault. The operating personnel must confirm the registration of the 
alarm by means of an acknowledgement signal. Because even a short alarm signal 
must not be overlooked, it must be stored. The acknowledgement signal resets 
the memory.

Exercise 3.2 (ALARM31)

Build the alarm circuit 1 (Fig. 3.5). The (momentary) signal ‘Fault’ should switch on 
the horn, which is switched off again by the acknowledgement signal.

3 Memory Elements
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Preferred situation
on power up:

Set at power up:Fig. 3.6 Preferred position 
when switching on

3.4  Defined Basic Position (Preferred Position)

Memory elements usually have an undefined state after the operating voltage is switched 
on, i.e. it is not possible to say whether the memory has a ‘1’ or a ‘0’ at the output after 
switching on. Often it is indifferent, but in many cases this can lead to malfunctions or 
even danger in practical applications.

To avoid this, special circuit measures can be taken to ensure that the memory element 
assumes a defined initial position after switching on (Fig. 3.6). This defined initial position 
is indicated in the symbol. In DIN EN 60617 (or DIN 40900), the initial basic position 0 
is specified as I = 0. “I” stands for “Initial”.

3.5  Priority of the Input Signals

The set and reset inputs of RS bistable elements must not be assigned a ‘1’ signal at the 
same time, otherwise an undefined (forbidden) state will occur.

You can certainly think of many examples in practice where it is not guaranteed that the 
set and reset signals occur nicely one after the other. But what can you do if it cannot be 
ruled out that overlaps occur in the system? Yes, that’s right, you have to create uniqueness 
by interlocking the signals. One of the two signals must be given priority, i.e. this priority 
signal blocks the other, lower priority signal.

RS Bistable Element with Set Priority
An AND circuit can be connected in front of the R input as a data switch (gate) (Fig. 3.7). 
Resetting is then only possible if no set signal, i.e. ‘0’ signal, is present at input a. If a and 
b both carry a ‘1’ signal at the same time, the reset signal at input b is interrupted and 
therefore ineffective. This means that only the set condition is fulfilled and the RS flip-flop 
is set (see Sect. 2.7).

Exercise 3.3 (RSFF32)

Build a set-priority RS bistable link from NOR gates and check the function.

3.5 Priority of the Input Signals
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(Set)
(Reset)
(Priority)

Fig. 3.7 Setting priority

(Set)
(Reset)
(Priority)0

Fig. 3.8 Motor control: circuit and table for Exercise 3.4

RS Bistable Element with Reset Priority.

Exercise 3.4 (RSFF33)

Add the logic diagram for an RS bistable element with priority of the reset signal in 
Fig. 3.8. Build the circuit with the digital trainer and check the function.

Exercise 3.5 (RSFF34)

Draw the logic diagram of an RS bistable element with priority of the first signal, i.e. 
the signal that is applied first.

3.6  Motor Control

For a motor, the two states “forward” or “clockwise” and “reverse” or “counterclockwise” 
must often be taken into account. There are therefore two different actions to be per-
formed; you must therefore plan an RS flip-flop in your circuit for each of these states.

Design the respective control logic for both setting and resetting the flip-flop, i.e. you 
formulate the conditions that are to lead to the setting or resetting of the flip-flops of the 
corresponding state. These conditions can be: a ‘1’ signal from a pushbutton or signals 
from the process.

Exercise 3.6 (LIFT31)

An elevator is to be controlled by briefly pressing pushbuttons UP and DOWN (Fig. 3.9). 
For this purpose, the motor is switched on in the direction of rotation clockwise and 

3 Memory Elements
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Setting conditions for right-hand rotation:

Setting conditions for left-hand rotation:

Reset conditions:

Actions:

Right-hand rotation

Left-hand rotation

Fig. 3.9 Circuit and table for Exercise 3.6

(No change)
(Set)
(Reset)
(Forbidden)

Fig. 3.10 RS bistable element 
with negated inputs

anticlockwise. Switching off (immediate stop) is done by briefly pressing a third but-
ton. It must not be possible to switch on a direction of rotation if the opposite direction 
is set, i.e. the direction of rotation can only be reversed after switching off, i.e. when the 
lift has stopped. First formulate in words,

• how many memory elements (flip-flops) you need,
• by which signals the flip-flops are set,
• which signals reset the flip-flops,
• which actions must be performed when flip-flops are set.

Exercise 3.7 (LIFT32)

Extension of the previous task: In addition to the off switch, the drive must be switched 
off and restarting blocked as long as the lubricating oil pressure detected by a pressure 
switch is not present or the emergency stop switch is actuated. For this purpose, you can 
also refer to the solution of Exercise 3.4.

3.7  Flip-Flop with Negated Inputs

For technical reasons, the setting and resetting of the flip-flops is often not performed with 
‘1’ level, but with ‘0’ level (Fig. 3.10). Compared to the ‘normal’ flip-flop, the R and S inputs 
are negated. Thus, ‘0’ is reset or set with the low level. This type is called  “ RS -Flip-Flop”.

3.7 Flip-Flop with Negated Inputs
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Right-hand rotation

Left-hand rotation

Fig. 3.11 Motor control: circuit and table for Exercise 3.8

Set
Save

Reset

Write lock

Fig. 3.12 Write lock for 
Example 3.1

Exercise 3.8 (LIFT33)

This slightly changes the solution of the previous task. To cancel the negations at the 
inputs, you can use NAND or NOR elements. Complete the logic diagram for the motor 
control, now using RS -flip-flops (Fig. 3.11)!

3.8  Clock-State Controlled Flip-Flops

Write Lock
It is often desired that the flip-flop may only be set or reset if a third signal is present. In 
Fig. 3.12, this signal is present at the input C1. You can specify in the circuit design that 
the set or reset signals may only take effect when a ‘0’ is present at this control input. This 
control signal is also called “clock signal”. Setting or resetting is only possible if this clock 
has a certain logical state, for example is in state ‘0’.

3 Memory Elements
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Fig. 3.13 RS bistable element 
(flip-flop) with write lock for 
Exercise 3.9

Fig. 3.14 This circuit of a 
flip-flop has only a single 
data input a

Example 3.1 (Write Lock)

A motor is to be switched on or off by one pushbutton each, but only if an enable signal 
‘0’ is given to the control input by a main switch. In case of a ‘1’ at the control input, 
the old state should be maintained (Fig. 3.12).

Solution:
The memory contents can only be overwritten if a ‘0’ signal is present at the control 

input C1, i.e. Set and reset inputs of the memory are effective. If the control input car-
ries ‘1’ signal, the memory contents cannot be changed (write protection). To set up the 
write inhibit, use a data switch (“gate circuit”) in each of the supply lines to the S or R 
input, consisting of an AND element (see Sect. 2.7). ◄

Exercise 3.9 (RSFF35)

Complete the circuit according to Fig. 3.13 so that you obtain the logic diagram for an 
RS flip-flop with controlled input (write block). A ‘1’ at the control input c is to block 
the flip-flop.

Exercise 3.10 (RSFF36)

Design a RS flip-flop with write inhibit and additional set priority!

Flip-Flop with only One Data Input (Clock Input) and Write Inhibit

Exercise 3.11 (RSFF37)

You operate a circuit as shown in Fig. 3.14. In the simulator, you provide a switch for 
input a (data input) and a pushbutton for C (write inhibit). Complete the time diagram 
from Fig. 3.15 by drawing in the curve for signal Y and explain in your own words how 
the circuit works!

3.8 Clock-State Controlled Flip-Flops
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Fig. 3.15 RS bistable element 
with write lock for 
Exercise 3.11

Fig. 3.16 RS bistable element with read lock for Exercise 3.12

Read Lock

With the write inhibit just discussed, you prevent the flip-flop state from changing as long 
as control input C is blocked. The flip-flop is thus completely inactive during this time. 
Now, however, you want the new state to be accepted, but not to take effect at the output 
until later. The time at which the output indicates the new state is to be determined by a 
control signal. To solve this problem, you can simply interrupt the output signal of the 
toggle element with a data switch. The data switch can be implemented in a familiar way 
using an AND element. The flip-flop can be set or reset, but the change is not passed on as 
long as the data switch is blocked at its output.

Example 3.2 (Read Lock)

A stirrer is to be switched on and off by two buttons. As soon as a stop button is pressed 
(‘0’ signal), the motor run should be interrupted. Even while the stop button is pressed, 
the on/off buttons (as “preselection switches”) should remain effective. ◄

Exercise 3.12 (RSFF38)

Implement an RS bistable element with disable input. Complete the logic diagram and 
the function table in Fig. 3.16! If the inhibit input carries a ‘1’ signal, it should be pos-
sible to tap the memory contents at output Z of the circuit. If the inhibit input carries a 
‘0’ signal, the stored information is not available at the output of the circuit (read 
protection).

Exercise 3.13 (RSFF39)

Combine the two circuits “write lock” (Exercise 3.9) and “read lock” (Exercise 3.12)! 
Try out when, depending on the control signal c, the flip-flop and the output Z change.

3 Memory Elements
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Acknowledgement
Fault

Fig. 3.17 Alarm circuit for Exercise 3.14

FaultFig. 3.18 Time diagram for 
Exercise 3.14

3.9  Alarm Circuit 2

Exercise 3.14 (ALARM32)

Analyse the function of the alarm circuit 2 Fig. 3.17. The alarm circuit is already much 
more refined than circuit 1 of Sect. 3.3. Understanding (analysing) the function of this 
circuit requires some concentration.
Investigate when which flip-flop is set or reset! When does the lamp L light up and 
when does the horn H sound?

First assume a basic state: both flip-flops are reset (Y1 = 0 and Y2 = 0), no signal is 
present (Fault = 0 and Acknowledge = 0). You can proceed in a particularly clear and 
systematic manner if you represent these time sequences in the diagram according to 
Fig. 3.18. To the right, enter the time segments, e.g. one segment per second.

Now let the signals come one after the other, first the disturbance Fault. Observe 
which of the flip-flops is set. Then give the acknowledgement signal Ack. Which flip- 
flops are set, which are reset?

Finally, try out how the circuit behaves if the fault lasts until the acknowledgement 
is received, or if it recedes beforehand.

3.10  Filling and Emptying a Measuring Vessel

This is a basic task of chemical process engineering: The components for the reaction are 
measured via one or more measuring vessels. The substances are then drained into the 
reaction vessel, where they are mixed, stirred, heated, etc., whatever the process requires.

3.10 Filling and Emptying a Measuring Vessel
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Fig. 3.19 Measuring vessel

Fill

Drain

on (fullen)

on (empty)

Fig. 3.20 Filling and emptying the tank. Circuit diagram for Exercise 3.15

Exercise 3.15 (TANK31)

The measuring vessel in Fig. 3.19 is to be controlled in such a way that, after the “Fill” 
button has been pressed, water flows in via solenoid valve V1 until the “FULL” state is 
signalled by limit switch LIS2.

When a pulse is given via the “Drain” button, the vessel is emptied via valve V3 until 
LIS1 signals “EMPTY”. (Note: The signal of the signal transmitters LIS1 and LIS2 is 
‘1’ when the transmitter is immersed in the liquid).

First consider how many memory elements (flip-flops) you need, by which signals 
the flip-flops are set, which signals reset the flip-flops and which actions must be exe-
cuted when the flip-flops are set. Then complete the given logic diagram in Fig. 3.20 
and plug the circuit onto the digital trainer.

Check whether the following conditions are met. Correct your circuit if 
necessary!

• Do not empty during the filling process, even if the corresponding button is 
pressed.

• When emptying, it is not possible to fill.

3 Memory Elements
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Acknowledgement
Fault

Fig. 3.21 Alarm with flashing signal for Exercise 3.17

Fault

Fig. 3.22 Time diagram for Exercise 3.17

Exercise 3.16 (TANK32)

Now extend task 3.15 so that the vessel is automatically emptied as soon as it is full. To 
do this, you can use the signal LIS2 to set or reset flip-flops.

3.11  Alarm Circuit 3

Exercise 3.17 (ALARM33)

The circuit in Fig. 3.21 works like alarm circuit 2 (Fig. 3.17) of Sect. 3.9, but a flashing 
signal is also generated.

Analyze the function of the alarm circuit from Fig. 3.21 with the aid of the time 
diagram according to Fig. 3.22. Complete the time diagram!

3.11 Alarm Circuit 3
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4Dynamic Memory Elements and Counters

Abstract

To summarize what we have learned so far about flip-flops: an electronic memory ele-
ment with two stable states is called a flip-flop. By suitable control, the flip-flop can be 
steered into the respective other state. In this way, binary (digital) information can 
be stored.

In the previous chapter we described the flip-flops where the output was changed 
immediately after changing the R or S inputs. These are the non clock-controlled flip- 
flops (bistable elements).

In this chapter you will learn how a memory chip must be constructed if it can only 
be controlled at a very specific point in time. Among other things, these devices form 
the basis for circuits that can count individual, short-term events (“pulses”).

4.1  Clock Edge Controlled Flip-Flops

It is often desirable not to switch the input information at the S or R input directly through 
to the output of the flip-flop, but in dependence on a third signal, the clock. During the 
inhibit phase of the clock, the flip-flop does not react. Only as long as the “active” clock 
state persists does the flip-flop respond immediately. Several toggles can also occur during 
the active phase of the clock. An example of this is the state controls (Sect. 3.8), particu-
larly the write inhibit.

However, this clock state control is not sufficient in all applications. Sometimes it does 
not make sense to allow several switchovers during the active clock phase. One would like 
to have exactly one fixed time at which the changeover takes place. In this case, it is pos-
sible to achieve a very precise coincidence of the times of the various changeovers 
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Write lock Read lockFig. 4.1 Write lock combined 
with read lock

Fig. 4.2 Memory with 
clock input

(synchronisation). Or unwanted disturbances can be suppressed in this way. The exact 
point in time can be the changeover of the clock signal, i.e. the transition of the clock from 
‘1’ to ‘0’ or from ‘0’ to ‘1’.

The set and reset inputs are then only used to prepare the storage. The store itself is only 
performed on a clock change when the clock goes either from ‘1’ to ‘0’ (falling clock 
edge, negative clock edge) or from ‘0’ to ‘1’ (rising clock edge, positive clock edge). We 
consider these clock edge-controlled flip-flops in the following section.

The edge-controlled flip-flops are built up from state-controlled flip-flops. We will 
study how this works in Example 4.1.

Example 4.1 (Write Lock Combined with Read Lock)

We combine the write inhibit with the read inhibit. To do this, consider the circuit in 
Fig. 4.1. When the clock is ‘1’, the flip-flop can be read out, i.e. the flip-flop state Y’ is 
present at output Y. During this time, the write inhibit prevents the flip-flop contents 
from changing, and the state is stable. If the clock is at ‘0’ level, the flip-flop cannot be 
read; however, now the flip-flop can be set or reset. At the exact moment the clock tran-
sitions from ‘0’ to ‘1’ (i.e., on a rising edge), the read inhibit opens and the flip-flop 
contents are transferred to the output. We have thus achieved edge control.

But wait! Here we were a bit too fast: Check which state the output Y has during the 
‘0’-phase of the clock! Correct, during this time there is always a ‘0’ at the output, 
independent of the state Y’ of the flip-flop!

The solution to this problem:
The signal Y’ must not be sent directly to the output, but must be buffered. The cir-

cuit shown in Fig. 4.2, which we have already discussed in Sect. 3.8, is suitable for this 
purpose. ◄

Exercise 4.1 (RSFF41)

Connect the two subcircuits Figs.  4.1 and 4.2 to form a flip-flop circuit with 
dynamic input!

4 Dynamic Memory Elements and Counters
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Pre-storage Main storageFig. 4.3 RS bistable element 
with dynamic input: Structure 
from basic components

Fig. 4.4 Time diagram for the 
toggle circuit Fig. 4.3

4.2  RS Bistable Element with Dynamic Input

If you have solved Exercise 4.1 correctly, you will recognize the circuit in Fig. 4.3.
Various flip operations can be understood by looking at Fig. 4.4: During the ‘0’ phase 

of clock C, the write inhibit of the first flip-flop (pre-memory) is open and it is set or reset 
depending on the state of a and b; the input signals are initially stored in the pre-memory 
(Y*). During the ‘1’ phase of the clock, the write inhibit locks the pre-memory and the 
changes to the inputs have no effect. But now the write lock is open for the second flip- 
flop, the main memory, so that it takes over the state of the pre-memory (Y). This takeover 
happens exactly at the moment of the transition of the clock from ‘0’ to ‘1’ (rising edge).

In the ‘0’ phase of the clock, the write inhibit locks the main memory: the output signal 
is retained. Because the pre-memory cannot change during the ‘1’ phase of clock C and 
the main memory does not change during the ‘0’ phase, changes to the output only take 
effect at the exact moment of the rising edge of the clock signal.

The information stored in the pre-memory is therefore transferred to the actual memory 
exactly when a rising edge of the clock signal occurs. Output Y therefore changes at a 
precisely predeterminable time! This process is called “triggering”. (trigger on a rifle or 
shutter release on a camera). In the circuit symbol, the trigger property is represented by 
the small triangle at the input. In Fig. 4.4 you can clearly see that output Y* “follows” the 
pre-memory output exactly at the time of the active rising edge, i.e. it is changed at exact 
points in time.

4.2 RS Bistable Element with Dynamic Input
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In front of
 Edge

After Edge

No change

Forbidden

Fig. 4.5 RS bistable element 
triggered with the rising edge: 
circuit diagram and func-
tion table

In front of
 Edge

After Edge

No change

Forbidden

Fig. 4.6 RS bistable element 
falling edge triggered: circuit 
diagram and function table

Exercise 4.2 (RSFF42)

Build a dynamic RS flip-flop with the digital trainer using two RS flip-flops and test the 
function (Figs. 4.3 and 4.5).

If the clock signal is inverted, the flip-flop reacts to the transition from ‘1’ to ‘0’, i.e. to 
the falling edge of the clock signal (Fig. 4.6).

Exercise 4.3 (RSFF43)

Using basic building blocks (AND elements and RS flip-flops), draw the logic diagram 
of a dynamic RS flip-flop with falling edge control.

4.3  The JK-Flip-Flop

The following applies to the circuit just discussed: At the time of the active edge, it must 
be ensured that the set and reset inputs (a and b) do not carry a ‘1’ signal at the same time. 
This restriction can be lifted by additional circuits, which we do not want to go through here.

The JK-flip-flop is a dynamic RS bistable element which does not assume an undefined 
state due to an additional circuit (Fig. 4.7). The combination ‘1’, ‘1’ at the preparation 
inputs is therefore no longer prohibited. The state J and K both equal to ‘1’, lets here the 
output toggle at each active edge. The toggle shown here switches on the rising (positive) 
edge of the clock signal. The J input corresponds to the set input, the K input to the reset 
input. The letters J and K have no relation to the function of the flip-flop, they were chosen 
arbitrarily.

4 Dynamic Memory Elements and Counters
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In front of
 Edge

After Edge

No change

Fig. 4.7 JK bistable element 
edge-triggered: Circuit 
diagram and function table

Fig. 4.8 T Flip-Flop for 
Exercise 4.5

Exercise 4.4 (JKFF41)

A negation sign before the clock input of the symbol means switching with the falling 
(negative) edge.

Draw the symbol of a JK bistable element with falling edge control and create the 
function table. Check the function of a JK bistable element with the digital trainer.

4.4  The T-Flip-Flop

The JK flip-flop can be wired to flip on each active edge. If you ask yourself now, what 
such a circuit is good for, we can only put you off until later, when we discuss counter 
circuits further down. Because of the application to counters this property is even so 
important, that there is a special circuit for it, which works exactly like the JK-flip-flop 
with J and K equal to ‘1’, but does not have the two inputs at all, but has only a single 
clock-input.

With the T-Flip-Flop, the output variable changes with each active edge of clock pulse 
C. (“T” from the english word “toggle”).

Exercise 4.5 (TFF41)

Complete the function table in Fig. 4.8! Draw the symbol for a falling edge-controlled 
T- Flip-Flop. Connect a JK Flip-Flop to the digital trainer as a T bistable element and 
test the function.

4.4 The T-Flip-Flop
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The T-flip-flop is easier to handle for some special use cases because it has no unneces-
sary functions, and it is cheaper because it needs less connection feet. But as it is with 
specialists: they are often too one-sided. The JK flip-flop is more versatile, and is often 
given additional R and S inputs to allow the flip-flop to be set and reset independently of 
the clock.1

4.5  Automatic Filling and Emptying of a Measuring Vessel

As an example, let us fill and empty the measuring vessel in Fig. 4.9. In the circuit shown 
in Fig. 4.10, a T-flip-flop is set with the start button. Valve V1 for filling the measuring 
vessel in Fig. 4.9 is opened and remains open until the upper limit switch LIS2 gives a 
signal. Then valve V1 closes and valve V3 opens. The measuring vessel runs empty until 
the signal from the lower limit switch LIS1 is logically 0. The sequence stops until a press 
on the start button restarts the cycle. With each press of the button, the quantity of the 
measuring vessel is therefore dispensed exactly once.

Exercise 4.6 (TANK41)

Build the circuit from Fig. 4.10 and test its function! What change in the circuit and in 
the operation results if an “ordinary” RS flip-flop is used instead of the T-flip-flop? 
What is the advantage of using the T-flip-flop in conjunction with the start button?

1 Kits for training usually have these types built in. They are usually designed so that you can just 
leave the inputs you don’t need open (i.e., unconnected).

Fig. 4.9 Measuring vessel

4 Dynamic Memory Elements and Counters
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V1 Open
(fill)

V3 Open
 (drain)

Fig. 4.10 Circuit for Exercise 4.6

4.6  Counter

The T-flip-flop discussed in the previous section is suitable for setting up digital counters. 
Let us now examine this in a little more detail: In digital counters, each bit has a valence 
in a power of two, according to the definition of dual numbers. We have already seen this 
at the very beginning of this course in Sect. 1.6.

Table 4.1 shows the numbers 0–15  in decimal form, 0–F in hexadecimal form and 
0000–1111 in dual form. The dual numbers are 4 bits wide. A digital counter must have 
one output for each bit of the number to be displayed. In addition, a clock input is required 
whose pulses increment the counter one value at a time. The outputs must pass through the 
states in sequence, as shown in the table. Each clock pulse toggles the outputs (i.e. the 
positions for 23, 22, 21 and 20) as required for the number in the line below.

Plotting this as a line graph against time gives Fig. 4.11. Focus first on the top two lines 
showing the signal waveforms for the clock and the 20 signal. At the end of each clock 
there is a “falling edge” of the clock signal; i.e. the clock goes from ‘1’ to ‘0’.

At this exact time, the signal for 20 must change state. So note that on each falling edge 
of the clock, the 20 signal toggles.

Now also look at the line for the 21 signal and compare it with the 20 signal. The 21 
signal flips on each falling edge of the 20 signal. This behaviour corresponds exactly to the 
transfer of a full bundle of two to the next higher digit described in Sect. 1.6.

4.6 Counter
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Fig. 4.11 Timing diagram for 4-bit counter

Dec HEX Dual
23 22 21 20

0 0 0 0 0 0
1 1 0 0 0 1
2 2 0 0 1 0
3 3 0 0 1 1
4 4 0 1 0 0
5 5 0 1 0 1
6 6 0 1 1 0
7 7 0 1 1 1
8 8 1 0 0 0
9 9 1 0 0 1
10 A 1 0 1 0
11 B 1 0 1 1
12 C 1 1 0 0
13 D 1 1 0 1
14 E 1 1 1 0
15 F 1 1 1 1

Table 4.1 Decimal, 
HEX and dual numbers

So it goes on: at each falling edge the “following” signal toggles. So to build a counter, 
flip-flops are needed, which flip every time the clock has an active (here falling) edge. Aha, 
we see that here the JK-flip-flop or the T-flip-flop will be applied.

4.6.1  The Asynchronous Counter

Switching elements which flip at each active edge and can therefore be used in counting 
circuits are the T flip-flop and the JK flip-flop with J = K = 1. These flip-flops change the 
output level at each active edge of the input clock.

For the described counter application the falling edge must be the active clock edge. If 
you connect four T-toggle elements in series as shown in Fig. 4.12, you will obtain a 4-bit 
binary counter.

4 Dynamic Memory Elements and Counters
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Clock input

Fig. 4.12 Asynchronous 4-bit counter with T-toggle elements

Clock input

Fig. 4.13 Asynchronous 4-bit counter with T-toggle elements, alternative representation

Exercise 4.7 (COUNT41)

Describe the operation of the counter circuit Fig.  4.12. In particular, describe the 
switching of the flip-flops when all four outputs indicate ‘1’ and another clock pulse 
arrives.

The falling clock edge causes the first flip-flop to toggle, it is set. A rising edge is there-
fore produced at the output. This rising edge of the output 20 has no effect on the following 
flip-flop. Only the next falling(!) clock edge causes the first flip-flop to flip back. This reset 
affects the second flip-flop (21) as a falling edge, so it now flips afterwards as well. You can 
see that the individual flip-flops switch one after the other and not all at the same time, i.e. 
they do not work synchronously. This counter is therefore called an “asynchronous 
counter”.

In the drawing Fig. 4.12 it is unattractive, that the least significant output is drawn at the 
left and the most significant output at the right. In the positional notation of the dual num-
bers, however, it is just the other way round: the most significant digit is in the first posi-
tion, i.e. on the left, and the respective lower ones follow after the right. If we represent the 
asynchronous counter as in Fig. 4.13, the order is correct again.

Exercise 4.8 (COUNT42)

Build a dual counter in expansion level 4 (i.e. 4-level, 4-bit) with the digital trainer. Use 
JK flip-flops that you switch as a T-flip-flop.

4.6 Counter
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Clock input

Fig. 4.14 Asynchronous 4-bit 
down counter

Clock input

Fig. 4.15 Asynchronous 4-bit 
down counter, alternative 
circuitry

Counter 1 to 6

Fig. 4.16 Electronic dice

4.6.2  The Asynchronous Down Counter

A down counter is obtained by either using rising-edge triggered toggle elements 
(Fig. 4.14), or by triggering the next higher position with the respective negated outputs in 
the case of falling-edge triggered toggle elements (Fig. 4.15).

Most of the toggle elements available in practice have additional R and S inputs, which 
can be used to set or reset the flip-flop independently of the clock signal.

Exercise 4.9 (COUNT43)

Draw the line diagram for the signal waveforms for a down counter. Use the table of 
numbers in Sect. 4.6 to help you. Use the digital trainer to build a down counter and 
test it.

4.6.3  Modulo-n, Decimal- and BCD-Counters

Perhaps you can already think of some applications where you can apply your newly 
acquired knowledge of counters. However, before we look at applications, we would like 
to present you with some more theory.

Imagine you want to build an electronic dice. It is to output the numbers 1–6. In the 
circuit Fig. 4.16, G is a generator which supplies a high-frequency (“fast”) clock signal. 
This reaches the counter via the gate circuit (AND element) as long as the key is pressed. 
The clock is sufficiently fast that the number of cycles until the key is released is unpre-
dictable; the counter shows a “random” number.

4 Dynamic Memory Elements and Counters
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Clock input

Fig. 4.17 Circuit for 
Exercise 4.10

4.6.4  Modulo-3 Counter

But before we build a 1–6 counter, we start with something simpler, a counter modulo 3 
with the counting sequence 0,1,2,0,1,2…, It must display the binary numbers 00, 01 and 
10 one after the other. The fourth number 11, which can be displayed with two bits, must 
not appear, but must be immediately reset to 00 in its place. This can be achieved by imme-
diately resetting the flip-flops via the R inputs when this “wrong” number appears. Thus, 
in practice, the undesired number appears only for such a short time that it is not noticed. 
The reset signal must appear at the bit sequence 11dual = 3dez. Since the flip-flops are usually 
reset with a ‘0’ at the R input, the reset signal can be generated with a NAND element.

Exercise 4.10 (COUNT44)

Complete the circuit diagram in Fig. 4.17 to a counter modulo 3, i.e. it has the counting 
sequence 0, 1, 2, 0 … and build it with the digital trainer!

Exercise 4.11 (COUNT45)

Build a counter modulo 6 (0 … 5) with the digital trainer!

4.6.5  BCD Counter

In Sect. 1.12 we have already introduced you to BCD numbers. Digital counter circuits 
that display decimal numbers in BCD format “directly” need a modulo-10 counter for 
each of the decimal places. Three flip-flops are not enough for this. With four flip-flops, 
that is four bits, a counter can count from 0 to 15 (= 16 values). But to display the BCD 
numbers, you only need the numbers 0–9. A counter, which should only display the deci-
mal places 0–9, must switch back to “0” after displaying the digit “9”, not to the next 
digit “A”.

4.6 Counter
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Clock input

Fig. 4.18 Circuit for Exercise 4.12

Clock input

Fig. 4.19 Circuit for 1 … 6 
counter for Exercise 4.13

Exercise 4.12 (COUNT46)

Complete the circuit diagram according to Fig. 4.18 to a counter modulo 10 (0 … 9) 
and build it up with the digital trainer! Justify why instead of the NAND element with 
4 inputs one with only 2 inputs is sufficient!

4.6.6  Counter with Any Start and End Value

The counter circuits considered so far always started from the number 0. But for the dice 
mentioned at the beginning, the counter must start at the number 1dez = 001dual and count 
up to the number 6dez = 110dual. You can realize this by not simply resetting all flip-flops to 
0 when the “wrong” number 7dez = 111dual is reached, but by using the R and S inputs to 
reset/set the flip-flops so that the desired number is displayed 1dez = 001dual after the 
clock edge.

Exercise 4.13 (COUNT47)

Modify the circuit of the previous Exercise 4.12 so that the counting sequence 1 … 6 is 
created! Add a gate circuit to the clock input in Fig. 4.19 so that you obtain an elec-
tronic “dice”!

4 Dynamic Memory Elements and Counters
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Fig. 4.20 Process model for 
Exercises 4.14 and 4.16

4.7  Multiple Filling and Emptying of a Vessel

If a vessel is to be filled several times in succession, each filling of the vessel can generate 
a pulse which is registered by the counter. The counter reading reached indicates the num-
ber of fillings.

Exercise 4.14 (TANK42)

Describe the function and operation of the circuit in Fig. 4.21 that controls the process 
in Fig. 4.20. Build the circuit and test its function.

Expand the circuit so that the filling process is not only two, but three times in suc-
cession (Fig. 4.21).

4.8  Timer

Each counter circuit requires a certain time until the entire counting cycle has been run 
through once, i.e. the counter end value has been reached. You can calculate this time by 
multiplying the counter reading by the duration of a clock pulse. With a cycle of f = 1 Hz, 
i.e. one pulse per second, it takes 180 s (= 3 min) until the counter has reached the level 
10110100dual, correspondingly 180dez. So you need 8 flip-flops for a 3 min counter with a 

4.8 Timer
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V1 Open (fill)

V3 Open (drain)

Fig. 4.21 Circuit for Exercise 4.14

clock duration of 1 s. If you reduce the clock duration, you need more flip-flops, but the 
accuracy with which you can set times increases by the same amount.

Exercise 4.15

How many flip-flops do you need to build a counter for a count time of 3 min if the 
clock pulses have a duration of 0.5 s? How many are required for a clock duration 
of 0.1 s?

Exercise 4.16 (MIXER41)

After pressing a start button, the stirrer M should run for 4 s (Fig. 4.20). Draw the cor-
responding logic diagram and build the circuit with the digital trainer.

4 Dynamic Memory Elements and Counters



In the second part of the book we cover PLC technology. You will now quickly see the 
advantage of PLC programming: Changes don’t require cumbersome cable pulling, as was 
necessary with digital circuitry. You simply write the new instruction and that’s it.

Programming should be learned in the most universal language, the instruction list. 
Very often, graphical languages (e.g. function block diagrams) are preferred to textual 
languages because of their visually appealing presentation. The program representation 
then resembles the (familiar) circuit diagrams or circuits with digital switching elements. 
However, one has to be careful here: the seemingly so easy programming by means of 
graphical representation is no longer so trivial in the case of switching devices, i.e. when 
memory and time elements occur.

Part II

PLC Technology
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5Combinatorial Circuits with PLC

Abstract

In the case of logic switching elements, it was clear without any special mention that 
the output (more precisely, the output signal) depends on the inputs (the input signals). 
The relationship, i.e. the function of the circuit, is clearly defined. You get control when 
you connect several switching elements together. The signals at the inputs cause the 
signals that can be tapped at the outputs. The function of the overall circuit is deter-
mined by which switching elements are connected to each other and how. The function 
can be changed at any time by inserting or removing switching elements or changing 
the connections. In a PLC, as in digital circuits, we also have inputs and outputs. The 
dependence of the output signals on the input signals is not determined by the wiring, 
but it is determined by a “program” which signals are to be linked together. This pro-
gram can be written like an ordinary text with the PC. The advantage of this technique 
is the standardization of the controls. Because only a few universal types of control 
devices are required, they can be produced in large quantities. Only the buyer decides 
by programming which of the “inner building blocks” are to be used and how they are 
to be “wired”.

For the practical application, one can initially assume that an “infinite number” of 
individual modules are available. The “wiring” is done by the program. Another advan-
tage is that the function can be changed at any time by changing the program. A screw-
driver or soldering iron is not required for this.

We will first practice programming using the “Instruction List”. In this instruction 
list (IL), the individual links are described by short texts. Each line of the IL contains 
one instruction. Each instruction consists of an operator and an operand. The operator 

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
H.-J. Adam, M. Adam, PLC Programming in Instruction list according to IEC 
61131-3, https://doi.org/10.1007/978-3-662-65254-1_5
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PLC

Inputs Outputs

Fig. 5.1 Binary inputs and 
outputs: direct addressing

determines the type of link (e.g. OR link), the operand determines the input/output 
terminal whose signal is to be linked.

5.1  Directly Represented Variable

In the program you must be able to address the inputs and outputs of the PLC. The IEC 
standard prescribes very specific identifiers when the addresses of the hardware are to be 
addressed. Some examples can be found in Fig. 5.1. The identifier for the direct addresses 
starts with the percent sign ‘%’, followed by the letters ‘IX’ for an input bit or by the letters 
‘QX’ (to quit) for an output bit. This is followed by the number of the terminal.

Examples

%IX0.1 or %QX0.0.

Other designations are used for other input or output types. But of it later. At first we only 
care about single logical input/output bits. By the way, you can leave out the ‘X’ for these 
types for simplification. It is also irrelevant whether the identifiers are written with upper 
or lower case letters.

Valid Identifiers Are Therefore

%IX1.4, %I4.0, %Q1.1, %qx2.0, %i0.1, %iX1.2, %q3.4, etc.

5.2  Basic Logical Links with PLCs

Of course, a PLC is “underpowered” if it only has to implement a single link. But we have 
to start with simple exercises, therefore we will first create only the already known 
basic links.

Directly represented variables begin with the % character, directly represented inputs 
begin with %IX, and directly represented outputs begin with %QX.

5 Combinatorial Circuits with PLC
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If you are looking for an overview of the links possible with the PLC, you will find it in 
this book in Chap. 16.

5.3  OR Operation

Example 5.1 (Lamp Circuit with OR Operation)

A lamp should be switched on when the infrared detector has responded or a button is 
pressed.

Clearly, the OR operation (Fig. 5.2) must be used here! In the digital technology part 
(Sect. 2.8) you have already learned how to translate this task into a function table. ◄

To have the PLC perform this function, you must do two steps:

• first, connect the infrared detector and the pushbutton to the input terminals of the PLC 
and connect the lamp to an output terminal of the PLC; and

• secondly, write the instruction list so that the PLC works as an OR element.

So on the one hand you have to connect the process to the PLC control device and on the 
other hand you have to write the control program.

The symbolic variables a, b and x are assigned to the real signals, and these in turn are 
connected to the input/output terminals of the PLC. This can be clearly displayed in an 
“assignment list”.

Assignment of the inputs/outputs:
Inputs:
Variable a (infrared detector) %IX0.0
Variable b (pushbutton) %IX0.1
Exit:
Variable x (lamp) %QX0.0

These assignments are written in the instruction list before the actual program lines. 
The assignment list (“terminal diagram”) is introduced in the program header with the 
keyword ‘VAR’ and concluded with the keyword ‘END_VAR’. You can choose any names 
for the variables in the assignment list (as long as they contain only letters, digits and the 
underscore (_) and do not begin with a digit). After the keyword ‘AT’ you enter the direct 

Fig. 5.2 OR link

5.3  OR Operation
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PLC address. After this you put a colon followed by the variable type. Initially, we only 
use individual bits; the type designation for this is ‘BOOL’.

The symbolic identifiers (variable names), their type and terminal address are defined 
in the program header. For PLC practice, this means that you have a kind of “wiring dia-
gram” (assignment list) integrated in the program.

VAR
  a AT %IX0.0: BOOL
  b AT %IX0.1: BOOL
  x AT %QX0.0: BOOL
END_VAR

After the header the actual program lines are written. At the beginning of a link, the 
value of the first variable is loaded. The operator for this is called LD (to load). In the 
example, the next value is to be linked with the just loaded “OR”. The operator OR is pro-
vided for this purpose. The result of this link can then be assigned to the output with the 
ST operator (to store).

LD a
OR b
ST x

The LD operator loads the first operand from the input. At the same time a new instruc-
tion sequence is started.

The OR operation is created by the OR operator. The value loaded from input ‘a’ is 
linked with the value present at input ‘b’.

The assignment of the logic result to the output is done with the ST operator.

5.4  The Current Result

Have a little patience before you create the first program! You should be very clear about 
how the PLC works: the LD operator loads the first operand ‘a’ into a very specific mem-
ory location, the so-called “current result” (CR).

The Current Result CR is a memory location that contains one operand.

5 Combinatorial Circuits with PLC
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The next operator OR links the value of the “current result” with its operand b and over-
writes the memory location “current result” with the result of this operation. Aha, is the 
name of this memory location clear now?

After each arithmetic operation the memory location CR is overwritten with the result. 
The last instruction in this program, the ST instruction, does not change the “current 
result”, but copies the value to the memory location x specified in the operand. Note that 
after the ST instruction is executed, the current result retains its value and can be used 
further.

In Summary

• With ‘LD’ the current result CR is set completely new, independent of the previous 
value. A new sequence starts.

• The ‘OR’ operator changes the current result; the new value of the AE depends on both 
the previous value of the CR and the operand specified after the operator.

• ‘ST’ does not change the CR, it can be reused in subsequent operations.

However, the program is not yet finished. In the instruction list according to IEC 
61131-3 some formalities still have to be observed.

The program starts with the keyword PROGRAM <ProgramName> and ends with 
END_PROGRAM. 

There is only one instruction in each line of the instruction list. It begins with the opera-
tor for the function to be executed and an operand that indicates what the operator refers 
to. In most cases, the operand is the identifier for an input or output. By the way, the case 
does not matter in the whole text of the statement list and can be mixed arbitrarily.

Example 5.2 (Complete Program Code: OR51)

   PROGRAM OR51
     VAR 
     a AT %IX0.0: BOOL
     b AT %IX0.1: BOOL
     x AT %QX0.0: BOOL
   END_VAR
     LD a
     OR b
     ST x
   END_PROGRAM ◄

5.4  The Current Result
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Fig. 5.3 PLC-lite

5.5  The PLC Simulation Application “PLC-Lite”

There is one last hurdle to overcome before you can start programming. On the website1 
of the authors to this book, the application PLC-lite is available, with the help of which 
you can do all the exercises.

Installing and Starting PLC-Lite
For more information on installation and use, please refer to the app documentation. In 
this section, we give you a brief introduction to its use in connection with the exercises in 
this book.

After starting the app, the application window opens with the controls for controlling 
the simulated PLC and the editor window where you can type in the instruction list. You 
open the models for processes and input/output elements with the “Visualization” menu.

Operation of PLC-Lite
In the main window (Fig. 5.3), click on the “Visualization” button (or “Processes” in older 
versions of PLC-lite) and first select “Standard I/O”. You can use this menu to open the 
associated display elements and process models in later exercises.

1 www.adamis.de/plc/.

5 Combinatorial Circuits with PLC
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To set the input values for the PLC, click on the green buttons with the mouse. The 
lower, red “light emitting diodes” (LEDs) show you the output value. A “lit” LED means 
a logical ‘1’. The inputs act as buttons when you click the mouse. If you drag the mouse 
away from the button while holding down the left mouse button, it remains ‘latched’. The 
input then remains permanently switched on until you click on the input again. Thus you 
have a “switch” at the input.

Exercise 5.1 (OR51)2

Realize an OR operation with the PLC. Create the instruction list with the PLC-lite app 
and test the program. The test is positive if the function table for the OR operation is 
fulfilled for all switch positions.

The simulation is started with “Run”. The button then changes its status to “Running”; 
clicking on it again stops the simulation. “Reset” completely resets the simulation includ-
ing all process models.

After clicking the Run button, the system checks the statement list. If errors are detected, 
a corresponding message is displayed. Correct the errors. The simulation will not start 
until there are no more errors in the statement list.

Further Possibilities of Simulation
A useful function is the single step mode. A click on ‘Step’ executes the next instruction 
in the instruction list and then waits. A click on ‘Cycle’ works through all instructions 
once and stops at the beginning of the instruction list.

The instruction that will be executed in the next step is highlighted in the editor. In the 
simultaneously opening window ‘Watch expressions’ the current values of the variables 
and the current result (CR) are displayed. Here are two columns for the values: First look 
at the column ‘Value’ only. We will explain the meaning of ‘Direct Value’ in Sect. 6.4.

Finally, save the file first, then save the project as well. This ‘two-step’ approach is 
important for later, when a project will have more than one instruction list. Note therefore: 
‘Save file’ saves the current statement list. The project as a whole must be saved separately 
with ‘Save Project’.

2 For many exercises, you can find suggested solutions on the authors’ website under the name given 
in parentheses after the exercise number.

5.5  The PLC Simulation Application “PLC-Lite”
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5.6  AND Operation

Whew!! That was a nice bit of work for such a simple function! But don’t worry, you can 
take advantage of the programming right away when you tackle the next example:

Example 5.3 (Darkroom Lighting)

In a photo lab room, the yellow light may only be turned on when the door is locked 
and the windows are darkened. ◄

In Part I (Fig. 2.3) you have already learned how to translate this task into a function 
table. You get the AND operation (Fig. 5.4).

Again, you must first connect the input terminals of the PLC to the door or darkening 
contacts and the lamp to an output terminal of the PLC, and secondly write the instruction 
list to make the PLC work as an AND gate.

In our example, a door contact is to emit the logical signal ‘1’ when the door is closed. 
When the window darkening is effective, the window contact emits signal ‘1’. The lamp 
with the yellow light is switched on when it receives signal ‘1’. The symbolic variables a, 
b and x are again assigned to the real signals. This results in the assignment list:

Assignment of the inputs/outputs:
Inputs:
Variable a (door contact) %IX0.0
Variable b (window contact) %IX0.1
Exit:
Variable x (yellow light) %QX0.0

Just as in Example 5.1 with the OR operation, the value of the first variable is loaded 
(LD). The second variable must be “AND”-linked with the just loaded one. The operator 
‘AND’ is provided for this purpose. The resulting current result is again assigned to the 
output with the ST operator.

Fig. 5.4 AND operation

If you get “stuck” somewhere, you can also find the solutions to the exercises at 
www.adamis.de/plc/.

5 Combinatorial Circuits with PLC
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Can you see that this results in practically the same program as in the previous Exercise 
5.1? You only need to change the OR operator into the AND operator! No screwing or sol-
dering of cables, no changing of components …

Exercise 5.2 (AND51)

Realize the circuit for the photo lab by an AND operation! Create the instruction list, 
then program the PLC and test the program. The test is positive if the function table of 
the AND operation is fulfilled for all switch positions.

5.7  Negation of Inputs and Outputs

The logical values of the inputs and outputs can be negated before further processing 
(Fig. 5.5). This allows negators as well as NAND and NOR links to be implemented. The 
negation of the operand is generated by the modifier “N” (not). The modifier is appended 
to the operator. Thus we get the modified operators: LDN, ANDN, ORN, STN.

Example 5.4 (Showroom Monitoring)

With the help of a capacitive encoder, a sales room monitoring is to be carried out. The 
encoder gives a logical ‘0’ if there is a customer in the room. In this case, an optical 
signal is to light up. ◄

Assignment of the inputs/outputs:
Entrance:
Variable a (capacitive encoder) %IX0.0
Exit:
Variable x (signal lamp) %QX0.0

As a solution for the example simply results in a negation. Depending on whether you 
negate the input or the output, you get different programs: in the first case the LD operator 
is modified, in the second the ST operator.

Fig. 5.5 Negation of input 
resp. output

The AND operator is used for the AND operation.

5.7  Negation of Inputs and Outputs
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Example 5.5

PROGRAM NOT1
VAR
    a AT %IX0.0: BOOL
    x AT %QX0.0: BOOL
END_VAR
    LDN a
    ST x
END_PROGRAM

PROGRAM NOT2
VAR
    a AT %IX0.0: BOOL
    x AT %QX0.0: BOOL
END_VAR
    LD a
    STN x
END_PROGRAM

 ◄ 

In this case it does not matter whether the LD operator (input) is modified with negation 
or the ST operator (output).

In addition to the LD and ST operators, the AND and OR operators may also be modified 
with N. Thus NAND and NOR links can be realized. Exercise 5.3 can be solved with a 
NAND link. The negation is at the output; you must modify the ST operator to the STN 
operator.

Exercise 5.3 (MIXER51)

A valve must not be open (x = 0) when the stirrer (a = 1) and the heater (b = 1) are 
switched on. Write the program as an instruction list and draw the function chart.

5.8  Boolean Algebra: De Morgan’s Rules

Let us now examine what difference results when the LD, AND or OR operator (i.e. the 
input) or the ST operator (i.e. the output) is modified with negation. You should now have 
a look at Sect. 2.20! The relation given there is called “de Morgan’s rule”. It specifies how 
to “bring forward” the negation from the output to the inputs. Of course the operation 
changes: AND becomes OR and vice versa! Compare the logical switching functions with 
the PLC program codes and the switching symbols!

Exercise 5.4 (NAND51)

Implement and test a NAND logic in the two variants from Table 5.1 on the left.

Exercise 5.5 (NOR51)

Test also the (real) NOR-logic and its realization as AND-logic with negated inputs!

5 Combinatorial Circuits with PLC
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Table 5.1 de Morgan’s rules

NAND NOR

a b∧ a b∨ a b∨ a b∧
LD a LDN a LD a LDN a
AND b ORN b OR b ANDN b
STN x ST x STN x ST x

Fig. 5.6 Boiler heating in the “Boiler” process

5.9  Boiler Heating (Two-Point Control)

A reaction vessel is to be kept at a constant temperature via a contact thermometer as a 
limit signal transmitter as long as the heating is switched on. The temperature controller 
TIC emits the signal ‘1’ as soon as the set temperature (e.g. 50 °C) is reached or exceeded. 
It should be possible to switch the heating on and off with a switch. This “main switch” 
emits signal ‘1’ when it is closed (Fig. 5.6).

5.9  Boiler Heating (Two-Point Control)
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Fig. 5.7 Circuit for 
Exercise 5.6

Exercise 5.6 (BOILER51)

Implement and test the heating control with PLC according to the circuit Fig. 5.7.

   Assignment of the inputs/outputs:
   Inputs:
   Switch Sw1 %IX0.0
   Thermometer TIC %IX0.5
   Exit:
   Heating Heat %QX0.5

Use the “Boiler” process to simulate (Fig. 5.6). The switch for switching on and off is 
located on the far right of the field with the controls.

In the process, you will find “manual buttons” next to the valves V3 and V4 as well 
as next to the heater, with which you can switch these elements directly, without being 
influenced by the program. By actuating the heater, you can also cause a fault due to 
overheating, for example.

Do not be disturbed by the rapid switching on and off of the heating when the tem-
perature is exceeded. We will later learn ways to “calm down” the control. Also try out 
what happens when you overheat the boiler by clicking on the “Heating” manual button.

Exercise 5.7 (BOILER52)

The stirrer should run as long as the start button (left on the control panel, green button) 
is pressed.

Exercise 5.8 (BOILER53)

The previous Exercise 5.7 is to be supplemented as follows: If the level LIS3 has not 
yet been reached and the start button for the stirrer is pressed, the warning lamp should 
light up. Draw the logic diagram for this task!

For more exercises, see Sect. 13.2.

5.10  Program Cycle of the PLC

Now that you are a little familiar with PLC programming, let’s take a look at how the PLC 
controller works. If you think back to Exercise 5.8, you can easily see that the instruction 
to query the start button must be executed not just once, but repeatedly, because the pro-
gram is supposed to respond to the button press at all times.

5 Combinatorial Circuits with PLC
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Starting the PLC 
Operating system is loading

Control program

1.Instruction

2.Instruction

3.Instruction

Last Instruction

Fig. 5.8 Cyclic processing of 
the control program 
with a PLC

In fact, this is also the case with PLC controllers: the instructions from the instruction 
list are not processed only once, but repeatedly “in a circle”. After the last instruction has 
been processed, the process starts again from the first one. Each run is called a “cycle”. 
This is graphically represented in Fig. 5.8 by the arrows in the connecting lines.

Often the next cycle is not started immediately after the end but the cycles are started 
by a timer in certain time intervals. You can set this time in PLC-lite.

This cyclic mode of operation ensures that the inputs are regularly polled again and 
again and that any changes made in the meantime are registered.

5.11  Circuit Diagrams

Electricians understand the circuit diagram immediately. You may be a “non-electrician”, 
but you can certainly understand how the electrical circuit in Fig. 5.9 works: current can 
flow downwards from the upper “busbar” via wires or closed switches, as in a watercourse. 
Open switches interrupt the current flow. That’s not so difficult, is it?

The PLC program starts with the first command at startup and processes all com-
mand lines one after the other until the last command. After that, the cycle always 
starts again with the first command.

5.11  Circuit Diagrams
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Circuit diagram Function planFig. 5.9 Circuit diagram and 
function chart

With this approach, it is no longer a problem to recognize that the current can always 
flow through two switches connected in parallel when at least one of the two switches is 
closed. So it is an OR-circuit. This is the case with the two contacts that are to be con-
nected directly to the PLC inputs %IX0.0 or %IX0.1.

Current can only flow via the switch to be connected to %IX0.2 if output %QX0.0 is 
active. This is therefore an AND circuit: output %QX0.1 is ‘1’ if output %QX0.0 and 
input %IX0.2 are both ‘1’.

This electrical circuit is shown in Fig. 5.9 as a functional diagram.

5.12  Querying Output Variables

Frequently, the control of other variables depends on the status at one or more outputs. The 
PLC must therefore be able to query an output and process its logical state. This is possible 
without any problems.

But Note: the output is still an output, you cannot use it in the plant “like an input” and 
feed signals into the PLC via it, but you can only read out the last value stored to this out-
put in the program. In the heating control example, you could still switch on a pilot lamp 
while the heating is running. In program Example 5.6 you can see the program extension. 
Note how the output “Heat” is queried with the LD command.

5 Combinatorial Circuits with PLC
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Fig. 5.10 Circuit for 
Exercise 5.11

Example 5.6 (Boiler: Control Lamp)

   PROGRAM NOT3
   VAR
    ...
    Heat AT %QX0.5: BOOL
    On_LED AT %QX0.0: BOOL
   END_VAR
    ...
    LD 
    ST On_LED
    ...
   END_PROGRAM  ◄

Exercise 5.9 (BOILER54)

Complete the program from Exercise 5.8 with the control lamp as described in 
Example 5.6!

Exercise 5.10 (POWER51)

For the circuit in Fig. 5.9, assign the variables correctly, create the instruction list and 
implement the circuit with PLC-lite.

Exercise 5.11 (POWER52)

Program the circuit according to Fig.  5.10. Compare the result with the following 
Example 5.7 and Eq. (5.3)!

5.12  Querying Output Variables
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5.13  Flags and Brackets

Example 5.7

Exercise 5.11 can be solved by the following program part:

   LD %IX0.0
   OR %IX0.1
   AND %IX0.2
   ST %QX0.0  ◄

The OR statement for inputs %IX0.0 and %IX0.1 is executed first, and the result is writ-
ten to the CR, which is then linked to %IX0.2. As the last final result, the CR is written 
to output %QX0.0.

As a mathematical function equation, this relationship can be stated like this, where we 
introduce x as an intermediate result of the OR operation in order to be able to represent 
the two steps separately:

 x a b� �  (5.1)

 y x c� �  (5.2)

or, x from the first equation inserted:

 
y a b c� �� � �  (5.3)

If you don’t use x as an intermediate result, but put the corresponding term directly into the 
equation for y, you can “save” an output. And yet a memory location is required:

The parenthesis in the formula means that the expression for a and b in the parenthesis 
is evaluated first, and this result (stored in the CR in this particular case) is associated with 
the value c.3

5.14  Memory for Flags

Sometimes one does not want to lose the intermediate result x of Eq. (5.2). Then it is not 
enough to use CR for storage. We have to use additional memory space. First, we apply a 
common procedure in the PLC to get us memory space.

3 In the instruction list of the PLC, such a bracket expression can be programmed directly. But that 
comes a little later in Exercise 5.12.
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One could assign the intermediate result x to an output. But it can also be done without 
wasting the usually rare output terminals. Consider Example 5.8: We use a special mem-
ory location for intermediate storage, a memory-flag x AT %MX0.0: BOOL, which can 
hold the intermediate result x. By using a memory location (flag), the value is temporarily 
stored, “remembered”.

The result of the expression for x in the parenthesis is (a ⋁ b) assigned to a “flag” x 
with the ST operator and can be retrieved at any time by querying this flag. You can give 
flags symbolic names in the variable list.

Example 5.8

   PROGRAM Memory
   VAR
    a AT %IX0.0: BOOL
    b AT %IX0.1: BOOL
    c AT %IX0.2: BOOL
    x AT %MX0.0: BOOL (* flag *)
    y AT %QX0.0: BOOL
   END_VAR
    LD a
    OR b
    ST x (* save to flag *)
    LD x (* read from flag *)
    AND c
    ST y
   END_PROGRAM ◄

5.15  Comments in the Instruction List

In the instruction list (Example 5.8) you will find texts framed by the strings “(*” and 
“*)”. These texts are comments and serve to document the program. You can significantly 
increase the readability and comprehensibility of the program by using clever comments. 
These comments are intended as information only for yourself, so that you can still under-
stand the program run (even after some time!). The comments have no influence on the 
actual program run of the PLC!

Flags are given symbolic names. The memory location is addressed directly 
with %MXa.b.

5.15  Comments in the Instruction List
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• Flags are nothing more than memory locations for a value that you can recall at any time.
• Flags have in common with outputs that you can assign a value to them and read it out 

again at any time. Unlike these, however, they have no connection to the outside.
• Because absolute memory space is practically never important for flags, you can confi-

dently leave the allocation of memory space to the operating system. In the variable list, 
specify only the symbolic name and the type “BOOL” without assigning a special mem-
ory location. Instead of x AT %MX0.0: BOOL, just write x: BOOL. The actual 
memory location is automatically determined by the PLC system.

5.16  Intermediate Results in Brackets

The programming of the brackets is initially very pleasant for those who are mathemati-
cally experienced, because it looks similar to the familiar rules from mathematics. An 
example can be found in the following Exercise 5.12 (program 3).

By modifying the operators with the ‘(‘modifier and the’)’ operator, the expression 
can be written as Instruction List.

The modifier ( after the AND and OR operators creates the AND( and OR( operators, 
which begin a parenthesized expression.

The operator ) “Close parenthesis” closes the expression and causes it to be processed.
In PLC practice, however, the representation with the brackets quickly becomes con-

fusing. In many cases, the intermediate result is already available at an output and can be 
used directly from there by querying the output. In general, intermediate results will be 
assigned to flags. At first, programming with flags seems more effortful than using brack-
ets: the program gets more lines, and the way of thinking is unfamiliar if you are familiar 
with arithmetic algebra. However, the use of flags often leads to clearer programs, espe-
cially for larger projects.

Exercise 5.12 (MEMO51)

Draw the function block diagram for each of the three instruction lists. Complete the IL 
to form complete programs and implement the circuits with the PLC! Make sure that 
all three programs deliver the same result.

1) LD a 2) LD a 3) LD c
OR b OR b AND( a
ST mem AND c OR b
LD c ST x )
AND mem ST x
ST x

5 Combinatorial Circuits with PLC
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Fig. 5.11 EXOR

Justify why parentheses are not required in the second variant by tracing the assign-
ments to the “current result”. (cf. Exercise 5.11)

5.17  EXOR Operation (Antivalence)

Example 5.9 (Agitator)

An agitator may only be switched on (x = 1) when the level is reached (a = 1) and the 
inlet valve is closed (b = 0); or when the level is not reached (a = 0) and the inlet valve 
is open (b = 1). ◄

You have already dealt with this example for the application of an EXOR element in the 
digital part in Sect. 2.13 and in the minterms (Sect. 2.14): There we worked out the func-
tion plan in detail, so in Fig. 5.11 we only repeat the result.

This EXOR operation is included in IEC 61131-3 and is performed by the XOR opera-
tor. The XOR operator can be modified with N and ( to XORN and XOR(.

Assignment of inputs/outputs (allocation list):
Inputs: Variable a (switch 1) %IX0.6
        Variable b (switch 2) %IX0.7
Output: Variable x (Output x) %QX0.6

Exercise 5.13 (EXOR51)

Realize the EXOR link with PLC-lite!

5.17  EXOR Operation (Antivalence)
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6Logical Memory Circuits

Abstract

In this chapter you will learn how to use the memories in a PLC. You have already 
learned about one memory: the flag. In the PLC, a flag is a memory location for a logi-
cal value. In the PLC, however, outputs can also be addressed as memory locations. You 
can assign a value directly to the flags as well as to the outputs in order to reuse it after-
wards. You can also set flags to ‘1’ or ‘0’ by a set or reset pulse, similar to flip-flops. In 
this context, we will have to illuminate special features in the program flow of the PLC, 
which will then lead us to the function blocks for the RS and SR flip-flops.

In addition to the purpose of recording intermediate results, signals must be stored 
in order to “record” one-time processes or brief pulses even after they have ended. An 
application example are circuits in which pushbuttons are used.

6.1  Output with Self-Retaining

Often, processes in systems are triggered by pushbuttons and not by switches. The push-
buttons only make contact as long as they are pressed; when they are released, the signal 
is no longer present. Two pushbuttons are usually installed: one for switching on and a 
second pushbutton for switching off. After releasing the ON button, the output must 
remain at ‘1’ until the OFF button is used to reset the output to ‘0’. To do this, you need 
some kind of memory for the button press, because the effect must remain active beyond 
the duration of the button press. We had seen that this memory behavior can be realized by 
means of flip-flops.

In electrical engineering, this behaviour can also be achieved by means of an auxiliary 
contact on a relay. In the circuit diagram for circuit diagram A (Fig. 6.1) you will find a 

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
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Circuit diagram A Circuit diagram BFig. 6.1 Self-holding: circuit 
for Exercise 6.1

switching contact with the designation %QX0.0. The relay also has the same designation. 
This means that this switching contact is “actuated” by the relay: when the relay is ener-
gised, this contact is closed.

However, this then causes a closed current path for the relay, even if the pushbutton 
%IX0.1 in parallel with the auxiliary contact is released again, i.e. opened. You can see 
the memory effect: the relay “holds itself” until the circuit is interrupted by (briefly) open-
ing the pushbutton %IX0.0 in series; then the relay drops out and the auxiliary contact 
%QX0.0 is opened again.

Exercise 6.1 (POWER61)

Draw the function diagrams for circuit diagrams A and B (Fig. 6.1) respectively, 
create the instruction list and test the circuits with the PLC. Especially check the 
behaviour when the two switches %IX0.0 and %IX0.1 are pressed 
simultaneously.

Note: Note the illustration of the two types of switch: normally open (NO) and nor-
mally closed (NC). With the normally open contact, the contact is open in the idle state; 
actuation closes the contact. In the case of the NC contact, the contact that is closed in 
the idle state is opened by the actuation. However, this actuation is not important for the 
PLC, rather the signal emitted by the switch is decisive for the programming, and this 
is always a ‘1’ when the contact is closed and a ‘0’ when it is open, regardless of 
whether it is actuated or not!

6.2  Setting and Resetting Outputs

Example 6.1 (Self-Retaining: Start and Stop Agitator with Pushbutton)

An agitator is to be switched on with a start button and switched off with a stop 
button. ◄

6 Logical Memory Circuits
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The important thing about this example is that the actions are to be carried out with pushbut-
tons that jump back to their initial position after being released. You could implement this 
task with the circuit from Exercise 6.1. In the solution to this example, the agitator at output 
x is switched on (set) by the start button at b and switched off (reset) by the stop button at a:

Example 6.2 (Self-Retaining)

   Program POWER61
   var
     a AT %IX0.0: bool
     b AT %IX0.1: bool
     x AT %QX0.0: bool
   end_var
     LD b
     OR x
     AND a
     ST x
   end_program  ◄

The circuit works, but admittedly the whole thing is probably too complicated and 
above all too confusing. Because such a function is needed more often, it is clear that there 
are special instructions in the PLC for setting outputs to ‘1’ and resetting them to ‘0’. In 
the instruction list, use the operator ‘S’ to set and the operator ‘R’ to reset an output 
or a flag.

Exercise 6.2 (RS61)

Complete the following instructions (Example 6.3) to a complete program and test it 
with the PLC. The variable a is to be connected to the input %IX0.7, b to %IX0.6 
and x to the output %QX0.0.

Example 6.3 (For Exercise 6.2)

   LD a
   S x
   LD b
   R x  ◄

This program functions as a self-Retaining circuit! Pressing the pushbutton a at 
%IX0.7 sets the output x at %QX0.0 to ‘1’. This state is maintained even if the pushbut-
ton is released. Only pressing pushbutton b at %IX0.6 clears the output again and resets 
it to ‘0’. Note that in each case the action is only executed if the respective variable a or b 

6.2 Setting and Resetting Outputs
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Fig. 6.2 PLC-lite: Logic Analyzer with time diagram for Exercise 6.2

has the value ‘1’. If the variable has the value ‘0’, no action is executed and the output 
retains the previous value.

Note
With the help of the Logic Analyzer from PLC-lite you can observe the time sequence of 
the signals. Open the Logic Analyzer. Then click on “Start” and operate the buttons. You 
will now get a recording of the logic levels. In addition, you can follow the processes in 
detail by using the single step mode. In Fig. 6.2 you can see thin and thicker lines in the 
time diagram. You can understand the differences a little later, with the knowledge gained 
in Sect. 6.5.

Exercise 6.3

Now observe the behaviour of the output in the program from Exercise 6.2 when both 
pushbuttons are pressed simultaneously! In the simulation, you can “clamp” the 
pushbuttons individually by moving down from the pushbutton while holding 
down the mouse button.

6.3  Order of Execution and Priority

From Exercise 6.3 you can see that output x at %QX0.0 always remains reset as long as 
pushbutton b is pressed, even if pushbutton a is also pressed. Now swap the order of the 
instructions in Example 6.3 so that the S instruction is the last instruction. You will get 
Example 6.4:

6 Logical Memory Circuits
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Example 6.4

   LD b
   R x
   LD a
   S x  ◄

Now you will see that in Example 6.4 the set command has priority and the output 
always remains set when both buttons are pressed continuously. We had already achieved 
such a behaviour with the digital circuits by connecting the signals with switching ele-
ments accordingly. Please scroll back to Sect. 3.5.

In the PLC, this arises from the order of the instructions in the instruction list. In the 
case of multiple assignments to an output within an instruction list, the last assignment 
“wins”. It is therefore of utmost importance in which order the instructions are listed in the 
instruction list.

But wait! Please have another look at Sect. 5.10 (Fig. 5.8), which describes how the 
PLC works: The instructions from the instruction list are not processed only once, but 
again and again “in a circle” from the first to the last instruction and then starting again 
with the first. And thus the first instruction is always executed again after the last one. So 
how can the order of the set and reset instructions matter at all, after all they are simply 
executed alternately in the end? – We will look at this in the following section:

6.4  Storage of Inputs and Outputs

This behavior: “The last instruction wins” is very useful in both Examples 6.3 and 6.4. It 
is achieved by the PLC only ever transferring the new values to the output at the end of the 
cycle, thus giving the output a unique, constant value. The intermediate changes during the 
cycle remain internal only and do not go to the outside.1

The instructions are executed in order (from top to bottom). In case of multiple 
assignments, the last one takes precedence.

1 Likewise, input values are read in only once at the beginning of each cycle and then remain avail-
able unchanged until the end of the statement list.

6.4 Storage of Inputs and Outputs
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Fig. 6.3 Switching to direct 
and indirect access with 
PLC-lite

Let us now consider this in more detail: Consider what would happen if the set or reset 
instructions took effect immediately and directly at the exit, rather than at the end of 
the cycle?

Exactly! The output would be switched on and off in rapid succession. This would 
result in a “blinking circuit” with the cycle frequency. You could also say: the output 
“flutters”.

The first instruction resets the output when the button at %IX0.7 is pressed. Immediately 
afterwards, the output is switched on again when the button at %IX0.6 is also pressed. 
The best way to study this behavior is to test the program Example 6.2 with the logic ana-
lyzer and with the simulator in single step mode (Step).

You have the possibility in PLC-lite via the menu View – PLC-Setup to deactivate the 
buffering of the terminals, so that the respective values appear directly at the output and 
not only when the program has run through the cycle to the end. Figure 6.3 shows on the 
left the default setting for the inputs/outputs: indirect access, with buffering. Toggle: 
Check the box to set the byte to direct address access. In the following Sect. 6.5, these 
intermediate memories with the names “process images” are explained in detail.

In Fig. 6.4 the program from Exercise 6.2 is executed in single step mode. PLC-lite 
marks the line that will be executed next by clicking the “Step” button. In the example, you 
can see that the execution in “Step” mode is carried out up to line 12. Both input buttons 
are latched to the value ‘1’. The output variable x has the value ‘1’ because the previous 
set command has just been executed. The x value at the output of the PLC (Direct Value) 
is still ‘0’ because we have not selected direct input/output (this is the normal setting). If 
we now continue the steps, then executing line 13 will reset the output. After executing 
line 14, this value comes to the output. Despite setting and resetting at the same time, 
resetting “wins”.

Now switch to direct access of the inputs/outputs in PLC-Setup by setting the check-
mark. If you now step through to line 12, you will see that the set command has a direct 
effect on the output and the LED lights up. By executing the reset command in line 13, the 
output is immediately reset. The LED therefore flashes very briefly during operation. In 
Fig. 6.5 you can see two completely stepped cycles in the Logic Analyzer. In the third 
cycle, the set command from line 11 has just been executed.

6 Logical Memory Circuits
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Fig. 6.4 Monitoring variables with PLC-lite in step mode and inputs and outputs in “normal” mode

Exercise 6.4

Now run the program from Exercise 6.2 again, now in single step mode and with Logic 
Analyzer. Observe the behaviour of output x depending on the setting of the inputs 
“direct input/output” (switched on or off). Also test extensively the case where both 
inputs have the value ‘1’ at the same time. Now you can also interpret the time diagram 
of the Logic Analyzer in Fig. 6.2!

In a PLC, the values of the variables within a program cycle must be distinguished from 
the respective peripheral values, which are read from the process by means of the sensors 
or which are transferred to the process by means of the actuators. Depending on the appli-
cation, it may make sense to evaluate the peripheral values directly and immediately in the 
program or to link them indirectly to the variables in the program by means of the inter-
mediate memories. In addition to the standardized %i and %q, some PLC systems offer 
additional address ranges or special instructions for this purpose, via which the input/
output terminals can be accessed directly.

6.4 Storage of Inputs and Outputs
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Fig. 6.5 PLC-lite in step mode with Logic Analyzer and inputs and outputs in direct mode

6.5  Process Images of the Inputs and Outputs

The logic results that are assigned to the outputs do not appear immediately at the output 
terminals, but are first stored temporarily in the “process image of the outputs” (PIO or 
PIQ register, german: PAA). The PIO is only transferred to the output terminals after the 
last instruction of the instruction list. This ensures uniform, synchronous operation of all 
outputs.

If, for example, the same output is addressed several times with different values during 
the cycle, “fluttering” of the output is avoided by using the PIO as a buffer. The assignment 
to the variable belonging to the output can then be made several times within the cycle; the 
memory location in the PIO changes its value each time, but only the last assignment in 
the cycle is actually transferred to the output.

6 Logical Memory Circuits
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Therefore, in the above Example 6.3, the reset “wins”. The program is said to behave 
R-dominantly. Example 6.4 is primarily setting, S-dominant.

However, the inputs are also not read in directly in the program. Here, the values are 
read into the “process image of the inputs” (PII register, german: PAE) at the start of the 
cycle. In order to have clear conditions during a cycle, even if an input is queried several 
times during a program cycle, the input values of all input terminals are only ever read into 
the “Process image of inputs” (PII) immediately before the start of each program cycle. 
During the program run, the input values are always read from the PII. Changes made to 
the inputs in the meantime do not take effect immediately, but only in the next program 
cycle, after they have been transferred to the PII. This means that the same input can be 
queried several times in one cycle, and it always has the same value.

As a disadvantage, it should be noted that this means that the shortest, reliably recog-
nizable input pulse must have the length of the cycle duration. Shorter pulses can simply 
be “swallowed” if they do not last until the next takeover point.

It is often common to refer to the inputs and outputs as “peripherals”, as opposed to the 
variables in the instruction list and process images.

The operation of the PLC is shown in Fig. 6.6. Compared to Fig. 5.8, the process image 
registers are now also drawn in. This storage of the inputs and outputs in the PII or PIO is 
carried out by most PLCs. Depending on the automation device, different procedures are 
implemented to address the inputs or outputs either via intermediate memories or directly 
as peripheral connections. The latter can be done by allocating certain memory or address 
areas, by appropriate configuration, by using special commands, etc.

If the PLC does not provide any process images or if they cannot be used in the specific 
case, we can also take care of the storage ourselves by first applying the set/reset to flags 
and only transferring the (last) flag state to the output at the end of the cycle. With the help 
of the flags, we construct our own PIO, so to speak! Correspondingly, we can also use flags 
to construct a replacement for a PII. You will investigate this in the next task:

Exercise 6.5 (RS62)

Test the two different circuits from Fig. 6.7 with the PLC. Also compare especially the 
behaviour of the two solutions when both pushbuttons are pressed simultaneously! 
Observe the assignments to the flags by means of the logic analyzer and in step mode 
and compare them with the assignments to the outputs! Give reasons for the designa-
tions: priority resetting and priority setting. How can you recognize the respective 
property in the function block diagram or in the instruction list?

This example shows how the problems of the sequential, cyclic behavior of a PLC can 
be avoided with a direct assignment even without PII/PIO: by assigning the “intermedi-
ate results” to the flag Memo1 or Memo2. Through this indirect assignment, the last 
executed instruction “wins”; in one case the reset, in the other the set.

6.5 Process Images of the Inputs and Outputs
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Resetting Priority

Setting Priority

Fig. 6.7 Circuits for 
Exercise 6.5

Starting the PLC 
Operating system is loading

Flags, timer, counters, 
input and output images

PII: Create process input image

POI: Transfer process output image

Control program

1.Instruction

2.Instruction

3.Instruction

Last Instruction

INPUTS

MEMORY

OUTPUTS

Fig. 6.6 Input image PII and output image PIO (for Exercise 6.5)
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Exercise 6.6

Which of the two circuits in Exercise 6.1 mentioned above is primarily resetting, and 
which is primarily setting?

6.6  Level Control of a Vessel

The fill level of the vessel in Fig. 6.8 is to be kept between a minimum and a maximum 
value with the help of a PLC. A button opens valve V3. The container is emptied via valve 
V3 as long as the button remains pressed.

The control system ensures the required fill level by interrogating the sensors (limit value 
transmitters) LIS1 and LIS2. The inlet valve V1 is opened as soon as the level drops below 
the level of LIS1. The valve is only closed again when the level has reached the limit switch 
LIS2. The signals of the limit switches LIS are ‘1’ when they are immersed in liquid.

Assignment list:
LIS1 Lower limit switch  %IX0.1
LIS2 Upper limit switch  %IX0.2
V1 Inlet valve           %QX0.1
V3 Bottom valve          %QX0.3
Sw1 Discharge switch     %IX0.7

Example 6.5 (Level)

The level control can be realized with the following program part:

   LDN LIS1 (* tank empty         *)
   S V1     (* then fill (saving!) *)
   LD LIS2  (* tank full          *)
   R V1     (* then end fill       *)

 ◄

Exercise 6.7 (TANK61)

Create the logic diagram according to the instruction list given in Example 6.5 and 
program the PLC for the “level control” task. Test the control on the process engineer-

Fig. 6.8 Vessel with sensors 
for level monitoring

6.6 Level Control of a Vessel
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ing model (process “Niveau” or “level”). For emptying, you can press the manual 
pushbutton at V3. Check whether operating states can occur in which the conditions 
for setting and resetting occur simultaneously. In this case, the valve V1 could “chat-
ter”. Specify which malfunctions in the encoders can lead to impermissible operat-
ing states!

Expansion:
With two separate pushbuttons the draining is to be switched on (set) and off 

(reset) via V3.

6.7  Alarm Circuit 4

An alarm circuit is intended to alert the operating personnel of a plant to dangerous or 
special operating conditions. In most cases, manual intervention in the process sequence 
is required. The alarm is triggered by a signal emitted by the process, usually by a horn or/
and a light signal. The “acknowledgement signal”, which the plant operator emits by 
pressing a button, is intended to confirm the alarm. The acknowledgement usually switches 
off the horn and switches on or over the light signal.

In this application, one-time or short pulses must be detected. Therefore they must be 
stored. Whether this storage is programmed as priority setting or priority resetting depends 
on the respective application. If a fault is signalled, the fault signal should be retained as 
long as the fault has not ended, even if the acknowledgement button is pressed or even 
blocked in the pressed position. The fault signal must therefore be programmed with prior-
ity setting, and thus only after the reset! Accordingly, the acknowledgement signal must be 
implemented as primarily resetting.

Exercise 6.8 (ALARM61)2

Figure 6.9 shows a very simple alarm circuit. The signal S “Fault” is to switch on a horn 
H (horn), which can only be switched off again by an acknowledgement key “Quitt”. 
Create the instruction list in such a way that, if a fault exists, the horn remains in func-
tion despite the acknowledgement key being pressed. The fault signal becomes effec-
tive at bit %ix1.1, i.e. in byte 1. In the simulation program, you can open the 
“Standard I/O” process a second time and switch the byte number by clicking with the 
mouse on the small digit at the bottom.

   Assignment list:
   Receipt %IX0.6
   Fault %IX1.0

2 The drawing associated with this exercise (Fig. 6.9) is not complete. It is part of your “homework” 
to complete the drawing for this and many other exercises.

6 Logical Memory Circuits
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Acknowledgement

Fault

Fig. 6.9 Circuit for 
Exercise 6.8

Resetting Priority Setting PriorityFig. 6.10 Function blocks: 
priority resetting and priority 
setting flip-flop

Exercise 6.9 (ALARM62)

A horn is to be switched on by pushbuttons from three different switching points. An 
acknowledgement button is to switch the horn off again at each of these switching 
points. Create the circuit with PLC.

Exercise 6.10 (ALARM63)

Extension of Exercise 6.9: It shall be possible to identify by means of three lights from 
which reporting point the alarm was triggered.

6.8  Signal Memories as Function Blocks

This manual work described in the previous section for the use of flip-flop circuits is not 
necessary with a PLC according to IEC 61131-3. This is because the flip-flop types are 
included as so-called function blocks. Such a function block independently manages the 
necessary actions to achieve the priority set or reset.

The priority resetting memory element is called RS-flip-flop and the priority setting one 
is called SR-flip-flop. In the graphical representation (Fig. 6.10), the names inside the rect-
angle are at the top. The names at the inputs and the output within the rectangle are the 
names of the “formal parameters”. The function block uses these names internally. The 
inputs are on the left and the outputs on the right. The appended digit “1” indicates the 
priority. Outside the rectangle, you can write the names of the signal variables that you use 
in your program itself. These are called the “actual parameters”.

6.8 Signal Memories as Function Blocks
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6.9  Use of Function Modules

The application of function modules takes place in four steps:

1. Define module Instantiate
Make module available

2. Pass parameters Parameterize
Supply module with values
 module reads in values

3. Execute module Call
 module works

4. Read out output values Results
 module outputs values
Values can be used

You can see here the “IPO” model generally known in computer technology: in step 2 
the block reads in values (I), in step 3 these are processed (P) and in step 4 the block out-
puts the results (O).

Step 1: Instantiation
You cannot call the function blocks directly, but you have to create a so-called “instance” 
for the application. This is much easier than it reads here and goes like assigning the sym-
bolic names to the variable types in the declaration part of the program.

While you specify the data type (e.g. BOOL) for variables, you must specify the func-
tion module type to instantiate a function module. This type is the abbreviated name at the 
top of the graphical display, for example RS or SR.

The effect of instantiation is basically the same for variables and function blocks: for 
variables, an instance is created which is a memory location of type “BOOL”. After instan-
tiation, the function blocks occupy memory space for variables as well as references to 
functions for the actions that can be performed.

In the example, an instance of a priority-setting memory block is created. You can 
choose the instance name “FlipFlop” as you like:

PROGRAM Pulser
VAR
  FlipFlop: SR
END_VAR

Step 2: Parameterization
Before calling the function block in the program (see step 3), you must transfer the values 
for the inputs to the function block! This is called “parameterizing”. You can parameterize 
in two different ways in the instruction list:

6 Logical Memory Circuits
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 a) Call with loading and saving of input parameters

However, you can also save the actual parameters in the formal parameters before calling 
them. This has the advantage that the actual parameters are processed immediately when 
they are created.

In the memory commands, the instance name is specified separately with a dot before 
the formal parameter name. When the block is called later, no more parameters are passed:

LD a
ST FlipFlop.R  (* Prepare reset   *)
LD b
ST FlipFlop.S1 (* Prepare setting *)

 b) Call with the list of input parameters
This method combines steps 2 and 3. When you call it (see step 3), you pass a list with 

the actual parameters. The operating system then supplies the formal parameters with the 
current values (see step 2).

In the parenthesis after the instance name of the function block, specify the name of the 
formal parameter followed by the string “:=”. Then the actual value is specified, in this 
case the identifier of direct PLC inputs. This notation allows you to see the parameter sup-
ply “at a glance”. This notation is not possible in PLC-lite.

CAL FlipFlop (R:=a, S1:=b)

Step 3: Call in the program
You call the function block in the program using the CAL operator. This function module 
call executes it, i.e. the output signals are determined from the currently applied input 
signals and the intermediate values stored in the function module.

CAL FlipFlop (* execute function block *)

Step 4: Using the output values
You can use the LD operator to read the output values from the function block into the 
current result and then use them as required, for example, to send them to a PLC output.

LD FlipFlop.Q1
ST x

6.9 Use of Function Modules



104

Acknowledgement
Fault

Fig. 6.11 Circuit for 
Exercise 6.11

The instruction list must always contain both instructions (set and reset), because 
every flip-flop that has been set must also be reset at some point.

Fault
Ack

Fig. 6.12 Time diagram for Exercise 6.11

Exercise 6.11 (ALARM64)

Examine the alarm circuit 4 (Fig. 6.11). When does the lamp light and when does the 
siren sound? Also make sure whether the flip-flops should be programmed primarily 
setting or resetting. Initialisation with the value “0” (“I = 0”) is achieved without fur-
ther action.
Complete the time diagram from Fig. 6.12!

Use the “Boiler” process in PLC-lite. You can generate a fault using the manual but-
ton for the heating.

   Assignment list:
   Acknowledge Acknowledge key %IX0.6
   Fault Fault signal          %IX1.0
   Lamp Indicator lamp         %QX1.0
   Horn warning signal         %QX0.7

6.10  Control for Filling and Emptying a Measuring Vessel

In chemical process engineering, the individual components must be precisely dosed. 
Liquids are measured in a vessel. A control system ensures that the vessel is filled pre-
cisely. The measuring vessel is always completely filled and completely emptied; this 
ensures an exact liquid measurement. In the following tasks, you will develop a control 
system for a measuring vessel.

6 Logical Memory Circuits
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Fig. 6.13 Measuring vessel 
for Exercise 6.12

Exercise 6.12 (TANK62)

The measuring vessel (Fig. 6.13) is to be controlled in such a way that water flows in via 
solenoid valve V1 after an impulse is given via a “Fill” button until the “Full” state is sig-
nalled by limit switch LIS2. (“Empty” we program only in the next exercise!) The LIS 
give signal “1” when immersed in liquid. Create the logic diagram and instruction list. Use 
the flip-flop function blocks SR or RS for storage! (Process: “Tanks (small)”)

   Assignment list:
   Start filling tank (manual switch) %IX0.7
   LIS2 Upper limit switch           %IX0.2
   V1 Inlet valve                    %QX0.1

Exercise 6.13 (TANK63)

Extend the program from Exercise 6.12 so that when a pulse is given via the “Empty” but-
ton, the vessel is emptied via valve V3 until LIS1 signals “Empty”, i.e. LIS1 supplies a 
“0” signal.

   Assignment list (in addition to previous exercise):
   S1 Drain container (manual switch)          %IX0.6
   LIS1 Lower limit switch                     %IX0.1
   V3 Exhaust valve                            %QX0.3

Even this solution still shows weaknesses: If you press the Empty button before the 
vessel is completely full, the water runs through. Now it is possible that neither the upper 
limit value LIS2 nor the lower limit value LIS1 is reached: the system is blocked!

Exercise 6.14 (TANK64)

Emptying during exercise TANK63 should only be possible when the tank is com-
pletely full (LIS2 in liquid). Conversely, filling should also only be possible when the 
tank is completely empty (LIS1 not in liquid). Test your program thoroughly and also 
check if during the filling process it is not possible to empty and during the emptying 
process it is not possible to fill! Correct it if necessary.

6.10 Control for Filling and Emptying a Measuring Vessel
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At this point we would like to remind you of Sect. 2.7 “AND operation as data 
switch”. You can use the AND operation to switch off data paths and thus prevent inputs 
from becoming effective. You can use these gate circuits to mutually interlock signals 
in this task and thus, for example, prevent boiler draining from starting before the boiler 
is completely filled.

Investigate whether the two memory flip-flops must be priority resetting or priority 
setting. Draw the logic diagram for this task as well!

Exercise 6.15 (TANK65)

With the same arrangement as in the previous Exercise 6.14, the manual button for 
emptying should now be omitted. The vessel should be emptied automatically as soon 
as it is full.

Create the associated logic diagram, instruction list and test your program with the 
PLC and the process engineering process model.

Check how the system behaves when the “Fill” button is held down (blocked in the 
pressed position) for the entire time!

Exercise 6.16 (SWITCH61)

Try to program a “push-button switch”: alternately, pressing one push-button (not two 
push-buttons!) should switch a lamp on and off again. So: the same pushbutton is used 
both to switch on and to switch off the lamp (as is usual, for example, with bed-
side lamps).

Notice:
This task is difficult to realize with the present knowledge; in Sect. 12.1 a systematic 

solution possibility is shown by programming as “sequence control”. However, it is 
worthwhile to try this problem now (without “cheating” at the back) in order to see the 
advantages of the systematic approach all the better later.

6 Logical Memory Circuits
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7Timers with PLC

Abstract

In very many processes, an event must last for a very specific time. The controller must 
then run for a certain time like a stopwatch in response to a start signal. At the end of 
this time, further actions must be triggered by the program. With a PLC, you can set 
times from 1/100 s and less to 1 h and more.

In this chapter we will show you how to select and use the appropriate timer types 
for different tasks in the PLC.

In a PLC there are several different types of timers that can be set and started indepen-
dently of each other at different times and differ in their response to the start pulse. 

In order for the timers to operate independently of each other, they must each have their 
own memory area for the internal variables. Timers are therefore “function blocks” in the 
same way as the RS and SR flip-flop signal memories.

7.1  Timer for Pulses

First we consider only the “simple” timer function (Fig.  7.1): the timer has an output 
which carries ‘1’ signal as long as the time is running and ‘0’ signal when the time has 
expired. So this timer generates a pulse. According to the standard, its designation is 
“pulse” or TP (“timer pulse”). It is a function block; it must therefore be instantiated, 
parameterized and called in a similar way to the flip-flop already discussed.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
H.-J. Adam, M. Adam, PLC Programming in Instruction list according to IEC 
61131-3, https://doi.org/10.1007/978-3-662-65254-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-65254-1_7&domain=pdf
https://doi.org/10.1007/978-3-662-65254-1_7
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PulseFig. 7.1 Pulse function block

The timer has the input “IN” for start/stop and runs as long as this start/stop 
input is ‘1’.

The second input “PT” is used to set the time. Time values (e.g. 100  ms) must be 
applied to this input. To load the time values into the current result in the PLC program, 
use the LD command as before.1

The instruction is called: LD Value1. For Value1 you can enter t#1000 ms for a 
time of 1.0 s, for example. For more information on which time values can be used in PLC- 
lite, refer to Chap. 16 in Table 16.4.

You call the timer with its instance name. The parameterization is carried out as already 
learned with the flip-flops by the prior assignment of the current parameter values to the 
formal parameters. You can query output Q with the LD operator. To access the inputs/
outputs of the instance, first specify the instance name as usual, followed by a period and 
then the name of the input or output.

Example 7.1 (Pulses)

Program example for calling the “Timer” function block after loading and saving the 
input parameters:

   PROGRAM Pulses
   VAR
     Start AT %IX0.0: bool
     Lamp AT %QX0.0: bool
     Pulse : TP
   END_VAR
     LD Start
     ST Pulse.IN
     LD t#1000ms
     ST Pulse.PT   ◄

1 This property that the LD operator can process different data types is called “overloaded”. You then 
simply store the loaded number to the desired location using the ST command, for example to the 
Impulse.PT input of the timer. The ST operator is also overloaded and can handle multiple data 
types! See Sect. 8.1 for more information on data types.

7 Timers with PLC



109

Fig. 7.2 Time diagram for 
Exercise 7.1 (MIXER71)

     CAL Pulse
     LD Pulse.Q
     ST Lamp
   END_PROGRAM

Have you noticed that a number entered as time is preceded by the character “t#”? You 
can specify the time unit in any combination of ms, s, m, h, or d (milliseconds, seconds, 
minutes, hours, or days).

Exercise 7.1 (MIXER71)

After pressing a start button, a agitator should run for three seconds. Program the agita-
tor control and test the behaviour. Use the time diagram Fig. 7.2!

Shorten and extend the runtime! How is the timing influenced by the pushbutton? 
Check in particular the behaviour of the circuit when the pushbutton is released prema-
turely or pressed several times within the time! Describe in words the processes 
involved in this control! Note: Use the “Boiler” process! Complete the time diagram (1 
graduation mark = 1 s)!

Exercise 7.2 (MIXER72)

There should be an indicator light on while the agitator is running.

Exercise 7.3 (MIXER73)

The agitator in Exercise 7.2 should now continue to run even if the time has expired but 
the button is still pressed. The lamp should only light up as long as the timer is running. 
(Do not forget to draw the function chart).

Extend the program so that you can reset the output at any time with a second switch.

To use the pulse timer, you must first instantiate it. After supplying the parameters, 
the timer is called by the CAL operator.

7.1 Timer for Pulses
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Fig. 7.3 Measuring vessel

7.2  Filling and Emptying with Time Control

With the control to the measuring vessel in Fig. 7.3, many time-dependent tasks can occur. 
Perhaps the vessel must not be emptied immediately after filling because the liquid must 
first settle, or the valve must not be closed immediately after emptying so that, depending 
on the viscosity of the substance, the vessel can run completely empty.

Assignment list:
S1   Drain tank            %IX0.6
S2   Fill measuring vessel %IX0.7
LIS1 Lower limit switch    %IX0.1
LIS2 Upper limit switch    %IX0.2
V1   Inlet valve           %QX0.1
V3   Bottom valve          %QX0.3
Horn horn                  %QX0.7

Exercise 7.4 (TANK71)

The measuring vessel in Fig. 7.3 shall be filled. As soon as it is full, a horn signal should 
sound for one second. Only after this time has elapsed may emptying be possible.

Exercise 7.5 (TANK72)

After the measuring vessel has been emptied, valve V3 should remain open for another 
three seconds so that the boiler can run completely empty. Only after this time has 
elapsed may the filling/emptying process be possible again.

In Exercise 7.5, encoder LIS1 must be interrogated several times. It may happen that 
the container runs empty exactly between the two queries, so that LIS1 supplies different 
values in each case. In a PLC, these peripheral values are usually not transferred to the 
variables directly during the current cycle, but before the start of a new cycle (see Sect. 
6.5), so that this case cannot cause a fault.

7 Timers with PLC
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7.3  Flashing Lights and Oscillating Circuits

With two different timers a circuit can be realized, which oscillates independently. The 
first timer is started when the second one is not running (anymore); the second one is 
started when the first one has run out: the timers switch each other.

Example 7.2 (Oscillating Circuit Incorrect)

The following program example seems to do that:

   program OscillatorERROR
   var
    Pulse1:         TP
    Pulse2:         TP
    Lamp AT %QX0.0: bool
   end_var
    ld t#1000ms     (* set times *)
    st Pulse1.pt
    st Pulse2.pt
    ldn Pulse2.q    (* is Timer2 running? *)
    st Pulse1.in    (* if no Start Timer1 *)
    ldn Pulse1.q    (* is Timer1 running? *)
    st Pulse2.in    (* if no start Timer2 *)
    cal Pulse1      (* call timer *)
    cal Pulse2
    ld Pulse1.q
    st Lamp
   end_program  ◄

Exercise 7.6 (FLASH71)

Test the program Example 7.2. Find out that it does not work correctly, although the 
program seems to be correct according to the reasoning from above. To find the error 
try to find out how the timers start at the very beginning of the program and what hap-
pens when a timer runs out!

You can systematically track down the error if you “step through” the program in 
single steps (Fig. 7.4). In this case, the timers in PLC-lite are controlled so that they run 
in time with the individual steps. They do not run in real time, but are stopped as long 
as you leave the program in one step.

Check the times at which the timers are started or updated.

7.3 Flashing Lights and Oscillating Circuits
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Fig. 7.4 PLC-lite in step mode for Exercise 7.6

In Fig.  7.4 the program OscillatorERROR in PLC-lite is running in single step 
mode. Each click on “Step” executes another instruction of the instruction list. In the 
example we have arrived at line 17. The next step would execute timer 2 with 
cal pulse2.

In the “Watch expressions” window you can see that Timer Pulse1 has already been 
started and has the output value IMPULS1.Q = “1”. With the next step Timer Pulse2 
will be started and then its output IMPULS2.Q will also = “1”. So at the end of the first 
cycle both timers are running: blinking is impossible this way! You see: the timers are 
always updated when they are called with cal Timer.... Until the next call, the initial 
value is maintained. At the beginning of the first cycle none of the timers is started, so in 
the first cycle already all both timers get the start signal. The running light cannot work 
like this!

The solution to this problem is simple: the problem here is that pulse1 is polled 
before it is updated with the cal pulse1 command. You can work around this prob-
lem if you start the timers as soon as the conditions are met, i.e. You keep exactly to 
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the sequence IPO (input – processing – output) and if possible do not insert any other 
steps in between:

  ldn pulse2.q
  st Pulse1.in (* I: Enter value *)
  cal Pulse1 (* P: process in timer *)
  ldn Pulse1.q (* O: Output result *)
  st Pulse2.in
  cal Pulse2

Now, when pulse1 is requested (even in the very first cycle!), timer1 is already started, 
and the program does not start timer2 and starts up correctly immediately.

The following applies to the duty cycle k and the oscillation frequency f:

 k
T

T T
� �

�
Duty cycle

Total duration
1

1 2

 

(7.1)

 

f
T T

� �
�

1 1

1 2Total duration

 

(7.2)

Exercise 7.7 (FLASH72)

Program the PLC for a flashing light and test the program!
Determine frequency and duty cycle! Change both values, also independently of 

each other. Also add buttons to start and stop the flasher.
Extend the program to an “alternating blinker”, i.e. two lights blink alternately!

7.4  Alarm Circuit 5

Exercise 7.8 (ALARM71)

Analyze the function of the alarm circuit 5 (Fig. 7.5), complete the timing diagram 
Fig. 7.6 and program the PLC!

The timers are updated when they are called with cal Timer. The initial state 
Timer.q is retained until the next call.

7.4 Alarm Circuit 5
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Acknowledgement

Fault

Fig. 7.5 Circuit for Exercises 7.8 and 7.9

Fault
Ack

Fig. 7.6 Time diagram for 
Exercises 7.8 and 7.9

Fig. 7.7 Generator with two outputs and example of output pulses (cf. Exercise 7.7)

Exercise 7.9 (ALARM72)

Extend the alarm circuit 5 from Exercise 7.8 in such a way that the horn stops immedi-
ately after the acknowledgement is pressed, but the lamp continues to flash for another 
5 seconds and only then changes to a continuous light if the fault still persists!

7.5  Using Multiple Timers: Chasers

A chaser is a chain of lights that alternately light up one after the other. The circuit for 
controlling these lights has several outputs; as many as there are lights to be controlled. 
The circuit can also be thought of as a generator with several outputs, which emits succes-
sive pulses on the various outputs.

We want to approach this topic, which at first does not seem so difficult, in steps. First 
of all, we will build a “mini running light” consisting of only two lamps which are to flash 
alternately (Fig. 7.7).

7 Timers with PLC



115

The extension of Exercise 7.7 to the “alternating indicator” is exactly this task! We go 
back to this and in Example 7.3 we go straight to the extension to three lights.

Example 7.3 (Running Light with Three Lamps)

For the extension to three lamps, the quick solution is to simply add the third pulse3 to 
the program from Exercise 7.7:

   program Flash73ERROR
   var
    Pulse1:          TP
    Pulse2:          TP
    Pulse3:          TP
    Lamp1 AT %
    QX0.          0: BOOL
    Lamp2 AT %QX0.1: BOOL
    Lamp3 AT %QX0.2: BOOL
   end_var
    ld  t#1s
    st  Pulse1.pt
    st  Pulse2.pt
    st  Pulse3.pt

    ldn Pulse3.q     (* Test Pulse3 *)
    st  Pulse1.in
    cal Pulse1
    ldn Pulse1.q     (* Test Pulse1 *)
    st  Pulse2.in
    cal Pulse2
    ldn Pulse2.q     (* Test Pulse2 *)
    st  Pulse3.in
    cal Pulse3

    ld  Pulse1.q
    st  Lamp1
    ld  Pulse2.q
    st  Lamp2
    ld  Pulse3.q
    st  Lamp3
   end_program  ◄

But this does not work: When starting a timer you always have to check if both other tim-
ers are running!

7.5 Using Multiple Timers: Chasers
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Fig. 7.8 Generator with three 
outputs and example of 
output pulses

Fig. 7.9 Timer with switch-
 on delay

Fig. 7.10 Time diagram in the Logic Analyzer

Exercise 7.10 (FLASH73)

Now create a program for a running light with three LEDs (Fig. 7.8). Perhaps you can 
also extend it to more lights?

7.6  Timer with Switch-On Delay

We consider a further timer. In this case, the output signal Q only becomes logic ‘1’ after 
a delay time, provided that the input signal is still present. After that, the output remains 
‘1’ as long as the input signal is ‘1’ (Fig. 7.9).

This timing element passes on the input pulse only after a certain delay time has 
elapsed. On the other hand, this can also be seen as suppressing (too) short input pulses.

You can study the time sequences with the help of the Logic Analyzer. Figure 7.10 
shows an exemplary sequence: The upper line shows the input signal, the lower line the 
signal at the output.

Do you recognize that the output signal only appears after a certain time? The output 
signal becomes ‘0’ when the input also becomes ‘0’. If the input signal is too short, no 
reaction at all appears at the output.

7 Timers with PLC
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Exercise 7.11 (FLASH75)

Test the following program Example 7.4. Attention, after program start nothing should 
be visible in the standard process at first. Only when you have held the button at %Q0.0 
for at least one second does the lamp start to light up.

Observe how long the output %q0.0 remains logically ‘1’ when you release the 
key again.

Test this timer extensively to try out other possible applications in the following 
exercises. Also use the Step Mode and the Logic Analyzer!

Example 7.4 (Switch-On Delay)

   Program SwitchOn
   var
     Pulse: TON
     Start AT %IX0.0: bool
     Lamp AT %QX0.0: bool
   end_var
     ld Start
     st Pulse.IN
     ld t#1000ms
     st Pulse.PT
     cal Pulse (* Start timer *)
     ld Pulse.Q
     st Lamp
   end_program  ◄

7.7  Start/Stop Oscillator with only One Timing Element

You can already build a generator, but it has the disadvantage that it requires two timers. 
In this section we will learn about a generator circuit with only a single timer. The circuit 
works with the on-delay and a “feedback” from the output to the input.

Look again at the “on-delay” timer. Remember how it works: if a ‘1’ is present at input 
IN, then output Q becomes ‘1’ at the end of the delay time. If you apply a ‘0’ to the input 
shortly after this ‘1’ appears, the output also becomes ‘0’ again immediately.

Now we start the game over again and put a ‘1’ at the input again. What happens? 
Exactly, the output becomes ‘1’ again, but not immediately, but only after the delay time. 
If now the input becomes ‘0’ again, the ‘1’ at the output is over: there is only a (short) 
pulse at the output!

7.7 Start/Stop Oscillator with only One Timing Element
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Fig. 7.11 Circuit “Start/stop 
Oscillator with only one timing 
element” for Example 7.5 
(pulses)

We now make this the method, and always apply the output signal negated to the input. 
Then we have the circuit shown in Fig. 7.11. The fact that this circuit actually generates 
pulses all the time will be examined in more detail in a moment. But first the circuit as 
PLC-instruction list:

Example 7.5 (Pulses)

Program code “Start/Stop generator with only one timer”: This program emits regular 
pulses, but they are of very short duration.

   Program Pulses
   var
    Pulse: TON
    Lamp AT %QX0.0: bool
   end_var
    ldn Pulse.Q   (* output negates load and *)
    st Pulse.IN   (* feed back to the input *)
    ld t#500ms
    st Pulse.PT
    cal Pulse     (* Start timer *)
    ld Pulse.Q
    st Lamp
   end_program  ◄

The Example 7.5 must be analyzed in more detail. For this purpose, we will now 
describe the mode of operation step by step. Follow the program run with the aid of 
Table 7.1.

We consider the nth cycle. This is the last cycle where the output is still ‘0’. Because of 
ldn Pulse.Q there is a ‘1’ at Pulse.IN. As soon as the delay time of the timer has 
expired, the output Pulse.Q becomes ‘1’ when cal Pulse is processed. In the follow-
ing cycle, ldn Pulse.Q is used to apply this signal inverted (i.e. as ‘0’) to input Pulse.
IN. But only when the instruction cal Pulse is reached, the output of the timer will 
become ‘0’.
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Table 7.1 Transitions after the delay time has elapsed

n. Cycle n + 1. Cycle n + 2. Cycle
ldn Pulse.Q Output is ‘0’ Output is ‘1’ Output is ‘0’
st Pulse.IN Delay time running Timer is 

stopped
Delay time starts again

cal pulses Output becomes ‘1’ when 
time has elapsed

Output becomes 
‘0’

Output becomes ‘1’ when time 
has elapsed

The timer therefore had the output at ‘1’ for exactly one cycle! From the next cycle, the 
delay time starts to run again, because the Pulse.IN input now receives a ‘1’ again.

Exercise 7.12 (FLASH76)

Write the sample program 7.5 ‘Pulse’ and test it in step mode.
The pulse duration is exactly a PLC cycle duration. Therefore you will only be able 

to observe something at output %q0.0 in step mode or with the help of the logic 
analyzer.

7.8  Note on the Display of Very Short Pulses

You can make the pulses visible in any case by extending them with a pulse. You can do 
this with the example program 7.6.

Example 7.6 (ImpulseLang)

This following example program “PulseLong” emits regular pulses whose pulse dura-
tion has been extended by means of the timer LED and thus becomes perceptible:

   Program PulseLong
   var
    LED: TP       (* pulse extender *)
    Pulse: TON
    Lamp AT %QX0.0: bool
   end_var
    ldn Pulse.Q   (* output negates load and *)
    st Pulse.IN   (* feed back to the input *)
    ld t#500ms
    st Pulse.PT  ◄

7.8 Note on the Display of Very Short Pulses
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    cal Pulse     (* Start timer *)
    ld t#150ms    (* extend pulse duration *)
    st LED.PT
    ld Pulse.Q
    st LED.IN
    cal LED
    ld LED.Q      (* output of the LED timer *)
    st Lamp
   end_program

In Sect. 8.7 we will “count” the pulses with a counter and thus make them indirectly 
visible.

7 Timers with PLC
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8Counter with PLC

Abstract

Counting functions are required to implement many control tasks (e.g. quantity or piece 
count evaluations, evaluation of times, speeds or distances). The counters installed in 
the automation device can be operated as up or down counters.

In this chapter we will look at counters and data types for numbers.
Up to Chap. 6 we had used exclusively logical datatypes: the values of variables, 

in- and outputs had only the values ‘1’ (‘true’) or ‘0’ (‘false’). In the program header, 
these variables were designated with the type ‘Bool’. For the type Bool, one memory 
bit is sufficient, e.g. %IX0.0.

In Chap. 7 “Time functions” another data type was added: times. Times are not logi-
cal values, so they are not of type ‘Bool’; but we had always specified them directly as 
constants in the program, but never used them as variables. Since we didn’t use time 
variables, we didn’t have to declare them in the program header, so we didn’t need to 
know that they were designated with type ‘Time’.

8.1  Data Types

With the counters, however, we cannot avoid using another data type, namely “numbers” 
also as variables, which must be declared in the program header. We have already dealt 
with numbers in the first chapter of this book. From Table 1.2 you can see the position 
values of the dual numbers.

If 8 digits are used, then the largest number that can be represented is:

 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 2557 6 5 4 3 2 1 0� � � � � � � � � � � � � � � �  

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
H.-J. Adam, M. Adam, PLC Programming in Instruction list according to IEC 
61131-3, https://doi.org/10.1007/978-3-662-65254-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-65254-1_8&domain=pdf
https://doi.org/10.1007/978-3-662-65254-1_8
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The PLC can therefore represent the number range in 0…255 a 8 bit  =  1 Byte large 
memory. This data type is called “unsigned short integer” or “integer” according to IEC 
61131: USINT (unsigned short integer). We will explain what ‘unsigned’ means a lit-
tle later.

These byte values can be declared to %IB0 for the lowest input byte or %QB0 for the 
lowest output byte:1

var
  Number8bitIn  AT %IB0: USINT (* with data type *)
  Number8bitOut AT %QB0: USINT
end_var

 01000011 67USINT dez=  (8.1)

 10000011 131USINT dez=  (8.2)

From the pure memory values alone the PLC cannot recognize whether it is a matter of 
eight individual logical values (bit sequence) or whether the 8 bits mean a USINT number. 
Therefore, the type specification is indispensable in the declaration.

If a 16 bit  =  1 word-sized memory is used, the number range from 0 to 
(215 + 214 + … + 20) = 65535 can be represented. The data type is called UINT as abbrevia-
tion of ‘unsigned integer’: These 16 bit values are declared as %IW0 for the lowest input 
word or %QW0 for the lowest output word:

var
  Number16bitIn  AT %IW0: UINT
  Number16bitOut AT %QW0: UINT
end_var

The relationship between the memory values for bit, byte and word with the appropri-
ate numbers can be seen in Fig. 8.1. Because two bytes make a word, %IB1 and %IB0 
together denote the same inputs as %IW0.

We can not only address a single bit as before (%IXa.b or %QXa.b), but a whole 
“byte”, i.e. 8 bits at once or even a whole “word” with 16 bits! The “lowest” word has the 
number 0 and is addressed with %IW0 or %QW0. The next higher word is addressed with 
%IW1 or %QW1.

If you want to represent not only positive but also negative numbers, this is not so easy, 
because there is no memory for a ‘minus’ or ‘plus’ sign: only bits can be represented. As 
a way out, the following agreement is made: if the first digit is a ‘0’, then the following bits 

1 Note on the two-digit notation for a single bit: The dot is preceded by the byte address; the number 
following the dot indicates the position of the bit within that byte. Thus, the specification %IX1.0 
addresses bit number 0 in the input byte %IB1.
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Fig. 8.1 Relationship between 
bit, byte and word

are to be interpreted as positive numbers. But if the number starts with a ‘1’, then it should 
be a negative number. The first bit serves as a “sign”. The representable number range for 
8 bits now extends from −128 … 0 …  + 127. This data type is called a “short inte-
ger”: SINT.2

Also the signed number can be declared with %IB0 for the lowest input byte or %QB0 
for the lowest output byte:

var
  SignNumber8bitIn AT %IB0: SINT
  SignCount8bitOut AT %QB0: SINT
end_var

 01000011 67SINT dez=  (8.3)

 10000011 126SINT dez� �  (8.4)

The same bit sequence 10000011 resulted in a different decimal value as USINT type! The 
data types USINT (unsigned number) or SINT (signed number) can correspond to differ-
ent decimal values for the same bit sequence. It is therefore of utmost importance not to 
confuse the data types.

The signed 16-bit numbers are “integer numbers” of the data type INT, whose value 
range extends from −32768 … 0 …  + 32767. The values are declared with %IW0 for 
the lowest input word or %QW0 for the lowest output word:

var
  SignNumber16bitIn AT %IW0: INT 
  SignCount16bitOut AT %QW0: INT
end_var

Numbers with the length of 32 bits form the data types ‘double integer’ DINT or 
‘unsigned double integer’ UDINT or ‘double word’ DWORD. The 64 bit long data types 

2 We will not cover in this book how to calculate the negative number from the bit sequence. If you 
want to know more about this, you can look up the term “two’s complement” in e.g. Wikipedia.

8.1  Data Types
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Table 8.1 Data types in the PLC

Length (bit)
ANY_NUM
Signed Unsigned ANY_BIT

1 – – BOOL
8 SINT USINT BYTE
16 INT UINT WORD
32 DINT UDINT DWORD
64 LINT ULINT LWORD

are: ‘long integer’ LINT or ‘unsigned long integer’ ULINT and ‘long word’ LWORD (cf. 
Table 8.1).

IEC 61131 summarizes the arithmetic number types in a superordinate type ANY_NUM 
and the binary bit sequence types in ANY_BIT. Chapter 16, Table 16.5 lists the data types 
available in PLC-lite.

To load the numerical values into the current result in the PLC program, use the LD 
instruction as before, regardless of the respective data type. The instruction is called e.g. 
LD Value1. You have already become acquainted with the property that the LD operator 
can be overloaded in the previous Chap. 7 (see footnote in Sect. 7.1). In this chapter, 
USINT values are processed.

In the step mode of PLC-lite you can read the assignment of the different data types 
with the current values in the window ‘Watch Expressions’. In particular, you can track 
which data types are in the ‘Current Result’ (CR) in each case.

You then simply save the loaded number to the desired location using the ST instruc-
tion, for example to the output %QB1. The instruction is called, for example: ST Out. 
The ST operator is also overloaded and can process several data types!

Example 8.1

   Program integer
   var
     Value AT %IB0: SINT
     Out AT %QB0: SINT
   end_var
     ld Value
     st Out
   end_program 	 ◄

Exercise 8.1 (INOUT81)

You can use the program from Example 8.1 (Fig. 8.2) to try out reading in and output-
ting the numbers. Use the other data types as well!
Use both the standard I/O and the hexadecimal digit display (process “HEX Output”). 
Compare the numbers in the dual with the hexadecimal display.
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Fig. 8.2 PLC-lite in step mode for Exercise 8.1 (INOUT81)

You can load all processes at the same time. By clicking on the small digit, you can 
switch the byte number via which the process is to be “connected” to the PLC. Adjust 
the byte number accordingly in the program!

8.2  Type Conversions

Example 8.2 (Assignment of Different Data Types)

   Program integer
   var
     Value AT %IB0: USINT
     Out AT %QB0: SINT
   end_var
     ld Value 
     st Out
   end_program 	 ◄

8.2  Type Conversions
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Exercise 8.2 (INOUT82)

Test the program from Example 8.2!

In Example 8.2 a runtime error occurs because of the assignment of Value (type: 
USINT) to Out (type: SINT). This behavior did not exist in the “old” PLCs, it was only 
introduced with IEC 61131.

This is a bit annoying at first, especially since the 8.2 program would work completely 
correctly depending on the numerical values. But it turns out to be a great help in practice: 
In a certain range of numbers, SINT and USINT are the same. It could therefore be that 
the error situation does not occur at all in the test phase (by chance), but later in operation 
other numerical values occur, which then lead to a functional error. The type checking 
performed in IEC 61131 makes the PLC programs safer by detecting such programming 
errors in good time.

But there are situations conceivable, where bit sequences have to be considered as num-
bers of different types. However, the programmer knows this and can also carry it out 
consciously. The standard provides type conversion functions for this purpose. For exam-
ple USINT_TO_SINT in Example 8.3.

These type conversions do not take place automatically in a PLC according to IEC 
61131, but only after explicit programming. This clearly places the responsibility on the 
programmer to ensure that the conversion does not cause any errors in the specific case. 
We will return to this issue later in Exercise 8.4 and in Exercise 8.8.

Example 8.3 (Assignment after Conversion of the Data Type)

   Program IntegerType
   var
     Value AT %IB0: USINT
     Out AT %QB0: SINT
   end_var
     ld Value
     USINT_TO_SINT (* Data type conversion *)
     st Out
   end_program 	 ◄

Exercise 8.3 (INOUT83)

Test the program Example 8.3 for different input values, especially also for values 
>127. In single-step mode, observe the assignment of the data types to the Current 
result CR!
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CounterFig. 8.3 Up-counter CTU

8.3  Three Different Counter Types

8.3.1  Up Counter

In Fig. 8.3 the current counter value is available at output CV as a value with the number 
type INT. The identifier CV means “counter value”. How we handle this number further, 
you will learn a little later in this chapter.

The counters in the PLC respond to pulses on the CU input and change the count value 
at the start of the pulse when the input value goes from ‘0’ to ‘1’. This is called: rising edge 
triggering. The second, falling edge at the end of the pulse has no effect on the count result.

The “up-counter” increases its numerical value with each pulse (more precisely: with 
each rising edge) at the CU input, it is a “counter up”. The abbreviation in the circuit dia-
gram is therefore “CTU”.

The CTU counter has three inputs, designated by the formal parameters CU, R and 
PV. The CU input is for the pulses to be counted. CU stands for “clock up”. The R input is 
used to reset the counter value to zero. A ‘1’ at the R input immediately sets the counter 
value to zero.

Step 1: Set Preset Value
The PV input requires the number type INT. Assign a number to the formal parameter PV 
using the ST operator. This gives the counter a comparison number to control output 
Q. The abbreviation PV means “Preset Value”.

Step 2: Evaluation of the Counter
You can query the Q output to evaluate the counter. This is an output with a Boolean value. 
It is only ‘1’ if the counter reading at the CV output is greater than or equal to the preset 
value at the PV input, otherwise it is ‘0’.

Notice: When the PLC is started, the value PV is preset to zero.

8.3  Three Different Counter Types
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Step 3: Output of the Numerical Values
The numerical values of the current counter status at output CV are available as integer 
numerical values (16 bit) binary coded.

Exercise 8.4 (COUNT81)

Test the up-counter with the following sample program “CountUP”. In particular, 
explore when output Q changes its signal (process “Counter CTU”)!

For practice, try to convert the dual displayed numerical values into hexadecimal 
numbers. Use the HEX display only for checking! Refer to the digital technology 
section at the front of the manual if you have problems with the dual and HEX 
display.

With PLC-lite you can also use the step mode here. Please note that you must not 
simply “clamp” the clock input CU, but that you must apply at least one cycle alter-
nately ‘1’ and ‘0’ (i.e. a complete pulse). (see Figs. 8.4 and 8.5)

The output Q of the up-counter is ‘1’ if the current count value CV is equal to or 
greater than the preset value set at PV.

Fig. 8.4 PLC-lite for Exercise 8.4
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Fig. 8.5 PLC-lite single step 
for Exercise 8.4

If you take a closer look at the example program, you will notice that the 
explicit type conversion described in Sect. 8.2 is used here: this is necessary 
because the counter function block works internally with INT variables, i.e. 16 
bits, while only 8 bits each (data type SINT) are available for the input and output 
in the example.

Consider under which conditions this type conversion is valid! Check your con-
sideration with the simulation by provoking a runtime error there. To prevent these 
errors, you must check the value range before the type conversion and take appro-
priate action in the event of an overflow. You will learn an example of this in 
Sect. 10.5.

Example 8.4

   PROGRAM CountUP
   VAR
     Counter :   CTU
     Clock       AT %IX0.3: Bool
     Reset       AT %IX0.0: Bool
     ComparePV   AT %QX0.3: Bool
     PresetValue AT %IB1: SINT
      CountValue  AT %QB1: SINT
   END_VAR
     LD          Clock
     ST          Counter.CU
     LD          PresetValue
     SINT_TO_INT             (* type conversion! *)
     ST          Counter.PV
     LD          reset
     ST Counter.R
     CAL Counter (* Call counter *)
     LD Counter.Q
     ST ComparePV
     LD Counter.CV

8.3  Three Different Counter Types
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     INT_TO_SINT (* type conversion! *)
     ST CountValue
   END_PROGRAM 	 ◄

8.3.2  Down Counter

The down counter in Fig. 8.6 has the name: CTD (“Counter Down”). It reacts to the rising 
edges at the CD input. With each active edge at the CD input, the counter value CV 
decreases by 1.

A ‘1’ at the LD input sets the counter value CV to the preset value PV.

Attention
The preset value is always 0 when the PLC is started. The down counter thus counts into 
the range of negative numbers from the first pulse. If you want to process the counter read-
ing as an unsigned number (e.g. as USINT), you must therefore always load a (positive) 
preset value yourself, otherwise you cannot count down!

Also with the CTD counter you can make a quick evaluation of the counter. However, 
because this counter counts backwards, it is interesting to know whether a lower value has 
been reached or fallen below. This lower value cannot be changed and is always zero.

Exercise 8.5 (COUNT82)

Create a program to test the possibilities of the down counter! Pay attention again to the 
output value CV of the counter and the signal Q (process “Counter CTD”)!

8.3.3  Combined Up/Down Counter

There is also the combined counter type, which has two separately operating pulse inputs 
(Fig. 8.7). The counter value CV registers the pulses at the CU and CD inputs independently 
of each other. The meanings of the inputs and outputs are the same as those of the other 

The output Q of the down counter has the value ‘1’ if the counter reading CV is less 
than or equal to zero.

CounterFig. 8.6 Down counter CTD
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CounterFig. 8.7 Combined up/down 
counter CTUD

counter types. However, there are now two outputs which indicate whether the counter 
value CV has exceeded the preset value PV or fallen below ‘0’. They are called QU and QD 
accordingly.

Exercise 8.6 (COUNT83)

Create the sample program and test the function (process: “Counter CTUD”). At which 
clock edge does a counter pulse become effective? When do the outputs QU and QD 
become ‘1’?

Example 8.5

   PROGRAM CountUPDN
   VAR
     Counter : CTUD
     ClockDN     AT %IX0.2: Bool
     ClockUP     AT %IX0.3: Bool
     Reset       AT %IX0.0: Bool
     SetLoad     AT %IX0.1: Bool
     CompareZero AT %QX0.2: Bool
     ComparePV   AT %QX0.3: Bool
     PresetValue AT %IB1:   SINT
     CountValue  AT %QB1:   SINT
   END_VAR
     LD PresetValue
     SINT_TO_INT     (* type conversion! *)
     ST Counter.PV
     LD ClockDN
     ST Counter.CD
     LD ClockUP
     ST Counter.CU
     LD reset
     ST Counter.R
     LD SetLoad
     ST Counter.LD

8.3  Three Different Counter Types
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     CAL Counter
     LD Counter.QU
     ST ComparePV
     LD Counter.QD
     ST CompareZero
     LD Counter.CV
     INT_TO_SINT     (* type conversion! *)
     ST CountValue
   END_PROGRAM 	 ◄

8.4  Determine Numbers

When a certain number is reached, a Boolean value is to go to ‘1’ and thus trigger an 
action. The Q output of the counter can be used for this.

Exercise 8.7 (COUNT84)

In a retail store, a control light in the office should light up when one or more customers 
are in the store. Design a solution with PLC.

In addition, you can also output the total number of customers.
As a further modification, you can change the output so that lamps indicate whether 

there are no customers or more than 5 customers in the store.

8.5  Multi-Digit Decimal Counter (BCD)

We now want to implement a multi-digit decimal counter. You already learned about such 
a counter in Part I of this book. Go back to the BCD counter (Sect. 4.6.5), and to Sect. 1.12 
for the BCD code.

Exercise 8.8 (DEKADE81)

Complete the following program and add to it a three digit output. Perhaps you can also 
create a reset option to reset the decades to zero by means of a pushbutton, independent 
of the respective counter reading. To visualize the output you can use a “Hex-Output” 
for each decimal place.

Justify why type conversion with INT_TO_SINT may be used in this particular 
case without checking the value range separately.

Example 8.6

   PROGRAM Decade81
   VAR
     One : CTU
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     Ten : CTU
     Clock AT %IX0.3: Bool
     ByteOne AT %QB1: SINT
     ByteTen AT %QB2: SINT

   END_VAR
     LD 10       (* default setting *)
     ST One.PV
     ST Ten.PV
     LD Clock    (* Clock           *)
     ST One.CU

     CAL One     (* Start single digit            *)
     LD One.CV   (* Read value                    *)
     INT_TO_SINT (* type conversion OK here! WHY? *)
     ST ByteOne  (* output                        *)
     LD One.Q    (* Test overflow                  *)
     ST Ten.CU   (* input pulse higher digit      *)
     ST One.R    (* Reset position                *)
   ...
   END_PROGRAM 	 ◄

8.6  Multiple Filling and Emptying

In a chemical process, the individual components must be in a certain ratio. The dosing is 
done by the number of fillings of the measuring vessel. Of course, for different substances 
to be mixed in the reaction vessel, either several measuring vessels are needed, or different 
substances are filled into the measuring vessel through different inlet valves. In a first 
example we will use only one measuring vessel and also only one inlet valve.

Exercise 8.9 (MIXER81)

The control is to be programmed in such a way that the measuring vessel is filled via 
V1 after an impulse is given via a start button and emptied via V3 when LIS2 has 
responded. This process should run three times in succession. After the third emptying, 
it should be possible to restart the entire process. In this task, do not yet consider the 
processes in the reaction vessel!

After the assignment list, create the function block diagram and the instruction list 
for the PLC. Test the program with the model from Fig. 8.8.

   Assignment list:
   S1   Fill measuring vessel/ start control      %IX0.7
   LIS1 Lower limit switch                      %IX0.1

8.6  Multiple Filling and Emptying
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Fig. 8.8 Process model

   LIS2 Upper limit switch                      %IX0.2
   LIS3 Limit value transmitter Reaction vessel %IX0.3
   TIC  Setpoint generator temperature           %IX0.4
   V1   Inlet valve                               %QX0.1
   V3   Exhaust valve                             %QX0.3
   V2   Valve coolant                             %QX0.2
   V4   Outlet valve reaction vessel              %QX0.4
   M    Stirrer motor                              %QX0.6
   H    Heating                                    %QX0.5

8.7  Generator for Counting Pulses

We now return to the task from Sect. 7.7 (single timer start/stop generator). This generator 
produces pulses of the duration of a single cycle. These short pulses can be applied to the 
input of a counter. The counter run will tell you if the pulses are present, even without a 
logic analyzer.

Exercise 8.10 (GEN81)

Complete the program Example 7.5 “ImpulseTON” with a counter and the correspond-
ing display (Fig. 8.9).
You can also use the multilevel decade counter from Exercise 8.8 (DEKADE81).

Change the count speed. Pay close attention to how you change the values to make 
the counter run faster or slower.

8 Counter with PLC
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Fig. 8.9 Circuit for Exercise 
8.10 (GEN81)

Start/Stop Device
To set up a start/stop facility, remember the gate circuit in Sect. 2.7. Make sure that the 
“feedback” of the Pulse.Q signal to the Pulse.IN input can be interrupted.

Exercise 8.11 (GEN82)

With the switch at %i0.7 the count run shall be started and stopped (use also the pro-
cess “HEX-Output”).

Exercise 8.12 (GEN83)

Now use a combined up/down counter, connect a stopable pulse generator to each of 
the counter inputs CU and CD and observe the counter readings. Complete the circuit by 
loading a preset value. The counter should only be able to count back and forth between 
zero and this maximum value!

8.8  Time measuring

Basically, time measurement means nothing more than counting: a generator forms the 
“time standard”, which emits pulses at regular intervals. If the pulse intervals are exactly 
one second, then the counter reading indicates the number of seconds that have elapsed. 
With shorter pulses, e.g. 1/100 s, correspondingly more precise times can be realized. The 
single timer start/stop generator shown in Sect. 7.7 is ideal for timing.

Exercise 8.13 (TIME81)

Start the counter with the button at %i0.1 and determine the time until you stop the 
counter again with the button at %i0.2. With the key at %i0.6 or %i0.0 the counter 
is to be reset again.

8.8  Time measuring
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Exercise 8.14 (TIME82)

Determine the time in which the measuring vessel is filled from the lower level LIS1 
to the upper level LIS2.

8.9  Quantity Measuring

The time for filling the measuring vessel is always the same if the inflow is constant. If you 
measure the filling time, you can also interpret the meter output as the filling quantity. The 
measuring vessel content would be exactly 50 l between the two levels. You can follow the 
litre display in the following task and stop “by hand” at a certain number of litres. In Chap. 
10 we will get to know a possibility to let the inflow stop automatically when a certain 
number is reached.

Exercise 8.15 (TANK81)

Set the pulse duration so that the counter runs from 0 to 50 during filling from LIS1 to 
LIS2. Attention: if you use the HEX output, the numerical value runs up to the HEX 
number (32Hex or as binary value 00110010), which corresponds to the decimal 
value 50Dez.

A decimal display instead of hexadecimals would be desirable here. Unfortunately, 
you will have to wait a while for this: We will create a converter for HEX to BCD num-
bers later, in Sect. 11.4.

8.10  Reaction Tester

In this section, you are to solve a task in which two timers are used. At the push of a button, 
a timer starts, which determines a lead time. After its expiration, a lamp lights up and the 
pulsetimer starts to run.

Its pulses are counted until it is stopped by pressing a button. This makes it possible to 
determine the reaction time that elapses between detecting the light signal and pressing 
the button.

In this exercise, we set a specific lead time. In Sect. 10.9 we will learn to generate ran-
dom numbers.

Exercise 8.16 (REAKT81)

Program a reaction tester!

8 Counter with PLC
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9Function Blocks

Abstract

You already know some of the standard function blocks present in every PLC: RS and 
SR flip-flops, timers and counters. In this chapter, we will look at creating your own 
function blocks. You will learn how to create function blocks yourself. Function blocks 
are used as a tool for structuring PLC programs. You can program frequently used or 
complicated actions once in self-created function blocks and then use them as often as 
you like. These self-created function blocks are called and used in exactly the same way 
as the already familiar standard function blocks: namely instantiated, supplied with 
parameters, called and the results retrieved.

A function block is a program organizational unit that returns one or more values 
during execution. Several instances of a function block can be created, each with its 
own name and memory areas for the variables.

Any function block that has already been declared can be used in the declaration of 
another function block.

9.1  The Function Block (FB) Outputs Values

Example 9.1 (Flashing by Means of a Function Block)

If a ‘1’ is present at input %IX0.1, output %QX0.0 is to flash. You have already car-
ried out this task in Exercise 7.6. Now, however, this program is to be rewritten as a 
function block so that it is easier to integrate the blinking function into a program. ◄
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9.2  Creating a Function Block (FB)

• The entire code of a function block is framed by the keywords FUNCTION_BLOCK 
and END_FUNCTION_BLOCK.

• Variables that are only used within the function block (local variables) are declared 
between VAR and END_VAR. In the example, the timers, which are only required 
within the function block, must be instantiated here. They are then available as local 
values in the function block.

• Variables that are used for output from the function block to the calling program must 
be declared between VAR_OUTPUT and END_VAR. In this way, they are assigned their 
value in the function block, which you can load (“read”) in the main program. Note that 
‘Q’ cannot be used as the output name, because the identifier ‘Q’ is reserved for the 
outputs of the standard function blocks!1

• The actual program code then does not differ from a “normal” program, e.g. the follow-
ing function block Gen05 is practically identical to the program already written in 
Exercise 7.6.

• The end of the block is indicated by RET. This means that the program execution is to 
return to the calling (main) program.

Example 9.2 (Function Block for an Oscillator)
   FUNCTION_BLOCK Gen05
   VAR
     Pulse1 : TP
     Pulse2 : TP
   END_VAR
   VAR_OUTPUT
     Y : BOOL
   END_VAR
     LD t#500ms
     ST Pulse1.PT
     ST Pulse2.PT

     LDN Pulse2.Q
     ST Pulse1.IN
     CAL Pulse1

     LDN Pulse1.Q
     ST Pulse2.IN
     CAL Pulse2

1 For reserved identifiers in PLC-lite, see Sect. 16.3 (Table 16.12).

9 Function Blocks
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     LD Pulse1.Q
     ST Y
     RET
   END_FUNCTION_BLOCK 	 ◄

Exercise 9.1

Compare the function block Gen05 from Example 9.2 with the program from Exercise 
7.6 and mark the changes in the FUNCTION_BLOCK Gen05 block by underlin-
ing them.

9.3  Program Organization Units (POUs)

Example 9.3 (“Main Program”, Which Uses FB Gen05)
   PROGRAM FlashLight
   VAR
     Flash: Gen05          (* FB declaration *)
     Lamp AT %QX0.0: Bool
   END_VAR
     CAL Flash
     LD Flash.Y
     ST Lamp
   END_PROGRAM 	 ◄

The function block Gen05 must first be instantiated (like a standard function block) in 
the program header of the main program and given the instance name.

The call is made in the program body of the “main program” with the instruction cal 
Flash. After that, the output of the flasher can be queried. The necessary timers are “hid-
den” for the program in the function block Gen05.

Exercise 9.2 (FLASH92)

Create the program for the turn signal as described above.
Type the Example 9.2 and save the file under the name FB_GEN05.IL. Attention! 

Do not confuse this with saving the project!
In order to add this main program to the project, select in PLC-lite in the menu File 

the item: New file, or click the symbol for “Add new file” (Fig. 9.1). This will create a 
new sheet in the editor where you can write the main program. (Fig. 9.2) You can switch 
between the individual files using the tabs at the top of the editor window. At the end, 
save this file as well. Use the name FLASH92.IL for the main program.

9.3 Program Organization Units (POUs)
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Fig. 9.1 Creating a new file and adding it to the project

Fig. 9.2 Program files of the project of Exercise 9.3 and simulation in PLC-lite

The entire project now consists of two program files: one with the main program and 
the other with the function block.

Each of these parts is called a “program organization unit” (POU). In the PLC system, 
the project management ensures that the parts that belong together are also found together 
again. In PLC-lite, you only have to call up the “Save project” item in the File menu. The 
next time the project is loaded, all associated files are opened again and displayed in 
the editor.

9 Function Blocks
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Note the names: The POU “Main Program” has the name you entered after the keyword 
Program. This name does not have to be identical with the name of the file on the 
hard disk!

The same applies to the POU “function block”: The name of the function block is 
located after the keyword Function_Block. The function block is addressed under this 
name in the main program when it is instantiated and called. On the hard disk, the function 
module can be given a different name when it is saved.

Exercise 9.3 (GEN91)

Create a function block FB_SEC1 which, as in Exercise 8.10, generates pulses at 
1-second intervals. Test the function block in a program with an up-counter.

9.4  Including a Function Block in a Project at a Later Stage

You can try out the advantage of these function blocks right away: an already written pro-
gram is to be extended by the possibility of a blink output. Instead of having to rewrite 
everything in this program, you can simply include the already existing function block in 
the project! (Fig. 9.3).

Exercise 9.4 (ALARM91)

Load the project ALARM61.PLP. This initially contains only the file ALARM61.
IL. Save the file under the name ALARM91.IL. Add the file FB_GEN05.IL and save 
the project under the name ALARM91.PLP. After instantiation of the “Blinker” you 
can modify the program so that in addition to the alarm horn the indicator lamp flashes 
at %QX0.0.

Fig. 9.3 Including an existing file in an open project

9.4 Including a Function Block in a Project at a Later Stage
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Fig. 9.4 RS flip-flop made 
from standard components. 
Converted from the circuit in 
Sect. 3.2

9.5  The Function Block Reads in Values

In Sect. 3.2 we created a flip-flop. In the circuit of that time only the inverted flip-flop 
output is present. By conversion with the help of de Morgan’s rules we get the circuit as 
we have given it to you here in Fig. 9.4.

Exercise 9.5

Try to prove the equality of the circuit in Fig. 9.4 with the circuit you already know 
from Sect. 3.2!

We now want to create this circuit as a function block. The identifiers for the block 
name (RS or SR) and the names of the formal parameters (R, S, Q) already provided by the 
standard function block are protected keywords that must not be used in your own proj-
ects. Let us use the identifiers Set and Rset for the inputs and Y for the output. The block 
is to be called FFSR.

Now values have to be brought into the block as well as out of it, we get INPUT and 
OUTPUT variable. Here the beginner often has problems with the assignment. The values 
that the main program supplies are input values for the function block. The values that the 
block supplies are its output values, but they are input values for the calling main program!

Example 9.4
   FUNCTION_BLOCK FFSR
   VAR_INPUT
     Set  : BOOL
     Rset : BOOL
   END_VAR
   VAR_OUTPUT
     Y :    BOOL
   END_VAR

So that no confusion arises here:
Input and output are always to be seen from the module!

9 Function Blocks
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Fig. 9.5 Circuit for 
Exercise 9.7

    LD   Set
    ORN( Rset 
    AND  Y 
    )
    ST   Y
    RET
   END_FUNCTION_BLOCK	 ◄

Exercise 9.6 (FFFB92)

Open a new project and write the function block FFSR according to Example 9.4. Save 
the function block under the name FB_FFSR.IL. Then write a main program that 
uses this block. The inputs %IX0.0 and %IX0.1 are to be reset and set inputs respec-
tively, the output %QX0.0 is to display the result. Explain why the function block is 
primarily setting.

Exercise 9.7 (FFFB93)

Write a function block FFRS (file name: FB_FFRS.IL) for a priority resetting flip- 
flop. The standard specifies the circuit shown in Fig. 9.5 for this type.

9.6  Function Block: FB_Tank

Example 9.5 (Tank Function Block)

A function block FB_Tank is programmed according to Exercise 6.15 and provided as 
a function block with the input parameters: LIS1, LIS2 and Start.

Start = ‘1’ triggers a filling process of the boiler. The function block controls the 
filling or empty valve via the output parameters V1 and V3.

   FUNCTION_BLOCK Tank
   VAR_INPUT
     LIS1 : BOOL
     LIS2 : BOOL

9.6 Function Block: FB_Tank
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     Start: BOOL
   END_VAR
   VAR_OUTPUT
    V1 :    BOOL
    V3 :    BOOL
   END_VAR
   VAR
    V1FF :  RS
    V3FF :  RS
   END_VAR
    LD   Start
    ANDN V3
    ANDN LIS2
    ST   V1FF.S
    LD   LIS2
    ST   V1FF.R1
    ST   V3FF.S
    LDN  LIS1
    ST   V3FF.R1
    cal  V1FF
    cal  V3FF
    ld   V3FF.Q1
    st   V3
    ld   V1FF.Q1
    st   V1
   END_FUNCTION_BLOCK 	 ◄

Example 9.6 (OneTank Main Program)

The main program consists almost only of parameter calls. You don’t notice anymore 
that flip-flops are required!

   program OneTank
   var
   (* instantiation *)
     Tank0: Tank
     LIS01  AT %IX0.1: bool
     LIS02  AT %IX0.2: bool
     V01    AT %QX0.1: bool
     V03    AT %QX0.3: bool
     Start  AT %IX0.7: bool
   end_var
   (* Linking the input terminals *)

9 Function Blocks
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      ld Start
      st Tank0.Start
      ld LIS01
      st Tank0.LIS1
      ld LIS02
      st Tank0.LIS2
   (* function module call *)
      cal Tank0
   (* Linking the output terminals *)
      ld Tank0.V1
      st V01
      ld Tank0.V3
      st V03
   end_program 	 ◄

Exercise 9.8 (TANK91)

Write down the function block (Example 9.5) and the main program (Example 9.6). 
Save the function block under the name FB_Tank.il! The program file should be 
named TANK91.IL and the project TANK91.PLP. Test the project with the process 
“Tanks (small)”!

So far, I don’t think you see much of an advantage. The story becomes interesting when 
several boilers are used. Then the program no longer needs to be rewritten for each indi-
vidual boiler, but it is sufficient to instantiate the function block for each real boiler and 
link the input and output terminals with the formal parameters.

Exercise 9.9 (TANK92)

Complete the program from Exercise 9.8 so that all three boilers are filled at the push 
of a button, and test it with the “Tanks (big)” process! You can find the beginning in 
Example 9.7.

Example 9.7 (Extension of Exercise 9.8 to a System with Three Tanks)

Note that the function block FB_Tank does not have to be changed here compared to 
Exercise 9.8! You do not need to retype it or save it again.

program ThreeTanks
var
(* instantiation tank0 *)
   Tank0: Tank
   LIS01 AT %IX0.1: bool
   LIS02 AT %IX0.2: bool

9.6 Function Block: FB_Tank
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   V01   AT %QX0.1: bool
   V03 AT %QX0.3: bool
(* instantiation Tank1 *)
   Tank1: Tank
   LIS11 AT %IX1.1: bool
   LIS12 AT %IX1.2: bool
   V11   AT %QX1.1: bool
   V13   AT %QX1.3: bool
(* instantiation Tank2 *)
   Tank2: Tank
   LIS21 AT %IX2.1: bool
   LIS22 AT %IX2.2: bool
   V21   AT %QX2.1: bool
   V23   AT %QX2.3: bool
   ...	 ◄

9 Function Blocks
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10Jumps, Loops and Repetitions

Abstract

For execution control, conditional and unconditional jump instructions are available in 
the “Instruction List” (IL) language. With their help, repetition structures (“loops”) and 
selections can be realized. This allows us to program complex sequences that either 
repeat the same statements several times in succession or whose sequence depends on 
input values or other conditions and can take different “paths” in the statement list.

The language “Structured Text” (abbreviated ST) goes even further, but is not the 
subject of this course. It is a high-level programming language for PLCs according to 
IEC 61131-3, which allows to solve repetition statements or branches with the constructs 
FOR ... TO ... DO, WHILE ... DO, REPEAT, CASE, IF ... THEN ... 
ELSE very elegantly as known from other high-level languages.

10.1  The Running Dot

We have already dealt with running lights in Sect. 7.5. Unlike there, only one timer is to 
be used here, which is operated as a pulse generator and supplies switching pulses. With 
each pulse a new numerical value must be applied to the output.

How can the light spot continue to run? Go back to Sect. 1.6 and assume that the LED 
at the rightmost byte %qb1 is lit. The value of this byte in binary notation is: 0000 0001. 
In the decimal system, this is the value 1. After the switching pulse, the light spot should 
have moved one position to the left; the binary value is then: 0000 0010, which corre-
sponds to 2 in the decimal system. One step further, the value 0000 0100 (=4decimal) must 
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be output. Now the calculation is clear? Exactly, the numerical value must be doubled 
when moving on. The operation mul 2 multiplies the current result by 2.

yes
no

Fig. 10.1 Flow chart 
“conditional jump”: the jump 
is executed if Q = 0 is, 
otherwise the instruction in the 
box (mul 2) is executed

The operation mul 2 multiplies the current result by 2. In the case of the binary 
number, this means the shift by one place to the left.

10.2  Conditional Jump

We use the pulse generator from Sect. 7.7.
The switching on of the chaser must take place exactly at certain points in time. We 

therefore need the condition for switching on at these time intervals. The PLC always runs 
through cyclically; this means that the multiply instruction may only be executed when the 
“correct” time has come. Then the mul instruction must be executed in the cycle, other-
wise not. This can be achieved by skipping the mul 2 instruction during the “wrong” times.

Our pulse oscillator supplies a ‘1’ signal for exactly one cycle after the delay time. Thus 
the switching condition can be formulated relatively simply (Fig. 10.1): as long as the 
oscillator delivers a ‘0’, the command mul 2 must be skipped. Exactly in the cycle in 
which the pulse oscillator delivers the ‘1’, the new numerical value must be generated, i.e. 
the mul 2 command must be executed.

The mechanism for this skipping consists of two parts:

• firstly, an evaluation of the condition whether to jump or not,
• and secondly the target, i.e. the point in the program at which machining is to be con-

tinued in the event of a jump.

10 Jumps, Loops and Repetitions
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yesno

Fig. 10.2 Structure chart for 
the conditional jump as in 
Example 10.1

jmpc Mark Check and jump to label if necessary (without colon)
Mark: Definition of jump target (with colon)

10.3  Set Initial Value

And another problem:
At the start of the program all values are set to 0 and thus all lights are off. Multiplying 

is of no use then, because zero times two always remains zero: all lamps remain off; no 
light point would run. How do you get the initial value 1, i.e. the value with which the 
multiplication should start?

At the beginning the first light point is to be set. The instruction s %qx1.0 must be 
executed “at the beginning” to set the lowest bit in the byte %qb1. But it is wrong to 

Example 10.1 (Conditional Jump)

   ldn Pulse.Q
   jmpc OK (* Test of the jump condition *)
   ... (* part to be skipped         *)
   OK: (* Jump target mark:          *) 	 ◄

The jump condition is tested with the command jmpc. The name comes from the 
English terms jump and conditional. The jump is executed if the current result is ‘1’.

The jump destination is specified by a mark or label. The label is inserted before the 
command at which processing is to be continued in the case of a jump. You can freely 
choose the name of the label. Please note: the colon is only at the destination point after 
the label.

The sequence of this decision can be represented graphically in different ways: either 
with the flowchart as in Fig. 10.1 or with the structure chart (Fig. 10.2). In the flowchart, 
the jumps can be easily traced, whereas the structure chart allows a more compact repre-
sentation. For the “instruction list” language used in this book, the program representation 
in the flowchart is usually better suited than the structure chart.

10.3 Set Initial Value
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execute this in every cycle, rather this instruction must be executed only once directly after 
the program start.

This can be achieved by the following part of the program:

ldn Cycle1
s   Bit0
s   Cycle1

The flag Cycle1 is ‘0’ at the start of the program. Therefore, the following two instruc-
tions are executed: both flag Cycle1 and bit Bit0 are set. The Cycle1 flag is already 
set in the second cycle, the two following instructions are no longer executed and bit Bit0 
is not set.

With this procedure you achieve the conditional execution of set instructions with the 
condition: very first cycle run.

10.4  Running Light

Exercise 10.1 (FLASH101)

Create a chaser program. Use the suggested variables:

   var
     Pulse: TON
     Cycle1: BOOL
     Bit0  AT %QX1.0: BOOL
     Bit7  AT %QX1.7: BOOL
     Byte1 AT %QB1: USINT
   end_var

In the suggested sample solution, make sure that you set the “Standard I/O” process 
to byte 1.

In this solution, note the allocation of a BOOL type to a portion of the memory of the 
USINT number Byte1.

10.5  Comparisons

Restart in the Same Running Direction
When the running light from Exercise 10.1 has run through, the program terminates and 
you get a runtime error: when the last LED is lit is the content of the USINT variable. 1000 
0000bin=128dez. This multiplied by 2 gives 256, which is outside the value range of USINT.

10 Jumps, Loops and Repetitions
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If the running light is to start again and again from the beginning, the top bit must be 
deleted in the case %QB1 = 128 and the bottom bit must be set again. You can test whether 
the current result has the value 128 with the EQ operator.

LD Byte1
EQ 128
R  Bit7
S  Bit0

To effectively prevent the overflow, this code must be executed before the mul 2 
instruction.

However, you will now notice that the running light does not start with the first but with 
the second LED when restarting. Of course: after setting bit0, mul 2 is executed imme-
diately, so the value is immediately set to 2dez.

How can you correct this now? – One possibility is to reset the flag Cycle1 instead of 
setting Bit0. This will restart the program exactly as it did immediately after power-up. 
The instruction mul 2 will still be executed when restarting, but then it has no effect any 
more, because after deleting Bit7 the numerical value in Byte1 is 0.

Exercise 10.2 (FLASH102)

Make sure that the running light starts again from the beginning when the last LED 
lights up!

Change of Direction
It can now also be desired that the running light changes its direction when reaching the 
end and runs back again. We will do this in the next section, but here is a preliminary exer-
cise: The running light should run in the other direction, starting with the top bit %qx1.7. 
Shifting the bit to the right halves the value of the byte, so you have to divide the output 
value by two.

Exercise 10.3 (FLASH103)

Create a right-hand running light!

EQ number tests whether the current result is equal to the number.

The div <number > operator divides the current result by the number.

10.5 Comparisons
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Anticlockwise
yes no

Fig. 10.3 Structure diagram 
for clockwise/anticlockwise 
rotation

10.6  Unconditional Jump

It is possible that a certain part of the program must be skipped in any case. You can’t 
imagine that? You think, then you could omit this part right away? In the following we will 
show you exactly this case with an example!

Example 10.2 (Right-Left Running Light)

A running light can run both to the right and to the left. In one case you have to divide 
by 2, in the other case multiply by 2. 	 ◄

In the graphical representation (Fig. 10.3), there are two parallel paths. In one of them 
you have to multiply, in the other one you have to divide. This looks very simple in the 
graphic of the structure chart, but is a real problem in the “Instruction list” language: 
Unfortunately, it is not possible to create parallel branches in the instruction list, but 
everything must always be programmed nicely one after the other. You must implement 
such a “parallel structure” in the statement list by means of jumps.

If the running light is currently running left, the program does not execute the condi-
tional jump to the label right: but continues working from the label left: and exe-
cutes the multiplication part (Fig. 10.4). Subsequently, the division part (right run) must be 
skipped. Exactly here an unconditional jump to the label OK: is required.

Exercise 10.4 (FLASH104)

Create a back and forth running light! The running direction should be adjustable with 
the switch at input %ix1.0. Alternatively, you can also try to switch the direction at 
the edges in each case.

The following is an excerpt from the program. We have only given the commands 
for the decision. You should program the commands for switching between clockwise 
and counterclockwise rotation yourself.

In the statement list language, the jmp <mark> operator performs an uncondi-
tional jump.

10 Jumps, Loops and Repetitions
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conditional
jump

unconditional
jump

Fig. 10.4 Flow diagram for 
right-left run: The “lower” part 
must always be skipped if the 
“upper” part has been 
carried out!

  ldn GoLeft
  jmpc Right (* conditional jump *)
Left:        (* Left rotation    *)
  ...
  jmp OK     (* unconditional jump*)
Right:       (* Right rotation    *)
  ...
OK:

Exercise 10.5

The PLC provides various “rotating commands” with which the realization of running 
lights is also possible. Table 16.9 lists the functions included in PLC-lite. Try to pro-
gram running lights with SHL (Shift left by N bit, fill right with zero), SHR (Shift right 
by N bit, fill left with zero), ROL (Rotate left by N bit, “in a circle”) or ROR (Rotate 
right by N bit, “in a circle”)!

10.6 Unconditional Jump
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Fig. 10.5 Large “Tanks (big)” measurement model

10.7  Filling Several Measuring Vessels

Figure 10.5 shows the “Large measurement model”. The three boilers are to be filled one 
after the other. The valves V1, V1.1 and V2.1 must be actuated one after the other for 
this purpose. This is practically the same as a running light. In contrast to the tasks dis-
cussed earlier with the running light, however, it is now not a time cycle that determines 
the switching on, but a signal from the process: Reaching the upper filling levels LIS2, 
LIS1.2 or LIS2.2 in each case gives the start signal for filling the next boiler.

Exercise 10.6 (TANK102)

After the start signal with the ‘I’ key, the three boilers are to be filled and emptied again 
individually one after the other. Use the function block FB_Tank.IL for the tank fill-
ings. Test the program with the large measuring model “Tanks (big)”.

10.8  Multiple Selection

Example 10.3 (Control of a 7-Segment Display)

In a 7-segment display, seven LEDs are arranged so that the combination of several 
light bars represents a digit in readable form. (see Fig. 10.6) The LEDs light up when a 
‘1’ is present at the relevant terminal of the module. The block has 8 connections: seven 
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Fig. 10.6 Designations of the 
segments of a 
7- segment display

Fig. 10.7 Display of HEX digits on a 7-segment display

for the segments and one for the dot. The segments are labeled clockwise. In the 
“7- segment” process model from PLC-lite, segments a to h are connected to outputs 
%q0.0 to %q0.7, i.e. a to %q0.0, b to %q0.1, and so on. ◄

Figure 10.7 shows the displays of the digits 0 to 9 and the letters A to F. You can use the 
assignments in Fig. 10.6 to determine the segments to be controlled for each digit.

Exercise 10.7 (7SEG101)

Create a table that shows which segments have to be controlled for the different 
characters.

Check the table with PLC-lite! (Process: “7-Segment”).

Exercise 10.8 (7SEG102)

By means of the input switches at %ib1, digits are set which are displayed on the 
7-segment display. Complete the following part-program! The flow chart is partially 
given in Fig. 10.8 and the structure diagram in Fig. 10.9.

   Program SevenSegment
   Var
     InByte AT %IB1: Byte
     OutByte AT %QB0: Byte
   end_var
     ld InByte

10.8 Multiple Selection



156

Load Pattern0

Load Pattern1

Load PatternA

Fig. 10.8 Flow chart for Exercise 10.8

Load input parameter InByte

End: Specify patternx as return value OutByte

InByte

Zero:
load
pattern0

One:
load
pattern1

Two:
load
pattern2

load 
PatternA

Fig. 10.9 Structure chart for Exercise 10.8
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     eq 0
     jmpc Zero
     ld InByte
     eq 1
     jmpc One
     ld InByte
     eq 2
     jmpc Two
   ...
     jmp End
   Zero:
     ld 2#001111
     jmp End
   One:
     ld 2#00000110
     jmp End
   Two:
   ...
   End:
     st OutByte
   end_program

10.9  Random Numbers

Here we present a function block that outputs “random numbers” between 1 and 6. The 
pulses of a fast running generator are added up in a counter. When 5 (= sixth number, 
because the counter counts from zero) is exceeded, the counter is reset. The pulses are 
counted as long as the input value run is ‘1’. This input value can be read by a push but-
ton. If the cycle frequency of the PLC is sufficiently high, the generator works so fast that 
the counter runs several times from 0 to 5 when a button is pressed (however briefly). The 
counter value is thus quasi “random”.

In the following Example 10.4 the generator is programmed tricky: to get the fastest 
possible frequency, no timer is used, but the boolean variable toggle is “flipped” in 
every cycle by first loading it negated with ldn toggle and immediately storing it again 
with st toggle. This value is written to the counter input. Thus the counter receives 
a clock pulse with two cycles.

When the counter has reached the count value 6, it must be reset, because the counter 
should count impulses from 0...5 = 6. After setting the R-input the counter must be 
called again with cal Counter, so that it is set to zero immediately.

10.9 Random Numbers
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Example 10.4 (Function Block for Generating Random Numbers)

   Function_Block Chance16
   var_input
     run: BOOL
   end_var
   var_output
     Value: SINT
   end_var
   var
     Counter: CTU
     toggle: BOOL
   end_var
     ldn run
     jmpc output
   (* Generate counting pulses *)
     ldn toggle
     st toggle
     st Counter.CU
     cal Counter
   (* Check final value *)
     ld Counter.CV
     gt 5
     st Counter.R
     cal Counter
   issue:
     ld Counter.CV
     int_to_sint
     add 1
     st Value
   end_function_block 	 ◄

Exercise 10.9 (DICE101)

Draw a flow chart for the function block Chance16. Write down the function block, 
save it as file FB_CHANC.IL. Create a main program which outputs the random num-
bers on the HEX display at %qb1 after pressing the key at %i0.0.

Note: In PLC-lite you can set the cycle time of the PLC in the configuration window.
Later, in Sect. 11.3, we will also display the numbers in “dice form”!

10 Jumps, Loops and Repetitions
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11Functions

Abstract

You are probably familiar with functions from mathematics. A function is ‘passed’ a 
number, which it processes and ‘returns’ the result (again, a number!). For example, the 
function ‘square’ returns the square of every number entered. In this chapter you will 
learn how functions are applied in the PLC according to IEC 61131-3.

We will show you how to use functions in IEC 61131-3 using the example of a con-
verter for digits to the 7-segment display (seven-segment decoder).

11.1  Use of Functions

A function returns an output value for an input value. The input value can be a number, e.g. 
a byte. The output value can be a different representation of this number, for example in 
HEX code or as a control code for a numeric display (7-segment code). It is advantageous 
to use the digit to 7-segment display converter from Sect. 10.3 as a function.

We will explain the use of a function using the example of converting a byte value into 
a 7-segment code.

The function is given the name ByteTo7Seg, the associated main program is to be 
called SevenSegment. In the main program the function is called with its name 
(ByteTo7Seg).

The calling main program reads the input value into the Current Result CR with the ld 
operator and then calls the function. It receives the return value of the function again in the 
Current Result CR. It writes this current result (which has changed in the meantime) into 
the output byte %qb0 using the st operator.
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Example 11.1 (Main Program with Function Call)

   Program SevenSegment
   var
    InByte AT %IB1: Byte
    OutByte AT %QB0: Byte
   end_var
    ld InByte
    ByteTo7Seg (* call of the function *)
    st OutByte
   end_program 	 ◄

Now how do you have to create the function itself? Have another look at Exercise 10.8. 
Compare the program given there with the function IntTo7Seg printed in the following 
Example 11.2!

Example 11.2 (Function for Controlling the 7-Segment Display)

   Function ByteTo7Seg: Byte (* type return value *)
   var_input
    Digit: Byte (* Declaration input value *)
   end_var
    ld Digit (* input value *)
   eq 0
    jmpc Zero
    ld Digit
   eq 1
    jmpc One
    ...
   Zero:
    ld 2#001111
    jmp End
   One:
    ld 2#00000110
    jmp End
    ...
   End:
    st ByteTo7Seg (* return value *)
   ret (* end *)
   end_function 	 ◄

Can you see in Example 11.2 how the function ByteTo7Seg takes over a numerical 
value on the variable Digit? This is transferred to the current result with the ld Digit 

11 Functions



161

and processed further. Afterwards, the result is allocated to the memory for the return 
value, which is addressed under the function name (st ByteTo7Seg). The return is 
indicated by RET. In the line Function... the data type of the return value is specified 
after the colon.

Exercise 11.1

Describe in your own words how a function is structured, how it reads the input value 
from the main program and how it returns the result to the main program!

With the variable between var_input and end_var the function receives its 
input value. The RET instruction marks the end of the function.

The function must be placed in its own file (like a function block). You must also have 
a “main program” block in your project that calls the function.

Exercise 11.2 (7SEG111)

Create the main program and the function for the 7-segment coding as in Example 
11.2! The program is to convert the input byte of %ib1 into a seven-segment form. The 
7-segment display is to be connected to %qb0.

11.2  Difference Between Function and Function Block

Unfortunately, in IEC 61131 the names “function” and “function block” are easy to con-
fuse. Therefore, pay close attention to the difference:

The Function Block contains a “memory”. The output of a function block can take on 
different values despite the same input signals. This may sound a bit puzzling, as if 
random values were output by a function block. No, the output values of a function 
block are not random! Let’s consider a counter. The pulse to be counted always pro-
duces the same input signal; but depending on the previous process, the function 
block outputs a different numerical value. This means that the function block must 
have a memory in which it stores the previous numerical value in order to be able to 
determine the next number after a counting pulse.

11.2 Difference Between Function and Function Block
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For the Function the output value always depends directly on the input value. In Example 
11.2, the same output value is always output for the same specific input value, regardless 
of which value the function processed in a previous call. The function does not need a 
memory, because the output value can always be determined from the current input value.

Unlike function blocks, functions do not have to be instantiated separately before use. 
The PLC operating system automatically occupies the memory required for the variables 
of the function only while it is called. After returning from the function, this memory area 
is immediately released again. This means that all variable contents changed within the 
function are no longer available the next time the function is called, and this results in the 
typical behavior described above for a function: it “forgets” old values.

11.3  Dice Game

In Exercise 10.9 you programmed a dice game with a random number generator. Now we 
want to extend it with a nice dice display. The function for converting the number values 
into the display works practically the same as converting a number into the 7-segment code!

Exercise 11.3 (DICE111)

Extend Exercise 10.9 by adding the IntToDice function to display the dice results in 
the Dice process. Save the function under the name F_Dice.IL.

11.4  BCD Converter

In Exercise 8.15 the boiler content should be displayed in litres. At that time we had the 
“blemish” that the display was in hexadecimal numbers. We now want to change this and 
design a function that converts the hexadecimal notation into a BCD number notation.

Exercise 11.4 (BCD111)

Create a function to convert hexadecimal numbers into BCD numbers! Test the func-
tion in a suitable program, for example the one from Exercise 8.15.

The function block contains a “memory”.
The output value of a function always depends directly on the input value.
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11.5  Parameter Transfer to the Function

The functions used so far formed an output value from exactly one input value. The input 
value was brought into the function via the current result and the output value was returned 
to the calling program via the current result.

How does this work if the function requires more than a single input value?
For example, the function is to determine the larger of two numbers and return it. In the 

PLC it works like this: The first number is loaded into the Current Result CR with the LD 
operator, the second number is written as a parameter after the function name.

Perhaps you notice the similarity of a function to an operator (e.g. add)? In both cases, 
one operand is loaded into the Current Result, while the second is passed after the function 
name. The calculation result is then available in the Current result!

Example 11.3 (Function Call with Passing of Two Parameters)

   MaxTest program
    ...
    ld Digit1 (* Load parameter1 in CR *)
    Greatest Digit2 (* call and load param. 2 *)
    st OutDigit (* Accept return value *)
   end_program  	 ◄

The function itself now has two input parameters in the list between var_input and 
end_var.

• The value listed first is taken from the Current Result (CR),
• the second is the parameter after the function name.

Example 11.4 (Variable Declaration with Two Input Parameters)

   Function Greatest: int
   var_input
    D1: int (* Parameter1 from CR *)
    D2: int (* load parameter2 *)

A function returns exactly one data element after the call. In the instruction list lan-
guage, the return value is in the Current Result (CR). It differs little in use from an 
operator.

11.5 Parameter Transfer to the Function
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   end_var
    ...
    ret (* return value in CR *)
   end_function 	 ◄

Exercise 11.5 (MAX111)

Write the function Greatest, which returns the larger of the two numerical values 
passed in, and test it with a suitable program example.

Exercise 11.6 (TIME111)

In response to a start signal, two stopwatches are to run which can be stopped indepen-
dently of each other using separate buttons. The respective time1 or time2 is to be 
displayed when the button is pressed. The shorter time is to be displayed in byte2, the 
longer time in byte3.

If more than two values have to be passed, the parameter list can be extended after the 
function name. Separate the individual parameter values with commas. For example, a 
function is to check whether a number lies between two limit values. This so-called dis-
criminator function is passed the number to be tested and the two limit values, i.e. a total 
of three values.

Exercise 11.7 (DISKR111)

Write a function Between, which you save as F_Diskr.IL. It is to compare two 
values passed as parameters with the value standing in the current result. The function 
should return ‘true’ if the current result is between the two parameter values.

Example 11.5 (Main Program with the Function Call and the Parameter List)

   program discriminator
   var
    CompValue AT %ib0: sint
    MinValue AT %ib1: sint
    MaxValue AT %ib2: sint
    OKLamp AT %qx0.0: bool
   end_var
    ...
    ld Compvalue
    Between MinValue, MaxValue
    st OKLamp
    ...
   end_program 	 ◄
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12Sequence Controls

Abstract

In the preceding chapters you have learned the language and structural elements for 
programming the PLC using instruction lists. This gives you the tool to control any type 
of technical process with PLC.

A certain type of process can be subdivided into a sequence of individual steps that 
always run one after the other. For these, the programming logic of “sequential con-
trols” is suitable, which in these cases results in a clear program structure. The IEC 
61131-3 standard defines a special language for programming sequential controls: the 
“sequential function chart” (SFC), but this is not the subject of this course. We apply 
the programming logic behind sequential programs in the Instruction List language. 
Although this is not really practical, it has the advantage that the basic procedure can 
be easily understood.

12.1  Basic Principle of Sequence Control Using the Example 
of Pushbuttons

The sequence controls are so important in practice that the standard provides a special 
language for them. In this chapter, however, you will not implement the sequence control 
with this special language, but in the “instruction list” language. This is somewhat more 
“cumbersome”, but you will gain an insight into the working method and the basic ideas 
behind this programming language.

Most controls can be broken down into successive individual steps. This breakdown 
provides a better overview. The transition from one single step to the next depends on 
conditions; this can be a reached filling level or a certain temperature, but also the expiry 
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of a time period. The programs gain considerably in clarity through the realization as 
sequence control and can therefore be programmed and later maintained much more easily.

You can also imagine the principle of sequence control like this: The process sequence 
is shown on a display panel. Each important process step is described on a backlit field, 
e.g.: (1) filling, (2) stirring, (3) heating and stirring, (4) emptying. Then everyone can see 
the instantaneous working status of the plant at a glance. You see: Only one step is active 
at a time, i.e. only one field is illuminated. In each step certain actions are executed. The 
sequence of the steps is predefined and certain conditions must be fulfilled for the change 
to the next step. The sequence control by means of PLC supports these properties of the 
process.

Before we bombard you with a lot of theory, let’s first consider a simple example to 
explore the principle of sequential control. The following problem, which at first seems 
quite simple, is very suitable:

Example 12.1 (Push Button)

A lamp should light up as long as a button is pressed.

This task can of course be accomplished with the simple program:

Program PushButton0
VAR
   Button AT %IX0.0: Bool
   Lamp AT %QX0.0: Bool
END_VAR
   LD Button
   ST Lamp
end_program 	 ◄

But we don’t want to make it quite that easy for ourselves, after all there are much more 
complex tasks to master! That is why we will proceed systematically step by step:

The entire process can be broken down into two steps, which are shown graphically in 
Fig. 12.1:

• Step 1: The button is not pressed
 – The lamp is off
 – Waiting for keystroke

• Step 2: The button is pressed
 – The lamp is on
 – Wait until key is released

If you look at these steps more closely, you can identify an action at each step (the lamp is 
off/on) and a transition condition that must be met for the system to move to the next step 
(wait for key press/wait for release).

12 Sequence Controls
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Waiting for keystroke

Wait until button is released

The key is pressed The lamp is on

The key is not pressed The lamp is off

Fig. 12.1 Sequence of the 
Example 12.1 push button

12.2  The Sequence Chain

Example 12.1.(pushbutton) is now transferred to the PLC language:
The control is divided into steps and forms a chain of steps. In this sequence, only one 

step is active at any time. In order to reach the next step, a condition (transition) must be 
fulfilled. The controller executes different actions for each step.

This looks just like a running light! Instead of an illuminated light, we have an active 
process step. However, the transition from one state to the next is not given by a time 
clock, but rather as in the problem already discussed in Sect. 10.7: One action after the 
other runs and the transitions (transition conditions) are provided by the process.

Example 12.2 (Pushbutton as Sequence Chain)

The control for Example 12.1 can be realized with the following program part: To pro-
gram the sequence chain, we can provide a flag (“step flag” Step1 and Step2) for 
each step. A set flag then means: Step active. The transition is made by resetting the 
corresponding flag as soon as the transition conditions are fulfilled.

  Program PushButton1
  VAR
    Step1: bool
    Step2: bool
    Button AT %IX0.0: Bool
    Lamp AT %QX0.0: Bool
  END_VAR
  (* Sequence of events: *)
  (* STEP 1 *)
    LD Step1 (* Step 1 active? *)

12.2 The Sequence Chain
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    AND Button (* button pressed? *)
    R Step1 (* Exit step 1 *)
    S Step2 (* Activate step 2 *)
  (* STEP 2 *)
    LD Step2 (* Step 2 active? *)
    ANDN Button (* button released? *)
    R Step2 (* Exit step 2 *)
    S Step1 (* Activate step 1 *)
  (* ACTION in step 2 *)
    LD Step2 (* Step 2 active? *)
    ST Lamp (* Switch on lamp *)
  end_program 	 ◄

Note that in program Example 12.2, a separation has been intentionally made between 
the flow of the sequence chain and the action to be executed in step 2. In the example, an 
action is only required in step 2, but in general one or more actions will have to be exe-
cuted in each step. The actions to be executed in each step are only programmed at the end, 
after the sequence chain. This increases the clarity of the program.

12.3  Set Initial State

Take another critical look at program Example 12.2! Concentrate completely on the begin-
ning of the program, at the very beginning, when the program is started. Answer the ques-
tion: What are the values of the two flags? Exactly: Both are ‘0’; the control cannot start at 
all! The control can only start if you make sure that exactly one flag is set at the beginning. 
You have already learned how to do this in Sect. 10.3. We still have to make sure that 
exactly one flag is set at the start of the program.

ldn Cycle1
s Cycle1
s Step1

In sequence control, exactly one flag must always be set in the sequence chain.
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Exercise 12.1 (PUSH121)

Write down the sample program PushButton1 and test it. The test is positive when 
the lamp is lit as long as the button is pressed at %IX0.0 and goes out when the button 
is released.

We can understand very well if you are not yet convinced of the sense of the sequence 
controls, the program became quite considerably longer than the program Example 12.1 
PushButton0 with the same functionality! But just a little more patience, and you will 
clearly see the advantages. If you have tried Exercises 6.16 and 7.12, you will soon appre-
ciate the advantages of the new design method!

12.4  Sequence Step and Step-On Condition

A sequence control has a positively controlled sequence. The smallest functional unit of 
such a control is a sequence step (or step for short). The entire task is therefore broken 
down into individual “processing blocks” that can be separated from one another. The 
sequence of the steps results in the entire program, the so-called sequence chain.

A process element is assigned to each step. In the example, this is a flag that generates 
the signals required to influence the process, i.e. the actions, via links.

If the step-on condition is fulfilled, the next step is activated by setting the next flag and 
resetting the current one. The step-on conditions can come from outside (keystroke by the 
operating personnel), from the process itself (“from inside”: e.g. temperature reached, fill 
level reached, time elapsed, etc.) or also from a timer.

Because a flag is assigned to each step, the current state of the control can be seen at 
any time from the flag set.

Care must be taken when setting up the step-on conditions! If, for example, the condi-
tion cannot occur in the process, then the controller can no longer continue to run, it 
“blocks”. A frequent cause for the blocking of a control is also forgotten step-on condi-
tions. However, compared to a “normal” control, errors can usually be detected quickly in 
a sequence control.

12.5  Graphical Representation of Sequence Controls

In practice, sequence programming offers several advantages:

• Simple project planning and programming
• clear program structure

12.5 Graphical Representation of Sequence Controls
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Initial step

Starting conditions

Step enabling condition

Step 1 Action 1

Action 2

Instructions

Instructions
Step 2

Fig. 12.2 Graphical represen-
tation of the sequence chain

• easy change of the function sequence
• in the event of faults, easy recognition of the cause of the fault
• adjustable different operating modes.

Practically all technical processes can be broken down into sub-steps that must be exe-
cuted in a specific sequence one after the other. This is referred to as a “sequence”. Each 
step in this sequence can be precisely designated (e.g. numbered). The steps are divided in 
such a way that only one specific step is ever being processed, i.e. is “active”.

Actually, the process control for technical processes is not that unusual: When you 
describe a technical process, you “automatically” break down the entire process into a 
sequence of individual processes.

The IEC 61131-3 standard also describes the sequential function chart (SFC) and its 
graphical representation. It is based on the DIN EN 60848 standard, which regulates the 
representation of sequential controls. This is known by the acronym “GRAFCET” 
(GRAphe Fonctionnel de Commande Etapes/Transitions) and has replaced DIN 40719 
Part 6 since 2005. An example is shown in Fig. 12.2.

• The step symbols are displayed as rectangles. The step is described either by a number 
or a symbolic name.

• The commands to be executed when this step is active are displayed as action blocks in 
a separate field to the right of the step symbol.

• At the top of the action block, the action name is entered in the middle.
• In the lower part of the action block, the commands to be executed with this step are 

specified.
• The entries in the left part above are the action destination marks (designator). We will 

discuss them a little further on.
• In the upper right, optional part of the action block, a “display” variable of data type 

BOOL can be specified to indicate the completion, timeout or error conditions, etc. of 
this action block.
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12.6  Pressure Switch

The following task already shows the advantage of the systematic approach to program-
ming in the sequential function chart. Perhaps you have dealt with Exercise 6.16?

With the so-called “bedside lamp switch”, the light is supposed to change every time 
the switch (actually: pushbutton) is pressed: The first press switches the light on, which is 
switched off again with the next press on this very pushbutton. This can no longer be done 
with an “ordinary” pushbutton! And without a systematic approach, this task becomes a 
fiddly job!

We can distinguish four different states (steps):

 1. Button released, light off, wait for pressure
 2. Button pressed, light on, wait for release
 3. Button released, light also on, waiting for pressure
 4. Button pressed again, light off, wait for release

The light must be on in both step 2 and step 3. So in these two steps the action “light on” 
has to be executed, in the other two nothing.

Exercise 12.2 (PUSH122)

A pushbutton is to switch on a lamp; by pressing this pushbutton again, the lamp is to 
be switched off again.

Lamp on

Lamp on

Fig. 12.3 Sequence chain to 
the pressure switch 
(Exercise 12.2)

12.6 Pressure Switch



172

The control for this task can be realized with the program Example 12.3 and the cor-
responding sequence Fig. 12.3.

Example 12.3 (Pressure Switch)

  Program PushButton2
  VAR
    Step1: bool
    Step2: bool
    Step3: bool
    Step4: bool
    Cycle1: bool
    Button AT %IX0.0: bool
    Lamp AT %QX0.0: bool
  END_VAR
    ldn Cycle1
    s Cycle1
    s Step1
  (* Sequence of events: *)
  (* STEP 1 *)
    LD Step1 (* Step 1 active? *)
    AND button (* button pressed? *)
    R Step1 (* Exit step 1 *)
    S Step2 (* Activate step 2 *)
  (* STEP 2 *)
    LD Step2 (* Step 2 active? *)
    ANDN button (* button released? *)
    R Step2 (* Exit step 2 *)
    S Step3 (* Activate step 3 *)
  (* STEP 3 *)
    LD Step3 (* Step 3 active? *)
    AND button (* button pressed? *)
    R Step3 (* Exit step 3 *)
    S Step4 (* Activate step 4 *)
  (* STEP 4 *)
    LD Step4 (* Step 4 active? *)
    ANDN button (* button released? *)
    R Step4 (* Exit step 4 *)
    S Step1 (* Activate step 1 *)
  (* ACTIONS *)
    LD Step2 (* Step 2 active? *)
    ST Lamp (* Switch on lamp *)
    LD Step3 (* Step 3 active? *)

12 Sequence Controls



173

    ST Lamp (* Switch on lamp *)
  end_program 	 ◄

12.7  Control of Actions

With the momentary-action switch, the lamp must be activated in steps two and three, i.e. 
the same action must be performed in two steps. In the above example, the two flags for 
the respective steps are linked with OR.

alternatively for the ACTIONS:
(* ACTION *)
  LD Step2 (* Step 2 active? *)
  OR Step3 (* Step 3 active? *)
   ST Lamp (* Switch on lamp *)

The same objective can be achieved by setting the lamp to “ON” in step two and reset-
ting the lamp to “OFF” in step four. The action thus extends over several steps. In such 
cases, the PLC must remember the action over several steps, i.e. save it. For saving, the 
output can be set or reset directly. This is shown graphically in the sequence in Fig. 12.4.

In the step in which the action begins, the output is set; in the step in which the action 
is to end, the output is reset.

Some commands should only be active during the current step (“non-storing”), others 
must have an effect over several steps (“storing”), still others must last for a very specific 
time before the step counter is allowed to continue.

When issuing commands, the non-storing (N) commands are the easiest to handle. The 
execution of the command stops as soon as the step is exited.

Table 12.1 lists some of the actions defined in the IEC 61131 standard. The type of 
action is indicated by the action designation mark (designator) in the left part of the com-
mand field.

Exercise 12.3 (PUSH123)

Change the program for the pushbutton switch (Example 12.3) so that in step 2 the 
lamp is switched ON and in step 4 the lamp is switched OFF (Fig. 12.4). You can extend 
the program so that the respective step flag is displayed on LEDs 1.1 to 1.4.

If an action is to be effective over several steps, it must be executed “saving”.

12.7 Control of Actions
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Lamp on

Lamp off
reset

Fig. 12.4 Sequence of events 
for Exercise 12.3 with setting/
resetting (storing) of the states

Designator Action, explanation
None or N Non-storing
R Overriding reset
S Set stored
L Time limited
D Time delayed

Table 12.1 Action designator

Exercise 12.4 (TANK121)

Create the sequence control for the system in Fig. 12.5 according to the flow diagram! 
Enter the instruction list printed in Example 12.4 into the PLC, test the program and 
describe verbally (in words) the process sequence.

Example 12.4 (Tank)

Proposed programme for Exercise 12.4:

  Proposed programme for Exercise 12.4:
  Program Tank
  VAR
    S01: BOOL
    S02: BOOL

12 Sequence Controls
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Startbutton

Filling

Emptying

Fig. 12.5 System and flow diagram (sequencechart) for Exercise 12.4

    S03: BOOL
    Cycle1: BOOL
    V1 AT %qx0.1: BOOL
    V3 AT %qx0.3: BOOL
    LIS1 AT %ix0.1: BOOL
    LIS2 AT %ix0.2: BOOL
    Start AT %ix0.7: BOOL
  END_VAR
    LDN Cycle1
    S Cycle1
    S S03
  (* STEP 1 *) (*Drain chain *)
    LD S01 (*step 1 active? *)
    AND LIS2 (*full? *)
    R S01 (*exit step 1 *)
    S S02 (*activate step 2*)
  (* STEP 2 *)
    LD S02 (*step 2 active? *)
    ANDN LIS1 (*empty? *)
    R S02 (*exit step 2 *)
    S S03 (*activate step 3*)
  (* STOP *)
    LD S03 (*stop step? *)
    AND Start (*Start button? *)
    R S03 (*exit step 3 *)

12.7 Control of Actions
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Startbutton

Startbutton

Supplying

Fill

Heating

Stirring

Emptying

V1 open

V3 open

V2 open

V4 open

V2 close

Heating on
Stirrer on

Stirrer off

Fig. 12.6 Sequence and apparatus for Exercise 12.6

    S S01 (*activate step 1*)
  (* ACTION.)
    LD S01 (*step 1 active? *)
    ST V1 (*open V1 *)
    LD S02 (*step 2 active? *)
    ST V3 (*open V3 *)
  end_program 	 ◄

Exercise 12.5 (TANK122)

Improve the program from solution 12.4 so that the boiler is only filled and emptied 
once, even though the start button is pressed continuously. Before a new filling process, 
the start button must first be released!
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Stirring

Emptying Stirrer off
open

Stirring

Fig. 12.7 For Exercise 12.7: 
Changing the sequence by time 
elements

Exercise 12.6 (MIXER121)

The plant set-up shown in Fig. 12.6 is to be operated with a sequence control. Compare 
the functional diagram with the verbal description. Implement the control system with 
the aid of PLCs!

Verbal Description:

 1. Water is supplied to a measuring vessel via valve V1 until the limit switch LIS2 
signals “measuring vessel full”.

 2. Via valve V3, the water supplied is drained into the stirring piston until LIS1 
signals “measuring vessel empty”.

 3. The flask content is heated up until the contact thermometer TIS indicates “Set 
temperature reached”. When heating up, the stirrer must be switched on and the 
cooling water valve V2 opened.

 4. Once the set temperature has been reached, the flask contents continue to be stirred.
 5. If stirring has been “long enough”, the stirrer should be switched off by pressing 

the start button again and valve V4 opened to empty the piston.
 6. After emptying the piston (LIS3 = 0), the cooling water is closed and the entire 

process can be repeated by pressing the “Start” button.

12.8  Programming the Timing Elements in a Sequence 
Control System

In the previous control, in step 4, the post-stirring time should be automatically terminated 
after 10 s without the need to press the button again. Figure 12.7 shows the change in the 
flow chart for steps four and five.

Exercise 12.7 (MIXER122)

Complete the control with the timer for the transition from step 4 to step 5! Why does 
it make sense to use the timer with switch-on delay (TON)?

Note the ease with which flow control can be extended: see Exercise 13.28 for a task 
description for an extended process.

12.8 Programming the Timing Elements in a Sequence Control System
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12.9  In Conclusion

Congratulations and our appreciation for your perseverance and achievement! You have 
now reached the end of this introductory course. We hope you have enjoyed the work and 
can use the suggestions for your own tasks.

In order to support you in your further programming exercises, we have compiled some 
repetition tasks in the following chapter. In the last chapter, essential features of “PLC- 
lite” are compiled, so that you can clarify further questions yourself with the help of this 
reference.

We wish you continued success!
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13Repeat Tasks

Abstract

This chapter contains further practice and revision exercises with which you can con-
solidate the knowledge you have acquired.

13.1  Review Tasks for Chap. 2

Exercise 13.1 (LOGIC27)

Give the functional equation for all four switching elements Fig. 13.1!
Complete the function table Fig. 13.2!

To which of the links drawn above does the given function table belong? (Fig. 13.3).

Exercise 13.2 (LOGIC28)

Which of the switching elements Fig. 13.4 can replace the combination of the two logic 
elements Fig. 13.3?

Exercise 13.3 (LOGIC29)

A lamp L is to be controlled so that it lights up whenever only switch S1 or only switch 
S2 is operated. Figure 13.5 shows the function table to be implemented.

Which of the functional elements Figs. 13.6, 13.7, 13.8, or 13.9 satisfies these condi-
tions? What are the functional equations in each case?

Exercise 13.4 (LOGIC30)

What is the functional equation for the circuit Fig. 13.10? Try to make the function 
table. Since we have 5 variables here, the table must have 32 rows. However, you can 

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
H.-J. Adam, M. Adam, PLC Programming in Instruction list according to IEC 
61131-3, https://doi.org/10.1007/978-3-662-65254-1_13
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Fig. 13.1 Switching elements 
for Exercise 13.1

Fig. 13.2 Function table for 
Exercise 13.1

Fig. 13.3 Switching element for 
Exercise 13.2

Fig. 13.4 Switching elements 
for Exercise 13.2

Fig. 13.5 Function table for 
Exercise 13.3

Fig. 13.6 Function 1 for 
Exercise 13.3

Fig. 13.7 Function 2 for 
Exercise 13.3

Fig. 13.8 Function 3 for 
Exercise 13.3

Fig. 13.9 Function 4 for 
Exercise 13.3
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Fig. 13.10 Circuit for 
Exercise 13.4

reduce the number of rows to be written if you “trick” a little: for a = 0, namely, x 
always = 0!

Exercise 13.5 (FLASH23)

A lamp should be able to be switched either to off, continuous light or flashing light. 
Provide one switch as on/off switch and a second switch for switching between con-
tinuous and flashing light. To solve this task, you should refer to Sects. 2.7: AND opera-
tion as data switch and 2.9: OR operation as data switch.

13.2  Review Tasks for Chap. 5

Exercise 13.6 (TEMP51)

The temperature of a chemical process is monitored with a bimetallic thermometer. If 
the temperature falls below a certain value, the signal transmitter reports this with the 
signal value ‘0’ and an alarm horn is actuated.

Exercise 13.7 (LOGIC51)

In an injection moulding machine, the plunger only moves down when the mould pres-
sure is built up, the protective grid is down and the pressing temperature has been 
reached. The logical behavior of the individual sensors:

  Form closed:  log. 1 (proximity switch)
  Forming pressure reached: log. 0 (strain gauge)
  Protection grid bottom:  log. 1 (limit switch)
  Pressing temperature reached: log. 0 (thermocouple)
  Punch extends: log. 1 (valve)

Exercise 13.8 (LOGIC52)

The water supply to a turbine is blocked if a certain speed is exceeded or the bearing 
temperature is too high or the cooling circuit is no longer in operation. All sensors give 
log. 1 when the operating condition is no longer fulfilled.

13.2 Review Tasks for Chap. 5
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Exercise 13.9 (BOILER53b)

Exercise 5.8 can be extended even further:

 (a) The stirrer should run when the switch Sw1 has switched on the system with the 
heating and the temperature of 50° C has not yet been reached. When the tempera-
ture of 50° C is reached, the heating should switch off.

 (b) The stirrer should run when the system is switched on with switch Sw1 and the 
temperature is exceeded 40° C . The stirrer should also continue to run when the 
temperature reaches 50° C.

Exercise 13.10 (BOILER55)

In a reaction vessel, a safety valve must be opened when the pressure is too high or the 
temperature is too high or the inlet valve is opened or a certain concentration of the 
chemical reaction is reached.

   Pressure too high:     log. 0
   Temperature too high:  log. 0
   Valve open:            log. 1
   Concentration reached: log. 1

13.3  Review Tasks for Chap. 6

Exercise 13.11 (TANK66)

Extension of Exercise 6.15:
The “Fill, Empty” cycle should be repeated after pressing a start button until a sec-

ond “Stop” button stops the process again at the end of the cycle, i.e. when the container 
has run empty!

Exercise 13.12 (COOLER61)

One unit is cooled by two fans. The function is monitored by one air flow monitor each. 
If both fans fail while the unit is switched on, an acoustic signal should be emitted.

This message is to be output until the fault message is acknowledged via an acknowl-
edgement button.

However, the acknowledgement should only become effective when at least one of 
the two fans is back in operation or the unit is no longer switched on.

Determine the assignment tables, the control for the signaling device and implement 
the control with PLC.
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Exercise 13.13 (SORTER61)

Long and short workpieces are transported in any order on a conveyor belt. The belt 
switch is to be controlled in such a way that the arriving parts are selected according to 
their length and fed to separate delivery stations. The length of the parts is determined 
by a scanning device (roller lever valves). If a long part passes through the scanning 
device, all three roller lever valves are briefly actuated. In the case of a short part, on the 
other hand, only the middle valve is actuated.

Create assignment tables, the function block diagram, the instruction list and imple-
ment and test the circuit with PLC.

13.4  Review of Chap. 7

Exercise 13.14 (FLASH74)

Program a generator to output a pulse train at output %q0.0 that gives a total duration 
T1 + T2 = 5s and a duty cycle k = 3/5.

What is the frequency of the generator?
The generator should be able to be switched on by pushbuttons with input %i0.7 

and switched off with input %i0.6.
Change the duty cycle to k = 0.25 at the same frequency!

13.5  Review Exercises for Chap. 8

Exercise 13.15 (COUNT85)

In a floppy disk factory, 10 floppy disks are to be packed in each carton. After filling a 
carton, it must be replaced by an empty one, which is then filled again. Design a control 
system! Create the assignment list and the logic diagram, program and test your solution.

Exercise 13.16 (COUNT85b)

Modify the program from Exercise 13.15 so that you can set the number of floppy disks 
on the digital input unit.

Exercise 13.17 (MIXER82)

The program of Exercise 8.9 is to be extended to control the complete plant set-up 
shown in Fig. 13.11 consisting of measuring and reaction vessel.

• After filling the measuring vessel twice, the stirrer and the heater should be 
switched on.

• The stirrer should run for 5 s.
• The heating is switched off as soon as TIC reports the setpoint. At this moment the 

substance is also drained via V4.

13.5 Review Exercises for Chap. 8
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Fig. 13.11 Process model

• The process may only be restarted after all the liquid has been drained via V4.

Realize the control with the help of PLC and test the circuit!

13.6  Review of Chap. 9

Exercise 13.18 (FFFB94)

Now use the function blocks FFSR and FFRS (FB_FFSR.IL and FB_FFRS.IL) 
from both Exercises 9.6 and 9.7 together in one project. Both flip-flops are to be reset 
and set with the same inputs (%IX0.0 and %IX0.1). Give the outputs to the lamps at 
QX0.0 and QX0.1. Test the operation of the two flip-flop types in comparison.

Exercise 13.19 (GEN92)

Another example results from Exercise 8.12. There, two generators should be used. 
Simplify the project by using a function block for the pulses. Name this block ‘FB_
PULS.IL’.

13.7  Review of Chap. 10

Exercise 13.20 (TANK101)

Do you remember the tasks with the quantity measurement from Sect. 8.9? The CV 
output of the counter constantly indicates the fill level. By comparing the CV output 
with a setpoint, a very specific quantity can be filled into the vessel.
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Supplement Exercise 8.15 with an input option for the setpoint. As soon as the actual 
value has reached the setpoint, the filling should stop.

Exercise 13.21 (7SEG103)

In Exercise 10.8 the digits to be displayed were set by means of the input switches at 
%ib1. Now provide a counter whose count is displayed on the 7-segment display.

Exercise 13.22 (FLASH105)

Let a running light run back and forth over two bytes! To do this, load the standard I/O 
process twice and set the correct byte number for each.

Exercise 13.23 (DICE102)

Play with two dice: Create a program in which two random generators are started and 
the numbers are output on the outputs %qb0 and %qb1.

Exercise 13.24 (DICE103)

The two random numbers from Exercise 13.23 above are displayed in two different 
bytes. However, for both bytes only one digit each, i.e. half a byte, namely the “lower” 
half, is used. Now both half bytes are to be displayed in a single byte.

How can we combine the two random numbers so that both numbers are displayed 
next to each other in a single byte? Exactly, first the second number must be shifted four 
places to the left and then the values must be “superimposed”.

As already applied to the running light, shifting by one place to the left is done by 
multiplying by two. But with which number must be multiplied for a shift by four 
places? In the case of the running light, we multiplied by 2 for a shift of one place. 
Therefore, for four places, we must multiply by two four times in succession, that is, 
multiply by 2∗2∗2∗2 = 24 = 16. (Not by 2∗4 = 8).

To finally connect the two values, we only need to OR them. To understand this last 
step, you should take another look at the “data switch with the OR element” from Sect. 
2.9. In the PLC, the OR operator acts on the entire byte and links the bits in the same 
positions individually.

13.7 Review of Chap. 10
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   ld Dice0.Value
   mul 16
   or Dice1.Value
   st OutByte1

13.8  Review of Chap. 11

Exercise 13.25 (7SEG112)

Modify Exercise 11.2 so that now the upper four input bits are evaluated and appear in 
the 7-segment display at %qb1.

In Exercise 11.2, only the lower four bits of the input byte are evaluated. We can also 
use the upper four bits. The easiest way to do this is to shift all bits four positions to the 
right. Yes exactly, similar to the running light and the cube (Exercise 11.2), but the other 
direction: each bit shifted to the right must be divided by two, i.e. by 2∗2∗2∗2 = 24 = 16.

   ld InByte
   div 16
   ByteTo7Seg
   st OutByte1

Exercise 13.26 (7SEG113)

Combine the two seven-segment displays for the low and high parts of the input byte at 
%ib1 so that the byte is displayed in two digits.

Now we want to combine the two tasks, and display the input byte of %ib1 in two 
digits, each in a seven-segment-digit. So that the two parts: the four low bits and the 
four high bits do not interfere with each other, the other half byte must be “hidden”, i.e. 
the corresponding digits must be replaced with ‘0’. To do this, you can use the “data 
switch with the AND element” from Sect. 2.7.

The PLC applies the AND operation to each bit of a byte individually. The “four-bit” 
data switch can therefore be implemented as shown in the following program excerpt.

   ld InByte
   and 2#00001111
   ByteTo7Seg
   st OutByte0
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Exercise 13.27 (DICE112)

Create a program for two dice, each using the ByteToDice function to display the 
dice results in the Dice process. Compare here also with Exercises 13.23 and 13.24.

13.9  Review of Chap. 12

Exercise 13.28 (MIXER123)

Extension of flow control Exercise 12.7:
The process of Exercise 12.7 is to be extended. In the following task, only the 

advancing conditions for steps 3 and 5 must be changed in such a way that they only 
take place with the execution or expiry of the respective preceding instruction 1. These 
delay times in turn start depending on LIS1 or LIS3. The necessary changes are 
marked in bold in the following text and in the flow chart Fig. 13.12.

 1. Water is supplied to a measuring vessel via valve V1 until the limit switch LIS2 
signals “measuring vessel full”.

 2. Via valve V3 the supplied water is drained into the agitator piston.
  b. If LIS1 signals “measuring vessel empty”, valve V3 should remain open for 

another 2 s so that the measuring vessel can run empty.
 3. The flask contents are heated up until the contact thermometer TIC indicates “Set 

temperature reached”. When heating up, the stirrer must be switched on and the 
cooling water valve V2 opened.

 4. After reaching the set temperature, the contents of the flask are stirred for 10 s.
 5. When the post-stirring time is finished, the stirrer is switched off and valve V4 is 

opened to empty the piston.

Supplying 1
V3 open

Afterrun

Heating on
Stirrer on

V3 open

V2 open

Supplying 2

Heating

Fig. 13.12 Extension of an 
existing sequence control. See 
Exercise 13.28

13.9 Review of Chap. 12
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Kiln

Conveyor belt

Clockwise:

Fig. 13.13 Technology diagram for Exercise 13.30

  b. After emptying the piston (LIS3  =  0), valve V4 should remain open for 
another 2 seconds to allow the piston to run empty.

 6. Then the cooling water is closed and the whole process can be repeated by pressing 
the “Start” button.

• The transition from step 2 to step 3 (or from step 5 to step 6) only takes place when 
the signal LIS1 (or LIS3) has gone AND the time of 2 seconds has elapsed.

Carry out the program extension for steps 2b and 5b! Note that valves V2 and V4 
must now be open during several steps.

Exercise 13.29 (MIXER124)

Finally, program a sequence control for the large chemistry process. Let the three mea-
suring vessels fill and empty one after the other. Then the mixture is to be stirred and 
heated and the waste gas cooled. When the set temperature is reached, the substance is 
drained and the process can be restarted by pressing the start button. Do not forget the 
run-on times!

13.10  Mixed Tasks

Exercise 13.30 (EX01)

Kiln control (Fig. 13.13):
When the impulse is given with the operating switch S1, the conveyor belt starts 

running clockwise. When switch S3 is reached, the heating is switched on. As soon as 
the limit switch S4 makes contact, the belt stops. The dwell time in the oven is 10 s. 
After that the part is moved back again until reaching the limit switch S2. The system 
should be stopped at any time by the stop switch. In this case, the heating is to be 
switched off immediately and the part is to be moved back to the starting position.
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Conveyor belt 2

Lifting table with
conveyor belt 1

Roller conveyor

Fig. 13.14 Technology diagram for Exercise 13.31 (EX02) and for Exercise 13.32

Exercise 13.31 (EX02)

Pallet lifting table 1 (Fig. 13.14).
The lifting table is to be used to transfer pallets to a higher loading platform.

 1. When the pushbutton S1 is actuated, the conveyor belt 1 of the lift table is switched 
on. The pallet rolls over the inclined roller conveyor onto the running conveyor belt 
1. By actuating the limit switch S3, the conveyor belt 1 is switched off and the 
motor for the upward movement of the lifting table is switched on. If the table actu-
ates the limit switch S5, the motor is switched off and both conveyor belts 1 and 2 
must run until the limit switch S6 is actuated by the pallet. Now the lift table moves 
downwards again until S4 signals that the lower limit position has been reached.

 2. It must be possible to switch off the system at any time using the pushbutton switch 
S0. After actuation of S1 the started sequence of the plant shall be continued.

 3. As long as the system does not assume the initial position (lifting table down, con-
veyor belt switched off), the H1 signal lamp should light up.

Exercise 13.32 (EX03)

Pallet lift table 2 (Fig. 13.14).
In addition to the previous task 13.31, empty pallets are now to be transported back. 

If an empty pallet is on the conveyor belt 2 (limit switch S6 actuated) and the pushbut-
ton switch S2 is pressed, the upward movement of the lift table is switched on. In the 
upper end position (S5), both conveyor belts are switched on in counterclockwise rota-
tion. If the limit switch S3 is actuated by the pallet and then released again, the con-
veyor belts are switched off and the table moves downwards to the lower position.

13.10 Mixed Tasks
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It must be possible to stop the system at any time by pressing pushbutton S0. After 
subsequent actuation of the pushbutton S1 or S2, the pallet transport is to be continued 
in the desired direction.

Exercise 13.33 (EX04)

A transport section, e.g. a conveyor belt, is to be monitored to ensure that no more than 
12 and no fewer than 8 parts are present within the section between photoelectric sensor 
LS1 and photoelectric sensor LS2. If 12 parts are within this range, the stopper shall 
stop the parts supply. If there are less than 8 parts, a warning signal (lamp or horn) shall 
be given. After the switch-off signal, the belt should run empty for some time before 
it stops.

Notice:
Each inflowing part passing the light barrier LS1 shall increase the counter value by 

1, and each outflowing part passing the light barrier LS2 shall decrease 1.
Solve this task with PLC! To do this, create the assignment lists, the function block 

diagram, the instruction list and test your program.

Exercise 13.34 (EX05)

In a floppy disk factory, 10 floppy disks are to be packed in each box. Design a control 
system! Create the allocation list, the logic diagram, program and test your solution.

Exercise 13.35 (EX06)

In a retail store, a control light in the office should light up when one or more customers 
are in the store. Design a solution with PLC.

Exercise 13.36 (EX07)

Program a generator that outputs a pulse train at output A0.1 that gives a total duration 
T1 + T2 = 5s and a duty cycle k = 3/5. What is the frequency of the generator?

Exercise 13.37 (EX08)

A single-track railway line is divided into four track sections. In order to prevent the 
simultaneous use of track sections by several trains, a signal is set up at the beginning 
of each section. In an interlocking, an alarm device shall be triggered when signal 1 and 
2 indicate free running or 2 and 3 indicate free running or 3 and 4 indicate free running.

Determine the complete function table for this control.
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ClockFig. 13.15 For Exercise 13.42

Exercise 13.38 (EX09)

An airlock has three doors. Two immediately following doors must always be closed. 
The individual doors are opened via door openers. Limit switches report whether the 
doors are closed. Set up the function table and implement the control with PLC.

Exercise 13.39 (EX10a)

In a large detached house with decentralised hot water supply, five instantaneous water 
heaters are installed. Due to the high connected load of the instantaneous water heaters, 
only a maximum of two may be in operation at the same time. The operating status of 
the instantaneous water heaters is indicated by load shedding relays.

Design an interlock circuit 2 out of 5 by setting up an assignment table and a func-
tion table. Then determine the disjunctive normal form from the function table. 
Implement the circuit with PLC!

Exercise 13.40 (EX10b)

As Exercise 13.39, but four heaters have a connected load of 1 kW each, and the fifth 
has a load of 2 kW. Implement a circuit which gives an alarm when the power of 2 kW 
is exceeded!

Exercise 13.41 (EX11)

The note-taking light in a demonstration room may only be lit when the main light is 
switched off and the on switch is operated.

Exercise 13.42 (EX12)

 1. Implement a blinker on output A 1.1, which is stopped with a 0 signal on input E 
1.1. (Fig. 13.15).

 2. Realize a blinker on output A 1.2, which is stopped with a 1 signal on input E 1.2.

Exercise 13.43 (EX13)

 1. Write a PLC program that queries the keys at %ix0.7, %ix0.6 and %ix0.0. 
The key at %ix0.0 fills the boiler as long as it is pressed, the key at %ix0.6 emp-
ties the boiler. The key at %ix0.7 is used for heating.

13.10 Mixed Tasks
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 2. With the key at %ix0.7, the heating is now to be switched on permanently by 
briefly pressing the key, but only if the boiler is not empty! The key at %ix0.6 
switches the heating off.

 3. Extension of the task: after reaching T = 50° C the heating should switch off until 
the boiler has cooled down to 40° C. Now the heating must switch on again and so 
on until the process is completely ended by means of the key at %ix0.6.

Exercise 13.44 (EX14)

 1. Write a PLC program that queries the button at %ix0.7. As long as the button is 
pressed, the control lamp at %qx0.0 should light up, the heating in the boiler pro-
cess should heat up and the boiler should be filled via the filling valve.

 2. Now each keystroke is to be counted. The number is to be output on the byte %qb3.
 3. A second counter is now to indicate how often the temperature of has been reached 

40° C or exceeded. This number is to be output on a byte at %qb2.
 4. When the temperature has been reached three times, open the outlet valve 

accumulating.

Exercise 13.45 (EX15)

 1. Write a PLC program that queries the button at %ix0.7. As long as the button is 
pressed, the control lamp at %qx0.0 should light up and the boiler should be filled 
via the filling valve.

 2. Now the heating process is to be started at the push of a button. As soon as are 
reached 50° C, the heating stops.

 3. A counter is now to indicate how often the temperature of has been reached 
50° C. This number is to be output on a byte at %qb3.

 4. When the temperature has been reached three times 50° C, open the outlet valve 
accumulating as soon as the temperature has cooled down.

Exercise 13.46 (EX16)

In a production line Fig. 13.16, the manufactured parts must be distributed to three dif-
ferent workstations for further processing.

A light barrier is installed in the conveyor belt, which gives a 0 signal when a part 
passes through. This signal causes the magnetic actuator to receive an impulse lasting 
half a second, which causes the switch to move one step further, thus clearing the way 
to the corresponding station. After the third station, the first station is to be started 
again. This is achieved by a three-second impulse to the solenoid actuator.

13 Repeat Tasks
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Magnetic
actuator

Fig. 13.16 For Exercise 13.46

Exercise 13.47 (EX17)

 1. A measuring vessel is to be filled. A (short) press on the start button starts the filling 
process. The filling valve should remain open for 3 s. The limit value transmitter is 
not yet to be taken into account.

 2. A (short) press on the stop button also closes the valve before the time from task 1 
has elapsed. Likewise, reaching LIS2 closes the filling valve; i.e. after pressing the 
start button, the filling valve should now be closed after 3 s or by pressing the stop 
button or by reaching LIS2.

 3. As soon as the upper limit value LIS2 is reached, the drain valve should open auto-
matically until LIS1 signals drain. Then the drain valve closes again. During this 
time, filling should also not be possible.

 4. After LIS1 has signalled draining, the valve should not be closed immediately, but 
only after 3 s, so that the boiler can drain completely.

 5. The number of fillings should be displayed with LEDs dual.

Exercise 13.48 (EX18)

Sorting plant 1 (Fig. 13.17).
Wooden beams are transported over a roller system and are to be counted. The 

beams are of different lengths. Therefore, short and long beams are to be recorded sepa-
rately. An encoder0 emits a pulse when a beam passes through. If the beam is short, 
only encoder1 also emits a ‘1’ signal; if the beam is long, both encoder1 and encoder2 
emit a ‘1’ signal.

 1. Write a PLC program that displays the number of bars in a single-digit 7-segment 
display. Simulate the encoders with the standard IO process. Initially, the display 
does not need to go beyond ‘9’, so only a maximum of nine are initially recorded.

 2. Now a distinction is to be made between the short and long bars. With two separate 
counters the respective numbers are to be represented at two displays. (Again only 
up to max. 9 pieces)

13.10 Mixed Tasks
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Encoder0
Encoder1 Encoder2Fig. 13.17 For Exercise 13.48 

and for Exercise 13.49

 3. If no other encoder or only encoder 2 gives a signal when encoder 0 is pulsed, some 
kind of fault has occurred. This fault should be signalled by a lamp until an 
acknowledgement button has been pressed. During the fault indication no counting 
pulses may reach the counters.

 4. In a HEX display, the numbers from 10dec are displayed as ‘A’,‘B’ …. Create a deci-
mal display with two counter components and two 7-segment displays, which dis-
plays two digits from ‘00’ … ‘09’, ‘10’, … ‘99’.

Exercise 13.49 (EX19)

Sorting plant 2 (Fig. 13.17).
Wooden beams are transported over a roller system and are to be counted. The 

beams are of different lengths. Therefore, short and long beams are to be recorded sepa-
rately. An encoder0 emits a pulse when a beam passes through. If the beam is short, 
only encoder1 also emits a ‘1’ signal; if the beam is long, both encoder1 and encoder2 
emit a ‘1’ signal.

 1. Write a PLC program that displays the total number of bars (without distinguishing 
between long and short) in a single-digit 7-segment display. Simulate the encoders 
with the standard IO process. The display does not need to be decimal; in this case 
you can simply use the HEX-Output display for display.

 2. Now a distinction is to be made between the short and long bars. With two separate 
counters, the respective numbers are to be displayed on two displays.

 3. If no further encoder or only encoder 2 gives a signal when encoder 0 is pulsed, 
some kind of fault has occurred. This fault should be signalled by a lamp until an 
acknowledgement button has been pressed.

 4. During the fault indication and for 3 s after acknowledgement, no counting pulses 
may reach the counters.

Exercise 13.50 (EX20)

In a traffic light control system, the traffic light for the side street should not turn 
“green” until four cars are waiting. Even if there is less traffic, no car should wait longer 
than 10  s. The secondary traffic light should show green for 10  s and then switch 
back to red.

13 Repeat Tasks
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14Example: Control of a Mountain Railway

Abstract

In this chapter we have worked on the example 4.2.5 (page 116) and 4.4.5 (page 163) 
from the book by John and Tiegelkamp (Book: John, Karl-Heinz, Tiegelkamp, Michael.: 
SPS-Programmierung mit IEC 61131-3  – Konzepte und Programmiersprachen, 
Anforderungen an Programmiersysteme, Entscheidungshilfen, Springer, Heidelberg 
(2009)) for the programming of a control of a mountain railway – cable car for “PLC- 
lite” as an exercise and repetition task and commented on it in detail. Beyond the given 
example, the functionality was extended, e.g. by a demand stop request. With “PLC- 
lite” this exercise can be carried out on the PC. During the simulation with the program 
“PLC-lite” the gondola moves in the landscape. By means of control panels the move-
ment of the gondola can be controlled on the screen. In this way, you can safely test all 
control situations. If a wrong run occurs, the error is clearly displayed.

14.1  Control of a Cable Car

Figure 14.11 shows the topography image of the Ifinger cable car (“Bergbahn” in German) 
“Merano 2000”. Located near Merano, Italy, this 3800-m-long cable car can transport over 
800 people per hour from the lower station (“Talstation” in German) to the top station 
(“Bergstation” in German) 1240 m higher at the foot of the Ifinger. This cable car has two 
gondolas, with only one of them stopping on demand at the middle station (“Mittelstation” 
in German) near Gsteier. Considering only this one gondola, this corresponds exactly to 
the example from the book [1], which performs the following functionality:

1 Photo with permission of Geo Marketing GmbH/srl, 39100 Bolzano, Italy.

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of 
Springer Nature 2022
H.-J. Adam, M. Adam, PLC Programming in Instruction list according to IEC 
61131-3, https://doi.org/10.1007/978-3-662-65254-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-65254-1_14&domain=pdf
https://doi.org/10.1007/978-3-662-65254-1_14
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Fig. 14.1 Ifinger mountain railway

Task
The control system must take the following requirements into account:

• The sensors S1, S2, S3 report TRUE (1) when the gondola is in one of the stations.
In the counter StationStopp the total sum of all station entries is to be registered.

• The motor for nacelle movement knows the input variables:
Direction: Forward (TRUE)/Backward (FALSE) (buffered declared)
StartStop: Start (TRUE), Stop (FALSE)

14 Example: Control of a Mountain Railway
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• There is a DoorOpen switch in the gondola. Switch to 1 means: “Open door”, FALSE 
means: “Close door”.

• The motor for door control has two actuators ActOpenDoor and ActCloseDoor (active: 
on edge from FALSE to TRUE), which cause it to open and close the door respectively.

• A Startbutton sets the gondolas in operation;
The end of operation can be initiated with the Stop button.

• A warning signal is to be activated in the time between switching off the cable car and 
the restart.

The PLC project consists of a main program and a function block. In the main program, 
mainly the input variables (sensors, switches) are queried and the output variables (actua-
tors, displays) are controlled. The functionality is mainly implemented in the func-
tion block.

In Exercise 14.1 you can experiment with a cable car control. At first, do not pay atten-
tion to the program codes, but “play”! We will explain the code in detail in a moment.

Exercise 14.1 (CC01a)

Start with PLC-lite the project CC01a.plp and the visualization of the process “Mountain 
railway” (Bergbahn). You can additionally display the process “Standard-I/O 16bit”, so 
that you can better observe the signals of the process.

Start the program with “Run”.
After pressing the green start button on the “main panel” at the top left (which is 

located in the cable car control room), the cabin door closes after a few seconds and the 
gondola starts moving. It stops at the mid station, continues after a short stop, reverses 
direction after stopping at the top station and returns to the valley.

In the simulation with PLC-lite, the small “cabin panel” with the green door button 
and the red stop button travels with the cabin. For space reasons it is not “mounted” 
inside but outside next to the cabin. In addition, there is a “copy” of this panel in the 
upper left corner, because otherwise it is difficult to click the buttons with the mouse 
while driving. With the button “Door open” you can open the closing door once more, 
to allow e.g. late arriving passengers to enter. The red stop button on the cabin panel is 
still without function, it will be put into operation in Exercise 14.7.

With the red stop button (end of operation, power off) on the main panel you give the 
signal to the gondola to continue driving and to stop at the next stop at the lower station 
until you press the start button again. Coloured rings around the buttons indicate the 
operating states Ready, Run, End of operation requested and End of stop reached 
(Power off).

14.1 Control of a Cable Car
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At the middle station at Gsteier there is another small “station panel”, with a dis-
play of the direction of travel and two buttons for a stop request up or down. These are 
not yet used in the first example, but will be programmed in Exercise 14.10.

In addition, there is a “revision panel” in the upper left corner with four buttons: 
fault acknowledgement, open door (directly, without PLC program), drive up or down 
(also directly). Attention: You can use these buttons to open the door during the run 
(fault simulation) and run the gondola against the ends, beyond the normal end points.

We now look at the program code of the example in detail.

14.2  Cable Car: Main Programme

First the input variables for the input buttons and sensors, the output variables for the dis-
plays of some process states and for the actuators and other variables are declared. The 
displays for direction (Richtung), moving (Fahrt), station stops (Start/Stop), door open and 
door close (Tür öffnen, Tür zu), wait (warten) and the displays for the operating states 
ready, travel mode, end of operation requested and final stop reached (PowerOff) are set 
independently by the simulation process and do not have to be programmed separately.

PROGRAM CC01a
(* Processes:            *)
(*  Bergbahn (cable car) *)
(* example from "SPS-Programmierung mit IEC 61131-3" *)
(* (c) 2008 John/Tiegelkamp  (Springer-Verlag)       *)

VAR
Start AT               %I0.0: BOOL (* 1 = Start *)
End AT                 %I0.1: BOOL (* 1 = Stop in lower station *)
ButtonOpenDoor AT      %I0.3: BOOL (* 1 = open *)
SensorDoorClosed AT    %I0.4: BOOL (* 1 = closed *)
LowerStation AT        %I1.0: BOOL (* 1 = in station *)
MiddleStation AT       %I1.1: BOOL
TopStation AT          %I1.2: BOOL
Action AT              %Q0.0: BOOL (* 1 = Plant on *)
ActOpenDoor AT         %Q0.1: BOOL (* 1 = Open door *)
ActCloseDoor AT        %Q0.2: BOOL (* 1 = close *)
PowerOff AT               %Q0.3: BOOL (* 1 = stop, cabin in lower station *)
StartStop AT           %Q0.4: BOOL (* 1 = drive *)
MoveDown AT            %Q0.5: BOOL (* 1 = downwards *)
DisplayEnd AT          %Q0.6: BOOL
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Warning AT             %Q0.7: BOOL
StationStopp AT        %QB3:  INT
DisplayWait AT         %Q1.7: BOOL
cycle1:                       BOOL
CabinControl:                 CCControl
END_VAR

(* set initial values *)
LDN    cycle1
S      PowerOff
S      DisplayEnd
S      cycle1 

Evaluation of the start or stop button and the PowerOff signal:

(* Load physical I/O values (sensor information) *)

LD    Start
ST    CabinControl.CablewayOn
LD    PowerOff
ANDN  Start
JMPC  NoOperation
LD    End
ST    CabinControl.CablewayOff         

Determine station stays and transfer them to the “CabinControl” control function block 
BBControl:

(* stops *)
LD    lowerStation
ST    CabinControl.St1
LD    MiddleStation
ST    CabinControl.St2
LD    TopStation
ST    CabinControl.St3

Activate:
(* Activate mountain railway control FB *)
LD    ButtonOpenDoor
ST    CabinControl.ButtonOpenDoor
LD    StartStop

14.2 Cable Car: Main Programme
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ST    CabinControl.CabinRun
CAL   CabinControl   

Read values from the control function module and pass them to variables in the main 
program:

(* Store physical I/O values (Motor Information) *)
LD    CabinControl.ActOpenDoor
ST    ActOpenDoor
LD    CabinControl.EndSignal
ST    PowerOff
// because in PLC-lite no type VAR_IN_OUT ->
LD    CabinControl.CabinRunOut
AND   SensorDoorClosed
ST    StartStop
LD    CabinControl.DirectionOut
ST    MoveDown
LD    CabinControl.PowerOffOut
ST    DisplayEnd
// additional control displays:
LD    CabinControl.StationStoppOut
ST    StationStopp
LD    CabinControl.Wait
ST    DisplayWait
LD    CabinControl.Action
ST    Action
JMP   End_POU

Gondola is in the lower station and operation is stopped (PowerOff):

NoOperation:
LD    FALSE
ST    ActCloseDoor
STN   ActOpenDoor
ST    CabinControl.CablewayOn
ST    StartStop
ST    CabinControl.CabinRun
CAL   CabinControl
// because in PLC-lite no type VAR_IN_OUT ->
LD    CabinControl.Action
ST    Action

14 Example: Control of a Mountain Railway
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End_POU:
END_PROGRAM

14.3  Edge Detection

The system has a sensor for each stop station, which indicates the stay of the gondola in 
the respective station by a 1. When the car enters the station, the sensor signal goes from 
0 to 1. This “rising edge” indicates that the car has just entered the station. In [1], variables 
of type BOOL with the attribute R_EDGE are therefore used for the sensor signal. This 
attribute is not implemented in PLC-lite, but a standard function block R_TRIG is. With 
this, edge detection is also possible.

The function block R_TRIG is the standard specified in [4] and [6]2: These blocks must 
operate according to the following rules.

• In the case of a function module R_TRIG, after the transition of the input CLK from 0 
to 1, the output Q goes to the Boolean value 1 during the subsequent first execution 
(CAL ...) of the function module and returns to 0 during the second execution.
The same applies to F_TRIG: after the transition of input CLK from 1 to 0, output Q 
remains at the value 1 from the next to the next but one execution of the function block.

• NOTE: If the input CLK of an instance of type R_TRIG is connected to a value 1, its 
output Q will go to 1 and remain so after its first execution following a cold start. From 
the next and all subsequent executions, output Q will go to 0 and remain so.
The same applies to an instance F_TRIG, whose input CLK is unconnected or is con-
nected with the value FALSE.

Rising Edge Detection
In the following function module you can see the IL with which the above rules can be 
implemented. You do not need to program this! This standard function block is integrated 
in PLC-lite. This program code only serves as an illustration for you if you want to under-
stand how it works.

   FUNCTION_BLOCK BOOL_R_TRIG
    VAR_INPUT
      CLOCK: BOOL
    END_VAR

2 German: [4] EN 61131-3:2003 (Kapitel 2.5.2.3.2 Flankenerkennung / Tabelle 35  – Standard- 
Funktionsbausteine Flankenerkennung) or English: [6] E DIN IEC 61131-3:2009-12  – Draft  – 
(6.5.3.5.2 Bistable elements/Table 41 – Standard bistable function blocks).

14.3 Edge Detection
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    VAR_OUTPUT
      EDGE: BOOL
    END_VAR
    VAR
      M: BOOL
    END_VAR
    LD CLOCK
    ANDN M
    ST EDGE
    LD CLOCK
    ST M
   END_FUNCTION_BLOCK

Exercise 14.2 (FLASH141)

In Sect. 10.3 you programmed a running light that required an initial value to be set. 
Compare the solution from there with the method given here, which uses the function 
block F_TRIG.

The function block Cycle1: F_TRIG is called exactly once at the beginning of 
each cycle with CAL Cycle1. Output Cycle1.Q therefore remains at the value 1 
from the start of the program for exactly the first cycle and goes constantly to 0 for the 
rest of the program run. Note that you do not have to assign a value to input 
Cycle1.CLK.

Create the program for the running light and test it.

  Program FlashLightFlash141
  (*Processes: *)
  (* standard I/O byte 1 *)
  (* Hex-Output byte 1   *)
  var
    Pulse: TON
    Cycle1: F_TRIG
    Bit0 AT %QX1.0: BOOL
    Bit7 AT %QX1.7: BOOL
    Byte1 AT %QB1: USINT
  end_var
  (* set bit *)
    CAL Cycle1
    LD Cycle1.Q
    S Bit0
    ...

14 Example: Control of a Mountain Railway
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14.4  Cable Car (Bergbahn): Control Function Block

We can now look at the control function block.
First, the variables are defined:

FUNCTION_BLOCK CCCONTROL 
VAR_INPUT
  CablewayOn:      BOOL //R_EDGE (* key to start *)
  CablewayOff:      BOOL          (* initiate end *)
  St1,St2,St3:     BOOL //R_EDGE (* sensor station *)
  ButtonOpenDoor:  BOOL          (* 1 = open, 0 = close *)
END_VAR

VAR_INPUT //_IN_OUT
  CabinRun:        BOOL           (* 1 = car moves *)
END_VAR

VAR_OUTPUT
  ActOpenDoor:     BOOL
  ActCloseDoor:    BOOL
  CabinRunOut:     BOOL
  DirectionOut :   BOOL
  PowerOffOut:      BOOL
  Action:          BOOL
  StationStoppOut: INT
  Wait:            BOOL
END_VAR

VAR_OUTPUT // RETAIN
  EndSignal:       BOOL       (* Warning signal PowerOff *)
END_VAR

VAR
  StationStopp:     CTU        (* station entrances *)
  DoorTime:         TON
  Entry:            BOOL
  StartPuls:        R_TRIG
  St1Puls:          R_TRIG
  St2Puls:          R_TRIG
  St3Puls:          R_TRIG
END_VAR

VAR // RETAIN
  Direction:        BOOL
  DirectionFF:      RS

14.4 Cable Car (Bergbahn): Control Function Block
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END_VAR

Now the function blocks for edge detection are prepared:

LD    CablewayOff
S     PowerOffOut

LD    CablewayOn
ST    StartPuls.CLK
CAL   StartPuls   
LD St3
ST St3Puls.CLK
CAL ST3Pulse
LD St2
ST St2Puls.CLK
CAL ST2Pulse
LD St1
ST St1Puls.CLK
CAL ST1Pulse

Exercise 14.1 requires a warning signal to be output between switching off the path and 
restarting it. This end signal remains because of the declaration with the attribute 
RETAIN (also in case of power failure). Therefore, at program start the buffered value and 
not automatically the initial value 0 is assigned. This is meaningless here with PLC-lite 
because the RETAIN attribute is not available. However, we leave the reset in the program 
as it is carried out in [1].

LD    StartPuls.Q     (* the first call? *)
R     EndSignal       (* because of attribute RETAIN *)
S     Action
JMPC  ResetCounter
JMP   GoEntry

ResetCounter:
LD    1
ST    StationStop.R
CAL   StationStop
LD    1
ST    StationStop.CU
LD    0
ST    StationStop.R
CAL   StationStop
LD    StationStop.CV
ST    StationStopOut
JMP   CabinClose 
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After entering a station, several actions are required: stop the engine, open the door and 
count up the station counter.

GoEntry:
LD    St1Puls.Q
OR    St2Puls.Q
OR    St3Puls.Q
ST    Entry
R     CabinRun
S     ActOpenDoor
ST    StationStop.CU
LD    0
ST    StationStop.R
CAL   StationStop
LD    StationStop.CV
ST    StationStopOut  

Now we check whether the car is in the lower station (St1) or the top station (St3). 
We do this with XOR: in case of a sensor error it could happen that both sensors indicate 
1. We should still catch this error case and handle it accordingly (e.g. initiate an emer-
gency stop). Also for safety reasons, we do not simply switch the direction by the com-
mand sequence LD direction STN direction, but use the flip-flop 
directionFF. To set the new direction we use the static signals of the stations.

(* possibly change direction *)
LD    St1             (* static signals!   *)
XOR   St3
JMPCN NoSwitch        (* no 1? -> continue *)
(*  change direction *) 
LD    St1             (* static signals!   *)
ST    DirectionFF.R1
LD    St3
ST    DirectionFF.S
CAL   DirectionFF
LD    DirectionFF.Q1
ST    DirectionOut    

The car door may only be opened when staying in a station. The signal from the door 
open button is linked accordingly:

NoSwitch:
LD    ButtonOpenDoor  (* Query door switch *)
AND(  St1             (* when staying in station *)
OR    St2

14.4 Cable Car (Bergbahn): Control Function Block
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OR    St3
)
S     ActOpenDoor

If the end of service has been requested and we have pulled into the lower station, then 
we are now done …

(* End + in station -> POU end *)
LD    PowerOffOut    (* circuit breaker actuated? *)
AND   St1Puls.Q      (* entry in lower station   *)
S     EndSignal
R     Action
JMPC  PoeEnd

CabinClose:
LD    ActOpenDoor
STN   ActCloseDoor   (* never both the same! *)
(* Continue after 4 sec. *)
LDN   ButtonOpenDoor
ANDN  CabinRun
ST    DoorTime.IN
S     Wait           (* control display *)
LD    T#4s
ST    DoorTime.PT
CAL   DoorTime
LD    DoorTime.Q     (* Time expired? *)
AND   Action
S     CabinRun
R     ActOpenDoor
R     Wait     

End of the function module and return to the calling main program:

PoeEnd:
LD    CabinRun
ST    CabinRunOut
END_FUNCTION_BLOCK 

Exercise 14.3 (CC01FF)

For example, using a function table, justify why the flip-flop switches directionFF 
to reverse direction only in the two end stations.

Specify a circuit that detects the error case: both sensors give signal and turns on a 
warning light.

14 Example: Control of a Mountain Railway
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Exercise 14.4 (CC01b)

Our display of station entries has the “flaw” that the numbers are displayed in HEX 
code. To display the numbers in BCD code, we have developed a function in Exercise 
11.4 (BCD111.PLP):

Function hex_to_bcd: Byte (f_h2bcd.il)

Extend the mountain railway Exercise 14.1 by this function to display the station 
entries in BCD notation!

Exercise 14.5 (CC01c)

The display should now not show the number of station entries, but the respective sta-
tion number for a station stop: for the lower station a 1, for the middle station the 
 number 2 and for the top station the 3. During the journey the character string “FA” 
should be displayed.

Solution hint: This is a code converter that must convert the 1-out-of-3 code into a 
dual code. In Sects. 2.14 and 2.17, you created a circuit equation by evaluating the 
minterms (“AND-before-OR”) of a function table. We can proceed similarly here. We 
have the three input signals lowerStation, MiddleStation and TopStation, 
of which either none or only one is “1”. As outputs of the function table we provide the 
two bits for 21 and 20 of the station number. These are combined to give the station 
number as a numerical value 01BCD, 10BCD or 11BCD (as decimal numbers: 1, 2 or 3).

Change the mountain railway Exercise 14.1 to show the station number instead of 
the number of station entries.

Display of the Station Number
The solution of Exercise 14.5 can be realized with the following program part: First we 
determine the more significant bit 21. It must be 1, if the car is in the middle station or in 
the top station. Here we specify the complete minterms, although this would not be neces-
sary, because the car is always only in one station. But: if a sensor error would occur, this 
situation can be recognized and appropriate measures can be taken. The minterms result in 
values of type BOOL, which must be converted into numerical values (type INT) for fur-
ther processing. In Sect. 8.2 we already dealt with type conversions. The result is tempo-
rarily stored in the variable station number:

  (* Output station number as a number *)
  LD MiddleStation (* bit 1 determine *)
  ANDN lowerStation
  ANDN TopStation
  OR( TopStation
  ANDN MiddleStation

14.4 Cable Car (Bergbahn): Control Function Block



208

  ANDN BotomStation
  )
  BOOL_TO_INT
  MUL 2 (* push left *)
  ST StationNumber

Determination of the least significant bit 20, also the complete minterms. This bit must 
be 1 if the car is in the lower station or the top station:

LD lowerStation (* bit 0 determine *)
ANDN MiddleStation
ANDN TopStation
OR( TopStation
ANDN MiddleStation
ANDN lowerStation
)
BOOL_TO_INT

Now the variable StationNumber is added to this intermediate result and the sum is 
stored back as the final result in the variable StationNumber:

ADD StationNumber (* combine *)
ST StationNumber

StationNumber is 0 if the car is not in a station. At this point one could also evalu-
ate the variable StartStop:

EQ 0
JMPC DisplayRide (* not in station *)
LD StationNumber
JMP DisplayStation
DisplayRide:
LD 16#FA
DisplayStation:
ST StationStop (* show *)

Exercise 14.6 (CC01d)

Modify the solution from Exercise 14.4 by using the variable StartStop as a condi-
tion for the ride display. Discuss the consequences of the two different methods.

14 Example: Control of a Mountain Railway
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14.5  Mountain Railway with Stop Request from the Cabin

The mountain railway is now to stop at the Gsteier middle station only on request. Initially, 
this should only be possible with the button in the cabin panel in the cabin. This means that 
only persons travelling with the cabin can initiate the on-demand stop.

Exercise 14.7 (CC02a)

Extend the program from Exercise 14.1 by the request of the stop button on the car 
panel and the car stop at the middle station, if the stop button was pressed before.

Solution Tip
A variable is set to store the keystroke on the hold button. Only when this variable is set is 
the sensor signal passed on to the control function block. This stop request variable is reset 
when the exit is made. To register the exit, you can use a variable of type F_TRIG.

The button and the display are connected to the following inputs and outputs 
respectively:

  StopSt2CabButton AT %I1.3: BOOL
  StopSt2Cabin AT %Q1.3: BOOL

You do not need to make any changes in the control function module, only in the main 
program.

Stop at the Middle Station at Gsteier Only on Request
The control for Exercise 14.7 can be realized with the following program part:

LD StopSt2CabButton
S StopSt2Cabin (* Register Halt *)
LD MiddleStation
AND StopSt2Cabin (* Stop on request *)
ST CableControl.St2
ST MiddleStationExit.CLK
CAL MiddleStationExit
LD MiddleStationExit.Q
R StopSt2Cabin (* Delete request *)

Exercise 14.8 (CC02b)

Now the display of the station stops should be shown as BCD numbers and not as HEX 
numbers as in Exercise 14.4.

14.5 Mountain Railway with Stop Request from the Cabin
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Exercise 14.9 (CC02c)

As in Exercise 14.5, the station numbers should now be displayed during the stays.

14.6  Cable Car with Stop Request from the Middle Station

Now, at the Gsteier mid station, the up/down buttons on the station panel at the station are 
also to be put into operation so that a hiker can stop the cabin to board. In order to avoid 
unnecessary stops, there are different buttons for the stop request for uphill or downhill 
travel. The stop request should therefore be executed depending on the direction.

Exercise 14.10 (CC03a)

Extend the program from Exercise 14.9 by the request of the stop button on the station 
panel and the car stop at the mid station, if the stop button “up” or “down” was pressed 
before and the car moves in the corresponding direction. If the car travels through the 
mid station in the direction not requested, the request remains set until the car travels in 
the requested direction on its way back.

The buttons and the displays are connected to the following inputs and outputs:

   RequestUpButton AT %I1.4: BOOL
   RequestUp AT %Q1.4: BOOL
   RequestDownButton AT %I1.5: BOOL
   RequestDown AT %Q1.5: BOOL

Solution hint: The condition for the stop request is now:

 

MiddleStation

StopSt Cabin

RequestOn TravelDirection

Re

�
�

�� � �

( 2

qquestFrom TravelDirection�� �
)  

The following conditions apply to resetting the stop request:
Reset StopSt2Cabin as in Exercise 14.7:

 MiddleStationExit Q.  

Reset RequestUp:

 MiddleStationExit Q RequestOn TravelDirection. )∧ ∧  

Reset RequestSt2Down:
MiddleStationExit. Q ∧ RequestFrom ∧ TravelDirection)

14 Example: Control of a Mountain Railway
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Demand Stop at Gsteier Depending on Direction
The control for Exercise 14.10 can be realized with the following program part:

First, the corresponding keystrokes must be queried and stored.

LD StopSt2CabButton
S StopSt2Cabin (* Register stop *)
LD RequestUpButton
S RequestUp (* Register stop *)
LD RequestDownButton
S RequestDown (* Register stop *)

We now check whether there is a condition for a stop. When entering the middle station 
we check if the stop button from the cabin is pressed or if the stop button for uphill was 
pressed at the station panel and the car is on uphill or if the stop button for downhill was 
pressed and the car is on downhill.

LD MiddleStation
AND( StopSt2Cabin (* Stop request *)
  OR( RequestUp (* only for uphill *)
    ANDN Direction
  )
  OR( RequestDown (* only for downhill *)
    AND Direction

If the car has entered the middle station and a stop condition exists, the previous expres-
sion results in 1, St2 is activated in the controller and the car stops. In addition, the vari-
able MiddleStationExit is triggered. It is of type F_TRIG, the output Q remains 0 
until the car has left the middle station. Then the middle station becomes 0 again, and 
the 1 to 0 transition (negative edge!) at the clock input CLK causes output Q to become 1 
for one program cycle. Exactly in this cycle the requests to be cleared are reset.

ST    CableControl.St2
ST    MiddleStationExit.CLK
CAL   MiddleStationExit
LD    MiddleStationExit.Q (* Exit? *)
AND   StopSt2Cabin
R     StopSt2Cabin (* Delete request *)
LD    MiddleStationExit.Q
AND   RequestUp
ANDN  Direction
R     RequestUp (* Delete request *)
LD    MiddleStationExit.Q
AND   RequestDown
AND   Direction
R     RequestDown (* Delete request *)

14.6 Cable Car with Stop Request from the Middle Station
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14.7  Treatment of Operational Faults

Below the station names you will see fields “Sensor ok”. If you click on it, you simulate 
the malfunctions “Cable break” (i.e. the sensor permanently gives 0-signal) and 
“Blocking” (i.e. the sensor permanently gives 1-signal).

Exercise 14.11 (CC04a)

If you run the program from Exercise 14.1, you can observe, among other things, how 
each “wrong click” on a station sensor increases the number of entries.

You can also see what happens when the gondola moves beyond the end stops! Also 
use the buttons for the up and down movement of the gondola on the revision panel.

Test the programs extensively to detect as many error situations as possible!

Error Handling Routines
You can now include your own error handling. If, for example, more than one station sen-
sor gives a signal at the same time, a jump is made to the “ErrorAction” marker in the 
following code fragment. There you can program a reaction to this error cause.

See also your solution to Exercise 14.3.

LDN    lowerStation
ANDN   MiddleStation
ANDN   TopStation
OR     ( lowerStation
ANDN   MiddleStation
ANDN   TopStation
)
OR     ( MiddleStation
ANDN   lowerStation
ANDN   TopStation
)
OR     ( TopStation
ANDN lowerStation
ANDN MiddleStation
)
JMPCN  Erroraction
JMP    NoFault
ErrorAction:
LD     TRUE
S      Warning
jmp    NoOperation
NoFault:
LD     TRUE
R      Warning

14 Example: Control of a Mountain Railway
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Emergency Operation
Furthermore, there are additional sensors in the system as limit switches, which emit a 
1-signal when not actuated. These signals come a little later than the normal stop sen-
sors. The status of these sensors is displayed on the revision panel to the right of the but-
tons for upward or downward travel. The signals are connected to the inputs %I2.0, 
%I2.1 and %I2.2.

lowerStation2 AT %I2.0: BOOL (* 0=end stop *)
MiddleStation2 AT %I2.1: BOOL (* 0=hold point *)
TopStation2 AT %I2.2: BOOL (* 0=end stop *)

You can use these sensors for emergency operation.

Exercise 14.12 (CC04b)

Extend the program from Exercise 14.10 for emergency operation. The error handling 
should also evaluate the limit switches. Control the warning in emergency operation 
(%Q0.7)! Test the program extensively to detect all error situations if possible.

14.7 Treatment of Operational Faults
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15Structure and Programming of a PLC

Abstract

In the case of a hardwired control system, the program is determined by the fixed wir-
ing of the active switching elements (gates) and can only be changed by changing the 
wire connections, which is usually very time-consuming.

In a stored-program control system, the signal processing is performed by a com-
puter. The instructions to the computer necessary for the program realization of the 
control are stored in a memory. The totality of these instructions is referred to as a 
“program”.

If the program is stored in a read-only memory (ROM), the control program can 
only be changed by replacing this memory (chip); this is then a replaceable program-
mable controller. A freely programmable controller uses a random access memory 
(RAM) as program memory. Here the program of the control can be easily changed by 
reprogramming the memory.

In principle, all programmable logic controllers have the same structure as any com-
puter: central processing unit, memory and input and output units. The central process-
ing unit and memory usually form a single unit and are referred to as the automation device.

Figure 15.1 shows an overview of the control types. In the case of a hardwired-programmed 
control, the program is defined by the fixed wiring of the active switching elements (gates) 
and can only be changed by changing the line connections, which is usually very 
time-consuming.
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Fig. 15.1 Programmable controllers

In a stored-program control system, the signal processing is performed by a computer. 
The instructions to the computer necessary for the program realization of the control are 
stored in a memory. The totality of these instructions is referred to as a “program”.

If the program is stored in a read-only memory (ROM), the control program can only 
be changed by replacing this memory (chip); this is then a replaceable programmable 
controller. A freely programmable controller uses a random access memory (RAM) as 
program memory. Here the program of the control can be easily changed by reprogram-
ming the memory.

In principle, all programmable logic controllers have the same structure as any com-
puter: central processing unit, memory and input and output units. The central processing 
unit and memory usually form a single unit and are referred to as the automation device.

Binary and digital signals can be input or output via the input and output units. Analog 
signals must be converted into digital signals. The corresponding signal converters are 
called analog-to-digital converters (A/D converters) or digital-to-analog converters (D/A 
converters).

The creation of a control program is done in the following four steps:

 1. Functional program description
The control task is described verbally, input and output data are specified. In control-
lers, input and output data are predominantly binary, digital and analog signals that 
come from the process (process signals from sensors) or go to the process (commands 
to actuators).

 2. Create program flow chart (structure chart)
The program flow chart and the structure chart are aids that are used to “construct” 
programs. With the aid of graphic symbols, the sequence of the program is clearly rep-
resented. From a rough program overview, the program structure is obtained by refin-
ing it step by step: the control task is thus divided into individual steps that can be 
implemented by the computer. The structure diagram and program flow chart are inde-
pendent of the programming language used.

15 Structure and Programming of a PLC
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 3. Program creation
The individual steps that can be seen from the structure diagram or program flow chart 
are transferred to the programming language. The result is, for example, the instruction 
list, which can be translated into machine code by the compiler or processed directly by 
the interpreter. Interpreters are often used in the PLC, since program errors can then be 
found more easily in step mode.

 4. Test and documentation
Program testing and documentation must be carried out very carefully. All functions of 
the control must be tested in interaction with the process (on-line), or if this is not pos-
sible, by simulation (off-line) under all conceivable operating conditions. Good docu-
mentation is required in order to be able to make subsequent changes to the program 
with reasonable effort.

The process signals are present at the inputs. The program is stored in the user memory 
and is selected step by step by the control unit. The selected control instruction is trans-
ferred to the control unit and processed. In the process, for example, inputs, outputs, flags, 
times are interrogated for their signal state and linked in order to control outputs, flags, etc. 
The command is executed in the user memory. After execution of an instruction, the 
instruction counter is incremented so that the next memory cell is controlled.

After execution of the last instruction, the program is started again at the first address: 
the program is repeated cyclically.

15 Structure and Programming of a PLC
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16Standard Compliance of PLC-Lite

Abstract

In this chapter you will find references to the standard IEC 61131-3, as far as they are 
realized in PLC-lite. The language and structure elements of the IEC 61131-3 standard 
described here document the properties of the “PLC-lite” program.

The following Tables 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7 and 16.8 describe the proper-
ties of PLC-lite with regard to the IEC 61131 standard. This system meets the require-
ments of IEC 61131-3 in the following properties of the language: IL.

Table 16.1 Text elements

Term Description
Character 
set

Only characters (letters, digits and special characters) from the “basic code table” of ISO/
IEC-646 may be used. The upper/lower case is not significant for the language elements

Identifier Identifiers, e.g. variable names, must begin with a letter or an underscore. They 
must not contain umlauts (äöü) or ß!

Keywords The keywords are used by the programming system as syntactical elements and can 
therefore not be used for user-defined identifiers

Space Spaces are not allowed within identifiers, keywords or literals. However, any 
number of spaces are allowed in all other places

Comments Comments are enclosed by the character combinations (* and *). They may be used 
wherever spaces are allowed. It is not permitted to “nest” comments; e.g. (* 
comment (* nested *) *)

Literal Literals are used to represent data values. They are displayed according to the 
following tables
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Table 16.2 Numerical literals

Name Examples Note
Integer −12

0
23
+56

Real numbers −12.0 n.s.a

0.0
3.14159

Real numbers with exponent −1.34E-12 n.s.
1.0e+6

Binary numbers 2#1111_1111
2#11100000

Octal numbers 8#377 n.s.
8#340

Hexadecimal numbers 16#ff
16#FF
16#E9

Boolean values 0 or FALSE
1 or TRUE

Literals with type specification INT#-12
BYTE#2#0110_1100
UINT#16#EFFE

an.s. means: in PLC-lite this property is not supported

Table 16.3 String literals

Description
No character strings (texts, strings) can be edited with PLC-lite

Table 16.4 Time literals

Name Examples Note
Duration T#14 ms

t#14h12m18s3.5 ms
t#14h_12m_18s_3.5 ms
Time#14.7 s

Date Date#1984-06-25 n.s.a

D#1984-06-25
Time of day Time_of_Day#15:36:55.36 n.s.

TOD#15:36:55.36
Date and time Date_and_Time#1984-06- 

25- 15:36:55.36
n.s.

DT#1984-06-25-15:36:55.36
an.s. means: in PLC-lite this property is not supported

16 Standard Compliance of PLC-Lite
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Table 16.5 Data types

Keyword Data type Bits Area Initialization value
BOOL Logical Boolean 1 0, 1 (FALSE, TRUE) 0
SINT Short integer 8 −128 … +127 0
INT Integer 16 −32768 … 32767 0
DINT Double integer 32 (−231) … (+231−1) 0
LINT Long integer 64 (−263) … (+263−1) 0 n.s.a

USINT Unsigned short 
integer

8 0 … 255 0

UINT Unsigned 
integer

16 0 … 65535 0

UDINT Unsigned double 
integer

32 0 … (232−1) 0

ULINT Unsigned long 
integer

64 0 … (264−1) 0 n.s.

REAL Real number 32 According to IEC 559 for floating 
point format

0 n.s.

LREAL Long real 
number

64 According to IEC 559 for floating 
point format

0 n.s.

TIME Duration 32 0 …± approx. 24 days Smallest 
unit: 1 ms

T#0 s

DATE Date D#0001-01-01 n.s.
TOD Time TOD#00:00:00 n.s.
DT Date and time DT#0001-01- 

01- 00:00:00
n.s.

STRING Variable length 
string

A numeric value range is not 
applicable for these data types

“(empty string)” n.s.

BYTE Bit sequence 8 0
WORD Bit sequence 16 0
DWORD Bit sequence 32 0
LWORD Bit sequence 64 0

an.s. means: in PLC-lite this property is not supported

Table 16.6 General data types

The general data types are identified by the prefix ‘ANY’
ANY_ELEMENTARY
ANY_MAGNITUDE ANY_BIT ANY_

STRINGa

ANY_DATEa

ANY_NUM TIME
ANY_INT ANY_

REALa

LINTa, DINT, INT, 
SINT, ULINTa, 
UDINT, UINT, USINT

LREALa, 
REALa

LWORDa, DWORD, 
WORD, BYTE, 
BOOL

STRINGa, 
WSTRINGa

DATE_AND_
TIMEa, DATE, 
TIME_OF_DAYa

aIn PLC-lite this property is not supported

16 Standard Compliance of PLC-Lite
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Table 16.7 Derived data typesa

Declarations (agreements)
The user can use the textual construction TYPE ... END_TYPE to declare data types by 
derivation from others and thus use further types in addition to the elementary data types
Initialization
The default value is the value of the first identifier of the enumeration list or the lowest value of 
the range, or it is specified by the assignment operator :=. For strings, the maximum length can 
be specified in parentheses

aThe properties “derived data types” are not included in PLC-lite

Table 16.8 Variable

Single-element variable They contain only a single data element. This can be one of the 
elementary types or a type derived from an elementary type. Single-element variables can be 
represented directly: The identifier begins with the % character. Subsequent characters specify 
the location, size, and hierarchical physical or logical address. The inputs of the PLC are memory 
location I, outputs are memory location Q and flags are memory location M. For the addresses, 
note that counting starts at 0
Direct variable (examples) Size, type Meaning
%I0.1 1 bit, Boolean Input, byte0, bit1
%I1 1 bit Input, byte0, bit1
%IB1 1 byte = 8 bit Input, byte 1
%IW0 2 byte = 16 bit, WORD Input, word 0, 

consisting of byte 
1 and byte 0

%ID0 4 bytes = 32 bits, DWORD Input, double 
word 0, 
consisting of 
bytes 3–0

%IL0 8 byte = 64 bit, LWORDa Input, long word 
0, consisting of 
bytes 7–0

%Q... Output
%M... Flag (memory 

register/bit)
Multi-element variableb

Multi-element variables are the fields (ARRAYs) and the structures (STRUCTUREs)
Declaration of variables
The declaration of variables is terminated for each variable type separately by the keyword 
‘END_VAR’. Examples for the application can be found in the working part of this book. In 
PLC-lite, only the properties addressed in the exercises and tasks can be used

(continued)
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Table 16.8 (continued)

Keyword/designator Use, scope Note
VAR Within the organizational 

unit
VAR_INPUT Values are supplied from 

outside the POU, cannot be 
changed within the POU

VAR_OUTPUT Values are delivered from 
POU to the outside

VAR_IN_OUT Values are supplied 
externally, can be changed 
within the POU, and are 
returned externally

n.s.c

VAR_EXTERNAL Values are supplied by 
configuration

n.s.

VAR_GLOBAL Global variable valid 
everywhere

n.s.

VAR_ACCESS Access paths for 
communication services 
according to IEC 1131-5

n.s.

END_VAR Closes variable declarations
RETAIN Buffered variable, last value 

is restored after warm start
n.s.

CONSTANT Not changeable (=constant) n.s.
AT Assigning a specific storage 

location
aIn PLC-lite this property is not supported
bMultielement variables are not included in PLC-lite
cn.s. means: in PLC-lite this property is not supported

16.1  Program Organisation Units (POU)

The program organisation units (e.g. “main program”, function, function module) are 
described in Tables 16.9 and 16.10.

Functions
A function returns exactly one data element after the call. A field or a structure is also a 
data element, even though it contains several values. In the statement list language, the 
return value is in the Current Result (CR).

The Tables 16.9 and 16.10 list the functions and function blocks implemented in 
PLC-lite.

Standard Function Blocks
Only the standard function blocks implemented in PLC-lite are described in Table 16.10.

16.1  Program Organisation Units (POU)
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Table 16.9 Standard functions

Type conversion functions
Function Return value, example Note
*_TO_** *: Input data type, e.g. INT **: Output data type, e.g. 

USINT
BCD_
TO_**

Input data type: ANY_BIT, BCD format **: Output data 
type, e.g. INT

n.s.a

*_TO_BCD *: Input data type, e.g. INT Output data type: ANY_BIT, 
BCD format

n.s.

TRUNC Truncation in direction zero Input type: ANY_REAL, 
Output type: ANY_INT

n.s.

Standard arithmetic functions
Data types: ANY_NUM, TIME
Function Return value, example Note
ADD Addition, Number of inputs 

expandablebMUL Multiplication
SUB Subtraction Two inputs
DIV Division
MOD Division remainder
Standard functions for bit sequences
Data types: ANY_BIT
Function Return value, example Note
SHL Shift left by N bit, right fill with zero
SHR Shift right by N bit, fill left with zero
ROL Rotate left by N bit, “in a circle”
ROR Rotate right by N bit, “in a circle”
AND Bitwise AND operation Number of inputs 

expandablebOR Bitwise OR operation
XOR Bitwise exclusive OR operation
NOT Negation
Standard functions for comparison
Input: all data types (ANY_BIT are interpreted as unsigned integers)
Output: BOOL
Function Return value, example Note
GT, > “Greater than”: returns TRUE, if operand > CR
GE, >= “Greater or equal”: TRUE if greater than or equal to CR
EQ, = “Equal”: TRUE if equal to CR
NE, <> “Not equal”: TRUE if unequal to CR
LE, <= “Less or equal”: TRUE if less than or equal to CR
LT, < “Less than”: TRUE if smaller than to CR
MAX n.s.a

MIN n.s.
an.s. means: in PLC-lite this property is not supported
bExpandability of the inputs is not supported in PLC-lite
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Table 16.10 Standard function blocks

Function Symbol Description
Bistable function blocks
SR FlipFlop, priority setting

RS FlipFlop, priority resetting

R_TRIG Rising edge detection

F_TRIG Falling edge detection

CTU Up counter

CTD Down counter

CTUD Up-down counter

Timer
TP

Timer, Puls

Timer, pulse
TON

Timer, Einschaltverzögerung
Timer, switch-on delay

TOF

Timer, Ausschaltverzögerung
Timer, switch-off delay

16.1  Program Organisation Units (POU)
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Table 16.11 Language elements Instruction list

IL
Operator Modifier Operand type Meaning
LD N alla Sets the Current Result (CR) equal to the operand
ST N alla Saves the CR to the operand address
S BOOL Sets operand to 1 if current result is TRUE
R BOOL Resets operand to 0 if CR is TRUE
AND N ( ANY_BITa Bitwise AND
OR N ( ANY_BITa Bitwise OR
XOR N ( ANY_BITa Bitwise Exclusive OR
ADD ( ANY_NUM, TIME Addition
SUB ( ANY_NUM, TIME Subtraction
MUL ( ANY_NUM, TIME Multiplication
DIV ( ANY_NUM, TIME Division
GT ( all Comparison: >
GE ( all Comparison: >=
EQ ( all Comparison: =
NE ( all Comparison: <>
LE ( all Comparison: <
LT ( all Comparison: <=
JMP C N LABEL Jump to the LABEL
CAL C N NAME Call function module NAMEb

RET C N Return from function or FB
) Processing of the deferred operation

aWhen using the modifier N, the data type must be BOOL
bParameters are transferred to the function block by loading/saving the input parameters as described 
in the front part of this book. PLC-lite does not provide for the transfer of parameters in a list of input 
parameters. Example: CAL_CTR_(CU:=Clock,_PV:=Input)

16.2  Elements of the Instruction List Language (IL)

The statement list is composed of a sequence of statements. The instructions are structured 
in this way, although not every instruction must contain all of these elements:

Label: Operator Operand Comment

The following Table 16.11 lists the operators defined for the statement list. A large part 
of them corresponds to the standard functions mentioned in Table 16.9 and thus makes 
them available in the IL.

16 Standard Compliance of PLC-Lite
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16.3  Keywords

Keywords (Table  16.12) are protected and must not be used for identifiers. Particular 
attention should be paid to this: The identifiers of the inputs and outputs of the standard 
function blocks are also protected keywords.

The names of the input and output parameters of the standard function blocks (formal 
parameters) can be found in the pictures above. These names must not be used for self- 
defined FBs.

Table 16.12 Keywords

Keyword
ACTION ... END_ACTION
ARRAY ... OF
AT
CASE ... OF ... ELSE ... END_CASE
CONFIGURATION ... END_CONFIGURATION
CONSTANT
EN, ENO
EXIT
FALSE
F_EDGE
FOR ... TO ... BY ... DO ... END_FOR
FUNCTION ... END_FUNCTION
FUNCTION_BLOCK ... END_FUNCTION_BLOCK
IF ... THEN ... ELSIF ... ELSE ... END_IF
IMPLEMENTS, EXTENDS
INITIAL_STEP ... END_STEP
INTERFACE ... END_INTERFACE
METHOD ... END_METHOD
PROGRAM ... WITH
PROGRAM ... END_PROGRAM
R_EDGE
READ_ONLY, READ_WRITE
REPEAT ... UNTIL ... END_REPEAT
RESOURCE ... ON ... END_RESOURCE
RETAIN, NON_RETAIN
RETURN
STEP ... END_STEP
STRUCT ... END_STRUCT

(continued)
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Table 16.12 (continued)

Keyword
TASK
THIS, SUPER
TRANSITION ... FROM ... TO ... END_TRANSITION
TRUE
TYPE ... END_TYPE
VAR ... END_VAR
VAR_INPUT ... END_VAR
VAR_OUTPUT ... END_VAR
VAR_IN_OUT ... END_VAR
VAR_TEMP ... END_VAR
VAR_EXTERNAL ... END_VAR
VAR_ACCESS ... END_VAR
VAR_CONFIG ... END_VAR
VAR_GLOBAL ... END_VAR
WHILE ... DO ... END_WHILE
WITH
Data type names (see Table 16.5)
Names of the standard functions (see Table 16.9)
Names of the standard function blocks: (see Table 16.10)
CTD, CTU, CTUD, F_TRIG, RS, R_TRIG, SR, TOF, TP, TON
Identifier of the standard function block inputs/outputs:
CD, CLK, CU, CV, ET, IN, LD, PV, Q, Q1, R, R1, S, S1
Operators of the IL language (see Table 16.11)
ST language operators:
NOT, MOD, AND, XOR, OR

16 Standard Compliance of PLC-Lite
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Terms English – German

Abstract

Terms English – German.

Absolute time absolute Zeit
Access path Zugriffspfad
Action Aktion
Action block Aktionsblock
Agitator Mischer, Rührer
Aggregate Aggregat
Argument Argument
Array Feld
Assignment Zuweisung
Based number basisbezogene Zahl
Bistable function block bistabiler Funktionsbaustein
Bit string Bitfolge
Boiler Kessel
Body Rumpf
Call Aufruf
Character string Zeichenfolge
Clock Takt(−impuls)
Cluster Bündel (math.)
Comment Kommentar
Compare vergleichen
Compile kompilieren

17

(continued)
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Configuration Konfiguration
Cooler Kühlung
Counter Zähler
Counter function block Zähler-Baustein
Data type Datentyp
Date and time Datum und Uhrzeit
Declaration Deklaration
Delimiter Begrenzungszeichen
Dice (Spiel-)Würfel
Digit Ziffer, Zahl
Direct representation direkte Darstellung
Discriminate (between) unterscheiden (zwischen)
Double word Doppelwort
Down abwärts
Evaluation Auswertung
Execution control element Element zur Ausführungssteuerung
Falling edge fallende Flanke
Flash Blitz, Blinker
Function Funktion
Function block instance Funktionsbaustein-Instanz
Function block type Funktionsbaustein-Typ
Function block diagram Funktionsbaustein-Sprache
Generic data type allgemeiner Datentyp
Global scope globaler Geltungsbereich
Global variable globale Variable
Hierarchical addressing hierarchische Adressierung
Identifier Bezeichner
Initial value Anfangswert
Input Eingang
Input parameter Eingangsparameter
Instance Instanz
Instantiation Instanziierung
Integer literal ganzzahliges Literal
Invocation Aufruf
Keyword Schlüsselwort
Label Marke
Language element Sprachelement
Literal Literal
Local scope lokaler Geltungsbereich
Logical location logischer Speicherort
Long real lange Realzahl
Long word Langwort
Memory Datenspeicher
Mixer Mischer, Rührer
Named element bezeichnetes Element

(continued)

(continued)
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Off/on-delay timer function block Aus/Einschaltverzögerung
Operand Operand
Operator Operator
Output Ausgang
Output parameter Ausgangsparameter
Overloaded überladen
PII (process image inputs) PAE (Prozess-Abbild der Eingänge)
PIO (process image outputs) PAA (Prozess-Abbild der Ausgänge)
Power flow Stromfluß
Program Programmieren, Programm
Program organisation unit POU Programm-Organisations-Einheit POE
Push Drücken
Real literal reelles Literal
Reset Zurücksetzen
Resource Resource
Retentive data Gepufferte Daten
Return Rücksprung
Rising edge steigende Flanke
Scope Geltungsbereich
Semantics Semantik
Semigraphic representation Semigraphische Darstellung
Single data element Einzel-Datenelement
Step Schritt
Structured data type Strukturierter Datentyp
Subscripting Indizierung
Symbolic representation Symbolische Darstellung
Switch Schalter
Tank Kessel, Messgefäß
Task Task, Aufgabe
Time Zeit
Time literal Zeitliteral
Transition Transition, Übergang
Unsigned integer Vorzeichenlose ganze Zahl
Up Aufwärts
Value Wert
Vessel Kessel, Messgefäß
Wired or Verdrahtetes ODER

(continued)

17 Terms English – German
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