DOKUMEN CD-1

POTENSI ZEOLITE MOLECULAR SIEVE 13X HP 0,4-0,8 OXYGEN CONCENTRATOR SEBAGAI FILTER DAN METAL ORGANIC FRAMEWORK (MOF) SEBAGAI SENSOR CO₂ PADA PURWARUPA AIR PURIFIER

Oleh:

Tania Verasta/1104194020 Ni Putu Eka Kusuma Wardani/1104194071 Rafael Arya Satria Yudhistira/1104194058 Suci Awali Muminati/1104192029

PRODI S1 TEKNIK FISIKA

FAKULTAS TEKNIK ELEKTRO

UNIVERSITAS TELKOM

BANDUNG

2022

Dokumentasi Produk Capstone Design

Lembar Pengesahan Dokumen

Judul Capstone Design : Potensi Zeolite Molecular Sieve 13X Hp 0,4-0,8 Oxygen

Concentrator sebagai Filter dan Metal Organic Framework (MOF) sebagai Sensor Co₂ pada Purwarupa

Air purifier

Jenis Dokumen : Usulan Gagasan dan Pemilihan Topik

Nomor Dokumen : FTE-CD-1

Nomor Revisi : 2

Tanggal Pengesahan : Rabu, 2 Agustus 2023 Fakultas : Fakultas Teknik Elektro

Program Studi : S1 Teknik Fisika Jumlah Halaman : 34 Halaman

Data Pemeri		3	.
Ditulis Oleh	Nama NIM	: Tania Verasta : 1104194020	Jabatan : Mahasiswa Tanda : Tangan
	Nama NIM	: Ni Putu Eka Kusuma Wardani : 1103194071	Jabatan : Mahasiswa Tanda : Tangan Aw
	Nama NIM	: Rafael Arya Satria Yudhistira : 1104192058	Jabatan : Mahasiswa Tanda : Tangan
	Nama NIM	: Suci Awali Muminati : 1104194029	Jabatan : Mahasiswa Tanda : Tangan
Diperiksa Oleh	Nama Tanggal	: Dr. Eng, Indra Wahyudhin Fathona, S.Si, M.Si. : Rabu, 2 Agustus 2023	Jabatan : Penguji 1 Tanda : Tangan
	Nama Tanggal	: Hertiana Bethaningtyas D. K, S.T., M.T. : Rabu, 2 Agustus 2023	Jabatan : Penguji 2 Tanda : Tangan

Disetujui	Nama	: Dr. Ismudiati Puri Handayani, S. Si., M. Sc.	Jabatan : Pembimbing 1
Oleh	Tanggal	: Rabu, 2 Agustus 2023	Tanda : Tangan
	Nama Tanggal	: Dr. Eng. Indra Chandra, S. Si., M. Si. : Rabu, 2 Agustus 2023	Jabatan : Pembimbing 2 Tanda : Tangan
	Nama Tanggal	: Linahtadiya Andiani, S. Si., M. Si. : Rabu, 2 Agustus 2023	Jabatan Tanda Tangan : Pembimbing 3

Timeline Revisi Dokumen

Telkom University Learning Center Building - Bandung Technoplex | Jl. Telekomunikasi, Terusan Buah Batu, Bandung 40257, West Java, Indonesia t: +62 22 7564108 | f: +62 22 756 5200 | e: info@telkomuniversity.ac.id

	lingkungan kurang	2) Aspek lingkungan	
	menampilkan indoor activities	menampilkan indoor activities	
	dan indoor concentration CO ₂ .	dan indoor concentration CO ₂ .	
	Aspek keberlanjutan tidak	3) Aspek keberlanjutan produk	
	perlu SDGs.	dibahas pada bagian skenario	
		penggunaan.	
	Desain produk pada solusi	Desain produk diganti dengan	
	sistem yang diusulkan perlu	diagram blok dengan menyertakan	
	diubah, bagian sensor pada	bagian sensor yang diletakkan pada	17
	produk diletakkan pada air	air inlet dan air outlet.	
	inlet dan air outlet		
	Diagram blok sensor pada	Memperbaiki digram blok sensor	
	karakteristik produk perlu		18
	diperbaiki		
	Perlu menyertakan pengujian	Menambahkan informasi	
	produk untuk menjawab	pengujian produk. Pengujian	
	permasalahan awal pada	tersebut diantarannya:	
	skenario penggunaan	Pengujian filter	20
		Pengujian sensor	
		Pengujian Air Purifier (filter &	
		sensor)	
	Ringkasan dan kesimpulan	Ringkasan dan kesimpulan	22
	perlu disatukan	diperbaiki	22
2, 3	Referensi mengenai	Menambahkan referensi mengenai	
November	perbandingan Filter HEPA	perbandingan <i>Filter</i> HEPA dengan	5
2022	dengan Filter Zeolite perlu	Filter Zeolite	3
	ditambahkan		
	Referensi mengenai	Menambahkan referensi mengenai	
	sensitivitas sensor CO ₂	sensitivitas sensor CO ₂ komersil	12
	komersil perlu ditambahkan		
	Penulisan dokumen harus	Memperbaiki kesalahan penulisan	
	sesuai dengan PUEBI dan	yang tidak sesuai dengan PUEBI	1-23
	aturan penulisan yang ada	dan aturan penulisan yang ada	

DAFTAR ISI

DAFTAR ISI	v
1. Pengantar	1
1.1. Ringkasan Isi Dokumen	1
1.2. Tujuan Penulisan Dokumen	1
1.3. Referensi	1
1.4. Daftar Singkatan	5
2. Masalah	5
2.1. Latar Belakang Masalah	5
2.2. Informasi pendukung	7
2.1.1. Konsentrasi Gas Karbon Dioksida (CO ₂) dalam Ruangan (Indoor)	7
2.1.2. Efisiensi Zeolit untuk menyerap gas CO ₂	8
2.1.3. Kemampuan MOF untuk menyerap gas CO ₂	8
2.1.4. Sick Building Syndrome (SBS)	8
2.1.5. Air purifier Komersil	9
2.3. Analisis Umum	10
1. Aspek Ekonomi	10
2. Aspek Lingkungan	12
3. Aspek Hukum (Peraturan Indonesia tentang IAQ)	13
4. Aspek Kesehatan	14
2.4. Kebutuhan yang harus dipenuhi	15
2.5. Tujuan	15
3. Solusi Sistem yang Diusulkan	15
3.1. Karakteristik Produk	19
1. Filter berbasis Zeolite Molecular Sieve 13X HP 0,4-0,8 Oxygen Concentra	ıtor
	19
2. Sensor Gas CO ₂ Komersil dengan Modifikasi Substrat Sensing Element	19
3. Pengiriman, Penyimpanan, dan Penampilan Data	19
3.2. Skenario Penggunaan	
3.2.1. Penggunaan dan Pengujian Produk	
3.2.2. Prinsip Kerja Alat	
3.2.3. Stakeholder Yang Terlibat	23

	3.2.4. Rencana Keberlanjutan Produk	24
4.	Kesimpulan dan Ringkasan	.25
Lar	mpiran	26

1. Pengantar

1.1. Ringkasan Isi Dokumen

Tingkat konsentrasi CO₂ dalam ruangan yang melebihi batas ambang (1000 ppm) dapat menyebabkan *sick building syndrome* (SBS). *Air purifier* dapat digunakan untuk mem*filter* polutan dan meningkatkan kualitas udara. Namun, *filter* dan sensor pada *air purifier* komersial tidak didesain secara spesifik untuk menyerap CO₂. Pada *capstone design* ini akan dilakukan rancang bangun *filter* yang secara spesifik dapat menyerap CO₂ dan sensor yang secara sensitif mendeteksi kehadiran CO₂. *Filter* dan sensor ini akan diujicobakan pada purwarupa *air purifier* yang dilengkapi *display* untuk memonitor konsentrasi CO₂. Material aktif *filter* akan menggunakan *Zeolite Molecular Sieve* 13X HP 0,4-0,8 *Oxygen Concentrator*. Sedangkan material aktif sensor menggunakan *Metal Organic Framework* (MOF) MIL-100 Cr (70% dan 95% ZAA) dan MIL-101 Cr (30% dan 95% ZAA). *Display* akan menggunakan tipe LED. *Capstone design* ini melibatkan berbagai persoalan *engineering complex* di Teknik Fisika yang memerlukan keahlian dibidang desain, material, instrumentasi, dan modifikasi perangkat lunak. *Capstone desain* ini juga erat kaitannya dengan aspek di luar bidang *engineering* seperti aspek ekonomi, lingkungan, hukum dan juga kesehatan.

1.2. Tujuan Penulisan Dokumen

Penulisan dokumen *Capstone Design* 1 (CD-1) bertujuan untuk memberikan informasi terkait dengan permaslaahan serta solusi yang diusulkan. Adapun informasi tersebut adalah

- 1. Latar belakang serta informasi terkait dengan *Indoor Air Quality* (IAQ) dan sensor gas CO₂ berbasis *Metal Organic Framework* (MOF) dan *filter* Zeolite *Molecular Sieve* 13X HP 0,4-0,8 *Oxygen Concentrator* untuk purwarupa *air purifier*.
- 2. Analisis dari berbagai aspek terkait dengan solusi yang diberikan.
- 3. Kebutuhan serta solusi produk yang akan dibuat.
- 4. Karakterisitik produk yang akan dibuat dan skenario penggunaan sensor gas CO₂ berbasis Metal Organic Framework (MOF) dan filter Zeolite Molecular Sieve 13X HP 0,4-0,8 Oxygen Concentrator untuk purwarupa air purifier.

1.3. Referensi

[1] W. W. Lestari *et al.*, "Composite material consisting of HKUST-1 and Indonesian activated natural zeolite and its application in CO2 Capture," *Open Chem*, vol. 17, no. 1, pp. 1279–1287, Dec. 2019, doi: 10.1515/chem-2019-0136.

- [2] C. I. Y. Gessal, A. S. M. Lumenta, and B. A. Sugiarso, "Kolaborasi Aplikasi Android Dengan Sensor Mq-135 Melahirkan Detektor Polutan Udara," *Jurnal Teknik Informatika*, vol. 14, no. 1, 2019.
- [3] D. Yulianti and H. Wiyono, "Sick Building Syndrome."
- [4] L. Fang, G. Clausen, and P. O. Fanger, "Impact of Temperature and Humidity on Chemical and Sensory Emissions from Building Materials," *Indoor Air*, vol. 9, pp. 193–201, 1999.
- [5] S. C. Hu *et al.*, "Removal of carbon dioxide in the indoor environment with sorption-type air *filters*," *International Journal of Low-Carbon Technologies*, vol. 12, no. 3, pp. 330–334, Sep. 2017, doi: 10.1093/ijlct/ctw014.
- [6] L. B. Setyawan, "Prinsip Kerja dan Teknologi LCD."
- I. Rubashvili, L. Eprikashvili, T. Kordzakhia, M. Zautashvili, N. Pirtskhalava, and M. Dzagania, "Adsorptive removal study of the frequently used fluoroquinolone antibiotics Moxifloxacin and norfloxacin from wastewaters using natural zeolites," *Mediterranean Journal of Chemistry*, vol. 9, no. 2, pp. 142–154, 2019, doi: 10.13171/mjc92190921700ar.
- [8] M. Król, "Natural vs. Synthetic zeolites," *Crystals*, vol. 10, no. 7. MDPI AG, pp. 1–8, Jul. 01, 2020. doi: 10.3390/cryst10070622.
- [9] D. Kepada Fakultas Teknik Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Gelar Ahli Madya Teknik, "PROYEK AKHIR."
- [10] P. By ALLDATASHEETCOM, "DATASHEET SEARCH SITE | WWW.ALLDATASHEET.COM," 2015. [Online]. Available: www.winsensensor.com
- [11] J. Sains and D. Seni Its, "Sintesis HKUST-1 dengan Penambahan Co(II) Menggunakan Metode Solvotermal," 2016.
- [12] L. J. Small, M. E. Schindelholz, and T. M. Nenoff, "Challenges and Opportunities for MOF Gas Sensors."
- [13] B. Geffroy, P. le Roy, and C. Prat, "Organic light-emitting diode (LCD) technology: Materials, devices and display technologies," *Polymer International*, vol. 55, no. 6. pp. 572–582, Jun. 2006. doi: 10.1002/pi.1974.
- [14] T. Samiaji, P. Bidang, and K. Atmosfer, "GAS CO2 DI WILAYAH INDONESIA," 2011. [Online]. Available: www.inilah.
- [15] F. Tahsiin, L. Anggraeni, I. Chandra, R. A. Salam, and H. Bethaningtyas, "Analysis of Indoor Air QualityBased on Low-Cost Sensors," vol. 10, no. 6, 2020.

- [16] D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, and R. Hausler, "Advances in principal factors influencing carbon dioxide adsorption on zeolites," in *Science and Technology of Advanced Materials*, Mar. 2008, vol. 9, no. 1. doi: 10.1088/1468-6996/9/1/013007.
- [17] S. S. Fatima, A. Borhan, M. Ayoub, and N. A. Ghani, "CO2 Adsorption Performance on Surface-Functionalized Activated Carbon Impregnated with Pyrrolidinium-Based Ionic Liquid," *Processes*, vol. 10, no. 11, p. 2372, Nov. 2022, doi: 10.3390/pr10112372.
- [18] A. Lecturer Dra Ratna Ediati, "SYNTHESIS OF METAL ORGANIK FRAMEWORK TYPED HKUST-1 BY SOLVOTHERMAL WITH ADDITION OF POLYETHYLENE GLYCOL (PEG) CINDY KURNIA PERMATASARI NRP. 1412 100 096 CHEMISTRY DEPARTMENT FACULTY OF MATHEMATICS AND NATURAL SCIENCES SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2016."
- [19] C. Rosnaomi, I. P. Handayani, I. Chandra, and W. W. Lestari, "PENGARUH PAPARAN GAS CO2 TERHADAP SIFAT LISTRIK METAL ORGANIC FRAMEWORK (MOF) CO2 Exposure Effect on The Electrical Properties of Metal Organic Framework (MOF)."
- [20] C. P. Cabello, G. Berlier, G. Magnacca, P. Rumori, and G. T. Palomino, "Enhanced CO2 adsorption capacity of amine-functionalized MIL-100(Cr) metal-organic frameworks," *CrystEngComm*, vol. 17, no. 2, pp. 430–437, Jan. 2015, doi: 10.1039/c4ce01265h.
- [21] T. Samiaji, P. Bidang, and K. Atmosfer, "GAS CO2 DI WILAYAH INDONESIA," 2011. [Online]. Available: www.inilah.
- [22] C. A. Erdmann and M. G. Apte, "INDOOR CARBON DIOXIDE CONCENTRATIONS AND SICK BUILDING SYNDROME SYMPTOMS IN THE BASE STUDY REVISITED: ANALYSES OF THE 100 BUILDING DATASET."
- [23] "GAMBARAN KEJADIAN SICK BUILDING SYNDROME (SBS)."
- [24] "RANCANG BANGUN PROTOTIPE AIR PURIFIER FOTOKATALISTIK UNTUK MENGURANGI POLUTAN UDARA DI DALAM RUANGAN."
- [25] Herlina Susanto Sunuh, S. K. M. Hubungan Kualitas Udara Ruang Perawatan Dengan Gangguan Fungsi Paru Perawat Di Rsud Undata Palu-Sulteng. Diss. Universitas Gadjah Mada, 2011.
- [26] Hanna Azarya Samosir. (2015, Mei 21). Biaya Berobat Penyakit Akibat Polusi Udara Jakarta Capai Rp 38,5 T. [Online]. Available: Https://Www.Cnnindonesia.Com/Gaya-

- Hidup/20150521143214-255-54793/Biaya-Berobat-Penyakit-Akibat-Polusi-Jakarta-Capai-Rp-385-T
- [27] Budhijuwono, A., Agustina, A., & Anditiarina, D. (2020). Efektifitas Hepa *Filter* Dengan Charcoal Dalam Penyaringan Organofosfat Di Kabin Pesawat. Jurnal Kedokteran, 6(1), 17-31.
- [28] W. F. De Gids, P. Wouters, "Co2 As Indicator For The Indoor Air Quality General Principles", Ventilation Information Paper N° 33, Pp. 1-4, 2010
- [29] Nimlyat P.S., Kandar M.Z. Appraisal of Indoor Environmental Quality (Ieq) In Healthcare Facilities: A Literature Review. Sustain. Cities Soc. 2015; 17:61–68
- [30] Da Costa Filho B.M., Vilar V.J.P. Strategies for The Intensification Of Photocatalytic Oxidation Processes Towards Air Streams Decontamination: A Review. Chem. Eng. J. 2020; 391:123531
- [31] United State Environmental Protection Agency. Emergencies And Iaq. [Online].

 Available: Https://Www.Epa.Gov/Indoor-Air-Quality-Iaq/Emergencies-And-Iaq#Power-Outages
- [32] Peraturan Menteri Kesehatan Republik Indonesia Nomor 1077/Menkes/Per/V/2011
- [33] Indanazulfa Qurrota A'yuna, Rodhiah Umaroh, "Polusi Udara Dalam Ruangan Dan Kondisi Kesehatan: Analisis Rumah Tangga Indonesia", Jurnal Ekonomi Dan Pembangunan Indonesia, Vol. 22 No. 1 Januari 2022, Pp. 16–26, Jan. 2022
- [34] Fitri Kusuma Dewi, Lutfan Lazuardi, "Polusi Udara Dalam Ruangan Dan Kejadian Kardiometabolik Di Indonesia: Analisis Data Indonesian Family Life Survey (Ifls)", Bkm Journal Of Community
- [35] Liu, Y., Zhou, B., Wang, J., & Zhao, B. Health benefits and cost of using air purifiers to reduce exposure to ambient fine particulate pollution in China. *Journal of Hazardous Materials*, 414, 125540. 2021.
- [36] Persily, A. K., & Siegel, J. A. Improving ventilation performance in response to the pandemic. *The Bridge*, 52(3), 38-41. 2022
- [37] McMullan, J., Hart, K. W., Barczak, C., Lindsell, C. J., & Branson, R. Supplemental oxygen requirements of critically injured adults: an observational trial. *Military medicine*, 181(8), 767-772. 2016

1.4. Daftar Singkatan

Singkatan	Arti	
EPA	Environmental Protection Agency	
IAQ	Indoor Air Quality	
LCD	Liquid Crystal Display	
MOF	Metal Organic Framework	
NDC	Nationally Determined Contribution	
PPM	Part Per Million	
SBS	Sick Building Syndrome	
SDGs	Sustainable Development Goals	
WHO	World Health Organization	
ZAA Zeolit Alam Teraktivasi		

2. Masalah

2.1. Latar Belakang Masalah

Polusi menyebabkan udara disekitar kita mengandung kontaminan berbahaya, salah satunya adalah gas karbondioksida (CO₂) yang merupakan kontaminan non-biologis. Kontaminan CO₂ dari lingkungan dapat masuk ke dalam ruang tinggal manusia dan jika tidak ada proses penyaringan (*filtering*), kontaminan di dalam ruangan akan meningkat. Selain itu proses pernafasan manusia juga menghasilkan CO₂. Data dari *Mauna Loa Observatory* melaporkan bahwa konsentrasi CO₂ di atmosfer telah meningkat 100 ppm dalam 60 tahun dan puncak dari konsentrasinya berada pada angka 420 ppm [1] sedangkan kadar konsentrasi dalam ruangan gas CO₂ sebesar 1000 ppm per 8 jam [2]. Tingginya konsentrasi CO₂ di dalam ruangan mempengaruhi kesehatan manusia yang beraktivitas di dalamnya. Kualitas udara yang buruk dalam suatu ruangan akan memicu timbulnya *Sick Building Syndrome* (SBS) yakni suatu gejala gangguan kesehatan yang dialami seseorang apabila berada di lingkungan gedung yang tidak sehat. Disamping itu, berdasarkan data dari *World Health Organization (WHO)* terdapat kurang lebih 3 juta jiwa kematian yang diakibatkan oleh pencemaran udara. Dengan 2,8 juta jiwa terdampak paparan polusi udara dalam ruangan [3]

Agenda untuk menurunkan tingkat konsentrasi CO₂ dalam ruangan masih belum menjadi sorotan penting saat ini [4]. Masyarakat membutuhkan sebuah pengatur kualitas udara yang difokuskan pada penurunan konsentrasi gas CO₂ dalam ruangan, yang dilengkapi dengan fitur sensor udara yang memiliki sensitivitas tinggi dan *display* yang dapat menunjukan kondisi aman atau tidaknya udara dalam ruangan kepada pengguna. Solusi yang ada pada saat ini untuk

mengatur kualitas udara dalam ruangan adalah *air purifier*. Pada *air purifier* komersil yang difokuskan untuk menurunkan konsentrasi gas CO₂ dalam ruangan menggunakan *HEPA filter* untuk menyaring partikel debu dan *activated carbon* based *filter* sebagai material berpori yang memiliki kemampuan menyerap bau dan gas CO₂ yang hingga saat ini masih dalam proses pengembangan [5]

Selain itu, indikator yang digunakan pada *air purifier* komersial pada umumnya hanya berupa lampu yang akan berubah warna saat konsentrasi polutan tinggi. Informasi kinerja *air purifier* dalam menyerap polutan sering kali tidak diketahui. Disisi lain, teknologi *display* berbasis aplikasi untuk memonitor kadar polutan juga tidak dirancang untuk membaca data kemampuan serapan *filter* [6]

Salah satu material yang berpotensi untuk menyerap gas CO₂ dengan efektif adalah zeolit. Zeolit dapat diaplikasikan sebagai penyerap, penukar ion, *filter* molekul, dan penghilang bau pada molekul gas seperti CO, H₂S, dan terutama gas CO₂ [7]. Zeolit dengan ketersediaan sekitar 400.000.000 ton merupakan salah satu komoditas mineral terbesar di Indonesia[8]. Namun, banyak orang yang masih belum mengenal material zeolit. Sehingga, pemanfaatannya yang masih minim di Indonesia. Keunggulan Zeolit dalam menyerap CO₂ dibandingkan dengan bahan lain karena bentuk Zeolit yang terdiri dari gugus amonium dan hidroksil. Sehingga, berpotensi mengikat gas CO₂ dan dapat berinteraksi secara kuat dengan gas CO₂ Berdasarkan penelitian sebelumnya, zeolit dapat menyerap kadar gas CO₂ lebih efektif dibandingkan karbon. Dengan penurunan kadar gas CO₂ sebesar 40 % pada ruang indoor ber-AC dan 70 % pada ruangan indoor non-AC [9]. Hal tersebut menunjukkan bahwa Zeolit dapat menyerap gas berbahaya, khususnya gas CO₂ lebih baik dibandingkan *filter* pembersih udara lainnya. Salah satu jenis zeolit yang memiliki kapasitas penyerapan gas CO₂ yang tinggi dibandingkan dengan jenis zeolit lainnya adalah *Zeolit Molecular Sieve* 13X *HP* 0,4-0,8 *Oxygen Concentrator*.

Untuk mengetahui tingkat efektivitas dari *filter* Zeolit dalam menyerap gas CO₂, perlu dilakukan pengukuran kadar konsentrasi CO₂ menggunakan sistem sensor gas. Namun, saat ini sensor gas CO₂ komersil masih memiliki sensitivitas yang rendah seperti pada sensor gas MQ135 dengan kemampuan deteksi 10 hingga 1000 ppm[10]. Sehingga perlu dikembangkan sistem sensor dengan tingkat sensitivitas yang tinggi terhadap gas CO₂. Disisi lain, *Metal Organic Frameworks* (MOF) merupakan salah satu bahan nanomaterial dengan sifat yang mirip dengan zeolit, serta dapat dikoordinasikan dengan berbagai logam dan ligan organik untuk pengikatan yang lebih kuat. MOF memiliki kemampuan absorpsi, porositas tinggi, luas permukaan yang besar, struktur yang seragam sehingga MOF dapat dimanfaatkan sebagai

penyimpanan dan pemisahan gas, serta katalisis dan sensor gas [11]. Oleh karena itu MOF sering kali diaplikasikan sebagai katalisis, media penyimpanan dan pemisahan gas, dan sensor gas [12]

Berdasarkan kelebihan tersebut, tim merancang sebuah alat purwarupa Air purifier penyerap gas CO₂ yang menitikberatkan fungsinya pada penyerapan gas CO₂ dengan menggunakan filter berbahan Zeolit Molecular Sieve 13X HP 0,4-0,8 Oxygen Concentrator yang dilengkapi fitur sensor gas CO₂ berbasis MOF dan display. Alat penyerap gas CO₂ berbasis *filter Zeolit* ini dibuat dengan desain yang portable dengan ukuran 13.5 x 13.5 x 35.5 cm dengan Clean Air Direct Rate (CADR) sebesar 2.6 m³/h untuk ruangan berukuran 3 x 3 m. Kemudian, pada alat ini terdapat sensor pendeteksi kadar gas CO₂ berbasis MOF yang dilengkapi dengan display LCD untuk memonitor konsentrasi gas CO₂ menjadi salah satu fitur pada alat ini. Pemilihan display LCD didasari oleh keunggulannya dibandingkan jenis display lainnya, seperti memiliki tampilan objek yang lebih kontras dan hemat energi [13]. Dengan adanya sensor pendeteksi ini, dapat menunjukkan konsentrasi CO₂ yang ada di dalam ruangan. Sehingga, memudahkan pengguna untuk mengidentifikasi kualitas udara yang ada dalam ruangan. Diharapkan dengan adanya alat penyerap gas CO₂ Berbahan Zeolite Molecular Sieve 13X HP 0,4-0,8 Oxygen Concentrator yang dilengkapi sensor gas CO2 berbasis MOF dan display dapat membantu meningkatkan kualitas udara dengan menurunkan angka konsentrasi gas CO₂ dalam ruangan.

2.2. Informasi pendukung

2.1.1. Konsentrasi Gas Karbon Dioksida (CO₂) dalam Ruangan (Indoor)

Kualitas udara dalam ruangan (*Indoor Air Quality*) dipengaruhi oleh aktivitas dalam ruangan dan infiltrasi udara dari luar. Sehingga, kenaikan konsentrasi gas karbondioksida (CO₂) berdampak pada penurunan kualitas udara dalam ruangan [14] Tingkat konsentrasi karbon dioksida (CO₂) diatmosfer global telah mencapai rata – rata 417,6 *part per million* (ppm). Dibandingkan dengan tahun 2011, konsentrasi gas CO₂ telah mengalami kenaikan sebesar 6,2 %. Disamping itu, konsentrasi gas CO₂ permukaan di Indonesia telah mengalami peningkatan hingga diatas angka 400 ppm pada tahun 2004 hingga 2020.

Berdasarkan penelitian yang telah dilakukan sebelumnya untuk menganalisis konsentrasi gas CO₂ dalam ruangan di Universitas Telkom Bandung. Didapatkan rata – rata 8 jam konsentrasi gas CO₂ dalam ruangan berada pada kisaran 393 – 518 ppm saat ruangan kosong. Kemudian, mengalami kenaikan saat ruangan digunakan untuk aktivitas konsentrasi gas CO₂ dalam ruangan berada pada 4501 ppm. Dari kedua data tersebut dapat dilihat bahwa,

(348 K)

kadar konsentrasi dalam ruangan berada dibawah baku mutu maksimal CO₂ yang tertuang dalam Undang – Undang Kementrian Kesehatan 1007/MENKES/ PER/V/2011 yaitu 1000 ppm per 8 jam per orang. [15]

2.1.2. Efisiensi Zeolit untuk menyerap gas CO₂

Zeolit adalah mineral dengan struktur kristal aluminosilikat yang berbentuk *framework* tiga dimensi. Zeolit yang akan digunakan pada *filter* adalah Zeolit Alam Teraktivasi (ZAA) *molecular sieve* 13X yang memiliki rata – rata kapasitas penyerapan sebesar 1,34 mmol/g [16]. Sedangkan, activated carbon memiliki rata – rata kapasitas penyerapan sebesar 1.124 mmol/g [17].

2.1.3. Kemampuan MOF untuk menyerap gas CO₂

MOF sebagai absorben *Metal Organic Framework* adalah senyawa yang terdiri dari ion logam yang terkoordinasi dengan ligan organik untuk membentuk struktur satu, dua, atau tiga dimensi[18]. MOF adalah salah satu bahan berpori terbaik dalam adsorpsi selektif gas CO₂[19] Luas permukaan dan kemampuan adsorpsi MOF dan ZAA secara umum dapat diamati pada **Tabel 1.**

BET Langmuir Pore Pore Size Adsorption Sampel Surface Surface Volume CO_2 (nm) Area (m²/g) Area (m^2/g) (cm^3/g) ANZ 144.807 0.1576 0.1 - 12.7 mmol/g1369 MIL-100 (Cr) 1716 3000 0.79 2.5 - 2.9 $2.4 \, \text{mmol/g}$ 0.495 mmol/g(298 k) to MIL-101 (Cr) 1.68 1.8 - 2.33314 4842 0.279 mmol/g

Tabel 1. Luas permukaan dan kemampuan adsorpsi CO₂ MOF dan ZAA [20]

2.1.4. Sick Building Syndrome (SBS)

Di seluruh dunia 2,7 juta jiwa meninggal akibat polusi udara. Dengan 2,2 juta diantaranya penyebab utamanya adalah polusi udara dalam ruangan [21]. Peningkatan kadar CO₂ dalam ruangan menjadi gejala utama tingginya kasus SBS [22]. Beberapa hasil penelitian

menunjukkan adanya korelasi antara kualitas udara dalam ruangan dengan kejadian SBS di dalam suatu gedung perkantoran, laboratorium dan bangunan lainnya. Beberapa gejala yang sering dirasakan pada 20-30% pekerja dalam suatu gedung dengan adanya kejadian SBS adalah kelelahan, sakit kepala, adanya gejala iritasi mata, hidung dan iritasi tenggorokan, iritasi kulit, batuk kering, iritabilitas meningkat dan sukar konsentrasi, perasaan *nausea* (mual), mengantuk dan adanya hipersensitivitas terhadap bau. Adapun hasil penelitian mengenai SBS di PT Telkom Devisi Regional VII seperti pada **Tabel 2.**

Tabel 2. Gejala Sick Building Syndrome di PT Telkom Devisi Regional VII [23]

Gejala Sick Building Syndrome	Jumlah Orang
Keluhan mengantuk	127
Kelelahan mental dan sakit kepala	89
Tidak dapat konsentrasi / sering melakukan kesalahan kerja	105
Mudah tersinggung / hipersensitif	73
Kulit dan selaput mata kering dan gatal	82

Disamping itu, sebanyak 8.000-18.000 kasus SBS terjadi setiap tahunnya di Amerika Serikat. Pada tahun 1976, sebanyak 29 peserta American Legion Convention meninggal oleh penyakit yang akhirnya disebut Legionnaries Disease dengan penyebab utamanya adalah SBS.

2.1.5. Air purifier Komersil

Air purifier atau pembersih udara adalah alat yang digunakan untuk menyaring udara dan membasmi udara kotor yang mengandung senyawa kimia maupun bakteri serta kuman. Khususnya di dalam ruangan, sehingga udara terasa lebih bersih dan meningkatkan kualitas udara sekitar. Terdapat beberapa jenis *filter air purifier* komersil seperti [24]:

- 1. *Ultraviolet* atau UV *air purifier Filter* yang menggunakan sinar *ultraviolet* untuk membunuh alergen atau kuman.
- 2. *Filter air sterilizer* yang menggunakan panas untuk mensterilkan udara dari kuman, bakteri, dan alergen.
- 3. Ion *plasmacluster* merupakan teknologi untuk disinfeksi udara untuk menekan efek virus di udara dan menghancurkan serta membersihkan jamur dalam udara. Sehingga, menghasilkan ion positif dan negatif yang sesuai dengan keadaan disekitarnya.

- 4. HEPA *Filter*s terbuat dari serat mikro borosilikat yang dilaminasi seperti kertas, dengan diameter kurang dari 1 mikron. HEPA *Filter* dapat mengumpulkan partikel hingga diameter 0,3 mikron setara dengan 0,00001 in atau 0,0003 mm (Fine partikel kurang dari 2.5 mikrometer)
- 5. Electrostatic precipitators dibuat dengan memasukan pelat baja ke dalam selubung plastik memiliki kemampuan memproduksi udara bersih dengan rentang 6 hingga 8 berdasarkan MERV rating. Untuk coarse partikel dengan ukuran lebih dari 2.5 Mikrometer.
- 6. Activated Carbon Filter atau Filter karbon aktif. Umumnya memiliki struktur seperti sarang lebah yang terbuat dari busa poliuretan dengan kandungan karbon 35 % hingga 50 %. Filter karbon aktif berfungsi untuk menyerap senyawa penghasil bau pada udara dan menyerap gas CO₂. Filter karbon aktif umumnya dililitkan pada bagian dalam maupun luar dari filter HEPA. Terdapat juga filter karbon aktif yang direntangkan pada bagian dalam bingkai saluran masukan ataupun keluar Electrostatic Precipitators.

Dari beberapa jenis *filter air purifier* komersil yang telah disebutkan sebelumnya, masih dalam tahap perkembangan dan belum efektif dalam penyaringan udara. Sehingga, pada *air purifier* komersial lebih banyak menggunakan HEPA *Filter* dan *Activated Carbon Filter* yang difokuskan untuk menurunkan gas CO₂.

2.3. Analisis Umum

1. Aspek Ekonomi

Sebanyak 400 sampai 500 juta orang di negara yang sedang berkembang berhadapan dengan masalah polusi udara dalam ruangan. Tahun 1989, di Amerika, menurut *Environmental Protection Agency* (EPA) studi polusi udara dalam ruangan lebih berat daripada di luar ruangan. Polusi udara dalam ruangan dapat menurunkan produktivitas kerja hingga senilai US \$10 miliar [25]. Dari hasil penelitian di perkantoran, sebuah studi mengenai bangunan kantor modern di Singapura dilaporkan bahwa 312 responden ditemukan 33% mengalami gejala SBS. Keluhan mereka umumnya cepat lelah 45%, hidung mampat 40%, sakit kepala 46%, kulit kemerahan 16%, tenggorokan kering 43%, iritasi mata 37%, lemah 31% [26]. Penyakit yang diakibatkan oleh polusi udara berkepanjangan adalah ISPA akut, penyakit bronkitis hingga asma. Biaya pengobatan untuk penyakit pernapasan akibat asma dan bronkitis berkisar Rp 43.000, - hingga Rp 4.400.000, - per pasien. Toal pasien yang menderita asma dan bronkitis sekitar 1,2 juta. Biaya penyakit akibat ISPA aku berkisar Rp 25.000, - hingga Rp 95.000, - per pasien dengan total 2,5 juta pasien [27].

HEPA *filter* didesain untuk menangkap partikel yang sangat kecil secara efektif namun mereka tidak dapat menyaring gas dan molekul bau [28]. Selain itu sensor semikonduktor pendeteksi gas CO₂ memiliki harga yang bervariasi di pasaran dengan kualitas penyerapan CO₂ yang berbeda-beda.

Tabel 3. Perbandingan Harga air purifier HEPA Filter dan Sensor Gas CO2

No.	Keterangan	Jenis	Harga	Spesifikasi
		Bowin Air		Teknologi HEPA Anion -
		purifier - Oxy		Generator Ion Negatif,
		Mini (3in1	Rp 299.000, -	Filter karbon aktif
		True HEPA,		mikropartikel beracun PM
		ANION,		2.5.
		Karbon <i>Filter</i>)		
				Filtrasi Hepa Tiga Tahap
				yaitu Kombinasi dari pre-
				filter, activated carbon dan
	Hepa Filter Air purifier Indoor			filter HEPA, Sistem
		Anion Air purifier Handle A8 With HEPA Filter	Rp 499.000, -	pemasukan dan pengeluaran
				udara 360 derajat dapat
1				menjangkau 12-meter
				persegi aliran udara di
				dalam ruangan dan
				melepaskan ion negative
				konsentrasi tinggi,
				menyingkirkan 99.97%
				substansi berbahaya dan
				bau, memberikan anda
				udara yang lebih segar dan
				bersih.
		Philips Air		Pemurnian efektif untuk
		purifier 800	Rp 1.488.000, -	partikel berukuran nano dan
		Series Nano	1.p 1.100.000,	efektif menghilangkan
		Protect HEPA		99,5% partikel nano hingga

		Filter		yang berukuran 0,003 um
		AC0820/20		(800 kali lebih kecil dari
				PM2.5), PM2.5, serbuk sari,
				debu, dan rontokan hewan,
				serta menghilangkan 99,9%
				virus dan 99% bakteri
				Ini memiliki sensitivitas
				yang baik terhadap gas
		MO 125	Rp 16.000, -	beracun dalam jangkauan
	Sensor Semikonduktor Penyerap Gas CO ₂	MQ-135		luas, dan keuntungan seperti
				umur panjang, sirkuit drive
				sederhana berbiaya rendah
2				Tahan air & anti-korosi,
2				sensitivitas tinggi, konsumsi
				daya rendah, stabilitas yang
		MHZ-14A	Rp 716.000, -	baik, kompensasi suhu,
				output linier yang sangat
				baik, umur panjang, anti
				gangguan uap air, tidak
				mudah ter-poison

Dari sisi ekonomi, *air purifier filter* dengan kemampuan menyerap gas CO₂ dan sensor semikonduktor pendeteksi gas CO₂ mempunyai pasar yang menjanjikan. Dengan semakin banyaknya teknologi yang berkembang, alat yang mampu mendeteksi gas CO₂ dan menyerap gas tersebut dapat ditampilkan pada *display* dan monitor peningkatan CO₂ menjadi teknologi tepat guna untuk masa saat ini dimana *indoor air quality* menjadi perhatian dan gas CO₂ meningkat secara fluktuatif.

2. Aspek Lingkungan

Pandemi covid telah menjadikan banyak orang beraktivitas di dalam ruangan. Menghembuskan udara dari seseorang mengandung sekitar 4% CO₂ (sedangkan udara luar mengandung sekitar 0,04% atau 400 ppm) [29]. Faktor lingkungan dan ventilasi alami dianggap sebagai faktor penting dalam menentukan IAQ (*Indoor Air Quality*) [30].

Pemeliharaan yang tidak tepat, desain bangunan yang buruk, dan aktivitas penghuni mengakibatkan memperburuknya IAQ [31]. Emisi gas CO₂ di dalam ruangan bisa didapat dari luar ruangan berasal dari pemadaman listrik,kebakaran hutan serta letusan gunung berapi, aktivitas rumah tangga [32]. Sedangkan kadar konsentrasi gas CO₂ dalam ruangan yang berada pada kisaran 393 – 518 ppm. Mengalami kenaikan saat ruangan digunakan untuk aktivitas, konsentrasi gas CO₂ dalam ruangan berada pada 4501 ppm [10]. Oleh karena itu, IAQ harus ditingkatkan dengan adanya alat untuk mereduksi kadar gas CO₂ yang tinggi.

3. Aspek Hukum (Peraturan Indonesia tentang IAQ)

Peraturan Menteri Kesehatan Republik Indonesia Nomor 1077/Menkes/PER/V/2011 terdapat kadar persyaratan kualitas udara pada ruang rumah, persyaratan kimia terkait gas-gas udara bersih ada pada tabel **Tabel 4.**

No.	Jenis Parameter	Satuan	Kadar maksimal yang dipersyaratkan	Keterangan
1	Sulfur dioksida (SO ₂)	ppm	0,1	24 jam
2	Nitrogen dioksida (NO ₂)	ppm	0,04	24 jam
3	Karbon monoksida (SO)	ppm	9,00	8 jam
4	Karbondioksida (CO ₂)	ppm	1000	8 jam
5	Timbal (Pb)	$\mu g/m^3$	1,5	15 menit

Tabel 4. Komponen Kimia Udara Bersih [33]

Laju aliran udara dalam ruang menurut standar kesehatan lingkungan kerja (kepmenkes RI No. 1405/MENKES/SK/XI/2002), harus mencapai 0,1 – 0,25 m/detik. Akan tetapi berdasarkan penelitian yang telah dilakukan, kecepatan udara dalam ruang seringkali dibawah standar. Untuk ventilasi, menurut Peraturan Menteri Kesehatan Republik Indonesia Nomor 1077/Menkes/PER/V/2011 pada ruangan minimal sebesar 10% dari luar lantai dengan ventilasi silang. Secara berkala AC pada ruangan harus dibersihkan sesuai dengan buku petunjuk, serta harus melakukan pergantian udara dengan membuka jendela minimal pada pagi hari secara rutin. Implementasi ini jarang dilakukan oleh banyak orang sehingga meningkatkan faktor risiko terutama gas CO₂ dalam ruangan.

4. Aspek Kesehatan

Aktivitas masyarakat 80-90% berada di dalam ruangan seperti rumah, kantor, restoran, kelas dan lainnya. Menurut United State Environmental Protection Agency (EPA) menjelaskan bahwa kadar polusi udara di dalam ruangan 100 kali lebih tinggi bahayanya dibanding di luar ruangan [34]. Salah satu polusi udara yaitu gas CO₂ memiliki dampak negatif yaitu mempengaruhi pernafasan dengan 2,2 juta di antara 2,7 juta orang meninggal akibat polusi udara di ruangan. Terdapat empat kategori akibat keracunan dari gas CO₂ pada jangka pendek, terlihat pada tabel dibawah.

Tabel 5. Kategori Dampak Kadar Gas CO₂ Berlebih [33]

No.	Keterangan	Kadar Gas (ppm)	Efek Samping
1	Konsentrasi diatas ambang batas	>1000	Mengantuk, menurunkan aktivitas fisik, sakit kepala dan sulit fokus
2	Konsentrasi diatas 3% ambang batas	3.000	Peningkatan tekanan darah dan gangguan pendengaran
3	Konsentrasi diatas 5% ambang batas	5.000	Pusing, stimulasi pernapasan, dan kesulitan bernapas dengan sakit kepala
4	Konsentrasi diatas 8% ambang batas	8.000	Sakit kepala hingga berkeringat, tremor, kehilangan kesadaran pada waktu paparan 5-10 menit

Sedangkan jangka panjang akibat menghirup gas CO₂ adalah penyakit pernapasan dan kanker. Di tahun 2010, terdapat kematian sebanyak 165.000 jiwa meninggal setiap tahun akibat dari polusi udara setiap tahunnya [34]. Banyaknya kasus terkait gas CO₂ yang memiliki dampak kesehatan buruk bagi tubuh di dalam ruangan mengakibatkan pentingnya sebuah alat atau produk untuk mereduksi gas CO₂. Produk yang dibuat adalah sensor CO₂ berbasis MOF dan *filter zeolit molecular sieve* 13X *HP* 0,4-0,8 *oxygen concentrator* untuk purwarupa *air purifier* diharapkan dapat meningkatkan kualitas udara dalam ruangan khususnya untuk mereduksi gas CO₂ berlebih. Pencegahan dampak kesehatan akibat dari gas CO₂ pada ruangan sejalan dengan target dari poin SDGs ketiga (3) yaitu secara signifikan mengurangi dampak kesehatan akibat polusi dan kontaminasi udara hingga tahun 2030.

2.4. Kebutuhan yang harus dipenuhi

Kebutuhan alat dan bahan yang harus dipenuhi dalam pembuatan sensor CO₂ berbasis *Metal Organic Framework* (MOF) dan *Filter Zeolite Molecular Sieve* 13X *Hp* 0,4-0,8 *Oxygen Concentrator* untuk purwarupa *air purifier* adalah sebagai berikut, material MOF, sensor CO₂ MQ-135, Arduino Uno, Arduino Uno WiFi R3 ATmega328p ESP8266, *device dekstop/*PC, *chamber/*ruang uji, tang potong, kuas, dan solder. Kemudian, tidak hanya alat dan bahan saja yang dibutuhkan, tetapi *skill/*kemampuan yang perlu dimiliki agar *project capstone design* ini dapat berjalan sesuai dengan baik. Kemampuan yang harus dimiliki adalah sebagai berikut:

- 1. Kemampuan dalam bidang instrumentasi dan material.
- 2. Ketelitian dan ketekunan dalam mengerjakan project capstone design.
- 3. Kemampuan analisa yang baik dalam melakukan percobaan.

2.5. Tujuan

Penulisan dokumen *Capstone Design* 1 (CD-1) bertujuan untuk memberikan solusi terkait dengan permasalahan *Indoor Air Quality* (IAQ). Solusi yang ditawarkan adalah sensor gas CO₂ berbasis *Metal Organic Framework* (MOF) dan *filter Zeolite Molecular Sieve* 13X HP 0,4-0,8 *Oxygen Concentrator* untuk purwarupa *air purifier*. Secara spesifik pada *capstone design* akan dilakukan :

- 1. Rancang bangun filter berbasis Zeolite Molecular Sieve 13X HP 0,4-0,8 Oxygen Concentrator.
- 2. Rancang bangun sensor CO₂ berbasis *Metal Organic Framework* (MOF) MIL-100 Cr (70% dan 90% ZAA) dan MIL-101 Cr (30% dan 95% ZAA).
- 3. Membuat sistem penyimpanan (*data logger*) dan penampilan data menggunakan *Liquid Crysal Diode* (LCD) *display* dan *Graphical User Interface* (GUI) untuk monitoring kadar CO₂.

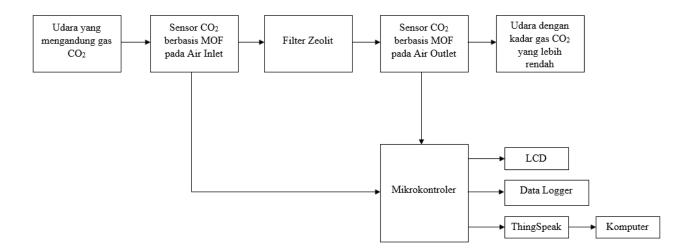
Ketiga produk diatas akan di integrasikan menjadi satu produk purwarupa *air purifier*. Harapannya melalui dokumen ini dapat memberikan inovasi mengenai pengembangan *air purifier* dalam memfiltrasi CO₂ melalui komponen *filter* berbasis zeolite, serta sensor CO₂ modifikasi MOF. Sehingga, memiliki kemampuan yang lebih unggul daripada yang sudah ada sebelumnya.

3. Solusi Sistem yang Diusulkan

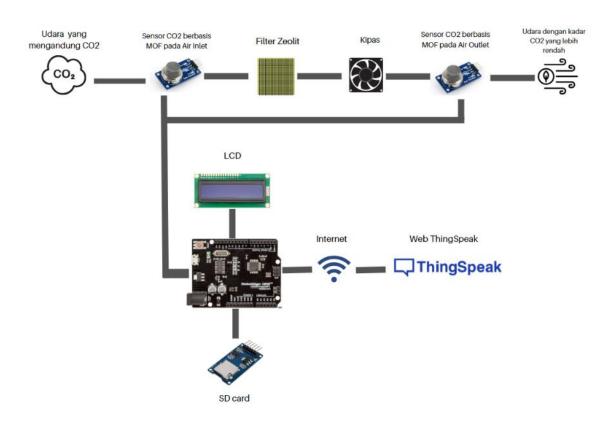
Pemilihan solusi untuk mengatasi permasalahan tersebut berkaitan pada produk pembersih udara dalam ruangan. Adapun produk pembersih udara dalam ruangan yang marak

digunakan dan diperjualbelikan secara komersil yaitu *ventilating fan, air e-generator*, dan *air purifier*. Untuk mendapatkan solusi sistem yang terbaik dilakukan perbandingan ketiga produk seperti pada **Tabel 6.**

Tabel 6. Perbandingan *Ventilating Fan, Air E-Generator*, dan *Air Purifier* [24,35,36,37]


Indikator	Ventilating Fan	Air E-Generator	Air Purifier
Bentuk			Cy Cy
Fungsionalitas	Untuk mengatur	Menghasilkan udara	Berfokus
	sirkulasi udara dalam	segar yang mengandung	menghilangkan partikel
	ruangan dan	oksigen murni dengan	padat, seperti debu
	membantu	menggunakan	halus, polusi, dan
	menghasilkan udara	elektrolisis dalam	allergen pada udara.
	segar dalam ruangan.	memisahkan air	Terdapat filter karbon
		menjadi oksigen dan	aktif yang dapat
		hidrogen	menyerap gas CO2 dari
			udara.
Kemampuan	Tidak secara aktif	Proses elektrolisis pada	Filter karbon aktif
dan efisiensi	menyerap gas CO ₂ .	e-generator lebih	untuk menyerap gas
penyerapan	Namun, membantu	berfokus pada	CO ₂ pada udara.
terhadap gas	mengurangi	menghasilkan oksigen	Namun, masih dalam
CO_2	konsentrasi gas CO ₂	murni dibandingkan	tahapan pengembangan.
	dengan menggantikan	penyerapan gas CO _{2.}	
	udara yang		
	mengandung gas CO ₂		
	dengan udara segara		
	dari luar.		
Mekanisme	Mengeluarkan udara	Menggunakan proses	Menggunakan filter
Kerja	kotor dari dalam	elektrolisis.	untuk membersihkan
	ruangan dan		udara dalam ruangan.

Telkom University Learning Center Building - Bandung Technoplex | Jl. Telekomunikasi, Terusan Buah Batu, Bandung 40257, West Java, Indonesia t: +62 22 7564108 | f: +62 22 756 5200 | e: info@telkomuniversity.ac.id


	membawa udara segar		
	dari luar. Tidak		
	menggunakan filter.		
Portabilitas	Portabilitas rendah,	Portabilitas rendah,	Portabilitas tinggi,
	karena memiliki	karena memiliki ukuran	karena memiliki ukuran
	ukuran yang besar dan	dan berat yang besar.	rata – rata yang kecil
	dipasang secara		dan ringan. Sehingga,
	permanen pada		mudah dipindahkan dari
	dinding, langit –		satu ruangan ke
	langit, dan jendela.		ruangan lainnya.
Dampak	Penggunaan yang	Produksi hidrogen	Menggunakan filter
terhadap	berlebihan dapat	dalam proses	khusus untuk menyerap
Lingkungan	berdampak pada	elektrolisis memerlukan	CO ₂ karena tidak
	peningkatan konsumsi	energi.	menggunakan bahan
	energi.		kimia atau energi untuk
			penyerapan CO _{2.}
			Namun, penggantian
			filter dapat
			menyebabkan limbah
			filter.

Berdasarkan perbandingan tersebut, dipilihlah sistem *air purifer* yang memiliki fungsionalitas yang baik untuk menghilangkan partikel padat, kemampuan untuk penyerapan gas CO₂ dari filter, portabilitas yang tinggi, mekanisme kerja yang mudah, dan dampak terhadap lingkungan yang rendah. Namun, perlu dilakukan improvisasi terhadap air purifier komersil yang ada pada saat ini terutama pada bagian *filter* agar memiliki efektivitas yang tinggi dalam penyerapan gas CO₂ di udara dalam ruangan dan *display*.

Maka dari itu, dilakukan rancang bangun purwarupa *air purifier* dengan menggunakan *filter* berbahan *Zeolit Molecular Sieve* 13X *HP* 0,4-0,8 *Oxygen Concentrator* yang dilengkapi dengan fitur sensor CO₂ berbasis *Metal Organic Framework* (MOF) dan *display*. Proses serapan CO₂ dan skema peralatan yang akan dibuat ditampilkan pada **Gambar 1 dan 2**.

Gambar 1. Process Flow Diagram Sistem

Gambar 2. P&ID Sistem

Zeolite tersebut berfungsi untuk menyerap gas polutan berbahaya seperti gas CO2. Selain itu, pada alat ini juga terdapat sensor pendeteksi gas CO₂. Sensor tersebut dapat menunjukkan konsentrasi CO₂ yang ada di dalam ruangan. Sensor yang digunakan yaitu berupa sensor gas komersil dengan bagian *sensing element* yang dimodifikasi dengan material *Metal*

*Organic Framework*s (MOF). Dengan dilakukannya modifikasi tersebut, maka sensitivitas sensor terhadap Gas Karbondioksida (CO₂) akan semakin meningkat.

Agar data hasil pembacaan sensor dapat dipahami oleh *user*, maka dibutuhkan *display* untuk melengkapi perangkat tersebut. *Display* yang akan digunakan yaitu *display Liquid Crystal Display* (LCD) dan *Graphical User Interface* (GUI). *Display* LCD memungkinkan *user* untuk memonitoring hasil pembacaan sensor pada perangkat utama (tempat sensor dipasang). Sementara itu, GUI dapat memfasilitasi user untuk memonitoring hasil bacaan sensor pada perangkat komputer.

Selain itu, produk yang dibuat memiliki beberapa keandalan yaitu tidak mudah pecah dan tahan sampai pada suhu 100°C. Hal tersebut dikarenakan badan air purifier menggunakan bahan akrilik yang mempunyai kemampuan struktural yang lebih kuat daripada kaca dan memiliki ketahanan panas sampai 160 °C.

3.1. Karakteristik Produk

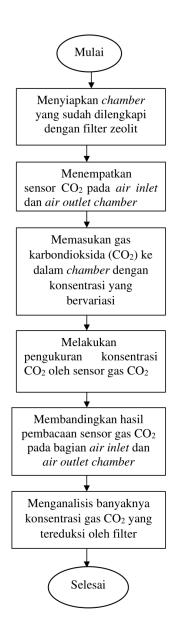
1. Filter berbasis Zeolite Molecular Sieve 13X HP 0,4-0,8 Oxygen Concentrator

Fitur utama dari sistem ini yaitu *filter* penangkap gas CO₂ yang menggunakan *Zeolite Molecular Sieve* 13X *HP* 0,4-0,8 *Oxygen Concentrator*. Sehingga, dapat membantu meningkatkan efektivitas *Filter air purifier* komersil dalam menyerap gas CO₂ dan menurunkan konsentrasi gas CO₂. Seperti pada bagian **2.1.2**. Zeolite memiliki kemampuan penyerapan gas CO₂ yang lebih tinggi dibanding *Activated Carbon* sebagai solusi *filter* saat ini. Oleh karena itu, penggunaan *filter* zeolite ini dapat meningkatkan kualitas udara dalama ruangan yang tentunya sangat bermanfaat untuk kesehatan.

2. Sensor Gas CO₂ Berbasis MOF Sebagai Sensing Element

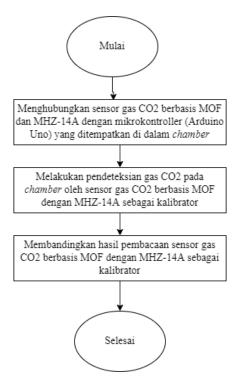
Fitur utama dari sensor ini yaitu berupa sensing element berbentuk substrat dengan material MOF. Sensor ini memiliki sensitivitas yang tinggi terhadap Gas Karbondioksida (CO₂). Adapun keunggulan dari desain sensing element berbentuk substrat ini adalah fungsi fabrikasi yang mudah untuk dilakukan serta kemampuan sensor dalam mendeteksi sensor terhadap gas lebih spesifik dibandingkan dengan bentuk atau desain tubular.

Selain itu, fitur dasar dari sensor ini yaitu *heater* untuk memanaskan sensor. Hal ini bertujuan menjaga sensing material tetap kering dari uap air sehingga sensor dapat bekerja dan mendeteksi konsentrasi CO₂.

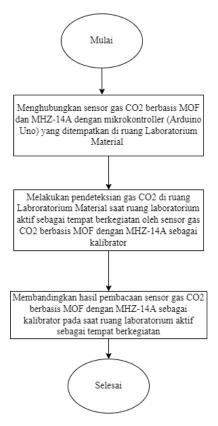

3. Pengiriman, Penyimpanan, dan Penampilan Data

Di dalam mendesain suatu sistem yang dapat menyimpan data, proses penyimpanan dan ukuran data yang dapat disimpan perlu diperhatikan. Data yang dibaca oleh sensor akan diproses oleh mikrokontroler. Untuk penyimpanan data (data logger) dapat digunakan media seperti SD Card dan Cloud pada ThingSpeak. Sementara itu, data akan ditampilkan pada display LCD dan website ThingSpeak. Hal tersebut membantu user untuk memantau data pembacaan sensor dengan cepat dan mudah. Data pembacaan sensor yang akan ditampilkan pada display yaitu berupa data konsentrasi gas CO₂. Display LCD terpasang pada perangkat utama atau tempat sensor dipasang. Adapun perangkat mikrokontroler yang digunakan untuk display LCD yaitu Arduino Uno Wi-Fi R3 ATmega328P ESP8266. Pemilihan mikrokontroler tersebut didasarkan atas kemampuannya untuk mengakses internet. Komponen Wi-Fi yang terdapat pada board Arduino Uno Wi-Fi R3 ATmega328P ESP8266 dapat memberikan akses internet yang berguna untuk mentransfer data hasil pembacaan sensor dari mikrokontroler ke ThingSpeak. ThingSpeak berfungsi untuk memonitoring hasil pembacaan sensor serta menyimpan data dari mikrokontroler agar dapat digunakan atau diolah oleh perangkat komputer yang nantinya akan digunakan sebagai display. Adapun keunggulan dari display sensor ini yaitu mudah digunakan oleh user dan informatif. Display tersebut menampilkan data yang jelas, sehingga data yang disampaikan dapat mudah dipahami oleh user.

3.2. Skenario Penggunaan


3.2.1. Penggunaan dan Pengujian Produk

Untuk mengetahui efektivitas produk dalam meningkatkan kualitas udara, dilakukan pengujian pada komponen produk (*filter* dan sensor) serta pengujian pada produk jadi. Diagram alir pengujian *filter* dapat dilihat pada **Gambar 3.**



Gambar 3. Diagram Alir Pengujian Filter dengan Parameter Penurunan Konsentrasi Gas CO_2 .

Selain itu, untuk pengujian sensor dilakukan dengan cara pengujian pada *chamber* CO₂ dan pengujian lapangan (*Indoor air quality*) di dalam ruangan Laboratorium Material. Diagram alir pengujian sensor dapat dilihat pada **Gambar 4 dan 5.**

Gambar 4. Diagram Alir Pengujian Sensor pada chamber dengan Kalibrator

Gambar 5. Diagram Alir Pengujian Sensor Di Dalam Ruangan Laboratorium Material

Purwarupa *air purifier* yang dirancang pada projek ini dapat digunakan untuk meningkatkan kualitas udara di dalam ruangan, seperti kamar, rumah, ruangan di gedung

Telkom University Learning Center Building - Bandung Technoplex | Jl. Telekomunikasi, Terusan Buah Batu, Bandung 40257, West Java, Indonesia t: +62 22 7564108 | f: +62 22 756 5200 | e: info@telkomuniversity.ac.id

perkantoran, dan lain sebagainya. Untuk tata cara penggunaan produk diantaranya sebagai berikut:

- 1) Pasang steker alat ke stopkontak listrik.

 Setelah menyala, alat tersebut akan bekerja memperbaiki kualitas udara dalam ruangan dengan cara menyerap gas CO₂. Pengguna juga dapat memonitoring kualitas udara pada ruangan tersebut dengan melihat data yang tertera pada *display* LCD. Selain itu, pengguna juga dapat memonitoring kualitas udara pada komputer.
- 2) Cabut steker alat dari stopkontak listrik untuk mematikan alat tersebut.

3.2.2. Prinsip Kerja Alat

Saat air purifier dinyalakan, kipas akan menghisap udara yang ada di ruangan menuju inlet dari air purifier. Kemudian, udara yang ditarik oleh kipas akan dilanjutkan pada bagian filter. Filter yang ada pada air purifier umumnya terdapat tiga bagian penyaringan udara. Pada proses penyaringan udara, dimulai dari udara yang akan disaring oleh filter yang menyaring polutan terlebih dahulu. Kemudian, dilanjutkan dengan filter yang mempunyai rongga cukup besar hingga paling kecil. Pada proses ini, partikel dalam udara akan disaring dan terkunci pada filter. Kemudian, udara bersih hasil penyaringan akan didorong keluar oleh kipas menuju outlet dari air purifier.

Selain itu, sensor gas CO₂ berbasis MOF juga berperan penting untuk pendeteksian konsentrasi gas CO₂. Dalam penggunaannya, sensor ini harus dikolaborasikan dengan suatu mikrokontroler. Mikrokontroler ini berfungsi untuk mengolah sinyal input hasil deteksi sensor menjadi suatu data yang dapat dibaca oleh user. Sehingga, memudahkan pengguna untuk mengidentifikasi kualitas udara yang ada dalam ruangan tersebut dan memberi peringatan apabila konsentrasi CO₂ berada pada tingkat yang tidak aman.

Guna memfasilitasi *user* dalam pembacaan sensor, dibuatlah *display* sensor yang ditampilkan pada perangkat LCD dan komputer. Perangkat LCD terpasang pada *air purifier* dan akan otomatis menampilkan hasil pembacaan sensor yang terpasang pada perangkat tersebut. Sementara itu *display* pada komputer juga memfasilitasi user untuk memonitoring hasil pembacaan sensor dengan menggunakan koneksi internet.

3.2.3. Stakeholder Yang Terlibat

Agar pemanfaatan dari perangkat yang diusulkan ini dapat berjalan dengan maksimal, dibutuhkan kerja sama antar berbagai pihak untuk membantu merealisasikan hal tersebut. Adapun pihak-pihak yang disinyalir dapat berkolaborasi dalam mengelola pengembangan

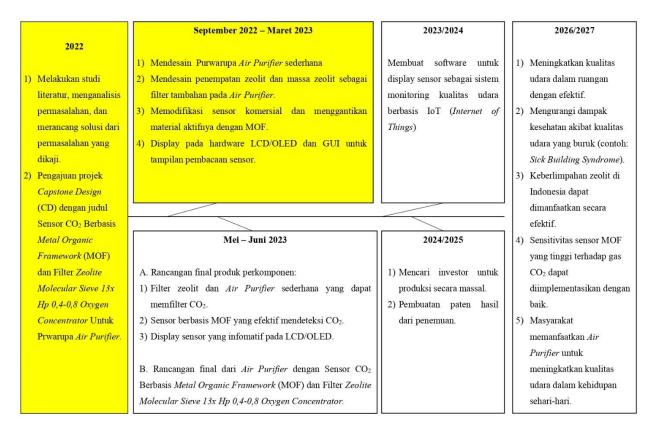
sensor CO₂ berbasis MOF (*Metal Organic Framework*) untuk a*ir purifier filter* zeolit guna memaksimalkan penyerapan polutan CO₂ ini diantaranya yaitu:

1. Masyarakat

Penggunaan a*ir purifier* di masyarakat membuktikan bahwa masyarakat memiliki upaya dan kesadaran akan pentingnya menjaga kesehatan pribadi dengan cara memiliki kualitas udara yang baik.

2. Instansi pelayanan kesehatan

Penggunaan a*ir purifier* di instansi pelayanan kesehatan seperti puskesmas, klinik, dan rumah sakit dapat mengurangi dampak buruk yang disebabkan oleh kualitas udara yang buruk dan dikhawatirkan akan menghambat kesembuhan pasien.


3. Instansi perusahaan, khususnya perusahaan yang bergerak pada produksi *filter* & elektronik (*air purifier*).

Agar manfaat dari a*ir purifier* dapat terus dirasakan, dibutuhkan pihak-pihak produksi yang dapat mendukung ketersediaan alat tersebut agar terus berlanjut.

3.2.4. Rencana Keberlanjutan Produk

Pada penerapannya, a*ir purifier* sangat berperan penting pada keseimbangan ekologi dan lingkungan. Kemampuan a*ir purifier* dalam menyerap polutan CO₂ di tengah kondisi udara yang semakin buruk mengindikasikan bahwa a*ir purifier* dapat menjadi prioritas masyarakat dalam rangka investasi kesehatan untuk jangka panjang. Selain itu, keberlimpahan material zeolit yang ada di Indonesia juga dapat dimanfaatkan sebagai bahan baku *filter* pada a*ir purifier*. Jika dilakukan dengan perencanaan & proses produksi yang tepat, hal tersebut dapat menjadi peluang bagi masyarakat untuk menciptakan produk unggul dalam negeri. Selain itu, dibutuhkan kerja sama antar berbagai pihak (*stakeholders*) agar proses produksi sampai penggunaannya dapat berjalan dengan baik.

Adapun roadmap Air Purifier dengan Sensor CO₂ berbasis MOF (Metal Organic Framework) dan Filter Zeolite Molecular Sieve 13X Hp 0,4-0,8 Oxygen Concentrator dapat dilihat pada **Gambar 6.**

Gambar 6. Roadmap purwarupa Air purifier dengan Sensor CO₂ berbasis Metal Organic Framework (MOF) dan Filter Zeolite Molecular Sieve 13X Hp 0,4-0,8 Oxygen Concentrator

4. Kesimpulan dan Ringkasan

Diketahui bahwa tingginya konsentrasi gas CO₂ dapat mempengaruhi kesehatan manusia. Oleh karena itu, pengendalian kualitas udara menjadi sangat penting untuk dilakukan. Untuk mengupayakan hal tersebut diperlukan perancangan bagi alat atau sistem yang dapat menyaring polutan dengan baik. *Air purifier* merupakan alat yang tepat sebagai sarana pengendalian kualitas udara, terutama udara yang terdapat pada suatu ruangan tertutup. Meskipun demikian, *air purifier* yang tersedia di pasaran dengan menggunakan HEPA *filter* tidak mampu menyaring udara dari gas CO₂.

Berdasarkan informasi yang telah dipaparkan sebelumnya, maka pada projek ini akan dirancang *air purifier* berbasis *zeolite* yang mampu menyerap gas CO₂ dan memonitoring kadar CO₂ dengan menggunakan sensor gas CO₂ berbasis MOF. Alat tersebut dilengkapi dengan *display* agar dapat dibaca atau dipahami dengan mudah oleh pengguna. Selain itu, alat yang dirancang bersifat *portable* sehingga hal tersebut diharapkan dapat mempermudah pengguna untuk memperoleh kualitas udara yang baik.

Lampiran

Curriculum Vitae 1

PERSONAL INFORMATION

Full Name : Tania Verasta Gender : Perempuan

Birth Place and Date: Pontianak, 16 July 2001

Nationality : Indonesia Religion : Christian Phone Number : 082111892663

Email : taniaverasta@student.telkomuniversity.ac.id

ACADEMIC STATUS

University: Telkom University
Major : Physics Engineering

Semester: 7 (Seven)

EDUCATION

Institutions	City and Province	Year
SMA Strada Santo Thomas Aquino	Tangerang, Banten	July 2016 – July 2019
Telkom University	Bandung, West Java	August 2019 - present

PERSONAL ACHIEVEMENTS

Awards	Year	Description
Semifinalis Lomba Karya Tulis Ilmiah Green Scientific Competition (GSC)	2020	Achievment has given by UNNES
Penerima Hibah dan 20 Tim Pelaksana Terbaik Nasional PHP2D (Program Holistik Pembinaan dan Pemberdayaan Desa)	2020	Achievment has given by Ministry of Education and Culture for team that have best program
Juara 1 dan Best speaker physton bidang Lomba Debat	2021	Achievment has given by Physics Engineering Telkom University
Finalis Publikasi Research Paper Competition Maranatha University ICE	2021	Achievment has given by Maranatha University
Penerima Intensif PKM AI	2021	Achievment has given by Ministry of Education and Culture for team that have best program
KNMIPA-PT Telkom University Bidang Fisika Tingkat Regional	2020 dan 2021	Delegation tingkat Regional
Gold Medals Indonesia Inventors Days (IID)	2021	Achievment has given by INNOPA
Penerima Hibah (Pembinaan dan Pemberdayaan Desa) P3D	2021	Funds provided by the Ministry of Education and Culture for the team with the most likely program throughout Indonesia
Top 100 Social Project INNOVILLAGE	2020	Achievment has given by CAE Telkom University
Runner-up Mahasiswa Berprestasi Telkom University	2022	Achievment has given by Ditmawa Telkom University
The First Most Outstanding Student of the School of Electrical Engineering at Telkom University 2022	2022	Achievment has given by the School of Electrical Engineering at Telkom University

Telkom University Learning Center Building - Bandung Technoplex | Jl. Telekomunikasi, Terusan Buah Batu, Bandung 40257, West Java, Indonesia t: +62 22 7564108 | f: +62 22 756 5200 | e: info@telkomuniversity.ac.id

Top 10 Team Compfest Startup Academy	2022	Achievment has given by Fakultas Ilmu Komputer Universitas Indonesia for team that have good program for their start up
Awarde of Bank of Indonesia Scholarship	2021 - 2023	A scholarship given annually by Bank Of Indonesia

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
Webinar Teknologi	October 2020	Bandung
IoT Training	February 2021	Telkom University
Volunteer Program Pengabdian Masyarakat CSE Dosen Telkom University Berperan sebagai PIC Volunteer Mahasiswa	2022	Desa Citeureup, Bandung

ORGANIZATIONAL EXPERIENCE

Organizations	Title	Period	Descriptions
Forum Komunikatif Mahasiswa Teknik Fisika (FKMTF) Indonesia	Deputy Secretary General (Secretary General) of Telkom University Delegation	2020 - 2021	Representative of Telkom University delegation to play an active role in the Indonesian Engineering Physics Communication Forum
Generasi Bank Indonesia (GenBi)	Public Relations Staff	2021 - 2023	Record draft budgets and report on activities carried out by the environmental division
Telkom University Bioenergy and Bioproduct Study Group	Chairman	2021 - 2022	Supervised team and initiated community services. Achieved 4 community service competitions
Himpunan Mahasiswa Teknik Fisika (HMTF) Telkom University	External Relations Starff	2021 - 2022	Responsible for all activities of the set of engineering physics in the external field
Komunitas Tentor (Komutator) Teknik Fisika Telkom University	Head of Education Divisiom	2021 - 2022	Supervised the education division by creating tasks and exercises

WORKING EXPERIENCE

Work	Year	Description
Internship at Build With Angga as Junior	March 2022 -	Doing several works of maintenance and data
Researcher	July 2022	processing about networks and BSCs.

Social Media Manager at Tuturkata.co	2021 - Present	Supporting Project Manager and team by managing and making sure every content is well posted and on time.
Lab Assistant in Laboratorium Dasar Teknik Elektro 2020 - 2022		Assistant of Digital System Lab Work and Digital Signal Processing Lab Work.

SKILLS AND HOBBIES

Language Skills : Indonesian (Native), English (Advanced)
Computer Skills : C++, VHDL, PCB design, Microsoft Office
Hobbies and interests : Sightseeing, Learning about gadgets, leadership
Others : Interested in doing field project or research.

Curriculum Vitae 2

PERSONAL INFORMATION

Full Name : Ni Putu Eka Kusuma Wardani

Gender : Wanita

Birth Place and Date : Negara, 24 September 2001

Nationality : Indonesia Religion : Hindu

Phone Number : 081238524693

Email : ekakusumaw@student.telkomuniversity.ac.id

University: Telkom University

Major : Smart Science and Technology

Semester: 7

EDUCATION

Institutions	City and Province	Year
SMAN 1 Negara	Negara, Jembrana	July 2016 – June 2019
Telkom University	Bandung, West Java	August 2019 - 2023

PERSONAL ACHIEVEMENTS

Awards	Year	Description
20 Tim Terbaik Program Holistik Pembinaan dan Pemberdayaan Desa 2020	2020	Achievment has given by Ministry of Education and Culture for team that have best program
Hibah Program Pengembangan Pemberdayaan Desa 2021	2021	Funds provided by the Ministry of Education and Culture for the team with the most likely program throughout Indonesia
Beasiswa Generasi Baru Indonesia (GenBI)	2021-2023	A scholarship given anually by bank corporation known Bank Indonesia in 4 th semester until 8 th semseter
COMPFEST Start Up Academy	2022	Achievment has given by Fakultas Ilmu Komputer Universitas Indonesia for team that have good program for their start up

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
PLC Training	September 2022	Telkom University, Bandung
Volunteer Program Pengabdian Masyarakat CSE Dosen Telkom University Berperan sebagai PIC Volunteer Mahasiswa	2022	Desa Citeureup, Bandung

ORGANIZATIONAL EXPERIENCE

ONOTH (IEITHOT) TE ETH ERREI (CE				
Organizations	Title	Period	Descriptions	
Generasi Bank Indonesia (GenBi)	Treasurer and Secretary of Environmet Division	2021-2022	Record draft budgets and report on activities carried out by the environmental division	

Himpunan Mahasiswa Teknik Fisika (HMTF)	Deputy for External Affairs	2022-2023	Responsible for all activities of the set of engineering physics in the external field
Komunitas Tentor (Komutator) Teknik Fisika	Vice Chairman	2021-2022	Responsible for assisting the chairman for activities carried out by the community and providing input and suggestions for the community in the future
	Staff of Development Division	2020-2021	Develop programs and activities carried out by the tentor community
UKM Kaluarga	Staff of Spiritual Division	2022-2023	Responsible for making activities related to the spirituality of UKM KMH
UKM Keluarga Mahasiswa Hindu (KMH)	Staff of Regeneration	2020-2022	Responsible for creating and supervising the activities of UKM KMH in terms of member regeneration
Forum Komunikasi	Delegation of Telkom University	2021-2022	Representative of Telkom University delegation to play an active role in the Indonesian Engineering Physics Communication Forum
Teknik Fisika (FKMTF)	Head of Public Reation Division	2021-2022	Responsible for creating and running programs related to public relations from the Indonesian Engineering Physics Communication Forum

WORKING EXPERIENCE

Work	Year	Description	
Lab Asisttant in Dasar Komputer Laboratory	2020	Assistant of Basic Computer of program, C language	
Internship at Hidup Media as Event Organizer	2021	Responsible for creating and running events such as webinars and classes related to mental health	
Lab Assistant in PLC Laboratory	2022-2023	Assistant of Programmable Logic Controller and Research of Programmable Logic Controller.	
Lab Assistant in Material Laboratory	2023-present	Assistant of Material Work	

SKILLS AND HOBBIES

Language Skills : Indonesian (Native), English (Intermediated) Computer Skills : C, Microsoft Office, Origin, Scilab, Ansys

Hobbies and interests: Sightseeing, Reading comic, Learning about history, leadership

Others : Interested in doing field project or research.

Curriculum Vitae 3

PERSONAL INFORMATION

Full Name : Rafael Arya Satria Yudhistira

Gender : Pria

Birth Place and Date: Yogyakarta, 15 Juli 2001

Nationality : Indonesia Religion : Katholik Phone Number : 089626658314

Email : rafaelarya@student.telkomuniversity.ac.id

ACADEMIC STATUS

University: Telkom University

Major : Teknik Fisika (Smart Science and Technology)

Semester: 7

EDUCATION

Institutions	City and Province	Year
SMAN 2 Sidoarjo	Sidoarjo, East Java	July 2016 – June 2019
Telkom University	Bandung, West Java	August 2019 - present

PERSONAL ACHIEVEMENTS

Awards	Year	Description
Juara Nasional Sepatu Roda	2006 - 2009	Championsk
Juara Nasional Karate	2008 - 2012	Champions

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
Webinar Teknologi	October 2020	Bandung
IoT Training	February 2021	Telkom University

ORGANIZATIONAL EXPERIENCE

Organizations	Title	Period	Descriptions
Himpunan Mahasiswa Teknik Fisika (HMTF)	Marketing Development Depattement	2021 - 2022	Organized club monetary
Koordinator Asisten Laboratorium Sistem Instrumentasi	Asistant Coordinator and Head of Asistant	2021 – 2022	Organized practicum and risets

WORKING EXPERIENCE

Work	Year	Description
Lab Asistant in Instrumentation System Laboratory	2021 – 2022	Doing several works of instrumentation practicum

Lab Assistant in Material Laboratory	2023	Assistant of Material Laboratory.
--------------------------------------	------	-----------------------------------

SKILLS AND HOBBIES

Language Skills : Indonesian (Native), English (Advanced)
Computer Skills : C++, VHDL, PCB design, Microsoft Office
Hobbies and interests : Sightseeing, Learning about gadgets, leadership
Others : Interested in doing field project or research.

Curriculum Vitae 4

PERSONAL INFORMATION

Full Name : Suci Awali Muminati

Gender : Perempuan

Birth Place and Date : Garut, 1 April 2001

Nationality : Indonesia Religion : Islam

Phone Number : 081221456684

Email : suciawalim@student.telkomuniversity.ac.id

ACADEMIC STATUS

University: Telkom University
Major : Physics Engineering

Semester: 7 (Seven)

EDUCATION

Institutions	City and Province	Year
SMAN 1 Garut	Garut, West Java	July 2016 – July 2019
Universitas Telkom	Bandung, West Java	August 2010 - present

PERSONAL ACHIEVEMENTS

Awards	Year	Description
Beasiswa Hanifah Muchtar	2014 - 2016	A scholarship given annually by Yayasan Hanifah Muchtar
The Highest UN Score Achiever in MTsN 3 Garut	2016	Award from MTsN 3 Garut for the winner of the highest UN score

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
Archery Webinar	March 2021	Bandung
GIGFEST	August 2022	Bandung

ORGANIZATIONAL EXPERIENCE

Organizations	Title	Period	Descriptions
	Staff of Marketing Development Department	2020	Coordinate and produce materials for the financial needs of the organization
GIGABYTE	Secretary	2021	Responsible for organizing, assimilating and disseminating information within and outside the organization
	Steering Committee	2022	Support, guidance and supervision of organizational progress

Telkom University Learning Center Building - Bandung Technoplex | Jl. Telekomunikasi, Terusan Buah Batu, Bandung 40257, West Java, Indonesia t: +62 22 7564108 | f: +62 22 756 5200 | e: info@telkomuniversity.ac.id

UKM Archatel	Secretary	2022	Responsible for organizing, assimilating and disseminating information within and outside the organization
--------------	-----------	------	--

WORKING EXPERIENCE

Work	Year	Description
Internship at CV Sugima Gemilang	2021	Doing several works of business administration
Lab Assistant in Laboratorium Sistem Instrumentasi	2022	Assistant of instrumentation system practicum

SKILLS AND HOBBIES

Language Skills : Indonesian (Native), English (Advanced)
Computer Skills : C++, VHDL, PCB design, Microsoft Office
Hobbies and interests : Sightseeing, Learning about gadgets, leadership
Others : Interested in doing field project or research.