ABSTRACT

The rapid development of communication technology has increased the

demand for speedy internet access. To be able to meet the needs of users, mobile

technology must be continuously updated to provide better internet speeds. A new

method to provide increased data rate and channel capacity is with MIMO antennas.

Multiple Input Multiple Output (MIMO) is a system that uses multiple antennas at

the transmitter and receiver. In the preparation of this final project, a 2x2 MIMO

antenna design will be carried out consisting of two transmitter antennas and two

receiver antennas. The mutual coupling aspect is considered so that the power

radiated by one antenna does not affect the other antenna. The MIMO antenna will

be designed by adding an Electromagnetic Band Gap (EBG) structure and using

Diversity polarization.

The mutual coupling results after the addition of the EBG structure to the

sub-system 1 antenna obtained a decrease from -29.22 dB to -29.58 dB. This shows

that the addition of the EBG structure reduces the mutual coupling value by 0.36

dB. While in the sub-system 2 antenna, the mutual coupling value decreased by

8.73 dB from -24.06 dB at the same union position to -32.79 dB at a different union

position. This shows that the sub-system 2 antenna can reduce the mutual coupling

value better than the sub-system 1 antenna. The use of 2x2 MIMO antenna using

EBG with SIMO system has RSRP of -86 dBm, SNR of 25 dB, maximum bitrate

of 4818.2 kbps, and channel capacity of 83.09 Mbps. The use of MIMO antenna

using diversity polarization with SIMO system has RSRP of -85 dBm, SNR of 26

dB, maximum bitrate of 5223.77 kbps, and channel capacity of 86.40 Mbps. The

use of MIMO antenna using diversity polarization has better performance than the

use of MIMO antenna using EBG.

Keywords: MIMO, EBG, Diversity, RSRP

vii