
Neuromorphic
Computing
Principles and
Organization

Abderazek Ben Abdallah
Khanh N. Dang

Neuromorphic Computing Principles
and Organization

Abderazek Ben Abdallah • Khanh N. Dang

Neuromorphic Computing
Principles and Organization

Abderazek Ben Abdallah
School of Computer Science
University of Aizu
Aizu-Wakamatsu, Fukushima, Japan

Khanh N. Dang
School of Computer Science
University of Aizu
Aizu-Wakamatsu, Fukushima, Japan

ISBN 978-3-030-92524-6 ISBN 978-3-030-92525-3 (eBook)
https://doi.org/10.1007/978-3-030-92525-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-92525-3

To my parents, my wife, Sonia, and my
children, Tesnim and Beyram

ABA

Dedicated to my parents
KND

Preface

As the end of Moore’s law seems closer than ever, computer scientists have been
exploring to build machines as complex and efficient as our brain, dealing with
power density and clock frequency challenges of the conventional architecture. Our
brain works entirely differently compared to traditional von Neumann architecture.
There are many secrets behind how the human brain works. We know that it
distributes computation and memory among more than 100 billion biological
neurons, and each of them is connected with thousands of others via synapses.
Neurons communicate with each other through spikes (i.e., short electrical pulses).
The brain is a powerful computation system that helps us survive, adapt, and predict,
while consuming tens of watts.

Brain-inspired or neuromorphic computing is a biologically inspired approach
created from highly connected neurons to model neuroscience theories and solve
machine learning problems. The term neuromorphic was first introduced by Carver
Mead in 1990, where it referred to very-large-scale integration (VLSI) with analog
components to mimic biological neural systems. Such systems can be categorized
into non-spiking and spiking approaches. First, the non-spiking approach is referred
to as the implementation of traditional artificial neural networks (ANNs) which aims
to improve the throughput over the power consumption (or acceleration purpose).
In recent years, ANNs have shown a remarkable improvement in terms of accuracy
for large-scale visual/auditory recognition and classification tasks. Notably, the
convolution neural network (CNN) and recurrent neural network (RNN) have shown
to be promising tools for a wide range of applications such as image, video, and
speech. They are typically trained by using graphic processing units (GPUs) or on
the cloud side. The state-of-the-art neural networks tend to increase their number of
layers and size (i.e., deep learning). However, this leads to challenges for hardware
systems in terms of computation, memory, and communication resources.

The neuromorphic computing systems promises to drastically improve the
efficiency of critical computational tasks such as decision making and perception.
Unlike the typical artificial neural networks (ANNs), where neurons fire at each
propagation cycle, the neurons in a brain-inspired neural networks model, named
spiking neural networks (SNNs), fire only when a membrane potential reaches

vii

viii Preface

a specific value. Spiking neurons are only activated when sufficient signals are
integrated from other neurons, which leads to sparse neural activities at the network
level. Hence, the large spike sparsity and simple synaptic operations in the network
enable SNNs to outperform ANNs in terms of energy efficiency.

This book stands independent and is organized into nine chapters. We have
made every attempt to make each chapter self-contained. Chapter 1 introduces the
neuromorphic computing system and explores the fundamental concepts of artificial
neural networks. We first discuss biological neurons and the dynamics that are
abstracted from them to model artificial neurons. Next, we discuss artificial neurons
and how they have evolved in their representation of biological neuronal dynamics.
Afterward, we discuss implementing these neural networks in terms of neuron
models, storage technologies, inter-neuron communication networks, learning, and
various design approaches.

Chapter 2 presents the fundamental design principle to build an efficient neu-
romorphic system in hardware. The challenges that need to be solved toward
building in hardware a spiking neural network architecture (neuromorphic) with
many synapses include building a small-sized massively parallel architecture with
low-power consumption, efficient neuron coding scheme, and lightweight on-chip
learning algorithm. The other major challenge is the on-chip communication and
routing network, which allows data to be communicated between neurocores and
off-chip data to be transferred to the cores. The constraints mentioned above make
the deployment of such a brain-like IC a challenging on-chip interconnect problem.

Chapter 3 presents how learning in neuromorphic computing systems is con-
ducted. Neuromorphic hardware’s primary goal is to emulate brain-like neural
networks to solve real-world problems. However, training on neuromorphic systems
is challenging to the required non-local computations of gradient-based learning
algorithms. Spiking neural networks gained popularity by incorporating learning.
In these neural networks, there are two fundamental modes: Inference and learning.
The learning phase, which minimizes a particular cost (loss) function, is a complex
process of acquiring the parameters to output the correct inference results. In
contrast, inference is computing the output values based on the given input and
the network parameters.

To design a neuromorphic system on hardware, it is imperative to develop
artificial neurons that mimic biological neurons and artificial synapses that emulate
biological synapses. Recently, numerous efforts have been made to realize artificial
synapses using post-CMOS devices, including resistive random access memory
(ReRAM), ferroelectric field-effect transistor (FeFET), phase change memory
devices, magnetoresistive random access memory (MRAM). A non-CMOS neuron
based on emerging devices has also been investigated. Chapter 4 discusses the
major emerging memory technologies that promise neuromorphic computing and
highlight some recent significant progress on device studies. The advantages and
challenges for each device technology are also discussed.

The brain connectivity is generally described at several levels of scale, including
individual synaptic connections that link individual neurons at the microscale, net-
works connecting neuronal populations at the mesoscale, and brain regions linked

Preface ix

by fiber pathways at the macroscale. Since each neuron is connected to many others,
high bandwidth is required. Moreover, since the spike times are used to encode
information, very low communication latency is also needed. Chapter 5 presents
the circuits and architectures used for communication in neuromorphic systems. In
particular, the Network-on-Chip fabric is introduced for receiving and transmitting
spikes following the Address Event Representation (AER) protocol and the memory
accessing method. First, the chapter describes the interconnect method for inter-
neurons communication. Second, the interconnect design principle is covered to
help understand the overall concept of on-chip and off-chip communication. The
remaining parts cover advanced on-chip interconnect technologies, including si-
photonic three-dimensional interconnects and fault-tolerant routing algorithms.

To develop such emerging systems, designers use large-scale models on dedi-
cated hardware platforms, such as FPGAs, GPUs, or ASICs. The designers need
a long time to collect datasets, train, and design accelerators to keep the trained
models private and reliable. However, with the growing complexity of neuromorphic
systems, there are severe vulnerabilities in the hardware implementations. An
attacker who does not know the details of structures and designs inside these
accelerators can effectively reverse engineer the neural networks by leveraging
various side-channel information. Moreover, as neuromorphic systems are complex
and integrate large number of neurons and synapses, the fault probability is
accumulated and can threaten system reliability. Chapter 6 covers the main threats
of reliability, and discusses several recovery methods.

Chapter 7 presents the architecture and hardware design of a reconfigurable
spiking neuromorphic system. The architecture implements a Multi-Layer Percep-
tron (MLP) that can be reconfigured to recover from faults with suitable methods
that use an FPGA without being dependent on FPGA intellectual property (IP).
This approach makes possible its implementation in application-specific integrated
circuits (ASICs). Most spiking neuromorphic designs mainly focused on fixed
functionality using available off-the-shelf components. Such an approach is lacking
the flexibility to adapt to various computing environments. A reconfigurable
design approach supports multiple target applications via dynamic reconfigurability,
network topology independence, and network expandability.

Chapter 8 presents a real hardware-software design of a reliable three-
dimensional digital neuromorphic processor geared explicitly toward the 3D-ICs
biological brain’s three-dimensional structure. The platform enables high
integration density and slight spike delay of spiking networks and features a
scalable design. R-NASH is a design based on the through-silicon-via (TSV)
technology, facilitating spiking neural network implementation on clustered
neurons based on network-on-chip (NoC). The system provides a memory interface
with the host CPU, allowing for online training and inference of spiking neural
networks. Moreover, R-NASH supports fault detection and recovery with graceful
performance degradation.

Chapter 9 presents a comprehensive survey of the research of neuromorphic
computing systems. First, the chapter gives the motivations of neuromorphic
computing. Then, it describes significant research works in the field, which we

x Preface

categorize as software emulation approach, digital hardware approach, and analog
and mixed-signal hardware approaches. This chapter aims to provide an exhaustive
review of the research conducted in neuromorphic computing and illuminates the
gaps in the field where new research is needed.

The neuromorphic computing principles and organization book is an excellent
resource for researchers, scientists, graduate students, and hardware-software engi-
neers dealing with the ever-increasing demands on fault-tolerance, scalability, and
low power consumption. It is also an excellent resource for teaching advanced
undergraduate and graduate students about the fundamentals concepts, organiza-
tion, and actual hardware-software design of reliable neuromorphic systems with
learning and fault-tolerance capabilities.

Acknowledgments

This book took nearly 3 years to complete. It evolved from our research and
education experiences in adaptive computing systems and neuromorphic computing
architectures designs. The Neuromorphic computing paradigm created excellent
opportunities to explore cognitive AI system performance and created many design
challenges that designers must overcome. To advance the field of neuromorphic
computing, the exploration of novel materials and devices will be the key to improve
the power efficiency and scalability of state-of-the-art CMOS solutions. Thus, we
must continue innovating new algorithms and techniques to solve these challenges.
We must also educate computer science and computer engineering students in both
neuromorphic computing and engineering. The authors wish to thank Mark Ogbodo,
Zhishang Wang, and Wang Jiangkun from the Adaptive Systems Laboratory at
the University of Aizu, and Vu Huy The for their valuable comments, help, and
discussion.

Finally, this first version of this book was completed without describing the
didactic materials pedagogically as expected in a textbook with exercises and their
solutions at the end of each chapter. Hopefully, those goals will be completed in
the second edition of this book after receiving insightful feedback from students,
instructors, researchers, and practicing engineers. We truly appreciate it if you give
us such feedback, allowing us to prepare a second edition for this fast-growing and
emerging computing paradigm.

Aizu-Wakamatsu, Japan Abderazek Ben Abdallah
Aizu-Wakamatsu, Japan Khanh N. Dang

Contents

1 Introduction to Neuromorphic Computing Systems . 1
1.1 Introduction . 1
1.2 Design Challenges . 5
1.3 Neural Networks . 6

1.3.1 Artificial Neural Networks . 6
1.3.2 Spiking Neural Networks. 7

1.4 Learning in Spiking Neural Networks . 8
1.5 Synapse Memory Technologies . 9
1.6 Neurons Communication Network . 10
1.7 Neuromorphic System Design Domains . 10
1.8 Chapter Summary . 11
References . 11

2 Neuromorphic System Design Fundamentals . 15
2.1 Introduction . 15

2.1.1 Spiking Neural Networks. 16
2.1.2 Neural Coding Schemes . 18

2.2 Spiking Neuron Models. 21
2.2.1 Hodgkin-Huxley Model . 22
2.2.2 Izhikevich Model . 23
2.2.3 Leaky Integrate and Fire Model . 24

2.3 Learning Algorithms . 25
2.3.1 Supervised Learning . 25
2.3.2 Unsupervised Learning . 26

2.4 Synapse Memory . 27
2.4.1 SRAM .. 28
2.4.2 eDRAM .. 28
2.4.3 Memristor . 30

2.5 Inter-Neuron Communication Schemes. 30
2.5.1 AER—Address Event Representation . 31

2.6 Neuromorphic Spike Routing . 32

xi

xii Contents

2.7 Chapter Summary . 32
References . 32

3 Learning in Neuromorphic Systems . 37
3.1 Learning Methods . 37
3.2 Conversion from ANN to SNN. 38

3.2.1 Converted SNNs . 38
3.2.2 Challenges of ANN Conversion. 39

3.3 Supervised Learning . 43
3.3.1 Tempotron . 43
3.3.2 ReSuMe . 44
3.3.3 SpikeProp Algorithm . 45
3.3.4 Approximate Derivative Method (ADM) . 48

3.4 Unsupervised Learning . 48
3.4.1 Pair-Based STDP Learning Rule . 49
3.4.2 Triplet STDP Learning Rule . 50
3.4.3 Reward-Modulated STDP Learning . 51
3.4.4 Other Variants of STDP Learning Rule . 51

3.5 Chapter Summary . 52
References . 52

4 Emerging Memory Devices for Neuromorphic Systems 55
4.1 Introduction . 55
4.2 Memory Technology . 57

4.2.1 SRAM .. 58
4.2.2 eDRAM .. 60
4.2.3 STT-RAM .. 61
4.2.4 RRAM and Resistive Crossbar . 62
4.2.5 Phase Change Memory . 63
4.2.6 Other Memory Technologies . 64

4.3 Memory Organization . 65
4.4 Memory for Neuromorphic Systems . 67

4.4.1 Neuron State Memory . 67
4.4.2 Synapse Memory . 68

4.5 Dynamic NVM Synapse . 76
4.5.1 Learning Related NVM.. 76
4.5.2 Conductance Drift in NVM .. 76

4.6 Chapter Summary . 77
References . 77

5 Communication Networks for Neuromorphic Systems 79
5.1 Introduction . 79
5.2 Neural Communication . 80
5.3 Interconnect for Inter-Neural Communication . 82

5.3.1 SpiNNaker . 83
5.3.2 TrueNorth . 85
5.3.3 Loihi . 85

Contents xiii

5.4 Interconnect Design Principles . 86
5.4.1 OSI Model for Network-on-Chip . 87
5.4.2 Network Topologies . 88
5.4.3 Application Mapping . 90
5.4.4 Communication Architecture . 92

5.5 Advanced Interconnects Multicore Neuromorphic Systems 98
5.5.1 Three Dimensional On-chip Interconnect . 100
5.5.2 Photonic On-chip Interconnect for High-Bandwidth

Multicore SoCs . 110
5.5.3 Network Interface . 121

5.6 Chapter Summary . 122
References . 122

6 Fault-Tolerant Neuromorphic System Design . 127
6.1 Introduction . 127

6.1.1 Measure of Fault Tolerance . 128
6.1.2 Type of Faults and Behavior . 129
6.1.3 Impact of Faults on Neuromorphic System. 131

6.2 Conventional Computing System Fault Tolerance . 132
6.2.1 Hardware Approach . 132
6.2.2 Information Redundancy . 134
6.2.3 Software Approach . 137

6.3 Fault-Tolerance for Neuromorphic Computing . 137
6.3.1 Memory Protection . 138
6.3.2 Communication Protection . 138
6.3.3 Computation Protection . 138
6.3.4 SNN Mapping for Tolerating Errors . 139
6.3.5 Fault-Tolerant Remapping for Neuromorphic Computing 140

6.4 Chapter Summary . 150
References . 153

7 Reconfigurable Neuromorphic Computing System . 155
7.1 Introduction . 155
7.2 Fault-Tolerant Neural Networks . 158

7.2.1 Learning-Based Approach. 158
7.2.2 Architecture-Based Approach . 158
7.2.3 Hybrid-Based Approach . 160

7.3 Inter-Neuron Communication Network . 160
7.4 Reconfigurable Neuromorphic System Building Blocks 163

7.4.1 Spiking Neuron Processing Core . 164
7.4.2 Network Interface . 167
7.4.3 Fault-Tolerant Multicast 3D Router . 167

xiv Contents

7.5 Fault-Tolerant Spike Routing Algorithm. 169
7.5.1 Shortest Path K-means Multicast Spike Routing

Algorithm . 169
7.5.2 Fault-Tolerant K-means Multicast Spike Routing

Algorithm . 170
7.6 Mapping . 173
7.7 Complexity Analysis . 175
7.8 Chapter Summary . 177
References . 178

8 Case Study: Real Hardware-Software Design of
3D-NoC-Based Neuromorphic System. 183
8.1 Introduction . 183
8.2 R-NASH System . 185
8.3 R-NASH Hardware . 186

8.3.1 R-NASH Hardware Building Blocks . 186
8.3.2 Spiking Neural Processing Core (SNPC) . 187
8.3.3 Network Interface . 188
8.3.4 Crossbar . 189
8.3.5 Controlling . 190
8.3.6 Inter-Neural Interconnect . 191

8.4 R-NASH Learning . 192
8.4.1 Off-chip Learning . 192
8.4.2 Online Learning with STDP. 192

8.5 R-NASH Initial Mapping . 194
8.5.1 Genetic Algorithm . 195
8.5.2 Selection. 196
8.5.3 Crossover . 196
8.5.4 Mutation . 197
8.5.5 Genetic Algorithm for Neurons Mapping on

R-NASH Hardware . 197
8.6 R-NASH Run-Time Maintenance . 199

8.6.1 Data Integrity Protection . 199
8.6.2 Communication Protection . 200
8.6.3 Fault-Tolerant Neurons Mapping Scheme . 200

8.7 R-NASH Evaluation Results . 203
8.7.1 Initial Mapping Evaluation . 204
8.7.2 Fault-Tolerant Mapping . 208
8.7.3 Hardware Complexity . 209
8.7.4 System Validation. 210
8.7.5 Unsupervised STDP . 213

8.8 Chapter Summary . 214
References . 215

Contents xv

9 Survey of Neuromorphic Systems . 217
9.1 Introduction . 217
9.2 Software Emulation Approach . 219

9.2.1 SpiNNaker . 219
9.3 Digital Hardware Design Approach . 227

9.3.1 IBM TrueNorth . 228
9.3.2 Intel Loihi . 233

9.4 Analog and Mixed-Signal Hardware Approach . 234
9.4.1 NeuroGrid . 234

9.5 Chapter Summary . 238
References . 238

Index . 241

Acronyms

AAAI American Association for Artificial Intelligence
ACK Acknowledgment
ACM Association for Computing Machinery
ADC Analog to Digital Converter
ADM Approximate Derivative Method
AER Address Event Representation
AHB Advanced High-performance Bus
AI Artificial Intelligence
AMBA Advanced Microcontroller Bus Architecture
AMD Advanced Micro Devices
ANN Artificial Neural Network
API Application Programming Interface
ARM Advanced RISC Machines
ASIC Application-Specific Integrated Circuit
ASID Anti-Counterfeiting, Security and Identification
BCM Building Cube Method
BE Best Effort
BL Bit Line
BP Backpropagation
BW Buffer Writing
BWCCA Broadband and Wireless Computing, Communication and Appli-

cations
CAD Computer Aided Design
CAM Content-Access-Memory
CASES Conference on Compilers, Architecture and Synthesis for Embed-

ded Systems
CD Compact Disc
CICC Custom Integrated Circuits Conference
CIFAR Canadian Institute For Advanced Research
CLEO Conference on Lasers and Electro-Optics
CMD Command

xvii

xviii Acronyms

CMOS Complementary Metal-Oxide Semiconductor
CNN Convolution Neural Network
CP Configuration Packet
CPU Central Processing Unit
CRC Cyclic Redundancy Code
CS Computer Science
CS Chip Select
CSUR Computing Surveys
CT Crossbar Traversal
DAC Digital-to-Analog Converter
DBN Deep Belief Network
DMA Direct Memory Access
DNN Deep Neural Network
DOR Dimension Order Routing
DRAM Dynamic Random Access Memory
DTCM Data Tightly Coupled Memory
DVD Digital Versatile Disk
DWDM Dense Wavelength Division Multiplexing
DWM Domain Wall Memory
EC Electronic Controller
ECC Error Correction Code
ECN Electronic Control Network
ECTC Electronic Components and Technology Conference
EDRAM Embedded Dynamic Random Access Memory
EMCSI Electromagnetic Compatibility Signal/Power Integrity
ESD ElectroStatic Discharge
ETE End-To-End
FeFET Ferroelectric Field-Effect Transistor
FIFO First In, First Out
FPGA Field Programmable Gate Array
FPNA Field Programmable Neural Array
FT-PHENIC Fault-Tolerant Photonic Network-on-Chip
FTMC-3DR Fault-Tolerant Multicast 3D Routers
FTPP Fault-Tolerant Photonic Path-configuration algorithm
FTSP-KMCR Fault-Tolerant Shortest Path K-means-based MultiCast Routing

algorithm
FTSPKMCR Fault-Tolerant MultiCast Routing algorithm
GA Genetic Algorithm
GPU Graphic Processing Units
GPGPU General Purpose Graphic Processing Units
GS Greedy Search
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HDD Hard Disk Drive
HiPC High Performance Computing

Acronyms xix

HPCA High Performance Computer Architecture
HRS High Resistive state
IBM International Business Machines
IC Integrated Circuit
ID Identification
IEEE Institute of Electrical and Electronics Engineers
IF Integrate and Fire
ILP Integer Linear Programming
IP Intellectual Property
i-PACT Innovations in Power and Advanced Computing Technologies
ISBN International Standard Book Number
ISCA International Symposium on Computer Architecture
ISCAS International Symposium on Circuits and Systems
ISI Inter-Spike-Interval
ITCM Instruction Tightly Coupled Memory
JPEG Joint Photographic Experts Group
KB Kilobyte
KL Kernighan-Lin
LA-XYZ Look-Ahead XYZ
LIF Leaky Integrate-and-Fire
LRS Low-Resistive State
LRU Least Recently Used
LTD Long-Term Depression
LTP Long-Term Potentiation
LUT Look-Up-Table
MB Mega Bytes
MCSoC Multicore/Many-Core Systems-on-Chip
MFMC Max-Flow Min-Cut
MIVs Monolithic Intertier Vias
MJT Multi Junction Technology
MLP Multi-Layer Perceptron
MNIST Modified National Institute of Standards and Technology database
MPI Message Passing Interface
MR Microring Resonator
MRAM Magnetoresistive Random-Access Memory
MRCT Micro Ring Configuration Table
MRPR Microring fault-Resilient Photonic Router
MRST Micro Ring State Table
MTBF Mean Time Between Failures
MTJ Magnetic Tunneling Junction
MTTF Mean Time to Failures
MTTR Mean Time to Repair
NACK Negative Acknowledgment
NAND Not and
NASH Neuro-inspired ArchitectureS in Hardware

xx Acronyms

NEWS North-East-West-South
NI Network Interface
NP-hard Non-deterministic Polynomial-time hard
NSEW North South East West
NVM Non-Volatile Memories
OE Output Enable
OSI Open Systems Interconnection
OSI Open Systems Interconnection Model
PB Path_Blocked
PCB Process Control Block
PCM Phase Change Memory
PCN Photonic Communication Network
PE Processing Element
PJ Picojoule
PNoC Photonic Network-on-Chip
PS Photonic Switch
PSCP Path-Setup-Control Packet
PSO Particle Swarm Optimization
PSP Post-Synaptic Potential
PV Process Variation
RAM Random-Access Memory
RBL Resistance Between Layers
RC Routing Calculation
RE Read Enable
RELU Rectified Linear Unit
RISC Reduced Instruction Set Computing
RMP Residual Membrane Potential
R-NASH Reconfigurable Neuro-inspired ArchitectureS in Hardware
RNN Recurrent Neural Network
ROM Read-Only Memory
RPM Randomized Partially Minimal
RRAM Resistive Random-Access Memory
RSP Rapid System Prototyping
RTL Register-Transfer Level
SA Switch Allocation
SAF Store-And-Forward
SDRAM Synchronous Dynamic Random Access Memory
SDSP Spike Driven Synaptic Plasticity
SECDED Single Error Correction, Double Error Detection
SEQ Sequencer
SET Single-Event Transients
SEU Single-Event Upsets
SMC Systems, Man and Cybernetics
SNN Spiking Neural Network
SNPC Spiking Neuron Processing Core

Acronyms xxi

SoC System On a Chip
SP Shortest Path
SRAM Static Random Access Memory
SRDS Symposium on Reliable Distributed Systems
STA Sciences and Techniques of Automatic Control and Computer

Engineering
STDP Spike Timing Synaptic Plasticity
STPD Spike-Timing-Dependent-Plasticity
STT-RAM Spin-Transfer Torque RAM
TDM Time-Division Multiplexing
TDMA Time-Division-Multiple-Access
TECS Transactions on Embedded Computing Systems
TMR Triple Modular Redundancy
TODAES Transactions on Design Automation of Electronic Systems
TSVs Through Silicon Vias
TTFS Time-To-First-Spike
TV Thermal Variations
UI User Interface
USA United States of America
USB Universal Serial Bus
VCSEL Vertically Cavity Surface Emitting Laser
VGG Visual Geometry Group Network
VLSI Very-Large-Scale Integration
VTS VLSI Test Symposium
WDM Wavelength Division Multiplexing
WE Write Enable
WL Word Line
WL Worst Loss
WTA Winner-Take-All
XOR Exclusive OR

Chapter 1
Introduction to Neuromorphic
Computing Systems

Abstract The term neuromorphic is generally used to describe analog, digital,
mixed-mode analog/digital VLSI, and software systems that implement several
models of neural systems. The implementation of neuromorphic computing on
the hardware level can be realized by various technologies, including spintronic
memories, threshold switches, CMOS transistors, and oxide-based memristors. This
chapter introduces the neuromorphic computing systems and explores the funda-
mental concepts underlying this emerging paradigm. We first discuss biological
neurons and the dynamics that are abstracted from them to model artificial neurons.
Next, we discuss artificial neurons and how they have evolved in their representation
of biological neuronal dynamics. Afterward, we discuss implementing these neural
networks in terms of neuron models, storage technologies, inter-neuron communi-
cation networks, and learning.

1.1 Introduction

The human nervous system is composed of more than 100 billion cells known as
neurons. The neurons perceive changes in the environment, convey these changes
to other neurons, and directs body responses to these perceptions. Because these
neurons can carry out information processing in a rapid, parallel, fault-tolerant, and
energy-efficient manner, it has received so much attention. This chapter introduces
the fundamentals of neuromorphic computing systems by discussing biological
neurons and the dynamics abstracted from them to model artificial neurons.

Neuromorphic computing brain-inspired computing paradigm takes inspiration
from the brain to develop energy-efficient circuits and systems for future informa-
tion processing, capable of highly complicated tasks. Such computing promises to
drastically improve the efficiency of critical computational tasks, such as decision-
making and perception. Unlike the typical artificial neural networks (ANNs),
where neurons fire at each propagation cycle, the neurons in a brain-inspired
neural network model, named spiking neural networks (SNNs), fire only when a
membrane potential crosses a threshold value. Spiking neurons are only activated

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_1

2 1 Introduction to Neuromorphic Computing Systems

(a)

(b)

Fig. 1.1 (a) Biological neuron. (b) Corresponding Mathematical model

when sufficient signals are integrated from other neurons, which leads to sparse
neural activities at the network level.

A general description of a biological neuron is presented in Fig. 1.1. A neuron
consists of several parts: The dendrite, the axon, and the soma. The dendrite serves
as an input channel to the neuron, while the axon serves as the output channel. A
neuron receives electrochemical inputs from other neurons at the dendrites. Suppose
the sum of these inputs is sufficiently powerful to activate the neuron. In that case,
it transmits an electrochemical signal through the axon to other neurons whose
dendrites are connected to any of its axon terminals. This connection among neurons
is enabled via the synapses. The neuro-biological system is formidably connected.
A typical cortical neuron has up to 10K inputs, and some cerebellar neurons have up
to a quarter of a million inputs. Therefore, artificial neurons are designed to operate
in a manner analogous to biological neurons.

Figure 1.1b shows a computational neuron model. The input signals (e.g., x0)
received from the axon of other neurons are multiplied with the weight of the
synapse that connects them (e.g., w0). The dendrite then transports weighted inputs
(e.g., w0x0) to the soma of the receiving neuron. The weighted inputs are summed
up as the neuron membrane potential and passed through an activation function that
maps it to the neuron’s output (Fig. 1.2).

1.1 Introduction 3

Fig. 1.2 Neural network generations

Over the years, several neural network modeling approaches have been proposed,
differing in topology and features, to capture the dynamics of neural computation.
These modeling approaches have evolved through three generations, keeping in
mind the computational principles of the biological brain. In the first generation,
the neurons were referred to as perceptrons. These perceptrons process only digital
signals using a single layer. The sum of weighted inputs of this neuron is mapped to
the neuron output using a binary threshold. Some examples of perceptrons include
Hopfield networks and Boltzmann machines. The second generation, neurons,
are called a conventional artificial neural network. It maps the sum of weighted
inputs to the neuron output using activation functions such as sigmoid, exponential,
and polynomial, which have a continuous set of possible outputs. Also, this
second-generation network employs learning algorithms based on gradient descent.
Examples of this generation of the neural network include Feedforward, radial
basis function units, and recurrent sigmoid neural network. The third generation,
referred to as the Spiking Neural Network (SNN), is modeled more analogous to
the dynamics of biological neurons than previous generations. It is event-driven and
operates by accumulating input spikes at its membrane potential. An output spike is
fired by the neuron only when its membrane potential exceeds a certain threshold.
To perform tasks, artificial neurons like their biological counterparts need to be
connected. The manner in which neurons are connected determines their topology.
A summary of some neural network topologies illustrated in Fig. 1.3 are described
as:

• Feed-forward neural networks (FFNN): This network topology described in
Fig. 1.3 is organized into three categories of layers: The input, hidden, and
output layer. The connections between neurons in this network are made across
layers and not within a layer. Information flows in a forward direction from
the input layer, through the hidden layer(s), and finally to the output layer. The
backpropagation learning method is usually employed in training this network.
The multilayer perceptron is another network with a similar topology as the
feed-forward neural network. An example of a feed-forward neural network
usually employed in pattern recognition and classification tasks is the radial basis
function.

4 1 Introduction to Neuromorphic Computing Systems

Fig. 1.3 Some prevalent neural network topologies. (a) Feedforward neural network. (b) Hopfield
neural network. (c) Recurrent neural network

• Hopfield neural network (HFs): This network topology possesses cyclic and
recursive characteristics. They are made up of binary threshold neurons with
recurrent connections between them and can behave in several ways: settling in
a stable state, oscillating, or following less predictable disorganized trajectories.
Its global energy is determined by summing up several contributions, and each
contribution can also be determined from one symmetric connection between
neurons and the binary states of the two neurons.

• Recurrent neural networks (RNNs): The recurrent neural network is derived
from the FFNNs. However, as described in Fig. 1.3c, its hidden layers are
replaced with recurrent layers. The layers of an RNN receive inputs from
previous layers and the output of its layer. The ability of RNNs to process
sequences of inputs with their internal state makes them suitable for speech
recognition and connected handwriting recognition.

1.2 Design Challenges 5

1.2 Design Challenges

With the increasing demand for computing machines analogous to the biological
brain, neuro-inspired computing has advanced to the exploration of neuro-inspired
architectures that best the limitations of the traditional computer systems. Conven-
tional computer systems are based on the Von Neumann architecture. However, the
biological brain shows a disparity in structure, power consumption, and computa-
tional power compared to the traditional computer system. Therefore, a biologically
inspired approach designed from densely connected neurons enables neuroscience
theories to be modeled and machine learning problems to be solved.

Recent advances in artificial neural networks (ANN) have enabled machine
learning tasks like visual/auditory recognition and classification to be performed on
a large scale [28, 34, 37]. These ANNs, especially the convolutional neural network
(CNN), have demonstrated exceptional performance in these tasks. However, as
ANNs increase in size to enable them to perform more complex tasks, they
inculcate more layers, which increases the hardware resources (power consumption
and processing) required to simulate them. To mitigate the cost of simulating
these ANNs, a spiking neural network approach was proposed. By mimicking the
behavior of biological neurons more closely, SNNs can demonstrate low-power
consumption in magnitudes of picojoule (pJ) compared to ANN [22].

Despite being a flexible way of exploring the behavior of neuronal systems,
simulating large-scale SNN in software is slow and does not fully harness the energy
efficiency of SNN. As an alternative, scalable hardware multicore neuromorphic
architectures that can support a massive number of neurons and synapses, and lever-
age the parallelism and spike sparsity available in SNN to deliver rapid processing
with low power is imperative. However, realizing such a neuromorphic architecture
requires building small-sized spiking neuron cores with low-power consumption,
an efficient neuron coding scheme, and a light-weight learning algorithm. These
neurocores also need a scalable interneuron communication architecture that can
manage the enormous amount of traffic generated by the massive number of neurons
they embed. Given that communication architectures, such as shared buses, would
perform poorly with the increased number of neurons, and two-dimensional packet-
switched network-on-chip make it challenging to realize a high level of parallelism,
moving to 3D integrated circuits (3D-ICs) interconnect is a suitable approach that
allows for scalable designs with a high level of parallelism, shorter connections,
and lower power consumption. However, highly dense neuromorphic architectures
also encounter the reliability issue where a single point of failure can affect
operation. Because neuromorphic systems rely heavily on spike communication, an
interruption or violation in the timing of spike communication can adversely affect
the performance and accuracy of a neuromorphic system. Therefore, adaptivity is
required in neuromorphic systems to enable them to mitigate the effect of faults.

6 1 Introduction to Neuromorphic Computing Systems

1.3 Neural Networks

1.3.1 Artificial Neural Networks

In conventional ANN, input signals and weights are represented with real values,
and the implementation methods can be categorized either as analog or digital.
Analog implementations offer rapid processing, power efficiency, and low area
cost. However, they are susceptible to noise which makes representation of real
numbers difficult and accuracy limited. Digital implementation, on the other hand,
provides programmability, high precision, and reliability, but compared to analog
performance, they suffer from high area cost and latency.

Learning in neural networks is simply the process of finding the best set
of synaptic weights for maximizing a neural network’s accuracy. Implementing
learning has been one of the significant challenges in the design of neuromorphic
systems. Learning in a neuromorphic system is implemented either on-chip or
off-chip. The choice of implementation approach is made on many factors that
include the neural network model, and hardware resources. Two of the notable
neural network learning approaches are supervised and unsupervised learning.
This subsection reviews those approaches and learning rules employed in training
conventional artificial neural networks.

The learning approach entails training a neural network based on input-output
pairs, where the network learns by example. One of the prevalent learning rules
used in training conventional ANN is the backpropagation (BP) learning rule.
This learning rule trains an ANN by modifying its synaptic weights based on the
error rate obtained in its previous training stage. It can be employed in training
neural network topologies such as feed-forward, recurrent, and convolution. The
BP learning rule is usually implemented off-chip [27, 48] on a traditional host
machine. There it is used to train ANN weights, and after the training, the trained
weights are mapped to the neuromorphic chip. This learning rule has demonstrated
high precision in its training, taking advantage of the software platform. However,
it is not suitable for neuromorphic systems that require frequent re-training of
their synaptic weights. Several on-chip implementations of BP on neuromorphic
systems [5, 8], and variants of it, have also been either optimized or simplified
for on-chip implementation [12, 15]. Other supervised learning algorithms include
support vector machines and linear regression.

In contrast to the supervised learning approach, the unsupervised learning
approach has no input-output pair and has no example to learn from. This learning
approach is quite unpopular, and there have been some unsupervised learning
rules based on self-organizing maps [6, 35, 46] that have been implemented on
neuromorphic chips.

1.3 Neural Networks 7

1.3.2 Spiking Neural Networks

Spiking neural networks (SNNs) are artificial neural network models that more
closely mimic biological neural networks. In addition to neuronal and synaptic
states, SNNs incorporate variant time scale into their computational model. Since
each neuron in these networks is connected to thousands of others, high bandwidth
is required [49, 50]. Moreover, since the spike times are used to encode information
in SNN, very low communication latency is also needed.

Figure 1.4a shows the biological neuron model where dendrites receive inputs
from upstream neurons via the synapses. Incoming spikes are integrated into soma
as its membrane potential. If the membrane potential crosses the threshold, the
neuron issues an outgoing spike to an axon. The axon sends the spike to the
downstream neurons via synapses. Figure 1.4b shows an example of a spiking
neuron. The input spikes are multiplied (memory reading) with the corresponding
weights to have weighted inputs. The membrane potential is accumulated from the
weighted inputs and creates an outgoing spike if it is higher than the threshold.
In the spiking neuron models, there are three major parameters for being stored:
(1) incoming spikes; (2) synaptic weights, and (3) neuron’s internal parameters
(membrane potential, threshold, etc.).

In SNN, biological neurons communicate information via short electrical pulses
referred to as spikes. Neural coding focuses on how this information is represented
with electrical activity both at the neuron level and in networks of neurons. Efforts
have been made over the years to determine how these spikes can be encoded to
contain information. Some coding schemes that have been proposed are presented
in [24]. The rate coding scheme, which is sometimes called frequency coding,
conveys information based on a neuron’s firing rate, proportional to the stimulus
level. Several studies have shown that the temporal resolution of neural code is on
a scale of milliseconds. Therefore in temporal coding, information is represented
in the precise timing of spikes. As described in previous sections, SNN, unlike its
predecessors, mimics the brain’s behavior more closely, and over the years, several
spiking neuron models have been proposed. These spiking neuron models [31] differ
in the level of details they abstract from biological neurons. In this subsection, we
describe some of the prevalent models.

… …

1 1,

,

Fig. 1.4 (a) Biological neuron. (b) Spiking neuron

8 1 Introduction to Neuromorphic Computing Systems

The Hodgkin-Huxley neuron model, which was proposed in the early 1950s [29],
is a mathematical representation of neuron dynamics. It presents a mathematical
description of the electric current through the membrane potential, giving the details
of spike generation. The Hodgkin-Huxley model is the most biological plausible;
however, its complexity with many parameters consumes a tremendous amount of
hardware resources making it costly for large-scale implementations. Compared
to Hodgkin-Huxley, a less complex model was proposed by Izhikevich [30]. This
model computes a broad range of neuron spiking patterns using mathematical
equations.

In summary, among the existing spiking models, Hodgkin-Huxley [29], Izhike-
vich [30], and Leaky Integrate-and-Fire (LIF) [11] are often used. The Hodgkin-
Huxley model is the best when measurable physiological parameters are highly
considered. However, it consists of many coefficients, which leads to high cost when
implementing large SNNs. In contrast, we can simulate hundreds of thousands of
neurons when using LIF neural model; but it is incapable of producing rich spiking
patterns. Finally, Izhikevich exhibits a good compromise in terms of biophysical
similarity and computational cost. It is close to the Hodgkin-Huxley model in
biological plausibility while analogous to the LIF in computational complexity.

1.4 Learning in Spiking Neural Networks

Spike timing-dependent plasticity (STDP) is the most popular learning rule imple-
mented in neuromorphic systems [16, 32, 51]. It is Hebbian-based, coming from
observation in the biological brain [44]. The operation of STDP depends on the
arrival time of presynaptic spikes, in which the synaptic weight will be increased
when the spike arrives before the post-synaptic neuron “fire” and vice versa, as
illustrated in Fig. 1.5. It is an unsupervised learning rule and generally implemented
on-chip thanks to its friendly hardware resource.

Fig. 1.5 STDP architecture

1.5 Synapse Memory Technologies 9

Apart from the majority of STDP, spiking neuromorphic system also adopted
supervised learning rules. In this case, such systems use a “teacher” signal during
the training phase. Besides, another work [21] successfully implemented the spike-
driven synaptic plasticity (SDSP) learning rule. Unlike STDP, this learning rule
induces an update each time a pre-synaptic spike occurs. On the other hand,
backpropagation is also adopted for spiking systems [52]. In [19], authors first train
an ANN with BP, then convert it into SNN by mapping real-value inputs/activations
to average firing rates of Poisson spikes. This mechanism can be adopted to
implement on spiking hardware as an off-chip learning method.

1.5 Synapse Memory Technologies

In traditional computer systems, memory speed is a bottleneck because proces-
sors have significantly improved over the years, surpassing memory speed and
throughput. This leaves processors idle while waiting for memory. But SNN is
different. Its architecture provides memory in company with processing; they both
operate in parallel. These spiking neurons process with events, and as opposed
to traditional processors that work and communicate in megahertz and gigahertz
ranges, they communicate in around 10 Hz. This difference in speed enables
neuromorphic processors to use time multiplexing to combine many events into
a single communication channel. In SNN, storing and reading synaptic weights
constitutes the primary operation, and designing a large SNN with an enormous
number of synapses will require large memory bandwidth. So while communication
speed is not somewhat a challenge in neuromorphic systems, memory bandwidth
needs to be overcome. Researchers have taken several approaches to realize these
synapses in CMOS by exploring various memory technologies in addressing this
challenge. Some of these memory technologies include; static random-access mem-
ory (SRAM), a prominent memory technology in semiconductor design. In [43]
a neuromorphic chip with 256 neurons implements a transposable 8-transistor
SRAM-based which grants row and column access. A typical SRAM contains six
transistors (6-T), and although having high leakage current and low density, SRAM
offers multiple read and write. Its significant advantages are speed and reliability
when compared to other memory technologies [9].

The two more transistors on the 8-T SRAM adds access to the word and bit
lines in transposed orientation to the typical 6-T design. To handle the general
leakage power of the chip, the authors leveraged ultra-high-Vt devices which
reduced it by 3, at the cost of the increased minimum operating voltage of the
memory array. Another memory technology is embedded dynamic random-access
memory (eDRAM), which was used in [33] to design a high-density 3D memory
for a programmable digital neuromorphic architecture. eDRAM is a capacitor-based
memory integrated on the same multi-chip module. Due to its simple conventional
one 1-transistor 1-capacitor design, it is inclined to having less area cost when
compared to SRAM. However, with the gradual leakage of its storage charge during
operation, its retention period is low. Also, its design is not easily compatible

10 1 Introduction to Neuromorphic Computing Systems

with CMOS. In [47], a spin-transfer torque ram (STT-RAM) was proposed as a
stochastic indexmemristivememristive synapse for neuromorphic systems. An STT-
RAM is a magnetic RAM that uses magnetic tunneling junction (MTJ) in its cells,
and its simple design has a small area compared to SRAM and eDRAM. By
adopting a schema proposed in [45], the authors organized the STT-RAM MJT
as a crossbar connecting input and output neurons. However, the magnetization
of the STT-RAM makes the writing process slow and consumes more energy.
Another memory technology that has been used in the design of neuromorphic
chips is resistive random-access memory (RRAM or ReRAM). It is a memory
technology that relies on the resistance change of its cells to store information, and
it has similar architecture to eDRAM. Many FPGA-based hardware emulators for
neuromorphic chips with RRAM-based crossbar were proposed. RRAM offers low
area, low power, and easy integration on CMOS. However, it suffers from stuck at
faults (SAF) [54], which may cause short-circuiting and lead to increased power and
dynamic switching variation large variation in the resistance of the memory. Other
memory technologies include Phase Change Memory (PCM).

1.6 Neurons Communication Network

Communication architectures for spiking neuromorphic systems are responsible
for delivering spikes between neuro-cores/tiles. They can be categorized as intra-
chip and inter-chip. For inter-chip, address event presentation (AER) is commonly
employed [10, 39]. In AER, each neuron has a unique address. Whenever a neuron
generates a spike, its address is sent to post-synaptic neurons by a high-speed digital
bus. AER is suitable for SNN implementations since it only needs to be active
whenever neurons fire. To scale up the system, a hierarchical AER as a tree structure
can be implemented.

On the other hand, network-on-chip (NoC) is commonly implemented for
on-chip communication [1–3]. In the early stage of neuromorphic system imple-
mentations, buses are employed in some systems [40]. However, when comparing
bus, tree, point to point, and mesh-based system, the results show that mesh
with multicast offers the highest performance for SNN implementations. Later
systems adopted mesh-based interconnect as the common NoC topology [4, 17].
In SpiNNaker [23], toroid NoC is used for forming a hybrid on-chip and off-chip
interconnect system. Furthermore, AER also is used for on-chip communication [4,
17, 18, 23].

1.7 Neuromorphic System Design Domains

Full custom digital ASIC has been common platforms for spiking neuromorphic
implementations. Two well-known examples of this kind of implementation are
TrueNorth [4] and SpiNNaker [23]. While TrueNorth only supports the leaky

References 11

integrate and fire neuron model with no on-chip learning, SpiNNaker offers extreme
flexibility in the neuron model, synaptic model, and learning algorithm. However,
TrueNorth has a benefit of energy efficiency by consuming 25 pJ per connection,
while the SpiNNaker is 10 nJ per connection, as reported in [22]. Also, FPGAs
are commonly used for implementing spiking neuromorphic systems [14, 25, 38].
They can be implemented as a part of the system and also as final implementations.
While FPGAs are considered to be an excellent choice for acceleration over software
simulations, they are not targeted as platforms for achieving low power.

Some characteristics that make analog platforms suitable for spiking implemen-
tations include: conservation of charge, amplification, thresholding, and integration.
Therefore, there are a large number of implementations [41]. Besides, analog
platforms are also designed to operate in subthreshold [53], and superthreshold
modes for the speed-up purpose [42]. On the other hand, field-programmable
analog arrays (FPAAs) have been used as other analog platforms. They are also
customized for neural network implementation such as field programmable neural
array (FPNA) [20] and Neuro FPAA [36] where they provide programmable
components such as neurons, synapses.

Mixed-signal designs are also standard for neuromorphic systems [26] to take
advantage of both analog and digital platforms. In these works, weights or other
parameters are stored in digital memories to enable the system to be less noisy and
more reliable. Furthermore, inter-chip and intra-chip communication architectures
are also implemented in digital [13]. On the other hand, neurons are generally in
the form of analog. Two well-known systems for this kind of implementation are
Neurogrid [7] and BrainScales [42].

1.8 Chapter Summary

This chapter presented an overview of artificial neural networks, including spiking
neural networks as the latest generation and how they are implemented. Spiking
Neural networks can simulate biological neural networks with extreme energy
efficiency thanks to event-based operations and fewer operation computations.
The next chapter presents the interconnection network and how they solve the
interconnect challenge in spiking neuromorphic systems.

References

1. Abdallah AB (2017) Advanced multicore systems-on-chip: architecture on-chip network,
design. Springer, Berlin

2. Ahmed AB, Abdallah AB (2013) Architecture and design of high-throughput, low-latency, and
fault-tolerant routing algorithm for 3d-network-on-chip (3d-noc). J Supercomput 66(3):1507–
1532

12 1 Introduction to Neuromorphic Computing Systems

3. Ahmed AB, Abdallah AB (2014) Graceful deadlock-free fault-tolerant routing algorithm for
3d network-on-chip architectures. J Parallel Distrib Comput 74(4):2229–2240.

4. Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N,
Nakamura Y, Datta P, Nam G, Taba B, Beakes M, Brezzo B, Kuang JB, Manohar R,
Risk WP, Jackson B, Modha DS (2015) Truenorth: design and tool flow of a 65 mW 1 million
neuron programmable neurosynaptic chip. IEEE Trans Comput Aided Des Integr Circuits Syst
34(10):1537–1557

5. Bayraktaroglu I, Ogrenci AS, Dundar G, Balkir S, Alpaydin E (1997) Annsys (an analog
neural network synthesis system). In: Proceedings of international conference on neural
networks (ICNN’97), vol 2, pp 910–915

6. Ben Khalifa K, Girau B, Alexandre F, Bedoui MH (2004) Parallel FPGA implementation of
self-organizing maps. In: Proceedings of the 16th international conference on microelectronics,
2004. ICM 2004, pp 709–712

7. Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, Alvarez-
Icaza R, Arthur JV, Merolla PA, Boahen K (2014) Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. Proc IEEE 102(5):699–716

8. Berg Y, Sigvartsen RL, Lande TS, Abusland A (1996) An analog feed-forward neural network
with on-chip learning. Analog Integr Circuits Signal Process 9(1):65–75

9. Bhaskar A (2017) Design and analysis of low power SRAM cells. In: 2017 Innovations in
power and advanced computing technologies (i-PACT), pp 1–5

10. Boahen KA (1998) Communicating neuronal ensembles between neuromorphic chips.
Springer US, Boston, MA, pp 229–259

11. Burkitt N (2006) A review of the integrate-and-fire neuron model: I. homogeneous synaptic
input. Biol Cybern 95(1):1–19

12. Carvajal G, Figueroa M, Sbarbaro D, Valenzuela W (2011) Analysis and compensation
of the effects of analog VLSI arithmetic on the LMS algorithm. IEEE Trans Neural Netw
22(7):1046–1060

13. Charles G, Gordon C, Alexander WE (2008) An implementation of a biological neural model
using analog-digital integrated circuits. In: 2008 IEEE international behavioral modeling and
simulation workshop, pp 78–83

14. Cheung K, Schultz SR, Luk W (2012) A large-scale spiking neural network accelerator for
FPGA systems. In: International conference on artificial neural networks. Springer, Berlin, pp
113–120

15. Choi M, Salam FMA (1991) Implementation of feedforward artificial neural nets with learning
using standard CMOS VLSI technology. In: IEEE international symposium on circuits and
systems 1991, vol 3, pp 1509–1512

16. Dan Y, Ming Poo M (2004) Spike timing-dependent plasticity of neural circuits. Neuron
44(1):23–30

17. Davies M et al (2018) Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38(1):82–99

18. Deiss SR, Douglas RJ, Whatley AM (1999) Pulsed neural networks. In: A pulse-coded
communications infrastructure for neuromorphic systems. MIT Press, Cambridge, MA, pp
157–178

19. Diehl PU, Neil D, Binas J, Cook M, Liu S, Pfeiffer M (2015) Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing. In: 2015 International joint
conference on neural networks (IJCNN), pp 1–8

20. Farquhar E, Gordon C, Hasler P (2006) A field programmable neural array. In: 2006 IEEE
international symposium on circuits and systems, p 4117

21. Frenkel C, Lefebvre M, Legat J, Bol D (2019) A 0.086-mm2 12.7-pj/sop 64k-synapse 256-
neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans
Biomed Circuits Syst 13(1):145–158

22. Furber S (2016) Large-scale neuromorphic computing systems. J Neural Eng 13(5):051001
23. Furber SB, Galluppi F, Temple S, Plana LA (2014) The spinnaker project. Proc IEEE

102(5):652–665

References 13

24. Gerstner W, Kistler W (2002) Spiking neuron models: single neurons, populations, plasticity.
Cambridge University Press, Cambridge

25. Glackin B, McGinnity TM, Maguire LP, Wu Q, Belatreche A (2005) A novel approach for the
implementation of large scale spiking neural networks on FPGA hardware. In: International
work-conference on artificial neural networks. Springer, Berlin, pp 552–563

26. Hahnloser RHR, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS (2000) Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature
405(6789):947–951

27. Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR,
Upper Saddle River, NJ

28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

29. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol 117:500–544

30. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–
1572

31. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural
Netw 15(5):1063–1070

32. Jin X, Rast A, Galluppi F, Davies S, Furber S (2010) Implementing spike-timing-dependent
plasticity on spinnaker neuromorphic hardware. In: The 2010 international joint conference on
neural networks (IJCNN), pp 1–8

33. Kim D, Kung J, Chai S, Yalamanchili S, Mukhopadhyay S (2016) Neurocube: a
programmable digital neuromorphic architecture with high-density 3d memory. In: 2016
ACM/IEEE 43rd annual international symposium on computer architecture (ISCA), pp 380–
392

34. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. Adv Neural Inf Process Syst 25:1097–1105

35. Kumar S, Forward K, Palaniswami M (1996) Performance evaluation of a RISC neuro-
processor for neural networks. In: Proceedings of 3rd international conference on high
performance computing (HiPC), pp 351–356

36. Liu M, Yu H, Wang W (2009) FPAA based on integration of CMOS and nanojunction devices
for neuromorphic applications. In: Cheng M (ed) Nano-Net. Springer, Berlin, pp 44–48

37. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) SSD: single shot
multibox detector. In: European conference on computer vision. Springer, Berlin, pp 21–37

38. Maguire LP, McGinnity TM, Glackin B, Ghani A, Belatreche A, Harkin J (2007) Challenges
for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing 71(1–
3):13–29

39. Merolla P, Arthur J, Alvarez R, Bussat J, Boahen K (2014) A multicast tree router for
multichip neuromorphic systems. IEEE Trans Circuits Syst I Regul Pap 61(3):820–833

40. Mortara A, Vittoz EA, Venier P (1995) A communication scheme for analog VLSI perceptive
systems. IEEE J Solid-State Circuits 30(6):660–669

41. Nawrocki RA, Shaheen SE, Voyles RM (2011) A neuromorphic architecture from single
transistor neurons with organic bistable devices for weights. In: The 2011 international joint
conference on neural networks, July 2011, pp 450–456

42. Schemmel J, Grübl A, Hartmann S, Kononov A, Mayr C, Meier K, Millner S, Partzsch
J, Schiefer S, Scholze S, Schüffny R, Schwartz M (2012) Live demonstration: a scaled-
down version of the brainscales wafer-scale neuromorphic system. In: 2012 IEEE international
symposium on circuits and systems, May 2012, p 702

43. Seo J, Brezzo B, Liu Y, Parker BD, Esser SK, Montoye RK, Rajendran B, Tierno JA,
Chang L, Modha DS, Friedman DJ (2011) A 45nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons. In: 2011 IEEE custom integrated
circuits conference (CICC), Sept 2011, pp 1–4

44. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nat Neurosci 3(9):919–926

14 1 Introduction to Neuromorphic Computing Systems

45. Suri M, Bichler O, Querlioz D, Cueto O, Perniola L, Sousa V, Vuillaume D, Gamrat C,
DeSalvo B (2011) Phase change memory as synapse for ultra-dense neuromorphic systems:
application to complex visual pattern extraction. In: 2011 International electron devices
meeting, Dec 2011, pp 4.4.1–4.4.4

46. Tamukoh H, Sekine M (2010) A dynamically reconfigurable platform for self-organizing
neural network hardware. In: Wong KW, Mendis BSU, Bouzerdoum A (eds) Neural
information processing. models and applications. Springer, Berlin, pp 439–446

47. Vincent AF, Larroque J, Locatelli N, Ben Romdhane N, Bichler O, Gamrat C, Zhao WS,
Klein J, Galdin-Retailleau S, Querlioz D (2015) Spin-transfer torque magnetic memory as a
stochastic memristive synapse for neuromorphic systems. IEEE Trans Biomed Circuits Syst
9(2):166–174

48. Vu TH, Murakami R, Okuyama Y, Abdallah AB (2018) Efficient optimization and hardware
acceleration of CNNs towards the design of a scalable neuro inspired architecture in hardware.
In: 2018 IEEE international conference on big data and smart computing (BigComp), Jan 2018,
pp 326–332

49. Vu TH, Ikechukwu OM, Ben Abdallah A (2019) Fault-tolerant spike routing algorithm and
architecture for three dimensional NoC-based neuromorphic systems. IEEE Access 7:90436–
90452

50. Vu TH, Okuyama Y, Abdallah AB (2019) Comprehensive analytic performance assessment
and k-means based multicast routing algorithm and architecture for 3d-NoC of spiking neurons.
ACM J Emerg Technol Comput Syst 15(4):1–28

51. Yang Z, Murray A, Worgotter F, Cameron K, Boonsobhak V (2006) A neuromorphic depth-
from-motion vision model with STDP adaptation. IEEE Trans Neural Netw 17(2):482–495

52. Yin S, Venkataramanaiah SK, Chen GK, Krishnamurthy R, Cao Y, Chakrabarti C, Seo
J (2017) Algorithm and hardware design of discrete-time spiking neural networks based on
back propagation with binary activations. CoRR, abs/1709.06206

53. Yu T, Cauwenberghs G (2009) Analog VLSI neuromorphic network with programmable
membrane channel kinetics. In: 2009 IEEE international symposium on circuits and systems,
May 2009, pp 349–352

54. Yu S, Wu Y, Wong H-SP (2011) Investigating the switching dynamics and multilevel capability
of bipolar metal oxide resistive switching memory. Appl Phys Lett 98(10):103514

Chapter 2
Neuromorphic System Design
Fundamentals

Abstract The neuromorphic computing paradigm has the potential to improve
the efficiency of computational tasks. Unlike the typical artificial neural networks
(ANNs), where neurons fire at each propagation cycle, the neurons in a neuromor-
phic neural networks model, named spiking neural networks (SNNs), fire only when
their membrane potential reaches a certain threshold. Spiking neurons are only
activated when sufficient signals are integrated from other neurons, which leads
to sparse neural activities at the network level. Furthermore, their asynchronous
event-driven operations, distributed memory, and massive parallelism significantly
accelerate information processing and reduce energy consumption in many appli-
cations (i.e., pattern recognition, object detection, navigation, motor control, and
so on). The key design challenges of neuromorphic systems include: how the
organization of individual neurons, circuits, applications, and overall architectures
enable energy-efficient computations, how information is represented, and how
adaptation to local and evolutionary changes are facilitated. Moreover, a massively
parallel neuromorphic architecture will require building small-sized neuro process-
ing cores with low-power consumption, efficient neuron coding schemes, and a
lightweight on-chip learning algorithm, which is also a challenges. This chapter
covers fundamental design principles to build an efficient neuromorphic system in
hardware.

2.1 Introduction

The term neuromorphic engineering is a concept developed by Carver Mead [23]
in the late 1980s, describing the use of VLSI systems containing electronic analog
circuits to mimic neuro-biological architectures present in the nervous system. In
recent years, interest in neuromorphic system design has gradually increased due
to better understandings of the brain, and the operation of neurons and several
specialized structures, such as the retina. Current neuromorphic systems are hybrid
analog-digital electronic systems fabricated using CMOS VLSI technology. Thus,
the neuromorphic paradigm opens up computing prospects beyond traditional
computer systems.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_2

16 2 Neuromorphic System Design Fundamentals

Spiking neural networks (SNNs) offer an efficient way of making inferences
because computations are event-driven, and the neurons in the networks are sparsely
activated. Moreover, SNNs can trade-off classification error rates against the number
of available operations, whereas continuous-valued DNNs require a fixed number
of functions to achieve their classification error rate. With an increase in error
rate of a few percentage points, SNNs can achieve more than 2x reductions in
operations when compared to the original ANNs (CNNs) for LeNet and MNIST, and
BinaryNet CIFAR-10 [31]. This clearly shows the potential of SNNs, particularly
when they are deployed on power-efficient embedded neuromorphic devices. Also,
SNNs can generate results after the first output spike is produced, unlike ANNs
where the output is available only after all layers have been completely processed
[10]. Moreover, SNNs are naturally suited to process event-based sensor data. Still,
even in classical frame-based machine vision applications, they are accurate, fast,
and efficient, primarily when implemented on neuromorphic hardware.

Several neuromorphic processors have been designed for applications ranging
from vision systems for object recognition in drones, simulation of some part of the
brain, to running clustering algorithms that detect trade patterns. The operations
of an SNN are generally grouped into learning and inference. Under these, a
neuromorphic system is evaluated for efficiency while targeted towards maintaining
low power, small footprint, and scalability. For a neuromorphic processor to
efficiently carry out learning and inference, factors like learning rules and neuron
models which significantly determine the performance of an SNN, have to be
carefully considered.

Years of research in learning methods and inference in neuromorphic processors
have narrowed it down to three approaches. The first involves conducting training
and inference on high-end servers and then exporting the result. The second requires
training on high-end servers and inference on an autonomous agent, while the third
requires conducting both training and inference on an autonomous agent. However,
the first approach requires a network connection that utilizes more resources
and poses security challenges. The second approach presents the possibility of
conserving energy, but with increasing demand for real-time adaptation in a dynamic
environment from autonomous agents, the third approach is imperative.

2.1.1 Spiking Neural Networks

In recent years, neuroscience research has revealed a great deal about the structure
and operation of individual neurons. Medical tools have also shown a great deal
about how neural activity in different regions of the brain follow a sensory stimulus
[12]. Moreover, the advances of software-based artificial intelligence (AI) have
brought us to the edge of building brain-like functioning devices and systems that
are not limited by the bottleneck of the conventional von Neumann computing
architecture. The main difference between neuro-inspired (neuromorphic) systems
and traditional information processing systems is their use of memory structures

2.1 Introduction 17

and organization [16]. While computing systems based on the von Neumann style
have one or more central processing units physically separated from the main
memory areas, both biological (spiking) and artificial neural network systems are
characterized by distributed co-localized memory and computation.

The neuro-inspired technology based on SNNs (Spiking neural networks) wit-
nesses increasing attention to better understand the brain and explore novel bio-
logically inspired computation [44–46]. SNNs have been successfully applied to
several applications, including visual recognition and classification tasks. Besides,
implementations of neuromorphic hardware have enabled large-scale networks to
run in real-time, which is a critical requirement for several applications.

SNNs attempt to mimic the information processing in the mammalian brain based
on parallel arrays of neurons that communicate via spike events. Unlike the typical
multi-layer perceptron networks, where neurons fire at each propagation cycle, the
neurons in the SNN model fire only when their membrane potential reaches a certain
threshold.

In SNN, a neuron generates spikes/pulses that can travel down nerve fibers if it
receives enough stimuli from other neurons with the presence of external stimuli.
These pulses (typically in the range of 1–2 ms) may vary in amplitude, shape, and
duration, but they are treated as similar events. In these spiking models, information
is encoded using various encoding schemes, such as coincidence coding, rate
coding, or temporal coding. In an SNN, neurons communicate at junctions called
synapses (chemical or electric). Chemical synapses, which form the majority of all
synapses, communicate using chemical messengers. While in electrical synapses,
ions flow directly between cells. Figure 2.1 illustrates two neurons communicating
via a synapse.

Software simulation of SNN is a flexible method for investigating the behavior
of neuronal systems. However, simulation of a deep SNN system requires analytical
performance assessment and high-throughput, which obviously cannot be achieved
with a software-based approach. An alternative approach is a hardware imple-
mentation, which can generate independent spikes accurately and simultaneously
output spikes in real-time. Hardware implementations also have the advantage
of computational speedup over software simulations and can take full advantage

Fig. 2.1 Two neurons communicating via a synapse

18 2 Neuromorphic System Design Fundamentals

of their inherent parallelism. Specialized hardware architectures with multiple
neurocores could exploit the parallelism inherent within neural networks to provide
high processing speeds with low power, making SNNs suitable for embedded neu-
romorphic devices and control applications. Some simulators also offer hardware
acceleration that can speed up the performance [2].

A modern artificial neural network has many layers, leading to a “deep neural
network (DNN).” In DNN, one neural network layer is often a 2D structure,
especially in image recognition and classification networks; the resulting network is
often a 3D structure. Therefore, mapping a 3D structure onto 2D circuits generally
results in multiple long wires between layers or congestion.

2.1.2 Neural Coding Schemes

Spiking Neurons propagate signals rapidly over long distances by generating
electrical pulses called action potentials that can travel down axons. Sensory neurons
change their activities by firing sequences of action potentials, known as spike-train,
in various temporal patterns, with external sensory stimuli, such as light, sound, etc.

In a small area of the cortex, there are thousands of spikes emitted in every
millisecond. This raises the question of how the spikes can be encoded into informa-
tion. Some other specialized neurons can communicate more information through
so-called graded potentials. However, contrary to the action potential of spiking
neurons, the signal in graded potential neurons decays much faster, necessitating
high neuronal density and short inter-neuron distances. Graded potential neurons
have the advantage of higher information rates capable of encoding more states
than spiking neurons [32].

A spike train may contain information based on different coding schemes. For
example, in motor neurons, the strength at which a muscle is contracted depends
on the average number of spikes per unit time (firing rate). On the other hand, a
complex temporal code is based on the precise timing of single spikes. This section
describes the most common coding schemes used in spiking neuromorphic systems.

2.1.2.1 Rate Coding

The rate coding scheme, also known as frequency coding, is a simple traditional
coding scheme. It states that as the intensity of a stimulus increases, the rate of
action potentials increases. Since the sequence of action potentials generated by a
given stimulus varies from trial to trial, the firing rates are used for decoding brain
activity instead of specific spike sequences. Consequently, rate coding is inefficient
but highly robust due to ISI (Inter-Spike-Interference)Inter-Spike-Interference noise
[36]. This approach also neglects all the information possibly contained in the exact
timing of the spikes.

2.1 Introduction 19

In rate coding, precisely calculating the firing rate is essential. There are different
rate averaging methods used in rate codings, such as an average over time (rate as a
single-neuron spike count) or several repetitions:

Spike Count Rate This method is determined by the average number of spikes in
an interval time as shown in Eq. (2.1).

vsc = nspike

�t
(2.1)

where nspike is the spike number, �t is the interval (time window). The length of
�t depends on the neural models used. This coding method has been successfully
used for experiments involving sensory and motor system.

Spike Density Rate In this coding method, the same stimulation sequence is
repeated K times, then the number of spikes nK is summed over all repetitions.
The rate coding method is expressed in Eq. (2.2) as:

vsd = nK

K�t
(2.2)

where �t is the period of repetition. Although biological neurons do not use this
method, it is a valuable method for evaluating neuron activity.

Population Activity Rate Many neurons have the same characteristics and interact
with the same stimuli. Population activity rate is proposed to measure the firing rate
of a population of neurons as shown in Eq. (2.3):

vpa = np

N�t
(2.3)

where np is the total number of spikes generated by N neurons, �t is the time
window.

2.1.2.2 Temporal Coding

In temporal coding, the information about stimulus or action is contained in the
relative timing of spikes, not just in the rate of those spikes. Temporal code is
generally divided into the following coding schemes:

• Time-to-first-spike: The idea is to encode the latency information of the first spike
event given a stream of spikes, where the precise timing of the spikes indicates the
strength of the stimulation [13, 28, 34]. In general, the first spike is interpreted
to carry a more powerful feature of the stimulus, and the following spikes are
ignored [12, 26] (Fig. 2.2).

• Inter-spike-interval: The inter-spike-interval (ISI) refers to the internal time
correlation between spikes rather than the absolute time with respect to stimulus

20 2 Neuromorphic System Design Fundamentals

Fig. 2.2 Time to first spike

Fig. 2.3 Inter-spike-interval

Fig. 2.4 Phase coding

onset [50, 51]. Also, the merit of the ISI approach compared to time-to-first-
spike (TTFS), relies on the internal reference frames. Thus more messages can be
conveyed during the same sampling period in this coding approach [1] (Fig. 2.3).

• Phase coding: The neural oscillations are intrinsically rhythmic and are prevalent
in many brain areas with different frequency bands. When the activity of a cluster
of neurons is periodical, the neurons can create rhythmic electrical patterns [3,
14]. The oscillations could serve as time inference signals, and the phase could
be encoded into neuronal spike trains to convey relevant information (Fig. 2.4).

• Rank order coding: The idea is to omit the precise timing information by using
only the order in which the spikes arrive [37, 38]. This coding strategy relies
on the observation that the first-spike latency jitter between two trials is less than
1ms (median value) in all cases and thus is believed to be highly reliable [42]. An
example is its robustness against image degradations like intensity and contrast
change [37] (Fig. 2.5).

• Correlation and synchrony: Consider a pair or a group of neurons that are
nearly synchronous. Such synchrony might imply some additional or specific
information that is unable to be represented using the simple firing rate of
neurons [12] (Fig. 2.6).

2.2 Spiking Neuron Models 21

Fig. 2.5 Rank order

Fig. 2.6 Correlation and
synchrony

Fig. 2.7 Temporal coding
schemes: threshold coding

• Threshold coding: In general, when processing a continuous audio signal, an
appropriate sample-rate is required for ideal preservation and perfect reconstruc-
tion of information. Based on the observation that the interval of sampling is
the key to encode the stimuli, the sound intensity can be divided into a group of
thresholds, and onset and offset neurons are used to encode the information each
time the sound waves cross a threshold [26] (Figs. 2.7).

2.2 Spiking Neuron Models

Spiking neuron models are divided into different classes: the detailed mathematical
models are biophysical neuron models that describe the membrane voltage as a
function of the input current and the activation of ion channels. The simple models

22 2 Neuromorphic System Design Fundamentals

Fig. 2.8 A comparison of spiking neuron models in terms of implementation cost and biological
plausibility

are neurons that express the membrane potential voltage as a function of the input
current without describing the real biological processes of an action potential.

Figure 2.1 shows a biological neuron that consists of dendrites, axons, and cell
body. A summary of the biological plausibility and computational cost of a pool of
spiking neuron models evaluated in [18] is presented in Fig. 2.8.

2.2.1 Hodgkin-Huxley Model

The Hodgkin-Huxley neural model was proposed in the 1950s. As described in
Fig. 2.9, the Hodkin-Huxley neuron models in a circuit, the cell membrane of a
neuron as a capacitor that separates ionic charge from both sides of the membrane,
the ion channels as conductances/resistors, and the membrane potential as battery.
The calcium and sodium channels are voltage gated, and change connectivity based
on the membrane potential, but the leak channels are not gated. This neuron model
presents a mathematical description of the electric current through the membrane
potential v giving the details of spike generation, as given in Eq. (2.4):

dv

dt
= (

1

C
)I − gkn

4(V − Vk) − gNam
3h(V − VNa) − gL(V − VL) (2.4)

where C is the capacitance of the circuit, I is the external current, conductances
are potassium gk , sodium gNa , and leakage gL. Gating parameters n, m, and h are
determined by Eqs. (2.5)–(2.7), respectively

2.2 Spiking Neuron Models 23

Fig. 2.9 The
Hodgkin-Huxley model: (a)
the schematic diagram
presents the membrane
potential, in which current
injection starts at t = 5 ms as
(b), while (c) and (d) show
the dependency of the gating
variables n, m and h on the
membrane potential

dn

dt
= (n∞(v) − n)/τn(v) (2.5)

dm

dt
= (m∞(v) − m)/τm(v) (2.6)

dh

dt
= (h∞(v) − h)/τh(v) (2.7)

As shown in Fig. 2.8, the Hodgkin-Huxley model is the most biological plausible.
However, its complexity with many features consumes a considerable amount of
hardware resources. It, therefore, is costly for large-scale implementations.

2.2.2 Izhikevich Model

Compared to Hodgkin-Huxley, a less complex model was proposed by Izhike-
vich [18]. The following equations describe the model:

dv

dt
= 0.04v2 + 5v + 140 − u + I (2.8)

24 2 Neuromorphic System Design Fundamentals

du

dt
= a(bv − u) (2.9)

{
v ← c

u ← u + d
if v ≥ 30 mV (2.10)

where v is the membrane potential of the neuron, u is a membrane recovery variable,
I is the neuron current, a, b, c, d are parameters of the models, in which the various
values of these parameters result in different types of neuron characteristics. When
membrane potential v exceeds the threshold (30 mV), the membrane potential v

and recovery variable v are reset as Eq. (2.10). The Izhikevicz model is able to
reproduce spiking and bursting characteristics of known cortical neurons. These
spiking characteristics include the regular spiking (RS), intrinsically bursting (IB),
chattering (CH), fast spiking (FS), thalamo-cortical (TC), resonator (RZ), and low-
threshold spiking (LTS).

2.2.3 Leaky Integrate and Fire Model

The Leaky Integrate and Fire (LIF) model is one of the most commonly used models
in SNN. It is described by the Eqs. (2.11) and (2.12).

dv

dt
= I + a − bv (2.11)

v ← c, if v ≥ vth (2.12)

where v is the membrane potential of the neuron, I is the neuron current, a, b, and
c are parameters of the model. When the membrane potential v exceeds a threshold
vth, it will be reset to c. The primary circuit presenting the LIF model is shown
in Fig. 2.10. It consists of capacitor C and resistor R connected in parallel and
driven by a current I (t). In summary, among the existing spiking models, Hodgkin-
Huxley, Izhikevich [18], and Leaky Integrate-and-Fire (LIF) [17] are often used.
The Hodgkin-Huxley type is the best when measurable physiological parameters
are highly considered. The model is based on many coefficients. This leads to
challenges when implementing large SNNs because of the high hardware cost. In
contrast, we can simulate hundreds of thousands of neurons when using LIF neural
model; but, it is incapable of producing rich spiking patterns. Finally, Izhikevich
exhibits a good compromise in terms of biophysical similarity and computational
cost. It is close to the Hodgkin-Huxley model in biological plausibility while
analogous to the LIF in computational complexity.

2.3 Learning Algorithms 25

Fig. 2.10 Schematic diagram of the LIF model

2.3 Learning Algorithms

Learning in SNN is based on the modification of the strength of synaptic connec-
tions between neurons. Over the years, researchers have proposed and employed
supervised and unsupervised learning rules for training neuromorphic systems to
attain high performance.

2.3.1 Supervised Learning

Backpropagation (BP), a supervised learning method, is the most commonly used
algorithm for neuromorphic programming. It can be employed in many neural
network models such as feed-forward neural networks, recurrent neural networks,
and convolution neural networks. The simple way to implement BP in hardware is
off-chip. In this case, BP is performed on a traditional host machine. After that,
pre-trained parameters are transferred or configured into the target neuromorphic
chip. While this method is beneficial for precision software implementation, and
requires lower hardware resources, it is not suitable for systems that have to re-
train frequently. However, on-chip BP implementations have been used in many

26 2 Neuromorphic System Design Fundamentals

neuromorphic systems. Besides, variations of BP that are optimized or simplified
for neuromorphic systems are also implemented. There are other on-chip learning
implementations for convolution neural networks, Boltzmann machines, Restricted
Boltzmann machines, and deep belief networks. The work in [11] successfully
implemented spike-driven synaptic plasticity (SDSP) learning rule based on a
so-called “teacher” signal. Unlike spike-timing-dependent plasticity (STDP), this
learning rule induces an update each time a presynaptic spike occurs. On the other
hand, backpropagation is also adopted for spiking systems [49]. Some authors
first train an ANN with BP, then convert it into SNN by mapping real-value
inputsactivation to average firing rates of Poisson spikes. This mechanism can be
adopted to implement on spiking hardware as an off-chip learning method.

2.3.2 Unsupervised Learning

Compared to supervised learning, implementations of unsupervised learning are less
popular. There have been some on-chip ones implemented in neuromorphic systems.
Most of them were based on self-organizing maps or self-organizing learning
rules.The spike-timing-dependent plasticity (STDP), which is a Hebbian-based
learning, is a popular learning rule already implemented in several neuromorphic
systems [16]. The operation of STDP depends on the firing time of presynaptic and
postsynaptic neurons in which the synaptic weight will be increased when a spike
arrives before a postsynaptic neuron “fires” and decreased when it arrives after a
postsynaptic neuron fires. STDP is an unsupervised learning rule and is generally
implemented on-chip.

2.3.2.1 Spike Timing Dependent Plasticity (STDP)

The STDP learning rule is originally expressed in [15], as:

�w =
⎧⎨
⎩�w+ = A+e

(−�t
τ+)

, if �t > 0

�w− = −A−e
(�t

τ−)
, if �t ≤ 0

(2.13)

Where �w is the change in synaptic weight. If a presynaptic spike arrives
the postsynaptic neuron within a time window τ+ before the postsynaptic spike,
the synaptic weight increases �w+, but if it arrives within a time window τ−,
after the postsynaptic spike, the synaptic weight decreases �w−. �t is the time
difference between the presynaptic and postsynaptic spike which is expressed as
�t = tpost − tpre, while A+ and A− are potentiation and depression amplitude
parameters respectively.

2.4 Synapse Memory 27

2.3.2.2 Spike Driven Synaptic Plasticity (SDSP)

Another SNN learning rule which has been employed in neuromorphic processors is
spike driven synaptic plasticity (SDSP), which adapts synaptic weights at the arrival
of presynaptic spikes [7]. At the arrival of a presynaptic spike, if the postsynaptic
membrane potential exceeds the threshold, the synaptic weight is increased and
decreased otherwise, ensuring that the calcium absorption in the postsynaptic site
C(t) is preserved within a boundary when the presynaptic spike arrives. Its operation
is described in [30] as:

{
W = W + a, if Vmem(t) > Vmth and θ l

up < C(t) < θh
up

W = W − b, if Vmem(t) ≤ Vmth and θ l
dn < C(t) < θh

dn

(2.14)

where Vmem is the post synaptic membrane potential, Vth the threshold voltage, a

and b the measure of potentiation and depression respectively. θ l
up, θh

up, θ l
dn and θh

dn

are the boundaries for calcium absorption. In the absence of pre-synaptic spikes
which determine potentiation and depression, the synaptic weights increase or
decrease depending on its value which could be higher or lower than a set threshold
θW . This operation is described in [7] as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dW(t)

dt
= α, if W(t) > θW

dW(t)

dt
= −β, if W(t) ≤ θW .

(2.15)

Other learning rules that have been implemented on neuromorphic processors
include the BCM-like Local Correlation learning rule [22], Modified Ion Channel-
based learning rule [35], and Stochastic gradient descent [29].

2.4 Synapse Memory

Unlike traditional computer systems, which have memory and processing different,
SNN like biological neural networks combines both, having neurons as the process-
ing elements and the synapses as memory. Efficiently replicating these synapses in
neuromorphic processors has been challenging because a memory that behaves like
synapses is required.

In traditional computer systems, memory speed is a bottleneck because pro-
cessors have significantly improved over the years, surpassing memory speed and
throughput, and this leaves processors idle while waiting for memory. However,
SNN is different. These spiking neurons process with events, and as opposed to
traditional processors that operate and communicate in megahertz and gigahertz

28 2 Neuromorphic System Design Fundamentals

ranges, they communicate in around 10 Hz. This difference in speed enables
neuromorphic processors to use time multiplexing to combine many events into a
single communication channel.

In SNN, Storing and reading synaptic weights constitutes the primary operation,
and designing a large SNN with an enormous number of synapses will require large
memory bandwidth. So while communication speed is not somewhat a challenge
in neuromorphic systems, memory bandwidth needs to be overcome. In addressing
this challenge, researchers have taken several approaches to realizes these synapses
in CMOS by exploring various memory technologies. Some of these memory
technologies include; static random-access memory (SRAM), a prominent memory
technology in semiconductor design. In [33] a neuromorphic chip with 256 neurons
that implements a transposable 8-transistor SRAM-based crossbar, which grants
row, and column access, was employed.

Over the last few years, numerous efforts have been made to realize artifi-
cial synapses using post-CMOS devices, including resistive random-access mem-
ory (ReRAM), phase change memory devices, magnetoresistive random-access
memory (MRAM), ferroelectric field-effect transistor (FeFET), and others. More
recently, attempts have also been made to develop a non-CMOS neuron based
on emerging devices. In this section, we present the major emerging memory
technologies that can potentially replicate the behavior of synapses in neuromorphic
systems. Each of these devices has its strengths and weaknesses. One type of device
can be preferred over the others depending on the target application.

2.4.1 SRAM

A typical SRAM contains six transistors (6-T), and although having high leakage
current and low density, SRAM offers multiple read and write, and its major
advantages are speed and reliability when compared to other memory technologies.
Another SRAM that has been utilized in neuromorphic systems is the eight transistor
(8-T) SRAM [5]. The two more transistors on the 8-T SRAM adds access to the
word and bit lines in transposed orientation to the typical 6-T design. To handle
the general leakage power of the chip, the authors leveraged ultra-high-Vt devices
which reduced it by 3, at the cost of the increased minimum operating voltage of the
memory array (Fig. 2.11).

2.4.2 eDRAM

Another memory technology is embedded dynamic random-access memory
(eDRAM), which was used in [8] to design a high-density 3D memory for a
programmable digital neuromorphic architecture. eDRAM is a capacitor-based
memory integrated on the same multi-chip module. Due to its simple conventional

2.4 Synapse Memory 29

Fig. 2.11 SRAM

Fig. 2.12 EDRAM

one 1-transistor 1-capacitor design, it is inclined to having less area cost when
compared to SRAM. However, with the gradual leakage of its storage charge during
operation, its retention period is low. Also, its design is not easily compatible with
CMOS in [43], a spin-transfer torque ram (STT-RAM) was proposed as a stochastic
memristive synapse for neuromorphic systems. An STT-RAM is a magnetic RAM
that uses magnetic tunneling junction (MTJ) in its cells, and its simple design has a
small area when compared to SRAM and eDRAM. By adopting a schema proposed
in [21], the authors organized the STT-RAM MJT as a crossbar connecting input and
output neurons. However, the magnetization of the STT-RAM makes the writing
process slow and consumes more energy (Fig. 2.12).

30 2 Neuromorphic System Design Fundamentals

Fig. 2.13 MEMRISTOR

2.4.3 Memristor

Resistive random-access memory (RRAM or ReRAM) relies on the resistance
change of its cells to store information, and it has similar architecture to eDRAM.
In [20] the authors proposed an FPGA-based hardware emulator for a neuromor-
phic chip with an RRAM-based crossbar. RRAM offers low area, low power,
and easy integration on CMOS. However, it suffers from stuck at faults (SAF)
[48] which may cause short-circuiting and lead to increased power and dynamic
switching variation, which leads to a significant variation in the resistance of
the memory. Other memory technologies include Phase Change Memory (PCM)
(Fig. 2.13).

2.5 Inter-Neuron Communication Schemes

Communication architectures for multicore spiking neuromorphic systems
are responsible for delivering spikes between neuro-cores/tiles. They can be
categories as intra-chip and inter-chip. For inter-chip, address event presentation
(AER) is commonly employed [4, 6, 24]. In AER, each neuron has a
unique address. Whenever a neuron generates a spike, its address is sent to
postsynaptic neurons by a high-speed digital bus. AER is suitable for SNN
implementations since it only needs to be active whenever neurons fire. To
scale up the system, a hierarchical AER as a tree structure was implemented
in [27].

On the other hand, network-on-chip (NoC) is commonly implemented for on-
chip communication. In the early stage of the implementation, buses are employed
in some systems [25]. However, works in [39, 40] evaluated and compared four
architectures: bus, tree, point to point, and mesh. The results show that mesh with
multicast offers the highest performance for SNN implementations. Furthermore,
AER also is used for on-chip communication [9, 41].

2.5 Inter-Neuron Communication Schemes 31

2.5.1 AER—Address Event Representation

A neuromorphic system consists of many neurons, axons, and synapses integrated
into a 3D or 2D silicon substrate. Unlike standard digital logic, where the output of
a gate is generally connected to the input of three to four other gates, a neuron
is typically connected to thousands of other neurons. From another hand, the
spiking rate is shallow (tens of Hz) compared to the speed of digital electronics,
which is in the range of GHz. Time-multiplexed communication protocol is
often used to solve the speed difference between electronic and ionic transmis-
sions.

The circuits used to multiplex communication for a cluster of neurons into a
single communication channel is known as AER [19]. AER is a neuromorphic
inter-chip communication protocol that allows for massive real-time connectiv-
ity between many neurons located on different chips. Figure 2.14 shows the
AER protocol. Address-event representation (AER) is a communication protocol
initially proposed to communicate sparse neural events between neuromorphic
chips.

Initially, inter-chip communication networks provided only simple unidirec-
tional, point-to-point connectivity between arrays of neuromorphic on two neu-
romorphic chips. These communication schemes map spikes from output nodes
in the sending chip to any appropriate input nodes in the receiving chip. The
mapping occurs asynchronously and provides random access to the receiver nodes.
The spikes are actually represented as addresses. An address-encoder at the
output node generates a unique binary address that identifies that node (neu-
ron).

The output addresses are transmitted over a shared bus to the receiving chip,
where an address decoder selects the appropriate receiver node (input) and acti-
vates it. Two versions of this random-access scheme have been proposed, a
hard-wired version, and an arbitered version Each spike is represented by its
location (explicitly encoded as an address) and the time it occurs (implicitly
encoded).

Fig. 2.14 AER protocol

32 2 Neuromorphic System Design Fundamentals

2.6 Neuromorphic Spike Routing

A scalable inter-neuron communication architecture is required to design in silicon
a neuromorphic system capable of housing even a fraction of the number of neurons
in the brain. Furthermore, since the timing of spikes is used to encode information in
SNN, such inter-neuron communication architecture should not violate the timing
of spikes, as this will affect the performance of the SNN.

Various communication interconnects could be employed when designing inter-
neuron communication architectures, including shared bus and packet-switched
network on chip (NoC). However, a shared bus is a poor choice when implementing
a large-scale SNN since it suffers adversely from an increased number of nodes. The
nonlinear increase in neural connectivity will be too much for such an interconnect
to handle. An interconnect that has been considered as a potential solution is the
2D packet-switched NoC (2D-NoC). However, with further scaling, 2D-NoC may
experience communication challenges that affect power and performance, especially
in large-scale SNN chips. 3D packet-switched NoC (3D-NoC), on the other hand,
enables scaling and parallelism in the third dimension by combining NoC and 3D
ICs (3D-ICs) [4, 47]. With the help of its short through-silicon vias (TSVs) that
enable communication between layers, it can reduce communication costs. These
merits of 3D-NoC make it suitable for large-scale SNN applications. Moreover,
the brain is biologically organized in a 3D structure; therefore, by adopting the 3D
interconnect, neuromorphic systems can inherit the shape and the interconnects of
a biological brain.

2.7 Chapter Summary

In adopting the structure and computational principle of the brain, coupled with
the benefits that hardware implementation provides, neuromorphic computing can
provide a solution beyond the limitations faced by traditional computers. This
structure and computational principle also enable it to perform real-time cognition
tasks, which the traditional computer is not good at. However, in designing an
efficient neuromorphic system, several hurdles need to be surmounted. This chapter
covered fundamental design principles to build an efficient neuromorphic system in
hardware.

References

1. Bai K, Yi Y (2019) Opening the “black box” of silicon chip design in neuromorphic computing.
In: Bio-inspired technology. IntechOpen

2. Balaji A, Adiraju P, Kashyap HJ, Das A, Krichmar JL, Dutt ND, Catthoor F (2020) PyCARL:
a PyNN interface for hardware-software co-simulation of spiking neural network. Preprint,
arXiv:2003.09696

References 33

3. Başar E (2013) Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci
15(3):291

4. Ben Abdallah A, Dang KN (2021) Toward robust cognitive 3d brain-inspired cross-paradigm
system. Front Neurosci 15:795

5. Bhaskar A (2017) Design and analysis of low power SRAM cells. In: 2017 Innovations in
power and advanced computing technologies (i-PACT). IEEE, Piscataway, pp 1–5

6. Boahen KA (1998) Communicating neuronal ensembles between neuromorphic chips. In:
Neuromorphic systems engineering. Springer, Berlin, pp 229–259

7. Brader JM, Senn W, Fusi S (2007) Learning real-world stimuli in a neural network with
spike-driven synaptic dynamics. Neural Comput 19(11):2881–2912

8. Chang M, Rosenfeld P, Lu S, Jacob B (2013) Technology comparison for large last-
level caches (L3Cs): low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized
eDRAM. In: 2013 IEEE 19th international symposium on high performance computer
architecture (HPCA), Feb 2013, pp 143–154

9. Deiss SR, Douglas RJ, Whatley AM, Maass W (1999) A pulse-coded communications
infrastructure for neuromorphic systems. In: Pulsed neural networks, pp 157–178

10. Diehl PU, Neil D, Binas J, Cook M, Liu S, Pfeiffer M (2015) Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing. In: 2015 International joint
conference on neural networks (IJCNN), July 2015, pp 1–8

11. Frenkel C, Legat J, Bol D (2019) Morphic: a 65-nm 738k-synapse/mm2 quad-core binary-
weight digital neuromorphic processor with stochastic spike-driven online learning. IEEE
Trans Biomed Circuits Syst 13(5):999–1010

12. Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons
to networks and models of cognition. Cambridge University Press, Cambridge

13. Göltz J, Baumbach A, Billaudelle S, Breitwieser O, Dold D, Kriener L, Kungl AF, Senn
W, Schemmel J, Meier K et al (2019) Fast and deep neuromorphic learning with time-to-first-
spike coding. Preprint, arXiv:1912.11443

14. Hakim N, Vogel EK (2018) Phase-coding memories in mind. PLoS Biol 16(8):e3000012
15. Iannella N, Launey T, Tanaka S (2010) Spike timing-dependent plasticity as the origin of the

formation of clustered synaptic efficacy engrams. Front Comput Neuros 4:21
16. Ikechukwu OM, Dang KN, Abdallah AB (2021) On the design of a fault-tolerant scalable three

dimensional NoC-based digital neuromorphic system with on-chip learning. IEEE Access
9:64331–64345

17. Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and
bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–
221

18. Izhikevich E (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–
1572

19. Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D (1993) Silicon auditory
processors as computer peripherals. IEEE Trans Neural Netw 4(3):523–528

20. Luo T, Wang X, Qu C, Lee MKF, Tang WT, Wong W-F, Goh RSM (2018) An FPGA-based
hardware emulator for neuromorphic chip with RRAM. IEEE Trans Comput Aided Des Integr
Circuits Syst 39(2):438–450

21. Majumder T, Suri M, Shekhar V (2015) NoC router using STT-MRAM based hybrid buffers
with error correction and limited flit retransmission. In: 2015 IEEE international symposium
on circuits and systems (ISCAS). IEEE, Piscataway, pp 2305–2308

22. Mayr CG, Partzsch J (2010) Rate and pulse based plasticity governed by local synaptic state
variables. Front Synaptic Neurosci 2:33

23. Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636
24. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL,

Imam N, Guo C, Nakamura Y et al (2014) A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science 345(6197):668–673

25. Mortara A, Vittoz EA, Venier P (1995) A communication scheme for analog VLSI perceptive
systems. IEEE J Solid-State Circuits 30(6):660–669

34 2 Neuromorphic System Design Fundamentals

26. Pan Z, Wu J, Zhang M, Li H, Chua Y (2019) Neural population coding for effective temporal
classification. In: 2019 International joint conference on neural networks (IJCNN). IEEE,
Piscataway, pp 1–8

27. Park J, Yu T, Joshi S, Maier C, Cauwenberghs G (2016) Hierarchical address event routing
for reconfigurable large-scale neuromorphic systems. IEEE Trans Neural Netw Learn Syst
28(10):2408–2422

28. Park S, Kim S, Na B, Yoon S (2020) T2fsnn: deep spiking neural networks with time-to-first-
spike coding. Preprint, arXiv:2003.11741

29. Ponulak F, Kasiński A (2010) Supervised learning in spiking neural networks with resume:
sequence learning, classification, and spike shifting. Neural Comput 22(2):467–510

30. Rahimi Azghadi M, Iannella N, Al-Sarawi SF, Indiveri G, Abbott D (2014) Spike-based
synaptic plasticity in silicon: Design, implementation, application, and challenges. Proc IEEE
102(5):717–737

31. Rueckauer B, Lungu I-A, Hu Y, Pfeiffer M, Liu S-C (2017) Conversion of continuous-valued
deep networks to efficient event-driven networks for image classification. Front Neurosci
11:682

32. Sengupta B, Laughlin SB, Niven JE (2014) Consequences of converting graded to action
potentials upon neural information coding and energy efficiency. PLoS Comput Biol 10(1):1–
18

33. Seo J-s, Brezzo B, Liu Y, Parker BD, Esser SK, Montoye RK, Rajendran B, Tierno JA, Chang
L, Modha DS et al (2011) A 45nm CMOS neuromorphic chip with a scalable architecture for
learning in networks of spiking neurons. In: 2011 IEEE custom integrated circuits conference
(CICC). IEEE, Piscataway, pp 1–4

34. Shoushun C, Bermak A (2005) A low power CMOS imager based on time-to-first-spike
encoding and fair AER. In: 2005 IEEE international symposium on circuits and systems.
IEEE, Piscataway, pp 5306–5309

35. Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic
plasticity. Physiol Rev 88(2):769–840

36. Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat
Rev Neurosci 6(5):389–397

37. Thorpe S, Gautrais J (1998) Rank order coding. In: Computational neuroscience. Springer,
Berlin, pp 113–118

38. Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid processing.
Neural Netw 14(6–7):715–725

39. Vainbrand D, Ginosar R (2010) Comparing NoC architectures for neural networks. In: 2010
IEEE 26-th convention of electrical and electronics engineers in Israel. IEEE, Piscataway, pp
000660–000664

40. Vainbrand D, Ginosar R (2010) Network-on-chip architectures for neural networks. In: 2010
Fourth ACM/IEEE international symposium on networks-on-chip. IEEE, Piscataway, pp 135–
144

41. van Schaik A, Liu S-C (2005) AER EAR: a matched silicon cochlea pair with address event
representation interface. In: 2005 IEEE international symposium on circuits and systems.
IEEE, Piscataway, pp 4213–4216

42. VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci
28(1):1–4

43. Vincent AF, Larroque J, Locatelli N, Romdhane NB, Bichler O, Gamrat C, Zhao WS, Klein
J-O, Galdin-Retailleau S, Querlioz D (2015) Spin-transfer torque magnetic memory as a
stochastic memristive synapse for neuromorphic systems. IEEE Trans Biomed Circuits Syst
9(2):166–174

44. Vu TH, Ikechukwu OM, Abdallah AB (2019) Fault-tolerant spike routing algorithm and
architecture for three dimensional NoC-based neuromorphic systems. IEEE Access 7:90436–
90452

References 35

45. Vu TH, Murakami Y, Abdallah AB (2019) Graceful fault-tolerant on-chip spike routing
algorithm for mesh-based spiking neural networks. In: 2019 2nd International conference on
intelligent autonomous systems (ICoIAS), Singapore, Feb 2019

46. Vu TH, Murakami Y, Abdallah AB (2019) A low-latency tree-based multicast spike routing for
scalable multicore neuromorphic chips. In: ACM 5th international conference of computing
for engineering and sciences, Hammamet, Tunisia, July 2019

47. Vu TH, Okuyama Y, Abdallah AB (2019) Comprehensive analytic performance assessment
and k-means based multicast routing algorithm and architecture for 3d-NoC of spiking neurons.
ACM J Emerg Technol Comput Syst 15(4):1–28

48. Xia L, Huangfu W, Tang T, Yin X, Chakrabarty K, Xie Y, Wang Y, Yang H (2017)
Stuck-at fault tolerance in RRAM computing systems. IEEE J Emerg Sel Top Circuits Syst
8(1):102–115

49. Yin S, Venkataramanaiah S, Chen G, Krishnamurthy R, Cao Y, Chakrabarti C, Sun Seo
J (2018) Algorithm and hardware design of discrete-time spiking neural networks based on
back propagation with binary activations. In: 2017 IEEE biomedical circuits and systems
conference, BioCAS 2017 - Proceedings, Jan, vol 2018. Institute of Electrical and Electronics
Engineers, Piscataway, pp 1–4

50. Zhao, C, Wysocki BT, Thiem CD, McDonald NR, Li J, Liu L, Yi Y (2016) Energy efficient
spiking temporal encoder design for neuromorphic computing systems. IEEE Trans Multi-
Scale Comput Syst 2(4):265–276

51. Zhao C, Yi Y, Li J, Fu X, Liu L (2017) Interspike-interval-based analog spike-time-dependent
encoder for neuromorphic processors. IEEE Trans Very Large Scale Integr Syst 25(8):2193–
2205

Chapter 3
Learning in Neuromorphic Systems

Abstract The human brain is regarded as a power-efficient learning machine
capable of carrying out complex computations while using only little resources.
A sophisticated property that makes energy-efficient computation possible is the
distinct sparse communication among many spiking neurons. The primary goal of
neuromorphic hardware is to emulate brain-like neural networks to solve real-world
problems. However, training on neuromorphic systems is challenging due to the
required non-local computations of gradient-based learning algorithms. In Spiking
neural networks, there are two fundamental modes: inference and learning. The
learning phase, which minimizes a particular cost or loss function, is a complex
process of acquiring the parameters to output the correct inference results. On the
other hand, the inference computes the output values based on the given input
and the network parameters. This chapter presents how learning in neuromorphic
computing systems is conducted.

3.1 Learning Methods

Spiking neural network (SNN)has gradually gained awareness because of its ability
to process and communicate sparse binary signals (spikes) in a highly parallel
and event-driven manner analogous to the biological brain [44, 46, 47]. However,
simulating large-scale SNN in software is slow and does not fully harness the energy
efficiency of SNN. As an alternative, scalable multicore spike-based neuromorphic
architectures that can support a massive number of neurons and synapses and
leverage the spike sparsity available in SNN to deliver rapid parallel processing with
low power are being proposed. However, realizing such a neuromorphic architecture
requires building small-sized spiking neuro-cores with low-power consumption,
efficient neural coding schemes, and learning methods [32].

The learning phase, which minimizes a particular cost (loss) function, is a
complex process of acquiring the parameters to output the correct inference
results. The cost function optimization is performed with a gradient-descent-based
optimization or other classical optimization methods, such as a genetic algorithm.
In gradient-decent-based optimization, the basic idea is to find out the gradients of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_3

38 3 Learning in Neuromorphic Systems

the cost function concerning each learning parameter. There are various proposed
training/learning algorithms for SNNs, such as supervised backpropagation through
time, unsupervised STDP learning, and ANN to SNN conversion. In the following,
we will provide description of common training rules and methods in neuromorphic
systems.

3.2 Conversion from ANN to SNN

The goal of the ANN to SNN conversionconversion approach is to leverage the state-
of-the-art ANN training algorithms so that the converted SNN version can reach the
competitive classification performance of its off-line trained ANN.

There are many challenges in converting the network from ANN to SNN [6, 43].
Firstly, negative output values, which come from the preprocessing procedure,
sigmoid function, or the calculation based on weights and biases, which might
be both negative values, are difficult to represent in SNN accurately. Consid-
ering inhibitory neurons for representing negative values leads to much more
sophisticated network architecture. Thus more hardware resources and computation
complexity are needed. Secondly, because biases in each layer could have negative
values, they are also difficult to represent in SNN. Moreover, implementing max-
pooling in SNN is another critical issue we need to take into account. In conventional
ANN, the max-pooling operation is executed between two adjacent layers. However,
if we want to perform such a function in spiking neuron networks, a two-layer neural
network and more neurons are also required, and the accuracy loss is expected to
happen.

To cope with these challenges, the following changes are made to meet the
requirements of SNN. First, using the abs() function and rectified linear unit instead
of the sigmoid function tanh(), we avoid negative output when converting a CNN
to SNN. For biases in each layer, they are then set to zero. The spatial max-pooling
can be replaced by spatial linear sub-sampling, which is easily converted to a spike
domain. However, the performance loss is still unavoidable when the ReLUs in the
ANN have been replaced by IF neurons in SNN. To address the problem, Diehl et
al. [7] proposed a weight normalization method to achieve a near-lossless accuracy.
The first approach, model-based normalization, requires only the information of the
network weights, while the data-based normalization approach scales the weights
according to the actual activation of the network in response to data.

3.2.1 Converted SNNs

Spiking Deep Belief Networks (DBNs) Pérez-Carrasco et al. [28] began by convert-
ing the conventional ConvNet into an event-driven architecture, in which the frame-
driven system neurons are mapped into event-driven representation. Cao et al. [6]

3.2 Conversion from ANN to SNN 39

proposed a new approach for converting a CNN to SNN architecture that is suitable
for mapping to spike-based neuromorphic hardware by raising and tackling several
key issues during conversions, such as negative activations and biases and non-
linearity due to max-pooling operation. This work is followed by Diehl et al. [7],
where a method of weight normalization is introduced to reduce the latency with
high accuracy. Hunsberger and Eliasmith [13] adopted AlexNet by training with
noise on output neurons, yielding a more robust model against spiking variability.
A modified “soft” LIF function is also proposed, allowing more neuron types to be
utilized. Zambrano and Bohte [53] constructed an adaptive spiking neural network,
where the threshold is dynamically adjusted, and fewer spikes are needed to encode
information. While many research works have contributed to such conversion
methods, the choice of neural coding schemes attracts insufficient attention. Wu
et al. [49] proposed a novel spike-based learning rule. The proposed approach is
hardware-friendly due to the requirement of less computation and memory while
showing competitive performance on MNIST datasets. Rueckauer et al. [33] and
Zhang et al. [54] applied temporal coding schemes to converted SNN, whereby
the spike redundancy and memory cost are significantly reduced. Considering that
most of these models use only a few convolution layers, their performance on
rather complicated datasets like CIFAR is limited due to their shallow architectures.
Rueckauer et al. [34] successfully implemented the conversion on Inception-V3
with 42 layers (7 convolution layers), which demonstrates a 74.60% accuracy on
the ImageNet dataset. They also proposed a Spiking CNN with four convolution
levels, achieving a 90.85% accuracy on the CIFAR-10 dataset. Sengupta et al. [38]
presented two deep spiking neuron networks based on VGG-16 [41] and Residual
network architecture. The residual network architecture was also employed in the
work of Hu et al. [12]. Motivated by the “hard reset” spiking neuron model that leads
to performance deterioration due to information loss during the conversion, Han
et al. [11] introduced Residual Membrane Potential (RMP) spiking neuron, which
targets the spike rate vanishing issue in SNNs. They implemented the conversion
of both VGG and Residual network architecture with high accuracy on CIFAR and
ImageNet datasets while having low conversion loss.

3.2.2 Challenges of ANN Conversion

There are several challenges faced when converting ANN into an SNN as in
Fig. 3.1. First, there are many connection weights and biases between two adjacent
layers in a traditional convolution neural network, which can be either positive or
negative values. When the inputs are transmitted between neurons, the weights are
applied to the inputs and passed into an activation function and bias. The resulting
activation could be positive or negative through activation functions like sigmoid

and tanh. While it is not a big issue in ANN, the firing rates in SNN should
always be positive, which requires the designer to tackle negative values during

40 3 Learning in Neuromorphic Systems

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.1 Challenges, strategies and improvements in conversion from ANNs to SNNs

conversion. One possible solution is to treat positive values as excitatory synaptic
input while producing inhibitory synaptic inputs for negative signals [28]. However,
two spiking neurons are needed to represent each input value, which requires more
interconnections in the spiking neuron network and thus a much more complicated
architecture. Rectified linear-unit (ReLU) activation function [23] is an efficient tool
to circumvent this problem. Because ReLU(x) = max(x, 0) is always mapping a

3.2 Conversion from ANN to SNN 41

(a) (b)

Fig. 3.2 Max-pooling and average-pooling operation. (a) Max-pooling. (b) Average-pooling

negative activation to zero, it can be considered as an ideal approximation of an
integrate-and-fire neuron without a refractory period. Avoiding negative inputs not
only relaxes the translation from activation into firing rates, but it also contributes
to faster convergence compared with equivalent networks with tanh units [17].

Second, negative biases are difficult to represent in spiking neural networks.
However, setting all biases to zero can reduce the inconvenience [6]. Besides,
consider a max-pooling operation that has been widely used in conventional neural
networks. To downsample the input feature maps, this discretization process reduces
the number of parameters and computational cost by applying a max filter [35].
Since the neuron activation in SNNs is encoded in binary representation [38] and
the operation is non-linear, a loss is unavoidable. The pooling operation between two
network layers, along with strong lateral inhibition [52], causes extra complexity as
well. Moreover, using max-pooling does not reflect the actual maximum firing rate
due to the Winner-Take-All strategy. Even though Max-pooling holds an advantage
of better translation feature invariant compared to average-pooling operation (See
Fig. 3.2), average-pooling operation is a better option that enables a linear function
to be implemented in SNNs [6].

Masquelier and Thorpe [19] approach this problem using the time-to-first-spike
learning rule, in which the earliest spikes are considered to carry most information
of the input patterns. In the first architecture [27], the temporal “time-to-first-
spike” encoding is used to select the first neuron that responds; thus, this neuron is
considered to have the most robust response to the stimulus. However, these works
are typically based on a temporal coding scheme, which is not ideal for the ANN-
SNN conversion process.

Rueckauer et al. [34] proposed a gating-function for spiking max-pooling, which
allows only the spikes from the neuron with the highest firing rate by estimating
the presynaptic firing rates. The proposed response mechanism allows a non-

42 3 Learning in Neuromorphic Systems

linear pooling operation and introducing a better start of the conversion process.
Additionally, in time-stepped simulations of SNNs, approximation errors might
occur due to the constraints that the firing rate is mapped to the range of [0, rmax],
which implies that receiving a perfect representation of activation from ANNs to
SNNs is non-trivial.

Consider that insufficient inputs arrive at a unit during a tiny time step; a relevant
high threshold can hardly be exceeded, leading to an underestimation of the actual
firing rate. On the contrary, over-activation spike trains or high input weights would
give rise to high firing rates due to a lack of integrated evidence [7, 34, 38]. One
possible way to deal with this issue is to rescale the weights using model-based
normalization approach by adjusting all the parameters given the maximum possible
positive inputs. An alternative method is to use data-based normalization, which
rescales all the synaptic weights corresponding to a successive neuron layer by
the maximum neural activation of that layer when the entire training procedure is
completed [7].

Sengupta et al. [38] extended the proposed weight-normalization scheme by
taking into account the actual operation of the SNN during the conversion process,
whereby the temporal delay of the neuron is decreased, and an appropriate firing
threshold is ensured. Rueckauer et al. [34] proposed to preserve the encoded
information of biases jointly scaled with input weights and a max-norm mechanism
to detect and discard outlier activations, achieving a more robust network. When
strong normalization is further combined with batch-normalization used to remove
covariance shift from internal activation of the network during training [15], the
whole process achieves more significant speedup while reducing the number of
outliers in each layer. These works studied the balance of firing rates, spiking
threshold, and input weights, with an ideal tradeoff between accuracy and latency.

The work by Neil et al. [25] focused on a more efficient algorithm that contributes
to improving computation efficiency. By making good use of sparse coding and L2-
norm as a cost function on activation, lower-compute spiking neurons with fewer
spikes are realized. Therefore the overall firing rates are reduced. Another strategy is
to accelerate the accurate classification task, either by utilizing Dropout [42] with its
corresponding learning schedule, or by leveraging a trained Stacked Auto-Encoder
with a zero-masking filter. It is expected that fewer input spikes are needed for
quick output. The softmax function in output layer is used to normalize the input
values into a valid probability distribution that sum to one [21] (See Fig. 3.3). As
discussed in [34], without the Softmax layer, pure negative inputs arriving at the
final layers will not produce any spike. Thus the prediction fails. One version of a
spiking softmax layer is a stochastic winner-take-all (WTA) mechanism [26] with
an external Poisson generator, whereby the winning neuron is selected according
to its membrane potential, and the WTA-circuit allows it to fire at that time step.
Furthermore, such a mechanism can be simplified; that is, given the membrane
potentials, the classification can directly be inferred based on the computed rate
parameters at softmax layer [34].

3.3 Supervised Learning 43

Fig. 3.3 Softmax function

3.3 Supervised Learning

The feed-forward spiking neural network contains connections of spiking neurons
between layers with multiple delayed synaptic terminals [1, 14, 24, 45]. Consider a
connection between neuron H3 of hidden layer I and neuron O2 of output layer J

in Fig. 3.4b. Each pre-synaptic terminal corresponds to a sub-connection associated
with different decay and synaptic efficacy, respectively. A spike-response function
ε(t), is used to describe a standard post-synaptic potential (PSP):

ε(t) = t

τ
e1−t/τ (3.1)

where τ is defined as the membrane decay time constant of a neuron. When taking
into account multiple synapses per connection, the post-synaptic input xj of neuron
j receiving input from neuron i can then be described as the weighted sum of the
pre-synaptic input:

xj (t) =
∑

i

∑
k

wk
ij ε

k
ij (t − ti − dk

ij) (3.2)

where i belongs to the set of all input neurons to neuron j , and ti is the time of the
input spike rising from neuron i [2, 20]. Once the combinations of the internal state
variable crosses the activation threshold θ , the output neuron produces a spike at
time tj .

3.3.1 Tempotron

Tempotron is a classic model of supervised learning for classification tasks,
which uses a leaky integrate-and-fire neuron driven by synaptic afferents [10].
The subthreshold membrane voltage is a weighted sum of postsynaptic potentials
contributed by all incoming spikes:

44 3 Learning in Neuromorphic Systems

(a) (b)

Fig. 3.4 Network architecture and connectivity of a spiking neural network. (a) Feedforward
spiking neural network. (b) Connection consisting of multiple delayed synaptic terminals

V (t) =
∑

i

wi

∑
ti

V0(e
− t−ti

τ − e
− t−ti

τs) + Vrest (3.3)

where wi is the synaptic weight between neuron i and one of its postsynaptic
neurons, and a postsynaptic potential is induced by an input spike from neuron i

at time ti . The parameters τ and τs denote the decay time constants of membrane
integration and synaptic currents, respectively, and are used to describe the form of
the postsynaptic potentials, where the maximum value of PSP is normalized to 1
with a factor V0. For the Tempotron learning rule, each synaptic efficacy wi follows
the gradient descent updating mechanism:

�wi = λ
∑

ti<tmax

(e− tmax−ti
τ − e

− tmax−ti
τs) (3.4)

where tmax is the time when the postsynaptic potential reaches its maximal value
without the neuron firing. Based on the learning rule, when the erroneous output
spike occurs, the corresponding synaptic weight should be decreased for less
contribution on the wrong pattern, and when neuron should fire but does not, the
update scheme will increase weight wi in the iteration.

3.3.2 ReSuMe

It was discussed in [8] that the Tempotron learning rule can be considered as
a particular case of the remote supervised method (ReSuMe) [30]. Due to the
relation between these two learning rules, a tempotron-like ReSuMe learning rule is
proposed. In the proposed remote supervision, the synaptic efficacy between given
pre-and postsynaptic neurons does not only depend on the correlated pair.

3.3 Supervised Learning 45

3.3.3 SpikeProp Algorithm

SpikeP rop is an error-back propagating learning algorithm [2]. The error to
minimize is the mean squared error defined on the spike times of the output neurons
and the desired spike times t.

E = 1

2
	j∈O(taj − tdj) (3.5)

where taj defines actual spike times of the output neurons, and tdj is desired spike
times of the output neurons. For each connection k from neuron i to neuron j with
weight wk

ij we need to calculate:

�wk
ij = −η

∂E

∂wk
ij

, η is learning rate (3.6)

Since tj is a function of the threshold post-synaptic input xj which depends on the
weight, we expand the derivative and obtain the following equation:

∂E

∂wk
ij

= ∂E

∂tj
(taj)

∂tj

∂wk
ij

(taj) = ∂E

∂tj
(taj)

∂tj

∂xj (t)
(taj)

∂xj (t)

∂wk
ij

(taj) (3.7)

For a small enough region around t = taj , the function xj is approximated by a
linear function of t , as shown in Fig. 3.5, which is also shown as below:

δtj (xj) = δxj (tj)/α (3.8)

α represents the local derivative of xj (t) w.r.t. t . Combining the previous results, we
then obtain:

�wk
ij (t

a
j) = −η

yk
i (taj)(tdj − taj)∑

i∈j

∑
l w

l
ij ∂y

l
i (t

a
j)/∂taj

(3.9)

Fig. 3.5 Relationship
between δxj and δtj for a
small region around t = taj

46 3 Learning in Neuromorphic Systems

Algorithm 1 SpikeP rop algorithm
1: Calculate δj for all outputs in the final layer
2: For each subsequent layer I , calculate δi or all neurons in I

3: For output layer J, adapt wk
ij by δwk

ij = −ηyk
i (taj)δj

4: For each subsequent layer I , adapt wk
ij by δwk

hi = −ηyk
h(tai)δi

We define δj for the ease of expression, yielding Eq. 3.11, which gives us the weight
updating algorithm for neurons in the output layer:

δj = (tdj − taj)∑
i∈j

∑
l w

l
ij ∂y

l
i (t

a
j)/∂taj

(3.10)

�wk
ij (t

a
j) = −ηyk

i (taj)δj (3.11)

For hidden layers, δi is defined for i ∈ I with actual firing times taj :

δi ≡ ∂tai

∂xi(t
a
i)

∂E

∂tai

= ∂tai

∂xi(t
a
i)

	j∈i

∂E

∂taj

∂taj

∂xj (t
a
j)

∂xj (t
a
j)

∂tai

= ∂tai

∂xi(t
a
i)

	j∈i δj

∂xj (t
a
j)

∂tai

=
	j∈i δj

{
	kw

k
ij (∂y

k
i (taj)/∂tai)

}
	h∈i

	lw
l
hi(∂y

l
h(t

a
i)/∂tai)

(3.12)

Thus, we have:

�wk
hi = −ηyk

h(tai)δi (3.13)

The summarized SpikeProp algorithm is listed in Algorithm 1:
In Xin and Embrechts’ work [50], a momentum term was added to improve

convergence and tackle possible occurrence of local minimum:

wk+1
ij = wk

ij + ηkδ
k
ij + α�wk−1

ij (3.14)

where ηk denotes the learning rate, and α denotes the momentum parameter. Consid-
ering that the original version of SpikeP rop is designed for one spike per neuron,
Booij et al. [3] propose a more generic architecture, which contains recurrent
connections. This generic architecture can be applied to handle multiple spikes
per neuron at a time. In Mckennoch et al.’s work [20], a learning-rate adjustment

3.3 Supervised Learning 47

algorithm, called resilient propagation (RProp), is applied in combination with
SpikeProp to accelerate training process. The RProp algorithm, first proposed by
Riedmiller and Braun [31], performs the weight-update based on the sign of the
gradient. Initially, the value of �ij is introduced to associate with each single
weight, the update of �ij follows the rule:

�ij (t) =

⎧⎪⎪⎨
⎪⎪⎩

η+ × �ij (t − 1), if ∂E
∂wij

(t − 1) × ∂E
∂wij

(t) > 0

η− × �ij (t − 1), if ∂E
∂wij

(t − 1) × ∂E
∂wij

(t) < 0

�ij (t − 1), otherwise

(3.15)

where 0 < η− < 1 < η+, indicating that if the sign of the partial derivative remains
unchanged w.r.t. the corresponding weight wij of the error term, �ij should be
increased to speed up convergence. In contrast, the update-value is decreased as the
sign changes, which means the local minimum has been jumped over. The update
of weights is performed thereafter as:

wij (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

wij (t) − �ij (t), if ∂E
∂wij

(t) > 0

wij (t) + �ij (t), if ∂E
∂wij

(t) < 0

wij (t), otherwise

(3.16)

However, to ensure that each input neuron initially fires and intermediate neurons
should subsequently fire, an appropriate selection of parameters, including learning
rates and input weights, should be carefully done. Similar to the work in RProp
that studied weight initialization, Shrestha and Song [39] proposed a learning rate
adaptation method, referred to as SpikePropAD, by analyzing the issue of weight
convergence. They further offered a robust adaptive learning rate (SpikePropR),
which satisfies both the weight convergence and robust stability conditions [40].
Another modification is to tailor QuickProp method to SpikeProp, which is under
the assumption that the error function can be depicted as an upward open parabola,
and the second derivative of the error regarding one weight is independent from
others. Based on these assumptions, Newton’s method is used to minimize the one-
dimensional error function:

�wij (t + 1) = S(t + 1)

S(t) − S(t + 1)
�wij (t) (3.17)

where S(t) denotes the partial derivative with regards to the corresponding weight
wij . In QuickProp algorithm, the current weight change depends on the previous
weight change, and the error minimum can be slowly reached except for the large
step size during the training phase [20].

In the original SpikeProp, each connection contains a fixed number of delayed
synaptic terminals (1–16 ms), and only the weights are trained. Such specifications,
or constraints, can be relaxed by allowing delays to be trained during learning, thus
reducing the number of synaptic terminals and weights [36].

48 3 Learning in Neuromorphic Systems

Fig. 3.6 Approximate derivative method

3.3.4 Approximate Derivative Method (ADM)

An alternative way to use spike-based backpropagation is to approximate the
activation of IF neuron (no leak in the membrane potential) at first step, then a
leak factor is introduced to compensate the leaky effect [18]. Figure 3.6 depicts the
bidirectional backpropagation of this method.

3.4 Unsupervised Learning

STDP is a biological process that characterizes the synaptic plasticity for adjusting
the strength of connections between neurons in the brain [9, 22]. Under the STDP
learning mechanism, if an input spike to a postsynaptic neuron precedes an output
spike from the neuron, the synapse through which the input was received is
strengthened, enabling it to contribute more to the spiking of the postsynaptic neuron
in the upcoming period. However if the input spike arrives after the output spike, the
synapse through which it was received is weakened, reducing its contribution in the
upcoming period. According to the Hebbian rule, synapses increase their efficacy if
they persistently participate in the firing of a postsynaptic neuron. Figure 3.7 shows
the change of synaptic weight relating to the temporal difference between a pair
of presynaptic and postsynaptic spikes. The change in weight of a synapse can be
expressed as:

�w =
{
A+e+�t/τ+ , �t < 0, A+ > 0
A−e−�t/τ− , �t > 0, A− < 0

(3.18)

3.4 Unsupervised Learning 49

Fig. 3.7 Basic STDP
learning rule

where �t = tpre − tpost , denoting the time difference between presynaptic and its
postsynaptic spike, A+ and A− denote the learning rate depending on the synaptic
weight. τ+ and τ− are the time constants [5].

3.4.1 Pair-Based STDP Learning Rule

The pair-based STDP rule (see Fig. 3.8) considers the time difference of a pair of
pre- and post- synaptic spikes, in which a potentiation potential r1 and a depression
potential o1 are updated iteratively w.r.t. the differential equations below:

dr1(t)

dt
= − r1(t)

τ+
, if t = tpre, then r1 → r1 + 1 (3.19)

do1(t)

dt
= −o1(t)

τ−
, if t = tpost , then o1 → o1 + 1 (3.20)

The potentiating potential r1 changes whenever a presynaptic spike occurs, and the
depression potential o1 updates whenever there is a postsynaptic spike. The weight
change at time when either pre- or post- synaptic spike arrives is then described as:

w(t) → w(t) − A−
2 o1(t), if t = tpre (3.21)

w(t) → w(t) + A+
2 r1(t), if t = tpost (3.22)

where A−
2 and A+

2 denote the amplitude of weight change controlling the long-term
depression (LTD) and the long-term potentiation (LTP) term, respectively.

50 3 Learning in Neuromorphic Systems

Fig. 3.8 Pair-based STDP learning rule

Fig. 3.9 Triplet-based STDP learning rule

3.4.2 Triplet STDP Learning Rule

An observation is that in pair-based rule, the potentiation is exhibited with pre-
before-post or post-before-pre timing in the limit of low frequency without taking
into account the interaction between the pair of pre-and postsynaptic spikes with
others. However, with the increase of frequency, there might rise an additional
impact from the presynaptic spikes of the following couple on the postsynaptic
spike of the previous pair. This property can not be captured by the standard pair-
based model [29]. The pair-based model can be extended to triplet-based STDP,
whereby either a pre-post-pre and post-pre-post scheme is formed (Fig. 3.9). The
time constant τx and τy are introduced for the decaying potential between two
presynaptic spikes. Accordingly, the update rule of two additional variables r2 and
o2 can be written as:

dr2(t)

dt
= − r2(t)

τx

, if t = tpre, then r2 → r2 + 1 (3.23)

do2(t)

dt
= −o2(t)

τy

, if t = tpost , then o2 → o2 + 1 (3.24)

Therefore, the weight change in triplet STDP learning rule can be extended as
follows:

w(t) → w(t) − o1(t)[A−
2 + A−

3 r2(t − ε)], if t = tpre (3.25)

w(t) → w(t) + r1(t)[A+
2 + A+

3 o2(t − ε)], if t = tpost (3.26)

where A−
3 and A+

3 denote the amplitude of the weight change of post successive
pre-synaptic pairs and post-synaptic pairs, respectively. Note that the above triplet
learning rule is associated with All-to-All interactions. In Nearest-spike interactions,

3.4 Unsupervised Learning 51

Fig. 3.10 Spike pairing scheme. All-to-All interaction and Nearest-Neighbor interaction scheme

where only the nearest spikes are considered, the update rule for synaptic weights
will be modified accordingly (Fig. 3.10). Wang et al. [48] propose the Quadruplet
protocol by further taking the interaction between a post-pre pair and a pre-post pair
into consideration.

3.4.3 Reward-Modulated STDP Learning

The reward modulated STDP learning (R-STDP) rule extends the unsupervised
STDP learning rule by adding sparse external reinforcement signals that can
modulate an SNN. The brain to a great extent has been found in physiological
experiments to exhibit a reward system using a form of neuromodulator called
dopamine (DA) [37]. Dopaminergic neurons in the brain show behaviors akin to
rewards by inflecting synaptic plasticity at corticostriatal synapses [16]. This reward
mechanism depends on the modulation of dopamine during synaptic adaptation by
STDP. The work in [51] shows how the weight changes are determined for R-STDP
using the equation.

ẇ = e × (d − b) (3.27)

where w is the synaptic weight change, e the eligibility trace, d the reward function,
and b the baseline. The eligibility traces and reward function can be computed as

ė = − e

τe

+ STDP(�t)δ(t − tpre/post) (3.28)

ḋ = − d

τd

+ δ(t − tn)

τd

(3.29)

where τe is the synaptic eligibility time constant, δ the dirac delta function, and τd

the neuromodulator concentration time constant.

3.4.4 Other Variants of STDP Learning Rule

An alternative is proposed to model the STDP scheme using only one dynamic
variable instead of measuring the time difference in the pair-based model [4]. The

52 3 Learning in Neuromorphic Systems

idea is to consider only the voltage dependence of the single postsynaptic neuron of
membrane V (t) with an integrate-and-fire neuron model. In this model, the updating
of the synaptic weight depends on the membrane voltage threshold and a function
of postsynaptic spiking activity, which is referred to as the Calcium concentration
of a neuron.

3.5 Chapter Summary

The human brain is regarded as a power-efficient learning machine capable of
carrying out complex computations while using only little resources. A sophis-
ticated property that makes energy-efficient computation possible is the distinct
sparse communication among many spiking neurons. Thus, spiking neural networks
gained popularity by incorporating learning. In these neural networks, there are
two fundamental modes: Inference and learning. This chapter presented how
learning in neuromorphic computing systems is conducted. The learning phase,
which minimizes a particular cost function, is a complex process of acquiring
the parameters to output the correct inference results. In contrast, inference is
computing the output values based on the given input and the network parameters.

References

1. Ben Abdallah A, Dang KN (2021) Toward robust cognitive 3d brain-inspired cross-paradigm
system. Frontiers Neurosci 15:795

2. Bohte SM, Kok JN, La Poutré JA (2000) Spikeprop: backpropagation for networks of spiking
neurons. In: ESANN, vol 48, pp 17–37

3. Booij O, tat Nguyen H (2005) A gradient descent rule for spiking neurons emitting multiple
spikes. Inf Process Lett 95(6):552–558

4. Brader JM, Senn W, Fusi S (2007) Learning real-world stimuli in a neural network with spike-
driven synaptic dynamics. Neural Comput 19(11):2881–2912

5. Cai W, Ellinger F, Tetzlaff R (2014) Neuronal synapse as a memristor: Modeling pair-and
triplet-based stdp rule. IEEE Trans Biomed Circuits Syst 9(1):87–95

6. Cao Y, Chen Y, Khosla D (2015) Spiking deep convolutional neural networks for energy-
efficient object recognition. Int J Comput Vis 113(1):54–66

7. Diehl PU, Neil D, Binas J, Cook M, Liu SC, Pfeiffer M (2015) Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing. In: 2015 International joint
conference on neural networks (IJCNN). IEEE, pp 1–8

8. Florian RV (2008) Tempotron-like learning with resume. In: International conference on
artificial neural networks. Springer, pp 368–375

9. Gerstner W, Kempter R, Van Hemmen JL, Wagner H (1996) A neuronal learning rule for
sub-millisecond temporal coding. Nature 383(6595):76–78

10. Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing–based
decisions. Nat Neurosci 9(3):420–428

11. Han B, Srinivasan G, Roy K (2020) Rmp-snn: Residual membrane potential neuron for
enabling deeper high-accuracy and low-latency spiking neural network. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp 13558–13567

References 53

12. Hu Y, Tang H, Wang Y, Pan G (2018) Spiking deep residual network. Preprint.
arXiv:1805.01352

13. Hunsberger E, Eliasmith C (2015) Spiking deep networks with LIF neurons. Preprint.
arXiv:1510.08829

14. Ikechukwu OM, Dang KN, Abdallah AB (2021) On the design of a fault-tolerant scalable three
dimensional NoC-based digital neuromorphic system with on-chip learning. IEEE Access
9:64331–64345

15. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by
reducing internal covariate shift. Preprint. arXiv:1502.03167

16. Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and
dopamine signaling. Cerebral Cortex 17(10):2443–2452

17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp 1097–1105

18. Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K (2020) Enabling spike-based backpropagation
for training deep neural network architectures. Frontiers Neurosci 14, 119

19. Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing
dependent plasticity. PLoS Comput Biol 3(2), e31

20. McKennoch S, Liu D, Bushnell LG (2006) Fast modifications of the spikeprop algorithm.
In: The 2006 IEEE international joint conference on neural network proceedings. IEEE, pp
3970–3977

21. Mikolov T, Kombrink S, Burget L, J Černockỳ, Khudanpur S (2011) Extensions of recurrent
neural network language model. In: 2011 IEEE international conference on acoustics, speech
and signal processing (ICASSP). IEEE, pp 5528–5531

22. Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity
based on spike timing. Biol Cybern 98(6):459–478

23. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In:
Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814

24. Natschläger T, Ruf B (1998) Spatial and temporal pattern analysis via spiking neurons.
Network Comput Neural Syst 9(3):319–332

25. Neil D, Pfeiffer M, Liu SC (2016) Learning to be efficient: Algorithms for training low-
latency, low-compute deep spiking neural networks. In Proceedings of the 31st annual ACM
symposium on applied computing, pp 293–298

26. Nessler B, Pfeiffer M, Maass W (2009) STDP enables spiking neurons to detect hidden causes
of their inputs. In: Advances in neural information processing systems, pp 1357–1365

27. Orchard G, Meyer C, R Etienne-Cummings, Posch C, Thakor N, Benosman R (2015) Hfirst:
a temporal approach to object recognition. IEEE Trans Pattern Anal Mach Intell 37(10):2028–
2040

28. Pérez-Carrasco JA, Zhao B, Serrano C, Acha B, Serrano-Gotarredona T, Chen S, Linares-
Barranco B (2013) Mapping from frame-driven to frame-free event-driven vision systems by
low-rate rate coding and coincidence processing–application to feedforward convnets. IEEE
Trans Pattern Anal Mach Intell 35(11):2706–2719

29. Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity.
J Neurosci 26(38):9673–9682

30. Ponulak F (2006) Supervised learning in spiking neural networks with resume method. Phd,
Poznan University of Technology 46:47

31. Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In: IEEE international conference on neural networks. IEEE, pp 586–
591

32. Roy K, Jaiswal A, Panda P (2019) Towards spike-based machine intelligence with neuromor-
phic computing. Nature 575(7784):607–617

33. Rueckauer B, Liu SC (2018) Conversion of analog to spiking neural networks using sparse
temporal coding. In: 2018 IEEE international symposium on circuits and systems (ISCAS).
IEEE, pp 1–5

54 3 Learning in Neuromorphic Systems

34. Rueckauer B, Lungu IA, Hu Y, Pfeiffer M, Liu SC (2017) Conversion of continuous-valued
deep networks to efficient event-driven networks for image classification. Frontiers Neurosci
11:682

35. Scherer D, Müller A, Behnke S (2010) Evaluation of pooling operations in convolutional
architectures for object recognition. In International conference on artificial neural networks.
Springer, pp 92–101

36. Schrauwen B, Van Campenhout J (2004) Extending spikeprop. In 2004 IEEE international
joint conference on neural networks (IEEE Cat. No. 04CH37541). IEEE, vol 1, pp 471–475

37. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27
38. Sengupta A, Ye Y, Wang R, Liu C, Roy K (2019) Going deeper in spiking neural networks:

VGG and residual architectures. Frontiers Neurosci 13:95
39. Shrestha SB, Song Q (2015) Adaptive learning rate of spikeprop based on weight convergence

analysis. Neural Netw 63:185–198
40. Shrestha S, Song Q (2017) Robust learning in spikeprop. Neural Netw 86:54–68
41. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image

recognition. Preprint. arXiv:1409.1556
42. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple

way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
43. Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y, et al

(2019) Bridging biological and artificial neural networks with emerging neuromorphic devices:
fundamentals, progress, and challenges. Adv Mater 31(49):1902761

44. Vu TH, Ikechukwu OM, Abdallah AB (2019) Fault-tolerant spike routing algorithm and
architecture for three dimensional NoC-based neuromorphic systems. IEEE Access 7:90436–
90452

45. Vu TH, Murakami Y, Abdallah AB (2019) Graceful fault-tolerant on-chip spike routing
algorithm for mesh-based spiking neural networks. In: 2019 2nd International conference on
intelligent autonomous systems (ICoIAS), Singapore, February 2019

46. Vu TH, Murakami Y, Abdallah AB (2019) A low-latency tree-based multicast spike routing for
scalable multicore neuromorphic chips. In: ACM 5th international conference of computing
for engineering and sciences, Hammamet, Tunisia, July 2019

47. Vu TH, Okuyama Y, Abdallah AB (2019) Comprehensive analytic performance assessment
and k-means based multicast routing algorithm and architecture for 3d-NoC of spiking neurons.
ACM J Emerg Technol Comput Syst 15(4):1–28

48. Wang HX, Gerkin RC, Nauen DW, Bi GQ (2005) Coactivation and timing-dependent
integration of synaptic potentiation and depression. Nat Neurosci 8(2):187–193

49. Wu J, Chua Y, Zhang M, Yang Q, Li G, Li H (2019) Deep spiking neural network with spike
count based learning rule. In 2019 International joint conference on neural networks (IJCNN).
IEEE, pp 1–6

50. Xin J, Embrechts MJ (2001) Supervised learning with spiking neural networks. In: IJCNN’01.
International joint conference on neural networks. Proceedings (Cat. No. 01CH37222). IEEE,
vol 3, pp 1772–1777

51. Yan H, Liu X, Huo H, Fang T (2019) Mechanisms of reward-modulated STDP and winner-
take-all in bayesian spiking decision-making circuit. In: Neural information processing.
Springer International Publishing, pp 162–172

52. Yu AJ, Giese MA, Poggio TA (2002) Biophysiologically plausible implementations of the
maximum operation. Neural Comput 14(12):2857–2881

53. Zambrano D, Bohte SM (2016) Fast and efficient asynchronous neural computation with
adapting spiking neural networks. Preprint. arXiv:1609.02053

54. Zhang L, Zhou S, Zhi T, Du Z, Chen Y (2019) Tdsnn: From deep neural networks to deep spike
neural networks with temporal-coding. In: Proceedings of the AAAI conference on artificial
intelligence, vol 33, pp 1319–1326

Chapter 4
Emerging Memory Devices
for Neuromorphic Systems

Abstract To design a neuromorphic system in hardware, it is imperative to develop
artificial neurons that mimic biological neurons and artificial synapses that emulate
biological synapses. Recently, numerous efforts have been made to realize artificial
synapses using post-CMOS devices, including resistive random access memory
(ReRAM), ferroelectric field-effect transistor (FeFET), phase change memory
devices, magnetoresistive random access memory (MRAM), etc. A non-CMOS
neuron based on emerging devices has also been investigated. This chapter discusses
the major emerging memory technologies that promise neuromorphic computing
and highlight some recent significant progress on device studies. The advantages
and challenges for each device technology are also discussed.

4.1 Introduction

Neuromorphic computing systems are generally built with thousands or even
millions or neurons [2, 12]. As a result, neuromorphic systems’ parameters and
temporal values are too large to be stored locally. Such a large data must be
accessible to support inference, learning, and debugging. However, using memory
for storing or accessing such data is one of the key design challenges of current
neuromorphic systems. As state-of-the-art systems typically try to mimic the
response time of biological systems, a consensus is to operate the neuron in serial
mode at higher clock speeds [1, 7, 10]. Hence, storing neuron parameters into
memory and reloading when computing is unavoidable.

Since a typical memory has a significant area cost, selecting the technology
and organization of the memory in a neuromorphic system is a challenging task.
With decades of research and development, there is a wide range of available
memory technologies. One feature to consider is the trade-off between the area cost,
power consumption, read/write speed, and retention period. Conventional computer
memory technologies are generally organized in a pyramid shape, as shown in
Fig. 4.1 (left). At the top level, the processing engine (processor) can directly access

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_4

56 4 Emerging Memory Devices for Neuromorphic Systems

Fig. 4.1 Memory hierarchy

a small static memory (SRAM) known as registers. This type of memory usually has
a small capacity and fast access time. A series of D-flip-flops is used as a register
that allows nanoseconds access time. However, this type of memory is expensive.
As we go from top to down the pyramid, the memory size increases as the area cost
become smaller. However, the response time also increases. Across the spectrum of
memory technologies, the faster access time the memory technology has, the higher
cost per bit it has. To have a greater capacity, we must sacrifice some response time.

Figure 4.2a shows the biological neuron model where dendrites receive inputs
from upstream neurons via the synapses. Incoming spikes are integrated into the
called soma as its membrane potential. If the membrane potential crosses the
threshold, the neuron generates an outgoing spike to an axon. The axon sends
the spike to the downstream neurons via synapses. Figure 4.2b shows an example
of a spiking neuron. The input spikes are multiplied (memory reading) with
the corresponding weights to have weighted inputs. The membrane potential is
accumulated from the weighted inputs and creates an outgoing spike if it is higher
than the threshold.

4.2 Memory Technology 57

… …

1
1,

,

Fig. 4.2 (a) Biological neuron. (b) Spiking neuron

In the spiking neuron models, there are three major parameters than need to be
stored (memorized): (1) incoming spikes; (2) synaptic weights, and (3) neuron’s
internal parameters (membrane potential, threshold, etc.).

Inspired by the hierarchical system of computer memory, Fig. 4.1 (right) depicts
the memory hierarchy for neuromorphic systems with a similar shape. The pro-
cessing engine of neuromorphic systems known as neuron can only access its local
information and a certain amount of inputs simultaneously. This information is
usually stored in local neuron’s registers and directly accessed by the processing
engine (neuron) The weights of the synapses will be loaded from the lower level of
the hierarchy to the local memory. The weights are typically stored in a second-tier
memory level which requires one or several clock cycles. Moreover, if the physical
neuron is shared, the neuron’s parameters are also stored in a second-level memory.
The final part is the spike’s cache for the incoming and outgoing spikes. The third-
tier memory level can be used for loading pre-trained weights, storing input and
output spikes or for system configuration.

4.2 Memory Technology

Memory has been one of the essential parts of computing systems. This section
covers the major storage technologies used in neuromorphic computing systems.

The basic element of semiconductor memory is the memory cell. Despite
multiple variations of memory technologies, all semiconductor memory cells follow
the same following properties:

• They exhibit in states or levels, typically two binary values: 0 and 1. There are
multiple-level cell technologies that can represent more than two levels.

• They can be written into to set the state and capable of being read to sense the
state.

• A typical memory cell has two control inputs: select and control and two data
inputs/outputs (or one in a duplex mode). The control input signals the direction

58 4 Emerging Memory Devices for Neuromorphic Systems

Table 4.1 The taxonomy of memory technologies with key design parameters

Cell size Write Speed Leakage Dynamic Retention

Technology (F 2) endurance (R/W) power energy (R/W) period

Register 2200–3500 1016 Extremely fast Very high Low Voltage
applied

SRAM 120–200 1016 Very fast High Low Voltage
applied

eDRAM 60–100 1016 Fast Medium Medium 30–
100 μs

STT-RAM 6–50 4 × 1012 Fast/slow Low Low/high Years

RRAM 4–10 1011 Fast/slow Low Low/high Years

PCM 4–12 108–109 Slow/very slow Low Medium/high Years

DWM ≥2 1016 Fast/slow Low Low/high Years

Flash (NAND) 1–4 104 Very slow Very low Low Years

of the data to be read from or written to a memory cell. The select input indicates
whether the control is for the current cell.

Table 4.1 lists the taxonomy of memory technologies. The register is usually
used as local memory for processing engines among the memory technologies
due to its breakneck speed (nanosecond access time) and compatibility with
CMOS technology. The register allows digital neurons to access information (i.e.,
membrane potential, threshold, input weight) directly to emulate neuron functions.
This allows the register to be at the top level of the memory hierarchy. However,
the register’s high area cost limits the neuromorphic system from having higher
capacity. With F as the feature size of the technology, a register can take around
2200–3500 of F 2, which is 15–20× the size of an SRAM cell. This makes the
register become the largest in terms of cell size among other technologies. From the
second level of memory, other technologies with smaller cell sizes are considered.

Figure 4.3 depicts the operation and organization of a memory system. Most
commonly, memory cells are organized in a 2D array, and the accessing address
is split into a row address and a column address. If one row is selected, the value
of the row can be read or written by providing the control and data signals. This
organization is commonly used for embedded memory. Other memory technologies
such as HDD, CD, DVD are organized in serial and can be accessed in different
manners.

4.2.1 SRAM

Static random-access memory (SRAM) is one of the most popular conventional
memory technologies in the semiconductor. A typical embedded SRAM cell is made
up of six transistors, as shown in Fig. 4.4. SRAM cells only use the transistors, and

4.2 Memory Technology 59

Fig. 4.3 General organization of a memory: (a) Memory cell write, (b) Memory cell read, (c) 2D
array of memory cell

Q
Q

Fig. 4.4 A six transistors (6T) SRAM cell

60 4 Emerging Memory Devices for Neuromorphic Systems

SRAM arbitration logics use the same gates as in digital design. Therefore, SRAM
is fully compatible with CMOS implementation. SRAM cell holds the value as long
as power is supplied to it.

Figure 4.4 is a typical 6T SRAM cell. Four transistors (T1, T2, T3, and T4)
maintain a stable logic (as Q and Q). If the logic state Q is one (high voltage),
the Q is zero (low voltage). In this state, the T1 and T4 transistors are on, and the
T2 and T3 transistors are off. If the logic state Q is zero (low voltage), the transistors
T1 and T4 are off, and the transistors T2 and T3 are on. For both SRAM states, the
transistors maintain their logic level as long as power is supplied to them.

SRAM also supports reading and writing by switching the two transistors T5 and
T6. To read, WL is set to one which turns on T5 and T6, which pull either BL or
BL to zero depending on the value of Q and Q. By sensing the value of BL or BL,
the value of the SRAM cell could be read. To write, WL is also set to one, and BL

and BL will be driven with proper value to change the state of the SRAM cell. This
forces the four-state holding transistors to adjust to the new state.

The implementation of SRAM is compatible with CMOS design and is supported
in most CAD tools. Compared to the register file, SRAM has a higher density (only
six transistors) and lower power (no clock, only power supply). The advantages of
SRAM are speed and reliability. Its delay is mainly caused by connected wires,
and its mature CMOS design could be reliable for around 1016 accesses. Its major
drawback is high leakage current and low density when compared to other memory
technologies. However, it is the most compatible CMOS design, which could be
easily integrated without any modification.

In [16], an 8T SRAM design allows both row and column access for learning
efficiently in the neuromorphic system. Typical SRAM cells can only be written
and read in rows. By adding two more transistors for the transpose reading and
writing, the 8T SRAM can allow column access. This can emulate the operation of
the crossbar for connecting the presynaptic to post-synaptic neuron as each cell acts
like a binary weight synapse.

4.2.2 eDRAM

Embedded dynamic random-access memory (eDRAM) is a capacitor-based
dynamic RAM that can be integrated into CMOS. The eDRAM cell could be a
conventional 1T1C (1-transistor 1-capacitor) design or a gain cell as shown in
Fig. 4.5.

A 1T1C eDRAM cell stores its state in a capacitor C as shown in Fig. 4.5a. The
presence and absence of charge in the capacitor C represents the value stored in the
eDRAM cell. To read an eDRAM, the WL turns on the transistor, and the voltage
of capacitor C is taken into a device called a sense amplifier. The sense amplifier
detects the value of eDRAM cell by comparing the voltage with the threshold
voltage. To write the eDRAM cell, WL turns on the transistor and the wire BL is
connected to either ground or high voltage to change the value of the cell. Because

4.2 Memory Technology 61

Fig. 4.5 eDRAM cell design: (a) 1T1C, (b) gain cell

the capacitor charge is leaky by its nature, eDRAM requires periodic refreshing to
maintain the state of the eDRAM cell. A typical retention method of eDRAM is to
read a row, capture the row’s values, and write the value back to the row. The gain
cell design in Fig. 4.5b does not use any capacitor. Instead, the transistor will hold
the value of the cell. This allows eDRAM to compatible with CMOS design as no
capacitor is used. However, this significantly increases the size as three transistors
are used.

eDRAM is likely to have less area cost than SRAM, thanks to its simple cell
design. However, eDRAM requires a retention period to preserve its value because
the storage charge gradually leaks during operation. Also, 1T1C eDRAM is not
compatible with CMOS design (an extra process is needed), and reading may cause
a loss of high value. Refreshing signal design is complicated for eDRAM due to the
high fan-out and skewing phenomenon (similar to clock design).

4.2.3 STT-RAM

Spin-transfer torque RAM (STT-RAM) [4] is a magnetic RAM in which a cell
consists of a magnetic tunneling junction (MTJ). MJT consists of two ferromagnets
(one is free, one is fixed) separated by a thin insulator. The insulator is thin enough
to allow quantum tunneling (electrons jump through the insulator). Depending on
the relative magnetization directions of these two ferromagnet layers, the MTJ is
either low-resistive (parallel) or high-resistive (anti-parallel). Therefore, STT-RAM
works like a non-volatile device. At a high-resistive state, the voltage of BL is 0V
due to the high resistance of the MTJ. MTJ allows current go through it to drive the
BL close to the supply voltage at a low-resistive state.

Because of its simple design, STT-RAM has a small area when compared to
SRAM or eDRAM. The structure of a STT-RAM cell is shown in Fig. 4.6. However,
the relative magnetization direction states take a long time to change, making the

62 4 Emerging Memory Devices for Neuromorphic Systems

Fig. 4.6 A STT-RAM cell

WL

BL

SL

MJT

0
0

Fig. 4.7 RRAM cell: (a) Schematic. (b) I–V characteristics curve of a Hf Ox RRAM cell [17].
Current is in absolute value. Readers may be more familiar with the I–V characteristics of
memristor

writing process slow and consumes more power. In the rest of this chapter, STT-
SRAM is classified as non-volatile memories (NVMs). Beside SRAMs, resistive
NVMs are very common in the neuromorphic system as they are small, and can
perform in-memory computing.

4.2.4 RRAM and Resistive Crossbar

Resistive random-access memory (RRAM or ReRAM) can generally denote all
memory technologies that rely on the resistance change to store the informa-
tion [18]. In this chapter, we use the term RRAM for memristor-based memory.
Other mentioned memory technologies such STT-RAM and PCM also change the
cell resistance for changing the state.

Figure 4.7a shows the 1T1R RRAM cell. Writing is based on the voltage of LL
and WL. Reading is based on the voltage of BL. As we can see, this architecture is
similar to eDRAM, which offers low area costs. The major advantages of RRAM

4.2 Memory Technology 63

Fig. 4.8 Resistive crossbar design: (a) 1T1R. (b) 1 0T1R

are its low area cost, low power, and easy integration of CMOS technologies. For
neuromorphic applications, a crossbar using memristors could be used with a similar
principle.

The principle of RRAM is to apply a certain voltage to the cell, which drives
it to set (low resistance) or reset mode (high resistance). Figure 4.7b show the I–V
characteristics of an RRAM cell. At the beginning state, the device is at HRS (high-
resistive state), making the current less than 1 μA. A Hf Ox RRAM, by applying
a bias voltage 1.3 V between two terminals (P and N), generates more oxygen
vacancies, spawning more conductive filaments. Then, the RRAM cell change to
LRS (low-resistive state). To reset the cell to HRS, the applied voltage is less than
−1.3 V.

Figure 4.8 shows the resistive crossbar crossbar, which shares the same principle
with RRAM. There are two options: (1) use the transistor as in Fig. 4.7a or (2)
the transistor is removed to have 0T1R cells [18]. For the reading process, reading
voltage is applied as similar to WL. The BL is read. Depend on the resistance of
the memristor; the output voltage could be 0 or near WL voltage. Note that there is
a leakage current due to the lack of the transistor. The writing process is done by
applying a voltage between two terminals of the memristor. Due to variation and
hard to control leakage current under high-density RRAM, the design of 1T1R is
more preferable.

4.2.5 Phase Change Memory

One of the most current advanced memory technology is Phase Change Memory
(PCM) [5]. PCM is based on the property of certain materials, such as Ge2Sb2T e5,
which exhibit differences in resistivity in their two phases: crystallized and amor-
phous. In a PCM device, a small amount of one of the material is put between two
metal terminals as shown in Fig. 4.9a. To program the PCM device, a pulse of SET

64 4 Emerging Memory Devices for Neuromorphic Systems

Troom

Tmelt

Tcrys

Fig. 4.9 Phase change memory: (a) A cross-section image of a mushroom-type PCM device. (b)
The programming pulses and the resulting relative temperature for RESET, SET, and read operation
in PCM

or RESET as in Fig. 4.9b have to be used. While the RESET pulses increase the size
of the amorphous region, the SET pulses reduce the size of the area to have more
crystallized material. As a result, the conductance of the device will be changed.

PCM is mature and has been investigated for neuromorphic systems [13, 14].
It has some strong points on cell size (4–12 F2), write endurance, and power
consumption. However, it has a latency problem. A typical SET phase is done using
partial pulses in a period of 100 ns (50% duty cycle) of 90 μA [14] requires hundred
of seconds to change phase. Moreover, it also has some deviations in conductance
evolution as it can drift the accuracy of the neuromorphic system.

4.2.6 Other Memory Technologies

Table 4.1 shows other memory technologies, such as DWM (domain wall memory),
Flash, HDD. While Flash is slow and unsuitable for embedded memories, DWM
is immature and should be investigated comprehensively. Spintronics is another
advanced technology for neuromorphic systems [11].

Among the memory technologies, SRAM is the most readily available with low
power, reasonable area cost, and mature design. eDRAM has a lower cost. However,
it consumes high power due to its retention. STT-RAM, PCM, and RRAM is a
promising solution with low area cost and low power consumption. For FPGAs or
conventional ASIC chips, SRAM is the proper solution, while STT-RAM, PCM,
and RRAM are suitable for prototype solutions.

4.3 Memory Organization 65

4.3 Memory Organization

The last section has discussed memory cell technologies. This section covers the
organization of memory in general semiconductor systems.

Figure 4.10 shows a typical organization of semiconductor memory. Note that
with eDRAM, refresh counter and refresh circuitry is necessary to maintain the
logic level in the cells. Logically, a semiconductor memory consists of a 2D array
of M × N cells (M rows and N columns). Various arrangements are possible for
the same number of bits (cells) in the memory. If the number of the columns is the
accessing bit-width (word’s width), no column decoder is needed, and the output of
the memory access goes straight to the data output buffer. If the accessing bit-width
is smaller than N , a column decoder is needed to extract the data out of N bits.

The address for memory is typically used for accessing a word (i.e., a word is
typically 32 bits). For instance, a 1-Mbit memory of 32-bit words can be organized
by an array of 1024 × 1024. To access the memory, a 10-bits row address is needed.
After a row is read from the memory array, a 5-bits column address is used to
determine the reading word. The output is cached in a data output buffer and later
sent to the reading block. In the writing process, data is accessible in the same bit
line wires to change the value of the row. If only one word is changed in the whole
row, the row is read, and the word is replaced. The new row is later rewritten into
the memory. In eDRAM, data can also be sent to the data input buffer to refresh the
memory.

Fig. 4.10 Organization of a semiconductor memory

66 4 Emerging Memory Devices for Neuromorphic Systems

CS

WE

OE

A

Fig. 4.11 Simplified memory waveform: writing data

CS

OE

WE

A

Fig. 4.12 Simplified memory waveform: reading data

The reading circuitry can vary among memory technologies. For instance,
eDRAM requires sense amplifiers to capture the correct value of the cell. SRAM
value is already in the logic level and can be sent directly to the data output
buffer. Resistive memory will output current and need a conversion from current to
voltage to detect the state of the cell. Also, the writing process is different between
technologies.

As we mentioned earlier, various arrangements are possible. For instance, a
32,768×32 memory array is also possible with a 15-bit row address and no column
address. Dividing into several arrays such as four arrays of 32,768 × 8 is also
possible to provide similar functions.

The I/O ports of a memory block could be: (1) row and column address (A),
(2) select signal (CS), (3) write enable (WE), and (4) output-enable (OE). Other
fundamental I/O such as ground, supply voltage, reset, and clock are not displayed.

Figures 4.11 and 4.12 show two examples of memory operation. The first
operation is writing data with the chip select (CS) and write enable (WE) signals re
set to zero as they are active at a low level. The output-enable (OE) signal is high.
The address and data arrive at the same time as the chip select (CS) and write enable
(WE) signals. The memory cell with the address will be written with the content in
data lines.

4.4 Memory for Neuromorphic Systems 67

The reading operation is different, with the chip select (CS) and output enable
(OE) signals active at zero. The address arrives at the same time as the above two
signals. The valid data out will appear late after the output enable is received. The
typical delay is one clock cycle in most designs.

4.4 Memory for Neuromorphic Systems

Neuromorphic systems typically need to store three major types of data: spikes,
neuron states, and weights. While spikes are time-step-based information that
needs to be for synchronization, other data types are organized depending on the
neuron structure. Spikes could be stored in either SRAM or registers as they can
be read directly and converted to synapse array address. Spike memory can be
designed in either first-in first-out (FIFO) queue structure or with sorting/scheduling
mechanism.

Since the neuron can be either a digital or an analog model, storing and loading
the state must be adapted. On the other hand, operating serial or parallel neurons
also leads to different storing and loading strategies. The final part of the memory
organization is the weight memory, which is the most important because the number
of synapses is enormous in any neural network system. In the following parts of this
chapter, different neuron designs and operations will be covered with the equivalent
memory organization.

4.4.1 Neuron State Memory

As we mentioned earlier, there are two type of neurons: (1) analog and (2) digital
(Fig. 4.13). In principle, both analog and digital neuron has two major types
of information to store: membrane potential and threshold. The in situ learning
system might store more information for the learning purpose. The digital neurons’
information is already in the binary format and stored in registers for computing
purposes. Therefore, loading and storing them is similar to the normal caching
mechanism. On the other hand, the analog values of the analog neuron’s threshold
and memory potential are difficult to store. These values must be digitalized with an
ADC and restored later with a DAC.

Furthermore, neurons can be operated in: (1) serial: share the physical neuron
for multiple neurons’ calculations, and (2) parallel: each neuron has its physical
computing unit. In the parallel model, the state of the neuron could stay in registers
of the physical hlneuron, and never need to be reloaded during computation [6].
There is no memory needed unless for loading at the initial state. With the serial
one, calculating in time multiplexing is utilized [1, 8, 9]. The parameters are stored
in local memory and loaded serially to update the value. The model is illustrated in

68 4 Emerging Memory Devices for Neuromorphic Systems

Fig. 4.13 Analog and digital silicon neurons. (a) Analog implementation: incoming spikes on the
vertical wire (axon) meter charge (synapse) onto the horizontal wire (dendrite), whose capacitance
integrates the charge. The comparator (soma) compares the resulting voltage with a threshold and
triggers an outgoing spike when the threshold is exceeded. The capacitor is then discharged (reset)
and the cycle starts over. (b) Digital implementation: a counter is incremented (dendrite) each
time a 1 is read out of a bit cell (synapse), triggered by the incoming spike (axon). The counter’s
output is compared (soma) with a digitally stored threshold and a spike is triggered when it is supra
threshold. The counter is then reset and the cycle starts over

Fig. 4.14. The neuron ID is started with 0 and will be looped through all N serial
neurons. In each step, after completing the computation of a neuron, the parameters
are written back to parameter memory. The basic principle for this time multiplexing
is described in Fig. 4.14b:

1. Loop neuron ID i = 0 to N−1 (N: number of neurons).
2. Load neuron ID i state (membrane potential, threshold, other parameters).
3. Calculate the neuron operation (integrate, leak, fire).
4. Save neuron ID i to memory.
5. Increase neuron ID i.
6. Loop until the last neuron complete.

The structure of the neuron is shown in Fig. 4.14c where it consists of N rows.
Each row consists of the parameters for a neuron in the cluster.

The primary reason for serializing neuron operation is the limitation on weight
access. Most of the works are based on SRAM design which is preferred to have a
single port R/W for less complexity. Therefore, it is challenging to access multiple
weights at the same time.

4.4.2 Synapse Memory

In the memory of neuromorphic systems, the synapses memory is the central part as
they occupy most of the storing memory. State of the art neuromorphic memory
system can be classified into SRAM-based synapses and non-volatile memory
synapses. The SRAM method uses the Static Random Access Memory [4] tech-

4.4 Memory for Neuromorphic Systems 69

Fig. 4.14 The serial neuron model. (a) The model architecture. (b) The finite state machine. (c)
The parameter structure

nology, which is well mature, fast, and ready to fabricate with CMOS technology.
On the other hand, non-volatile memories (NVMs) are rising as the new key
technology to implement neuromorphics system. The general approach for non-
volatile is to use a resistive crossbar with multiple conductance levels to mimic
the matrix-vector multiplication of neural networks. While SRAM is faster and
ready to be fabricated, NVMs are low power and much smaller, allowing large-
scale neuromorphic systems. This section covers both types of memory technology
and how a neuromorphic system can be designed around these technologies.

4.4.2.1 SRAM Synapse Memory

Similar to neuron state memories, there are serial and parallel models of synapse
memory. In the parallel model, each neuron must have its synapses SRAM and
perform the weight reading simultaneously. On the other hand, as the serial model
shares the physical neuron for several emulated ones, having multiple weight
memory is inefficient as they are not being used at the same time. The overall
model is illustrated in Fig. 4.15 where each neuron is connected directly to its weight
memory. Each row of the weight memory consists of the value of a synapse. Once

70 4 Emerging Memory Devices for Neuromorphic Systems

,0

,1

,2

, −1

,

Fig. 4.15 The parallel neuron weight model. (a) The model architecture. (b) The weight structure

[,0 ,1, ,2 , ,3]

[,4 ,5, ,6 , ,7]

[,8 ,9, ,10 , ,11]

[, −4 , −3, , −2 , , −1]

,

Fig. 4.16 The parallel neuron weight memory with merged four weights in a memory row

a spike arrives, the presynaptic neuron ID is extracted (i.e., neuron j) and converted
to the memory address.

The SRAM weight memory receives the address corresponding to the ID j of the
presynaptic neuron. In the following clock cycle, the weight of the synapse between
neuron i and j (wi,j) is sent to neuron i for integration

Since the synapse resolution can be low, designers can merge several weights to
put them into a memory row. The cell area stays unchanged as the number of bits
representing the synapses does not change. However, the complexity for SRAM is
reduced due to fewer rows in the SRAM. The structure of this memory model is
illustrated in Fig. 4.16. Here, four consecutive weights are merged to establish a
memory cell. As a result, the address for a weight between neuron j and neuron i is
no longer an address representing the neuron j . Instead, it is the right-shifted value
of the address. The remaining two-bit is later used in an additional multiplexer to
extract the weight out of four read weights.

The examples of normal and merged weight for parallel neurons are illustrated
in Fig. 4.17. With normal weight, the pre-synaptic neuron ID is fed directly to the
SRAM to obtain the row of the memory. Figure 4.17a illustrates an array of pre-
synaptic spikes [7, 8, 10, 14]. Note that they are not in ascending or descending
order which can be problematic for the merged weight model. For example, if the

4.4 Memory for Neuromorphic Systems 71

10,

8,

9,

10,

11,

10,

8,

10,

11,

9,

Fig. 4.17 The parallel neuron weight memory operation: (a) separated weight, (b) merged weight

address of the first pre-synaptic neuron j = 10, is fed to the weight memory, the
following cycle of SRAM output will bring the weight between neuron j = 10
and neuron i. With the same array of pre-synaptic neuron ID, the merged weight
model split the address into two field: (1) the SRAM address (j >> 2) that helps
extract a group of 4 weights; and (2) the selection signal (j [1 : 0]) that helps select
the correct weight. The pre-synaptic ID j = 10 is split into j >> 2 = 2 and
j [1 : 0] = 2. With the address j >> 2 = 2, the weight SRAM outputs a set of
four weights: [w8,i , w9,i , w10,i , w11,i]. The correct weight w10,i is later extracted
by using a multiplexer with a selection signal j [1 : 0] = 2.

Note that with the merged weight model, the system throws away three remaining
weights (w8,i , w9,i , and w11,i) if they are not used. Also, if the spike array is
unsorted, there is a chance that the system may repeatedly read the same memory
row for two consecutive weight. For instance, the spike j = 10 and j = 8 share
the same memory address j >> 2 = 2. Without sorting and merging the reading
process, the neuromorphic system will read the address j >> 2 = 2 twice. The
optimal solution is to sort the incoming spikes in ascending or descending order and
later merge the shared memory row.

In the serial neuron model (Fig. 4.18), having several dedicated memories is
unnecessary as this model cannot perform the neuron in parallel. The weight
structure here also hlfollows the same manner as the parallel with a tweak. For
separated weights, all weights are stored in a single SRAM. Instead of having the
presynaptic neuron ID j , the address is i × N + j (N: number of presynaptic
neurons). For N presynaptic and M post-synaptic neurons, the number of banks
will be N × M . Reducing the number of banks that can be obtained by merging the
neuron. For instance, with small synapses bitwidth, the whole weight of a neuron

72 4 Emerging Memory Devices for Neuromorphic Systems

10,

1,

0,

10,

11,

10,

8,

10,

11,

9,

[0: −1],0

[0: −1],1

[0: −1],

0: −1 , +1

Fig. 4.18 The serial neuron weight memory operation: (a) normal weight, (b) merged weight

can be combined for reading at once [1]. All weights of neuron i will be read at
once, and a multiplexer will be used to separate the weights later.

In the merged weight mechanism, the state and weight neuron can be merged.
In TrueNorth [1], the SRAM word is 410 bits: 256-bits weight (1-bit per synapse),
124-bit neuron state (membrane potential and other parameters), and 30 bit for spike
representation. Once a serial neuron is loaded, its parameters and weights are taken
from the memory and ready to be computed.

4.4.2.2 Non-volatile Synapse Memory

The first use of NVM is to store the data as same as standard SRAM design. The
resistance (or conductance) of the NVM cell can dictate the output current from

4.4 Memory for Neuromorphic Systems 73

the crossbar. Consequently, it can be used as a DRAM design (1T1C) where the
output voltage is compared to CMOS threshold voltage to obtain the bit value. In
this design, the NVM can be used as standard SRAM as each cell stores one bit.
Since the cell’s conductance can be varied in a wide range, the multiple-level cell
can be applied. For instance, having an ADC (or multiple voltage comparators) to
measure the output of NVM can convert the conductance to multiple bits value.
For RRAM devices, it is reported that a resistive cell can store up to 64-bits [15].
However, this technology is still immature due to its poor retention time at high
temperatures, limited endurance, and post-algorithm instability.

For storing data in NVM memory, outputs of NVMs are similar to outputs of
SRAM as we previously introduce in Sect. 4.4.2.1. The organization processes can
be either serial or parallel. Also, independent and merged weight rows can be used.

4.4.2.3 NVM In-memory Computing

The resistive memory design for synapses can emulate connection and matrix
multiplication. Figure 4.19a illustrates the crossbar design using a resistive memory
(i.e., 1T1M with M is memristor). By applying input voltages in all lines, the output
current is the summary of voltages multiplying the conductance of the resistive
devices. In the multiple layer design, the conductance (Gij) is considered as the
weight (Wij) between two layers. To have a new connected layer, an activation unit
(i.e., RELU in ANN and threshold comparator in SNN) is required to transform
the output current to the input voltage of the consequent layer. The crossbar of
NVMs can be translated into the synapses and acts for the integration process. The
activation unit acts as the threshold in the neuromorphic system, and together it
emulates the operation of LIF neuron in Fig. 4.13. The output current for neuron j

(Ij) is calculated as the summary of the current provided by all presynaptic neuron
voltage (Iij) (the Kirchhoff’s law):

Ij =
∑

Iij (4.1)

where Iij is dependent on the applied voltage and the conductance of the NVM cell
(as the Ohm’s Law):

Iij = Vi × Gij (4.2)

Hence, the resistive crossbar can act as matrix multiplication.

Ij =
∑

Vi × Gij (4.3)

The range of non-volatile memory can be classified either with learning or
inference only design. The inference only design can be simple with 1T1R (1
transistor, one resistor) and can translate the matrix multiplication. With the in situ

74 4 Emerging Memory Devices for Neuromorphic Systems

ịj
1

ịj
2

In
1

Vn
2 In

2Vn
1

V1

V2

V3

V4

V5

VN

WL1

WL2

WL3

WL4

WL5

WLN

I1 I2 I3 I4 I5 IN

BL1 BL2 BL3 BL4 BL5 BLN

Ij = ∑ ×

Fig. 4.19 Schematic for multiple layer neural network using NVM: (a) Crossbar for two
connected layers. (b) Three layer design

learning, in particular the STDP learning, there are long-term depression (LTD) and
long-term potentiation (LTP). To mimic the behavior of the relationship between
the timing of presynaptic and post-synaptic learning, two resistors can be used for
two different types (LTD or LTP). A voltage comparator between the voltage of
two resistors is used to determine the output of the synapse. The design is so-called
“2-NVM Synapse” [3].

4.4 Memory for Neuromorphic Systems 75

Fig. 4.20 The 2-NVM synapse design

The “2-NVM Synapse” [3] is illustrated in Fig. 4.20. Instead of having a single
NVM cell that has the conductance act like the weight of synapses between two
neurons, the 2-NVM synapse uses two: one for LTD and one for LTP. The actual
weight is considered as the difference between two resistances:

Wij = β(GLT P
ij − GLT D

ij) (4.4)

where β is the scaling factor, GLT P
ij and GLT D

ij are the conductance of two NVM
cell.

As the output of the resistive crossbar is analog, there are two options to perform
the activation as shown in Fig. 4.13. The analog neuron can capture the output
voltage as the wire act like a capacitor (virtual ground). The output voltage here
can be compared with a threshold voltage to check the firing condition. Once the
output voltage is higher than the threshold, an output spike also resets the membrane
potential.

In the digital version, the activation unit design depends on the method of
applying the input voltages. If the input voltages are applied simultaneously, an
ADC can be used to convert the voltage to a digital value and compare it with a
threshold value. If the input voltages are applied in serial (one by one), a counter
can be used to capturing the incoming weighted spikes. In either case, converting
and comparing in the digital domain is undoubtedly need.

76 4 Emerging Memory Devices for Neuromorphic Systems

4.5 Dynamic NVM Synapse

While NVMs have high density and can provide low power consumption for
reading, writing, and holding, the conductance value of NVMs are not always
consistent over time. The nature of NVMs is to have drifting in their conductance
and can even be stuck at LRS, HRS, ground, or supply voltage. These behaviors
make NVM synapses keep changing from the initial state to wear-out time. This
section discusses the critical factor in the dynamics of NVM synapses.

4.5.1 Learning Related NVM

Learning in neuromorphic system can be divided in to online (in situ) and offline (ex
situ). The ex situ is executed in a software system first, then the calculated weights
are loaded to the synapse array. The weights are not adjusted during the loading
process. This does not affect SRAM synapses; however, it can be critical in the
NVMs system. Also, it is important to maintain the conductance of NVMs during
operation. Moreover, even SRAM has potential transient and permanent errors that
can change the bit-values. Therefore, the reliability is stringent in ex-situ learning.

In in situ learning, the initial weight can be randomized for a new training or pre-
trained ones for tuning. The goal of in situ is to minimize the accuracy losses due
to deviation of conductance in NVMs. After one training iteration, a pre-inferring
process is needed to calculate the difference between expected results and actual
results. Then, the tuning processing is done to reduce the error. After tuning, the
system needs to verify the conductance of the NVMs to ensure the correctness of the
writing process. To reduce the impact of conductance drift, considering only the sign
of the weight (negative and positive) in learning is also a possible approach [19]. The
conductance drift is critical for both in situ and ex situ learning.

To tune the conductance of the NVM, an external voltage is applied (WL and BL
in Fig. 4.13). For a single 1-NVM design, the process of increasing the conductance
is called “SET” (or potentiation in neuromorphic). The method of increasing the
conductance is called “RESET” (or depression in neuromorphic). In the 2-NVM
design, the relative between two NVM cells decides the potentiation or depression
of the weight.

4.5.2 Conductance Drift in NVM

As the conductance drift is a typical behavior of the NVM cells, adapting the weights
in both in situ and ex-situ learning should be considered. First, the retention of the
NVM cell is the first issue to be considered. Unlike SRAM, which needs to be
re-fetched after resetting, the NVM cell can maintain the conductance for years.

References 77

The second issue is the NVM cell’s endurance during the training process (using
RESET and SET action). As being summarized in Table 4.1, the RRAM and PCM
have the write endurance around 1011 and 108 − 109, respectively. The failures can
be stuck at SET, stuck at RESET, open or stuck-at-ground defects. Third, as the
read and write perform analogously, the reading and writing processes can be noisy,
leading to inaccurate results. SRAM can deal with this problem by using an Error
Correction Code. Here, level-based NVM can certainly be used in companion with
ECC; however, fully analog systems are not compatible with such a method.

4.6 Chapter Summary

Recently, numerous efforts have been made to realize artificial synapses using post-
CMOS devices, including resistive random access memory (ReRAM), ferroelectric
field-effect transistor (FeFET), phase change memory devices, magnetoresistive
random access memory (MRAM), and so on. A non-CMOS neuron based on emerg-
ing devices has also been investigated. This chapter discussed the major emerging
memory technologies that promise neuromorphic computing and highlight some
recent significant progress on device studies. The advantages and challenges for
each device technology were also discussed.

References

1. Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura
Y, Datta P, Nam G, Taba B, Beakes M, Brezzo B, Kuang JB, Manohar R, Risk WP, Jackson B,
Modha DS (2015) Truenorth: design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Trans Comput-Aid Des Integr Circuits Syst 34(10):1537–1557

2. Ben Abdallah A, Dang KN (2021) Toward robust cognitive 3d brain-inspired cross-paradigm
system. Front Neurosci 15:795

3. Bichler O, Suri M, Querlioz D, Vuillaume D, DeSalvo B, Gamrat C (2012) Visual pattern
extraction using energy-efficient “2-PCM synapse” neuromorphic architecture. IEEE Trans
Electron Dev 59(8):2206–2214

4. Chang M, Rosenfeld P, Lu S, Jacob B (2013) Technology comparison for large last-level caches
(L3CS): low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized eDRAM. In:
2013 IEEE 19th international symposium on high performance computer architecture (HPCA),
pp 143–154

5. Close G, Frey U, Breitwisch M, Lung H, Lam C, Hagleitner C, Eleftheriou E (2010)
Device, circuit and system-level analysis of noise in multi-bit phase-change memory. In: 2010
international electron devices meeting. IEEE, Piscataway, pp 29–5

6. Dang KN, Abdallah AB (2019) An efficient software-hardware design framework for spiking
neural network systems. In: The international conference on internet of things, embedded
systems and communications (IINTEC 2019)

7. Davies M, Srinivasa N, Lin T, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain
S, Liao Y, Lin C, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse J, Venkataramanan
G, Weng Y, Wild A, Yang Y, Wang H (2018) Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro 38(1):82–99

78 4 Emerging Memory Devices for Neuromorphic Systems

8. Frenkel C, Lefebvre M, Legat JD, Bol D (2018) A 0.086-mm2 12.7-pj/sop 64k-synapse 256-
neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans
Biomed Circuits Syst 13(1):145–158

9. Frenkel C, Legat J, Bol D (2019) Morphic: a 65-nm 738k-synapse/mm2 quad-core binary-
weight digital neuromorphic processor with stochastic spike-driven online learning. IEEE
Trans Biomed Circuits Syst 13:999–1010

10. Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013)
Overview of the spinnaker system architecture. IEEE Trans Comput 62(12):2454–2467

11. Grollier J, Querlioz D, Camsari K, Everschor-Sitte K, Fukami S, Stiles MD (2020) Neuromor-
phic spintronics. Nat Electron 3(7):360–370

12. Ikechukwu OM, Dang KN, Abdallah AB (2021) On the design of a fault-tolerant scalable
three dimensional NoC-based digital neuromorphic system with on-chip learning. IEEE Access
9:64331–64345

13. Joshi V, Le Gallo M, Haefeli S, Boybat I, Nandakumar SR, Piveteau C, Dazzi M, Rajendran B,
Sebastian A, Eleftheriou E (2020) Accurate deep neural network inference using computational
phase-change memory. Nat Commun 11(1):1–13

14. Nandakumar S, Le Gallo M, Boybat I, Rajendran B, Sebastian A, Eleftheriou E (2018) A
phase-change memory model for neuromorphic computing. J Appl Phys 124(15):152135

15. Pérez E, Cristian Zambelli MKM, Olivo P, Wenger C (2019) Toward reliable multi-level
operation in rram arrays: improving post-algorithm stability and assessing endurance/data
retention. IEEE J Electron Dev Soc 7:740–747

16. Seo J, Brezzo B, Liu Y, Parker BD, Esser SK, Montoye RK, Rajendran B, Tierno JA, Chang
L, Modha DS, Friedman DJ (2011) A 45nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons. In: 2011 IEEE custom integrated
circuits conference (CICC), pp. 1–4

17. Tosson AMS, Yu S, Anis MH, Wei L (2018) Proposing a solution for single-event upset in
1T1R RRAM memory arrays. IEEE Trans Nucl Sci 65(6), 1239–1247

18. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol
8(1):13

19. Zhang Q, Wu H, Yao P, Zhang W, Gao B, Deng N, Qian H (2018) Sign backpropagation: an
on-chip learning algorithm for analog RRAM neuromorphic computing systems. Neural Netw
108:217–223

Chapter 5
Communication Networks
for Neuromorphic Systems

Abstract The brain connectivity is generally described at several levels of scale,
including synaptic connections that link individual at the microscale, networks
connecting neuronal populations at the mesoscale, and brain regions linked by
fiber pathways at the macroscale. Since each neuron is connected to many others,
high bandwidth is required. Moreover, since the spike times are used to encode
information, very low communication latency is also needed. In this chapter,
the network used for communication in neuromorphic systems are covered. In
particular, the Network-on-Chip fabric is introduced for receiving and transmitting
spikes following the Address Event Representation (AER) protocol and the memory
accessing method. The interconnect methods for inter-neurons communication is
covered in details. Moreover, the interconnect design principle is presented to help
understand the overall concept of on-chip and off-chip communication. The remain-
ing parts cover advanced on-chip interconnect technologies, including si-photonic
three-dimensional interconnects and fault-tolerant spike routing algorithms.

5.1 Introduction

Early neuromorphic chips were designed by Carver Mead and his students at
Caltech [56, 80]. In the first design, Address Event Representation (AER) is used as
the interchip communication protocol because a massive number of neurons within
the chip cannot be realized at that time. AER multiplexes the firing events from
neurons and encodes it as a lower complexity connection. For an N axonal fiber,
with one active at a time, AER replaces regular wire with (1+log N) wires.

In recent neuromorphic designs, AER is used as a protocol for on-chip and
off-chip communication. Figure 5.1 shows the AER protocol. The neurons in the
sender array generate a temporal sequence of digital amplitude events to encode
their outputs; a representation conceptually equivalent to a train of action potentials
(or a train of spikes). Each neuron has a digital address that is uniquely assigned
to it (for instance: 1, 2, and 3). Whenever a neuron signals an event, the encoder
circuitry broadcasts that neuron’s address on the inter-chip data bus. After an action
potential, the neuron enters a refractory period which prohibits its ability to generate

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_5

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_5

80 5 Communication Networks for Neuromorphic Systems

Fig. 5.1 Address-event representation (AER) protocol

new action potentials [74]. Therefore, the inter-spike interval (ISI) at a neuron
is longer than the time required to broadcast the neuron’s address. As a result,
many addresses can be multiplexed on the same bus without major bottleneck. The
receiver interprets the address as an event that corresponds to an action potential
from the neuron identified by that address.

5.2 Neural Communication

Most biological neurons communicate predominantly via an electrochemical
impulse known as an action potential or spike [74]. As most silicon neurons follow
the ‘point neuron model’ [34], the details of dendrite structures are ignored, and
we assume all inputs effectively arrive at the neuron. This complex electrochemical
pulse is supported by transient sodium, chloride, potassium, and electron fluxes.
The size and shape of the spike are invariant, mainly being determined by local
instabilities in the cell membrane current balance, so a spike can be viewed as a unit
impulse that conveys information solely in the time at which it occurs. It costs the
axon energy to transmit an event, but this is provided by a kind of electrochemical
‘gain’ distributed along the length of the fiber. The net effect is that the axon can
be viewed as a lossless dispersion free transmission line, although it has to have a
‘rest’ just after a pulse has been transmitted, to ‘charge itself up’ again.

As shown in Fig. 5.1, there is no global clock. In other words, the signals are
sent asynchronously; therefore, the spiking time is encapsulated by the event itself,
not by the concept of time-step in the digital system synchronization. Once neuron
1 fires, its spike arrives at the encoder and is encoded to value ‘1’ in the data bus
between two modules. After that, there is no spike and no information will be sent
via the data bus. Once there are spikes, the neuron’s ID is sent to the data bus right
after the spike is received at the decoder. In the decoder, the signal from the data bus
is read, and the decoder re-issue the spike to mimic the actual communication. Then,
the spikes are distributed to the connected post-synaptic neurons via the crossbar
circuitry.

5.2 Neural Communication 81

Fig. 5.2 Control signal flow starting from a neuron through the arbiter and encoder on the
transmitting side, to the decoder and a neuron on the receiving side (left to right). (a) Completion
of the spike transmission for the originating neuron before the handshaking is completed in the
acknowledge phase. (b) Pipelining reduces the overall handshaking time by allowing the signals to
propagate forward in the set phase without waiting for the acknowledge signal

To communicate between two chips or two neuron clusters, the request and
acknowledgment protocols are typically used. At first, a request signal is sent, and
later the AER signals are transmitted. When the AER signals arrive and are stored at
the receiver, an acknowledge signal is sent back to the sender to confirm the arrival
of the spikes. Figure 5.2a illustrates the send/acknowledge handshaking phase
between two blocks (cluster of neurons). First, the arbiter allows a pre-synaptic
neuron from the sender block to send the signal to the encoder. The encoder then
encodes the spike to the AER format and sends the above spikes to the decoder via
the data bus. At the decode phase, the AER format signal is unpacked (represented
as spikes) and sent to the connected neuron(s). After the spike has been received
by the post-synaptic neurons, an acknowledgment signal is sent back to inform the
source neuron of a successful reception. Once the acknowledgment signal arrives at
the pre-synaptic neuron, the spike is removed, and the arbiter allows other neurons to
fire. If there is no acknowledgment, it means the spike is lost during transmission,
and a re-transmission is required. Pipelining can be used here to reduce the gap
between two communications as described in Fig. 5.2a. The arbiter here allows a
new neuron to fire after the encoder receives the signal.

There are two basic types of inter-neural communications: local and global
interconnects. While the local interconnect transfers the spikes within a particular
area, long-range analog signals help neurons communicate to a different area of
the brain. Therefore, a communication network for a given neuromorphic system

82 5 Communication Networks for Neuromorphic Systems

should consider the local communication and take into account the cluster-to-cluster
communication during the design phase.

The communication network in a given neuromorphic system must satisfy the
ability to send and receive spikes (action potentials) with low and precise latency.
Consequently, unlike early neuromorphic prototypes with hundreds or thousands of
neurons, a large-scale system must be explicitly designed to achieve the biological
system’s real-timeliness. In the next section, we will discuss how to design the
interconnect for inter-neural communication in neuromorphic systems.

5.3 Interconnect for Inter-Neural Communication

Even though AER has been the de facto for silicon neurons communication, the
protocol itself is not exceptionally scalable. The AER can help reduce the traffic
between two group of neurons; however, it is no longer a straightforward solution for
systems with a massive amount of neurons. More and more neurons are integrated
into clusters with shared encoders and decoders, leading to a highly complex
design and long wire length. Therefore, one of the standardized infrastructures for
neuromorphic systems is to adopt the on-chip and off-chip interconnects. The major
works on neuromorphic systems support a large number of neurocores per system.

The communication between neurons can be done via synchronous [35] or
asynchronous manner [30, 30, 62]. While synchronous systems are easy to manage
and control, asynchronous systems provide a low power consumption and closer
behavior to biological brains which perform asynchronously.

Table 5.1 shows three significant neuromorphic systems: SpiNNaker by the
University of Manchester, TrueNorth by IBM, and Loihi by Intel. While SpiNNaker

Table 5.1 Neuromorphic system communication

Architecture Configuration Communication

SpiNNaker [35] Each ARM core perform 1000
neurons’ operation. A node consists of
18 ARM cores. 1024 neurons per
ARM core. 16-bit for node, 5-bit for
core, 11 bit for axon

Nodes are connected using six
communication links in triangular
lattices folded onto the surface of
a toroid. Multi-cast based using
CAM

TrueNorth [17] Each core emulates 256 neuron, 4096
(64 × 64) cores per chip. 18-bit for
core distance, 8 bit for axon

Formed in 2D-mesh. Uni-cast
based with relative X and Y
coordinates. X-first routing

Loihi [30] 128 neuromorphic cores and 3 x86
cores per chip and can be scaled up to
4096 cores. Support up to 16,384
inter-chips communication. Each core
implements 1024 neural units.
Variable synaptic resolution

Asynchronous 2D Mesh NoC.
NoC only supports uni-cast, and
the multi-cast is supported by
iteration. NoC routing using
dimension-order routing
algorithm (X-first)

5.3 Interconnect for Inter-Neural Communication 83

emulates neurons using ARM cores, both TrueNorth and Loihi implement the
hardware neurons.

5.3.1 SpiNNaker

The SpiNNaker processor [35] consists of an array of ARM9 cores communicating
via packets carried by a custom interconnect fabric. Each packet has 40 or 72 bits
and is supported by hardware only. The processor has the ability to transmit over
5 billion packets/s. The ‘point neuron model’ is also adopted here, leading to the
point where all packets (spikes) must effectively arrive at their desired destinations.
To represent the connection between neurons, the weights are used to alternate the
strength of the connections. The weight can be positive or negative to represent the
excitatory and inhibitory connections.

SpiNNaKer adopts the AER protocol as the central idea with its modifications to
form the communications between neurons.

Since in AER format, a spike is represented by its time and identity (i.e.,
number), SpiNNaker uses packet-switched communication and broadcast/multicast
routing. Thus, once a spike occurs, the AER signal is sent to the packet-switched
communication fabric and delivered to the connected neurons.

By enabling communication via electronic fabrics, the spikes can instantaneously
arrive at their destinations, similar to the biological signals in the brain. This allows
SpiNNaker to have the freedom to map any neuron to any node (cluster of neurons),
and it can virtually form the biological topology regardless of the packet-switched
communication topology. The problem of efficient mapping has been extensively
investigated to reduce the transmission time between neurons [19].

Since electronic signals can be delivered instantaneously, the t ime information
of the spike cannot be preserved. Therefore, it has to be presented in another way.
In the biological system, spikes are expected to be at the right place at the right
time. However, the electronic system works the other way around. If there is no
congestion in the communication infrastructure, the spikes are delivered effectively;
however, congestion or failures in the communication system can delay, drop, or
misroute spikes. Therefore, there is a need for a scheduling method and fault-
tolerant mechanism for neuromorphic systems.

In SpiNNaker, 1000 neurons are simulated in each ARM core using fixed time-
multiplexing. Each node of SpiNNaker has 18 ARM processors, which makes a total
of 18,000 neurons to be simulated. Therefore, SpiNNaker expects the delivery time
(spike window) to be likely at 0.2 μs/hop to ensure the neurons react to the stimuli
in order of ms like biological systems.

At first, the communication between ARM cores of a SpiNNaker chip is handled
by a Network-on-Chip. Then, it is converted to off-chip communication using
packet-router modules. Six links are merged using a time-division multiplexer to
stream together, spikes from the local NoC. The output stream is later split into
six output links. The inter-node communication in SpiNNaker is made via packets.

84 5 Communication Networks for Neuromorphic Systems

… …

Fig. 5.3 The SpiNNaker node

The packets are generated by cores and transmitted to the local router. The packets
are then redirected to the target cores. If the destination neurons are in the same
node as the source, the local router sends the packets back to the local cores. If the
destination is in other node(s), the local router sends the packets to a neighboring
node. Since each node can only connect to six nodes in general, a routing technique
is needed to deliver the packets efficiently (Fig. 5.3).

In SpiNNaker, there are four types of packets which are either 40-bit or 72-bit
formats: (1) nearest neighbor, (2) point-to-point, (3) neural event multi-cast, and
(4) fixed route. While the nearest neighbor packets are used to initialize the system,
the flood-fill communication (broadcast) and debugging, and point-to-point packets,
allow more detailed communications. Among those packets, we focus on the neural
event multi-cast as it represents the interneural communication. Here, the AER of
SpiNNaker can be summarized in Fig. 5.4 where it uses 16 bits for node ID, 5 bit for
the core ID (ARM core), and 11 bits for the neuron ID (neuron within ARM core).
The routing method for AER follows the Content-Access-Memory (CAM) method,
where it first looks-up the CAM to find the address on the output RAM. The word
of output RAM of 6 + 18 encodes the output directly in one-hot format (first 6 bit
are for the inter-chip link and last 18 bit for the internal core).

5.3 Interconnect for Inter-Neural Communication 85

Fig. 5.4 The SpiNNaker AER

5.3.2 TrueNorth

The TrueNorth [17] is a neuromorphic chip designed by IBM in 2014 [17]. The
chip consists of 4096 cores connected via Network-on-Chip. Each core has 256
simulated neurons working in time multiplexed method. Each neuron has 256
programmable synapses that emulate the strength between two neurons. Unlike
SpiNNaker, which uses ARM core to emulate neurons, TrueNorth implements the
‘Leaky-Integrate-and-Fire’ model. The number of connections is also limited to 256
per neuron; however, it achieves much lower power than the large-scale system of
SpiNNaker. Unlike SpiNNaker, TrueNorth does not use the global address of the
node/cluster. Instead, it uses the relative distance in X and Y (dx and dy) to achieve
communication. TrueNorth uses a 9-bit sign integer for both coordinates, which
allows packets to be sent in a range of [−256, 255] from the source.

The TrueNorth uses the X-first routing algorithm where the relative distance in
X-coordinate (dx) value is increased or decreased first until it gets to zero. Then,
the relative distance in Y-coordinate (dy) value is changed. In each hop, unless both
dx and dy are zero (which means the packet arrives to its destination), the packet is
routed based on the change of dx and dy values. For instance, if the dx is negative
and increased in the routing unit, it is routed to east.

The content of the spike data besides dx and dy are delivery tick (4-bit),
destination axon index (8-bit) and debug bits (2-bit). While the delivery tick is
used to ensure the proper timing of spike, the 8-bit axon index represents the actual
connections. In TrueNorth, the synapse SRAM is 256 × 410 for 256 neurons. Here
the synapse resolution is one bit per connection.

The routing is TrueNorth is based on unicast with an X-first routing algorithm.
Since the spikes are sparse, deadlock and livelock are not a concern.

5.3.3 Loihi

In 2018, Intel released its 60 mm2 neuromorphic chip, named Loihi, fabricated in
14 nm process. The Loihi chip consists of 3 × 86 cores and 128 neuromorphic cores
connected via an asynchronous NoC and can be scaled up to 4096 cores. Each core
can implement up to 1024 neurons with variable weight length (1–9 bits), which also
varies the number of synapses per core (1 million down to 114k). The NoC supports
no native multicast, and the core has to send to a list of destinations iteratively.

86 5 Communication Networks for Neuromorphic Systems

Although there is no information about the actual packet format of Loihi, there
is consensus that an AER-like format is used for sending spike. Once a pre-synaptic
neuron fires, its spikes are projected to a fan-out core-to-core list consisting of the ID
list of the core with post-synaptic neurons. Then, the spikes are sent to all connected
cores using unicast via the NoC. Once it is received at the destination cores, it
performs a multicast transmission to all post-synaptic neurons.

5.4 Interconnect Design Principles

The previous section has surveyed the three notable system designs for neuromor-
phic systems. Since we focus more on neural communication in this section, we
summarize the major principles for designing the neuromorphic system intercon-
nects.

• Network topology: before providing any features in the system, deciding the
topology of the system is a critical issue. Different topologies have different
advantages and drawbacks. As we survey in Sect. 5.3, SpiNNaker uses a folded
triangle lattice type of topology while other works simply use 2D-Mesh. The
topology of SpiNNaker can fit the supercomputer model; however, 2D Mesh is a
simple and scalable topology to use when it comes to neuromorphic chips.

• Classification of the communications: Beside the inter-neural communication
that allow spikes to travel from pre-synaptic to post-synaptic neurons, the
synchronization, data transaction and debugging are also needed. Although most
of the reports do not focus on how to program the neuromorphic system, the
amount of weights and parameters need to be programmed are considerable. On
the other hand, synchronizing the system (i.e., increase the time-step) is also
important. Here, flooding or gossiping is the common approach where the core
exchanges information with its neighbors to allow a system synchronize.

• Network support for the communication is another issue. The communications
can be classified into three main categories: uni-cast, multi-cast and broad-
cast. While SpiNNaker support multi-cast, both TrueNorth and Loihi NoCs
only support uni-cast which require the source node to send multiple packets to
multiple destination. On the other hand, flooding and gossiping communication
performing the function of the broad-cast, and uni-cast based approach is more
viable.

• Time constraints of the neuromorphic system are mostly on the inference time
where the spikes must arrive at their destination within a certain window. While
SpiNNaker relies on the interconnect infrastructure to deliver the packets through
the whole system within a millisecond to obtain biological real time, designers
can expect to accelerate the execution time by reducing the transmission time of
the network. While the inter-neural communication has two type of connections:
local and long-range, the long-range connections are the critical path to ensure
real timeliness and accelerated performance. Although it is not recommended,

5.4 Interconnect Design Principles 87

spike dropping can be utilized to have the system perform under a certain level
of accuracy loss. The critical traveling path must be addressed properly. Here,
the mapping problem of the neuromorphic system can help solve the problem.

• Mapping is another problem that should be carefully addressed. The large-scale
system can select different neurons in different clusters/nodes to map a neural
functions. Recent works [19] on mapping have tried to address by reducing the
communication time or execution time.

• Fault-tolerance support is another feature for the neuromorphic systems.
Although neuromorphic systems are naturally resilient to some faults, faulty
interconnect can lead to missing spikes or misrouted spikes and change the
system’s behavior.

5.4.1 OSI Model for Network-on-Chip

NoCs are usually packet-switched communication networks derived from the
general computer network domain. The OSI (Open Systems Interconnection Model)
reference model for NoC is depicted in Fig. 5.5. This acts as the framework to build
the NoC. The standard OSI models are classified into seven layers as shown in
Fig. 5.5.

5.4.1.1 Application and Presentation Layers

The application and presentation layers are where the data-flow graph can be
represented. Each task in the data-flow graph has a different workload, and the
tasks are connected via messages or transactions. In a neuromorphic system, such

Fig. 5.5 OSI reference model for Network-on-Chip

88 5 Communication Networks for Neuromorphic Systems

data types could be spikes, data transactions (read/write local memory), or control
signals.

5.4.1.2 Session and Transport Layers

The messages and transactions will be divided into packets or streams and delivered
to the network interface to communicate. The destination, routing path, and routing
instruction can be encapsulated into the packet in this layer. Quality of services such
as best-effort or guaranteed services is also delivered at this layer.

5.4.1.3 Network Layer

After encapsulating the packets, the network interfaces send them to the network
in the network layer. Finally, the network delivers the packets from the source
network interface (NI) to the destination NI via intermediate routers. We could have
different switching techniques such as circuit switching or packet-switching (store-
and-forward, virtual-cut-through, or wormhole) in this layer.

5.4.1.4 Link and Data Layers

These layers are where the packet is split into a flow control unit (flit). Each flit is
received, routed, and sent by sub-modules of routers. The flow control needs to be
established to ensure the synchronization between routers. Moreover, protecting the
data integrity using error correction codes is also necessary.

5.4.2 Network Topologies

Topology is how the network is structured and organized. In particular, it has to do
with the number of nodes or processing elements (PE) in the system, the design of
routers, the connecting wires between routers and router-PE, and how a packet can
be transferred. The suitable NoC topology, communication mechanism, PEs type,
and router architecture are generally decided through extensive design exploration.

5.4.2.1 Major Types of Topologies

In interconnect designs, various types of topology can be considered. In general,
they can be classified either as regular or irregular. Regular topologies are usually
designed for a particular application where it fits exactly the communication
requirements of the system. However, Irregular topologies are typically unscalable

5.4 Interconnect Design Principles 89

and cannot fully exploit the parallelism of NoCs. In the scope of this neuromorphic
book, we only considered the regular topologies.

Several types of regular topologies have been proposed, and they include: mesh,
torus, folded torus, concentrated mesh, binary tree, butterfly tree, and clos. Each
topology has different advantages with regards to distance between core, number
of cores attached to router, routing complexity, and layout optimum. Among these
topologies, mesh topology can be considered as the most common topology, thanks
to its simplicity in design, routing, and layout. The following sections will cover the
significant mesh topologies.

5.4.2.2 2D Mesh Topology

The 2D Mesh topology is depicted schematically in Fig. 5.6. A 2D Mesh NoC
consists of M×N mesh of routers (or switches) interconnecting Processing Element
(PE) placed near the router. Each router, except those at the edge, can connect
to four neighboring routers and one PE. The number of routers is equivalent to
the number of PEs in the system. The communication channel between routers or
between routers and PE consists of two unidirectional links.

In Mesh topology, there is an assumption that the links are in similar lengths;
therefore, this allows simple physical designs. This also usually implies that a
similar architecture is shared between PEs. As a result, one tile (a combination

Fig. 5.6 2D Mesh topology

90 5 Communication Networks for Neuromorphic Systems

of one router, NI, and one PE) is generally designed first as a macroblock and
then replicated in the physical design phase. This can accelerate the design time
and allow highly scalable systems. A multiple-chip system can be established
in neuromorphic systems by extending the NoC in a 2D plane, and no routing
adjustment needed.

The communication in 2D Mesh is established by packaging data in flits (flow
control units), which is the amount of data a link can send at once. Flits can be
attached to create a packet that can be sent serially. Flits are sent from the PE
via its network interface, travels through the routers in the network using a routing
algorithm, and delivered at the destination PE.

Several routing algorithms have been created for 2D-Mesh, such as XY, West-
first, North-last, or Negative-first. These routing algorithms are tableless as no
routing table is needed. The relation between the current node, destination, and
the incoming port is used to perform such routing. Several adaptive routing
algorithms can deal with congestion or faults in the network. The details about
the communication architecture, such as switching technique, packet routing, and
quality of service, will be further discussed in Sect. 5.4.4.

5.4.2.3 3D Mesh Topology

The three-dimensional (3D) stacking technology is an emerging technology that
helps keep the momentum of Moore’s law which allows double integration of
transistors every two years. As dealing with cross-layer communication is an issue,
inheriting 2D Mesh and expanding to the vertical direction is a natural solution.

Figure 5.7 depicts the 3D Mesh topology where each router can be connected to
up to six neighboring routers and one local PE. This also maintains the same ratio of
router and PE as in 2D Mesh. The design principle is unchanged in 3D Mesh topol-
ogy unless a new direction is created. Through-Silicon-Vias are used in stacking
3D-ICs to allow inter-layer communication. Recent development in Monolithic 3D-
ICs can support multiple layers with smaller sizes. The communication of 3D-Mesh
can be inherited from the 2D-Mesh; however, the routing now needs to consider the
Z-direction.

5.4.3 Application Mapping

After defining the network’s topology, the next step is to map the application into
the network. The mapping problem deals with how to map the application tasks into
the target architecture. Here, bandwidth, latency, and architecture parameters, such
as area cost and power consumption, are considered during the mapping process. In
general, the communicating blocks should be placed in a close region if they require
a considerable bandwidth or low latency.

5.4 Interconnect Design Principles 91

Fig. 5.7 3D Mesh topology

The mapping algorithms usually start with the data-flow graph and the constraints
of the applications (i.e., latency or execution time). In the scope of this book, this
section focuses on mapping neuromorphic application into a NoC-based system.
Therefore, the data-flow graph can be randomly connected networks such as liquid
state machines, reservoir computing, or multiple layer networks (feed-forward fully
connected or convolution neural network). Depending on the mapping application,
other constraints, such as the maximum bandwidth of the packet or real-time
requirement, can be considered. The mapping issue for NoC is considered as NP-
hard; therefore, complexity reduction is needed as a heuristic method is not suitable.

Mapping neuromorphic systems conventionally consists of two phases: (1)
partitioning and (2) placing. The partitioning is to determine the cluster of each
node. In general, neuromorphic systems are divided into clusters of neurons. The
number of neurons per cluster is usually limited (i.e., TrueNorth dedicates 256
neurons per cluster). Therefore, the partitioning process will decide which cluster
the neurons belong to. The general idea is to place the neurons that share the
communication or heavily connected in the same group. This ensures that fewer
packets are sent via the NoC. Figure 5.8 describes the process of partitioning nine
neurons (in circle) into three clusters. As shown in the figure, the strongly connected
neurons are placed in the same cluster to avoid congestion in the network.

After the partitioning process, the mapping process is now converted from
neuron-to-neuron communication to node-to-node communication. Figure 5.8 illus-
trate the placing process as each cluster is assigned to a PE. Because the bandwidth
between cluster 1 and the other two clusters is high, the other clusters are placed
as neighbors of cluster 1. Cluster 2 and cluster 3 are placed in the distance as the
required traffic is not high.

92 5 Communication Networks for Neuromorphic Systems

Fig. 5.8 Mapping neuromorphic systems in two phases: partitioning and placing

The mapping problem can be dealt with by using Integer a Linear Programming
or other optimization methods, such as Particle Swarm Optimization [20]. While
the method in [20] optimizes the communication cost, work in [84] optimizes the
traffic in on-chip network based neuromorphic systems. In SpiNNaker [34], the
linear mapping method is used as neurons are uniformly allocated into NoC nodes
in their index order. This method is not optimal; however, this reduces the mapping
time significantly as it is not easy to map at a large scale. In [44], mapping deep
neural network for SpiNNaker is also presented. In Chap. 9, we show the mapping
solution using a genetic algorithm. In summary, a mapping problem is generally
solved with an optimization technique to reduce the traveling distance of spikes.

5.4.4 Communication Architecture

After having the topology and a proper mapping solution, designing the commu-
nication architecture to support the interconnects between PEs is the final task.
This section covers the critical parts of the communication architecture, including
switching technique, packet routing, quality of service, and the design of router and
link.

5.4.4.1 Switching Technique

The switching technique determines how an input port of a router is connected to
an output port of a nearby router. First, data are usually sent in a message and split
into packets. Later, a packet will be divided into a flow control unit (flit) and then
physical units (phits).

Two commonly used techniques are packet switching and circuit switching. In
packet switching, there are three standard methods: store-and-forward, virtual-cut-

5.4 Interconnect Design Principles 93

Table 5.2 Comparison of switching techniques

Method Performance Buffer size
Design
complexity Flexibility

Transmitting
latency

Circuit switching High for long
messages

1 flit Low None Very low

Store-and-forward High for short
messages

Packet High Low Low

Virtual-cut-through High Packet High Low Low

Wormhole High A few flits Low Medium Low (if not
blocked)

through, and wormhole. The comparison between these techniques is presented in
Table 5.2.

The circuit switching technique is operated by dedicating the whole channel
for a requested communication between two nodes. The path will be reserved for
sending the messages and will be released when the transmission is done. During the
reservation time, no other packets whose path overlaps the reversed path can be sent.
As a result, circuit switching is suitable for long messages. With a short message, the
time to reserve and release the path can be problematic. Also, there is no flexibility in
routing algorithms because the path is defined. There are three practical approaches
in packet switching: store-and-forward, virtual-cut-through, and wormhole. In store-
and-forward (SAF), each router can store a whole packet. Packets can only be sent
to the next router once it is ultimately delivered at the current router. On the other
hand, virtual-cut-through allows sending the packet as long as the next router can
host the new packet. This can reduce the latency because the router does not need to
wait for the full packet to be received before sending it. Since both methods need to
store the packet in the buffer, the buffer size is significant, making the design more
complex.

The wormhole switching can be used to reduce the area cost as it only stores
a few flits and will forward the flit as long as the next router allows. To do so,
the handshaking mechanism between the router needs to ensure no overflow in the
receiving buffer. Thus, the wormhole technique allows a smaller buffer and less
complex design. Also, it will enable more complexity in the routing. The major
drawback of the wormhole is high latency if the packet is blocked and a potential
locking situation.

To solve the blocking situation, virtual channel is proposed. Instead of a single
buffer, several buffers are dedicated to virtual channels. Time-division-multiplexing
(TDM) is used for switching between channels. This allows a blocked packet to be
passed by a non-blocking packet.

94 5 Communication Networks for Neuromorphic Systems

5.4.4.2 Packet Routing

Another key aspect of designing NoC is how to route a packet. The topology closely
constrains the routing. In the scope of this book, we only mention the routing for
mesh topology. Other topologies can have different approaches to routing. The
major approaches for routing are:

• By destination address or coordinates (i.e., (0,1,2) in 3D-NoC). This one can be
translated to the differences in coordinates (i.e., (0,2,2) to (1, 2, 0) by using these
field (+1, 0, −2) which is updated every time the packet moves).

• By a group identifier (i.e., group A or layer 2). This method is usually used for
multicasting.

• By predetermined path (i.e., go by the path: North, West, West, Local). This is
usually used for deterministic routing.

There are three types of routing algorithms:

• Deterministic routing: the routing path is fixed. Notably, the routing path is
usually decided at the source node and cannot be changed.

• Adaptive routing: the direction of movement is decided on each router.
• Stochastic: the path choice is varied between different routing paths at different

probability.

The routing algorithm could also be minimal or non-minimal ones. The minimal
routing always makes sure the number of hops a packet needs to travel is the smallest
one, while non-minimal routing allows variations.

In NoC routing, deadlock and livelock are two potential problems. Deadlock
usually occurs when a cyclic dependence graph is formed between packets/router.
Since a packet needs other packets to be routed so as to release the routing resource,
the cyclic dependence graph forever waits for the packet. To solve this issue,
detecting a cyclic dependence graph can be used, and a packet will be dropped
to solve the issue. Prevention can be obtained by partial routing, which prohibits
some turns which do not form the cycle. For instance, 2D-Mesh XY routing always
routes X first. Therefore, direction such as up-right or down-left is not allowed. The
other routing algorithm that prohibits cyclic routing paths is west-first, north-last, or
negative first.

Livelock happens when the packet is routable; however, it cannot reach the
destination due to a blocking situation (i.e., meet a deadlock or faulty path). To
prevent livelock, non-minimal routing is prohibited. If there is non-minimal routing
in the system, detecting the livelock packet and dropping it is necessary.

Another approach for routing is to use a Look-up-Table (LUT). LUT consists of
the routing direction for each destination. Instead of calculating the direction, the
router only needs to find the direction in the table. This method is usually used for
group routing as there is no actual address for a group.

5.4 Interconnect Design Principles 95

5.4.4.3 Flow Control

Another aspect of communication architecture is how to control the flow of flits
between routers or routers and PEs. This chapter only covers the buffer flow control
as the conventional NoC design for neuromorphic systems is the packet-switching
wormhole.

There are three common flow control methods:

• ACK/NACK: This protocol is a handshaking protocol between two terminals
(router-router or router-PE). When the sender tries to put data on the link, a valid
signal is also sent to the receiver. If the receiver is ready to take the data and store
it in its buffer, an ACK signal is sent. Otherwise, a NACK is sent to let the sender
hold the data. If the sender receives an ACK, it will send the data as the receiver
will take it.

• STALL/GO: This protocol allows the receiver to inform the sender whether it is
ready to receive data. The sender will send a request to the receiver to send a flit.
Once the ‘GO’ signal is one, the sender will send the flit.

CREDIT: This protocol informs the credit of the input buffer, which is usually
the index of the reading pointer. Based on the credit, the sender can understand
the status of the buffer in the receiver.

5.4.4.4 Quality of Service

In NoC architecture, some applications need to tune the transmission time of a
packet or flit. For instance, spikes need to be routed in the neuromorphic system as
fast as possible to allow fast execution time. Therefore, NoC also supports Quality
of Service, such as best effort (BE) or guarantee service (GS).

Best effort (BE) usually does not reserve any routing resource. Therefore, the
delay cannot be guaranteed. If the NoC allows dropping packets, there is a chance
the packet will not be delivered.

NoC also can guarantee the delivery with the pre-allocated resource. For
instance, packet-switching with time-division-multiple-access (TDMA) and pure
circuit switching can be used to ensure the packet’s time and delivery. This method
is usually used for real-time applications.

5.4.4.5 Router Design

In this section, the design of a generic router will be covered. The router design is
related to the NoC parameters presented above, including topology, flow control,
and the switching technique. The case study in the next section will show a
detailed router with fault-tolerance and multicast routing. There are several design
parameters for the router:

96 5 Communication Networks for Neuromorphic Systems

• number of ports: Depending on the topology, and the location of the router, the
number of ports will be different. For instance, the 2D-Mesh router usually has
five ports, while the 3D-Mesh router has seven ports. In 2D-Mesh, the border and
corner router have four and three ports, respectively.

• phit sizes: The number of parallel wires of a router link. Typically, the phit sizes
are equal in all ports. In 3D-Mesh, the inter-layer links are sometimes designed
in a time-division multiplex mode which uses fewer wires than usual.

• buffer design: The placement, size, and queuing method of the buffer are also
important. For instance, the case study we show later has no output buffer, but
uses FIFO 4-flit for the input buffer.

Figure 5.9 depicts the generic architecture of a router with several input ports
and output ports. In each input port, there is an input buffer and a routing unit.
The routing unit decides which direction the packet needs to go by using a routing
algorithm. Then, the routing unit in each input port sends a request signal to an
output port allocator. This module will decide which input port is granted access to
the crossbar. If an input port is granted access, it sends the flit through the crossbar
to a proper output port. Flits are stored in the output buffer at the output port to send
to the next router or the attached PE.

Input Port Input port is usually made up of two major modules: input buffer and
routing unit (see Fig. 5.10). The input buffer can be an SRAM or normal registers.
An input buffer can have multiple virtual channels, and each channel can store
several flits. If there are several channels, the routing unit needs to decide which
channel can be used to route. Once the channel is selected, the routing of the packet

Fig. 5.9 The generic architecture of a router

5.4 Interconnect Design Principles 97

Fig. 5.10 Network Interface architecture

in the channel is loaded. The routing unit will decide the output port based on the
routing algorithm.

Output Port Allocator Receives a request from the input ports and decides which
input port can be granted access to the crossbar. If there is no conflict (i.e., all input
ports request different output ports), it will grant all requesting input ports. If there
are conflicts, on of the following scheduling policy is used:

• Round-robin: Each input port is assigned a slot in a ring counter token. If there
is no other request before an input port, the input port is granted. Otherwise,
it needs to wait. Once an input port is granted, the ring token is turned, which
periodically gives each input port the highest priority.

• LRU: The least recently used first method increases the priority of an input port
relative to the time it was granted. Once an input port is granted, its priority drops
to the lowest and will be gradually increased.

• Fixed priority: Each input port is assigned a fixed priority. This is the easiest
method to implement; however, it can create unbalanced priority which leads to
some paths always sending packets first.

After an input port has been granted, it can send the flit to the crossbar or switch
fabric as depicted in Fig. 5.11. There are two methods to design the crossbar: (1)
pass transistors and (2) multiplexers. The pass transistor is intended to be an actual
crossbar, and the transistor will shorten the connection from an input to an output
port if the connection is granted. The multiplexer design uses a multiplexer for each
output port and selects one input signal to drive.

98 5 Communication Networks for Neuromorphic Systems

Fig. 5.11 The architecture of a crossbar: (a) pass transistors, (b) multiplexers

5.4.4.6 Link Design

The link between two routers or router-PE is a group of wires. The following design
issues for a link should be considered:

• Wire delay: The distance between two routers can be long due to the large
distance between PEs. This can lead to high delay wires, and violate timing
constraints. CAD tools can automatically insert buffers (or a couple of inverters)
to maintain the strength of the signal; however, if the delay is significant, inserting
registers between two routers can help reduce the delay. Please note that the flow
control can be changed when registers are inserted.

• Vertical links: In 3D-NoCs, vertical links can be Through-Silicon-Vias (TSV)
or inter-layer via in Monolithic 3D. Since TSVs are not well supported by the
current CAD tools, placing TSV needs to be carefully considered. Thermal
variation of TSV can also create stress on other devices; therefore, Keep-out-
Zones around TSVs are necessary.

5.5 Advanced Interconnects Multicore Neuromorphic
Systems

Emerging applications are getting increasingly complex, requiring good architecture
to ensure sufficient bandwidth for any transaction between memories and cores, and
communication between different cores on the same chip. Because of these and
other factors, conventional 2D-NoC interconnects have become an unsuitable candi-
date for future large-scale neuromorphic systems that are expected to accommodate
hundreds of neural clusters and millions of neurons. This section discusses advanced
technologies for interconnects toward neuromorphic systems.

5.5 Advanced Interconnects Multicore Neuromorphic Systems 99

In 2D-NoC, if a given packet traverses many hops to reach its destination, the
communication latency will be long, and consequently, the throughput will be lower.
In other words, an extensive network diameter has a negative impact on the worst-
case routing latency in the system.

The need for optimizing 2D-NoC based architecture have become more nec-
essary, and many researchers have been able to achieve this goal with various
approaches, such as developing fast routers [6, 9, 45, 46, 66] or designing new high-
throughput, and low latency network topologies [28, 47, 69]. One of these proposed
solutions was porting the 2D-NoC architecture to the third dimension [72]. In the
past few years, 3D-ICs have attracted a lot of attention as a potential solution to
resolve the interconnect bottlenecks. A 3D chip is a stack of multiple device layers
with direct vertical interconnects tunneling through them [29, 65].

So far, results achieved in this area have shown that 3D-ICs can achieve higher
packing density due to the addition of a third dimension to the conventional two-
dimensional layout; thanks to the reduced average interconnect length, 3D-ICs
can achieve higher performance. Apart from the vital benefit of reduction in total
wiring, a lower interconnect power consumption can also be obtained [40, 81],
not forgetting that circuitry is more immune to noise with 3D-ICs [72]. This
may offer an opportunity to continue performance improvements using CMOS
technology with smaller form factors, higher integration densities, and supporting
the realization of mixed-technology chips [24]. As Topol [81] stated, 3D-IC can
improve the performance even in the absence of scalability.

3D NoC architecture is expected to meet scaling demands for future multicore
and many-core SoCs, exploiting short vertical links between adjacent layers that can
clearly enhance system performance. This combination is expected to provide a new
horizon of NoC and IC designs in general.

One of the essential design steps that should be taken into consideration while
designing a 3D-NoC is to implement an efficient router since it is the backbone of
any NoC architecture. A router’s performance depends on factors and techniques,
such as the traffic pattern, router pipeline design, and the network topology. As
stated, among these three factors, we have less control over the traffic patterns
compared to the topology and the pipeline design. Following this logic and assuming
the topology choice was already taken, one of the most crucial router enhancements
that can be done is to improve the pipeline design. Reducing the pipeline delay via
pipelining optimization decreases the per-hop delay, and the whole network latency
will be reduced. On the other hand, the pipeline design is strongly associated with
the adopted routing algorithm. Routing is the process of determining the path that a
flit should take between a source and a destination node.

When routing, minimal routing schemes are shorter and require less complex
hardware, but allowing non-minimal routing increases path diversity and decreases
network congestion. Routing algorithms can be adaptive, where routing decisions
are made based on the network congestion status and other information about
network links or buffer occupancy of the neighboring nodes. Routing algorithms
can also be deterministic.

100 5 Communication Networks for Neuromorphic Systems

There are a large number of sophisticated adaptive routing algorithms. However,
they require more hardware and are challenging to implement. That’s why determin-
istic routing schemes have been adopted for 3D-NoC designs. One of the well-used
routing schemes used in 3D-NoCs is the Dimension Order Routing (DOR) XYZ
algorithm. XYZ is a simple scheme, easy to implement and free of deadlock and
life-lock. But on the other hand, it suffers from a non-efficient pipeline stage usage.
This can introduce an additional packet latency which has an essential effect on
the router delay and eventually on the system’s overall performance. Enhancing
this algorithm while keeping its simplicity may improve the system performance by
reducing the packet delay.

A 2D-NoC, named OASIS NoC, was presented in [2, 3, 63, 64]. Although this
architecture has its advantages over the shared-bus based systems, it also has several
limitations such as high power consumption, high-cost communication, and low
throughput.

The presented 3D-OASIS-NoC (3D-ONoC) is based on a so-called Look-ahead-
XYZ (LA-XYZ) routing algorithm [5]. This algorithm improves the router pipeline
design by parallelizing some stages while taking advantage of the simplicity of
conventional XYZ. As a result, this routing scheme enhances router performance,
thereby achieving a low-latency design.

5.5.1 Three Dimensional On-chip Interconnect

As we stated in Chap. 1, the number of transistors on a chip have increased
over the past few decades, which made shrinking chip size while maintaining
high performance possible. This technology scaling has allowed Systems-on-
Chip (SoCs) to grow continuously in component count and complexity, which
significantly led to some very challenging problems, such us power dissipation, and
resource management [38, 53].

Since moving to deep submicron technology poses significant design and
manufacturing problems, the 3D integration becomes an attractive option to meet
power and performance demands. By stacking dies or wafers, we can reduce wire
lengths. As a result, performance is increased, and power consumption is reduced.
Thus, the on-chip interconnection network plays a more critical role in determining
the performance and power consumption of the entire chip [50].

5.5.1.1 3D-NoC Versus 2D-NoC

The 3D-NoC is a widely studied research topic, and many related works have been
conducted in the past. Few of them focused on the benefits of the 3D-NoC archi-
tecture over the traditional 2D-NoC design. Feero [32] showed that 3D-NoC could
reduce latency and the energy per packet by decreasing the number of hops by 40%,
which is an essential factor to evaluate the system performance [32]. Pavlidis [71]

5.5 Advanced Interconnects Multicore Neuromorphic Systems 101

analyzed the zero-load latency and power consumption, and demonstrated that a
decrease of 62% and 58% in power consumption can be achieved with 3D-NoC
when compared to a traditional 2D-NoC topology for a network size of N = 128
and N = 256 nodes, respectively, where N is the number of cores connected in the
network. Power consumption reduction can be related to decrease in the number of
hops since a flit has fewer hops to traverse when moving from source to destination,
and that includes less buffer access, less switch arbitration, and less link and crossbar
traversal. All of these factors will eventually lead to a decrease of the power
consumption.

Other part of previous works focused on router architecture. For example, Li [54]
has modified the conventional 7×7 3D router using a shared bus as a communication
interface between the different layers of the router, to create a 3D NoC-Bus Hybrid
router. This kind of modification reduces the number of ports in each router from 7
to 6. However, flits that want to traverse from one layer to another has to compete for
access to the shared bus since it’s the only inter-layer communication interface. This
may lead to undesirable performance degradation, especially under heavy inter-layer
traffic.

Yan [88] also proposed another architecture for the 3D-router by implementing
all the vertical links into a single 3D-crossbar. In this case, the router has only five
ports since we do not need any more additional ports for the vertical connections.
This technique reduces the interlayer distance and makes the travel between the
different layers in one single hop possible. But this router also engenders a high
router cost. Besides, the implementation complexity of such router cannot be
acceptable for some simple application that does not need such a complex router.

Considering all these facts, we adopted the conventional 7 × 7 3D-router,
as it is the lowest cost among the other architectures and also the simplest to
implement showing several properties like regularity, concurrent data transmission,
and controlled electrical parameters [36, 39]. All the benefits are acquired while
making sure that this low cost and simple implementation does not affect the
performance of the system.

5.5.1.2 Routing Algorithms

Many routing algorithms have been proposed for multicore system on chip
(MCSoC) systems, but most of them focus only on 2D-network topologies. Also,
among all the studies conducted for 3D-NoC, few of them concentrate on routing
algorithms. For instance, Ramanujam [77] presented an oblivious routing algorithm
called randomized partially minimal (RPM) that aims to load balance the traffic
along with the network, improving then the worst-case scenario. RPM sends packets
to a random layer first, then routes them along their X and Y dimensions using XY or
YX routing with equal probability. Finally, packets are sent to their final destination
along the Z dimension.

In a pretty similar technique, Chao [26] addressed the thermal power problem
which is one of the most important issues in 3D-NoC designs. Starting from the fact

102 5 Communication Networks for Neuromorphic Systems

that upper the layer in a network detains the highest thermal power in the design,
they proposed a thermal aware downward routing scheme that sends first the traffic
to a lower layer, routes along the X and Y dimension before sending the packets
back up to their destination layer. This technique avoids communication in higher
layers, where the thermal power is more critical than the lower ones, and then may
reduce the overall thermal power in the design. Thus, ensuring thermal safety while
guaranteeing less performance impact from temperature regulation.

Both of these routing algorithms have their advantages in terms of load balancing
and thermal power reduction. But the routing used is not minimal, which directly
affects the number of hops. By adopting a non-minimal routing, the packet delay
may increase in the system, especially when we talk about many connected nodes.

To ensure a minimal path for flits when traversing the network, majority of
the 3D-NoC systems have been using the conventional minimal Dimension Order
Routing (DOR) XYZ routing scheme. Others introduced a routing scheme based
upon XYZ, such as the case of Tyagi in [83] who extended a previous routing
algorithm [61] called BDOR designated for 2D-NoC. BDOR forwards packets in
one of two routes (XY- or YX-orders), depending on the relative position of a
source-destination pair, and that aims to improve the balance of paths along with
the network also when taking into account the destination.

The XYZ routing scheme and all the routing algorithms based upon it, are
described as vertically balanced routing algorithms that have the best performance,
since they are simple to implement, it is free of deadlock and life-lock, and also
because packet ordering is not required [26, 31, 52]. On the other hand, it cannot
always make the best use of each pipeline stage because the switch allocation
stage (SA) is always dependent on the previous routing calculation (RC). This
dependency can be explained by the fact that the SA stage needs information
about the desired output-port calculated from the RC stage, where the incoming
flits should go through to pass to the next neighboring node. To solve the problem
in 2D-NoC systems, an intelligent pipeline design can be adopted with the help
of some advanced techniques like look-ahead routing [83]. This kind of routing
has been used to reduce the pipeline stages in the router by parallelizing some
of these stages, then decreasing the router delay, and then enhancing the system
performance. Look-ahead routing has been used with 2D-NoC, but it hasn’t been
adopted for 3D Network-on-Chip architectures before.

A second problem that can be seen with a lot of conventional routers using XYZ-
based routing schemes is in case of no-load traffic. When the input buffer is empty,
the flit entering the router is first stored in the input buffer before advancing to the
next RC stage, even if there is no flit under process in the following stages. This
unnecessary stall will increase the packet latency in the router, and its associated
power consumption, adding a performance overhead to the whole system even
in a light traffic case where the system is supposed to have a close-to-optimal
performance since no congestion may increase the latency. To address this problem,
a technique called no-load bypass is used [86]. This technique allows the flit to
advance to the RC stage, where the buffer is empty, then overlap the unnecessary
buffer writing stage (BW). This technique decreases the router delay.

5.5 Advanced Interconnects Multicore Neuromorphic Systems 103

In [1, 2, 11], the design and performance of so called 3D-OASIS-NoC was
evaluated using a simple application that randomly generates flits and sends them
through the network. But, an actual application could not be assessed due to the
absence of some components in the design. For that reason, a network interface
has been added to 3D-ONoC, the optimized version of 3D-ONoC, enables a system
to be evaluated with real selected target applications (JPEG encoder and Matrix
Multiplication).

5.5.1.3 3D-NoC Router Architecture Design

The router is considered the backbone element in the whole 3D-ONoC design. The
3D-ONoC router architecture is based upon the 5 × 5 2D-ONoC router where each
switch has a maximum number of 7-input by 7-output port, where four ports are
dedicated to connecting to the neighboring routers in north, east, south and west
direction using the intra-layer links. One port is used to connect the router to the
local computation tile, where the packet can be injected into or ejected from the
network. The remaining two ports are added to connect the switch to the upper and
lower layers to ensure inter-layer communication.

As we previously stated, the number of ports depends on the position of the router
in the design, since we have to eliminate any unused links that have no connections
with other routers to reduce power consumption. Figure 5.12 represents 3D-ONoC

Fig. 5.12 3D-ONoC pipeline stages: Buffer writing (BW), routing calculation and switch alloca-
tion (RC/SA) and crossbar traversal stage (ct)

104 5 Communication Networks for Neuromorphic Systems

router architecture and the three main pipeline stages can define the routing process
at each router: Buffer writing (BW), Routing Calculation and Switch Allocation
(RC/SA), and the Crossbar Traversal stages (CT).

5.5.1.4 Input-Port Module Design

Starting with the Input-port module represented in Fig. 5.13, each one of the seven
modules is composed of two main elements: Input buffer and the Route module.
Incoming 81-bit flits data-in from different neighboring switches, or from the
connected computation tile, are first stored in the Input buffer while waiting to be
processed. This step is considered the first pipeline stage of the flit’s life-cycle (BW).
The arbitration between different flits is managed using the FIFO queue technique.
Each input buffer has by default four as depth, which means that it can host up to
four 81 bits of flits. The buffers occupy a significant portion of the router area but
can also imply an increase in overall performance.

After being stored, the flit is fetched from the FIFO buffer and advanced to the
next pipeline stage (RC/SA). The destination addresses (xdest, ydest and zdest) are
then decoded in order to extract the information about the destination address in
addition to the Next-Port pre-calculated in the previous upstream node. Those values
are then sent to the Route circuit where the La-XYZ routing scheme is executed to
determine the New-next-Port direction for the next downstream node. At the same
time, the Next-Port identifier is also used to generate the request for the Switch-
Allocator asking for a grant to use the selected output port via sw-req and port req
signals.

As we stated in the previous section, 3D-ONoC uses a lookahead routing scheme
LA-XYZ for fast routing. This scheme is based upon the dimension order (DOR) X-
Y-Z static routing algorithm, where the X, Y, and Z coordinates are satisfied in order.

Fig. 5.13 Input-port module architecture

5.5 Advanced Interconnects Multicore Neuromorphic Systems 105

X-Y-Z routing is presented as the vertically balanced routing algorithm, which has
the best performance since it’s simple to implement. It is free of deadlock and live-
lock, and also because packet ordering is not required. In addition to that, each flit
additionally carries one hot encoded Next-Port identifier used by the downstream
router. Since LA-XYZ is based upon XYZ routing, it is also considered as a minimal
routing where each flit from any source and destination pair traverses the minimal
number of hops.

5.5.1.5 Switch Allocator Design

The sw-req and port req signals are issued from each Input-port module, and the
given information about the desired output-port, are transmitted to the Switch-
Allocator module to perform the arbitration between the different requests. When
more than two input flits from different input ports are requesting the same output-
port at the same time, the Switch-Allocator manages to decide which output-port
should be granted to which input-port, and when this grant should be allocated.
This process is done in parallel with the routing computation done in Input-port to
form the second pipeline stage.

As indicated in Fig. 5.14, the switch allocator circuit has two output signals: one
is sw-cntrl and the second one is grant-out. sw-cntrl contains all the information
needed by the crossbar circuit about the scheduling result, as is explained later. On
the other hand, the grant-out is sent back to the Input-port module and gives the
grant to the appropriate input-port to send its data to the crossbar before reaching

Fig. 5.14 Switch allocator architecture

106 5 Communication Networks for Neuromorphic Systems

Fig. 5.15 Stall-Go flow control mechanism

its next neighboring node. Figure 5.14 shows that the switch allocator module
is composed of two main components: Stall-Go flow control and Matrix-Arbiter
Scheduling.

5.5.1.6 Stall-Go Flow Control Architecture

Like the other flow control schemes, Stall-Go module manages the case of the buffer
overflow. When the buffer exceeds its limitation on hosting flits (if the number of
flits waiting for the process is greater than the depth of the buffer), an efficient flow-
control scheme must be considered to prevent buffer overflow and eventually from
packet dropping. Thus, allocating available resources to packets as they progress
along their route. We chose Stall-Go flow control since it proves to be a low-
overhead efficient design choice showing remarkable performance compared to the
other flow control schemes such us ACK-NACK or Credit based flow control. The
Stall-Go module mechanism presented in Fig. 5.15, uses two control signals: nearly-
full and data-sent. nearly-full signal is sent to the upstream node indicating that the
input buffer is almost full and only one slot is still available to host one last flit.
After receiving this signal, the FIFO buffers suspend sending flits. The data-sent
signal is issued when the flit is transmitted. Figure 5.16 represents the Stall-Go flow
control state machine which aims to generate the nearly-full and data-sent signals.
State GO indicates that the buffer is still able to host two or more flits. State SENT
indicates that the buffer can host only one more flit, and finally, when we move to
state STOP, it means that the buffer can not store anymore flits.

5.5.1.7 Matrix-Arbiter Scheduling Architecture

The second component is the scheduling module. As shown in Fig. 5.17, the input
signals sw-req and port-req indicate the input-ports that are requesting access, and
the output-ports they are requesting respectively. Depending on these requests, the

5.5 Advanced Interconnects Multicore Neuromorphic Systems 107

Fig. 5.16 Stall-Go flow control finite state machine

Fig. 5.17 Scheduling-Matrix priority assignment

arbiter allocates the convenient output-port to the requesting input-port Since 3D-
ONoC transmits only one flit in every clock cycle, then when two input-ports or
more are competing for the same output-port, the presence of a scheduling scheme is
required to prevent any possible conflict. The switch allocator in the design employs
a least recently served priority scheme via the packet transmit layer. Thus, it can
treat each communication as a partially fixed transmission latency [33, 37]. Matrix
arbiter is used for a least recently served priority scheme.

To adopt Matrix arbiter scheduling for 3D-ONoC, we implemented a 6 × 6
scheduling matrix. The scheduling module accepts all the requests from the different
connected input-ports and their requested output-ports. Then it assigns priority for
each request. To give the grant to the convenient input-port, the scheduling module
verifies the scheduling matrix, compares the priorities of the input-ports competing
for the same output-port, and initiates the one possessing the highest priority in
the matrix. When there are no requests, the priority is unchanged. Based on these
assumptions, we are sure that every input-port will be served and get the grant to
use the output-port in a fair manner. Figure 5.17 illustrates a simple example of how
the scheduling mechanism works. Each row of the matrix represents the competing
input requests and their priorities. The scheduling module starts by examining the
priority of each input port’s request. After the highest priority input is served, the
arbiter updates the scheduling matrix by making the input-port which got the last

108 5 Communication Networks for Neuromorphic Systems

grant, the lowest priority for the next round of arbitration. this is done by inverting
its row and column.

The matrix shown in Fig. 5.17a illustrates the initial scheduling-matrix where
North, Up and Down input-ports are asking the grant to eject their flits to the
Local port. Observing this figure, the North request (highlighted in red) has higher
priorities compared with the remaining two requests. As a result, the Arbiter gives
the grant to the North request. Then North becomes the lowest priority (as a green
line underlines it) and the remaining two requests priorities are incremented. In the
next round (Fig. 5.17b), Down seems to have a higher priority than the Up request.
The arbiter then gives the grant to Down and make its priority the lowest. Finally,
as it is shown in Fig. 5.17c, the Up request having the highest priority among the
others is given the grant to eject its data to the requested output port.

5.5.1.8 Crossbar Design

The switch allocator sends the issued control signal to the crossbar circuit to com-
plete the third and final Crossbar Traversal pipeline stage (CT), where information
about the selected input port and the Next-Port are embedded, and then stored in
the sw-cntrl-reg register as it is shown in Fig. 5.18. After that, the crossbar fetches
this information, receives the data from the FIFO buffer of the selected input port.
Then, it allocates the appropriate channel for transmission to the decoded Next-Port.

mux-out-L

mux-out-N

mux-out-E

mux-out-S

mux-out-W

mux-out-U

mux-out-D

data_out_L (81)

data_out_S (81)

data_out_N (81)

data_out_W (81)

data_out_E (81)

data_out_U (81)

data_out_D (81)

data_in (567)

Sw_cntrl_reg

control (49)

7
/

Fig. 5.18 Crossbar circuit

5.5 Advanced Interconnects Multicore Neuromorphic Systems 109

Finally, the crossbar sends the flit to its destination, as illustrated in Fig. 5.18. When
all the flits are transmitted, the tail bit informs the switch allocator via a tail-sent
signal that the packet transmission is completed and can free the used channel so it
can be exploited by another packet.

5.5.1.9 Network Interface Architecture

To enable real applications to be run on the 3D-ONoC system, a Network Interface
(NI) was added to every router as a medium interface between the different PEs
(cores, memory, I/O, etc.). JPEG encoder application [78] was used for evaluating
the system performance. For this, both Transmitter and Receiver NI in every switch
are designed. The packet size is set to 99-bit (3-bit flits). Each flit contains 17
bits defining the routing information (xdst, ydst, zdst, Next-Port and tail) and the
remaining 16 bits are dedicated for the payload.

Figure 5.19 shows the architecture of the Transmitter-NI and Fig. 5.20 shows
the architecture of the receiver-NI. The NI receives 32 bits data from the JPEG
module which will be divided into two portions to represent the payload of the two
first flits of the packet. The payload of the third flit contains the 10 bits control
signal from the JPEG module and the remaining six bits are unused. As shown

Fig. 5.19 Network interface architecture: transmitter side

110 5 Communication Networks for Neuromorphic Systems

Fig. 5.20 Network interface architecture: receiver side

in Fig. 5.19, a Control Module manages flit generation. It adds the convenient
destination addresses and Next-Port direction to each flit and marks the end of
the packet by adding the (tail bit to the third final flit. The generated flits are then
injected into the network. On the other side, the Receiver-NI receives the incoming
three flits of each packet ejected from the network, and stores the flits into three
temporary registers. After that, the 16 bits payload of the first and the second flit
is fetched from the temporary registers, reassembled together, and finally stored in
the Data-reg register. Controlled by another Control Module, the complete 32 bits
resulting Data and the 10 bits control signals are fetched and sent to their attached
JPEG module after the the entire packet is received.

5.5.2 Photonic On-chip Interconnect for High-Bandwidth
Multicore SoCs

Photonic Network-on-Chip (PNoC) [8, 12–15] is a novel concept which enables
ultra-high communication throughput in the terabits per second range, low power,
and low communication latency. When powered with a wavelength division multi-
plexing (WDM) scheme, multiple parallel optical streams of data are concurrently
transferred through a single on-chip waveguide. This contrasts with the Electronic
Networks-on-Chip (ENoC), which requires a unique metal wire per bitstream.

The key to saving power in PNoC systems comes from the fact that once a
photonic path is established, the optical data are transmitted end-to-end without the
need for buffering, repeating, or regenerating. This is different from ENoCs, where
messages are buffered, regenerated, and transmitted on the inter-router links several
times en route to their destination. Furthermore, photonic routers do not need to
switch to every bit of the transmitted data like electronic routers; optical routers

5.5 Advanced Interconnects Multicore Neuromorphic Systems 111

switch on and off once per message. Thus, their energy dissipation does not depend
on the bit rate. This feature allows ultra-high bandwidth transmission while avoiding
the power cost that is found in traditional ENoCs.

In a hybrid PNoC systems, the source node first issues a path configuration
packet, which includes destination address information and other additional control
information, via a copper-based electrical link. Next, the configuration packet is
routed via an Electric Control Network (ECN), reserving the photonic switches
and channels along the path for the photonic message. When the photonic path
reservation is completed, the source node returns an Acknowledgment (ACK)
signal. When the ACK signal is received and processed by the source node, the
optical data transmission starts. At the end of the transmission, all reserved photonic
resources for the above data transmission are released.

The circuit-switched nature of such hybrid PNoCs directly affects the per-
formance and power efficiency of on-chip communications. As observed in a
previously conducted study, the energy overhead of a hybrid PNoC system is mainly
due to the electronic control modules, which consume the majority of the total power
budget of a hybrid PNoC system. Moreover, the latency required for photonic path
configuration is much longer than the photonic data transfer itself.

While a single-layer configuration can provide low-loss waveguides and high-
performance photonic devices, it suffers from limited integration density due to
waveguide crossing and limited real estate. A way to go beyond this limitation is
to monolithically stack multiple photonic layers above Si as multilayered electrical
interconnections realized in modern electronic circuits [10, 91].

Fault tolerance is crucial when considering mission-critical applications where
the system must correctly function even when something goes wrong. One such
application is space travel, where repair or replacement is not a possible option, and
billions of dollars would be wasted.

5.5.2.1 Photonic Communication Building Blocks

The main components of a PNoC include a laser source, which generates phase-
coherent and equally spaced wavelengths, waveguides, which is used as a transmis-
sion medium, and modulators and photodetectors, which convert digital electrical
data to and from photonic signals [48, 51]. It is expected that the laser source could
produce up to 64 wavelengths per waveguide for a Dense Wavelength Division
Multiplexing (DWDM) network.

Laser Source Since there is no available high-speed, electrically driven, or on-chip
monolithic laser light, the PHENIC system features an off-chip laser source, such
as VCSEL (Vertically Cavity Surface Emitting Laser). The off-chip laser source
provides light to the modulator(s), which transduces electrical information into a
modulated optical signal. Then, when the lights enters the chip, optical splitters and
waveguides route it to the different modulators used for data transmission.

112 5 Communication Networks for Neuromorphic Systems

Fig. 5.21 Gateway organization

Modulators Before optical messages are transmitted, the electrical messages from
each IP core should be converted to optical form. PHENIC implements at each
node a Gateway: (Fig. 5.21) serving as a photonic network interface based on
silicon optical modulators and SiGe photodetectors. To reduce conversion time,
modulators should be small (i.e., the circular-shaped 10 μm ring-modulator [18])
and fast. The performance of a typical modulator is dependent on the on-to-off
light intensity ratio [70], which depends on the electrical input signal strength.
Therefore, a higher extinction ratio is better and required for fast and accurate signal
detection. For example, works in [18, 70] reported that an extinction ratio greater
than 10 dB is acceptable and enough to enable proper signal detection without
causing communication errors.

Waveguide The waveguides provide the physical interconnection between all
sources and destinations, and enable connectivity between all photonic devices
in PHENIC systems. The transmitter demultiplexes the light into appropriate
wavelength channels and then modulates each channel with a digital data stream
generated by the electronic component to be interconnected. Finally, photonic
signals are routed to various PEs via routers and waveguides.

We have to note here that the refractive index [70] of the waveguide material has
a significant impact on the bandwidth, latency, and area of an optical interconnect.
A waveguide typically has a width of 0.3 μm [22]. Once the photonic signals are
received by the destination node (receiver), the signals must be converted back to
electrical form. Also, since PHENIC simultaneously transmits different wavelengths
per bidirectional waveguides, a selective wave filter for each received wavelength is
needed at the destination node.

Microring Resonator The main element of a silicon photonic NoC system is the
microring resonator (MR). MRs can effectively guide an optical signal by carefully
choosing their dimensions and positions along the path. Optical signals couple into

5.5 Advanced Interconnects Multicore Neuromorphic Systems 113

ring resonators at specific regularly spaced wavelengths in the optical spectrum,
called resonant modes [25].

5.5.2.2 Design Challenges

The photonic domain is immune to transient faults caused by radiation [41] but is
still susceptible to process variation (PV) and thermal variations (TV) as well as
aging. The aging typically occurs faster in active components as well as elements
that have high TV [39]. In the optical domain, the faults can occur in MRs,
waveguides, routers, etc. Active components, such as MRs, have higher failure rates
than passive components, e.g., waveguides [39]. A single MR failure can cause
messages to be misdelivered or lost, resulting in bandwidth loss or even complete
failure of the whole system. Together, fabrication-induced PV and TV effects
present enormous performance and reliability concerns. TV causes a microring
to respond to a different wavelength than intended. This can take the form of a
passband shift in the MRs. When an MR heats up, it expands, changing its radius
and therefore shifting the wavelengths which it uses to the right [21]. As reported
in [68], a change of as little as 1 ◦C can shift the resonance wavelength of a microring
by as much as 0.1 nm. This is not permanent and will return when the temperature
returns to normal. Therefore, system temperature must be kept at a reasonable
value to resonate correctly for the MRs. This is challenging, especially in an
extensive complex computing system, which uses thousands of these components.
The trimming technique [16] is generally used to dynamically modify the resonance
frequency of a microring to overcome both thermal drift and fabrication inaccuracy.
This technique can be accomplished by dynamically increasing the current in the
n+ region or by heating the ring [16, 27, 76].

PV is the variations of critical physical dimensions, e.g., the thickness of the
wafer, width of waveguides also affect the resonant wavelengths of MRs. This
means that not all fabricated MRs can be used due to PV. As a result, network nodes
that do not have all working MRs would lose some or all of wavelengths/bandwidth
in communication [85]. To solve this problem, Xu et al. [87] proposed a method of
flexible wavelength assignment. Because the networks are already built with excess
detectors or Modulators for each message, the node with the excess components can
compensate and rematch the components affected by PV.

Over time, all silicon-based ICs wear down. We refer to this phenomenon as
aging. Some of the aging effects only apply to the active components because of
their electrical subcomponents [82], such as the MRs, while other aging affects all
parts, even the waveguides.

Recent PNoCs researches (i.e., network topology, router micro-architecture
design, and performance and power optimization and analysis) have resulted in
several architectures capable of transmitting at a high data bandwidth, and low
energy dissipation [8, 12–15]. In [10], we proposed an energy-efficient and high-
throughput hybrid silicon-photonic network-on-chip based on a smart contention-
aware path-configuration algorithm and an energy-efficient non-blocking optical

114 5 Communication Networks for Neuromorphic Systems

switch to further exploit the low energy proprieties of the PNoC systems. However,
little attention has been given to the aspect of fault-tolerance and reliability along
the photonic interconnects.

This section presents a fault-tolerant PNoC architecture. The system is based on
a fault-tolerant path-configuration and routing algorithm, a microring fault-resilient
photonic router, and uses minimal redundancy to assure the accuracy of the packet
transmission even after faulty MRs are detected.

5.5.2.3 Fault Models

It is worth noting that light is not sensitive to radiation or electromagnetic fields, the
signals which control optical network can be sensitive to it. The following is a list
of actual possible causes that can contribute to the failure of an optical device.

• PNoC Signal Strength: Typical NoCs are defined by their power consumption,
delay, and throughput. PNoCs also have to consider the Signal-to-Noise Ratio
at the receiving end. Because they do not buffer and retransmit, the signal gets
weaker based on how many hops it jumps. This does not significantly affect the
power the network consumes, but it can lead to a higher sensitivity to noise.

• Electrostatic Discharge: While the waveguides are not electrically conductive,
the switches and photo-detectors are. This means that they are sensitive to high
currents. One thing which can ruin an IC is electrostatic discharge (ESD). This is
when a current enters through the I/O pins of the control circuit or can be caused
by a strong magnetic field. This all results in the aforementioned extreme current,
and this current causes severe damage to the silicon in the components. Possible
points of damage are the dielectric, the PN junctions, and any wiring connecting
to the controllers. Because of the scaling, the causing phenomena have become
harder to control [89]. This can be prevented by providing proper packaging to
the IC providing ESD protection at the pins.

• Noise: This is one of the unique things that we categorize as a cause for a fault.
The reason is that the noise can be caused simply by poorly matched wavelengths.
It can also be caused by creating a very-long path or a path that crosses too many
intersections. These paths tend to be caused by rerouting or non-minimalistic
routing, but other factors can contribute and cause more noise. The most common
factors are listed in the following subsections.

• Aging: Over time, all silicon-based ICs wear down. Some of the aging effects
only apply to the active components because of their electrical subcomponents,
while other aging affects the optical properties of the components.

• Electromigration: This mainly affects the wires which control the ring res-
onators. It does not affect the waveguides in any way. It initially causes a delay in
the wire and can eventually lead to an open or a short to a nearby wire. It achieves
this by thinning out the thinnest portion of the wire due to higher current density
at the bottleneck [42].

5.5 Advanced Interconnects Multicore Neuromorphic Systems 115

• Laser Degradation: After the lasers have been on for several hundred hours,
they start to show signs of degradation. This shows in the form of either missing
wavelengths, which can cause a channel fault or general weakening of the
original laser signal. However, it does not become an actual problem in each
of these cases until the signal falls to a level where the worst-case scenario’s
Signal-to-Noise ratio is too weak to receive an understandable signal [55].

• Photodetector Degradation: Various studies have been done for different types
of photodetectors showing that they degrade over time, particularly from being
exposed to thermal conditions or UV light. It is reasonable to assume that
no matter what material photodetectors are made out of, they all seem to be
vulnerable to degradation due to thermal variation, which is present in all
networks [39, 82].

• Aging effect: Some examples on dealing with aging effects are Agarwal [4],
Keane [42], and Kim [43]. These are mainly focused on the electrical side. Many
parameters such as the wavelengths and laser strength can possibly be modified
throughout the life of a chip to counteract the aging effects similarly to what
Mintarno does for Electrical networks [59].

• Process Variability: This can affect both the active and inactive components
of the optical network. The variability accounts for material impurities, doping
concentrations, and size and geometries of structures [75]. For example, one
single dimple in a particular point in the coupling region of a ring resonator
can significantly affect the coupling properties and thus cause problems for the
switch, or maybe just the channel. A poor geometry can also cause a specific
component to be more sensitive to aging or ESD. If a variation gets bad enough,
an entire link can be rendered useless. This would be considered an early
permanent fault and should be detected before a device is released. The impurities
in a waveguide can cause such a block or cause a change in the reflectivity
of the material, which causes a higher amount of insertion loss, resulting in
a lower signal-to-noise ratio. Other similar chains-of-events can occur from
lousy doping of the photodetectors. Minimizing this process variability can
significantly increase the system’s reliability, even without implementing fancier
and area or energy-heavy redundancies. The unfortunate truth is that with recent
advances in scaling, the variability continues to increase [49, 79].

• Temperature Variation: For electrical components, temperature variation can
cause changes in properties such as resistivity and generate more power con-
sumption or delay, but in the optical domain, it is quite different. Ring resonators
are tuned by heating the ring, causing them to expand, which changes their
passband wavelength. If the chip heats up to a point beyond the tuning, then
specific channels disappear as a whole. The increase in temperature also causes
the photodetectors to degrade, as mentioned in the previous section. These
temperature variations also tend to speed up other forms of aging as well.

116 5 Communication Networks for Neuromorphic Systems

5.5.2.4 Fault-Tolerant Photonic Network-on-Chip

The Fault-tolerant Photonic Network-on-Chip (FT-PHENIC) system shown in
Fig. 5.22, is a mesh-based topology and uses minimal redundancy to assure accuracy
of packet transmission even after faulty MRs are detected [57]. The system uses
Stall-Go mechanism for flow control and a Matrix-arbiter as a scheduling technique
[5, 7, 9]. FT-PHENIC is also based on a microring fault-resilient photonic router
(MRPR) and an adaptive path-configuration and routing algorithm [58, 67].

Microring Fault-Resilient Photonic Router
The Microring Fault-resilient Photonic Router (MRPR) consists of a non-blocking
fault-tolerant photonic switch and a lightweight control router Redundant MRs are
carefully placed at particular locations on the switch to ensure fault tolerance even
if one of the MRs on the backup path has a fault. The backup route for the NEWS
(North-East-West-South) directions is to use the waveguide connected to the core
ports as a master backup; therefore, the redundant MRs are all chosen at locations
which connect the NSEW ports to the core.

For most faults, the switch’s design allows for an alternate, slightly less power-
efficient route. The backup path is less power-efficient because the packets travel
across more waveguide distances, go through more active MRs, and cross more
waveguides. However, the switch still maintains all of its functionality. Because

Fig. 5.22 FT-PHENIC system architecture. (a) 3 × 3 mesh-based system, (b) 5 × 5 non-blocking
photonic switch, (c) Unified tile including PE, NI and control modules

5.5 Advanced Interconnects Multicore Neuromorphic Systems 117

backup routes are only intended for use in the switches where faults have occurred,
the extra loss will have minimal effect on the signal strength of the message across
the whole network.

The MRPR was designed to require no MRs from East-West and North-South
traffic. Since this kind of traffic accounts for a majority of the traffic of the PCN [58],
such design will save on power and continue to function in the case of any MR
fails. Assuming that a single location of redundant MRs does not fail altogether, the
switch can maintain all functionality at lower speeds.

Figure 5.23 shows a reconfiguration example of how MR 9 can be backed up
by MRs 5, 15, and 1. Additionally, the MRs which connect parallel waveguides are
replaced with racetracks [60]. This allows for a wider pass-band of light frequencies,
making them less sensitive to physical faults, such as reduced sensitivity to
thermally-caused passband shifting. Racetracks also have a more considerable mean
time between failures (MTBF) [60].

The original MRPR switch is a five-port non-blocking switch, meaning that it
allows for routing from any available port to any other available port. Once a fault is
detected, the switch recovers, but there is a chance that it may turn into a blocking
switch; however, it should maintain all functionality as long as none of the redundant
MRs fails. Because the redundant MRs lie dormant, they do not require much power
other than the boost in signal strength needed to compensate for the signal loss
caused by passing by an inactive MR, which is minimal. However, as all rerouting
in the switch occurs on the core waveguide, traffic certainly increases on this single
waveguide as too many faults occur, which is why it should be treated as a node
failure after a threshold of failed MRs is reached.

Fig. 5.23 Example of how a non redundant MR’s functionality can be mimicked by redundant
ones

118 5 Communication Networks for Neuromorphic Systems

In addition to tolerating faults, MRPR can handle the ACK signals and the
resulting regeneration process of the Tear-down signal at each hop. To accomplish
this goal, a hybrid switching policy is used: Spacial-switching for the data signals
by manipulating the state of the broadband switching elements and a Wavelength-
selective switching for the Tear-down signals by using detectors and modulators.
Moreover, since the Tear-down signals should be checked and regenerated at each
hop, it is crucial that their manipulation be automatic and not interfere with data
signals nor cause a blockage inside the switch. When the Tear-down is generated
at the source NI (Network Interface), it is first sent to the control router. Then,
the Photonic Switch Controller releases the corresponding MRs and generates
another Tear-down which is sent to the output-port modulator in the PCN where
it continues its path on a hop-by-hop basis until it reaches its destination. Finally,
at the destination node, the Tear-down is detected in the input-port and sent to the
Photonic Switch Controller in the corresponding electronic router. In this fashion,
we can omit the overhead of an additional gateway which becomes significant when
we increase the number of cores. Table 5.3 shows the MRs configuration for data
transmission, where 16 MRs are used in a non-blocking fashion. Table 5.4 shows
the backup paths for each transmission.

We use the first six wavelengths in the optical spectrum starting from 1550 nm,
with a wavelength spacing equal to 0.8 nm, to maintain a low cross-talk as reported
in [73]. For the acknowledgment signals, we use the first five wavelengths in the
optical spectrum starting from 1550 nm: four wavelengths for the Tear-down signal
where each one is dedicated for each port except the local one. In addition, a single
wavelength is used for the ACK. The remaining available wavelengths are used for
data transmission. The five wavelengths used to control the ACK and Tear-down
signals are notably constant regardless of the network size, in contrast with the
fully optical, where the number of wavelengths used for control and arbitration
grows with the network size. Thus, cutting these wavelengths from the available
spectrum for control would not degrade the system bandwidth. Furthermore, these

Table 5.3 Microring
configuration for normal data
transmission

Output/Input Core North East South West

Core – 4 6 3 5

North 7 – 16 None 14

East 8 17 – 13 None

South 1 None 12 – 9

West 2 11 None 10 –

Table 5.4 Microring backup
configuration for data
transmission

Output/Input Core North East South West

Core 15 D F C E

North G – 6,15,7 None 5,15,7

East H 4,15,8 – 3,15,8 None

South A None 6,15,1 – 5,15,1

West B 4,15,2 None 3,15,2 –

5.5 Advanced Interconnects Multicore Neuromorphic Systems 119

Table 5.5 Wavelength assignment for acknowledgment signal (Mod: Modulator, and Det: Photo-
detector)

Core North East South West

Input Modλ0 Detλ3 Detλ2 Detλ1 Detλ4

Output Detλ0 Modλ1 Modλ4 Modλ3 Modλ2

Table 5.6 Various switches and their estimated losses. AL: Average Loss, WL: Worst Loss

Router Cros. MRs Termi. AL (dB) WL (dB) WL(faulty) (dB)

Crossbar 25 25 10 1.12 1.60 ∞
Crux 9 12 2 0.657 1.11 ∞
PHENIC 27 18 0 1.315 1.615 ∞
FT-PHENIC 19 16+9 0 0.965 1.115 2.215

five wavelengths will be negligible, especially when DWDM is used, providing up
to 128 wavelengths per waveguide [23]. The wavelength assignment for each port
is shown in Table 5.5.

Should the Tear-down signals enter the switch, they need to be redirected to
the corresponding electronic router. Since these signals come from different ports
and are modulated with different wavelengths, detectors capable of switching all
of the four wavelengths are placed in front of the input ports to intercept the
signals. The converted optical signal will be redirected to the electronic router
to be processed. Then, according to the included information, the corresponding
MRs will be released. For the ACK, when the PSCP reaches the destination, 1-bit
optical signal is modulated from the output port (i.e., opposite direction), to the
source. With this intelligent hybrid switching mechanism, we take advantage of
the low-power consumption of the optical link by using optical pulses modulated
with an adequate wavelength instead of propagating the acknowledgment signals
in the ECN. Second, we take advantage of the WDM proprieties by separating
the acknowledgment packets and the data signals and letting them coexist in the
same medium without interfering with each other. This contrasts with the electronic
domain where these acknowledgment packets travel for several hops, consequently
blocking (preventing) the waiting cores from sending their PSCP packets. Finally,
we can tolerate faults due to the arrangement of the MRs, and allow for redundancy
at critical locations.

As a direct comparison, we performed a study on the routers and the loss they
would each have on average and in their worst case. The results can be seen in
Table 5.6. As expected, the Crux [90] performs the best, as its only design goal
was to minimize loss and noise, sacrificing a lot of functionality. Values for the
calculation were taken from several authors and can be seen in Table 5.7.

120 5 Communication Networks for Neuromorphic Systems

Table 5.7 Insertion loss
parameters for 22 nm process

Parameter Value

Through ring loss 0.5 dB [90]

Pass by ring loss 0.005 dB [25]

Bending loss 0.005 dB [25]

Crossing loss 0.12 dB [90]

Terminator 0.01 dB [25]

Light-Weight Electronic Control Router
The control router is based upon OASIS-NoC router [1, 3, 7, 9]. The arbiter
receives the detected Tear-down from an above switch. According to the information
encoded in this signal, the corresponding MRs are released, and a new Tear-down is
generated for the next hop until it reaches its final destination and all MRs involved
in this communication are released.The connection between the NI and the local
port, enables a configuration packet (CP) to be sent from the NI to the local port.
The CP could be a setup packet, or a path blocked packet. The NI is also connected
to the data switch (i.e., PCN). When the source node receives the ACK, the payload
is processed by a serializer bank (if needed), a high-speed driver, and a modulator to
convert the electrical signal to an optical one. The optical data leaves the data switch
at the source node and goes through a detection step, a high-speed Trans-Impedance-
Amplification step, and a deserialization step. At the end, the NI’s receiver receives
the payload data with its original clock speed.

Fault-Tolerant Path-Configuration
The key feature of the Fault-tolerant Photonic Path-configuration algorithm (FTPP)
is that it can handle faulty MRs within the photonic switches. When a fault occurs,
the algorithm checks for the secondary MRs on the list and checks their status. Thus,
the backup MR table can be straightforward in the case of a redundant MR failing,
where its redundancy replaces it, or it can be slightly more complicated, as seen in
Fig. 5.23.

The FTPP algorithm must meet specific requirements to work with the FT-
PHENIC system. It should also remove the dependency between the ECN and PCN,
which causes a significant latency overhead in conventional hybrid-PNoC systems.
In addition, the latency caused by the path blocking, which requires several cycles
for the path dropping and the new path setup packet generation, is considerably
decreased. Another key feature of the configuration algorithm is the efficiency of
the ECN resource utilization. For example, by moving the acknowledgment signals
to the upper layer, we can reduce the buffer depth to only two slots since half of
the network traffic is eliminated. This reduction is a critical factor in designing a
lightweight router, highly optimized for latency and energy.

Before optical data transmission, the source node issues a Path-setup-Control-
Packet (PSCP), which is routed in the ECN and includes information about the
destination and source addresses. In addition to the source and destination addresses,
other information is included. For example, one-bit is used for the Packet-type field.
This field can be “00” for a PSCP and “01” when this configuration packet is Path-
blocked. Other information to ensure Quality-of-Service and fault-tolerance, such
as Message-ID, Fault-status, Error-Detection-Code, can also be included.

5.5 Advanced Interconnects Multicore Neuromorphic Systems 121

For each electrical router, the output-port is calculated according to Dimension-
Order routing [3]. Every time the PSCP progresses to the next router, the optical
waveguides between the previous and current routers are reserved. Depending on the
output port of the electrical router, the corresponding photonic router is configured
by switching ON/OFF one or more MRs using the MRs configuration table shown
in Table 5.3.

5.5.3 Network Interface

In the last two sections, we have introduced the multi-cast and fault-tolerant
Network-on-Chip for the neuromorphic system. Finally, a NI (network interface)
is needed to allow the neurons to communicate in different nodes.

The inter-neural interconnect consists of multiple routers (R) to handle the
communication between the neuron clusters. The inter-neural interconnect supports
two types of flit. The first type is the spike between neurons in AER format. The
AER format flit is converted to the address of the weight SRAM to feed to the
SRAM. The second type of flit is memory access. To read and write the memory
cells and registers in the neuron cluster, a flit provides the instruction and the
required argument (address). Here, the memory access flits are issued by a master
(or external host) processor in the system. We support two types of read/write
commands: single and burst. The individual read/write only provides access to one
element per request, while an argument of length must follow the burst ones. The
NI converts the requested address to the local address at each weight memory or
LIF array. Figure 5.24 shows the block diagram of the NI. The input spikes are
categorized into either input spikes or memory accesses. With the memory accesses,
the NI provides an interface to read and write the data in all registers and memory

AER
Encoder

Output
Spikes

Network
Data-in

AER
Decoder

Spike-In

Mem-Access

Spike
VectorFlit Extractor

Weight
Address

Neuron
Mask

Register/Memory
Access

Remap
LUT Packet-Generator Network

Data-out

ControllerStop-in/
Stop-out

44

1

256

8

256

8
8
1

Address
Data

R/W
Enable

1

Read Data

448256

1

Stall1 Ad
dr

es
s

Da
ta

R/
W

En
ab

le

Fig. 5.24 Network interface architecture

122 5 Communication Networks for Neuromorphic Systems

blocks of the node. The read instruction makes the NI return the value of the
requested address to the master processor. With the input spike from the network, the
NI decode phase gets the weight SRAM address and feeds it to the weight memory.
For multi-layer SNNs or sparsity connections, the Flit Extractor provides the read
enable (RE) signal for different layers or different links, which are used in the weight
memory. As a result, a node can have multiple AERs at the same address but for
other neurons. The LIF array’s output spike is fed into the AER decoder, which
extracts the address of bit one (firing neuron). This address is then serially sent to
the remap Look-Up-Table (LUT) to obtain the AER value in the receiving nodes.

5.6 Chapter Summary

This chapter presented the architecture and circuits used for communication in
neuromorphic systems. In particular, the Network-on-Chip fabric is introduced
for receiving and transmitting spikes following the Address Event Representation
protocol and the memory accessing method. The chapter also covered the intercon-
nect method for inter-neurons communication and the interconnect design principle
to help understand the overall concept of on-chip and off-chip communication.
Moreover, the chapter introduced advanced on-chip interconnect technologies,
including si-photonic three-dimensional interconnects and fault-tolerant routing
algorithms.

References

1. Abdallah AB (2013) Multicore systems-on-chip: practical hardware/software design, 2nd edn.
Atlantis

2. Abdallah AB (2017) Advanced multicore systems-on-chip: architecture, on-chip network,
design. Springer

3. Abdallah AB, Sowa M (2006) Basic network-on-chip interconnection for future gigascale
MCSoCs applications: Communication and computation orthogonalization. In Proceedings of
Tunisia-Japan symposium on society science and technology (TJASSST), Dec 2006

4. Agarwal M, Paul BC, Zhang M, Mitra S (2007) Circuit failure prediction and its application
to transistor aging. In 25th IEEE VLSI test symposium (VTS’07). IEEE, pp 277–286

5. Ahmed AB (2015) High-throughput architecture and routing algorithms towards the design
of reliable mesh-based many-core network-on-chip systems. PhD thesis, Graduate School of
Computer Science and Engineering, University of Aizu, March 2015

6. Ahmed AB (2016) High-performance scalable photonics on-chip network for many-core
systems-on-chip. PhD thesis, GraduteSchool of Computer Science and Engineering, The
University of Aizu, March 2016

7. Ahmed AB, Abdallah AB (2013) Architecture and design of high-throughput, low-latency,
and fault-tolerant routing algorithm for 3D-network-on-chip (3D-NoC). J Supercomput
66(3):1507–1532

8. Ahmed AB, Abdallah AB (2013) Phenic: silicon photonic 3d-network-on-chip architecture
for high-performance heterogeneous many-core system-on-chip. In 2013 14th International

References 123

conference on sciences and techniques of automatic control and computer engineering (STA),
December 2013, pp 1–9

9. Ahmed AB, Abdallah AB (2014) Graceful deadlock-free fault-tolerant routing algorithm for
3d network-on-chip architectures. J Parallel Distrib Comput 74(4):2229–2240

10. Ahmed AB, Abdallah AB (2015) Hybrid silicon-photonic network-on-chip for future
generations of high-performance many-core systems. J Supercomput 71:4446

11. Ahmed AB, Abdallah AB, Kuroda K (2010) Architecture and design of efficient 3d network-
on-chip (3d NoC) for custom multicore SoC. In: IEEE Proc. of BWCCA-2010, November
2010, pp 67–73

12. Ahmed AB, Meyer M, Okuyama Y, Abdallah AB (2015) Efficient router architecture, design
and performance exploration for many-core hybrid photonic network-on-chip (2d-phenic). In:
2015 2nd International conference on information science and control engineering (ICISCE),
April 2015, pp 202–206

13. Ahmed AB, Meyer M, Okuyama Y, Abdallah AB (2015) Hybrid photonic NoC based on
non-blocking photonic switch and light-weight electronic router. In: 2015 IEEE international
conference on systems, man and cybernetics (SMC), October 2015

14. Ahmed AB, Okuyama Y, Abdallah AB (2015) Contention-free routing for hybrid photonic
mesh-based network-on-chip systems. In: The 9th IEEE international symposium on embedded
multicore/manycore SoCs (MCSoC), September 2015, pp 235–242

15. Ahmed AB, Okuyama Y, Abdallah AB (2015) Non-blocking electro-optic network-on-chip
router for high-throughput and low-power many-core systems. In The World Congress on
information technology and computer applications 2015, June

16. Ahn JH, Fiorentino M, Beausoleil RG, Binkert N, Davis A, Fattal D, Jouppi NP, McLaren M,
Santori CM, Schreiber RS, Spillane SM, Vantrease D, Xu Q (2009) Devices and architectures
for photonic chip-scale integration. Appl Phys A 95(4):989–997

17. Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y,
Datta P, Nam GJ, Taba B, Beakes M, Brezzo B, Kuang JB, Manohar R, Risk WP, Jackson B,
Modha DS (2015) Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Trans Comput Aided Des Integr Circuits Syst 34(10):1537–1557

18. Almeida VR et al (2004) All-optical switching on a silicon chip. Opt Lett 29(24):2867–2869
19. Balaji A et al (2019) Mapping spiking neural networks to neuromorphic hardware. IEEE Trans

Very Large Scale Integr (VLSI) Syst 28(1):76–86
20. Bhanu PV et al (2019) Fault-tolerant network-on-chip design with flexible spare core

placement. J Emerg Technol Comput Syst 15(1):1
21. Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P,

Bienstman P, Van Thourhout D, Baets R (2012) Silicon microring resonators. Laser Photonics
Rev 6(1):47–73

22. Briere M et al (2005) Heterogeneous modelling of an optical network-on-chip with systemc,.
In: 16th IEEE international workshop on rapid system prototyping (RSP’05), June, pp 10–16

23. Brusberg L, Schröder H, Queisser M, Lang KD (2012) Single-mode glass waveguide
platform for dwdm chip-to-chip interconnects. In: 2012 IEEE 62nd electronic components
and technology conference (ECTC), May, pp 1532–1539

24. Carloni LP, Pande P, Xie Y (2009) Networks-on-chip in emerging interconnect paradigms:
Advantages and challenges. In: Proceedings of the 3rd ACM/IEEE international symposium
on networks-on-chip (NOCS09), May, pp 93–102

25. Chan J, Hendry G, Biberman A, Bergman K, Carloni LP (2010) Phoenixsim: A simulator for
physical-layer analysis of chip-scale photonic interconnection networks. In: Proceedings of
the conference on design, automation and test in Europe. European Design and Automation
Association, pp 691–696

26. Chao CH, Jheng KY, Wang HY, Wu JC, Wu AY (2010) Traffic- and thermal-aware run-time
thermal management scheme for 3d NoC systems. In Proc. ACM/IEEE Int. Symp. Networks-
on-Chip (NoCS), May, pp 223–230, Grenoble

27. Chu ST, Pan W, Sato S, Kaneko T, Little BE, Kokubun Y (1999) Wavelength trimming of a
microring resonator filter by means of a uv sensitive polymer overlay. IEEE Photonics Technol
Lett 11(6):688–690

124 5 Communication Networks for Neuromorphic Systems

28. Dally WJ (1991) Express cubes: Improving the performance of kary-n-cube interconnection
networks. IEEE Trans Comput 40(9):1016–1023

29. Das S et al (2004) Technology, performance, and computer aided design of three-dimensional
integrated circuits. In: In Proc. international symposium on physical design

30. Davies M, Srinivasa N, Lin TH, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N,
Jain S, et al (2018) Loihi: A neuromorphic manycore processor with on-chip learning. IEEE
Micro 38(1):82–99

31. Dev K (2002) Multi-objective optimization using evolutionary algorithms. Wiley
32. Feero B, Pande PP (2007) Performance evaluation for three-dimensional networks-on-chip.

In: Proceedings of IEEE Computer Society annual symposium on VLSI (ISVLSI), May, pp
305–310

33. Z Fu, Ling X (2010) The design and implementation of arbiters for network-on-chips. In: 2nd
International conference industrial and information systems, pp 292–295

34. Furber S, Temple S (2007) Neural systems engineering. J R Soc Interface 4(13):193–206
35. Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013)

Overview of the spinnaker system architecture. IEEE Trans Comput 62(12):2454–2467
36. Glass CJ, Ni LM (1992) The turn model for adaptive routing. In: Proc. 19th Ann. Int’l Symp.

computer architecture, May, pp 278–287
37. Gold BT (2004) Balancing performance, area, and power in an on-chip network. Master’s

thesis, Department of Electrical and Computer Engineering, Virginia Tech, August 2004
38. Habibi A, Arjomand M, Sarbazi-Azad H (2011) Multicast-aware mapping algorithm for on-

chip networks. In: 19th International euromicro conference on parallel distributed and network-
based processing, February 2011, pp 455–462

39. Hu ZS, Hung FY, Chen KJ, Chang SJ, Hsieh WK, Liao TY (2013) Improvement in thermal
degradation of zno photodetector by embedding silver oxide nanoparticles. Funct Mater Lett
6(01):1350001

40. Joyner J, Zarkesh-Ha P, Meindl J (2001) A stochastic global net-length distribution for a
three-dimensional system-on-chip(3d-soc). In Proc. 14th annual IEEE international ASIC/SOC
conference, September

41. Kappeler R (2004) Radiation testing of micro photonic components. Stagiaire project report.
Technical report, ESA/ESTEC. September 29 Ref. No.: EWP 2263

42. Keane J, Kim CH (2011) An odometer for cpus: Microprocessors don’t normally show wear
and tear, but wear they do. IEEE Spectr 48(5):26–31

43. Keane J, Kim TH, Kim CH (2010) An on-chip NBTI sensor for measuring PMOS threshold
voltage degradation. IEEE Trans Very Large Scale Integr (VLSI) Syst 18(6):947–956

44. Kelber F, Wu B, Vogginger B, Partzsch J, Liu C, Stolba M, Mayr C (2020) Mapping deep
neural networks on spinnaker2. In: Proceedings of the neuro-inspired computational elements
workshop, pp 1–3

45. Kim K, Kim HY, Kim TG (2003) Top-down retargetable framework with token-level design
for accelerating simulation time of processor architecture. IEICE Trans. fundamentals of
electronics, communications and computer sciences, December, Vol. E86-A,(12), pp 3089–
3098

46. Kim J, Nicopoulos C, Park D, Narayanan V, Yousif MS, Das CR (2006) A gracefully degrading
and energy-efficient modular router architecture for on-chip networks. In: Proc. of the 33rd Int.
Sym. on Comp. Arch, pp 138–149

47. Kim J, Balfour J, Dally WJ (2007) Flatterned butterfly topology for on-chip networks. In Proc.
of the 40th Int. Sym. on microarchitecture, pp 172–182

48. Koch BR, Fang AW, Cohen O, Bowers JE (2007) Mode-locked silicon evanescent lasers.
Optics Express 15(18):11225–11233

49. Kuhn K, Kenyon C, Kornfeld A, Liu M, Maheshwari A, kai Shih W, Sivakumar S, Taylor
G, VanDerVoorn P, Zawadzki K (2008) Managing process variation in intel’s 45nm cmos
technology. Intel Technol J 12:2

50. Kumar R, Zyuban V, Tullsen DM (2005) Interconnections in multicore architectures:
Understanding mechanisms, overheads and scaling. In: Proc. of the 32nd Int. Sym. on Comp.
Arch, Madison, pp 408–419

References 125

51. Kumar A, Peh LS, Kundu P, Jha NK (2007) Express virtual channels: Towards the ideal
interconnection fabric. In: Proc. of the 34th Int. Sym. on Comp. Arch, pp 150–161

52. Lahiri K, Raghunathan A, Dey S (2000) Efficient exploration of the SoC communication
architecture design space. In: Proc. IEEE/ACM ICCAD’00, pp 424–430

53. Leary G, Chatha KS (2010) Design of NoC for SoC with multiple use cases requiring
guaranteed performance. In: 23rd International conference on VLSI design, January, pp 200–
205

54. Li F, Nicopoulos C, Richardson T, Xie Y, Narayanan V, Kandemir M (2006) Design and
management of 3d chip multiprocessors using network-in-memory. ACM SIGARCH Comput
Architect News 34(2):130–141

55. Luryi S, Xu J, Zaslavsky A (2007) Future trends in microelectronics: up the nano creek. Wiley
John & Sons

56. Mahowald M (1992) VLSI analogs of neuronal visual processing: a synthesis of form and
function. PhD thesis, California Institute of Technology Pasadena

57. Meyer M (2017) Micro-ring fault-resilient photonic on-chip network for reliable high-
performance many-core systems-on-chip. PhD thesis, Graduate School of Computer Science
and Engineering, The University of Aizu, March 2017

58. Meyer MC, Ahmed AB, Okuyama Y, Abdallah AB (2015) Fttdor: Microring fault-resilient
optical router for reliable optical network-on-chip systems. In: 2015 IEEE 9th international
symposium on embedded multicore/many-core systems-on-chip (MCSoC), September, pp
227–234

59. Mintarno E, Skaf J, Zheng R, Velamala JB, Cao Y, Boyd S, Dutton RW, Mitra S (2011) Self-
tuning for maximized lifetime energy-efficiency in the presence of circuit aging. IEEE Trans
Comput Aided Des Integr Circuits Syst 30(5):760–773

60. Mohamed M (2013) Silicon nanophotonics for many-core on-chip networks. PhD thesis,
University of Colorado

61. Montana JM, Koibuchi M, Matsutani H, Amano H (2009) Balanced dimension-order routing
for k-ary n-cubes. In International conference on parallel processing workshops, pp 499–506

62. Moradi S, Qiao N, Stefanini F, Indiveri G (2017) A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous processors
(dynaps). IEEE Trans Biomed Circuits Syst 12(1):106–122

63. Mori K, Abdallah AB, Kuroda K (2009) Design and evaluation of a complexity effective
network-on-chip architecture on FPGA. In: The 19th intelligent system symposium (FAN
2009), September, pp 318–321

64. Mori K, Esch A, Abdallah AB, Kuroda K (2010) Advanced design issue for oasis network-on-
chip architecture. In: International conference on BWCCA. IEEE, pp 74–79

65. Morrow P, Kobrinsky M, Ramanathan S, Park CM, Harmes M, Ramachandrarao V, Park H,
Kloster G, List S, Kim S (2004) Wafer-level 3d interconnects via cu bonding. In: Proc. the
21st advanced metallization conference, October

66. Mullins R, West A, Moore S (2004) Low-latency virtual-channel routers for on-chip networks.
In: Proc. of the 31st Int. Sym. on Comp. Arch, pp 188–197

67. Nikdast M, Nicolescu G, Beux SL, Xu J (2017) Photonic interconnects for computing systems.
River Publishers Series. ISBN-13: 9788793519800

68. Nitta CJ, Farrens MK, Akella V (2011) Resilient microring resonator based photonic networks.
In: Proceedings of the 44th annual IEEE/ACM international symposium on microarchitecture,
New York, NY, ACM MICRO-44, pp 95–104

69. Orgas UY, Marculescu R (2006) It’s a small world after all: NoC performance optimization
via long-range link insertion. IEEE Trans VLSI Syst 14(7):693–706

70. Parsricha S, Dutt N (2008) Trends in emerging on-chip interconnect technologies,. IPSJ Trans
Syst LSI Des Methodol 1:2–17

71. Pavlidis VF, Friedman EG (2007) 3-d topologies for networks-on-chip. IEEE Trans VLSI Syst
15:1081–1090

72. Philip G, Christopher B, Ramm P (2008) Handbook of 3D integration: technology and
applications of 3D integrated circuits. Wiley-VCH

126 5 Communication Networks for Neuromorphic Systems

73. Preston K, Sherwood-Droz N, Levy JS, Lipson M (2011) Performance guidelines for WDM
interconnects based on silicon microring resonators. In: 2011 Conference on lasers and electro-
optics (CLEO), May, pp 1–2

74. Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia AS, McNamara J (2008) Neuro-
science. Sinauer Associates

75. Radetzki M, Feng C, Zhao X, Jantsch A (2013) Methods for fault tolerance in networks-on-
chip. ACM Comput Surv (CSUR) 46(1):8

76. Rafizadeh D, Zhang JP, Hagness SC, Taflove A, Stair KA, Ho ST, Tiberio RC (1997)
Temperature tuning of microcavity ring and disk resonators at 1.5-/spl mu/m. In: Conference
proceedings. LEOS’97. 10th annual meeting IEEE lasers and electro-optics society 1997
annual meeting, November, pp 162–163

77. Ramanujam RS, Lin B (2008) Near-optimal oblivious routing on three dimensional mesh
networks. In: Proc. IEEE Int. Conf. Comp. Design, Lake Tahoe, CA, pp 134–141

78. Rosethal J (2006) Jpeg image compression using an FPGA. Master’s thesis, Electrical and
Computer Engineering, University of California Santa Barbara, December 2006

79. Saha SK (2010) Modeling process variability in scaled CMOS technology. IEEE Des Test
Comput 27(2):8–16

80. Sivilotti MA (1991) Wiring considerations in analog VLSI systems, with application to field-
programmable networks. PhD thesis, California Institute of Technology

81. Topol AW, La Tulipe DC, Shi L, Frank DJ, Bernstein K, Steen SE, Kumar A, Singco GU,
Young AM, Guarini KW, Ieong M (2006) Three-dimensional integrated circuits. IBM J Res
Devel 50(4/5):491–506

82. Tu Z, Zhou Z, Wang X (2014) Reliability considerations of high speed germanium waveguide
photodetectors. In: Optical components and materials XI, pp 89820W–89820W

83. Tyagi S (2009) Extended balanced dimension ordered routing algorithm for 3d-networks. In:
International conference on parallel processing workshops, pp 499–506

84. Urgese G, Barchi F, Macii E, Acquaviva A (2016) Optimizing network traffic for spiking
neural network simulations on densely interconnected many-core neuromorphic platforms.
IEEE Trans Emerg Top Comput 6(3):317–329

85. Xiang D, Zhang Y, Shan S, Xu Y (2013) A fault-tolerant routing algorithm design for on-chip
optical networks. In: 2013 IEEE 32nd international symposium on reliable distributed systems
(SRDS), September, pp 1–9

86. Xin L, Choy CS (2010) Low-latency NoC router with lookahead bypass. In: IEEE Int Symp.
on circuits and systems, pp 3981–3984

87. Xu Y, Yang J, Melhem R (2012) Tolerating process variations in nanophotonic on-chip
networks. ACM SIGARCH Comput Architect News 40:142–152

88. Yan S, Lin B (2008) Design of application-specific 3d networks-on-chip architectures,. In:
Proceedings of international conference of computer design, October, pp 142–149

89. Yang SG, Li L, Xu Y, Zhang YA, Zhang B (2007) A power-aware adaptive routing scheme for
network on a chip. In: 7th International conference on ASIC, pp 1301–1304

90. Ye Y, Wu X, Xu J, Zhang W, Nikdast M, Wang X (2012) Holistic comparison of optical routers
for chip multiprocessors. In: 2012 International conference on anti-counterfeiting, security and
identification (ASID). IEEE, pp 1–5

91. Zhu S, Lo GQ (2015) Vertically-stacked multilayer photonics on bulk silicon toward three-
dimensional integration. J Lightwave Technol 34(2):386–392

Chapter 6
Fault-Tolerant Neuromorphic System
Design

Abstract Neuromorphic computing systems have shown tremendous progress
in many real-world applications (i.e., object recognition, robotics, autonomous
vehicles, etc.). To develop such emerging systems, designers use large-scale models
on dedicated hardware platforms, such as FPGAs, GPUs, or ASICs. The designers
need a long time to collect datasets, train, and design accelerators to keep the trained
models private and reliable. However, with the growing complexity of neuromrphic
systems, there are severe vulnerabilities in the hardware implementations. An
attacker who does not know the details of structures and designs inside these
accelerators can effectively reverse engineer the neural networks by leveraging
various side-channel information. Moreover, as neuromorphic systems are complex
and integrate large number of neurons and synapses, the fault probability is
accumulated and can threaten system reliability. This chapter covers the main threats
of reliability and discusses several recovery methods.

6.1 Introduction

When manufacturing Integrated Circuits (ICs), there is a specific value of yield rate
that is exceptionally critical [20]. Inaccuracy in the fabrication process can lead
to several variations from the original design. Consequently, the fabricated devices
are not always perfect. If the inaccuracy leads to a mistake in the functionality of
the system, a fault is considered to happen. For example, consider the threshold
comparison circuit that helps dedicate the neuron’s firing status with the output line
stuck at ‘1’ (high voltage); the neuron is constantly firing regardless of its inputs or
synapses’ strength. This type of fault causes an error when the neuron’s output is
used to drive other neurons that indicate the output and change the correct outcome
(i.e., a different neuron with a different label keeps firing).

Other aspects that need to be considered are the wear-out or aging processes.
Assuming the system is fabricated correctly and can perform as precisely as it is
designed, Wear-out or aging can occur, leading to erroneous outputs. For example,
the wires connecting two clusters of neurons can generally work at the beginning.
However, due to a constant current on the wires, the electromigration effect causes

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_6

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_6

128 6 Fault-Tolerant Neuromorphic System Design

a gradual movement of the ions of the conductor and keeps thinning the wires. After
a certain number of operating hours, the wires can be disconnected and no longer
transmit the spikes between two clusters.

Hardware faults can be classified according to different aspects. They can be
classified by the duration into permanent, intermittent, and transient. A permanent
fault occurs constantly and never return to be functional. A transient fault causes
a component malfunction some time and can go away after a short period. A
permanent fault does not go away, but it usually oscillates. If the fault is active, the
component malfunctions, and if the fault is inactive, the component works normally.

Another classification for faults is by their behaviors. For instance, a fault on a
resistive memory cell can be classified as: stuck-at-ground, stuck-at-supply-voltage,
stuck-at-high-resistance and stuck-at-low-resistance. When a resistive memory cell
is stuck-at-ground, the measured voltage at the reading terminal is stuck at the
ground voltage (0 V). This behavior does not allow the resistance value can be read
and executed correctly.

As the computation of neuromorphic systems are based on spikes, they can be
resilient against transient faults as the impact of faulty spikes can be alleviated. On
the other hand, permanent and intermittent faults can cause malfunction in modules
of neuromorphic systems, leading to inaccurate results.

6.1.1 Measure of Fault Tolerance

Because the reliability of a system can be critical, it is important to have a
proper measurement method. The traditional approach is to measure reliability and
availability. Reliability, denoted as R(t), is the probability that the system work
normally in the interval [0, t]. A closely related measurement is the Mean Time to
Failures (MTTF). It is the average time between two consecutive failures and can
be computed as:

MT T F =
∫ ∞

0
R(t)dt (6.1)

Another measurement for repairable systems is the Mean Time Between Failures
(MTBF) which is the sum of Mean Time to Failures and Mean Time to Repair
(MTTR).

Availability denoted as A(t) is the average fraction of time over the interval [0, t]
that the system is working. The long-term Availability (A) can be computed as:

A = lim
0→∞ A(t) = MT T F

MT BF
= MT T F

MT T F + MT T R
(6.2)

6.1 Introduction 129

The fault rate (λ(t)) of a system, considered as the inverted value of R(t), can
also be measured by the sum of all fault rates of all modules in the system.

λsystem(t) =
∑

all−modules

λmodulei
(t) (6.3)

R(t) = 1

λsystem(t)
= 1∑

all−modules
1

Rmodulei (t)

(6.4)

If redundancies are added, the computation of fault-rate can be changed. The
standard method is to use the Markov-state model to calculate the probability of
faulty states, and λ(t) is the sum of them [21].

6.1.2 Type of Faults and Behavior

From the reliability perspective, a typical neuromorphic system consists of three
major parts: (1) memory (or storage unit), (2) computing unit, and (3) commu-
nication infrastructure. Table 6.1 depicts the faults in terms of type, behavior,
detection and recovery approach. In this section, we cover the hardware fault-
tolerance method only. In memory, particularly SRAM and DRAM, the common
faults are transient faults, caused by alpha particles or cosmic rays [3, 33]. Two
transistors hold the state of an SRAM cell, and with DRAM, it is a capacitor. Alpha
particles can switch the cell’s value that flips the bit value (0 to 1, 1 to 0), which
is called a single-event upsets (SEU). Since the causes of this type of error are
unpreventable and unpredictable, it can only be dealt with by using an information
redundancy method (i.e., repetition or error correction codes). Another common
type is permanent faults [6] where the value of the cell is stuck at 0 or 1. Intermittent
faults can also occur in the memory cells and be active at a certain condition such as
thermal elevation [29]. There are certain damages that can occur within the memory,
and the common recovery approach is to replace the cells/banks/blocks with spare
ones. Faults on the arbitration modules (reading/writing sub-module) can also cause
malfunctions. This type of fault can lead to inaccurate reading and writing results.

Faults on computing unit are likely to corrupt the output of the circuit. As we
mentioned earlier, a permanent fault such as stuck-at-one on the output wire of
the threshold comparator leads to a constant firing neuron. To detect and recover
from permanent defects, having redundancy and performing voting is necessary. The
faults can also be intermittent and active under a specific condition. Similar to SEU,
single-event transients (SET) can occur in the combinational logic that alternates
the circuit’s output in a short interval. Since neuromorphic systems can be resilient
to some noisy inputs, it can also be resilient to a certain amount of transient faults.
If the transient errors are too frequent and can affect the overall accuracy, having
redundancies and a voting circuit can help solve the problem.

130 6 Fault-Tolerant Neuromorphic System Design

Ta
bl
e
6.
1

Ta
xo

no
m

y
of

fa
ul

ts
:t

yp
es

,c
au

se
s,

be
ha

vi
or

s,
de

te
ct

io
n

an
d

re
co

ve
ry

M
aj

or
pa

rt
Ty

pe
C

au
se

s
B

eh
av

io
r

D
et

ec
tio

n
m

et
ho

d
R

ec
ov

er
y

M
em

or
y

T
ra

ns
ie

nt
A

lp
ha

pa
rt

ic
le

s/
co

sm
ic

ra
ys

Fl
ip

bi
t

R
ep

lic
at

in
g

an
d

co
m

pa
ri

ng
/e

rr
or

de
te

ct
io

n
co

de

In
fo

rm
at

io
n

re
du

nd
an

cy

Pe
rm

an
en

t/i
nt

er
m

itt
en

t
M

an
uf

ac
tu

re
im

pe
rf

ec
tio

n/
ag

in
g/

w
ea

r-
ou

t
St

uc
k-

at
,b

ri
dg

e
Te

st
in

g
al

go
ri

th
m

Sp
at

ia
lr

ed
un

da
nc

y

C
om

pu
tin

g
un

it
T

ra
ns

ie
nt

A
lp

ha
pa

rt
ic

le
s/

co
sm

ic
ra

ys
In

ac
cu

ra
te

ou
tp

ut
R

ed
un

da
nc

y-
ba

se
d

vo
tin

g/
m

ul
tip

le
ex

ec
ut

io
ns

Se
lf

-r
es

ili
en

t/r
ed

un
da

nc
y-

ba
se

d
vo

tin
g/

m
ul

tip
le

ex
ec

ut
io

ns

Pe
rm

an
en

t/i
nt

er
m

itt
en

t
M

an
uf

ac
tu

re
im

pe
rf

ec
tio

n/
ag

in
g/

w
ea

r-
ou

t
St

uc
k-

at
,b

ri
dg

e
V

ot
in

g
Sp

at
ia

lr
ed

un
da

nc
y

C
om

m
un

ic
at

io
n

in
fr

as
tr

uc
tu

re
T

ra
ns

ie
nt

A
lp

ha
pa

rt
ic

le
s/

co
sm

ic
ra

ys
C

or
ru

pt
ed

da
ta

,
m

is
-r

ou
tin

g
E

rr
or

de
te

ct
io

n
co

de
/m

ul
tip

le
ex

ec
ut

io
ns

E
rr

or
co

rr
ec

tio
n

co
de

/n
et

w
or

k
re

-r
ou

tin
g

Pe
rm

an
en

t/i
nt

er
m

itt
en

t
M

an
uf

ac
tu

re
im

pe
rf

ec
tio

n/
ag

in
g/

w
ea

r-
ou

t
C

or
ru

pt
ed

da
ta

,
bl

oc
ki

ng
co

nn
ec

tio
n

E
rr

or
de

te
ct

io
n

co
de

Sp
at

ia
lr

ed
un

da
nc

y,
fa

ul
t-

to
le

ra
nt

ro
ut

in
g

6.1 Introduction 131

While the faults on communication infrastructure is similar to computing units,
their behavior are different. Transient faults can cause data corruption or misrouting
of packets. Error detection and error correction codes can be used to detect
and correct the corrupted data [8]. For misrouted packets, the communication
infrastructure need to detect and re-route them [9]. Dropping packets with the
help of flow-control protocol can ensure the sender resend them. Intermittent
and permanent faults on the routing unit can corrupt data or completely block
connections. Having spatial redundancies (i.e., extra wires) or fault-tolerant routing
(to avoid blocked connections) can be useful.

While fault-tolerance methods for computer systems are well mature and has
been developed for decades, neuromorphic computing has recently become the new
computing approach. Therefore, adopting and adapting the existing methods can be
helpful. Furthermore, having a dedicated strategy for neuromorphic systems is also
necessary. Details on how to tolerate faults in neuromorphic systems will be further
discussed in the following sections.

6.1.3 Impact of Faults on Neuromorphic System

To understand the impact of faults on SNN, we randomly inserted several faults
and tested with the 10,000 test cases in the MNIST (Modified National Institute of
Standards and Technology database) dataset. The SNN model is 784:100 with lateral
inhibitory connections adopted from [11] and run on BindsNet [13] simulator. This
network follows the winner-take-all principle, where a firing neuron inhibits other
neurons. The weights are pre-trained using STDP algorithm as in [11]. Figure 6.1
illustrates the accuracy drop when inserting faults into the weight SRAM. Once
we inserted the stuck-at-0 faults into the weight memory, as shown in Fig. 6.1, we
notice that the accuracy drops are ineligible for a small number of faulty weights
thanks to the natural fault-resilience of SNNs. However, when the number of faults

Fig. 6.1 Impact of faults on a neuromorphic system

132 6 Fault-Tolerant Neuromorphic System Design

increases, the accuracy starts dropping significantly. On the other hand, a defect in
a computation unit is more critical. For example, a single stuck-at-0 (1% in 100-
neurons) on a threshold register can easily make a constant firing neuron, which
drops the accuracy significantly to around 10%. This is equal to assigning one label
for all testing images of MNIST. Once two or more neurons have stuck-at-0 faults
at their threshold registers, two or more neurons start to compete, which increases
the overall accuracy. However, the accuracy is still much lower than the non-faulty
results.

The impact on faults is also critical in deep neural networks. For example, with
the VGG-16 model on CIFAR-10, the accuracy is also significantly dropped while
inserting faults.

6.2 Conventional Computing System Fault Tolerance

This section covers the conventional fault-tolerance approach for computing sys-
tems. As these fault tolerance approaches can be re-applied for neuromorphic
computing systems, this section aims to present an overview of existing techniques.
Fault-tolerance techniques that are dedicated to neuromorphic systems are illus-
trated in the next section.

To summarize the conventional methods, this section covers three major
approaches: (1) hardware approach, (2) information redundancy, and (3) software
approach.

6.2.1 Hardware Approach

The hardware approach is the most mature one in the field of fault-tolerant
computing. Before analyzing the reliability of hardware structure, connecting the
module is important as it can affect the overall reliability. In short, there are three
types of structure: parallel, serial and mixed as shown in Fig. 6.2.

Fig. 6.2 Impact of faults on a neuromorphic system. (a) Series system. (b) Parallel system. (c)
Mixed system

6.2 Conventional Computing System Fault Tolerance 133

In the serial system, the modules are connected. If one of the modules fails,
the whole system will malfunction. Assuming the modules fail independently, the
reliability of the system is the product of the reliability of all modules:

λsystem(t) =
∏

all−modules

λmodulei
(t) (6.5)

In the parallel system, the system only fails when all modules are failed. Conse-
quently, the reliability of the parallel system is:

λsystem(t) = 1 −
∏

all−modules

(1 − λmodulei
(t)) (6.6)

For the mixed system, we can divide it into sub-systems to analyze. However, it
might become overwhelmingly complicated. Here, the efficient approach is to build
the Markov-state model. The model consists of all possible states of a system that
might occur. Between states, there are links with a certain probability. By finding
the probability of the faulty condition, the reliability of a system can be obtained.

In summary, the parallel system is usually used for tolerating faults. Here, spare
modules are added to allow the system to work under one or more faulty modules.
The generalized model of this fault-tolerance method is called M-of-N systems.
Here, the system consists of N modules, and the system requires at least M modules
to work properly. For example, one of the most popular fault-tolerant systems is
TMR (Triple Modular Redundancy), where a module is tripled, and the system can
tolerate at least one failed module. Figure 6.3 depicts the overall structure of a TMR.
TMR can be considered as a 2-of-3 system. The reliability function of the M-of-N
system is:

RM-of-N(t) =
N∑

i=M

(Ni)Ri(t)[1 − R(t)]N−i (6.7)

Since the voter is connected serially to the three parallel modules, the actual system
reliability is

Rsystem(t) = RM-of-N(t)Rvoter(t) (6.8)

= Rvoter(t)

N∑
i=M

(Ni)Ri(t)[1 − R(t)]N−i (6.9)

Fig. 6.3 Triple modular
redundancy Module

Module

Module

Voter

134 6 Fault-Tolerant Neuromorphic System Design

The voter becomes the most critical module in this system as its failure cannot be
detected and corrected.

There are also variations of M-of-N with voter, and they include:

• Sub-system TMR: instead of having TMR for the whole system, each module is
replicated three times. There are also three voters to conduct the voting system.
The output of three voters is brought to the next module. This can avoid faulty
voters among the system as it can be corrected.

• Dynamic redundancy: redundant modules are inactive during operation. Once
the voter or fault detection module finds faulty output, the system reconfigures
by replacing the failed module with a spare one.

Besides adding spare modules for correction, these spares can also be used for
replication for a comparison that will indicate whether there is a fault in them. On
processor-based computing, there are other similar approaches for predicting failure
situations. To ensure the processor keeps working and does not crash, watchdog
processor is used with assertions during operation. This approach is also used in
other computing approaches as Runtime detection that can indicate failures. For
multi-core systems, executing parallel threads of the same copy of the program can
also help show possible errors.

In summary, the hardware fault tolerance approach generally relies on having
redundancy to detect and correct failed modules. This approach can be applied to
neuromorphic systems. For example, instead of having 256 working neurons in a
cluster, the system can add 16 spare neurons to have a 256-of-272 cluster. Once a
neuron fails, the spare neurons can be used as replacements. The TMR method can
also be applied to computing units in the neuron. As we mentioned that a fault in
the threshold comparator could lead to faulty output, having three comparators and
a voter can help detect whether a neuron fires or not.

6.2.2 Information Redundancy

While adding redundancies and monitors are common in hardware fault-tolerance,
having them in data is not efficient. For instance, using TMR for data triples the
amount of storage in the system. To solve this issue, having a proper information
redundancy is needed. The most common form is coding where the data is encoded
to a codeword. Then, the codeword will be stored and decoded to detect and correct
possible errors. When encoding, a d-bit data word is transformed to a c-bit codeword
(c > d). This introduces the redundancy (c–d bits) in the information. Note that
the possible codewords do not cover all 2c binary combinations, which leave some
combinations invalid. While decoding, the system can encounter a valid or an invalid
codeword. A valid codeword can be transformed to obtain the original d-bit data
word. An invalid codeword needs to be considered to ensure the possible original
data.

6.2 Conventional Computing System Fault Tolerance 135

Fig. 6.4 A 3-bit codeword
space. Green box: invalid
codeword. Read box: invalid
codeword

011

000

101

110

010

001

100

111

An important metric of the codeword space is the Hamming distance which is
determined as the number of different bits between two codewords. For example,
between “110” and ”011” in Fig. 6.4, the Hamming distance are two. This Hamming
distance helps determine the ability to detect and correct errors. To have the ability
to detect k error bits, the minimum Hamming distance must be at least k + 1. The
minimum distance in the previous example is two; therefore, this codeword space
can detect up to 1 error bit. For example, if we receive a codeword “010”, we
can observe that this codeword has the Hamming distance to “110” and “011”.
Therefore, once the decoder receives “010”, it can detect there is an error bit;
however, it cannot indicate the original codeword. To detect the original codeword,
the minimal Hamming distance must be higher. To correct k bits, the minimal
distance must be 2k + 1. Once we receive an invalid codeword, we can determine
which codeword is closest and determine it as the original one. For example, using
TMR for one bit can lead to similar codeword space in Fig. 6.4 with only two
codewords, “000” and “111” are valid. The minimal Hamming distance is now three.
Therefore, it can correct 1 error bit. If the decode receive a codeword “010”, it can
determine the original codeword as “000” due to the Hamming distance to “000”
and “111” are 1 and 2, respectively.

6.2.2.1 Parity Code

One of the most basic coding techniques is parity code. The parity codeword consist
of the d-bit data and one parity bit (c = d + 1). The parity bit is the output of the
parity check of the d-bit data word. The parity check can be performed using the
XOR function and can be designed with several XOR gates in hardware as shown
in Fig. 6.5. Therefore, this coding technique is simple and fast.

Parity code has two type: odd and even. The even and odd parity bit make the
codeword to have output parity of ‘0’ and “1”, respectively. For example, the 8-
bit data is “01010110” as in Eq. 6.10. The odd and even parity bit is ‘1’ and ’0’,
respectively.

136 6 Fault-Tolerant Neuromorphic System Design

a0 a1 a2 a3 a4 P

Error Signal

Parity Bit

a0 a1 a2 a3 a4

Fig. 6.5 Even parity code: (a) encoder; (b) decoder

The minimal Hamming distance is two; therefore, Parity code can detect one
error bit.

Data : 0 1 0 1 0 1 1 0

Even parity codeword : 0 1 0 1 0 1 1 0 0 (6.10)

Odd parity codeword : 0 1 0 1 0 1 1 0 1

6.2.2.2 Hamming Code

Another basic coding technique is Hamming code which can correct one bit. There
is another variation called SECDED (single error correction, double error detection),
which can detect two error bits as its name suggests.

Hamming code has 2r − r − 1 bit data word and 2r − 1 codeword length (r ≥
2). The SECDED code has an extra bit, so the codeword is 2r bit. An example of
Hamming code parity combinations is shown in Table 6.2. Here, Hamming code
can be considered as several parity codes of different parts of a data word. The
minimal Hamming distance of Hamming code is 3; therefore, it can correct one
bit but cannot distinguishes two-bit errors. To have two error bit detection, one extra
parity is added to have SECDED, which has the minimal Hamming distance of four.

6.3 Fault-Tolerance for Neuromorphic Computing 137

Table 6.2 Parity bit combination for Hamming code

Data bit position 1 2 3 4 5 6 7 8 9 10 11

Parity bit 1 x x x x x x x

(Hamming) 2 x x x x x x x

3 x x x x x x x

4 x x x x x x x

Extended parity bit
(SECDED)

x x x x x x x x x x x

Since SECDED can correct one and detect two error bits, it is commonly used
in computing systems such as ECC-DRAM. Several variations of SECDED that
can correct and detect adjacent error bits have also been proposed. These types
of codes can obtain such features by specifically designing the parity bit patterns
and decoding method. There are several coding methods such as CRC (cyclic
redundancy code) and Reed-Solomon for detection-only coding techniques.

In summary, information redundancy can help detect and correct error bits in the
system. In addition, this type of method can be used for protecting the data integrity
in memory, caches, or on-chip communication.

6.2.3 Software Approach

Several literature have covered software approaches for tolerating faulty systems.
In short, it can be algorithm-based fault tolerance where the computation includes
the correction method itself. Testing and validating the system is also an important
aspect in this type of approach.

One of the most important methods in software approach is check-pointing and
roll-back. A snapshot (check-point) of the system will be stored periodically or due
to some events. During the operation of the system, if the system is crashed, it tries
to roll-back to one of the snapshots.

6.3 Fault-Tolerance for Neuromorphic Computing

This section summarizes the related works on protecting neuromorphic systems in
three significant aspects: communication, computation, and memory. Furthermore,
mapping methods for SNN to recover from faults are also summarized.

138 6 Fault-Tolerant Neuromorphic System Design

6.3.1 Memory Protection

Since memories are vulnerable to permanent and transient faults, protecting them is
needed for highly reliable systems. One of the most popular methods is to use Error
Correction Codes, such as Hamming or its extended version [14], which can correct
one flipped bit in the codeword. For multiple bits upset, multi-bit correction such
as Orthogonal Latin Square Code [15] or Triple Adjacent Error Correction [26] can
be used. Another recovery method for memory is to add a spare row or column and
use the spare one as a replacement for the faulty one [18].

On the other hand, memory errors can be tolerated in neural network applications
by accepting a specific loss of accuracy. For example, as analyzed in [10], a CNN
application lost 5.7% in terms of accuracy with an error rate of 0.0065. Furthermore,
our analysis in Fig. 6.1 also shows an acceptable loss while inserting a similar error
rate. In summary, we can either protect the memory using error correction code or
accept accuracy loss under a certain noise level.

6.3.2 Communication Protection

Since spikes, neuron parameters, or weights could be transmitted within the
system or external memories, corruption in these values could lead to inaccurate
results. Therefore, protecting their integrity is crucial. Apparently, inheriting Error
Correction Codes [14, 15, 26] from memory protection could be helpful. Here, the
data is protected under a certain number of flipped bits.

Another type of error in communication is misrouting or arbitration failures [27].
In these cases, recovery using an alternative routing path or redundancy could be
used. By avoiding the failure point and providing a viable routing, a fault-tolerant
routing algorithm [4, 31] can help overcome these types of errors. On the other hand,
by providing redundant modules [7], the system can replace a faulty module with a
healthy one for recovery.

6.3.3 Computation Protection

Faults in a computation module could be critical to SNNs, as we previously
demonstrated. Therefore, protecting computation units is substantially vital. In [32],
the authors proposed a method to protect the systolic array by bypassing and
retraining. By pruning the faulty part of computation and retraining the model, the
system can accept a certain fault level. Johnson et al. [17] also presented a method
to re-tune the spiking model with variable thresholds and operating frequencies to
enable fault tolerance. A traditional method such as N-modular redundancies with

6.3 Fault-Tolerance for Neuromorphic Computing 139

a majority voting [23] could also be used to ensure the correctness in this case.
However, it leads to high area costs and power consumption.

As large-scale SNN systems usually utilize Network-on-Chip as the communi-
cation infrastructure, the computation protection method can use spare cores and
remapping algorithms. The fault-tolerance NoC system with homogeneous cores
can be solved using Integer Linear Programming (ILP) as in [5], where the authors
tried to optimize the communication cost (summary of the traveling distances).
However, the ILP problem is NP-complete, which cannot deal with larger scales.
The works in [5, 28] also present a Particle Swarm Optimisation (PSO) solution
to reduce the complexity of the mapping algorithm. However, although the PSO-
based approaches can significantly reduce the runtime, they cannot guarantee the
optimized result.

Moreover, PSO has a high space complexity for storing all particles. For
reliability aware mapping, Namazi et al. [25] presented an approach to map
tasks to homogeneous NoC architecture using a Mixed Non-Linear Programming
model. Despite providing promising results, the mentioned approaches only target
conventional multi-core systems. For our large-scale SNN system, since each node
can have multiple computing units itself, internal node recovery is also possible
instead of requiring external spare cores. Also, the recovery methods do not take the
migrating time between cores into account.

6.3.4 SNN Mapping for Tolerating Errors

One of the method to correct faulty neuromorphic system is to remap the neurons
to avoid faulty ones. Since the targeted system is a NoC-based multi-cores system,
we can use both the SNN mapping methods [1, 2, 16, 19, 22, 24] and conventional
multi-core NoC mapping methods [5] for placing neurons. While the method in
[5] optimizes the communication cost, work in [30] optimizes the traffic in on-chip
network based neuromorphic systems. However, while the traditional multi-core
mapping such as ILP or PSO proves their efficiency, mapping for NN is highly
complicated due to many neurons. The conventional SNN mapping method has two
phases [2]: (1) Partitioning: cluster the NN into groups of neurons; (2) Mapping:
map the groups of neurons to hardware. However, there are some problems: (1) both
graph partitioning and mapping are NP-hard, which might not be solved optimally
in polynomial time; therefore, a non-optimal solution can be justified; (2)the layered
SNN applications have the node as the layers itself; and (3) the conventional
methods do not take into account the multi-casting manner in communication.
Lagrange multipliers [19] can reduce the runtime complexity. However, we still
observe the long execution time. Since mapping for each neuron is not feasible,
partitioning then is a potential approach [22]. However, we have to note that
partitioning is an NP-hard problem. In [2], the authors adopted the Kernighan-Lin
(KL) partitioning method for reducing the complexity despite not providing optimal
results.

140 6 Fault-Tolerant Neuromorphic System Design

6.3.5 Fault-Tolerant Remapping for Neuromorphic Computing

In this section, we first formulate the problem of remapping in a faulty neuromorphic
system. We then present the proposed Algorithm for migrating the unmapped
neurons.

6.3.5.1 Problem Formulation

Here, we assume that the working system S has N nodes (or neuron clusters) where
each node has Ei (i = 0, 1, . . . , N − 1) neurons. In serial systems [1, 12], the
number of neurons is equivalent to the number of memory slots a node can stores.
Note that the value of E can vary up to design and can be different between clusters
in heterogeneous systems. In short, the total number of neurons in the system S is
X = ∑N−1

i=0 Ei . Here, we also assume that the desired SNN application requires W

neurons. A feasible application must have W ≤ X.

Fault-Tolerance
Because we support fault-tolerance in our system architecture, we consider R spare
neurons, which R = X −W as the repairing source. Once k ≤ R neurons are faulty
and must be removed from the system, our problem formulation is to remap these k

neurons to R spare neurons. If k > R, the system S cannot correct, and an off-chip
migration should be considered (i.e., plugging a new chip and migrate to it). If the
system can remap the function of k neurons, parameters, and weight of k neurons,
we archive k−fault tolerance. In term of repair-ability, we divide it into two levels:

• Node-level recovery: If the node has enough spare neurons to correct its failed
ones, it corrects internally by remapping. If it fails, the system-level recovery is
used. A copy of the weights and parameters stored externally is read and written
to the spare neuron.

• System-level recovery: If there are not enough spare neurons in a node for
its internal recovery, the migration of neurons happens across nodes of the
system. A migrating neuron can move from its original node to a new one. The
corresponding weight, mapping LUT elements, and neuron status are copied to
the new neuron. If a node happens to have more neurons to be mapped than Ei

as designed, the unmapped neurons will migrate.

In system-level recovery, if the communication is guaranteed as reliable, the system
must support up to R fault-tolerance (k = R). Figure 6.6 shows the system model of
S with N = 9 nodes of Ei = 256 neurons (X = 2, 304) and a possible solution. The
system requires W = 2000 neurons to perform the application and maps the neuron
uniformly, as shown in Fig. 6.6a. There are 33 or 34 spares neurons per node in this
mapping example, which allows the node to correct up to 33 or 34 fault neurons.
Figure 6.6b illustrates the case of node (0,0) has 10 defective neurons and they are
internally corrected using node-level recovery. However, Fig. 6.6c shows the case of
100 defective neurons, which the node (0, 0) fails to recover using node-level repair.

6.3 Fault-Tolerance for Neuromorphic Computing 141

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

Communication infrastructure
Neuron array

×256

×256

×256

×256

×256

×256

×256×256×256

(a)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

Active neuron array

(b)

×223
×33

×223
×33

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

Inactive neuron array

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(c)

×123
×100
×33

×223
×33

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

Faulty neuron array
(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

×123
×100
×33

×223
×33

×222
×1

×222
×34

×222
×34

×222
×34

×222
×34

×222
×34

×222
×31
×33

(d)

Mapping flow Migrating neurons

Fig. 6.6 System model for fault tolerance SNN: (a) Designed SNN system using nodes of neurons
with an initial mapping; (b) node-level recovery; (c) The case node-level recovery fails to correct;
(d) System-level recovery: a mapping flow of 100 faulty neurons to its node’s neighbors. Values
next the circle indicate the number of neurons in the circle type (gray: healthy and utilized; gray:
healthy and spared; red: faulty; purple: migrating)

Figure 6.6d shows a mapping flow that map the faulty neuron to the node (0,0), (0,1)
and (1,0), which are the current node and its neighbors.

Remapping Problem
One of the major problems is how to remap the SNN to recover from faulty
neurons. Traditionally, one of the optimization goals for remapping is to minimize
the following communication cost [5]:

Fcost =
W∑

i=0,j=0

dij × cij (6.11)

142 6 Fault-Tolerant Neuromorphic System Design

where dij and cij are the distance and the connection status between node i and j . If
we use cij as binary (0/1), Fcost is the sum of traveling distance between neurons.
With this kind of optimization, we only need to rerun the mapping algorithm with
faulty neurons’ information. However, at large-scale systems, migrating neurons
require an enormous amount of memory access. Therefore, this work optimizes the
migration cost, which is the cost of migrating neurons of the new mapping method:

Mcost =
W∑

i=0,j=0

dij × mij (6.12)

where mij is the number of migrating neurons between node i and j . Since the
data (weight memory, threshold, etc..) within the faulty neurons can be corrupted,
the system should write back from its host CPU. The moving distance is d0j , where
node 0 is where the I/O module is usually attached. This optimization considers high
Availability for the system where it needs as least as repairing time as possible.

6.3.5.2 Max-Flow Min-Cut Based Algorithm

In this part, we present the Algorithm to enhance the reliability of the SNN system.
Our main target is to optimize the Mcost in Eq. 6.12. We first present the max-flow
min-cut theorem for the optimal flow. Then, the augmented versions multi-layers
design and tackling the limitation of the max-flow min-cut theorem are discussed.

Max-Flow Min-Cut Theorem
One of the most common methods to find a flow between sink and source in a
graph model is to use the max-flow min-cut theorem to optimize it. Here, we use
the same principle: the sources are the faulty neurons, and the sinks are the spare
ones. However, the multi-sink multi-source problem is usually complicated and can
be converted to the conventional one using a virtual sink and a virtual source.

One of the main reasons to choose the max-flow min-cut approach as the solution
for the remapping problem is a good trade-off between efficiency and execution time
(or memory footprint). Compared to a greedy search approach from faulty neurons
to spare neurons (evaluated later), the max-flow min-cut method provides a better
mapping distance by creating a flow (chain of migrating). Meanwhile, the max-flow
min-cut complexity is smaller than meta-heuristic methods (i.e., Genetic Algorithm
or Particle Swarm Optimization). Moreover, these meta-heuristic methods require
a huge memory footprint, which might not be optimal for a low-cost host CPU.
Remapping the whole system by reusing the mapping method is a viable solution;
however, as we previously discussed, the migration cost can be high due to the
tremendous amount of memory transactions needed.

Figure 6.7 shows the flow graph for the fault tolerance in Fig. 6.6c. To support
moving neurons, we firstly build a virtual source and virtual sink for the flow graph.
Then, the connection between the virtual source to the faulty node has a capacity

6.3 Fault-Tolerance for Neuromorphic Computing 143

Fig. 6.7 Flow graph for max-flow min-cut problem: (a) Converted flow from the NoC-based SNN;
(b) A solution of max-flow min-cut problem

as the number of faulty neurons (i.e., 100 in Fig. 6.7a). From the connected node,
the flow capacity to its neighbors is the number of healthy neurons in the neighbor.
For instance, Fig. 6.7a shows the capacity of the flow between (0,0) and (0,1) is 256
since the node (0,1) has 256 neurons and all can be migrated. For each node, there
is a virtual flow to a virtual sink with the capacity of the number of spare neurons
that are available to be used. For instance, Fig. 6.7a shows the capacity of the flow
between (0,0) and t is 33 since the node (0,0) has 33 spare neurons. As we can realize
in Fig. 6.7, the flow only comes from one node to one of its neighbors as we limit
the traveling distance of migration to 1. In other words, Eq. 6.12 has dij ≤ 1, which
can reduce the migration cost. After solving using a max-flow min-cut solution, we
end up having a flow map in Fig. 6.7b. Here, we can convert back to the NoC-based
SNN to have the new mapping.

The max-flow min-cut theorem is applied as follows:

1. For all nodes creates a flow of migration between them. The capacity of the
maximum number of neurons could be migrated via them.

2. Since we minimize the extra distance of migration, we use maximum migrating
distance equal one (dmax = 1; dij < dmax). Maximum migrating distance (dmax)
is the maximum number of hops that a neuron can migrate. With this dmax = 1
value, a neuron can only move to one of its four neighbors, which limits the
capacity down to the maximum healthy number of neurons of the destination.

3. To allow neurons to migrate more than one hope, we can increase the maximum
migrating distance value. The distance could constrain item The movable
distance of a neuron to its connected nodes.

4. Once we build all the nodes and the capacity of the flow between nodes.

As shown in Fig. 6.7, we know we can create a specific max-flow min-cut
problem by making the flow graph. To solve this problem, we use the Edmonds–
Karp algorithm to implement the Ford-Fulkerson method.

The Edmonds–Karp Algorithm has the run time complexity of O(|V ||E|2) (E:
number of edges, V: number of vertices), which can be translated to O(N3) for
both 2D and 3D network (N: number of nodes). Therefore, the complexity of our
mapping is guaranteed as P instead of NP. Meanwhile, heuristic search complexity
is O(N !), and ILP is NP-complete. On the other hand, PSO-based approach [28]
has the complexity of O(GKN2logN) (G: number of generation, K: number of

144 6 Fault-Tolerant Neuromorphic System Design

particles). Since the number of generations or particles scale with the number of
nodes, the PSO approach has a higher complexity than ours (PSO: O(N4logN)

if G and K scales linearly to N ; ours: O(N3)). However, the PSO approach [28]
requires a massive number of particles, making it has a larger memory footprint than
ours.

Graph-Based Algorithm
Algorithm 2 shows our proposed Algorithm for tolerating defective neurons. At first,
it built the flow graph from sources and sink in lines 2–7. Then, for each node ni , it
adds an edge from the source with the capacity of the number of faulty neurons. As
the flow goes out of the source, the Algorithm tries to fill the capacity as much as
possible. We also connect the node ni with a virtual sink with the number of spare
neurons’ capacity. At the end of this part, we built the flow ready for the node-level
recovery.

Algorithm 2 The proposed max-flow min-cut neuron cluster replacement algorithm

// Build flow graph
1 add source s and sink t for (node ni in the system) do
2 add vertex for the node ni

add edge from the source s to the vertex ni

add capacity ni → s = number of defective neuron in the vertex ni

add edge from the vertex ni to the sink t

add capacity ni → t = number of available redundant neurons attached to vertex ni

3 for (node ni in the system) do
// Node-level repair

4 if node ni has more redundancies than defects then
5 node-level recovery vertex ni ;

6 for (node ni in the system) do
7 for (node nj in the system) do
8 if (dij ≤ dmax) then
9 add edge from the vertex ni to the vertex nj

add capacity ni → nj = number of healthy neurons in nj

// System-level repair with Edmonds-Karp
10 while no augmenting path do
11 Breadth first search to find minimum path

Augmenting the found minimum path with capacity
Save the flow

// Finish the algorithm and require re-training or maintaince if
it failed

12 if (max-flow == k) then
// done

13 return 0;
14 else

// The approach fails to correct.
15 return 1;

6.3 Fault-Tolerance for Neuromorphic Computing 145

In the second part of the Algorithm, we first repair the system with node-
level recovery. Then, we build the flow between nodes by adding the flow from
a node to a node within the maximum distance dmax . The capacity is the maximum
flow between those nodes, which is the minimum value of healthy neurons of
the destination. For instance, the node nj has 120 healthy neurons; the maximum
capacity it can gain is 120 since the system can only migrate at most 120 neurons to
it.

After completing the flow graph, we perform the Edmonds–Karp Algorithm to
find the maximum flow and each edge’s corresponding flow between the nodes. This
number in each edge indicates the number of migrated neurons. The flow of the edge
between the nodes and sink is the recovery using spare neurons. After completing
the process, we now compare the maximum flow with the number of defective
neurons (k). If they are equal, it means the Algorithm successfully corrects all k

faulty neurons. If they are not equal, it means the max-flow min-cut implementation
fails to recover. We will discuss the problem and how we can improve the Algorithm
in the next section.

Figure 6.8 illustrates how our algorithm works in a 3D-NoC based neuromorphic
system of N = 3 × 4 × 3 = 36 nodes. Each node consists of 256 neurons, which
makes the total number of available neurons X = 9216. Only 9060 neurons are
mapped, which leaves 156 neurons as spares. The system encounters eight faulty
nodes with 138 defective neuron cases where only the node (2,2,0) with four faulty
and 4 square neurons can complete the recovery using only node-level recovery.
By migrating the unmapped neurons to their neighboring nodes, it allows system-
level recovery. The neighboring nodes now have some unmapped neurons and look
for the new nearby nodes. At the end of the Algorithm, it successfully maps the
138 faulty neurons, and there are 18 spare neurons left in the system. As shown
in Fig. 6.8, the maximum movement of a neuron is only one hop from its original
one. For instance, 7 neurons are migrated from (0,0,1) to (0,0,0). The node (0,0,0)
also receives four neurons from (1,0,0), which leads to 11 neurons to map. By
mapping 11 neurons and having four spares, the node (0,0,0) has seven unmapped
and original neurons and migrates them to (0,1,0). By creating chains of migrations
within the system, the proposed Algorithm helps recover the faulty neuron and
minimize the traveling distance of an unmapped neuron’s original node to the new
node.

Augmenting Migrating Distance
Although using the max-flow min-cut method can optimize the neuron migration
cost, the max-flow min-cut process is not optimal. To increase the minimum
cut, we should relax the value of dmax ; however, it increases the Edmonds–Karp
Algorithm’s complexity (increase number of edges). Based on the max-flow min-cut
theorem, the maximum neurons that can be corrected can be limited by the minimal
cut of the flow network. Therefore, there is a chance that the system cannot correct
as much as neurons as its number of redundancies.

146 6 Fault-Tolerant Neuromorphic System Design

Fig. 6.8 An illustration of the proposed algorithm: (a) Faulty case; (b) Post-mapping using the
proposed algorithm

Let us consider the node (0,0) or (0,0,0) in Fig. 6.9. These nodes have 200
faulty neurons and surrounded by nodes with 210 faulty neurons. After node-level
recovery, there are 177 unmapped neurons. However, the maximum flow from these
nodes to their neighbors is 112 and 168 for 2D and 3D mesh topology, respectively.
In this case, the system fails to recover regardless of having redundancies in other
nodes. In this fashion, we need to consider a communication cost of two, allowing
neurons to move by two hops. The flow graph must be reconstructed for this
different dmax .

Algorithm 3 shows our augmenting maximum migrating distance algorithm for
tackling the problem of the small minimal cut section mentioned above. If the
number of faults is larger than the number of spares, the mapping is not successful.
Here, we need to run the Algorithm 2 depending on the single or multiple layers

6.3 Fault-Tolerance for Neuromorphic Computing 147

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(a)

×13

×210
×33

×200
×23

×33

×22

×34

×222

×34

×222

×34

×222

×34

×222

×34

×222

×34

×200

×222

×34

×13

×210
×33

×23

×200
×33

×23

×200
×33

×23

×200
×33

(b)

(0,0,0)

Fig. 6.9 Examples of the minimal cut drawback: (a) 2D-mesh; (b) 3D-mesh

Algorithm 3 Augmenting migrating distance algorithm
dmax = 1
while (mapping success or dmax > (number of layers +number of rows + number of columns)) do

run Algorithm 2
dmax + +;

SNN. Later, we perform either retraining or maintenance for fitting the SNN to the
neuromorphic system.

By gradually increasing the migrating distance, we can find the smallest value
to recover the system failure. Therefore, we can balance the trade-off between
the maximum migrating distance (dmax) and the recovery. Once the dmax value
increases to a maximum distance within the NoC, we can ensure the mapping for
the k ≤ R cases.

6.3.5.3 Evaluation

In this section, we evaluate the proposed algorithms (MFMC: max-flow min-cut
adaption and GA: Genetic Algorithm), 1-hop and N-hop, and Greedy Search (GS)
to understand their efficiency. The Greedy Search runs each node once and looks
for a spare node within one (1) hop range or in the entire system (N-hop) with
the shortest distance. The algorithms are implemented in Java. We insert the faults
into the system to evaluate the efficiency of the algorithms. Here, we focus on the
communication cost function Fcost in Eq. 6.11 and evaluate both 2D and 3D Meshes
topology in terms of the migration efficiency. Different system sizes and fault rates
are discussed. We evaluate the multi-layer perceptron (MLP) network. The MLP
is organized in layers, and the neurons separated by one or more layers are not
connected. The input spikes are feed to the router with the smallest indexes (i.e.
(0,0) or (0,0,0)). In this evaluation, we measure two major parameters: (1) mapping
rate: the ability to map the faulty neurons to the spare ones; (2) average spike
transmission cost (Fcost): the average distance of all connections and (3) Migration

148 6 Fault-Tolerant Neuromorphic System Design

Table 6.3 Configuration for the evaluationa

Parameter Value

neurons per node (E) 256

nodes (N) 2D-NoC: 4 × 4 to 16 × 16

3D-NoC: 4 × 4 × 4 to 16 × 16 × 16

spare neurons (R) 0.2×X

spare node 1

faults (k) 0.05×X , 0.10×X, 0.15×X, and 0.20×X

SNN # layers 4

SNN configurationa 784:0.5*(W−10): 0.5*(W−10): 10
a MLP model for MNIST. For example, the SNN configuration for E=256 and 4 × 4 is

784:1633:1633:10

cost Mcost : the amount of read/write neurons need to adapt the system.. The
configuration of the evaluation is shown in Table 6.3. Figures 6.10 and 6.11 illustrate
the results for the proposed system for 2D-NoC and 3D-NoC configurations (see
Table 6.3). As shown in Figs. 6.10 and 6.11, our methods can map all faulty neurons
to the spare ones regardless of the size or topology. We have to note that the MFMC
algorithm is not optimal for communication costs and 1-hop Greedy Search can only
map around 60% (around 80% with the worst cases) of the faulty neurons. This is
because 1-hop Greedy Search only runs for once and looks for one mapping solution
of its neighbor to fail to map easily. Meanwhile, the N-hop Greedy Search and the
Genetic Algorithm can map all neurons.

The average Fcost (communication cost) also varies between different
approaches. Since the 1-hop GS mostly fails to map the neurons, the average
communication distance per neuron is unchanged. For other methods, the average
Fcost fluctuates between different sizes. However, as we can observe in Figs. 6.10
and 6.11, they are reduced when we increased the size of the NoC. This due to
the fact when we increase the size of the NoC, the impact of moving neurons is
reduced. The effects are also smaller, with smaller fault rates (k values). We can
even notice the communication cost maintains with remapping; however, we can
observe a slight reduction with the migration-based Algorithm. Also, GA seems to
have a better average Fcost since it reduces that value as the second factor.

On the other hand, the Mcost of MFMC is better than both GA and GS in most
cases. However, under [4, 4] and f = 0.05 instances, we observe that the Mcost

of MFMC is worse than the GA. This phenomenon can be explained by the fact
that the GA can provide an optimal result (globally or locally) once it converges.
Meanwhile, MFMC only tries the maximize the flow between faulty neurons and
spare ones. However, once we increase the network’s size or change to 3D-NoC,
MigSpike easily dominates GA and GS. Thus, while GS is not an optimal approach,
GA might need adjustments to find the optimal solution (i.e., different evolving
methods or more generations). However, as we will discuss in the execution time
evaluation, GA costs a long time to execute, limiting its efficiency.

6.3 Fault-Tolerance for Neuromorphic Computing 149

F C

Fig. 6.10 Output mapping for migrated neurons with random fault patterns in 2D-NoCs. The
system has 256 neurons per node; 20% of neurons are spare with 1 redundant node without any
allocated neuron at 0% fault rate

As we presented in Fig. 6.9, one of the significant drawbacks of the max-flow
min-cut method is the case where the minimal-cut is too small and creates the bottle-
neck. The groups’ border can be recovered with MFMC; however, the central node
cannot make it. With typical Ford-Fulkerson implementation, we can see that around
20% of the faulty node cannot be re-mapped, as shown as MFMC in Fig. 6.9. By
relaxing the value of dmax , the MFMC-AMD system can map 100% of the faulty
node (Figs. 6.12 and 6.13).

150 6 Fault-Tolerant Neuromorphic System Design

F C

Fig. 6.11 Output mapping for migrated neurons with random fault patterns in 3D-NoCs. The
system has 256 neurons per node; 20% of neurons are spare with 1 redundant node without any
allocated neuron at 0% fault rate

6.4 Chapter Summary

In summary, this chapter has presented fault-tolerance features for neuromorphic
systems. The types of fault and reliability measurement are firstly presented. Then,
the chapter provides analyses on the impact of faults on neuromorphic systems. The
conventional fault-tolerance methods for computing system are later presented. As a
case study, this chapter shows a fault-tolerance design for NoC-based neuromorphic
system using task migration and max-flow-min-cut theorem.

6.4 Chapter Summary 151

F C F C

Fig. 6.12 Output mapping for migrated neurons with the minimal-cut cases in 2D NoCs. The
system has 256 neurons per node; 20% of neurons are spare with 1 redundant node without
any allocated neuron at 0% fault rate. MigSpike-AMD: the augmenting migrating distance dmax

method

152 6 Fault-Tolerant Neuromorphic System Design

F C F C

Fig. 6.13 Output mapping for migrated neurons with the minimal-cut cases in 3D NoCs. The
system has 256 neurons per node; 20% of neurons are spare with 1 redundant node without
any allocated neuron at 0% fault rate. MigSpike-AMD: the augmenting migrating distance dmax

method

References 153

References

1. Akopyan F et al (2015) Truenorth: design and tool flow of a 65 mw 1 million neu-
ron programmable neurosynaptic chip. IEEE Trans Comput-Aid Des Integr Circuits Syst
34(10):1537–1557

2. Balaji A. et al (2019) Mapping spiking neural networks to neuromorphic hardware. IEEE Trans
Very Large Scale Integr Syst 28(1):76–86

3. Baumann R (2005) Soft errors in advanced computer systems. IEEE Des Test Comput
22(3):258–266

4. Ben Ahmed A, Ben Abdallah A (2016) Adaptive fault-tolerant architecture and routing
algorithm for reliable many-core 3D-NoC systems. J Parallel Distrib Comput 93–94:30–43

5. Bhanu PV, Kulkarni PV, Soumya J (2019) Fault-tolerant network-on-chip design with flexible
spare core placement. J Emerg Technol Comput Syst 15(1):1–23

6. Constantinescu C (2003) Trends and challenges in VLSI circuit reliability. IEEE Micro
23(4):14–19

7. Constantinides K, Plaza S, Blome J, Zhang B, Bertacco V, Mahlke S, Austin T, Orshansky
M (2006) Bulletproof: adefect-tolerant CMP switch architecture. In: The twelfth international
symposium on high-performance computer architecture. IEEE, Piscataway, pp 5–16

8. Dang KN, Tran XT (2018) Parity-based ECC and mechanism for detecting and correcting soft
errors in on-chip communication. In: 2018 IEEE 12th international symposium on embedded
multicore/many-core systems-on-chip (MCSoC).

9. Dang KN, Meyer M, Okuyama Y, Abdallah AB (2017) A low-overhead soft–hard fault-tolerant
architecture, design and management scheme for reliable high-performance many-core 3D-
NoC systems. J Supercomput 73(6):2705–2729

10. Denkinger BW, Ponzina F, Basu SS, Bonetti A, Balási S, Ruggiero M, Peón-Quirós M, Rossi
D, Burg A, Atienza D (2019) Impact of memory voltage scaling on accuracy and resilience of
deep learning based edge devices. IEEE Des Test 37:84–92

11. Diehl PU, Cook M (2015) Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front Comput Neurosci 9:99

12. Frenkel C et al (2018) A 0.086-mm2 12.7-pj/sop 64k-synapse 256-neuron online-learning
digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans Biomed Circuits Syst
13(1):145–158.

13. Hazan H et al (2018) BindsNET: a machine learning-oriented spiking neural networks library
in Python. Front Neuroinf 12:89

14. Hsiao MY (1970) A class of optimal minimum odd-weight-column SEC-DED codes. IBM J
Res Dev 14(4):395–401

15. Hsiao M, Bossen D, Chien R (1970) Orthogonal latin square codes. IBM J Res Dev 14(4):390–
394

16. Jin X (2010) Parallel simulation of neural networks on spinnaker universal neuromorphic
hardware. Ph.D. Thesis, The University of Manchester

17. Johnson AP, Liu J, Millard AG, Karim S, Tyrrell AM, Harkin J, Timmis J, McDaid LJ, Halliday
DM (2017) Homeostatic fault tolerance in spiking neural networks: a dynamic hardware
perspective. IEEE Trans Circuits Syst I Regul Pap 65(2):687–699

18. Kim I, Zorian Y, Komoriya G, Pham H, Higgins FP, Lewandowski JL (1998) Built in self repair
for embedded high density SRAM. In: Proceedings international test conference 1998 (IEEE
Cat. No. 98CH36270), pp 1112–1119

19. Kim G, Kornijcuk V, Kim J, Hwang CS, Jeong DS (2020) Optimal distribution of spiking
neurons over multicore neuromorphic processors. IEEE Access 8:69426–69437

20. Koren I, Breuer MA (1984) On area and yield considerations for fault-tolerant VLSI processor
arrays. IEEE Trans Comput 100(1):21–27

21. Koren I, Krishna CM (2020) Fault-Tolerant Systems. Morgan Kaufmann, Burlington

154 6 Fault-Tolerant Neuromorphic System Design

22. Li S, Guo S, Zhang L, Kang Z, Wang S, Shi W, Wang L, Xu W (2020) SNEAP: a fast
and efficient toolchain for mapping large-scale spiking neural network onto NoC-based
neuromorphic platform. arXiv:2004.01639

23. Lyons RE, Vanderkulk W (1962) The use of triple-modular redundancy to improve computer
reliability. IBM J Res Dev 6(2):200–209

24. Moradi S, Qiao N, Stefanini F, Indiveri G (2017) A scalable multicore architecture with hetero-
geneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPS).
IEEE Trans Biomed Circuits Syst 12(1):106–122

25. Namazi A., Abdollahi M, Safari S, Mohammadi S (2017) A majority-based reliability-
aware task mapping in high-performance homogenous NoC architectures. ACM Trans Embed
Comput Syst 17(1):1–31

26. Neale A, Jonkman M, Sachdev M (2014) Adjacent-MBU-tolerant SEC-DED-TAEC-yAED
codes for embedded SRAMS. IEEE Trans Circuits Syst II Exp Briefs 62(4):387–391

27. Prodromou A, Panteli A, Nicopoulos C, Sazeides Y (2012) Nocalert: an on-line and real-time
fault detection mechanism for network-on-chip architectures. In: 2012 45th annual IEEE/ACM
international symposium on microarchitecture. IEEE, Piscataway, pp 60–71

28. Sahu PK, Shah T, Manna K, Chattopadhyay S (2013) Application mapping onto mesh-based
network-on-chip using discrete particle swarm optimization. IEEE Trans Very Large Scale
Integr Syst 22(2):300–312

29. Sridharan V, Stearley J, DeBardeleben N, Blanchard S, Gurumurthi S (2013) Feng Shui of
supercomputer memory positional effects in dram and SRAM faults. In: SC’13: proceedings of
the international conference on high performance computing, networking, storage and analysis,
IEEE, Piscataway, pp 1–11

30. Urgese G, Barchi F, Macii E, Acquaviva A (2016) Optimizing network traffic for spiking
neural network simulations on densely interconnected many-core neuromorphic platforms.
IEEE Trans Emerg Top Comput 6(3):317–329

31. Vu TH, Ikechukwu OM, Ben Abdallah A (2019) Fault-tolerant spike routing algorithm and
architecture for three dimensional NoC-based neuromorphic systems. IEEE Access 7:90436–
90452

32. Zhang JJ, Basu K, Garg S (2019) Fault-tolerant systolic array based accelerators for deep neural
network execution. IEEE Des Test 36(5):44–53

33. Ziegler JF, Lanford WA (1981) The effect of sea level cosmic rays on electronic devices. J
Appl Phys 52(6):4305–4312

Chapter 7
Reconfigurable Neuromorphic
Computing System

Abstract The human brain can be characterized by its massive parallel recon-
figurable synapses connecting billions of neurons. Synapses play a vital role in
achieving the learning and adaptability of the human brain. The weight of a
synapse shows connection strength between the two neurons linked by that synapse.
Spiking neural networks are used in applications ranging from vision systems
to brain-computer interfaces. However, the design of such systems has mainly
focused on fixed functionality using available off-the-shelf components. Such an
approach is lacking the flexibility to adapt to various computing environments. The
reconfigurable design approach supports multiple target applications via dynamic
reconfigurability, network topology independence, and network expandability. This
chapter presents the architecture and hardware design of a reconfigurable neuromor-
phic processor. The architecture implements a spiking neural network that can be
reconfigured to recover from faults with suitable methods that use an FPGA without
being dependent on FPGA intellectual property. This approach makes possible its
implementation in Application-Specific Integrated Circuits (ASICs).

7.1 Introduction

Neuromorphic systems have been used in applications ranging from vision systems
[29] and brain-computer interface [54], to the simulation of the information pro-
cessing in the biological brain [49]. Moreover, neuromorphic systems have allowed
for the real-time processing of massive networks, which has proven valuable for
neuro-robotics control and decision-making applications.

Simulation of the information processing of a biological brain requires inter-
connecting many parallel arrays of neurons. Unlike a multilayer perceptron neural
network where all neurons fire at every propagation cycle, an SNN fires only when
its voltage potential is stimulated beyond a threshold value [35].

When information is encoded as spikes, SNN employs a coding scheme which
could be rate coding, population coding, or temporal coding [46]. Several spiking
neuron models exist, and one of the prevalent ones often found in typical SNNs
is the integrate and fire model [16]. The neuronal dynamics of this model are

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_7

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_7

156 7 Reconfigurable Neuromorphic Computing System

Fig. 7.1 Typical DNN
accelerator organization

conceived as an integration process, together with a spiking mechanism. Typical
spikes, irrespective of their amplitude and shape, are handled as similar events,
and from the outset to finish, lasts about two milliseconds [4] traveling down
axonal lengths. Another spiking neuron model noted for its detailed simulation of a
biological neuron’s ion channels is the Hodgkin and Huxley model [25]. This model
is nonlinear and stochastic. However, it is complex, making it less ideal for large-
scale simulation and hardware implementation. A typical artificial neural network
(ANN) consists of several layers, and this has brought about the term deep neural
network (DNN). Each layer in a DNN is often expressed as a 2D structure, making
the network itself as a 3D structure. Mapping such a 3D structure onto a 2D circuit
requires long wires between layers or congestion points (Fig. 7.1).

Several hurdles need to be surmounted to build in hardware a neuromorphic
architecture with many synapses. The major problems that need to be surmounted
are efficient on-chip communication and network routing, lightweight spiking
neuro processing cores, on-chip learning, and an efficient neuro-coding scheme.
Furthermore, we need to consider that the number of neurons to be connected are
magnitudes of times (at least 103) larger than the number of cores that need to be
interconnected on the recent multicore system on chip platforms [21]. These hurdles
make the building of such a neuromorphic IC a challenging on-chip interconnect
[11].

Recent progress in tract-tracing connectomics has helped deepen our understand-
ing of the topology of the brain [3, 43] and has buttressed the findings that the
anatomical topology of the brain network is organized as a three-dimensional small
world network which is typified by dense local clustering of neurons with short
connection lengths, and a few long-range connections between clusters [2, 51].
Therefore, the brain connectivity is generally described at three levels of scale:
first, the single synaptic connections that link individual neurons at the micro-scale;

7.1 Introduction 157

second, the networks connecting neuronal populations at the mesoscale; and third,
brain regions linked by fiber pathways at the macro-scale [31]. In representing
these connections in neuromorphic systems, a crossbar is one of the approaches
employed. However, it has been recorded that the size of a crossbar directly
affects the power consumption of a neuromorphic system, and this limitation in
neuromorphic systems which employed single large crossbars [60, 62] have been
demonstrated [1]. Therefore, for a scalable neuromorphic system that will support
large SNN with a massive number of synapses to maintain low power, a partitioning
and mapping of its synapses into smaller local crossbars linked using shared
interconnect is a better approach. Sadly, with shared interconnect, the challenge
of latency, which affects the timing of spikes, is introduced.

In SNN, the timing of synaptic spikes plays a vital role in the network’s
proper functioning. The timing of a postsynaptic spike is entirely influenced by the
arrival time of presynaptic inputs [52]. Therefore any violation of this timing will
negatively affect the operation of the spiking neurons. Also, there is a high level
of local communication among neurons, so incoming spikes are distributed among
neighboring neurons.

Various communication mediums are used when designing an interconnect,
and they include shared bus and packet-switched Network on Chip (NoC) [65].
However, a shared bus is a poor choice when implementing a large-scale SNN with
multicast routing since it suffers adversely with increased number of nodes. The
nonlinear increase in neural connectivity will be too much for such an interconnect
to handle. An interconnect that has been considered as a potential solution is
the two-dimensional packet-switched network-on-chip (2D-NoC) [36]. However,
this interconnects size increases with further scaling and begins to experience
communication challenges that affect power and performance, especially in large-
scale SNN chips. Three-dimensional packet-switched network-on-chip (3D-NoC),
on the other hand, enables scaling and parallelism in the third dimension by
combining NoC and 3D integrated circuits (3D-ICs) [6], and with the help of its
short through-silicon-vias (TSVs) that enable communication between layers, it
can reduce power. These merits of 3D-NoC make it suitable for large-scale SNN
applications. It is to be noted that combining 3D ICs with multicore SoCs by
stacking high-frequency cores will significantly increase the power and the thermals.
Stacking 2D neural layers with low-frequency neuro-core will provide distributed
parallel computations, which reduce power and the possibility of thermal hotspots.

In previous works [55, 58], a multicast 3D-NoC interconnect infrastructure
for a neuromorphic system was proposed. Despite being known for having some
underlying fault-tolerance attribute resulting from their densely parallel framework,
SNNs face some fault challenges, especially those assumed from implementing
them in hardware [53]. We proposed a fault-tolerant shortest path K-means-based
multicast routing algorithm (FTSP-KMCR) to address challenges resulting from
faulty links. In [42] we suggested a lightweight spiking neuron processing core
suitable for the proposed 3D NoC.

158 7 Reconfigurable Neuromorphic Computing System

7.2 Fault-Tolerant Neural Networks

There are several methods used to solve the fault occurrence problem in hardware
implementations of neural networks. They are generally classified into learning,
architecture, and hybrid-based approaches.

7.2.1 Learning-Based Approach

The learned-based methods are based on modified conventional learning rules for
dealing with faults occurring in neural network systems. In [50], authors presented
a fault-tolerant technique which temporarily injects faults in hidden neurons during
training process. In this method, one to three neurons are randomly injected for
each input example. Another work in [45] presented a modified training rule by
adding a regularization term to the cost function. A work based on backpropagation
was proposed in [59], for dealing with faults in classification tasks. In this learning
method, weights are constrained under a limited range. In summary, although the
modified learning methods do not require any external interactions afterward, they
suffer a significant increase in the computation cost and take a long time for the
training process.

Apart from the methods mentioned above, retraining methods are also wildly
used. In [24], the authors proposed a technique that performs retraining periodically
to improve fault-tolerance in GPGPUs systems. This method does not require either
reprogramming or recompilation. The work in [17] proposed a retraining method
for dealing with the impacts of timing errors in hardware-based neural networks.
In this method, the retraining process is performed when timing errors influence
output results. Authors in [39] presented a new learning rule mimicking the self-
repair capability of the brain, in which the learning rule could reestablish the firing
rate of neurons when synaptic faults occur.

7.2.2 Architecture-Based Approach

In architecture-based, the fault-tolerant methods are mainly based on the redundancy
of the architecture. The redundancy is implemented in pre-trained networks,
including hidden neurons and their connections. Work in [14] proposed a fault-
tolerant architecture with the monotony of specific critical neurons. This reduces
the hardware cost of the system. In this method, multiple sets of weight are stored
in a processor, recomputing neural computations with multiple processors enables
the system to detect and correct the faults in the processor, from there improving
fault tolerance. Another work [20] also presented the redundancy of critical hidden
neurons combined with a simple technique named augmentation. In the proposed

7.2 Fault-Tolerant Neural Networks 159

method, the weight of the connections between augmented neurons and neurons in
the output layer is half of its original value.

Apart from faulty neurons, faults in the connection between neurons have also
been a concern. In dealing with faults occurring in connections and neurons, a
method named weight shipping was proposed in [28]. When defects appear in
some connections in this method, their weights are shifted to other fault-free
connections of the same neuron. Besides, for a faulty neuron, its output connections
are examined to be defective. A self-repairing hardware architecture was proposed
in [34], as shown in Fig. 7.2. This architecture features self-detect and self-repair
of synaptic faults and maintains the system performance with a fault rate of 40%.
However, the experiment was taken with only two neurons, and the architecture
may suffer a scalability limitation due to its area overhead. In SpiNNaker [61],
an emergency routing was proposed to deal with congested or broken links in a

Fig. 7.2 A self-detect and self-repair mechanism mimicking capability in the human brain [34].
This mechanism is based on indirect feedback from the astrocyte cell (i.e., the most abundant type
of glial cell in the brain), by regulating the synaptic transmission probability of release when faults
occur

160 7 Reconfigurable Neuromorphic Computing System

2D-NoC torus topology. The algorithm is based on redundancy in the NoC
architecture to automatically redirect a blocked packet through adjacent links to its
destination. This enables the system to avoid the timing violations of SNNs when
congestion or faults occur.

7.2.3 Hybrid-Based Approach

Hybrid approaches are based on a combination of learning-based and architecture-
based methods. In [44], a two-phase method was proposed to improve the fault-
tolerance of a system. At the first phase, by feeding input and measuring the
sensitivity, less important hidden neurons are removed. After that, some redundant
neurons are added, the network is then retrained. The evaluation results show a
fault-tolerant improvement of the system for two multiclass classification problems.
This work was then extended in [13], where the authors proposed three methods: (1)
during the backpropagation training, weights are restricted to have low magnitudes
in order to avoid fault-tolerant degradation caused by high magnitude weights.
To achieve the desired performance, hidden nodes are automatically added to the
network. (2) During the training process, artificial faults are injected into some
neurons and connections. (3) unimportant neurons are removed, while new neurons
are added to share the role of critical neurons in the network. These methods were
evaluated, and the results showed better robustness compared to other approaches.

7.3 Inter-Neuron Communication Network

Hardware implementations were proposed as alternative solutions to overcome
the problems of the software simulation mentioned above. Such systems require
high-parallelism and scalable interconnect architecture to convey huge number of
spike generated from SNPCs. Hierarchical-bus, point-to-point, or NoC interconnect
architectures are widely used, as illustrated in Fig. 7.3. In this section, we survey
various interconnect platforms with spike routing methods for spiking neuromorphic
systems.

Hierarchical Bus-Based Low-cost shared-bus based SNN architectures are pro-
posed in [30, 38]. Although these approaches support multicast and broadcast
routing, they suffer from scalability limitations when the network size increases.
Other works were proposed in [9, 33]. These architectures boosted throughput; but,
they were limited to small-size neural networks.

2D Packet-Switched-Based There are many ongoing SNN research projects based
on 2D-NoC interconnects. Hereafter, we only review a few notable projects. The
Neurogrid project [8] uses analog computation to emulate ion-channel activity
and a digital communication scheme to support synaptic connections. The main

7.3 Inter-Neuron Communication Network 161

Fig. 7.3 Interconnect architectures for neuromorphic systems. (a) Shared bus. (b) Tree. (c) Ring.
(d) 2D Mesh

building block is the neuro-core, which can accommodate a total of 65,536 quadratic
integrate-and-fire neuron models, and it uses an external FPGA and bank of SRAMs
for digital communication between neighboring neuro-cores. The Neurogrid has a
limitation on the maximum number of neurons per layer (up to 2175 neurons) that
makes it unable to offer biological real-time behavior [8].

H-NoC [10] uses a hierarchical star-mesh topology to connect neurons. The
H-NoC is organized into three layers: module, tile, and cluster. At the bottom,
each module router can connect up to ten neural cells, each of them as a main
neural computation element that can host one or multiple neurons. In the same
fashion, ten module routers are connected to a tile router. An attractive work in [37]
proposed a combination of hierarchical architecture and mesh routing strategies.
The architecture consists of multiple levels of routers.

In SpiNNaker [22], the interconnection between each node is handled by a NoC
using six links, which is wrapped into a triangular lattice; this lattice is then folded
onto a surface of a toroid. A node comprises of a processor cores and two NoC
routers, in which one handles the communication between the microprocessors and
the peripherals, and the second controls the communications between processors
and neighbor nodes. FACETS [48] uses a mixed-signal and high-density hardware
neural network architecture based on a combination of analog neurons and a digital
multilayer bus communication scheme; all of them placed on an uncut wafer. The

162 7 Reconfigurable Neuromorphic Computing System

FACETS hardware model consists of a large number of ASICs containing the analog
neuron and synapse circuits. A full wafer can comprise 384 HICANN chips [48],
resulting in a total of 196,608 neurons per wafer. To support the interconnection of
the neuron, this architecture uses a combination of hierarchical buses for handling
neuron communication inside the wafer and off-wafer routers implemented on an
FPGA based on a 2D-torus topology. FACETS can offer hardware acceleration with
up to 10 μs inter-spike interval per wafer. However, the architecture consumes a
large amount of power estimated at 1 kW per wafer [48].

Another work, named ClosNN, is presented in [26]. The ClosNN system uses a
customized NoC architecture based on Clos topology for the neural network. It is
designed with a high diameter of mesh and low bisection bandwidth of hierarchical
tree. The architecture suffers from wire/router physical limitations.

3D Packet-Switched-Based The work in [5] investigated the architecture and
design of a 3D stacked neuromorphic accelerator. The architecture targeted process-
ing applications on a CMOS vision sensor next to the first neural network layer. The
authors claimed that only modest adaptations would be required to use the system
for other applications. The 3D stacking architecture used face-to-face bonding of
two 20 cm wafers using micro-bumps.

Recent work was presented in [64] about a real-time digital neuromorphic
system for the simulation of large-scale conductance-based SNNs. The architecture
was implemented in six Altera Stratix III FPGA boards to simulate one million
neurons [64]. An AER multicast routing mechanism was used for inter-neuron
communications. Although the NoC architecture meets the requirements of the
system, it is hardly deployed in embedded neuromorphic systems [19].

Apart from the works mentioned above, routing methods for NoC-based SNNs
need to be taken into consideration. This is because the spike routing method affects
the load balance across the network and also the spike latency. In general, these
works can be classified as unicast-based [63], path-based [18], and tree-based [47].
A comparison between these methods is presented in [18]. The basic ideas of these
algorithms are shown in Fig. 7.4. Compared to the others, unicast-based [63] is an
easy way of implementing multicast with no hardware overhead. This is because
a multicast package will be replicated at the source node and sent sequentially
to destinations. However, this method leads to a large amount of traffic because
of the injection of multiple copies. In path-based [18] approach, a routing path is
established from the source and to each destination. Before sending, every packet
header needs to contain a list of all destinations. Whenever the packet reaches a
target, the information of that destination will be removed from the header. This
helps the packet to be sequentially delivered to all destinations. A disadvantage of
this method is that it requires a long time for the packet preparation at the source
node. Besides, when increasing the size of destination sets (large size of SNNs), it
is not efficient to implement because of the large header size of packets.

Drawbacks of path-based can be overcome by tree-based [47]. A “virtual” tree
is constructed with the source node as the root and destinations as leaves in this
approach. The packets are sent from the source, going along branches and reaching

7.4 Reconfigurable Neuromorphic System Building Blocks 163

Fig. 7.4 Multicast routing mechanisms: (a) Unicast-based. (b) Path-based. (c) Tree-based

given destinations. Apart from advantages, a shortcoming of this method is high
congestion in wormhole networks [32].

7.4 Reconfigurable Neuromorphic System Building Blocks

Figure 7.5 shows the architecture of a 3D NoC based neuromorphic architecture,
named NASH, composed of several nodes, each of which is made up of a Spiking
Neuron Processing Core (SNPC), a networkinterface (NI), and a fault-tolerant
multicast 3D router (FTMC-3DR) connected in a 2D mesh topology, and stacked
to form a 3D architecture. For design illustration, we show as an example 4x4 2D
tiles stacked and interconnected with TSV to form a 3D architecture. Each SNPC
embeds 256 LIF neurons with a crossbar-based synapse. The LIF model is adopted
in NASH because it has proved to be effective for some learning applications and is
suitable for digital implementation due to its modest hardware cost [27]. An output
spike from a LIF neuron is sent to the postsynaptic neurons, either in the same
SNPC or in another within the 3D network. If in the same SNPC, the postsynaptic
neuron receives the spike and the weights of its synapse is obtained through the
crossbar. But if the destination SNPC is different, the spike is encoded into a packet
at the network interface and sent to the local FTMC-3DR, which routes it to the
destination SNPC where the postsynaptic neuron resides. At the destination SNPC,
the packet is decoded into a spike at the decoder, the postsynaptic neuron identified,
and together with the synaptic weight obtained through the crossbar, it is sent to the
postsynaptic neuron.

164 7 Reconfigurable Neuromorphic Computing System

Fig. 7.5 Reconfigurable 3D-NoC based neuromorphic architecture

7.4.1 Spiking Neuron Processing Core

The spiking neuron processing core (SNPC) described in Fig. 7.6 is the processing
element (PE) in the NASH system. It contains 256 physical leaky integrate and
fire neurons, a crossbar-based synapse, a control unit, a synapse memory, an STDP
learning block, and an encoder/decoder. The SNPC uses a spike array for spike
events, and this was chosen in place of AER (Address Event Representation) to
avoid memory overflow and extended pipeline time, which occurs when a large
number of spikes are fired in the same time step. The SNPC design enables the
state of neurons to be multiplexed onto a single shared bus of 256 bits, each bit
taking the value of one or zero to signify the presence or absence of a spike
event. The operation of the SNPC is controlled by the SNPC control unit Using
seven states: Idle, Dowload_spike, Generate_spike_&_Comp, Leak, Fire,
Upload_spike, and Learn. At the Idle state, the default state, the SNPC does
nothing while waiting for input spikes. The arrival of an input spike train triggers
the control unit to change its state to the Dowload_spike state to allow the input
spike train to be received. After the spike train has been received, the next state,

7.4 Reconfigurable Neuromorphic System Building Blocks 165

Fig. 7.6 Architecture of spiking neuron processing core (SNPC)

the Generate_spike_&_Comp state, is enabled. This state activates the crossbar
to identify and update the destination neurons by activating their synapses using
the addresses generated from the input spike train. After the last address has been
updated, a signal is sent to the control unit to move to the Leak state, enabling a
leak signal that causes a decay in the value of the membrane potential to be sent to
the neurons. This state is followed by the Fire state, which activates the neurons to
check for an output spike by comparing the membrane potential value with that of
the set threshold. At the Upload_spike state, the spikes generated by the neurons
are sent to the destination neurons.

7.4.1.1 LIF Neuron

A block diagram of the implemented LIF neuron model is described in Fig. 7.7. The
neuron membrane potential is accumulated by adding up the input weighted spikes
in the integrator, which uses extra 5-bits to handle the overflow. The resulting value
is then stored in the 14-bit register, which utilizes 13 bits to keep the membrane
potential value and 1 bit for overflow. To mimic the leak current found in the neural
membrane, a set leak value that causes decay in the membrane potential value is
received by the neuron at the end of the accumulation time step when the leak
is activated. When the value of the accumulated membrane potential exceeds the
threshold constant, an output spike which is represented by 1-bit is fired, and a
signal is sent to the register to reset the value of the membrane potential to zero and
start the refractory count, which gradually counts down every time step from the set
refractory period to 0. Afterward, the neuron can accumulate incoming spikes again.

166 7 Reconfigurable Neuromorphic Computing System

Fig. 7.7 LIF neuron architecture

7.4.1.2 Crossbar

The synapse crossbar architecture in the SNPC can be seen in Fig. 7.6. It represents
the synaptic connections among neurons as intersections between axons and
dendrites defined as horizontal and vertical wires arranged in an orthogonal manner.
Each of the neurons has a fan in of 256, giving a total of 65k synapses for all
embedded neurons. The weights of these synapses are stored on an on-chip SRAM.
When the crossbar receives an input spike array, it is converted into synapse memory
addresses via one hot process. The synaptic weights stored at these addresses are
fetched and sent to the postsynaptic neurons. Leveraging the SNPC’s architecture,
the synapse crossbar can perform parallel neuron update, enabling the entire 256
neurons to be updated in one cycle.

7.4.1.3 Learning Algorithm

NASH implements on-chip learning based on the trace-based STDP Learning rule.
The update logic of the implemented trace-based STDP is presented in Fig. 7.8. A
single learning operation requires 16 presynaptic spike trace vectors, each from a
simulation time step. To begin learning, a postsynaptic spike trace vector is verified.
Then the presynaptic spike trace vectors are grouped into 8 Bef ore and 8 Af ter

based on their arrival time relative to the postsynaptic spike trace vector. An OR
operation is further performed on the Bef ore spike vectors and on the Af ter

spike vectors to obtain two vectors. These two vectors are converted into synapse
memory addresses, and Using the postsynaptic spike trace vector, the neurons whose
synapses are to be updated are identified. The weights of these synapses are then
fetched from synapse memory (SM) increased for the Bef ore and decreased for
the Af ter , and then written back to synapse memory. The implemented trace-based
STDP enables the parallel update of synapses.

7.4 Reconfigurable Neuromorphic System Building Blocks 167

Fig. 7.8 STDP learning module architecture

7.4.2 Network Interface

The network interface (NI) consists of two modules: encoder, and decoder. The
encoder serves as the output interface between an SNPC and its local FTMC-3DR.
As presented in Fig. 7.9, the encoder is used to encode spikes into packets for
transmission while the decoder is used to decode received packets to spikes. The
81 bits flit format is also shown in Fig. 7.9. The first two bits designated as Type
indicate the type of flit it is; “00” for configuration and “11” for spike. The following
9 bits (3 bits for each X, Y, and Z dimension) are used to represent the address of
the source neuron. The following 6 bits is a record of the time in which the source
neuron fired the spike. The last 64 bits are used for the spike array.

7.4.3 Fault-Tolerant Multicast 3D Router

Figure 7.10 describes the architecture of the FTMC-3DR which is based on [7, 15].
It has 7 input(output) ports, one port for connecting to the local SNPC with
which packets (spikes) can be injected into or received from the network, four for
connecting to neighboring routers in the north, east, south, west, direction using the

168 7 Reconfigurable Neuromorphic Computing System

Fig. 7.9 Encoder and Decoder (Network interface to and from router). (a) Encoder encodes output
spikes that will be transmitted from source SNPC to destination SNPCs into flits. (b) The Decoder
on the other hand, decodes flits that arrive at a destination SNPC into spike

Fig. 7.10 Fault-tolerant multicast 3D router architecture

intralayer links, and the remaining up and down ports for those in the closest layers
through TSVs. The switch-allocator (SA) and the crossbar control the transfer of
packets (spikes) to the appropriate port. Each FTMC-3DR routes packets in four
pipeline stages. In the first stage, buffer writing (BW), the received packets (spike)
are stored in the port’s input buffer. The second pipeline stage routing calculation
(RC) obtains the source address of the stored packet from it and uses it to derive
the next address, which is either in the X, Y, or Z dimension. After this address is
derived, the switch-allocator, which handles the flow control (stall/go) and matrix
arbitration (matrix-arbiter scheduler), is triggered in the third stage to allocate/make
available the right port to the next router or local SNPC. After the right output port

7.5 Fault-Tolerant Spike Routing Algorithm 169

has been made available, the fourth stage, crossbar traversal (CT), begins, and the
packet traverses the crossbar to the allocated output port.

7.5 Fault-Tolerant Spike Routing Algorithm

7.5.1 Shortest Path K-means Multicast Spike Routing
Algorithm

Shortest Path K-means based MultiCast Routing algorithm (SP-KMCR) [57, 58]
operates first by dividing destinations into subsets by adopting K-means from a
given source, then the numbers of hops from the source to all the nodes in the
subsets are calculated. For each subset, a node that has the shortest path to the
source is detected (e. g., nodes 22 and 21 in Fig. 7.11a). The source sends its

Fig. 7.11 Example of SP-KMCR for a 6×3×2 3DNoC-SNN system, where nodes in L1 send
spike packets to all nodes in L2: (a) destinations are partitioned by adopting K-means clustering
with centroids 26 and 29, (b) the formation of the first part of the tree from a given source (node
3) to shortest path node of each subgroup (SP node), (c) the second part of the tree from SP nodes
to its destinations, (d) the routing tree from the given source to destinations

170 7 Reconfigurable Neuromorphic Computing System

spike packets to the shortest path node of each subset to form the first part of
the routing tree, therefore named SP-KMCR. The other part of the routing tree is
formed from SP nodes to its destinations, as shown in Fig. 7.11c. Furthermore, it
is worth mentioning that the SP-KMCR requires some computations for finding the
shortest path. However, the computations are executed offline. The operation of the
SP-KMCR is described in Algorithm 4

7.5.2 Fault-Tolerant K-means Multicast Spike Routing
Algorithm

The shortest path fault-tolerant multicast routing algorithm is based on the SP-
KMCR [55, 56]. The basic idea of the FTSP-KMCR is as follows: (1) offline
computations of a primary routing tree from a given source node to its destinations
and backup routing branches are performed. (2) After the offline calculation, the
routing tables are configured.

The illustration of the primary and backup routing branches is shown in Fig. 7.12.
When a faulty primary branch is detected, some pre-planned backup branch(es) is
(are) used to bypass the faulty links. The SP-KMCR mechanism is used to calculate
the branches (red) in the primary tree. On the other hand, the backup branches
are alternative routes to the primary ones. For a considered router (i.e., “son”), the
backup branches (green) are computed for the cases of faults occurring in primary
connections. For example, when the father-to-son primary connection is faulty (i.e.,
pb1), bb1 and bb2 are the backup branches used for maintaining the traffic between
the “father” and “son”. This is the same for the case where both pb2 and pb1 are
faulty.

In the FTSP-KMCR algorithm, the computations of primary and backup routes
are critical computational tasks. These calculations are performed offline. This
allows to reduce the runtime overhead of the proposed routing algorithm; hence
avoiding any possible timing violations in SNNs. As presented in Algorithm 5, the

Fig. 7.12 Primary and
backup branches

7.5 Fault-Tolerant Spike Routing Algorithm 171

Algorithm 4 SP-KMCR multicast routing algorithm
/* Input and output */
Input: // Source node address (S), destination node addresses (T), and the number of subsets (k)

16 S = {s1(x1, y1, z1), s2(x2, y2, z2),. . . ,sn(xn, yn, zn)}
T = {t1(x1, y1, z1), t2(x2, y2, z2),. . . ,tm(xm, ym, zm)}
k

Output: // Routing tree from each of source node to the destinations
17 output P = {p1(s1 → T), p2(s2 → T), . . . pn(sn → T)}

/* Partition the destination set (T) into k subsets */
// Initial centroid nodes by randomly select from T

18 foreach ci ∈ C do
19 ci ← tj ∈ T

20 end

// Evaluate centroid nodes and their labeled nodes
21 C! = const // Calculate the distance between ti ∈ T to cj ∈ C

22 foreach ti ∈ T do
23 d(ti , cj) = |xi − xj | + |yi − yj | + |zi − zj |
24 end

// Assign each destination to its centroid by minimum distance
25 foreach ti ∈ T do
26 l(ti) ← argmind(ci , tj)

27 end
// Update centroid

28 foreach ci ∈ C do
29 ci ← update(mean(tij))

30 end

/* Finding k shortest-path nodes (SP nodes) for every single
source node */

31 foreach si ∈ S do
32 foreach ti ∈ T k do
33 d(si , tj) = |xi − xj | + |yi − yj | + |zi − zj |
34 end
35 spi ← min(d(si , tj))

36 end

/* Creating routing path from each source node to its SP nodes */
37 foreach si ∈ S do
38 p(si , spj) ← DOR_based_tree(si , spj)

39 end

/* Creating routing tree from each SP node to its destinations */
40 foreach spi ∈ SP do
41 p(spi, tj) ← DOR_based_tree(spi, tj)

42 end

172 7 Reconfigurable Neuromorphic Computing System

Algorithm 5 Off-line calculations of the primary and backup branches
/* Input and output */
Input: // Source node address (S), destination node addresses (T), and the number of subsets (k)

43 S = {s1(x1, y1, z1), s2(x2, y2, z2),. . . ,sn(xn, yn, zn)}
T = {t1(x1, y1, z1), t2(x2, y2, z2),. . . ,tm(xm, ym, zm)}
k

Output: //Primary (pr) and backup (bk) branches from S to T
44 output Ppr = {ppr,1(s1 → T), ppr,2(s2 → T), . . . ppr,n(sn → T)} output Pbk = {pbk,1(s1 →

T), pbk,2(s2 → T), . . . pbk,n(sn → T)}
/* Centroid node assignment */
// Initial centroid nodes by randomly select from T

45 foreach ci ∈ C do
46 ci ← tj ∈ T

47 end

// Evaluate centroid nodes
48 (C != const) // Calculate the distance between ti ∈ T to cj ∈ C

49 foreach ti ∈ T do
50 d(ti , cj) = |xi − xj | + |yi − yj | + |zi − zj |
51 end

// Assign each destination to its centroid by minimum distance
52 foreach ti ∈ T do
53 l(ti) ← argmind(ci , tj)

54 end
// Update centroid

55 foreach ci ∈ C do
56 ci ← update(mean(tij))

57 end

/* Finding the shortest paths */
58 foreach si ∈ S do
59 foreach ti ∈ T k do
60 d(si , tj) = |xi − xj | + |yi − yj | + |zi − zj |
61 end
62 spi ← min(d(si , tj))

63 end

/* Creating primary and backup branches */
// from each source to SP node

64 foreach si ∈ S do
65 ppr (si , spj) ← DORv.1_based_tree(si , spj)

pbk(si , spj) ← DORv.
=1_based_tree(si , spj)

66 end

// from each SP node to its destinations
67 foreach spi ∈ SP do
68 ppr (spi, tj) ← DORv.1_based_tree(spi, tj)

pbk(spi, tj) ← DORv.
=1_based_tree(spi, tj)

69 end

7.6 Mapping 173

source and destination addresses (S, T) and the number of subsets (clusters) (k) are
pre-defined as inputs, while output parts are a primary tree (Ppr) from each source
to destinations and backup branches (Pbk). After that, the routing computation is
done according to the following steps:

• Step 1: from destination addresses, destination subsets are determined by
adopting k-means, as shown in lines 6–19.

• Step 2: finding the shortest path from each source to a node (named spi ∈ SP) in
each subset (with k subsets T k , a given source node has k SP nodes), as depicted
in lines 20–25.

• Step 3: the first part of the primary tree is formed from the source node to SP
ones. This is done by adopting dimension order routing (DOR) algorithm [12]
from the source to each SP node, then merge with the same route. Alternative
variations of the DOR are then adopted to calculate backup branches in order
to guarantee that backup branches are separated from the primary routes. For
example, if the formation of the primary tree uses DOR of ZYX, the backup
branches use other variations of the DOR such as YZX or XZY.

• Step 4: following the same computation in step 2, the second part of the primary
tree from SP nodes to their destinations in the same group and backup branches
are calculated.

After the primary and backup routes are defined, they are used to configure the
routing tables in routers. The pre-defined primary and backup routes are suitable
for deploying SNN applications since the SNNs are pre-defined and mapped into
the SNN system. Furthermore, this guarantees that the computation overhead of
backup branches does not affect the proposed routing algorithm’s recovery time
and reduces the required hardware cost of the system. After the routing information
is configured, the fault-management algorithm is implemented to handle incoming
packets, as shown in Fig 7.13. For a given incoming packet, fault_flag_val is
extracted to indicate whether the packet is in the primary or backup branch. At
the same time, the source address is also used to compute its expected primary
output port. In the case where fault_flag_val = 0 (i.e., the router plays the role of
“father” or “grandfather”), the calculated output_port is then determined to be faulty
or not. If it is not faulty, the packet is forwarded to the calculated output port in the
primary branch. Otherwise, output_port is switched to use a backup_branch, and the
fault_flag_val is also initiated to inform the next on-backup routers that this packet
is on the backup branch. In the case where fault_flag_val
= 0 (i.e., the router role
is as a on-backup or “son” router), the packet is routed through the output port as
backup route, and fault_flag_val is also decreased by one.

7.6 Mapping

Mapping is one of the important areas of neuromorphic system design, especially
those that employ multicore approach. The aim is to establish measurable links
between parameters of the SNN application to be mapped, and those of the neuro-

174 7 Reconfigurable Neuromorphic Computing System

Fig. 7.13 Fault-management algorithm applied for “son”, on-backup, “father” and “grandfather”
routers

morphic system. The manner in which an SNN is mapped on a neuromorphic system
significantly affects the performance and energy requirement of the neuromorphic
system. As a result, an efficient mapping approach and method, is crucial to not
just achieving good performance and energy efficiency, but also to provide a guide
for efficient scaling of neuromorphic models. As illustrated in Fig. 7.14, an SNN of
size 784:224:10 used for MNIST dataset classification is mapped on a 3 × 3 × 3
NASH configuration. This mapping approach is layer-based, where each network
layer is mapped to a corresponding NASH layer. The input layer of 784 neurons is
mapped to the first layer of NASH, utilizing 88 neurons from each of the 9 nodes in
the layer. The hidden layer of 225 neurons is also mapped onto the second layer of
NASH and utilized 25 neurons from each node in the layer. Finally, the output layer
of 10 neurons is mapped to the third layer and utilizes five neurons each from two
of the nodes in the layer.

7.7 Complexity Analysis 175

Fig. 7.14 784:225:10 SNN mapping on a 3×3×3 NASH configuration for MNIST classification
application

The layer based mapping is sort of a naive approach to mapping. Several SNN
applications may utilize a more complex network, leaving the layer based approach
unfit to handle them. Therefore, a comprehensive and efficient mapping scheme is
imperative.

7.7 Complexity Analysis

In analysing the complexity of NASH described in Sect. 7.4, the hardware design of
the system was described in Verilog-HDL, and its synthesis and layout were made
with Cadence tools. For ASIC implementation, the NANGATE 45 nm open-cell
library [40] was used as the standard cells. OpenRAM [23] was used for generating
the system memory, and TSV from FreePDK3D45 [41] was used for interlayer
connection.

The design complexity of NASH and the baseline (2D) system nodes using the
XY-UB and XYZ-UB algorithms, and also the SP-KMCR and FTSP-KMCR algo-
rithms described in Sects. 7.5.1 and 7.5.2 respectively, are presented in Table 7.1.
The design was made at a voltage of 1.1, and temperature of 25 °C, and from
Table 7.1 we can see that the NASH node of these algorithms occupy a larger
footprint and has higher power consumption when compared to the baseline system
nodes. This is due to NASH’s increased design complexity and its higher degree
of path diversity enabled by TSVs, whose diameters also add to the footprint. An

176 7 Reconfigurable Neuromorphic Computing System

Table 7.1 Design complexity comparison of NASH and the baseline nodes

System

XY-UB XYZ-UB SP-KMCR FTSP-KMCR

Architecture Baseline NASH Baseline NASH Baseline NASH

Area (mm2) 1.194 1.197 1.197 1.202 1.200 1.205

Power (mW) 49.29 50.02 49.58 50.10 50.86 51.76

Fig. 7.15 Area analysis of NASH node

area analysis of the FTSP-KMCR NASH node which has an area of 1.205 mm2

and consumes 51.76 mW is shown in Fig. 7.15. In this figure, we can see that over
94% of the node area is occupied by the synapse memory. This is because SNN is
centered around synaptic operations. Therefore the amount of resources utilized in
modeling these synapses takes up a significant portion of a neuromorphic system.
Figure 7.16 illustrates the layout and the floorplan of the NASH system.

Using the MNIST application SNN and mapping approach described in Sect. 7.6,
the accuracy of classifying 10K MNIST images on NASH using various synapse
precision can be seen in Fig. 7.17. As presented in Table 7.2 with 8-bit synapse
precision NASH reached an accuracy of 97.6%. However it can be seen that as the
synapse precision decreases, so does the accuracy. The effect of varying synapse
precision on design complexity can be seen in Fig. 7.18. With increased precision,
the area and power complexity increases, and reduces otherwise.

7.8 Chapter Summary 177

Fig. 7.16 (a) Layout of a 2 × 2 NASH layer. (b) A NASH node comprising of 256 neuron logic
and 65k synapses in 256 SRAMs (256-bank 8-bits each), network interface logic and memory, and
an FTMC-3DR logic and TSVs

Fig. 7.17 Accuracy evaluation over various synapse precision

7.8 Chapter Summary

This chapter presented the architecture, hardware design, and complexity analysis
of a reconfigurable neuromorphic system NASH, focusing on the SNPC, learning,
interconnect, spike routing and mapping. The system leverages the high scalability
and parallelism, low communication cost, and high throughput available in 3D-NoC
to present a neuromorphic system capable of supporting large SNN with a massive
number of synapses. The 256 physical neurons of the SNPC, enable parallel update
of all neurons in a single time step. To handle the challenges that may arise in spike
communication and lead to performance degradation, the FTSP-KMCR routing

178 7 Reconfigurable Neuromorphic Computing System

Table 7.2 Summary of
NASH node design
complexity

Parameters/systems This work

Benchmark MNIST

Accuracy (%) 97.6

Number of cores 27

Neurons per core 256

Neuron model LIF

Neuron update Parallel

Synapses per core 65k

Synaptic connection Crossbar

Synapse precision 8-bits

Learning rule Off-chip SGD

Memory technology SRAM

Interconnect 3D-NoC

Fault tolerance Yes

Implementation Digital

Technology node 45-nm NANGATE

Energy per synaptic operation (pJ) 11.3 pJ (1.1 V), 25 °C

Fig. 7.18 Area and power evaluation over various synapse precision

algorithm was presented. The complexity analysis of NASH was also presented
evaluating its area and power consumption with different routing algorithms and
synapse precision, and its accuracy classifying MNIST images.

References

1. Balaji A, Das A, Wu Y, Huynh K, Dell’Anna F, Indiveri G, Krichmar JL, Dutt N, Schaafsma
S, Catthoor F (2019) Mapping spiking neural networks to neuromorphic hardware

2. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

References 179

3. Bassett DS, Bullmore ET (2016) Small-world brain networks revisited. Neuroscientist
23(5):499–516

4. Bear M (2016) Neuroscience: exploring the brain. Wolters Kluwer, Philadelphia
5. Belhadj B, Valentian A, Vivet P, Duranton M, He L, Temam O (2014) The improbable

but highly appropriate marriage of 3d stacking and neuromorphic accelerators. In: 2014
International conference on compilers, architecture and synthesis for embedded systems
(CASES), Oct 2014, pp 1–9

6. Ben Abdallah A (2017) 3D integration technology for multicore systems on-chip. In: Advanced
multicore systems-on-chip architecture, on-chip network, design. Springer, Singapore, pp 175–
199

7. Ben Ahmed A, Ben Abdallah A (2016) Adaptive fault-tolerant architecture and routing
algorithm for reliable many-core 3d-NoC systems. J Parallel Distrib Comput 93–94:30–43

8. Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat J-M, Alvarez-
Icaza R, Arthur JV, Merolla PA, Boahen K (2014) Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. Proc IEEE 102(5):699–716

9. Boahen KA (1998) Communicating neuronal ensembles between neuromorphic chips. In:
Neuromorphic systems engineering. Springer, Berlin, pp 229–259

10. Carrillo S (2013) Scalable hierarchical networks-on-chip architecture for brain-inspired
computing. PhD thesis, University of Ulster

11. Carrillo S, Harkin J, McDaid LJ, Morgan F, Pande S, Cawley S, McGinley B (2013)
Scalable hierarchical network-on-chip architecture for spiking neural network hardware
implementations. IEEE Trans Parallel Distrib Syst 24(12):2451–2461

12. Chao C-H, Jheng K-Y, Wang H-Y, Wu J-C, Wu A-Y (2010) Traffic-and thermal-aware run-time
thermal management scheme for 3d NoC systems. In: 2010 Fourth ACM/IEEE international
symposium on networks-on-chip. IEEE, Piscataway, pp 223–230

13. Chin C-T, Mehrotra K, Mohan CK, Rankat S (1994) Training techniques to obtain fault-
tolerant neural networks. In: Proceedings of IEEE 24th international symposium on fault-
tolerant computing, June 1994, pp 360–369

14. Chu L, Wah BW (1990) Fault tolerant neural networks with hybrid redundancy. In: 1990
IJCNN international joint conference on neural networks, vol. 2, June 1990, pp 639–649

15. Dang KN, Ahmed AB, Okuyama Y, Abderazek BA (2017) Scalable design methodology and
online algorithm for TSV-cluster defects recovery in highly reliable 3d-NoC systems. IEEE
Trans Emerg Topics Comput 8(3):577–590

16. Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical
modeling of neural systems. The MIT Press, Cambridge

17. Deng J, Rang Y, Du Z, Wang Y, Li H, Temam O, Ienne P, Novo D, Li X, Chen Y, Wu
C (2015) Retraining-based timing error mitigation for hardware neural networks. In: 2015
Design, automation test in Europe conference exhibition (DATE), March 2015, pp 593–596

18. Ebrahimi M (2014) Reliable and adaptive routing algorithms for 2d and 3d networks-on-chip.
In: Routing algorithms in networks-on-chip. Springer, Berlin, pp 211–237

19. Ehsan MA, Zhou Z, Yi Y (2017) Modeling and analysis of neuronal membrane electrical
activities in 3d neuromorphic computing system. In: 2017 IEEE international symposium on
electromagnetic compatibility signal/power integrity (EMCSI), Aug 2017, pp 745–750

20. Emmerson MD, Damper RI (1993) Determining and improving the fault tolerance of
multilayer perceptrons in a pattern-recognition application. IEEE Trans Neural Netw 4(5):788–
793

21. Furber S, Temple S (2006) Neural systems engineering. J R Soc Interface 4(13):193–206
22. Furber SB, Galluppi F, Temple S, Plana LA (2014) The spinnaker project. Proc IEEE

102(5):652–665
23. Guthaus MR, Stine JE, Ataei S, Chen B, Wu B, Sarwar M (2016) Openram: an open-source

memory compiler. In: 2016 IEEE/ACM international conference on computer-aided design
(ICCAD), pp 1–6

24. Hashmi A, Berry H, Temam O, Lipasti M (2011) Automatic abstraction and fault tolerance
in cortical microarchitectures. In: 2011 38th Annual international symposium on computer
architecture (ISCA), June 2011, pp 1–10

180 7 Reconfigurable Neuromorphic Computing System

25. Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its
application to conduction and excitation in nerve. Bull Math Biol 52(1):25–71

26. Hojabr R, Modarressi M, Daneshtalab M, Yasoubi A, Khonsari A (2017) Customizing clos
network-on-chip for neural networks. IEEE Trans Comput 66(11):1865–1877

27. Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck
T, Liu S-C, Dudek P, Häfliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna
K, Folowosele F, Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K (2011)
Neuromorphic silicon neuron circuits. Front Neurosci 5:73

28. Khunasaraphan C, Vanapipat K, Lursinsap C (1994) Weight shifting techniques for self-
recovery neural networks. IEEE Trans Neural Netw 5(4):651–658

29. Kulshrestha S (2016) Neuromorphic chips defence applications. SSRN Electronic J. https://
doi.org/10.2139/ssrn.2773015

30. Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D (1993) Silicon auditory
processors as computer peripherals. IEEE Trans Neural Netw 4(3):523–528

31. Leergaard T, Hilgetag C, Sporns O (2012) Mapping the connectome: multi-level analysis of
brain connectivity. Front Neuroinform 6:14

32. Lin X, Ni LM (1993) Multicast communication in multicomputer networks. IEEE Trans
Parallel Distrib Syst 4(10):1105–1117

33. Liu S-C, Kramer J, Indiveri G, Delbrück T, Burg T, Douglas R (2001) Orientation-selective
aVLSI spiking neurons. Neural Netw 14(6–7):629–643

34. Liu J, Harkin J, Maguire LP, McDaid LJ, Wade JJ (2018) Spanner: a self-repairing spiking
neural network hardware architecture. IEEE Trans Neural Netw Learn Syst 29(4):1287–1300

35. Maass W (1997) Networks of spiking neurons: the third generation of neural network models.
Neural Netw 10(9):1659–1671

36. Markram H, Gerstner W, Sjöström P (2012) Spike-timing-dependent plasticity: a comprehen-
sive overview. Front Synaptic Neurosci 4:2

37. Moradi S, Manohar R (2018) The impact of on-chip communication on memory technologies
for neuromorphic systems. J Phys D Appl Phys 52(1):014003

38. Mortara A, Vittoz EA, Venier P (1995) A communication scheme for analog VLSI perceptive
systems. IEEE J Solid-State Circuits 30(6):660–669

39. Naeem M, McDaid LJ, Harkin J, Wade JJ, Marsland J (2015) On the role of astroglial syncytia
in self-repairing spiking neural networks. IEEE Trans Neural Netw Learn Syst 26(10):2370–
2380

40. NanGate Inc. (2014) Nangate open cell library 45 nm. http://www.nangate.com/. Accessed 16
June 2016

41. NCSU Electronic Design Automation (2015) FreePDK3D45 3D-IC process design kit. http://
www.eda.ncsu.edu/wiki/FreePDK3D45:Contents. Accessed 16 June 2016

42. Ogbodo M, Vu T, Dang K, Abdallah A (2020) Light-weight spiking neuron processing
core for large-scale 3d-NoC based spiking neural network processing systems. In: 2020 IEEE
international conference on big data and smart computing (BigComp), pp 133–139

43. Ohno N, Katoh M, Saitoh Y, Saitoh S (2016) Recent advancement in the challenges to
connectomics. Microscopy 65(2):97–107

44. Piche S (1992) Robustness of feedforward neural networks. In: [Proceedings 1992] IJCNN
international joint conference on neural networks, June 1992, vol 2, pp 346–351

45. Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1481–
1497

46. Rodrigues de Oliveira Neto J, Cerquinho Cajueiro JP, Ranhel J (2015) Neural encoding and
spike generation for spiking neural networks implemented in FPGA. In: 2015 International
conference on electronics, communications and computers (CONIELECOMP), pp 55–61

https://doi.org/10.2139/ssrn.2773015
https://doi.org/10.2139/ssrn.2773015
http://www.nangate.com/
http://www.eda.ncsu.edu/wiki/FreePDK3D45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK3D45:Contents

References 181

47. Samman F, Hollstein T, Glesner M (2010) New theory for deadlock-free multicast routing
in wormhole-switched virtual-channelless networks-on-chip. IEEE Trans Parallel Distrib Syst
22(4):544–557

48. Schemmel J, Fieres J, Meier K (2008) Wafer-scale integration of analog neural networks.
In: 2008 IEEE international joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE, Piscataway, pp 431–438

49. Sen-Bhattacharya B, James S, Rhodes O, Sugiarto I, Rowley A, Stokes AB, Gurney K,
Furber SB (2018) Building a spiking neural network model of the basal ganglia on spinnaker.
IEEE Trans Cogn Dev Syst 10(3):823–836

50. Sequin CH, Clay RD (1990) Fault tolerance in artificial neural networks. In: 1990 IJCNN
international joint conference on neural networks, June 1990, vol 1, pp 703–708

51. Shibata S, Komaki Y, Seki F, Inouye MO, Nagai T, Okano H (2015) Connectomics:
comprehensive approaches for whole-brain mapping. Microscopy 64(1):57–67

52. Taherkhani A, Belatreche A, Li Y, Maguire LP (2018) A supervised learning algorithm for
learning precise timing of multiple spikes in multilayer spiking neural networks. IEEE Trans
Neural Netw Learn Syst 29(11):5394–5407

53. Torres-Huitzil C, Girau B (2017) Fault and error tolerance in neural networks: a review. IEEE
Access 5:17322–17341

54. Valencia D, Thies J, Alimohammad A (2019) Frameworks for efficient brain-computer
interfacing. IEEE Trans Biomed Circuits Syst 13(6):1714–1722

55. Vu TH, Ikechukwu OM, Abdallah AB (2019) Fault-tolerant spike routing algorithm and
architecture for three dimensional NoC-based neuromorphic systems. IEEE Access 7:90436–
90452

56. Vu TH, Murakami Y, Abdallah AB (2019) Graceful fault-tolerant on-chip spike routing
algorithm for mesh-based spiking neural networks. In: 2019 2nd International conference on
intelligent autonomous systems (ICoIAS), Singapore, Feb 2019

57. Vu TH, Murakami Y, Abdallah AB (2019) A low-latency tree-based multicast spike routing for
scalable multicore neuromorphic chips. In: ACM 5th International conference of computing
for engineering and sciences, Hammamet, Tunisia, July 2019

58. Vu TH, Okuyama Y, Abdallah AB (2019) Comprehensive analytic performance assessment
and k-means based multicast routing algorithm and architecture for 3d-NoC of spiking neurons.
ACM J Emerg Technol Comput Syst 15(4):1–28

59. Wei N, Yang S, Tong S (1996) A modified learning algorithm for improving the fault tolerance
of BP networks. In: Proceedings of international conference on neural networks (ICNN’96),
June 1996, vol 1, pp 247–252

60. Wijesinghe P, Ankit A, Sengupta A, Roy K (2018) An all-memristor deep spiking neural
computing system: a step towards realizing the low power, stochastic brain. IEEE Trans Emerg
Topics Comput Intell 2(5), 345–358

61. Wu J, Furber S (2009) A multicast routing scheme for a universal spiking neural network
architecture. Comput J 53(3):280–288

62. Xia Q, Yang JJ (2019) Memristive crossbar arrays for brain-inspired computing. Nat Mater
18(4):309–323

63. Xiang D, Shen K (2016) A new unicast-based multicast scheme for network-on-chip router
and interconnect testing. ACM Trans Des Autom Electron Syst 21(2):1–23

64. Yang S, Wang J, Deng B, Liu C, Li H, Fietkiewicz C, Loparo KA (2018) Real-time
neuromorphic system for large-scale conductance-based spiking neural networks. IEEE Trans
Cybern 49(7), 2490–2503

65. Young AR, Dean ME, Plank JS, Rose GS (2019) A review of spiking neuromorphic hardware
communication systems. IEEE Access 7:135606–135620

Chapter 8
Case Study: Real Hardware-Software
Design of 3D-NoC-Based Neuromorphic
System

Abstract This chapter presents the design and evaluation of a reliable three-
dimensional digital neuromorphic processor (R-NASH) geared explicitly toward
the 3D-ICs biological brain’s three-dimensional structure. The platform enables
high integration density and slight spike delay of spiking networks and features a
scalable design. R-NASH is a design based on the Through-Silicon-Via technology,
facilitating spiking neural network implementation on clustered neurons based on
Network-on-Chip. In addition, we provide a memory interface with the host CPU,
allowing for online training and inference of spiking neural networks. Moreover,
R-NASH supports fault detection and recovery with graceful performance degrada-
tion.

8.1 Introduction

In spiking neural networks (SNNs), information is encoded using various encoding
schemes, such as coincidence coding, rate coding, or temporal coding [21]. In
addition, SNN typically employs an integrate-and-fire neurons model. A neuron
generates voltage spikes (roughly 1 ms in duration per spike) that can travel down
nerve fibers if they receive enough stimuli from other neurons with the presence
of external stimuli. These pulses may vary in amplitude, shape, and duration, but
they are generally treated as similar events. To better model the dynamics of the
ion channel in a biological neuron, which is nonlinear and stochastic, the Hodgkin-
Huxley [15] conductance-based neuron is often used. However, the Hodgkin-Huxley
model is too complicated to be used for a large-scale simulation or hardware
implementation.

Software simulation of SNN [16, 29] is a flexible method for investigating the
behavior of neuronal systems. On the other hand, specialized hardware architectures
with multiple neuro-cores could exploit the parallelism inherent within neural
networks to provide high processing speeds with low power, which make SNNs
suitable for embedded neuromorphic devices and control applications [30]. In gen-
eral, the neuromorphic hardware systems consist of multiple nodes (or clusters of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_8

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_8

184 8 Case Study: Real Hardware-Software Design. . .

neurons) connected via an on-chip communication infrastructure [2, 23]. Expansion
using a multi-chip system and off-chip interconnects is also a viable solution for
scaling up SNNs [2, 9]. In recent years, integrating many neurons on a single chip
while providing efficient and accurate learning has been investigated [2, 6, 9, 14, 27].

The challenges that need to be solved toward designing an efficient neuromorphic
system include building a small-size parallel and reconfigurable architecture with
low-power consumption, an efficient neuro-coding scheme, and an on-chip learning
capability. Moreover, since the number of neurons to be connected is at least
103 times larger than the amount of PEs (Processing Elements) that need to
be interconnected on modern multicore/multiprocessor SoC platforms [13], the
on-chip communication and routing network is another major challenge. In a
modern deep neural network (DNN) design, one neural network layer is often
a 2D structure. However, the ”mimicked” network is generally a 3D structure.
Therefore, mapping a 3D structure onto 2D circuits may result in multiple long
wires between layers or congestion points [7]. The constraints mentioned above
make the deployment of such a brain-like IC a challenging on-chip interconnect
problem [30].

An event-driven neuromorphic system relies on the arrival of spikes (action
potentials) train to compute [25]. Therefore, the arrival times of action potentials
are critical to allow accurate and consistent outputs. Since the shared bus is no
longer suitable for multicore systems and point-to-point interconnects cannot serve a
high fanout wires [20], moving to a new on-chip communication paradigm with the
ability to extend to multiple-chip interconnects is needed. One of the consensuses
of state-of-the-art architecture is to utilize the parallelism and scalability of 2D
Network-on-Chip (NoCs) [2, 9] and further extend it to multichip systems. In this
approach, the neurons of the silicon brain are clustered into nodes that are attached
to micro-routers.

From another hand, semiconductor development is confronting the end of
Moore’s Law, which no longer allows us to reduce the feature size as we reach the
atomic scale. To get to the “More than Moore” goal [31], heterogeneous integration
is a suitable approach to integrate more transistors in the same die. One of the
popular approaches is to stack the conventional 2D wafers together to form a 3D-
chip [3]. Another method is monolithic 3D-ICs that support multiple silicon layers
based on small vias [24]. The Through-Silicon Vias (TSVs) or Monolithic Intertier
Vias (MIVs) constitute one of the main interlayer communication mediums. The
3D-Network-on-Chip (3D-NoC) [4, 5] is also a promising approach that can further
enhance the parallelism and scalability of multicore and neuromorphic systems.
Figure 8.1 illustrates a potential mapping of an emulated silicon brain into 3D-
ICs. However, despite bringing several benefits of lower power, smaller footprints,
and low latency, integrating a neuromorphic system into 3D-ICs was not well
investigated.

8.2 R-NASH System 185

Fig. 8.1 Neuro-inspired 3D silicon brain. (a) The anatomical architecture of Spaun indicates
major brain structures and their connectivity [12, 30]. (b) A possible mapping of a Spaun system
into 3D-IC. (c) The architecture of Spaun, where thick dark-yellow lines illustrate communication
between elements of the cortex while thin lines show connectivity between Basal Ganglia and the
cortex

8.2 R-NASH System

The R-NASH platform design, shown in Fig. 8.2, consists of four phases. First,
the software spiking neural network model model is developed with various
configurable parameters, including neurons, synapses, thresholds, learning types,
and interconnects. Then, the neurons mapping phase is performed based on four
main steps: (1) transformation: convert the mentioned value to the binary that can
be read and executed by the neuromorphic hardware, (2) clusterize: cluster and find
the suitable mapping of neurons, (3) scheduling, and (4) Configuration. We use a
genetic algorithm (discussed later) to optimize the flow. As a highly complex design,
neuromorphic hardware is generally prone to soft and permanent faults, leading

186 8 Case Study: Real Hardware-Software Design. . .

Fig. 8.2 R-NASH system platform. (a) SNN model. (b) Mapping into the neuromorphic hard-
ware. (c) Our neuromorphic hardware in 3D-ICs. (d) Runtime maintenance for R-NASH

to performance degradation. Therefore, the runtime maintenance stage checks and
recovers from faults.

8.3 R-NASH Hardware

8.3.1 R-NASH Hardware Building Blocks

The overall architecture of the neuromorphic system, shown in Fig. 8.3, is based
on a 3D-IC approach to model the three-dimensional structure of the brain. The
neurons and their synapses are clustered in neuron clusters or nodes. Instead of
using a point-to-point neuron connection, we use a packet-switched mesh-based 3D-
Network-on-Chip architecture. While a 3D-Mesh NoC handles the communication,
the computation is done by neuron clusters (nodes) as shown in Fig. 8.3d. The
incoming spikes in AER (Address-Event-Representation) protocol are stored in
memory and decoded to obtain the address and the read enable signal for the weight
memory. By reading the synapses from memory, the system emulates the weighted

8.3 R-NASH Hardware 187

Fig. 8.3 R-NASH architecture. (a) Neuromorphic System. (b) Network-Interface. (c) 3D-Router.
(d) SNPC core

spikes for LIF neuron inputs. After receiving the address of the corresponding
synapse and the enable signal, the series of weighted inputs are sent to the dedicated
LIF neuron, which accumulates the value, subtracts the leak, and checks the firing
condition. The output spike is, finally, stored in a postsynaptic SRAM and sent to
the Network-on-Chip. More details about the neuron clusters and the 3D NoC router
architectures are given in Sects. 8.3.2 and 8.3.6, respectively.

8.3.2 Spiking Neural Processing Core (SNPC)

Figure 8.3d shows the architecture of the SNPC, which is the backbone of the
R-NASH neuromorphic system. The SNPC consists of four major modules: (1)
Network Interface, which supports the communication via 3D NoC; (2) Crossbar
which help decode the spike and extract the corresponding weights; (3) LIF array,
which consists of multiple LIF neurons performing in a parallel manner; and (4)
Learning module which perform STDP learning. Once a packet is fed to NI from
the 3D-NoC router, its information is decoded to decide the packet type. There
are two types of packets: (1) Spikes (or action potentials) and (2) memory access
(read/write). NI decodes to have the equivalent address in the memory and sends it
to the crossbar for the spike flits under the AER format to obtain the weight. Once

188 8 Case Study: Real Hardware-Software Design. . .

a neuron of the SNPC fires, its index or address will be encoded and sent to the 3D
NoC to emulate inter-neuron communication. NI provides an interface to read and
write each neuron’s weight memory and parameters in single and burst transaction
mode for memory access.

8.3.3 Network Interface

The Network Interface allows the neurons to communicate via the on-chip network
infrastructure. R-NASH supports two types of flits: spike (in AER format) and
memory flits. The AER format flit is converted to the address of the weight SRAM.
A flit provides the instruction and the required addresses to read/write to/from the
memory cells and registers in the neuron cluster. Here, the memory access flits
are issued by a master (or external host) processor in the system. The NI supports
two types of read/write commands: single and burst. The individual read/write only
provides access to one element per request, while an argument of length must follow
the burst ones. The NI converts the requested address to the local address of each
weight memory or LIF array. Figure 8.4 illustrates R-NASH’s two types of flit.
The first bit indicates whether the flit is a spike (0) or memory access (1). With
the spike flit, it is followed by four fields: (1) destination node address (9-bit), (2)
neuron mask to allow the sparse connection (3-bit: 8 types of sparse), (3) AER
of the source node (9-bit) and (4) AER of the neuron in the source node. Here,
the AER of a firing neuron is represented via two files: node address and neuron
address; this allows the system to scale up to 8 × 8 × 8 3D-NoC nodes (512 nodes)
256 neurons/node. We can extend it to 10-bit to allow 1024 neurons/node on the
neuron ID, allowing the R-NASH system to have 0.5 million neurons and 0.5 billion
synapses. To support a larger scale, we can extend all fields. For memory access
spikes, there are four types: (1) single read, (2) burst read, (3) single write, and (4)
burst write. The two-bit command field allows the system to inform the slave node to
understand whether the transaction is done, kept, corrupted (need to rewrite/reread),

Fig. 8.4 R-NASH flit formats

8.3 R-NASH Hardware 189

or canceled. Since R-NASH is byte-addressable, the command field is followed by
the address of memory/registers on the R-NASH node (16-bit). With the single read,
the NI sends the data corresponding to the host node’s address. With the burst read
and write, the following flit consists of the length of these transactions. The details
on how the node can access and provide an interface for the host CPU are shown in
Sect. 8.3.3.

Figure 8.3b shows the block diagram of the Network Interface (NI). The input
spikes are categorized into either input spikes or memory accesses. With the memory
accesses, the NI provides an interface to read and write the data in all registers
and memory blocks of the node. The read instruction makes the NI return the
master processor value of the requested address. With the network’s input spike,
the NI decode phase gets the weight SRAM address and feeds it to the weight
memory. For multi-layer SNNs or sparsity connections, the Flit Extractor provides
the read enable (RE) signal for different layers or different links used in the weight
memory. As a result, a node can have multiple AERs at the same address but for
other neurons. The LIF array’s output spike is fed into the AER decoder, which
extracts the address of bit one (firing neuron). This address is then serially sent
to the remap Look-Up-Table (LUT) to obtain the AER value of the receiving
nodes.

8.3.4 Crossbar

As explained in the previous subsection, the input spikes (series of events deter-
mined by their timestamp and their polarity) are decoded to the weight address and
neuron mask (read-enable signal) and fed to the crossbar. The crossbar is a set of
SRAMs where each SRAM stores all synapses associated with a single neuron. The
neuron mask signal is used to discard the unused weighted spike. After getting the
address and the enable signal, the crossbar reads the synapses from memory, and
sends them to the LIF array.

8.3.4.1 LIF Neuron

Due to its simplicity, the Leaky-Integrate-and-Fire (LIF) neuron model is selected
for the R-NASH hardware architecture. Figure 8.5 shows the architecture of a LIF
neuron. The weighted spike inputs (i_wspike) are fed into an adder and register
structure for accumulation. At the end of each step, the leak’s inverted value is also
provided to the adder to reduce the membrane potential. The neuron firing condition
is then validated by confirming that the membrane potential has exceeded the neuron
firing threshold. After the neuron fires, it sets the refractory countdown and stops
working until the countdown is over. The period of this countdown is the refractory
period. Theoretically q, a LIF or IF computation is expressed with the equation

190 8 Case Study: Real Hardware-Software Design. . .

Fig. 8.5 LIF neuron architecture

below:

Vj (t) = Vj (t − 1) +
∑

i

wi,j × xi(t − 1) − λ (8.1)

Where, Vj (t) is the membrane potential of neuron j at time step t , wi,j is the
synapse weight between presynaptic neuron i and postsynaptic neuron j , xi(t − 1)

is the output spike of presynaptic neuron i, and λ is the leak constant (λ = 0 for IF).
The output of the neuron j is described by the equation bellow:

xj (t) =
{

1, if Vj (t) ≥ V t

0, otherwise
(8.2)

At the crossbar, the input spikes are multiplied with the weights to have weighted
inputs. These weighted inputs are accumulated as the membrane potential, and when
the accumulated value exceeds the threshold, a spike is fired. The memory module
handles the multiplication of the input spikes and the weight of synapses. Since the
input spike is binary, there is no actual multiplication hardware. Therefore, a simple
register and adder are used to perform the accumulation.

8.3.5 Controlling

There are two phases for controlling the R-NASH node: (1) training and (2)
inference. If the training mode is enabled, the system enters the learning phases

8.3 R-NASH Hardware 191

after each time step. If there is a postsynaptic spike of the emulated training time
step, the weight is adjusted. Otherwise, the system skips to the next timestep. In the
inference process, R-NASH starts with the synchronization of the timestep. Each
node’s registers are accessible via interfaces; therefore, the system can indicate,
confirm, and change each node’s timestep. Furthermore, since the definition of
timestep is loosely defined, it helps the LIF array switch from integrating to the
leaky phase. In other words, neurons can operate at different timesteps if needed.
The operation of the SNPC follows four phases: (1) loading spikes, (2) integrating,
(3) leak and firing, and (4) learning (optional). The first phase is for downloading
spikes from presynaptic neurons via the interconnect. Due to the input cache’s
limited size, the spike is decoded and sent directly to the crossbar. On the other
hand, it is packed to a spike vector for learning purposes due to its compactness
in-memory footprint.

8.3.6 Inter-Neural Interconnect

R-NASH is based on a 3D-NoC that supports various fault-tolerance in input
buffers, crossbar, routing hardware, and pipeline [7]. The inter-neural interconnect
consists of multiple routers (R) to handle the communication between the neuron
clusters [8]. Two types of flit are supported. The first type is the spike between
neurons in AER format. The AER format flit is converted to the address of the
weight SRAM. The second type of flit is memory access. To read and write to
the memory cells and registers in the neuron cluster, a flit provides the instruction
and the required argument (address). Here, the memory access flits are issued by a
master (or external host) processor in the system. We support two types of read/write
commands: single and burst. The individual read/write only provides access to one
element per request, while a lengthy argument must follow the burst ones. The NI
converts the requested address to the local address of each weight memory or LIF
array. Figure 8.3b shows the block diagram of the Network Interface (NI). The input
spikes are categorized into either input spikes or memory accesses. With the memory
accesses, the NI provides an interface to read and write the data in all registers and
memory blocks of the node. The read instruction makes the NI return the master
processor value of the requested address. With the input spike from the network,
the NI decode phase gets the weight SRAM address and feeds it to the weight
memory. For multi-layer SNNs or sparsity connections, the Flit Extractor provides
the read enable (RE) signal for different layers or different links used in the weight
memory. As a result, a node can have multiple AERs at the same address but for
other neurons.

The LIF array’s output spike is fed into the AER decoder, which extracts the
address of one bit (firing neuron). This address is then serially sent to the remap
Look-Up-Table (LUT) to obtain the AER value in the receiving nodes.

192 8 Case Study: Real Hardware-Software Design. . .

8.4 R-NASH Learning

As we earlier mentioned, neuromorphic systems feature asynchronous and
independent execution of neurons within a neural network, therefore enabling
more flexibility, as well as the ability to learn the timing information. R-
NASH platform supports two learning methods: (1) off-chip learning based on
a straightforward approach to take the parameters of a pre-trained ANN and map
them to an equivalent-accurate SNN, and (2) online learning based on the STDP
approach.

8.4.1 Off-chip Learning

For off-chip learning, we adopt the method in [11]. The feed-forward neural
network is a fully connected model with a RELU (rectified linear units) activation
function.

It is trained as usual using back-propagation with zero bias throughout the
training. When the training is complete, we map the network’s RELU weights to
the IF (Integrate and Fire) network. After that, the weights are normalized and
converted to SNN. Finally, the converted weights are mapped to our R-NASH
model to perform inference. Note that there is no refractory and leaky used in
this conversion. After being normalized, the weights are quantized into a fixed bit
format and loaded to the R-NASH system via a host CPU. In particular, we use 8-
bit as the de-facto format in our system. However, adopting smaller bit-width makes
it possible to reduce the overall area cost because memories take up a significant
portion of the system.

Since offline learning can be done with different approaches such as conversion
from ANN/CNN [26, 28], learning directly with SNN [32, 33], or bio-inspired
learning [16] (i.e., STDP, SDSP), different approaches can be adopted for our R-
NASH system.

8.4.2 Online Learning with STDP

Despite being able to load pre-trained weights and parameters to perform only
inference on our R-NASH, online learning is also supported. Here, the online
unsupervised STDP with winner-take-all mechanism is adopted [10]. Once a neuron
fires, it goes to the refractory mode, and an inhibitory spike is broadcasted to
others to reduce the membrane potential. Figure 8.6 shows our system using STDP
learning. The input spikes can be stored in SRAM and loaded to the system or
generated by the host CPU. Our 3D-NoC interconnect performs the transmission of
spikes. Once a neuron fires, it sends the spike to the host CPU to be counted. In the

8.4 R-NASH Learning 193

Fig. 8.6 On-chip STDP learning model

Fig. 8.7 On-chip STDP learning architecture

end, the label with the maximum number of spikes becomes the selected label. On
the other hand, once a neuron fires, it sends inhibitory spikes to other neurons to
reduce their membrane potential. As this STDP is unsupervised learning, the host
CPU label is based on the input spike label. Figure 8.7 shows the online STDP
learning block. To reduce complexity, We only adopt a simple STDP mode where
the weight of synapses is adjusted to a fixed value based on the presynaptic spike’s
relative arrival time. If the presynaptic spike from neuron i arrives before the event
of a postsynaptic spike of neuron j , the synapse weight between neuron i and j (wij)

194 8 Case Study: Real Hardware-Software Design. . .

Δ 0

1

−1

Fig. 8.8 On-chip STDP learning mechanism

is increased by a fixed �w value. On the other hand, if the event of the presynaptic
spike from neuron i arrives after the event of a postsynaptic spike of neuron j , the
weight is reduced by a fixed �w value.

R-NASH implements various reconfiguration using two methods: (1) adaptive
threshold: once the neuron fires, its threshold is increased by a specific range, but
decays if the neuron doesn’t fire, (2) weight normalization: the STDP learning
module targets having the average weights of a neuron unchanged during the
learning period. However, R-NASH cannot deliver a high resolution due to hardware
architecture limitations like the floating-point computation unit of CPU or GPU.
For adaptive threshold, we use an additional adder in the LIF neuron to adjust
the threshold. The adjustment value (�T hres.) in Fig. 8.5 is selected based on
whether the neuron fires or not. As the neuron fires, the threshold is increased
until it reaches its maximum value. Else, it decays until it reaches its minimum
value. Thus, using an adaptive threshold, the neuron’s firing pattern can balance
with the incoming rates. Howbeit, unbalanced weights can lead to a neuron with
higher weight values having a maximum firing rate, which consequently inhibits
other neurons from firing. This makes the system fail to learn in a winner-take-all
mechanism. The updating mechanism of the STPD learning is shown in Fig. 8.8.
By comparing the timesteps of the postsynaptic and presynaptic spikes, the online
STDP block can group them into two categories: (1) weight increase: if the time
of presynaptic neurons is before the postsynaptic, and (2) weight decrease: if the
time of presynaptic neurons is after the postsynaptic. Here, we illustrate with 16
timesteps and fixed weight change to reduce the overall complexity. Furthermore,
the value can be reprogrammed via the memory interface provided by NI.

8.5 R-NASH Initial Mapping

This section presents the mapping method of the R-NASH system hardware. As we
break the neuromorphic system into groups of neurons connected via a Network-
on-Chip, dividing and placing are essential issues since they can heavily affect

8.5 R-NASH Initial Mapping 195

performance. For instance, placing two connected neurons far apart can lead to a
critical delay path in the system. Consequently, the system needs to wait for the
spike to travel a long distance before forwarding it to a new timestep. Unfortunately,
this also increases the power consumption and introduces more thermal dissipation
in the packet-switching network.

As R-NASH uses a genetic algorithm (GA) as the tool for generating the neuron’s
position and the configuration, we first cover the GA, and then we will show the GA
method for R-NASH.

8.5.1 Genetic Algorithm

A Genetic Algorithm (GA) is a method for solving both constrained uncon-
strained optimization problems. As we later show, the GA for initial mapping
is an unconstrained one. GA relies on the natural selection process mimicking
biological evolution. John Holland firstly developed a Genetic Algorithm, and his
colleagues [17] is a computation method of biological evolution based on Charles
Darwin’s theory of natural selection. GA relies on random search and rank-based
selection.

Genetic Algorithm operates based on string structures that are evolving. This
string structure has a specific set of surviving rules. In each generation, the set of
surviving rules is defined to remove a sub-set of members which leave a part of them
in the population. GA goes through a crossover process to generate offsprings from
parents to maintain the same number (or a specific number) of members. Usually, an
offspring shares part of its string structure with its parents. Moreover, the mutation
process help change the string structure in a stochastic manner. Genetic Algorithm
usually goes through several steps: (1) Initialization; (2) Selection; (3) Crossover
and (4) Mutation. The selection, crossover, and mutation operate in iterations which
are called generations.

8.5.1.1 Initialization

In general, GA randomizes the initial population to have a starting one. The
string structure of the GA population member is randomized under their optional
constraints. To have a better initialization process, the initial population can be larger
than the population in generations. Figure 8.9a illustrates the string structure for a
genetic algorithm where each structure consists of six binary bits (0 or 1). In the
initialization process, GA randomizes to have M members as shown in Fig. 8.9b.
The size of the structure and the string format can be varied between applications
and configurations.

196 8 Case Study: Real Hardware-Software Design. . .

……

Fig. 8.9 Genetic algorithm (GA): (a) an example string structure; (b) initialization process; (c)
cross-over and (d) mutation

8.5.2 Selection

A set of surviving rules defines the selection. In general, GA uses cost function
or fitness function to select the survival members of the population. The fitness
function (reversed value of cost function) defines the survival member by ranking
from lowest to highest values.

There several ways to select surviving members. The simplest way is to rank the
whole generation to select. An alternative method that can be used is tournament
selection, where each tournament selects a sub-set of the population to select
surviving members. After a fixed amount of tournaments, we can obtain the desired
number of surviving members.

8.5.3 Crossover

Crossover in GA is based on mixing two or more parents to generate offsprings. An
offspring’s string structure is constructed from its parents’ structure. For example,
the first half of one parent and be mixed with the second half of another parent
to obtain offspring. This crossover is to generate a new member that lies between
the range of two members. The example of the crossover will be shown in our GA
method. Figure 8.9c illustrates an example of crossover between Member 1 and
Member 2. Here, GA takes 50% of each parent to generates offspring.

8.5 R-NASH Initial Mapping 197

8.5.4 Mutation

The mutation process is to alternate a member’s string structure by randomizing a
part of the structure. This helps spread the member to a new local range. Note that
the mutation must follow the constrained set in the initialization. The example of
mutation will be shown in our GA method. Figure 8.9d illustrates the mutation of a
member. Here, GA randomizes the indexes, which are first and fifth, and alternate
the value in the string structure (0–1 and 1–0).

8.5.4.1 Finalization

At the end of the genetic Algorithm (i.e., after G generations), the selection process
is performed for only one survival member of the whole population.

8.5.5 Genetic Algorithm for Neurons Mapping on R-NASH
Hardware

In addressing issues of mapping, several design factors must be carefully consid-
ered: (1) computation, (2) communication, and (3) memory. Since the computation
on-chip is designed in nodes with this architecture, we can quickly realize that
communication is the most critical problem. If the data is not fed fast enough
to the computation unit, which is well paralleled, the system encounters a com-
munication bottleneck. Since the multicore system’s mapping issue is NP-hard
(non-deterministic polynomial-time hard), R-NASH uses an optimization method
using a simple Genetic Algorithm (GA) because ILP is NP-complete and the
heuristic search is factorial. At the beginning of the Algorithm, it randomizes
K mapping solutions. After having K mapping solutions, it enters G generations
of improvement. In each generation, the GA performs the following steps as in
Algorithm 6. During the G generations, tt first removes the incorrect mappings
(i.e., requires more computing units than the designed node or has not mapped all
computations). Then, the GA algorithm computes the cost function, which is the
communication cost:

Fcost =
W∑

i=0,j=0

dij × cij (8.3)

where dij and cij are the distance and the connection status between neuron i

and j . Since the data transfer is in a multi-cast manner at each node, cij is
the connection between two PEs. Fcost is the communication cost for our GA.
B’s best communication costs are then selected out of K mapping solutions.

198 8 Case Study: Real Hardware-Software Design. . .

Algorithm 6 Genetic algorithm for neurons mapping
// initialize phase

70 S1: load the system configuration
71 S2: randomize the K mapping solutions

// evolve phase
72 for (generation gi in 1 to G) do
73 S3: remove the wrong mapping solutions
74 S4: calculate cost function (communication cost) for each solution of the population
75 S5: select the B best out of K solutions based on the cost function
76 S6: mutate the B best solutions to have new K solutions
77 S6: crossover the new K solutions to have new population
78 S7: check if it satisfies the communication cost or does not improve over several generations

// finalize phase
79 S7: calculate cost function for each solution of the population

S8: select the B = 1 best out of K solutions based on the cost function

We can consider the communication cost as the reverse of the fitness func-
tion.

After having B best solutions, they are crossed over to obtain K solutions. Here,
we keep the original B solutions and create a K-B solution using the crossover. The
crossover method is shown in Fig. 8.10a. Assuming the crossover probability is 0.4
(randomly picked), the offspring take 0.4 of a parent and 0.6 of another parent to
generate its mapping. Figure 8.10a shows two parents’ mappings with configured
neurons for [L1, L2, L3] (layer of neural net) as [100, 100, 50] and [40, 30, 80].
After the crossover process, an offspring is generated as 40% of [100, 100, 50] plus
60% of [40, 30, 80] which is [76, 72, 62].

After the crossover generates K solutions, the GA mutates the K solutions to
generate mutated configurations (under a certain probability). Figure 8.10b shows
how we mutate a configuration. Since the number of neurons mapped in each
layer and in each PE is constant, we must maintain it. In Fig. 8.10b we describe
a case where the L3 of the node (0,1,0) is randomly mutated. To maintain the
number of neurons mapped, we randomize the L2 of the node (0,2,3) for processing.
We find that the minimum of two configurations is 30, which means we can
reduce both configurations by 30. Meanwhile, by reducing L3 of (0,1,0) by 30,
we increase L2 by 30 and L3 of (0,2,3) by 30. Note that the reduction value can
be randomized between 0 and 30. However, our experiment works best with the
minimum one.

After mutation, we re-update the configuration to match the number of unused
neurons. Then, we check whether we satisfy the communication cost in the
specification. If the communication cost is good enough, we can end the mapping.
The GA is also completed after G generations.

8.6 R-NASH Run-Time Maintenance 199

Fig. 8.10 Crossover and mutation method for GA mapping. (a) Crossover. (b) Mutation

8.6 R-NASH Run-Time Maintenance

As previously discussed, robustness is the primary target of R-NASH neuromorphic
hardware. Therefore, R-NASH also provides a comprehensive set of fault-tolerance
features. In general, there are three significant parts of the R-NASH system that
need to be protected: (1) data integrity, (2) interconnect, and (3) computing engine.
First, we discuss how R-NASH protects against data corruption. Then we describe
the fault tolerance feature for the communication in R-NASH. Finally, uncorrectable
faults are discussed and recovered from.

8.6.1 Data Integrity Protection

One of the most basic protections in any highly reliable system is to be resilient
against data corruption. Here, we classify the data into two types: (1) one-time
load data and (2) transferring data. While one-time load data such as weights and
thresholds are essential, their accuracy can be maintained by storing them in on-
chip SRAM or registers. Here, an error correction code can be used to protect
these types of data. However, from our investigation, we discovered that soft errors
have little impact on the overall accuracy. Therefore, these types of data can be
left unprotected and can periodically be written to ensure correctness. The other
type of data is the one that is transferred among the system. In particular, spikes
and synchronizations are significant types of flits. The initialization of the system
is also essential. Synchronization flits are critical since they ensure the operability
of the system. To protect this type of data, we embed on our 3D-NoC, two sets of
SECDED (22,16) [18]. As a result, in transferring 32-bit of data, the 3D-NoC needs
to transfer 44 bits, as this allows our R-NASH to be resilient against one fault per
set and be alert against two faults per set. In other words, our 3D NoC allows 2-bit
correction and 4-bit detection at its best. By protecting the data, we can ensure the
system works with a good level of confidence.

200 8 Case Study: Real Hardware-Software Design. . .

8.6.2 Communication Protection

As we mentioned in the previous section, the data is protected in our R-NASH
system, thanks to two sets of SECDED (22,16) [18]. Moreover, R-NASH also
protects the communication infrastructure with the following features. First, by
protecting the defective buffer, a technique named Random Access Buffer [1] is used
to isolate a faulty buffer from the read and write process. Furthermore, if the crossbar
is defective, there is a backup link in the crossbar to allow communication [1]. If
the input port, output port, or the whole router is defective, a fault-tolerant routing
algorithm can recover the system [1].

8.6.3 Fault-Tolerant Neurons Mapping Scheme

Another issue in large-scale SNN architecture is that modules can develop uncor-
rectable faults during runtime. This means that the module is corrupted and cannot
be used to obtain even graceful accuracy degradation. Therefore, We present a
method to remap the neuromorphic system under such faulty circumstances. To
protect the faulty neural computing unit against defects, we use two strategies:
(1) a node of neuron has some spare neurons (and their weight SRAM), and (2)
there is a spare node in the system. Once a neuron/node fails, R-NASH can remap
the neuron/node to the spare one and keep its operation. Figure 8.11a shows an
example of a layer in this configuration. Here, each node has a different number of
spare neurons. Once there are failed ones, R-NASH maps them to spare neurons.
Figure 8.11b shows the 25 faulty neurons of node (0,0,0) remapped into node
(0,3,2). The number of spare neurons in a node (0,3,2) is reduced from 34 to 9
neurons. Since the mapping method already exists, we can use the usual SNN
mapping method for replacing neurons. However, the remapping of SNN can
provide an alternative approach since there are new factors in faulty situations. For
instance, we might want to reduce the downtime (repairing time) or limit memory
transfer within the system. On the other hand, disconnected regions due to faulty
network sections can be problematic for mapping. Due to these reasons, we also
consider the conventional method: (1) Greedy Search: all faulty nodes run once to
find the replacement, and (2) Genetic Algorithm by adjusting the existing Algorithm
for mapping to obtain a more suitable solution. In the scope of this chapter, we
present the adaptation of the Genetic Algorithm for remapping. Note that three
approaches are also implemented and compared in the evaluation section. Besides
the communication cost in Eq. 8.3, we introduce the migration cost to reduce the
repairing time of the system as follows:

Mcost =
W∑

i=0,j=0

dij × mij (8.4)

8.6 R-NASH Run-Time Maintenance 201

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

Fig. 8.11 Illustration of fault-tolerance remapping of the Genetic Algorithm. (a) Unmapped and
free neurons per node. (b) A randomized mapping solution. (c) Mutating by finding a shorter
distance for a flow; (d) Mutate by swapping destination of a flow

202 8 Case Study: Real Hardware-Software Design. . .

Algorithm 7 Genetic algorithm for remapping SNN
// initialize phase

80 S1: build the unmapped and free neurons per node
81 S2: randomize the K mapping solutions

// evolve phase
82 for (generation gi in 1 to G) do
83 S3: calculate cost function for each solution of the population
84 S4: select the B best out of K solutions based on the cost function
85 S5: mutate the B best solutions to have new K solutions
86 S6: crossover the new K solutions to have new population

// finalize phase
87 S7: calculate cost function for each solution of the population
88 S8: select the B = 1 best out of K solutions based on the cost function

where mij is the number of migrating neurons between node i and j . The main
reason to adopt the migration cost is to reduce the repair time because reloading
neuron weights are expensive and can affect the real-timeliness of R-NASH.
Algorithm 7 shows the Remapping Genetic Algorithm. It consists of three phases:
(1) initialize, (2) evolve, and (3) finalize. The initialize phase starts with the first step
S1 where the number of unmapped and free neurons are counted and sent from each
node of the system. Figure 8.11a illustrates an example of a layer after the initial
phase. Based on these values, the second step S2 generates K mapping solutions
randomly (i.e., Fig. 8.11b). This step randomizes a node with free neurons and a
node with unmapped neurons from the values in S1. At the end of step S2, the
Algorithm generates K legal mapping solutions. They are not optimal solutions and
need to be optimized. In the evolve phase, the GA method iterates for G generations
where each generation repeats four steps. At first, step S3 compute the cost function
for each solution. Here, we can adopt only Mcost from Eq. 8.4. The communication
cost Fcost is also calculated for the selection step S4. In S4, the best B solutions
in K are ranked, and if they have similar Mcost values, their Fcost are considered.
Doing so preserves the simplicity of a single objective optimization for GA while
still considering migration and communication costs.

After getting B best solutions, it goes through two steps: S5—crossover and
S6—mutation. The crossover step S5 is performed by mixing two random mapping
solutions. It takes 50% of each parent to generate offspring. By doing so, the
offspring can inherit the mappings of its two parents.

There are two types of mutations in the mutation step S6. First, it finds an
immediate random node between two random nodes having a mapping flow. Here,
we ensure the immediate node having free neurons is closer to the source node than
the flow destination. For instance, Fig. 8.11b shows the case where the source node
(0, 0, 0) has 25 unmapped neurons and all are mapped to (0, 3, 2)—the destination
node. Then, it finds the immediate node (0, 2, 2) with two conditions: (1) there
are free neurons in the immediate node (0, 2, 2) and (2) the distance from the
source node (0, 0, 0) to the immediate node (0, 2, 2) is smaller than the original

8.7 R-NASH Evaluation Results 203

flow ((0, 0, 0) to (0, 3, 2)). The neurons are then remapped to the immediate node
instead of the destination. The result can be seen in Fig. 8.11c.

The second mutation is to swap the mapping to have a closer migrating distance
(smaller Mcost). If two flows can have a smaller migrating distance by swapping
the destination, the Algorithm performs the swap. For instance, Fig. 8.11c shows
unmapped neurons in node (0, 0, 0) being mapped to (0, 2, 2), and unmapped
neurons in node (0, 2, 0) being mapped to (0, 0, 2). Here, the migrating distances are
four for both flows. However, by switching the destination, we obtain a migrating
distance of two for both flows, as shown in Fig. 8.11d.

After G generations, the Algorithm finalizes by selecting only the best solution
(step S7 and S8). This solution is used to perform the mapping method. Since the
GA might take a long time to complete, we can also allow early termination of the
mapping and use the best-found solution.

In summary, this GA methodology provides an extension for the optimization
problem of remapping faulty neurons. While the mapping algorithm only focuses
on the communication cost, GA allows designers to take the migration cost function
for the optimization.

8.7 R-NASH Evaluation Results

In this section, we evaluate our R-NASH platform. First, the initial mapping issue
is addressed to show the efficiency of the GA (Genetic Algorithm) model. Here,
we map multiple-layer feed-forward networks to different 3D NoC sizes from
4 × 4 × 4 to 10 × 10 × 10. To understand the effect of having different node
sizes, we map the same system into different node sizes (256, 128, 64, and 32
neurons per node) and topologies. We also investigate the difference between
3D and 2D topology to illustrate the benefits of 3D structure. To improve the
robustness of the neuromorphic hardware, the fault-tolerant mapping is presented
compared to conventional works like greedy search. Third, we present the hardware
complexity for our system with NANGATE 45 nm and FreePDK45 TSV library.
We then present both offline and online training for the MNIST dataset in our R-
NASH neuromorphic hardware. To validate the operation of R-NASH, the tasks
were performed with both offline and online learning. For offline learning, offline
trained weights of a multiple-layer feed-forward neural network were converted and
used for classification on R-NASH. Thanks to the inhibitory connections, the task
with online learning was performed using the on-chip STDP with a winner-take-all
mechanism. Finally, we discuss the pros and cons of our approach.

204 8 Case Study: Real Hardware-Software Design. . .

8.7.1 Initial Mapping Evaluation

8.7.1.1 Mapping over Different 3D-NoC Sizes

To understand the GA method’s efficiency for initial mapping, we first compare it
with three linear mapping solutions. Then, we adopt the linear mapping method
from SpiNNaker [19] and implement it for the 3D topology to get Linear X, Linear
XY, and Linear XYZ, which represent the priority direction of the linear mapping.
The mapping configuration can be found in Table 8.1. Note that there are fixed spare
neurons (20% per node) and an extra node (the highest index node) that are not used
for mapping and can be used to tolerate faults later in Sect. 8.7.2. Here, we run GA
with population K = 100, the best B = 5, and the mutation rate of 0.5. Figure 8.12
shows the result of GA in comparison to the linear mapping methods. With a small
network size of 4 × 4 × 4, after nearly 60 generations, the GA saturates at a point,
and the lowest communication cost stays unchanged over the rest of the generations.
The final communication cost is lower than both manual mapping solutions, and the
overall cost is 0.4× the manual mapping. With bigger NoCs, it is easy to understand
that it needs more generations to be lower than the linear mapping. While 4 × 4 × 4
takes around 60 generation to converge, 6 × 6 × 6, 8 × 8 × 8, and 10 × 10 × 10 need
around 120, 180, and 320 generations respectively to be stable. We can observe that
linear mapping methods have significantly higher communication costs in all tested
cases than the genetic algorithm ones.

8.7.1.2 Mapping over Different Node Sizes

Figure 8.13 illustrates the different node sizes from 32 to 256 when mapping for
the same system. To maintain the same system size (the same number of neurons),
we vary the 3D NoC size from 4 × 4 × 4 to 8 × 8 × 8. As we can observe in
Fig. 8.13, the smaller NoC benefits the smaller distances between nodes, which can
reduce the cost of communication. The smallest network size provides the lowest

Table 8.1 Configuration for the mapping evaluationa

Parameter Value

neurons per node (E) 256

nodes (N) 4 × 4 × 4 to 10 × 10 × 10

spare neurons (R) 0.2×X

spare node 1

faults (k) 0.05×X, 0.10×X, 0.15×X, and 0.20×X

SNN # layers 4

SNN configurationa 784:0.5*(W-10): 0.5*(W-10): 10

X: number of neurons in R-NASH
a MLP model. For example, the SNN configuration for E = 64 and 4 × 4 × 4 is 784:1633:1633:10

8.7 R-NASH Evaluation Results 205

A B

C D

Fig. 8.12 Genetic Algorithm Result for initial mapping. (a) 4 × 4 × 4 NoC-based, 256 neu-
rons/node. (b) 6×6×6 NoC-based, 256 neurons/node. (c) 8×8×8 NoC-based, 256 neurons/node.
(d) 10 × 10 × 10 NoC-based, 256 neurons/node

communication cost (4039). By increasing the network’s size and reducing the
node’s size, the communication cost keeps increasing. With 128, 64, and 32 neurons
per node, the communication costs are 21,768, 107,838 and 529,440, respectively.
We do not need to send multiple unicast flits for spikes by placing neurons in the
same layer into a node. Instead, sending a single flit and distributing it to all nodes
can significantly reduce the traffic. However, we would like to note that scaling
the number of neurons per node is not unlimited due to the limitation on crossbars
and bottleneck on on-chip communication. Moreover, having a large size node also
leads to some disadvantages: (1) lower operating frequency due to a long critical
path; (2) difficulty to place and route due to complex structure and macro SRAM

206 8 Case Study: Real Hardware-Software Design. . .

Fig. 8.13 Genetic Algorithm Result of the initial mapping of 3D NoC-based. (a) 4 × 4 × 4, 256
neurons/node. (b) 4 × 4 × 8, 128 neurons/node. (c) 4 × 8 × 8, 64 neurons/node. (d) 4 × 8 × 8, 32
neurons/node

and (3) long-distance between nodes could also reduce the performance of the NoC.
Typically, the neuromorphic cluster varies between 256 and 1024 neurons per node.

8.7.1.3 Comparison Between 3D and 2D in Initial Mapping

As we mentioned, the 3D structure brings benefits. To illustrate them, we compare
the communication cost between 3D and 2D under the same linear mapping and
GA in Fig. 8.14. We keep the same node size as 256 neurons per node for a fair
comparison and the change between the NoC sizes. We compare 3D and 2D NoC
with the same number of nodes (64, 128, 256, and 512). As can be observed in

8.7 R-NASH Evaluation Results 207

Fig. 8.14 Comparison between 3D and 2D mapping. (a) 64 nodes (4 × 4 × 4 and 8 × 8) NoC-
based, 256 neurons/node. (b) 128 nodes (4 × 4 × 8 and 8 × 16) NoC-based, 256 neurons/node. (c)
256 nodes (4 × 8 × 8 and 16 × 16) NoC-based, 256 neurons/node. (d) 512 nodes (8 × 8 × 8 and
16 × 32) NoC-based, 256 neurons/node

Fig. 8.14, mapping on a 3D structure leads to a significantly smaller communication
cost. In all test cases (64, 128, 256, and 512 nodes), the performance of GA on
3D is 1.4–2.0× smaller than the 2D ones. Even with linear mappings (X, XY, or
XYZ), 3D still dominates the 2D. This is due to the nature of 3D bringing much
shorter traversal paths between regions of the chip. As a result, spikes can travel
much faster on 3D, and this could be translated into better performance and lower
power in 3D.

208 8 Case Study: Real Hardware-Software Design. . .

8.7.2 Fault-Tolerant Mapping

In this section, the Genetic Algorithm for remapping is evaluated and compared
with 1-hop and N-hop Greedy Search (GS) to understand its efficiency. The Greedy
Search runs each node once and looks for a spare node within one (1) hop range
or in the entire system (N-hop) with the shortest distance. The configuration of the
evaluation is shown in Table 8.1. In this evaluation, we measure three significant
parameters: (1) mapping rate: the ability to map the faulty neurons to the spare ones;
(2) average spike transmission cost (Fcost): the average distance of all connections
and (3) Migration cost Mcost : the amount of read/write neurons needed to adapt the
system. Figure 8.15 illustrates the results for the system for 3D-NoC configurations
(see Table 8.1). As shown in Fig. 8.15, our GA method can map all faulty neurons
to the spare ones regardless of the size or topology. We have to note that 1-hop
Greedy Search can only map around 60% (around 80% with the worst cases) of the
faulty neurons. This is because 1-hop Greedy Search only runs once and looks for
one mapping solution of its neighbor to fail to map easily. Meanwhile, the N-hop
Greedy Search and the Genetic Algorithm can map all neurons. The average Fcost

(communication cost) also varies between different approaches. Since the 1-hop GS

Fig. 8.15 Output mapping for the migrated neurons with random fault patterns in 3D-NoCs. The
system has 256 neurons per node; 20% of the neurons are spares with 1 redundant node without
any allocated neuron at 0% fault rate. (a) 5% defect rate. (b) 10% defect rate. (c) 15% defect rate.
(d) 20% defect rate

8.7 R-NASH Evaluation Results 209

mostly fails to map the neurons, the average communication distance per neuron is
unchanged. For other methods, the average Fcost fluctuates between different sizes.
However, as we can observe in Fig. 8.15, they are reduced when we increase the
size of the NoC. This is because when we increase the size of the NoC, the impact
of moving neurons is reduced. The effects are also more minor, with smaller fault
rates (k values). We can even notice the communication cost is maintained with
remapping. However, a slight reduction can be observed with the migration-based
Algorithm. Also, GA seems to have a better average Fcost since it reduces that value
as the second factor. In conclusion, we have shown the efficiency of adapting the GA
(Genetic Algorithm) for solving the remapping problem. Although the GA in some
cases still has a higher Fcost than others, it has shown efficiency on both migration
cost and communication cost. Moreover, it offers efficiency even with high defect
rates where the communication cost is much lower.

8.7.3 Hardware Complexity

Table 8.2 shows the hardware complexity of the architecture. The NI, which
supports the mapping method, is integrated with the neuron cluster and the 3D-
NoC router. As shown in Table 8.2, the additional LUTs for AER and Address take
up 23.35% and 28.83% of the Network Interface area, respectively. The overhead
of these two LUTs is relatively small. On the other hand, the NI, which supports
migration techniques, only occupies 25.95% of the tile area without the SRAM
(neuron cluster + network interface). Figure 8.16 illustrates our sample layout for
a 2 × 2 NoC-based SNN layer with migration support. The cluster’s configuration
is 256 spike inputs in AER format, 8-bit synapse weight, 32 physical neurons, 32
synapse crossbars for each cluster. Here, each crossbar is implemented with a 256-
bank 8-bit dual-port SRAM using OpenRAM. We only integrate 32 neurons per
node to have a reasonable Place&Route time and a visual layout. To support 3D-
NoC inter-layer interconnect, we use TSV from FreePDK3D45 with the size of

Table 8.2 Hardware complexity of the R-NASH node

Area Power Max Freq.

Module (μm2) (mW) (MHz)

Network interface

AER LUT 16,747 − −
Address LUT 20,768 − −
Total 72,032 30.4043 699.30

Neuron cluster 205,608 81.682 751.87

64KB SRAM − −
3D-NoC router [7] 41,739 14.6128 537.63

Vertical TSVs (up and down) 2901.1136 − −

210 8 Case Study: Real Hardware-Software Design. . .

(Router+NI+SNPC)’s logic & FF cells

Synapse: 32 SRAMs
(256-bank 8-bit) NI’s SRAM

176 TSVs

790 µm

1580 µm

Fig. 8.16 Layout of a 2 × 2 3D-NoC-based R-NASH layer. A tile’s size is 790 μm × 1580 μm

4.06 μm2 ×4.06 μm2 and the Keep-out-Zone is 15 μm2 ×15 μm2 for each TSV. As
can be observed in the layer’s layout, 80% of the area is for placing macro SRAM.
Since the design of the LIF neuron is lightweight, the most complicated part is the
crossbar.

However, the NI requires two dedicated SRAMs to convert the AER from local
value to a global one and a destination lookup table. We can further optimize the
design’s footprint by reducing the bit-width of a synapse or using an alternative
memory approach (eDRAM, STT-RAM, or memristor). Moreover, we add more
stacking layers dedicated to memory, which allows us to have a smaller footprint.

8.7.4 System Validation

This section presents the result of online and offline training for our R-NASH
system. As the 3D-NoC aims to model a complex neuromorphic system, the
conventional MNIST classification neural networks are too small to map. Therefore,
we have scaled up the feed-forward neural network’s hidden layer to map it into
our R-NASH in the validation section. We first show the offline conversion from a
feed-forward ANN to our SNN. Next, weight, parameters, and configurations are

8.7 R-NASH Evaluation Results 211

loaded into the system using a memory interface. Then, the online STDP method
is presented. The initial weights, randomized and normalized, are loaded in our R-
NASH system as R-NASH does not support random number generation.

8.7.4.1 Offline Feed-Forward Network

For the offline training, we use the feed-forward network 784:1024:1024:10 and
784:1024:1024:1024:10 for the MNIST dataset. We fixed the hidden layer to 1024
to fit the 10-bit SRAM model for the hardware design. Here, we use a 3D-NoC of
4 × 4 × 4 with 64 neurons/node from the output of the initial mapping in Fig. 8.13.
Since 2058 and 3082 neurons are used in the two networks, we reserve the remaining
ones as the spare neurons for tolerating potential defects. There is one extra node
at (3,3,3) and sparse neurons of around 31/32 for the first network and 2/3 for the
second network in all active nodes. Although scaling the 3D-NoC and the number
of neurons per node can support bigger network size, we only adopt the above feed-
forward size to avoid large SRAM models. Using sparse synapses could reduce the
SRAM size; however, we only target to validate R-NASH’s operation.

Figure 8.17 show the accuracy results of 784:1024:1024:10 on the R-NASH
system in comparison with the software version. The R-NASH system uses an
8-bit signed weight representation which gives similar results to the converted
version in Matlab. The total number of time steps is 350 (1 ms per time step in
the simulation). Here, we also evaluate the fixed point SNN in software where we
clip the least significant bit in representation. We also consider our R-NASH, where

Fig. 8.17 Accuracy result of offline training for MNIST dataset with the network model
784:1024:10

212 8 Case Study: Real Hardware-Software Design. . .

Fig. 8.18 Accuracy result of offline training for MNIST dataset with the network model
784:1024:1024:10

8-bit signed fixed-point values are converted to an integer value to enable hardware
implementation. At first, we can easily see the drop in accuracy when comparing the
floating-point SNN and the fixed point ones. The reductions are significant when the
number of representing bit is less than 5. The main reason is that the more extensive
and deeper network will accumulate the differences in the values, which results in
more inaccurate results. Nevertheless, we can easily see that an 8-bit signed fixed
point is best for implementation and provides nearly identical accuracy at the end
with a slower response time.

Figure 8.18 and 8.19 illustrate the case of three and four hidden layer network
(784:1024:1024: 1024:10). Here, we can observe a similar behavior as the first
network. The R-NASH system provides a similar result as the software in floating-
point. The 7-bit fixed point version now can have the final result of inference close
to the floating-point; however, it needs over 100-time steps to converge.

In summary, we illustrate that R-NASH can inference pre-trained and converted
networks without issues, and the result is identical to the software version. Note that
R-NASH saturates around the 55th time step in both cases. If the system cuts the
operation at this point, it could save nearly 85% of the computation time by using
clock gating [22] where energy could be saved at zero data switching activity.

8.7 R-NASH Evaluation Results 213

Fig. 8.19 Accuracy result of offline training for MNIST dataset with the network model
784:1024:1024:1024:10

8.7.5 Unsupervised STDP

In this section, we evaluate the online STDP method for the same MNIST
benchmark. Here we adopt the network in [10] with the recurrent version that
could be found in the work of [16]. Furthermore, we simplify the architecture to
be identical to the hardware implementation. The network size of [10] is 784:N:N
while our network is 784:N. Since the number of neurons is not significant enough
to scale to a 3D-NoC, we only use 1 × 4 × 4 3D-NoC and 64 neurons/node. There
are two versions with N = 100 and N = 400, mapped into 2 and 4 nodes. Since there
is no sparse connection, the communication cost stays unchanged with any neuron
placements.

For testing purposes, we adopt the BindsNet [16] platform to build the RTL-like
version of the LIF neuron to train and test on our PC. After completing the testing
and debugging phase, the Verilog model train is performed and compared with the
golden reference software. In the software model of SNN [10], the authors used the
adaptive weight change (�w = w × learning_rate); however, it is not suitable for
our hardware STDP due to two reasons: (1) the resolution of the weight (8-bit) is
too small to use the same principle and (2) the architecture for the multiplication is
too complicated. Therefore, we use the fixed weight change here. We also evaluate
the method for more understanding. Table 8.3 shows the accuracy of the software
version of STDP learning and our hardware STDP SNN. Comparing the R-NASH
model and the software [10], we could observe a drop in accuracy by using our

214 8 Case Study: Real Hardware-Software Design. . .

Table 8.3 Accuracy result of
STDP learning for SNNs

N Floating point software R-NASH

100 79.44% 71.32%

400 88.87% 84.05%

Timestep

N
eu

ro
n

in
de

x

Output spikes for neurons (0 - 100)
Timestep

In
pu

t l
ay

er
 in

de
x

Input spikes for input layer (0 - 784)

0.0

0.2

0.4

0.6

0.8

1.0A B

C

Fig. 8.20 Illustration of the STDP learning model. (a) the final weights. (b) Illustration of input
spikes for the first test image (number 8). (c) Illustration of output spikes

RTL model. This is due to the much simpler hardware model and lower resolution
(fixed 8-bit for weight, 16-bit for membrane potential, 16-bit for normalizing).

Figure 8.20 illustrates the weight with N = 100 and the input (output) spikes
extracted from our R-NASH software model. The weights have been adapted into
the MNIST. However, there are some drawbacks due to the hardware model’s
simplicity. For instance, there is some weight with a similar distribution. As a
result, these neurons fire simultaneously and continue to fire during the following
time steps. Figure 8.20 illustrates that three neurons continue to fire during the 350
simulated timesteps. Moreover, the weights keep changing during the training time
due to the pure STDP without intervention. We can certainly observe that some
weights are mixed of two numbers (i.e., 8 and 5, 1 and 7).

8.8 Chapter Summary

This chapter presents R-NASH, a robust 3D neuromorphic system that supports
high parallelism, thanks to the used 3D-NoCs. Besides the benefit of a smaller
footprint brought by 3D-ICs, the R-NASH system is designed with highly reliable
features that support data protection and fault recovery at the system level. In
this work, we presented the functionality of the 3D neuromorphic system by
performing the MNIST dataset classification. Moreover, the platform for R-NASH
is also presented with the mapping method and fault-tolerance feature. The mapping
method shows that it can easily outperform manual mappings by optimizing the
number of hops needed to travel among the SNN. On the other hand, we also
illustrate a genetic algorithm for fault recovery in SNN. Further optimization, such

References 215

as bit-width reduction and low-power optimization, is needed and investigated in
our future work.

References

1. Ahmed AB, Abdallah AB (2014) Graceful deadlock-free fault-tolerant routing algorithm for
3D Network-on-Chip architectures. J Parallel Distrib Comput 74(4):2229–2240

2. Akopyan F et al (2015) TrueNorth: Design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip. IEEE Trans Comput Aided Des Integr Circuits Syst
34(10):1537–1557

3. Banerjee K et al (2001) 3-D ICs: A novel chip design for improving deep-submicrometer
interconnect performance and systems-on-chip integration. Proc IEEE 89(5):602–633

4. Ben Abdallah A, Dang KN (2021) Toward robust cognitive 3d brain-inspired cross-paradigm
system. Frontiers Neurosci 15:795

5. Ben Ahmed A, Ben Abdallah A (2013) Architecture and design of high-throughput,
low-latency, and fault-tolerant routing algorithm for 3D-network-on-chip (3D-NoC). J
Supercomput 66(3):1507–1532

6. Benjamin BV, et al (2014) Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations. Proc IEEE 102(5):699–716

7. Dang KN, Ahmed AB, Okuyama Y, Abdallah AB (2020) Scalable design methodology and
online algorithm for TSV-cluster defects recovery in highly reliable 3d-NoC systems. IEEE
Trans Emerg Top Comput 8(3):577–590

8. Dang KN, Ben Abdallah A (2019) An efficient software-hardware design framework for
spiking neural network systems. In: 2019 International conference on internet of things,
embedded systems and communications (IINTEC), pp 155–162

9. Davies M et al (2018) Loihi: A neuromorphic manycore processor with on-chip learning. IEEE
Micro 38(1):82–99

10. Diehl PU, Cook M (2015) Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front Comput Neurosci 9:99

11. Diehl PU et al (2015) Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing. In: 2015 International joint conference on neural networks (IJCNN),
July 2015, pp 1–8

12. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Rasmussen D (2012) A
large-scale model of the functioning brain. Science 338(6111):1202–1205

13. Furber S (2016) Large-scale neuromorphic computing systems. J Neural Eng 13(5):051001
14. SB Furber et al (2014) The SpiNNaker project. Proc IEEE 102(5):652–665
15. JH Goldwyn, Imennov NS, Famulare M, Shea-Brown E (2011) Stochastic differential equation

models for ion channel noise in Hodgkin-Huxley neurons. Phys Rev E 83:4190–4208
16. Hazan H et al (2018) BindsNET: A machine learning-oriented spiking neural networks library

in Python. Front Neuroinform 12:89
17. Holland JH et al (1992) Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. MIT Press
18. Hsiao MY (1970) A class of optimal minimum odd-weight-column SEC-DED codes. IBM J

Res Devel 14(4):395–401
19. Jin X (2010) Parallel simulation of neural networks on spinnaker universal neuromorphic

hardware. The University of Manchester (United Kingdom)
20. Lee HG, Chang N, Ogras UY, Marculescu R (2008) On-chip communication architecture

exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip approaches.
ACM Trans Des Autom Electron Syst (TODAES) 12(3):1–20

216 8 Case Study: Real Hardware-Software Design. . .

21. Levin JA, Rangan V, Malone EC (2014) Efficient hardware implementation of spiking
networks. Patent No. US 2014/0351190 A1, Filed May 1, 2014, Pub. Date Nov. 27, 2014

22. Mahmoodi H et al (2008) Ultra low-power clocking scheme using energy recovery and clock
gating. IEEE Trans Very Large Scale Integr (VLSI) Syst 17(1):33–44

23. Ogbodo M, Vu T, Dang K, Ben Abdallah A (2020) Light-weight spiking neuron processing
core for large-scale 3D-NoC based spiking neural network processing systems. In: 2020 IEEE
international conference on big data and smart computing (BigComp), pp 133–139

24. Panth SA, Samadi K, Du Y, Lim SK (2014) Design and cad methodologies for low power
gate-level monolithic 3d ICS. In: Proceedings of the 2014 international symposium on low
power electronics and design, pp 171–176

25. Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia AS, McNamara J (2008) Neuro-
science. Sinauer Associates

26. Rueckauer B et al (2017) Conversion of continuous-valued deep networks to efficient event-
driven networks for image classification. Frontiers Neurosci 11:682

27. J Schemmel et al (2010) A wafer-scale neuromorphic hardware system for large-scale neural
modeling. In: Proceedings of 2010 IEEE international symposium on circuits and systems,
May 2010, pp 1947–1950

28. Sengupta A, Ye Y, Wang R, Liu C, Roy K (2019) Going deeper in spiking neural networks:
Vgg and residual architectures. Frontiers Neurosci 13:95

29. Stimberg M, Brette R, Goodman DF (2019) Brian 2, an intuitive and efficient neural simulator.
eLife 8:e47314

30. Vu TH, Okuyama Y, Ben Abdallah A (2019) Comprehensive analytic performance assessment
and K-means based multicast routing algorithm and architecture for 3D-NoC of spiking
neurons. J Emerg Technol Comput Syst 15(4):34:1–34:28

31. Waldrop MM (2016) More than moore. Nature 530(7589):144–148
32. Wu Y, Deng L, Li G, Zhu J, Shi L (2018) Spatio-temporal backpropagation for training high-

performance spiking neural networks. Frontiers Neurosci 12:331
33. Yin S, Venkataramanaiah SK, Chen GK, Krishnamurthy R, Cao Y, Chakrabarti C, and Seo JS

(2017) Algorithm and hardware design of discrete-time spiking neural networks based on back
propagation with binary activations. In: 2017 IEEE biomedical circuits and systems conference
(BioCAS). IEEE, pp. 1–5

Chapter 9
Survey of Neuromorphic Systems

Abstract Neuromorphic computing systems have the potential to realize brain-like
learning and adaptation ability. This chapter presents a comprehensive survey of
research works in neuromorphic computing systems. First, the chapter gives the
motivations for neuromorphic computing, then describes significant research works
in the field. These works are categorized as software emulation, digital hardware,
and analog and mixed-signal hardware approaches. This chapter aims to provide
an exhaustive review of the research conducted in neuromorphic computing and
illuminate the gaps in the field where new research is needed.

9.1 Introduction

During the 1980s, Carver Mead and his team at Caltech pioneered the idea of bio-
inspired microelectronics [16]. Mead’s approach to neuromorphic engineering is
based on the physics of transistors mimicking the operation of neurons. Since then,
the architectures of neuromorphic systems have been improved by researchers to
obtain better scale, learning, and efficiency.

Many large-scale neuromorphic systems have been developed in recent years
due to the fact that many transistors can be integrated into a single chip. By
doubling the density of a single chip every two years, the available resource
for designers to develop large-scale neuromorphic system has become feasible.
From the design perspective, there are three design approaches for neuromorphic
systems: (1) software emulation, (2) digital hardware, and (3) analog and mix-signal
hardware.

In the software emulation approach, the SpiNNaker system designed by the
University of Manchester is the most notable. It is structured as a high performance
computing system with many ARM cores that simulate models of neurons and
synapses. A SpiNNaker chip which consists of 18 cores communicate via on-chip
network that extends off-chip via wires.

Recent chips that adopt the digital hardware approach include IBM TrueNorth
and Intel Loihi. TrueNorth is a multi-core Network-on-Chip-based neuromorphic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3_9

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92525-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-92525-3_9

218 9 Survey of Neuromorphic Systems

chip. Each core is a 256 × 256 crossbar connecting the incoming spike event to the
post-synaptic neurons. It deploys a Leaky-Integrated-and-Fire neuron model with a
fixed weight for each neuron. Training for TrueNorth is done off-chip as the system
only performance inference. The Intel Loihi consists of an asynchronous spiking
neural network (SNN), which enables it to sends spikes along active synapses. Its
programmable neurons allow different models to be implemented. The bit-width of
synapses is also adaptive between 1 to 9 bit.

The Analog and mix-signal hardware approach inherit the idea of Prof. Carver
Mead and his team at Caltech. The BrainScaleS system uses the wafer-scale analog
circuit that performs 10,000 times faster than the biological real-time. The Stanford
University Neurogrid with the real-time sub-threshold analog neural circuit. It’s on-
chip network is based on tree topology, and delivers multicasting performance.

All of these approaches represent different trade-offs between a set of desirable
objectives. Factors like energy efficiency, integration density, flexibility, analog
versus digital neuron, hardware versus software, all play their role in creating
balance in the above systems. In the following section, we will cover these systems.

Table 9.1 shows the comparison between notable works of large-scale neuro-
morphic computing systems. SpiNNaker can simulate up to one million neurons.
However, because it is based on high-performance computing approach, it is difficult
to scale up further. On the other hand, chip-based solutions, such as TrueNorth,
Neurogrid, or Loihi can be expanded with a multi-chip solution as 2D-NoC can be
naturally scaled. For example, both 16 chips versions of Neurogrid and TrueNorth
can reach one million neurons without consuming a significant amount of power.

Although hardware-accelerated systems prove to be energy efficient, SpiNNaker
has the flexibility on the neuron operation as it can be further updated. SpiNNaker
also supports better memory and plasticity model. Loihi, has a programmable
neuron operation that allows the designers to change the neuron’s function; however,
it is easy to see that Loihi is the most complicated design as it uses 2.07 billion
transistors for 131 thousand neurons. Another observation for the state-of-the-
art design is the domination of digital neuromorphic chips. Although analog
neurons precisely emulate the electrical activity of biological neurons, and consume
less power, there are several obstacles faced when implementing them. First, the
fabrication process is more complicated than the digital design based on normal cells
and commercial tools. Second, the operation of analog neurons tends to vary with
different process technologies, temperature, and voltage variations which introduces
randomness in the neuron’s function. Although it might be close to biological
neuron, it is not easy to control. Furthermore, there is no simulation support for
this design. These obstacles make prototyping and debugging large-scale analog
neuromorphic systems difficult.

9.2 Software Emulation Approach 219

Table 9.1 Neuromorphic systems survey

Platform Neurogrid BrainScaleS SpiNNaker TrueNorth Loihi

Technology Analog,
sub-threshold

Analog, over-
threshold

Digital,
programmable

Digital,
fixed

Digital,
programmable

Feature
size

180 nm 180 nm 130 nm 28 nm 14 nm

Die size 1.7 cm2 0.5 cm2 1 cm2 4.3 cm2 60 mm2

transistor 23M 15M 100M 5.4B 2.07B

neurons 65k 512 16k 1M 131k

synapses 100M 100k 16M 256M 16-128M (8-1
bit/synapse)

Power 150 mW 1.3 W 1 W 72 mW

Interconnect Tree-
multicast

Hierarchical 2D mesh-
multicast

2D mesh
unicast

2D mesh
unicast

Neuron
model

Adaptive
quadratic IF

Adaptive
exponential
IF

Programmable LIF Programmable

Synapse
model

Shared
dendrite

4-bit digital Programmable Binary, 4
modes

1-8 bit

Run-time
plasticity

No STDP Programmable No Programmable

9.2 Software Emulation Approach

The initial idea of operating neuromorphic systems comes from research in neuro-
science which aim to mimic the operation of biological brains. For example, the
Human Brain project [15] uses exascale supercomputers to investigate the brain on
different spatial and temporal scales. SpiNNaker [11] is another project based on
massively parallel processors to emulate the operation of biological brains.

There are also several software emulations of neuromorphic systems. Brian
2 [20] is a Python-based emulation tool for neuromorphic systems. Brain 2 relies on
CPU performance, and its GPU version is still under development as of 2021 [21].
NEST [12] is another spiking neural network emulation platform that supports
more than 50 neuron models. SpiNNaker team also released the software package
for running PyNN simulation on SpiNNaker in [18]. Reusing the existing neural
network platforms, PyCARL [4] and BindsNet [13] can use GPU to accelerate the
emulation performance.

9.2.1 SpiNNaker

The SpiNNaker [11] project aims to develop a massively parallel supercomputer
to emulate the operation of the biological brain in real-time. SpiNNaker consists
of more than a million ARM9 processors and 7 Tbytes of distributed RAM

220 9 Survey of Neuromorphic Systems

throughout a 57K nodes system. Each node consists of 18 cores and 128 Mbytes
SDRAM, and each core emulates a thousand neurons. Since SpiNNaker is based
on general-purpose processors, its neuron and synapse models are not limited.
However, unlike the supercomputer-based model, SpiNNaker relies on different
computing and communication model that allows more efficient brain emulations.

Communication of SpiNNaker is based on a folded 2D triangular mesh. A router
accepts packets from 18 resident cores and six incoming inter-chip links. The
transmission uses the AER format to communicate between cores.

9.2.1.1 Model

SpiNNaker follows the “point neural model” (see Fig. 9.1) where the structure of
dendrite is ignored. The inputs of the neuron are fed through to the soma. The
learning mechanism only updates the synapse, which represents the strength of
the connection. By going through the synapse, the input spikes will have different
attitudes based on the weight. If the weight is positive, it is an excitatory synapse.
Otherwise, it is an inhibitory synapse.

9.2.1.2 SpiNNaker Architecture

The architecture of the SpiNNaker node is shown in Fig. 9.2. It consists of 18 ARM
processors connected via a system Network-on-Chip. The packet router receives six

Fig. 9.1 The neuron point model

9.2 Software Emulation Approach 221

Router

Core 0

System Network-on-chip

SDRAM (128MB) Peripherals

Ethernet GPIO

Core 1 Core 2 Core 17

S SW W N NE E
Inter-chip links

Fig. 9.2 The architecture of a SpiNNaker node

input links from neighboring nodes and one input link from one of 18 processors.
In the packet router, packets are decoded, routed, and fed to one of the output six
external links or one of the local processors. The node also supports internal RAM,
ROM, Ethernet connection, controller, and external SRAM interface. By connecting
the nodes, SpiNNaker forms a triangular lattice topology which is folded onto a
toroid surface as shown in Fig. 9.2.

The human brain comprises of 1011 neurons. SpiNNaker aims to model 1% of
this scale or ten whole mouse brains. Each neuron of the brain is supposed to connect
with thousands of other neurons with the mean firing rate of 10 Hz and the maximal
firing rate of hundreds of Hertz. In SpiNNaker, the target firing rate is at 10 Hz, and
each neuron has 1000 inputs. With this model, the ARM process is designed to run
at 200 MHz, and the router is to run at 100 MHz. These are reasonable frequencies
for being balanced between biological performance and power consumption. With
the interrupt-based wake-up manner, the process goes to sleep if there is no activity
(i.e., no input spikes).

SpiNNaker uses ARM968E-S as its processor [2], which is part of the ARM
9family with 32 KB instruction and 64 KB data cache memory connected directly
to the core. All parts of the core are mapped and accessible via the AHB
(Advanced High-Speed Bus—one of the ARM AMBA—Advanced Microcontroller
Bus Architecture—interface standards) interface. The process has direct access to
the DMA (with system NoC to intra-node), communication (with communication
NoC to inter-nodes), and other parts (interrupt, timer/counter). The data cache of
the core can be accessed directly from the DMA controller which allows system
NoC to deliver packets into the data cache memory.

222 9 Survey of Neuromorphic Systems

In SpiNNaker, there is no conventional operating system running on the cores.
Instead, it operates in an interrupt service manner. An interrupt arrives in a message
form and wakes up the core to handle it. The packet first arrives in a packet buffer.
Then, it triggers the DMA to transfer the result and update the synaptic inputs (the
spikes). Besides that, the cores can also be woken up by external events.

9.2.1.3 Other Modules

Each node in SpiNNaker also has timers/counters. They are managed and accessible
via the AHB interface. These counters/timers provide the real-time dynamics for
biological spikes and other periodic timing controls.

Direct Memory Access is used to access the data cache of a core. This transfers
inter-neural connection data from the SDRAM to the corresponding processor and
writes back to update information (states, outputs). DMA also allows the host ARM
core to access system NoC (including the SDRAM) in “bridge” mode. There is also
an error management module with interruptions for recovering from crashes.

To connect with the host machine, SpiNNaker uses an Ethernet connection. Each
node has an Ethernet interface, but few chips are connected to the host machine. The
host machine runs the software used to program and monitor SpiNNaker. Instead,
in the host machine, the software is run to program and monitor the SpiNNaker. As
mentioned above, there is a cached memory within each processor. In particular,
there are ITCM and DTCM for caching instruction and data. Both are run at
800 MBps speed and can be accessed at each core. The capacitance of ITCM and
DTCM is 32 kB and 64 kB, respectively. There is a shared SRAM within the chip
with a capacity of 32 kB and a speed of 25 MBps. SpiNNaker also has off-chip
memory with 128MB SDRAM running at 64 MBps. Both SRAM and SDRAM are
accessible at the node level. Since SpiNNaker is a 32-bit system, all memories are
mapped into its 32-bit memory space. Consequently, the processors within a node
can access this information. However, the nodes cannot access the information in the
memory space from other nodes. Instead, packets delivered by 6-links interconnects
are used to communicate. There are no such things as cache coherence between
nodes.

9.2.1.4 Communication in SpiNNaker

To communicate between processors of a node, a system NoC is used. Since the
memory space is node-level visible, processes can access the information it needs.
For inter-node communication, packets are used. Packets are either in 40-bits (5
bytes) or 72-bit (9 bytes) format. In particular, a packet consists of 8 control bits
and either one or two words. The second word is optional and indicates one bit in
one of 8 control bits.

9.2 Software Emulation Approach 223

Packets are transmitted to one of the neighboring nodes. They will be routed
to the local cores or propagated to one neighbor. Packets are either in uni-cast or
multicast format.

The SpiNNaker system performs its inter-neuron communication based on
Address Event Representation (AER) [19], where the address of neurons are sent
instead of spikes. Compared to sending the vectors of the output of the neuron array,
AER has lower complexity thanks to lesser bit and the sparsity of the firing events.

In SpiNNaker, the system consists of one million ARM cores. Each core emulates
a thousand neurons. Consequently, there are one billion neurons in SpiNNaker. As
each neuron has a different address in AER format, 32-bit is used to represent it. To
send the spike, the system transmits the 32-bit ID of the neuron instead. This 32-bit
ID is attached as the optional payload in SpiNNaker packets in Fig. 9.3. There are
four basic types of packets:

• Nearest Neighbor: this type of packet is used to allow nodes to communicate with
their neighbors. The main functions of this packet are: (1) initialize the system,
(2) run-time flood-fill, and (3) debugging.

• Point-to-Point: this type of packet consists of the source node address and the
destination node address (each one is 16-bit) in the first word. The router will use
a look-up table to find the correct output link for routing the packet.

Fig. 9.3 The SpiNNaker packets. (a) Nearest neighbor packet layout. (b) Point-to-point packet
layout. (c) The neural event multicast packet layout. (d) Fixed route packet layout

224 9 Survey of Neuromorphic Systems

• Multi-cast: this type of packet is mainly used for inter-neural communication
(i.e., spikes). The first word consists of the AER of the firing neuron in 32-bit. The
router must use content-access-memory (CAM) to extract the proper direction for
this type of packet.

• Fixed-routing: this type of packet already predefines the routing path in the
content. This packet provides a fast track from the launching node to the
Ethernet-enabled node.

There are two types of interconnect in SpiNNaker: system NoC and communication
NoC. While the system NoC maintains the connectivity of 18 processors and the
SDRAM, the communication NoC maintains the input and output packets. The
communication NoC follows a tree-based structure where the input streams are
merged into a single stream to be routed. Later, the output stream is demultiplexed
into six streams to the neighbor nodes or to local. Figure 9.4 describes the flow of
input stream. The inter-chip links are 4-bit each and running at 60 MHz. Meanwhile,
the on-chip processor communication runs at 8-bit and 200 MHz. Note that there are
18 input streams from 18 processors. By merging all of them, the final stream is 72-
bit at 100 MHz. This is one packet per cycle to be routed. SpiNNaKer also adopts the
AER protocol as the central idea with its modifications to form the communications
between neurons. As the AER format represents the spike in two information: (1)

Fig. 9.4 The SpiNNaker input streams of the communication NoC

9.2 Software Emulation Approach 225

the time of spike and (2) the neuron’s identity, SpiNNaker conveys the idea using
packet-switch communication and broadcast/multicast routing. Once a spike occurs,
the AER signal is sent to the packet-switch communication fabric, and delivered to
the connected neurons.

By delivering by electronics communication fabrics, spikes can instantaneously
arrive at their destinations compared to biological signals in the brain. This allows
SpiNNaker to map any neuron to any node (cluster of neurons) and virtually form
the biological topology regardless of the pack-switch communication topology.
However, the problem of efficient mapping is also considerable and has been
extensively investigated to reduce the transmission time between neurons [3].

Since the electronics signals can be delivered instantaneously, the “time” infor-
mation of the spike cannot be preserved, and must be presented in another way.
In the biological system, spikes are expected to be at the right place at the right
time; however, the electronics system works the other way around. If there is no
congestion in the communication infrastructure, the spikes are delivered effectively.
However, congestion or failures in the communication system can delay, drop, or
misroute spikes. Therefore, there is a need for a scheduling method and fault-
tolerance features in the spiking system.

In SpiNNaker, there are fixed time-multiplexed 1000 neurons per ARM processor
to be executed. Therefore, each node of SpiNNaker with 18 ARM processors, makes
up 18,000 neurons per node. Therefore, SpiNNaker expects the delivery time (spike
window) to be likely at 0.2 μs/hop to ensure the neurons react to the stimuli in order
of ms like biological systems.

At first, the communication between ARM cores of a SpiNNaker chip is handled
by a Network-on-Chip. Then, it is converted to off-chip communication using
packet-router modules. Next, six links are merged using a time division multiplexer
to stream together with the stream from the local NoC. The output stream is later
split into six output links (Fig. 9.5).

The inter-node communication in SpiNNaker is via packets. The packets are
generated by cores and transmitted to the local router. The packets are then
redirected to the target cores. If the destination neurons are in the same node as the
source, the local router sends the packets back to the local cores. If the destination
is in other nodes, the local router sends the packets to a neighboring node. As each
node can only connect to six nodes in general, routing techniques are needed to
deliver the packets efficiently.

SpiNNaker packets are either in 40-bit or 72-bit format (8 control bit and either 4
bytes or 8 bytes of data). While the nearest neighbor packets are used to initialize the
system, flood-fill communication (broadcast) and debugging, point-to-point packets
allow more detailed communications. Among those packets, we focus on the neural
event multicast as it represents the interneural communication. Here, the AER of
SpiNNaker can be summarized in Fig. 9.3 where it uses 16 bits for node ID, 5 bit
for the core ID (ARM core), and 11 bits for the neuron ID (neuron within ARM
core). The routing method for AER follows the Content-Access-Memory (CAM)
method, where it first looks up the CAM to find the address on the output RAM.

226 9 Survey of Neuromorphic Systems

… …

Fig. 9.5 The SpiNNaker node

Then, the output RAM of 6+18 encodes the output direct in one-hot format (the
first 6 bits are for the inter-chip link and the last 18 bits for the internal core).

9.2.1.5 SpiNNaker Software Platform

The software platform of SpiNNaker is classified either as running in the system,
or running in the host machine. For example, Fig. 9.6 depicts the software platform
for SpiNNaker. The software running within SpiNNaker is mostly written in C.
This software perform at a primitive level for both controlling and emulating the
operation of the neuromorphic system.

Most SpiNNaker applications run based on an event management library named
Spin1 API. This library provides a platform for associating the interrupts with event
handling code. Without running any code, the processors will enter a low-power
sleep mode. Once an event triggers an interrupt, the processor starts to operate.

The software running at the host machine is used to download, monitor, and
visualize the data. This software communicates with SpiNNaker via the Ethernet
connection as each node has one.

SpiNNaker provides APIs to allow designers to develop the SpiNNaer in either
C, Perl, or Python at the host machine. In addition, some visualizers allow users to

9.3 Digital Hardware Design Approach 227

Fig. 9.6 The SpiNNaker software platform

obverse the input and output of the system (and neurons). The host machine can
also supply input spike via a Spike Server application. This can be used to provide a
data set or connect to input sensors that provide spiking inputs. The SpiNNaker has
been demonstrated with Negro—a neuromorphic software platform, AER sensors,
and robotics.

9.3 Digital Hardware Design Approach

While using general-purpose computing resources to emulate the operation of the
neuromorphic system can be a feasible solution for neuroscience research, the
energy efficiency of this method is not feasible for edge computing. For instance, the
reference SpiNNaker system of 600 PCBs emulating 460 million neurons consumes
50 kW. To solve this problem, using hardware accelerators is considered a suitable
approach.

The analog and mixed-signal approach is covered in the next section. Instead
of using CPU or GPU to compute the neuron operation and synaptic plasticity, the
digital hardware approach relies on the hardware design of neurons and synapses.
Generally, spikes are sent in Address-Event-Representation format and decoded at
the receiver to obtain the weighted spike. This synapse operation can be done using
a resistive crossbar or a memory.

Due to the complexity of other neuron models, most digital hardware works use
a variation of Integrated-and-Fire in their model (i.e., adding leaky or stochastic
inputs). This allows implementation with low cost and high energy efficiency.
However, the flexibility in neural computation is limited.

There are several works on digital hardware that have been done. Notably,
TrueNorth by IBM [17] in 2014 and Loihi by Intel [7] in 2018. Both chips share the

228 9 Survey of Neuromorphic Systems

same principles: (1) neuron circuits serially emulate group of neurons; (2) neurons
are grouped into clusters; (3) clusters of neurons communicate via an asynchronous
2D mesh network-on-chip. Due to the low complexity of the design, online learning
becomes a new challenge. In [9], a neuromorphic chip with 256 neurons and online
learning is presented. An updated version in [10] illustrates four cores of Stochastic
Spike-Driven Online Learning. NASH [14] is another multi-core 3D-Network-on-
Chip design with STDP learning. In [22], a neuro-inspired computing chip survey
is also presented. The design and operation of IBM TrueNorth and Intel Loihi as
digital hardware approach is presented in the following subsections.

9.3.1 IBM TrueNorth

IBM TrueNorth [17] targets to deliver a dense and energy-efficient platform for
cognitive applications. The TrueNorth chip consists of 5.4 million transistors
fabricated in 28 nm CMOS technology. Each chip houses 4096 neurosynaptic cores
that communicate in 2D Mesh 64×64 asynchronous Network-on-Chip. Each core
consists of 256 neurons and 256 inputs which make 65,536 synapses. The chip
is asynchronous with a 1 kHz time-step clock [1]. Integrate and Fire (IF) neuron
model is adopted together with 1-bit synapse and neuron-based fixed weight and
23 configurable parameters. In each core, only one physical IF neuron is used to
perform 256 neuron operations in a serial manner. TrueNorth is trained off-line and
the chip only performs inference. Software for modeling, training, and mapping the
desired system into the TrueNorth system is available.

9.3.1.1 TrueNorth Neurosynaptic Architecture

TrueNorth chips can be connected to form larger systems. For example, the
NS16e circuit board hosts 16 IBM TrueNorth chips in a layout of 4×4. The 2D
Mesh Network-on-Chip is naturally extended by connecting TrueNorth chip is 2D
Mesh layouts. In TrueNorth, packets are routed by the offset between two nodes
(difference in X and Y coordinates). Therefore, theoretically, the TrueNorth can
efficiently expand the size of NoC. TrueNorth architecture is based on asynchronous
2D Network-on-Chip. The chip layout and inter-chip communication is shown in
Fig. 9.7 [1]. The neuron synaptic core (see Fig. 9.8) which consists of 256 neurons
is attached to a 2D-NoC router. The spikes are sent from the pre-synaptic neurons
to the network, where the routers help deliver them to the destination neuro synaptic
core where the post-synaptic core resides. The spikes in AER format can travel
through chip periphery to off-chip wires and delivered to other chips.

Figure 9.8 depicts the model for a single neuro synaptic core of TrueNorth. The
input spikes arrive at axons. The spikes are sent to the neuron via a dendrite.
The connection between axons and dendrites is the synapses. In TrueNorth core,
these connections are represented in a synaptic crossbar where black dots connect

9.3 Digital Hardware Design Approach 229

Fig. 9.7 The inter-chip communication

Fig. 9.8 The neural network model in the neurosynaptic core [1]

synapses. There are only two modes in the synapses: connected and unconnected,
allowing the weight to be represented in binary. The output of the synaptic crossbar
is later multiplied with a fixed value; therefore, the actual weights are not binary but
fixed for each neuron (0 or a fixed value).

The neuron in TrueNorth operates in a synchronized 1 kHz global clocks.
Meanwhile, the NoC is asynchronous, and the cores operate independently. This
means all computation of neuron must be done within a time frame of 1 ms

230 9 Survey of Neuromorphic Systems

regardless of the deviation in arrival time of the spikes. This helps TrueNorth operate
similar to its software simulation. This is also one of the advantages of using a fully
digital neural implementation.

The TrueNorth neuron follows the Leaky Integrate-and-Fire fashion an given in
the following equation:

Vj (t) = Vj (t − 1) +
N−1∑
i=0

Ai(t)wi,j s
Gi

j − λj (9.1)

where Vj (t) is the membrane potential of neuron j at the timestep t , Ai(t) is the
binary value that represents the incoming spike from neuron i (1: has spike, 0:
no spike), wi,j is the binary represent the connectivity between the axon i and

the dendrite j (1: connected, 0: unconnected), s
Gi

j is the actual weight (synapse
strength) between the axon i and the dendrite j and is classified in four type (Gi : 1
to 4), and λj is the leaky value of neuron j . The leaky value and the neuron equation
are not fixed and may be adapted in several modes [6].

The TrueNorth processor supports stochastic spike integration, leak, and thresh-
old using a pseudo-random number generator. The leaky and reset is also pro-
grammable. The architecture of the neuron is depicted in Fig. 9.9.

The operation of a neuron are summarized in the following steps:

• The neuro synaptic core receives spikes from the NoC and stores the spikes in
buffers.

• A 1 kHz global clock comes and triggers the operation of all neuro synaptic core.

V

write

V (t)V (t)

Fig. 9.9 The architecture of TrueNorth neuron [1]

9.3 Digital Hardware Design Approach 231

• The spikes (Ai(t)) are sent from the buffers through the dendrites as depicted in
Fig. 9.8.

• The neuron receives the spikes (Ai(t)wi,j) and follows the Eq. (9.1).
• At the end of the time step, if the membrane potential exceeds the threshold, a

spike is generated and sent into the network.
• After firing, the membrane potential of the neuron is reset to a resting voltage.

As shown in Fig. 9.9, the synaptic weight is compared with a random number
in stochastic mode. This inserts randomness into the neuron model. We also
can observe the random leak mode and random in threshold comparison. In the
deterministic model, the operation of the neuron follows the simplest LIF.

In each neuro synaptic core of TrueNorth, there is only one physical neuron
used for simulating 256 neurons in serial fashion. Each neuron parameters and
synaptic connection (410-bit format) is loaded for computation consequently. The
main reason is the system target to run in biological real-time with a 1 kHz global
synchronization clock which does not need to perform neural computation in a
parallel manner. This has been the theme for digital neuron design as its weights
and parameters can be stored and reloaded.

TrueNorth Synapses Design As mentioned above, the synaptic crossbar of the
neuron stores connection in a binary format (1: connected, 0: unconnected). The
synaptic connections are embedded into a single SRAM of 256 rows by 410 columns
as the neuron operates serially. Each row consists of 256 bits of synaptic connection,
124 bits of neuron parameters, 26 bits of spike destination (18-bit for network
routing and 8-bit for axon index), and 4 bits of spike delivery tick.

The input spikes in 8-bit AER format are used as the index for the synaptic
connection to obtain the connection status (0/1: unconnected/connected). If the axon
and the neurons are not connected, the return weight is 0, which means no incoming
weighted spike.

9.3.1.2 Interconnect

Once a neuron fires, the spike is packaged and sent to the network to deliver to
a destination core. Since neurons are clusterized into neuro synaptic core with 256
neurons/core, the inter-core connection is required. TrueNorth is based on a unicast-
only 2D Mesh asynchronous network. Therefore, the architecture can be tiled for not
only the core-level but also at the chip-level as depicted in Fig. 9.7. By exploiting
the scalability of 2D Mesh topology, The TrueNorth chips are placed in a 2D mesh
in the PCB. The off-chip wires help connect two chips and then extend the on-chip
NoC to the new one. This continues the communication of the asynchronous 2D
NoC to the new chip.

The routing process at each router consists of six phases: (1) from local, (2)
forward east, (3) forward west, (4) forward north, (5) forward south, and (6) to local.
To route the packet, 18-bit is used for dx and dy, which are the number of hops in
the x- and y-direction. For instance, a packet from node (1,3) to node (4,5) (format:

232 9 Survey of Neuromorphic Systems

(dy, dx)) has the initial value of dy and dx are −3 and −2, respectively. Since the
priority of routing is east (increase dx), west (decrease dx), north (increase dy),
and south (decrease dy), the packet will travel to the east first to the node (1,4). By
routing to the east direction, the dx value is increased by one. At node (1,4), the
value of dy and dx are −3 and −1, respectively. Once both dx and dy gets to zero,
the packet arrives at the destination.

If more than one messages compete for the same router, a first-come-first-serve
basis is adopted to service the routing processes.

Since it is a unicast design, multicast packets are handled by repetitively sending
the packets to a list of destinations. The repetition is done by cloning the neuron
within the same core (node).

9.3.1.3 TrueNorth Software

The hardware of TrueNorth is supported by a software emulator, which can provide
a deterministic behavior as in hardware. Therefore, application development can be
performed in software and later mapped into hardware. Likewise, the training is
conducted in software and later mapped into TrueNorth chips.

The software model for TrueNorth is based on modeling a network consisting of
neuro synaptic cores, which are non-divisible building block [8]. TrueNorth team
develops a new programming paradigm called Corelet which has several parts: (1) a
corelet that is an abstraction model encapsulating the detail of neurosynaptic cores;
(2) Corelet language, which is an object orient programing language to create,
compose and decompose Corelet; (3) a Corelet library for reusing the program
and (4) a programing environment that consists of Compass—the TrueNorth
architectural simulator. The simulator provides a one-to-one result to the TrueNorth
system.

Corelet abstraction model consists of corelet seed which is a single neurosynaptic
core exposing only input and output while encapsulating under-the-hood the
parameters and operation. The programming only accesses the input and output of
the corelet seed. By connecting two or more corelet seeds, we end up with a corelet.
Several corelets can be connected to obtain a new corelet. From a programming
perspective, the input and output of the Corelet will be connected for modelling [8].
For programming, Corelet Language provides corelet classes that allow designers
to model, program, and simulate in the Compass simulator. Figure 9.10 depicts the
corelet seed and the composition of corelet. Figure 9.10a illustrate the corelet which
consists of neuron and input/output connectors. The corelet seed encapsulates the
intra-core connection and only exposes the external connection to obtained a block
in Fig. 9.10b. If there are two corelets connected, they can be wrapped into a single
one. the connection between two corelet A and B is shown in Fig. 9.10c. Then,
Corelet C wraps the two Corelet A and B. Corelet C in the programming model,
which encapsulates the two internal corelets and connections and only exposes the
inputs and outputs.

9.3 Digital Hardware Design Approach 233

Fig. 9.10 The TrueNorth corelet framework. (a) Neurosynaptic core with input and output
connector. (b) Corelet provides a wrapped model which only exposes the input-output. (c) Two
connected corelet A and B. (d) Corelet C wraps two corelet A and B and now expose only the
input and output connectors

The Compass simulator is written in C++ with MPI library call and OpenMP
threading primitives. Compass has been scaled to run the network with 530 billion
neurons and 137 trillion synapses.

The applications for TrueNorth have been demonstrated at remarkable low power
level [17] such as speaker recognition, composer recognition, digit recognition, eye
detection, and multi-object recognition.

9.3.2 Intel Loihi

Loihi is a 60 mm2 neuromorphic chip fabricated in 14 nm process in 2018. The
overall structure of Loihi is based on 2D-mesh NoC with 128 neuromorphic cores
and three embedded x86 cores per chip. Loihi can be scaled up to 4096 cores
and support up to 16,384 inter-chips communication. Each core implements 1024
neural units with variable synaptic resolution. The primitive spiking neural units
are grouped into sets of trees. Each core also supports a programmable learning
engine. Learning rules are microcode programmable and support features on input
and output synaptics. Learning on Loihi supports simple pairwise STDP and more
complicated ones such as triplet STDP or reinforcement learning.

Figure 9.11 depicts the top-level architecture of Loihi. The incoming spike has
information on the axon index, and the synapse unit processes and maps the
incoming spike to the synaptic weight from memory. In contrast, the dendrite unit
updates the neuron’s internal values. Axon unit generates the output spike based on
the membrane potential. Finally, the learning unit updates the synaptic weight based
on the dendrite output and the weight in the synapse. The weight and neuron in the

234 9 Survey of Neuromorphic Systems

·

Fig. 9.11 Top-level architecture of Loihi

Loihi core are variable (1–8 bit). Therefore, the system can be programmed to have
different densities and resolutions.

The interconnect for Loihi is a 2D asynchronous Network-on-Chip with the
ability to expand multi-chip due to the scalability of 2D mesh. Once a neuron fires,
a fan-out structure at the axon finds and sends the spikes to all downstream neurons.
The downstream neuron might belong to the current core or others in the network.
In Loihi, the maximal number of neurons per core is 1024, and the maximal core-
to-core fan-out must not exceed 4096.

9.4 Analog and Mixed-Signal Hardware Approach

The original neuromorphic system designed by Carver Mead and his team has
become the standard for designing and implementing neuromorphic systems in the
analog and mixed signal approach. Instead of emulating the function of neuron
digitally with a certain level of granularity, analog neurons allow the actual operation
of biological neurons to be mimicked.

9.4.1 NeuroGrid

Neurogrid from Stanford University consists of two parts: software to visualize the
neuromorphic system and hardware to perform real-time simulation. The software
of Neurogrid composes of a user interface (UI), hardware abstraction layer (HAL),
and driver for the hardware. Figure 9.12 depicts the overall system of Neurogrid.

9.4 Analog and Mixed-Signal Hardware Approach 235

8 3 7

1

9 4 10

14 6 13

2

11 5 12

0 15

Fig. 9.12 Neurogrid system with both hardware and software [5]

While the user interface provides the programming model for the neural network,
the hardware abstraction layer maps the model into the Neurogrid circuit. Finally,
the driver helps download and deploy the model over USB into the Neurogrid
system.

9.4.1.1 Neurogrid Software

As depicted in Fig. 9.12, the software of Neurogrid consists of three major parts:
UI, HAL, and Driver. The UI is the graphic interface with NGPython allows users to
specify the neuron models in the Python programming environment. It also provides
the control interface and visualization of the results.

In HAL, the network and filter management connects the GUI with the simulation
platform to provide the network’s connectivity and activity. The network mapping
converts the Python environment into router configuration. Data flow translate from
the model to hardware.

236 9 Survey of Neuromorphic Systems

In Driver, the configuration for routers and neurons are generated. Then, the
Neurogrid packets are created by data flow and encoded to be sent to Neurogrid via
USB connection. The Neurogrid packets are also translated back to normal data for
visualization purposes.

9.4.1.2 Neurogrid Hardware

Neurogrid uses a sub-threshold analog circuit to model neurons and synapses in
biological real-time. The spikes are digitally communicated using on-chip networks
as analog spikes cannot travel long-distance without losses. A Neurogrid packet is
a sequence of 12-bit words consisting of the route, address, payload, and tail. The
route information instructs a core to forward to the next node or consume it (as it
reaches the destination). The payload has several types of information: a spike index
for the row in the neural array, data to be written to RAM, an analog signal converted
by one of four ADCs, and a tail filed to end the packet.

The on-chip network of Neurogrid is tree-based topology as depicted in Fig. 9.12.

9.4.1.3 Neurogrid Communication

The Neurogrid spikes are dispatched from the array by a transmitter. Spikes
travel the on-chip tree-based NoC to deliver at the destination by a receiver. The
communication system is a digital circuit operating asynchronously.

Spikes from a neuron will be selected by a transmitter and sent to the network.
The tree NoC router of Neurogrid has three ports: top left and right. If the post-
synaptic neurons are on the right or left sides, it travels from the source to the router
to the dedicated port (right or left). If the post-synaptic neurons are on a different
branch, spikes are sent to the top and later distributed into either the left or right
units.

The route field of the packet is stored at the most significant bits and later shifted.
If the stop code (all zeros) has remained, the spikes are distributed in a multicast
manner (in both left and right and local). For example, Fig. 9.13 depicts the case

Fig. 9.13 Neurogrid packet
transmission

S D1 D2

9.4 Analog and Mixed-Signal Hardware Approach 237

when the neurons in the source node (S) desires to send spikes to neurons in two
destination nodes (D1 and D2). Since D1 and D2 belong to a different branch,
the packet is routed to the top port twice first. Then, it takes a right turn. When
it encounters the stop code, the packet is multicasted to all branches.

9.4.1.4 Transmitter and Receiver

Figure 9.14 shows the transmitter and receiver architecture. In the transmitter,
interface I receives and relays the request from spiking neuron S to the hierarchical
row arbiters (J). There is another interface and arbiter in the column to select the
spiking neuron spikes. The spike packet consists of column address (X), row address
(Y), and a tail word concluding the packet. If the packet is acknowledged, continue
by forwarding the sequencer (SEQ).

As depicted in Fig. 9.14b, the receiver receives the packet consisting of the row
and column information. The row and column information is checked to see whether
it fits the row and column index. Once it delivers at the correct row and column, it
forwards to the spiking neuron (S) and issues the acknowledgment (ACK).

The router in Neurogrid has two phases of operation. The first phase is point-
to-point where the router route the packet up/down or left/right based on the first
word’s information of the packet. The second phase is branching where the router
duplicates the packet to both the left and right ports for multicast routing. The
duplicated packets can be received by the local neuron array or being filtered using
information from a local SRAM of the core.

The NoC of Neurogrid is organized in tree-based topology, which is fit for
multicasting. In the first phase, packets are delivered to the destination root router.

Fig. 9.14 Neurogrid transmitter and receiver architecture [5]. (a) Transmitter. (b) Receiver

238 9 Survey of Neuromorphic Systems

Then, the packets are distributed into branches regardless of having receipting
neuron. As the packets are later filtered, it can reduce the routing due to low look-up
table complexity.

9.5 Chapter Summary

This chapter presented a comprehensive survey of research works in neuromorphic
computing systems. These works are categorized as software emulation, digital
hardware, and analog and mixed-signal hardware approaches. This chapter provided
an exhaustive review of the research conducted in neuromorphic computing and
illuminated the gaps in the field where new research is needed.

References

1. Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura
Y, Datta P, Nam G-J et al (2015) Truenorth: Design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip. IEEE Trans Comput Aided Des Integr Circuits Syst
34(10):1537–1557

2. ARM (2004) ARM968E-S technical reference manual. ARM, arm ddi 0311c edition
3. Balaji A, Das A, Wu Y, Huynh K, Dell’Anna FG, Indiveri G, Krichmar JL, Dutt ND,

Schaafsma S, Catthoor F (2019) Mapping spiking neural networks to neuromorphic hardware.
IEEE Trans Very Large Scale Integr Syst 28(1):76–86

4. Balaji A, Adiraju P, Kashyap HJ, Das A, Krichmar JL, Dutt ND, Catthoor F (2020) PyCARL:
a PyNN interface for hardware-software co-simulation of spiking neural network. Preprint,
arXiv:2003.09696

5. Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat J-M, Alvarez-
Icaza R, Arthur JV, Merolla PA, Boahen K (2014) Neurogrid: A mixed-analog-digital
multichip system for large-scale neural simulations. Proc IEEE 102(5):699–716

6. Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-Icaza R, Datta P, Sawada
J, Wong TM, Feldman V et al (2013) Cognitive computing building block: a versatile
and efficient digital neuron model for neurosynaptic cores. In: The 2013 international joint
conference on neural networks (IJCNN). IEEE, Piscataway, pp 1–10

7. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam
N, Jain S et al (2018) Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38(1):82–99

8. Esser SK, Andreopoulos A, Appuswamy R, Datta P, Barch D, Amir A, Arthur JV,
Cassidy A, Flickner M, Merolla P, Chandra S, Basilico N, Carpin S, Zimmerman T,
Zee F, Alvarez-Icaza R, Kusnitz JA, Wong TM, Risk WP, McQuinn E, Nayak TK, Singh R,
Modha DS (2013) Cognitive computing systems: algorithms and applications for networks of
neurosynaptic cores. In: The 2013 international joint conference on neural networks, IJCNN
2013, Dallas, TX, 4–9 Aug 2013. IEEE, Piscataway, pp 1–10

9. Frenkel C, Lefebvre M, Legat J-D, Bol D (2018) A 0.086-mm2 12.7-pj/sop 64k-synapse
256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE
Trans Biomed Circuits Syst 13(1):145–158

10. Frenkel C, Legat J-D, Bol D (2019) Morphic: a 65-nm 738k-synapse/mm2 quad-core binary-
weight digital neuromorphic processor with stochastic spike-driven online learning. IEEE
Trans Biomed Circuits Syst 13(5):999–1010

References 239

11. Furber SB, Galluppi F, Temple S, Plana LA (2014) The spinnaker project. Proc IEEE
102(5):652–665

12. Gewaltig M-O, Diesmann M (2007) Nest (neural simulation tool). Scholarpedia 2(4):1430
13. Hazan H, Saunders DJ, Khan H, Patel D, Sanghavi DT, Siegelmann HT, Kozma R (2018)

Bindsnet: a machine learning-oriented spiking neural networks library in python. Front
Neuroinform 12:89

14. Ikechukwu OM, Dang KN, Abdallah AB (2021) On the design of a fault-tolerant scalable three
dimensional NoC-based digital neuromorphic system with on-chip learning. IEEE Access
9:64331–64345

15. Markram H, Meier K, Lippert T, Grillner S, Frackowiak R, Dehaene S, Knoll A,
Sompolinsky H, Verstreken K, DeFelipe J et al (2011) Introducing the human brain project.
Procedia Comput Sci 7:39–42

16. Mead C (1989) Analog VLSI and neural systems. Addison-Wesley Longman, Reading
17. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL,

Imam N, Guo C, Nakamura Y et al (2014) A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science 345(6197):668–673

18. Rhodes O, Bogdan PA, Brenninkmeijer C, Davidson S, Fellows D, Gait A, Lester DR,
Mikaitis M, Plana LA, Rowley AGD, Stokes AB, Furber SB (2018) sPyNNaker: a software
package for running PyNN simulations on spinnaker. Front Neurosci 12:816

19. Sivilotti MA (1991) Wiring considerations in analog VLSI systems, with application to field-
programmable networks. PhD thesis, California Institute of Technology

20. Stimberg M, Brette R, Goodman DF (2019) Brian 2, an intuitive and efficient neural simulator.
eLife 8:e47314

21. Stimberg M, Goodman DF, Nowotny T (2020) Brian2genn: accelerating spiking neural
network simulations with graphics hardware. Sci Rep 10(1):1–12

22. Zhang W, Gao B, Tang J, Yao P, Yu S, Chang M-F, Yoo H-J, Qian H, Wu H (2020)
Neuro-inspired computing chips. Nat Electronics 3(7):371–382

Index

A
Acceleration, 11
Accuracy, 39, 176
Activation, 3, 26
activation, 38
Adaptive, 39, 90
Address, 223
AER, 31, 79, 164, 186, 223, 228, 231, 233
Aging, 127
Algorithm, 178
Analog, 218
Arbite, 81
Arbitration, 118
Architecture, 10, 99, 160
Area, 176
ARM, 220
Artificial neural network, 1
Autonomous, 16
availability, 128
Axon, 2, 7, 56
axon, 18
Axons, 22

B
Backpropagation, 6, 25, 160
Backup, 173
Bandwidth, 9
Biological neuron, 2
Boltzmann machine, 3
Brain, 1, 16
Brain-inspired, 1
Broadcast, 83
Buffer, 114, 222
Bus, 10

C
Check-pointing, 137
Classification, 174
Coding, 134
coding, 18, 199
Communicate, 9
Communication, 28, 79
communication, 222
Complexity, 24, 175
Computational, 17
Conductance, 76
Convolution, 26
Code, 135
Core, 164
cortex, 18
Cortical, 2
Coupling, 115
Crossbar, 9, 29
crossbar, 73
Crossover, 196
crossover, 195
Crystallized, 64
current, 9

D
Debugging, 55
deep neural network, 18
defect, 129
Degradation, 115
Demultiplex, 224
Dendrite, 2, 80
Dendrites, 7, 22, 56
Density, 9
Depression, 27

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Ben Abdallah, K. N. Dang, Neuromorphic Computing Principles
and Organization, https://doi.org/10.1007/978-3-030-92525-3

241

https://doi.org/10.1007/978-3-030-92525-3

242 Index

Deserialization, 120
Destination, 223
Detector, 118
Digital, 3
Dimension, 167
Dimple, 115
Discretization, 41
Doping, 115
Drift, 76
Dynamic, 10
Dynamics, 3

E
eDRAM, 60
Efficiency, 11
Electromigration, 114, 127
Electrostatic discharge, 114
Emerging, 28
Emulation, 217
Encapsulate, 80
Encoded, 7
Energy, 10, 29
Energy-efficient, 1
Error, 138
Event-driven, 3, 38
Events, 9
Excitatory, 40
Exponential, 3

F
Fault, 127
fault, 129
Fault-status, 120
Fault-tolerance, 129
fault-tolerance, 158
Fault-tolerant, 1, 157
Feed-forward, 6
Fire, 1
Firing rate, 19
Fitness, 196
Flexibility, 11
Flow-control, 106
Footprint, 16
Frequency coding, 18

G
Gating, 41
Generation, 3
Genetic algorithm, 195
Gradients, 37

H
H-NoC, 161
Hamming code, 136
Hamming distance, 135
Hardware, 8
hardware, 17
Hierarchical, 10
Hodgkin-Huxley, 8
Hodgkin-Huxley model, 22
Hopfield, 3, 4
Host, 222

I
Implementations, 10
Impurities, 115
in-memory computing, 73
Inference, 37, 55
Inhibitory, 38
Input, 224
Integration, 10, 30
Inter-chip, 10
Inter-Spike-Interference, 18
inter-spike-interval , 19
Interconnect, 11
Interface, 163
Intra-chip, 10

K
K-means, 170

L
Large-scale, 5, 217
Laser, 115
Latency, 79
Layer, 3
Leakage, 9
Leaky Integrate and Fire, 8
Leaky Integrate-and-Fire, 24, 165, 189
Learning, 6, 25, 26, 55, 166
learning, 192
Link, 223
Loihi, 85, 233

M
Map, 3
Mapping, 9, 139, 176
mapping, 174, 200
Markov-state, 129
Matrix-Arbiter, 106

Index 243

max-flow, 142
Mean Time to Failures, 128
Membrane, 21
Membrane potential, 1, 2, 7, 56
membrane potential, 8
Memory, 28
memory, 9, 56
Memory cell, 57
memristor, 30
Message-ID, 120
Microring, 116
min-cut, 142
Mix-signal, 218
MJT, 61
MNIST, 176
Modulator, 118
MTTF, 128
Multicast, 157
multicast, 10, 162
Multicore, 173
Multiplexing, 9
Mutation, 197
mutation, 195

N
Network, 79
Network-on-chip, 10, 157
Neural network, 27
NeuroGrid, 234
Neuromorphic, 1, 5, 9, 15
Neuron, 2, 26
Neurons, 79
Node, 223
Noise, 114
Non-minimalistic, 114
non-volatile memory, 61, 73
Normalization, 38

O
Off-chip, 25
Offpsring, 196
On-chip, 26
online, 193
Optical, 114
Optimization, 37
output, 3

P
Packet, 90, 173
Packet-switched, 83
Parity, 135

Passband, 115
Payload, 223
Perceptions, 1
Perceptron, 3
Performance, 10, 16
Permanent fault, 128
Phase Change Memory, 63
phase coding, 20
Photo-detectors, 114
Photonic, 116
Plasticity, 9, 26
Platform, 11
Polynomial, 3
Pooling, 41
Population, 19
Postsynaptic, 27, 166
Potentiation, 27
Power, 6, 64, 175
Presynaptic, 8, 27, 166
Process, 115
Processor, 9
Programmable, 11

Q
Quality-of-Service, 120

R
Racetracks, 117
rank order coding, 20
Rate coding, 18
Real-time, 222
Recognition, 16
Reconfigurable, 155
reconfigurable, 155
recurrent neural network, 4
Redundancy, 129, 132
Reliability, 9, 28, 128
ReRAM, 62
Rerouting, 114
Resistance, 10
Resistive, 63
Resistivity, 115
Resolution, 7
Resonators, 114, 115
Retention, 64
Ring, 114
Robust, 18
Roll-back, 137
Router, 93, 173
router, 169
Routing, 90, 177
RRAM, 62

244 Index

S
Scalable, 5
Scheduling, 116
SDSP, 27
Selection, 196
Sigmoid, 3
Signal-to-Noise, 114
Silicon-based, 114
simulation, 11
Single event transients, 129
Software, 219
software, 17
Soma, 2
Source, 223
Spare, 134
Sparse, 2
Sparsity, 5
Spectrum, 118
speed, 9
Spike, 83, 166
spike, 17
Spike driven synaptic plasticity, 27
Spike time-dependent-plasticity, 166
Spike timing-dependent plasticity, STDP, 8
Spiking Deep Belief Networks, 38
spiking neural network, 1
spin-transfer torque, 61
SpiNNaker, 83, 220
SRAM, 9, 28, 58
Stall-Go, 106
STDP, 26, 192, 193
Stimulus, 7
Stochastic, 10
Store-and-forward, 93
STT-RAM, 61
stuck-at-0, 131
stuck-at-1, 131
Subcomponents, 114
Supervised, 6, 25
supervised learning, 43
Survival, 196
Synapse, 2, 10, 27, 166, 176
synapse, 69
Synchrony, 20
System, 64, 176, 217

T
Tear-down, 118
Temporal, 7
temporal coding, 19
tempotron, 43
Thinning, 114
3D integrated circuits, 5
3D-NoC, 191
threshold, 3
Through-silicon-vias, 157
Throughput, 177
throughput, 9
Time-division-multiplexing, 93
Time-to-first-spike, 19, 41
Timing, 18
Topology, 3, 163
Training, 42
Trans-Impedance-Amplification, 120
Transient fault, 128
Transistor, 9, 58
Transmission, 167
TrueNorth, 85, 228
Tuning, 115
2D-NoC, 157

U
Unsupervised, 6, 25

V
Variability, 115
Virtual-cut-through, 93

W
Watchdog, 134
Waveguide, 114
Wavelengths, 114
Wear-out, 127
Weight, 6, 26, 70
Winner-Take-All, 41
Wormhole, 88

	Preface
	Acknowledgments

	Contents
	Acronyms
	1 Introduction to Neuromorphic Computing Systems
	1.1 Introduction
	1.2 Design Challenges
	1.3 Neural Networks
	1.3.1 Artificial Neural Networks
	1.3.2 Spiking Neural Networks

	1.4 Learning in Spiking Neural Networks
	1.5 Synapse Memory Technologies
	1.6 Neurons Communication Network
	1.7 Neuromorphic System Design Domains
	1.8 Chapter Summary
	References

	2 Neuromorphic System Design Fundamentals
	2.1 Introduction
	2.1.1 Spiking Neural Networks
	2.1.2 Neural Coding Schemes
	2.1.2.1 Rate Coding
	2.1.2.2 Temporal Coding

	2.2 Spiking Neuron Models
	2.2.1 Hodgkin-Huxley Model
	2.2.2 Izhikevich Model
	2.2.3 Leaky Integrate and Fire Model

	2.3 Learning Algorithms
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.2.1 Spike Timing Dependent Plasticity (STDP)
	2.3.2.2 Spike Driven Synaptic Plasticity (SDSP)

	2.4 Synapse Memory
	2.4.1 SRAM
	2.4.2 eDRAM
	2.4.3 Memristor

	2.5 Inter-Neuron Communication Schemes
	2.5.1 AER—Address Event Representation

	2.6 Neuromorphic Spike Routing
	2.7 Chapter Summary
	References

	3 Learning in Neuromorphic Systems
	3.1 Learning Methods
	3.2 Conversion from ANN to SNN
	3.2.1 Converted SNNs
	3.2.2 Challenges of ANN Conversion

	3.3 Supervised Learning
	3.3.1 Tempotron
	3.3.2 ReSuMe
	3.3.3 SpikeProp Algorithm
	3.3.4 Approximate Derivative Method (ADM)

	3.4 Unsupervised Learning
	3.4.1 Pair-Based STDP Learning Rule
	3.4.2 Triplet STDP Learning Rule
	3.4.3 Reward-Modulated STDP Learning
	3.4.4 Other Variants of STDP Learning Rule

	3.5 Chapter Summary
	References

	4 Emerging Memory Devices for Neuromorphic Systems
	4.1 Introduction
	4.2 Memory Technology
	4.2.1 SRAM
	4.2.2 eDRAM
	4.2.3 STT-RAM
	4.2.4 RRAM and Resistive Crossbar
	4.2.5 Phase Change Memory
	4.2.6 Other Memory Technologies

	4.3 Memory Organization
	4.4 Memory for Neuromorphic Systems
	4.4.1 Neuron State Memory
	4.4.2 Synapse Memory
	4.4.2.1 SRAM Synapse Memory
	4.4.2.2 Non-volatile Synapse Memory
	4.4.2.3 NVM In-memory Computing

	4.5 Dynamic NVM Synapse
	4.5.1 Learning Related NVM
	4.5.2 Conductance Drift in NVM

	4.6 Chapter Summary
	References

	5 Communication Networks for Neuromorphic Systems
	5.1 Introduction
	5.2 Neural Communication
	5.3 Interconnect for Inter-Neural Communication
	5.3.1 SpiNNaker
	5.3.2 TrueNorth
	5.3.3 Loihi

	5.4 Interconnect Design Principles
	5.4.1 OSI Model for Network-on-Chip
	5.4.1.1 Application and Presentation Layers
	5.4.1.2 Session and Transport Layers
	5.4.1.3 Network Layer
	5.4.1.4 Link and Data Layers

	5.4.2 Network Topologies
	5.4.2.1 Major Types of Topologies
	5.4.2.2 2D Mesh Topology
	5.4.2.3 3D Mesh Topology

	5.4.3 Application Mapping
	5.4.4 Communication Architecture
	5.4.4.1 Switching Technique
	5.4.4.2 Packet Routing
	5.4.4.3 Flow Control
	5.4.4.4 Quality of Service
	5.4.4.5 Router Design
	5.4.4.6 Link Design

	5.5 Advanced Interconnects Multicore Neuromorphic Systems
	5.5.1 Three Dimensional On-chip Interconnect
	5.5.1.1 3D-NoC Versus 2D-NoC
	5.5.1.2 Routing Algorithms
	5.5.1.3 3D-NoC Router Architecture Design
	5.5.1.4 Input-Port Module Design
	5.5.1.5 Switch Allocator Design
	5.5.1.6 Stall-Go Flow Control Architecture
	5.5.1.7 Matrix-Arbiter Scheduling Architecture
	5.5.1.8 Crossbar Design
	5.5.1.9 Network Interface Architecture

	5.5.2 Photonic On-chip Interconnect for High-Bandwidth Multicore SoCs
	5.5.2.1 Photonic Communication Building Blocks
	5.5.2.2 Design Challenges
	5.5.2.3 Fault Models
	5.5.2.4 Fault-Tolerant Photonic Network-on-Chip

	5.5.3 Network Interface

	5.6 Chapter Summary
	References

	6 Fault-Tolerant Neuromorphic System Design
	6.1 Introduction
	6.1.1 Measure of Fault Tolerance
	6.1.2 Type of Faults and Behavior
	6.1.3 Impact of Faults on Neuromorphic System

	6.2 Conventional Computing System Fault Tolerance
	6.2.1 Hardware Approach
	6.2.2 Information Redundancy
	6.2.2.1 Parity Code
	6.2.2.2 Hamming Code

	6.2.3 Software Approach

	6.3 Fault-Tolerance for Neuromorphic Computing
	6.3.1 Memory Protection
	6.3.2 Communication Protection
	6.3.3 Computation Protection
	6.3.4 SNN Mapping for Tolerating Errors
	6.3.5 Fault-Tolerant Remapping for Neuromorphic Computing
	6.3.5.1 Problem Formulation
	6.3.5.2 Max-Flow Min-Cut Based Algorithm
	6.3.5.3 Evaluation

	6.4 Chapter Summary
	References

	7 Reconfigurable Neuromorphic Computing System
	7.1 Introduction
	7.2 Fault-Tolerant Neural Networks
	7.2.1 Learning-Based Approach
	7.2.2 Architecture-Based Approach
	7.2.3 Hybrid-Based Approach

	7.3 Inter-Neuron Communication Network
	7.4 Reconfigurable Neuromorphic System Building Blocks
	7.4.1 Spiking Neuron Processing Core
	7.4.1.1 LIF Neuron
	7.4.1.2 Crossbar
	7.4.1.3 Learning Algorithm

	7.4.2 Network Interface
	7.4.3 Fault-Tolerant Multicast 3D Router

	7.5 Fault-Tolerant Spike Routing Algorithm
	7.5.1 Shortest Path K-means Multicast Spike Routing Algorithm
	7.5.2 Fault-Tolerant K-means Multicast Spike Routing Algorithm

	7.6 Mapping
	7.7 Complexity Analysis
	7.8 Chapter Summary
	References

	8 Case Study: Real Hardware-Software Design of 3D-NoC-Based Neuromorphic System
	8.1 Introduction
	8.2 R-NASH System
	8.3 R-NASH Hardware
	8.3.1 R-NASH Hardware Building Blocks
	8.3.2 Spiking Neural Processing Core (SNPC)
	8.3.3 Network Interface
	8.3.4 Crossbar
	8.3.4.1 LIF Neuron

	8.3.5 Controlling
	8.3.6 Inter-Neural Interconnect

	8.4 R-NASH Learning
	8.4.1 Off-chip Learning
	8.4.2 Online Learning with STDP

	8.5 R-NASH Initial Mapping
	8.5.1 Genetic Algorithm
	8.5.1.1 Initialization

	8.5.2 Selection
	8.5.3 Crossover
	8.5.4 Mutation
	8.5.4.1 Finalization

	8.5.5 Genetic Algorithm for Neurons Mapping on R-NASH Hardware

	8.6 R-NASH Run-Time Maintenance
	8.6.1 Data Integrity Protection
	8.6.2 Communication Protection
	8.6.3 Fault-Tolerant Neurons Mapping Scheme

	8.7 R-NASH Evaluation Results
	8.7.1 Initial Mapping Evaluation
	8.7.1.1 Mapping over Different 3D-NoC Sizes
	8.7.1.2 Mapping over Different Node Sizes
	8.7.1.3 Comparison Between 3D and 2D in Initial Mapping

	8.7.2 Fault-Tolerant Mapping
	8.7.3 Hardware Complexity
	8.7.4 System Validation
	8.7.4.1 Offline Feed-Forward Network

	8.7.5 Unsupervised STDP

	8.8 Chapter Summary
	References

	9 Survey of Neuromorphic Systems
	9.1 Introduction
	9.2 Software Emulation Approach
	9.2.1 SpiNNaker
	9.2.1.1 Model
	9.2.1.2 SpiNNaker Architecture
	9.2.1.3 Other Modules
	9.2.1.4 Communication in SpiNNaker
	9.2.1.5 SpiNNaker Software Platform

	9.3 Digital Hardware Design Approach
	9.3.1 IBM TrueNorth
	9.3.1.1 TrueNorth Neurosynaptic Architecture
	9.3.1.2 Interconnect
	9.3.1.3 TrueNorth Software

	9.3.2 Intel Loihi

	9.4 Analog and Mixed-Signal Hardware Approach
	9.4.1 NeuroGrid
	9.4.1.1 Neurogrid Software
	9.4.1.2 Neurogrid Hardware
	9.4.1.3 Neurogrid Communication
	9.4.1.4 Transmitter and Receiver

	9.5 Chapter Summary
	References

	Index

