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Preface

Welcome to VMCAI 2022, the 23rd International Conference on Verification, Model
Checking, and Abstract Interpretation. VMCAI 2022 was part of the 49th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2022),
held at The Westin Philadelphia, USA, during January 16-22, 2022.

VMCALI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation, facilitating interaction, cross-fertilization,
and advancement of hybrid methods that combine these and related areas. The topics
of the conference include program verification, model checking, abstract interpretation,
program synthesis, static analysis, type systems, deductive methods, decision proce-
dures, theorem proving, program certification, debugging techniques, program trans-
formation, optimization, and hybrid and cyber-physical systems.

VMCALI 2022 received a total of 63 paper submissions. After a rigorous review
process, with each paper reviewed by at least three Program Committee (PC) members,
followed by an online discussion, the PC accepted 23 papers for publication in the
proceedings and presentation at the conference. The main selection criteria were
quality, relevance, and originality.

The conference program included three keynotes: Isil Dillig (University of Texas,
Austin, USA) on “Computer-Aided Programming Across the Software Stack,” Javier
Esparza (Technical University of Munich, Germany) on “Back to the Future: A Fresh
Look at Linear Temporal Logic,” and Thomas A. Henzinger (Institute of Science and
Technology Austria) on “Sequential Information Flow.”

VMCAI 2022 continued the artifact evaluation process established by VMCAI
2020. The goals of artifact evaluation are as follows: (1) to encourage the development
of tools that allow for replication of results in the paper, (2) to encourage reuse of tools
by others in the community, and (3) to reward authors who spend the extra effort to
create stable, portable, and usable artifacts. Artifacts are any additional material that
substantiates the claims made in the paper. Examples of artifacts are software, tools,
frameworks, data sets, test suites, and machine-checkable proofs. Authors of submitted
papers were encouraged to submit an artifact to the VMCAI 2022 artifact evaluation
committee (AEC). We also encouraged the authors to make their artifacts publicly and
permanently available. Artifacts had to be provided as .zip or .tar.gz files and had to
contain all necessary software for artifact evaluation as well as a README file
describing the artifact and providing instructions on how to replicate the results.
Artifacts were required to run in a virtual machine to ensure consistency of repro-
duction across the reviewing process.

All submitted artifacts were evaluated in parallel with the papers. We assigned three
members of the AEC to each artifact and assessed it in two phases. First, the reviewers
tested whether the artifacts were working, e.g., there were no corrupted or missing files
and the evaluation did not crash on simple examples. For those artifacts that did not
work, we sent the issues to the authors. The authors’ answers to the reviewers were
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distributed among the reviewers, and the authors were allowed to submit an updated
artifact to fix issues found during the test phase. In the second phase, the assessment
phase, the reviewers aimed at reproducing any experiments or activities and evaluated
the artifact based on the following questions:

1. Is the artifact consistent with the paper and the claims made by the paper?
2. Are the results of the paper replicable through the artifact?

3. Is the artifact well documented?

4. Is the artifact easy to use?

In a change from the VMCALI Artifact Evaluation in 2021, this year we moved to a
simplified badge model where a single badge was awarded for all passing artifacts. Of
the 23 accepted papers, there were 16 submitted artifacts with 15 that passed the second
phase and were thus awarded the Artifact Evaluation Badge.

We would like to thank, first of all, the authors for submitting their papers to
VMCALI 2022. The PC and the AEC did a great job of reviewing: they contributed
informed and detailed reports, and took part in the discussions during the virtual PC
meeting. We warmly thank the keynote speakers for their participation and contribu-
tions. We also thank the general chair of the POPL 2022 week, Rajeev Alur, and his
team for the overall organization. We thank the publication team at Springer for their
support, and EasyChair for providing an excellent review system. Special thanks goes
to the VMCALI Steering Committee for their helpful advice, assistance, and support.

December 2021 Bernd Finkbeiner
Thomas Wies
Mark Santolucito
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Abstract. We study the problem of specifying sequential information-
flow properties of systems. Information-flow properties are hyperproper-
ties, as they compare different traces of a system. Sequential information-
flow properties can express changes, over time, in the information-flow
constraints. For example, information-flow constraints during an initial-
ization phase of a system may be different from information-flow con-
straints that are required during the operation phase. We formalize
several variants of interpreting sequential information-flow constraints,
which arise from different assumptions about what can be observed of the
system. For this purpose, we introduce a first-order logic, called Hyper-
trace Logic, with both trace and time quantifiers for specifying linear-
time hyperproperties. We prove that HyperLTL, which corresponds to a
fragment of Hypertrace Logic with restricted quantifier prefixes, cannot
specify the majority of the studied variants of sequential information
flow, including all variants in which the transition between sequential
phases (such as initialization and operation) happens asynchronously.
Our results rely on new equivalences between sets of traces that cannot
be distinguished by certain classes of formulas from Hypertrace Logic.
This presents a new approach to proving inexpressiveness results for
HyperLTL.

1 Introduction

Information-flow policies specify restrictions on what information can be shared
within components of a system or its users. Information that must be kept secret
should not be deducible by combining multiple observations of the non-secret
behavior of the system. For this reason, constraints on information flow are often
not properties of individual execution traces of the system, but rather properties
of sets of possible execution traces, that is, hyperproperties [5].

One of the basic concepts in secure information flow is the notion of indepen-
dence [12], which is used, for example, to define generalized non-interference [5].
© Springer Nature Switzerland AG 2022

B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 1-19, 2022.
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By stating that the value of an output variable y is independent of the value of
x, denoted ind(z,y), we want to capture that “no information can flow from x
to y”. A combinational (or “one-shot”) system is a function from values for the
input variables to values for the output variables. For combinational systems, an
observation is a valuation for all input and output variables. For such a system,
we say that y is independent of x if for all possibly observed values v, of the
input variable z and all possibly observed values v, of the output variable y,
also their combination (v,vy) is a possible observation of the system. Formally,
v, is a possibly observed value of variable z if there exists a valuation v for all
variables in the set V of possible observations such that v(z) = v,. Then, the
set V of possible observations satisfies ind(x,y) if for all possible observations
v,v" € V, there exists a possible observation v3 € V such that v3(z) = v(z) and
v3(y) =v'(y).

A sequential system is a function from sequences of values for the input vari-
ables to sequences of values for the output variables. For sequential systems, an
observation is a trace, namely, a sequence of valuations for all input and output
variables. A weak form of sequential independence stems from a pointwise inter-
pretation: pointwise global independence holds if combinational independence
holds at all points along a trace. Formally, a set T of traces satisfies indpoini(x, y)
if for all times 7 € N and all traces 7,7’ € T, there exists a trace 73 € T such
that m3[i](z) = 7[¢](z) and m5[i](y) = 7'[{](y). A stronger form of sequential inde-
pendence is based on comparing entire traces or trace segments: segment-based
global independence holds if for all possibly observed sequences 7, of x values,
and all possibly observed sequences 7, of y values, also their combination (7, 7))
is a possible trace of the system. Formally, a set T of traces satisfies indse,(x, y)
if for all traces 7,7’ € T, there exists a trace 73 € T such that for all i € N, we
have m5[i](x) = 7[i](x) and T3[i](y) = 7'[{](y). One may argue that the difference
between the pointwise and the segment-based interpretations of sequential inde-
pendence depends on the memory of the observer: for an observer that keeps
track of time but cannot memorize past values of inputs or outputs, pointwise
global independence is adequate; for an observer with an unbounded memory,
only segment-based global independence can prevent information leaks. Other
notions of independence correspond to observers with finite memory, which we
do not discuss in this paper.

There are even more possibilities for defining two-state local independence:
before a state change, output y is independent of input x, and after the state
change, output z is independent of z. Two-state local independence can be used,
for instance, to capture declassification [19], a process in which previously secret
information is allowed to be released. Before and after the state change, inde-
pendence may be pointwise or segment-based. The state change may happen at
the same time in all traces, which we call synchronous, or not. Finally, the state
change may be observable, or not. All these considerations about the specification
of two-state local independence lead to different formal definitions. We call them
different “flavors” of independence and investigate the power of specification lan-
guages to express such flavors. In particular, we prove that the most interesting
flavors of two-state local independence cannot be specified in HyperLTL.
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We illustrate these definitions with program P, shown in Algorithm 1, which
intuitively satisfies the two-state local independence property. The program
starts in the initial state (state = 0), and in every subsequent step, the next
state is nondeterministically assigned via the input channel ¢;. Once P changes
from state = 0 to state = 1, it remains in that state forever. The value of z is
nondeterministically assigned via the input channel ¢y, regardless of the current
state. When in the state 0, the program P assigns x to z, and a default value to y.
When in the state 1, it assigns = to y, and a default value to z. The default value
may be 0, 1, or a nondeterministic boolean value set at the start of the program
execution. The program finally exposes y and z via the output channels ¢, and
cs3, respectively. The program P satisfies the strong, segment-based version of
the two-state local independence requirement by ensuring that indse,(x, y) holds
in the first state, and indse4(x, z) holds in the second state.

Table 1 shows a set of traces observing values of z, y, and z of P, which are
consistent with the segment-based two-state local independence requirement.
The first two traces, 7 and 7o, transition to the second state at time 1, while
73 and 7, transition at time 2 and 3, respectively. Note that for the second
part of the two-state local independence property, at state = 1, we need to
compare observations at time 1 of 71 and 75 with observations at time 2 and 3
of 73 and 74, respectively. We say that the state transition, which may happen
at different times in different traces, is asynchronous. Moreover, since the state
change happens with a certain input, in program P, the state change is observable
at the input/output interface, which adds the variable state to all traces. Other
variations of this program may lead to synchronous and/or hidden state changes.
We will prove in this paper that two-state local independence under a segment-
based interpretation with an asynchronous, observable state change, as in the
example, is not expressible in HyperLTL.

Table 1. A set of traces over the vari-
ables z, y, and z of P, with default = 0,
white cells indicating that state = 0,

Algorithm 1: Program P for two-
state local independence.

1 state:= 0; and gray cells, that state = 1.

2 do

3 if (state = 0) then

4 | input(ci, state in {0,1}); 0 1 2 3
5 end Xy z2 XYy zZ|XYy 2 XYy z
6 | input(co,z in {0,1}); 7000110110110
7 | if (state =0) then » 101110110110
8 ‘ z = x; y = default;

9 else {1 01/1 01000000
10 ‘ y = x; z = default; /0001 01/000 110
11 end

12 output(c2,y);

13 output(cs, z);

14 while True;
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In this paper, we study several variations of sequential information flow which
arise from different assumptions about the observer and the observed system. We
focus on the two-state local independence requirement as the simplest sequen-
tial hyperproperty that exposes important differences between various interpre-
tations.

The logical specification of sequential information flow (and other hyperprop-
erties) requires (implicit or explicit) quantification over time and traces. We refer
to such linear-time specification languages as hyperlogics. We introduce Hyper-
trace Logic, a two-sorted first-order logic that allows us to express and compare
a rich variety of sequential hyperproperties and linear-time specification lan-
guages for hyperproperties. In particular, we use Hypertrace Logic to provide
mathematical definitions for the two-state local independence condition under
point and segment semantics, for synchronous and asynchronous state changes,
which may be observed or hidden: in total, eight different “flavors” of sequential
information flow.

We then study the expressiveness of different fragments of Hypertrace
Logic with regard to the different versions of two-state local independence.
In particular, HyperLTL—the de-facto standard for specifying and verifying
hyperproperties—corresponds to a trace-prefixed fragment of Hypertrace Logic.
Our main result shows that HyperLTL cannot express two-state local indepen-
dence for asynchronous state changes, no matter whether the state change is
observable or not, and no matter whether the interpretation of independence is
pointwise or segment-based. Our results emphasize the important role that the
order of time and trace quantifiers play in hyperproperties and highlight the need
to explore, also noted recently in [1,3,13], asynchronous variants of hyperlogics.

The contributions of this paper can be summarized as follows:

— For specifying linear-time hyperproperties in general and variations of sequen-
tial information-flow properties in particular, we introduce and study a nat-
ural first-order formalism with trace and time variables, called Hypertrace
Logic, which transcends the idiosyncrasies of specific syntactic choices and
allows us to use proof techniques and results from first-order logic.

— We present a comprehensive expressiveness study of the simplest
interesting sequential information-flow property—namely, two-state local
independence—under different interpretations, and with respect to different
fragments of Hypertrace Logic, including the popular HyperLTL formalism.

— We devise several new lemmas and techniques for proving expressiveness
results for linear-time hyperlogics such as HyperLTL. Our proof techniques
and strategies are of independent interest and can be used in other expres-
siveness proofs.

2 The First-Order Logic of Trace Sets

In this section, we present Hypertrace Logic, denoted FO[<, T], to specify proper-
ties of trace sets. Hypertrace Logic is a two-sorted first-order logic that includes
a sort for time and a sort for traces; it supports explicit quantification over time
points and over traces.
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2.1 Preliminaries

Let X be a finite set of propositional variables. A valuation v : X — {0,1} is
a partial mapping of variables to boolean values. The domain of v is denoted
by X(v) € X, and the size of v is defined by the size of its domain, that
is, Jv| = | X (v)|. By Vx we denote the set of all valuations with domain X. We
often use strings to write sets of variables and valuations: for a string [z . .. z,] of
variables, we define a valuation v by the string [v(zo) . .. v(zy)] of corresponding
values. We denote by v[z — b] the update of valuation v with variable x being
assigned the value b. The composition of two valuations v and v with X (v') =
{z1,...,2,} is defined as v @ v = v[x — V'(21)]... [Xn — V' (zy)].

A trace T over X is a sequence of valuations in Vx. We refer to X as the
alphabet of 7. The set of all infinite traces over X is denoted by V¥, and the set
of all finite traces over X, by V%. For a finite trace 7 = vov; ... vy, its length is
defined as |7| = n+1, and || = w for an infinite trace 7. The composition of two
traces 7 = vguy ... and 7/ = vjv] ... is defined as T ® 7' = (vo ® v})(v1 @ VY) .. ..
Given a trace 7 = vov1 ... and an index i < |7|, we use the following indexing
notations: 7[i] = v, T[i...] = V;vi41..., and T[...9] = vov1 ... v;—1. If § > |7,
we adopt the following convention: 7[j...] is the empty trace, and 7[...j] = 7.

Ezample 1. Consider the following valuations over {x, y}: v(z) = 0 and v(y) = 1;
and v'(x) = 0 = v'(y). The trace 7 = vv'v*¥ can be represented as the following
sequence of strings that correspond to valuations over [z y]: [0 1][0 0][0 1]~.

A trace property T over a set X of variables is a set of infinite traces over
X, that is, T' C V%. We write T = 2V for the set of all trace properties. A
hyperproperty T C T is a set of trace properties, i.e., a set of trace sets. In trace
semantics, a system S is characterized by the set of its execution traces; hence
systems and trace properties have the same type: S € T. A hyperproperty, then,
characterizes a set of systems.

LTL is a propositional linear-time temporal logic [18]. Its formulas are defined
by the following grammar: ¢ = a|-p|e V| X ¢|p U, where a € X is a
propositional variable, and X (“next”) and U (“until”) are temporal modalities.
LTL formulas are interpreted over infinite traces. The satisfaction relation, for
a given trace 7 € V%, is defined inductively as follows:

T Eaiff 7[0)(a) = 1;7 E 0 iff T £ 9
TEW VY T rEY or T E YT EX YT T[1.. ] E 4
7 |= 11 U g iff there exists 0 < j:7[j...] E 2 and for all 0 < j' < j:7[5"...] & ¥1.

The temporal operators G (“globally”) and F (“eventually”) are defined as
customary, with G ¥ = v U false and F ¢ = true U 9.

2.2 Hypertrace Logic

Hypertrace Logic is an extension of the first-order logic of linear order with equal-
ity, denoted FO[<]. As we focus on traces as sequences (“discrete linear-time”),
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we interpret FO[<] over the theory of natural numbers. Under this theory, FO[<]
is expressively equivalent to LTL [11,14]. In Hypertrace Logic, we add to the time
sort No a trace sort T. The logic FO[<] allows only monadic predicates, aside
from the interpreted binary predicate <. We lift this restriction in Hypertrace
logic FO[<, T] and allow arbitrary binary predicates over pairs of trace and time
variables (with type T x N.).

Formally, given a set 1" of traces, we translate T to a structure T with sig-
nature (N, 7;< : N x N,(P,:TxN),ex, def : T x N), where N and T are the
domains for the time and the trace sort, respectively. The predicate < has the
usual interpretation over the theory of natural numbers, while, for all vari-
ables a € X, we have P, = {(1,k) | 7 € T,k € N, and 7[k](a) = 1}, and
def = {(r,k) | T € T,k € N, and 0 < k < |7|}. In words, each predicate P,
contains all pairs of traces and time positions where a holds, and the predicate
def contains all time positions that lie within the length of a given trace. This
enables the logic to talk about both finite and infinite traces.

Let Vr = {m,n,...,m1,...} be a set of trace variables, and Vy = {3,7...,
i1y..J,-.-} a set of time variables. We evaluate hypertrace formulas over
the pair of assignments (II7,II") : (Vr — T) x Wy — N) and denote
(I1F., ITN)[x — v] the assignment in which variable x is mapped to v, and other
variables retain their values. A set T of traces is a model of a hypertrace for-
mula ¢ € FO[<,T], denoted T [=1 ¢, if T models ¢ under the standard first-
order semantics, i.e., if there exists a pair of assignments (IT7, IT") such that
(T, (I1%, ITV)) = . Thus, the hypertrace formula ¢ generates the hyperprop-
erty [¢] = {T | T 1 ¢}. From now on, we refer to P, as a, and omit the
subscript T in =1 when clear from context.

Ezample 2. The hypertrace formula 3iVr a(7, ) specifies that there exists a time
point such that a is true for all traces at that time. For instance, the set T =
{[0][1][0][1][0]«, [0]3[1]“} of two traces, with valuations over [a] represented as
strings of length 1, satisfies the formula, because for both traces in T" at time 3
the value of a is 1.

The hypertrace formula Ir3n'Via(w,i) <> —a(n’, ) specifies that there exist
two traces that are complements of each other with regard to the value of a. The
set T7 = {([0][1])%, ([1][0])“, [0]“} of three traces satisfies the formula.

In [10], the authors present an alternative extension of FO[<], called
FO[<, E], to express hyperproperties. This one-sorted logic uses quantifiers
ranging over pairs of traces and time positions and unary predicates P, for
each propositional variable a over such pairs. It includes a binary equal-level
predicate E, which compares the same time positions between two traces.
Given a set T of traces, the authors define a structure T with signature
(T x N;<E: (T xN) x (T xN),E : (T xN) x (T xN),(P, : T x N),ex) with
<E={((r,n),(r,n)) | T € Tand n < n'}, and E = {((1,n),(7',n)) | 7,7 €
Tandn € N}, and P, = {(r,n) | 7[n](a) = 1}. As usual, the successor
predicate is defined as Succ(z,y) = =z < y A 3z(z < z < y), and minimal
pairs as min(z) = -3y Succ(y,r). Finally, minimal-time quantifiers QMx ¢,
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with Q € {V,3}, are given as shorthands VMr¢ = Vz (min(z) — ¢) and
Mz p = Jz (min(x) Ap). These quantifiers define an implicit quantification over
traces. Given a set T of traces, the formulas ¢ of FO[<, E|] are interpreted over
assignments ITE : V — (T x N): we have T =g ¢ iff there exists an assignment

ITE such that (TE, IIE) = ¢ under the standard first-order semantics.

Ezxample 3. The equal-level formula 3a; Mz, 32 (r0) B(T(r), i) N < T(r iy A
Pa((r,) is equivalent to the hypertrace formula JiVra(r,i). The predicate
E((r:, ;) guarantees that x(.,) has the same time index as x;. Moreover,
since  is in the scope of a minimal time quantifier, the predicate xr < z(x )
guarantees that z(, ;) has the same trace identifier as x.

The hypertrace formula Ir3n'Vi (a(m,i) < —a(n’,i)) is equivalent to the
equal-level formula

My Iy 3T (i) E(T(riys i) N Tr < gy A
32 iy E(T(n ), i) A Trr < Zrr iy N (Pa(@riy) < 2 Pa(@(nrs)))-

We prove that Hypertrace Logic and FO[<, E] are equally expressive with
regard to sets of infinite traces. The translation from equal-level formulas to
hypertrace formulas is straightforward, because FO[<, T] supports explicit quan-
tification over both traces and time. The other direction, from FO[<,T] to
FO[<, E], follows from the observation that a binary predicate x(m,4) can be
translated to a unary predicate with variable z(, ;. We require that x(, ;) has
the same trace identifier as a minimal variable z, with z, < z(r ;), and has the
same time variable as x; with E(z;, 2(x ).

Theorem 1. For all equal-level sentences o € FO[<, E| there exists a hyper-
trace sentence ¢ € FO[<,T| such that for all sets T C V% of infinite traces,
we have T |Eg wi iff T Er1 @. For all hypertrace sentences p € FO[<,T| there
exists an equal-level sentence pp € FO[<, E| such that for all sets T C V¢ of
infinite traces, we have T =1 ¢ iff T EE ¢E.

2.3 The Trace-Prefixed Fragment of Hypertrace Logic

By T-FO[<, T] we denote the fragment of Hypertrace Logic in which all trace
quantifiers are at the beginning of the formula. In other words, the formulas
¢ € T-FO[<, T] are defined by the following grammar: ¢ ::=Vr ¢ | =p | ¢ with
Ye=Viy | YV | |i<ili=i| P(mi), where 7 is a trace variable, i is a
time variable, and P is a binary predicate.

We prove that T-FO[<, T] is expressively equivalent to HyperLTL [4] inter-
preted over sets of infinite traces. HyperLTL extends LTL by adding quanti-
fiers over traces. Its syntax is defined by the following grammar, where V is
a set of trace variables, a € X, and # € V: ¢ == Ir ¢ | Vr ¢ | ¢ with
pu= ar | 0| eVe | Xl pUge. A trace assignment, ITp : V — T,
is a partial function that assigns traces from T to trace variables in V. The
satisfaction relation for HyperLTL formulas is defined inductively as follows:
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,i) Ep 3m 4 iff there exists 7 € T : (7|7 — 7],4) Eg ¢;
) e Y b iff for all 7 € T ¢ (Ip[r v 7],1) =g o
) b an iff TTr(m)fil(a) = 1

1) Fa M (7, 0) Fr ¢y
)
)
)

~

Fu 1 Vb iff (II7,4) Eu ¥y or (I7,0) FEu o;
Fa Xy iff (II7,i+1) Fu ¢;
Er 11 Uy iff there exists i < j:(Ip,j) Eu 2
and for all i < j' < j:(IIt,j") En 1.

~

EEEEEE

~

5

A set T of traces is a model of a HyperLTL formula ¢, denoted T Epu ¢,
iff there exists a mapping IIr such that (II7,0) Eg ¢. A formula is closed
when all occurrences of trace variables are in the scope of a quantifier. For all
closed formulas (sentences) ¢, we have T' =g ¢ iff (IID,0) =g ¢, where IT% is
the empty assignment. We may omit the subscript H in =g when clear from
context.

Let T be a set of traces and II7 : V — T a partial function assigning traces in
T to variables in V. We write V(II7) = {x | II7(x) is defined} for the set of trace
variables that are assigned in IT7. The size of IIy is defined as |II7| = |V(IIT)].
The flattening of IIt is (IIT)[i|(ar) = 1 (m)[i](a). Note that a quantifier-free
HyperLTL formula ¢ with trace variables V and propositions X is also an LTL
formula over the alphabet {a, | a € X, 7 € V}.

Ezample 4. Consider the set of traces T = {[0]“,[1]*} over [a], and the trace
assignment [I7(7)=[0]* and IIr(7")=[1]*. Then (IIr)=[01]*, with valuations
defined over [ar a,].

Lemma 1. Let ¢ be a quantifier-free HyperLTL formula. For all i € N, all
trace sets T, and all corresponding trace assignments I, we have (Il7,i) Eg

@ iff Hp)li...] ¢

Theorem 2. For all HyperLTL sentences g there exists a trace-prefixed hyper-
trace sentence ¢ such that for all sets of infinite traces T C V%, we have
T =g on iff T =1 . For all trace-prefized hypertrace sentences  there exists
a HyperLTL sentence g such that for all sets of infinite traces T C V%, we

have T =g o iff T E1 ©.

2.4 The Time-Prefixed Fragment of Hypertrace Logic

The fragment <-FO[<, T| of Hypertrace Logic restricts the syntax of Hypertrace
Logic to have all time constraints defined before trace quantifiers. The formulas
¢ € <-FO[<, T are defined by the following grammar: ¢ =:=Vi ¢ | —p|i < i|i=
iV | withy :=Vr |V | | P(r, i), where 7 is a trace variable, ¢
is a time variable, and P is a binary predicate.
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An important fragment of <-FO[<,T] is Time-invariant Hypertrace Logic,
G -FO[<, TY, in which all formulas start with a universal time quantifier followed
by a formula that has only trace quantifiers. Formally, ¢ € G -FO[<,T] iff
@ = Vi 1;, where v; is defined by the following grammar: 1; ::= V7 ¢; | ¥; V
i | =; | P(m,4). For a formula (i) without time quantifiers whose only free
time variable is i, we define as a convenience its satisfaction also with respect
to a set M = {wg,v1,...} of valuations: let {vg,v1,...} Er ¢(i) iff for T =
{vg,v¢,...}, we have T |= Vi (i).

Time-invariant Hypertrace Logic can be used to specify relations between
traces of a system that must be satisfied independently at each time point.
We prove that if a hyperproperty over X can be specified in Time-invariant
Hypertrace Logic, then it can be characterized by a set M of sets of valuations
that are total for X. We denote by M the set of all trace sets that are pointwise
characterized by M. Formally, M* = {T" | Vi € N: T[i] € M}, where T[i] =
{r]i] | 7 € T}.

Theorem 3. Let X be a finite set of propositional variables and T C
VX be a hyperproperty. There exists a time-invariant hypertrace formula
0 € G -FO[<,T] that specifies T, [p] = T, iff there exists a set M C 2Vx
of valuation sets such that T = M* and X(v) = X, for all v € M and all
M e M.

3 Two-State Local Independence

We are interested in specifying the following requirement of a system, which is
arguably the simplest nontrivial sequential information-flow property: The value
of observable variable y is independent of the value of observable variable x until
state changes, and from then on the value of observable variable z is independent
of the value of x.

Consider first the situation without a state change, i.e., the value of y should
always be independent of the value of x. Sequential independence relates x and y
values from multiple system executions by requiring that for any pair 7 and 7’ of
traces, there exists a third trace 75 that has the same sequence of x values as 7
and the same sequence of y values as 7/. This is a trace- or segment-based view,
which we call the segment semantics of independence. There is also a weaker
interpretation of sequential independence, namely, time-invariant combinational
independence: time-invariant combinational independence relates x and y values
from multiple system executions by requiring that for any possible values v, of
z and vy, of y that can occur at any time k, also the combination of v, and
vy is possible at time k. This is a time-point view, which we refer to as the
point semantics of independence. Point and segment independence are formally
defined below. As we want to accommodate finite traces, we use the predicate
def to guarantee that the definition covers only positions within the traces size.
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Definition 1. Two variables x and y are point independent, indyoini(z,y), iff

Vivavn'3ns (def(n,i) A def(n’,i)) —
(dEf(TFE,i) A (z(m, i) < x(m3,1)) A (y(ﬂl’i) - y(ﬂ'g,i))).

Two variables x and y are segment independent, indseq(z,y), iff:

Vv 3naVi (def(m,i) A def(’,i)) —
(def(ﬂg,i) A(z(m,i) < z(m3,4)) A (y(7',i) < y(ﬂg,i))).

Because of the order of quantifiers, segment independence implies point inde-
pendence. For both point and segment independence, there is an alternative
definition that compares only traces of equal length (finite or infinite), that is,
all trace variables m, 7/, and 73 are interpreted over traces of the same length.
Choosing this alternative definition would not affect our results.

Now let us introduce the state change. The state change may be observable
or not (“hidden”). Also, the state change may happen at different times in
different traces (“asynchronous”) or at the same time in all traces of a single
trace set (“synchronous”). We use a propositional variable a that indicates the
state change when its value changes from 0 to 1 for the first time. For this,
we define a slicing operator over sets of traces that returns all its elements’
prefixes (or suffixes) before (after) a given propositional variable holds for the
first time. Formally, for trace 7, propositional variable a, and time variable i,
the abbreviation min(7,a,4) stands for a(7,i) AVj a(7,j) — j > i. Given a set
T of traces, we define its slicing with respect to a as follows:

Tla...]={7lk...]| 7 €T, k<|7|, and min(7,a,k)};
T[...al={7[...k] | 7 €T, if exists [ s.t. min (7,a,!) then k =1 else k = w}.

Ezample 5. Consider the set of traces T' = {[00]“, [01][10]“} in which the valu-
ations are over [az]. Then, T7...a] = {[00]*,[01]} and T'a...] = {[10]“}.

Now we are ready to define different “flavors” of sequential independence,
depending on whether we take the segment or point semantics, whether or not
the state-changing “action” a happens at the same time in all traces, and whether
or not the state-changing action a is visible.

Definition 2. Two-state local independence is defined with regard to a proposi-
tional variable a and to an independence interpretation ind € {indpoint, iNdseq}-

Observable asynchronous state change:

29" ={T|T|...a] E ind(z,y)andT]a...] E ind(z, 2)}.

ind

Observable synchronous state change:

T ={T | Te Ty andT = Fi¥r min(r,a,i)}.

ind
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Hidden asynchronous state change:

esynehidden_ o) 1 30 7). a] | ind(z,y) and Tla. . ] = ind(x, 2)}.

ind
Hidden synchronous state change:

evnehidden_ op) 3 k] = ind(x, y) and Tlk. . ] = ind(z, 2)}.
Here T\, is the same set of traces as T except for the assignments of a being
removed.

4 Expressiveness

In this section, we explore which variations of two-state local independence can
be specified in the trace-prefixed fragment of Hypertrace Logic, which is expres-
sively equivalent to HyperLTL. We summarize our results in Table 2.

Table 2. Can trace-prefixed hypertrace logic express the different variants of the
two-state local independence property? For point semantics and synchronous state
change, we prove only the restricted result that two-state local independence cannot
be expressed by HyperLTL formulas with a single globally (G) operator. For segment
semantics and hidden synchronous state change, the problem is open.

Independence | State change
semantics

Sync Async Hidden async Hidden sync
Point No? [Theorem 6] | No [Theorem 9] | No [Theorem 9] | No? [Theorem 6]
Segment Yes [Theorem 8] | No [Theorem 9] | No [Theorem 9] | ?

4.1 Indistinguishable Trace Sets

We introduce notions of indistinguishability between sets of traces for both trace-
prefixed and time-prefixed fragments of Hypertrace Logic.

We start by defining an equivalence between sets of traces for HyperLTL. The
number of trace quantifiers in a HyperLTL sentence defines how many traces can
be compared simultaneously. We propose an equivalence for HyperLTL models
which lifts, to sets of traces, a given equivalence between traces which preserves a
fragment of LTL. For a class C of LTL formulas and an equivalence ~ on traces,
we say that = is C-preserving if for all LTL formulas ¢ € C and all traces 7 and
7' with 7 = 7/, we have 7 = ¢ iff 7’ |= ¢. For example, if C is the set of LTL
formulas without next (X) operator, and the equivalence classes of = are closed
under stuttering, then = is C-preserving.

Next we extend classes of LTL formulas to classes of HyperLTL formulas.
Let C be a class of LTL formulas, and let ¢ = Qq7g . .. Qxmr be a HyperLTL
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formula with ¢ being quantifier-free, and Q; € {V¥,3} for all 0 < i < k. We
say that ¢ is in the k-extension of C, denoted ¢ € 2%, if ¢ € C. We lift a C-
preserving equivalence ~ on traces to a QE—preserving equivalence on trace sets,
by requiring a bijective translation between trace sets which preserves =~ for all
assignments of size k.

Definition 3. Let k € N, let C be a class of LTL formulas, and let =~ be a
C-preserving equivalence on traces. Two sets T and U of traces are (k,C)-
equivalent, denoted T =, c) U, iff there erists a bijective and total function
f:T — U, such that for all sets V of k trace variables and all trace assignments
II:V—>Tand I :V — U, we have (II) =~ (f(I)) and (II')y ~ (f~1(1I")),
where f(IT)(m) = f(II(m)) for allm € V.

Theorem 4. Let C be a class of LTL formulas and ~ a C-preserving equivalence
on traces. Let ¢ € 2% be a HyperLTL sentence in the k-extension of C, for some
k € N. For all sets T and U of traces with T ~(;, ¢y U, we have T |= ¢ iff U = .

The theorem follows from Lemma 2 below, which is shown by induction on the
number k of trace quantifiers. We note that the other direction of the implication
in Theorem 4 does not hold. Consider the two trace sets T'={[1][0][1][0]“} and
U ={[1][0][0][1][0]“, [1][0][0][0][1][0]“} with valuations over z. The two trace sets
have different cardinality, so there is no k and C for which they are (k,C)-
equivalent. However, they are indistinguishable for all HyperLTL formulas with
one trace quantifier and until (U) modalities only, because the two traces in U
are stutter-equivalent to the trace in 7.

Lemma 2. Let C be a class of LTL formulas and k € N. For all HyperLTL
formulas ¢ € 2%, all trace sets T and U with T ~k,c) U, all functions f: T —
U that witness the (k,C)-equivalence of T and U, and all trace assignments
IT : free(p) — T and II' : free(p) — U to the free variables in p, we have

(I1,0) £ ¢ iff (f(I1),0) [ ¢, and (II',0) = @ iff (f~1(1'),0) [ ¢.

Next we introduce a notion of indistinguishability for trace sets with regard
to the time-prefixed fragment of Hypertrace Logic. Consider a time-prefixed for-
mula that quantifies over k time points. Then, two sets of traces are k-point
equivalent if for each possible k-tuple of time points there is a bijective transla-
tion between the sets of traces that makes them indistinguishable in the times
of that tuple.

Definition 4. Two sets T' and U of traces are k-point equivalent, denoted
T =" U, if for all k-tuples (i1,...ir) € N* of time positions, there exists
a bijective and total function f : T — U such that for all traces 7 € T and
e U, and all 1 < j <k, we have 7[i;] = f(7)]i;] and 7'[i;] = f~1(7)[i;].

Theorem 5. For all time-prefized hypertrace sentences ¢ € <-FO[<,T], and all
sets T and U of traces with T zz‘”m U, where k is the number of time variables

in o, we have T |E= ¢ iff U |E .
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Finally, we introduce equivalence relations over traces that will be used later
in our results. We define Global LTL, G, as the class of all LTL formulas that
start with the globally (G) operator and contain no other modal operators.
Then, G = {G 1 | ¢ is a propositional formula}. Two traces 7 and 7/ are ~g-
equivalent if for all formulas ¢ € G, we have 7 = ¢ iff 7/ = .

Proposition 1. For all traces 7 and 7', we have T ~=¢ 7' iff {7[i] | i € N} =
{r'lil | j € N}.

We write X" for the class of LTL formulas with up to n nested next (X)
operators. The following definitions are taken from [16]. A valuation 7[i] at time
i is n-redundant in a trace 7 if it is repeated consecutively for at least n + 1
times, that is, if 7[i] = 7[i 4+ j] for all 1 < j < n. Two traces 7 and 7’ are
n-stutter equivalent, denoted 7 =" 7', if they are equal up to the deletion of
n-redundant valuations. Formally, the relation =™ is the least equivalence over
the set of all finite or infinite traces containing <", where 7 <" 7/ iff there is a
time 4 such that the valuation 7/[i] is n-redundant in 7/, and 7 is obtained from
7/ by removing 7'[i]. The following proposition is a direct consequence of the
results in [16].

Proposition 2 ([16]). For all formulas ¢ € X" and all traces 7 and 7' with
T =" 7', we have T = ¢ iff 7' = .

4.2 Point Semantics

The point interpretation of independence, indpoini(x,y), considers each time
point independently. Note that indpein:(z, y) from Definition 1 is a time-invariant
hypertrace formula. Let Global HyperLTL be the extension of global LTL, G, with
leading trace quantifiers. We prove that no Global HyperLTL formula can express

one-state independence with point semantics, namely, T. . = [indpoint(z, y)].

oint

First, we define two families of models (i.e., trace septs) parameterized by a
natural number such that the models of one family satisfy one-state indepen-
dence with point semantics, while the models of the other family do not. The
parameter guarantees that for a given HyperLTL formula with n trace quanti-
fiers, there are enough traces in the models to prevent the formula from distin-
guishing them. We exploit the fact that when evaluating a HyperLTL formula,
we can simultaneously compare at most as many traces as there are quantifiers
in the formula. Then, we prove that no global HyperLTL formula can distinguish
between corresponding models of the two families. To prove this result, we show
that corresponding models are (k, G)-equivalent.

Definition 5. For each n € N, we define two sets TP and UP°™ of traces
with valuations over [x y|:
E, = {[11]"**[00]*} U | {[00} [10] 0], [00]/ [01] [00]*'};
0<j<n
Th™ = E, U {[00]" [10] [10] [00]“, [00]" [01] [01] [00]*};
Uremt = g, U {[00]" [10] [00] [00]“, [00]™ [01] [00] [00]*}.
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Ezxample 6. For n =1, we get the following trace sets:

TP = {[11] [11] [11] [00]*, ope™ = {[1] (1] [11] [0},
[10] [00] [00] [0O]*, [10] [00] [00] [00]*,
[01] [00] [00] [0O]*, [01] [00] [00] [00]*,
[00] [10] [10] [00]*, [00] [10] [00] [00]*,
[00] [01] [01] [00]*} [00] [01] [00] [00]*}

The trace set T} ot satisfies the condition that z is independent of y, because
at all time points, we have all possible combinations of observations for x and
y. However, the trace set TP does not satisfy the condition, because at time
2 we are missing traces with valuations [10] and [01] for [z y]. Global HyperLTL
formulas with only one trace quantifier cannot distinguish between these two
trace sets.

Lemma 3. For all n € N, we have T?*™ € T} .., and UF*™ ¢ T} . .

Lemma 4. For all n € N, we have TP =, ¢y UL,

Theorem 6. Global HyperLTL cannot express neither one-state independence,
nor synchronous two-state local independence under point semantics for both
observable and hidden action: for all global HyperLTL formulas ¢, we have
[P] # Thoines L] # Thi and [] # Ty "

Proof. From Lemma 3, Lemma 4, and Theorem 4, it follows that for all global
HyperLTL formulas ¢, we have [¢] # T Assume towards a contradic-

point*

tion that there exists a global HyperLTL formula ¢ with [¢] = T:?"°,. Define

oint*
wy = @[z — y|, where [z — y] replaces all occurrence of z f)y y. Then
ley] = T;omt, which is a contradiction. Analogously, the assumption that there
exists a global HyperLTL formula ¢ that specifies hidden synchronous change
[ie] = T304 Jead us to a contradiction. O

We conjecture that this result extends to all HyperLTL formulas (global
or not), namely, that no HyperLTL formula is equivalent to the time-invariant
hypertrace formula indpeini(z,y) from Definition 1. Time-invariant hypertrace
formulas enforce requirements over time points that must be satisfied indepen-
dently by all of them. It seems unlikely that they can be expressed by HyperLTL
formulas that are not equivalent to global HyperLTL formulas. While HyperLTL
is likely unable to specify even one-state independence under point semantics, it
is not surprising that time-prefixed hypertrace logic can express two-state local
independence under point semantics with a synchronous state change.

Theorem 7. Consider the following time-prefized hypertrace formula:
oyt = J5Vi < jVk < jVava’3Imag
(—\a(ﬂ,i) A =a(n’ i) A (z(m, 1) < z(m3,4)) A (y(n', i) < y(ns, Z))) A
(a(m,j) Aa(n’, §) A (x(m, k) < x(m3, k) A (2(7', k) < 2(73,k)))
Then [@;"C] = TV

time point*
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4.3 Segment Semantics

The segment interpretation of independence, indseq(z, y), compares entire trace
segments. We prove that HyperLTL can express two-state local independence
under segment semantics with a synchronous state change, while the variants
with an asynchronous state change, either observable or not, are not expressible
in HyperLTL.

Theorem 8. Consider the following HyperLTL formula:

sync —

)b = VaVr'Inz3nh (max A —Gr ATy = Tng A Yrr = Yrs)
Ular Aax N G (T = Tps A 2pr = 27)).

Then [psyne] = TY7°.

seg seg

We now examine the case of an asynchronous state change. To prove that
HyperLTL cannot express two-state local independence in this scenario, we
exploit the fact that HyperLTL cannot compare arbitrarily distant time points
from different observations. As in the previous subsection for point semantics,
we define two families of trace sets such that the sets in one family satisfy the
two-state independence property, while the sets in the other do not. The dif-
ficulty in expressing the asynchronous state change is caused by the arbitrary
distance between time points when the state change happens in different traces.
The trace sets we construct guarantee that there are not enough next (X) oper-
ators to encode this distance. The trace sets in the second family correspond
to those in the first family, except for the position 2n 4+ 1, which is deleted.
This position coincides, by construction, with a global (across all trace sets) n-
stuttering in the first family. Thus, it is not surprising that the n-th members
from the two families, for every n € N, are (k,X")-equivalent, for any number
k of trace quantifiers.

Definition 6. For each n € N, we define two sets T2V = {t1,tq,t3,t4} and
U2y = {uy, ug, us,us} of trace sets with valuations over [a x y z|:

[1110] [1000]™* [1001]""* [1111] [1001]™** [1000]™ 4,
[1111] [1001]™"* [1000]™"* [1110] [1000]™** [1001]™ 4,
[0000] 71 [1001]%, t; = [0010] 74 [1001]™* [1111]“,
[0000]™ T 79 [1001]“, t4 = [0010]"T* 7y [1111]*,
t:[0]ts[1] . . . ts[2n + 10]t,[2n 4+ 12] ... for 1 <i < 4.

Lemma 5. For all n € N and all valuations II over T,}*V"¢, the valuation at
time 2n + 11 is n-redundant in the trace (II).

Lemma 6. For all k,n € N, we have T3V ~, xny U™ and T3] q =1 xn)
Uasync|
n a-
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Proof. Consider arbitrary k,n € N. We define the witness function f : T,7%"¢ —
Ugsvne as f(t;) =t} for 1 < ¢ < 4. Clearly, the function is both bijective and total.
Let IT be an arbitrary valuation over T,2°"¢ such that |II| = k. We proved in
Lemma 5 that the valuation at time 2n+ 11 in trace (II) is n-redundant. By the
definition of U2¥™¢, the trace (f(II)) is the same as (IT) except that the valuation
at time 2n + 11 is deleted. Therefore (II) =™ (f(II)). We prove analogously
that for all valuations I1’ of size k over U2¥"¢ we have (II') ~™ (f~1(II')).
Hence T3%"¢ ~ 1, xny U™, We use the same witness function to prove that
T2 0 = g,xny US| q. Note that for all n € N, since T,7°¥"¢|, is the same as
Trsyme except for the values of a that are removed, Lemma 5 holds for T,25¥"¢|,
as well. O

Lemma 7. For all n € N, we have T,%V"¢ € T, Ussvne & TO"C and

idd seg point ?
Uasync| ¢ 1dden
n a point *

It is clear that all trace sets that are models under the segments semantics

are models under the point semantics, as well. Therefore Tg;Y"* C T 2V"°.

Theorem 9. For all HyperLTL sentences o, we have [@] # Tpotni, ] #
Tasync} [[90]] 7& idden and H@H ?é Thidden‘

seg point 7 seg

Proof. From Tgid™ C T 20 and Lemma 7, it follows that for all n € N, we

async async async async async async
have T)¢ € Ty, ° and Uyg ¢ Tgo"", as well as Tp7 € T, and

Ugsyne ¢ T Tet ¢ be a closed HyperLTL formula, let n be the nesting

point *
depth of its next operators, and let k € N be the number of trace quantifiers in
©. It follows from Lemma 6 and Theorem 4 that T,25V"¢ € [] iff U™ € [¢].
Hence for all HyperLTL sentences ¢, we have [p] # Tod" and [¢] # Teyme.

point seg
For all n € N, since T,7%¥"°|, is the same as T,%*Y"® except for the values of a

hidden hidden
that are removed, we have T,7°v"¢|, € T'e;™" and T,3°v"¢|, € T 50" Lemma 7

implies that U2¥"|, ¢ TZZ%?", and thus U2V"|, & Tgé;de", for all n € N.
As in the previous case, from Lemma 6 and Theorem 4, it follows that for all
HyperLTL sentences ¢, we have [¢] # Tgé‘ffff” and [¢] # ngjden. O

5 Related Work

The specification of asynchronous hyperproperties is challenging. We proved that
HyperLTL cannot specify two-state local independence if the state change is
asynchronous. Note that, here, “state change” refers to the specification of a
sequential information-flow property, which changes over time, from one “spec-
ification state” to the next, independently of any synchronous or asynchronous
interaction of the components of the system whose property is specified.
Recently there have been several works that enrich HyperLTL to deal with
various forms of asynchronicity. They mostly focus on the model-checking prob-
lem over asynchronous systems, not on specification-level asynchronicity. In [13],
the authors address the limitation of HyperLTL imposed by a synchronous
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traversal of traces by defining the logic Hu, which extends the linear-time pu-
calculus with trace quantifiers and a next operator parametrized by a trace
variable. The parameterized next, X, ¢, specifies that ¢ holds when we move to
the next time point in trace . In [1,3], the authors extend HyperLTL with other
operators for comparing different traces asynchronously. All of these logics have
model-checking problems that are undecidable due to asynchronicity, which is
why the authors propose decidable fragments.

The history of HyperLTL and related expressiveness results can be sum-
marized as follows. Trace properties, often specified in LTL [18], cannot spec-
ify relations between different traces [5,17]. The seminal work of Clarkson and
Schneider [5] introduces, therefore, the concept of hyperproperties as sets of trace
properties. Different extensions of LTL have been proposed for reasoning about
hyperproperties in general, and security properties in particular. Well-known
examples are the epistemic temporal logic ETL [8], which extends LTL with a
modal operator for knowledge, and SecLTL [7], which introduces a hide modal-
ity. Finally, Clarkson et al. [4] introduce HyperLTL, which extends LTL with
explicit quantification over traces.

The hide operator of SecLTL considers all alternative outcomes at the current
time. In [4] the authors show that SecLTL can be encoded in CTL* extended
with trace quantifiers (HyperCTL*), but not in HyperLTL. In the same paper,
they prove that HyperLTL subsumes ETL. Their proof relies on the possibility to
quantify over propositional variables that are not in the alphabet of the structure
that is being model checked. Later, in [6], Coenen et al. introduce an extension of
HyperLTL with such quantification over propositions, called HyperQPTL, and
they prove that HyperQPTL is strictly more expressive than HyperLTL.

Bozzelli et al. [2] prove that HyperCTL* and an extension of CTL* with the
knowledge operator (KCTL*) have incomparable expressive power. These results
extend to HyperLTL and ETL as well, both of which are subsumed by their
respective CTL* extensions. To show that ETL is not subsumed by HyperLTL,
they prove that HyperLTL cannot express bounded termination, i.e., that there
is a common time point across all traces which has the same valuation for a given
propositional variable. The latter property can be specified in ETL, but not in
HyperLTL. In [10], the authors propose to extend FO[<] to hyperproperties
by adding the equal-level predicate E. Similar to previous negative expressivity
results for HyperLTL, they use the bounded-termination property from [2] to
prove that FO[<, E] is strictly more expressive than HyperLTL.

Different from the extensions to LTL discussed above, Krebs et al. [15] pro-
pose to reinterpret LTL under a so-called team semantics. Team semantics works
with sets of assignments, and the authors introduce both synchronous and asyn-
chronous varieties. They show that HyperLTL and LTL under team semantics
and synchronous entailment have incomparable expressive power. An overview
of relative expressiveness results for linear-time hyperlogics is presented in [6].

Finkbeiner and Rabe [9] prove that HyperLTL formulas cannot distinguish
between structures that generate the same set of traces. The expressiveness proof
by Bozelli et al. [2] defines an equivalence relation for a specific family of models
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to show that no HyperCTL* can distinguish them. We are the first to define a
family of equivalence relations between sets of traces that are indistinguishable
with respect to a given class of HyperLTL formulas.

6 Conclusion

We studied the expressiveness of specification languages with regard to linear-
time hyperproperties. The first-order formalism we introduced, Hypertrace
Logic, allowed us to systematically investigate the implications of alternating
trace and time quantifiers. Additionally, it enables us to lift techniques and
results from first-order logic to study linear-time hyperproperties. One interest-
ing direction would be to study extensions of Hypertrace Logic with decidable
first-order theories. For example, we can specify asynchronous two-state local
independence under segment semantics, Tg./"¢, with Hypertrace Logic when
interpreted with the theory of natural numbers with linear order and addition,
(N; <, +). We can use addition to encode the time shift between states for each
trace in the domain.

It will be interesting future work to characterize, more generally, the hyper-
properties that can be expressed in Hypertrace Logic. We focused in this paper,
instead, on a single paradigmatic sequential information-flow property, namely,
two-state local independence. We considered several natural variants and inter-
pretations of this hyperproperty, which arise mostly due to differences in the
power of the observer. Our main result proved that the asynchronous versions
of two-state local independence cannot be specified in HyperLTL, due to its
fixed order of trace and time quantifiers. It is therefore also interesting to ask, in
future work, if there are natural temporal-logic or automaton-based formalisms
for specifying general sequential information-flow properties, which can capture
some of the nuanced differences in interpretation that were characterized in this
paper using a first-order formalism.

Acknowledgments. This work was funded in part by the Wittgenstein Award Z211-
N23 of the Austrian Science Fund (FWF) and by the FWF project W1255-N23.
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Abstract. In modern programming languages, more and more func-
tionalities, such as reflection and data interchange, rely on string values.
String analysis statically computes the set of string values that are pos-
sibly assigned to a variable, and it involves a certain degree of approxi-
mation. During the last decade, several abstract domains approximating
string values have been introduced and applied to statically analyze pro-
grams. However, most of them are not precise enough to track relational
information between string variables whose value is statically unknown
(e.g., user input), causing the loss of relevant knowledge about their
possible values. This paper introduces a generic approach to formalize
relational string abstract domains based on ordering relationships. We
instantiate it to several domains built upon different well-known string
orders (e.g., substring). We implemented the domain based on the sub-
string ordering into a prototype static analyzer for Go, and we exper-
imentally evaluated its precision and performance on some real-world
case studies.

Keywords: Relational abstract domains + Static analysis - String
analysis -+ Abstract interpretation

1 Introduction

String values play a fundamental role in most programming languages. Dynam-
ically inspecting and modifying objects, transforming text into executable code
at run-time, and handling data interchange formats (e.g., XML, JSON) are only
a few examples of scenarios where strings are heavily used.

The static analysis community has spent a great effort in proposing new
abstractions to better approximate and analyze string values. Unfortunately,
almost all the existing string abstract domains are in a position to track infor-
mation of single variables used in a program (e.g., if a string contains some
characters, or if it starts with a given sequence), without inspecting their rela-
tionship with other values (e.g., if a string is a substring of another one, despite
their actual values are unknown). Detecting relational information between vari-
ables is critical in vulnerability analysis, e.g., malware detection, or to verify if
the string values manipulated by a program comply with specified consistency
constraints.
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func secName (name, prl, pr2 string) {
if hasPrefix(name, pril) {
return pr2 + name [4:]
} else if hasPrefix(name, pr2) {
return prl + name[4:]
} else {
return name
}
}

Fig. 1. secName function.

For numerical values, advanced and sophisticated relational abstractions have
been studied and improved over the years to track relations between variables.
A representative example is the Polyhedra abstract domain [18], which has been
continuously and heavily improved over the years, as reported by the more recent
important works on its optimization, e.g., [9].

For string values not much attention has been given to a systematic design
of relational domains. We illustrate the problem by considering the function
secName' in Fig. 1. The function takes as input three arguments of type string,
name, prl and pr2. Then, if name has pril as a prefix, the function returns pr2
concatenated to the substring of name starting at index 4. Function secName
behaves analogously when name starts with pr2, concatenating pri to name[4:].
Otherwise, name is returned. The relational information we aim to capture here is
the one relating pr1 and pr2 with name and the returned value. In particular, we
want to infer that name[4:] is always contained in the returned value, and pri
(resp. pr2) is contained in the returned value if name starts with pr2 (resp. pri).
Using non-relational abstract domains, there is no way to catch these relations.
It is clear that using relational domains considerably improves the accuracy of
any static analyzer, and the issue of providing a systematic construction of them
deserves to be deeply investigated.

1.1 Paper Contribution

In this paper, we define a constructive method upon which relational strings
abstract domains can be defined. We start from a string order of interest, and we
introduce a suite of relational abstract domains fitting the proposed framework,
based on length inequality, character inclusion, substring relations. Precisely, we
first formalize how to track relations between single string variables; then, we
extend the method to infer relations between string expressions and variables to
improve the analysis’s precision.

Abstract domains tracking relations among variables may lose information
about the values (i.e., the content) of each variable and the only relational infor-
mation may not be enough to precisely answer about programs of interest. Nev-
ertheless, one standard way to cope with this problem (exploited also in the
numerical world) is to combine the relational and non-relational abstractions

! secName is the result of a slight modification made to the function available at

https://www.codota.com/code/java/classes/java.lang.String.
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by using Cartesian or reduced products [14]. One of these combinations is the
Pentagons abstract domain [28], which combines intervals (non-relational infor-
mation) with the strict upper bounds abstract domain (relational information)
by means of the reduced product. Also in this paper, we rely on abstract domain
combinations. In particular, we propose two combinations with our substring
relational abstract domain, discussing the benefits of them: one with the con-
stant propagation analysis and one with TARSIS [31], a non-relational finite-state
automata-based string domain.

The design of relational string abstract domains is agnostic w.r.t. the ana-
lyzed programming language. Therefore, our formalization targets a core imper-
ative language, while the examples and experimentation are based on real-word
programming languages, namely Go (https://golang.org/), a multi-paradigm
language heavily used for developing smart contracts for blockchains.

We implemented our framework? and instantiated it with the substring rela-
tion using a prototype static analyzer for Go. The experimental results show
that the accuracy of our system outperforms state-of-the-art string analyses, as
well as the scalability of our proposal.

1.2 Paper Structure

Section 2 discusses related work. Section 3 recalls some background definitions.
Section 4 shows a core language for string-manipulating programs. Section 5 for-
malizes the construction of generic relational string abstract domains based on
a given textual order (Sect.5.1), and a suite of instantiations capturing different
relational properties (Sect. 5.2, 5.3 and 5.4). In particular, Sect. 5.4 will present
the substring relational domain Sub*, which tracks the set of expressions that
are definitely substrings of each program variable. Section 6 presents the results
of our experimental evaluation on Sub*. Section 7 concludes.

2 Related Work

For numerical values, several relational abstract domains have been proposed,
such as Polyhedra [18], Octagons [30], Pentagons [28], and Stripes [19]. Over-
all, this work line inspired our approach and, in particular, the string relational
domains that we will define in Sect. 5. Indeed, consider the Octagons and the
Pentagons abstract domains. Octagons track relations of the form +z + y < k,
where k is a constant. Pentagons, a less precise domain than Octagons, combine
the numerical properties tracked by the Interval domain (i.e., x € [n,m]) and
the symbolic ones captured by the Strict Upper Bound domain (i.e., z < y).
Similar to the Strict Upper Bound domain, our framework instantiates domains
that track information of the form x < y, where < is a general partial order over
string variables. Moreover, the framework extension we define to track relations
between string expressions and variables, like z + y < z, has been modelled sim-
ilarly to Octagons. Other abstractions have been proposed to infer information

2 Available at https://github.com/UniVE-SSV/go-lisa.
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about the relations between heap-allocated data structures a program manip-
ulates [36]. In [22], an abstract domain that approximates “must” and “may”
equalities among pointer expressions has been defined. A relational abstract
domain for shape analysis has been presented in [23], built on the top of a set
of logical connectives, that represents relations among memory states.

On the string approximation side, a significant effort has been applied to
improve the accuracy of the abstraction. However, contrary to the numerical
world, most of the existing string abstractions only focus on the approximation
of a single variable. Such non-relational abstract domains were already intro-
duced a decade ago [12,13], such as Character Inclusion, Prefix, and Suffix. Pre-
cisely, they track the characters possibly and certainly contained in a string, its
prefix, and suffix, respectively. The finite-state automata abstract domain [5,7]
is a sophisticated domain that abstracts a string set as the minimum automaton
recognizing it. Even if it can keep information on programs that rely heavily on
string manipulation (such as the ones using eval [7]) it suffers from scalabil-
ity problems. M-String [11] is a (non-relational) parametric abstract domain for
strings in C. In particular, it uses an abstract domain for the content of a string
and an abstract domain for expressions, inferring when a string index position
corresponds to an expression of the considered abstract domain. Other general-
purpose string abstractions [2,29,38] or string abstract domains targeting a spe-
cific language [4,11,24-26,33] have been proposed. The abstract domains we
will introduce instead are general-purpose and can be adapted for analyzing
programs written in different programming languages. Note that our framework
can be easily instantiated with other basic string abstract domains leading to
even more precise analyses. Precisely, we start by defining a framework from
which domains capturing relations between string variables can be instantiated,
and we proceed by extending it for tracking relations between string variables
and expressions, enhancing the precision of the analysis. As future work, it could
be interesting to study the similarities between our proposal and the subterm
domain proposed in [21], a weakly relational abstract domain that infers syntac-
tic equivalences among sub-expressions. For instance, our enhanced framework
instantiated with the substring order could be seen as the reduced product [15]
between the basic substring domain we propose and the subterm domain.

Besides the string analysis context, which has the advantage of not relying
on SMT solvers, string abstractions are heavily used, among others, for string
constraint solving. In particular, several works have been proposed on study-
ing decidable fragments of string constraint formulas [1], and researching effec-
tive procedures to string constraints verification [1,3,35,37,38]. For example, a
recent work [3] approximates strings as a dashed string, namely a sequence of
concatenated blocks that specify the number of times the characters they contain
must/may appear.
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3 Background

String Notation. Given an alphabet of symbols X, a string is a sequence of zero
or more symbols and it is denoted by o. The Kleene-closure of 3, denoted by ¥*,
is the set of any string of finite length over the alphabet ¥. The empty string
is denoted by €. Given 0,0’ € ¥*, we denote by |o| the length of o, by o - ¢
the concatenation of o with ¢’. Given o € ¥* and i € [0, |o — 1|], we denote by
o; the symbol at the i-th position of ¢. Given ¢ € ¥* and i,j € [0,]o]], with
i <j <|o|, we denote by o;...0; the substring from i to j of o, and by ¢’ ~ o
if ¢’ is a substring of ¢, i.e., 35, e N. 0 <i < j <o —1|,0;...0; = ¢’. Note
that nC ¥* x ¥* is a partial order. Given 0,06’ € ¥* such that ¢’ ~ o we denote
by idx(o,0’) the position of the first occurrence of ¢’ in o.

Order Theory. A pre-order is a reflexive and transitive binary relation, and if it
is also antisymmetric it is called a partial order. A set L with a partial ordering
relation © C L x L is a poset and it is denoted by (L,C). A poset (L,C, 1, M),
where Ll and M are respectively the least upper bound (lub) and greatest lower
bound (glb) operators of L, is a lattice if Vo, y € L we have that xt Uy and x My
belong to L. We say that a lattice is also complete when for each X C L we have
that | | X,[]X € L. Any finite lattice is a complete lattice. A complete lattice
L, with ordering C, lub U, glb M, greatest element (top) T, and least element
(bottom) L is denoted by (L,C, U, M, T, L).

Abstract Interpretation. Abstract interpretation [14,16] is a theory to soundly
approximate program semantics, focusing on some run-time property of interest.
The concrete and the abstract semantics are defined over two complete lattices,
respectively called the concrete domain C' and abstract domain A. Let C and A
be complete lattices, a pair of monotone functions o : C — Aand y: A — C
forms a Galois Connection (GC) between C' and A if for every x € C and for
every y € A we have a(z) C4 y < z Ce y(y). We denote a Galois Connection
by (C,a,y, A). According to Prop. 7 of [17], a GC between two complete lattices
A and C can be induced also if the abstraction function is a complete join
preserving map, i.e., a(|J X) = | {a(z) | z € X}, with X C C. Given (C,a,y, A),
a concrete function f : C'— C'is, in general, not computable. Hence, an abstract
function f*: A — A must correctly approximate the concrete function f. If so,
we say that f* is sound. Formally, given (C,a,y, A) and a concrete function f :
C — C, an abstract function ff: A — A is sound w.r.t. f if Ve € C.a(f(c)) Ca

FHa(0)).

4 The ImpP Language

In this section, we briefly introduce a very generic imperative language providing
the basic operators on strings, as a reference programming language for the rest
of the paper. We consider the core running language IMP, whose syntax is given
in Fig. 2. IMP is an imperative language handling arithmetic, Boolean, and string
expressions. Its basic values are integers, booleans, and strings, ranging over Z,
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a€AEx=zx|n|a+ala-alax*al|a/al| length(s) | index0f(s,s)
b€ BE := z | true| false| b & b | b ||b| ! b|e<e|e==
| contains(si,s2)
SE SE u= x | "o" | substr(s,a,a) | s1 + s2
e€Ex=a|b]|s
st € sSTMT = ‘“ist 25t | fgkipy2 | iz = &2

| “1if (b) {éZSt[’j} else {“sté"’ }[6
| “while (b) {‘zst’s}%
PelMp = ‘st ©

where z € X (finite set of variables), n € Z and o € ¥*

Fig. 2. IMP syntax.

{true, false} and 3*, respectively. We consider four string operations, length,
index0f, contains, and substr that respectively compute (i) the length of a
given string, (ii) the index of the first occurrence of a string in another one, (iii)
if a string is contained in another one, and (iv) the substring of a given string
between two specified indexes. Let P be an IMP program. Each IMP statement
is annotated with a label ¢ € Lab, (not belonging to the syntax), where Lab,
denotes the set of the P labels, i.e., its program points.

As usual in static analysis, a program can be analyzed by looking at its
control-flow graph (CFG for short), i.e., a directed graph that embeds the control
structure of a program, where nodes are the program points, and edges express
the flow paths from the entry to the exit block. Following [34], given a program
P € Imp, we define the corresponding CFG Gp = (Nodes,, Edges,, In,, Out,)
as the CFG whose nodes are the program points, i.e., Nodes, £ Laby, Inp is
the entry program point, and Outp is the last program point. The algorithm
computing the CFG of a program P is standard and can be found in [6,34]. An
example of CFG is depicted in Fig.3. A CFG embeds the control structure of
the program. Hence, to define the behavior of a CFG, it is enough to formalize
the semantics of the edge labels, namely IMP“® ::= skip | z = e | b, expressing
the effect that each edge has from its entry node to its exit node. Let VAL £
Z U ¥* U {true,false} be the set of the possible values associated with a
variable. Let m € M £ X — VAL be the set of (finite) memories, where my = @
is the empty memory. The semantics of expressions is captured by the function
(e): M — VAL. Since the semantics of integer and Boolean expressions are
standard (and not of interest to this paper), in the following, we only give the
concrete semantics of string expressions.
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Lig = nang foy = nen;
“while (B) {

Liy = x + nav; b
}ff,

Fig. 3. Example of CFG generation.
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Note that when the indexes of substr are out-of-bounds its semantics is
undefined and the execution stops as usual with standard concrete semantics
in case of runtime errors. We are finally in the position to formalize the edges
label semantics. Abusing the notation, we define the function (st ) : M — M to
capture the semantics of the elements of IMP®.

(skip)m =m (z=e)m=mlz — (e)m]
o Jm if (b)m = true
(k) {mg f(b)m=false

As far as Boolean expressions are concerned, the semantics propagates the
input memory if the Boolean expression holds, the empty memory otherwise.

Finally, a store is a collection of memories for each program point, defined
as $ € S 2 Lab, — M and it associates a memory to each program point.

Static analysis computes invariants for each program point. Thus, we first
define a collecting semantics which relates each program point (i.e., each node
of a CFG) to the set of the possible memories holding at that program point.
This boils down to lifting the concrete semantics (st ) : M — M (working on
single memories), to the collecting semantics [ st | : p(M) — (M) working on
sets of memories. Thus, a collecting store mapping each program point to a set
of memories is § € S £ Lab, — p(M).

Finally, we can apply standard fix-point analysis algorithms [34] which
returns a store $ such that, for each ¢ € Labe, $(¢) is the fix-point collecting
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semantics (i.e., a set of memories) holding at ¢. However, the set of the possi-
ble values for each variable, and for each node of a CFG, are not computable
because of Rice’s Theorem. Hence, we need abstractions to make static analysis
decidable.

5 A Suite of String Relational Abstract Domains

This section provides a suite of relational string abstract domains based on
several well-known orders over strings. We start by proposing a general frame-
work to build string relational abstract domains parametrized on a given string
order. Within this framework, we present three different string relational abstract
domains: length inequality, character inclusion, and substring domains, with the
corresponding abstract semantics of IMP.

5.1 General Relational Framework

We aim at capturing relations between string variables of the form y < = w.r.t.
a given (partial or pre-order) relation < over strings, such as “the variable y is
a substring of the variable 2”. As introduced in Sect.2, in the numerical world
such a relation is captured by the (strict) upper bound abstract domain [28,30],
which expresses relations of the form y < z. In this section, we generalize the
upper bound abstract domain to string variables, making it parametric w.r.t. a
given string order.

Our starting point is a (pre or partial) order <y« C ¥* X ¥* between strings.
Then, given a IMP program P we aim to analyze, we abuse notation denoting by
Xsir € X the set of string variables used by the program P. Note that the set of
string variables used by an IMP program is always finite. At this point, we build
a new order < C X, X X4, between a pair of string variables, built upon <y-.
Finally, we design a relational string abstract domain based on <.

Definition 1 (General string relational abstract domain). Let < C
Xstr X Xgtr be an order over string variables. The general string relational
abstract domain A is defined as A £ p({y < = | 2,y € Xg,}) U {L A}, where
the top element, denoted by T 4, corresponds to the empty set & and the bottom
element is represented by the special element 1 4. The least upper bound, greatest
lower bound, and the partial order of A are defined as follows®:

Ay if Ao = 14
All_lAAQé As if A1 =14

Clos({y <=z |y3x€ A1 ANy =<z € As}) otherwise

1 if Ay = LoV Ay =1L
Ay g Ay 2014 if Ay Lavids=La

{ly=xz|ly=zxe€ A Vy <z € Ay} otherwise

A1 EAAQ < AliLAV(Al%J_AAAQ%J_A/\Al:_)AQ)

3 In general, while < (order on string variables) can be a pre or partial order, C 4
(order on the abstract domain A) is always a partial order.
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where Clos : A — A performs the transitive closure of an abstract element A € A,
e, Vr,y,z € Xgr if x S y,y = z € A, then the function Clos returns a new
abstract element containing all the relations of A adding the relation © < z. In
the least upper bound, when one of the elements is bottom, the other is returned,
while in the greatest lower bound, when one of the elements is bottom, then
bottom 1is returned. Finally, the partial order captures the fact that the bottom
element L 4 is the least element of A.

The abstract domain A is intended to collect <-must relations, i.e., informally
speaking, if a relation y < x is captured in the abstract world, it means that it
surely holds in the concrete world.

Note that elements of A are sets of relations y < x between string variables.
Moreover, the general abstract domain A is finite, given that the set of string
variables used by the program we aim to analyze is finite and, in turn, also
the number of possible relations. Thus, it is straightforward to prove that the
domain (A, C4,U4,M4, La, T ) is a complete lattice and that its least upper
bound U4 and greatest lower bound M4 are defined as the intersection and
union between abstract elements, respectively. Abstraction and concretization
functions at : (M) — A and y* : A — (M) are defined as follows:

1 ftM=g
wt (M) £ 37 e @
{y <=z |Vme M. m(y) <s» m(z), z,y € Xg,} otherwise

o A= 14
v4(4) £ { p(M) ifA=Ty (2)
Ny=<zealm | m(z), m(y) € =%, m(y) =s- m(x)} otherwise

where we recall that <5+« denotes an order over ¥*. The abstraction function
takes as input a set of memories M and returns the least set of relations that
holds in any memory m € M. Instead, the concretization function takes as input
an element A of the general string relational abstract domain A and returns
the empty set if A = 1 4, the set of any possible concrete memory if A = T 4,
and the least set of concrete memories where all the relations contained in A
holds, otherwise. (p(M),a,y4, A) is a Galois Connection, since (M) and 1 4
are complete lattices and o is a join-morphism.

Running Example: Length Relational Abstract Domain. For instance, one may
be interested in capturing the relations concerning the length of a string vari-
able w.r.t. another, when they interact during the program execution. Formally,
we are interested in identifying the relation =<, € Xgir X Xgir between string
variables such that, given x,y € X4, y <jen @ iff the length of y is smaller than
or equal to the length of . Note that =<, is a partial order, but the string order
upon which is based is a pre-order. Indeed, two strings may have the same length,
but may not represent the same sequence of characters (the anti-symmetric prop-
erty does not hold). For this reason, when we have that © <jen ¥ and y <jen z,
we can assert that x and y have the same length but we cannot assert that the
strings tracked by the variables are equal.
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We instantiate the general abstract domain of Definition 1 over the pre-order
=<len- In particular, we replace the general string order < with =<,, obtaining
the relational string length abstract domain Len £ p({y <jen = | 2,y € Xgpr}) U
{Lien}, where the top element, denoted by Tien, is the empty set &, and Lje,
is a special element denoting the bottom element. The least upper bound and
greatest lower bound operators L, and M, and the partial order T, (over
Len) can be obtained by replacing any occurrence of < with <, in their general
definition in Definition 1.

Lemma 1. (Len, Cien, Ulen, Miens Liens Tien) 2 @ complete lattice.

We define the abstraction a'*" : (M) — Len and the concretization
Y : Len — p(M) functions of the relational string length abstract domain
instantiating Eq. 1 and 2 replacing <y« with <ep.

Otlen(M) 2 Lien HM=g
Y Zien | Ym € M. |m(y)| < |m(z)|, z,y € X} otherwise
%] if L= Lien
Y (L) £ ¢ p(M) if £ = Tien

Ny=zzecim [ m(), m(y) € X%, [m(y)| < |m(z)[} otherwise

Theorem 1. (p(M),a'®", y'*" Len) is a Galois Connection.

Proof. The Galois Connection’s existence comes from the fact that both (M)
and Len are complete lattices, and a'*" is a join-morphism (Prop. 7 of [17]).

At this point, we define a general and parametric abstract semantics of IMP.
In particular, given an abstract domain A, built upon the order < as shown in
Definition 1, we define the function [ st ][4 : A — A, capturing the =<-relations
between string variables generated by the statement st. We start by defining
the parametric abstract semantics of the assignment x = s. Here, the crucial
point is the definition of the auxiliary function extr : SE — p(Xg,.) that, given
a string expression s, extracts all the variables syntactically appearing in s that
are related w.r.t. < with s, i.e., it approximates the set of variables that are
<-related with s.

Exzxtraction Function of Len. Given x = s, we can see the string expression
s as an ordered list of concatenated expressions sg,si,...,S,, and the string
variables that surely have length less than or equal of x are the ones at the top-
level of a concatenation appearing in s. For instance, consider the assignment
x =y + z + w. The relations we aim to capture from it are y <jen , 2 <jen  and
w =yen T, that is y, z, w have length less than or equal to the length of z. These
variables are collected by the function extr : SE — o(X-), which extracts the
variables that syntactically appears at the top-level of a string expression.
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{y} ifs= Yy e Xstr
extr(s) = { extr(s;) Uextr(sg) ifs=s; +so
%] otherwise

Once defined the extraction function extr, we semantically interpret the syn-
tactic components it extracts giving the general abstract semantics of the assign-
ment [ z = s [*A, which is defined by the steps shown below. For the sake of
simplicity, we suppose that the input abstract memory A is not L 4: in this case,
1 4 is simply propagated, skipping the above phases.

A{w=z|lw=x2¢€ Xy, } ifx € extr(s)

AN{w=Xz|w=zVz=z} otherwise
- [add]: A, = A, U{y 22|y € extr(s)}
— [closure]: [ 2 =s]*A = Clos(A,)

— [remove]: A, =

The first phase is [remove]: given the input memory A € A, it removes the
relations that surely do not hold anymore after the assignment execution. In
particular, we always remove the relations of the form x < z, for some z € Xy,
since x is going to be overwritten. Still, we also remove any relations of the
form w < x, for some w € X, iff £ does not appear at the top-level of the
expression s. For instance, consider the fragment x = w; x = x + y; and the
relational abstract domain Len. From the first assignment, we collect the relation
W =jen . This information also holds after the second assignment’s execution,
since = appears at the top-level of the assignment expression and inherits any
previously gathered =<e,-relation. Hence, in this case, we do not remove the
previously gathered relations about the variable z. In the other cases, also the
previous length relations of the form w =,  are removed.

Then, [add] adds the <-relations y =< x, for each variable y collected in
extr(s), and [closure] performs the transitive closure on the abstract memory
obtained from [add], i.e., A4, by means of the function Clos, to derive the implicit
=<-relations not yet present in A,.

As far as conditional expressions are concerned, the only IMP Boolean expres-
sions that generate =<-relations for the string domains presented in this paper
are contains(sy,s2), S1 == S, conjunctive and disjunctive expressions. Note
that, given the expression contains(si,ss), we infer <-relations only when s;
is a variable, otherwise no other information is gathered. As in the assignment
abstract semantics, we suppose that the input abstract memory A is not equal
to L 4, since in this case the bottom element is simply propagated.

[ contains(z,s) ]*A = Clos(AU {y < = | y € extr(s)})

Similarly, we can infer <-relations in the abstract semantics of s; == s, only
when either s; or sy is a string variable.

Clos(AU{y X z,x < y}) ifs=y e Xgr

[[x==s]}AA =[s==x ]]AA = {CIos(AU {y Xz |y€eextr(s)}) otherwise
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As far as the semantics of the conjunctive and disjunctive expressions are
concerned, we rely on the least upper bound and greatest lower bound operators
given in Definition 1.

[[e1 &&egﬂAA:AU([[el ]]AAUA[[GQ]]AA)
[er 11 e ]*A=AU([er J[*AMN4 [ e J*A)

Unlike the assignment, Boolean expressions’ abstract semantics do not
remove previous substring relations since they do not alter the (concrete) mem-

ory. For the other Boolean expressions, the abstract semantics is the identity,
namely [ b [4A = A.

Abstract Semantics of Len. The abstract semantics for Len is captured by the
function [ st " : Len — Len, that given an input abstract memory returns
an abstract memory containing the new string length relations introduced by
st, and it is defined by replacing any occurrence of < with =e,, in the general
abstract semantics definition reported above.

Theorem 2. The abstract semantics of Len is sound. Indeed, it holds that:

YM € p(M). d*"([ 2 = s M) Ciep ([ 2 = s ]"*"a*"(M))

YM € p(M). & ([ b M) Cien ([ b [0’ (M))

Note that this general abstract semantics holds for the abstract domains
instantiated and presented in this paper and other abstract domains, derived
from other string orders, may define the abstract semantics also for other pro-
gram constructs that are not considered here. For example, consider the index0f
operation. Its abstract semantics over Len does not generate new relations, while
this may happen if other relational abstract domains are considered. Also, the
extr function may differ from the one presented before if other string relations
are considered: for instance, the extr function for the abstract domain based on
the prefix relation is slightly different from the one used in Len: given extr(s), it
would extract just the string expressions that are prefixes of the s and not any
substring.

5.2 Character Inclusion Relational Abstract Domain

Within the formal framework presented above, we are able to generate sev-
eral relational string abstract domains. In the following, we present the charac-
ter inclusion relational abstract domain Char, tracking the characters included
between a pair of string variables. Given z,y € X4, we are interested in captur-
ing “if all the characters which appear in y occur in 2”. Formally, we introduce
the binary relation <cpar € Xgi X Xt such that y <cnar 2 iff the set of characters
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of y is contained or equal to the set of characters of x. Similar to <, in the Len
abstract domain, also =char is a partial order, based on the character inclusion
pre-order between string values. Hence, if we have that x <char ¥ and y =char
we can assert that z and y have the same characters but it is not guaranteed
that they track the same string value.

We define the relational character inclusion string abstract domain Char £
({y Zchar | 2,y € Xgtr}) U {Lchar}- The top element is the empty set @, and
the bottom element is represented by the special element 1 g,

5.3 Substring Relational Abstract Domain

The abstract domains Len and Char presented in the previous sections track
relations about the lengths and the characters of a pair of string variables. The
main limitation of these domains is that they are both based on strings pre-
orders: hence, as we have already argued before, when we have the relations
z =y and y =X x, we cannot assert that the values tracked by the variables x and
y are equal. Moreover, Len loses any information about the content of a variable,
and Char loses any information about the shape of a variable. We propose then a
strictly more precise partial order-based relational string abstract domain, still
fitting in the formal framework presented in Sect.5.1 and solving the problems
of Len and Char mentioned before.

Given z,y € Xy, let the binary relation =<gp: Xgr X X be such that
T =sup Yy iff z is a substring of y. The relation =g, is a partial order, being
reflexive, transitive and anti-symmetric, as well as the substring relation on
which =g, is based on. Unlike the Len and Char cases, if we havexr =g y and
1 =sub T, We can surely assert that the strings tracked by x and y are equal.

At this point, we define the relational string abstract domain Sub £ p({y <
x| @,y € Xstr}) U { Leub}, where the top element is the empty set &, and Lgyp
is a special element representing the bottom element.

5.4 Extension to String Expressions

The abstract domain proposed in Sect. 5.3 can track when a single string variable
is a substring of another one. In this section, we show how to improve Sub to
catch even more substring relations. In order to highlight the limits of Sub (which
Len and Char also suffer from), consider the following fragment: x = y + y +
w; z =y + w;. If we analyze it with the substring abstract domain, the final
abstract memory is {y <sub , W Seub T, Y Ssub 2, W Ssub 2}. Still, other substring
relations may be inferred, such as z =<qp = or ¥ + w =gy . In the following, we
slightly change the substring abstract domain to catch also such relations.
Given an IMP program P we aim to analyze, we recall that X, denotes the
finite set of string variables used by P. Similarly, we abuse notation denoting
by SE the set of string expressions appearing in P. As X, also the set of
string expressions appearing in P is finite. At this point, we introduce the binary
relation =¢,p* C SEX X4, that relates string expressions with string variables. For
instance, y + ¥y =<sub» * means that the concatenation of y with y is a substring
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52* if Sf = Lsub*
Lub: 8f U+ S3 2 { St if S5 = Lowr
Clos({s =sub* | S Seubx T € ST A's Zqupr ¢ € S5}) otherwise
J—sub* if S; = J—sub*
Glb: Sf Mapr S5 2 VS3 = Laubr

{s Zeub* T | s Ssubr © € ST Vs Zqpr x € S5} otherwise
Partial order: 87 Ceupr S5 <= S7 = Lo V (ST # Lo NS5 # Ler AST 2 S3)

Fig. 4. Lattice operations over Sub*.

of z. Upon =4+, we build the new set of abstract memories able to relate string
expressions to variables. In particular, we define the abstract domain

Sub* £ p({s Zeub* x| s E€SE,x € X }) U {Lsup }

where the top element is the empty set &, and Lg,,+ is a special element present-
ing the bottom element. We denote by S* an element of Sub*. Note that Sub*
is still a finite domain, since, given a program P € IMP, both the string vari-
ables and string expressions used by P are finite. Similarly to the previous cases,
(Sub™, Esub*, Usub*, Msub* s Lsub*s Tsub*) is a complete lattice, and the definition
of its lattice operators and partial order is reported in Fig.4. The abstraction
a*P” : (M) — Sub* and concretization y**" : Sub* — (M) functions, forming
again a Galois Connection, are defined as:

OLsub*('\/l) N Lsub ifM=g
| {s S | Vm € M. [s]m ~ m(z), 2 € Xqr,s € SE}  otherwise
) if S* = Lgup+
YSUb (8*) = BO(M) if ¥ = Tsub*

Nz ,vwes Am | [s]m,m(z) € %, [sJm ~ m(z)} otherwise

We define the abstract semantics of Sub®. Let extr* : SE — p(SE) extend the
function extr introduced in Sect. 5.1, extracting from a string expression s all
the sub-expressions that syntactically appear at the top-level of s. For instance,
extr*(y + w + "ab") = {y,w,w+ “ab”, y+w,y+w+ “ab’, “a”, “b”, “ab” }. Note
that, for some s € SE, we have that s € extr*(s). The abstract semantics of
the assignment [ z = s ]]S”b* S* is defined by the following steps. As before, we
suppose that S* is not the bottom element, since in this case the bottom element
is simply propagated skipping the above phases.

S* N {s' Zaub* 2z | x appears in s',z € Xy, } if © € extr*(s)
S* N {s' e 2| z=2xVuxappearsins'} otherwise
~ [add]: 8f = S U{s' Zaup 7| ¢’ € extr*(s)}

- [inter—asg]: Sz* = S; U {l’ Ssub* Y | vs' Ssub* X € SZ; 3’ Ssub* Y € S;}

— [remove]: SF =
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Fig. 5. IMP example.

— [closure]: [ x = s [***"S* = Clos(S})

The [remove], [add] and [closure]| phases are similar to those of the def-
inition of [ - J*. The intermediate phase [inter-asg] instead differs from the
previous definitions and works as follows: if from the previous steps, any sub-
string of x is also a substring of a string variable y, as checked in the [inter-asg)]
phase, we can safely assert that x is a substring of y and we can add that relation
to S;. It is worth noting that we can safely add the substring relation z <qub* ¥,
for some y € X, just because we are performing an assignment z = s. Indeed,
we are overwriting the variable x with the assignment and in the [add] phase we
surely add the relation s < x; hence, if we found that any gathered substring
relation concerning z (included s =g+ ) is tracked also for y, we can safely say
that x <sb y. The abstract semantics of Boolean expressions is straightforward.

Similarly, we can also extend the abstract domains Len and Char to make
them able to track relations between expressions and string variables, obtaining
Len* and Char™.

Capturing Other Implicit Substring Relations. In the previous section, we have
presented the substring domain Sub* tracking the string expressions that are
definitely substrings of a variable. As discussed in Sect.1.1, we may lose any
information about the tracked string value, leading to the loss of some implicit
substring relations. Let us show the problem on Sub® considering the IMP frag-
ment reported in Fig. 5. If we analyze the IMP fragment with Sub*, the substring
relations concerning the variable w are: w are: y =<sup* W, 2 Ssub* W, Y + 2 Ssub*
w, “a” Zsupr w, “b” =g+ w. Note that, Sub* cannot track that the variables y
and z are exactly the strings “a” and “b”, respectively, and in turn it is not able
to infer that x is a substring of w and viceversa, that is the variables x and w
have the same string value.

In order to cope with this problem and to be able to track also these implicit
relations, as discussed in Sect. 1.1, we rely on the reduced product combination of
Sub” with a non-relational domain. In particular, we rely on the string constant
propagation analysis, which tracks for each variable its constant value.* We
model the constant propagation as a map, denoted by CS, associating each
string variable with the corresponding constant string value and if a variable is
not mapped by the analysis it means that it is not constant. For instance, if we
consider the fragment reported in Fig.5, the constant propagation analysis, at
line 4, returns the following map: {z — “ab”,y — “b”,z — “b”,w — “ab”}.
At this point, the idea is to exploit the constant propagation analysis adding
a new phase, that we call [propagate], at the end of the assignment abstract

* Full details about how the constant propagation analysis works are reported in [32].
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semantics [ = = s [**®"S* presented before. Let us denote by S’ the abstract
memory returned by the [closure] phase presented in the previous section and by
CS the constant propagation analysis holding at the assignment program point.

[propagate]:

[z=s ]]SUb*S* =8 U{z Zaub* ¥, Y Ssubr 2 | Ty € Xt CS(2) =CS(y) }

Before returning the assignment result, the [propagate] phase checks if there
exists a variable y € X, such that y has the same constant value of the assigned
variable z. If so, the substring relations x <gp* y and y =+  are added to the
result. In this way, if we analyze again the fragment reported in Fig. 5, we exploit
the constant propagation analysis in order to infer, at line 4, that z <4, w and
w =sub* T, and in turn, we can state that the two variables are equal.

6 Experimental Results

RSUB is a prototype intraprocedural static analyzer for the Go language imple-
menting the Sub™ relational abstract domain, available at https://github.com/
UniVE-SSV /go-lisa. Indeed, from a precision point of view, Sub* subsumes the
others string relational abstract domains presented in this paper. RSUB is built
as an extension of LiSA [20] (https://github.com/UniVE-SSV/lisa), a library for
the development and the implementation of abstract interpretation-based static
analyzers. We tested RSUB over several representative string case studies, taken
from real-world software and hand-crafted. In the following, we use two of these
fragments to show the limits and strengths of Sub*.

The rest of the section is structured as follows: in Sect. 6.1 we compare our
analysis with prefix PR, suffix Su, char inclusion Cr1 and bricks BRr abstract
domains [13], and with TARSIS [31]. TARSIS is a non-relational finite state
automata-based abstract domain that abstracts string values into regular expres-
sions. In Sect. 6.2 we show how to improve the precision of TARSIS by combining
it with Sub*. Finally, we evaluate the performance of Sub* through an experi-
mental comparison between TARSIS and its combination with Sub®, measuring
the overhead added by Sub*.

6.1 Case Studies

We consider two code fragments manipulating strings (cf. Fig. 6), NCON and REP
(slight modification of the programs in Chap.5 of [10] and [31], respectively).
NCON overrides the variable x either with x + "c" or y + "c", depending on
whether the equality between x and y is satisfied or not. REP iteratively appends a
string read from the user input and stored in v concatenated with the string "\n"
to variable r. The value of the Boolean guards of both programs are supposed
to be statically unknown, as well as the value of v in REP.

Let us consider the program NCON. Table 1 illustrates the results of the anal-
ysis at the end of programs NCON where the second column reports the abstract
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1 v = readStr()
2 r = "Elem: \n" + v + "\n"
1 if x ==y { 3
2 x = + "c 4 for 7
3 } else { 5 v = readStr ()
4 x =y + "c" 6 r=r1r+ v + "\n"
5 ) 7}
6 8
7 assert (Contains(x, "c")) 9 assert (Contains(r, "em"));
8 assert (Contains(x, y)) 10 assert (Contains(r, v));
(a) Program NCON (b) Program REP

Fig. 6. Program samples used for domain comparison.

Table 1. Analysis results for NCON (where the symbol * denotes “any string”).

Domain | x abstract value Assert 7 | Assert 8
Pr € (unknown) X X
Su c v X
CrI {c},{Z} v X
Br {*}(0, 400) (unknown) | X X
TARsIs | {x}c v X
RSUB | ¢ =ab* T, Y Ssub* T v v

value of x at the end of each analysis, and third and forth columns are v if the
corresponding analysis proves that the assert conditions at lines 7-8 of NCON
hold, or X otherwise. The analyses based on PR and BR do not precisely verify all
the assertions since they abstract x with their corresponding top value. Instead,
C1, Su, and TARSIS verify the assertion at line 7 but not the one at line 8, since
they cannot track any relation between the variables x and y. Finally, RSUB
verifies all the assertions since it tracks that both string “c” and the variable y
are substrings of x.

Consider now REP, which involves a fix-point computation. The analysis
results at the end of the program REP are reported in Table 2, where the second
column reports the abstract value of r at the end of each analysis, and third
and forth columns are v" if the corresponding analysis proves that the assert
conditions at lines 9-10 of REP hold, or X otherwise. We must verify two asser-
tions for this program, those at lines 9-10, that certainly hold. Note that the
value (unknown) in Table 2 means that the corresponding analysis has returned
the top abstract value. PR can verify the assertion at line 9 but not the ones at
line 10, since it loses any information on the rest of the string, except for the
common prefix, and it does not track the fact that variable v is undoubtedly
contained in r. Su, C1, and BR analyses lose any information about the value
of r, abstracting it with their corresponding top value. So, these analyses are
unable to verify the assertions at lines 9-10. TARSIS abstracts the value of r as
the regular expression reported in Table 2, correctly verifying the assertion at
line 9 but not the one at line 10, being unable to track the relationship between
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Table 2. Analysis results for REP (where the symbol x denotes “any string”).

Domain | r abstract value Assert 9 | Assert 10
Pr Elem:. X
Su € (unknown) X X
C1 {Z},{X} (unknown) X X
Br {*}(0,4+00) (unknown) X X
TARSIS |Elem:._x\n(x\n)" v X
RSUB Elem: o <qub* 7,0 Seub* 7,7 + U + N0 Seubr T v v
v+ nn Seubr T, N0 Seub* T

//https://golang.org/src/
strings/strings.go
func Count (s, src string) int

if len(src) == 0 {
return len(s) + 1
n := 0
for true {
i := strings.Index(s, src) import "strings"
if i == -1 {
return n func Write(text, pt string) {
if Contains(text, pt) {
n++ c := Count (text, pt)
s = s[i+len(src):] SetResult("result", c) e
} }
} }

Fig. 7. Golang program example.

the variables r and v. Instead, RSUB behaves as TARSIS as far as assertion at
line 9 is concerned, since the string Elem: . is definitely a substring of r. More-
over, RSUB verifies the assertion at line 10, since it tracks that the variable v,
independently from its abstract value, is a substring of the variable r.

6.2 Improving Precision of Non-relational Abstract Domains

We evaluated the abstract domain Sub* as a standalone abstraction, w.r.t. to
some state-of-art string abstractions, showing that more relations can be cap-
tured. As discussed in Sect. 1.1, Sub® may lose information about the content of
string variables and its reduced product combination with a non-relational string
abstract domain can be investigated in order to cope with this problem. Note
that, the benefits of the combination of Sub* with a non-relational string abstract
domain can be already seen with the code fragment reported in Sect. 6.1: reduced
product combination between PR and Sub* correctly verifies all the assertions
contained in NCON and REP.

In this section, we show and discuss how to improve the precision of
TARSIS [31] by combining it with Sub*. In particular, we show that the abstract
semantics of TARSIS can be refined, in terms of precision, when combined with
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Sub*. We denote by TARSIST the Cartesian product between TARSIS and Sub*,
a new string abstract domain tracking both the regular expressions approximat-
ing the strings values of each program variable (the non-relational information
tracked by TARSIS) and the set of substring relations (the relational informa-
tion tracked by Sub*) holding at each program point. As far as integers are
concerned, we abstract them with the interval abstract domain [14]. Let us con-
sider the Write function reported in Fig.7 that uses two string operations, i.e.,
Contains and Count, whose source code is reported on the left of Fig. 7. In par-
ticular, the Write function computes the number of occurrences of pt in text
after checking the containment of pt in text.

We aim to infer the integer abstract value of ¢ at the hotspot labeled with e.
Note that the function parameters’ values are statically unknown; for this reason,
TARSIS approximates the values of ¢ as the interval [0, +00], introducing noise to
the resulting interval. Indeed, the spurious value 0 corresponds to have no occur-
rences of pt in text, even if the program checks the condition Contains(text,
pt). This happens because TARSIS, when reaching the hotspot e, cannot track
that pt is surely contained in text, causing the consequent loss of precision.
Then, we analyzed Write with TARSIST. When the program point e is reached,
TaRsIsT captures that pt is a substring of text, capturing the substring relation
pt =<sub* text, since to reach the hotspot, the Boolean guard Contains(text,
pt) must be traversed. Hence, the TARSIS analysis for the function Count can
be improved, refining the interval resulting from TARSIS semantics, i.e., [0, +00],
with [1,+o00], since at least one occurrence of pt can be found in text. Note
that the interval resulting from the TARSIST analysis is the best possible inter-
val abstraction that we can obtain (in this sense, the analysis is complete for the
above function [8]). Similarly, also the TARSIS abstract semantics of other string
operations can be refined. For instance, let us consider two string variables x
and y and suppose that z <+ y. Given Index(x, y), TARSIS would return
the interval [—1, maz Len(x)+1],% having no information about x and y. Instead,
having the information z <g,p* ¥, TARSIST can refine the aforementioned inter-
val in [0, mazLen(x) + 1]. Another example is the case of Replace(x, y, 2z):
having the information about the containment of y in x, tracked by Sub*, would
lead to a must-replacement, that returns the input automaton where any occur-
rence of y is replaced with z, rather than a may-replacement, that returns the lub
between the input automaton and the input automaton where any occurrence
of y is replaced with z [31].

6.3 Scalability of Sub*

We conclude the experimental evaluation by discussing the performance of Sub*.
As also discussed in [28], the upper bounds domain of the domains presented
in this paper offers an efficient implementation since it can be represented as a

5 mazLen(x) returns the maximum length of the string recognized by the automaton

abstracting x if it is finite, 400 otherwise.



Relational String Abstract Domains 39

Table 3. Tarsis and TARSIST performance results. From left to right: the GitHub
repository name, the number of Go programs contained, the number of Go programs
that the static analyzer has analyzed, the total number of lines of code analyzed, TARSIS
and TARSIST execution times in seconds, and the overhead.

Repository Go files | Analyzed | LOCs | TARSIS; () TARSISZL(S) Overhead
dnnrly/abbreviate 14 10 1837 | 25.77 26.93 1.93%
reiver/go-stringcase 25 17 541 46.16 48.33 4.48%
gookit/goutil 55 29 1256 110.68 113.34 2.34%
schigh/str 12 5 126 19.70 20.58 4.27%
ozgio/strutil 22 11 218 39.01 41.91 6.91%
andy-zhangtao/gogather | 26 12 531 48.80 51.51 5.26%
woanware/lookuper 173 41 5436 | 420.16 427.13 1.63%
RamenSea/StringCheese |24 11 833 50.41 52.03 3.11%
bcampbell/fuzzytime 10 6 745 19.05 20.03 4.89%
Total 360 142 11523 | 779.74 801.79 2.75%

multi-valued map. For instance, the substring relations set {y <sub* 2,2 =<sub*
Z,w =g+ T} can be represented as the map = — {y,z,w}. To assert the
scalability of Sub*, we crawled from GitHub the Go repositories dealing with
the strings package, namely the Go package implementing popular functions
manipulating strings (https://golang.org/pkg/strings/). From these repositories,
we have selected the top best matched repositories (according to GitHub APT),
we have filtered only the Go program files, and we have selected the repositories
with at least 10 Go programs. Finally, we ran our Go static analyzer with the
so obtained programs both using TARsIS and TARSIST, recalling that the latter
corresponds to the combination between TARSIS and Sub*. At this point, we
computed the overhead added by Sub* in TARsIS™ w.r.t. TARSIS.

Table 3 summarizes the performance results for TARSIS and TARSIST for each
repository. The difference between the number of Go analyzed programs and the
total number of Go programs is due to Go features that are not currently sup-
ported by our static analyzer (e.g., channels, high-order functions, Go routines)
and not due to analysis weaknesses. As stated by Table 3, the addition of Sub*
to TARSIS does not considerably affect its analysis execution time, adding an
overhead no greater than the 7% for each repository. The overall results confirm
this, since the total overhead is below 3%, and almost 7% in the worst case.

7 Conclusion

In this paper, we introduced a general framework to generate new relational
abstract domains starting from orders on string values. In particular, we intro-
duced a new relational substring domain, Sub*, showing its impact on the accu-
racy of the analysis with respect to state-of-the-art string abstractions, even
when used as a standalone abstract domain. We have shown how to improve
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the precision of TARSIS, a finite-state automata-based string abstract domain,
by combining it with Sub*. Finally, we have provided experimental evidence
that the addition of Sub* to TARSIS does not considerably affect the TARSIS
performances.

As future works, we aim to formally investigate the precision increment

gained by TARSIST w.r.t. TARSIS, measuring the distance [27] between their
results. Furthermore, we aim to investigate the completeness property of
Tarsist by applying the techniques in [8]. Finally, we aim to combine the rela-
tional abstract domains proposed in this paper with sophisticated state-of-the-
art abstractions, e.g., the M-String abstract domain [11].
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Abstract. Machine learning is becoming increasingly important to con-
trol the behavior of safety and financially critical components in sophis-
ticated environments, where the inability to understand learned compo-
nents in general, and neural nets in particular, poses serious obstacles to
their adoption. Explainability and interpretability methods for learned
systems have gained considerable academic attention, but the focus of
current approaches on only one aspect of explanation, at a fixed level of
abstraction, and limited if any formal guarantees, prevents those expla-
nations from being digestible by the relevant stakeholders (e.g., end users,
certification authorities, engineers) with their diverse backgrounds and
situation-specific needs. We introduce Fanoos, a framework for combin-
ing formal verification techniques, heuristic search, and user interaction
to explore explanations at the desired level of granularity and fidelity. We
demonstrate the ability of Fanoos to produce and adjust the abstractness
of explanations in response to user requests on a learned controller for
an inverted double pendulum and on a learned CPU usage model.

1 Introduction

Explainability and safety in machine learning (ML) are a subject of increasing
academic and public concern. As ML continues to grow in success and adoption
by wide-ranging industries, the impact of these algorithms’ behavior on people’s
lives is becoming highly non-trivial. Unfortunately, many of the most performant
contemporary ML algorithms—mneural networks (NNs) in particular—are widely
considered black-boxes, with the method by which they perform their duties
not being amenable to direct human comprehension. The inability to under-
stand learned components as thoroughly as more traditional software poses seri-
ous obstacles to their adoption [1,5,13,28,30,52,88,89] due to safety concerns,
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difficult debugging and maintenance, and explicit legal requirements (e.g., the
“right to an explanation” legislation [24] adopted by the European Union). Sym-
biotic human-machine interactions can lead to safer and more robust agents, but
this task requires effective and versatile communication [66,79].

Interpretability of learned systems has been studied in the context of
computer science intermittently since at least the late 1980s, particularly in
the area of formal analysis (e.g., [15,42,55,81,85,86]), rule extraction (e.g.,
[4]), adaptive/non-linear control analysis (e.g., [18]), and various rule-learning
paradigms (e.g., inductive logic programming [56], association rule learning [3]).
Notwithstanding this long history, main-stream attention has risen only recently
due to increased impact on daily life of opaque Al [1] with novel initiatives
focused on the problem domain, e.g. [31,58] and workshops in IJCAI and ICAPS.

Despite this attention, however, most explanatory systems developed for ML
lack any formal guarantees with respect to how their descriptions reflect sys-
tem behavior and are hard-coded to provide a single type of explanation with
descriptions at a certain fixed level of abstraction. This not only prevents the
explanations generated from being digestible by multiple audiences (the end-
user, the intermediate engineers who are non-experts in the ML component, and
the ML-engineer for instance) as highlighted by the taxonomy presented in [6],
but in fact limits the use by any single audience since the levels of abstraction
and formal guarantees needed are situation and goal specific, not just a function
of the recipient’s background. When using a microscope, one varies between low
and high magnification in order to find what they are looking for and explore
samples; these same capabilities are desirable for XAl for much the same reasons.

For example, most consumers of autonomous vehicles may prefer to ask gen-
eral questions—for instance, “What do you do when you detect a person in front
of you?”—and receive a break-down of qualitatively different behaviors for differ-
ent situations, such as braking when traveling slowly enough, and doing a sharp
swerve when traveling too fast to brake. An engineer checking actuator compli-
ance, however, might require greater details, opting to specify precise parameters
of the scene and preferring that the car report exact motor commands; the con-
text of use and the audience determine which level of abstraction is best, and
supporting multiple types of abstractions in turn supports more use-cases and
audiences. Further, the explanations for such a component need to range from
formal guarantees to rough tendencies—it may be critical to formally guaran-
tee that the car will always avoid collisions, while it might be sufficient that it
usually (but perhaps not always) drives slowly when its battery is low.

The divide between formal and probabilistic explanations also relates to
events that are imaginable versus events that may actually occur; formal meth-
ods may check every point in a space for conformance to a condition, but if bad
behavior only occurs on measure-zero sets, the system would be safe while not
being provably so in formalizations lacking knowledge of statistics (e.g., if some
criteria demands that a car keep distance >10cm from obstacles, formally we
can get arbitrarily close but not equal; in practice, the difference with >10cm
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might be irrelevant). Explainable ML systems should enable these sorts of search
and smooth variation in need, but at the moment they do not in general.

To address these needs, we introduce Fanoos,! an algorithm blending a
diverse array of technologies to interactively provide explanations at varying
levels of abstraction and fidelity to meet user’s needs. Our algorithm is applica-
ble to currently ubiquitous ML methods, such as feed-forward neural networks
(FFNNs) and high-dimensional polynomial kernels. Fanoos offers the following
combination of capabilities, which are our contributions:

e Interactivity that allows users to query the learned system they want to under-
stand, and receive explanations characterizing the input requirements, output
behavior, or the combination of the two.

e Explanations that can either be formally sound or probabilistic based on the
user’s choice. Formal soundness is a capability missing from the vast majority
of XAI systems focused on ML, and leveraging verification techniques for ML-
related XAI has been underexplored.

e Explanations that can vary in abstraction level.

2 The Methodology of Fanoos

Fanoos is an interactive system that allows users to pose a variety of questions
grounded in a domain specification (e.g., asking what environmental conditions
cause a robot to swerve left), receive replies from the system, and request that
explanations be made more or less abstract. Crucially, Fanoos provides expla-
nations of high fidelity while considering whether the explanation should be for-
mally sound or probabilistically reasonable (which removes the “noise” incurred
by measure-zero sets that can plague formal descriptions). To this end, we com-
bine techniques from formal verification, interactive systems, and heuristic search
over knowledge domains when responding to user questions and requests.

2.1 Knowledge Domains and User Questions

In the following discussion, let L be the learned system under analysis (which
we will assume is piece-wise continuous), ¢ be the question posed by the user,
Sr be the (bounded) input space to L, and So be the output space for L,
Sro = Sr U So be the joint of the input and output space, and r be the
response given by the system. Subscripts I for input, O for output, etc., are
simply symbols, not any richer objects. In order to formulate question ¢ and
response 7, a library listing basic domain information (D) is provided to Fanoos;
D lists what S; and Sp are and provides a set of predicates, P, expressed over
the domain symbols in Sy, i.e., for all p € P, the free variables FV (p) are
chosen from the variable names V' (Sjo), that is FV(p) C V(S10). Notably, P is
user-extensible and may be generated by automated or semi-automated means.

! “Fanoos” (u*98) means lantern in Farsi. Our approach shines a light on black-box
Al Source code can be found at [7], and an extended exposition is in [§].



46 D. Bayani and S. Mitsch

Table 1. Description of questions that can be posed to Fanoos

Type qt Question content g, Description
Accepts Illum. | Restrictions
When do you® | Subset s of S s.t. St No variables Tell the user all sets (formal
Jx € s.qc(x). Found from Sy consideration of all cases) in
with SAT-solver the input space S7 that have
the potential to cause g,
What do you Subset s of St s.t. So No variables Tell user all possible learner
do when® Jz € s.qc(x). Found from So responses in the collection of
with SAT-solver input states that g. accepts
What are the Subset s of Sy s.t. Sro None Tell the user information
circumstances Jz € s.qc(z). Found about what input-output pairs
in which® with SAT-solver occur in the subset of

input-outputs accepted by g

.. AUsuallyd Subsets over which g, is Statistical tendency. Avoids
true at least once via measure-zero sets that are
statistical sampling unlikely seen in practice

Q

when_do_you move_at_high_speed?

Predicate pinD

o

what_do_you_do_when and (close_to_target_orientation, close_to_target_position)?
what_are_the_circumstances_in_which
and (close_to_target_position, steer_to_right) or move_at_low_speed?

a

when_do_you_usually move_at_low_speed or steer_to_left?

For queries that formally guarantee behavior (see the first three rows in
Table1), the relevant predicates in P need to expose their internals as first-
order formulas; this enables us to guarantee they are satisfied over all members
of sets we provide via typical SAT-solvers (such as Z3 [19]). Probabilistic queries
require only being able to evaluate question ¢ on a variable assignment provided.

The members of P can be generated in a variety of ways, e.g., by form-
ing most predicates through procedural generation and then using a few hand-
tailored predicates to capture particular cases. Notably, since the semantics of the
predicates are grounded, they have the potential to be generated from demon-
stration. For example, operational definitions of “high”, “low”, etc., might be
derived from sample data by setting thresholds on quantile values—e.g., 90% or
higher might be considered “high” (see, for instance, Sect.5); further resources
and considerations on predicate generation can be found in [8].

2.2 Reachability Analysis of the Learned System

Having established what knowledge Fanoos is given, we proceed to explain our
process. First, users select a question type ¢; and the content of the question ¢, to
query the system. That is, ¢ = (¢4, q.), where ¢; is a member of the first column
of Table 1 and ¢, is a sentence in disjunctive normal form (DNF) over a subset of
P that obeys the restrictions listed in Table 1. To ease discussion, we will refer
to variables and sets of variable assignments that ¢ accepts (AC,) and those
that ¢ illuminates (IL,), with the intuition being that the user wants to know
what configuration of illuminated variables result in (or result from) the variable
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configurations accepted by g.; see Table 1 for example queries. When a user asks a
question, Fanoos answers by describing a collection of situations that necessarily
include those related to the user’s question; this answer is conservative in that
it may include additional situations, but never excludes cases.

With question ¢ provided, we analyze the learned system L to find sub-
sets in the inputs S; and outputs So that agree with configuration ¢, and the
(overapproximated) behavior of L. Specifically, we use CEGAR [16] with boxes
(hyper-cubes) as abstractions and a random choice between a bisection or tri-
section along the longest normalized axis as the refinement process to find the
collect of box tuples, B, specified below:

A3(e,d)eT. (ACq(Bgi)) A ]Lq(Bg’)))}

where B(X) is the set of boxes over space X and T = {(O, ), (I,0),(10,10)}.
For feed-forward neural nets with non-decreasing activation functions, B can
be found by (i) covering the input space, (ii) propagating boxes through the
network, (iii) testing membership to B of the resulting input- and output-boxes,
and (iv) refining abstract states as needed over input-boxes that produce output-
boxes overlapping with B; we detail this process further below.

Covering the Input Space. We cover the input space via iterative dissec-
tion informed by properties of the problem, avoiding a naive gridding of the
entire space unless repeated refinement has revealed that to be necessary. The
exact sizes of the boxes found by CEGAR are determined by a series of hyper-
parameters, which Fanoos maintains in states. Hyper-parameters include, e.g.,
the maximum number of refinement iterations or the minimal size abstractions;
an overview of typical hyper-parameters to CEGAR can be found in [10,15,16].

Prior to proceeding, B may undergo some limited merging, particularly when
an increase of abstraction level is sought. Our merging process is closed over the
family of abstract states we have selected; up to a numerical precision threshold,
boxes may only merge together to form larger boxes, and only if the smaller
boxes formed a partition of the larger box. Value differences within the merging
threshold are considered a match (i.e., a soft-match), and allow the pertinent
sets of boxes to merge into larger boxes with slightly larger net volumes. Note
that enlarging boxes only makes our estimates conservative, and thus continues
to ensure the soundness of Fanoos. On exact matches, merging increases the
size of abstract states without anywhere increasing the volume of their union—
this is not necessarily what would occur if one attempted the CEGAR analysis
again with parameters promoting higher granularity. Essentially, merging here is
one strategy of increasing abstraction level while retaining some finer-resolution
details that might otherwise be lost in a larger volume superset. As before,
the state maintains parameters to control the extent of this stage’s merging.
Optimal box-merging itself is an NP-hard task, so we adopted a roughly greedy
approximation scheme interlaced with hand-written heuristics for accelerating
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match-finding (e.g., feasibility checks via shared-vertex lookups) and parameters
bounding the extent of computation.

Propagating Boxes Through Networks. In this subsection, we discuss how
we conduct our abstract interpretation domains (AIDs) analysis on an FFNN.

Here, we leverage the fact that we are using a pre-trained, fixed-weight feed-
forward neural net, that has a typical MLP-like (multi-layer perceptron-like)
structure: the network consists of layers of units, each unit being comprised of
a scalar-valued affine transformation of the previous layer’s output that is then
passed through a non-decreasing (and typically non-linear) activation function,
such as a tanh, sigmoidal, or piecewise linear function. For analyzing recurrent
neural nets or other systems with loops, more sophisticated mechanisms, such as
reachable-set fixed-point calculations, would be necessary in general (see [17]).

As introduced above, we use boxes as the abstract domain, which facilitate
a basic implementation since they are easier to manipulate and check for mem-
bership than more complex convex polytopes, at the price of typically being less
precise per unit volume;? more complex AIDs can be added to Fanoos.

We first examine how boxes are transformed when passing through a single
unit, before extending the process to the entire network. Let u : Rf» — RO«
be a unit of the network with input dimension [, and output dimension O,
(Iy, O, € N\{0}), and .#, be an input box Xie[lu][ai’bi] to unit u (Cartesian
product of closed, real intervals [a;, b;], and where [n] = {k € N\{0} | & < n}).
We want to calculate u(.,). Further, let w € R« be the weights of the unit
u, B € R be the bias, z € R/« be the input value and p be a non-decreasing
activation function. We have that:

ulinear(aj) = <w7-77> +8, UP(I) = P(<w750> + 6) = p(ulinear(z))

where, (-,-) is the L? inner product. Since p is a non-decreasing function, the
extrema of up(x) and Ujipeqr(z) occur at the same arguments. Thus, to find all
relevant extreme values over the input space, it suffices to find the values in .#,
that maximize or minimize (w,x) as follows:

argminge s, (w,z) = (b;1({w}; <0)+ a;1({w}; > 0) | i € [1,])

where (- | i) is sequence construction, {-}; accesses the i-th component of a
vector, and 1(-) is an indicator function (1(T) =1, 1(L) = 0). The argmax can
be found in a similar fashion by swapping the roles of a; and b;. With this, we
compute the images of the input space under the activation functions as follows:

w(Sy) = [u(argmin(z, w)), u(argmaz(x, w))] where u € {Uiinear, Up}-
TES TES

Having established how a box should be propagated through a unit in the net-
work, propagation through the entire network follows immediately. Let u; ; be

2 In the case of interval arithmetic, this over-approximation and inclusion of additional
elements is often called the “wrapping effect” [42].
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the ' unit on the j** layer, M; be the j!* layer’s size, . ; be the input box to
unit w; 5, and m; ; C [Mj] s.t. |m; ;| = I, ;: we simply feed the output box from

one layer into the next similar to the usual feed-forward operation:

Uig b1 (Figr1) = i (X, e, () (1)
Finally, induction shows that these arguments together establish that this pro-
cess produces a set which contains the image of the network over the box. Notice
that approximations creep in during this recursive process; consider, for instance,
the bounding rectangle formed for a NN with a 2-d inner-layer whose output
exists on a diagonal line whenever the network processes instances in Sy.

Various extensions exist, such as to handle common featurization pre- and
post-processings that preserve vector partial-orderings, as well as to aid effi-
ciency; see [8] for more details.

Refining Abstract States. CEGAR [16] is a well-regarded model checking
technique for soundly ensuring a system meets desirable properties. In short,
the approach uses abstract states carefully discovered through trial and error to
attempt verification or refutation; if the desirable property cannot be proven,
the algorithm iteratively refines the abstraction based on where the property is
in doubt, stopping when the property is either provable or has been disproven
by a discovered counterexample. When applied to certain families of discrete
programs, results returned by CEGAR are both sound and complete, at the cost
of unknown termination of CEGAR in the general case, when no approximations
are used. In practice, approximations used with CEGAR tend to err on the safe
side: if CEGAR indicates a property holds, then it is true, but the converse
might not hold. This flexibility has allowed for extensions of the technique to
many domains, including in hybrid system analysis [15], where the state space
is necessarily uncountably infinite and system dynamics do not typically have
exact numerical representations.

We now overview our CEGAR-like? abstract state refinement, using boxes
as the abstraction domain. As before, we let L be a learned system L : S; — So
with S; € Rz and So € ROr: further, suppose S is a box XiE[IL][aLJ-, bril.

Let ¢ : R x ROz — {T, 1} be a formula which we would like to characterize
L’s conformance to over Sy (i.e., find {(w,y) € Sy x So | p(w,y) A (y = L(w))}).
Notice that ¢ need not use all of its arguments—so, for instance, the value of ¢
might only vary with changes to input-space variables, thus specifying conditions

3 Elements of our abstract state refinement algorithm may be analogous to CEGAR
and its standard extensions—for instance, we perform sampling-based feasibility
checks prior to SAT-checks, which may be comparable to spuriousness checks in
CEGAR. However, to avoid implying a stringent adherence to canon (i.e., [16] ver-
batim), we use a different name.

4 Strictly speaking, we could discuss a box containing Sy (i.e., a superset), but intro-
ducing an auxiliary, potentially larger definition domain might add confusion while
giving little benefit.
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over the input space but none over the output space. Since CEGAR is not gen-
erally guaranteed to terminate, we introduce a function STOP : S; — {T, L}
which will be used to prevent unbounded depth exploration of volumes whose
members have mixed truth values under ¢.

We first form initial abstraction states over the input space; for this, our
implementation uses states that do not leverage any expert impressions as to
what starting sets would be informative for the circumstances. Instead, we opted
for the simple, broadly-applicable strategy of forming high-dimensional “quad-
rants”: 272 hyper-cubes formed by bisecting the input space along each of its
axes; we could have just as easily used the universal bounding box undivided
to start. The algorithm takes an input-abstraction, w, that has yet to be tried
and generates an abstract state, o, that contains L(w) (notice that w and L(w)
are both sets). If no member of w x 6 is of interest (i.e., meets the condition
specified by ¢), the algorithm returns the empty set. On the other hand, if w x 0
has the potential to contain elements of interest then the algorithm continues,
attempting to find the smallest allowed abstract states that potentially include
interesting elements. In general, further examination is performed by refining
the input abstraction, then recursing on the refinements; for efficiency, we also
check whether the entire abstract state satisfies ¢, in which case we are then free
to partition it into smaller abstractions without further checks.

Given a box, we refine by splitting along its longest “scaled” axis, h:

b, — a

h = argmax—

i€[Ir] OLi — ALy

We then either bisect (k = 2) or trisect (k = 3) the chosen axis with probability
0.8 or 0.2 respectively, a design choice balancing between faster analysis, further
exploration of diverse abstract states, and keeping boxes of reasonable size:

k—1
refine,(X(a}, 1)) = | { X[af + 16 = W)iCi. b, + 16 = W) +1- KT} |

i€(I] j=0 i€[Ir]

where Cy, = @ The use of by, ; —ar,; in the denominator for h is an attempt
to control for differences in scaling and meaning among the variables comprising
the input space. For instance, 20 mm is not commiserate with 20 radians, and our
sensitivity to 3 cm of difference may be different given a quality that is typically
on par of kilometers versus one never exceeding a decimeter. Our refinement
strategy allows for efficient caching and reloading of refinement results by stor-
ing the refinement paths, as opposed to encoding entire boxes. Parameters in
the state determine if cached results are reused; reuse improves efficiency and
may help reduce uncalled-for volatility in descriptions reported to users, while
regenerating results may produce different AIDs which could lead to a better
outcome. Our analysis used the following STOP function:

STOP(X a;,b;]) = (b;L — a;l S G(bL,i — aLﬂ‘)). (2)

ie[IL][
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Algorithm 1: Pseudocode for CEGAR-like abstract state refinement, b is
an AID element over the input space (i.e., b C Sy)

1 Function RefineAbstractState(b , STOP, ¢, L):

2 0 < approxImage; (b); // AIDs-based image approx., see Eq. (1)
3 verdicty « sat(Vz € bxd. ~¢(x));

4 if verdict; then

5 L return {};
6
7
8
9

if STOP(b) then
L return {b};

verdicty — sat(Vz € bxo. ¢(x));
if verdicts then

10 boxesToRefine «+ {b}; result — {};

11 while bozesToRefine is not empty do

12 ¢ < boxesToRefine.pop();

13 if STOP(c) then

14 | result — result U {c};

15 else

16 L boxesToRefine « boxesToRefine U refine(c);

17 | return result;

18 return UTereﬁne(b)RefineAbstractState(r, STOP, ¢, L);

Here, € is the refinement parameter initially specified by the user, but which
is then automatically adjusted by operators acting on the state as the user
interactions proceed. Similar to the choice of AID, our approach is amenable to
more sophisticated refinement and stopping strategies than presented here.

Algorithm 1 addresses formally sound question types; for probabilistic ques-
tion types (i.e., those denoted with “...usually”), verdict; is determined by
repeated random sampling, and verdicts is fixed as 1. In our implementation,
feasibility checks are done prior to calling the SAT-solver when handling a for-
mally sound question type.

2.3 Generating Descriptions

Having generated B, we produce an initial response, rg, to the user’s query
in three steps as follows: (i) for each member of B, we extract the box tuple
members that were illuminated by ¢ (in the case where Sjo is illuminated, we
produce a joint box over both tuple members), forming a set of joint boxes, B’;
(ii) next, we heuristically search over predicates P for members that describe box
B’ and compute a set of predicates covering all boxes; (iii) finally, we format the
box covering for user presentation. A sample result answer is shown in Fig. 1 (a),
and details on steps (ii) and (iii) follow below.
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Producing a Covering of B’. Our search over P for members covering B’
is largely based around the greedy construction of a set covering that uses a
carefully designed candidate evaluation score.

For each member b € B’, we want to find a set of candidate predicates capa-
ble of describing the box to form a larger covering. We find a subset P, C P
that is consistent with b in that each member of P, passes the checks called for
by ¢ when evaluated on b (see the Description column of Table 1). This process
is expedited by a feasibility check of each member of P on a vector randomly
sampled from b, prior to the expensive check for inclusion in P,. Having Py, we
filter the candidate set further to P;: members of P, that appear most specific
to b; notice that in our setting, where predicates of varying abstraction level
co-mingle in P, P, may contain many members that only loosely fit b. The sub-
set P/ is formed by sampling outside of b at increasing radii (in the f sense)
and collecting those members of P, that fail to hold true at the earliest radius.
Importantly, looking ahead to forming a full covering of B, if none of the pred-
icates fail prior to exhausting this sampling, we report P as empty, allowing
us to handle b downstream as we will detail in a moment; this avoids having
“difficult” boxes force the use of weak predicates that would “wash out” more
granular details. The operational meaning of “exhausting”, as well as the radii
sampled, are all parameters stored in the state. Generally speaking, we try to be
specific at this phase under the assumption that the desired description granu-
larity was determined earlier, primarily during the abstract state refinement. For
instance, if we want a subset of P, that was less specific to b than P}, we might
reperform the abstract state refinement so to produce larger abstract states. In
extensions of our approach, granularity can also be determined earlier by altering
P; our current implementation has first steps in this direction, allowing users to
enable an optional operator that filters P based on estimates of a model trained
on previous interaction data. We comment further on this extension in Sect. 2.4
and indicate why this operator is left as optional in Sect. 5.

To handle boxes for which P] was empty, in general we insert into P a box-
range predicate: a mew atomic predicate that simply lists the variable ranges
in the box (e.g., “Box(x : [-1, 0], y: [0.5, 0.3])”). As a result of providing cover
for only one box, such predicates will only be retained by the (second) covering
we perform in a moment if no other predicates selected are capable of covering
the box’s axes. When a request to increase the abstraction level initially finds
P/ empty, we may (as determined by state parameters) set P, equal to P, as
opposed to introducing a box-range predicate. If P, is empty as well, we are
forced to add the novel predicate.

We next leverage the P} sets to construct a covering of B’, proceeding in an
iterative greedy fashion. Specifically, we form an initial covering

K7 =1 Uy U,y (20,7

where €;(R, H) is the covering established at iteration ¢, incrementing to

Cor (R, H) =GR, H) U {argmax e, .y (0. 6 (R, H), B) |
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where 6o(R, H) = (0, f is the iteration of convergence, and the cover score p is
,u(p7 %(R> H)’ R) = Z

and UV(b,%6;(R, H)) is the set of variables in b that are not constrained by
%;(R, H) N Py; since the boxes are multivariate and our predicates typically con-
strain only a subset of the variables, we select predicates based on how many
boxes would have open variables covered by them. Notice that K is not nec-
essarily an approximately minimal covering of B with respect to members of
P. By forcing p € P} when calculating the cover score p, we enforce additional
specificity criteria that the covering should adhere to. At this stage, due to the
nature of P being more specific than P, it is possible that some members of
K cover one another: there may exist p € Ky such that K¢\{p} still covers as
much of B" as Ky did. By forming K, we have found a collection of predicates
that can cover B’ to the largest extent possible, selected based on how much of
B’ they were specific over (given by the first argument to ¢ when forming K ).
We now remove predicates that are dominated by other (potentially less-specific)
predicates that we had to include by performing a second covering;:

Cr=%r (U, U, (00} 5.

iy LUV, (R, H)) N FV(p)| > 0)1((p,b) € )

Cleaning and Formatting Output for User. Having produced Cr, we col-
lect the covering’s content into a formula in DNF. If b € B’ and s is a max-
imal, non-singleton subset of Cr N P,, then we form a conjunction over the
members of s, excluding conjuncts that are implied by others. Concretely, for
A = Upep AP NCFr}, we construct:

doz{/\peSp|seA/\ﬁ( Js'eA.s € s )}

The filtering done in dy is only to aid efficiency; in a moment, we do a final
redundancy check that would achieve similar results even without the filtering
in dy. Ultimately, the members of dy are conjunctions of predicates, with their
membership to the set being a disjunction. Prior to actually converting dg to
DNF, we form dj, by: (i) removing any ¢ € dy that are redundant given the rest of
dp (in practice, dy is small enough to simply do full one-vs-rest comparison and
determine results with a SAT-solver); (ii) attempting to merge any remaining
box-range predicates into the minimal number necessary to cover the sets they
are responsible for. Note that this redundancy check is distinct from forming Cg
out of K¢, which worked at the abstract-state level (and so is unable to tell if a
disjunction of predicates covered a box when no individual predicate covered it
fully) and attempted to select predicates by maximizing a score.

Finally, r¢ is constructed by listing each ¢ that exists in df, sorted by two
relevance scores: first, the approximate proportion of the volume in B’ uniquely
covered by ¢, and second by the approximate proportion of total volume ¢ cov-
ers in B’. These sorting-scores can be thought of similarly to recall measures.
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Specificity is more difficult to tackle, since it would require determining the vol-
ume covered by each predicate (which may be an arbitrary first-order formula)
across the box bounding the universe, not just the hyper-cubes at hand; this can
be approximated for each predicate using set-inversion, but requires non-trivial
additional computation for each condition.

2.4 User Feedback and Revaluation

Based on the initial response 7, users can request a more abstract or less abstract
explanation. We view this alternate explanation generation as another heuristic
search, where the system searches over a series of states to find those that are
deemed acceptable by the user (consecutive user requests can be viewed in anal-
ogy to paths in a tree of Fanoos’s states). The states primarily include algorithm
hyper-parameters, the history of interaction, the question to be answered, and
the set B. Abstraction and refinement operators take a current state and produce
a new one, often by adjusting the system hyper-parameters and recomputing B.
This state-operator model of user response allows for rich styles of interaction
with the user, beyond and alongside of the three-valued responses of acceptance,
increase, or decrease of the abstraction level shown in Fig. 1(b).

For instance, a history-travel operator allows the state (and thus r) to return
to an earlier point in the interaction process, if the user feels that response
was more informative; from there, the user may investigate an alternate path
of abstractions. Other implemented operators allow for refinements of specified
parts of explanations as opposed to the entire reply; the simplest form of this is by
regenerating the explanation without using a predicate that the user specified be
ignored, while a more sophisticated operator determines the predicates to filter
out automatically by learning from past interaction. Underlying the discussion
of these mechanisms is the utilization of a concept of abstractness, a notion we
further comment on in the next subsection.

As future work, we are exploring the use of active learning leveraging user
interactions to select operators, with particular interest in bootstrapping the
learning process using operationally defined oracles to approximate users.

2.5 Capturing the Concept of Abstractness

The criteria to judge degree-of-abstractness in the lay sense are often difficult
to capture. We consider abstractness a diverse set of relations that subsume
the part-of-whole relation, and thus also generally includes the subset relation.
For our purposes, defining this notion is not necessary, since we simply wish to
utilize the fact of its existence. We understand abstractness to be a semantic con-
cept that shows itself by producing a partial ordering over semantic states (their
“abstractness” level) which is in turn reflected in the lower-order semantics of the
input-output boxes, and ultimately is reflected in our syntax via explanations of
different granularity. Discussions of representative formalisms most relevant to
computer science can be found in [17,38,48,49,72,74]: [17] features abstraction
in verification, [74] features abstraction at play in interpreting programs, [72]
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is an excellent example of interfaces providing a notion of abstractness in net-
work communications, [48,49] discuss notions of abstractness relevant for type
systems in object-oriented programming languages, and [38] shows an adaptive
application in reinforcement learning. An excellent discussion of the philosophi-
cal underpinnings and extensions can be found in [26].

In this work, the primary method of producing explanations at desired levels
of abstraction is entirely implicit, without explicitly tracking what boxes or pred-
icates are considered more or less abstract (note that an operator that attempts
to learn such relations is invoked optionally by human users, and is not used
in the evaluations we present here). Instead, we leverage the groundedness of
our predicates to naturally form partial orderings over semantic states (their
“abstractness” level) which in turn are appropriately reflected in syntax.

On the opposite end of the spectrum is explicit expert tuning of abstrac-
tion orderings. Fanoos can easily be adapted to leverage expert labels (e.g.,
taxonomies as in [71], or even simply type/grouping-labels without explicit hier-
archical information) to preference subsets of predicates conditionally on user
responses, but for the sake of this paper, we reserve agreement with expert labels
as an independent metric of performance in our evaluation, prohibiting the free
use of such knowledge by the algorithm during testing. As a side benefit, by
forgoing direct supervision, we demonstrate that the concept of abstractness is
recoverable from the semantics and structure of the problem itself.

3 Fanoos Interaction Example

We present a user interaction example with our system in Fig. 1. Predicate defi-
nitions of the example can be found with the code at [7]. In practice, if users want
to know more about the operational meaning of predicates (e.g., the exact con-
ditions each tests), open-on-click hyperlinks and hover text showing the relevant
content from the domain definition can be added to the user interface.

Limited text is shown on screen until a user requests more, similar in spirit
to the Unix more command. Auto-complete is triggered by hitting tab, finish-
ing tokens when unambiguous and listing options available in the context. For
instance, suggestions and completions for predicates obey restrictions imposed
by Table 1 based on the question type specified by the user.

In Fig.1, we show the user posing two questions on the IDP domain (see
Sect. 5). The initial question in Fig. 1(a) asks for which the situations typically
result in the NN outputting a low torque and high state value estimate (Line 1).
In order to produce an answer, Fanoos (Lines 2-3) asks for a preference of initial
refinement granularity (given relative to Sy’s side lengths; € in Eq. (2)), and after
the user requests 0.125 (Line 4), lists several potential situations (Lines 5-13).
The user wants more details, and so requests a less abstract description (Line
16); Fanoos now responds with 18 more detailed situation descriptions (5 listed
in Fig.1(b), Lines 17-23). In the second question in Fig.1(c), the user (Line
25) wants to know the circumstances in which the learned component outputs a
high torque while its inputs (e.g., sensors) indicate that the first pole has a low
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1 (Fanoos) when do_ you usually and( 175 of 18 lines to print shown. Press
outputtorque_low enter to //[...]

statevalueestimate high )7 18 =

2 Enter a fraction of the universe box 19 (0.16153820, 0.31093854, ’And(
length to limit refinement to endOfPole2 x Near Normal Levels
at the beginning. , polelAngle Low,

3 Value must be a positive real polelAngle rateOfChange High,
number less than or equal to pole2Angle Near Normal Levels,
one. pole2Angle rateOfChange High, x

High) *)

20 (0.14268581, 0.18653883, ’And(
endOfPole2 _x Near Normal Levels
, polelAngle Low,

User requests box lengthl 0.125 1

55 of 6 lines to print shown. Press polelAngle rateOfChange High,
enter to show more. Hit ctrl4C pole2Angle Near Normal Levels,
or enter letter q to break. Hit pole2Angle rateOfChange Near
a to list all. Normal Levels, x High) ’)

6= = 21 (0.11771033, 0.12043966, ’And(

7 //Description : polelAngle Near Normal Levels,

8(0.45789160, 0.61440409, ’x Near polelAngle rateOfChange Near
Normal Levels ) Normal Levels, pole2Angle High,

9 (0.31030792, 0.51991449, ° pole2Angle rateOfChange Low,
pole2Angle rateOfChange Near vx Low) ’)

Normal Levels ') 22 (0.06948142, 0.07269412, ’And(

10 (0.12008841, 0.37943400, ° polelAngle High,
polelAngle rateOfChange High’) polelAngle rateOfChange Near

11 (0.06128723, 0.22426058, ’'pole2Angle Normal Levels ,

Low ") pole2Angle rateOfChange High,

12 (0.02395519, 0.13633780, ’vx Low’)a vx Low, x Near Normal Levels) ’)

13 (0.01147175, 0.01359231, ’polelAngle 23 (0.04513659, 0.06282974, ’And(

Low ) endOfPole2 x Near Normal Levels

14 type letter followed by enter key: b , polelAngie Low,

— break and ask a different polelAngle rateOfChange High,
question , pole2Angle High,

15 1 — less abstract , m — more pole2Angle rateOfChange Near
abstract , h — history travel Normal Levels, x High) ')q

User requests less abstract,l

continue at (b) 16 User break, continue at (c)lb 24

(a) Initial question response, followed by (b) Less abstract explanation, user sat-
request for less abstract explanation isfied, continues with different question

25 (Fanoos) what_are_ the circumstances_in_which and(
polelangle rateofchange low _magnitude , outputtorque high _ magnitude )?

Fanoos answers L

265 of 32 lines to print shown. Press enter to//[...]

(0.12099418, 0.18835537, ’pole2angle_ rateofchange high__ magnitude ’)

20 (0.10147897, 0.17831770, ’And(polelangle on_the left, pole2angle on_the left,
pole2angle rateofchange low__ magnitude) ')

30 (0.09885232, 0.16335186, ’'And(polelangle_ on_the_left, pole2angle_on_the left,
pole2angle turning counterclockwise) )

31 (0.07900125, 0.14467123, ’And(polelangle on_the_right, pole2angle_on_the_right,
pole2angle turning_clockwise) ”)

32 (0.06693577, 0.12822191, ’And(polelangle down, pole2angle to_right,

statevalueestimate very low) ’)q

33 type letter followed by enter key: b — break and ask a different question ,
34 1 — less abstract , m — more abstract, h — history travel
User requests more abstract Lm 35

3
3

63 of 3 lines to print shown.
8 (

0.44378316, 0.48588134, ’pole2 not near target position ’)

39 (0.33605014, 0.36551887, ’pole2angle rateofchange high _ magnitude ')

40 (0.22016670, 0.23739381, 'And(pole2angle to right, statevalueestimate very low)
)

(c) Next question, initial response, and user request to make more abstract

Fig. 1. Fanoos user session on the inverted double pendulum example

rotational speed; Fanoos finds 32 descriptions (5 listed, Lines 26-34). The user
requests a more abstract summary (Line 35), which condenses the explanation
down to 3 situations (Lines 36-40). We see that in both cases—the first request
for less abstractness, and the second for greater—that the explanations adjusted
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as one would expect, both with respect to the verbosity of the descriptions
returned and the verbiage used.

Our focus while developing Fanoos has been to ensure that the desired infor-
mation can be generated. In application, a user-facing front-end can provide a
more aesthetically pleasing presentation, and we elaborate options in [8].

4 Related Work and Discussion

Many methods are closely related to XAl stemming from a diverse body of litera-
ture and various application domains, e.g., [3,4,9,18,35,41,63,70,83]. Numerous
taxonomies of explanation families have been proposed [1,4,5,11,13,14,27,30,
32,44,47,51,59,64,65,80], with popular divisions being (i) between explanations
that leverage internal mechanics of systems to generate descriptions (decompo-
sitional, a.k.a. “introspective”, approaches) versus those that exclusively lever-
age input-output relations (pedagogical, a.k.a. “rationalization”) [4,44] (ii) the
medium that comprises the explanation (such as with most-predictive-features
[63], summaries of internal states via finite-state-machines [45], natural language
descriptions [35,44] or even visual representations [39,44]), (iii) theoretical cri-
teria for a good explanation (see, for instance, [52]), and (iv) specificity and
fidelity of explanation. Of note, the vast majority of XAI methods for ML lack
any formal guarantees regarding the correspondence between the explanations
and the learned component’s true behavior (e.g., [25]).

Related to our work are approaches to formally analyze neural networks to
certify or verify them as well as to decompositionally extract rules from them.
Techniques related to our inner-loop reachability analysis have been used for sta-
bility and reachability analysis in systems that are otherwise hard to analyze ana-
lytically, often in the interest of ensuring safety. Reachability analysis for FFNNs
based on abstract interpretation domains, interval arithmetic, or set inversion
has been used in rule extraction and neural net stability analysis [4,20,75,84] and
continues to be relevant, e.g., for verification of MLPs [29,53,61], estimating the
reachable states of closed-loop systems with MLPs in the loop [88], estimating
the domain of validity of NNs [2], and analyzing security of NNs [82]. A similar
variety of motivations and applications exist for approaches to NN verification
and rule extraction that are based on symbolic decomposition of a network’s
units followed by constraint solving or optimization over the formulas extracted
[12,21-23,40,41,57,68,69,73,76,77,87]. While these works provide methods to
extract descriptions that faithfully reflect behavior of the network, they do not
generally consider end-user comprehension of descriptions, do not consider vary-
ing description abstraction, and do not explore the practice of strengthening
descriptions by ignoring the effects of measure-zero sets. Also, many such tech-
niques are only designed to characterize output behavior given particular input
sets, whereas we capture relations in multiple directions (i.e., input to output,
output to input, and both simultaneously).

Rule-based systems such as expert systems, and work in the (high-level)
planning community have a long history of producing explanations in various
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forms. Notably, hierarchical planning [35,54] naturally lends itself to explana-
tions of multiple abstraction levels. All these methods, however, canonically work
on the symbolic level, making them inapplicable to most modern ML methods.
High fidelity, comprehensible rules describing data points can also be discov-
ered with weakly-consistent inductive logic programming [56] or association rule
learning [3,37] typical in data-mining. However, these approaches are typically
pedagogical—not designed to leverage access to the internals of the system—do
not offer a variety of descriptions abstractions or strengths, and are typically not
interactive. While extensions of association rule learning (e.g., [33,34,71]) do con-
sider multiple abstraction levels, they are still pedagogical and non-interactive.
Further, they describe only subsets of the analyzed data® and only understand
abstractness syntactically, requiring complete taxonomies be provided explic-
itly and up-front. Our approach, by contrast, leverages semantic information,
attempts to efficiently describe all relevant data instances, and produces descrip-
tions that necessarily reflect the mechanism under study.

The high-level components of our approach can be compared to [36], where
hand-tunable rule-based methods with natural language interfaces encapsulate a
module responsible for extracting information about the ML system, with expla-
nation generation in part relying on minimal set-covering methods to find pred-
icates capturing the model’s states. Extending this approach to generate more
varying-resolution descriptions, however, does not seem like a trivial endeavor,
since (i) it is not clear that the system can appropriately handle predicates
that are not logically independent, and expecting experts to explicitly know and
encode all possible dependencies can be unrealistic, (ii) the system described does
not have a method to vary the type of explanation provided for a given query
when its initial response is unsatisfactory, and (iii) the method produces expla-
nations by first learning simpler models via Markov decision processes (MDPs).
Learning simpler models by sampling behavior of more sophisticated models
is an often-utilized, widely applicable method to bootstrap human understand-
ing (e.g. [11,31,45]), but it comes at the cost of failing to leverage substantial
information from the internals of the targeted learned system. Crucially, such a
technique cannot guarantee the fidelity of their explanations with respect to the
learned system being explained, in contrast to our approach.

In [60], the authors develop vocabularies and circumstance-specific human
models to determine the parameters of the desired levels of abstraction, speci-
ficity and location in robot-provided explanations about the robot’s specific, pre-
vious experiences in terms of trajectories in a specific environment, as opposed to
the more generally applicable conditional explanations about the internals of the
learned component generated by Fanoos. The particular notions of abstraction
and granularity from multiple, distinct, unmixable vocabularies of [60] evaluate
explanations in the context of their specific application and are not immediately
applicable nor easily transferable to other domains. Fanoos, by contrast, does

5 Setting thresholds low enough to ensure each transaction is described would result
in a deluge of highly redundant, low-precision rules lacking most practical value, a
phenomena know as the “rare itemset problem” [50].
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not require separate vocabularies and enables descriptions to include multiple
abstraction levels (for example, mixing them as in the sentence “House X and a
6m large patch on house Y both need to be painted”).

Closest in spirit to our work are the planning-related explanations of [70], pro-
viding multiple levels of abstraction with a user-in-the-loop refinement process,
but with a focus on markedly different search spaces, models of human inter-
action, algorithms for description generation and extraction, and experiments.
Further, we attempt to tackle the difficult problem of extracting high-level sym-
bolic knowledge from systems where such concepts are not natively embedded,
in contrast to [70], who consider purely symbolic systems.

In summary, current approaches focus on single aspects of explanations, fixed
levels of abstraction, or provide inflexible guarantees (if any) about the expla-
nations given.

5 Experiments and Results

We analyze learned systems from robotics control and more traditional ML pre-
dictors to demonstrate the applicability of Fanoos to diverse domains. Code and
other supporting information (e.g., predicate definitions) can be found in [7] and
at https://github.com/DBay-ani/Fanoos.

Inverted Double Pendulum (IDP). The control policy for an inverted
double-pendulum is tasked to keep a pole steady and upright. The pole con-
sists of two under-actuated segments attached end-to-end, rotationally free in
the same plane; the only actuated component is a cart with the pivot point of
the lower segment attached. Even though similar to the basic inverted single
pendulum example in control, this setting is substantially more complicated,
since multi-pendulum systems are known to exhibit chaotic behavior [43,46].
The trained policy was taken from reinforcement learning literature [62,67]. The
seven-dimensional observation space includes the segment’s angles, the cart x-
position, their time derivatives, and the y-coordinate of the second pole. The
output is a torque in [—1,1] Nm and a state-value estimate, which is not a priori
bounded. The values chosen for the input space bounding box were inspired by
the 5% and 95% quantile values over simulated runs. We expanded the input
box beyond this range to consider rare inputs and observations the model was
not necessarily trained on; whether the analysis stays in the region trained-for
depends on the user’s question. For instance, the train and test environments
exited whenever the end of the second segment was below a certain height. In
real applications, users may want to ensure recovery is attempted.

CPU Usage (CPU). We also analyze a more traditional ML algorithm, a
polynomial kernel regression for modeling CPU usage. Specifically, we use a
three-degree fully polynomial basis over a 5-dimensional input space (which
includes cross-terms and the zero-degree element—e.g., 2%y and 1 are mem-
bers) to linearly regress out a three-dimensional vector. We trained our model
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using the publicly available data from [78].5 The observations are [Iread, scall,
sread, freemem, freeswap|, which are normalized with respect to the training
set min and max prior to featurization, and the response variables we predict
are [lwrite, swrite, usr]. We opted to analyze an algorithm with this featurization
since it achieved the highest performance—over 90% accuracy—on a 90%-10%
train-test split of the data compared to similar models with 1, 2, or 4 degree
kernels. While the kernel weights may be interpreted in some sense (e.g., indi-
cating which individual feature is, by itself, most influential), the joint correlation
between the features and non-linear transformations of the input values makes it
far from clear how the model behaves over the original input space. For Fanoos,
the input space bounding box was determined from the 5% and 95% quantiles
for each input variable over the full, normalized dataset.

5.1 Experiment Design

Tests were conducted using synthetically generated interactions, with the goal of
determining whether our approach properly changes the description abstractness
in response to the user request. The domain and question type were randomly
chosen, the latter selected among the options listed in Table 1. The questions
themselves were randomly generated to have up to four disjuncts, each with
conjuncts of length no more than four; conjuncts were ensured to be distinct,
and only predicates respecting the constraints of the question type were used.
After posing an initial question, interaction with Fanoos was randomly selected
from four alternatives (here, MA means “more abstract” and LA means “less
abstract”): (i or ii) initial refinement of 0.25 or 0.20 — make LA — make MA
— exit; (iii or iv) initial refinement of 0.125 or 0.10 — make MA — make LA
— exit. For the results presented here, over 130 interactions were held, resulting
in several hundred question-answer-descriptions.

5.2 Metrics

We evaluated the abstractness of Fanoos’s responses using metrics in the cate-
gories of reachability analysis, description structure, and human word labeling.

Reachability Analysis. We compare the reachability analysis results produced
during the interactions: we record statistics about the distribution of volumes of
input-boxes generated during the abstract state refinement, normalized to the
input space bounding box so that each axis is in [0, 1], yielding results comparable
across domains. The values provide a rough sense of the abstractness notion
implicit in the size of boxes and how they relate to descriptions. For brevity,
we only report volume, but we note that the distribution of sum-of-side-lengths
showed similar trends.

5 Dataset at https://www.openml.org/api/v1/json/data/562.
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Description Structure. Fanoos responds to users with a multi-weighted DNF
description. This structure is summarized as follows to give a rough sense of
how specific each description is by itself: number of disjuncts, including atomic
predicates; number of non-singleton conjuncts, providing a rough measure of
the number of “complex” terms; number of distinct named predicates (atomic,
user-defined predicates that occur anywhere in the description, i.e., excludes box-
range predicates); number of box-range predicates that occur anywhere (i.e., in
conjuncts as well as stand-alone). The Jaccard score and overlap coefficients—
classic text analysis measures—are calculated over the set of atomic predicates
in the descriptions to measure verbiage similarity.

Human Word Labeling. We apply our intuitive, human understanding of
the relative abstractness of the atomic predicates to evaluate Fanoos’s responces
based on usage of more vs. less abstract verbiage. For simplicity we choose two
classes, more abstract (MA) vs. less abstract (LA), and count the number of
predicates both (a) accounting for multiplicity and, (b) accounting for unique-
ness; if an atomic predicate ¢ has label MA (resp., LA) and occurs twice in a
sentence, it contributes twice to the (a) score, and only once to (b).

5.3 Results

Summary statistics of our results are listed in Table 2. We are chiefly interested
in how a description changes in response to a user-requested abstraction change.
Specifically, for pre-interaction state Sy and post-interaction state Sy;1, we col-
lect metrics m(Si+1) — m(Sy) that describe relative change for each domain-
response combination (for the Jaccard and overlap coefficients, the computation
is simply m(Sty1,5:)). The medians of these distributions are in Table 2.

In summary, the reachability and structural metrics follow the desired trends:
when the user requests greater abstraction (MA), the boxes become larger, and
the sentences become structurally less complex—namely, they become shorter
(fewer disjuncts), have disjuncts that are less complicated (fewer explicit con-
juncts, hence more atomic predicates), use fewer unique terms overall (reduction
in named predicates) and refer less often to the exact values of a box (reduction
in box-range predicates). Symmetric statements can be made for less abstraction
(LA) requests. From the overlap and Jaccard scores, we can see that the changes
in response complexity are not simply due to increased verbosity—simply adding
or removing phrases to the descriptions from the prior steps—but also the result
of changes in the verbiage used.

Trends for the human word-labels are similar, though more subtle. We see
that use of LA-related terms follows the trend of user requests with respect to
multiplicity and uniqueness counts (increases for LA-requests, decreases for MA-
requests). We see that the MA counts, when taken relative to the same measures
for LA terms, are correlated with user requests in the expected fashion. Specif-
ically, when a user requests greater abstraction (MA), the counts for LA terms
decrease far more than those of MA terms, and the symmetric situation occurs
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Table 2. Median relative change in description before and after Fanoos adjusts the
abstraction in the requested direction

CPU |CPU 1IDP IDP
Request LA MA LA MA
Reachability | Boxes Number 8417.5 | —8678.0 | 2.0 —16.0
Volume Max —0.015|0.015 —0.004 | 0.004
Median —0.003 | 0.003 —0.004 | 0.004
Min —0.001 | 0.001 —0.003 | 0.003
Sum —0.03 |0.03 —0.168 | 0.166
Structural | Jaccard 0.106 | 0.211 0.056 | 0.056
Overlap coefficient 0.5 0.714 0.25 0.25
Non-singleton conjuncts | 1.0 —-2.0 0.5 —2.5
Disjuncts 7.0 —-7.5 2.0 —2.5
Named predicates 1.0 —-1.0 1.0 —4.5
Box-range predicates 2.0 —-2.0 1.5 —-1.5
Words MA terms | Multiplicity |3.0 -3.0 24.0 —20.0
Uniqueness |0.0 0.0 1.0 —-1.5
LA terms | Multiplicity | 20.0 —21.5 |68.5 —86.0
Uniqueness | 2.0 —2.0 12.0 —14.0

for requests of lower abstraction (LA), as expected. These results—labelings
coupled with the structural trends—lend solid support that Fanoos can recover
elements of a human’s notion about abstractness by leveraging the grounded
semantics of the predicates.

6 Conclusions and Future Work

Fanoos is an explanatory framework for ML systems that mixes technologies
ranging from classical verification to heuristic search. Our experiments support
that Fanoos can produce and navigate explanations at multiple granularities
and strengths. We are investigating operator-selection learning and accelerating
knowledge base construction via further data-driven predicate generation.

We will continue to explore Fanoos’s potential, and hope that the commu-
nity finds inspiration in both the methodology and philosophical underpinnings
presented here. Additional content, such as pseudo-code, summary statistics,
extended descriptions and further pointers, can be found in [8].
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Abstract. Invariants are the predominant approach to verify the cor-
rectness of loops. As an alternative, loop contracts, which make explicit
the premise and conclusion of the underlying induction proof, can some-
times capture correctness conditions more naturally. But despite this
advantage, the second approach receives little attention overall, and the
goal of this paper is to lift it out of its niche. We give the first compre-
hensive exposition of the theory of loop contracts, including a characteri-
zation of its completeness. We show concrete examples on standard algo-
rithms that showcase their relative merits. Moreover, we demonstrate a
novel constructive translation between the two approaches, which decou-
ples the chosen specification approach from the verification backend.

Keywords: Program verification * Loops * Invariants - Contracts

1 Introduction

Loop invariants [30] are the standard approach to verify programs with loops.
The technique is practically successful for both specifying and verifying loops in
automated tools. The corresponding proof obligations propagate invariants for-
wards over a single arbitrary iteration, and soundness is justified by the induction
principle of the least fixpoint of the loop.

The alternative approach is to specify loops in terms of a contract consist-
ing of a precondition and a relational postconditon (called “summary” here), as
advocated e.g. by Hehner [26,27]. Contracts have two important features: 1) they
tend to resemble the overall program specification more closely when compared
to their plain invariant counterparts, and 2) they can dually express proof argu-
ments that propagate backwards from the result. Essentially, loops are treated
analogously to tail-recursive procedures, but without the need for an explicit
syntactic translation. The benefits of such flexible proof schemas for loops are
widely acknowledged, e.g. [7,12,51], notably in Separation Logic, where tracking
ownership can be problematic with just invariants [9,17,37,54].

Surprisingly, while contracts have been described in the literature and imple-
mented in tools such as VeriFast [49], the theoretical connection between invari-
ants, loop pre- and postconditions, as well as completeness of the contract app-
roach appear to be unresolved. Moreover, examples tend to be given in the
context of Separation Logic but not for standard verification problems.
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Contribution and Outline: In this paper, we provide a deep investigation
of loop contracts in comparison to invariants, from a theoretical and from an
empirical point of view, leading to the following technical results:

— We formulate contract-based verification (Sect. 4) to clearly exhibit the coin-
cidence of invariants and loop preconditions, and the dual nature of invariants
and loop summaries. Thereby we generalize Hoare’s approach [30]; as well as
Hehner and Gravel’s technique for for-loops [27] to all while-loops.

— Just as variants capture the delta between partial and total correctness, loop
preconditions correspond to absence of runtime errors in the loop body, lead-
ing to yet a weaker correctness criterion for which loop summaries alone give
a complete verification method (Theorem 4).

— We provide constructive translations between plain invariants and loop con-
tracts (Propositions 1 and 2 in Sect. 5), which explains their parity and more-
over provides key guidelines for building and integrating tools.

— We reify Tuerk’s approach [54] as a syntactic proof rule (Sect. 6) that lends
itself directly for implementation in typical verification tools, by leveraging
specification statements [43].

The key take-away is that contracts offer a particular and useful way to think
about the correctness of loops, that is conceptually different from invariants, but
at the same time, the technical requirements for supporting this approach turn
out to be superficial, and tool support is straight-forward.

As a consequence, we are at liberty to choose the approach that fits a particu-
lar problem most. But what does that mean in practice? What are the advantages
and disadvantages of contracts in comparison to invariants?

— We specify the correctness of a number of well-known algorithms with con-
tracts (Sect. 7), characterize when and why loop summaries may carry the
bulk of the proof, and also give insights into their limitations.

We show that loop contracts may resemble the respective correctness require-
ments more closely and require minor generalizations only, when compared to
their invariant counterparts. Loop summaries are suitable for those properties
which naturally propagate backwards and are thus misaligned with the forward
computation of a loop. On the other hand, they tend to require additional frame
conditions to preserve modifications of data structures across iterations.

Proofs: A mechanization in Isabelle/HOL [47] of the theory presented in Sects. 4
and b5 is available at https://zenodo.org/record/5509953.

2 Motivation and Overview

In this section we exemplify proofs using invariants and proofs using loop con-
tracts. The running example is Challenge 1 from VerifyThis 2011 [8]: finding the
maximum in an array by elimination, as shown in Fig. 1. The program maintains
a subrange a[l..r + 1] wrt. two indices 1 and r of candidates for the maximum
in array a of length n. In each iteration, the smaller of the two candidates is
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int max(int a[], int n) invariant (Fillidtre & Marché)
requires 0 <n e 0<1<r<n
ensures a[res| = maz(a[0..n]) oVEO<k<lVr<k<n
{ = alk] < maz(a[l],alr])
int 1 = 0; . .
int o= n.1; invariant (Ernst, Schellhorn, Tofan)
while(l != r) k. 0<1<Ek<r<nAalk] =maz(al0..n])
if(a[l] <= a[r]) 1 = 1+1; contract
else r=r-1; precondition: 0<1<r<n
return 1; summary: a[l'] = maz(a[l..r +1])
¥ (primed variables refer to loop exit)

Fig. 1. Finding the maximum element in an array by elimination. Algorithm (left) and
different correctness arguments (right), which are all sufficient alone.

eliminated from the subrange, either by incrementing 1 or by decrementing r.
Correctness of the algorithm depends on the fact that the maximum remains in
that range. The specification, annotated at the top left, expresses that the return
value, denoted res, is equal to the result given by logic function maz, where
a[0..n] denotes the non-empty sequence of array elements at indices 0,...,n— 1.
Subsequently, you may assume that arrays are unbounded, or that n = a.length.
Moreover, termination is not discussed in this paper, it is completely orthogonal.

Specification. At the top-right of Fig.1, two example invariants are shown.
The one used by the Why 3 team in [§8] imposes an ordering on the index vari-
ables (first o) and expresses that both the left part and the right part of the
array contains elements that have been rightfully excluded, i.e., one of the two
boundary values is greater than all of these (second ). The invariant discovered
by the KIV team expresses that there remains some index k within the range
that is maximum of the whole array, implying that this range remains non-empty
for the maximum to be well-defined. In both cases, the program’s postcondition
follows from the invariant when the loop guard becomes false, i.e., when 1 =r.

We can alternatively specify the loop using a contract, which consists of a
loop precondition, later called a “safe” invariant (cf. Definition 4), whose role is
to guarantee that the loop executes without error, and a summary, which estab-
lishes functional correctness. The latter is a relation between current unprimed
values and primed final values of the program variables. From whichever inter-
mediate indices 1 and r we jump into the execution of the loop, the element at
the final index 1’ will be maximal for that subrange. The specification of the
program is implied for U = res wrt. initial values 1 = 0 and r = n — 1. The
loop precondition is about the ordering of indices to keep track that the range
remains nonempty.

We may appreciate that the contract reflects the intuition behind the algo-
rithm more naturally: It computes a final index 1’ that points to the maximum.
Moreover, this summary occurs almost verbatim in the annotation of procedure
max, albeit with the fixed bounds 0 and n that have to be generalized (such gen-
eralization is, of course, unavoidable). In Sect. 5 we show a third possibility to
state an invariant, motivated by and constructed from this summary.
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P(so) = I(s0) I(si) At(s;)) == I(sit1) I(sn) A —t(sn) = Q(sn)
: L body i
L > §i ————— Sitl mmmmmmmmmm o > Sn

Fig. 2. Forward propagation of invariant I. Blue: assumptions, red: to prove. (Color
figure online)

ﬁt(s,,,) — R(Sw,,sw,)

body :
L RS —— > 8i ————p Bifl mmmmmmmmmmas > Sn
~
assume R(Siy1,8n) At(si)
i
prove R(s;, sy
-~

finally prove P(so) A R(s0,$n) = Q(sn)

Fig. 3. Backward propagation conditions for a loop postcondition R with respect to
an iteration of the loop. Whe overall conclusion is marked green. (Color figure online)

Proofs. Schematically, we can describe a terminating execution of the loop,
using logical variables [; and r; indexed by the i-th iteration, for i = 0,...,n,
where Il =0, 1 = n—1, and [,, = r,,. Hence, I describes all states encountered
loop head, including those when the loop is entered first and right when the loop
exits. R describes the relation between these states at loop head and the final
states at loop exit. The proof that an invariant I is correct considers the usual
three conditions, visualized in Fig.2: The invariant holds initially, propagates
forwards through an arbitrary iteration, and finally establishes the postcondition
of procedure max when the loop terminates. Dually, the conditions to show that
a summary is correct work their way backwards as visualized in Fig.3: The
relation R adequately summarizes the computation of a loop that terminates
immediately and can be extended to cover an arbitrary leading iteration, too.
As a result, the entire computation of the loop is summarized by R, which
together with the precondition of max establishes the postcondition.

We briefly sketch the critical step of backwards propagation for the R shown
in Fig. 1, in the case that a[l] <= a[r] evaluates to true in the i-th iteration.
Let R(l;,7;,1,,Tys) denote the instantiation of the summary with 1, r — I;, 7; and
U, r' — l,,r, (analogously for ¢ + 1). From state i + 1 with

R(liv1,mix1,ln, ) = alln] = maz(allizr..mip1 + 1)) (1)
where ;11 = [;+1 and r; 1 = r;, we propagate R from back to state ¢ and prove
R(li,riyln,r) = a[ly] = maz(all;..r; + 1]). (2)

i), maz(a[l; +1..r;11 +1])) and substi-
o) = maz(ally], all,]), i-e., a[l;] < a[l,],

Using equality maz(a[l;..r; +1]) = maz(a|

l
tuting variables, it remains to show that all
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which follows by transitivity from the if condition a[l;] < a[r;] and a[r;] < a[l,]
as a consequence of (1). We remark that these reasoning steps are easy for auto-
matic provers when provided with the obvious properties of mazx.

3 Preliminaries

We consider imperative commands C, defined over a semantic domain of states S,
as relations C C S x § with §$ = Sw{4}w{s, | s € S}, where 4 signifies a
runtime error (e.g. failed assertion, division by zero, out of bounds array access),
and s signifies early exit of a loop via a break command in state s. By notational
convention § € S, whereas s € strictly. Nontermination, which is orthogonal
to this paper, is reflected by the absence of successor states as usual. We use
suggestive naming: a state sg denotes an initial state of a loop execution, s;, s;41
are intermediate states, s, typically refers to a final state at loop exit.

Definition 1 (Validity of Hoare-Triples). A command C C S X S is par-

tially correct wrt. a precondition P C S and a postcondition Q C S, if the Hoare

triple { P} C{Q} is valid, written = { P} C{Q}, and defined as usual
E{P}C{Q} iff Vs, P(s)NC(s,8) = §€SAQ()

Given a starting state s with P(s), the possible final states §’ after executing com-
mand C satisfy two constraints: They must be regular states §’ € S, ruling out
runtime errors in the loop body, and they must satisfy the postcondition Q(§") of
the triple. Analogously to splitting total correctness into termination and partial
correctness, we separate these aspects of safe execution and correctly establishing
the postcondition into two semantic judgements:

Definition 2 (Safety and Correctness of Hoare-Triples).
{P}C is safe iff Vs,8. P(s)ANC(s,8) = § €8 (3)
{P}C{Q} is correct iff Vs, 8. P(s)NC(s5,8)AN5 €S = Q&) (4
which clearly satisfy this correspondence:
E{P}Cc{Q} if {P}Cissafeand {P}C{Q} is correct (5)

Definition 3 (Semantics of Loops). Semantically, a loop W(t,B) C S x S
with test t € S and body B C S x S is defined as the least fizpoint of
—t(sn) = W(t, B)(Sn, Sn)
t(si) A B(Sia Snl) = W(ta B)(S“ Sn)
t(S,) N B(Si7 Si+1) A\ VV(t7 B)(Si+1, §n) - W(t, B)(Sl, §n)
The first condition terminates the loop, the second condition propagates errors
in the body, the third condition propagates early loop exit, and the last condition
unrolls the loop once if the first iteration results in a regular state s’ € S.
In the following we are concerned in verifying correctness of a loop W (t, B)

wrt. pre-states P and post-states @, as expressed by = {P}W(t,B){Q},
respectively its constitutents of “safe” and “correct” execution via (5).
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4 Verification of Loops with Invariants and Contracts

This section succinctly states the approach to the verification with invariants and
loop contracts, and we prove soundness and completeness theorems. The results
have been mechanized in Isabelle/HOL [47]. The presentation here is based on
systems of cyclic Horn clauses [5]. Subsequently, we mark those conditions deal-
ing with runtime errors by (), and those dealing with breaks by ().

Definition 4 (Loop Invariants, Floyd [20], Hoare [30]). Predicate I C S
is an inductive invariant of loop W (t, B) wrt. pre-state described by P C S, if

P(So) — I(So)
I(SZ) AN t(Sz) A B(SZ, 3i+1) — I(Si+1) (When Si+1 € S)

An inductive invariant I is safe wrt. executions of the loop body B, if
I(s;) Nt(si) N B(8i,4) = false )
An inductive invariant I is correct wrt. post-states Q C S, if

I(sp) A —t(sn) = Q(sn)
I(s;) Nt(si) N B(si,8n)) = Q(sn) (1)

The first condition establishes I initially, the second propagates I over a single
iteration of the body otherwise. The third condition () prevents errors in the
body. The last two lines ensure @ upon regular termination of the loop, as well
as directly after a break. Note, Q(s,) does not necessarily imply —t(s,), i.e., we
cannot take the negative loop test for granted if there are non-local exits of the
loop by break.

Relational invariants J C S'x S are sometimes convenient [44], where J(sq, s;)
additionally tracks the state sy when the loop was entered first, which can of
course be encoded with auxiliary variables as I(s;) := 3 sg. P(s0) A J(s0, 5i).

It is clear that we have chosen the notions of safe and correct invariants to
mirror precisely the semantic counterparts of safe and correct loops, respectively:

Theorem 1 (Soundness of Loop Invariants). For a loop W (t, B),

- given a safe invariant I wrt. P then { P } W (t, B) is safe, and
— giwen a correct invariant I wrt. P and Q then { P} W(t,B){Q} is correct

Proof. We prove I(s) AW (t,B)(s,§) = § € SAQ(§) (first claim), resp.
I(s) A\W(t,B)(s,8)N§ €S = Q(§) (second claim), each by induction over
the least fixpoint of Definition 3 using the relevant conditions from Definition 4.

([l
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Theorem 2 (Completeness of Loop Invariants). For a loop W (t, B),

— if { P} W (t, B) is safe then there exists a corresponding safe invariant I
—if {P}W(t,B){Q} is correct, there is a corresponding correct invariant I
- if E{P}W(t,B){Q}, there is an invariant I that is safe and correct

Proof. Inductive invariant A s;. 3 sg. P(sg) A I*(s0, s;) proves all three claims,
where I* C S x S is the strongest relation that characterizes regularly terminat-
ing loop iterations, defined as the least fixpoint of:

—t(sn) = I"(sn,Sn)
t(s;) A B(si, Sit1) NI (Si41,80) = I"(si,8n)

We omit some technical lemmas that connect I* with W (¢, B). O

The result states that all critical pieces of information (e.g. outcome of
loop test t) and key reasoning features from the underlying induction proof
are reflected somehow in the constraints of Definition 4. Of course, reasoning
about I* is by no means easier than a proof using the semantic definition and
the challenge in practice is to find closed-form solutions in a given background
theory.

Definition 5 (Loop Contract). A (correct) loop contract I, R consists of a
loop precondition I that is a safe invariant, and a correct summary R (cf. below).

The precondition of a loop contract, as discussed previously, is just a safe
invariant (cf. Definition 4), which must at least be strong enough to rule out
runtime errors. The summary component of a contract is a relation R C .S x S
that characterizes remaining iterations, such that R(s;,s,) holds between any
intermediate state s; at loop head and final state s,, at loop exit.

Definition 6 (Loop Summary). Relation R C S x S is an (inductive) sum-
mary of a loop W (t, B), if

—t(sn) = R(Sn,sn)
t(sl) /\B(Si,SH_l) /\R(SH_l,Sn) — R(Si,Sn)

t(si) N B(si,sn)) = R(s4,5n) (1)
A summary R is called correct wrt. pre-/postcondition P C S and Q C S, if
P(SO) A R(8078n) = Q(Sn)

The first line establishes that R holds reflexively at a regular loop exit, as the
dual of the initialization condition of invariants. The second line lifts R from
remaining iterations until termination of the loop to a summary that accounts
for an additional leading iteration, whereas the third line (I) establishes that R
summarizes the last partial execution of the loop body upon a break.

The last line applies the relation R to the original pre-state sg that satisfies P
to establish (). Assumption P(sg) is the counterpart to the negated loop test
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—t(s,) in the exit condition of Definition 4. If the loop body B does not con-
tain breaks at all—which can be checked syntactically—we may enrich R(s;, s,,)
with —t(s,,) for free, effectively adding it as an assumption in line three.

There is no safe counterpart for summaries, because they wrap up a loop
execution after the fact when it would be too late to catch runtime errors.

Loop contracts implicitly translate a loop into a tail-recursive procedure. The
summary, taking the role of its postcondition, can then be interpreted as a rela-
tion between the parameters of the procedure and its return value. This provides
an intuitive justification why non-relational summaries are not adequate.?

Theorem 3 (Soundness of Summaries). Given a correct summary R of loop
W (t, B) that satisfies Definition 6 wrt. P and Q, then{ P } W (t, B) { Q } is correct.

Proof. We prove W(t,B)(s,8')A§ € S = R(s,§’) by induction over the least
fixpoint from Definition 3, the claim follows. ]

“Bare” summaries R(s;,s,) according to Definition 6 must adequately
describe execution suffixes even when intermediate state s; is unreachable
from P. In practice, is natural to strengthen the conditions by known induc-
tive invariants I(s;) to constrain such states, e.g. by using summaries of the
form I(s;) = R(si,sn) (cf. Proposition 2 below). In any case, summaries
alone are sufficient to prove the correctness of loops according to Definition 1.

Theorem 4 (Completeness of Loop Summaries). For a loop W (t, B), if
{P}W(t,B){Q} is correct, then there exists a corresponding loop summary R.

Proof. We take R* C S x S, defined as least fixpoint of

—-t(sn) = R*(Sn,Sn)

t(si) N B(si,5n)) = R*(si,5n)

t(Si) N B(Si, Si+1) N R*(Si+1, Sn) — R*(Si, Sn)
This R* is the strongest relation that characterizes terminating loop iterations,
possibly ending with a break command (in contrast to I* of Theorem 2). We

rely on the presence of P(sg) in the third condition of Definition 6: R*(so, s,)
implies W (t, B)(so, sn), which proves Q(sy) via validity of the Hoare triple. O

Corollary 1 (Adequacy of Loop Contracts). ={P}W(t,B){Q} if and
only if there exists a corresponding loop contract I, R wrt. P and Q.

5 Translating Between the Approaches

Having soundness and completeness of both approaches from Sect. 4 we now
characterize their relationship.

! Dually to invariants, non-relational version of summary R would quantify over final
states as Vsn.—t(sn,) = R(si, $n), but that condition is too strong at loop exit.
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Corollary 2. For a given loop W (t, B) there exists a safe and correct invari-
ant I that satisfies Definition 4 wrt. P and Q, if and only if there exists a correct
contract J, R such that J is a safe invariant and R satisfies Definition 6.

Proof. In both directions, we have that = { P} W (¢, B){Q} by Theorems 1
and 3, respectively, the claim then follows by Theorems 2 and 4. ([

This corollary is of course not surprising, but the proof via the completeness
theorems and the underlying constructions I'* and R* is unsatisfactory. A direct
translation that avoids these artifacts is clearly more useful, by constructing I
from J and R, and vice-versa, R from [ and @, as shown with Propositions
1 and 2. Not only does this give a direct and obvious proof of Corollary 2, it
also tells us how to integrate tools for the respective approaches as discussed
subsequently.

Proposition 1 (Invariants from Contracts). Given a correct contract J, R
wrt. P,Q, then I is a corresponding safe and correct invariant, where:

I(s;) = 3 sp. P(so) A J(s5) A (Vsn. R(8i,8,) = R(so,sn)) (6)

The first conjunct keeps track of the initial state sy that satisfies P, which is
needed to make use of the last property of R in Definition 6. The second conjunct
tracks the safe invariant J, whereas the third conjunct predicts that the loop
summary wrt. the remaining iterations between current state s and an arbitrary
final state s, can be lifted to a summary of the whole execution beginning at s.

Proof. We prove conditions of Definition 4 for the lifted invariant (6). The inter-
esting part is the choice of s, in (6), which is immediate for the loop exit cases
with —t(sy) resp. s, . Otherwise, s, is the same for both instances of I when
propagating it over the iteration of the body. O

Proposition 1 has immediate application in verification tools: Contracts can
be supported straight-forward as a front-end feature of a deductive verifier like
Dafny [39] that takes specifications from the user. The only necessary extensions
are adding contract annotations to loops and expressing relational predicates,
e.g., with the widely-used old keyword or special naming conventions as in Veri-
Fast [49]. The analogue of (6) appears to be useful in Separation Logic [50], too.
It has has been noted in a similar form in [53] as an encoding of Tuerk’s app-
roach [54], but it is presented less precisely wrt. the states involved (cf. Sect. 8).

Conversely to Proposition 1, a tool with first-class support for contracts can
be turned into a purely invariant-based verifier. The gap between the conditions
of Definition 4 and Definition 6 wrt. condition @} can be closed by canonical
summaries:

Proposition 2 (Contracts from Invariants). If I is a safe and correct
invariant wrt. P,Q, then I, R is the corresponding correct contract, where

R(Siy8n) = I(8;) = —t(sn) AI(sn) for loops without break (7)
R(s4,5n) I(s;) = Q(sn) for all loops, possibly with break (1)
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Intuitively, these summaries characterize that if we jump into the loop with
a state s that satisfies the invariant I(s), then the remaining iterations will
establish precisely what can be derived from Definition 4 for the final state s,
respectively.

Proof. We prove the conditions of Definition 6 for this R from Definition 4 for I.
Premise I(s;) is needed for the respective exit properties of I to demonstrate
R(sy, sn) when the loop terminates in s; = s,. Negative polarity of I(s;) turns
the known forward propagation of I into the required backward propagation
of R. (]

While technically correct, the constructions (6) and (7) produce rather large
and unwieldy formulas. One might furthermore worry that the introduction of
the universal quantifiers into invariant (6) hampers proof automation when R
is a complex formula, indeed, Dafny would typically fail to infer appropriate
triggers for it. There is a class of properties where the overhead of the respective
translation disappears completely. This is the case when we are interested in
tracking a function f(z) over state variables z (or analogously a predicate p(z)).

Proposition 3 (Functional Invariants and Summaries). For a loop
W (t, B) with precondition P and program variables x,y:
- Jxzg. P(xo) A f(z) = f(x0) is an invariant iff f(z') = f(x) is a summary

-y = f(z) is a summary implies that f(z) = f(xo) is an invariant

merely by simplifying the result of the respective translations (6) and (7). O
Note, the two cases coincide when f(z') = ¢/ for all final 2/, 3/ with —¢(2’, v/, .. .).

Example: Recall the specification of the loop in max from Fig.1 with summary
a[l'] = maz(a[l..r + 1]). Subsequently, we tacitly assume a’ = a as the array is
unchanged. The second case of Proposition 3 produces an inductive invariant by
substituting backwards the initial values 0 = 1y and n = ry + 1, which is correct
together with 0 <1 < r <n.

invariant maz(a[l..r + 1]) = maz(a[0..n]) (8)

In Sect. 7 we will see that this simplification applies fairly often in practice and
can uncover invariants that are notably different from the textbook solutions,
yet conceptually simple and insightful in some sense. Simplifying the translation
in the converse direction can work nicely, too. Recovering reasonable summaries
from the invariants from Sect. 2, however, is challenging. We do not necessarily
expect the reader to follow all the details, but for completeness of discussion we
do include an attempt to translate the invariant of the KIV team.

Ezample: The KIV invariant has the form I(s) = 3 k. J(k, s) where concretely,
J(k, s) consists of two conjuncts, 0 < 1 < k < r < n and a[k] = maz(a[0..n]).
Starting from (7) (first variant), we heuristically transform its conclusion —t(sy,)
and 3 &'. J(K', s,) into a correct summary under the assumption J(k, s) for some
fixed k, where k' is a fresh name to avoid confusing the two occurrences. Since
—it(sy,) guarantees that 1 = r’, index k' with U/ < k&’ < r’ can be eliminated.
The second conjunct in J(k', s,) then becomes
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intermediate result a[l’| = maz(al0..n])

which as a candidate summary is unfortunately not inductive. The desired gen-
eralization via maz(a[0..n]) = maz(a[l..r + 1]) can be justified from J(k,s):
We know that alk] = maxz(a]0..n]), but since this index & is definitely between 1
and r, it suffices to consider the more precise range a[l..r + 1]. Substituting this
equivalence into the intermediate result above leads to

summary a[l'] = maz(a[l..r + 1)) (9)

We conclude that while the translation from summaries to invariants was
completely mechanical in the example, the converse translation is less obvious
and harder due to the need for a creative generalization. We speculate that the
underlying reason is that the two occurrences of R in (6) are coupled via common
state s,, whereas a similar coupling is missing in (7), such that there are fewer
opportunities to collapse the formula into a simpler form.

6 Loop Contracts in Hoare Logic

In this section we present a Hoare logic proof rule for the verification of loops
with contracts that lends itself to a straight-forward implementation. The app-
roach works analogously with strongest postcondition and weakest precondition
predicate transformers, as explained in Alexandru’s thesis [1]. The idea mirrors
that of Tuerk [54], however, he uses a shallow embedding of formulas, programs,
and Hoare triples in the higher-order logic of the HOL system. The inductive
case for one iteration of the body B with test ¢ is expressed in [54] as

va,C. (Y. {P(y) } C{QW)}) = {t)AP(x)}B;C{Q(x)}  (10)

where the premise of the implication amounts to the inductive hypothesis for
the remaining loop iterations, abstracted here by an arbitrary command C. The
primary question is how to represent the inductive hypothesis in (10) with-
out escaping to the meta-level with Hoare triples as first-class objects. The key
insight is that specification statements (Morgan [43]) lead to an elegant formu-
lation as rule LOOPCONTRACT below.

To this end, we make the distinction between syntax and semantics more
precise: Predicates P, @, I, R are represented as formulas here, where a relational
summary R may refer to primed variables as in Sect. 2. By P[Z — 7] we denote
the parallel renaming of variables T to § in P, where by convention we overline
vectors of variables Z. Derivability of Hoare triples is written - { P} C { Q }. We
omit treatment of break for simplicity, see e.g. [33].

A specification statement Z: [P, Q)] has a precondition P, a set of variables T
that are nondeterministically modified, and a relational postcondition @ that
constrains the transition. The proof rule for the specification introduces new
logical variables that capture the pre-state, and removes the primes in Q:

To fresh

F{P} z: [P,Q] {Q[x,T' — T, }

SPEC
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The proof rule to verify a loop while ¢ do B with test ¢ and body B using a
contract I, R is shown below. The variables Z = mod(B) are those modified by
body B, and Tq, T;, T, are fresh logical variables capturing intermediate states.

F{pP} T (LR {Q}
F{IN-tANT=T,} skip {R[Z,T — T, }
F{INtAnZ==;} B; z: [I,R] {R[Z,T — T;,T| }
F{P} whiletdo B {Q}

LoorPCONTRACT

The first premise abstracts the computation of the entire loop by its contract I, R
using a specification statement. From rule SPEC, proof obligations akin to those
in Definition 6 are immediate via an application of the consequence rule. The
second premise terminates the loop when —t, the variables T,, capture this final
state. We encode the corresponding proof obligation as a Hoare triple with com-
mand skip,? which is equivalent to I A -t == R[Z, T +— T,Z], mirroring
the exit condition from Definition 6. The third premise, in contrast to (10),
embeds the inductive hypothesis directly into the program as specification state-
ment T: [I, R] that summarizes the remaining iterations after executing B once.
Variables T; capture the state right before B is executed for later reference in
the postcondition, whereas the reference to the intermediate state ¢ + 1 after B,
needed for R in Z: [I, R], is handled implictly via rule SPEC. Thus, rule LOOP-
CONTRACT nicely retains the syntax-oriented, compositional nature of Hoare’s
approach.

7 Specification of Examples and Comparison

In this section we specify some verification challenges using invariants and con-
tracts. The examples are chosen not for their difficulty, but because they high-
light specific aspects, advantages, and limitations of the respective approaches.

Variables in procedure annotations always refer back to the initial values
of the parameters and res denotes the result value returned by the procedure.
Moreover, we factor out the part of the verification that is common to both
approaches, in terms of a loop precondition that one should understand as part
of the invariant as well as the loop contract. Finally, for those algorithms that
do not contain break, we implicitly assume that the negated loop test is made
part of the summary (cf. Definition 6 and Proposition 2).

Fast Exponentiation. The fast exponentiation algorithm computes x" by
traversing over the binary representation of the exponent n. The program? tracks
a multiplier p = x(2") for each binary digit that is applied to the intermediate
result r in the i-th iteration only if the i-th least significant bit in n’s binary

2 Tuerk [54] remarks that, more generally, the inductive hypothesis may encompass a
subsequent program fragment C right after the loop, i.e., while t do B;C, and this
(concrete) C' would then replace skip in the second premise, with T = mod(B, C).

3 Presentation adapted from http://toccata.lri.fr /gallery /power.en.html.
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representation is one, where residual exponent e continuously shifts right such
that the lowest significant binary digit of e always corresponds to that bit.

int fastexp(int x, int n)
requires 0 <n
ensures res = x"

{ precondition (both)
int r=1, p=x, e =n; 0<e
th..le(e > 0) { invariant
if(e%2 == 1) . N
r=rxp; rp=x
p=p*p; summary
e=e/ 2; r=r-pe
}
return r;
}

Both the invariant as well as the summary require the same kind of gen-
eralization, to account for the intermediate result in variable r. This example
admits a functional characterization according to Proposition 3. The route from
the summary to the invariant is straight-forward, the converse can be best under-
stood by noting that the initial values of r, p, e denoted rg, py, ep as in Sect. 2,
coincide with 1, x, and n, such that the invariant can be written as r-p® = rg-pg’.

Linear Search. Linear search, as shown below, traverses an array a of length n
from front to back using index i to find an element x. To avoid using return
inside the loop (which we have not formalized in Sect. 4) we maintain a variable r
that becomes true once the element is found, in which case we break out of the
loop. Remember that in this case we establish the postcondition of the procedure
directly, so that —r is a valid invariant.

bool lsearch(int x, int a[], int n ..
. ( H ) precondition (both)
requires 0 <n
ensures res <= x € al0..n] 0<i<nA-r
{ L invariant
int i = 0; bool r = false; ]
while(i < n) { x ¢ al0..i]
if(x == a[il) summary
{ r = true; break; } , .
i r' & x € a[i..n]
¥ invariant via Proposition 1
return r; i
) X € a[i..n] & x € a[0..n]

The common condition is about the range of the index variable i and the
fact that the loop head is encountered only with when r is false. The invariant
states, as expected, that the element has not been found yet in the initial range
up to and not including i. The loop postcondition states that the final value
of r, denoted r’, will indicate whether the element is found in the remaining
range between i and n. It is quite similar to the procedure contract of lsearch,
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requiring only the generalization of the lower bound. Moreover, given —r, if we
write the invariant equivalently as r < x € a[0..1], then the respective approaches
become entirely symmetric. The loop invariant lifted from the postcondition via
Proposition 1 gives a nice alternative characterization of the work that remains
to be done (searching from i) in relation to the overall work to be achieved.

Binary Search. In contrast to linear search, binary search tracks two indices,
somewhat similarly to maximum by elimination from Sect. 2. The code is shown
below, using lower index 1 and upper index u (both inclusive).

bool bsearch(int x, int a[], int n)
requires 0 < n A sorted(a)

ensures res <= x € a[0..n] precondition (both)
{ 0<i<nA-r
int 1 =0, u=n-1; ) )
bool r = false; invariant
while(i < n) { x ¢ al0.1] Ax ¢ afu+ 1..n]
J:.nt m= (l+u) / 2; summary
if (x.> a[ml) {1 =ml; } r' & x€all.u+1]
else if (x < a[m]) { u =m-1; }
else { r = true; break; } invariant via Proposition 1
} x € al.u+ 1] & x € a[0..n]
return r;

}

The invariant for binary search now excludes two sub-ranges of the array,
whereas the summary incorporates only the minor additional generalization for
the upper bound from n to u+ 1. Like in max from Sect. 2 but unlike with linear
search, the array is divided into three logical parts, of which the shown invariant
considers two, whereas summaries can zoom into the single remaining part. This
effect has been noted by Furia and Meyer [22, Sect. 2.3] where it is addressed by
a heuristic called “uncoupling” that splits up ranges as needed. With respect to
binary search and similarly maximum by elimination from Sect. 2, approaching
the problem via contracts leads to a nice invariant via Proposition 1 that avoids
such uncoupling.

Phone Number Comparison. Summaries can mediate between a forward
computation, which is effectively a “left-fold”, and a correctness condition that
is a “right-fold” (cf. [36]). This case occurs e.g. when the logical specification
uses an intermediate abstraction step to algebraic lists or sequences, over which
functions and predicates are typically specified by structural recursion.

Consider the comparison of phone numbers* by ignoring non-digit characters.
As an example, the phone numbers (0) 12/345 and 01-2345 should be regarded
the same, whereas 1-23-45 is different because of the missing leading 0.

The algorithm keeps two indices, i and j, into arrays a and b that store the
characters of the respective numbers, of lengths m and n. The algorithm consists

4 Example communicated by Rustan Leino, who based his verification on Eq. (11).
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of a loop that increments i and j according to several cases until the numbers
are fully compared (first if) or a mismatch is detected (last else). If a[i] is not a
digit then i moves forwards, similarly j for b[j], and both jointly move forward
over two equal digits. The result of the comparison is returned via variable r as
previously.

bool compare(int a[], int m, int b[], int n)
ensures res <= filter(isdigit,a[0..m]) = filter(isdigit, b[0..n])

bool r = false;
inti=0, j =0;
while(true) {

if(i ==m && j == n) { r = true; break; }
else if(i < m && !isdigit(a[il) { i++; }
else if(j < n && !isdigit(b[j1) { j++; }
else if(i < m & j < n && al[il == b[jl) { i++; j++; }
else { r = false; break; }
}
return r;

}

A nice specification of this algorithm is in terms of algebraic lists, constructed
from nil and cons, where a[i..j] denotes cons(a[i], cons(.. ., cons(a[j —1],nil))),
the list of the elements from index ¢ to and including j — 1 of a. We rely on
a function filter that keeps only those elements in the list that satisfying a
predicate p. Filtering is defined by structural recursion over the algebraic list:

filter(p,nil) = nil

cons(z, filter(p, xzs)), if p(x)

lter(p, ) =
filter(p, cons(x, xs)) {ﬁlt@r(p, zs)), otherwise.

With these prerequisites, the specification of procedure compare states that
the boolean result indicates whether filtering for digits only produces identical
lists. An obvious candidate for the invariant follows the idea from linear search,
and generalizes the upper bounds of the ranges compared from the array length
to the respective counter variable:

invariant (problematic) filter(isdigit,al0..i]) = filter(isdigit,b[0..j])

While correct, the approach has the significant drawback that we need a lemma
that unfolds the recurrence of filter(p,al0..k + 1]) at the end instead of the
front like the definition, to accommodate the index increments, which in turn
is provable by induction only after a further generalization of the lower index
from 0 to a variable. Overall, this approach is somewhat cumbersome, and can
be avoided when the solution is approached with loop contracts:

summary r <= filter(isdigit,a[i..m]) = filter(isdigit,b[j..n])



84 G. Ernst

for which the proof is straight-forward, and from which we immediately get an
equally easy to prove invariant by Proposition 1:

invariant filter(isdigit, a[0..m]) = filter(isdigit, b[0..n]) (11)
< filter(isdigit,a[i..n]) = filter(isdigit,b[j..n])

The shown mismatch between the natural direction of the loop vs. that of the
property correlates to the insight that for some algorithms, a recursive version is
easier to verify, and some tools explicitly translate loops into recursive procedures
to that end [6]. Using loop contracts, one can avoid this intermediate step. For
a similar discussion in the context of separation logic we refer to [35,54].

We emphasize that it is not always possible to factor out specification func-
tions like filter nicely and to defer the complexity of additional lemmas to a
library, as one might be inclined to suggest. When such functions are specific to
the case study, or simply when higher order functions are not supported by the
tool, the ability to base the loop specification on right-fold loop summaries is
certainly a useful trick in the bag that deserves to be treated first class.

Array Copy. We turn to programs that manipulate arrays, which uncovers a
deficit of summaries. Recall that loop contracts reason about three states, an
initial one sg, an intermediate one s, and a final one s, (cf. Fig.3), whereas
invariants reason only about the first two. While it increases expressive power as
demonstrated above, it comes at a cost, too: Summarizing the remaining loop
iterations from s to the final state s,, by summary R(s, s,,) does not automatically
reflect the array modifications applied to get from sy to s. This occurs in the
program below that copies n entries from array a to b. This is an instance of the
more general problem of framing, that is long known [10] and well studied. A
comprehensive treatment is beyond the scope of this paper, but we show how it
surfaces in the example.

void copy(int a[]l, int b[], int n)

requires 0 <n precondition (both)
ensures b[0..n] = a[0..n] 0<i<n
{ . i invariant
int i = 0; o .
while(i < n) { b[0..i] = a[0..1]
b[i] = a[il; summary
1=+ b/[0..1] = b[0...1]
} b'[4..n] = ali..n]
}

The expected invariant specifies that the prefix up to current index i has been
copied already. Analogously, the summary predicts that executing the remainder
of the loop will copy the suffix starting from i into the resulting array b’ (second
equation in the listing). However, that is not enough: In the back-propagation
step from i+ 1 to i, from b’[i + 1..n] = a[i + 1..n] alone we cannot conclude
b’[i..n] = a[i..n] because the assignment to the entry b[i] in the current entry
does not appear anywhere, it is “forgotten”. The condition missing from the
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summary is that the remaining iterations do not touch the indices again that
were modified so far, i.e., that the lower range of b is unmodified.

Bubble Sort. We now turn to sorting algorithms, which are a classic example,
starting with bubble sort. It turned out to be somewhat tricky to get out of
the mindset associated with invariants, and to find a nice notation for a natural
specification. Again, framing is crucial, and we will do it explicitly, in terms of
comparing array ranges afi..j] = b[i..j]. In similar spirit, by a[i..j] = b[i..j] we
denote that the array range ali..j] is a permuation of b[i..j], which is equivalent
to stating that the multiset of elements on both sides are the same (a com-
mon encoding in Dafny). The code is shown below, together with a graphical
visualization.
void bubblesort(int a[], int n)
requires 0 <n
ensures a = old(a)
ensures sorted(a
{ ® N
for(int i =n; 1 >1; i--)
for(int j = 0; j < i-1; j++)
if(alj] > alj+1])
swap(j, j+1, a);

}

The algorithm gradually constructs a sorted suffix of the array, which is
shaded in grey in the figure on the right. Goal of the inner loop is to move the
largest element in the prefix up to the boundary of the sorted range, as visualized
by the arrow. The loop specifications are shown below.

Outer Loop Inner Loop
precondition (both) precondition (both)
0<i<n 0<ji<i<n
invariant invariant
a = old(a) al0..i] = old(a[0..i])
maz(al0..1]) < maz(a[i..n]) a[i..n] = old(a[i..n])
sorted(a[i..n]) 0<j = a[j] = maz(al0..j])
summary summary
a’[0..i] = al0..i] a’[0..j] = a[0..j]
a’[i..n] = a[i..n] a'lj..i] = alj..i]
sorted(a'[0..1]) a’[i..n] = ali..n]

a'li — 1] = mazx(a'[j..i])

Here, we employ the old keyword in the invariants to refer back to the state
before the loop (cf. Sect. 4). In both approaches, we keep track of which parts
of the array have been permuted and which are unchanged, albeit the summary
is more precise for both loops to account for framing, similarly to array copy.

The approaches for both loops are typically symmetric: as already seen with
linear search, the invariant refers to properties of the prefix whereas the summary
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refers to properties of the suffix. For the inner loop it suffices to keep track
of where we have placed the maximum of that range. For the outer loop, we
establish that a particular part is already sorted. Interestingly, in the contract
approach it is not necessary to specify that all elements in the prefix are smaller
than those of the suffix. This information follows from the strong framing of the
outer loop, together with the summary of the inner loop.

Summary. The examples shown in this section complement similar expositions
of verified algorithms where invariants are used, for example [21,46] as well as
the Toccata Gallery.” The intention was to compare utility of loop contracts. The
case is not entirely clear but it is possible to distill some insights as evidence
that sometimes loop contracts are just the right tool.

Contracts reason about complete results of a computation, whereas invariants
reason about partial intermediate results. Sometimes, the former is easier to
describe, and moreover closer to the overall correctness property, which can
then be taken from the program’s annotation. This comment applies specifically
to those algorithms where the work done so far affects the overall result only in
minor ways, as it is the case with the search algorithms, but not with the ones
that modify the array. We envision that there is a hidden potential to be unlocked
to discover loop specifications automatically, as it is done with invariants in
e.g. [21], and the preliminary experiment in [18] is a first step into this direction.
Moreover, proof arguments for summaries run counter to the computation of the
loop, implicitly turning it into a recursion. This helps to bridge the gap when the
specification is naturally expressed as a right-fold. On the downside, with loop
contracts it may be necessary to preserve some additional information across
the round-trip to the final state, as shown with copy. In general, if correctness
of the loop depends on unbounded work done so far, the immediate constraints
from executing the body once are insufficient and need to be complemented by
an invariant resp. loop precondition.

Overall, expressing correctness properties as part of a summary provides an
alternative and important conceptual angle, regardless of the underlying verifica-
tion method. But it is clear from the examples that it is typically a combination
of invariants and summaries that together allows for a natural specification.

8 Related Work

We emphasize that the approach of using contracts is not new, see e.g. Hehner
[26] for practical examples. The work closest to the theory of Sect. 4 is by Hehner
and Gravel [27], which shows an analogue of Definition 6 as Rule F in [27,
Sec 10]. Their presentation is closely tied to reasoning about for-loops, where
starting and ending indices are known (as symbolic expressions). In contrast,
we delimit the loop in terms of precondition P and postcondition (), which
lifts the idea to all loops in general. Moreover, Rule F does not make explicit
the relational nature of postconditions, whereas Rule G in [27] considers two

5 http://toccata.lri.fr/gallery.
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arbitrary execution segments of the loop, instead of a single segment known to
end in a final state (cf. Figs. 2 and 3), possibly with additional limitations wrt.
framing. Further work that is based on the same idea is [7,12]. A constructive
translation like the one shown Sect. 5 is not provided there or elsewhere as far
as we know.

Ideas to leverage the postcondition of a procedure contract to derive invari-
ants has been explored by Furia and Meyer [22]. Applying such techniques in a
setting with loop contracts is a natural step forward, but from Sect. 7 it is clear
that the necessary generalizations remain challenging. Progress in solving Horn
clauses [11,14,19,23,24,32,55| will tie into such work.

Induction for the verification of loops (and also recursive procedures) occurs
in a variety of forms in practice, specifically when strong specifications are desired
and manual effort is acceptable. In the context of Separation Logic, Tuerk [54]
demonstrates verification rules with contracts, mechanized in the HOL theorem
prover, we refer back to Sect. 6 for a comparison. VeriFast offers loop specifica-
tions in terms of pre-/postconditions, with first-class support for applying the
inductive hypothesis, which was used to solve a challenge with linked trees in the
VerifyThis competition 2012 by Jacobs et al. [37], noting that the proof “with a
loop invariant, would be somewhat painful”. Tools that embed program verifica-
tion into a general purpose theorem prover can make use of explicit induction,
too, as shown e.g. with KIV (for the same challenge, Ernst et al. [17]). Alterna-
tively, loops can be turned into recursive procedures to aid verification [45].

The support for magic wands in Schwerhoff and Summers [53] resembles the
encoding of contracts as invariants via (6). Specifically, [53, Sect. 7] spells this
out as pre, ., * (post .o —« post ,;), albeit this construction does not shed insight
into the state variables involved, lacking the analogue of s, in (6).

A proof system based on coinduction (i.e. forward reasoning) that generalizes
loop verification to any recurring program locations is [13], a similar approach to
tackle interleavings in concurrency is [52]. Brotherston [9] takes a similar route to
construct cyclic proofs, implicitly making use of induction. All three approaches
have in common that the inductive property is constructed on the fly instead of
being expressed by a fixed predicate or formula up-front.

Recent work on the verification of unstructured assembly programs [41] notes
that a negative loop test -t cannot be assumed by default in such a setting, as
it is the case with the conditions Definition 6. As discussed, our approach can
include this conclusion as part of the loop postcondition, in the absence of break.

The tools participating in SV-COMP [2] show a strong bias towards invari-
ants. As an example, the most successful configuration of CPAchecker [4], CPA-
seq, relies on k-Induction [3,16], which exploits correctness constraints from
inside the loop body, but disregards the constraints after a particular loop for its
verification. Likewise, Property Directed Reachability [42] reasons forward over
loops, but it is more precise wrt. different stages of a computation; Z3’s fixpoint
engine is fundamentally based on this idea [31,38].

Ultimate Automizer [28] abstracts traces in terms of automata, which may
contain loops. Whether there is a more fundamental connection between their
approach and loop contracts is not quite clear, and we leave this question for
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future work. SeaHorn [25] is a verification platform for Horn clause based veri-
fication of C programs, using the invariant approach.

Backwards program analysis, notably and combinations with forward analy-
sis, has been used in abstraction refinement [40,56|. In contrast to here, the idea
is to back-propagate information about counterexamples instead of correctness
conditions to derive invariants via interpolation. Loop summarization in log-
ics for underapproximation [15,48| similarly guarantees reachability of certain
states, the underlying “backwards variants” are incomparable to loop summaries.

In Spark/GNATprove, loop invariants can be specified to hold anywhere in
the loop body [29], and there is an equivalent to old, referring to the state of the
loop entry. The approach is demonstrated with a verification of the prefixsum
algorithm, a tricky challenge from VerifyThis 2012 [34]. We leave it to future
work to complete this challenge using the approach presented here. The app-
roach bears resemblance to k-Induction [16], because correctness conditions are
reflected inside the loop, not in the code that follows as with contracts.

9 Conclusion and Outlook

This paper presents a concise and accessible formulation of loop contracts, which
generalizes Hoare’s [30] proof approach for loops using invariants, and Hehner’s
refinement-based approach [27]. The presentation sheds light into fundamental
properties of loop contracts as a conceptually different but theoretically equal
proof method (Corollary 1). Moreover, the approaches can represent each other,
and we give constructive translations between them (Propositions 1 and 2),
such that a verification tool needs to support only one internally, while the
other approach can be regarded as syntactic sugar. We have exemplified the use
of summaries versus invariants to encode the bulk of the correctness of some
standard verification tasks. Both approaches have their respective advantages
and disadvantages, as discussed at the end of Sect. 7.

A clear path to future work is to develop algorithms that synthesize loop
summaries from procedure postconditions, similarly to Furia and Meyer [22] for
invariants, but potentially exploiting their close correspondence. A preliminary
evaluation with state-of-the-art Horn clause solvers [18] shows that these can
in fact instantiate contracts almost as well as invariants, for a substantial set
of benchmarks, however these benchmarks are almost exclusively numeric, and
therefore too simple to be conclusive. Overall, we hope that in the future, veri-
fication based on loop-contracts finds its way into mainstream tools, and helps
leverage their possibilities for those problems where they are beneficial.
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Abstract. In this paper, we present EPMC, an extendible probabilistic
model checker. EPMC has a small kernel, and is designed modularly.
It supports discrete probabilistic models such as Markov chains and
Markov decision processes. Like PRISM, it supports properties speci-
fied in PCTL*. Two central advantages of EPMC are its modularity
and extendibility. We demonstrate these features by extending EPMC
to EPMC-PETL, a model checker for probabilistic epistemic properties
on multi-agent systems. EPMC-PETL takes advantage of EPMC to pro-
vide two model checking algorithms for multi-agent systems with respect
to probabilistic epistemic logic: an exact algorithm based on SMT tech-
niques and an approximated one based on UCT. Multi-agent systems and
epistemic properties are given in an extension of the modelling language
of PRISM, making it easy to model this kind of scenarios.

1 Introduction

In this paper, we present a new model checker called EPMC, an acronym for
Ezxtendible Probabilistic Model Checker. Two main characteristics of EPMC are
its high modularity and its full extendibility. It achieves its flexibility by an
infrastructure that consists of a minimal core part and multiple plugins that
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provide model checking functionalities. We believe that it is very convenient to
develop a new model checker based on the core parts of EPMC. While the model
checker historically starts from probabilistic models, it will be easy to extend it
to incorporate other model types.

The baseline includes model checking functionality for probabilistic systems.
Probabilistic systems play an important role in reasoning about randomised
network protocols, and biological and concurrent systems. They also find appli-
cations in analysing security protocols. Markov decision processes are among
the most important semantic models. As a result, several model checkers that
support MDP analysis have been developed, including the state-of-the-art prob-
abilistic model checker PRISM [35], STORM [15], MRMC [30], L1IQUOR [12],
MoCuiBA [50], and IscasMc [22]. These model checkers differ in the model
and property types they support. For instance, MRMC and STORM handle
branching time properties specified in PCTL [25], whereas LIQUOR, IscasMc
and MOCHIBA are specialised in analysing linear time properties (PLTL) [5].
PRISM can handle both.

The first baseline of EPMC includes support for PCTL, PLTL, and their
extension to PCTL*. In addition, it can also be used to analyse Markov games.
To demonstrate the main features of EPMC, we extend it to the model checker
EPMC-PETL. EPMC-PETL is designed for the verification of probabilistic multi-
agent systems against PETL (probabilistic epistemic temporal logic) proper-
ties under uniform schedulers. Multi-agent systems have found many applica-
tions and verification techniques have also been proposed over the past decades.
Although there are model checkers for multi-agent systems, as we will see in
related works (Sect. 4), they can only handle restricted classes of the model we
are interested in, such as a non-probabilistic setting or, where they can handle
probability, they do not support epistemic accessibility relations. The algorith-
mic design, implementation, and validation based on an existing model checker
for probabilistic multi-agent systems against properties specified in PETL under
uniform schedulers is not available.

Exploiting the minimal kernel and multiple plugins of EPMC, we can con-
veniently implement the algorithms specific for the epistemic fragment of PETL
while reusing the core parts of EPMC for the management of the remaining
fragment, part of PCTL. In particular, the modularity of EPMC makes the
development of new functionalities rather independent from the existing ones,
without having to change existing code. This speeds up the implementation
and simplifies the debugging of the code, by isolating the different components
responsible for the different verification steps.

Summarising, the main features of EPMC include extendibility, modularity,
and the support of games and strategy synthesis. Beyond introducing EPMC,
we also present, with its extension to EPMC-PETL, the first tool that supports
PETL model checking for probabilistic nondeterministic multi-agent systems.

Organisation of the Paper. Section 2 introduces the architecture of our tool. In
particular, we demonstrate how to develop the PETL model checker EPMC-
PETL. Experimental results are presented in Sect.3. Sect.4 discusses related
works, and Sect. 5 concludes the paper.
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2 Architecture

We show the architecture of EPMC and how to build EPMC-PETL on top of
it. EPMC contains two main components: a) EPMC core; b) various plugins.
Details of these components and the interface are provided below.

The larger part of EPMC is developed in Java. It uses JNA [3] to access
libraries written in C/C++ to improve the performance of some computation
or to provide access to legacy code. Instances of such libraries are the BDD
libraries (like CUDD [51]) used to store symbolically the models or the C imple-
mentation of different versions of value iteration algorithms. The compilation of
EPMC is managed by the software project management and comprehension tool
Maven [2]. Maven takes care of caching and retrieving all building dependencies
such as Ant [1] and JavaCC [4], used for the parsers. This allows for porting
EPMC to multiple platforms and architectures.

2.1 EPMC Core

EPMC consists of a minimal kernel and multiple plugins that provide the func-
tionalities needed for model checking. This kernel is rather small. It is only
responsible for the bootstrap phase, where the plugins are loaded, and for start-
ing the model checking procedure. It first initialises the data structures needed
to load the plugins and then loads and initialises each plugin according to the
order, in which they are specified. Finally, it starts the model checking procedure
by parsing the given models and properties and calling the appropriate solvers.

In order to maximise modularity, the kernel has no information about the
existing plugins until they are loaded and initialised; it is the duty of each plugin
to register itself in EPMC. In order to be recognised as a valid EPMC plugin,
it has to

— declare its name and that it is an EPMC plugin in its MANIFEST.MF file;
— list the plugins it depends on; and
— implement all interfaces defined by the plugin manager from the kernel part.

Once the plugin meets these requirements, it can be used in EPMC to provide
the expected functionalities. The plugin can be inserted into EPMC in two ways:
either its jar file is placed in the embeddedplugins directory contained in the
EPMC jar file and its name is listed in the embeddedplugins.txt file; or it
is specified at command line by means of the option plugin as a jar file or as
a directory containing the class files. During the kernel’s bootstrap phase, the
plugins listed in embeddedplugins.txt are loaded first, following the order in
which they appear in the file. Then the plugins specified by the option plugin
are loaded according to their order.

When loading a plugin, a set of specific methods defined by the plugin inter-
face are called. In these methods, the plugin can register itself with respect to its
functionalities. A plugin can, for example, add new command line options, new
commands, or new data types; or it can declare to support specific operations,
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such as model checking a specific logic operator. The registration performed by
a plugin can be altered by the plugins loaded later. A plugin loaded later has
therefore a higher priority than a plugin loaded earlier. In particular, one can
last load a simple plugin that removes or modifies some of the options provided
earlier in order to create a version of EPMC specialised for specific tasks within
a specific setting.

2.2 Plugins Available in EPMC

We will now introduce some of the plugins natively supported by EPMC; the
different flavours of EPMC can be obtained by choosing and combining multiple
plugins together: for instance, by selecting the appropriate set of plugins EPMC
becomes a tool for performing PCTL model checking on Markov chains or MDPs,
and with a different set of plugins we can obtain a tool for model checking Markov
decision processes against PLTL formulas. By combining the two sets of plugins,
the resulting EPMC is able to check these models against the whole of PCTL*.
Below we give an overview of the plugins of EPMC.

Algorithm Group: This group contains all plugins that provide the classical
algorithms that are used for probabilistic model checking, such as graph decom-
position into strongly connected components and maximal end components for
both symbolic and explicit representations. It currently only includes the plu-
gin algorithm, which provides standard algorithms, such as the following ones:
FoxGLYNN, which follows the algorithm proposed in [28] for computing Poisson
probabilities for CTMCs; TARJAN, which implements the well-known strongly
connected component decomposition algorithm by Robert Tarjan [53] for explicit
data structures; and BLOEM and CHATTERJEE, which compute strongly con-
nected components using BDDs and are based on the work of Roderick Bloem
et al. [6] and Krishnendu Chatterjee et al. [10], respectively.

Automata Group: The purpose of this group is to enclose the plugins that encode
w-regular automata. It currently includes two plugins, namely the automata
and the automaton-determinisation plugins. automata provides a uniform
interface for automata such as Biichi and Rabin automata, while automaton-
determinisation provides the algorithms proposed by Sven Schewe, Thomas
Varghese, and Nir Piterman [46,48,49] to determinise nondeterministic Biichi
automata to deterministic Rabin and parity automata.

Command Group: This group provides three plugins that set the main function-
ality of EPMC: command-check calls the model checker to actually perform
the model checking operation; command-help prints out the usage messages;
and command-lump requires as input a probabilistic model and generates as
output a new model, which is bisimilar to the original model.
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BDD Group: The BDD group is dedicated to the symbolic representation of
models and properties by means of the Binary Decision Diagrams data struc-
tures. The dd plugin provides a uniform interface to use a BDD library and
therefore does not provide any actual implementation of BDD data structures.
Such an implementation is provided by one of the following plugins; each of
them implements the dd interface and at least one of them has to be included
whenever EPMC is expected to support the symbolic representation of models.

The dd-buddy plugin wraps the C library BuDDy [14], which is a small and
efficient BDD library. The dd-cacbdd plugin gives access to the C++ library
CacBDD [44], which implements a dynamic cache management algorithm. The
dd-cudd plugin provides the C library CUDD [51], which is the most well-
known BDD library used in several tools; it is the default BDD library of the
PRISM model checker [35,47]. The dd-cudd-mtbdd plugin is the companion
of dd-cudd for the multi-terminal binary decision diagrams (MTBDDs) offered
by CUDD. The dd-jdd plugin includes the library JDD [54], which is a Java
implementation of binary decision diagrams inspired by BuDDy. The dd-sylvan
and dd-sylvan-mtbdd plugins make the library Sylvan [17] available in EPMC;
Sylvan is a parallel (multi-core) BDD library written in C.

Bisimulation Algorithm Group: This group collects the plugins that compute
bisimulation relations on the models: the lumper-explicit-signature plugin
implements a signature based lumping algorithm for probabilistic systems; and
the lumper-dd plugin implements a lumping algorithm for probabilistic systems
by using MTBDDs.

Ezxpression Group: This group hosts the expression-basic plugin, which is
designed to provide a uniform interface as well as the corresponding data struc-
tures to handle formulas from temperoal logics like PCTL and PLTL.

Graph Group: The single graph plugin available in this group provides a uniform
interface as well as the data structures to store various models as a graph. The
model can be a Markov chain, a Markov decision process, an automaton, or any
model that can be interpreted as a labelled graph. It also provides the interfaces
to access the properties in the nodes or the properties on the edges. For instance,
it permits to collect all atomic propositions that hold in a state via evaluating
the properties of this state node.

Graph Solver Group: Similar to the BDD group, we have the graphsolver plu-
gin, which defines a uniform interface for solving the linear programming prob-
lems used to compute the reachability probabilities the model checking problems
are reduced to. The actual implementation is provided by the graphsolver-
iterative plugin, which solves the given linear programming problem by value
iteration. It supports both JACOBI and GAUSS-SEIDEL iteration methods.

JANI Format Group: This group contains all plugins related to the recently pro-
posed JANI model and interaction format [7]. There are currently three plugins:
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the jani-model plugin provides a parser to transform an input JANI model to
a graph or an MTBDD. It is also able to parse the input JANI formula; the
jani-exporter takes care of exporting models and properties in JANT format.

PRISM Format Group: The single prism-format plugin available in this group
provides a parser to transform a given PRISM model description to an explicit
graph or an MTBDD. It also provides a parser for the input formula.

Property Solver Group: The plugins contained in this group are responsible
for solving the properties analysed during the model checking phase. Simi-
larly to the BDD group, the specific property solvers are all implementations
of the common interface provided by the propertysolver plugin. There are
currently eight implementation plugins representing eight different classes of
properties: propertysolver-coalition provides a solution to solve a proba-
bilistic parity game against linear temporal properties; propertysolver-filter
handles the filter operation in the given PRISM formula; propertysolver-1tl-
lazy implements an efficient method to model check the PCTL* logic over
the probabilistic systems by means of advanced LTL verification techniques;
propertysolver-operator works with the operators that occur in the given
formula; propertysolver-pctl implements the PCTL model checking algorithm
over probabilistic systems; propertysolver-propositional provides a way to
identify all states that satisfy the given propositional formula; propertysolver-
reachability exemplifies how to write a plugin that handles the reachability
formula Pg, over Markov chains; and propertysolver-reward implements a
model checking algorithm to handle probabilistic systems with rewards.

Util Group: The single plugin util available in this group provides basic utilities
useful for working with bits, JSON documents, and other native data types in a
JAVA-style approach.

Value Group: Similar to the expression group, this group hosts the value-basic
plugin, which is designed to provide a uniform interface to represent all kinds of
values and types that may be used in EPMC, as well as the implementation of
the standard values and type such as Booleans, integers, and reals.

Dependencies Between Plugins. Each plugin may have build-time and run-
time dependencies on other plugins. Build-time dependencies can be considered
as hard dependencies: they must be satisfied at compilation time as well as
during the bootstrap phase; these build-time dependencies are made explicit in
the MANIFEST.MF file, and the order the plugins are loaded in the bootstrap phase
has to respect such build-time dependencies. For instance, the property-solver-
pctl plugin has a build-time dependency on property-solver, since property-
solver-pctl implements the interfaces defined by property-solver.

The graph of build-time dependencies between the groups of plugins is shown
in Fig.1, where an arrow from one group to another means that the former
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PRISM-format JANI-format Graph Expression
/
Property solver Automata BDD
Command Graph solver Algorithm Value
/
Bisimulation Util

Fig. 1. Build-time dependencies between groups of plugins in EPMC

requires the latter. To simplify the graph, we omitted all arrows that can be
inferred by transitivity, such as the one between any group and util.

Run-time dependencies can be seen as soft dependencies: their satisfaction
depends on the actual steps performed during the model checking phase. For
instance, the property-solver-pctl plugin has only a run-time dependency
on graphsolver-iterative, since graphsolver-iterative is required during the
model checking phase only in cases the property cannot be decided via a sim-
ple graph exploration. (This happens for quantitative properties.) This means
that graphsolver-iterative has to be available at run-time for some properties,
while for other properties it may be missing. If EPMC is intended to be used
to check only qualitative properties, then graphsolver-iterative can safely be
omitted, while EPMC needs the graphsolver-iterative plugin (or any other
plugin implementing graphsolver) to analyse quantitative properties.

2.3 PETL Model Checker as a Plugin

The structure of EPMC-PETL, largely shared with EPMC given its modular
architecture, is illustrated in Fig. 2.

To provide the PETL model checking algorithms for multi-agent systems
offered by EPMC-PETL, we have developed the PETL plugins that add the cor-
responding functionalities, namely: the parser for the multi-agent system model
specification and the PETL properties; the data structures to store them; and
the algorithms for evaluating the properties against the given model.

In multi-agent systems, the agents have the capacity to perform certain
actions, which they choose according to their individual protocols. Given the
distributed nature of multi-agent systems, it is typical that the agents have
incomplete information about the state of the global system due to the fact that
they are only able to observe a limited part of the global state when they have to
choose their actions. The incompleteness of information is normally modelled by
defining, for each agent i, an equivalence relation ~; over all global states of the
systems, then two global states are considered indistinguishable for a given agent
i if they are related by ~;. Note that two states that are indistinguishable for
an agent may be distinguishable for another agent, so there is no constraint on
how two states are related by the different relations. Every agent makes its own
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from command line
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Fig. 2. Architecture of EPMC-PETL

decisions based only on the limited information it has, namely, the information
restricted by its own indistinguishability relation. Decisions of agents are usually
formalised by schedulers, which are functions that take the history executions as
input and decide (output) the next move for each agent. Schedulers that only
make use of the limited information each agent is aware of are called uniform.
Intuitively, a uniform scheduler for the agent i is expected to make the same
choice when given two executions that are equivalent under ~;.

To build the model checker EPMC-PETL, we have to first implement three
things in this plugin: the model, the property, and the equivalence relations.

Model. We use the PRISM language as input format and the model type should
be “mdp”, to represent the fact that the model has both probabilistic and nonde-
terministic behaviour. Each module in the MDP defines one agent’s behaviour,
with the name of the module being the agent’s name. The state space of the
overall multi-agent system is constructed following the PRISM approach, i.e.,
by considering all state variables, whether local to a module or global, and with
the usual PRISM restrictions on how transitions can update these variables.

Differently from the standard PRISM language semantics, at each step every
agent chooses one action among the enabled transitions, independent of whether
other agents have a transition with the same action that is enabled. The actions
labelling the transitions are therefore not used for the synchronisation of the
modules: they are instead the names of local actions, and each command must
be labelled by one action.
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The overall result is that the agents do not interact with each other by
synchronising on common actions, but by the effects of the individual transitions
chosen by the individual agents.

Property. To specify the properties of probabilistic multi-agent systems, in par-
ticular the temporal dynamics of agents’ knowledge, we adopt the probabilistic
epistemic temporal logic (PETL) (cf. [16]), which can be viewed as a combina-
tion of epistemic logic [18] and probabilistic computation tree logic (PCTL) [25].
To specify PETL formulas, we extend the PRISM language by adding the epis-
temic operators K; and Eg, Cg, and D¢ to the set of operators that can occur
in a property formula, where 7 is (the name of) an agent and G is a set of agents.
Intuitively, the property K;¢ means that agent ¢ knows that property ¢ holds in
state s if ¢ holds in all states equivalent to s with respect to ~;; properties Egp,
Cgap, and Dgy are similar, but refer to the common/distributed knowledge of
the group of agents. These epistemic operators are thus added to the PRISM
properties as K {agent} and E/C/D {agent;, ..., agent,}, respectively.

Equivalence Relations. Equivalence relations are encoded as sets of formu-
las shown in Fig.3. Each agent in the model has its own equiv agent_name
...equiv end block and each block contains a set of formulas. The formulas
are defined on all state variables that occur in the model definition and are not
restricted to those of the corresponding single agent.

Each formula induces one equivalence class, i.e., two equiv agentl

states that satisfy the same formula of agent j are consid- -- formulal;
ered to be related by ~;. This means that formulas are -- formula2;
required to be pairwise disjoint; if a state does not satisfy
any formula, it is not equivalent to any other state, so it L
. . . equiv end
belongs to its singleton equivalence class.
PETL Solvers. In general, the model checking problem for equiv agentN
probabilistic multi-agent systems against PETL properties -- formulal;
is undecidable [20], but is decidable when restricted to -- formula2;
the class of uniform memoryless schedulers. The decision
algorithm for the latter follows the PCTL approach: the
PETL property is checked bottom-up, with each operator
managed by its corresponding sglver. Epistemic operators Fig. 3. The format of
are part of the state formulas while the temporal operators
are managed as in PCTL, except for the class of schedulers
considered for computing the Until operator.

The key parts of the PETL plugins are three solvers needed to verify PETL
properties: the first one focuses on the knowledge operators, while the other two
take care of the PCTL until operator (wrapped inside a probabilistic operator P,
as in PCTL), which needs to be computed on the class of uniform memoryless
schedulers instead of the general class of memoryless schedulers as done in PCTL;
these two solvers implement two different algorithms, an exact one based on
mixed integer non-linear programming and an approximation based on upper

equiv end

equivalence relations
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confidence bounds applied to trees (UCT) [31]. The remaining fragments of
PETL, like propositional formulas and the next operator, can be computed as
for PCTL. They can therefore be inherited from the existing plugins of EPMC.

MINLP Solver. This solver implements the PETL model checking algorithm
developed in [20]: it reduces the problem of checking the satisfaction of an until
formula to a mixed integer non-linear programming (MINLP) problem, which
can then be solved by, e.g., an SMT solver. Here we make use of the SMT solver
73 [45], which can be replaced by any other SMT solver that supports SMT-lib
version 2.5 as input format. The reduction ensures that the resulting scheduler
is uniform and memoryless, with a different encoding for Py ax—2 and Pyin—7.

UCT Solver. This solver implements an approximated algorithm relative to the
until operator, based on the upper confidence bounds applied to trees (UCT)
algorithm [19]. This UCT based solver performs a Monte Carlo sampling of
the model, with heuristics guiding the choice between the exploration of new
parts of the state space, the analysis of already explored state space, and the
action to choose. This solver offers several parameters to the user to tune the
heuristics: time limit — how much time the solver should use when exploring
the model; depth limit — how many steps the solver should perform in the state
space exploration; B value — the bias parameter in the UCT formula between old
and new state exploration; and random seed — the random seed used to select
unvisited successors (so to be able to reproduce the solver’s execution).

The implementation of this solver makes use of specialised data structures to
store the information collected during the UCT sampling; in particular, the data
structure organises the information so to ensure that the underlying scheduler
is uniform, as required by the PETL decision algorithm. The basic idea is to
store the selected actions of each agent, and then exclude the actions making
the scheduler non-uniform when executing the next step in the exploration.

Knowledge Solver. This solver deals with the knowledge operators, namely K,
Eg, D¢, and Cg. Depending on the actual knowledge property Z(p), the solver
takes the satisfaction information about the state formula ¢ already computed
(recall that PETL model checking is based on a bottom-up approach similar
to PCTL) and returns the set of states that satisfy Z(y), by implementing the
semantics of Z(p).

Online Availability. EPMC, including its extension EPMC-PETL, is an
open source tool. EPMC is freely available at https://github.com/ISCAS-PMC/
ePMC as a git repository to be forked and modified.

3 Empirical Evaluation

We have generated five different flavours of EPMC by loading different mod-
ules. One version that supports only PCTL; one that supports PCTL*; one
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Table 1. Different variations of EPMC. The runtime is given in seconds, and ‘ns’
and ‘to’ abbreviate ‘not supported’ and ‘time-out’ (set to 100s, as performance
was not our concern). The properties used were @1 = Ppax=7[Fnum_crit > 1]
(PCTL); ¢2 = Puin=2[(GFpl!l = 10V GFpl = 0V FGpl = 1) A GFpl! =
0 A GFpl = 1] (PLTL); ¢3 = Ps—i[F“premium”] (PCTL); ps = P=2[(GFleft.n =
16) Vv V18, FGright.n = 4] (PLTL); o5 = (1)Ps_:1[(1“21” U “22”)] (Coalition);

=13

ws = ((INPs=1[(1“21” U “22”) A F“23”] (Coalition); ¢7 = {(1)Pmin=[(!“z1” U
“227)] (Coalition); ws = {(1)Pmax=2[(1“21” U “227) A (1“24” U “22”) A F“z3”]
(Coalition); @9 = Puax=?[G(rw_z # rc.x V rw_y # rc.y)] (PETL); and ¢i19 =
Prax=?|GE e (rw_z # rc_x V rw_y # rc_y)] (PETL).

Experiment EPMC PRISM | Rabinizer4 | PRISM-games

PCTL | PCTL* | SMG | PETL | full

Mutual e1 | 1.7 1.8 ns ns 1.8 0.0 0.0 0.0

Exclusion 4 @2 | ns 4.5 ns ns 4.5 |14.4 10.4 13.3
Workstation w3 | 1.1 1.0 ns ns 1.2 0.0 0.0 0.0

Cluster 16 @4 | DS 1.8 ns ns 1.7 |to 0.7 to

Robot @5 | ns ns 2.9 ns 2.9 | ns ns 0.6

10 e | ns ns 3.1 ns 3.2 |ns ns 1.9
Robot_shoot @7 | ns ns 5.2 ns 5.7 | ns ns 0.0

7,1, 0.3 @8 |ns ns 5.9 ns 5.5 | ns ns 2.0
Reconnaissance | pg | ns ns ns 17.1 12.6 | ns ns ns

2 @10 | DS ns ns 16.4 15.3 | ns ns ns

for solving probabilistic parity games; one that supports PETL; and a version
that supports all of these. As comparison, we considered the following tools
PRISM [35], PRISM-games [11], and Rabinizer4 [34].

We have run these tools on a few MDP benchmarks taken from the PRISM
website [47], SMG games from [23,24] and multi-agent systems from [20]; we
considered some simple properties for these models. The goal of the comparison,
reported in Table 1, is to show the adaptability of EPMC in supporting different
logics and to use different modules, not the actual performance.

4 Related Work

We have already discussed related probabilistic model checkers in the introduc-
tion, all of which do not support PETL model checking. Here we list related
tools for analysing multi-agent systems or epistemic logics.

MCMAS [41-43] is an open-source, OBDD-based symbolic model checker for
verifying multi-agent systems. MCMAS is restricted to non-probabilistic mod-
els. There are some model checkers for multi-agent systems built on top of
MCMAS: MCMAS-SDD [36] introduces an SDD-based technique for the for-
mal verification of multi-agent systems; MCMAS-SLK [8] supports the verifi-
cation of systems against specifications expressed in strategy logic (SL) with
knowledge; MCMAS-SL[1G] [9] puts forward an automata-based methodology
for verifying and synthesising multi-agent systems against specifications given in
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SL[1G], which is the one-goal fragment of strategy logic; MCMAS b1k [32] can
verify properties given in LDLK (Linear Dynamic Logic with Knowledge) for
multi-agent systems; MCMASpr,, i [33] implements the algorithm for the ver-
ification of multi-agent systems against LDL ;K specifications, which is LDLK
interpreted on finite traces. As for MCMAS, all these model checkers do not
consider probabilistic components in their systems and logics.

Probabilistic swarm systems support systems with an unbounded and time-
changing number of agents. Based on PRISM [35], Lomuscio and Pirovano have
introduced the software package PSV (probabilistic swarm verifier), with several
sub-components that support bounded time PSV-BD [38], counter abstraction
PSV-CA [39], strategic properties PSV-S [40], and faulty systems. The logics
these tools consider are either without epistemic operators, or they allow only a
single epistemic operator to occur as the top operator of the formula. While the
EPMC extension EPMC-PETL we have discussed only analyses systems with a
fixed number of agents, it supports the nesting of epistemic operators as well as
their boolean combination.

MCK [21] is an OBDD-based model checker for multi-agent systems that
supports temporal-epistemic specifications. It has been extended in [26] to sup-
port probabilistic reasoning, but nondeterministic choices are not considered;
the work in [27] implements a symbolic BDD-based model checking algorithm
for an epistemic strategy logic with observational semantics also based on MCK.
Epistemic accessibility relations are studied in this work, but only for a non-
probabilistic setting. EPMC-PETL supports the analysis of systems that com-
bine nondeterminism and probabilistic choices, which is missing in these tools.

MCTK [52] is a symbolic model checker for a temporal logic of knowledge. It
is developed from NuSMYV [13]. Similarly, the authors of [37] propose a methodol-
ogy for model checking a temporal-epistemic logic by building upon an extension
of NuSMV. Verics [29] is a model checker for real-time and multi-agent systems.
It implements bounded model checking algorithms for CTL, real-time CTL, and
variants of CTL that include epistemic operators. Again, these tools can only
work with non-probabilistic multi-agent systems.

5 Conclusion

In this paper we have presented EPMC, an extendible probabilistic model
checker, and EPMC-PETL, a tool for model checking epistemic properties
on multi-agent systems that exhibit both probabilistic and nondeterministic
behaviours. Key advantages of EPMC are its high degree of modularity and
full extendibility. We have exemplified by the particular extension of EPMC-
PETL how this extensibility can be used to easily cover attractive new properties
that no other solver has covered before. Of course, besides demonstrating this
advantage of EPMC, EPMC-PETL also provides this additional functionality,
which is novel and a contribution in itself.
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open-source and collaborative approaches to managing their collective industry
challenges. Many of those challenges involve sharing data models as well as busi-
ness logic and calculations. A prime example is the focus on leveraging commu-
nity initiatives around the digitization of regulatory needs to streamline industry
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Abstract. The financial technology sector is undergoing a transforma-
tion in moving to open-source and collaborative approaches as it works to
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part of this change. Based on this viewpoint, a consortium of leaders from
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stack to address these challenges.

The resulting stack, MORPHIR, centers around a converged core inter-
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design of the MORPHIRIR language and the larger MORPHIR ecosystem
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efficiency. Managing the myriad regulations that any single organization must
comply with is a enormous task. Reuters Regulatory Intelligence tracks regula-
tory changes across 190 countries and reported an average of 257 daily alerts
in 2020.! Programming languages and the tooling around them play a core role
in managing the complexity and engineering effort involved in fulfilling these
regulatory requirements and implementing critical business applications.

The current approach to high assurance development is based on classical pro-
cess quality and provenance. Legal teams review regulations, or process descrip-
tions, to generate a set of rules and compliance examples. Development teams
use these documents to produce the actual code and build an architecture that
implements the systems/regulations described in the documents. In this classic,
waterfall style method, the assurance of quality is based on the documenta-
tion, workflow checklists, and conformance tests provided by the legal team.
While effective, this process is a time consuming and expensive way to develop
high assurance systems. Since different companies have different platforms and
systems, this work is duplicated multiple times. Beyond the raw costs inher-
ent to this approach, the increasing complexity of financial rules creates situa-
tions where the rules are interpreted differently by different systems, resulting
in increased regulatory uncertainty and issues with interoperability.

These challenges require broad community engagement to overcome. Thus, a
consortium of leaders from Morgan Stanley and Goldman Sachs and researchers
at Microsoft Research and University College London drove this project, with
support from the Fintech Open Source Foundation (FINOS). The core challenge
involved creating a mechanism to share rules, calculations, and their data mod-
els in a form that spans the wide range of current and future technologies across
the industry. In this paper, we describe our experience in creating a program-
ming and validation ecosystem that can support the needs of financial services
companies in developing and delivering high assurance software and regulatory
compliance software artifacts. Three interlocking goals guided our work:

1. Developing a core IR and programming model that converge existing lan-
guages to leverage the hard won knowledge embedded in them and to max-
imise its deployability in and sharing throughout the ecosystem:;

2. Setting up a baseline validation methodology to provide assurance guarantees
on programs in the core IR; and

3. Creating workflows that help the wider community integrate their frontend
platforms and backend validation tools into the ecosystem.

To achieve the first two goals, we developed MORPHIRIR, a converged, core
intermediate representation (IR) with two key properties: 1) it is a suitable target
for existing languages in use in major investment banks and 2) it is amenable to
analysis with formal methods technologies. MORPHIRIR, described in Sect. 4, is
based on a convergence of two languages—MORPHIR from Morgan Stanley [1§]

! According to Thomson Reuters “Cost of Compliance 2021” 78% of market partic-
ipants they surveyed expect the amount of regulatory information published by
regulators and exchanges to increase in 2021.
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and LEGEND from Goldman Sachs [14]—with simplifications made to improve
its amenability to analysis.

The Fintech space has many bespoke domain specific and contract languages
(DSLs) that serve valuable purposes in their niche but are not large enough to
justify the cost of building a full toolchain. MORPHIRIR provides a core set of lan-
guage constructs that are sufficient to describe common business concepts, while
remaining simple enough to provide an easy translation target. As described
in Sect. 4, the converged MORPHIRIR language is based on a standard let-style
functional core calculus with algebraic types and polymorphic collections. This
core is augmented with a number of commonly useful types and operators such as
decimal numbers or dispatch tables. This allows a wide range of source languages
used in the community to, with a minimal investment to build a translator, gain
access to the full checking and compilation tooling stack provided.

MoRPHIRIR has many features that make it well suited for formal analysis.
Its language core is purely functional, referentially transparent, fully determin-
istic, and utilizes a small number of collection functors (instead of recursion)
for most iterative processing. To provide a baseline for the effectiveness and
value that formal methods can provide beyond the current stacks, we transpiled
MoRPHIRIR code to Microsoft Research’s BOSQUE language [3]. As described
in Sect. 3, the focus is on providing simple ways to encode high-level intents and
approaches to analyzing the code along with the intents to provide actionable
results and/or increased confidence that the code successfully implements the
specified properties.

Our experience with these systems, the corresponding workflows, and our
work to make these systems widely available are described in the Experience
Report (Sect.5). Our experience translating existing languages, including Elm,
LEGEND, BOSQUE, and a few small DSLs show the viability of MORPHIRIR as a
shared intermediate language for this space. The initial experiences with valida-
tion have been similarly positive. The workflow, which supports full refutations of
errors, generation of witness failure inducing inputs, and partial checking [15, 19|
results in an easy to use system that consistently provides actionable feedack
and confidence.

Based on these experiences and community feedback to date, we believe
MORPHIR establishes the basis for a vibrant software ecosystem in the Fintech
space as well as a unique opportunity to advance the state of the art in formal
methods and their practical application. Section 5 outlines where the expertise
and experience of the formal methods community will be particularly useful.
These areas range from the direct opportunity of demonstrating the effective-
ness and utility of new techniques in the Fintech proving ground by integrating
them into MORPHIR’s validation pipeline, to insights on the design of richer spec-
ification languages for MORPHIRIR, to the challenge of extending MORPHIR’s
validation stack from just code to the larger ecosystem of data and process com-
pliance, a space that calls for hybridising AI and verification techniques.

The contributions of this paper are:



High Assurance Software for Financial Regulation and Business Platforms 111

Elm Legend ... Bosque
} Abstract|on
Possible
Error
MorphirIR Core
o BSQChk
Validation Proof \
Pipeline . or
: Witness @ Auditability
Annotated & -
IR Observability
Java SQL .. JavaScript

Fig. 1. MorPHIRIR technology stack.

A report on our experience of building the MORPHIRIR core language as a

backend target for regulatory modeling languages and business platforms.

— Mapping of the MORPHIRIR language into the BOSQUE language and check-
ing ecosystem as a baseline for formal quality assurance.

— A report on our experience on using this tooling workflow with code coming
from Elm and BOSQUE applications.

— A fully open source language and analysis stack for the community, including

a suite of annotated code as an evaluation benchmark.

2 MorpPHIRIR Stack

The converged MORPHIRIR core language provides a shared compiler and run-
time platform. The diagram in Fig.1 shows the components of the MORPHIR
stack and where various members of the community are interacting with the
core MORPHIRIR language. The MORPHIRIR core language (Sect.4) sits at the
center of the diagram and is the central component that enables innovation in
the rest of the stack.

2.1 Surface Languages

There are several surface languages, including Elm, BOSQUE, and LEGEND, that
can target the MORPHIRIR language. Currently, each one uses a custom tran-
spiler pass and interoperability requires manually projecting from the MOR-
PHIRIR representation to the semantics/types of the source language. The dot-
ted API abstraction component is a key open work item needed to develop a
higher level vocabulary of type and operation API’s to make interoperability
more transparent.
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2.2 Validation Pipeline

The validation pipeline takes MORPHIRIR code into an underlying verifica-
tion language and tool for analysis. The default checker is currently BSQCHK
(Sect. 3). Errors or other information are reported back into the original source
code using source maps maintained in the MORPHIRIR core model.

Our philosophy for validation tooling is pragmatic. In an ideal world, we
would have a full, and stable, specification for a task which we use to prove
that our implementation never fails and satisfies the specification. However, in
the world of under-specified and evolving regulations and business application
platforms, this ideal does not hold. Instead, we must deal with limited to no
specifications and, since our developers do not have time to debug/resolve proof
failures, we should be able to provide useful results even when proofs fail.

Thus, we consider the following hierarchy of confidence boosting results that
ensure useful feedback that either provides assurance the code is free of errors
or provides actionable information to fix a problem:

la. Proof of infeasibility for all possible executions

1b. Feasibility witness input that reaches target state

2a. Proof of infeasibility on under-approximated executions
2b. No witness input found before search time exhausted

The 1a and 1b cases are our ideal outcomes where the system either proves
that the error is infeasible for all possible executions or provides a concrete
witness that can be used by the developer to debug the issue. The 2a and 2b
cases represent useful best effort results. While they do not entirely rule out the
possibility that a given error can occur, they do provide a substantial boost in
a developer’s confidence that the error is infeasible.

2.3 Monitoring and Compilation

Applications in the Fintech sector often run critical software, subject to exten-
sive compliance and auditing requirements. A common regulatory requirement
involves demonstrating to auditors exactly why any decision was made for up to
several years in the past. The MORPHIR tooling takes advantage of its functional
purity to reevaluate decisions to produce automated audit-quality explanations.
Explanations can take a variety of forms, such as natural language explanations
or flow charts. Evaluation can be injected into the code to publish explana-
tions through observability technologies or can be executed after the fact, for
example through an interactive web page that allows users to replay decision
evaluation much as a debugger would. Figure 1 shows a dedicated pipeline for
providing applicaton behavior observability [1], runtime safety monitoring, and
explanatory logic into the final executable images.

The explanatory logic component is an interesting feature that plays an
important role in audit compliance and in many business applications. Con-
sider the (simplified) regulatory code below derived from the 173 page FR 2052a
Liquidity Reporting instructions [13] for computing the category of an inflow:
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function classify(cashflow: CashFlow): FedCode {
if (netCashUSD (cashflow) >= 0) then
if (isOnshore(cashflow)) then IU1l else IU2
else
1U4
}

For a given transaction, an auditor (or analyst) may need to know why a
flow was categorized as IU2. In most systems, this would require looking into
the code and manually tracing the execution flows. Most analysts at a trading
desk, or, in this case, accountants, would not be comfortable with this type of
error prone task. Thus, the MORPHIR backend can automatically inject auto-
mated logging code for each branch to record which are taken and the values
of the arguments. Thus, if a user sees a flow categorized as IU2 (an Offshore
Placement), the MORPHIR system can ezplain this result by noting in the trace
log that the netCashUSD(cashflow) was positive and the flow was offshore e.g.
!isOnshore (cashflow).

Finally, the MORPHIRIR stack supports emitting source code in a variety
of languages for integration into the desired execution environment. The Java
Virtual Machine (via Scala or Java) is the standard output; SQL and JavaScript
are also supported. Each of these target languages currently requires a custom
emitter implementation but, as the MORPHIRIR language has special support
for types like Decimal and BigNat plus an opinionated container library, it also
requires non-trivial work to ensure full runtime support in each target as well.
The MORPHIR stack also provides cloud deployment and distributed execution
support via integration with the Dapr [4] platform.

3 Validation Methodology

The validation workflow for MORPHIRIR programs is modular to enable a vari-
ety of tooling for either general correctness properties or specialized analyses
for specific domains—e.g. checking for numerical stability or applying lint-style
checks to specific sections of code. In this paper, we focus on our experience with
the BOSQUE language’s validation system [15].

3.1 BSQCHK Validation Workflow

The BSQCHK checker first builds the code under analysis by translating the
MoRPHIRIR code to the BOSQUE representation. Given the structure of the
MoRrPHIRIR code (Sect.4), this translation is mostly a 1-1 process with book-
keeping to build source maps for error reporting. After this translation, BSQCHK
loads the code and enumerates all possible error conditions it can check. For each
identified error, BSQCHK follows the algorithm shown in Fig. 2.

The first action is to check if the error can be refuted under various definitions
of simplified models of the program — limited sizes on input values and numeric
bitwidth sizes ranging from 4-16. If the error can be show to be impossible in
these simplified models then the checker attempts a refutation proof with no
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Fig. 2. BSQCHK checker workflow.

limits on the size of inputs and 64 bitwidth sized numbers. If this is successful
then the checker has shown that the error is infeasible on all executions and we
achieved the highest quality, la, confidence level.

If we succeeded in proving the error infeasible for simplified models of the
program, but then failed to prove the infeasibility for the full case, we still
achieved the partial, 2a, confidence level.

If the refutation proofs fail then we search for a witness input for the error.
The small model search incrementally expands the input sizes and bitwidths
up to size 16. If we find an input that reaches the target error then we have
succeeded in producing a high value actionable result for the developer, 1b, in
our quality confidence level. With this result we know there is a real failure and
have a small input that can be used to trigger and debug it.

In the case we cannot generate a small witness we make a final witness gen-
eration attempt without limits on the input sizes and at the full 64 bitwidth for
numbers. If we find an input that reaches the target error then we have suc-
ceeded in producing a high value actionable result for the developer. Otherwise
we produce our minimal success result, 2b, where we aggressively explored the
input space.

The code in Fig. 3 shows a MORPHIRIR implementation of a business applica-
tion modeling example. The code snippet is focused on the available function.
This function computes the number of items still available to sell based on the
number at start of the day (initialPosition) and the list of buy transactions
(buys) so far. As a precondition it asserts that the initialPosition is non-
negative. As a postcondition it asserts that the result $result is bounded by
the initial position value.

The code to compute the number of buy transactions that have been com-
pleted successfully and the sum of the quantities from these purchases is concisely
expressed using the functor chain buys.filterType<BuyAccepted>() .map(fn(x)=> x.quantity
y.sun(). While this code is conceptually simple from a developer viewpoint, its
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function available(initialPosition: BigInt, buys: List<Response>): Biglnt
requires initialPosition >= 0;
ensures $result <= initialPosition;

{
let sumOfBuys = buys
.filterType <BuyAccepted>()
.map (fn(x) => x.quantity)
.sum ()
in
initialPosition - sumOfBuys;
}

type Response =
BuyAccepted of {
productId: String;
price: Decimal;
quantity: BigInt; //<--- should be BiglNat
}
| BuyRejected of {

}

Fig. 3. BosQUE implementation of order processing code.

actual strongest postcondition logic semantics are quite complex. They include
a subset relation and predicate satisfaction relation on the filter, a quantified
user defined binary relation with the map, and an inductively defined relation as
a result of the sum. Thus, trying to prove that the postcondition is satisfied (or
finding an input that demonstrates the error is possible) is a challenging task
involving inductive reasoning, relationships between container sizes and contents,
and quantified formula.

Despite these complexities, the BSQCHK checker can model this code, in
strongest postcondition form, as a logical formula in a decidable fragment of
first-order logic and instantaneously solve it [15]. The result is the following
assignment which satisfies all the input constraints and violates the ensures
condition:

initialPosition = 0 A buys = List<Response>(BuyAccepted(“a”, 0.0, —1))

A developer can run the application on this witness, investigate the problem,
and identify the appropriate course of action to resolve the issue. In this case,
the fix uses the fact that the MORPHIRIR language supports BigNat, in addition
to BigInt, numbers to ensure that the buy quantity is always non-negative.

After this simple change, rerunning BSQCHK instantaneously reports that
the program state where the ensures clause is false is unreachable for all possible
inputs. All of this analysis and proving is fully automated and does not require
any assistance, knowledge of the underlying theorem prover, or use of specialized
logical assertions by the developer.
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4 MoRrPHIRIR Core Langauge

The MORPHIRIR language provides a unified target IR for various modeling
and platform development toolchains in use in the Fintech space and leverages
findings from recent work [15,21] on language design for automated reasoning,
to support advanced verification, error checking, and analysis tooling.

The initial source languages targeting this IR are a dialect of Elm (used in
the MORPHIR [18] stack) and LEGEND [14]. As these systems were built for mod-
eling financial data, logic, and calculations for business critical operations, their
designs already had most of the features we would want from the viewpoint of
building a high assurance ecosystem. They are pure, functional, and referentially
transparent. From this base, we refined the IR design based on experience with
the BosQUE [3] language and tooling stack—making the programming model
fully deterministic, including additional primitive types, and expanding the set
of collection functors in the core library. The full language type grammar is
shown in Fig.4 and the expression language in Fig. 5.

4.1 Types and Values

Primitives: MORPHIRIR provides the standard assortment of primitive types
and values including Bool, Int, and Float values. As the language is focused on
financial computation, we also provide a Decimal type. To support high assur-
ance programming, MORPHIRIR also supports overflow free BigInt numbers,
plus, the generally useful positive only numeric refinement types Nat and BigNat.
The MORPHIRIR String type represents immutable unicode string values.

Tuples and Records: Structural Tuple and Record types provide standard
forms of self describing types. MORPHIRIR records and tuples are always closed,
e.g. they must explicitly include all indices/properties.

Algebraic Data Types: The primary means of organizing data in MORPHIRIR
is classic algebraic datatypes. The members of the ADT can have named or
positional members.

Parametric Containers: Following the design of principles of the BOSQUE
language, we include List<T>, Set<T>, and Map<K, V> as core types in the
MoRrPHIRIR language. These types support a rich set of functors that enable
the majority of iterative processing tasks to be described without the use of
arbitrary iteration or recursion (see Fig.6).

4.2 Expressions

Constants and Variables: MORPHIRIR has the usual constants for booleans,
numbers, and strings. Variables are used for function parameters and let bind-
ings in the usual way.
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Primitive := Bool | Nat | Int | BigInt | BigNat | Float | Decimal | String
Tuple := [Typeu,...,Typex]
Record := {p1:Typei,...,pr: Typer}
ADT := type Ty =Ci of CRepr, | ... | Cx of CRepr,
CRepr := [Typei,...,Typex] | {f1: Typei,...,[fr: Typex}
Container := List<T> | Set<T> | Map<K, V>
Function := (Typei,...,Typer) => Typeresu
Type := Primitive | Tuple | Record | ADT | Container | Function

Fig. 4. MorpPHIRIR types.

Primitive Operators: The language provides a standard set of operations on
primitive types including, logical, arithmetic, and comparison operations. Arith-
metic operations on numeric types are always checked for overflow, underflow,
and div by 0. We do not allow implicit type coercions, so these operators are
only defined for values of the same types and conversions for mixed types must
be explicit. MORPHIRIR also provides the specialized // operator for integer
division (as opposed to the / operator for floating point divsion).

Constructors and Destructors: The constructor operations for the tuples,
records, and algebraic data types have familiar semantics. Patterns provide a
type safe way to destruct a value and access the constituent values.

Lambda: The use of functors to process collections is a major part of MORPHIRIR
programs. However, the widespread use of unrestricted higher order code greatly
increases the complexity and computational cost of program analysis. Combined
with our experiences, and the code style guidelines we have used, we opted to
restrict the use of raw lambdas. Thus, syntactically, lambda constructors are
only permitted in direct application positions. Consider the code:

function okc(l: List<Int>): Int {
return 1.filter(fn(x) => x >= 0).size(); //ok - direct position
constructor

}

function okp(l: List<Int>, p: fn(Int) -> Bool): Int {
return 1.filter(p).size(); //ok - direct position from parameter

}

function invalid(l: List<Int>): Int {
let fun = fn(x) => x >= 0; //error - lambda not in direct position

return l.filter(fun).size();
}
In the first function, okc, the lambda expression is in the direct call position to
the list filter functor. In the second function, okp, the lambda is a parameter
to the function which must be passed in from a direct declaration. In contrast, in
the invalid function, the lambda expression is indirectly assigned to a variable
before being passed to the filter functor and is an error in MORPHIRIR.
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Function and Lambda Invocation: Function invocations are statically resolv-
able direct calls to the named function, or named lambda parameter, with the
given arguments. Since lambda uses are syntactically restricted to the direct
call positions, these uses can either be defunctionalized, so that all calls become
fully static (which is done when translating to BOSQUE for verification), or they
can be dynamically constructed as closures when compiling to a language like
JavaScript.

Assert: Assertions can be explicitly added to check for user defined conditions
and take a Bool typed condition expression along with a continuation ok expres-
sion. When the assert expression evaluates to true then the ok expression is
evaluated as the result otherwise the programs fails with an error.

Control Flow: Control flow is handled by a classic if-then-else construct or a
pattern matching and destructuring case operator. The case operation finds the
first condition in the list that matches the type of the value that is dispatched on
and binds variable names to the specified values from the constructor. The case
can be used on algebraic types, records, and tuples. There is a special wildcard

“won

case “_” which matches everything and the cases must be exhaustive.
Decision Tables: Sets of rules that define business logic are a frequent occurrence
in Fintech applications. These rules can be encoded as nests of case, let, and if-
then-else statements. However, these encodings are complex and result in the loss
of information about the intent of the original rule structure. The MORPHIRIR
language includes decision tables as a first-class construct (the Table row in
Fig.5). The argument expressions are evaluated and bound to a set of variables.
Then, in this scope, the Opt clauses are evaluated in order. For each clause
the expressions in the list are evaluated in short circuit && order. If all the
expressions in the list are true then the result of the expression is the evaluation
of the tail Ezp,,,;. If the set is not exhaustive or any Opt is unreachable it is
a program error.

function getDecision(f: Facts, env: Jurisdiction): Decision
dispatch(docType = f.documentType, law = getGoverningLaw(env, f)) [

[docType == DRV] => Yes,
[docType == ISDA, law == England] => Yes,
[docType == ISDA] => No

]
}
The getDecision program shows a (simplified) table for computing business
rules around derivatives handling. In this code if the docType is DRV the result
is always a Yes. In the other case the result depends on if the governing law is
England. Note that if we accidentally switched the last 2 opt clauses, so that
the opt where law == England was last, this would be an error.

Let: The 1et operation binds a value to a variable name in the expected manner
or binds a set of variables to the destructured value of a tuple/struct/datatype.
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Const := true | false | ¢ | f| s
Var = v
Operator := (!|+|-)Ezp | Ezp(+|-|*|/|//)Exp | Ezp(&&|||)Exp
Compare := FEzp(==|!=)Ezp | Exp(<|<=|>|>=)Ezp
Cons := [Ezpy,...,Ewp;] | {fi = Evpy,...,f; = Exp;} | Type(Ezpy,..., Exp;)
Lambda := fn(vi,...,v) => Ezxp
Invoke := fname(Exp,,..., Exp;) | Ezp.iname(Exp,, ..., Bxp;)
Assert := assert Exp, then Exp,,
If := if Fup, then FEzp, (elif FEup, then FEup,)+* else Exp,
Case := case Exp of (Pattern => Ezp | - => Eap) =
Let := 1let v = FEzp in Fzp | let Paitern = Ezp in FExp
Table := dispatch(vi = Ezpy,...,v; = Eap,;)[Opty, ..., Opt;]
where Opt, := [Ezp,,...,Exp,,| => Exp, o
Pattern := [v1,...,v] [ {fi=wvi,..., f; = v} | Type(vs, ..., v))
where each v; is a variable v or is the ignore match “_”
Exp := Const | Var | Operator | Compare | Cons | Lambda | Invoke

| Assert | If | Case | Table | Let

Fig. 5. MORPHIRIR expressions.

4.3 Containers and Operations

The standard collection libraries play a central role in the design and use of
MoRPHIRIR, which does not include looping constructs and where the use of
recursion is discouraged. Instead, we lean heavily on the use of a rich set of
collection operations to support iterative data processing. This has the advantage
of aligning well with development guidelines for high assurance software and,
as Marron and Kapur showed [15], allows us to reason about most container
manipulating code using decidable theories that are amenable to solving using
existing SMT provers. Figure 6 provides a brief summary of these operations.

List Operations: Lists can be constructed using a number of algebraic primitives,
including explicit initialization with fixed values, initialization using the contents
of another container, concatenation, and slicing. In addition, lists also provide
the usual size, get, and find index operations.

The functor family of algorithms provide higher order functions that reshape
lists based on user specified functions. These can filter subsets of elements in
a list, map functions over all elements in a list, or join two lists. We also pro-
vide operations for reorganizing lists, including the usual zip, reverse, sort, and
unique. In contrast to many languages which leave the algorithm used for these
operations under-specified, MORPHIRIR ensures these operations are always
order stable on the input lists.
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List Cons := List(Bap,,..., Brp;) | ListFrom(FEzp) | ListRange(Lzp,,,, Ezp,,;)
| concat(Exp,, Exp,) | slice(Exp, Exp,y., Erp,..q)
List Primitive := size(Ezp, Exp,,4.,) | get(Ezp, Exp,,g.,) | find(Exp, Fn)
List Functors := filter(Ezp, F'n) | map(Ezp, Fn) | join(Ezp,, Exp,, Fn)
List Ops := zip(FEzp,, Exp,) | reverse(Ezp) | sort(Ezp, Fn) | unique(Ezp, Fn)
List Reduce := sum(Ezp) | min(Ezp) | max(Ezp) | reduce(Ezp, Exp,,.,, F'n)
Set Cons := Set(Exp,,...,Erp;) | SetFrom(Exp)
| union(Ezp,, Ezp,) | intersect(Ezp,, Exp,)
Set Primitive := empty(Fap) | has(Bap, Erpy,,) | isSubset(Bap, Erp,;)
Set Functors := subset(Ezp, Fn)
Map Cons := Map(Bap,,..., Brp;) | MapFrom(Ezp)

| merge(Exp,, Exp,) | restrict(Ezp, Exp,,.,.s)
Map Primitive := empty(Ezp) | has(Ezp, Ezp,,,) | get(Ezp, Ezp,,,)
| keys(Ezp) | isSubDom(Exp, Eap,)
Map Functors := project(Ezp, Fn) | remap(Ezp, Fn)

Fig. 6. MoRrPHIRIR container operations.

The reduce family of algorithms is important as, following Mark and
Kapur [15], we do not have a general decidable logical specification for these
operations. Thus, we explicitly provide sum, min, maz as special common cases
of reduction that we can axiomatize fairly effectively and a generic reduce that
involves heuristic inductive and/or unrolling to encode.

Set and Map Operations: The set and map datatypes are defined only for keys
that are numeric or string typed. Further, the map/set enumeration order is
defined to be the order of the underlying keys. These restrictions ensure that
the key based comparisons are decidable and the behavior of the operations is
always full deterministic.

In addition to simplifying the analysis of Sets/Maps via the semantics of the
allowable key types and ensuring ordering, we also explicitly limit some parts
of the API to reduce the introduction of difficult-to-reason-about constraints.
Notably, there is no direct size operation, as cardinality and set operations
are problematic to reason about simultaneously. With this design, we focus the
Set/Map operations on the core contains, lookup, and set theoretic operations
they can provide while encouraging to use of the rich, and simpler to reason
about, list operations as the default way to organize data.

5 Experience Report

The initial outcomes of this project have been very positive. The community
is already benefiting from the network effects of sharing a core language and
runtime. The validation capabilities add an additional value proposition: our
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initial success with the BSQCHK pipeline shows the potential for formal methods
in this space. Based on these experiences, we anticipate growing investment in
and adoption of the MORPHIRIR language, platform, and ecosystem throughout
the financial services community. Despite (or perhaps because of) these successes,
more work needs to be done. We discuss scenarios that we encountered where
we believe the MORPHIR stack can be improved and have begun investigating
approaches for realizing those improvements.

5.1 Languages Targeting MORPHIRIR

To date, the main users of the MORPHIRIR stack are Morgan Stanley and Gold-
man Sachs. The bulk of models have been written in the Elm programming
language. Elm proved to be a natural match with most constructs directly map-
ping from Elm to the MORPHIRIR. Elm support for a small number of data
types, such as Decimal and LocalDate, was added via the MORPHIRIR SDK.

Elm and MORPHIRIR have fundamentally similar language principles and
design. They are both functional and aim for the simplest language without
sacrificing expressiveness. The result is a lambda calculus with a few, well-known
extensions like if-then-else, let expressions, and pattern-matching. The transpiler
code is ca. 3Kloc and is mostly a one-to-one mapping with a few exceptions where
the Elm code uses constructs that Morphir does not directly support.

The LEGEND platform uses its own programming language called Pure to
implement many features. One of those features is model-to-model mapping.
The translation from Pure to MORPHIRIR first runs these mappings to produce a
simplified Pure AST. This core AST is side-effect free and declarative; a subset of
MoRPHIRIR’s semantics directly expresses it. Thus, the AST into MORPHIRIR
transpilation step is a simple rewrite/rename process.

We are also seeing interest and usage from other members of the Fintech
community. The most common use cases come from other entities that have a
bespoke domain specific modeling language, often encoding business logic rules,
models of financial instruments, or regulatory information, that they use inter-
nally or have developed as part of a product offering. Further afield there may
also be benefit for smart contract languages like Solidity [25,27] or legal formal-
ization languages like Catala [17].

For these types of DSLs, the MORPHIRIR platform is very appealing. It
eliminates the cost of maintaining the compiler/toolchain/runtime system for
the DSL. The network effect of the MORPHIRIR ecosystem also increases the
value of any DSL ported to it, as it gives them a simple, standard way to
interoperate with the wider range of definitions and computations available in
MoRPHIRIR. This is particularly valuable in the Fintech space where systems
frequently involve codified rules or regulations, which can be large and costly
to implement. The ability to reuse, instead of re-implementing, them for every
specialized stack has tremendous value. The community interest in expanding
the set of surface languages that target the MORPHIRIR stack also introduces a
number of (currently) open challenges.
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DSL Translation: The current model for adding a new source language (or
DSL) to the MORPHIRIR stack involves manually translating the source seman-
tics into the MORPHIRIR semantics and syntax. This is both time consuming
and error prone.

Interestingly, when compared to scenarios dealing with full fledged program-
ming languages, these DSLs are often fairly simple and resemble macro systems
for concisely encoding business or regulatory rules. This suggests the possibil-
ity of partially automating this translation process via the addition of a macro
system or even a specialized structured data transformation language. In partic-
ular, if this language included the capability to connect logical assertions from
the DSL into the MORPHIRIR code, this would enable us to generate (partially)
verified translations [11].

API Abstraction: As more source languages and DSLs are added to the MOR-
PHIR system, we believe there will be an increasing need for transparent inter-
operability support. Given the diversity of concepts in the source languages, e.g.
LEGEND includes multiplicity constraints in its model/type language, and the
desire for flexibility in the stack, we do not believe it is practical to build a shared
universal type language that captures all of these variations.

Instead, we are looking to the world of RESTful systems [7] and the suc-
cess of integrating polyglot systems there. Simplified systems, such as AWS
Smithy [24], have shown great success for building distributed cloud computing
systems. Starting from this perspective, we are very interested in constructing
a layer that combines types, service calls, and logical constraint specifications.
This layer would provide a common interoperation language to components writ-
ten in different systems, encoding common information in the type system and
expressing specialized information, such as the multiplicity data in some LEGEND
constructs, in an expressive constraint language.

5.2 Validation Pipeline

Our experience with the validation pipeline has focused on using BSQCHK
(Sect.2). Our work has focused on ca. 4Kloc of regulation code in a dialect
of Elm that implements a portion of the U.S. Liquidity Coverage Ratio rules
and ca. 2Kloc of code implementing a sample trading application. These appli-
cations have very few explicit assertions, so error checking is primarily of runtime
errors such as invalid casts, div-by-zero, etc.

In our experience to date with the trading application code, the checker has
found proofs of infeasibility for most errors it analyzes, result 1la in the outcomes
list (Sect. 3). In the remaining cases, the checker has not found any witness failure
inputs and has completed with result 2b from our outcome list. Our inspections
indicate these situations involve the use of reduction, which is not contained
in the BSQCHK decidable fragment, or intensive bitvector operations, such as
converting 64bit ints to/from a Real representation of floating point numbers, so
the errors are very likely infeasible although not yet provably so by the checker.
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This experience led us to rewrite samples into the BOSQUE source language,
which has a richer type system than Elm and more support for adding pre/post
conditions, asserts, and data invariants. The example in Fig.3 comes from one
of these experiments and shows how the addition of specifications capturing,
even partial, higher-level intents can expose code issues that the checker can
successfully analyze. Thus, the major takeaway from our initial work here is the
need to find ways to increase the scope of checkable properties.

Enriched MoRPHIRIR Language: In the example code (Fig.3), the fix
involves using a refined numeric type. This example is a simple case of the wide
range of ways numbers are heavily used in specific, and semantically distinct,
ways in these financially focused applications. In practice, base numeric types,
like Int and Decimal, are typedef’d into many other conceptually distinct types
like currency, quantities, conversion rates, etc.. This simple typedef is insuffi-
cient, as the typedef mechanism maps to underlying types before checking, and
can result in errors with confused types. Conversely, creating a full, new nom-
inal type for each concept generates an unwieldy amount of boiler plate code
to provide the needed operations on each numerical value. It is unclear if there
is a compact unit-of-measure [10] algebra, as for physical quantities, that can
model these types. In our experience, the ontology of numeric types present in
financial software systems does not fit into a simple system that depends on a
small number of base units. Instead, this may be an opportunity to introduce a
novel, language-level typed numeric feature.

The example code in Fig.3 illustrates the utility of first class support for
including specifications in the language and the need for simple ways to specify
properties of interest. Many interesting properties, like the strict reduction in the
initialPosition value, can be easily expressed in code directly as part of an
assertion. For such properties, there is a need to provide language support to ease
the insertion of conditions, like first class pre/post conditions, data invariants,
etc.., and we also are working to provide a library of commonly used predicates
for properties like primary key uniqueness, domain/range subset relations for
maps, etc.. However, other properties are not so easily expressed in code, such
as implicit global quantification like the multiplicity constraints in LEGEND. An
open question here is “Do we need to introduce a single (or perhaps dialects of)
specialized domain modeling languages for expressing assertions?”.

Lifting Checkers to the Data Layer: The semantic information that is added
to the MORPHIRIR code often contains information about data types (shapes)
and invariants on them. These implicit data invariants present a rich source of
information that can be used in data quality [23] assurance tasks. At the basic
level, we can look at data flows and type information to extract core type and
structure checks including numeric, string, enum values, and record or tuple
structures. To the extent that ADT constructors contain validation rules (or
invariants) and functions have pre/post conditions, we would also like to use a
weakest-precondition style analysis to infer other checks.
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For example, a Trade record might have tradeDate and settlementDate
with a check in the constructor that tradeDate < settlementDate. We can
use this check both for analysis that the code does not construct any invalid
objects internally but if we push this condition to the interface with the data
sources, say a SQL database, we can also generate and check this assertion on
the appropriate tables. This ensures that any data flowing into the system, even
if entered manually, will be validated.

Alternative and Specialized Checkers: The focus of our experience in the
validation pipeline has been on checking language level assertions, like invalid
casts or div-by-0, and user defined assert conditions. Many applications and
DSLs have richer sets of conditions that are of interest. In some cases, these are
additional checks that should be applied to all code in a certain domain and look
like linter rules [9] and could be checked with the same underlying approaches
as for other semantic errors. Other conditions may need to be addressed with
specialized checking methodologies. One specific example that we explored was
numerical stability checking [2,20], as we noticed that our application makes
extensive use of float and decimal types. Interestingly, the outcome of this inves-
tigation for our target applications was that the combination of a true Decimal
type combined with a business rule specified rounding and computation ordering
resulted in numerical stability being a very low priority concern. As other users
of the MORPHIRIR stack emerge, e.g. in the algorithmic trading space, this may
become a property of substantial interest.

Outside of the need for checkers for specialized properties, we are also inter-
ested in supporting a range of checkers in the validation pipeline. The BSQCHK
checker we currently use is SMT based (using Z3 [5]) so, as our experience with
inductive code illustrated, it is limited when dealing with certain scenarios and,
at some point, we will experience scalability issues. Many of the features of
the MORPHIRIR language that enable BSQCHK to perform well should also
boost the performance and effectiveness of other verification and error detec-
tion techniques. The elimination of mutation and aliasing alone eliminate two
of the major causes of information loss and scalability problems for automated
reasoning systems. Combined with the additional benefits of specialized code
for common loop patterns [6,15,16], we expect the MORPHIRIR stack to be a
place where formal methods are able to showcase [21] the value they can have
in software development.

5.3 Injection of Compliance and Audit Logs

Centralizing the injection of cross-cutting auditing and observability logic at a
single point in the stack has a major benefit in ensuring compliance requirements
and business needs. An example is code that is part of a regulated system that
takes in data from various upstream sources. The lineage of this data, includ-
ing the origin, the decisions made using it, and the outcome are all subject to
compliance checks and audits. This data is usually stored, and when needed,
processed to produce flow and provenance graphs. Those same tools can be used
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at modeling time to provide quick interaction with domain experts to ensure
that the model reflects their ideas. In a report, users might want to look up the
associated definition for a field and what data sources are used in the calculation.
As these tasks become more complex, tools can navigate the call path on the
fly and display relevant information to help users understand how a particular
value was calculated.

These problems have many interesting flavors from the topics of taint anal-
ysis [22], program question answering [12], and logging management [26]. The
ability to prove that a given set of values recorded in the audit (or observability)
pipeline are sufficient to answer specific questions or demonstrate the reasoning
for a given decision will have massive value. This type of proof would ensure that
the application satisfies the relevant regulations, which today is often done by
verbose logging, and would position us to confidently optimize the logging and
data retention code to remove redundant output.

Our experience with program and flow visualization to understand data lin-
eage and computation flows indicates that it is very effective for smaller applica-
tions or small numbers of data sources. However, the output becomes noisy and
too complex to be reasonably understood [8,12] as system size increases. Devel-
oping heuristic or analytic techniques that abstract, organize, and visualize the
most relevant aspects of these flows and lineages are of great interest.

6 Conclusion

This paper outlines our thoughts on the development of and initial experiences
with the MORPHIR stack. This open-source platform is a collaboration across
the Fintech community, academic researchers, and partners in the technology
space with the goal of building a standard platform for implementing, executing,
and validating regulatory compliance code as well as financial business platform
applications. In these domains, building high assurance code is a foundational
requirement for the system and the MORPHIR stack is explicitly designed to
support the use of formal methods. Our experiences with the system have vali-
dated these designs and are already showing the value of this collaborative and
assurance focused approach to the wider Fintech community. These experiences
have also highlighted areas where we believe the system can be further improved
or where innovation in verification and error checking can happen. Our hope
with this experience report paper is to start a wider collaboration that will fuel
the development of a vibrant software ecosystem in the Fintech space as well as
create a unique opportunity to advance the state of the art in formal methods
and their practical application.
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Abstract. Randomization is a powerful technique to create robust con-
trollers, in particular in partially observable settings. The degrees of ran-
domization have a significant impact on the system performance, yet they
are intricate to get right. The use of synthesis algorithms for parametric
Markov chains (pMCs) is a promising direction to support the design
process of such controllers. This paper shows how to define and evalu-
ate gradients of pMCs. Furthermore, it investigates varieties of gradient
descent techniques from the machine learning community to synthesize
the probabilities in a pMC. The resulting method scales to significantly
larger pMCs than before and empirically outperforms the state-of-the-
art, often by at least one order of magnitude.

1 Introduction

Markov chains (MCs) are the common operational model to describe closed-
loop systems with probabilistic behavior, i.e., systems together with their con-
trollers whose behavior is described by a stochastic process (Fig.1(a)). Exam-
ples include self-stabilizing protocols for distributed systems [30] and exponen-
tial back-off mechanisms in wireless networks. Randomization is also important
for robustness in autonomous systems with noisy sensors [60], obfuscation and
(fuzz) test-coverage [19]. Such systems are typically subject to temporal specifi-
cations, e.g., with high probability an autonomous system should not crash, and
a self-stabilizing protocol should reach a stable configuration in few expected
steps. Checking system models against these specifications can be efficiently
done using state-of-the-art probabilistic model checking [28,38]. We highlight
that while controllers for these systems operate under partial information, the
analysis of a system with controller does not need to take partial observability
into account.
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system = Markov chain system = e.g. POMDP system = pMC
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fixed probability for action update? which action? which probability for action?
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(a) Verification of closed-loop (b) Synthesis of controllers. (c) Parameter synthesis for
systems. Memory of the con- Memory not fixed and thus not controllers. Memory fixed and
troller is part of the system. part of the system. part of the system.

Fig. 1. Verification and (syntax-guided) synthesis for controllers

One step beyond verification is the correct-by-construction synthesis of con-
trollers for such systems via Partially Observable Markov Decision Processes
(POMDPs) (Fig.1(b)). In general, the synthesis for partial-information con-
trollers is undecidable [4,21,42]. Syntax-guided synthesis [2] takes a simpler
perspective and synthesizes only particular system aspects starting from a user-
provided template. In this paper, we focus on being provided with a template
controller with a fixed memory structure (influencing the number of indistin-
guishable states) and a fixed set of potential actions that we want to randomize
over. This setting is useful, as in many systems one randomizes on purpose, e.g.,
in distributed protocols to break symmetry or for robustness. In particular, the
randomization is controllable, but selecting a (near-)optimal way to randomize
is non-trivial.

The synthesis task reduces to randomize appropriately in a system with a
fixed topology (Fig. 1(c)). In this context, a controller selects a fixed set of actions
(of the POMDP) a4, ..., a, with probabilities p,...,p,. The aim is to synthe-
size a realizable controller, that is, the result of the synthesis should not enforce
to randomize differently in indistinguishable states—such a controller depends
on information which is not available at runtime and therefore cannot be imple-
mented. Consequently, for indistinguishable states, a realizable controller must
take an action o with the same probability p;. Synthesizing such controllers can
be formally described [34] as feasibility synthesis in parametric Markov chains
(pMCs), i.e., MCs with symbolic probabilities p1, ..., p, [14,39]. The feasibility
synthesis task asks to find values ui,...,u, for the parameters such that the
MC satisfies a given property. This problem has been studied extensively in the
literature, e.g. in [11,12,20,22,50], see also the related work section.

Ezample 1. Figure2(a) depicts a POMDP. The colors match the observations
at a state. When observing a red state, s; or sz, with probability ¢; action oy
is taken and with probability go action as. At state sy action «; is taken with
probability p;. This directly results in the pMC of Fig. 2(b).

The challenge in applying parameter synthesis is twofold: whereas the prob-
lem is ETR-complete! [35], the number of parameters grows linear in the number

L ETR = Existential Theory of the Reals. ETR-complete decision problems are as
hard as finding the roots of a multivariate polynomials.
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a1

(a) POMDP (b) pMC

Fig. 2. From POMDPs to pMCs [32, p. 182].

of different observations and the number of actions available to the controller.
For many real-life applications we must thus deal with thousands of parameters.
This scale is out of reach for exact or complete methods [15]. Heuristic methods
have shown some promise. These methods either rely on efficient model checking
but are heavily sample-inefficient [11], or rely on the efficiency of convex solvers
to search the parameter space in a more principled way [13].

This paper presents a novel method that advances the state-of-the-art in
feasibility synthesis often by one or more orders of magnitude. The method is
rooted in two key observations:

— gradient-based search methods, i.e., variants of gradient search, scale to high-
dimensional search spaces, and
— in pMCs, the gradient at a parameter evaluation can be efficiently evaluated.

In this paper, we show a principled way to evaluate gradients in parametric MCs.
We characterize gradients as solutions of a linear equation system over the field
over rational functions and alternatively as expected rewards of an automaton
that is easily derived from the pMC at hand. Using the efficient computation
of gradients, we evaluate both classical (Plain GD, Momentum GD [52], and
Nesterov accelerated GD [47,59]) and adaptive (RMSProp [61], Adam [37], and
RAdam [40]) gradient descent methods. We also consider the classical gradient
descent methods where we only respect the sign of the gradient. Furthermore,
we investigate various methods (projection, barrier function, logistic function) to
deal with restrictions on the parameter space (e.g. parameters should represent
probabilities). Using an empirical evaluation, we show that 1) projection outper-
forms the other restriction methods, 2) Momentum-Sign outperforms the other
gradient descent methods, and 3) Momentum-Sign often outperforms state-of-
the-art methods QCQP and PSO. Moreover, we discuss some domain-specific
properties and the consequences for gradient descent.

We formalize our problem statement in Sect. 2.3, discuss the evaluation of
gradient in Sect. 3, consider the use of gradient descent in Sect. 4, give an
empirical evaluation in Sect. 5, and discuss related work in Sect. 6. Section 7
concludes and provides pointers for future work.
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2 Preliminaries

2.1 Parametric Markov Chains

Let V be a set of n real-valued parameters (or variables) pi,...,pn. Let R[V]
denote the set of multivariate polynomials over V.

A parameter instantiation is a function u: V — R. We often denote u as
a vector @ € R™ by ordering the set of variables V' = {p;,...,p,} and setting
u; = u(p;). We assume that all parameters are bounded, i.e., Ib; < u(p;) < ub;
for each parameter p;. Let R; = [Ib;, ub;] denote the bounds for parameter p; in
region R. The parameter space of V, denoted U C RY, is the set of all possible
parameter values, i.e. the hyper-rectangle spanned by the intervals [Ib;, ub;]. A
set R C U of instantiations is called a region.

A polynomial f can be interpreted as a function f: R™ — R where f(u) is
obtained by substitution, i.e. in f(u) each occurrence of p; in f is replaced by
u(p;). To make clear where substitution occurs, we write f[u] instead of f(u)
from now on. We let 0, f denote the partial derivative of f with respect to p.

Let X be any set and let pFun(X) = {f | f: X — R[V]} denote the set of
generalized functions. Now, let pDistr(X) C pFun(X) denote the set of paramet-
ric probability distributions over X i.e., the set of functions p: X — R[V] such
that 0 < p(x)[u] <1and )y p(z)[u] =1 for all u in the parameter space U.

Definition 1. A parametric Markov chain (pMC) is a tuple M =
(S,s1, T, V,P) with a finite set S of states, an initial state s; € S, a finite
set T C S of target states, a finite set V' of real-valued variables (parameters)
and a transition function P: S — pDistr(S).

The parametric probability of going from state s to ¢, denoted P(s,t), is
given by P(s)(t). A pMC with V = () is a Markov chain (MC). We will use
M to range over pMCs and D to range over MCs. Applying an instantiation
u to a pMC M yields MC M]u] by replacing each transition f € R[V] in M
by f[u]. An instantiation u is graph-preserving (for M) if the topology of M is
preserved, i.e., P(s,s’) # 0 implies P(s, s")[u] # 0 for all states s,s’. A region R
is graph-preserving if all © € R are graph-preserving.

Ezample 2. Figure3(a) depicts pMC M with a single parameter p. Region R =
[0.1,0.9] is graph-preserving, while R = [0,0.9] is not graph-preserving.

We fix an MC D. Let Paths(s) denote the set of all infinite paths in D
starting from s, i.e., infinite sequences of the form sgsy;sy ... with s = s and
P(siy8i41) > 0. A probability measure Prp is defined on measurable sets of
infinite paths using a standard cylinder construction; for details, we refer to,
e.g., [6, Ch. 10]. For T'C S and s € S, let

Prp(s = OT) = Prp{sosisz... € Paths(s) | Ji.s; € T} (1)

denote the probability to eventually reach some state in T from s. For a pMC
M, the reachability probability depends on the parameters and so we define it
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(a) pMC M (b) WFA A

Fig. 3. A (left) sample parametric MC and (right) its derived weighted automaton

as a function Pri; " : U — [0,1] given by Priy; " [u] = Pr (s = OT) [14]. For
conciseness we typically omit the subscript M and write Pr* 7. Zero and one
reachability probabilities are preserved for graph-preserving instantiations, i.e.,
for all graph-preserving u, v’ € U, we have Prs_’T[u] = 0 implies Prs_’T[u’] =0
and analogously for = 1. In these cases, we just write Pr~7 = 0 or = 1. Let
2 denote all states s € S with Pr*~7 = 0. W.Lo.g., we assume that there is at
most one X state (this is standard preprocessing [6, Ch. 10]). Furthermore, we
merge all states s € T" into a single £ state.

Ezample 3. For all states s € S in pMC M from Fig. 3(a), we have Pri=v = 1.
Therefore, the pMC M has no X state.

2.2 Expected Rewards

We are not only concerned with reachability probabilities but also with expected
rewards. Let state reward function rew: S — R associate a reward to each state.
The cumulative reward for a finite path @ = sgs7 ... s, is defined by:

rew(7) = rew(sp) + rew(s1) + ... + rew(sp—1).
For infinite paths m = sgs1s2 - -+ the reward to eventually reach £ in M is:

.\ rew(soSy...$n) ifs;#Lfor0<i<nands,=2_
reu(™ 08) = if 7 B O

Remark 1. For the sake of simplicity, we restrict ourselves to constant rewards.
However, all notions and concepts considered in the remainder of this paper can
be generalized to parametric reward functions in a straightforward manner.

Remark 2. From now on, we only consider graph-preserving regions and we
restrict ourselves to pMCs where every state s eventually reaches £ almost surely,

5—?1.‘«_1

ie., Pr
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Definition 2 (Expected reward). The expected reward until reaching &
from s € S for an MC D is defined as follows:

Paths(s)

ERp(s =0%) = /|:<>" rew(r, QL) - Pr(m).

The expected reward for a pMC M is defined analogously, but as a function
ERJ(™: U — R, given by ER}~ [u] = ER (s F OL). Again, for conciseness
we typically omit the subscript M.

Ezample 4. Reconsider the pMC M from Fig. 3(a) with a state reward function

rew(s;) =1 for s; € S\ {L}. The expected reward function ER*™ is given by
3-p2+4-p-(1-p)+2-(1-p) = —p*+2-p+2.

"
~

On a graph-preserving region, the function ER*™ is always continuously dif-
ferentiable [50] and admits a closed-form as a rational function over V' [14,23].

Remark 3. Reachability probabilities are obtained by using expected rewards by
letting rew(s) = 0 for s € S\ {L} and rew(L) = 1. We add one sink state s s.t.
P(s,s') =0if s € 5\ {& 1} and P(s,s') = 1 otherwise. The quantity ER*
now equals the reachability probability of eventually reaching C.

2.3 Problem Statement

This paper is concerned with the question of synthesising a randomized con-
troller under partial observability. Synthesizing these controllers can formally
be described [34] as feasibility synthesis in pMCs. Therefore, we consider the
following question on the expected reward of eventually reaching a target state
L in a given pMC M and a graph-preserving region’ R:

Given X\ > 0, and comparison operator ~, find an instantiation v € R with:

ER (s = O{&}) ~ A

To solve this problem, we first show how to compute the derivative of ERSAS’
and introduce a derived weighted automaton. Then, we exploit this derivative
by considering several gradient descent methods and applying them to solve our
problem. Finally, we show how our approach experimentally compares to existing
methods from [11,13].

2 Technically, we use graph-preserving to ensure continuously differentiability of

ERj~. For acyclic pMCs, these functions are continuously differentiable without
assuming graph-preservation [35].
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3 Computing Gradients for Expected Rewards

In this section, we show that we can efficiently evaluate the gradient of the func-
tion ER*> with respect to a parameter p at an instantiation . We note that

first computing ERSHI‘I’ and deriving this function symbolically is intractable:
the function can be exponentially large in the number of parameters [5]. A
tractable construction follows from taking the derivative of the equation sys-
tem that characterizes the expected reward [6, Ch. 10]. Alternatively, it can be
obtained as an equation system for the expected rewards of a “derived” pMC.
Let M = (S, s1,{l},V,P) with reward function rew and parameter p € V.

3.1 Equation-System Based Characterisation

n
S—r

Definition 3. The system of equations for the partial derivative of ER) [~ w.r.1.
p €V is given by:

Ts = 0, (‘7)[)'1’.,\‘ - 0 ZfS ::.I«
rs = rew(s)+ Z P(s,s) wy forse S\ {L}
s'eS
Opxs = Z (0pP(s,8") - wg +P(s,8) - Opaar) for s e S\ {L}.
s'eS

where 0,P(s,s") is the derivative of the probability function P(s,s’) w.r.t. p.

Note that we obtain the derivative for z, i.e. J,2, by applying the sum rule and
the product rule to z5. This equation system is equivalent to an equation system
for POMDPs in [1, pp. 47-48]. We remark that the equation system is linear
with coefficients in a polynomial ring. However, if the parameters are considered
to be variables, then the system of equations is nonlinear (and nonconvex) [12].
Observe that the equations for x; do not depend on the equations for 0,z
and thus can be solved independently first. The equations for x5 have a unique

solution which coincides with ER*™. This is a known result for MCs [6, Ch.
10] and carries over to pMCs [32]. We show below that the equation system for

[
S—r~

0y has a unique solution as well and yields the derivative 9,ER* .
Example 5. For our running example we obtain the following equation system:

Tog = O +p L1 =+ (1—p) -T2 (r)plf() = 1 -1 +p . 0,,;1‘1 + —]. -T2 —+ (].—p) . ('7)],1,‘2
r1=14p 2o+ 1-p) -3 Opr1=1-20+p-Jpro+ —1 23+ (1—p)-Jyux3

xe=2+1-zn Opry =1-0pxn

r3=3+1-xzn Opr3 =1-0pxn

xn =0 Opxsn = 0.

Solving these equations yields xg = —p? 4+ 2-p+ 2, the expected reward function

ERSO_"I’I’7 see Example 4, and 0,20 = —2-p+ 2, i.e., 8pERs°_"I‘I’.
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Theorem 1. The equation system of Definition 3 has ezxactly one solution: x

equals ER*™ and Oy, equals O,ER* for each s € S.

The proof is given in the extended version [26].

From a computational point, we notice that computing 8pERSH: by solving
the equation system (over the field of rational functions R(V')) is intractable, as
this function may be exponential in the number of parameters. Matters appear
worse as we aim to compute the derivative w.r.t. to a subset of the parameters
V! C V, rather than with respect to a single parameter. However, we observe

that, for a gradient descent, we are only interested in computing (@,ERSHI‘I’) [u],
and the equation system can be solved efficiently when we substitute all P(s, s’)
by P(s, s’)[u] and solve for ((%ERS_“’) [u] using constant coefficients from the

rationals or reals?. Furthermore, as the z, variables can be solved independently
of the 0,z variables, we first solve the z,-equation system with |S| variables and
equations. In a second step, we construct for every p € V/ an equation system
(with |S| variables and equations) by directly substituting the z; variables with

the expected reward ER* 7~ [u]. In total, this means that we evaluate (|V’'] 4 1)
equation systems with |S| equations and variables each.

3.2 Derived Automaton

We now show that an alternative way to obtain 0,ER* ™ is by the standard

equation system for ER®™ on the “derivative” of pMC M. To that end, we
mildly generalize pMCs to (parametric) weighted automata [16] and show that
we can describe “taking the derivative” as an operation on these weighted
automata. We do so by relaxing our parametric probability distributions by drop-
ping the requirement that 0 < p(x)[u] < 1; in particular, negative real values
are allowed. These functions are called quasi-distributions as )y p(w)[u] = 1
still holds. Let pDistr(X) C pFun(X) denote the set of quasi-distributions.

Definition 4. A weighted finite automaton (WFA) is a tuple A =
(S,s1,T,V,E) where S, s;, T, V are as in Definition 1 and E: S — pDistr(S).

Ezample 6. Figure 3(b) depicts WFA A with single parameter p. Note that some
of the transitions are labelled with p and 1—p (as in Fig.3(a)). We will later
explain the relation of this WFA to the pMC in Fig. 3(a).

Instead of creating a system of equations to compute the derivative, we can
alternatively construct an automaton which has the derivative as its semantics.
This is called the derived weighted automaton. Intuitively, the automaton 9, M
of a pMC M is constructed by applying product and sum rules directly to M.

Definition 5. Let M = (S,s;,T,V,P) be a pMC with reward function rew and
let p € V' a parameter. The derived weighted automaton of M w.r.t. p is the
WFA 0, M = (S',0ps1, T,V , E) with the reward function rew where

3 In our implementation, we support exact rationals or floating point arithmetic.
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- 8" =85U0,S with 9,5 ={0ps|se€ S},

— the transition function E is given by:

P(s,t) if s,t €5,

P(s',t')  ifs,t € 0pS and s = 0ps’ and t = Opt’,
OpP(s',t) ifs€0pS and s = 0ps’ and t € S,

0 otherwise,

E(s,t) =

— the reward function rew is given by rew (s) = rew(s) fors € S and rew/'(s) =0
for s € 9,5.

The intuition behind this derived automaton is as follows. “Deriving” the
state s € S with respect to p € V yields the new state J,s. For every transition
P(s,s") # 0 for s,s" € S, we “use the product rule” and add the transitions
P(0ps,0,s") = P(s,s") and P(,s,5") = OpP(s,s") to dpM.

Ezample 7. Applying Definition 5 to the pMC M from Fig. 3(a) results in the
derived weighted automaton 9, M in Fig. 3(b).

Note that although 0,M is not a pMC as some transitions have negative

n
OpS1—rw

weights, the parametric expected reward ERBZ am  can be computed as in Def-
inition 3 as we restrict ourselves to graph-preserving regions, ensuring contin-

S—re

uously differentiability of ER’;~. The derivative of the expected reward in M

can now be obtained as the parametric expected reward (ERgZ W) in op M.

Proposition 1. For each pMC M we have: ERgﬁj\’/fV = 9,ERY[ ™.

Stated in words, the expected reward of the derived automaton 9, M equals the
partial derivative of the expected reward of the pMC M.

4 Gradient Descent

Gradient descent (GD) is a first-order* optimization technique to maximize an
objective function f(u). It updates the GD parameters in the direction of its
gradient 0, f(u). We want to use GD to solve the problem introduced in Sect.
2.3, i.e., given A > 0, and comparison operator ~, find an instantiation u € R
with: ER% 7~ [u] ~ A

We consider several GD update methods (Plain GD, Momentum GD [52], and
Nesterov accelerated GD [47,59], RMSProp [61], Adam [37], and RAdam [40]).
Three variants of GD are common in the literature. Batch GD computes the
gradient of f w.r.t. all parameters. In contrast, stochastic GD performs updates
for each parameter separately. Mini-batch GD sits in between and performs an
update for a subset of parameters. We describe the GD update methods w.r.t.

4 Tt is only based on the first derivative and not on higher ones.
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Algorithm 1. GD
1: while f[u] < X do
2:  if u is a local optimum then
3: pick new u
4:  update u with GD-method
5: return u

(a) Plain (b) Momentum (c) Nesterov accelerated

Fig. 4. Different GD methods on f for R = [0, 3]

stochastic GD, i.e., at step t we update the instantiation at parameter p; (), while
the other valuations remain the same. We update the parameters in round-robin
fashion: i(t) = ¢ mod |V]. Clearly, stochastic GD can be extended to mini-batch
and batch GD, by updating more/all parameters at the same time. We assume
that the objective function f, starting instantiation u, and bound A are given
and focus on ~ = >. Algorithm 1 shows the algorithm to find a feasible solution.
First of all, we discuss Plain GD, after which we consider other existing GD
update methods. Finally, we discuss several region restriction methods to deal
with parameter regions.

4.1 Plain GD

Plain GD is the simplest type of GD. A fixed learning rate 7 is used to determine
the step size taken to reach a (local) maximum. The parameter p; gets updated
in w based on 9,, fu] as follows:

qu_l = uﬁ +n- apif[uﬂv
where u! = u'(p;), i.e., the value of p; with instantiation u’.

Ezxample 8. Consider f(p) = %p‘* —4p3 4+ 9p® — 4p + 2 on a region R = [0, 3].
Assume that our initial instantiation is u®(p) = 1 and that we take = 0.1
and A = 5.9. The red halfdots in Fig.4(a) illustrate how the value of p changes
over time when using Plain GD. The blue dot indicates the optimum. At ¢ = 0,
the gradient is 4 and so p is updated to 1.4. For t = 1, the gradient is 3.17,
increasing p again. This is repeated until at ¢ = 3, we have f[u'] = 5.96. As this
value exceeds A, a feasible instantiation (p = 2.08) is found.
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4.2 GD Update Methods

Intuitively, all GD methods attempt to “guess” how the gradient will change
by guiding the search for maxima based upon the past behaviour of the gra-
dient. Many GD optimization methods exist and a recent overview is given by
Ruder [51]. We consider the following methods: Momentum, Nesterov accelerated
GD (NAG), RMSProp, Adam, and RAdam. Momentum and NAG are classical
and very similar to Plain GD. The latter three are adaptive algorithms, i.e.,
their learning rate is changing over time and each parameter has its own learn-
ing rate. Parameters with larger gradients have smaller learning rates than the
ones with smaller gradients. The latter three have been developed for machine
learning purposes [40]. We will elaborate on the Momentum and NAG method
and briefly sketch the other methods.

Momentum [52]. Instead of only considering the current derivative, the Momen-
tum method also takes into consideration previous derivatives. They are weighted
by the average decay factor v € [0, 1) (typically at least 0.9). This method uses an
additional update vector v. Momentum GD adjusts the parameter value accord-
ing to the following equation. (Note that, if v = 0, Momentum GD is equal to
Plain GD.)

ot =yl + - Oy, flul] (2)

W= ol ®)

Nesterov Accelerated GD (NAG) [47,59]. As for Momentum GD, NAG weighs
the past steps by 7. Additionally, it attempts to predict the future by guess-
ing the next instantiation of u, denoted w' (Eq. (4)). This should prevent us
from moving to the other side of the optimum (Example 9). As for Momentum,
the instantiation is updated according to Eq. (3), whereas the update vector is
obtained as in Eq. (5):

o = ub —v-vf if =i )
J u§ otherwise
ot = yevf 4 Oy ) (5)

Ezample 9. Reconsider our running example. Figures4(b) and 4(c) show how
the value of p changes over time using Momentum GD and NAG respectively.
Note that for both methods we need one step less compared to Plain GD, i.e., a
feasible instantiation is found at t = 2. This is due to taking results of previous
steps into account. Furthermore, observe that for Momentum GD at ¢ = 2 the
instantiation of p actually passed the optimum, whereas for NAG this does not
occur.

Adaptive Methods. RMSProp (Root Mean Square Propagation) [61] is akin to
Momentum and NAG, but its learning rate is adapted based on the previous
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squared gradient (Eq. (7)). This squared gradient is recursively defined as the
sum of 8 € [0,1) times the past squared gradient, and 1 — § times the current
squared gradient (Eq. (6)). 0 is called the squared average decay. In Eq. (7) a
small amount € > 0 is added to the update vector at p; to avoid division by zero.

ottt = Bl 4 (1= B) - (8p, flu])? (6)
uttt = b+ —E— 9, flu]. (7)

In addition to the mean, Adam (Adaptive Moment Estimation) [37] takes the
second moment (the uncentered variance) of the gradients into account. RAdam
(Rectified Adam) [40] solves an issue with Adam in which the variance of learning
rate is too large in the initial steps of the algorithm.

Sign Methods [46]. For the non-adaptive methods, we additionally implemented
variants that only respect the signs of the gradients and not their magnitudes.
That is, we update the parameter as

ult = ul 40 - sen(d,, fu']).

Note that this implies we don’t need to calculate the full gradient.

4.3 Dealing with Parameter Regions

So far we dealt with unconstrained GD. However, as a graph-preserving region
R is given, we need to deal with parameter values getting out of R. To do so,
we discuss the following methods: Projection, Penalty Function, Barrier Func-
tion, and logistic Function. Recall that, R; = [lb;, ub;] denotes the bound for
parameter p; in region R.

Projection. The projection method acts as a hard wall around the region.
As soon as u; € R;, u; gets set to the bound of the region, i.e., u;?/ =
min(max(ul,lb;),ub;). Furthermore, if the parameter p; got out of the given
region, we set its past gradients to 0, i.e. vf‘H =0.

Ezxample 10. Reconsider our running example. However, now consider region
R’ =[0.5,1.5]. For t = 0, the gradient is 4, and p is updated to 1.4. For ¢ = 1,
the gradient is 3.17, yielding p to be updated to 1.72. As this is out of the region

R, p is projected to 1.5.

Penalty Function. The penalty method [56] transforms the constrained problem
into an unconstrained one, by adding a penalty function to f[u!]. This penalty
depends on how bad the violation is, e.g. what the difference is between u;
and the bounds of R;. It can be interpreted as a red warning zone outside of
the region. As this might yield non-graph-preserving instantiations, we do not
further look into this.
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Barrier Function. The barrier function [62] (also called indicator function) works
as a soft wall inside of the region, discouraging one to get to close to the wall. It
is independent of how bad the violation is. We consider the log-barrier function
for maximizing f (see Egs. (10)—(11c))%, as this yields a differentiable function.
The barrier function is weighted by p € [0, 1]. The equations are:

flu'] = f[ut] + p - bar[u'] (8)
Op, f'[u'] = Oy, flu'] + p - Op,bar[u'] 9)
bar[u'] = Zbari [uf] (10)

log(u; — Ib;)  if Ib; + “b ubi=lbi gy and u; € R; (11a)
bar;[u] = { log(ub; — u;) if b + % > u; and u; € R; (11b)

—00 otherwise. (11c)

b if Ib; + % < u; and u; € R; (12a)

Op,bar;[u] = 1
ubz — U
00 otherwise. (12¢)

if 1b; + it > ; and u; € R; (12b)

Note that for higher learning rates, the barrier function might not be strong
enough to prevent u; € R, see also the upcoming example.

Ezample 11. Reconsider our running example with © = 0.1. We observe that at
all ¢ where u; € R; case Eq. (11a) applies, so the barrier function is given by
bar' = log(1.5 — p). For learning rate 0.1, at t = 0, the gradient is 4 — y - T{p,
so p is updated to 1.38. For t = 1, the gradient is 0.24. So p is updated to 1.62,
which is outside region R’. When considering a smaller learning rate, e.g. 0.01,

at t = 0 p is updated to 1.038. This converges around ¢ = 30 with p =~ 1.46 € R'.

Logistic Function. For the logistic function, we map each restricted parameter
p; to unrestricted parameter g; by using a sigmoid function [24] (see Eq. (13))
tailored to R;. We denote instantiations of ¢ with u’. u} o 1s the value of the
s1gm01d’s midpoint. v’ gets updated according to the GD method The gradient
(vl) at w' is computed according to Eq. (14).

3

’ ’U,bl — lbl
Wio= "5
ub; — 1b;
e T I (13)
e - v;[u]
vi[u'] = e (14)

5 When considering a minimization problem, bar is subtracted from f.
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Ezxample 12. Reconsider our running example. Let the learning rate be 0.1, and
u"(q) = 0.5. The sigmoids midpoint is uj, = 0.5. For t = 0, we have u) =
The gradient at this point v/°[u/°] = 0.94, so ¢ is updated to 0.59. Therefore, p
is set to 1.02. At each iteration p and q get updated. E.g. at ¢ = 100, ¢ = 3.63
and p = 1.45.

5 Empirical Evaluation

We implemented all gradient descent methods from Sect. 4 in the probabilistic
model checker Storm [28]. All parameters, i.e. batch-size, learning rate, average
decay and squared average decay, are configurable via Storm’s command line
interface. We evaluate the different gradient descent methods and compare them
to two baselines: One approach based on Quadratically-Constrained Quadratic
Programming (QCQP) [13], which uses convex optimization methods, and one
sampling-based approach, called Particle Swarm Optimization (PSO) [11]. These
baselines are implemented in the tool PROPhESY [15]. All methods use the
same version of Storm for model building, simplification, model checking, and
solving of linear equation systems. We specifically answer the following questions
experimentally:

Q1 Which region restriction method works best?
Q2 Which GD methods works best?
Q3 How does GD compare to previous techniques (QCQP and PSO)?

5.1 Set-Up

We took the approach as described in Sect. 3.1, i.e., one sparse matrix is created
per parameter and instantiated at the current position. Our implementation
works with Mini-Batch GD as described above. This means that we compute
the derivative w.r.t. k parameters and then perform one step. We allow for
stochastic GD and batch GD by setting k to 1 or |V|, respectively.

For the experiments, we solve equation systems with GMRES from the gmm++
linear equation solver library included in Storm, which uses floating-point arith-
metic. All experiments run on a single thread and perform some preprocessing
(e.g. bisimulation minimization). The times reported are the runtimes for GD,
PSO and QCQP and do not include preprocessing. We set a time-out of two
hours. We have used machines with an Intel Xeon Platinum 8160 CPU and
32 GB of RAM. In the comparisons with QCQP and PSO, we report the aver-
age runtime over five runs.

Settings. For all constants except the learning rate, we chose the default from
the literature (e.g., [37,40,51,61]), i.e. we set the batch size k to 32, average
decay v to 0.9 and squared average decay (8 to 0.999. Whereas in the literature
the learning rate is often set between 0.001 and 0.1, we stick to 0.1. As we are
interested in finding a feasible instantiation, we can take the risk of jumping over
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a local optimum due to a too high learning rate. Also, our experiments show that
lower learning rates slow down the search process (see Fig.5). Furthermore, we
start at u; = 0.5 + ¢ for all parameter p; with ¢ = 107°, to overcome possible
saddle points at p; = 0.5. After every parameter has performed a step of less than
10~° in sequence, we conclude a local optimum has been found (we are aware this
is an impatient criterion, tweaking this is a matter for further research). When
an infeasible local optimum is found, a new starting point is selected randomly
(see Algorithm 1, Line 3). Consequently, the GD methods may yield different
runtimes on different invocations on the same benchmark, though in practice we
observe only a small deviation in the runtimes. For the barrier region restriction
method, we initially set p to 0.1. If no feasible solution is found, we divided p by
10. We continue this procedure until a feasible solution is found, or u < 1076,

Benchmarks. We consider pMCs obtained from POMDPs (cf. [34]) and Bayesian
networks (cf. [53]) with a large number of parameters. We took at least one vari-
ant of all POMDPs with reachability or expected reward properties from [8,48],
except for the dining cryptographer’s protocol which has a constant reachabil-
ity probability. Furthermore, we took a medium and large Bayesian network
from [54]. We excluded the typical pMC examples [25] with only two or four
parameters. We observed that for some benchmarks (e.g., drone and refuel)
the optimum for some parameters is often at its bound. We refer to these param-
eters as “easy-parameters”.%

Table 1 shows the benchmarks. The first seven benchmarks consider reacha-
bility properties, whereas the latter four consider expected rewards. The table
includes the required property (Bound) and the instance of the benchmark.
For network2-prios, “ps” refers to successfully delivered packets and “dp”
refers to dropped packets. For each benchmark we denote the number of states,
transitions and parameters after minimization, as well as the number of “easy-
parameters”. The entry N/A for “easy-parameters” means that all runs for GD
timed out, therefore, no feasible instantiation was found and the number of
“easy-parameters” could not be determined.

To obtain bounds for the feasible instantiations, we considered values close to
known optima from the literature. For those benchmarks where the optimal was
not available, we approximated it by applying GD several times and picking the
optimum solution found. We checked feasibility against the optimum-bounds,
and the relaxed bounds, where we relaxed all bounds by 10% and 20%, respec-
tively. The plots for 10% are similar to those for 20% and therefore omitted.

5.2 Results

Our experiments show that GD can be used to find feasible parameter instanti-
ations. In the following, we provide the numerical results and then answer the
questions Q1-Q3 in the next paragraphs.

5 The feasibility problem remains a combinatorially hard problem, but the presence
of easy parameters typically (but not always) indicates that the gradient remains
(positive/negative) over the complete space.
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Table 1. Model characteristics

Model Bound | Instance | States | Trans. | |V] [Veasy |
Reachability probabilites | hailfinder >0.145 | (2000) 1540 | 324982 1249 |0
nrp <0.001 | (16,2) 787 | 1602 95 |32
(16,5) 5806 11685 704 | 340
drone >0.85 | (5,1) 3678 27376 756 | 667
(5,2) 3678 27376 2640 | 404
4x4grid-avoid | >0.9 (5) 1216 2495 99 | 42
(10) 4931 9990 399 | 158
newgrid >0.99 | (8,10) 30191 60410 399 | 244
(15,10) 98441 | 196910 399 | 79
child <0.43 | (240) 243 3277 223 | 170
refuel >0.35 | (5,3) 1564 4206 452 | 317
(8,3) 7507 21468 794 | 570
Expected reward network2-prios | <0.1 (8,5, ps) 397 2837 140 | 128
<35 | (8,5, dp)| 2822 | 69688 | 888 | 537
samplerocks <40 (8) 11278 25205 2844 | 644
4x4grid <4.2 (5) 1410 2879 99 | 38
(10) 5780 11659 399 | 177
maze2 <6 (15) 5340 10799 2624 | 1257
(50) 61000 | 121799 | 29749 | N/A

Numerical Results. The scatter plots in Fig.5 show how the different region
restriction methods compare for Momentum-Sign and Adam. Point (z,y)
denotes that the restriction method projection took x seconds and the alter-
native took y seconds to find a feasible instantiation for the given GD method.
The scatter plots in Figs. 6 and 7 show how the different GD methods and the
baseline methods QCQP and PSO (y-axis) compare to Momentum-Sign (x-axis),
respectively. Note that all scatter plots are log-log scale plots. Point (z, y) denotes
that Momentum-Sign took x seconds and the alternative took y seconds to find
a feasible instantiation. All implicit vertical lines denote the same benchmark.
Points on the TO/MO line denote that the method has timed out or used too
much memory and the ERR line denotes that the method has encountered some
internal error. The dashed lines denote differences of a factor 10 and 100.

Comparison of Region Restriction Methods. Figure5(a) (Fig. 5(b)) displays how
projection with learning rate 0.1 (x-axis) compares to all other restriction methods
for the optimum-bounds of all benchmarks on Momentum-Sign (Adam). The ERR
line indicates that we found an infeasible parameter instantiation. This occurs
when the learning rate is too high, and thus the barrier function not strong enough
(see also Example 11). Imagine a vertical line through 2 = 0.1. This line represents
the benchmark for which momentum-sign needed /0.1 s. We now obtain that the
barrier function timed-out or threw an error for all learning rates.

First of all, we observe that for Momentum-Sign the logistic-function is
slightly outperformed by projection. Secondly, we observe that for Adam the



Gradient-Descent for Randomized Controllers Under Partial Observability

143

ERR L ERR
TO/MO . .. TO/MO L
1‘ /‘/
1000 a ¥ e 1000 Ir=0.1
" , [ | Log‘an.thmlc Ba.rrler
@® Logistic Sigmoid
g 100 ¥ 5 ) g 100 Ir=0.01
£ e 2 N .
8 ./ e 8 B Logarithmic Barrier
10 4 10 A Project
? ® Logistic Sigmoid
o Ir=0.001
N 1l W Logarithmic Barrier
r A Project
@® Logistic Sigmoid
0.1 0.1
N ~ S o o O S ~ S o N O
S ARG s ARG
Ir=0.1 Project Ir=0.1 Project
(a) Momentum-Sign (b) Adam

Fig. 5. Comparison of different region restriction methods

ERR

TO/MO

1000

100

Others

ERR
TO/MO

1000

100

Momentum

hailfinder_2000
nrp

n2_ps_sent
n2_prios_dr_ps
drone

Te=-hanoc

y g ﬁESZM 7 4x49rid-avoid
10y C  RMsProp 104 4xagrid
d Plain neyvgrld
e Plain-Sign child_240
1y Momentum 14 samplerocks
Nesterov k  refuel
h Nesterov-Sign | maze2
0.1 | 0.1
o ~ o RS &QQ ,\()\‘“0‘8% & ~ K RS &QQ /\0\“\%‘3‘

Momentum-Sign

Momentum-Sign

(a) All methods (b) Momentum-Sign vs Momentum

Fig. 6. Comparison of different GD methods

logistic-function is outperformed by projection often up to orders of magnitude.
Finally, we observe that for learning rate 0.1, the barrier function method is out-
performed by projection. As many “easy-parameters” occur, the optima often
lie at the edges of the region. Therefore, we choose a relatively large learning
rate. The barrier function method tends to push us away from the edges, as the
steps taken are too large, we cannot get close enough to the edge.

Comparison of GD Methods. When comparing the different GD Methods, we fix
the region restriction method to projection. Figure 6(a) displays how Momentum-
Sign (x-axis) compares to all other methods for the optimum-bounds of all bench-
marks. First of all, we observe that Momentum-Sign typically obtains better
runtimes compared to the adaptive methods (RMSProp, Adam, RAdam). As
our parameters occur with almost the same frequency, the adaptive methods are
less suited for our benchmarks. Secondly, we observe that for the non-adaptive
methods, the methods where only the sign of the gradient is respected (and not
the value gradient itself) often outperform their alternative. This is caused by 1)
the occurrence of the “easy-parameters” and 2) the influence a single parameter
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Fig. 7. Comparison of GD with QCQP and PSO against optimum-bounds (upper) and
20% relaxed-bounds (lower)

may have on the reachability probability/expected reward. If a more influential
parameter gets changed at the first parameter batch, this might yield a feasible
solution before we have even updated all parameters. Monotonicity could be a
cause, and the ordering of parameters on influentiallity needs further investiga-
tion (see Sect. 7).

Comparison to State-of-the-Art Feasibility Methods. Figure 7 shows Momentum-
Sign with projection versus QCQP and PSO respectively, on both the optimum-
bounds (upper) and 20% relaxed-bounds (lower). First of all, our experiments
reveal that Momentum-Sign always outperforms PSO, on both the optimum-
bounds and the relaxed-bounds. Secondly, note that PSO throws an error dur-
ing preprocessing of the MC on some benchmarks as they violate an implicit
assumption by the PSO implementation. Thirdly, Momentum-Sign outperforms
QCQP often by at least one order of magnitude. Finally, we observe that QCQP
outperforms Momentum-Sign for the samplerocks benchmarks. Based on the
structure of the samplerocks benchmark, preprocessing with e.g. monotonicity
checking might improve Momentum-Sign (see Sect. 7).
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6 Related Work

Finding Satisfying Instantiations of Parametric MCs. Parametric MCs [14,39]
have received quite some attention. The classical focus has been on comput-
ing closed forms for solution functions that map parameter values to expected
rewards [5,14,17,18,23,31,33]. Feasibility as considered in this paper—finding a
satisfying instantiation—and its extension to model repair [7] has been formu-
lated as a search problem before: Chen et al. [11] considered three different search
methods: PSO, Markov Chain Monte Carlo and Cross-Entropy. In this context,
PSO was most successful. Model repair and feasibility have also been studied as
optimization problems: [7] considered a one-shot encoding, whereas [12,13] took
iterative approaches in which the encoding was simplified around a point to guide
the search. Spel et al. [58] present a graph-based heuristic to determine whether
a pMC is monotonic, i.e., whether the gradient w.r.t. some parameter is posi-
tive on the complete parameter space. Chen et al. [10] analyze (non-controllable)
perturbations in MCs from a robustness perspective. Fast sampling of the param-
eter space and evaluating the corresponding pMCs is also a preprocessing step
to other methods [22,33]. Storm offers optimized routines, and for large numbers
of samples, just-in-time compilation is a feasible alternative [20].

Controller Synthesis Under Partial Observability. The standard model for con-
troller synthesis under partial observability are partially observable MDPs
(POMDPs) [36]. Controller synthesis in finite POMDPs can equivalently be
reformulated as controller synthesis for infinitely large belief-MDPs. Due to the
curse of history, finding a feasible controller for a quantitative objective—the
setting discussed in this paper—is undecidable [42]. At the beginning of this
millennium, this lead to trying to search for memoryless or small-memory con-
trollers in POMDPs [43]. Among others, the use of gradient descent methods to
learn finite-state controllers for partially observable environments was explored
by Meuleau et al. [44]. This approach has further developed into deep learn-
ing for POMDPs, as e.g. used to learn Atari-games [45]. Some methods allow
explicit extraction of the finite-state controllers [9]. Those approaches are gener-
ally model-free—they learn policies from sets of demonstrations or traces. Closest
to our approach is the work by Aberdeen [1] in using a model-based approach
to find memoryless strategies in POMDPs via gradient descent. The major dif-
ferences are in computing the gradients by using value-iteration and a softmax
operation, and the use of stochastic gradient descent. The approach back then
could and did not compare to the current state-of-the-art methods.

Quickly afterwards, breakthroughs in point-based solvers [49,57] and Monte-
Carlo methods for finding solutions [55] shifted attention back to the belief-
MDP [29,63] (although some of those ideas also influenced the deep-RL com-
munity). Likewise, most recent support in the probabilistic model checkers
PRISM [48] and Storm [8] is based on an abstraction of the belief-MDP [41]
and abstraction refinement. The use of [64] of game-based abstraction leads to
non-randomized controllers. Winterer et al. [65] support a finite set of uniform
randomizations. In contrast, we consider an infinite combination of possibilities.
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Likewise, Andriushenko et al. [3] recently consider syntax-guided synthesis for
partial information controllers with a finite set of options.

7 Conclusion and Future Work

This paper has shown that gradient descent often outperforms state-of-the-art
methods for tackling the feasibility problem: find an the instance of a parametric
Markov chain that satisfies a reachability objective. As synthesizing a realizable
controller with a fixed memory structure and a fixed set of potential actions
can formally be described as feasibility synthesis in pMCs [34]. Our approach
supports the correct-by-construction synthesis of controllers for systems whose
behavior is described by a stochastic process. Experiments showed that 1) pro-
jection outperforms other region restriction methods, 2) basic gradient descent
methods perform better on our problem than more sophisticated ones, and 3)
Momentum-Sign often outperforms QCQP and PSO.

Outlook. As observed in the evaluation of the results, future work consists of
extending the preprocessing of the parametric Markov chains with monotonicity
checking and investigating a possible ordering of parameters based on the influ-
ence on the property. Also, models with a large state space could be handled by
e.g. using value iteration to solve the system of equations. Furthermore, ques-
tions regarding the derived weighted automaton can be asked, e.g. regarding the
applicability of bisimulation minimisation or parameter lifting [50].

Data Availibility Statement. The tools used and data generated in our experimen-
tal evaluation are archived at DOI 10.5281/5568910 [27].
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Abstract. In LTL model checking, a system model is synchronized
using the product construction with Biichi automaton representing all
runs that invalidate a given LTL formula. An existence of a run with
infinitely many occurrences of an accepting state in the product automa-
ton then provides a counter-example to the validity of the LTL formula.
Classical partial order reduction methods for LTL model checking allow
to considerably prune the searchable state space, however, the majority
of published approaches do not use the information about the current
Biichi state in the product automaton. We demonstrate that this addi-
tional information can be used to significantly improve the performance
of existing techniques. In particular, we present a novel partial order
method based on stubborn sets and a heuristically guided search, both
driven by the information of the current state in the Biichi automaton.
We implement these techniques in the model checker TAPAAL and an
extensive benchmarking on the dataset of Petri net models and LTL for-
mulae from the 2021 Model Checking Contest documents that the com-
bination of the automata-driven stubborn set reduction and heuristic
search improves the state-of-the-art techniques by a significant margin.

1 Introduction

The state space explosion problem is one of the main barriers to model check-
ing of large systems as the number of reachable states can be exponentially
larger than the size of a high-level system description in a formalism like e.g. a
Petri net [31]. Addressing this problem has been the subject of much research,
with directions including partial order reductions [19,29,38], symbolic model
checking [3,7], guided searches using heuristics [13,14], and symmetry reduc-
tions [8,34]. Some system description languages afford specialized techniques in
addition to the above. For example, state space explosion of Petri nets can be
addressed with structural reductions [4,16,28].
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We focus on partial order reductions, a family of techniques designed to
prune the state space search that arises from interleaving executions of con-
currently running system components. An important category of partial order
reduction techniques are the ample set [29], persistent set [19], and in particu-
lar the stubborn set methods [39] which are the main focus of the paper. The
goal of the techniques is, given a specific state, to determine a subset of actions
to explore such that all representative executions are preserved with respect to
the desired property. Partial order reduction techniques are supported in several
well-established tools, e.g. TAPAAL [10], LoLA 2 [43], and Spin [21], and have
proven to be useful in practice [4,22,25].

The main approach to Linear Temporal Logic (LTL) model checking [32] is
based on a translation of the negation of an LTL formula into a Nondetermin-
istic Bilichi Automaton (NBA) and then synchronizing it with the system being
verified. The goal is then to find a reachable accepting cycle in the synchronized
product. While much research has been done on optimizing the construction of
NBAs [1,15,42], and on the state space reductions described above, only few
state space techniques take the Biichi automaton into account. For example,
the classical next-free LTL preserving partial order method by Valmari [39] is
based only on the syntax of the formula and is completely agnostic to the choice
of verification algorithm and the Biichi state in the product automaton [40].
Some of the work done within the field of stubborn sets includes a specialized,
automata-driven approach for a subclass of LTL formulae called simple LTL
formulae [25], and more recently Liebke [26] introduced an automaton-based
stubborn set approach for the full LTL logic. While his method is theoretically
interesting, no implementation and experimental evaluation is available yet.

During the state-space exploration, the choice of which successor state to be
explored first, has a large impact on the performance of depth-first algorithms for
LTL model checking such as Nested Depth First Search (NDFS) [9] and Tarjan’s
algorithm [17]. A poor choice of successor can cause a lot of time to be wasted by
exploring executions where accepting cycles do not exist. A way of addressing this
problem is by using heuristics to guide the search in a direction that is more likely
to be relevant for the given property. Previous work in this direction includes [12,
13] in which A* is used as a search algorithm with heuristics based on finite state
machine representations, and [23] presents a best-first search algorithm using a
syntax-driven heuristic, both focusing on reachability properties. To the best
of our knowledge, heuristic search techniques for LTL and in particular based
on the information of the current Biichi state, have not yet been systematically
explored.

We contribute with a novel automata-driven stubborn set partial order
method and automata-driven heuristics for guided search for model checking
of LTL formulae on Petri nets. The stubborn set method is a nontrivial exten-
sion of the stubborn set technique for reachability analysis presented in [4]. This
new method looks at the local structure of the NBA and considers as stubborn
all actions that can cause the change of NBA state. The guided search is based
on the heuristics of [23] describing the distance between a state (marking) and
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the satisfaction of a formula. We extend this method such that in nonaccepting
NBA states we estimate the distance to possible accepting states where we can
progress. Common to our techniques is the desire to leave nonaccepting NBA
states as quickly as possible in order to find an accepting state earlier than
otherwise.

We provide an implementation of these techniques as an extension of the
open-source engine verifypn [23] used in the model checker TApAAL [10]. We
evaluate its performance using the LTL dataset of the 2021 edition of the Model
Checking Contest (MCC) [24] and compare it to the baseline LTL model checker
implementing the Tarjan’s algorithm [17], as well as the classical stubborn set
method of Valmari [39,40] and the most recent automata-driven partial order
technique of Liebke [26]. We implemented all these approaches in the TAPAAL
framework and conclude that while the Valmari’s as well as Liebke’s method
considerably improve the performance of the baseline Tarjan’s algorithm (and
Liebke’s approach is performing in general better than the classical reduction),
our automata-driven approach improves the performance a degree further, in
particular when combined with the heuristic search. Finally, we compare our
implementation with the ITS-Tools model checker [37] that scored second after
TAPAAL at the 2021 Model Checking Contest [24]. We conclude that while ITS-
Tools solves 87.8% of all LTL queries in the benchmark, our tool with automata-
driven partial order reduction and heuristic search answers 94% of all queries.

Related Work. Stubborn set methods have been applied to a wide range of prob-
lems outside of the previously mentioned work. In [33] stubborn set methods are
presented for many Petri net properties such as home marking or transition live-
ness among others. There are also reachability-preserving stubborn sets for timed
systems [4,20] and more recently for timed games [6]. Regarding LTL model
checking, the classical approaches for partial order reduction by Valmari [39,40]
do not consider the Biichi state that is a part of the product system where we
search for an accepting cycle. The initial work by Peled, Valmari and Kokkari-
nen [30] on automata-driven reduction received only little attention but it was
recently revived by Liebke [26] for the use in LTL model checking, based on
the insight from [25]. Liebke’s idea is to design a stubborn set reduction so that
sequences of non-stubborn actions cannot change the current Biichi state, allow-
ing him to weaken and drop some requirements used in the classical partial order
approach for LTL. Even though theoretically promising, the approach has not
yet been implemented and experimentally evaluated. While our method relies on
similar ideas as [26], the approaches differ in how we handle the looping formula
of Biichi states: Liebke’s method introduces more stubborn actions related to
the looping formula whereas our method only adds stubborn actions for the for-
mulae that change Biichi state (and possibly for the implicit formula leading to
a sink state). We moreover implement both the classical and Liebke’s techniques
and compare them to our approach on a large benchmark of LTL formulae for
Petri net model.
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In [13] guided search strategies for LTL model checking using variants of A*
search are presented. Their guided search addresses situation where an accepting
state has been found and a cycle needs to be closed, in contrast with the heuristics
in our work that guides the search towards any form of state change in the NBA.
The work in [13] assumes that individual (fixed number of) processes are given
as finite state machines, an approach that is less general than Petri nets. Another
approach to guided search is presented in [35] where state equations are used to
guide the search, but it has not yet been extended to LTL model checking and it
is computationally more demanding. In contrast, we emphasize simple heuristics
that are faster to compute and efficient on a large number of models.

2 Preliminaries

We now define basic concepts of LTL model checking and recall the Petri net
model. Let N° denote the natural numbers including zero and let oo be such
that o < oo for all z € N°. By # and ff we denote true and false, respectively.

2.1 Labelled Transition Systems

Let AP be a fixed set of atomic propositions. A Labelled Transition System
(LTS) with propositions is a tuple 7 = (S, X, —, L, sg) where

— S is a set of states,

— XY is a finite set of actions,

- = C S x X xS is a transition relation,
— L :S — 247 is a labelling function, and
— so € S is a designated initial state.

We write s = ' if (s,a,8') € —, and s — s if there exists a such that
s % s'. We write s — s where ¢ is the empty string, and s — s if s — s and
" % ¢ where o € ¥ and w € X*. For s € S, if no state s’ exists such that
s — &', we call s a deadlock state, written s /4, and if s is not a deadlock state
we write s —. We use —* to denote the reflexive and transitive closure of —.
We say that « is enabled in s, written s —, if there exists s’ such that s = s/,
and the set of all enabled actions in s is denoted en(s) = {a € ¥ | s =}. For
any a € AP we say that s satisfies a, written s = a, if a € L(s), and define
[a] = {s € S| s = a} to be the set of states satisfying a.

Let T = (S,X,—,L,sp) be an LTS. A run m in 7 is an infinite sequence
of states s152... such that for all ¢ > 1, either s; — s;41 or s; is a deadlock
state and s;4; = s;. An infinite run m = $12 ... induces an infinite word o, =
L(s1)L(s3) ... € (247)*. We define Runs(s) as the set of runs starting in s, and
Runs(7) = Runs(sg) where sq is the initial state of 7. We define the language
of s as L(s) = {o, € (247)" | 7 € Runs(s)}. For a word o = AgA; ... we define
ol = A;A;;1 ... to be the ith suffix of o for i > 0.
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2.2 Linear Temporal Logic

The syntax of Linear Temporal Logic (LTL) [32] is given by

pr,2u=al o1 N2 |1 V| 1 | For | Gor | Xer | @1 U o

where ¢; and @9 range over LTL formulae and a € AP ranges over atomic
propositions. An infinite word 0 = AgA; ... € (2AP)W satisfies an LTL formula
®, written o = ¢, according to the following inductive definition:

cEa <= a€ A
cEP1IANps < o= ¢ and 0 = p2
cEPIVey < okE @ orokEp
o E—p1 < not ok ¢
ocEFp <= 3i>0.0" ¢
oGy <= Vi>0.0' k= ¢
oEXp <= ' E g
clEpiUpy <= 37>0.0 Eppand Vi€ {0,1,...,5—1}.0"' E ¢

Let T = (S, X, —,L,so) be an LTS. For a state s € S, we say that s &= ¢ if
and only if for all words o € L(s) we have o |= ¢, and we say that 7 = ¢ if and

only if sg | .

Ezample 1. Figure la illustrates an LTS 7 = (S5, X, —, L, sg) with the set of
actions X = {«, 8} and the set of atomic propositions AP = {a,b}. The initial
state sq satisfies the formula FG(—aV b) as every infinite run either loops between
so and s1 (and then satisfies G—a already from the initial state) or it loops in s3
(and then it satisfies FGb).

2.3 Nondeterministic Biichi Automata

The standard approach for verifying whether s = ¢ for some state s and LTL
formula ¢ seeks to find a counterexample to ¢ in the system synchronized with a
Nondeterministic Biichi Automaton (NBA) equivalent to = (see e.g. [2]). Before
we define NBA, we introduce a logics for the propositions we may find as guards
in the NBA. We let B(AP) denote the set of propositions over the set of atomic
propositions AP, given by the grammar

bl,bgilzﬁ‘ﬁ|a|b1Ab2|b1\/b2‘_\bl
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b a
o
—> S0 5 S1
\_/
3 o -a a
a
a
. NG
{a} {a, b}
(a) LTS 7 over propositions a, b (b) NBA A-fg, for the formula —FGa
i
t

t it
# .3
'* tt
(c) The product system 7 ® A-rca

Fig. 1. Example LTS 7 and NBA A rce; 7 [~ FGa due to the accepting cycle
({s0,q0)(s1,40))* in T ® A-rGa-

where a € AP and by, by € B(AP). We define satisfaction of a proposition b by
a set of atomic propositions A C AP, written A = b, inductively as:

AEt
AW f
AEa < ac A
AEb ANby < AEDb and A E by
AEDL Vb < AEb or AEb
AE b <= AW

For a proposition b € B(AP) and an LTS state s € S, we write s = bif L(s) | b.
We let the denotation of a proposition be the set of sets of atomic propositions
given by [b] = {A € 247 | A |= b}. We also write by = by iff [b1] = [b2].

A Nondeterministic Biichi Automaton (NBA) is a tuple A = (Q, 9, Qo, F)
where

— (@ is a set of states,

- 0 C Q x B(AP) x Q is a transition relation such that for each ¢ € Q, there
exist only finitely many b € B(AP) and ¢’ € Q such that (¢,b,q’) € 4,

— Qo C @ is a finite set of initial states, and

— F C @ is a set of accepting states.
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Fig. 2. NBA A, where ¢ = ((Ga) U (Fa)) V b with complex edge propositions

We write ¢ LR q if (¢,b,q") € §. We consider only NBAb in a normal form so
that for any pair of states q,¢' € Q, if ¢ LR ¢ and q b, q then b = b' This
normal form can be ensured by merging the transitions ¢ 5, q and q b, q' into
a single transition ¢ LALIN ¢'. For a state ¢ € Q we define the set of progressing
propositions as Prog(q) = {b € B(AP) | q L, ¢ for some ¢’ € Q \ {¢}}, and the
retarding proposition as Ret(q) = b € B(AP) such that ¢ LR q or Ret(q) = ff if
no such b exists.

Let 0 = AgA;... € (247)* be an infinite word. We say that an NBA A

accepts o if and only if there exists an infinite sequence of states goq; ... such
that

- qo € Qo,
- q; b, ¢i+1 and A; |=b; for all ¢ > 0, and
— ¢; € F for infinitely many ¢ > 0.

The language of an NBA A is £(A) = {o € (247)” | A accepts o}.
Automata-based model checking of LTL formulae is possible due to the fol-
lowing well-known result.

Theorem 1 ([2]). Let ¢ be an LTL formula. There exists an NBA A, with
finitely many states such that L(A,) = L(p).

Ezample 2. Figure 2 shows an NBA equivalent to the formula ((Ga) U (Fa)) Vv b.
The set of progressing propositions from qq is Prog(qo) = {a V b, —a A =b}, and
it has the retarding proposition ff. The set of progressing propositions of ¢ is
the singleton set Prog(q1) = {a}, and the retarding proposition is Ret(q;) = —a.

From Theorem 1 we know that any infinite word o that satisfies ¢ must be
accepted by A, and vice versa. Recall that an LTS 7 = (S, X, —, L, s¢) satisfies
¢ if and only if for all o € L(sy) we have o = ¢. Conversely, if there exists a
word o € L(sg) such that o = ¢ then T [~ ¢, and o is accepted by A-,. We
therefore synchronize 7 with A-, and look for counterexamples.
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Definition 1 (Product). Let T = (5,X,—,L,s9) be an LTS and let
A = (Q,6,Q0, F) be an NBA. Then the product 7T @ A = (Q',8,Q4, F') is
an NBA such that

- Q' =5x%xQ,
- (s,q) z, (s',q") if either s — s' or s is a deadlock and s = s', and q LR q for

some b € B(AP) s.t. s' Eb,

- Q) ={{s0,9) € Q| a0 € Qo -qo LN q for some b € B(AP) s.t. s = b}, and
- F={(s,q) € Q| qe F}.

The following theorem states the key property of the product construction.

Theorem 2 ([2]). Let T be an LTS with initial state sg, ¢ be an LTL formula
and A-, be an NBA such that L(A-,) = L(—p). Then so |= ¢ if and only if
L(T®A,)=0.

In other words, the product construction is suitable for verifying whether
7 E . The model checking procedure consists of constructing the product
T ® A-, and searching for accepting runs. In practice this becomes a search for
reachable cycles containing accepting states, since such cycles generate infinite
accepting runs. We use a specialized variant of Tarjan’s connected component
algorithm described in [17] for checking the emptiness of the product automaton.

Ezxample 3. The LTS 7 depicted in Fig. la does not satisfy the LTL formula
FGa. In order to show this, Fig.1b depicts the NBA A_fg, equivalent to the
LTL formula —FGa, and Fig. 1c shows the reachable part of the product 7 ®
A_FGq. Since the looping run ((so, qo)(s1,q0))* visits the accepting state (s, go)
infinitely often, we can conclude that 7 = FGa, and the run (sps1)* can be used
as a diagnostic counterexample.

2.4 Petri Nets
A Petri net (with inhibitor arcs) is a 4-tuple N = (P, T, W, I) where

— P is a finite set of places,

— T is a finite set of transitions such that PNT = (),

~ W :(PxT)U(T x P) — N is the arc weight function, and
— I:(PxT)— NU{oo} is the inhibitor arc weight function.

A marking is a function M : P — N° assigning to each place a number of
tokens. We write M(N) to denote the set of all markings of Petri net N. The
semantics of a Petri net N = (P,T,W,I) is given by the transition relation

between markings such that M L M if for all p € P we have M (p) > W (p, 1),
M(p) < I(p,t), and M'(p) = M(p) — W(p,t) + W(t,p).

For x € PUT, we write *z to mean {y € TU P | W(y,z) > 0}, called
the preset, and z* to mean {y € T U P | W(x,y) > 0}, called the postset.
We straightforwardly extend this to sets X C T and X C P such that *X =
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Uzex *z and X* = (J . x 2°. For a place p € P we define the increasing preset
of pas Tp={t € *p | W(t,p) > W(p,t)}, and the decreasing postset of p as
p- ={te€p® | W(t,p) < Wi(p,t)}. The inhibitor postset of p € P is p° = {t €
T | I(p,t) < oo} and the inhibitor preset of t € T is °t = {p € P | I(p,t) < o0}

A net N = (P, T,W,I) gives rise to an LTS T = (M(N), T, —, L, M) where
My is a designated initial marking and the set AP of atomic propositions is
formed by the grammar

a:=1t|eXey

ex=plcle Bes

wheret € T,p€ P,ce N, e {<,<,#,=,>,>}, and @ € {-,+,—}. Given
a Petri net N = (P,T,W,I), the satisfaction of a marking M € M(N) of an
atomic proposition a € AP is given by

MEtif ML
M = e; i eq iff evalps(er) > evalpys(es)

and where evaly/(p) = M(p), evalpy(c) = ¢ and evalps(e; @ eg) = evalps(er) @
evalys(ez).

For t € T, the fireability proposition ¢ can be rewritten into the cardinality
proposition A c.;(p = W(p,t)) AN cor(p < I(p,1)) requiring that all pre-places
of t are sufficiently marked and no inhibitor arc of ¢ is sufficiently marked. In
the following, we assume that all propositions are cardinality propositions.

3 Automata-Guided Partial Order Reduction

Partial order reductions are techniques that address the state space explosion
problem by reducing the number of interleavings of concurrent actions and
exploring only their representative permutations; this can result in exponen-
tial reductions in the size of the state space (see e.g. [39,41]). We shall now
present our approach improving the classical stubborn set partial order tech-
nique [39,40] for LTL without the next operator. We adapt and extend the
ideas of the reachability-preserving stubborn set construction from [4,6,33] to
automata-driven technique for the full LTL logic. First, we prove the formal cor-
rectness of the method on the low level formalism of labelled transition systems
and later on we specialize it to Petri nets.

3.1 Automata-Driven Stubborn Set Method for LTL

The basic idea of our approach is to apply the reachability-preserving stubborn
set method from [4,6,33], where the reachability problem is the proposition
\/beprog(q) b for Biichi state ¢. In order to make this work for the full LTL logic,
we have to do further considerations.

In the rest of this section, let Sink(q) = =(Vyepyog(q) 0 V Ret(q)) be the sink
state proposition. We note that (Vpeprog(q)b) VRet(q) v Sink(q) = # for any Biichi
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state g. In order to preserve correctness of the method for LTL, we require that
our stubborn sets do not contain unsafe actions, which are actions that can cause
some progressing proposition to become satisfied.

Definition 2 (Safe action). Let T = (S, X, —, L, sg) be an LTS and let A =
(Q,0,Q0, F) be an NBA. For a state s € S and proposition b € B(AP), a set
Safe(s,b) C X is safe wrt. b if for all @ € Safe(s,b) and all w € (X\ {a})*,
if s % ', s 2% 5", and s’ W~ b, then s"” W~ b. For states s € S and q € Q,
a set Safe(s,q) C X is safe wrt. q if Safe(s,b) C Safe(s, q) for all propositions
b € Prog(q) U {Sink(q)}. Actions from the set Safe(s,q) are called safe in the
product state (s, q).

The property of a safe action « is that if in a state s of an LTS we execute
a sequence of actions w after which we do not satisfy b then executing « first
followed by w does not satisfy b either. In particular, when w is empty, if s £ b
and s = s, then s’ [ b. The idea of safe actions is inspired by a stubborn set
technique for games [6] but adapted to our LTL model checking problem.

The main characteristics of our automata-driven method is that the partial
order reduction no longer only depends on the current LTS state, but we also
consider the NBA state we are in at the moment. For this reason, we formally
define a reduction on the product state space.

Definition 3 (Product reduction). Let 7 = (S, X, —, L, sg) be an LTS and
A=1(Q,6,Qq, F) be an NBA. A product reduction is a function St : Sx@Q — 2*.
Let T ®g¢ A be the reduced product of the product T ® A restricted by St such
that (s,q) —st (s',¢") in T ®s¢ A if and only if (s,q) — (s',q') in T ® A and
s % 8" for some a € St(s,q).

We can now present the list of axioms required by our stubborn set method
for LTL model checking.

Definition 4 (Axioms on product reduction). Let 7 = (S, X, —, L, sg) be
an LTS, A = (Q,6,Qo, F) be an NBA and let St : S x Q — 2% be a product

reduction. The following four axioms are defined as follows (universally quanti-
fied for all s € S and all g € Q):

COM If a € St(s,q) and a1,qz,..., 0 € St(s,q)* and s 22222 ¢ then
s Q..o "

RiIfar...an € St(s, q) and for allb € Prog(q) we have s [~ b then s =221 o/
implies that s’ = b for all b € Prog(q).

SAFE Fither en(s) N St(s,q) C Safe(s,q) and s = b for all propositions b €
Prog(q) U {Sink(q)}, or St(s,q) = X.

KEY Ifen(s) # 0 and g € F, then there is some key action axey € St(s,q)

T, .
such that whenever s 222" s for aq,. .., ap € St(s,q) then s, Doy,

Axioms COM and R are adapted from the standard reachability-preserving
stubborn set methods, see e.g. [4,33], and made sensitive to preserve at least one
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execution (under the stubborn actions from the set St(s, ¢)) to each configuration
where some of the progressing formulae becomes enabled. The axiom SAFE
ensures that we do not prune any outgoing transition (St(s,q) = X) if some
unsafe stubborn action is enabled or if some progressing proposition is already
satisfied. Note that while the sink state proposition is important for the axiom
SAFE, it is not important for R. Finally, the axiom KEY asserts that there
is a key stubborn action in accepting Biichi states, ensuring that we preserve at
least one infinite accepting run.

We are now ready to prove the main correctness theorem for our stubborn
set method for LTL model checking.

Theorem 3. Let7T = (S, X, —,L,s0) be an LTS, A= (Q, 9, Qo, F) be an NBA,
St: 8 xQ — 2% be a product reduction satisfying COM, R, SAFE, and KEY,
and T gy A be the reduced state space of T ®A given by St. Then T ® A contains
an accepting run if and only if T ®g¢ A contains an accepting run.

3.2 Stubborn Sets for LTL Model Checking on Petri Nets

We now present a syntax-driven method for efficiently computing stubborn sets
for markings in a Petri net. We start by defining a COM-saturated set of Petri
net transitions, using the increasing presets and decreasing postsets of transitions
(see also [4]).

Definition 5 (COM-saturation). Let N = (P,T,W,I) be a Petri net and
M € M(N) be a marking. We say that a set T" C T is COM-saturated in M if

1. forallt €T, if M 5 then
— for all p € *t where t € p~ we have p* CT’, and
— for all p € t* where t € Tp we have p° CT’, and
2. forallteT, if M 7tL> then
— there exists a p € *t such that M(p) < W(p,t) and Tp CT’, or
— there exists a p € °t such that M(p) > I(p,t) and p— CT".

Intuitively, Condition 1 requires that if ¢ is enabled and decreases the number of
tokens in the place p € *t, then any ¢’ that has p as a pre-place, i.e. p € *t N *t/, is
in conflict with ¢ since ¢ can disable ¢ and must be a part of the set T”. Likewise
if ¢ increases the number of tokens in a place p with outgoing inhibitor arcs, the
transitions inhibited by p are also in conflict with ¢ and must be a part of 7".
Condition 2 states that a transition ¢’ that can cause a disabled transition ¢ to
become enabled cannot be commuted with ¢ and must be added to T. This is
the case if either ¢' adds tokens to some insufficiently marked pre-place p € *t or
if ¢’ removes tokens from a sufficiently marked place p € °t that has an inhibitor
arc to t.

The following lemma states that transitions from a COM-saturated set T’
can be commuted with any sequence of transitions that are not in 7", or in
other words that T’ satisfies the COM axiom. The lemma moreover shows that
an enabled stubborn transition cannot be disabled by firing any sequence of
nonstubborn transitions.
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Lemma 1. Let N = (P,T,W,I) be a Petri net, let M € M(N) be a marking
and let T' C T be COM-saturated in M. For allt € T" and all ty,...,t, € T\T'

a) sz—>M’ then M 222t M and
b) if M 2t M and ML then M!S

The conditions in Definition 5 give rise to a straightforward closure algo-
rithm that starting from some set of transitions T” iteratively includes additional
transitions as required by Conditions 1 and 2 until the set of transitions gets
saturated, however, due to the choice of the place p in Condition 2, it is not
guaranteed that we always get the same COM-saturated set.

The next definition of increasing and decreasing transitions of an arithmetic
expression is needed for constructing safe stubborn sets and for axiom R.

Definition 6 (Increasing/decreasing transitions). Let N = (P,T,W,I) be
a Petri net and let e € E be an arithmetic expression. The sets of increasing
transitions incr(e) and decreasing transitions decr(e) are recursively defined by:
incr(p) = Tp, decr(p) = p~, incr(c) = decr(c) = 0, incr(e; + e2) = incr(ey) U
incr(ez), decr(e; + e2) = decr(e;) Udecr(ez), incr(e; — ez) = incr(ey) U decr(ez),
decr(e; — ez) = decr(e;) U incr(es), decr(e; - e2) = incr(e; - e2) = incr(e;) U
incr(ez) U decr(eq) U decr(eg).

The sets incr(e) and decr(e) contain all transitions that can possibly increase,
resp. decrease the value of the expression e € F; this is formalized as follows.

Lemma 2 ([4]). Let N = (P,T,W,I) be a Petri net let e € E be an expression,

and let M, M’ € M(N) be markings such that M Lt g forty,....t, €T.
If evalpr(e) < evalpys(e) then there is i such that t; € 1ncr( ), and if evalys(e) >
evalyr (e) then there is i such that t; € decr(e).

In order to preserve the axiom SAFE, we shall define the notion of strictly
interesting transitions, i.e. those transitions that have the potential to change
a value of a given Boolean combination of atomic propositions. The purpose of
the set of strictly interesting transitions A]T/[ given in the following definition is
to efficiently compute syntactic over-approximations of all unsafe transitions in
a marking M.

Definition 7 (Strictly interesting transitions). Let N = (P,T,W,I) be a
Petri net and let b € B(AP) be a proposition. For a marking M € M(N) the
set AL(b) C T of strictly interesting transitions of b is defined as
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< eg) = decr(ey) Uincr(eg)

(e1 > es) = incr(er) U decr(ez)
decr(ey) Uincr(eg) if evalps(eq)
incr(ep) Udecr(eg) if evaly,

1
A}t{(el o) = e1) > evalyr(es)

(
(
A} (e1 # e2) = incr(er) U decr(ez) U decr(eq) Uiner(es)
AT (b V by) = AT (by Abo) = AT (b1) U AL, (bo)

e1) < evalpr(ez)

Ay (H(er < e2)) = Ay (er > e2) Ay ((er < e2)) = Ay (er > e2)
AT (=(e1 > ea)) = Af (er < e) AT (=(er > e2)) = Af (er < e2)
AT (=(e1 = ea)) = Af (er # e2) Ajr(=(er # e2)) = Ajyler = e2)
AL (=(b1 A b)) = Af (=g V —bg) AL (=(b1 V b)) = AL (=g A —bg)

Lemma 3. Let N = (P, T,W,I) be a Petri net and b € B(AP) be a proposition.
Then for any marking M € M(N) where M = b, the set T \ A}, (b) is safe wrt.
b, i.e. for any t ¢ AL, (b) and any w € (T \ {t})*, if M *> M', M 0 M”, and
M’ £ b, then M" £ b.

In order to satisfy axiom R, we can define a weaker notion of interesting
transitions as used in [4].

Definition 8 (Interesting transitions). Let N = (P,T,W,I) be a Petri net
and let b € B(AP) be a proposition. For a marking M € M(N) the set Apr(b) C
T of interesting transitions of b is defined inductively as Apr(b) =0 if M E b,
and otherwise

Ap(b;)  for some i where M B~ b; if b= by Abg
Al (b)  otherwise.

Anm(b) = {

Lemma 4 ([4]). Let N = (P,T,W,I) be a Petri net, let M € M(N) be a
marking, and let b € B(AP) be a proposition. If M W~ b and M <5 M’ for some
w E AM(b)*, then M’ [~ b.

We now state our main theorem that allows for a syntax-driven implemen-
tation of automata-driven stubborn set reduction for full LTL on Petri nets.

Theorem 4. Let N = (P,T,W,I) be a Petri net, A= (Q,0,Qo, F) be an NBA,
and St : M(N) x Q — 2T be a product reduction that for all markings M &
M(N) and states q € Q satisfies

1. St(M,q) is a COM-saturated set in M, and
2. UbeProg(q) AM(b) - St(Ma q); and
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ps <1 /3

l pa>1
(O ~(a)

(a) Petri net (b) NBA

Fig. 3. Example of our stubborn set method applied to Petri nets

3. either en(M) N St(M,q) C T\ A}, (b) and M = b for all b € Prog(q) U
{Sink(q)}, or St(M,q) =T, and
4. ifen(M) # 0 and q € F then en(M) N St(M,q) # 0.

Then St satisfies the axioms COM, R, SAFE and KEY.

Proof. By Lemma 3, Condition 3 ensures axiom SAFE. By Lemma 4, Con-
dition 2 ensures R, and by Lemma 1 part a) our Condition 1 ensures
COM. Condition 4 ensures KEY by Lemma 1 part b) as St(M,q) is COM-
saturated. O

Hence by Theorem 3, any reduction satisfying the conditions of Theorem 4 is
LTL-preserving stubborn set reduction. The theorem also provides an algorith-
mic way to generate the LTL-preserving stubborn set St(M, q). First, if some
progressing proposition b € Prog(q) U {Sink(q)} is satisfied by M, then the set
of all transitions is returned. Otherwise, the COM-saturation algorithm is run
on Aps(b) for b € Prog(q) to obtain a stubborn set satisfying COM and R. To
ensure SAFE is satisfied, the resulting stubborn set is checked for whether there
is any overlap with enabled strictly interesting transitions, in which case the set
of all transitions is returned, otherwise the computed stubborn set is returned.
If g € F and en(M) N St(M,q) = 0, an arbitrary enabled transition is added to
St(M, q) to ensure KEY is not violated, and the previous checks for COM and
SAFE are repeated.

Ezample 4. We shall now give an example of the computation of a stubborn set
for the Petri net shown in Fig. 3a (here we use the classical graphical notation for
Petri nets where circles represent places and rectangles transitions; the default
weight of all arcs is 1) and the NBA in Fig.3b. In the initial marking My, the
enabled transitions are en(My) = {t1,t2, t4}. When computing the stubborn set
St(Mp,q1) we note that the progressing formula ps > 1 is not satisfied, and
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dist(M, Qp, negated) = dist(M, ¢, negated), if Q € {A,F, X}
dist(M, Gy, negated) = dist(M, ¢, "negated)
dist(M, p1 U p2, negated) = dist(M, @2, negated)
dist(M, —p, negated) = dist(M, ¢, ~negated)
dist(M, o1 A @2, ff) = dist(M, 1, ff) + dist(M, w2, ff)
dist(M, p1 V @2, ff) = min(dist (M, @1, ff), dist(M, 2, ff))
dist(M, p1 A @2, tt) = min(dist(M, ¢1, ), dist (M, @2, tt))
dist(M, p1 V g2, tt) = dist(M, 1, &) + dist(M, @2, tt)
dist(M, e1 1 ez, negated) = A(><, evalas(e1), evalas(e2), negated)
for e {<, <, #,=,>,>}

A=, v1,v2, ff) = [v1 — va] A=, 01,02, ) = A(#, v1,v2, ff)
A(?ﬂ ﬁ) 1 ifvy =wv2 A(#’U17v27#):A(:3U17v27ﬁ)
vy, v =
T 0 otherwise A<, v1, 02, ) = A(>, 01, v2, ff)

A(<,v1,v2, ff) = max(vy —v2 + 1,0) A(>,v1, 02, 1) = A(S, 01,02, ff)
A(<,v1,v2, ff) = max(v1 — v2,0) A(S, o1, 02, 8) = A(>, 1,02, ff)
(
(>

A(>,v1,02, ff) = A(<,v2, 01, ff) A(Z,v1, 09, 1) = A(<, v1,v2, ff)
A(>, 01,2, ff) = AL, v2, 01, ff)

Fig. 4. Heuristic distance function between a marking and a LTL formula

the sink formula is ff, so a reduction is possible. First, we determine the set of
interesting transitions

Apgy(pg > 1) = incr(pg) Udecr(1) = {t3} U0 = {¢3}.

Next, we determine a COM-saturated set that contains ¢3 which turns out to be
St(Mo,q1) = {t1,t2,t3}. We now ensure that none of the enabled transitions in
this set are strictly interesting. Indeed, the only interesting transition ts is not
enabled, thus en(My) N St(Mo,q1) C T\ A?\'/Io (ps > 1) and therefore SAFE is
satisfied. We can so conclude that St(My, q1) = {t1,t2,t3} is a valid stubborn
set. Since the enabled transition ¢4 is not in the stubborn set, we avoid exploring
the interleavings with the transition t4, reducing the size of the state space that
we search.

4 Automata-Driven Guided Search

When performing explicit state model checking using depth-first search algo-
rithms, such as the on-the-fly variant of Tarjan’s algorithm [17,36] used for LTL
model checking, the order in which we explore the successors may significantly
influence how fast we can find an accepting cycle and possibly avoid exploring
parts of the state space where such a cycle is not present. We shall now design an
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to p1 1 Do

O a0

(a) Petri net

-po > 3 -p1 >3 tt

(b) NBA corresponding to the LTL formula F(pg > 3 A XFp; > 3)

Fig. 5. Example system where heuristics are advantageous when considering the LTL
formula ¢ = =F(po > 3 A XFp1 > 3).

automata-driven heuristic approach that aims to guide the search to the parts
of the state space where a cycle is more likely to be present.

In a marking M, the heuristic function assigns a nonnegative number to each
M’ where M — M’ such that the markings with smaller numbers are explored
first as they are believed to be more likely to lead us to an accepting cycle.

We first extend the distance-based heuristic for reachability [23] to the full
LTL logic. The idea of this heuristic is to provide a distance from one marking
to another by counting how many tokens must be added/removed in order to
make the two markings equal—this idea is then extended to the atomic proposi-
tions. Our distance measure is calculated using the recursive function dist given
in Fig.4. For a Petri net N, an LTL formula ¢, and a marking M € M(N)
our heuristic function dist(M, ¢, t) returns the distance of the marking M to
satisfying the LTL formula .

The following example shows that the distance-based heuristic can be already
useful by itself for guiding the state space search, even without considering the
current state in the Biichi automaton.

Example 5. Consider the Petri net N in Fig.5a and the LTL formula ¢ =
=F(po > 3AXFp; > 3). We want to determine whether N |= ¢. We let M; denote
the marking we reach after firing the transition ¢;. Then dist(My, ¢,tt) = 4,
dist(My, @, tt) = 4, and dist(Ma, p,#) = 3. The heuristic prioritises to first fol-
low the transition ¢35, leading us one step closer to satisfying Fp; > 3. Repeating
the procedure, after three additional firings of t2, we end up in a marking with
M(p1) = 4 where we satisfy the LTL formula.

As a next step, we use the distance metrics to design a more efficient
automata-driven heuristic technique that takes the current Biichi state into
consideration. Instead of looking at the entire LTL formula, we consider the
progressing formulae of the current state in the NBA. The main idea of this
approach is that if we are not in an accepting state then we try to leave the
current state as fast as possible in order to move closer to an accepting Biichi
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state. As such, we prioritise transitions that are more likely to enable progressing
formulae, including the consideration how far is the resulting NBA state from
some accepting state.

Let N be a Petrinet, 7 = (M(N),T, —, L, My) be an LTS, A = (Q, 9, Qo, F')
be an NBA, and for ¢ € @ let BFS(g) be the shortest path distance from ¢ to
some ¢ € F (if ¢ € F then BFS(q) = 0). Then given a state (M,q) in 7 ® A
where ¢ ¢ F, we calculate the heuristic for each successor marking M’ of M as

the minimum of (1 4+ BFS(¢’)) - dist(M’, b, ff) over all ¢’ € @ where ¢ LN q.

Ezxample 6. Let us again consider the Petri net in Fig. 5a, and the NBA corre-
sponding to -y, presented in Fig. 5b. In the product construction given in Defini-
tion 1, we create the initial Biichi states of the product state space; as the initial
marking satisfies the progressing proposition py > 3 but not the retarding propo-
sition —pg > 3, there is only one initial product state (where the Biichi automa-
ton is in the state ¢1 ). Now we calculate the heuristic value where, as before, M; is
the marking resulting from firing the transition ¢;. There is only one progressing
proposition, so the heuristic value is given by (1+BFS(qy)) - dist(M;,p1 > 3, ff).
This gives the values 2 - dist(Moy,p1 > 3, ff) = 8, 2 - dist(My,p1 > 3, ff) = 0,
and 2 - dist(Ma,p; > 3, ff) = 6 for the transitions to, t; and ¢, respectively. The
transition with the highest priority is £; which immediately leads to a marking
satisfying p; > 3 and we move to the accepting state. This illustrates the advan-
tage of automata-driven heuristics over the distance-based one relying on the
whole LTL formula, namely that it can disregard parts of the formula that are
not relevant at the moment.

5 Experimental Evaluation

We shall now evaluate the performance of our automata-driven techniques for
partial order reduction and guided search on the benchmark of Petri net mod-
els and LTL formulae from the 2021 edition of the Model Checking Contest
(MCCQ) [24]. The benchmark consists of 1181 P/T nets modelling academic and
industrial use cases, each with 32 LTL formulae split evenly between cardinal-
ity formulae and fireability formulae. This gives a total of 37792 queries for our
evaluation, each executed with 15 min timeout and 16 GiB of available memory
on one core of an AMD Opteron 6376 processor.

We implemented our automata-driven techniques described in this paper
as an extension of the verification engine verifypn [23] that is a part of the
TAPAAL model checker [10]. Our LTL engine uses version 2.9.6 of the Spot
library [11] for translating LTL formulae into NBAs, and a derivative of Tarjan’s
algorithm [17,36] for searching for accepting cycles. To speed up the verification,
we also employ the query simplifications from [5] and most of the structural
reductions from [4]. We moreover implemented within the verifypn engine the
classical partial order reduction of Valmari [39,40] (referred to as Classic POR)
as well as the automata-based reduction of Liebke [26] (referred to as Liebke
POR) that has been theoretically studied but so far without any implementation
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Table 1. Number of answered positive and negative queries, total number of queries
and percentage compared to number of solved queries by at least one method (3508
in total)

(a) Partial order reductions without heuristic search

Positive Negative Total Solved
Baseline (no POR) 501 1708 2209 61.5%
Classic POR 527 1846 2373 66.1 %
Liebke POR 551 1868 2419 67.3%
Automata-driven POR 564 2004 2568 71.5%

(b) Partial order reductions with heuristic search

Positive Negative Total Solved
Baseline (heuristic) 496 2463 2959 82.4%
Classic HPOR 523 2530 3053 85.0%
Liebke HPOR 555 2512 3067 85.4%
Automata-driven HPOR 565 2640 3205 89.2%

nor experimental evaluation. In our experiments, we benchmark the baseline
implementation (without any partial order reduction nor heuristic search) and
our stubborn set reduction (referred to as automata-driven POR) against Classic
POR and Liebke POR, both using the standard depth-first search as well as
our heuristic search technique (referred to as HPOR). We also provide a full
reproducibility package [18].

According to [27], the MCC benchmark contains a large number of trivial
instances that all model checkers can solve without much computation effort, as
well as instances that are too difficult for any model checker to solve. In our first
experiment, we thus selected a subset of interesting/nontrivial instances such
that our baseline implementation needed at least 30s to solve them and at least
one of the methods provided an answer within 15 min. This selection resulted in
3508 queries on which we evaluate the techniques.

Table 1a shows the number of answers obtained for each method without
employing the heuristic search and Table 1b with heuristic search (we report
here on the automata-driven heuristics only as it provides 233 additional answers
compared to the distance-based one). The first observation is that our heuristic
search technique gives for all of the partial order methods about 20% improve-
ment in the number of answered queries. Second, while both classic and Liebke’s
partial order reduction techniques (that are essentially comparable when using
heuristic search and without it Liebke solves 1.2% more queries) provide a sig-
nificant 3-6% improvement in the number of answered queries over the baseline
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Fig. 6. Comparison of the different methods versus the baseline; on x-axis all instances
sorted by the increasing running time (independently per method); on y-axis the run-
ning time (in seconds and logarithmic scaling)

(both with and without the heuristic), our method achieves up to 10% improve-
ment.

While in absolute numbers the additional points are primarily due to negative
answers (where an accepting cycle exists), we can see also a similar trend in the
increased number of positively answered queries. In general, positive answers are
expected to be harder to obtain than negative answers, as they require disproving
the existence of any counter example and hence full state space search. This
is also the reason why adding a heuristic search on top of the partial order
techniques can have a negative effect on the number of answered positive queries;
here the search order does not matter but the heuristic search method has an
overhead for computing the distance functions in every discovered marking.

Overall, while the baseline method solved only 61.5% of queries, our par-
tial order technique in combination with the automata-driven heuristic search
now answers 89.2% of queries, which is a considerable improvement and shows
that the two techniques can be applied in combination in order to increase the
verification performance.

In Fig. 6 we focus for each method on the most difficult 1500 queries from the
benchmark. For each method, we independently sort the running times (plotted
on the y-axis, note the logarithmic scale) in increasing order for all the query
instances (plotted on the x-axes). Hence the plot does not provide a running
time comparison per instance (in fact there are even a few queries that the
baseline answers but not our heuristic POR method), however, it shows the
overall performance trends on the whole dataset. The plot confirms with the
general observation we made on the number of answered queries and moreover
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Table 2. Number of answers in the MCC setup.

Positive Negative Total Solved

TAPAAL 9415 26219 35629 94.3%
TAPAAL (no POR, no heuristic) 9345 25865 35210 93.2%
ITS-Tools 8395 24775 33170 87.8%

shows that without the heuristic search (thinner lines in the left part of the plot)
Liebke’s method is in general performing faster than the classic method. The
addition of the heuristic search to the partial order reduction makes a significant
improvement, as shown by the thick curves in the right part of the plot. Here
the classic and Liebke’s have more similar performance, whereas our automata-
driven method most significantly profits from the addition of heuristic search.
Finally, in Table2 we provide the comparison with the model checker ITS-
Tools [37] that was second after TAPAAL in the 2021 edition of the Model Check-
ing Contest [24]. In the MCC, 16 queries are verified in parallel with a 1h time
out, 16 GiB memory limit and 4 available cores. The scripts that execute the
verification are taken from the available virtual machines (for the details of the
setup consult the MCC webpage!) and executed on the total of 37792 queries in
the batches of 16 queries. While ITS-tools can solve 87.8% of all queries, TAPAAL
(the winner in 2021 contest) without partial order reduction and heuristic search
answers 93.2% of all queries. The addition of our automata-driven techniques
improves the score to 94.3% of answered queries, which is a very satisfactory
improvement given that the MCC benchmark contains a significant percentage
of models and queries that are beyond the reach of the current model checkers.

6 Conclusion

We presented two automata-driven techniques, stubborn set partial order reduc-
tion and a heuristic search method, for improving the performance of LTL model
checking. The common element in these methods is that we exploit the fact that
states in the product system (where we search for an accepting cycle) contain
also the information about the current state of Biichi automaton. Recent work
by Liebke [26] suggests a similar approach trying to weaken the classical LTL
axioms for partial order reduction; we instead extend the reachability-preserving
axioms to the full LTL logic. Our approach is presented first in a general way
and then specialized to the Petri net model.

We implemented both the baseline Tarjan’s algorithm for LTL model check-
ing, the classical and Liebke’s partial order reductions as well as our automata-
driven methods and compare them on a large benchmark of LTL models from
the 2021 Model Checking Contest. The conclusion is that while both the classical
and Liebke’s methods provide a significant performance improvement over the

! https://mec.lip6.fr/.
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baseline algorithm, our automata-driven partial order technique improves the
state-of-the-art techniques by another degree. Moreover, our heuristic search is
clearly beneficial in combination with all partial order methods and our current
best implementation in the tool TAPAAL beats the second best tool in the yearly
Model Checking Contest by the margin of 6.5%.

In the future work we plan to further improve the performance of our method
for example for the subclass of weak Biichi automata and extend the ideas to
other logics like CTL.

Acknowledgments. We thank to Yann Thierry-Mieg for creating the oracle database
of correct answers for queries from the model checking contest that we used extensively
for testing our implementation.

References

1. Babiak, T., Kfetinsky, M., Rehdk, V., Strejéek, J.: LTL to Biichi automata trans-
lation: fast and more deterministic. In: Flanagan, C., Konig, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95-109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5_8

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0-14

4. Bgnneland, F.M., Jensen, P.G., Larsen, K.G., Muiiz, M., Srba, J.: Start pruning
when time gets urgent: partial order reduction for timed systems. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 527-546. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_28

5. Bgnneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of
CTL formulae for efficient model checking of Petri nets. In: Khomenko, V., Roux,
O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 143-163. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91268-4_8

6. Bgnneland, F., Jensen, P., Larsen, K., Muniz, M., Srba, J.: Stubborn set reduc-
tion for two-player reachability games. Logical Methods Comput. Sci. 17(1), 1-26
(2021)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10?° states and beyond. Inf. Comput. 98(2), 142-170 (1992)

8. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147-158.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

9. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des. 1(2—
3), 275-288 (1992). https://doi.org/10.1007/BF00121128

10. David, A., Jacobsen, L., Jacobsen, M., Jgrgensen, K.Y., Mgller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492-497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_36


https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-96145-3_28
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/BFb0028741
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/978-3-642-28756-5_36

172

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P. G. Jensen et al.

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0—a framework for LTL and w-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122-129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari, A.
(ed.) SPIN 2006. LNCS, vol. 3925, pp. 1-18. Springer, Heidelberg (2006). https://
doi.org/10.1007/11691617_1

Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57-79. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45139-0_5

Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A., Aljazzar, H.: Sur-
vey on directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 65-89. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00431-5_5

Esparza, J., Kfetinsky, J., Sickert, S.: One theorem to rule them all: a unified trans-
lation of LTL into w-automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, pp. 384-393. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3209108.
3209161

Esparza, J., Schroter, C.: Net reductions for LTL model-checking. In: Margaria,
T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310-324. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44798-9_25

Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tar-
jan’s algorithm. Theor. Comput. Sci. 345(1), 60-82 (2005). https://doi.org/10.
1016/j.t¢s.2005.07.004

Gjgl Jensen, P.; Srba, J., Jensen Ulrik, N., Mejlby Virenfeldt, S.: Reproducibility
Package: Automata-Driven Partial Order Reduction and Guided Search for LTL
(2021). https://doi.org/10.5281 /zenodo.5704172

Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176-185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391-406. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9_26

Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston (2003)

Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279-295
(1997). https://doi.org/10.1109/32.588521

Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T Nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307-318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_16
Kordon, F., et al.: Complete Results for the 2020 Edition of the Model Checking
Contest, June 2021. http://mcc.lip6.fr/2021 /results.php

Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time proper-
ties. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp.
228-247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-
413

Liebke, T.: Biichi-automata guided partial order reduction for LTL. In: PNSEQ
Petri Nets, pp. 147-166 (2020)


https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/11691617_1
https://doi.org/10.1007/11691617_1
https://doi.org/10.1007/3-540-45139-0_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.5281/zenodo.5704172
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-662-53401-4_16
http://mcc.lip6.fr/2021/results.php
https://doi.org/10.1007/978-3-642-31131-4_13
https://doi.org/10.1007/978-3-642-31131-4_13

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Automata-Driven LTL Model Checking 173

Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321-341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_18

Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989). https://doi.org/10.1109/5.24143

Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409-423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7_34

Peled, D.A., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods Syst. Des. 19(3), 275-289 (2001). https://doi.org/10.
1023/A:1011202615884

Petri, C.A.: Communication with automata. Ph.D. thesis, Universitat Hamburg
(1966)

Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13(1), 45-60 (1981). https://doi.org/10.1016/0304-3975(81)90110-9

Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46-65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X _4

Schmidt, K.: How to calculate symmetries of Petri nets. Acta Informatica 36(7),
545-590 (2000). https://doi.org/10.1007 /5002360050002

Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fund.
Inform. 47(3-4), 325-335 (2001)

Tarjan, R.: Depth-first search and linear graph algorithms. STAM J. Comput. 1(2),
146-160 (1972). https://doi.org/10.1137/0201010

Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231-237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_20

Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491-515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1_36

Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des.
1(4), 297-322 (1992)

Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429-528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6-21

Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bosnacki, D., Wijs, A.
(eds.) SPIN 2016. LNCS, vol. 9641, pp. 225-243. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32582-8_16

Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137-150. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1_10

Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351-362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4_18


https://doi.org/10.1007/978-3-030-21571-2_18
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/s002360050002
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.1007/978-3-319-91268-4_18

)

Check for
updates

Verifying Pufferfish Privacy in Hidden Markov
Models

Depeng Liu'?®9, Bow-Yaw Wang?, and Lijun Zhang'->*

! State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
{liudp, zhanglj}@ios.ac.cn
% University of Chinese Academy of Sciences, Beijing, China
3 TInstitute of Information Science, Academia Sinica, Taipei, Taiwan
bywang@iis.sinica.edu.tw
4 Institute of Intelligent Software, Guangzhou, China

Abstract. Pufferfish is a Bayesian privacy framework for designing and analyz-
ing privacy mechanisms. It refines differential privacy, the current gold standard
in data privacy, by allowing explicit prior knowledge in privacy analysis. In prac-
tice, privacy mechanisms often need be modified or adjusted to specific appli-
cations. Their privacy risks have to be re-evaluated for different circumstances.
Privacy proofs can thus be complicated and prone to errors. Such tedious tasks are
burdensome to average data curators. In this paper, we propose an automatic veri-
fication technique for Pufferfish privacy. We use hidden Markov models to specify
and analyze discrete mechanisms in Pufferfish privacy. We show that the Puffer-
fish verification problem in hidden Markov models is NP-hard. Using Satisfiabil-
ity Modulo Theories solvers, we propose an algorithm to verify privacy require-
ments. We implement our algorithm in a prototypical tool called FAIER, and
analyze several classic privacy mechanisms in Pufferfish privacy. Surprisingly,
our analysis show that naive discretization of well-established privacy mecha-
nisms often fails, witnessed by counterexamples generated by FAIER. In dis-
crete Above Threshold, we show that it results in absolutely no privacy. Finally,
we compare our approach with state-of-the-art tools for differential privacy, and
show that our verification technique can be efficiently combined with these tools
for the purpose of certifying counterexamples and finding a more precise lower
bound for the privacy budget e.

1 Introduction

Differential privacy is a framework for designing and analyzing privacy measures [16,
17]. In the framework, data publishing mechanisms are formalized as randomized algo-
rithms. On any input data set, such mechanisms return randomized answers to queries.
In order to preserve privacy, differential privacy aims to ensure that similar output dis-
tributions are yielded on similar input data sets. Differential privacy moreover allows
data curators to evaluate privacy and utility quantitatively. The framework has attracted
lots of attention from academia and industry such as Microsoft [13] and Apple [2].
Pufferfish is a more recent privacy framework which refines differential pri-
vacy [23]. In differential privacy, there is no explicit correlation among entries in data
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sets during privacy analysis. The no free lunch theorem [22] in data privacy shows that
prior knowledge about data sets is crucial to privacy analysis. The Pufferfish privacy
framework hence allows data curators to analyze privacy with prior knowledge about
data sets. Under the Bayesian privacy framework, it is shown that differential privacy
preserves the same level of privacy if there is no correlation among entries in data sets.

For differential and Pufferfish privacy, data publishing mechanisms are analyzed —
often on paper— with sophisticated mathematical tools. The complexity of the problem
is high [19], and moreover, it is well-known that such proofs are very subtle and error-
prone. For instance, several published variations of differentially private mechanisms
are shown to violate privacy [11,26]. In order to minimize proof errors and misinterpre-
tation, the formal method community has also started to develop techniques for check-
ing differentially private mechanisms, such as verification techniques based on approx-
imate couplings [1,5-8,18], randomness alignments [32-34], model checking [24] as
well as those with well-defined programming semantics [3,27] and techniques based on
testing and searching [9, 10, 14,35].

Reality nevertheless can be more complicated than mathematical proofs. Exist-
ing privacy mechanisms hardly fit their data publishing requirements perfectly. These
algorithms may be implemented differently when used in practice. Majority of differ-
entially private mechanisms utilize continuous perturbations by applying the Laplace
mechanism. Computing devices however only approximate continuous noises through
floating-point computation, which is discrete in nature. Care must be taken lest pri-
vacy should be lost during such finite approximations [28]. Moreover, adding continu-
ous noises may yield uninterpretable outputs for categorical or discrete numerical data.
Discrete noises are hence necessary for such data. A challenging task for data cura-
tors is to guarantee that the implementation (discrete in nature) meets the specification
(often continuous distributions are used). It is often time consuming — if not impossible,
to carry out privacy analysis for each modification. Automated verification and testing
techniques are in this case a promising methodology for preserving privacy.

In this work, we take a different approach to solve the problems above. We focus on
Pufferfish privacy, and propose a lightweight but automatic verification technique. We
propose a formal model for data publishing mechanisms and reduce Pufferfish privacy
into a verification problem for hidden Markov models (HMMs). Through our formal-
ization, data curators can verify their specialized privacy mechanisms without going
through tedious mathematical proofs.

We have implemented our algorithm in a prototypical tool called FAIER (the puffer-
Fish privAcy verifIER). We consider privacy mechanisms for bounded discrete numer-
ical queries such as counting. For those queries, classical continuous perturbations may
give unusable answers or even lose privacy [28]. We hence discretize privacy mecha-
nisms by applying discrete perturbations on such queries. We report case studies derived
from differentially private mechanisms. Our studies show that naive discretization may
induce significant privacy risks. For the Above Threshold example, we show that dis-
cretization does not have any privacy at all. For this example, our tool generates coun-
terexamples for an arbitrary small privacy budget €. Another interesting problem for
differential privacy is to find the largest lower bound of €, below which the mecha-
nism will not be differentially private. We discuss how our verification approach can be
efficiently combined with testing techniques to solve this problem.
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Below we summarize the main contributions of our paper:

1. We propose a verification framework for Pufferfish privacy by specifying privacy
mechanisms as HMMs and analyzing privacy requirements in the models (Sect. 4).
To our best knowledge, the work of Pufferfish privacy verification had not been
investigated before.

2. Then we study the Pufferfish privacy verification problem on HMMs and prove the
verification problem to be NP-hard (Sect. 5.1).

3. On the practical side, nevertheless, using SMT solvers, we design a verification algo-
rithm which automatically verifies Pufferfish privacy (Sect. 5.2).

4. The verification algorithm is implemented into the tool FAIER (Sect. 6.1). We then
perform case studies of classic mechanisms, such as Noisy Max and Above Thresh-
old. Using our tool, we are able to catch privacy breaches of the specialized mecha-
nisms (Sect. 6.2, 6.3).

5. Compared with the state-of-the-art tools DP-Sniper [10] and StatDP [14] on finding
the privacy budget € (or finding privacy violations) for differential privacy, our tool
has advantageous performances in obtaining the most precise results within accept-
able time for discrete mechanisms. We propose to exploit each advantage to the full
to efficiently obtain a precise lower bound for the privacy budget e (Sect. 7).

2 Preliminaries

A Markov Chain K = (S, p) consists of a finite set S of states and a transition dis-
tribution p : S x S — [0,1] such that )7, _¢ p(s,t) = 1 for every s € S. A Hidden
Markov Model (HMM) H = (K, (2,0) is a Markov chain K = (S, p) with a finite
set (2 of observations and an observation distribution o : S x {2 — [0,1] such that
Y wen 0(s,w) = 1forevery s € S. Intuitively, the states of HMMs are not observable.
External observers do not know the current state of an HMM. Instead, they have a state
distribution (called information state) w : S — [0, 1] with >~ __¢ 7(s) = 1 to represent
the likelihood of each state in an HMM.

Let H = ((S,p), 2, 0) be an HMM and 7 an initial state distribution. The HMM H
can be seen as a (randomized) generator for sequences of observations. The following
procedure generates observation sequences of an arbitrary length:

t 0.

Choose an initial state sy € S by the initial state distribution 7.
Choose an observation w; by the observation distribution o(s¢, e).
Choose a next state s;1 by the transition distribution p(s¢, e).

t «— t+ 1 and go to 3.

Nk WD

Given an observation sequence W = wow;---wy and a state sequence s =
S0S1 -+ + Sk, it is not hard to compute the probability of observing w along 5 on an HMM
H = ((S,p), 2, 0) with an initial state distribution 7. Precisely,

Pr(w,s|H) = Pr(w|s, H) x Pr(s, H)
= [o(s0,wo0)" - -0(sk, wk)] X [T (s0)P(80, 1) “P(Sk—1, 5k)]
= 7(80)0(50,wo) - P(50,51) - P(Sk—1, Sk )0(5k, Wk )- (1)

Since state sequences are not observable, we are interested in the probability
Pr(@|H) for a given observation sequence w. Using (1), we have Pr(w|H) =
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> scgr+1 Pr(@, 5| H). But the summation has |S|** terms and is hence inefficient to
compute. An efficient algorithm is available to compute the probability «;(s) for the
observation sequence wgws - - - wy With the state s at time ¢ [31]. Consider the following
definition:

ap(s) = m(s)o(s,wo) 2)
Olt+1 lz Olt ] O(S/a Wt+1)~ 3)
sES

Informally, a(s) is the probability that the initial state is s with the observation wy. By
induction, a4 (s) is the probability that the ¢-th state is s with the observation sequence
wowq - - - wi. The probability of observing w = wgwi - - - wy is therefore the sum of
probabilities of observing @ over all states s. Thus Pr(@W|H) = ) g ax(s).

3 Pufferfish Privacy Framework

Differential privacy is a privacy framework for design and analysis of data publishing
mechanisms [16]. Let Xidg}ote the set of data entries. A data set Bf ii,m nis an elgment
in X™. Two data sets d,d € X™ are neighbors (written A(d,d) < 1) if d and
d’ are identical except for at most one data entry. A data publishing mechanism (or
simply mechanism) M is a randomized algorithm which takes a data set d as inputs. A
mechanism satisfies e-differential privacy if its output distributions differ by at most the
multiplicative factor e® on every neighboring data sets.

Definition 1. Ler ¢ > 0. A mechamsm M is e- dlfferentlally private if for all r €
range(M) and data sets d, d e X" with A(d, d) < 1, we have Pr(M(d) = r) <
ec Pr(./\/l(d/) =r).

Intuitively, e-differential privacy ensures similar output distributions on similar data
sets. Limited differential information about each data entry is revealed and individual
privacy is hence preserved. Though, differential privacy makes no assumption nor uses
any prior knowledge about data sets. For data sets with correlated data entries, differen-
tial privacy may reveal too much information about individuals. Consider, for instance,
a data set of family members. If a family member has contracted a highly contagious
disease, all family are likely to have the same disease. In order to decide whether a
specific family member has contracted the disease, it suffices to determine whether any
member has the disease. It appears that specific information about an individual can
be inferred from differential information when data entries are correlated. Differential
privacy may be ineffective to preserve privacy in such circumstances [22].

Pufferfish is a Bayesian privacy framework which refines differential privacy. The-
orem 6.1 in [23] shows how to define differential privacy equivalently in Pufferfish
framework. In Pufferfish privacy, a random variable D represents a data set drawn from
a distribution 6 € D. The set D of distributions formalizes prior knowledge about data
sets, such as whether data entries are independent or correlated. Moreover, a set S of
secrets and a set Spairs © S X S of discriminative secret pairs formalize the information
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to be protected. A mechanism M satisfies e-Pufferfish privacy if its output distributions
differ by at most the multiplicative factor e when conditioned on all the secret pairs.

Definition 2. Let S be a set of secrets, Spqirs C S X S a set of discriminative secret
pairs, D a set of data set distributions scenarios, and ¢ > 0, a mechanism M is e-
Pufferfish private if for all r € range(M), (si,s;) € Spairs, 0 € D with Pr(s;]0) # 0
and Pr(s;|0) # 0, we have

Pr(M(D) = r|s;,0) < e Pr(M(D) =r|s;,0)

where D is a random variable with the distribution 6.

In the definition, Pr(s;|0) # 0 and Pr(s;|6) # 0 ensure the probabilities Pr(M (D)
= r|s;,0) and Pr(M(D) = r|s;,0) are defined. Hence Pr(M (D) = r|s,0) is the
probability of observing r conditioned on the secret s and the data set distribution 6.
Informally, e-Pufferfish privacy ensures similar output distributions on discriminative
secrets and prior knowledge. Since limited information is revealed from prior knowl-

edge, each pair of discriminative secrets is protected.

4 Geometric Mechanism as Hidden Markov Model

We first recall in Sect. 4.1 the definition of geometric mechanism, a well-known discrete
mechanism for differential privacy. In Sect. 4.2, we then recall an example exploiting
Markov chains to model geometric mechanisms, followed by our modeling formalism
and Pufferfish privacy analysis using HMMs in Sect. 4.3.

4.1 Geometric Mechanism

Consider a simple data set with only two data entries. Each entry denotes whether an
individual has a certain disease. Given such a data set, we wish to know how many
individuals contract the disease in the data set. More generally, a counting query returns
the number of entries satisfying a given predicate in a data set d € X'™. The number of
individuals contracting the disease in a data set is hence a counting query. Note that the
difference of counting query results on neighboring data sets is at most 1.

Counting queries may reveal sensitive information about individuals. For instance,
suppose we know John’s record is in the data set. We immediately infer that John has
contracted the disease if the query answer is 2. In order to protect privacy, several mech-
anisms are designed to answer counting queries.

Consider a counting query f : X" — {0,1,...,n}. Let « € (0,1). The a-
geometric mechanism Gy for the counting query f on the data set d outputs f(d) + Y
on a data set d where Y is a random variable with the geometric distribution [20,21]:
Pr[Y = y] = {52al¥! fory € Z. For any neighboring data sets d, d e &, recall
that |f(d) — f(d)| < 1.If f(d) = f(d), the a-geometric mechanism has the same
output distribution for f on d and d.ir If(d) - f (H’)| = 1, it is easy to conclude that
Pr(Gs(d) = r) < e~ Pr(G(d’) = r) for any neighboring d,d and r € Z. The



Veritying Pufferfish Privacy in Hidden Markov Models 179

a-geometric mechanism is — In a-differentially private for any counting query f. To
achieve e-differential privacy, one simply chooses o = e™¢.

The range of the geometric mechanism is Z. It may give nonsensical outputs such as
negative integers for non-negative queries. The truncated o-geometric mechanism over
{0,1,...,n} outputs f(d) + Z where Z is a random variable with the distribution:

0 ifz< —f(z)
£(2) .
e ifz=—f(x)
Pr[Z = 2] = %jr—goﬂz' if —f(z)<z<n-— f(x)
n—fle) .
0‘1+fa ifz=n— f(x)
0 ifz>n— f(x)
1 2/3:0
output 0 ‘@ 6 1/6:1
51113 = 1/6:2
1 1/3:0
5 0 |2/3|1/6|1/6 1 @ 3 1/3:1
HEDENEINE 1/3:2
2 |1/6(1/6|2/3 2 1/6:0
/6[1/6]2/ @ 35 1/6:1
2/3:2
(a) f-Geometrlc Mechanism (b) Markov Chain (c) Hidden Markov Model
Fig. 1. Truncated 2 5 -geometric mechanism
Note the range of the truncated a-geometric mechanism is {0, 1,...,n}. The trun-

cated a-geometric mechanism is also — In a-differentially private for any counting
query f. We will study several examples of this mechanism to get a better understanding
of Pufferfish privacy and how we use models to analyze it.

4.2 Differential Privacy Using Markov Chains

We present a simple example taking from [24], slightly adapted for analyzing different
models, i.e., the Markov chain and the hidden Markov model.

Example 1. To see how differential privacy works, consider the truncated 5-geometric
mechanism (Fig. 1a). In the table, we consider a counting query f : X 2 - {0,1,2}.
For any data set d, the mechanism outputs j when f(d) = i with probability indicated
at the (4, 5)- entry in the table. For instance, the mechanism outputs 0, 1, and 2 with
probabilities 2 e 6, and § respectively when f(d) = 0.

Let f be the query countmg the number of individuals contracting a disease. Con-
sider a data set d whose two members (including John) have contracted the disease.
The number of individuals contracting the disease is 2 and hence f(d) = 2. From the
table in Fig. 1a, we see the mechanism answers 0, 1, and 2 with probablhtles 56 7, and
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% respectively. Suppose we obtain another data set d by replacing John with an indi-

vidual who does not contract the disease. The number of individuals contracting the
disease for the new data set is 1 and thus f (H’) = 1. Then, the mechanism answers 0,
1, and 2 with the probability 3.

The probabilities of observing 0 on the data sets d and d are respectively % and
%. They differ by the multiplicative factor 2. For other outputs, their observation prob-
abilities are also bounded by the same factor. The truncated %-geometric mechanism is
hence In(2)-differentially private.

In order to formally analyze privacy mechanisms, we specify them as probabilistic
models. Figure 1b shows a Markov chain for the truncated %-geometric mechanism. We
straightly turn inputs and outputs of the table in Fig. 1a into states of the Markov chain
and output probabilities into transition probabilities. In the figure, thin arrows denote
transitions with probability %; medium arrows denote transitions with probability %;
thick arrows denote transitions with probability % For instance, state O can transit to

state 0 with probability 2 while it can transit to the state 1 with probability . [ |

The Markov chain model is straightforward but can become hazy for complicated
privacy mechanism. We next discuss how to use an HMM to model the mechanism.

4.3 Pufferfish Privacy Using Hidden Markov Models

We denote data sets as states and possible outputs of the mechanism are denoted by
observations. The transition distribution stimulates the randomized privacy mechanism
performed on data sets. Distributions of data sets are denoted by initial information
states. Privacy analysis can then be performed by comparing observation probabilities
from the two initial information states. We illustrate the ideas in examples.

Example 2. Fig. 1c gives an HMM for the truncated %-geometric mechanism. For any
counting query f from X2 to {0, 1,2}, it suffices to represent each d € X2 by f(d)
because the mechanism only depends on f(d). The order of entries, for instance, is
irrelevant to the mechanism. We hence have the states 0, 1 and 2 denoting the set { f(d) :
d € X?} in the figure. Let {0, 1,2} be the set of observations. We encode output
probabilities into observation probabilities at states. At state 0, for instance, f), 1, 2 can
all be observed with probability %, é, % respectively. It is obvious that the number of
states are reduced by half compared with the Markov chain. Generally, HMMs allow
multiple observations to show at one single state, which leads to smaller models.

Fix an order for states, say, 0, 1,2. An information state can be represented by an
element in [0, 1]3. In differential privacy, we would like to analyze probabilities of every
observation from neighboring data sets. For counting queries, neighboring data sets can
change query results by at most 1. Let d be a data set. Consider the initial information
state 1 = (0,0, 1) corresponding to f(d) = 2. For any neighbor d of d, we have
f (H/) =2orf (H/) = 1. It suffices to consider corresponding information states 7 or
7= (0,1,0). Let’s compare the probability of observing w = 1 from information states
m and 7. Starting from 7, we have avg = 7 and probabilities of %, % and % respectively

observing 1 at each state. So the probability of observing w is %. On the other hand, we
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have oy = 7 and the probability of observing w is % Similarly, one can easily check
the probabilities of observing 0 and 2 on any neighboring data sets and the ratio of one
probability over the other one under the same observation will not be more than 2. W

Differential privacy provides a framework for quantitative privacy analysis. The
framework ensures similar output distributions regardless of the information about an
arbitrary individual. In other words, if an attacker gets certain prior knowledge about
the data sets, chances are that differential privacy will underestimate privacy risks. Since
all data entries are correlated, replacing one data entry does not yield feasible data sets
with correlated entries. Consequently, it is questionable to compare output distributions
on data sets differing in only one entry. Instead, this is the scenario where Pufferfish
privacy should be applied.

Example 3. Consider a data set about contracting a highly contagious disease contain-
ing John and a family member he lives with. An attacker wishes to know if John has
contracted the disease. Since the data set keeps information on the contagious disease
about two family members, an attacker immediately deduces that the number of indi-
viduals contracting the disease can only be 0 or 2. The attacker hence can infer whether
John has the disease by counting the number of individuals contracting the disease.

Suppose a data curator tries to protect John’s privacy by employing the truncated
%-geometric mechanism (Fig. 1). We analyze this mechanism formally in the Pufferfish
framework. Let the set of data entries X = {0, 1} and there are four possible data sets
in X2. For any 0 < p < 1, define the data set distribution 6, : X? — [0, 1] as follows.
0,(0,0) =1 —p, 6,(1,1) = p,and 6,(0,1) = 6,(1,0) = 0. Consider the distribution
set D = {6, : 0 < p < 1}. Note that infeasible data sets are not in the support of &,,.

Assume John’s entry is in the data set. Define the set of secrets S = {¢, nc} where
c denotes that John has contracted the disease and nc denotes otherwise. Our set of
discriminative secret pairs Spairs is {(c, nc), (nc, ¢)}. That is, we would like to compare
probabilities of all outcomes when John has the disease or not.

When John has not contracted the disease, the only possible data set is (0, 0) by the
distribution ¢,,. The probability of observing 0 therefore is % (Fig. 1a). When John has
the disease, the data set (0,0) is not possible under the condition of the secret and the
distribution 6,,. The only possible data set is (1, 1). The probability of observing 01is %
Now we have 2 = Pr(G;(D) = Olne, 0,) £ 2 x + =2xPr(Gy(D) = 0lc,0,). We
conclude the truncated %—geometric mechanism does not conform to In(2)-Pufferfish
privacy. Instead, it satisfies In(4)-Pufferfish privacy. [ |

With the formal model (Fig. 1c),it Table 1. Pufferfish analysis of 3-geometric
is easy to perform privacy analysis in Mmechanism
the Pufferfish framework. More pre- - - _

. R ) Data Sets\ Observations | 0 1 2
cisely, the underlying Markov chain === Poipti| afiaptt | Pizetl
along with observation distribution . o o o i =

specify the privacy mechanism on
input data sets. Prior knowledge about data sets is nothing but distributions of them.
Since data sets are represented by various states, prior knowledge is naturally formal-
ized as initial information states in HMMs. For Pufferfish privacy analysis, we again
compare observation probabilities from initial information states conditioned on secret
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pairs. The standard algorithm for HMMs allows us to perform more refined privacy
analysis. Besides, it is interesting to observe the striking similarity between the Puffer-
fish privacy framework and HMMs. In both cases, input data sets are unknown but
specified by distributions. Information can only be released by observations because
inputs and hence computation are hidden from external attackers or observers. Puffer-
fish privacy analysis with prior knowledge is hence closely related to observation prob-
ability analysis from information states. Such similarities can easily be identified in the
examples.

Example 4. Consider a non-contagious disease. An attacker may know that contracting
the disease is an independent event with probability p. Even though the attacker does
not know how many individuals have the disease exactly, he infers that the number of
individuals contracting the disease is 0, 1, and 2 with probabilities (1 — p)Q, 2p(1 —p),
and p? respectively. The prior knowledge corresponds to the initial information state
7 = ((1 — p)% 2p(1 — p),p?) in Fig. Ic. Assume John has contracted the disease.
We would like to compare probabilities of observations 0, 1, and 2 given the prior
knowledge and the presence or absence of John’s record.

Suppose John’s record is indeed in the data set. Since John has the disease, the

number of individuals contracting the disease cannot be 0. By the prior knowledge, one
2p(1—p) P ) = (0,

> 2p(1—p)+p?’ 2p(1—p)+p?

If John’s record is not in the data set, the initial information state remains

can easily obtain the initial information state 7 = (0
2—2p )
2-p’ 2-p
as 7 = ((1—p)2,2p(1—p), p?). Then one can compute all the observation probabilities
starting from 7 and 7 respectively, which are summarized in Table 1:

For the observation 0, it is not hard to check % 42 3p < &6“4 <2X 13 36”

1
for any 0<p< 1 Similarly, we have % X 142_36’; < = p +2p+1 < 2 x {42 36?’

and

3 X 52 3p < w < 2 x g5 for observations Iand 2 respectlvely Therefore, the

truncated f—geometrlc mechamsm satisfies In(2)-Pufferfish privacy when contracting
the disease is independent. |

The above example demonstrates that certain prior knowledge, such as indepen-
dence of data entries, is indeed not harmful to privacy under the Pufferfish framework.
In [23], it is shown that differential privacy is subsumed by Pufferfish privacy (Theo-
rem 6.1) under independence assumptions. The above example is also an instance of
the general theorem but formalized in an HMM.

5 Pufferfish Privacy Verification

In this section, we formally define the verification problem for Pufferfish privacy and
give the computation complexity results in Sect. 5.1. Then we propose an algorithm to
solve the problem in Sect.5.2.

5.1 Complexity of Pufferfish Privacy Problem

‘We model the general Pufferfish privacy problems into HMMs and the goal is to check
whether the privacy is preserved. First, we define the Pufferfish verification problem:
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Definition 3. Given a set of secrets S, a set of discriminative secret pairs Spqirs, a set of
data evolution scenarios D, € > 0, along with mechanism M in a hidden Markov model
H = (K, 2,0), where probability distributions are all discrete. Deciding whether M
satisfies e-Pufferfish privacy under (S, Spairs, D) is the Pufferfish verification problem.

The modeling intuition for H is to use states and transitions to model the data sets
and operations in the mechanism M, obtain initial distribution pairs according to prior
knowledge ID and discriminative secrets Sp,irs, and set outputs as observations in states.
Then the goal turns into checking whether the probabilities under the same observation
sequence are mathematically similar, i.e., differ by at most the multiplicative factor e®,
for every distribution pair and every observation sequence. Therefore, our task is to find
the observation sequence and distribution pair that make the observing probabilities
differ the most. That is, in order to satisfy Pufferfish privacy, for every observation

sequence W = wyws . . ., secret pair (s;, sj) € Spairs and 6 € D, one should have
B (rnax) ePr(M(ﬁ) =|s;,0) — e Pr(M(D) = ©|s;,0) 4)
B (max) ePr(M(ﬁ) =|sj,0) — e Pr(M(D) = ©|s;, 0) )

no more than 0. However, by showing a reduction from the classic Boolean Satisfiability
Problem [30], this problem is proved to be NP-hard (in the full version [25]):

Theorem 1. The Pufferfish verification problem is NP-hard.

To the best of our knowledge, this is the first complexity result for the Pufferfish
verification problem. Note that differential privacy is subsumed by Pufferfish privacy.
Barthe et al. [3] show undecidability results for differential privacy mechanisms with
continuous noise. Instead, we focus on Pufferfish privacy with discrete state space in
HMMs. The complexity bound is lower if more simple models such as Markov chains
are used. However some discrete mechanisms in differential privacy, such as Above
Threshold, can hardly be modeled in Markov chains [24].

5.2 Verifying Pufferfish Privacy

Given the complexity lower bound in the previous section, next goal is to develop an
algorithm to verify e-Pufferfish privacy on any given HMM. We employ Satisfiability
Modulo Theories (SMT) solvers in our algorithm. For all observation sequences of
length &, we will construct an SMT query to find a sequence violating e-Pufferfish
privacy. If no such sequence can be found, the given HMM satisfies e-Pufferfish privacy
for all observation sequences of length k.

Let H = ((S,p), £2,0) be an HMM, 7, T two initial distributions on .S, ¢ > 0 a real
number, and k a positive integer. With a fixed observation sequence w, computing the
probability Pr(@|x, H) can be done in polynomial time [31]. To check if Pr(w|m, H) >
¢-Pr(w|r, H) for any fixed observation sequence @, one simply computes the respective
probabilities and then checks the inequality.

Our algorithm exploits the efficient algorithm of HMMs for computing the proba-
bility of observation sequences. Rather than a fixed observation sequence, we declare k
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Algorithm 1. Pufferfish Check

Require: H = ((5,p), 2, 0): a hidden Markov model; 7, 7: state distributions on S; ¢: a non-
negative real number; k: a positive integer
Ensure: An SMT query g such that g is unsatisfiable iff Pr(@|m, H) < ¢- Pr(w|r, H) for every
observation sequences w of length &k
1: function PUFFERFISHCHECK(H, g, 71, ¢, k)
2 for s € S do
3 ao(s) < PRODUCT(7(s), SELECT(wo, {2, 0(s, ®)))
4: Bo(s) < PRODUCT(7(s), SELECT(wg, 2, 0(s, ®)))
5
6
7

fort — 1tok —1do
for s’ € S do
at(s") < PrRODUCT(DOT(a¢—1,p(e, s')),
SELECT(wt, §2,0(s', @)))
Bi(s") + PrRODUCT(DOT(B;—1, p(e, s)),
SELECT(wy, §2,0(s’, 8)))
9:  return GT(SUM(ax—1), PRODUCT(c, SUM(Bk—1))) A AfZg we € 2

*®

SMT variables wg, w1, . .., wg_1 for observations at each step. The observation at each
step is determined by one of the & variables. Let 2 = {wy, wo, ..., w,, } be the set of
observations. We define the SMT expression SELECT (w, {w1, wa, . .., Wm }, 0(s, @))
equal to o(s,w) when the SMT variable w is w € 2. It is straightforward to formulate
by the SMT ite (if-then-else) expression:

ite(w = w1, 0(s, w1 ),ite(w = wa, 0(s,wa), . .., ite(W = wp,, 0(8, Wi ), W) .. .))

Using SELECT(w, {w1, w2, ...,wm},0(s,)), we construct an SMT expression to
compute Pr(w|m, H) where w is a sequence of SMT variables ranging over the obser-
vations {2 (Algorithm 1). Recall the Eqgs. (2) and (3). We simply replace the expression
o(s,w) with the new one SELECT(w, {w1, wa, ..., W}, 0 (s, ®)) to leave the obser-
vation determined by the SMT variable w. In the algorithm, we also use auxiliary func-
tions. PRODUCT(smtEzp,, .. ., smtEzp,,) returns the SMT expression denoting the
product of smtEzp,, . .., smtExp,,. Similarly, SUM(smtEzp,, . .., smtEzp,,) returns
the SMT expression for the sum of smtExp, . .., smtExp,,. GT(smtEzp,, smtE zp,)
returns the SMT expression for smtExp, greater than smtEzp,. Finally, DOT ([ao, a1,

, anl, [bo, b1, . .., by]) returns the SMT expression for the inner product of the two
lists of SMT expressions, namely, SUM(PRODUCT(ag, bg), . . . , PRODUCT(a,, by)).

Algorithm 1 is summarized in the following theorem.

Theorem 2. Let H = ((S, p), £2, 0) be a hidden Markov model, 7, T state distributions
on S, ¢ > 0areal number, and k > 0 an integer. Algorithm 1 returns an SMT query such
that the query is unsatisfiable iff Pr(w|r, H) < ¢ - Pr(w|r, H) for every observation
sequence W of length k.

In practice, the integer k£ depends on the length of observation sequence we want
to make sure to satisfy Pufferfish privacy. For instance, in the model of Fig. lc, the
maximal length of observation sequence is 1 and thus £ = 1. If there exist cycles in
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models such as Fig. 3, which implies loops in the mechanisms, k should keep increasing
(and stop before a set value) in order to examine outputs of different lengths.

6 Pufferfish Privacy Verifier: FAIER

‘We implement our verification tool and present experimental results in Subsect. 6.1. For
the well-known differential privacy mechanisms Noisy Max and Above Threshold, we
provide modeling details in HMMs and verify the privacy wrt. several Pufferfish privacy
scenarios in Subsect. 6.2 and 6.3, accordingly.

6.1 Evaluation for FAIER

We implement our verification algorithm (Algorithm 1) into the tool FAIER, which is
the pufferFish privAcy verifIER. It is implemented in C++ environment with the SMT
solver Z3 [29] and we performed all experiments on an Intel(R) Core i7-8750H @
2.20GHz CPU machine with 4 GB memory and 4 cores in the virtual machine. All the
examples in this paper have been verified.

The inputs for our tool include an HMM H of the mechanism to be verified, dis-
tribution pair (7,7) on states in H, a non-negative real number c indicating the pri-
vacy budget and an input k specifying the length of observation sequences. Note that
unknown parameters are also allowed in the SMT formulae, which can encode certain
prior knowledge or data sets distributions.

Table 2. Experiment results: v indicates the property holds, and X not.

. . . Result
Mechanism Privacy scenario
Query answer Counterexample
In(2)-differential 4
Truncated privacy (Ex. 2)
1 -geometric In(2)-pufferfish X 2
Mechanism privacy (Ex. 3)
In(2)-pufferfish 4
privacy (Ex. 4)
In(2)-pufferfish 4
Discrete Noisy Max privacy (Ex. 5)
(Algorithm 2) In(2)-pufferfish X L,3ipa=ps=pc =%
privacy (Ex. 6)
Above Threshold Algorithm |4 In(2)-differential X w,01, 1,12, 1,12, 1,12,
(Algorithm 3) privacy 1,21, T

We summarize the experiment results in this paper for pufferfish privacy, as well as
differential privacy in Table 2. FAIER has the following outputs:

— Counterexample: If the privacy condition does not hold (marked by X), FAIER will
return a witnessing observation sequence leading to the violation.
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— Parameter Synthesis: If there exist unknown parameters in the model, such as the
infection rate p for some disease, a value will be synthesized for the counterexample.
See Example 6 where counterexample is found when p 4, pp, pc are equal to %; Or,
no value can be found if the privacy is always preserved. See Example 5.

— / is returned if the privacy is preserved.

Note that if there exists a loop in the model, the bound % should continue to increase
when an ‘UNSAT’ is returned. Specially, the bound is set at a maximum of 15 for
Above Threshold. It may happen that FAIER does not terminate since some nonlinear
constraints are too complicated for Z3, such as Example 5, which cannot solved by Z3
within 60 min. Thus we encode them into a more powerful tool REDLOG for nonlinear
constraints [15]. For every experiment in the table, the time to construct the HMM
model and SMT queries is less than 1 s; the time for solving SMT queries are less than
2 s, except for Example 5.

Among the mechanisms in Table 2, Algorithm 2, 3 need our further investigation.
We examine these algorithms carefully in the following subsections.

6.2 Noisy Max

Noisy Max is a simple yet useful data publishing mechanism in differential privacy [14,
16]. Consider n queries of the same range, say, the number of patients for n different
diseases in a hospital. We are interested in knowing which of the n diseases has the
maximal number of patients in the hospital. A simple privacy-respecting way to release
the information is to add independent noises to every query result and then return the
index of the maximal noisy results.

Algorithm 2. Discrete Noisy Max

Require: 0 < vq,v2,...,0, <2
Ensure: The index r with the maximal v, among 01, V2, . .., Un
1: function DISCRETENOISYMAX(v1,v2, ..., Un)

2: M,r,c+— —1,0,0

3 for each v; do

4 match v; with > apply %-geometric mechanism
5: case 0: ¥; < 0,1, 2 with probability 2, 1, %
6: case 1: v; « 0, 1, 2 with probability g, g, g
7 case 2: 9; < 0,1, 2 with probability z, ¢, 5
8 if M = ©; then

9: c—c+1

10: 7« i with probability £

11: if M < ©¥; then

12: M,r, c— v;,i,1

13: return r

In [16], Noisy Max algorithm adds continuous Laplacian noises to each query result.
The continuous Noisy Max algorithm is proved to effectively protect privacy for neigh-
boring data sets [14]. In practice continuous noises however are replaced by discrete
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noises using floating-point numbers. Technically, the distribution of discrete floating-
point noises is different from the continuous distribution in mathematics. Differential
privacy can be breached [28]. The proof for continuous Noisy Max algorithm does not
immediately apply. Indeed, care must be taken to avoid privacy breach.

We introduce our algorithm and
model. The standard algorithm is
modified by adding discrete noises
to query results (Algorithm2). In
the algorithm, the variables M and
r contain the maximal noisy result
and its index respectively. We apply
the truncated %—geometric mecha-
nism to each query with the corre-
sponding discrete range. To avoid
returning a fixed index when there
are multiple noisy results with the
same value, the discrete algorithm explicitly returns the index of the maximal noisy
value with an equal probability (Line. 8—14).

The HMM model with n = 3 queries is illustrated in Fig. 2. The top states labeled
011 and 120 correspond to three query results (on neighboring data sets) and v, i.e.
nothing, is observed in the initial states. Both states have a transition to the state 022,
representing the perturbed query results obtained with different probabilities. The index
of the maximal result will be observed, which is 2 or 3 with probability % Next we
analyze Algorithm 2 under the Pufferfish framework.

Fig. 2. Hidden Markov model for noisy max

Example 5. Consider three counting queries f4, fp, and fc for the number of indi-
viduals contracting the diseases A, B, and C respectively in the data set X2 with
X ={(0,0,0),(0,0,1),...,(1,1,1)}. An element (a,b,c) € X denotes whether the
data entry contracts the diseases A, B, and C respectively. Assume that the contraction
of each disease is independent among individuals and the probabilities of contracting
the diseases A, B, and C are p4, pp, and pc respectively. The prior knowledge induces
an information state for the model in Fig. 2. For example, the state 120 has the proba-
bility 2p (1 —pa) - p; - (1 = pe)®.

Suppose John is in the data set and whether John contracts the disease A is a secret.
We would like to check if the discrete Noisy Max algorithm can protect the secret using
the Pufferfish privacy framework. Let us compute the initial information state 7 given

that John has not contracted disease A. For instance, the initial probability of the state
: 2pa(l—pa)

120 is (1-pa)?+2pa(l—pa)

by computing the probabilities of each of the 3% top states. Given that John has the

disease A, the initial information state 7 is computed similarly. In this case, the initial

probability of the state 120 becomes % - p% - (1 — pc)?. Probabilities of
A

the 33 top states form the initial information state 7. From the initial information state
7 and 7, we compute the probabilities of observing ul, L2, and L3 in the formal model
(Fig. 2). The formulae for observation probabilities are easy to compute. However, the
SMT solver Z3 cannot solve the non-linear formulae generated by our algorithm. In

-p% - (1 — pc)?. The initial information state  is obtained
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order to establish Pufferfish privacy automatically, we submit the non-linear formulae
to the constraint solver REDLOG. This time, the solver successfully proves the HMM
satisfying In(2)-Pufferfish privacy. |

Algorithm 2 is In(2)-Pufferfish private when the contraction of diseases is indepen-
dent for data entries. Our next step is to analyze the privacy mechanism model when
the contraction of the disease A is correlated among data entries.

Example 6. Assume that the data set consists of 2 family members, including John,
and there are 5 queries which ask the number of patients of 5 diseases in the data set.
To protect privacy, Algorithm 2 is applied to query results. Now assume an attacker
has certain prior knowledge: 1. Disease 1 is so highly contagious that either none or
both members infect the disease; 2. Disease 2 to Disease 5 are such diseases that every
person has the probability of pj to catch Disease k; and 3. The attacker knows the
values of probabilities: p,, = % for k € {3,4,5}, but does not know the value of ps.
Suppose the secret is whether John has contracted Disease 1 and we wonder whether
there exists such a py that In(2)-Pufferfish private is violated. We can compute the
initial distribution pair 7 and 7 given the above information. For instance, if John has
contracted Disease 1, then the initial probability for state 21110 is pa(1 —p2) - (3)(1—

) (35)(1 = 15)(1 = )2, Similarly, we obtain the initial information state given

that John has not contracted the disease. Then FAIER verifies the mechanism does not
satisfy In(2)-Pufferfish private with the synthesized parameter p; = % |

Provably correct privacy mechanisms can leak private information by seemingly
harmless modification or assumed prior knowledge. Ideally, privacy guarantees of prac-
tical mechanisms need be re-established. Our verification tool can reveal ill-designed
privacy protection mechanisms easily.

6.3 Above Threshold

Above threshold is a classical differentially private mechanism for releasing numeri-
cal information [16]. Consider a data set and an infinite sequence of counting queries
f1, f2,. ... We would like to know the index of the first query whose result is above
a given threshold. In order to protect privacy, the classical algorithm adds continuous
noises on the threshold and each query result. If the noisy query result is less than
the noisy threshold, the algorithm reports L and continues to the next counting query.
Otherwise, the algorithm reports T and stops.

We consider counting queries with range {0, 1,2} and apply the truncated geomet-
ric mechanism for discrete noises. The discrete above threshold algorithm is shown
in Algorithm 3. The algorithm first obtains the noisy threshold 7 using the truncated
%-geometrie mechanism. For each query result r;, it computes a noisy result 7; by
applying the truncated %—geometric mechanism. If 7; < £, the algorithm outputs | and
continues. Otherwise, it halts with the output T.

Algorithm and Model. To ensure e-differential privacy, the classical algorithm applies
the %— and %-Laplace mechanism to the threshold and each query result respectively.
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The continuous noisy threshold and query results are hence 5- and §-differentially pri-
vate. In Algorithm 3, the discrete noisy threshold and query results are 21n(2)- and
In(2)-differentially private. If the classical proof still applies, we expect the discrete
above threshold algorithm is 4 In(2)-differentially private for § = 21n(2).

Figure 3 gives an HMM for Algorithm 3. In the model, the state ¢;7; represents the
input threshold ¢ = i and the first query result » = f;(d) = j for an input data set
d. From the state ¢;r;, we apply the truncated f-geometrlc mechanism. The state #;7;
hence means the noisy threshold t=1i W1th the query result » = j. For instance, the
state tor, transits to £;7; with probability 2 35- After the noisy threshold is obtained, we
compute a noisy query result by the truncated 5-geometric mechanism. The state t; i
represents the noisy threshold £ = 4 and the n01sy query result 7 = j. In the figure,
we see that the state ¢;r, moves to 17 with probablhty 3 At the state t;7; j, T 1s
observed if j > 1; otherwise, L is observed. From the state ¢;7;, the model transits to
the states ¢;70, ;71, t;72 with uniform distribution. This simulates the next query result
in Algorithm 3. The model then continues to process the next query.

Algorithm 3. Input: private database d, counting queries f; : d — {0, 1, 2}, threshold
t € {0,1,2}; Output: a1, as, . ..

1: procedure ABOVETHRESHOLD(d, {f1, fo,...}. t)

2 match ¢ with > apply %-geometric mechanism
3 case 0: £ < 0, 1, 2 with probability % =, 5

4: case 1: £ < 0,1, 2 with probability £, 2,

5: case 2: £ < 0,1, 2 with probability 5, =, 2

6 for each query f; do

7 ri — fi(d)

8 match r; with > apply %—geometric mechanism
9: case 0: 7; + 0, 1,2 with probability 2, £, &
10: case 1: #; < 0, 1,2 with probability 3, , %
11: case 2: 7; < 0, 1,2 with probability 3, 7, 5
12: if 7 > ¢ then halt with a; = T else a; = L

The bottom half of Fig. 3 is another copy of the model. All states in the second copy
are underlined. For instance, the state EQEO represents the noisy threshold is 2 and the
query result is 0. Given an observation sequence, the two copies are used to simulate
the mechanism conditioned on the prior knowledge with the two secrets. In the figure,
we define the observation set 2 = {u, L, T,00,01,10,11,12,21,22, &, O, &, &}. At
initial states ¢;7; and ¢,r;, only L can be observed. When the noisy threshold is greater
than the noisy query result (fifj and iifj with ¢ > j), L is observed. Otherwise, T is
observed at states fﬁj and Zif j with ¢ < j. Other observations are used to “‘synchronize”
query results for neighboring data sets. More details are explained in [25].

Differential Privacy Analysis. We can now perform differential privacy analysis using
the HMM in Fig. 3. By construction, each observation corresponds to a sequence of
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queries on neighboring data sets and their results. If the proof of continuous above
threshold mechanism could carry over to our discretized mechanism, we would expect
differences of observation probabilities from neighboring data sets to be bounded by
the multiplicative factor of ¢*™™(?) = 16. Surprisingly, our tool always reports larger
differences as the number of queries increases. After generalizing finite observations
found by Z3, we obtain an observation sequence of an arbitrary length described below.
Fix n > 0. Consider a data set d such that f;(d) = 1for 1 <i <mnand f,,(d) =
2. A neighbor d’ of d may have f;(d) = 2for1 < i < nand f,41(d) = 1. Note
that | f;(d) — f;(d)| < 1for1 < i < n+ 1. f’s are counting queries. Suppose the
threshold ¢ = 2. Let us compute the probabilities of observing 1. T on d and d.

Fig. 3. Hidden Markov model for above threshold

Ift =0, fl > t. The algorithm reports T and stops. We cannot obs~erve L™ recall
the assumption that n > 0. It suffices to consider ¢ = 1 or 2. When t = 1, fi(d) = 0
for 1 <i <nand f,y1(d) > 1. Recall fj(d) = 1for1 <i <nand fry1(d) = 2.
The probability of observing 1™ T is (%)” . %. When ¢ = 2, fi (d)y<1for1<i<n
and f,1(d) = 2. The probability of observing L™ T is thus (%)” . % In summary, the
probability of observing L™ T with d whent = 2is 2 - (3)" - 2+ 2. (2)" - 2. The
case for d_is similar. When = 1, the probability of observing L™ T is (%)™ - % When

o 6
t = 2, the probability of observing the same sequence is (%)” : % Hence the probability

of observing L™ T with d’ when ¢ = 2 s 2 (3 2+ 24-(5)" 1 Now,
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Pr(w = L"TfA,t=2) _ & ()" 2+3 ()2
Priw=1rTld t=2) 3 @" 5+5 ()" 3
>3 1%'2%)714.%1 1:}%(%)":E.2n.
3 (3" 5+5-G)" ()" 11

We see that the ratio of Pr(w = L"T|d, ¢ = 2) and Pr(w = 1" T|d ,# = 2) can be
arbitrarily large. Unexpectedly, the discrete above threshold cannot be e-differentially
private for any e. Replacing continuous noises with truncated discrete noises does not
preserve any privacy at all. This case emphasizes the importance of applying verification
technique to practical implementations.

7 Combining Techniques for Differential Privacy

In this section, we investigate into two state-of-the-art tools for detecting violations
of differential privacy, namely StatDP [14] and DP-Sniper [10], to compare with our
tool. We decide to choose these tools as baselines since they support programs with
arbitrary loops and arbitrary sampling distributions. On the contrary, DiPC [3,4], DP-
Finder [9] and CheckDP [32] et al. do not support arbitrary loops or only synthesize
proofs for privacy budget e when Laplace distributions are applied. In order to compare
with our tool FAIER, the discrete mechanisms with truncated geometric distributions
are implemented in these tools. We present comparisons in Subsect. 7.1, and moreover,
in Subsect. 7.2, we discuss how testing and our verification technique can be combined
to certify counterexamples and find the precise lower bound for privacy budget.

7.1 Comparison

Different Problem Statements. As all the tools can be used to find the privacy budget
e for differential private mechanisms, the problem statements they address are different:
I. With a fixed value of ¢, StatDP runs the mechanism repeatedly and tries to report the
output event that makes the mechanism violate e-differential privacy, with a p-value as
the confidence level. If the p-value is below 0.05, StatDP is of high confidence that e-
differential privacy is violated; Otherwise the mechanism is very likely (depending on
the p-value) to satisfy. II. On the other hand, DP-Sniper aims to learn for the optimal
attack that maximizes the ratio of probabilities for certain outputs on all the neighboring
inputs. Therefore it returns the corresponding “optimal” witness (neighboring inputs)
along with a value e such that the counterexample violates e-differential privacy with e
as large as possible. II1. Differently, FAIER makes use of the HMM model and examines
all the pairs of neighboring inputs and outputs to make sure that e-differential privacy is
satisfied by all cases, or violated by an counterexample, with a fixed value of €. IV. Note
that FAIER is aimed at Pufferfish privacy verification where prior knowledge can affect
the data sets distributions and unknown parameters are allowed, which are not involved
in the other tools. Meanwhile, the others support continuous noise while FAIER does
not (unless an HMM with finite state space can be obtained).
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Efficiency and Precision. We make Table 3. Heuristic input patterns used in StatDP and
comparison of the tools in terms of ~DP-Sniper, from [14]
efficiency and precision by perform-

. . . . Cat D D

ing experiments on Discrete Noisy e ! 2

Max (Algorithm2) with n = 5 OneAbowe [(LLLLI 2L L L
queries. The lower bound [9] of the ~On¢Below (111 L1170, 1. 1. 1. 1]
privacy budget, i.e., the largest ¢ that ~ ©On¢Above RestBelow ({1, 1, 1,1, 11712, 0,0,0,0]
the mechanism is not e-differential ~ Onc Below Rest Above [ [1. 1, 1. 1. 1] 1[0, 2,2, 2, 2]
privacy, is 1.372 up to a precision of Half Half (1.1, 1. 1,11 110. 0,2, 2, 2]
0.001. I. Fix an €, StatDP takes 8 s All Above & All Below | [1,1,1,1,1]|[2,2,2,2,2]
on average to report an event 0 along X Shape (1,1,0,0,01[0,0.1,1,1]

with a p-value under the usual setting

of 100k /500k times for event selection/counterexample detection. However, there is a
need for specifying the range of € in advance and more values of € to test will consume
more time. We first select € increasingly with a step of 0.1 in the range of [0, 2]. Then
the range is narrowed down according to the p-values and we select ¢ in the range with
a smaller step 0.01 and so on. The similar process also applies for FAIER. Altogether
StatDP takes around 600 s to get an overview of the results. Fast enough, though, it has
the drawback of instability and the precision is lower than the other tools. It reports the
mechanism satisfies 1.344-differential privacy in the first execution, which is incorrect,
and reports it violates 1.353-differential privacy in the second execution.

II. DP-Sniper returns a witness [0, 2, 2, 2, 2] and [1, 1, 1, 1, 1] with e = 1.371 for
three times, which is correct, stable and the result is almost the true lower bound. How-
ever, it takes around 4600 s on average to train a multi-layer perceptron with 10000k
samples and get this result. Unlike the evaluation in [10], DP-Sniper performs much
slower than StatDP when it comes to discrete random noise. The reason is that DP-
Sniper cannot use high-efficient sampling commands such as numpy.random.laplace to
get all the samples at once. It has to calculate and sample different distributions accord-
ing to different inputs. We’ve tried to use numpy.random.choice to sample different
distributions, but it is inefficient for small vectors and wouldn’t terminate for more than
10h in our experiment. We’ve also tried to reduce the number of samples to 1000k.
This time it terminates with 308 s with an imprecise € = 1.350.

III. FAIER takes less than 1 s to build the HMM model and 160 s to compute SMT
query for every data set (possible initial state), which will be later used to compute on
neighboring data sets if an ¢ is assigned. The results returned by FAIER are the most
precise ones. It takes Z3 523 s to verify that 1.373-differential privacy is satisfied and
234 s that 1.372-differential privacy is violated witnessed by the input pair [0, 2, 2, 2,
2] and [1, 1, 1, 1, 1] and output event 1. It takes only 40 s to verify when ¢ = 1.34, a
little far away from the true lower bound. Altogether it takes around 1600 s to assure
the true bound, which is acceptable.

7.2 Combining Verification and Testing

The findings during experiments inspire us to combine verification (FAIER) and testing
(DP-Sniper, StatDP) together to efficiently make use of each tool. First, we can see that
the witnesses found by FAIER and DP-Sniper are the same one. Actually, if heuristic
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searching strategies for input pairs are used, i.e., Table 3 used in DP-Sniper and StatDP,
FAIER will quickly find the violation pairs, which saves huge time in the occasions
of privacy violations. Second, since the witness returned by DP-Sniper is the optimal
input pair that maximize the probability difference, FAIER can precisely verify whether
the “optimal” witness satisfies e-differential privacy, whereby FAIER will more likely
to find the true lower bound as ¢ increase in short time. Third, since StatDP returns an
imprecise result quickly given an €, we can combine StatDP and FAIER to efficiently
get a precise lower bound. The pseudo-code is in Algorithm 4.

Algorithm 4 first feeds mechanism M as input to the testing tool StatDP, to obtain
an interval I whose left end point is € with p-value <0.05 and right end point with
p-value = 1. StatDP can conclude if p-value<0.05, the mechanism doesn’t satisfy e-
differential privacy with high confidence and if p-value= 1, the mechanism satisfies for
sure. However, for other p-values, StatDP is not confident to give useful conclusions.
Here is where our tool can work out—FAIER can determine whether M satisfies e-
differential privacy, given any e. As a result we can combine to efficiently get arbitrarily
close to the lower bound € wrt. a given precision by binary search. For instance, we
apply StatDP on Algorithm 2 to get an interval I = [1.34, 1.38] according to the p-value
graph, and then apply our tool FAIER to verity e-differential privacy. Consequently, our
tool reports the lower bound is 1.372 (up to a precision of 0.001).

Algorithm 4. Pseudo-code to compute the lower bound
1: procedure COMPUTE LOWER BOUND(Mechanism M)
2: Use StatDP with input M to get an interval | > the left end point is an € with
p-value< 0.05 and the right one is one with p-value= 1
3 Apply binary search on I, in each iteration the value is €
4 repeat
5 Use FAIER with input M and €
6 if result is SAT then > not satisfy e-differential privacy
7: left end point = ¢
8
9
0
1

else > satisfy e-differential privacy
right end point = €
until reaching required precision
return e

8 Related Work

Methods of proving/testing differential privacy. Barthe et al. [7,8] proposed to prove
differential privacy at the beginning. Then a number of work [1,5,6] extended proba-
bilistic relational Hoare logic and applied approximate probabilistic couplings between
programs on adjacent inputs. They successfully proved differential privacy for sev-
eral algorithms, but cannot disprove privacy. Zhang et al. [32-34] proposed to apply
randomness alignment to evaluate privacy cost and implemented CheckDP that could
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rewrite classic privacy mechanisms involving Laplacian noise to verify differential pri-
vacy. Bichsel et al. [9], Ding et al. [14] and Zhang et al. [35] used testing and searching
to find violations for differential privacy mechanisms, the results of which may be too
coarse or imprecise. Liu et al. [24] chose Markov chains and Markov decision processes
to model deferentially private mechanisms and verify privacy properties in extended
probabilistic temporal logic. Mclver et al. [27] applied Quantitative Information Flow
to analyze Randomized response mechanism in differential privacy. We note that all the
automated tools above for proving or testing differential privacy, plus ours, have not
been well studied in privacy mechanisms with considerably large data sets.

Complexity in Verifying Differential Privacy. Gaboardi et al. [19] studied the problem
of verifying differential privacy for probabilistic loop-free programs. They showed that
to decide e-differential privacy is coNP#F-complete and to approximate the level of
differential privacy is both NP-hard and coNP-hard. Barthe et al. [3] first proved
that checking differential privacy is undecidable. The difference with our work lies in
that we study verification problems for mechanisms modeled in HMMSs in Pufferfish
privacy. Chistikov et al. [12] proved that the big-O problem for labeled Markov chains
(LMCs) is undecidable, which is similar to deciding the ratio of two probabilities in
differential privacy. Though, their proof does not apply here since HMMs in our paper
do not have the same non-deterministic power as LMCs.
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Abstract. When designing a static analysis, choosing between a flow-
insensitive or a flow-sensitive analysis often amounts to favor scalability
over precision. It is well known than specific program representations can
help to reconcile the two objectives at the same time. For example the
SSA representation is used in modern compilers to perform a constant
propagation analysis flow-insensitively without any loss of precision.

This paper proposes a provably correct program transformation that
reconciles them for any analysis. We formalize the notion of Flow-
Insensitive-Completeness with two collecting semantics and provide a
program transformation that permits to analyze a program in a flow
insensitive manner without sacrificing the precision we could obtain with
a flow sensitive approach.

1 Introduction

Static analysis designers must face two main challenges. The first one is scal-
ability because the analysis should compute a sound approximation within a
reasonable amount of time. The second one is precision because the approxi-
mation should be accurate enough to prove the target properties on as many
programs as possible.

Abstract interpretation provides a rich methodology to guide the static anal-
ysis design but precision and scalability are often difficult to optimize at the same
time. At one side of the spectrum stand relational abstract interpreters [4,12,14]
that compute expressive symbolic relations on program variables at each pro-
gram point (flow sensitivity). At an other side of the spectrum, flow-insensitive
analyses [17] (such as Andersen’s pointer analysis [2]) compute one global invari-
ant for the whole program, sparing time and memory.

Flow sensitivity allows to compute local invariants at each program point,
without polluting the inferred properties with too many infeasible paths. But
this technique generally requires to remember an invariant at several program
points of the program. This may have bad impact on performance, in particular
memory usage.

On very specific programs, flow-insensitive and flow-sensitive analyses have
the same precision. Figure 1 shows two examples. On the left, the global invari-
ant x = y = 0 is invalid after the last assignment x := 1. However, after a simple
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x := 0; x0 := 0;
y := 0; yO := 0;
x :=1; x1 := 1;

Fig. 1. Comparing flow insensitive analysis precision losses on two programs.

renaming we obtain the program on the right where x0 = y0 = 0 is a valid global
invariant. This renaming is a very simple case of Static Single Assignment trans-
formation (SSA) [5] where each variable is given a unique definition point. The
SSA intermediate representation is very popular in compiler frameworks because
many flow sensitive program optimizations can be performed with a flow insen-
sitive approach on a SSA representation without loss of precision. This has been
observed for constant propagation analysis [10] in an analysis named Sparse
conditional constant propagation [20].

But SSA transformation is not always enough. For example, a popular com-
piler optimization, Global Value Numbering [1] is performed flow insensitively on
SSA form in order to detect equivalence between program sub-expressions and
perform common sub-expressions elimination. But Gulwani and Necula show [6]
it is not precise enough and provide a provably more precise flow sensitive alter-
native version.

An alternative program representation to SSA, the Static Single Information
(SSI) form [19], extends the SSA form with extra-properties. In [19], Pereira
and Rastello consider non-relational analyses which bind information to i) each
program variable, and ii) each program point where the variable is live. They
design the SSI form in order to ensure that each variable will respect the same
invariant at any point where it is alive. Their work shows that for non-relational
analyses, the SSI transformation allows to compute, with a flow insensitive anal-
ysis of the SSI program, the same amount of information than with a standard
flow sensitive analysis of the original program. But they also conclude with the
remark that this property does not hold for relational analyses that compute
relations between program variables. Part of this limitation is removed with [16]
for what is called semi-relational analyses.

This paper is the first to explore the problem without restrictions on the
relational nature of the analysis. We take a semantic approach and do not bind
our work to a specific numerical analysis or abstract domain. We make the
following contributions:

— We propose a new program transformation technique that inserts enough
move instructions (called o copies in the SSI vocabulary and simply copies
in this paper) to turn a SSA program into an equivalent Flow Insensitive
Complete (FIC) program. The obtained program can be analyzed with a flow
insensitive approach without loss of precision compare to a flow sensitive
manner.



A Flow-Insensitive-Complete Program Representation 199

— We formalize the notion of Flow Insensitive Completeness with two collect-
ing semantics. The flow-sensitive collecting semantics characterizes the set of
reachable states in term of program paths while the flow-insensitive collecting
semantics characterizes another set of states with respect to any permutation
of blocks of instructions.

— We prove that the two collecting semantics detect the same set of assert
failures for all Flow Insensitive Complete programs.

— We implement the transformation for Java bytecode in SSA form and observe
that the total number of variables remains reasonable compared to the size
of flow-sensitive analyses invariants.

2 DMotivating Example

We present in Fig. 2 an example that explains why the SSI form does not intro-
duce enough variables to allow relational reasoning, and how our approach han-
dles the problem.

Figure2 contains both the source program and its SSA form in a graph
representation. We iterate the loop 10 times (using the loop counter 7). Since
j is initialized at 0, and is incremented by one or two at each iteration, it is
expected to be in the range [10,20] at the end of the loop.

Note that, in our SSA representation, ¢ instructions are performed before
each junction points, rather than at the entrance. This inoffensive convention
makes our proof easier to expose.

We present in Fig. 3a a SSI form of this program. According to the standard
SSI transformation, copy instructions (o copies of the form z < y) have been
added to all branching points, for all the variables used in the corresponding
branching test (i; for the loop test and z( for the conditional test), and to
blocks containing assumes, for all the variables used in them (j; in b5).

As expected, on this SSI program, a non-relational flow insensitive analysis
like an interval analysis will be as precise as a flow sensitive version. But such a
non-relational analysis will conclude that i4 = 10 and j; € [0,400] and it will
fail to verify the assertion because it fails to discover the relational invariant
between ¢ and j.

A relational abstract domain, like the polyhedral one will not solve the pre-
cision problem either, if it is performed in a flow insensitive style. Indeed the
global polyhedral fixpoint should be closed by operations [i; < 0]j; « 0] (par-
allel assignment of 4; and j;) and [j4 Z j1] so assertion at block bs will raise an
alarm because j4 seems to be 0.

The current paper proposes a FIC form displayed in Fig. 3b to fix this impre-
cision. It is build from the SSA form, by adding copies in strategic blocks. In this
new form, the assertion block bs now uses j4, not ji, so it can only be applied
on a state where j, has been defined by by. This time, the previous problem
does not hold because the global polyhedral fixpoint should be closed by the
operation [js < ji] o [¢1 > 10] which prevents the case i1 = 0;j; = 0 to be
spuriously propagated into jj.
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i+=1; xo < rand() ’ assert (10 < j; < 20) ‘
1

if (x = 0): .
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j+=1 by bs

else:
j 4= 2 zo =0 Lo 75 0
.6 . . 6.
assert (10 <= j <= 20) 2 <d_> b2 @ ? L2
J1 < J2 j1 < J3

(a) Source program

(b) Program in SSA form

Fig. 2. A program and its SSA form with relational information to infer

Notice that we do not introduce copies for ¢; in by before the assume, unlike
the SSI form. The FIC form only ensures completeness w.r.t the assertions, not
to any point of the program. Such consideration avoid the insertion of copies
for every original variable (i, j and k) at each block. The number of variables
would be overwhelming for most abstract domains and one will lose the benefits
of flow-insensitivity on memory saving. Generally speaking, if the number of
variables in the FIC form is greater or equal to the number of blocks times the
number of variables in the original program, then a flow-insensitive analysis on
the FIC form is not an improvement compared to a flow-sensitive analysis on
the source program.

3 Background Definitions

This section introduces the definition of programs used in this paper. The section
ends with the definition of both the flow-sensitive and the flow-insensitive seman-
tics.

3.1 Program

A program P is defined as a graph connecting program points, and whose edges
are labeled with basic blocks. The program as a unique entry point pe, and a
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(b) Program in flow-insensitive complete

(a) Program in SSI form form

Fig. 3. Comparison of the SSI form and the FIC form of the program from Fig. 2

unique exit point pex. A basic block b is a tuple (body, ¢, ¢). The body is composed
of a sequence of atomic instructions which can be assignments, assumes or asser-
tions. The second element, ¢, is a set of (parallel) copies e.g. [x1 < zo|y1 — ¥o]
assigns x1 and y; in parallel. Similarly the last element ¢ is a set of (parallel) ¢-
definitions e.g. [z & Zoly1 & yo]- A more precise definition of their semantics is
developed in Sect. 3.3. A basic block labels an edge between two program points
and thus entry(b) and exit(b) respectively define the unique program points from
and to which the edge goes. For instance in Fig. 2, b; and by have the same entry
point p; and by, b and bz share the same exit point p;. All edges should be
labeled with a non-empty block. We note p LA p’ the fact that block b labels an
edge from p to p'.

For each program point p we define its set of predecessors blocks pred(p) such
that b € pred(p) < exit(b) = p.
Definition 1 (Program point path). A path from program point p to program
point p' is a sequence of program points p,pi,...pn,P such that p Lt P1 by

bn—1 b
- 7 Pn—D-
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Definition 2 (Dominance). p dominates p’ if all paths from pen to p’ must go
through p.

The dominance is strict if p # p’. The dominance relation is transitive, and
it is possible to organize all points in a dominance tree where the parents of a
node dominate it. For instance the dominance tree of Fig. 2 is

pen
|
P1
/ N
D2 b3
|
Pex

The direct dominator of a program point is its parent in the dominance tree.
We extend the notion of dominance to blocks.

Definition 3 (Block dominance). A program point p dominates a block b iff
it dominates its entry point.

3.2 Static Information

Let V be the set of variables in the program p. We can define for each block the
set of variables it uses and defines: uses(b) and defs(b). These sets do not include
temporary variables, meaning that the set uses(b) does not include variables that
are defined before their usage in block b, and the set defs(b) does not include
variables that are not used outside of b. For instance in Fig. 3b, the initial block
by is not considered to be defining nor using iy and jo because these variables
are defined by this block but never used outside of it. The initial block defines
i1 and j; and uses no variables. The block by uses xg, j5 and is and defines i,
and j1~

Unlike textbook SSA form, our ¢-definitions are parts of the predecessors
of the junction point. Because of this convention, a variable is not necessar-
ily defined in a unique block. Despite the unconventional choice, our notion of
program still enjoys the foundational property of definition dominance of SSA
programs.

Invariant 1 (SSA dominance). Let z be a variable, and B be the set of blocks
defining it. Then the set of exit points of B is a singleton {p} and p dominates
all blocks b’ such that x € uses(V').

In textbook SSA form, all variables have a unique definition point. In our repre-
sentation, we split the ¢-function x3 a (1 : b1, 22 : be) attached to a junction

point p, so that there is a ¢-definition xg & 1 in block by and x3 & o in bo.
This definition is in the ¢ component of the block. All other definitions from the
textbook SSA form are found in the body component of the blocks. So, in the
property, B is not a singleton iff x is defined by ¢-definitions.
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Definition 4 (Program points definitions). The definitions of a program
point p is the set of variables defined by all its predecessors:

defs(p) = ﬂ defs(b)

Vbepred(p)

3.3 Block Local Semantics

States. Let V be the set of variables, we note s € S =V — Z a state. It is a
partial function from the variables to integer values and its domain dom(s) C'V
is the set of variables for which it is defined. Partial functions are useful in a
flow-insensitive analysis to account for the variables never assigned. The initial
state sp has an empty domain reflecting the fact that no variable is initially
assigned.

Definition 5 (State equivalence). Two states s and s are said equivalent
on a set of variables V', noted s =~y s, iff they both include this set in their
domains and if they are equal on these variables.

say s < (V Cdom(s) AV Cdom(s') AVu € V,s(v) = s (v))

The symbol {2 denotes an halting state obtained when an assert failed. As a
convention its domain is empty. S? = S U {£2} denotes the complete set of
states.

Semantics. We use the notation [a] : S — P (S*) for the concrete semantics of
a list of instructions a. The output is a set of states since our semantics is non-
deterministic (for instance with the call to rand()). We extend the semantics to
any set of states S C S%, [a](S) = U,cq [al (s) with [a] (£2) = 0.

The semantics of a block is the composition of its parts: [¢] o [¢c] o [body].

We only consider programs which manipulate variables, not memory.
Assumes are supposed to block the execution for states not satisfying its condi-
tion, while an assertion will result in a halting state 2.

[assume(false)] =0 [assert(false)] = 12

The exact definition of the semantics of blocks [b] is not important for the
proofs as long as it respects the following two characterization.

Invariant 2 (Semantic characterization of uses). The semantics of a block
only depends on the variables it uses.

Vb, Vs1, 52,81 € S?, (51 Ruses(s) 52 A 81 € [b](51)) == Tsh € [b](52), 81 Raets(v) 52
With the special case for (2:

Vb,Vs1, 89 € SQ,Sl Ruses(b) 52 — (Q S [[b]](s1) — e [[bH(SQ))
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The non-determinism prevents the conclusion that any state out of [b](sz) is
equivalent to sj.

Invariant 3 (Semantic characterization of definitions). The semantics of
a block only modifies the variables it defines.

Vb, Vs € S, Vs € [b](s), 8" ~v\aefs(v) §

This two characterization consider that temporary variables of a block b are
not in the domain of a state s’ € [b](s) (for any s). They can be ignored or
remove from the domain of s'.

3.4 Flow-Sensitive Collecting Semantics

The flow-sensitive collecting semantics of a program associates to each program
point a set of reachable states LOCAL(p). The function is defined as the least
fixpoint of the following equations.

{S(D} if p = pen
Vp, LOCAL(p) = U [b] o LocAL(p’) otherwise

p'p

Lemma 1. For all program points p,

LOCAL(p) = U [bn] oo [b1](se)
pcnb;l»,,‘blkp a path

The proof of this lemma is classical for least fixpoints and is available in
Appendix A of the full version of this paper [15].

3.5 Flow-Insensitive Collecting Semantics

For the flow-insensitive collecting semantics, the information is not associated to
program points but to the whole program. States are collected from anywhere
in the program: GLOBAL € P (SQ ) The flow-insensitive semantics is the least
fixpoint satisfying the following equation.

GrLoBAL = {59} U|_J [b](GLOBAL)
b

In other word it is the smallest set of states containing the initial state sy closed
by [b] for any block b.

sp € GLOBAL and Vb, [b](GLOBAL) C GLOBAL

In this settings, a block b can be applied to any state, any partial function. In
case the state s does not have a domain containing all variables used by b, then
the semantics of the block is an empty set: uses(b) € dom(s) = [b](s) = 0.
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Lemma 2. Any elements of GLOBAL is actually the result of the application of
a sequence of blocks on the state sy. There is no restriction on the order of these
blocks.

GLOBAL = U [bn] oo [b1](sp)

(b1,e-0,b0)

Thanks to this lemma, it is easy to see that the flow-insensitive semantics
always contains each local invariants.

Corollary 1. For all program points p,

LocaL(p) € GLOBAL

4 Flow-Insensitive Complete (FIC) Programs

The example in Sect. 2 illustrates the need of a different representation of pro-
gram to ensures the equivalence to a flow-insensitive semantics. This section
presents the intrinsic properties expected of the FIC representation. We rely on
these properties to ensure the main theorem of precision in Sect.5. Section 6.2
presents a transformation from an SSA program to a program in FIC form.

Incoherence from Disjoint Definition Points in SSA Form. A first issue of the
SSA form to establish flow-insensitive invariants on variables is the potentially
different definition points of the variables used by a block. The flow-insensitive
semantics can collect states where it applies these definitions in any order, and
any number of times. In Fig. 3a for instance, in block b3, both the variables i3
and j; are used but they are defined in different blocks. i3 is defined in b, and j;
in by, be and bs. Let us consider a state s € [b3] o [bs] o [b1] o [bo](sp) C GLOBAL.
This state has the following evaluations:

s(i1) =0 s(is) =1 s(js3) =4 =s(j1) (since we applied b3 twice)

But with this state we already lost the invariant linking i3 and j3 at the end of
bs : i3 < j3 < 2 x i3. To prevent this, if variables are used in a block &', then
any block b defining some of them must actually redefine all of them, to ensure
coherence.

Intrinsic FIC property 1 (Comprehensive definition coverage). For
any blocks b and V', if b defines some variables used by V', then it defines all
variables used by V. defs(b) Nuses(V') # 0 = uses(b') C defs(b)

On the example in FIC form, the version js introduced in b; ensures the
coherence between ¢ and j.

Invisible Path from Definition to Use. In the introduction we observed that the
assertion was violated because we could apply the block by first, defining j;, and
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then the block b5, which uses j; for the assertion, without taking into account
the assume in block bs. This block by dominates bs and restricts its reachable
states. To account for this control, a new version of j is introduced in b4. This
new version will be defined only in states where the condition 4; > 10 holds.

The minimal property we expect is that for any state reaching the exit of
a definition block ¥', there exists a path from exit(b’) = p to entry(b) which is
non-altering for the variables used by b.

Definition 6 (Non-altering path). Let p be a program point, b a block, and
s € LocAL(p), a non-altering path for s from p to b is a path p by i entry(b)
such that

3s' € [[bn]] O---0 [[bl]](s)7 s' ~uses(b) S

Intrinsic FIC property 2 (Non-altering def-use path). If Vp, 2 ¢
LocAL(p) then for any block b and any program point p,

defs(p) Nuses(b) # 0 — <Vs € LocaL(p), )

3 a non-altering path from p to b for s

We also add a special case for any block which uses no variable. In that case
we only require the existence of some state s’ reaching the block.

uses(b) = 0 = Js’ € LocaL(entry(b))

As it is a strong property on the semantics, we define in the Sect.6.1 syn-
tactical conditions to ensure this property. However we use this property in the
proof of our central Theorem 2, in order to be as general as possible on the shape
of the program graph.

Definition 7 (FIC form). A Flow-Insensitive Complete program is a SSA pro-
gram that respects properties 1 and 2.

5 Main Theorem: Flow Insensitive Completeness

The completeness of the flow-insensitive semantics w.r.t the flow-sensitive one
is evaluated through the violation of assertions. The flow-insensitive semantics
must find an assertion violation (2 € GLOBAL) if and only if there exists a
block b which also violates an assertion in the flow-sensitive semantics (3p, {2 €
LocaL(p)).

Theorem 1 (Semantics completeness). For any program p in FIC form,
(3p, 2 € LocAaL(p)) < 2 € GLOBAL

The implication Jp, 2 € LOCAL(p) = 2 € GLOBAL trivially holds according
to Corollary 1.
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The other implication is more challenging because GLOBAL contains more
states than the flow-sensitive semantics. The Theorem 2 below provides an equiv-
alence which is needed between these states and the states in the flow-sensitive
semantics. With this equivalence theorem we can prove Theorem 1. If there is a
violation of an assert in the flow-insensitive semantics, then it is raised by some
state s at block b, and there must be a flow-sensitive state at entry(b) which is
equivalent to s and will thus also lead to a violation.

Theorem 2 (Equivalence preservation). If Vp, 2 ¢ LoCAL(p), then any
state s of GLOBAL respects the following property P(s).

P(s): Vb, uses(b) € dom(s) = (3s" € LocaL(entry(b)), s Ruses(b) 5')

Proof. We suppose that {2 ¢ LOCAL(p) for any p. Any state s of GLOBAL is the
result of the application of a sequence by, ...,b, of blocks on sy as stated by
Lemma 2. The proof is made by strong induction on the size n of the sequence.

(n = 0) No block is applied and s = sg. For any block b such that uses(b) =
(), property 2 requires that b is reachable and that there exists a state s’ €
LocAL(entry(b)). Since the set of variables used by b is empty, s ~yges(p) -

(n+1) We suppose that we have s € [b,]Jo---o[b1](sp) and that P(s) holds
for any intermediate state s of this sequence. Let us take so € [bp1](s1), we
want to prove P(s2).

Let b such that uses(b) C dom(s3). We do a case study on defs(b,,+1) Nuses(b) =
0.

* Case defs(bn+1) N uses(b) = ), the block b,4; does not define variables
used by b. It implies that all variables used by b are already in dom(s;) since
uses(b) C dom(sz) = dom(s1) U defs(by,41). By P(s1), there exists a state s} €
LocaL(entry(b)) such that 8] Ruses(s) 51 Ruses(v) S2 since the application of by, 1
on s cannot change the valuation of uses(b). We found s} as a candidate for
P(Sg).

* Case defs(by4+1) Nuses(b) # 0, by+1 defines some variables used by b. By
intrinsic FIC property 1 it defines all of them. The existence of sy € [by+1](s1)
implies that uses(b,+1) C dom(sy). By induction P(s1) holds so there exists
s} € LocAL(entry(b,41)) such that 8] Ruses(,,,) S1-

Let us note p the entry of block b, 11, p’ its exit. Proving the existence of the
intermediate state s§ in the figure below will help find the state s/, associated to
s2 in P(s3).

an-‘rl]]
o e i > So
~uses(bni1) Ruses(b) [[dk]] 0---0 [[dl]]
br+1 eI
s} € LocaL(p) - ﬁ[— k. ]—] > s4 € LOCAL(p') ——— s, € LocAL(entry(b))
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The semantic characterization of definitions (Invariant 2) ensures that there
is a state s3 € [by41](s7) € LOCAL(p') such that s3 Ngess(b,.,) 52 € [bnr1](51)-
Since uses(b) C defs(b,+1) by hypothesis, we can restrict the equivalence:
Sé Ruses(b) S2-

Since b1 defines the variables used by b, and since Vp, 2 ¢ LocAL(p),
the intrinsic FIC property 2 implies the existence of a non-altering path p’ i\

L& entry(b) associated to s;. The property ensures the existence of s €
[di] o ... [di](s3) such that s ~ysess) 3. Also, s5 € LOCAL(entry(b)) because
exit(dy) = entry(b). By transitivity s} ~ses(s) S2 and we found s5 with the good
properties so that P(s2) holds.

By induction, P(s) holds for any s resulting from a sequence of blocks and
thus it holds for any state of the flow-insensitive collecting semantics.

We can now make the complete proof of our central Theorem 1.

Proof. (=) Trivially holds by Corollary 1.

(«<=) Let us suppose that there is no program point p such that 2 € LOCAL(p)
but that 2 € GLOBAL. Then there exists a (potentially infinite) sequence of
blocks by,...,b, such that 2 € [b,] oo [b1](sp). Let us consider the state
s # {2 such that s € [b,—1] o --- o [b1] and £2 € [b,](s). To have such output
state from applying b,,, we necessarily have that uses(b,,) C dom(s). Since P(s)
by Theorem 2, and since Vp, {2 & LOCAL(p), there exists a flow-sensitive state
s’ € LocaL(entry(b,)) such that s’ ~uges(s,) 5. Since the behavior of a block can
only depend on its used variables by property 2, if there is an assert violated by
s in by, it is also violated by s’. So 2 € [b,](s) € LocAL(exit(by,)) and we found
a contradiction. The hypothesis that Vp, 2 & LOCAL(p) is false and we proved
that 2 € GLOBAL = Jp, {2 € LOCAL(p).

6 Transformation to Flow Insensitive Complete Form

This section presents a transformation from a SSA program into a FIC one. It
ensures that the final program respects the two intrinsic FIC properties 1 and 2
which do not refer to the asserts. It is expected that the SSA program has been
sliced [13] with respect to the asserts. The sliced program has the same semantics
than the original program with respect to the asserts, which is enough to ensure
the semantics completeness (Theorem 1).

This section of the paper makes the simplifying assumptions that the program
is well-structured and terminating.

A well-structured program comes from a structured language such as a While
language. A more precise definition is available in Appendix B of the full version
of this paper [15].

A terminating program is either one that has a failed assertion, or one where
for all reachable states s in p we can find a non-blocking path from p to the exit

Pex-
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Definition 8 (Terminating program). A program is terminating iff
(Vp, Vs € LocAL(p),3p 2 ... 2 pex, [bn] - . - [D1](5) # V)) V 3p, 2 € LOCAL(p)
Issues with Infinite Ezxecutions. Infinite executions are problematic to ensure

the existence of a path from dominator to dominated. For instance consider the
program on the left of Fig. 4.

b = false: b = false;

: if (true) {

if (true) { hile (true) {};
while (true) {2} e e ’

) end = true

assert(b) ’

assert(end) ; assert(b)

Fig. 4. Infinite loops need a variable to assess their termination

Let us consider the block containing the assignment b = false. Any state
out of this block will go into the infinite loop and cannot reach the assertion.
Thus this program does not satisfy FIC property 2. To satisfy the property, we
would need to artificially introduce a variable that can only be assigned after
the loop and we would need to add a use of such a variable in the block of the
assertion, as we did on the right program of Fig. 4.

6.1 Sufficient Conditions for FIC Form

The intrinsic property 2 we expect from the FIC form is difficult to ensure in the
general case as it relies on the semantics of paths. The main idea of our algorithm
is to look at the paths in the dominance tree from definitions to uses and ensure
that they are constant. This is simpler than checking the existence of a non-
altering path. If the program is well-structured and terminating, constanteness
in the dominance tree ensures the existence of a non-altering path.

Constant Def-use Path. A definition point p of a variable x always dominates
its usage in a block b: it dominates entry(b). We must ensure that the path from
p to entry(b) is constant for the set of variables uses(b).

Definition 9 (Constant path). Let V' be a set of variables and let p and p'
be two program points such that p dominates p' and such that p — p; — -+ —
pn, — p’ is the path in the dominance tree from p to p'. The path is constant
for V if for all the points p; in {p1,...,pn,p'}, pi is either a joining point or its
unique predecessor block b does not contain an assume nor definitions of V.

For instance pe, dominates p3 but the path p., — p1 — p3 is not constant
for any set V because p3 has exactly one predecessor block, by and it contains
an assume.
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Definition 10 (Constant paths completeness). A program is constant
paths complete if and only if for any blocks b and V', if defs(b) N uses(b’) # 0,
then there is a constant path from exit(b) to entry(b’) for uses(d').

Such property on the program is both easy to ensure and to check since we only
have to look at the dominance tree and add copies to split the def-use path of
a variable into two constant paths. The transformation of next Sect. 6.2 directly
enforces this property.

Theorem 3. A well-structured, terminating and constant paths complete pro-
gram satisfies the intrinsic FIC property 2.

To prove this theorem we rely on a lemma: the constant paths imply the exis-
tence of a non-blocking path if the program is well-structured and terminating.

Lemma 3 (Existence of a non-blocking path). In a well-structured termi-
nating program, either there exists a point p such that 2 € LOCAL(p) or for
any points p and p’, if there is a constant path from p to p’ then for any state s
reaching p, there exists a non-blocking path from p to p’ such that p only appears
as the first point of the path.

Proof. The proof is available in Appendix C of the full version of this paper [15].
It proceeds by recurrence on the length of the constant path, and for each pair
Di, Pit1 it reasons by induction on the syntax of the program. Most cases of
pairs where p; dominates a point p;y; in the program show an obvious path
for any s € LOCAL(p), or the direct domination is not a constant path. One
case is to consider with care: the conditional. Indeed the entry of the conditional
dominates its exit, a joining point and the path between the two is constant.
However, to ensure that a state reaching the entry will reach the exit requires
the termination of the program. Otherwise, the state may start an infinite loop
in a branch, never to leave it to reach the exit, as shown on Fig. 4.

The proof of the Theorem 3 is the following.

Proof. 1f there exists p such that 2 € LoCAL(p) then the intrinsic FIC property 2
trivially holds. Let us suppose that it is not the case. Let us take b and b’ such that
defs(b) Nuses(b) # (). Then by constant paths completeness there exists a con-
stant path from exit(b) to entry(b’) for uses(d’). Let us take s € LocAL(exit(b)).
By Lemma 3, and since the program is terminating, there is a non-blocking path
exit(b) L. entry(b') such that [b,] o --- o [b1](s) # 0. We only need to
show that this path is non-altering for the variables of uses(d’). All definitions
of uses(d’) must dominate their use in o’. Thus if some b; modifies uses(d’) then
exit(b;) is a dominator of &'. It can strictly dominate or be dominated by exit(b).
If exit(b;) is strictly dominated by exit(b) we found a program point in the domi-
nance path from exit(b) to entry(b’) which violates the constanteness. This case is
thus impossible. In the other case, exit(b;) strictly dominates exit(b) but defines
some variables used by b’ and thus we are violating constant paths completeness
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since exit(b) is in the way of the constant path from definitions in b; to use in
b'. So b; cannot exist, no definition of uses(b’) can be encountered on the path
and thus it respects the intrinsic FIC property 2: 3s’ € [b,] o - -+ o [b1](s) such
that s ~yges(pr) 5

6.2 Transformation of a SSA Program Form to FIC Form

Our transformation algorithm is developed in Algorithm 1. It proceeds as such:
for any block b’ whose uses has not been checked, we explore the dominance tree
of the program points from its entry to the top of the dominance tree. During this
exploration, the path from the current program point p to entry(d’) is constant
for uses(b'). When the path is no longer constant, we introduce copies at the
current program point p to ensure the intrinsic FIC property 1. The introduction
of copies changes the uses of the predecessors blocks of p, which must be checked
again and is placed in the workset W. It is thus more efficient to check the blocks
whose entry point are the lowest in the dominance tree first (line 45).

6.3 Correctness of the Transformation

The algorithm preserves the invariants of the SSA form (unique definition point
and dominance of the definitions over the uses). These properties are available
as lemmas in Appendix D of the full version of this paper [15] and rely on the
following invariant on the call context of procedure CHECK POINT.

Lemma 4 (Program point invariant). The procedure CHECK POINT is
always called with a program point p which dominates the entry point of b'.
Let p — --- — entry(b') be the path in the dominance tree from p to the entry of
b'. This path is constant for uses(d’).

Proof. The proof is made by recurrence on the recursive calls of CHECK POINT.
If the invariant on the path does not hold we do not make another call. The
complete proof is in Appendix D of the full version of this paper [15].

A direct consequence of this lemma is that p and b’ preserve this relation in
the call to procedure ADD MISSING VARIABLES.

To prove that the algorithm ensures constant path completeness on the final
program, we rely on the following lemma. When the algorithm terminates no
block is left in W ensuring the completeness.

Lemma 5 (Constant paths enforcement). At each iteration of the loop, line
44, if a block V' is not in W then for any other block b, if defs(b) Nuses(b’) # 0
then there is a constant path from exit(b) to entry(d’) for uses(V').

Proof. The complete proof is in Appendix D of the full version of this paper [15].
At the loop entry the invariant holds since all blocks are in W. It is then preserved
through the iteration. For the preservation, we need to check the newly marked
block V', selected in the loop iteration, and we need to check that the invariant
still holds for the blocks that were and still are out of the workset W.
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Algorithm 1. Transformation

24

25:
26:
27:
28:

29

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41

42:
43:
44:
45:
46:
47:

: function GET copry(u, p) > u is a source variable
if p is a joining point then
if Ju’,vb" € pred(p), Ju” such that source[u”] = u A v’ £ 4" €V’ then
return v’
else
Let u’ be a fresh version of u
source[u’] « u
for vb" € pred(p) do
Let u” be a fresh version of u
Add v’ < w in component ¢ of b”.
Add o' & o in component ¢ b”.
b" is added to W
return v’
else
b pred(p)
if Ju’ such that source[u'] = u A u' € defs(b) then
return v’
else
Let u' be a fresh version of u
sourceu'] « u
Add v « u in component ¢ of b
b"” is added to W
return v’
: procedure ADD MISSING VARIABLES(p, b')
for m € uses(V') \ defs(p) do
u «— source|[m]
u’ «+ GET CoPY(u, p)
Replace every use of m in b’ by a use of u’
: procedure CHECK POINT(p, ') > p dominates b’
if p is a joining point then
if 3" € pred(p), defs(b”) Nuses(d’) # 0 then
ADD MISSING VARIABLES(p, b')
else
CHECK POINT(Direct dominator of p, o)

else
b« pred(p)
if defs(b) Nuses(b’) # 0 or b contains an assume then
ADD MISSING VARIABLES(p, b')
else
CHECK POINT(Direct dominator of p, o)

: procedure TRANSFORM( )

W « all blocks

For all variables v, source[v] = v

while W # 0 do
Let b’ be one of the lowest blocks of W (in the dominance tree)
Mark b as unmodified
CHECK POINT(entry(b'), b')
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For ¥/, the invariant on the program point is given by Lemma4.

As for the other blocks still out of W, we did not change their uses (or they
would have been added to W). But we did not change the definition points either:
we only add definitions, never remove them. Thus for all blocks b in W before
and after the loop iterations, the uses have not changed and the definitions of
these uses neither, the set of blocks b such that uses(b”) N defs(b) # @ remains
the same. The paths are still constant as we did not add assumes nor did we add
definitions for existing variables, which include uses(b”) and defs(b).

The loop invariant of line 44 thus holds.

A similar lemma can be proved to ensure comprehensive definition coverage.

Lemma 6 (Comprehensive definitions enforcement). At each iteration of
the loop, line 44, if a block V' is not in W then for any other block b, if defs(b) N
uses(b') # 0 then uses(b') C defs(b).

Proof The proof is made on a similar fashion than the previous lemma.
Theorem 4 (Correctness). The final program is in FIC form.

Proof. When the program terminates, all blocks are out of W. According to
Lemmasb and 6, all blocks satisfy the intrinsic properties 1 and 2. Thus the
program is in FIC form.

Theorem 5 (Termination). The procedure TRANSFORM terminates.

Proof. The procedure terminates if each block can be added to W only a limited
amount of time. To prove it, we show that the number of copies created is limited.
In all the copies - -+ « u inserted by GET COPY, u is a variable from the source
program (in SSA form). The function will not add a copy for the source variable
w in block b if it already contains one. Even in the case where p is a joining
point we will not add copies twice. Indeed if p is a junction point, then the first
time GET copy will be called, all the direct predecessors of p will receive a
copy of u, and therefore the condition line 3 will be satisfied at the next call.
Since the variables of the source program and the program points are limited,
the procedure will add blocks to W a limited amount of time.

Complezity. We propose an asymptotic estimation of the time complexity of
our transformation. The transformation maintains a workset of modified blocks.
Each time a block is picked from this workset, it runs a number of operations
that is proportional to the height of the dominance tree. We call H this height. It
remains to over-approximate the size of the workset. Initially each block belongs
to it. We call B the number of blocks. But a block b may be put again in the
workset by function GET CoPY after adding new variable copies to b. This
operation can not occur more than the number of variables in the original SSA
program. We call V' this number. At worst, the number of operations is then
proportional to H -V - B.
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Fig. 5. Comparison of the number of variables introduced by the FIC transformation
with the number of variables in a flow-insensitive analysis

7 Experiments

For our experiments, we did not exercise a complete analysis because we don’t
have abstract domains that are well suited to our notion of flow-insensitive anal-
ysis. Instead, we measure the number of variables generated by our FIC transfor-
mation and compare the number of variables in a FIC program with the number
in the original program. We did not perform a slicing on the program, thus we
can expect the number of variables in the FIC form to be lower with asserts
taken into account.

We implemented® the transformation described in Sect. 6.2 in OCaml on top
of the Sawja library [9] which parses Java bytecode programs. The input of
our transformation is the JBirSSA intermediate representation which is already
in SSA form. The benchmark used is composed of soot-2.5.0, an optimization
framework, jtopas-0.8, a parsing java library, and finally ivy-2.5.0, a dependency
manager and sub-project of the Apache Ant Project. The whole represents more
than 40K functions.

In term of execution time the FIC transformation rarely dominates the time
of the SSA transformation.

For the first experiment, we compare the number of variables in a FIC pro-
gram with the expected size of invariants in a textbook flow-sensitive analysis
(on the original program). This estimation is computed as the product:

! The source code can be found at https://github.com/SemDyal/fic-transform.
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Fig. 6. Comparison of the number of variables introduced by the FIC transformation
with the number of variables in a sparse flow-insensitive analysis

[number of variables| X [number of program points|

Figure5 displays this comparison. A reference line of equation y = x confirms
that the textbook analysis globally requires to track more versions of variables
than the FIC form.

But some state of the art work try to keep their analysis as sparse as possi-
ble [8]. They keep the invariant only at junction points where the information
must be accumulated, while for other points it can be recomputed on demand. In
a second experiment, we thus compare our number of variables to the number of
joining points times the number of original variables. This corresponds to Fig. 6
which also have a reference line of equation y = x. This figure shows that our
number of variables is comparable to the number of versions required by sparse
analyses.

For graphs readability we actually removed 7 functions from the benchmark
as the size of the invariants were important and it compresses the set of points.
In the first figure, for the removed functions, the number of FIC variables was
greatly inferior to the product for all but one. In the second figure, the functions
omitted had less FIC variables than the result of the product for all but three
functions.

These results show that we can expect a flow-insensitive invariant whose size
is in the same order of magnitude than flow-sensitive ones in state-of-the-art
sparse analyses.
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8 Related Work

Flow-insensitive analyses have often been considered because of their efficiency,
but few of them are able to provide relational invariants.

ABCD [3] is an analysis that check that array accesses are safe (that is within
the bound of the array). Such analysis is used to remove the check around the
accesses, hence speed up the program. To perform an efficient flow-insensitive
analysis while keeping precision, ABCD uses the extended SSA form which is an
intermediate form that closely resemble the SSI form. It uses the ¢-functions at
junction point, but instead of o-functions before the branching, it insert m-copies
to the beginning of each branch. With its specific goal of ensuring inequalities,
ABCD represents its invariant as a graph where an edge v —¢ w denotes the
constraint w — v < ¢ between the variables v and w and the constant c¢. This
method cannot be applied to any relational abstract domain.

The idea to use an extended SSA form for relational analyses has been imple-
mented to validate memory accesses [16] in a compiler setting. The analysis
is based on abstract interpretation but not fully relational: it targets a semi-
relational abstract domain of symbolic intervals. They do not provide semantic
evidences of completeness.

Oh et al. present in [18] a general method for sparse analysis. Sparse analy-
ses try to avoid unnecessary propagations in abstract fixpoint resolution. Their
goal is then similar to us but they directly reason in term of abstract domain
shape. We follow a more theoretical approach and directly reason on collecting
semantics. We leave for further work the design of an abstract relational domain
that would particularly fit our theoretical framework. Experiments in [18] are
rather reassuring because they show a clear performance benefit when using flow
insensitive analyses.

Hardekopf and Lin also demonstrate the benefit of sparse analysis for scal-
ability of pointer analysis on large code bases [7]. They perform a first flow-
insensitive analysis that generate conservative def-use information, and then use
this information to perform a sparse flow-sensitive pointer analysis.

9 Conclusion

We provide a theoretical contribution to the quest for a fast but precise rela-
tional static analysis. We propose a variation of SSI program representation that
permits to analyze a program in a flow insensitive manner without sacrificing
the precision we could obtain with a flow sensitive approach.

The current work is a preliminary theoretical step before building a static
analysis tool that would benefit from this idea. Our main theorem expresses
a completeness property in term of collecting semantics but we do not pro-
vide guarantees about completeness of abstraction. The flow sensitive and flow
insensitive semantics have different forms and their abstraction may behave dif-
ferently. We believe the flow insensitive semantics has a promising potential for
in-place abstraction algorithms. In particular, an abstract domain would greatly
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benefit from this semantics if it is equipped with an in-place abstract operator
that over-approximates the operation X +— X U F(X). We believe a relational
domain as Octogon could be enhanced with such features. This is left as future
work.

An other requirement on the abstract domain is the capacity to track partial
states. The global fixpoint represents properties on states with different domains
and the analysis should not blur the information about one variable when it is
potentially undefined on some paths. This problem has already been tackled by
Liu and Rival [11] with relational domains.

Once we have equipped the FIC form with such analysis, we would like
to perform experiments to measure efficiency gain and compare the abstract
precision with a flow sensitive version.
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Abstract. To understand and detect possible errors in programs
manipulating memory, static analyses of various levels of precision have
been introduced, yet it remains hard to capture both information about
the byte-level layout and precise global structural invariants. Classical
pointer analyses struggle with the latter, whereas advanced shape anal-
yses incur a higher computational cost. In this paper, we propose a new
memory analysis by abstract interpretation that summarizes the heap
by means of a type invariant, using a novel kind of physical types, which
express the byte-level layout of values in memory. In terms of preci-
sion and expressiveness, our abstraction aims at a middle point between
typical pointer analyses and shape analyses, hence the lightweight shape
analysis name. We pair this summarizing abstraction with a retained and
staged points-to predicates abstraction which refines information about
the memory regions that are in use, hereby allowing strong updates with-
out introducing disjunctions. We show that this combination of abstrac-
tions suffices to verify spatial memory safety and non-trivial structural
invariants in the presence of low-level constructs such as pointer arith-
metic and dynamic memory allocation, on both C and binary code.

1 Introduction

Memory errors have long been a very important concern for programmers, due to
the potential safety and security issues that they raise. In particular, programs
that perform low-level pointer and memory operations are particularly tedious to
reason about in languages like C/C++ or assembly. For instance, such patterns
are very common in system software, which makes its correct implementation
challenging.

Many verification techniques aimed at verifying the correctness of memory
manipulating programs have been developed. In particular, several families of
automatic and conservative static analysis focus on such errors. Pointer analy-
ses [34] based on abstractions of aliasing relations [1] or access paths [9] infer
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basic conservative relations between pointer values and can tackle basic memory
errors. However, they are of limited expressiveness, which implies they cannot
establish safety when doing so requires reasoning over structural invariance. On
the other hand, shape analyses based on three valued logics like TVLA [32] or
on separation logics [30] such as Infer [10] or Xisa [6] attempt to establish precise
structural invariants such as the existence of some list or tree data-structures.
Such analyses can cope with the verification of memory safety in presence of
sophisticated structures, yet they are typically less scalable than basic pointer
analyses and also less resilient to a local precision loss in the sense that losing
precision over a fragment of the memory often entails no information can be
recovered about that region. Another limitation is that such analyses are dif-
ficult to apply to low-level code, like low-level C or binary code, even though
some abstractions have been adapted to deal with some forms of pointer arith-
metics [17,19]. Few analyses have been aimed for a precision level that sits in
between those two large classes, like graph heap models [26], but these do not
cope with a low-level memory description.

In this paper, we are interested in memory abstractions expressive enough
to verify type safety, i.e. the preservation of structural invariants expressed by
types, in non-trivial linked data-structure manipulations in both high- and low-
level code (such as assembly or low-level C). This type safety entails spatial
memory safety, namely that each memory access is done on an address that was
previously allocated (and thus that null or out-of-bound pointer dereferences are
impossible). We also seek for a high level of automation (i.e., by avoiding the
requirement of complex handwritten program annotations) and of efficiency.

To achieve this, we propose a novel memory abstraction that is inspired
by the classical notion of types, but applies to the physical representation of
data-structures (Sect.4). Our abstract domain (Sect.5) represents the heap in
a flow-insensitive way, which is less expressive than shape analyses, but allows
a simpler representation of abstract states and simpler, more efficient analysis
operations (Sect.6). Combined with two independent extensions of the domain
to track “retained” and “staged” points-to predicates (Sect. 7), we show that the
combination naturally deals with both C and binary code manipulating dynamic
data structures (Sect. 8).

2 Overview Example

We demonstrate the main features of our analysis on a low-level implementation
of a classical union-find structure inspired by Kennedy [16]. The representation
combines the union-find structure based on chains of pointers to class represen-
tatives in reverse tree shapes with doubly linked-lists for efficient iteration over
the elements of an equivalence class. The whole code is presented in Fig. 1. It is
written in C for the sake of readability, but we are interested in analysis tech-
niques that would also cope with the corresponding assembly code just as well.
Structures uf and dl1 respectively represent the union find and doubly linked
list structures. Following a pattern common in low-level and system code [3],
the structure node comprises both sub-structures uf and d11. Function uf_find
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I typedef struct uf { 24 void dll_union(dll *x, dll *y) {
2 struct uf* parent; 25 y->prev->next = x->next;
3} uf; 26 x->next->prev = y->prev;

4  typedef struct d1l { 27 x->next = y; y->prev = x;

5 struct dll *prev; /* /= null. */ 28}

6 struct dll *next; /* /= null. */ 29  void uf_union(uf *x, uf *y) {
7} dll; 30 uf *rootx = uf_find(x);

8 typedef unsigned int node_kind; 31 uf *rooty = uf_find(y);

9 typedef struct node { 32 if (rootx != rooty)
10 node_kind kind; /* kind <= 5. */ 33 rootx->parent = rooty;

11 struct d11 d11; 34 }
12 struct uf uf; 35 void merge(node *x, node *y) {
13} node; 36 dll_union(&x->dll, &y->dll);
14 uf *uf_find(uf *x) { 37 uf_union(&x->uf, &y->uf);
15 while(x->parent != 0) { 38}

16 uf *parent = x->parent; 39 node *make(node_kind kind) {
17 if (parent->parent == 0) 40 node *n = malloc(sizeof (node));
18 return parent; 41 n->kind = kind;

19 x->parent = parent->parent; 42 n->dll.next = &n->d11;
20 X = parent->parent; 43 n->dll.prev = &n->d11;
21 ks 44 n->uf .parent = NULL;
22 return x; 45 return n;
23} 46}

Fig. 1. An algorithm for union-find and listing elements in a partition.

returns the representative of the class of an element and halves [35] the paths
to the root to speed up subsequent calls. Functions d11_union and uf_union
respectively merge doubly linked-lists and union-finds. Last, merge merges two
node structures and make creates a new node.

Figure2(a) displays an example concrete state, with a class made of three
nodes (and where the node at address 0x60 is the representative). Such states
contain a very high degree of sharing due to the interleaved union-find and
doubly-linked list structures. Moreover, these structures are unbounded. There-
fore, pointer analysis techniques would require tricky and ad hoc adaptations
regarding sensitivity to be precise, so as to divide heaps in regions of pointers
with similar properties; these techniques are too imprecise to verify type or mem-
ory safety for C or assembly. In the same time, shared data structures such as
union-find are notoriously hard to handle for shape analysis abstractions and we
are not aware of any successful shape analysis based verification for a structure
similar to that of Fig. 1.

Our key contribution is to propose an abstract interpretation framework
based on a semantic interpretation of physical types, that simultaneously veri-
fies the preservation of type-based structural invariants, and uses these invariants
to perform and improve the precision of the analysis. This contrasts with the
usual method where syntactic type checking and type-based pointer analyses are
separate analyses, each insufficiently precise to verify type safety for low-level
languages like C or binary. The type-based structural invariant implies divid-
ing the heap into partitions, which are attached flow-insensitive information,
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M :node kind — {z : words | x < 5}
uf — uf.(0)x
d11 + d11.(0)%0 x d11.(0)% 0
node — node kind X d11 X uf

(a) Concrete state. (b) Physical types.

Vv, ¥(o, h, L, I') well-typed state, Vv value :

’ (O 0 v € (node.(0)%x0)z,, => v+4 € (node.(4)*.0 )z, (1)

* (@modeOrsa)) o7 (node.(4)iso)er C (A1L.(0)kz0 e )

v € (d11.(0) %20 ),y = h[v.v +4] € (d11.(0)*x0 )z, (3)

¥ ((B;node.(0)%20)) B#0 (uf.(0)%20)zy N (d11.(0)%x0 )z =0 (4)
(c) Analysis of merge. (d) Some structural invariants entailed by M

Fig. 2. Concrete and abstract states based on physical types.

allowing for efficient static analysis operations. To further improve precision,
our analysis is strengthened by flow-sensitive points-to predicates, whose effect
is comparable to materialization in shape analysis, but the memory summary is
provided by the type-based structural invariants. In this section, we informally
present the basic predicates of our analysis.

Let us examine the types and structural invariants on our example code.
The types are given in Fig.2(b). They must be provided by the analysis user,
and possibly derived in part from the C types, although they express stronger
invariants. Note that our analysis is independent from C typing rules; in partic-
ular C is not type-safe, while we can verify type-safety on both C and compiled
programs. Intuitively, d11.(0)*.., denotes a non-null pointer to the base address
of another, well-formed d11 instance. In the case of uf, the parent pointer may
be null, hence the subscript *_, is absent. Finally, type node_kind is a type
refined with a predicate restraining its possible values: it corresponds to 4-byte
bit vectors whose unsigned value is lesser than 5. Thus, these types can be more
precise than C types, although C types can be translated to our type language.
But they are less precise than shape invariants, as they cannot represent the
relation between different elements of a same type: our d11 structure could e.g.
represent a binary tree with leaves pointing to the root.

These types entail structural invariants, some of which are presented in
Fig. 2(d), that a well-typed state must fulfill. These invariants relate types, inter-
preted as sets of values: (t]) ., represents the set of values for type t. Equation
(1) relates adjacent addresses; Equation (2) describes a subtyping relationship;
Equation (3) relates the type of an address with its contents; and Equation (4)
describes a partitioning of the heap in distinct regions. Note that the correctness
of these invariants implies that the memory layout of the heap must be com-
patible with these equations (as is Fig. 2(a)), which is why the interpretation of
types depends on the heap layout L.

We now turn our attention to our abstract domain. The abstract state shown
in Fig.2(c) represents the initial state when execution of the merge function
begins (this function requires that it is given non-null pointers to node as argu-
ments). Each variable is associated to both an abstract type describing possible
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x (o, uf.(0)x) parent (3, uf.(0)*) (6,uf.(0)x) aFOANBAONIF#O

Fig. 3. Abstract state before line 19 .

values stored in the variable, and to a symbolic variable used to attach numer-
ical constraints to this value. For instance, variable x is bound to physical type
node.(0)*,, meaning that its value belongs to (node.(0)*., )z, ; furthermore it
is bound to symbolic variable o« which is constrained to be not null. Combined
with structural invariants of Equations (1),(2) and (3), we can verify that x+4
(the low-level counterpart of &x->d11) points to a valid address, that can be
safely casted as type d11.(0)*_,, and that reading from this address will return
a value that also has type d11.(0)*_,. Eventually, using these invariants we can
verify that all memory accesses performed by the call to d11_union are valid,
but also that each statement preserves these structural invariants.

However, this approach does not suffice when considering more complex func-
tions, like uf _find. First, we remark that the function may run correctly only
when argument x is non-null due to the dereference at line 15, although the
uf physical type does not require pointers to parent be non-null. Therefore,
the verification of this function will use semantic information coming from the
numerical abstract domain. Next, we observe that to prove the validity of the
access to parent->parent at line 17 , the analysis needs to establish that parent
is non-null, by observing that it is equal to x->parent, which is non-null due
to the condition at line 15. Such reasoning cannot be performed solely using a
combination of types and numerical predicates, because the type-based invari-
ants cannot attach different information to different heap objects of the same
type. Therefore, we augment variable-type predicates with additional boxes, also
defined with a symbolic variable and a physical type, but that corresponds to
some selected heap addresses. Only boxes that are reachable from a variable
finite chain of points-to predicates may be retained this way. Figure 3 shows the
abstract state at line 19 that enables to proves the parent->parent access. In
the following, we call such predicates retained points-to predicates. Such predi-
cates are obtained by retaining information about recent memory writes, loads,
or condition tests and need to be abstracted away as soon as they cannot be
proved to be preserved. Indeed, when the analysis encounters a memory write,
it drops all such boxes for which the absence of aliasing cannot be established
with the current information; some aliasing information (e.g. Equation(4)) comes
from the partitioning of the heap. This process will be referred to as blurring as
it carries some similarity with the blurring encountered in some shape analyses.
Note that the retained points-to predicates offer a very lightweight way to keep
some memory cells represented precisely without resorting to unfolding/focusing
which is generally more costly (but also more powerful in the logical point of
view), as retaining a heap address or blurring it does not require modifying the
summarized heap representation. Physical types coupled with retained points-to
predicates allow to verify memory safety and typing preservation for the four
functions d11_union, uf_find, uf _union and merge.
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stmt = x := expr (z € X) expr == c (cev)
| *¢expr = expr (£ eN) | = (r € X)
| z:=malloci(ezpr) (z€ X, teT) | expr o expr
| skip | stmt;stmt (ce{+ —x,/,5,<,
| if expr then stmt else stmt end =#4,&,],---})
| while expr do stmt done | *xgexpr (£ eN)

Fig. 4. Language WHILEygy

Finally, we consider function make. For the sake of simplicity, we assume
that malloc always returns a non-null pointer. We note that variable n does not
point to a valid node object until the very end of the function, thus attempting to
prove it satisfies physical type node.(0)x_, before that point will fail. In general,
some code patterns like memory allocation or byte-per-byte copy temporarily do
not preserve the structural invariants described by our types. To alleviate this,
we augment our abstraction with a notion of staged points-to predicates that
represent precisely the effect of sequences of store instructions such as the body
of make, allowing to delay their abstraction into types at a later point.

The abstractions sketched so far may also be applied to binary code provided
type information can be recovered from, e.g., debugging information. In the rest
of the paper, we describe more precisely physical types in Sect. 4 whereas retained
points-to predicates and buffered write predicates are formalized in Sect. 7.

3 Language and Semantics

Although our analysis was implemented both for C and binary code, we adopt a
simple imperative language for the sake of presentation. As the grammar in Fig. 4
shows, WHILE g, features basic assignments, usual arithmetic expressions, mem-
ory allocation, and standard control flow commands. Memory locations include
a finite set of variables X and addresses A that can be computed using usual
pointer arithmetic operations. The analysis is parameterized by the choice of an
application binary interface (or ABI) that fixes endianness, basic types sizes and
alignments. In the following, we assume a little-endian ABI is fixed and let W
denote the size of words. Memory access patterns of C can be translated into
WHILEygy,; for instance, assuming a pointer size of 4 bytes, x->prev turns into
*4(x+4). We leave out functions, that our analysis handles in a context sensitive
manner.

We assume that instances of malloc are marked with a type ¢, though we
define the set of types in Sect. 4.

The values manipulated by WHILE, are bit vectors, i.e., non-negative inte-
gers as fixed-size sequences of bytes, so the set of values V is defined by:

V={(v)]lLeNwvel0,2% 1]}

If n > 0, we let V,, denote the set of bit vectors of length n. We extend the binary
operator notation to bit vectors of the same byte length, i.e., (¢, v1)o (¢, v2) means
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(¢, v1 o v3). The concatenation of any two bit vectors z and y is denoted z :: y
and is defined by (£1,v1) == (£2,v2) = (I1 +1a, v1+2840y). The set of addresses A
is a subset of Vyy. As usual, we let stores map variables to their contents (thus,
¥ = X — V) and heaps be partial functions from addresses to their contents
(H= A — V;). Moreover, the set of states is S =% x H.

Given a heap h € H, a € A, and ¢ € N, we let hla..a + £] denote the reading
of a cell of size ¢ at address a. It is defined by hla..a + ¢] = h(a) :: h(a + 1) =

2 h(a + £ — 1). We denote by o[z « v] the store o with 2 now mapped to
v, and by hla..a + £ < v] the heap h with values at addresses a (included) to
a + ¢ (excluded) replaced with the bytes from v. Finally, dropping a range of
mappings from a heap is noted hla..a + ¢ — 1].

The semantics of the language is given by a transition relation — € (stmt x
S) x (stmt x S) whose definition is standard (and given in the appendices of the
paper [29]). We let {2 denote the state after a run-time error (such as division
by zero or null pointer dereference), and Efe] : S — V x {2} denote expression
evaluation. Last, to express the soundness of the analysis, we define a collecting
semantics as follows. Given a program p, the semantics [p] : P(S) — P(S) maps
a set of input states into a set of output states and is such that (¢, h’) € [p](S)
if and only if there exists (o, h) € S, and a sequence of transitions (p, (o,h)) —

(p1,(01,h1)) — ... = (pn, (On, hyn)) — (skip, (¢, h')).

4 Physical Representation Types

In this section, we formalize physical representation types (or, for short, physical
types) and a typed semantics, that serve as a basis for our analysis. The core
idea here is to define a notion of well-typed state which will be used as the base
invariant representing the summarized regions of memory.

Definition. As shown in Sect.2, physical representation types are aimed at
describing the memory layout of memory regions using predicates inspired by the
standard types, but extended with additional properties. Therefore, the set of
physical types comprise standard types for the representation of not only base
values, but also structures and arrays. Moreover, they attach to each pointer
variable not only the type of the structure that is pointed but also the offset in
the block and information about the possible nullness of the pointer.

In order to describe additional constraints such as array indexes, physical
types may be refined [14,31] with numerical constraints, that may bind not
only the corresponding value, but also existentially quantified symbolic vari-
ables (representing e.g. the unknown size of an array). To this effect, we let
V¥ = {ag,a1,...} denote a countable set of symbolic variables. Moreover, the
concretization of types needs to reason over the actual value of symbolic vari-
ables. Such a realization of symbolic variables to values is called a valuation and
is usually noted v : VF — V.

Finally, the analysis is parameterized by a fixed set of type names N, and a
mapping M € N — T binding type names to types. Type names have two uses:
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predexpr(x) := x (constrained type variable)

| ¢ (constantc€V) | a (symbolic variable a € V¥)
| predexpr(x) ¢ predexpr(z) (binary op.,o € {+,—, X, })

pred(z) ::= predezpr(x) > predezpr(z)(comparison, e {<, <, =,#}
| —pred(xz) | pred(x) A pred(zx)

T >t :=word, (base type of size n bytes)

| n (named type with type name n € N)
| tax (possibly null pointer)
| ta¥zo (non-null pointer)
| txt (product type)
| {z:t]|pred(x)}  (type with a refinement predicate)
| t[s] (array type, s € N U V)

Tadty == t.(k) (address type with offset, k € N)

Fig. 5. Definition of physical representation types.

first they break cycles in the definition of recursive types; second they distinguish
types otherwise structurally equal (i.e. it allows the type system to be nominal),
and in particular pointers to two structurally equal types with different names
will not alias. For instance, in Sect. 2, we considered recursive types d11 and uf,
and Fig. 2(b) gives an example of a mapping M.

Definition 1 (Physical representation types). The set T of physical rep-
resentation types is defined by the grammar in Fig. 5.

Note that, a type refined by a predicate makes use of a local variable x that
denotes the value of this type and is meant to be constrained in the matching
pred(z) predicate, which is why grammar entries predezpr(x) and pred(x) take a
variable as parameter. An address type t.(k) € T 4 represents the k-th byte in a
value of type ¢. Finally, the pointer types t,* and ,%., respectively account for
the possibly null and definitely non-null cases. Thus, ¢.(k)*., should be inter-
preted as the address of the k-th byte of a value of type ¢t and t.(k)* represents
the same set of values, with the addition of the value 0.

Ezample 1 (Doubly linked-lists and structures). Based on Definition 1, the fact
that a d11 object boils down to a pair of non-null d11 pointers can be expressed
by the type d11.(0)x., x d11.(0)*_,. We also remark that padding bytes added
in structures to preserve field alignments can be added using ... X wordy.

Before we can formally define the denotation of types, we need to introduce
a few notions. As usual in languages like C, we can compute the size of the
representation of a type. Since arrays may not be of a statically known size,
the size may depend on the actual value of symbolic variables, hence it needs
to be parameterized by a valuation v. Then, size is computed by the function
size, : T — N defined by:

size, (t1 X ta) = size, (t1) + size, (t2)
s-size,(t) ifseN
v(s) - size, (t) if s € V*

size, (word,) =n
size, (to*) = size, (ta*zy) = W

size, ({z : t | p(x)}) = size, (t) size, (t[s])
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Memory Labeling. Physical types are aimed at describing not only variables like
standard types do, but also memory locations. To formalize this, we introduce
labelings as mappings from addresses to physical types.

Definition 2 (Labeling). A labeling is a function £ : A — T4 such that each
tagging of a region with a type is whole and contiguous, i.e., for all typest € T,
for all addresses a € A, if we let n = size,(t), and if there exists k € [0,n — 1]
such that L(a + k) = t.(k), then:

L(a)=t(0)ALa+1)=t(D)A...ANLa+n—1)=t(n—1)

We extend this notion by letting labelings return a type: if £(a) = t, then it
should satisfy the above property. Moreover, we let L denote the set of labelings.
Intuitively, £(a) = ¢ means both that a points to a value of type ¢, and that a
has type t.(0)*...

Ezample 2 (Labeling). We consider the state of Fig. 2(a). In this case, the rela-
tions below form a valid labeling of the memory:

L : 0x20 — node.(0) 0x21 +— node.(1) ... 0x2c — node.(15)
0x60 +— node.(0) 0x61 — node.(1) ... 0x6c — node.(15)
0x80 — node.(0) 0x81 — node.(1) ... 0x8c — node.(15)

Subtyping Relation. In Example 2, the labeling £ conveys that the type of
address 0x24 is node.(4). But we could also view this offset as the base address of
a doubly-linked list and give it type d11.(0), since node contains a d11 at offset
4. However, the former is more precise: all memory cells that contain a node.(4)
contain a d11.(0), but the converse is not true. This remark motivates the def-
inition of a physical form of subtyping relation. Intuitively, the above remark
should be noted node.(4) =< d11.(0). More generally, t.(n) < u.(m) means that ¢
“contains” a u somewhere in its structure.

Definition 3 (Subtyping between address types). The relation < € T4 x
T4 is defined inductively according to the rules below:

t=M() 0<Ek<size,(t) t.(k) <u.(l) w.(l) 2v.(m)
t.(k) < t.(k) n.(k) 2 t.(k) t.(k) < v.(m)
0 <k < size,(t1) 0 < k < size, (t2)

(tl X tQ)(k) =< tl(k) (tl X tg).(SiZey(tl) + k) = tQ(k)
0<g<s 0<k<size,(t)

#[s]-(q - sizeu () + k) < £.(k)

Interpretation of Types. We now give the meaning of types in terms of an inter-
pretation function that maps each type into a set of values. Unlike classical
notions of types, the interpretation of a physical type depends on the data of
a labeling £ to resolve field pointers to other structures and on a valuation
v : VB — V in order to check that side predicates are satisfied. In the following,
we let eval, : pred x V — B be the function that maps a predicate to its boolean
value for valuation v (the definition of eval, is classical thus omitted).
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Definition 4 (Interpretation of types). Given labeling L and valuation v
the interpretation function (-)z. : T — P(N) is defined by:

(wordy, |z, = Va (ta*soly ={a €A | L(a) 2 t,}
(]tl X tg I)E,V = {’Ul U9 |VZ7 v; € (]ti D[:ﬂ/} (]ta* DEW = (]ta*¢o Dﬁ,y U {0}
({z:t | p@)} e ={v e (t)e | eval,(p,v) = true}
(tls])ey ={vo o1t mwg_q | wo, .01 € () 2w}

As shown below, the interpretation is monotone with respect to subtyping, which
is consistent with Liskov’s substitution principle [22], which means that all prop-
erties of addresses of type 7 also hold for addresses of type v, where v < 7:

Lemma 1 (Monotonicity). Let t.(n) and u.(m) be two address types such that
t.(n) 2 u.(m). Then (t.(n)*.0 )z, C (u.(M)*s0 )z,

Ezample 3. In Fig.2(a), and using the labeling of Example 2, (node.(4)%., )z,
and (d11.(0)*., )z, both denote the set of addresses {0x24, 0x64, 0x84}.

In the analysis, the notion of subtyping and its properties with respect to inter-
pretation have two applications: first, they allow verifying memory safety and
the preservation of structural invariants by checking subtyping is preserved by
memory updates; second, they also allow to over-approximate aliasing relations
as we demonstrate now.

Definition 5 (Set of addresses covered by a type). Let L€, v: Vi -V,
and t be a type. Then, the set of addresses covered by type t is:

addrg , (t) i={a € A| 3, 0 < i <size,(t) A L(a) Xt.(3)}.

Definition 6 (Type containment). Let v : V¥ — V be a valuation and t,u € T
be types. We say that ‘¢ contains v” if and only if:

i € [0,size, (t)), Yk € [0,size,(u)), t.(i + k) < u.(k).

Theorem 1 (Physical types and aliasing). Let t,u € T. Then, either t
and w cover disjoint regions, or one contains the other, i.e., if addrz , (t) N
addrg , (u) # 0, then t contains u or u contains t.

Proof. This comes from the fact that < is a tree relation.

This result entails that physical types can be used to compute must-not alias
information. As an example, in Fig. 2(a), if we consider types uf and d11, neither
of them contains the other, thus their addresses are disjoint.

States in a Typing Environment. In the following paragraphs, we define a typed
semantics for WHILEy;,. This semantics is conservative in the sense that it
rejects some programs and executions that could be defined in the semantics of
Sect. 3. In this second semantics, states are extended with typing information.
Its goal is to serve as a step towards the verification of preservation of physical
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ceV, cEA
(o,h, L, ") F ¢: wordy, (o,h, L, 1) Fc: L(c)*x0 (o,h, L, Fx: I'(x)
(o h, L, ) Fe:t.(i) %20 t.(i) =X u.(4) (o,h, L, D) Fe:t.(i)*  t.(i) X u.(j)

(o,h, L, 1) Fe:u.(f)*x0 (o, h, L, 1) Fe:u(f)=
(o,h, L, ) Fe:t.(0) %z size,(t) =€ (o,h, L, ) ey : word,, st ez :word,
(o,h, L, 1) | #pe i t (o,h, L, ") | e1 ¢ ez : wordy,

(o,h, L, 1) Fer:t.(0) %20 (0,h, L, )1 ez :wordyw Efex](o,h) =v2 0 < 0+ va < size,(t)
(o,h, L, ) Fe1+ea:t.((0+ v2))kz0
(o,h, L, ) Fe:t eval,(p,Ee](o,h)) holds (o,h, L, ) Fe:t.(0)« Ele](o,h) #0
(o,h, L, ) Fe:{x:t|p(x)} (o,h, L, ) e t.(0)%x0

Fig. 6. Typing rules for WHILEygy expressions.

types. More precisely, a state should enclose not only a store and a heap, but
also a labeling and a map from variables to types. Furthermore, such a state is
well typed if the heap is consistent with the labeling and the variable values are
consistent with their types.

Definition 7 (Well-typed state). A state is a 4-tuple (o,h, L, I"), where o €
Y, h e H, L is alabeling, and I' : X — T maps variables to types. We write S;
for the set of such 4-tuples.

Moreover, state (o, h, L,I") is well typed if and only if:

1. The labeling is consistent with the heap: for all address a € A, if there exists
a type t such that L(a) = t.(0), then hla..a + size,(t)] € (t)c.;
2. Variables are well-typed: for all variable x € X, o(z) € (I'(z))z,.-

Typed Semantics of Expressions. Typing of expressions aims at proving that the
evaluation of an expression will either return a value consistent with the type or
a runtime error. Unlike classical type systems, we do not use physical types to
prevent runtime errors directly; instead, we let the analysis discharge the verifi-
cation of memory safety as a second step, after types have been computed. Given
a store o, a heap h, a labeling £, a typing of variables I', an expression e, and a
type t, we write (o, h, L,I") I e : t when expression e can be given type t in the
typing state (o, h, £, I'). The typing of expressions are given in Fig. 6. Intuitively,
the type of addresses (resp., variables) is resolved by L (resp., I"). Rules for base
values and binary operators are classical. Memory reads and pointer arithmetics
are typed using corresponding offset calculation over physical types. Subtyping
allows replacing a type to a container type at pointer dereference points. Finally,
types of expressions can be refined by the values these expressions evaluate to.
This typing is sound in the following sense:

Theorem 2 (Soundness of typing of expressions). Let an expression e,
a valuation v € V¥ — V, a typing state (o,h,L, ") and a type t € T. Then, if
(o,h, L, T) is well typed under v, if (o,h, L, ") F e : t, and if E[e](o,h) = v,
then either v =0 orv € (t)c.-
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(o,h, L, I Fe:t E[e](o,h)=v
(x =e, (o,h, L, F)) — (skip, (olx < v),h, L, [z + t}))
(o,h, L, ) Feq : t.(0)%0
(o,h, L, T) ez t size, (t) = ¢ Elei](o,h) = (W, a) Elez2](o, h) = (£,v)
( xg €1 := ez, (o,h, L, F)) —t (skip7 (o,h[a..a+ £ <+ v], L, F))

Fig. 7. Selected transition rules for programs.

Note that an expression may be given several types in a same state due not only
to subtyping but also to pointer arithmetics. For instance, if 8 has type ¢.(0)x,
and 16 has type u.(0)#, then 8416 is at the same time of type t.(16)* and u.(8)x*.

Typed Semantics of Statements. The typed semantics of instructions is defined
by a relation —; € (stmt x S;) X (stmt x S¢). It is mostly similar to the untyped
semantics, but rules involving memory writes differ. Figure 7 displays the rules
regarding memory writes. The rule for assignment not only updates the store but
also the typing environment I'. We note that this semantics is non-deterministic
since the type of an expression is not unique in general. This semantics enjoys
the type preservation property:

Theorem 3 (Preservation of typing of states). Let a wvaluation v
V¢ — V, and a typing state (o9,ho, Lo, o), well typed under v, such that
(00, ho, Lo, [0) —¢ (01, h1, L1, 11). Then, (o1,h1, L1, 171) is well typed under v.

Therefore, as we consider executions starting in a well-typed state only, The-
orem 3 entails that well-typedness is an invariant. This semantics is not com-
putable in general.

Last, we note that the typed semantics is more restrictive than the untyped
one:

Theorem 4 (Semantic comparison). If the typing states (oo, ho, Lo, o) and
(01, h1, L1, 1) are such that (po, (00, ho, Lo, 10)) —+ (p1, (01, h1, L1, 11)), then
(o, (00, ho)) — (1, (01, h1))-

Intuitively, the typed semantics is more restrictive than the untyped semantics
in two ways: first, it considers only well-typed initial states only; second, it
considers ill-typed memory writes as blocking, even though such a write may
be part of a program fragment that overall preserves invariants. Finally, note
that malloc calls cannot be readily incorporated in the typed semantics; this is
solved in Sect. 7.

5 Type-Based Shape Domain

We now set up the type-based shape abstract domain which serves as a basis for
our analysis by defining its abstract elements and concretization function. This
abstract domain combines type information with numerical constraints. Types
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constrain the regions pointed to by variables and may contain symbolic variables
denoting numerical values. To cope with numerical constraints, our abstract
domain is parameterized by a numerical domain such as that of intervals [8] or
any other abstract domain. Thus, we assume such an abstract domain Df  is

fixed, together with a concretization function vy : D%, — (V& — V).

Abstract Types. First, an abstract type defines a set of types where all symbolic
variables are mapped into a numerical value. Due to the dependency on the
association of symbolic variables to numerical values, its concretization returns
pairs including a valuation v : V& — V. It boils down to either a physical type or
either of the L, T constant elements.

Definition 8 (Abstract types). The set of abstract types T* is defined by
the grammar below together with its concretization v : T# — P(T x (V# — V)):

TEoth =1 v L — 0
| t.(a)x T — T x (VE = V)
| t.(a)*0 t(a)x — {{t.(v(a))*, v) |0 <v(a) <size,(t)}
| T t.(a)k o — {(E.(V())*s0, V) | 0 <v(a) < size,(t)}

Ezample 4 (Array type). As an example, the abstract type and numerical con-
straints below abstract the information that one would attach to a pointer to
some array of 10 integers:

— abstract type int[10].(«) states that we are looking at an address somewhere
into such an array;

— numerical constraints « € [0,39] A Ik € N, o = 4k (expressible in a reduced
product of intervals and congruences) refines the above abstract type by fil-
tering out misaligned pointers.

Note that an address into an array of statically unknown length would write
down int[a/].(cr), with matching numerical constraints.

Type-Based Shape Abstraction. At this point, we can formalize the type based
shape domain as follows, by letting each variable be abstracted by an abstract
type. In order to also express constraints over the contents of variables, this
abstraction also needs to attach to each variable a symbolic variable denoting
its value.

Definition 9 (Type-based shape domain). We let the type-based shape
domain H* denote the set of pairs (0%, I'*) pairs called abstract stores, where:

— ot 1 X — V¥ is a mapping from variables to symbolic variables,
— and I'* € X — T* is a mapping from variables to abstract types.

Moreover, the concretization for H¥ is the function g : Hf — P(S; x (VF — V)
defined by:

YH (Fﬁ) = {((0, h,L,I), 1/) | (o,h, L, ) is well typed under v
and Vz € X, ([(z),v) € yp(I*(x))
and Yz € X, o(x) = v(o*(z))}
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Definition 9 does not provide representable abstract states quite yet. Indeed,
we still need to reason over the possible numerical values denoted by symbolic
variables. The numerical abstract domain allows completing this last step.

Definition 10 (Combined shape abstraction). The combined shape-
numeric abstract domain S* and its concretization vs : 5% — P(S; x (V¥ — V)
are defined as follows:

S u=H x Dhw  vs(WF 1) = {(s,v) € yu(h¥) | v € ()}
Figure 2(c) provides an example of an abstract state in this combined abstrac-

tion.

6 Static Analysis

Our static analysis is a standard, forward, abstract interpretation-based static
analysis [8]. We focus on important operations, like verifying that stores preserve
type invariants, or the lattice operations. Both of these operations rely on a
procedure called abstract type checking.

Structure of the Interpreter. The analysis of WHILEgy expresslons and state-

ments is respectively performed by the two functions & [[]] :expr x SF —
(VE x T#) x Di,. and []* : stmt x S — S%. The evaluation of expressions

manipulates abstract values Wﬁ def vt T#, which are the counterpart of concrete

values in the concrete semantics. An abstract value ays is just a pair (o, t*) € Vg
with a symbolic variable o and an abstract type t* respectively describing all
the possible values and some possible types for an expression. The evaluation
of symbolic variables is standard [5] (each node in the expression tree creates a
fresh symbolic variable and updates the numerical domain accordingly), and the
computation of abstract types follows closely the concrete typing rules given in
Fig. 6.

Abstract Type Checking. Abstract type checking verifies that, given the numer-
ical constraints of v¥, casting an abstract value a,: into type uf is safe (this

1
is written as o : t! % u!). In most type checks (that we call upcasts), this is
done by checking that ¢* %ﬁﬁ uf, where <% is an ordering between abstract types
which derives from the subtyplng relation (=) between concrete address types:

Theorem 5 (Soundness of abstract subtyping). Let v# € D¥ th uf € TF,

t.(i) and u.(j) € Ty. If t! <ﬁu uf, then

Vv € yn(Vh), (t.(0),v)* € yr(t) A (u.(j), v)* € yr(uf) = £.(i) < w.(j).

Ezample 5. (Upcasting after pointer arithmetics) Following Definition 3,
int[10].(a)x* 5511 int.(0)* holds when both numerical constraints a € [0,39] A
Jdk € N, a = 4k hold. Thus the abstract type given in Example 4 can be
safely casted into an int*. Note that querying the numerical abstract domain is
necessary to check the safety of this cast.

num?’
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Some other type checks, like verifying that it is safe to transform a t* pointer
to a t*, pointer, or checking that the predicate of a refinement type holds, are
downcast operations: to verify the safety of the cast, we examine not only the
types, but also the numerical properties of the value being type checked:

Ezample 6. (Downcasting to a *_, pointer) In Fig.1, the merge function gives
&x->d11, whose type is node.(a)* with « = 4, as an argument to d11_union,
which eventually gets written into y->prev, a memory location that may contain
values in the abstract type d11.(8)*., with 8 = 0 : this requires to perform a
type check. Casting to d11.(3)# can be done using the abstract subtyping relation
node.(q)x* juuﬁ d11.(8)*, but to cast to d11.(8)*.,, we must additionally check
that the value x->d11 (i.e. &x + offset 4) cannot be 0; this makes use of the fact
that pointer arithmetics inside a valid object cannot wrap around.

The soundness of the abstract type checking operation and its proof are
established using the interpretation of the types:

Theorem 6 (Soundness of abstract type checking). Let (h*,1*) € S*. Let

ot

a € V! be a symbolic variable and t¥, u? be two abstract types. If o : t4 s uf then
Y((o,h, L, T),v) € v5(h*, v*), v(a) € Qtﬂ[)g’l, — v(a) € (uf)c.,.

)

Interpretation of Base Statements. As shown in Example6, the analysis must

ensure that all memory updates preserve the typing of states (Theorem 3), and

abstract type checking is a central operation for doing this. The interpretation

of memory updates is done as follows:

[xcer == e2]* (h¥, V%) = (R, V3) if o - t# i’% u® where u is a non-null pointer type
and (o, t%,08) = E[ea] (hF,vF) and (3, w, v3) = E[ea]* (hF, 1)
and w® is the type of the values pointed by (a,u)

[xeer = ea]* (R¥, 1) I otherwise

Note that memory updates do not modify the representation of the abstract
heap, and is thus a fast operation. The evaluation of assignments is also fast,
since it only needs to evaluate an expression and to record the abstract value in
the abstract store:

[ = el (0", 1*), %) & (o*[a — al, I*[a — 1], )
where (o, t*, vf) = €]’ ((o*, '), 1)
Lattice Operations. The analysis of condition and loop commands is based on
approximations for concrete unions and on conservative inclusion checks Cg o
to test whether a post-fixpoint is reached [8]. The latter relies on abstract type

checking. This operation consists in type-checking every WHILE,, variable, in
addition to verifying the inclusion of the numerical constraints:

((of, 1), V) Coer ((0F, 1), V)
Vﬁ
Vi Cpps vh and Vo€ X: (of(x): [i(z) % Ii(x)

def



234 O. Nicole et al.

where @ : V8 — V# is a renaming function that handles the fact that each
abstract state refers to different variables [5]) (here it can be defined as
Vi € X : ®(ol (z)) = oh(x)).

Theorem 7 (Soundness of inclusion). Let s, Sg € S¥. Then:

sti Co st sg = V(s,v) € 73(8%), (s,vod) e Ws(sg)
The join operation can be deduced from the definition of Eg s:. These lattice
operations are necessary to define the interpretation of while and if statements
(which is standard). The interpretation of other statements is also standard.

Theorem 8 (Soundness of the abstract semantics). Let s* € SF be an
abstract state and ¢ € stmt be a statement. Then, vs([c]*(s%)) 2 [c](ys(s?)).

7 Retained and Staged Points-To Predicates

The type-based shape abstraction suffers from two important limitations. First,
the heap is represented only in a summarized form by the type constraints, and
there is no way to retain additional information about the contents of the heap.
Second, all stores to memory must preserve the type invariants—situations where
the type invariants are temporarily violated are not handled. This happens when
data is allocated but not yet initialized (as in function make in Fig.1), when
updating a value with an invariant that spans multiple words, and in other
situations.

We solve both problems by tracking some points-to predicates and attaching
specific properties to them. The meaning of a points-to predicate a;: —y Byt
is, that for all possible valuations v, the value (of size ¢) stored in the heap
at address v(a) is v(B) and that « satisfies the abstract type t* and 3 the
abstract type uf. Points-to predicates are represented using a simple map p
mapping a symbolic variable to another variable and size, and is concretized by
considering all the possible values for each symbolic variable. In the following,
we define and track the so-called retained and staged points-to predicates. Their
combination is formally defined in Fig. 8 (where each points-to predicate ay —
B¢ is represented by bindings ay: +— (£, 3,:) of a function p* € P*).

Retained Points-to Predicates. The type-based shape domain remembers flow-
sensitive information only about the store, as the heap is represented only using
the type invariants. We use retained points-to predicates oy +—y (,: to store
flow-sensitive information about the heap: they provide symbolic variables, like
(3, to represent values stored in the heap, so that they can be attached numerical
and type information. In practice, retained points-to predicates achieve an effect
comparable to materialization in shape analyses! The concretization of these

predicates is done by standard intersection.

L' A difference is that retained point-to predicate only retains information about a
given cell, instead of modifying the heap summary to be precise on this cell.
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Pé L vE N x Ve UF < s x PF x P

'ypzﬂjﬁ—>73([H>< (\/”—W))
e (") = {(h,v) [V(ax, B:) € VEVE € N : p* (o) = (£, 3:) = hlv(a)..v(a) + £ = v(B)}

’YUI[Uu%P(SX(Vn—)VD

o (s, rf, pt) = {((o,h > h), u) | 30, L, 0K ((U7 F,h,ﬁ),l/) € vs(s*) and
(h,v) € vp(ru) and
(W', v) € vp(p*) }
where A’ > h : dom(h') Udom(h) — V is defined as (b’ > h) ef

(a) = h'(a) ifa € dom(h')
(' > h)(a) <

a) = h(a) otherwise

Fig. 8. Extending the base domain (s*) with retained (r*) and staged (p*) points-to
predicates

Ezample 7 (Retained points-to predicate). Consider the abstract state (Fig.3)
at line 19 of Fig. 1. The binding from (3,uf.(0)) to (J,uf.(0)x) (represented
by an arrow) has been added by the read parent->parent at line 17. Having a
variable § materialized to represent the contents of 8 allows inferring  # 0 from
the test parent->parent != 0.

Staged Points-to Predicates. A staged points-to predicate o —, (§ represents a
store operation performed by the program, but that is not yet propagated to the
main domain S¥. The idea is that if that if an invariant is temporarily violated,
subsequent stores may restore it; by grouping and delaying the stores to the
type-based abstract domain Sf, we prevent Sf from needing to take ill-typed
states into account. In the concretization, the heap represented by the staged
points-to predicates take precedence (operator ) over the heap represented by
the type-based domain. Note this concretization allows describing states that
are not well-typed, hence the codomain of vy is P (S x (VB — \/)) instead of

P (S x (VF = V)).

Ezample 8 (Staged points-to predicate). The contents of the memory allocated
at line at line 40 of Fig. 1 are unconstrained, and may not correspond to the type
node* of the address returned by malloc: the reachable states at this line include
ill-typed states that are not representable by S. This is fixed by introducing
staged points-to predicates from the address returned by malloc, which allows
the abstract value of the typed domain to represent only well-typed states, but
still take into account the call to malloc. These staged points-to predicates are
modified by the subsequent statements, and from line 44, the staged points-
to predicates can be dropped by performing the corresponding stores to the
memory, because the reachable states are now well-typed.
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Static Analysis Operations. The addition of points-to predicates only changes
the behaviour of memory operations (load,store, and malloc). The definition
of these operations rely on determination of must and may-alias information
between pairs (ay, 3,) of abstract values. This is done using both the types
(Theorem 1) and numerical information about addresses (e.g. addresses of an
array at two indices ¢ and j with ¢ < j will not alias), but this can be enhanced
with information coming from other domains (like allocation sites [1]).

A malloc; of type t is interpreted simply by adding a staged points-to pred-
icate aus —¢ (¢ where both « and ( are fresh symbolic variables.

Loading a value of size ¢ at address a; returns the value 3, if a points-to
predicate €, +—, (3, exists in the domain and we can prove a = €. Otherwise we
performs a “weak read” by evaluating the load on the type-based domain, and
joining the result with the values of all the staged points-to predicates whose
addresses may alias with a;. Finally, if G, is the result of this operation, the
analysis adds a new retained points-to predicate oy —y Gy.

Storing a value §, of size ¢ at address oy first needs to remove all points-
to predicates that may alias with «;. Retained points-to predicates are simply
dropped, but staged points-to predicate must be propagated by performing the
corresponding stores to the type-based shape domain. Then, a new staged points-
to predicate a; —y §,, is added.

Ezample 9. Consider again the abstract state (Fig.3) at line 19 of Fig. 1.
The statement x->parent = parent->parent first reads parent->parent from
memory, and retrieves 0, from the points-to predicate 8 — §. The store to
x->parent (corresponding to address «) first needs to drop points-to predicates
that may alias with «; on this abstract state, only § + ¢ is concerned. Finally,
a new points-to predicate a — ¢ is added. Note that @ # [ is an invariant of
the program; if the type based shape domain were complemented with a more
precise abstraction, then the points-to predicate 8 — § would not need to be
dropped.

8 Experimental Evaluation

Research Questions. The goal of our experimental evaluation is to evaluate the
performance and precision of our analysis, the effort required for its parametriza-
tion, its ability to handle low-level (binary and system) code and complex sharing
patterns.

Methodology. We have implemented two analyses (available at https://zenodo.
org/record/5512941) using the CODEX library for abstract interpretation: one for
C code using the FRAMA-C platform (FRAMA-C/CODEX); one for binary code
using the BINSEC platform (BINSEC/CODEX) . All analyses have been conducted
on a standard laptop (Intel Xeon E3-1505M 3Ghz, 32GB RAM). We took the
mean values between 10 runs, and report the mean (all standard deviations were

below 4%).
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We ran our analysis on all the C benchmarks from two shape analysis pub-
lications; moreover we analyze their compiled version using Gcc 10.3.0 with
different levels of optimizations. These benchmarks are challenging: the graph—x
benchmarks from Li et al. [21] were used to verify unstructured sharing patterns;
to complete this evaluation we extend this with our running example. The other
benchmarks from Li et al. [20] were used to demonstrate scalability issues faced
by shape analyzers. Both benchmarks were created to demonstrate shape anal-
ysis, which is a more precise abstraction than the one we propose. Thus, they
are suitable to evaluate performance, ability to handle complex sharing patterns,
and precision.

This evaluation completes that in Nicole et al. [28], where we ran our analyzer
on the kernel executable of an industrial embedded kernel (Asterios, developed
by Krono-safe) to verify security properties (including full memory safety), with
only 58 lines of manual annotations, which demonstrated the ability to handle
low-level code, precision, performance and low amount of parametrization on a
larger use case.

Results. Table1 provides the results of the evaluation. The benchmarks are
grouped by the data structure they operate on; we report the number of lines
describing physical types (generated from existing types information, or manu-
ally edited) shared by a group. The annotations mostly consist in constraining
some pointers types to be non-null. The pre column describes necessary pre-
conditions of the verified function (e.g. that a pointer argument must not be
null). The LOC column is the number of lines of code of each function, excluding
comments, blank lines and subroutines. The ratio of lines of manual annotations
per line of code for a group, goes from 0% to 7.8%, with a mean of 3.2% and
median of 2.7%.

The next columns in the table provide the Time taken by the full analysis
(in s), the number of alarms of the full analysis (— column) and the analy-
sis without the retained and staged points-to predicates (v~ column), for the
C version of the code and the various binaries produced by GCC. For brevity
we have omitted the time taken by the 4 analysis in the benchmarks; on aver-
age this analysis takes 1.5% less time for the C, and 20% less for binary code
(maximum: 45%). The number of alarms is counted differently in C (one possi-
ble alarm each time the analyzer evaluates a statement) and in binary (where
alarms are uniquified per instruction), but in both 0 alarms means that the ana-
lyzer verified type-safety. We observe that the full analyzer succeeds in verifying
30 benchmarks (out of 34), both in C and binary code. Removing the points-to
predicates makes the analysis significantly less precise, as only 13 benchmarks
are verified in C, and between 16 (for -00) and 21 (for -01,-02,-03) in binary
code.

Discussion and Conclusions. Our combination of domains is effective at veri-
fying type safety (which entails spatial memory safety) on C and binary code,
even for benchmarks that have complex sharing patterns, with a low amount of
annotations. The analysis performs evenly well on all benchmarks, and scales
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Table 1. Results of the evaluation

Benchmark Annotations | LOC | C 00 o1 02 03
gen/ ed/ pre Time/— /> Time/ /> | Time/—/v/» | Time/— /> | Time/r— [t/

sll-delmin 11, 0 |1 25 0.27 0 0013/ 0 0015 0, 0] 015 0| 0] 013 0| O
sll-delminmax 1 49 0.30 0 0019 00| 017, 0, 0| 017 0| 0| 016, 0| O
psll-bsort 100 0 |0 25 0.30 0 22041 0 3] 025/ 0 3| 026/ 0| 3] 029 0| 3
psll-reverse 0 11 0.28 0 20100, 1/013 01010 0| 1] 010 0] 1
psll-isort 0 20 | 029 0 2] 034 0 1034/ 0| 1| 032 0| 1] 033 01
bstree-find 121 0 |1 26 | 027 0 0| 014/ 0/ 0| 013/ 0, 0| 015 0] 0] 016 0| O
gdll-findmin 25 5 |1 49 | 050 0 0| 041 0| 0| 039 0| 0| 041 0| O | 042 0| O
gdll-findmax 1 58 | 055 0 0| 033/ 0/ 0022/ 0 0| 021 0] 0] 020 0|0
gdll-find 1 78 | 056 0 0| 015/ 0| 0| 015/ 0 0| 014 0| 0| 0.14] 0| O
gdll-index 1 55 | 053] 0 0| 032/ 00| 033 0 0| 030, 0/ 0] 029 0|60
gdll-delete 1 107 | 057 0 2| 0160 0| 014/ 0 0| 013 0] 0] 013] 0| 0
javl-find 4512 |2 25 | 035 0 0| 023 0/ 0| 028 0 0| 018 0] 0] 019 0| 0
javl-free 1 27 0.35 0 4,011 0} 3| 012, 0| 0| 010 O| O] 0.11| 0] O
javl-insert 2 95 0.53 6 56 | 0.5212 /20 | 0.39 30 |34 | 0.43 29 |34 | 0.43|29 |34
javl-insert-32x 2 95 |16.68|192 | 1792 28.28 |14 |20 |33.14 |34 |34 | 32.00|32 |34 [40.01|32 |34
ghbstree-find 23] 5|1 53 0.58 0 0 038/ 0 0| 040, O, O] 056, 0| 0] 059 0| 0O
ghbstree-delete 1 165 0.81 0 0|09 00| 072 00| 067 0|0 066 0] 0
ghstree-insert 1 133 | 055 O 7102 00021/ 0 0| 023 0] 0] 024/ 0|0
brbtree-find 24| 3|2 29 | 032 0 0| 0170 0| 0| 019/ 0 0| 023 0| 0] 023] 0|0
brbtree-delete 2 329 | 0.79103 | 127 | 1.15|44 |73 | 1.23/46 |53 | 0.85|58 |63 | 0.84 58 |63
brbtree-insert 2 177 0.61 24 47 1 090|111 |23 | 0.47]16 |17 | 1.22|21 |17 | 097 |21 |17
bsplay-find 220 1|1 81 | 053] 0 181025/ 0| 7023 0| 7023/ 0| 7| 023 0| 7
bsplay-delete 1 95 0.72 0 38 | 045 0 |11 | 044, 0 |10 | 0.44 0|10 | 0.44| 0 |10
bsplay-insert 1 101 057 0 181 025, 0| 7] 025 0| 7] 025 0| 7] 025 0/ 7
graph-nodelisttrav 23| 0 |1 12 020 0 0 010 0 0010 0,0] 010 0fO0] 011 0] O0
graph-path 1 19 0.21 0 141 015 0| 5| 016/ 0| O] 0.14| O | O] 0.16| 0| O
graph-pathrand 1 25 0.22 0 10/ 013, 0| 0] 021 0| 0] 012 0| O] 011 0| O
graph-edgeadd 1 15 0.27 0 2,012/ 0, 1/011, 0, 1] 010 0| 1] 010 0] 1
graph-nodeadd 1 15 0.26 0 20100 1008 01009 0| 1] 010 0] 1
graph-edgedelete 1 11 020 O 2| 010 0| 1| 010/ 0 0 010 0] 0] 011] 0| O
graph-edgeiter 1 22 | 023 0 0| 013/ 0/ 0| 011/ 0 0| 012 0] 0] 012] 0| O
uf-find 33 3|1 1 | 031 0 241 007 0 6 009 0| 0| 008/ 0| 0| 007 00
uf-merge 1 17 | 034, 0 50| 013/ 0 7018 0| 0| 018/ 0| O 015 0 0O
uf-make 0 9 031 0 41005 0| 3] 006 03 007 0| 3| 006/ 0] 3
Total verified 30 13 30 | 16 30 |21 30 |21 30 |21

well on javl — insert—32x, which is challenging even for shape analysis with
disjunctive clumping [20]. We interpret the fact that binary analysis is faster
than the C analysis by implementation issues in the C analyzer.

The points-to predicates are very important for precision, as otherwise the
number of false alarms raises significantly. The analysis succeeds equally on
binary programs and on C programs, despite the complex code patterns that the
C compiler may produce. Note that without points-to predicates, more binary
codes are verified than in C: indeed in some cases the compiler performs a register
promotion of a heap value, which removes the need for a points-to predicate.

9 Related Works and Conclusion

Memory Analyses Based on Type Inference. Several analyses that partially ver-
ify spatial memory safety using static type inference have been proposed. As
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unification-based type inference is less expressive than abstract interpretation,
it is insufficiently precise to verify spatial memory safety, which is generally
addressed by also using dynamic verification (e.g. Cyclone [15], CCured [27],
CheckedC [13]). Still, the structural subtyping notion that we use is similar to
the physical subtyping by Chandra and Reps [4], even if the physical type safety
property that they verify does not include spatial memory safety (e.g. it does
not check pointer arithmetics or null pointer dereferences). Liquid types [31]
provide refinement types similar to ours, that are type checked by enhancing
type inference with abstract interpretation and SMT solving. They discuss sev-
eral limitations that our work solves: lack of structural subtyping (that we solve
using our ordering on concrete and abstract types), and conservative decisions of
when to fold and unfold variables (that we solve by using abstract interpretation
instead of type inference [7], which allows our focusing decisions to be based on
the current results of the analysis).

Other Type-Based Memory Analyses. Type-based alias analyses [11] propose a
system to determine aliasing based on subtyping relations, which is present in our
work (Theorem 1). These analyses assume that type safety is verified by other
means (e.g. type checking), while our abstract interpretation also verifies type
safety, on unsafe languages like C and binary code. Data structure analysis [18]
produces a flow-insensitive description of data structure layout similar to our
description of types (excluding numerical predicates), which could be used to
split our types into distinct subtypes, making our analysis more precise. The
structural analysis by Marron et al. [25] is also an intermediate between pointer
and shape analyses, which is more precise than our type-based shape domain as
it builds a flow-sensitive abstract heap information (the storage shape graph),
while our description of types is flow-invariant. But their analysis proceeds on
a type-safe language with no type cast, pointer arithmetic, interior pointers,
or uninitialized data. Contrary to their results, our experience indicates that
strong updates are important to verify the preservation of structural invariants,
which we believe comes from the lower-level nature of our source languages. In a
previous work [28] we used our type-based domain to verify security properties of
an industrial embedded kernel; this work formally presents the analysis, extended
with retained and staged points-to predicates and support for dynamic memory
allocation.

Shape Analyses. Many challenges arise in programs manipulating memory. These
have been individually adressed by existing work on shape analyses, for instance
to limit disjunctions [20,24], to adapt to custom data structures [6,33], to inter-
pret low-level memory operations [12,17,19], to allow composite data structures
[2,36], interaction with arrays [23], data structure invariants [6], or unstructured
sharing [21]. Our type-based analysis is less precise than a full shape analysis,
as e.g. it cannot verify temporal memory safety (i.e. use-after-free errors), but it
simultaneously handles all the above aspects in a simpler analysis, which is suffi-
ciently precise to verify preservation of structural invariants and spatial memory
safety.
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Abstract. Abstraction is one of the most important approaches for
reducing the number of states in formal verification. An important
abstraction technique is the usage of three-valued logic, extensible to
bit-vectors. The best abstract bit-vector results for movement and logical
operations can be computed quickly. However, for widely-used arithmetic
operations, efficient algorithms for computation of the best possible out-
put have not been known up to now.

In this paper, we present new efficient polynomial-time algorithms
for abstract addition and multiplication with three-valued bit-vector
inputs. These algorithms produce the best possible three-valued bit-
vector output and remain fast even with 32-bit inputs.

To obtain the algorithms, we devise a novel modular extreme-finding
technique via reformulation of the problem using pseudo-Boolean mod-
ular inequalities. Using the introduced technique, we construct an algo-
rithm for abstract addition that computes its result in linear time,
as well as a worst-case quadratic-time algorithm for abstract multipli-
cation. Finally, we experimentally evaluate the performance of the algo-
rithms, confirming their practical efficiency.

Keywords: Formal verification - Three-valued abstraction + Computer
arithmetics - Addition and multiplication - Pseudo-Boolean modular
inequality

1 Introduction

In traditional microprocessors, the core operations are bitwise logical operations
and fixed-point wrap-around arithmetic. Behaviour of programs in machine code
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can be formally verified by model checking, enumerating all possible system
states and transitions (state space) and then verifying their properties. Unfor-
tunately, naive exhaustive enumeration of states quickly leads to prohibitively
large state spaces (state space explosion), making verification infeasible.

State space explosion may be mitigated by a variety of techniques. One
of them is abstraction, where a more efficient state space structure preserving
certain properties of the original is constructed [3, p. 17]. Typically, the formal
verification requirement is that it should be impossible to prove anything not
provable in the original state space (soundness for true), while allowing overap-
prozimation, leading to the possibility of a false counterexample.

For machine-code model checking, three-valued abstract representation
of bits was introduced in [7] where each abstract bit can have value “zero”, “one”,
or “perhaps one, perhaps zero” (unknown). Using this abstraction, bit and bit-
vector movement operations may be performed directly on abstract bits. Each
movement operation produces a single abstract result, avoiding state space explo-
sion. The caveat is that overapproximation is incurred as relationships between
unknown values are lost.

Three-valued representation was further augmented in [11] via bitwise logic
operations (AND, OR, NOT...) with a single abstract result, further reducing
state space explosion severity. However, other operations still required instantia-
tion of the unknown values to enumerate all concrete input possibilities, treating
each arising output possibility as distinct. This would lead not only to output
computation time increasing exponentially based on the number of unknown bits,
but also to potential creation of multiple new states and the possibility of severe
state space explosion. For example, an operation with two 32-bit inputs and
a 32-bit output could require up to 2% concrete operation computations and
could produce up to 232 new states.

The necessity of instantiation when encountering arithmetic operations had
severely reduced usefulness of a microcontroller machine-code model checker with
three-valued abstraction developed by one of the authors [8]. This prompted our
research in performing arbitrary operations without instantiation, with emphasis
on fast computation of results of arithmetic operations.

1.1 Owur Contribution

In this paper, we formulate the forward operation problem, where an arbitrary
operation performed on three-valued abstract bit-vector inputs results in a sin-
gle three-valued abstract bit-vector output which preserves soundness of model
checking. While the best possible output can always be found in worst-case time
exponential in the number of three-valued input bits, this is slow for 8-bit binary
operations and infeasible for higher powers of two.

To aid with construction of polynomial-time worst-case algorithms, we devise
a novel modular extreme-search technique. Using this technique, we find a linear-
time algorithm for abstract addition and a worst-case quadratic-time algorithm
for abstract multiplication.
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Our results will allow model checkers that use the three-valued abstraction
technique to compute the state space faster and to manage its size by only per-
forming instantiation when necessary, reducing the risk of state space explosion.

2 Related Work

Many-valued logics have been extensively studied on their own, including Kleene
logic [6] used for three-valued model checking [11]. In [10], three-valued logic was
used for static program analysis of 8-bit microcontroller programs. Binary deci-
sion diagrams (BDDs) were used to compress input-output relationships for arbi-
trary abstract operations. This resulted in high generation times and storage
usage, making the technique infeasible to use with 16-bit or 32-bit operands.
These restrictions are not present in our approach where we produce the abstract
operation results purely algorithmically, but precomputation may still be useful
for abstract operations with no known worst-case polynomial-time algorithms.

In addition to machine-code analysis and verification, multivalued logics are
also widely used for register-transfer level digital logic simulation. The IEEE 1164
standard [5] introduces nine logic values, out of which ‘0’ (zero), ‘1’ (one),
and ‘X’ (unknown) directly correspond to three-valued abstraction. For easy
differentiation between concrete values and abstract values, we will use the
IEEE 1164 notation in this paper, using single quotes to represent an abstract
bit as well as double quotes to represent an abstract bit-vector (tuple of abstract
bits), e.g. “0X1” means (‘0’, ‘X’, ‘1’). While we primarily consider microprocessor
machine-code model checking as our use case, we note that the presented algo-
rithms also might be useful for simulation, automated test pattern generation,
and formal verification of digital circuits containing adders and multipliers.

In [14], it was proposed that instantiation may be performed based only
on interesting variables. For example, if a status flag “zero” is of interest, a tuple
of values “XX” from which the flag is computed should be replaced by the possi-
bilities {“00”, “1X”, “X1”}. This leads to lesser state space explosion compared
to nalve instantiation, but is not relevant for our discussion as we discuss avoid-
ing instantiation entirely during operation resolution.

In the paper, we define certain pseudo-Boolean functions and search for their
global extremes. This is also called pseudo-Boolean optimization [2]. Problems
in this field are often NP-hard. However, pseudo-Boolean functions for addition
and multiplication that we will use in this paper have special forms that will allow
us to resolve the corresponding problems in polynomial time without having
to resort to advanced pseudo-Boolean optimization techniques.

3 Basic Definitions

Let us consider a binary concrete operation which produces a single M-bit output
for each combination of two N-bit operands, i.e. 7 : BY x BN — BM. We define
the forward operation problem as the problem of producing a single abstract bit-
vector output given supplied abstract inputs, preserving soundness. The output
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is not pre-restricted (the operation computation moves only forward). To pre-
serve soundness, the abstract output must contain all possible concrete outputs
that would be generated by first performing instantiation, receiving a set of con-
crete possibilities, and then performing the operation on each possibility.

To easily formalize this requirement, we first formalize three-valued abstrac-
tion using sets. Each three-valued abstract bit value (‘0°,‘1’,X’) identifies all
possible values the corresponding concrete bit can take. We define the abstract
bit as a subset of B = {0,1} and the abstract bit values as

‘0 < {0}, L1, x € 0,13 (1)

This formalization corresponds exactly to the meaning of ‘X’ as “possibly 0,

possibly 17. Even though () is also a subset of B, it is never assigned to any
abstract bit as there is always at least a single output possibility.

If an abstract bit is either ‘0’ or ‘1’, we consider it known; if it is ‘X’, we

consider it unknown. For ease of representation in equations, we also introduce

an alternative math-style notation X & {0,1}.

Next, we define abstract bit-vectors as tuples of abstract bits. For clarity, we
use hat symbols to denote abstract bit-vectors and abstract operations. We use
zero-based indexing for simplicity of representation and correspondence to typ-
ical implementations, i.e. Gy means the lowest bit of abstract bit-vector a. We
denote slices of the bit-vectors by indexing via two dots between endpoints, i.e.
ao..2 means the three lowest bits of abstract bit-vector a. In case the slice reaches
higher than the most significant bit of an abstract bit-vector, we assume it to be
padded with ‘0’, consistent with interpretation as an unsigned number.

3.1 Abstract Bit Encodings

In implementations of algorithms, a single abstract bit may be represented
by various encodings. First, we formalize a zeros-ones encoding of abstract bit a;
using concrete bits a) € B, al € B via

=1+ 0€ay, a =

2

1 <= 1€ a, (2)

which straightforwardly extends to bit-vectors a’, a'. Assuming & has A € Ny
bits, a € (2B)4, while a® € B4, a' € B4, i.e. they are concrete bit-vectors.

We also formalize a mask-value encoding: the mask bit a]" = 1 exactly when
the abstract bit is unknown. When the abstract bit is known, the value bit aj
corresponds to the abstract value (0 for ‘0’, 1 for ‘1%), as previously used in [11].
For simplicity, we further require ay = 0 if a]* = 1. We formalize the encoding
of abstract bit a; using concrete bits a}" € B, a} € B via

a=1 <<= 0€a;AN1€a;,a] =1 < 0&a;AN1E€ ay, (3)

3

which, again, straightforwardly extends to bit-vectors a™ € B4 and o’ € BA.
We note that the encodings can be quickly converted via

ad=1+= a"=1Va)=0,0a} =1 < a*=1Val =1,

. 4
a'=1 <= a)=1Naj =1,a) =1 < a) =0Aa; = 1. @

% %
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We note that when interpreting each concrete possibility in abstract bit-vector
@ as an unsigned binary number, a” corresponds to the minimum, while a'
corresponds to the maximum. For conciseness and intuitiveness, we will not
explicitly note the conversions in the presented algorithms. Furthermore, where
usage of arbitrary encoding is possible, we will write the hat-notated abstract
bit-vector, e.g. a.

3.2 Abstract Transformers

We borrow the notions defined in this subsection from abstract interpretation
[4,12], adapting them for the purposes of this paper.

The set of concrete bit-vector possibilities given by a tuple containing A
abstract bits, a € (28)4, is given by a concretization function ~y : (28)4 — 2B

va) Y {aeBA | Vie{0,...,A—1}.a; € a;)}. (5)

Conversely, the transformation of a set of bit-vector possibilities C' € 2(B%)
to a single abstract bit-vector @ € (2B)4 is determined by an abstraction func-
tion o : 2" (28)4 which, to prevent underapproximation and to ensure
soundness of model checking, must fulfill C' C v(a(C)).

An abstract operation 7 : (28)N x (2B)V — (2B)M corresponding to concrete
operation r : BY x BY — BM is an approzimate abstract transformer if it
overapproximates r, that is,

vae (2%)N,be (2N . {r(a,b) | a €(a),b € y(b)} S y((a,b)). (6)

The number of concrete possibilities |y(a(C))| should be minimized to prevent
unnecessary overapproximation. For three-valued bit-vectors, the best abstrac-
tion function aP**t is uniquely given by

Vie{0,...,A—1} . (a"(C)); ' {c;eB|ce Cl. (7)

By using aP** to perform the abstraction on the minimal set of concrete results
from Eq. 6, we obtain the best abstract transformer for arbitrary concrete oper-
ation r, i.e. an approximate abstract transformer resulting in the least amount
of overapproximation, uniquely given as

(@, b) = " ({r(a,b) | a € 7(a), b € (b)) (8)

We note that when no input abstract bit is (), there is at least one concrete result
r(a,b) and no output abstract bit can be (). Thus, three-valued representation is
truly sufficient.

3.3 Algorithm Complexity Considerations

We will assume that the presented algorithms are implemented on a general-
purpose processor that operates on binary machine words and can compute



Fast Three-Valued Abstract Bit-Vector Arithmetic 247

bitwise operations, bit shifts, addition and subtraction in constant time. Every
bit-vector used fits in a machine word. This is a reasonable assumption, as it is
likely that the processor used for verification will have machine word size equal to
or greater than the processor that runs the program under consideration.

We also assume that the ratio of M to N is bounded, allowing us to express
the presented algorithm time complexities using only N. Memory complexity is
not an issue as the presented algorithms use only a fixed amount of temporary
variables in addition to the inputs and outputs.

3.4 Naive Universal Abstract Algorithm

Equat10n8 immediately suggests a naive algorithm for computing 7t for any
given a, b: enumerating all a,b € 2(BY) , filtering out the ones that do not satisfy
a €~(@) A be y(b), and marking the results of r(a,b), which is easily done
in the zeros-ones encoding. This naive algorithm has a running time of ©(22V).

Average-case computation time can be improved by only enumerating
unknown input bits, but worst-case time is still exponential. Even for 8-bit binary
operations, the worst-case input combination (all bits unknown) would require
216 concrete operation computations. For 32-bit binary operations, it would
require 254 computations, which is infeasible. Finding worst-case polynomial-
time algorithms for common operations is therefore of significant interest.

4 Formal Problem Statement

Theorem 1. The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theorem 2. The best abstract transformer of abstract bit-vector multiplication
is computable in worst-case quadratic time.

In Sect. 5, we will introduce a novel modular extreme-finding technique which will
use a basis for finding fast best abstract transformer algorithms. Using this tech-
nique, we will prove Theorems 1 and 2 by constructing corresponding algorithms
in Sects.6 and 7, respectively. We will experimentally evaluate the presented
algorithms to demonstrate their practical efficiency in Sect. 8.

5 Modular Extreme-Finding Technique

The concrete operation function r» may be replaced by a pseudo-Boolean function
h: BN x BN — Ny where the output of r is the output of h written in base 2.
Surely, that fulfills

Vae BN beBY,Vke{0,...,M —1}.
re(a,b) =1 <= (h(a,b) mod 2¥+1) > 2~

9)
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The best abstract transformer definition in Eq. 8 is then equivalent to

Vke{0,...,.M —1}.
(0 € 7P «= Ja € y(a),b € v(b) . (h(a,b) mod 2°*1) < 2¥) A~ (10)
(1 €™t <= 3Jae~(a),be (). (h(ab) mod 28+1) > 2F),

The forward operation problem is therefore transformed into a problem of solving
certain modular inequalities, which is possible in polynomial time for certain
operations. We will later show that these include addition and multiplication.

If the inequalities were not modular, it would suffice to find the global min-
imum and maximum (extremes) of h. Furthermore, the modular inequalities
in Eq. 10 can be thought of as alternating intervals of length 2%. Intuitively, if it
was possible to move from the global minimum to the global maximum in steps
of at most 2% by using different values of a € a@,b € bin h(a,b), it would suffice to
find the global extremes and determine whether they are in the same 2* interval.
If they were, only one of the modular inequalities would be satisfied, resulting
in known 7 (either ‘0’ or ‘1°). If they were not, each modular inequality would
be satisfied by some a, b, resulting in 7, = X.

We will now formally prove that our reasoning for this modular extreme-
finding method is indeed correct.

Lemma 1. Consider a sequence of integers t = (to,t1,...,tr—1) that fulfills
Ve [0,T —2]. [thyr — ta| < 2F. (11)

Then,
Ju € [mint, maxt] . (v mod 2¢*1) < 2F —

3n € [0,T —1] . (t, mod 21y < 2k, 12)
Proof. As the sequence t is a subset of range [min ¢, maxt], the backward direc-
tion is trivial. The forward direction trivially holds if v is contained in ¢. If it
is not, it is definitely contained in some range (v—,v™), where v—, v are suc-
cessive values in the sequence t. Since [vt —v~| < 2% (v~ mod 2¥+1) < 2% and
(vt mod 2F+1) < 2% the value v in range (v—,vT) definitely must also fulfill
(v mod 2F+1) < 2%, O

Theorem 3. Consider a pseudo-Boolean function f : BN x BN — Z, two inputs
a,be (2B)YN, and a sequence p = (po,p1,---,pp—1) where each element is a pair

(a.b) € (1(a), (b)), that fulfil

vn € [OaP - 2] . |f(pn+1) - f(pn)‘ S Zka
f(pO) = mlr} f(a7b)a

a€v(a)

bey(b) (13)
f(pp—1) = max f(a,b).

a€v(a)
bevy(b)
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Then,

VC eZ.(3ae~(a),be D). ((f(ab)+C)mod 21) < 2k 14
(

= Inec[0,P—1].((f(pn) + C) mod 2F*1) < 2F),

Proof. Since each element of p is a pair (a,b) € (y(a),y(b)), the backward direc-
tion is trivial. For the forward direction, use Lemma 1 to convert the sequence
(f(pn)+C)E=4 to range [f(po) +C, f(pp—1) +C] and rewrite the forward direc-
tion as

VC eZ.(Fae~a),be~(b). ((f(ab)+C)mod 2°!) < 28 —

Jue | min (f(a,b)+C), max (f(a,b) +C)| . (v mod 26*+1) < 2%y, (15)

acvy(a) acy(a)
bevy(b) bevy(b)
The implication clearly holds, completing the proof. a

While Theorem 3 forms a basis for the modular extreme-finding method,
there are two problems. First, finding global extremes of a pseudo-Boolean func-
tion is not generally trivial. Second, the step condition, that is, the absence
of a step longer than 2* in h, must be ensured. Otherwise, one of the inequality
intervals could be “jumped over”. For non-trivial operators, steps longer than 2%
surely are present in h for some k. However, instead of h, it is possible to use a
tuple of functions (hk)kM: 51 where each one fulfills Eq. 10 for a given k exactly
when h does. This is definitely true if each hy is congruent with A modulo 2*+1.

Fast best abstract transformer algorithms can now be formed based on find-
ing extremes of hy, provided that hj changes by at most 2¥ when exactly one
bit of input changes its value, which implies that a sequence p with proper-
ties required by Theorem 3 exists. For ease of expression of the algorithms, we
define a function which discards bits of a number « below bit k (or, equivalently,
performs integer division by 2¥),

G(@) = | 3% (16)

For conciseness, given inputs a € (QB)N,?) € (2%)N we also define

in def . def
h"™ = min hg(a,b), hp™ = max hi(a,b),
€S Ml OIS s (o) (17)
be~y(b) bey(b)

Equation 10 then can be reformulated as follows: if (g (h™) # (i (hP®), both
inequalities are definitely fulfilled (as each one must be fulfilled by some element
of the sequence) and output bit & is unknown. Otherwise, only one inequality
is fulfilled, the output bit k is known and its value corresponds to (j (h™) mod 2.
This forms the basis of Algorithm 1, which provides a general blueprint for fast
abstract algorithms. Proper extreme-finding for the considered operation must
be added to the algorithm, denoted by (... ) in the algorithm pseudocode. We will
devise extreme-finding for fast abstract addition and multiplication operations
in the rest of the paper.
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Algorithm 1. Modular extreme-finding abstract algorithm blueprint

1: function MODULAR_ALGORITHM_BLUEPRINT(d, b)
2 for k€ {0,...,.M -1} do
3 R — (... > Compute extremes of hy
4: hpax — (..))
5: if Cp(RP) # (p(RP*X) then
6 Cl — X > Set result bit unknown
7 else
8 e — 0, ¢}« C(h™m) mod 2 > Set value
9 end if
10: end for
11: return ¢

12: end function

6 Fast Abstract Addition

To express fast abstract addition using the modular extreme-finding technique,
we first define a function expressing the unsigned value of a concrete bit-vector a
with an arbitrary number of bits A,

A-1
o(a) €Y 2a, (18)
i=0
Pseudo-Boolean addition is then defined simply as
ht(a,b) % ®(a) + o(b). (19)
To fulfill the step condition, we define
hi (a,b) = ®(ag.1) + D(bo..1)- (20)

This is congruent with At modulo 2¥*1. The step condition is trivially fulfilled
for every function hz in (hz)]sz 51, as changing the value of a single bit of a or
b changes the result of h;f by at most 2¥. We note that this is due to h* having
a special form where only single-bit summands with power-of-2 coefficients are
present. Finding the global extremes is trivial as each summand only contains

a single abstract bit. Recalling Subsect. 3.1, the extremes can be obtained as

R — D(ay ) + POY k),

R — B(af ) + Db p)-

The best abstract transformer for addition is obtained by combining Eq. 21 with
Algorithm 1. Time complexity is trivially ©(N), proving Theorem 1. Similar
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reasoning can be used to obtain fast best abstract transformers for subtraction
and general summation, only changing computation of A" and hirax,
For further understanding, we will show how fast abstract addition behaves
for “X0” + “117:
k=0:4“0"4+“1",1=¢(0+1)=¢0O0+1)=1—ry="1,
E=1:4X0" +“11”, 1=G0+3)#G(2+3)=2—r =X,
k=2:4X0" + 0117, 0=C((0+3) £ G2+3) =1 —r =X,
k> 20 CG(hi™™) = Qb ™) =0 — 1y, = 0.

(22)

For M = 2, the result is “XX1”. For M > 2, the result is padded by ‘0’ to the left,
preserving the unsigned value of the output. For M < 2, the addition is modular.
This fully corresponds to behaviour of concrete binary addition.

7 Fast Abstract Multiplication

Multiplication is typically implemented on microprocessors with three different
input signedness combinations: unsigned x unsigned, signed X unsigned, and
signed x signed, with signed variables using two’s complement encoding. It is
a well-known fact that the signed-unsigned and signed multiplication can be con-
verted to unsigned multiplication by extending the signed multiplicand widths
to product width using an arithmetic shift right. This could pose problems when
the leading significant bit is ‘X’, but it can be split beforehand into two cases,
‘0’ and ‘1’. This allows us to only consider unsigned multiplication in this section,
signed multiplication only incurring a constant-time slowdown.

7.1 Obtaining a Best Abstract Transformer

Abstract multiplication could be resolved similarly to abstract addition by
rewriting multiplication as addition of a sequence of shifted summands (long
multiplication) and performing fast abstract summation. However, this does not
result in a best abstract transformer. The shortest counterexample is “117 - “X1”.
Here, the unknown bit b; is added twice before influencing r3, once as a summand
in the computation of r, and once as a carryover from ry:

2% 2% (@Y @)

1 1
by 1

(b1) (b1) b1 1
by 1

b1 2by 1+0; 1

In fast abstract summation, the summand b is treated as distinct for each output
bit computation, resulting in unnecessary overapproximation of multiplication.
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Instead, to obtain a fast best abstract transformer for multiplication, we
apply the modular extreme-finding technique to multiplication itself, without
intermediate conversion to summation. Fulfilling the maximum 2* step condition
is not as easy as previously. The multiplication output function hA* is defined as

N—-1 N-1

h*(a,0) = (a) - o(b) = > Y 2 asb;. (23)

One could try to use congruences to remove some summands from hj while
keeping all remaining summands positive. This would result in

kS

—1

k
=2 2 2Mab, (24)

=0

<.
I
o

ki jisi )
K o 2F9b;. This sums

to at most 2¥t1 — 1 and thus does not always fulfill the maximum 2* step con-
dition. However, the sign of the summand 2*a;b,_; can be flipped due to con-
gruence modulo 2¥+! after which the change of result from a single bit flip is

always in the interval [—2F, 2% — 1]. Therefore, to fulfill the maximum 2* step
condition, we define hj : BY x BN — Z as

k—1
hiy(a,b) def( Zz a;iby— z>+ >
=0

For more insight into this definition, we will return to the counterexample
to the previous approach, “11”7 - “X1”, which resulted in unnecessary overap-
proximation for k = 2. Writing h% computation as standard addition similarly
to the previously shown long multiplication, the carryover of by is counteracted
by the summand —22b;:

Changing a single bit a; would change the result by Z

1
> 2Mab, | (25)

k—i—
Jj=0

2% @) @) @)

) b 1
—b; 1
0 145 1

It is apparent that (o(hJ™) = (i (h5*¥) = 0 and unnecessary overapproxima-
tion is not incurred. Using that line of thinking, the definition of A} in Eq.25
can be intuitively regarded as ensuring that the carryover of an unknown bit
into the k-th column is neutralized by a corresponding k-th column summand.
Consequently, if the unknown bit can appear only in both of them simultane-
ously, no unnecessary overapproximation is incurred.

While the maximum 2* step condition is fulfilled in Eq. 25, extreme-finding
is much more complicated than for addition, becoming heavily dependent on
abstract input bit pairs of form (di,l;k,i) where 0 < i < k. Such pairs result
in a summand —2Fa;b,_; in hj. When multiplication is rewritten using long
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multiplication as previously, this summand is present in the k-th column. We
therefore name such pairs k-th column pairs for conciseness.

In Subsect. 7.2, we show that if at most one k-th column pair where a; =
bp_i = X (double-unknown pair) exists, extremes of h} can be found easily. In
Subsect. 7.3, we prove that if at least two double-unknown pairs exist, rp = X.
Taken together, this yields a best abstract transformer algorithm for multiplica-
tion. In Subsect. 7.4, we discuss implementation considerations of the algorithm
with emphasis on reducing computation time. Finally, in Subsect. 7.5, we present
the final algorithm.

7.2 At Most One Double-Unknown k-th Column Pair

An extreme is given by values a € @,b € b for which the value h¥(a,b) is minimal
or maximal (Eq. 17). We will show that such a, b can be found successively when
at most one double-unknown k-th column pair is present.

First, for single-unknown k-th column pairs where a; = X , bie—i #* X , we
note that in Eq. 25, the difference between hj, when a; = 1 and when a; = 0 is

k—i—1
hi(a,b|a; =1) = hi(a,b|a; =0) = —2%b_; + Y 27b,.  (26)
j=0

Since the result of the sum over j must be in the interval [0, 2% — 1], the direc-
tion of the change (negative or non-negative) is uniquely given by the value of
br_;, which is known. It is therefore sufficient to ensure amm «— bp_; when mini-
mizing and ™" «+ 1 — b;_; when maximizing. Similar reasonmg can be applied
to single-unknown k-th column pairs where a; # X bk i = = X.

After assigning values to all unknown bits in smgle—unknown k-th column
pairs, the only still-unknown bits are the ones in the only double-unknown k-th
column pair present. In case such a pair a; = X, Bj = X,j = k — i is present,
the difference between hj when a; and b; are set to arbitrary values and when
they are set to 0 is

hi(a,b) —hi(a,b|a; =0,b; =0) =
(it Y At 27
— 2%a;b; + 2a; (Z 2sz> +29b; <Z zzaz> : @)
z=0 z=0

When minimizing, it is clearly undesirable to choose ai* # b}ni“. Considering
that the change should not be positive, a"* = b;-ni“ = 1 should be chosen if and

only if
j—1 i—1
2! <Z 2sz> + 927 (Z 2@) < 2k, (28)
z2=0
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When maximizing, it is clearly undesirable to choose a;"** = b7***. That said,
a;"** = 1,07 = 0 should be chosen if and only if

27 (i 2%) <2 (JX_: 22bz> . (29)
z=0 z=0

Of course, the choice is arbitrary when both possible choices result in
the same change. After the case of the only double-unknown k-th column pair
present is resolved, there are no further unknown bits and thus, the values of h}
extremes can be computed as

k=1 k—i—1
hz,mln _ ( Z 2k mmbmnl) Z Z 21+]azmnb;_nm ,
i=0 j=0 (30)
k=1 k—i—1
hz,max _ ( Z 2k: maxbmax> + Z Z 21+]a;naxb;_nax
i=0 j=0
7.3 Multiple Double-Unknown k-th Column Pairs
Lemma 2. Consider a sequence of integers t = (to, t1,...,tr—1) that fulfills
Vn € 0,7 — 2] . |tng1 — tn| < 28, t0 + 28 <tp ;. (31)
Then,
In € [0, —1] . (t, mod 21y < 2k, (32)
Proof. Use Lemma 1 to transform the claim to equivalent
Jv € [mint, maxt] . (v mod 2¥+1) < 2%, (33)
Since [t1,t; + 2¥] C [mint, max ], such claim is implied by
Ju € [to, to + 2] . (v mod 2FF1) < 2%, (34)

As [tg, to+2%] mod 28F1! has 2% 41 elements and there are only 2* elements that
do not fulfill (v mod 2¢*+1) < 2% Eq. 34 holds due to the pigeonhole principle. O

Corollary 1. Given a sequence of integers (to,t1,...,tr—1) that fulfills
Lemma 2 and an arbitrary integer C € Z, the lemma also holds for sequence
(to+C’,t1 +C,...,tr_1 +C)

Theorem 4. Let f,t’bm be the best abstract transformer of multiplication. Let a
and b be such that there are p1,pa, qi,qo in {0,...,k} where
p1#Dp2,p1+q@=kp+q =k (35)
ip, = X, a1y, = X, by, = X, by, = X.

Then Abest *( b)
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Proof. For an abstract bit-vector ¢ with positions of unknown bits ui, ..., U,

denote the concrete bit-vector ¢ € «(¢é) for which Vi € {1,...,n} . ¢y, = s;

~ A def ~
by Vsi,....5, (€)- Let s, 5, (6) = D(Vs;,...., (€))-

Now, without loss of generality, assume G only has unknown values in posi-
tions p; and py and b only has unknown positions g1, g2 and p1 < p2,q¢1 < go.
Then, for s1, sa,t1,ts € B, using h(a,b) = &(a) - (b),

h(Ysy,55 (@), Yty 2, (D)) = (27151 + 27252 + Do (@) - (27111 + 2%ty + Do ().
(36)
Define 4 % Pop(a) and B Lof ®go(b) and let them be indexable similarly to
bit-vectors, i.e. g, = (A mod 2°T1), A, = (.(Ay...). Define

roo ~ 2y def
hz f(’yshsz (a’)7’yt17t2 (b)) =

2p1+q181t1 =+ 2p1+q231t2 4 2q1t1AO,,p271 4 2p181Bo..q271 4 (37)
opztai Sot1 + 2p2+qQ82t2 + QQQtQAoﬂpl_l + ZPQSQBOqu_l + AB.

As A, = A,, = By, = By, = 0, h?™°" and h are congruent modulo 21, Define

def 00 ~ 7 roo ~ 7
D(Slv 52, tl; t2) :e hz f(731,s2 (a)a Tty ,to (b)) - hz f(p)/OO (a)a Yoo (b)) (38)
As p1+ g2 =k and p2 + 1 =k,

D(sy,89,t1,ta) = 2P T sty + 2% syt + 2941 Ay py—1 4 2251 Bo_gy—1+

i N (39)
2% 8oty + 2P2 TR 5510 + 2qzt2Aoup1_1 + QPQSQBOqu_l.
Set s1, 9,11, t2 to specific chosen values and obtain

D(1,1,0,0) = D(1,0,0,0) + D(0,1,0,0),
D(0,0,1,1) = D(0,0,1,0) + D(0,0,0,1), (40)
D(1,0,0,1) = 2¥ 4+ D(1,0,0,0) + D(0,0,0,1).

Inspecting the various summands, note that

D(1,0,0,0) € [0,2F — 1], D(0,1,0,0) € [0,2F — 1],
D(0,0,1,0) € [0,2F — 1], D(0,0,0,1) € [0,2F — 1], (1)
D(1,1,0,0) — D(1,0,0,0) € [0,2% — 1],
D(0,0,1,1) — D(0,0,1,0) € [0,2% — 1].
Recalling Eq. 10, the best abstract transformer can be obtained as
0 € = 3aen(a),bey(b) . (A (a,b) mod 2¥1) < 2%, ()

1e ™t «= Jaey(a),be~(b). (K (a,b) + 2F) mod 2¥+1) < 2k,

Constructing a sequence of hirOOf(%l,Sz (@), 71,1, (b)) that fulfills the conditions
of Lemma 2 then implies that both inequalities can be fulfilled due to Corollary 1,
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which will complete the proof. Furthermore, as D(s1, s2, 1, t2) only differs from
hproof
k

(Vs1,85 (@), 7t1 4, (b)) by the absence of summand AB that does not depend
on the choice of s1, s9, 11, ta, it suffices to construct a sequence of D(s1, $2,t1,12)
that fulfills Lemma 2 as well.

There is at least a 2* step between D(0,0,0,0) and D(1,0,0,1). They will
form the first and the last elements of the sequence, respectively. It remains
to choose the elements in their midst so that there is at most 2¥ step between
successive elements.

Case 1. D(0,1,0,0) > D(0,0,0,1). Considering Eqs.40 and 41, a qualifying
sequence is

(D(0,0,0,0),D(1,0,0,0),D(1,1,0,0), D(1,0,0,1)). (43)
Case 2. D(0,1,0,0) < D(0,0,0,1). Using Eq. 39, rewrite the case condition to
92v2=P1D(1,0,0,0) < 2%2~9D(0,0, 1,0). (44)

As p1 +q2 = k,p2 + q1 = k, it also holds that ¢; — ¢ = p2 — p1. Rewrite the case
condition further to

2P2=P1 D(1,0,0,0) < 27271 D(0,0, 1,0). (45)

Therefore, D(1,0,0,0) < D(0,0,1,0). Considering Eqgs. 40 and 41, a qualifying
sequence is

(D(0,0,0,0), D(0,0,1,0), D(0,0,1,1), D(1,0,0,1)). (46)

This completes the proof. a

7.4 Implementation Considerations

There are some considerations to be taken into account for an efficient imple-
mentation of the fast multiplication algorithm.

The first question is how to detect the positions of single-unknown and
double-unknown k-th column pairs. As such pairs have the form 2¥a;bj_;, it is
necessary to perform a bit reversal of one of the bit-vectors before bitwise logic
operations can be used for position detection. Fortunately, it suffices to perform
the reversal only once at the start of the computation. Defining the bit reversal
of the first z bits of b as A(b,z) = (b,_1-i)7—y, when the machine word size
W > k41, reversal of the first k41 bits (i.e. the bits in by, ) may be performed
as

Ak +1) = ((be—i)i=o) = ((bw-1-){C0 1) = MO W)w_g—1.w—1. (47)

It is thus possible to precompute A(b, W) and, for each k, obtain A(b, k + 1) via
a right shift through W — k — 1 bits, which can be performed in constant time.
Furthermore, power-of-two bit reversals can be performed in logarithmic time
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on standard architectures [1, p. 33-35], which makes computation of A(b, W)
even more efficient.

The second problem is finding out whether multiple double-unknown k-th
column pairs exist, and if there is only a single one, what is its position. While
that can be determined trivially in linear time, a find-first-set algorithm can also
be used, which can be implemented in logarithmic time on standard architec-
tures [1, p. 9] and also is typically implemented as a constant-time instruction
on modern processors.

The third problem, computation of i} extremes in Eq. 30, is not as easily
mitigated. This is chiefly due to removal of summands with coefficients above 2%
due to 2¥*! congruence. While typical processors contain a single-cycle multi-
plication operation, we have not found an efficient way to use it for computation
of Eq. 25. To understand why this is problematic, computation of h} with 3-bit
operands and k = 2 can be visualised as

@24 @ 2% @H @)
ag a1 G
by b1 bo

(—azbg) aibg agbo
@b (—aibi) agh
Gt arlg (—aobz)

The striked-out operands are removed due to 2t! congruence, while the k-th
column pair summands are subtracted instead of adding them. These changes
could be performed via some modifications of traditional multiplier implementa-
tion (resulting in a custom processor instruction), but are problematic when only
traditional instructions can be performed in constant time. Instead, we propose
computation of h} via

k
hi(a,b) = a; (—2Fbi_; + 2'P(bo_k—i-1)) - (48)
i=0

As each summand over 7 can be computed in constant time on standard architec-
tures, h(a,b) can be computed in linear time. Modified multiplication techniques
with lesser time complexity such as Karatsuba multiplication or Schénhage-
Strassen algorithm [13] could also be considered, but they are unlikely to improve
practical computation time when N corresponds to the word size of normal
microprocessors, i.e. N < 64.

7.5 Fast Abstract Multiplication Algorithm

Applying the previously discussed improvements directly leads to Algorithm 2.
For conciseness, in the algorithm description, bitwise operations are denoted
by the corresponding logical operation symbol, shorter operands have high zeros
added implicitly, and the bits of a™in, g™ax pmin pmax ahove k are not used, so
there is no need to mask them to zero.
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Algorithm 2. Fast abstract multiplication algorithm

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

I‘G‘V

rev

: function FAST_ABSTRACT_-MULTIPLICATION (&, b)

— Y, W) > Compute machine-word reversals for word size W
— )\(b" W)

— A(a™, W)

— )\(bm, W)

for k € {0,...,M} do

Sa — a™ AR _k_1 w_1 > Single-unknown k-th c. pairs, ‘X’ in a

a™® — aV V (55 A b;’ev’Wikil‘.Wil) > Minimize such pairs
a™® —a¥ V (sa A bYey w1 w—1) > Maximize such pairs
Sb — U™ Aaye, wog—1. w-1 > Single-unknown k-th c. pairs, ‘X’ in b
DO — BV (Sb A @Yoy k1w 1) > Minimize such pairs
b™MmAx — pY V (sp A ﬁa;’evyw_k_l__w_l) > Maximize such pairs
d«— a™ A birclv,W—k—l..W—l > Double-unknown k-th column pairs
if &(d)#0 then > At least one double-unknown 2% pair

i « FIND_FIRST_SET(d)

if @(d) # 2" then > At least two double-unknown k-th col. pairs
Cl — X > Theorem 4
continue

end if

j<—k—1 1 Resolve singular double-unknown k-th column pair

if 2 (Zi(bmm ) +27d(ain ) < 2F then > Equation 28

min

a —1

if 27®(afy ;) < 2°P(b5% |) then > Equation 29
ainax
else
bmax
end 1f
end if
hy™ —0 > Computed a™™, o™ compute minimum of hj
hpy ™ — 0 > Computed a™*, p™** compute maximum of hj
for i € {0,...,k} do > Compute each row separately
if a™" =1 then
hy ™ = R — (2800 + ('R0 1))
end if
if ;"™ =1 then
Ry e R — (2R0) + ('R (05 )
end if
end for

Clp — X > Set result bit unknown

<—1

—1
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43: else )

44: gt —0,¢) — C(hy™") mod 2 > Set value
45: end if

46: end for

47: return ¢

48: end function

Upon inspection, it is clear that the computation complexity is dominated
by computation of A", A and the worst-case time complexity is ©(N?), prov-
ing Theorem 2. Since the loops depend on M which does not change when signed
multiplication is considered (only N does), signed multiplication is expected to
incur at most a factor-of-4 slowdown when 2N fits machine word size, the pos-
sible slowdown occurring due to possible splitting of most significant bits of
multiplicands (discussed at the start of Sect. 7).

8 Experimental Evaluation

We implemented the naive universal algorithm, the fast abstract addition algo-
rithm, and the fast abstract multiplication algorithm in the C++ programming
language, without any parallelization techniques used. In addition to successfully
checking equivalence of naive and fast algorithm outputs for N < 9, we mea-
sured the performance of algorithms with random inputs. The implementation
and measurement scripts are available in the accompanying artifact [9].

To ensure result trustworthiness, random inputs are uniformly distributed
and generated using a C+-+ standard library Mersenne twister before the mea-
surement. The computed outputs are assigned to a volatile variable to prevent
their removal due to compile-time optimization. Each measurement is taken 20
times and corrected sample standard deviation is visualised.

The program was compiled with GCC 9.3.0, in 64-bit mode and with maxi-
mum speed optimization level -03. It was ran on the conference-supplied virtual
machine on a x86-64 desktop system with an AMD Ryzen 1500X processor.

8.1 Visualisation and Interpretation

We measured the CPU time taken to compute outputs for 10% random input
combinations for all algorithms for NV < 8, visualising the time elapsed in Fig. 1.
As expected, the naive algorithm exhibits exponential dependency on N and
the fast addition algorithm seems to be always better than the naive one. The fast
multiplication algorithm dominates the naive one for N > 6. The computation
time of the naive algorithm makes its usage for N > 16 infeasible even if more
performant hardware and parallelization techniques were used.

For the fast algorithms, we also measured and visualised the results up to
N = 32 in Fig. 2. Fast addition is extremely quick for all reasonable input sizes
and fast multiplication remains quick enough even for N = 32. Fast multiplica-
tion results do not seem to exhibit a noticeable quadratic dependency. We con-
sider it plausible that as N rises, so does the chance that there are multiple
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double-unknown k-th column pairs for an output bit and it is set to ‘X’ quickly,
counteracting the worst-case quadratic computation time.

Finally, we fixed N = 32, changing the independent variable to the number of
unknown bits in each input, visualising the measurements in Fig. 3. As expected,
the fast multiplication algorithm exhibits a prominent peak with the easiest
instances being all-unknown, as almost all output bits will be quickly set to ‘X’
due to multiple double-unknown k-th column pairs. Even at the peak around
N = 6, the throughput is still above one hundred thousands computations per
second, which should be enough for model checking usage.

In summary, while the naive algorithm is infeasible for usage even with 16-bit
inputs, the fast algorithms remain quick enough even for 32-bit inputs.

4 - 4

% 35| —H+— naive addition % 35| —EG— naive multiplication

— '3 —+— fast addition o '3 ——><— fast multiplication

Q B Q B

& 25Ff in 8 25f ®

o] (©

Ko] 2+ K] 2+

g 15} g 15}

= B = = B )

) 1 -] 1

S o5t = S 05 5 R
olm@m=a®T L olw mu®° |

0 2 4 6 8 0 2 4 6 8

Number of input operand bits (N) Number of input operand bits (N)

Fig. 1. Measured computation times for 10° random abstract input combinations.

5 —
b —+— fast addition
S 4t ——><— fast multiplication XXXXX
3 XXX
% 3 F XXX
o w XX
(] 2+ X}'{x
E x X
g= x X
2 1t x X
o Xxx
N 0 %X—W

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of input operand bits (N)

Fig. 2. Measured computation time for 10° random abstract input combinations, fast
algorithms only.
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10
——+— fast addition
F—><— fast multiplication
8_
)
k5
pay 6 X X
5 KX
[} % X
) < N
£ 4 X
5 X
z X
(@} Xx
2 + X x
)()(X
x
XXXXXXXXXX

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of unknown bits
in each input

Fig. 3. Measured computation times for 10° random abstract input combinations with
fixed N = 32, while the number of unknown bits in each input varies.

9 Conclusion

We devised a new modular extreme-finding technique for construction of fast
algorithms which compute the best permissible three-valued abstract bit-vector
result of concrete operations with three-valued abstract bit-vector inputs when
the output is not restricted otherwise (forward operation problem). Using
the introduced technique, we presented a linear-time algorithm for abstract addi-
tion and a worst-case quadratic algorithm for abstract multiplication. We imple-
mented the algorithms and evaluated them experimentally, showing that their
speed is sufficient even for 32-bit operations, for which naive algorithms are infea-
sibly slow. As such, they may be used to improve the speed of model checkers
which use three-valued abstraction.

There are various research paths that could further the results of this paper.
Lesser-used operations still remain to be inspected, most notably the division and
remainder operations. Composing multiple abstract operations into one could
also potentially reduce overapproximation. Most interestingly, the forward oper-
ation problem could be augmented with pre-restrictions on outputs, which would
allow not only fast generation of the state space in forward fashion, but its
fast pruning as well, allowing fast verification via state space refinement. Fur-
thermore, verification of hardware containing adders and multipliers could be
improved as well, e.g. by augmenting Boolean satisfiability solvers with algo-
rithms that narrow the search space when such a structure is found.
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Abstract. In classic program synthesis algorithms, such as counter-
example-guided inductive synthesis (CEGIS), the algorithms alternate
between a synthesis phase and an oracle (verification) phase. Many syn-
thesis algorithms use a white-box oracle based on satisfiability modulo
theory (SMT) solvers to provide counterexamples. But what if a white-
box oracle is either not available or not easy to work with? We present a
framework for solving a general class of oracle-guided synthesis problems
which we term synthesis modulo oracles (SyMo). In this setting, oracles
are black boxes with a query-response interface defined by the synthesis
problem. As a necessary component of this framework, we also formalize
the problem of satisfiability modulo theories and oracles (SMTO), and
present an algorithm for solving this problem. We implement a proto-
type solver for satisfiability and synthesis modulo oracles and demon-
strate that, by using oracles that execute functions not easily modeled in
SMT-constraints, such as recursive functions or oracles that incorporate
compilation and execution of code, SMTO and SyMO can solve problems
beyond the abilities of standard SMT and synthesis solvers.

1 Introduction

A common formulation of program synthesis is to find a program, from a specified
class of programs, that meets some correctness specification [4]. Classically, this
is encoded as the 2nd-order logic formula 3 f.Vf. ¢, where f is a set of target
functions to be synthesized, Z is a set of 0-ary symbols, and ¢ is a quantifier-free
formula in a logical theory (or combination of theories) T'. A tuple of functions
f_:" satisfies the semantic restrictions if the formula VZ ¢ is valid in T when the
tuple is substituted for f in ¢. Many problems are specified in this form, and
the SyGuS-IF format [24] is one way of specifying such syntax-guided synthesis
(SyGuS) problems.

Whilst powerful, this format is restrictive in one key way: it requires the cor-
rectness condition to be specified with static constraints, as satisfiability modulo
theories (SMT) [8] formulas, before the solving process begins. This limits the
problems that can be specified, as well as the oracles that can be used to guide
the search. For example, if one wants to synthesize (parts of) a protocol whose
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correctness needs to be checked by a temporal logic model checker (e.g. [30]),
such a model-checking oracle cannot be directly invoked within a general-purpose
SyGusS solver and instead requires creating a custom solver.

Similarly, SMT solvers, used widely in verification and synthesis, require
their input to be encoded as a logical formula prior to the initiation of solving.
Whilst the language of SMT-LIB is powerful and expressive, many formulas are
challenging for current SMT solvers to reason about; e.g., as in Fig. 1, finding a
prime factorization of a given number. Here it would be desirable to abstract this
reasoning to an external oracle that can be treated as a black-box by the SMT
solver, rather than rely on the SMT solver’s ability to reason about recursive
functions.

(define—fun—rec isPrimeRec ((a Int) (b Int)) Bool
(ite (> b (div a 2)) true
(ite (= (mod a b) 0)
false
(isPrimeRec a (+ b 1)))))

(define—fun isPrime ((a Int)) Bool
(ite (<= a 1)
false
(isPrimeRec a 2)))

(assert (and (isPrime f1)(isPrime f2)(isPrime f{3)))
(assert (= (x f1 f2 £3) 76))

Fig. 1. SMT problem fragment: find prime factors of 76. Unsolved by CVC5 v1.0.
Solved by SMTO using isPrime oracle in <1s.

This motivates our introduction of oracles to synthesis and SMT solving. Ora-
cles are black-box implementations that can be queried based on a pre-defined
interface of query and response types. We call these “black-box” because the
SMT solver does not view the internal implementation of the oracle, and instead
queries the oracle via the interface. Examples of oracles could be components of
systems that are too large and complex to analyze or model with logical formulas
(but which can be treated as black boxes and executed on inputs) or external
verification engines solving verification queries beyond SMT solving.

Prior work has set out a theoretical framework expressing synthesis algo-
rithms as oracle-guided inductive synthesis [21], where a learner interacts with an
oracle via a pre-defined oracle interface. However, that work does not give a gen-
eral algorithmic approach to solve oracle-guided synthesis problems or demon-
strate the framework on practical applications. An important contribution we
make in this work is to give a unified algorithmic approach to solving oracle-
guided synthesis problems, termed SyMO. The SyMO approach is based on a
key insight: that query and response types can be associated with two types of
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logical formulas: verification assumptions and synthesis constraints. The former
provides a way to encode semantic restrictions on black-box oracle behavior into
an SMT formula, whereas the latter provides a way for oracles to guide the
search of the synthesizer.

(a) Original image (b) Target image

Fig. 2. Image manipulation: given two images, SyMO synthesizes the pixel-by-pixel
transformation in <1s.

To explain the use-case for assumptions, let us first introduce oracle function
symbols and Satisfiability Modulo Theories and Oracles (SMTO). Oracle func-
tion symbols are n-ary symbols whose behavior is associated with some oracle.
Intuitively we use these to model parts of the system that are challenging for the
SMT solver, e.g., the problem of checking if a number is prime is shown modeled
using an oracle in Example 1 (Sect. 2.1). Here the oracle symbol is 0p.

In general, consider a quantifier-free formula p which contains an oracle func-
tion symbol . SMTO looks for a satisfying assignment to the formula based on
initially assuming 6 is a universally quantified uninterpreted function (i.e., we
look for a satisfying assignment that would work for any possible implementa-
tion of the oracle): Vf.p. As we make calls to the oracle, we begin to learn more
about its behavior, and we encode this behavior as assumptions «, such that the
formula becomes V6.co = p. Specifically, for the example in Example 1, we must
call the oracle on a specific value to generate an assumption that constrains the
behavior of 8p to return true on that input value. This is the primary use case
for assumptions generated by oracles, they are used to constrain the behavior of
oracle function symbols.

In SyMO, we can use these oracles to model external verification modules.
Thus determining the correctness of a candidate function is an SMTO problem,
and assumptions generated by oracles are used in the SMTO solving process.
We also use oracles to generate additional constraints that further constrain the
search space of the synthesis.

As an exemplar of an existing oracle-guided synthesis algorithm, consider
ICE-learning [19] for invariant synthesis. ICE-learning uses three oracles: an
oracle to provide positive examples (examples which should be contained within
the invariant); an oracle to provide negative examples (examples which should
not be contained within the invariant); and an oracle to provide implication
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examples (an example pair where if the first element is contained within the
invariant, both must be contained). Whilst it is possible to build some of these
oracles using an SMT solver, it is often more effective to construct these oracles
in other ways, for instance, the positive example oracle can simply execute the
loop or system for which an invariant is being discovered and return the output.
These oracles gradually constrain the search space of the synthesis until a correct
invariant is found.

We implement SyMO in a prototype solver Delphi, and hint at its broad
utility by demonstrating several applications including programming by exam-
ple, synthesis of controllers for LTI systems, synthesizing image transformations
(e.g., Fig. 2), and satisfiability problems that reason about primes (e.g., Fig. 1).
This illustrates the power of being able to incorporate oracles into SyMO that
are too complex to be modeled or for SMT solvers to reason about.

To summarize, the main contributions of this paper are:

A formalization of the problem of satisfiability and synthesis modulo oracles
(Sect. 2);

A unifying algorithmic approach for solving these problems (Sect. 3 and
Sect. 4);

Demonstration of how this approach can capture popular synthesis strategies
from the literature (Sect. 5), and

A prototype solver Delphi, and an experimental demonstration of the broad
applicability of this framework (Sect. 6).

Related Work. Almost all synthesis algorithms can be framed as some form
of oracle-guided synthesis. Counterexample-guided inductive synthesis (CEGIS)
is the original synthesis strategy used for Syntax-Guided Synthesis [29], and
uses a correctness oracle that returns counterexamples. Further developments
in synthesis typically fall into one of two categories. The first comprises innova-
tive search algorithms to search the space more efficiently; for instance, genetic
algorithms [16], reinforcement learning [28], or partitioning the syntactic search
space in creative ways [5]. It is worth noting that the framework we present
uses constraints to guide the search of the synthesis solver but these con-
straints are restricted to semantic and not syntactic constraints. The second cat-
egory comprises extensions to the communication paradigm permitted between
the synthesis and the verification phase. For instance, CEGIS modulo theo-
ries [3], CEGIS(T), extends the oracle interface over standard CEGIS to permit
responses in the form of a restricted set of constraints over constants in the can-
didate program. Other work leverages the ability to classify counterexamples as
positive or negative examples [23]. There are also notable algorithms in invariant
synthesis based on innovative use of different query types [19,23]. Our work has
one key stand-out difference over these: in all of these algorithms, the correct-
ness criteria must be specified as a logical formula, whereas in our framework we
enable specification of the correctness criteria as a combination of a logical for-
mula and calls to external oracles which may be opaque to the solver. Synthesis
with distinguishing inputs [20] is an exception to this pattern and uses a specific
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set of three interacting black-box oracles, to solve the very specific problem of
synthesis of loop-free programs from components. Our work differs from this and
the previously-mentioned algorithms in that they are customized to use certain
specific types of oracle queries, whereas, we give a “meta-solver” allowing any
type of oracle query that can be formulated as either generating a constraint or
an assumption in the form of a logical formula.

The idea of satisfiability with black-boxes has been tackled before in work on
abstracting functional components as uninterpreted/partially-interpreted func-
tions (see, e.g., [6,12,13]), which use counterexample-guided abstraction refine-
ment [14]. Here, components of a system are abstracted and then refined based
on whether the abstraction is sufficiently detailed to prove a property. However,
to do this, the full system must be provided as a white-box. The key contribu-
tion our work makes in this area is a framework allowing the use of black-box
components that obey certain query-response interface constraints, where the
refinement is dictated by these constraints and the black-box oracle interaction.
A related problem is synthesising summaries of black-boxes, where existing tech-
niques use only input-output examples [15].

2 Oracles

In this section, we introduce basic definitions and terminology for the rest of the
paper. We begin with some preliminaries about SMT and synthesis.

2.1 Preliminaries and Notation

We use the following basic notations throughout the paper. If e is an expression
and z is free in e, let e-{x — t} be the formula obtained from the formula e by
proper substitution of the variable x by the variable ¢.

Satisfiability Modulo Theories (SMT). The input to an SMT problem is a
first-order logical formula p. We use = to denote the (infix) equality predicate.
The task is to determine whether p is T-satisfiable or T-unsatisfiable, that is,
satisfied by a model which restricts the interpretation of symbols in p based on
a background theory T'. If p is satisfiable, a solver will usually return a model
of T' that makes p true, which will include assignments to all free variables in p.
We additionally say that a formula is T-valid if it is satisfied by all models of T'.

Syntax-Gulded Synthesis. In syntax-guided synthesis, we are given a set
of functions f to be synthesized, associated languages of expressions L =
Ly,...,L,, (typically generated by grammars), and we seek to solve a formula
of the form

3f e LVZE. ¢
where & = z1 ...z, is a set of 0-ary symbols and ¢ is a quantifier-free formula in
a background theory 7. In some cases, the languages L; include all well-formed
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expressions in T' of the same sort as f;, and thus L; can be dropped from the
problem. A tuple of candidate functions f * satisfies the semantic restrictions for
functions-to-synthesize f in conjecture 3 f VZ. ¢ in background theory T if V& ¢
is valid in T when f are defined to be terms whose semantics are given by the
functions (f*) [4,24].

2.2 Basic Definitions

We use the term oracle to refer to a component that can be queried in a pre-
defined way by the solver. An oracle interface defines how an oracle can be
queried. Apart from queries made via the oracle interface, the oracle is treated
by the solver as a black-box. This concept is borrowed from [21]. We extend the
definition of oracle interfaces to also provide the solver with information on the
meaning of the response, in the form of expressions that generate assumptions
or constraints.

—

Definition 1 (Oracle Interface). An oracle interface I is a tuple (¥, Z, agen,
Bgen) where:

— 1 is a list of sorted variables, which we call the query domain of the oracle
interface;

— Z is a list of sorted variables, which we call its response co-domain;

— Qgen 5 a formula whose free variables are a subset of ¥, Z, which we call its
assumption generator; and

— Bgen s a formula whose free variables are a subset of i, Z, which we call its
constraint generator. d

Notice that ageyn and Bge,, may contain any symbols of the background theory,
as well as user-defined function symbols, which in particular will include oracle
function symbols, as we introduce later in this section. We assume that all oracle
interfaces have an associated oracle that implements their prescribed interface for
values of the input sort, and generates concrete values as output. In particular,
an oracle for an oracle interface of the above form accepts a tuple of values
with sorts matching ¢/, and returns a tuple of values with sorts matching z. It
is important to note that the notion of a value is specific to a sort, which we
intentionally do not specify here. In practice, we assume e.g. the standard values
for the integer sort; we assume all closed lambda terms are values for higher-order
sorts, and so on.

An oracle interface defines how assumptions and constraints can be given to
a solver via calls to black-box oracles, as given by the following definition.

Definition 2 (Assumptions and Constraints Generated by an Oracle
Interface). Assume Z is an oracle interface of form (¥, Z, agen, Bgen). We say

formula ogen{y — €72 — cf} is an assumption generated by I if calling its
associated oracle for input € results in output d. In this case, we also say that
Bgen{y — ¢ 7 — d} is a constraint generated by T. O
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We are now ready to define the main problems introduced by this paper.
In the following definition, we distinguish two kinds of function symbols: oracle
function symbols, which are given special semantics in the following definition;
all others we call ordinary function symbols. As we describe in more detail in
Sect. 3, oracle function symbols allow us to incorporate function symbols that
correspond directly to oracles in specifications and assertions.

Definition 3 (Satisfiability Modulo Theories and Oracles). A satisfia-
bility modulo theories and oracles (SMTO) problem is a tuple (f,0, p,I), where
fis a set of ordinary function symbols, 0 is a set of oracle function symbols, p is
a formula in a background theory T' whose free function symbols are f &0, and
7 is a set of oracle interfaces. We say this input is:

— unsatisfiable ifﬁﬂﬂﬂé'.A A p A B is T-unsatisfiable,
— satisfiable if 3f.¥V0.A = (p A B) is T-satisfiable,

where, in each case, A (resp. B) is a conjunction of assumptions (resp. con-
straints) generated by Z. O

According to the above semantics, constraints are simply formulas that we
conjoin together with the input formula. Assumptions play a different role. In
particular, they restrict the possible interpretations of g that are relevant. As
they appear in the antecedent in our satisfiability criteria, values of g that do
not satisfy our assumptions need not be considered when determining whether
an SMTO input is satisfiable. As a consequence of the quantification of 5, by
convention we will say a model M for an SMTO problem contains interpretations
for function symbols in f only; the values for g need not be given.

It is important to note the role of the quantification for oracle symbols g in
the above definition. An SMTO problem is unsatisfiable if the conjunction of
assumptions, input formula, and constraints are unsatisfiable when treating g
existentially, i.e. as uninterpreted functions. Conversely, an SMTO problem is
satisfiable only if there exists a model satisfying (p A B) for all interpretations
of 6 for which our assumptions A hold. An example satisfiable SMTO problem
is shown in Example 1.

Ezample 1: SMTO problem, searching for prime factors:
(=11, 12}, O={6}, 0p(F) NOP(f2) A fr % fo =91, T = {Tp})
where Jp is defined as follows:
Jp = ((z: Int), (z: Bool), Op(x) ~ 2, T)

This problem is satisfiable, and a satisfying assignment is f1 = 7, fo ~ 13, when
the following assumptions are generated A = {0p(7) ~ true, 6p(13) ~ true}.
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In the absence of restrictions on oracle interfaces 7 , an SMTO problem can be
both satisfiable and unsatisfiable, depending on the constraints and assumptions
generated. For instance, when A becomes equivalent to false, the input is trivially
both unsatisfiable and satisfiable. However, in practice, we define a restricted
fragment of SMTO, for which this is not the case, and we present a dedicated
procedure for this fragment in Sect. 3. To define this fragment, we introduce the
following definition.

Definition 4 (Oracle Interface Defines Oracle Function Symbol). An
oracle interface J defines an oracle function symbol 0 if it is of the form

((y1,---95):(2),0(v1,...y;) = 2,0), and its associated oracle O is functional.
In other words, calling the oracle interface generates an equality assumption of
the form 0(y1,...y;) = z only. O

From here on, as a convention, we use J to refer to an oracle interface that
specifically defines an oracle function symbol, and Z to refer to a free oracle
interface, i.e., an oracle interface that may not define an oracle function symbol.

Definition 5 (Definitional Fragment of SMTO). An SMTO problem
(f,0,p,J) is in the Definitional Fragment of SMTO if and only if § =

0,...,0 ) J = (Jy---, Tn), and J; is an oracle interface that defines 0;
fori=1,...,n. O

Note that each oracle function symbol is defined by one and only one oracle
interface. Example 1 is in the definitional SMTO fragment.

We are also interested in the problem of synthesis in the presence of oracle
function symbols, which we give in the following definition.

Definition 6 (Synthesis Modulo Oracles). A synthesis modulo oracles
(SyMO) problem is a tuple (f, 0,vz. ¢,1), where fis a tuple of functions (which
we refer to as the functions to synthesize), 0is a tuple of oracle function symbols,
Vm ¢ 1s a formula is some background theory T' where ¢ is quantifier-free, and
T is a set of oracle interfaces. A tuple of functions f* s a solution for synthesis

conjecture if (&, 9, —¢- {f — f },I) is unsatisfiable modulo theories and oracles.
O

An example SyMO problem is shown in Example 2. Although not mentioned
in the above definition, the synthesis modulo oracles problem may be combined
with paradigms for synthesis that give additional constraints for f that are not
captured by the specification, such as syntactic constraints in syntax-guided
synthesis. In Sect.4, we present an algorithm for a restricted form of SyMO

problems where the verification of candidate solutions f_:k reduces to Definitional
SMTO.
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Ezample 2: SyMO problem, searching for a digital controller:
(f: {kla k2}7 JZ {ostable}q V‘i:~0‘stable(k17k2) A 57 j = {jstablc})

where S is a logical formula representing a safe unrolling of the system and where
Tstaple is defined as follows:

Tstavie = ((y1 : BV,y2: BV), (z: Bool), Ostavie(y1,y2) = 2, T)

This formula is satisfied when controllers k1, k2 are found such that Ostapie (K1, k2)
returns true, and the formula S is true for all Z.

3 Satisfiability Modulo Theories and Oracles

In this section, we describe our approach to solving inputs in the definition frag-
ment of SMTO, according to Definition 5. First, we note a subtlety with respect
to satisfiability of SMTO problems in the definition fragment vs. the general
problem. Namely that a problem must be either satisfiable and unsatisfiable and
not both, and once a result is obtained for Definitional SMTO, the result will
not change regardless of subsequent calls to the oracles. This is not true for the
general SMTO problem. In particular, note the following scenarios:

Conflicting Results. Assume that EIf.EI@Ai A p A B; is T-unsatisfiable, where A;
(resp. B; be the conjunction of assumptions (resp. constraints) obtained after
i calls to the oracles. In unrestricted SMTO, it is possible that A; alone is T-
unsatisfiable, thus VOA; = (p A B;) is T-satisfiable and the problem is both
satisfiable and unsatisfiable. However, in Definitional SMTO, it is impossible
for A; alone to be unsatisfiable, since all oracle interfaces defining oracle func-
tion symbols, which generate assumptions only of the form 6(§) ~ 2z and the
associated oracles are functional.

Vacuous Results. In general, it is possible for an SMTO problem to be neither
satisfiable and unsatisfiable. As a simple example, consider the case where the
assumption and constraint generators are both T. Let p be a formula such that
3 f.ﬂ(‘ip is T-satisfiable, and 3 f.vé.p is T-unsatisfiable. In other words, p holds
for some but not all functions §. In this case, the SMTO problem is neither
satisfiable and unsatisfiable. In contrast, in Definitional SMTO, in the limit, A;
corresponds to complete definitions for all oracle functions in 5, at which point
3 fﬂéAi A p is equivalent to 3 fV@.Ai = p. Hence any Definitional SMTO is
either satisfiable or unsatisfiable.

Non-fixed Results. Assume that af.v@Ai = (p A B;) is T-satisfiable, where A4;
(resp. B;) is the conjunction of assumptions (resp. constraints) obtained after 4
calls to the oracles. Thus, by Definition 3, our input is satisfiable. In unrestricted
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SMTO, it is possible for an oracle to later generate an additional constraint §
such that VgAi = (p A B; A 3) is T-unsatisfiable, thus invalidating our previous
result of “satisfiable”. However, in Definitional SMTO, this cannot occur, since
oracles that generate non-trivial constraints are not permitted. It is trivial that
once any SMTO is unsatisfiable, it remains unsatisfiable. Thus the satisfiability
results for Definitional SMTO, once obtained, are fixed.

SMT Solver —> UNSAT

model assumptions «

Oracle Consistency ,
Checker

oracles

Fig. 3. Satisfiability modulo oracle solver

3.1 Algorithm for Definitional SMTO

Our algorithm for Definitional SMTO is illustrated in Fig. 3 and given as Algo-
rithm 1. The algorithm maintains a dynamic set of assumptions A generated by
oracles. In its main loop, we invoke an off-the-shelf SMT solver (which we denote
SMT) on the conjunction of p and our current assumptions A. If this returns
UNSAT, then we return UNSAT along with the set of assumptions A we have
collected. Otherwise, we obtain the model M generated by the SMT solver from
the previous call.

The rest of the algorithm (lines 8 to 20) invokes what we call the oracle
consistency checker. Intuitively, this part of the algorithm checks whether our
assumptions A about g are consistent with the external implementation the
oracle function symbols are associated with.

We use the following notation: we write e[t] to denote an expression e having a
subterm ¢, and e[s] to denote replacing that subterm with s. We write ¢| to denote
the result of partially evaluating term ¢. For example, (0(1 + 1) +1)] = 6(2)+1.

In the oracle consistency checker, we first construct the formula g which
replaces in p all occurrences of ordinary function symbols f with their value in the
model M, and partially evaluate the result. Thus, initially, 4 is a formula whose
free symbols are 6 only. The inner loop (lines 9 to 17) incrementally simplifies
this formula by calling external oracles to evaluate (concrete) applications of
functions from 6. In particular, while p contains at least one application of a
function from 6, that is, it is of the form p[6;(7)] where Zis a vector of values. We
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Algorithm 1: Satisfiability Modulo Theories and Oracles (SMTO)

input : (f.0,p,7)
output: UNSAT/SAT + assumptions A + (model M)?

1 Algorithm SMTO

2 A — true

3 while true do

4 if SMT(p AN A)=UNSAT then

5 ‘ return UNSAT, A

6 else

7 Let M be model for p A A from SMT

8 Let pu be (p-{f — M}

9 while p is of the form u[0;(¢)] do
10 if (0;(¢) = d) € A for some d then
11 | e pld)]

12 else

13 Let d = call_oracle(J;, €)
14 A— AU (6:(0) = d)
15 = pld]]

16 end

17 end

18 if p is true then

19 return SAT, A, M |f—
20 end

21 end

22 end

know that such a term exists by induction, noting that an innermost application
of a function from § must be applied to values. We replace this term with the
output d obtained from the appropriate oracle. The call to the oracle for input
values ¢ may already exist in A; otherwise, we call the oracle J; for this input and
add this assumption to A. After replacing the application with d, we partially
evaluate the result and proceed. In the end, if our formula y is the formula true,
the consistency check succeeds and we return SAT, along with the current set of
assumptions and the model M. We restrict the returned model so that it contains
only interpretations for f and not 5, which we denote M | P This process repeats
until a model is found that is consistent with the oracles, or until the problem
is shown to be unsatisfiable.

We will now show that this intuitive approach is consistent with the previ-
ously defined semantics for SMTO.

Theorem 1 (Correctness of SMTO algorithm). Algorithm 1 returns

UNSAT (resp. SAT) only if the SMTO problem (f, 8, p, J) is unsatisfiable (resp.
satisfiable) according to Definition 3.
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Proof. UNSAT case: By definition, an SMTO problem is unsatisfiable if
3 fﬂ@A/\ p is T-unsatisfiable, noting that for the definitional fragment of SMTO,
B is empty. Algorithm 1 returns UNSAT when the underlying SMT solver
returns UNSAT on the formula p A Ay for some Ay. Since Ag is generated by
oracles J. , it follows that our input is unsatisfiable.

SAT case: By definition, an SMTO problem is SAT iff 3f.V0.A = p is T-
satisfiable for some A. Algorithm 1 returns SAT when p A Ag is SAT with model
M for some Ap, and when the oracle consistency check subsequently succeeds.
Assume that the inner loop (lines 9 to 17) for this check ran n times and that
a superset A, of Ay is returned as the set of assumptions on line 19. We claim
that M |f is a model for VA.A,, = p. Let M’ be an arbitrary extension of
M | > that satisfies A,,. Note that such an extension exists, since, by definition of
Definitional SMTO, A, is a conjunction of equalities over distinct applications of
0. Let 1oy 41, - - - 5 by, De the sequence of formulas such that u; corresponds to the
value of u after ¢ iterations of the loop on lines 9 to 17. We show by induction on ¢,
that M’ satisfies each ;. When i = n, p; is true and the statement holds trivially.
For each 0 < i < n, we have that pu; is the result of replacing an occurrence of
0(¢) with d in p;—1 and partially evaluating the result, where 6(¢) ~ d € A,.
Since M’ satisfies 6(¢) ~ d € A, and by the induction hypothesis satisfies u;,
it satisfies y1; 1 as well. Thus, M’ satisfies po, which is (p-{f — f™})|. Thus,
since M’ is an arbitrary extension of M | 7 satisfying A,,, we have that M | 7

satisfies V0.4, = p and thus the input is indeed satisfiable.

Theorem 2 (Completeness for Decidable T and Finite Oracle Dom-
ains). Let background theory T be decidable, and let the domain of all oracle
function symbols be finite. In this case, Algorithm 1 terminates.

Proof Sketch: Since T is decidable, the calls to satisfiability within the algorithm
terminate. On any given iteration of the loop in which the algorithm does not
terminate, we have that M is a model for p A A. It must be the case that at
least one new constraint is added to A on line 14, or otherwise p would simplify
to true since M satisfies A. Since the domains of oracle functions are finite by
assumption, all input-output pairs for each oracle will be added as constraints
to A, and the algorithm terminates.

Termination is not guaranteed in all background theories since it may be
possible to write formulas where the number of input valuations to the oracle
function symbols that must be enumerated is infinite, for example, if an oracle
function symbol has integer arguments.

4 Synthesis Modulo Oracles

A SyMO problem consists of: a tuple of functions to synthesize f, a tuple of oracle
function symbols 9 a specification in the form VZ. ¢, where ¢ is a quantifier-free
formula in some background theory T, and a set of oracle interfaces ZwJ. We
present an algorithm for a fragment of SyMO, where the verification condition
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Algorithm 2: Synthesis Modulo Oracles

input : (f,0,YZ¢, J w1)

output: solution fﬁ* or no solution
1 A« true; // conjunction of assumptions
2 S« true ; // synthesis formula
3 while true do

4 f4* «—Synthesize( Bf.S ANA);
5 | if f*=0 then
6 ‘ return no solution;
7 else
8 Ve—AAN-¢; // verification formula
9 (r,a, M) — SMTO(Z,0,V-{f — f*},J) ;
10 if r=UNSAT then
11 ‘ return f:*
12 else
13 B — call,additional,oracles(f , 0, M) ;
14 A—AUa;
15 S— Sup{z—aMIUp;
16 end
17 end
18 end

reduces to a Definitional SMTO problem. To that end, we require that Jisa
set of oracle interfaces that define §, and Z is a set of oracle interfaces that only
generate constraints, i.e., ogen, is empty. We will show that these restrictions
permit us to use the algorithm for Definitional SMTO to check the correctness
of a tuple of candidate functions in Theorem 3.

4.1 Algorithm for Synthesis with Oracles

We now proceed to describe an algorithm for solving synthesis problems using
oracles, illustrated in Fig. 4. Within each iteration of the main loop, the algorithm
is broken down into two phases: a synthesis phase and an oracle phase. The
former takes as input a synthesis formula S which is incrementally updated over
the course of the algorithm and returns a (tuple of) candidate solutions f_;‘. The
latter makes a call to an underlying SMTO solver for the verification formula V|
which is a conjunction of the current set of assumptions A we have accumulated
via calls to oracles, and the negated conjecture —¢. In detail:

— Synthesis Phase: The algorithm first determines if there exists a set of
candidate functions f * that satisfy the current synthesis formula S. If so, the
candidate functions are passed to the oracle phase.

— Oracle Phase I: The oracle phase calls the SMTO solver as described in
Sect. 3 on the following Definitional SMTO problem: (7,6, V-{f — f*}, 7).
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Synthesize
BN ABA _ [ no solution
constraints T — M AL A YT — M}
i+1 _
rfotlel candidates f*
Mt

SMTO solver ‘ -
AZ.(c1 A A i) Ao > solution f

oracles

Fig. 4. SyMO algorithm illustration

If the SMTO solver returns UNSAT, then f* is a solution to the synthe-
sis problem. Otherwise, the SMTO solver returns SAT, along with a set of
assumptions « and a model M. The assumptions « are appended to the set
of overall assumptions A. Furthermore, an additional constraint ¢-{# — &M}
is added to the current synthesis formula S. This formula can be seen as a
counterexample-guided refinement, i.e. future candidate solutions must sat-
isfy the overall specification for the values of x in the model M returned by
the SMTO solver.

— Oracle Phase II: As an additional step in the oracle phase, the solver may
call any further oracles 7 and the constraints (B are passed to the synthesis
formula. Note the oracles in 7 generate constraints only and not assumptions.

Theorem 3 (Soundness). If Algorithm 2 returns f_:", then f_;‘ s a valid solu-
tion for the SyMO problem (f,0,Y%p, T WI).

Proof. According to Definition 6, a solution f_:k is valid for our synthesis problem
iff (7,0,-~¢-{f — f*},J wI) is unsatisfiable modulo theories and oracles, i.e.
when 30.A A (~¢-{f — f*} A B) is T-unsatisfiable for assumptions A and con-
straints B generated by oracle interfaces JWI. By definition, Algorithm 2 returns
a solution if the underlying SMTO solver finds that (&, 5, AN —|¢~{f_’—> f_;‘}, j)
is unsatisfiable modulo theories and oracles, i.c. 30.A A (=¢-{f — f*}) is T-
unsatisfiable, which trivially implies that the above statement holds. Thus, and
since the SMTO solver is correct for UNSAT responses due to Theorem 1, any
solution returned by Algorithm 2 is a valid solution.

Inferring Inputs for Additional Oracles: Although not described in detail in Algo-
rithm 2, we remark that an implementation may infer additional calls to ora-
cles based on occurrences of terms in constraints from Z and ground terms in
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¢ under the current counterexample from M. For example, if f(7) appears in
¢-{# — M}, and there exists an oracle interface with a single input z and the
generator Bgen : f(2) = y, we call that oracle with the value 7. Inferring such
inputs amounts to matching terms from constraint generators to concrete terms
from ¢-{% — #M}. Our implementation in Sect. 6 follows this principle.

5 Instances of Synthesis Modulo Oracles

A number of different queries are categorized in work by Jha and Seshia [21].
Briefly, these query types are

— membership queries: the oracle returns true iff a given input-output pair is
permitted by the specification

— input-output queries: the oracle returns the correct output for a given input

— positive/negative witness queries: the oracle returns a correct/incorrect input-
output pair

— implication queries: given a candidate function which the specification
demands is inductive, the oracle returns a counterexample-to-induction
[11,19].

— Counterexample queries: given a candidate function, the oracle returns an
input on which the function behaves incorrectly if it is able to find one

— Correctness queries: the oracle returns true iff the candidate is correct

— Correctness with counterexample: the oracle returns true iff the candidate is
correct and a counterexample otherwise

— Distinguishing inputs: given a candidate function, the oracle checks if there
exists another function that behaves the same on the set of inputs seen so
far, but differently on a new input. If one exists, it returns the new input and
its correct output.

All of these query types can be encapsulated within the framework we present,
and we show the oracle interfaces for each of the classic query types in Table 1.
Thus, the SyMO framework is a flexible and general framework for program syn-
thesis that can implement any inductive synthesis algorithm, i.e., any synthesis
algorithm where the synthesis phase of the algorithm iteratively increases the
semantic constraints over the synthesis function.

In Table 1, we give example synthesis algorithms next to the corresponding
oracle interfaces. To illustrate these equivalences, we describe in more detail
two exemplars: how CEGIS [29] is SyMO with a single counterexample-with-
correctness interface Jecer; and how SyMO implements ICE-learning [19] using
interfaces Jeorr, Zimps Lposs Ineg-

Ezxemplar 1: CounterExample Guided Inductive Synthesis in SyMO: Suppose we
are solving a synthesis formula with a single variable z and a single synthesis
function f, where f : 0 — o’. CEGIS consists of two phases, a synthesis phase
that solves the formula S = 3f.Vz. € X .00, where X ., is a subset of all pos-
sible values of x, and a verification phase which solves the formula V = Jx.—¢.
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Table 1. Common oracle interfaces, illustrated for synthesizing a single function which
takes two inputs f(z1,z2). y indicates query variables, except where they are the
candidate function, in which case we use f*, and z indicates response variables, where
2p 1s a Boolean.

Query type ‘ Oracle interface ‘Example algorithms
Constraint generating oracles
Membership Tmem {y1,y2, v} 26, T, 26 < f(y1,y2) ® y) Angluin’s L™ [7]
Input-Output Zio({y1,y2}, 2, T,z = f(y1,y2)) Classic PBE
Negative witness Tneg(D, {21, 22,2}, T, f(21,22) % 2) ICE-learning [19]
Positive witness Tpos(0,{z1, 22,2}, T, f(z1,22) = 2) ICE-learning [19]
Implication Limp(f*, {21, 22, 21, 250}, T, f(21, 22) = f(21, 25) | ICE-learning [19]
Counterexample Zeex (", 2, T, p{Z— Z}) Synthesis with
validators [23]
Distinguishing-input | Zg; (f*, {z1, 22, 2}, T, f(z1, 22) = 2) Synthesis with
distinguishing
inputs [20]
Constraint and assumption generating oracles
Correctness Teorr ([, 26, 0(f") = 2z, T) ICE-learning [19]
Correctness with cex | Jecex (¥, 26, Z, 0(f*) = 2, p{T— Z}) classic CEGIS [29]

There are two ways of implementing CEGIS in our framework. The first is sim-
ply to pass the full SMT-formula ¢ to the algorithm as is, without providing
external oracles. The second method is to replace the specification given to the
oracle guided synthesis algorithm with 3f.V6 .0(f) and use an external correct-
ness oracle with counterexamples, illustrated here for a task of synthesizing a
function f, and receiving a candidate synthesis function y : ¢ — o’:

Lorr = ((y : (0 = ")), (21 : 0, 22 : bool), O(y) = 2z, d(x — 21))

By inspecting the formula solved by the synthesis phase at each iteration, we
can see that, after the first iteration, the synthesis formula are equisatisfiable
if the sequence of counterexamples obtained is the same for both algorithms.
Thus CEGIS can be implemented as a specific instance of the SyMO framework
(Table 2).

Table 2. Comparison of the synthesis formula at each iteration, showing that, if the
same sequence of counterexamples is obtained, the synthesis formulas are equisatisfiable
at each step, i.e., CEGIS reduces to SyMO.

Iter. | CEGIS SyMO with correctness oracle
1 Xeea =0
3f.3z.¢ 3f.true
2 Xeex = C1 B1 = ¢(xz — k1)
L 3f Ve € Xeew -P(x) | 3f.51
3 Xeew = C1,C2 B2 = ¢(z — k2)
-3fVz € Xeew -9(2) | 3f-B1 A B2
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Ezemplar 2: ICE Learning. ICE learning [19] is an algorithm for learning invari-
ants based on using examples, counterexamples and implications. Recall the
classic invariant synthesis problem is to find an invariant ¢nv such that:

Vo, 2’ € X.(init(z) = inv(z)) A (inv(z) Atrans(z,z’) = inv(a'))
A (inv(z") = @)

where init defines some initial conditions, trans defines a transition relation and
¢ is some property that should hold. Given a candidate inv*, if the candidate
is incorrect (i.e., violates the constraints listed above) the oracle can provide:
positive examples E C X, which are values for z where inv(z) should be true;
negative examples C' C X, which are values for x where inv(z) should be false;
and implications I C X x X, which are values for z and 2’ such that inv(z) =
inv(z’). The learner then finds a candidate inv, using a symbolic encoding, such
that

(Vz € E.inv(z)) A (Vo € C.minv(z)) A (V(z,2') € Linv(z) = inv(z’)).

The SyMO algorithm described in this work will implement ICE learning
when given a correctly defined set of oracles and oracle interface and a constraint
Ocorr(inv) = true. Interfaces for these oracles are shown in Table 1.

6 Delphi: A Satisfiability and Synthesis Modulo Oracles
Solver

We implement the algorithms described above in a prototype solver Delphi'.
Delphi can use any SMT-lib compliant SMT solver as the sub-solver in the SMTO
algorithm, or bitblast to MiniSAT version 2.2 [17], and it can use any SyGuS-IF
compliant synthesis solver in the synthesis phase of the SyMO algorithm, or a
symbolic synthesis encoding based on bitblasting. In the evaluation we report
results using CVC5 [10] v1.0 pre-release in the synthesis phase and as the sub-
solver for the SMTO algorithm. The input format accepted by the solver is an
extension of SMT-lib [9] and SyGuS-IF [24].

6.1 Case Studies

We aim to answer the following research questions: RQ1 — when implementing
a logical specification as an oracle executable, what is the overhead added com-
pared to the oracle-free encoding? RQ2 — can SMTO solve satisfiability problems
beyond state-of-the-art SMT solvers? RQ3 — can SyMO solve synthesis problems
beyond state-of-the-art SyGuS solvers? To that end, we evaluate Delphi on the
following case studies.

! link: https://github.com/polgreen/delphi.
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Table 3. Solving times for Delphi and CVC5 on math examples using oracle and
recursive function encodings. “ —” indicates the timeout of 600s was exceeded.

Benchmark Delphi (oracles) | Delphi (no oracles) | CVC5 (no oracles)
1b-square <0.2s <0.2s —
1d-prime <0.2s - <0.2s
1f-prime 3.1s - <0.2s
1h-triangle <0.2s - <0.2s
1j-square, prime | <0.2 s - -
1l-triangle <0.2s - <0.2s
1m-triangle <0.2s - <0.2s
ex7-prime 2.3s - -
ex8-prime - - -
ex9-prime 3.2s - -

ex10-prime - - -

ex11-prime <0.2s - -

Reasoning About Primes (Math): We convert a set of 12 educational mathe-
matics problems [22] that reason about prime numbers, square numbers, and
triangle numbers into SMT and SMTO problems. These benchmarks are taken
from Edexcel mathematics questions. The questions require the SMT solver to
find numbers that are (some combination of) factors, prime-factors, square and
triangle numbers. The encodings without oracles used recursive functions to
determine whether a number is a prime or a triangle number. We note the ora-
cle used alongside the benchmark number in Table 3. We enable the techniques
described by Reynolds et al. [26] when running CVC5 on problems using recur-
sive functions. We demonstrate that using an oracle to determine whether a
number is a prime, a square or a triangle number is more efficient than the pure
SMT encoding.

Image Processing (Images): Given two images, we encode a synthesis problem
to synthesize a pixel-by-pixel transformation between the two. Figure2 shows
an example transformation. The SyMO problem uses an oracle, shown in Fig. 5,
which loads two JPEG images of up to 256 x 256 pixels: the original image, and
the target image. Given a candidate transformation function, it translates the
function into C code, executes the compiled code on the original image and com-
pares the result with the target image, and returns “true” if the two are identical.
If the transformation is not correct, it selects a range of the incorrect pixels and
returns constraints to the synthesizer that give the correct input-output behav-
ior on those pixels. The goal of the synthesis engine is to generalize from few
examples to the full image. The oracle-free encoding consists of an equality con-
straint per pixel. This is a simplification of the problem which assumes the image
is given as a raw matrix and omits the JPEG file format decoder.
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Image Processing Original | | Target
Library image image
f* ﬁ{SyGuS to c}{ Compiler H Exeente }
translator
SAT/UNSAT
constraint: f(i1) =01 A f(iz) =02 A ...

Fig. 5. Oracle for image transformations

Table 4. Comparison of Delphi and CVC5. # is the number of benchmarks solved
within the 600s timeout, and ¢ is the average run-time for solved benchmarks. The
first column shows results on SyMO and SMTO problems, the second two columns
show results on the equivalent oracle-free encodings.

Problem class | Benchmarks (#) Delphi (oracles) | Delphi (no oracles) CVC5 (no oracles)
# |t # |t # |t

SyMO Images(10) 9 216 s 0 0

SMTO Math(12) 9 <0.5s 1 |<02s 5 [22s

SyMO Control-stability(112) | 104 |29.3 s - |- 16 [19.4 s

SyMO Control-safety(112) 31 1599 s 0 |- 0 |-

SMTO PBE(150) 148 |0.5 s 150(1.6 s 150 <0.2 s

Digital Controller Synthesis: These benchmarks, fully described in [2], synthe-
size single- and double-point precision floating-point controllers that guarantee
stability and bounded safety for Linear Time Invariant systems. We use a state-
space representation, which is discretized in time with 6 different constant sam-
pling intervals T, generating 6 benchmarks per system: @, 11 = A%+ B, where
Z € R, & € RP is the input to the system, calculated as KZ where K is the
controller to be synthesized, A € R™"*" is the system matrix, B € R"*? is the
input matrix, and subscript ¢ indicates the discrete time step.

For stability benchmarks, we aim to find a stabilizing controller, such that
absolute values of the (potentially complex) eigenvalues of the closed-loop matrix
A — BK are less than one. For bounded safety benchmarks, we aim to find
a controller that is both stable, as before, and guarantees the states remain
within a safe region of the state space up to a given number of time steps.
The SyMO encoding uses an oracle to determine the stability of the closed-loop
matrix. The encoding without oracles requires the SMT solver to find roots of
the characteristic polynomial. The results are summarized in Table 4.

Programming by Example: We encode PBE [1] benchmarks as SyMO problems
using oracles that demonstrate the desired behavior of the function to be syn-
thesized. These examples show that PBE benchmarks have a simple encoding in
our framework. The results are summarized in Table4.
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6.2 Observations

We report a summary of the results for these case-studies in Table4 and make
the following observations:

RQ1. The overhead incurred by using oracles is small: performance on PBE
problems encoded with oracles is similar to PBE problems encoded without ora-
cles, with a small overhead incurred by calling external binaries. Given this low
overhead, SyMO would be amenable to integration with many more sophisti-
cated synthesis search approaches [5,18,25].

RQ@2. Delphi solves more educational mathematics questions than CVC5,
demonstrating that SMTO does enable SMT solvers to solve problems beyond
the state-of-the-art by delegating challenging reasoning to an external oracle.

R@3. Delphi solves control synthesis problems and image transformation prob-
lems that cannot be easily expressed as SyGuS and elude CVC5, demonstrating
that SyMO can solve synthesis problems beyond state-of-the-art solvers. When
tackling the image transformation problems, SyMO dynamically generates small
numbers of informative constraints, rather than handling the full image at once.

We also note that in many cases the encodings for SYMO and SMTO prob-
lems are more compact and (we believe) easier to write in comparison to pure
SMT/SyGuS encodings. For instance, Fig.1 reduces to two assertions and a
declaration of a single oracle function symbol.

Future Work: We see a lot of scope for future work on SyMO. In particu-
lar, we plan to embed SMTO solving into software verification tools such as
UCLID5 [27]; allowing the user to replace functions that are tricky to model
with oracle function symbols. The key algorithmic developments we plan to
explore in future work include developing more sophisticated synthesis strate-
gies that decide when to call oracles based on the learned utility and cost of the
oracles, and lifting the requirement for the verification problem to be in defini-
tional SMTO. An interesting part of future work will be to explore interfaces
to oracles that provide syntactic constraints, such as those used in [3,18], which
will require the use of context-sensitive grammars in the synthesis phase.

7 Conclusion

We have presented a unifying framework for synthesis modulo oracles, identifying
two key types of oracle query-response patterns: those that return constraints
that can guide the synthesis phase and those that assert correctness. We proposed
an algorithm for a meta-solver for solving synthesis modulo oracles, and, as a
necessary part of this framework, we have formalized the problem of satisfiability
modulo oracles. Our case studies demonstrate the flexibility of a reasoning engine
that can incorporate oracles based on complex systems, which enables SMTO
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and SyMO to tackle problems beyond the abilities of state-of-the-art SMT and
Synthesis solvers, and allows users to specify complex problems without building
custom reasoning engines.

Acknowledgments. We thank Susmit Jha, Michael O’Boyle, Federico Mora, Adwait
Godbole, Yatin Manerkar and Sebastian Junges for their feedback on earlier versions
of this paper. This work was supported in part by NSF grants CNS-1739816 and CCF-
1837132, by the DARPA LOGIiCS project under contract FA8750-20-C-0156, by the
iCyPhy center, and by gifts from Intel, Amazon, and Microsoft.

References

10.
11.

12.

13.

14.

Sygus competition. https://sygus.org/. Accessed 19 May 2021

. Abate, A., et al.: Automated formal synthesis of provably safe digital controllers

for continuous plants. Acta Inform. 57(1-2), 223-244 (2020)

Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample
guided inductive synthesis modulo theories. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 270-288. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3_15

Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering. NATO Science for Peace and Security Series, D: Information and Com-
munication Security, vol. 40, pp. 1-25. IOS Press (2015)

Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319-336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_18

Andraus, Z.S., Sakallah, K.A.: Automatic abstraction and verification of Verilog
models. In: Proceedings of the 41th Design Automation Conference, DAC 2004,
San Diego, CA, USA, 7-11 June 2004, pp. 218-223. ACM (2004)

Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87-106 (1987)

Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, chap.
26, pp. 825-885. IOS Press (2009)

Barrett, C., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0

Barrett, C.W.: CVC4 at the SMT competition 2018. CoRR, abs/1806.08775 (2018)
Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

Brady, B.A., Bryant, R.E., Seshia, S.A.: Learning conditional abstractions. In:
FMCAD, pp. 116-124. FMCAD Inc. (2011)

Brady, B.A., Bryant, R.E., Seshia, S.A., O’Leary, J.W.: ATLAS: automatic term-
level abstraction of RTL designs. In: Proceedings of the Eighth ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign (MEMOCODE),
pp. 31-40, July 2010

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154-169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167_15


https://sygus.org/
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15

284

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

E. Polgreen et al.

Collie, B., Woodruff, J., O’Boyle, M.F.P.: Modeling black-box components with
probabilistic synthesis. In: GPCE, pp. 1-14. ACM (2020)

David, C., Kesseli, P., Kroening, D., Lewis, M.: Program synthesis for program
analysis. ACM Trans. Program. Lang. Syst. 40(2), 5:1-5:45 (2018)

Eén, N., Soérensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: PLDI, pp. 420-435. ACM (2018)

Garg, P., Loding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69-87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_5

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: International Conference on Software Engineering (ICSE),
pp. 215-224. ACM (2010)

Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Inform. 54(7), 693-726 (2017). https://doi.org/10.1007/s00236-017-0294-5

Kent, M.: GCSE Maths Edexcel Higher Student Book. Harpercollins Publishers,
New York (2015)

Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of repre-
sentation invariants. In: PLDI, pp. 1-15. ACM (2020)

Udupa, A., Raghothaman, M., Reynolds, A.: The SyGuS language standard version
2.0 (2019). https://sygus.org/language/

Reynolds, A., Barbosa, H., No6tzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019. LNCS, vol. 11562, pp. 74-83. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25543-5_5

Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 133-151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1_10

Seshia, S.A., Subramanyan, P.: UCLID5: integrating modeling, verification, syn-
thesis and learning. In: MEMOCODE, pp. 1-10. IEEE (2018)

Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-
guided program synthesis. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, 6-9 May 2019. OpenReview.net
(2019)

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404-415. ACM (2006)
Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,
Alur, R.: TRANSIT: specifying protocols with concolic snippets. In: Boehm, H.-
J., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 287-296. ACM (2013)


https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/s00236-017-0294-5
https://sygus.org/language/
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-319-40229-1_10

®

Check for
updates

Bisimulations for Neural Network
Reduction

Pavithra Prabhakar®

Kansas State University, Manhattan, KS 66506, USA
pprabhakar@ksu.edu

Abstract. We present a notion of bisimulation that induces a reduced
network which is semantically equivalent to the given neural network.
We provide a minimization algorithm to construct the smallest bisimu-
lation equivalent network. Reductions that construct bisimulation equiv-
alent neural networks are limited in the scale of reduction. We present
an approximate notion of bisimulation that provides semantic close-
ness, rather than, semantic equivalence, and quantify semantic deviation
between the neural networks that are approximately bisimilar. The latter
provides a trade-off between the amount of reduction and deviations in
the semantics.

Keywords: Neural networks - Bisimulation - Verification + Reduction

1 Introduction

Neural networks (NN) with small size are conducive for both automated anal-
ysis and explainability. Rigorous automated analysis using formal methods has
gained momentum in recent years owing to the safety-criticality of the appli-
cation domains in which NN are deployed [3,11,12,16,19,20]. For instance, NN
are an integral part of control, perception and guidance of autonomous vehicles.
However, the scalability of these analysis techniques, for instance, for computing
output range for safety analysis [6,12], is limited by the large size of the neural
networks encountered and the computational complexity due to the presence of
non-linear activation functions. In this paper, we borrow ideas from formal meth-
ods to design novel network reduction techniques with formal relations between
the given and the reduced networks, that can be applied to reduce the verifica-
tion time. It can also potentially impact explainability by presenting to the user
a smaller network with guaranteed bounds on the deviation from the original
network.

Bisimulation [14] is a classical notion of equivalence between systems in pro-
cess algebra that guarantees that processes that are bisimilar satisfy the same
set of properties specified in certain branching time logics [2]. A bisimulation is
an equivalence relation on the states of a system that requires similar behav-
iors with respect to one step of computation, which then inductively guarantees
global behavioral equivalence. Bisimulation algorithm [2] allows one to construct

© Springer Nature Switzerland AG 2022
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the smallest systems, bisimulation quotients, that are bisimilar to a given (finite
state) system.

Our first result consists of a definition of bisimulation for neural networks,
namely, NN-bisimulation, that defines a notion of equivalence between neural
networks. The challenge arises from the fact that neural networks semantically
have multiple parallel threads of computation that are both branching and merg-
ing at each step of computation. We observe that the global equivalence can be
established by imposing a one-step backward pre-sum equivalence, wherein we
require two nodes that belong to the same class to agree on the biases, the
activation functions, and the pre-sums, wherein a pre-sum corresponds to the
sum of the weights on the incoming edges from a given equivalence class. Our
notion resembles that of probabilistic bisimulation [13], however, our notion is
based on pre-sum equivalences rather than post-sum equivalences. We define a
quotienting operation on an NN with respect to a bisimulation that yields a
smaller network which is input-output equivalent to the given network. We also
show that there exists a coarsest bisimulation which yields the smallest neural
network with respect to the quotienting operation. We provide a minimization
algorithm that outputs this smallest neural network.

The notion of bisimulation can be stringent, since, it preserves the exact
input-output relation. It has been observed, for instance, in the context of con-
trol systems, that a strict notion of equivalence, such as, bisimulation, does
not allow for drastic reduction in state-space, thereby, motivating the notion of
approximate bisimulation. Approximate bisimulations [8,9] have a notion of dis-
tance between states, and allow a bounded e deviation between the executions
of the systems in each step. The notion of approximate bisimulation was suc-
cessfully used to construct smaller systems in the setting of dynamical systems
and control synthesis [10].

We extend the notion of NN-bisimulation to an approximate notion, wherein
we require nodes belonging to the same class to have bounded deviation, €, in the
biases and the pre-sums. The quotienting operation no more results in a unique
reduced network, but a set of reduced networks. Moreover, these reduced net-
works may not have the same input-output relation as the given neural network.
However, we provide a bound on the deviation in the semantics of two approx-
imately bisimilar NNs. It gives rise to a nice trade-off between the amount of
reduction and the deviation in the semantics, that translates to a trade-off in the
precision and verification time in an approximation based verification scheme.

Related Work. Neural network reduction techniques have been explored in
different contexts. There is extensive literature on compression techniques,
see, for instance, surveys on network compression [4,5]. However, these tech-
niques typically do not provide formal guarantees on the relation between the
given and reduced systems. Abstraction techniques [7,15,17] computing over-
approximations of the input-output relations have been explored in several
works, however, they use slightly different kinds of networks such as interval
neural networks and abstract neural networks, or are limited to certain kinds of
activation functions such as ReLLU. Notions of bisimulation for DNNs have not



Bisimulations for Neural Network Reduction 287

been explored much in the literature. Equivalence between DNNs is explored [1],
however, the work is restricted to ReLU functions and does not consider approx-
imate notions.

2 Preliminaries

Let [k] denote the set {0,1,---,k} and (k] the set {1,2,--- ,k}. Let R denote
the set of real numbers. We use |z| to denote the absolute value of x € R.
Given a set A, we use |A| to denote the number of elements of A. Given a
function f : A — R, we define the infinity norm of f to be the supremum of
the absolute values of elements in the range of f, that is, | f|e = sup,ea |f(a)].
Given functions f : A — B and g : B — C, the composition of f and g,
gof:A— C,isgiven by, for alla € A, go f(a) = g(f(a)).

Partitions. Given a set S, a (finite) partition of S is a set P = {S1, -+ ,Sn},
such that (J; S; = P and §; NS; = 0 for all i # j. We refer to each element of a
partition as a region or a group. A partition P of S can be seen as an equivalence
relation on S, given by the relation s;Pss whenever s; and sy belong to the same
group of the partition. Given two partitions P and P’, we say that P is finer
than P’ (or equivalently, P’ is coarser than P), denoted P < P’, if for every
S € P, there exists S’ € P’ such that S C S'.

3 Neural Networks

In this section, we present the preliminaries regarding the neural network. Recall
that a neural network (NN) counsists of a layered set of nodes or neurons, includ-
ing an input layer, an output layer and one or more hidden layers. Each node
except those in the input layer are annotated with a bias and an activation func-
tion, and there are weighted edges between nodes of adjacent layers. We capture
these elements of a neural network using a tuple in the following definition.

Definition 1. A neural network (NN) is a tuple N = (kz,Act, {Sitiem)
{Witiew), {bitiew), {Aitiew)), where:

— k represents the number of layers (except the input layer);

— Act is a set of activation functions;

— for each i € [k], S; is a set of nodes of layer i, we assume S; NS; = O for
i #J;

— for each i € (k], W; : S;—1 x S; — R is the weight function that captures the
weight on the edges between nodes at layer i — 1 and i;

— for each i € (K], b; : S; — R is the bias function that associates a bias with
nodes of layer i;

— for each i € (k], A;i : S; — Act is an activation association function that
associates an activation function with each node of layer 1.
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Fig. 1. Neural network A/

So and Sy are the set of nodes corresponding to the input and output lay-
ers, respectively. We will fix the NN A = (k,Act, {Sitietw), {Witiew), {bitie]s
{Ai}ie(k]) for the rest of the paper.

Ezxample 1. The neural network N shown in Fig. 1 consists of an input layer with
2 nodes, 2 hidden layers with 3 nodes each, and an output layer. The weights on
the edges are shown, for instance, Wa(s1,2, s2.2) = 2. The biases are all 0s and
the activation functions are all ReLUs (not shown).

In the sequel, the central notion to the definition of bisimulation will be the
total weight on the incoming edges for a node s of the i-th layer from a set of
nodes S of the i — 1-st layer. We will capture this using the notion of a pre-sum,
denoted PreSum) (S, ). For instance, PreSumb’ ({s11, s12}, 522) = 2+ 2 = 4.

Definition 2. Given a set S C Si_y and ' € S;, we define PreSum)’ (S,s) =
2ses Wils, o).

Next, we capture the operational behavior of a neural network. A valuation v
for the i-th layer of A refers to an assignment of real-values to all the nodes in S;,
that is, v: S; — R. Let Val(S;) denote the set of all valuations for the i-th layer
of NV. By the operational semantics of A/, we mean the assignments for all the
layers of NV, that are obtained from an assignment for the input layer. We define
[N]i(v), which given a valuation v for layer 7 — 1, returns the corresponding
valuation for layer i according to the semantics of A/. The valuation for the
output layer of A is then obtained by the composition of the functions [N7];.

Definition 3. The semantics of the i-the layer is the function [N];
Val(S;—1) — Val(S;), where for any v € Val(S;—1), [N]:(v) = v/, given by

Vs € 8, v (s) = Ai(s)( Z Wi(s, ') o(s) + bi(s)).

SES;_1
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To capture the input-output semantics, we compose these one layer semantics.
More precisely, we define [N]" to be the composition of the first i layers, that
is, [N]*(v) provides the valuation of the i-th layer given v as input. It is defined

inductively as:
VT = VL

vi € (k\{1}, V] = [N]i o [N]

Definition 4. The input-output semantic function, represented by [N]
Val(So) — Val(Sk), is defined as:

V] = VT

The notion of bisimulation requires the notion of a partition of the nodes of
N'. We define a partition on A/ as an indexed set of partitions each corresponding
to a layer.

Definition 5. A partition of an NN N is an indezed set P = {P;}ic), where
for every i, P; is a partition of S;.

A Note on Lipschitz Continuity. A function f : R™ — R™ is said to be Lipschitz
continuous if there exists a constant L(f), referred to as Lipschitz constant for
f, such that for all z,y € R™,

1f (@) = F(W)loo < L)z = yloo-

Several activation functions including ReLLU, Leaky ReLU, SoftPlus, Tanh, Sig-
moid, ArcTan and Softsign are known to be 1-Lipschitz continuous [18], that is,
satisfy the above constraint with L(f) = 1. In fact, the function [N] is itself Lip-
schitz continuous, when the activation functions are Lipschitz continuous [18].
We will use L(AN') to denote an upper bound on L([N]?) over all i. Hence, given
an input v, we know that |[N]*(v)]oo < LN)|0]oo-

4 NN-Bisimulation and Semantic Equivalence

In this section, we define a notion of bisimulation on neural networks, which
induces a reduced system that is equivalent to the given network. A partition of
N is an NN-bisimulation if the biases and activation functions associated with
the nodes in any region are the same, and the pre-sums of nodes in any region
with respect to any region of the previous layer are the same.

Definition 6. An NN-bisimulation for N is a partition P = {P;};cq) such that
for alli € (k], S € Pi_1 and &), sh € S; with s\ P;sh, the following hold:

1. Al(s’l) = Al(SIQ),

2. bi(8y) = bi(sh), and
3. PreSumév(S, §) = PreSumfv(S, ).
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Our notion is inspired by the well-known notion of probabilistic bisimulation [13],
where post-sums are used instead of pre-sums to characterize which nodes have
the same branching structure. Though neural networks consist of branching in
both forward and backward directions, surprisingly, just pre-sum equivalence
suffices to guarantee input-output relation equivalence.

Bisimulation naturally induces a reduced system, which corresponds to merg-
ing the nodes in a group of the partition, and choosing a representative node
from the group to assign the activation functions, biases and pre-sums. We rep-
resent the reduced system obtained by taking the quotient of N with respect to
a bisimulation P as N'/P.

Definition 7. Given an NN-bisimulation P for N, the reduced system N /P =
(k, Act, {Si}ie), {Witiew, {bitier), {Aitie))» where:

1. Vi€ [k],8; = Pi;

2. Vi e (K, 5631 1,8 ¥ es,W, Wi(3,3) = PreSum? (3, for some & €.
3. We(k]se&,b( ) = b;(8) for some s €73

4. Vie (k5 €8, A7) = Ai(S) for some & €

Note that though the definition depends on the choice of &', the reduced system
is unique, since, from the definition of NN-bisimulation, the values of biases,
activation functions and pre-sums, corresponding to different choices of s’ within
a group are the same. We also use just bisimulation to refer to NN-bisimulation.

In order to formally establish the connection between the NN A and its
reduction /P, we define a mapping from the valuations of A to those of N'/P,
but only for certain valuations that are consistent in that they map all the related
nodes in P to the same value.

Definition 8. A wvaluation v € Val(S;) is P-consistent, if for all s1,s0 € S;, if
$1P;is2, then v(s1) = v(s2).
Our first result is that a consistent input valuation leads to a consistent

output valuation, when P is a bisimulation. We show this for a particular layer;
the extension to the whole network follows from a simple inductive reasoning.

Lemma 1. Let P be a bisimulation on N. If vy € Val(S;_1) is P-consistent,
then vy = [N];(v1) is P-consistent.

Proof. Let ¢, € S; such that ¢P;s”". We need to show that vy(s") = va(s”).
v2(s) = Ai(¢)(Xses, , Wils, §)vi(s) + bi(6) = Ai(s) Xsep,_, 2oses Wils: §)
v1(8) + bi(s')). Since, vy is P-consistent, for each S, we have a value 1§ that all
elements of S are mapped to by v, that is, ¥¥ = v (s) for all s € S. Replacing
vi(s) for each s, by o, we obtain v(s') = Ai(s) (X sep, | Doses Wils, )17 +
bi(s')). From the definition of pre-sum, we can replace ) _sWi(s,s') by
PreSum (S, ¢'), which is also equal to PreSum]” (S §") from the definition of
bisimulation, since P is a bisimulation and §P;s”. Also, A;(¢') = A;(s") and
bi(s) = b;i(s"). So, we obtain, () = (”)(ESep 1PreSum (S, 8" +
bi(s")). Expandlng back PreSum? (S,s"), and ¥ = wv(s) for all s € S, we
obtain v (s') = Ai(s")(Xsep,_, Eseg Wi(s, s ) vi(s) + b (") = va(s").
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Note that if we do not group together the nodes in the input and output
layers, there is a bijection between Sy and Sy and S and Sg, and hence, a
bijection between their valuations. We will show that both A" and A/P have the
“same” input-output relation modulo the bijection between their nodes. First,
we define a formal relation between P-consistent valuations of A and valuations

of N/P.

Definition 9. Let P be a bisimulation on N, and v € Val(S;) be a P-consistent
valuation. The abstraction of v, denoted, a(v)nrp € Val(SA'i), is defined as, for
every 5 € S;, a(v)n p(8) = v(s) for some s € 3.

Note that a(v)ar,p is well defined, since, from the P-consistency of v, v(s) is the
same for any choice of s € 3. When A/ and P are clear from the context, we
will drop the subscript and write a(v)a,» as just a(v). The next result states
that the output of the i-th layer of N'/P with the abstraction of a P-consistent
valuation v of the ¢ — 1-st layer of N/ as input, results in a valuation that is the
abstraction of the output of the i-th layer of A on input v. In other words, it
says that propagating a valuation for one-step in N is the same as propagating
its abstraction in N'/P.

Lemma 2. Let P be a bisimulation on N, and v € Val(S;) be P-consistent.

Then, a([NTi(v)) = IN/Pli(a(v))-

Proof. From Lemma 1, we know that v/ = [N];(v) is P-consistent. Hence, for
any § € S;, a(v)(3') = v/(¢) for some (any) s’ € §. Let us fix § € .

a(W)(¥) = () = Ai(s)( Y Wils, )u(s) + bi(s))
s€ES;i—1
from the semantics of . Further,
Z Wi(s, s)v(s) = Z ZWi(s, §)u(s)
SES;—1 SeP;_1 s€S
From P-consistency of v, v(s) = a(v)(S) for any s € S. Hence,

ZWZ'(S, §)u(s) :ZWi(s, $)a(v)(S) = PreSum (S, 8')a(v)(S).

se€S seS

From the definition of N'/P, 4;(3) = A;(s), Wi(é‘, ) = PreSum (S "), b ( ¥)
= b;i(¢), and P,_1 = S;—1. From P-consistency of v, a(v)(S) = v(s) for any
s € S. Therefore, for any § € S;,

Il
=)

Y WS )a0)(S) +b:(3)) = IN/PLi(a(v)(¥).
8651'71
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The following theorem follows by composing the results from Lemma 2 for
the different layers.

Theorem 1. Given P a bisimulation on N, and v € Val(Sy) that is P-
consistent, we have a([N](v)) = [N/P](a(v)).

Proof. We can show by induction on i that a([N]*(v)) = [N/P]*(a(v)).

Fig. 2. Reduced system N /P

Ezxample 2. Consider a partition P for the NN A in Fig.1 where each node
appears as a region by itself except for the regions &1 = {si1,s12}, and
Sz = {s21,5.2}. We can verify that this is a bisimulation. For instance,
PreSum (S, s21) =1+3 and PreSum) (Sy, S2,2) = 2 + 2, which are the same.
The reduced system is given by the NN A//P in Fig. 2. Here, W (81,82) = 4.

5 O0-NN-Bisimulation and Semantic Closeness

NN-bisimulation provides a foundation for reducing a neural network while pre-
serving the input-output relation. However, existence of such bisimulations lead-
ing to equivalent reduced networks with much fewer neurons is limited in that for
many networks no bisimulation quotient may lump together lot of nodes. Hence,
we relax the notion of bisimulation to an approximate notion wherein we allow
potentially large reductions, however, the reduced systems may not be semanti-
cally equivalent, but only be semantically close to the given neural network. We
quantify the deviation of the reduced system in terms of the “deviation” of the
approximate notion from the exact bisimulation.

The approximation notion of bisimulation we consider is inspired by the
notion of approximate bisimulation in the context of dynamical systems [8,9].
We essentially relax the requirement of the NN-bisimulation that the biases and
pre-sums match by allowing them to be within a §. This is formalized in the
following definition.

Definition 10. A §-NN-bisimulation for an NN N and § > 0 is a partition
P = {Pi}icik) such that for alli € (k], S € Pi_1 and sy, sy € S; with s)P;sy, the
following hold:
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1. Ai(s1) = Ai(sh),
2. |bi(s)) — bi(sh)| <6, and
3. |PreSum (S, s,) — PreSum) (S, ¢,)| < 6.

We will also use d-bisimulation to refer to J-NN-bisimulation. The reduced
system can be constructed similar to that for NN-bisimulation. However, the
choice of the nodes s € ¥ used to construct the weights and biases of the reduced
system could lead to different neural networks. Hence, we obtain a finite set of
possibilities for the reduced system that we denote by N/sP.

Fig. 3. Ilustration of N* /5P on NN N'*

Example 3. Consider the NN N* in Fig. 3 (top left) and a partition P = {P; };,
where ,Po = {{8071}}, ’Pg = {{8271}} and Pl = {{81)1,8172},{8173}}, that iS, P
merges nodes s;,1 and s1 2. Note that P is a §-bisimulation on N* for § = 0.2. For
instance, PreSumjlv*({so,l}, s1,1) = 0.8 and PreSumjlv*({sO,l}, s1,2) = 1.0 whose
difference is < 0.2 = §. N'/sP consists of Ny and AVj in Fig.3 (top right and
bottom), one which is obtained by choosing the pre-sum corresponding to si 1
and other by choosing the pre-sum corresponding to s; 2.

Our objective is to give a bound on the deviation of the semantics of any
N € N/sP from that of N'. We start by quantifying this deviation in one step
of computation. For that, we extend the notion of consistent valuations to an
approximate notion, wherein we require the valuations of related states to be
within a bound rather than match exactly.

Definition 11. A wvaluation v € Val(S;) is €, P-consistent, if for all s1,5 € S;
with $1P;s2, |v(s1) — v(s2)] < e.
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Our next step is to establish a relation between the valuation propagation in
N and any N/ € N'/sP analogous to Lemma 2. First, we will need to relax the
notion of the abstraction of a valuation, however, unlike in the previous case, we
obtain a set of abstractions af(v).

Definition 12. Let P be a partition of N, and v € Val(S;). The e-abstraction
of v, denoted, a(v)n p, consists of v € Val(P;) such that for all 5 € P;,s € 3,
93 — o(s)| < e.

When N and P are clear from the context, we will drop the subscript and write
a(v)n,p as just a“(v). The next result states that the e-abstraction for any
€, P-consistent valuation is non-empty.

Proposition 1. Let v € Val(S;) be an €, P-consistent valuation. Then a(v) is
non-empty.

Proof. Note that the valuation ¥, given by 9(3) = v(s) for some s € § gives a
valuation in a(v)n p.

The converse of the above theorem also holds with a slight modification of the
€rror.

Proposition 2. Let v € Val(S;), such that a(v)ap is non-empty. Then, v is
a 2¢, P-consistent valuation.

Proof. Note that there is some %, such that Vs € P;, s € 3, |9(5) — v(s)| < e. Then
for all 5,5 € 5, |v(s) — v(s')| < 2e.

Now, we give a bound on the deviation of the output of the i-th layer of
N/sP from that of N in terms of the deviation in their inputs. Let L(A;) =
maxges, L(Ai(5)).

Lemma 3. Let P be a &-bisimulation on N, and v € Val(Si—1) be ¢, P-
consistent. Then, for every v € a(v), and N' € N'/sP,

V']i(0) € o (IN]i(v)),
where € = a;e + b;, a; = L(A)|Si—1||[Wiloo, and b; = L(A;)(|Pi—1]|v] o + 1)0.

Proof. Let v = [N]i(v) and @ = [N"];(). We need to show that ¥/ € af (¢/).
Consider any § € S; and ¢ € 3. We need to show that |¥/(3) — /()] < €.
Since, ¥ = [N"];(?), from the semantics of N, we have

V() = 4E) (D Wil 9)is) + (),

SE§171

and from the fact that N7 € N/s;P, we have W;(5,%) = PreSumy (,5,) for

AN N . . . . .
some §; € §, b;(§) = b;(sh) for some s, € §. Since P is a d-bisimulation,
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| PreSum? (3, 8) — PreSum (5, )| < 6, |bi(sh) — bi(s)| < 6, and A;(3') = A;().
Therefore,
V()= Ai(s)( D (PreSuml (3,5) + 03)0(3) + bi(s) + bs),
5€P;i—1
= A () ( Z PreSumlY (3, §)0(3) 4 bi(s) + €1 + 8¢),
sePi—1

where €1 = > .cp  050(5) and 63,9y € [—0,0]. We will examine the terms in
the above expression in more detail.

ZPreSum (3,8)0(5) ZZWSS )o(3)]

5€Pi—1 3€Pi_1 SES

(Further, since, ¥ € a(v), we have for any s € 8, |9(5) — v(s)| <e.)

Yo D oWils$)(u(s) el = Y Wils, ) (u(s) +e)]

3€P;_1 SE€S SES;—1
= Z Wi(s, s)u(s) + Z Wi(s, &' )e
SES;_1 SES;_1

Plugging the above into the expression for i/(fs/), we obtain

(%) Z Wi(s,s)v(s) +bi(s) + €1 + €2 + 6)
s€S;_1

where eo = Y. 5 050(3). Note that the expression for o (%) looks similar
to V(¢) = Ai(sl)(ZseSi,l Wi(s, s )u(s) + bi(s')) except for the additional error
terms €1 + €3 + 0. From the Lipschitz continuity of A;(s), we obtain
V(3) = V()] < LIA)(S) (e + e2 + 0y )

Note that L(4;)(s) < L(4), lea] = [Xses,, Wils )es] < [Sial[Willooe,
ler] = |Z§e7>i,1 350(8)] < |Pi—1]d]v] o, and |6y | < §. Hence,
V()= ()] < L(A) () (|1 +e2+0s]) < L(A)(|Si1| Wil o+ Pi-1]0]v] oo +0)

= L(A)|Si-1|IWilooe + L(A) (IPiz1 vl oo +1)d = €

Lemma 3 provides a bound on the error propagation in one step. The next
theorem provides a global bound on the deviation of the output of the reduced
system with respect to that of the given neural network. Let L(A) = max; L(A;),
|P| = max; |P;|, |[W|eo = max; |[Wi|w and |S| = | max; S;|.

Theorem 2. Let P be a §-bisimulation on N, and v € Val(Sy) be €, P-
consistent. Then, for every v € a(v), and N' € N'/sP,

[V'](3) € o (IVT(v)),

where €' = [(2/a)* — 1]b/(2a — 1), a = L(A)|S||[W|w, and b = L(A)
(IPILN) vl oo + 1)0.
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Proof. Let us define:
v =0, = Ve =€y =0

and for all ¢ € (K],
v = [Ni(v), b = [N']i(2).

€ = aci_1 + b,e; = 2¢,.

We will show by induction on ¢ that for all i € [k], v; is €;, P-consistent and
v € a%(v;).

Base Case: Base case trivially holds from the assumptions of the theorem state-
ment.

Induction Step: For ¢ € (k], we know from Lemma 3, that if v;_; €
Val(S;—1) is €;_1, P-consistent and ¥;_1 € a“~'(v;_1), then ¥; = [N'];(v;_1) €
af ([M]i(viz1)) = a (v;), where € = aze;_y + b;.

a; = L(A)|Si-1][Willoo < L(A)|S|[W]oo = a,

b = LA)(IPir vl +1)5 < LAY (IPILA) ol + 15 = b

Hence, € < ¢, and % € a%(v;). Further from Proposition 2, we obtain v; is
€;, P-consistent.

We will show that €}, = €”. Unrolling the recursive equation, we obtain €, =
2a€;_; + b= (2a)'¢) + [(2a)" "1 + - - -+ 1]b=[(2/a)" — 1]b/(2a — 1). Hence,

& = [(2/a)* — 1]b/(2a—1) = ¢"
We finish the proof by noting that [N'](2) = o € a(vx) = a ([N](v)).

Remark 1. Note that for § = 0, all the notions and results reduce to that of
NN-bisimulation.

6 Minimization Algorithm

In this section, we show that there is a coarsest NN-bisimulation for a given
NN, that encompasses all other bisimulations. This implies that the induced
reduced network with respect to this coarsest bisimulation is the smallest NN-
bisimulation equivalent network. We will provide an algorithm that outputs the
coarsest NN-bisimulation.

We note that a coarsest d-NN-bisimulation may not exist in general. For
instance, consider the NN N* from Fig.3, along with the 0.2-bisimulation P
that induces the reduced systems A and N5. There is another 0.2-bisimulation
P’ which is obtained by merging s; 2 and s; 3 instead of s11 and s12 as in P.
Note that the reduced networks in N* /¢ 2P and N*/¢2P’ have the same size.
However, there is no 0.2-bisimulation that is coarser than both P and P’, since,
that would require merging s; 1, $1,2 and s; 3, which would violate the 0.2 bound
on the difference between the pre-sums of s1,; and s; 3.
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The broad algorithm for minimization consists of starting with a partition in
which all the nodes in a layer are merged together and then splitting them such
that the regions in the partition respect the activation functions, biases and the
pre-sums. We use the function SplitActBias(S) in the algorithm that splits a set
of nodes S into maximal groups such that the elements in each group agree on
the activation functions and the biases. More precisely, SplitActBias(S) takes
S C P; as input and returns a partition Pg such that for all s;,s5 € S, s1Ps s
if and only if 4;(s1) = A;(s2) and b;(s1) = b;(s2). Further, we split those regions
that have nodes with inconsistent pre-sums. Next, we define inconsistent pairs
of regions with respect to pre-sums and the corresponding splitting operations.

Definition 13. Given a partition P = {P;}; of NN N, a region S' € P; is
inconsistent in N with respect to S € P;_1, written (S',S) inconsistent, if there
exist 8, s, € S', such that PreSum) (S, s,) # PreSum) (S, s,).

The algorithm searches for inconsistent pairs (S’,S) and splits S’ into maxi-
mal groups such that all nodes in a group have the same pre-sum with respect to
S. More precisely, SplitPre(S’,S) takes 8’ and S as input and returns a partition
P’ of 8 such that PreSum? (S, s)) = PreSum (S, s,) if and only if §,P’s,.

Algorithm 1: MinNN: Minimization Algorithm

Input: A NN NV
Output: Coarsest Bisimulation P, and Minimized NN A /P

1 begin

2 P ={So}

3 for i € (k] do

4 L P =P U SplitActBias(S;)

5 while Ezists S,S’ € P, such that (8,8') inconsistent do
6 L P =P\{S'} U SplitPre(S’, S)

7 return Return P and N/P

8 end

Next, we show that Algorithm 1 returns the coarsest bisimulation, and hence,
the reduced network is the smallest bisimulation equivalent network.

Definition 14. A partition P of N is the coarsest bisimulation, if it is an NN
bisimulation and it is coarser than every NN-bisimulation P’ of N.

Theorem 3. Algorithm 1 terminates and returns the coarsest bisimulation P

of N.

Proof. Termination of the algorithm is straightforward, since, if there exists an
inconsistent pair (§',8), then SplitPre(S’,S) splits S’ into at least two regions.
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Hence, the number of regions in P strictly increases. However, since, N has
finitely many nodes, the number of regions in P is upper-bounded.

Next, we will argue that P that is returned is an NN-bisimulation. After the
SplitActBias(S;) operations, P only consists of regions which agree on the activa-
tion functions and biases. When the while loop terminates, there are no inconsis-
tent pairs, that is, the pre-sum condition of the bisimulation definition is satisfied.
Hence, the value of P when exiting the while loop is an NN-bisimulation.

To show that P is the coarsest bisimulation, it remains to show that P is
coarser than any bisimulation of /. Let P’ be any bisimulation of N'. We will
show that P’ is finer than P at every stage of the algorithm.

Note that after exiting the for loop, P contains the maximal groups which
agree on both the activation functions and biases. Every region of P’ has to
agree on the activation functions and biases, since it is a bisimulation. So, every
region of P’ is contained in some regions of P, that is, P’ < P.

Next, we show that P’ < P is an invariant for the while loop, that is, if it
holds at the beginning of the loop, then it also holds at the end of the loop.
So, when the while loop exits, we still have P’ < P. More precisely, we need
to show that if P’ < P, then replacing S" by SplitPre(S’,S) will still result in
a partition that is coarser than P’. In particular, we need to ensure that each
region of P’ that is contained in &’ is not split by the SplitPre(S’, S) operation.
Suppose a region §” C &' of P’ is split, then there exists s/, s € §” such
that PreSum) (S, /) # PreSum (S,s!). But S is the disjoint union of some
sets {S7,---,8]'} of P’. Hence, PreSumN(S{’, s # PreSumf/(Sg’, s/) for some
i, since PreSum) (S,s") = Do PreSumé\/(Sz{’, §"). However, this contradicts the
fact that P’ is an NN-bisimulation.

Next, we present some complexity results on checking if a partition is a
bisimulation/J-bisimulation, complexity of constructing reduced systems from a
bisimulation/d-bisimulation and the complexity of computing the coarsest bisim-
ulation.

Theorem 4. Given an NN N, a partition P and € > 0, checking if P is a
bisimulation and checking if P is an §-NN-bisimulation both take time O(m),

where m is the number of edges of N. Further, constructing N'/P for some
N e N /sP takes time O(m) as well.

Proof. To check if P is a bisimulation, we can iterate over all the nodes in a
region to check if they have same activation function, bias, and pre-sums with
respect to every region of P;_1. In doing so, we need to access each node and
each edge at most once, hence, the complexity is bounded by O(m). For the
d-bisimulation, we need to check if the biases and pre-sums are within e. We
can compute the biases and pre-sums in one pass over the network in time
O(m) as before. Then we can find the max and min values of the bias/pre-sum
values within each region, and check if the max and min values are within e, this
will take time O(m). For constructing the reduced system, we need to find the
activation functions and biases of all the nodes in the reduced system, and the
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weight on the edge between two groups. The total computation needs to access
each edge at most once.

Theorem 5. The minimization algorithm has a time complexity of O(A(m +
nlogn)), where n is the number of nodes and m is the number of edges of N,
and 7 is the number of nodes in the minimized neural network.

Proof. SplitActBias(S;) needs to sort the elements in every group by the activa-
tion function/bias values, hence, takes time O(nlogn). Finding an inconsistent
pair takes the same time as checking whether P is a bisimulation, that is, O(m).
SplitPre(S’,S) take time at most O(m) to compute the pre-sums and O(nlogn)
to split. Replacing S’ by SplitPre(S’, S) takes time at most O(72) which is upper-
bounded by O(n). So, each loop takes time O(m + nlogn). The number of
iterations of the while loop is upper bounded by the number of regions in the
minimized neural network, that is, O(71). Hence, the minimization algorithm has
a runtime of O(7(m + nlogn)).

7 Conclusions

We presented the notions of bisimulation and approximate bisimulation for neu-
ral networks that provide semantic equivalence and semantic closeness, respec-
tively, and are applicable to neural networks with a wide range of activation
functions. These provide foundational theoretical tools for exploring the trade-
off between the amount of reduction and the semantic deviation in an approx-
imation based verification paradigm for neural networks. Our future work will
focus on experimental analysis of this trade-off on large scale neural networks.
The notions of bisimulation explored are syntactic in nature, and we will explore
semantic notions in the future. We provide a minimization algorithm for finding
the smallest NN that is bisimilar to a given neural network. Though a unique
minimal network does not exist with respect to d-bisimulations, we will explore
heuristics for constructing small networks that are J-bisimilar.
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Abstract. We show that the satisfiability problem for the quantifier-
free theory of product structures with the equicardinality relation is in
NP. As an application, we extend the combinatory array logic fragment
to handle cardinality constraints. The resulting fragment is independent
of the base element and index set theories.

1 Introduction

Arrays are a fundamental data structure in computer science. Decision proce-
dures for arrays are therefore of paramount importance for deductive program
verification. A number of results have examined fragments that strike interesting
trade-offs between expressive power and complexity [4,5,10,12,17,21].

A particularly important fragment for formal verification is combinatory
array logic (CAL) fragment [19], which is implemented in the widely used Z3 the-
orem prover [20]. A key to expressive power of the generalized array fragment is
that it extends the extensional quantifier-free theory of arrays [21] (which sup-
ports only equality, lookup, and update operations) with point-wise functions
and relations, analogous to “vector operations”.

In this paper, we start by observing that the generalized array fragment sig-
nature corresponds to the signature of a product structure [13]. The decidability
of product structures has been studied in the literature on model theory [7,18].
Moreover, the results from model theory also permit formulas that constrain
sets of indices using, for example, equicardinality relation [7], which provides
additional expressive power. Unfortunately, th