
23rd International Conference, VMCAI 2022
Philadelphia, PA, USA, January 16–18, 2022
Proceedings

Verification, Model Checking,
and Abstract InterpretationLN

CS
 1

31
82

AR
Co

SS
Bernd Finkbeiner
Thomas Wies (Eds.)

Lecture Notes in Computer Science 13182

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this subseries at https://link.springer.com/bookseries/7407

https://link.springer.com/bookseries/7407

Bernd Finkbeiner • Thomas Wies (Eds.)

Verification, Model Checking,
and Abstract Interpretation
23rd International Conference, VMCAI 2022
Philadelphia, PA, USA, January 16–18, 2022
Proceedings

123

Editors
Bernd Finkbeiner
Helmholtz Center for Information Security
Saarbrücken, Germany

Thomas Wies
New York University
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-94582-4 ISBN 978-3-030-94583-1 (eBook)
https://doi.org/10.1007/978-3-030-94583-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0003-4051-5968
https://doi.org/10.1007/978-3-030-94583-1

Preface

Welcome to VMCAI 2022, the 23rd International Conference on Verification, Model
Checking, and Abstract Interpretation. VMCAI 2022 was part of the 49th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2022),
held at The Westin Philadelphia, USA, during January 16–22, 2022.

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation, facilitating interaction, cross-fertilization,
and advancement of hybrid methods that combine these and related areas. The topics
of the conference include program verification, model checking, abstract interpretation,
program synthesis, static analysis, type systems, deductive methods, decision proce-
dures, theorem proving, program certification, debugging techniques, program trans-
formation, optimization, and hybrid and cyber-physical systems.

VMCAI 2022 received a total of 63 paper submissions. After a rigorous review
process, with each paper reviewed by at least three Program Committee (PC) members,
followed by an online discussion, the PC accepted 23 papers for publication in the
proceedings and presentation at the conference. The main selection criteria were
quality, relevance, and originality.

The conference program included three keynotes: Işil Dillig (University of Texas,
Austin, USA) on “Computer-Aided Programming Across the Software Stack,” Javier
Esparza (Technical University of Munich, Germany) on “Back to the Future: A Fresh
Look at Linear Temporal Logic,” and Thomas A. Henzinger (Institute of Science and
Technology Austria) on “Sequential Information Flow.”

VMCAI 2022 continued the artifact evaluation process established by VMCAI
2020. The goals of artifact evaluation are as follows: (1) to encourage the development
of tools that allow for replication of results in the paper, (2) to encourage reuse of tools
by others in the community, and (3) to reward authors who spend the extra effort to
create stable, portable, and usable artifacts. Artifacts are any additional material that
substantiates the claims made in the paper. Examples of artifacts are software, tools,
frameworks, data sets, test suites, and machine-checkable proofs. Authors of submitted
papers were encouraged to submit an artifact to the VMCAI 2022 artifact evaluation
committee (AEC). We also encouraged the authors to make their artifacts publicly and
permanently available. Artifacts had to be provided as .zip or .tar.gz files and had to
contain all necessary software for artifact evaluation as well as a README file
describing the artifact and providing instructions on how to replicate the results.
Artifacts were required to run in a virtual machine to ensure consistency of repro-
duction across the reviewing process.

All submitted artifacts were evaluated in parallel with the papers. We assigned three
members of the AEC to each artifact and assessed it in two phases. First, the reviewers
tested whether the artifacts were working, e.g., there were no corrupted or missing files
and the evaluation did not crash on simple examples. For those artifacts that did not
work, we sent the issues to the authors. The authors’ answers to the reviewers were

distributed among the reviewers, and the authors were allowed to submit an updated
artifact to fix issues found during the test phase. In the second phase, the assessment
phase, the reviewers aimed at reproducing any experiments or activities and evaluated
the artifact based on the following questions:

1. Is the artifact consistent with the paper and the claims made by the paper?
2. Are the results of the paper replicable through the artifact?
3. Is the artifact well documented?
4. Is the artifact easy to use?

In a change from the VMCAI Artifact Evaluation in 2021, this year we moved to a
simplified badge model where a single badge was awarded for all passing artifacts. Of
the 23 accepted papers, there were 16 submitted artifacts with 15 that passed the second
phase and were thus awarded the Artifact Evaluation Badge.

We would like to thank, first of all, the authors for submitting their papers to
VMCAI 2022. The PC and the AEC did a great job of reviewing: they contributed
informed and detailed reports, and took part in the discussions during the virtual PC
meeting. We warmly thank the keynote speakers for their participation and contribu-
tions. We also thank the general chair of the POPL 2022 week, Rajeev Alur, and his
team for the overall organization. We thank the publication team at Springer for their
support, and EasyChair for providing an excellent review system. Special thanks goes
to the VMCAI Steering Committee for their helpful advice, assistance, and support.

December 2021 Bernd Finkbeiner
Thomas Wies

Mark Santolucito

vi Preface

Organization

Program Committee Chairs

Bernd Finkbeiner CISPA Helmholtz Center for Information Security,
Germany

Thomas Wies New York University, USA

Artifact Evaluation Committee Chair

Mark Santolucito Barnard College, USA

Program Committee

Aws Albarghouthi University of Wisconsin-Madison, USA
Christel Baier TU Dresden, Germany
Dirk Beyer LMU Munich, Germany
Ahmed Bouajjani IRIF, Université Paris Diderot, France
Yu-Fang Chen Academia Sinica, China
Patrick Cousot New York University, USA
Leonardo de Moura Microsoft, USA
Rayna Dimitrova CISPA Helmholtz Center for Information Security,

Germany
Dino Distefano Facebook, UK
Jean-Christophe Filliatre CNRS, France
Orna Grumberg Technion - Israel Institute of Technology, Israel
Liana Hadarean Amazon Web Services, USA
William Harris Galois Inc., USA
Laura Kovacs Vienna University of Technology, Austria
Jan Kretinsky Technical University of Munich, Germany
Siddharth Krishna Microsoft Research, USA
Anna Lukina TU Delft, The Netherlands
Roland Meyer TU Braunschweig, Germany
Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany
Jorge A. Navas SRI International, USA
Oded Padon Stanford University, USA
Jens Palsberg University of California, Los Angeles, USA
Corina Pasareanu Carnegie Mellon University, NASA, KBR, USA
Andreas Podelski University of Freiburg, Germany
Pavithra Prabhakar Kansas State University, USA
Xavier Rival Inria and ENS Paris, France
Cesar Sanchez IMDEA Software Institute, Spain
Sriram Sankaranarayanan University of Colorado Boulder, USA

Sven Schewe University of Liverpool, UK
Martina Seidl Johannes Kepler University Linz, Austria
Mihaela Sighireanu LMF, ENS Paris-Saclay, Université Paris-Saclay

and CNRS, France
Gagandeep Singh University of Illinois Urbana-Champaign, USA
Serdar Tasiran Amazon Web Services, USA
Cesare Tinelli University of Iowa, USA
Laura Titolo National Institute of Aerospace, USA
Lenore Zuck University of Illinois Chicago, USA

Additional Reviewers

Azeem, Muqsit
Bondalakunta, Vishnu Teja
Bréhard, Florent
Capretto, Margarita
Ceresa, Martin
Chen, Yean-Ru
Chien, Po-Chun
Das, Spandan
Dietsch, Daniel
Evangelidis, Alexandros
Furbach, Florian
Garavel, Hubert
Georgiou, Pamina
Grover, Kush
Gutsfeld, Jens Oliver
Hajdu, Marton
Hajdu, Ákos
Hozzová, Petra
Iosif, Radu
Jhou, Yan-Ru

Kapus, Timotej
Klyuchnikov, Ilya
Kugler, Hillel
Kundu, Atreyee
Lal, Ratan
Larraz, Daniel
Melquiond, Guillaume
Mennicke, Stephan
Mutluergil, Suha Orhun
Noetzli, Andres
Nyx Brain, Martin
Ohrem, Christoph
Rappoport, Omer
Slagel, Joseph
Tsai, Wei-Lun
van der Wall, Sören
Vierling, Jannik
Weise, Nico
Yen, Di-De
Zufferey, Damien

viii Organization

Contents

Flavors of Sequential Information Flow . 1
Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic,
and Ana Oliveira da Costa

Relational String Abstract Domains . 20
Vincenzo Arceri, Martina Olliaro, Agostino Cortesi, and Pietro Ferrara

Fanoos: Multi-resolution, Multi-strength, Interactive Explanations
for Learned Systems . 43

David Bayani and Stefan Mitsch

Loop Verification with Invariants and Contracts . 69
Gidon Ernst

EPMC Gets Knowledge in Multi-agent Systems . 93
Chen Fu, Ernst Moritz Hahn, Yong Li, Sven Schewe, Meng Sun,
Andrea Turrini, and Lijun Zhang

High Assurance Software for Financial Regulation
and Business Platforms . 108

Stephen Goldbaum, Attila Mihaly, Tosha Ellison, Earl T. Barr,
and Mark Marron

Gradient-Descent for Randomized Controllers Under Partial Observability . . . 127
Linus Heck, Jip Spel, Sebastian Junges, Joshua Moerman,
and Joost-Pieter Katoen

Automata-Driven Partial Order Reduction and Guided Search for LTL
Model Checking . 151

Peter Gjøl Jensen, Jiří Srba, Nikolaj Jensen Ulrik,
and Simon Mejlby Virenfeldt

Verifying Pufferfish Privacy in Hidden Markov Models 174
Depeng Liu, Bow-Yaw Wang, and Lijun Zhang

A Flow-Insensitive-Complete Program Representation 197
Solène Mirliaz and David Pichardie

Lightweight Shape Analysis Based on Physical Types 219
Olivier Nicole, Matthieu Lemerre, and Xavier Rival

Fast Three-Valued Abstract Bit-Vector Arithmetic . 242
Jan Onderka and Stefan Ratschan

Satisfiability and Synthesis Modulo Oracles . 263
Elizabeth Polgreen, Andrew Reynolds, and Sanjit A. Seshia

Bisimulations for Neural Network Reduction . 285
Pavithra Prabhakar

NP Satisfiability for Arrays as Powers . 301
Rodrigo Raya and Viktor Kunčak

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic
Model Checking . 319

Riley Roberts, Thakur Neupane, Lukas Buecherl, Chris J. Myers,
and Zhen Zhang

Generalized Arrays for Stainless Frames . 332
Georg Stefan Schmid and Viktor Kunčak

Making PROGRESS in Property Directed Reachability 355
Tobias Seufert, Christoph Scholl, Arun Chandrasekharan, Sven Reimer,
and Tobias Welp

Scaling Up Livelock Verification for Network-on-Chip
Routing Algorithms. 378

Landon Taylor and Zhen Zhang

Stateful Dynamic Partial Order Reduction for Model Checking
Event-Driven Applications that Do Not Terminate. 400

Rahmadi Trimananda, Weiyu Luo, Brian Demsky,
and Guoqing Harry Xu

Verifying Solidity Smart Contracts via Communication Abstraction
in SmartACE . 425

Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler,
Valentin Wüstholz, and Arie Gurfinkel

Out of Control: Reducing Probabilistic Models
by Control-State Elimination . 450

Tobias Winkler, Johannes Lehmann, and Joost-Pieter Katoen

Mixed Semantics Guided Layered Bounded Reachability Analysis
of Compositional Linear Hybrid Automata . 473

Yuming Wu, Lei Bu, Jiawan Wang, Xinyue Ren, Wen Xiong,
and Xuandong Li

Bit-Precise Reasoning via Int-Blasting . 496
Yoni Zohar, Ahmed Irfan, Makai Mann, Aina Niemetz, Andres Nötzli,
Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare Tinelli

Author Index . 519

x Contents

Flavors of Sequential Information Flow

Ezio Bartocci1, Thomas Ferrère2, Thomas A. Henzinger3, Dejan Nickovic4,
and Ana Oliveira da Costa1(B)

1 Technische Universität Wien, Vienna, Austria
{ezio.bartocci,ana.costa}@tuwien.ac.at

2 Imagination Technologies, Kings Langley, UK
thomas.ferrere@imgtec.com

3 IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

4 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

Abstract. We study the problem of specifying sequential information-
flow properties of systems. Information-flow properties are hyperproper-
ties, as they compare different traces of a system. Sequential information-
flow properties can express changes, over time, in the information-flow
constraints. For example, information-flow constraints during an initial-
ization phase of a system may be different from information-flow con-
straints that are required during the operation phase. We formalize
several variants of interpreting sequential information-flow constraints,
which arise from different assumptions about what can be observed of the
system. For this purpose, we introduce a first-order logic, called Hyper-
trace Logic, with both trace and time quantifiers for specifying linear-
time hyperproperties. We prove that HyperLTL, which corresponds to a
fragment of Hypertrace Logic with restricted quantifier prefixes, cannot
specify the majority of the studied variants of sequential information
flow, including all variants in which the transition between sequential
phases (such as initialization and operation) happens asynchronously.
Our results rely on new equivalences between sets of traces that cannot
be distinguished by certain classes of formulas from Hypertrace Logic.
This presents a new approach to proving inexpressiveness results for
HyperLTL.

1 Introduction

Information-flow policies specify restrictions on what information can be shared
within components of a system or its users. Information that must be kept secret
should not be deducible by combining multiple observations of the non-secret
behavior of the system. For this reason, constraints on information flow are often
not properties of individual execution traces of the system, but rather properties
of sets of possible execution traces, that is, hyperproperties [5].

One of the basic concepts in secure information flow is the notion of indepen-
dence [12], which is used, for example, to define generalized non-interference [5].
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 1–19, 2022.
https://doi.org/10.1007/978-3-030-94583-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_1

2 E. Bartocci et al.

By stating that the value of an output variable y is independent of the value of
x, denoted ind(x, y), we want to capture that “no information can flow from x
to y”. A combinational (or “one-shot”) system is a function from values for the
input variables to values for the output variables. For combinational systems, an
observation is a valuation for all input and output variables. For such a system,
we say that y is independent of x if for all possibly observed values vx of the
input variable x and all possibly observed values v′

y of the output variable y,
also their combination (vx, v′

y) is a possible observation of the system. Formally,
vx is a possibly observed value of variable x if there exists a valuation v for all
variables in the set V of possible observations such that v(x) = vx. Then, the
set V of possible observations satisfies ind(x, y) if for all possible observations
v, v′ ∈ V , there exists a possible observation v∃ ∈ V such that v∃(x) = v(x) and
v∃(y) = v′(y).

A sequential system is a function from sequences of values for the input vari-
ables to sequences of values for the output variables. For sequential systems, an
observation is a trace, namely, a sequence of valuations for all input and output
variables. A weak form of sequential independence stems from a pointwise inter-
pretation: pointwise global independence holds if combinational independence
holds at all points along a trace. Formally, a set T of traces satisfies indpoint(x, y)
if for all times i ∈ N and all traces τ, τ ′ ∈ T , there exists a trace τ∃ ∈ T such
that τ∃[i](x) = τ [i](x) and τ∃[i](y) = τ ′[i](y). A stronger form of sequential inde-
pendence is based on comparing entire traces or trace segments: segment-based
global independence holds if for all possibly observed sequences τx of x values,
and all possibly observed sequences τ ′

y of y values, also their combination (τx, τ ′
y)

is a possible trace of the system. Formally, a set T of traces satisfies indseg(x, y)
if for all traces τ, τ ′ ∈ T , there exists a trace τ∃ ∈ T such that for all i ∈ N, we
have τ∃[i](x) = τ [i](x) and τ∃[i](y) = τ ′[i](y). One may argue that the difference
between the pointwise and the segment-based interpretations of sequential inde-
pendence depends on the memory of the observer: for an observer that keeps
track of time but cannot memorize past values of inputs or outputs, pointwise
global independence is adequate; for an observer with an unbounded memory,
only segment-based global independence can prevent information leaks. Other
notions of independence correspond to observers with finite memory, which we
do not discuss in this paper.

There are even more possibilities for defining two-state local independence:
before a state change, output y is independent of input x, and after the state
change, output z is independent of x. Two-state local independence can be used,
for instance, to capture declassification [19], a process in which previously secret
information is allowed to be released. Before and after the state change, inde-
pendence may be pointwise or segment-based. The state change may happen at
the same time in all traces, which we call synchronous, or not. Finally, the state
change may be observable, or not. All these considerations about the specification
of two-state local independence lead to different formal definitions. We call them
different “flavors” of independence and investigate the power of specification lan-
guages to express such flavors. In particular, we prove that the most interesting
flavors of two-state local independence cannot be specified in HyperLTL.

Flavors of Sequential Information Flow 3

We illustrate these definitions with program P, shown in Algorithm 1, which
intuitively satisfies the two-state local independence property. The program
starts in the initial state (state = 0), and in every subsequent step, the next
state is nondeterministically assigned via the input channel c1. Once P changes
from state = 0 to state = 1, it remains in that state forever. The value of x is
nondeterministically assigned via the input channel c0, regardless of the current
state. When in the state 0, the program P assigns x to z, and a default value to y.
When in the state 1, it assigns x to y, and a default value to z. The default value
may be 0, 1, or a nondeterministic boolean value set at the start of the program
execution. The program finally exposes y and z via the output channels c2 and
c3, respectively. The program P satisfies the strong, segment-based version of
the two-state local independence requirement by ensuring that indseg(x, y) holds
in the first state, and indseg(x, z) holds in the second state.

Table 1 shows a set of traces observing values of x, y, and z of P, which are
consistent with the segment-based two-state local independence requirement.
The first two traces, τ1 and τ2, transition to the second state at time 1, while
τ3 and τ4 transition at time 2 and 3, respectively. Note that for the second
part of the two-state local independence property, at state = 1, we need to
compare observations at time 1 of τ1 and τ2 with observations at time 2 and 3
of τ3 and τ4, respectively. We say that the state transition, which may happen
at different times in different traces, is asynchronous. Moreover, since the state
change happens with a certain input, in program P, the state change is observable
at the input/output interface, which adds the variable state to all traces. Other
variations of this program may lead to synchronous and/or hidden state changes.
We will prove in this paper that two-state local independence under a segment-
based interpretation with an asynchronous, observable state change, as in the
example, is not expressible in HyperLTL.

Algorithm 1: Program P for two-
state local independence.
1 state := 0;
2 do
3 if (state = 0) then
4 input(c1, state in {0, 1});
5 end
6 input(c0, x in {0, 1});
7 if (state = 0) then
8 z := x; y = default;
9 else

10 y := x; z = default;
11 end
12 output(c2, y);
13 output(c3, z);

14 while True;

Table 1. A set of traces over the vari-
ables x, y, and z of P, with default = 0,
white cells indicating that state = 0,
and gray cells, that state = 1.

0 1 2 3

x y z x y z x y z x y z

τ1 0 0 0 1 1 0 1 1 0 1 1 0

τ2 1 0 1 1 1 0 1 1 0 1 1 0

τ3 1 0 1 1 0 1 0 0 0 0 0 0

τ4 0 0 0 1 0 1 0 0 0 1 1 0

4 E. Bartocci et al.

In this paper, we study several variations of sequential information flow which
arise from different assumptions about the observer and the observed system. We
focus on the two-state local independence requirement as the simplest sequen-
tial hyperproperty that exposes important differences between various interpre-
tations.

The logical specification of sequential information flow (and other hyperprop-
erties) requires (implicit or explicit) quantification over time and traces. We refer
to such linear-time specification languages as hyperlogics. We introduce Hyper-
trace Logic, a two-sorted first-order logic that allows us to express and compare
a rich variety of sequential hyperproperties and linear-time specification lan-
guages for hyperproperties. In particular, we use Hypertrace Logic to provide
mathematical definitions for the two-state local independence condition under
point and segment semantics, for synchronous and asynchronous state changes,
which may be observed or hidden: in total, eight different “flavors” of sequential
information flow.

We then study the expressiveness of different fragments of Hypertrace
Logic with regard to the different versions of two-state local independence.
In particular, HyperLTL—the de-facto standard for specifying and verifying
hyperproperties—corresponds to a trace-prefixed fragment of Hypertrace Logic.
Our main result shows that HyperLTL cannot express two-state local indepen-
dence for asynchronous state changes, no matter whether the state change is
observable or not, and no matter whether the interpretation of independence is
pointwise or segment-based. Our results emphasize the important role that the
order of time and trace quantifiers play in hyperproperties and highlight the need
to explore, also noted recently in [1,3,13], asynchronous variants of hyperlogics.

The contributions of this paper can be summarized as follows:

– For specifying linear-time hyperproperties in general and variations of sequen-
tial information-flow properties in particular, we introduce and study a nat-
ural first-order formalism with trace and time variables, called Hypertrace
Logic, which transcends the idiosyncrasies of specific syntactic choices and
allows us to use proof techniques and results from first-order logic.

– We present a comprehensive expressiveness study of the simplest
interesting sequential information-flow property—namely, two-state local
independence—under different interpretations, and with respect to different
fragments of Hypertrace Logic, including the popular HyperLTL formalism.

– We devise several new lemmas and techniques for proving expressiveness
results for linear-time hyperlogics such as HyperLTL. Our proof techniques
and strategies are of independent interest and can be used in other expres-
siveness proofs.

2 The First-Order Logic of Trace Sets

In this section, we present Hypertrace Logic, denoted FO[<,T], to specify proper-
ties of trace sets. Hypertrace Logic is a two-sorted first-order logic that includes
a sort for time and a sort for traces; it supports explicit quantification over time
points and over traces.

Flavors of Sequential Information Flow 5

2.1 Preliminaries

Let X be a finite set of propositional variables. A valuation v : X → {0, 1} is
a partial mapping of variables to boolean values. The domain of v is denoted
by X(v) ⊆ X, and the size of v is defined by the size of its domain, that
is, |v| = |X(v)|. By VX we denote the set of all valuations with domain X. We
often use strings to write sets of variables and valuations: for a string [x0 . . . xn] of
variables, we define a valuation v by the string [v(x0) . . . v(xn)] of corresponding
values. We denote by v[x �→ b] the update of valuation v with variable x being
assigned the value b. The composition of two valuations v and v′ with X(v′) =
{x1, . . . , xn} is defined as v ⊗ v′ = v[x1 �→ v′(x1)] . . . [xn �→ v′(xn)].

A trace τ over X is a sequence of valuations in VX . We refer to X as the
alphabet of τ . The set of all infinite traces over X is denoted by V

ω
X , and the set

of all finite traces over X, by V
∗
X . For a finite trace τ = v0v1 . . . vn, its length is

defined as |τ | = n+1, and |τ | = ω for an infinite trace τ . The composition of two
traces τ = v0v1 . . . and τ ′ = v′

0v
′
1 . . . is defined as τ ⊗ τ ′ = (v0 ⊗ v′

0)(v1 ⊗ v′
1)

Given a trace τ = v0v1 . . . and an index i < |τ |, we use the following indexing
notations: τ [i] = vi, τ [i . . .] = vivi+1 . . ., and τ [. . . i] = v0v1 . . . vi−1. If j ≥ |τ |,
we adopt the following convention: τ [j . . .] is the empty trace, and τ [. . . j] = τ .

Example 1. Consider the following valuations over {x, y}: v(x) = 0 and v(y) = 1;
and v′(x) = 0 = v′(y). The trace τ = vv′vω can be represented as the following
sequence of strings that correspond to valuations over [x y]: [0 1][0 0][0 1]ω.

A trace property T over a set X of variables is a set of infinite traces over
X, that is, T ⊆ V

ω
X . We write T = 2V

ω
X for the set of all trace properties. A

hyperproperty T ⊆ T is a set of trace properties, i.e., a set of trace sets. In trace
semantics, a system S is characterized by the set of its execution traces; hence
systems and trace properties have the same type: S ∈ T. A hyperproperty, then,
characterizes a set of systems.

LTL is a propositional linear-time temporal logic [18]. Its formulas are defined
by the following grammar: ϕ ::= a | ¬ϕ |ϕ ∨ ϕ |X ϕ |ϕ U ϕ, where a ∈ X is a
propositional variable, and X (“next”) and U (“until”) are temporal modalities.
LTL formulas are interpreted over infinite traces. The satisfaction relation, for
a given trace τ ∈ V

ω
X , is defined inductively as follows:

τ |= a iff τ [0](a) = 1; τ |= ¬ψ iff τ �|= ψ;

τ |= ψ1 ∨ ψ2 iff τ |= ψ1 or τ |= ψ2; τ |= X ψ iff τ [1. . .] |= ψ;

τ |= ψ1 U ψ2 iff there exists 0 ≤ j :τ [j. . .] |= ψ2 and for all 0 ≤ j′ < j :τ [j′. . .] |= ψ1.

The temporal operators G (“globally”) and F (“eventually”) are defined as
customary, with G ψ ≡ ψ U false and F ψ ≡ true U ψ.

2.2 Hypertrace Logic

Hypertrace Logic is an extension of the first-order logic of linear order with equal-
ity, denoted FO[<]. As we focus on traces as sequences (“discrete linear-time”),

6 E. Bartocci et al.

we interpret FO[<] over the theory of natural numbers. Under this theory, FO[<]
is expressively equivalent to LTL [11,14]. In Hypertrace Logic, we add to the time
sort N< a trace sort T. The logic FO[<] allows only monadic predicates, aside
from the interpreted binary predicate <. We lift this restriction in Hypertrace
logic FO[<,T] and allow arbitrary binary predicates over pairs of trace and time
variables (with type T × N<).

Formally, given a set T of traces, we translate T to a structure T with sig-
nature (N, T ;< : N × N,(Pa :T ×N)a∈X, def : T × N), where N and T are the
domains for the time and the trace sort, respectively. The predicate < has the
usual interpretation over the theory of natural numbers, while, for all vari-
ables a ∈ X, we have Pa = {(τ, k) | τ ∈ T, k ∈ N, and τ [k](a) = 1}, and
def = {(τ, k) | τ ∈ T, k ∈ N, and 0 ≤ k < |τ |}. In words, each predicate Pa

contains all pairs of traces and time positions where a holds, and the predicate
def contains all time positions that lie within the length of a given trace. This
enables the logic to talk about both finite and infinite traces.

Let VT = {π, π′, . . ., π1, . . .} be a set of trace variables, and VN = {i, i′, . . .,
i1, . . ., j, . . .} a set of time variables. We evaluate hypertrace formulas over
the pair of assignments (ΠT

T ,ΠN) : (VT → T) × (VN → N) and denote
(ΠT

T ,ΠN)[x �→ v] the assignment in which variable x is mapped to v, and other
variables retain their values. A set T of traces is a model of a hypertrace for-
mula ϕ ∈ FO[<,T], denoted T |=T ϕ, if T models ϕ under the standard first-
order semantics, i.e., if there exists a pair of assignments (ΠT

T ,ΠN) such that
(T , (ΠT

T ,ΠN)) |= ϕ. Thus, the hypertrace formula ϕ generates the hyperprop-
erty �ϕ� = {T | T |=T ϕ}. From now on, we refer to Pa as a, and omit the
subscript T in |=T when clear from context.

Example 2. The hypertrace formula ∃i∀π a(π, i) specifies that there exists a time
point such that a is true for all traces at that time. For instance, the set T =
{[0][1][0][1][0]ω, [0]3[1]ω} of two traces, with valuations over [a] represented as
strings of length 1, satisfies the formula, because for both traces in T at time 3
the value of a is 1.

The hypertrace formula ∃π∃π′∀i a(π, i) ↔ ¬a(π′, i) specifies that there exist
two traces that are complements of each other with regard to the value of a. The
set T ′ = {([0][1])ω, ([1][0])ω, [0]ω} of three traces satisfies the formula.

In [10], the authors present an alternative extension of FO[<], called
FO[<,E], to express hyperproperties. This one-sorted logic uses quantifiers
ranging over pairs of traces and time positions and unary predicates Pa for
each propositional variable a over such pairs. It includes a binary equal-level
predicate E, which compares the same time positions between two traces.
Given a set T of traces, the authors define a structure T

E
with signature

(T × N;<E : (T × N) × (T × N), E : (T × N) × (T × N), (Pa : T × N)a∈X) with
<E= {((τ, n), (τ, n′)) | τ ∈ T and n < n′}, and E = {((τ, n), (τ ′, n)) | τ, τ ′ ∈
T and n ∈ N}, and Pa = {(τ, n) | τ [n](a) = 1}. As usual, the successor
predicate is defined as Succ(x, y) ≡ x < y ∧ ¬∃z(x < z < y), and minimal
pairs as min(x) ≡ ¬∃y Succ(y, x). Finally, minimal-time quantifiers QMx ϕ,

Flavors of Sequential Information Flow 7

with Q ∈ {∀,∃}, are given as shorthands ∀Mx ϕ ≡ ∀x (min(x) → ϕ) and
∃Mx ϕ ≡ ∃x (min(x)∧ϕ). These quantifiers define an implicit quantification over
traces. Given a set T of traces, the formulas ϕ of FO[<,E] are interpreted over
assignments ΠE

T : V → (T × N): we have T |=E ϕ iff there exists an assignment
ΠE

T such that (T
E

,ΠE
T) |= ϕ under the standard first-order semantics.

Example 3. The equal-level formula ∃xi ∀Mxπ ∃x(π,i) E(x(π,i), xi)∧xπ ≤ x(π,i) ∧
Pa(x(π,i)) is equivalent to the hypertrace formula ∃i∀π a(π, i). The predicate
E(x(π,i), xi) guarantees that x(π,i) has the same time index as xi. Moreover,
since xπ is in the scope of a minimal time quantifier, the predicate xπ ≤ x(π,i)

guarantees that x(π,i) has the same trace identifier as xπ.
The hypertrace formula ∃π∃π′∀i (a(π, i) ↔ ¬a(π′, i)) is equivalent to the

equal-level formula

∃Mxπ ∃Mxπ′ ∀xi ∃x(π,i) E(x(π,i), xi) ∧ xπ ≤ x(π,i) ∧
∃x(π′,i) E(x(π′,i), xi) ∧ xπ′ ≤ x(π′,i) ∧ (Pa(x(π,i)) ↔ ¬Pa(x(π′,i))).

We prove that Hypertrace Logic and FO[<,E] are equally expressive with
regard to sets of infinite traces. The translation from equal-level formulas to
hypertrace formulas is straightforward, because FO[<,T] supports explicit quan-
tification over both traces and time. The other direction, from FO[<,T] to
FO[<,E], follows from the observation that a binary predicate x(π, i) can be
translated to a unary predicate with variable x(π,i). We require that x(π,i) has
the same trace identifier as a minimal variable xπ with xπ ≤ x(π,i), and has the
same time variable as xi with E(xi, x(π,i)).

Theorem 1. For all equal-level sentences ϕE ∈ FO[<,E] there exists a hyper-
trace sentence ϕ ∈ FO[<,T] such that for all sets T ⊆ V

ω
X of infinite traces,

we have T |=E ϕE iff T |=T ϕ. For all hypertrace sentences ϕ ∈ FO[<,T] there
exists an equal-level sentence ϕE ∈ FO[<,E] such that for all sets T ⊆ V

ω
X of

infinite traces, we have T |=T ϕ iff T |=E ϕE.

2.3 The Trace-Prefixed Fragment of Hypertrace Logic

By T-FO[<,T] we denote the fragment of Hypertrace Logic in which all trace
quantifiers are at the beginning of the formula. In other words, the formulas
ϕ ∈ T-FO[<,T] are defined by the following grammar: ϕ ::= ∀π ϕ | ¬ϕ | ψ with
ψ ::= ∀i ψ | ψ ∨ ψ | ¬ψ | i < i | i = i | P (π, i), where π is a trace variable, i is a
time variable, and P is a binary predicate.

We prove that T-FO[<,T] is expressively equivalent to HyperLTL [4] inter-
preted over sets of infinite traces. HyperLTL extends LTL by adding quanti-
fiers over traces. Its syntax is defined by the following grammar, where V is
a set of trace variables, a ∈ X, and π ∈ V: ψ ::= ∃π ψ | ∀π ψ | ϕ with
ϕ :: = aπ | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕ U ϕ. A trace assignment, ΠT : V → T ,
is a partial function that assigns traces from T to trace variables in V. The
satisfaction relation for HyperLTL formulas is defined inductively as follows:

8 E. Bartocci et al.

(ΠT , i) |=H ∃π ψ iff there exists τ ∈ T : (ΠT [π �→ τ], i) |=H ψ;
(ΠT , i) |=H ∀π ψ iff for all τ ∈ T : (ΠT [π �→ τ], i) |=H ψ;
(ΠT , i) |=H aπ iff ΠT (π)[i](a) = 1;
(ΠT , i) |=H ¬ψ iff (ΠT , i) �|=H ψ;
(ΠT , i) |=H ψ1 ∨ ψ2 iff (ΠT , i) |=H ψ1 or (ΠT , i) |=H ψ2;
(ΠT , i) |=H X ψ iff (ΠT , i + 1) |=H ψ;
(ΠT , i) |=H ψ1 U ψ2 iff there exists i ≤ j : (ΠT , j) |=H ψ2

and for all i ≤ j′ < j : (ΠT , j′) |=H ψ1.

A set T of traces is a model of a HyperLTL formula ϕ, denoted T |=H ϕ,
iff there exists a mapping ΠT such that (ΠT , 0) |=H ϕ. A formula is closed
when all occurrences of trace variables are in the scope of a quantifier. For all
closed formulas (sentences) ϕ, we have T |=H ϕ iff (Π∅

T , 0) |=H ϕ, where Π∅
T is

the empty assignment. We may omit the subscript H in |=H when clear from
context.

Let T be a set of traces and ΠT : V → T a partial function assigning traces in
T to variables in V. We write V(ΠT) = {π | ΠT (π) is defined} for the set of trace
variables that are assigned in ΠT . The size of ΠT is defined as |ΠT | = |V(ΠT)|.
The flattening of ΠT is 〈ΠT 〉[i](aπ) = ΠT (π)[i](a). Note that a quantifier-free
HyperLTL formula ϕ with trace variables V and propositions X is also an LTL
formula over the alphabet {aπ | a ∈ X,π ∈ V}.

Example 4. Consider the set of traces T = {[0]ω, [1]ω} over [a], and the trace
assignment ΠT (π)=[0]ω and ΠT (π′)=[1]ω. Then 〈ΠT 〉=[01]ω, with valuations
defined over [aπ aπ′].

Lemma 1. Let ϕ be a quantifier-free HyperLTL formula. For all i ∈ N, all
trace sets T , and all corresponding trace assignments ΠT , we have (ΠT , i) |=H

ϕ iff 〈ΠT 〉[i . . .] |= ϕ.

Theorem 2. For all HyperLTL sentences ϕH there exists a trace-prefixed hyper-
trace sentence ϕ such that for all sets of infinite traces T ⊆ V

ω
X , we have

T |=H ϕH iff T |=T ϕ. For all trace-prefixed hypertrace sentences ϕ there exists
a HyperLTL sentence ϕH such that for all sets of infinite traces T ⊆ V

ω
X , we

have T |=H ϕH iff T |=T ϕ.

2.4 The Time-Prefixed Fragment of Hypertrace Logic

The fragment <-FO[<,T] of Hypertrace Logic restricts the syntax of Hypertrace
Logic to have all time constraints defined before trace quantifiers. The formulas
ϕ ∈ <-FO[<,T] are defined by the following grammar: ϕ ::= ∀i ϕ | ¬ϕ | i < i | i =
i |ϕ ∨ ϕ | ψ with ψ ::= ∀π ψ | ψ ∨ ψ | ¬ψ | P (π, i), where π is a trace variable, i
is a time variable, and P is a binary predicate.

Flavors of Sequential Information Flow 9

An important fragment of <-FO[<,T] is Time-invariant Hypertrace Logic,
G -FO[<,T], in which all formulas start with a universal time quantifier followed
by a formula that has only trace quantifiers. Formally, ϕ ∈ G -FO[<,T] iff
ϕ = ∀i ψi, where ψi is defined by the following grammar: ψi ::= ∀π ψi | ψi ∨
ψi | ¬ψi | P (π, i). For a formula ψ(i) without time quantifiers whose only free
time variable is i, we define as a convenience its satisfaction also with respect
to a set M = {v0, v1, . . .} of valuations: let {v0, v1, . . .} |=T ψ(i) iff for T =
{vω

0 , vω
1 , . . .}, we have T |= ∀i ψ(i).

Time-invariant Hypertrace Logic can be used to specify relations between
traces of a system that must be satisfied independently at each time point.
We prove that if a hyperproperty over X can be specified in Time-invariant
Hypertrace Logic, then it can be characterized by a set M of sets of valuations
that are total for X. We denote by Mω the set of all trace sets that are pointwise
characterized by M. Formally, Mω = {T | ∀i ∈ N : T [i] ∈ M}, where T [i] =
{τ [i] | τ ∈ T}.

Theorem 3. Let X be a finite set of propositional variables and T ⊆
2V

ω
X be a hyperproperty. There exists a time-invariant hypertrace formula

ϕ ∈ G -FO[<,T] that specifies T, �ϕ� = T, iff there exists a set M ⊆ 2VX

of valuation sets such that T = Mω and X(v) = X, for all v ∈ M and all
M ∈ M.

3 Two-State Local Independence

We are interested in specifying the following requirement of a system, which is
arguably the simplest nontrivial sequential information-flow property: The value
of observable variable y is independent of the value of observable variable x until
state changes, and from then on the value of observable variable z is independent
of the value of x.

Consider first the situation without a state change, i.e., the value of y should
always be independent of the value of x. Sequential independence relates x and y
values from multiple system executions by requiring that for any pair τ and τ ′ of
traces, there exists a third trace τ∃ that has the same sequence of x values as τ
and the same sequence of y values as τ ′. This is a trace- or segment-based view,
which we call the segment semantics of independence. There is also a weaker
interpretation of sequential independence, namely, time-invariant combinational
independence: time-invariant combinational independence relates x and y values
from multiple system executions by requiring that for any possible values vx of
x and vy of y that can occur at any time k, also the combination of vx and
vy is possible at time k. This is a time-point view, which we refer to as the
point semantics of independence. Point and segment independence are formally
defined below. As we want to accommodate finite traces, we use the predicate
def to guarantee that the definition covers only positions within the traces size.

10 E. Bartocci et al.

Definition 1. Two variables x and y are point independent, indpoint(x, y), iff

∀i∀π∀π′∃π∃
(
def(π, i) ∧ def(π′, i)

) →
(
def(π∃, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))

)
.

Two variables x and y are segment independent, indseg(x, y), iff:

∀π∀π′∃π∃∀i
(
def(π, i) ∧ def(π′, i)

) →
(
def(π∃, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))

)
.

Because of the order of quantifiers, segment independence implies point inde-
pendence. For both point and segment independence, there is an alternative
definition that compares only traces of equal length (finite or infinite), that is,
all trace variables π, π′, and π∃ are interpreted over traces of the same length.
Choosing this alternative definition would not affect our results.

Now let us introduce the state change. The state change may be observable
or not (“hidden”). Also, the state change may happen at different times in
different traces (“asynchronous”) or at the same time in all traces of a single
trace set (“synchronous”). We use a propositional variable a that indicates the
state change when its value changes from 0 to 1 for the first time. For this,
we define a slicing operator over sets of traces that returns all its elements’
prefixes (or suffixes) before (after) a given propositional variable holds for the
first time. Formally, for trace τ , propositional variable a, and time variable i,
the abbreviation min(τ, a, i) stands for a(τ, i) ∧ ∀j a(τ, j) → j ≥ i. Given a set
T of traces, we define its slicing with respect to a as follows:

T [a . . .] = {τ [k . . .] | τ ∈ T, k < |τ |, and min(τ, a, k)};
T [. . . a] = {τ [. . . k] | τ ∈ T, if exists l s.t. min (τ, a, l) then k = l else k = ω}.

Example 5. Consider the set of traces T = {[00]ω, [01][10]ω} in which the valu-
ations are over [a x]. Then, T [. . .a] = {[00]ω, [01]} and T [a. . .] = {[10]ω}.

Now we are ready to define different “flavors” of sequential independence,
depending on whether we take the segment or point semantics, whether or not
the state-changing “action” a happens at the same time in all traces, and whether
or not the state-changing action a is visible.

Definition 2. Two-state local independence is defined with regard to a proposi-
tional variable a and to an independence interpretation ind ∈ {indpoint, indseg}.
Observable asynchronous state change:

Tasync
ind = {T |T [. . .a] |= ind(x, y) and T [a. . .] |= ind(x, z)}.

Observable synchronous state change:

Tsync
ind = {T | T ∈ Tasync

ind and T |= ∃i∀π min(π, a, i)}.

Flavors of Sequential Information Flow 11

Hidden asynchronous state change:

Tasync,hidden
ind ={T |a | ∃a T [. . .a] |= ind(x, y) and T [a. . .] |= ind(x, z)}.

Hidden synchronous state change:

Tsync,hidden
ind ={T | ∃k T [. . .k] |= ind(x, y) and T [k. . .] |= ind(x, z)}.

Here T |a is the same set of traces as T except for the assignments of a being
removed.

4 Expressiveness

In this section, we explore which variations of two-state local independence can
be specified in the trace-prefixed fragment of Hypertrace Logic, which is expres-
sively equivalent to HyperLTL. We summarize our results in Table 2.

Table 2. Can trace-prefixed hypertrace logic express the different variants of the
two-state local independence property? For point semantics and synchronous state
change, we prove only the restricted result that two-state local independence cannot
be expressed by HyperLTL formulas with a single globally (G) operator. For segment
semantics and hidden synchronous state change, the problem is open.

Independence
semantics

State change

Sync Async Hidden async Hidden sync

Point No? [Theorem 6] No [Theorem 9] No [Theorem 9] No? [Theorem 6]

Segment Yes [Theorem 8] No [Theorem 9] No [Theorem 9] ?

4.1 Indistinguishable Trace Sets

We introduce notions of indistinguishability between sets of traces for both trace-
prefixed and time-prefixed fragments of Hypertrace Logic.

We start by defining an equivalence between sets of traces for HyperLTL. The
number of trace quantifiers in a HyperLTL sentence defines how many traces can
be compared simultaneously. We propose an equivalence for HyperLTL models
which lifts, to sets of traces, a given equivalence between traces which preserves a
fragment of LTL. For a class C of LTL formulas and an equivalence ≈ on traces,
we say that ≈ is C-preserving if for all LTL formulas ϕ ∈ C and all traces τ and
τ ′ with τ ≈ τ ′, we have τ |= ϕ iff τ ′ |= ϕ. For example, if C is the set of LTL
formulas without next (X) operator, and the equivalence classes of ≈ are closed
under stuttering, then ≈ is C-preserving.

Next we extend classes of LTL formulas to classes of HyperLTL formulas.
Let C be a class of LTL formulas, and let ϕ = Q0π0 . . . Qkπkψ be a HyperLTL

12 E. Bartocci et al.

formula with ψ being quantifier-free, and Qi ∈ {∀,∃} for all 0 ≤ i ≤ k. We
say that ϕ is in the k-extension of C, denoted ϕ ∈ 2Ck , if ψ ∈ C. We lift a C-
preserving equivalence ≈ on traces to a 2Ck -preserving equivalence on trace sets,
by requiring a bijective translation between trace sets which preserves ≈ for all
assignments of size k.

Definition 3. Let k ∈ N, let C be a class of LTL formulas, and let ≈ be a
C-preserving equivalence on traces. Two sets T and U of traces are (k,C)-
equivalent, denoted T ≈(k,C) U , iff there exists a bijective and total function
f : T → U , such that for all sets V of k trace variables and all trace assignments
Π : V → T and Π ′ : V → U , we have 〈Π〉 ≈ 〈f(Π)〉 and 〈Π ′〉 ≈ 〈f−1(Π ′)〉,
where f(Π)(π) = f(Π(π)) for all π ∈ V.

Theorem 4. Let C be a class of LTL formulas and ≈ a C-preserving equivalence
on traces. Let ϕ ∈ 2Ck be a HyperLTL sentence in the k-extension of C, for some
k ∈ N. For all sets T and U of traces with T ≈(k,C) U , we have T |= ϕ iff U |= ϕ.

The theorem follows from Lemma 2 below, which is shown by induction on the
number k of trace quantifiers. We note that the other direction of the implication
in Theorem 4 does not hold. Consider the two trace sets T ={[1][0][1][0]ω} and
U ={[1][0][0][1][0]ω, [1][0][0][0][1][0]ω} with valuations over x. The two trace sets
have different cardinality, so there is no k and C for which they are (k,C)-
equivalent. However, they are indistinguishable for all HyperLTL formulas with
one trace quantifier and until (U) modalities only, because the two traces in U
are stutter-equivalent to the trace in T .

Lemma 2. Let C be a class of LTL formulas and k ∈ N. For all HyperLTL
formulas ϕ ∈ 2Ck , all trace sets T and U with T ≈(k,C) U , all functions f : T →
U that witness the (k,C)-equivalence of T and U , and all trace assignments
Π : free(ϕ) → T and Π ′ : free(ϕ) → U to the free variables in ϕ, we have

(Π, 0) |= ϕ iff (f(Π), 0) |= ϕ, and (Π ′, 0) |= ϕ iff (f−1(Π ′), 0) |= ϕ.

Next we introduce a notion of indistinguishability for trace sets with regard
to the time-prefixed fragment of Hypertrace Logic. Consider a time-prefixed for-
mula that quantifies over k time points. Then, two sets of traces are k-point
equivalent if for each possible k-tuple of time points there is a bijective transla-
tion between the sets of traces that makes them indistinguishable in the times
of that tuple.

Definition 4. Two sets T and U of traces are k-point equivalent, denoted
T ≈point

k U , if for all k-tuples (i1, . . .ik) ∈ N
k of time positions, there exists

a bijective and total function f : T → U such that for all traces τ ∈ T and
τ ′ ∈ U , and all 1 ≤ j ≤ k, we have τ [ij] = f(τ)[ij] and τ ′[ij] = f−1(τ)[ij].

Theorem 5. For all time-prefixed hypertrace sentences ϕ ∈ <-FO[<,T], and all
sets T and U of traces with T ≈point

k U , where k is the number of time variables
in ϕ, we have T |= ϕ iff U |= ϕ.

Flavors of Sequential Information Flow 13

Finally, we introduce equivalence relations over traces that will be used later
in our results. We define Global LTL, G, as the class of all LTL formulas that
start with the globally (G) operator and contain no other modal operators.
Then, G = {G ψ | ψ is a propositional formula}. Two traces τ and τ ′ are ≈G-
equivalent if for all formulas ϕ ∈ G, we have τ |= ϕ iff τ ′ |= ϕ.

Proposition 1. For all traces τ and τ ′, we have τ ≈G τ ′ iff {τ [i] | i ∈ N} =
{τ ′[j] | j ∈ N}.

We write X
n for the class of LTL formulas with up to n nested next (X)

operators. The following definitions are taken from [16]. A valuation τ [i] at time
i is n-redundant in a trace τ if it is repeated consecutively for at least n + 1
times, that is, if τ [i] = τ [i + j] for all 1 ≤ j ≤ n. Two traces τ and τ ′ are
n-stutter equivalent, denoted τ ≈n τ ′, if they are equal up to the deletion of
n-redundant valuations. Formally, the relation ≈n is the least equivalence over
the set of all finite or infinite traces containing ≺n, where τ ≺n τ ′ iff there is a
time i such that the valuation τ ′[i] is n-redundant in τ ′, and τ is obtained from
τ ′ by removing τ ′[i]. The following proposition is a direct consequence of the
results in [16].

Proposition 2 ([16]). For all formulas ϕ ∈ X
n and all traces τ and τ ′ with

τ ≈n τ ′, we have τ |= ϕ iff τ ′ |= ϕ.

4.2 Point Semantics

The point interpretation of independence, indpoint(x, y), considers each time
point independently. Note that indpoint(x, y) from Definition 1 is a time-invariant
hypertrace formula. Let Global HyperLTL be the extension of global LTL, G, with
leading trace quantifiers. We prove that no Global HyperLTL formula can express
one-state independence with point semantics, namely, T1

point = �indpoint(x, y)�.
First, we define two families of models (i.e., trace sets) parameterized by a

natural number such that the models of one family satisfy one-state indepen-
dence with point semantics, while the models of the other family do not. The
parameter guarantees that for a given HyperLTL formula with n trace quanti-
fiers, there are enough traces in the models to prevent the formula from distin-
guishing them. We exploit the fact that when evaluating a HyperLTL formula,
we can simultaneously compare at most as many traces as there are quantifiers
in the formula. Then, we prove that no global HyperLTL formula can distinguish
between corresponding models of the two families. To prove this result, we show
that corresponding models are (k,G)-equivalent.

Definition 5. For each n ∈ N, we define two sets T point
n and Upoint

n of traces
with valuations over [x y]:

En = {[11]n+2[00]ω} ∪
⋃

0≤j<n

{[00]j [10] [00]ω, [00]j [01] [00]ω};

T point
n = En ∪ {[00]n [10] [10] [00]ω, [00]n [01] [01] [00]ω};

Upoint
n = En ∪ {[00]n [10] [00] [00]ω, [00]n [01] [00] [00]ω}.

14 E. Bartocci et al.

Example 6. For n = 1, we get the following trace sets:

T point
1 = {[11] [11] [11] [00]ω, Upoint

1 = {[11] [11] [11] [00]ω,
[10] [00] [00] [00]ω, [10] [00] [00] [00]ω,
[01] [00] [00] [00]ω, [01] [00] [00] [00]ω,
[00] [10] [10] [00]ω, [00] [10] [00] [00]ω,
[00] [01] [01] [00]ω} [00] [01] [00] [00]ω}

The trace set T point
1 satisfies the condition that x is independent of y, because

at all time points, we have all possible combinations of observations for x and
y. However, the trace set T point

1 does not satisfy the condition, because at time
2 we are missing traces with valuations [10] and [01] for [x y]. Global HyperLTL
formulas with only one trace quantifier cannot distinguish between these two
trace sets.

Lemma 3. For all n ∈ N, we have T point
n ∈ T1

point and Upoint
n /∈ T1

point.

Lemma 4. For all n ∈ N, we have T point
n ≈(n,G) Upoint

n .

Theorem 6. Global HyperLTL cannot express neither one-state independence,
nor synchronous two-state local independence under point semantics for both
observable and hidden action: for all global HyperLTL formulas ϕ, we have
�ϕ� �= T1

point, �ϕ� �= Tsync
point and �ϕ� �= Tsync,hidden

point .

Proof. From Lemma 3, Lemma 4, and Theorem 4, it follows that for all global
HyperLTL formulas ϕ, we have �ϕ� �= T1

point. Assume towards a contradic-
tion that there exists a global HyperLTL formula ϕ with �ϕ� = Tsync

point. Define
ϕy = ϕ[z �→ y], where [z �→ y] replaces all occurrence of z by y. Then
�ϕy� = T1

point, which is a contradiction. Analogously, the assumption that there
exists a global HyperLTL formula ϕ that specifies hidden synchronous change
�ϕ� = Tsync,hidden

point lead us to a contradiction. ��
We conjecture that this result extends to all HyperLTL formulas (global

or not), namely, that no HyperLTL formula is equivalent to the time-invariant
hypertrace formula indpoint(x, y) from Definition 1. Time-invariant hypertrace
formulas enforce requirements over time points that must be satisfied indepen-
dently by all of them. It seems unlikely that they can be expressed by HyperLTL
formulas that are not equivalent to global HyperLTL formulas. While HyperLTL
is likely unable to specify even one-state independence under point semantics, it
is not surprising that time-prefixed hypertrace logic can express two-state local
independence under point semantics with a synchronous state change.

Theorem 7. Consider the following time-prefixed hypertrace formula:

ϕsync
time ≡ ∃j∀i < j∀k ≤ j∀π∀π′∃π∃(¬a(π, i) ∧ ¬a(π′, i) ∧ (x(π, i) ↔ x(π∃, i)) ∧ (y(π′, i) ↔ y(π∃, i))

) ∧
(
a(π, j) ∧ a(π′, j) ∧ (x(π, k) ↔ x(π∃, k)) ∧ (z(π′, k) ↔ z(π∃, k))

)

Then �ϕsync
time� = Tsync

point.

Flavors of Sequential Information Flow 15

4.3 Segment Semantics

The segment interpretation of independence, indseg(x, y), compares entire trace
segments. We prove that HyperLTL can express two-state local independence
under segment semantics with a synchronous state change, while the variants
with an asynchronous state change, either observable or not, are not expressible
in HyperLTL.

Theorem 8. Consider the following HyperLTL formula:

ϕsync
seg ≡ ∀π∀π′∃π∃∃π′

∃ (¬aπ ∧ ¬aπ′ ∧ xπ = xπ∃ ∧ yπ′ = yπ∃)
U(aπ ∧ aπ′ ∧ G (xπ = xπ∃ ∧ zπ′ = zπ′

∃)).

Then �ϕsync
seg � = Tsync

seg .

We now examine the case of an asynchronous state change. To prove that
HyperLTL cannot express two-state local independence in this scenario, we
exploit the fact that HyperLTL cannot compare arbitrarily distant time points
from different observations. As in the previous subsection for point semantics,
we define two families of trace sets such that the sets in one family satisfy the
two-state independence property, while the sets in the other do not. The dif-
ficulty in expressing the asynchronous state change is caused by the arbitrary
distance between time points when the state change happens in different traces.
The trace sets we construct guarantee that there are not enough next (X) oper-
ators to encode this distance. The trace sets in the second family correspond
to those in the first family, except for the position 2n + 1, which is deleted.
This position coincides, by construction, with a global (across all trace sets) n-
stuttering in the first family. Thus, it is not surprising that the n-th members
from the two families, for every n ∈ N, are (k,Xn)-equivalent, for any number
k of trace quantifiers.

Definition 6. For each n ∈ N, we define two sets T async
n = {t1, t2, t3, t4} and

Uasync
n = {u1, u2, u3, u4} of trace sets with valuations over [a x y z]:

τ0=[1110] [1000]n+4 [1001]n+4 [1111] [1001]n+4 [1000]n+4,

τ1=[1111] [1001]n+4 [1000]n+4 [1110] [1000]n+4 [1001]n+4,

t1=[0000] τ1 [1001]ω, t2 = [0010] τ1 [1001]n+4 [1111]ω,

t3=[0000]n+4 τ0 [1001]ω, t4 = [0010]n+4 τ0 [1111]ω,

ui = ti[0]ti[1] . . . ti[2n + 10]ti[2n + 12] . . . for 1 ≤ i ≤ 4.

Lemma 5. For all n ∈ N and all valuations Π over T async
n , the valuation at

time 2n + 11 is n-redundant in the trace 〈Π〉.
Lemma 6. For all k, n ∈ N, we have T async

n ≈(k,Xn) Uasync
n and T async

n |a ≈(k,Xn)

Uasync
n |a.

16 E. Bartocci et al.

Proof. Consider arbitrary k, n ∈ N. We define the witness function f : T async
n →

Uasync
n as f(ti) = t′i for 1 ≤ i ≤ 4. Clearly, the function is both bijective and total.

Let Π be an arbitrary valuation over T async
n such that |Π| = k. We proved in

Lemma 5 that the valuation at time 2n+11 in trace 〈Π〉 is n-redundant. By the
definition of Uasync

n , the trace 〈f(Π)〉 is the same as 〈Π〉 except that the valuation
at time 2n + 11 is deleted. Therefore 〈Π〉 ≈n 〈f(Π)〉. We prove analogously
that for all valuations Π ′ of size k over Uasync

n , we have 〈Π ′〉 ≈n 〈f−1(Π ′)〉.
Hence T async

n ≈(k,Xn) Uasync
n . We use the same witness function to prove that

T async
n |a ≈(k,Xn) Uasync

n |a. Note that for all n ∈ N, since T async
n |a is the same as

T async
n except for the values of a that are removed, Lemma 5 holds for T async

n |a
as well. ��
Lemma 7. For all n ∈ N, we have T async

n ∈ Tasync
seg , Uasync

n �∈ Tasync
point , and

Uasync
n |a �∈ Thidden

point .

It is clear that all trace sets that are models under the segments semantics
are models under the point semantics, as well. Therefore Tasync

seg ⊆ Tasync
point .

Theorem 9. For all HyperLTL sentences ϕ, we have �ϕ� �= Tasync
point , �ϕ� �=

Tasync
seg , �ϕ� �= Thidden

point , and �ϕ� �= Thidden
seg .

Proof. From Tasync
seg ⊆ Tasync

point and Lemma 7, it follows that for all n ∈ N, we
have T async

n ∈ Tasync
seg and Uasync

n �∈ Tasync
seg , as well as T async

n ∈ Tasync
point and

Uasync
n �∈ Tasync

point . Let ϕ be a closed HyperLTL formula, let n be the nesting
depth of its next operators, and let k ∈ N be the number of trace quantifiers in
ϕ. It follows from Lemma 6 and Theorem 4 that T async

n ∈ �ϕ� iff Uasync
n ∈ �ϕ�.

Hence for all HyperLTL sentences ϕ, we have �ϕ� �= Tasync
point and �ϕ� �= Tasync

seg .
For all n ∈ N, since T async

n |a is the same as T async
n except for the values of a

that are removed, we have T async
n |a ∈ Thidden

seg and T async
n |a ∈ Thidden

point . Lemma 7
implies that Uasync

n |a �∈ Thidden
point , and thus Uasync

n |a �∈ Thidden
seg , for all n ∈ N.

As in the previous case, from Lemma 6 and Theorem 4, it follows that for all
HyperLTL sentences ϕ, we have �ϕ� �= Thidden

point and �ϕ� �= Thidden
seg . ��

5 Related Work

The specification of asynchronous hyperproperties is challenging. We proved that
HyperLTL cannot specify two-state local independence if the state change is
asynchronous. Note that, here, “state change” refers to the specification of a
sequential information-flow property, which changes over time, from one “spec-
ification state” to the next, independently of any synchronous or asynchronous
interaction of the components of the system whose property is specified.

Recently there have been several works that enrich HyperLTL to deal with
various forms of asynchronicity. They mostly focus on the model-checking prob-
lem over asynchronous systems, not on specification-level asynchronicity. In [13],
the authors address the limitation of HyperLTL imposed by a synchronous

Flavors of Sequential Information Flow 17

traversal of traces by defining the logic Hμ, which extends the linear-time μ-
calculus with trace quantifiers and a next operator parametrized by a trace
variable. The parameterized next, Xπ ϕ, specifies that ϕ holds when we move to
the next time point in trace π. In [1,3], the authors extend HyperLTL with other
operators for comparing different traces asynchronously. All of these logics have
model-checking problems that are undecidable due to asynchronicity, which is
why the authors propose decidable fragments.

The history of HyperLTL and related expressiveness results can be sum-
marized as follows. Trace properties, often specified in LTL [18], cannot spec-
ify relations between different traces [5,17]. The seminal work of Clarkson and
Schneider [5] introduces, therefore, the concept of hyperproperties as sets of trace
properties. Different extensions of LTL have been proposed for reasoning about
hyperproperties in general, and security properties in particular. Well-known
examples are the epistemic temporal logic ETL [8], which extends LTL with a
modal operator for knowledge, and SecLTL [7], which introduces a hide modal-
ity. Finally, Clarkson et al. [4] introduce HyperLTL, which extends LTL with
explicit quantification over traces.

The hide operator of SecLTL considers all alternative outcomes at the current
time. In [4] the authors show that SecLTL can be encoded in CTL* extended
with trace quantifiers (HyperCTL*), but not in HyperLTL. In the same paper,
they prove that HyperLTL subsumes ETL. Their proof relies on the possibility to
quantify over propositional variables that are not in the alphabet of the structure
that is being model checked. Later, in [6], Coenen et al. introduce an extension of
HyperLTL with such quantification over propositions, called HyperQPTL, and
they prove that HyperQPTL is strictly more expressive than HyperLTL.

Bozzelli et al. [2] prove that HyperCTL* and an extension of CTL* with the
knowledge operator (KCTL*) have incomparable expressive power. These results
extend to HyperLTL and ETL as well, both of which are subsumed by their
respective CTL* extensions. To show that ETL is not subsumed by HyperLTL,
they prove that HyperLTL cannot express bounded termination, i.e., that there
is a common time point across all traces which has the same valuation for a given
propositional variable. The latter property can be specified in ETL, but not in
HyperLTL. In [10], the authors propose to extend FO[<] to hyperproperties
by adding the equal-level predicate E. Similar to previous negative expressivity
results for HyperLTL, they use the bounded-termination property from [2] to
prove that FO[<,E] is strictly more expressive than HyperLTL.

Different from the extensions to LTL discussed above, Krebs et al. [15] pro-
pose to reinterpret LTL under a so-called team semantics. Team semantics works
with sets of assignments, and the authors introduce both synchronous and asyn-
chronous varieties. They show that HyperLTL and LTL under team semantics
and synchronous entailment have incomparable expressive power. An overview
of relative expressiveness results for linear-time hyperlogics is presented in [6].

Finkbeiner and Rabe [9] prove that HyperLTL formulas cannot distinguish
between structures that generate the same set of traces. The expressiveness proof
by Bozelli et al. [2] defines an equivalence relation for a specific family of models

18 E. Bartocci et al.

to show that no HyperCTL* can distinguish them. We are the first to define a
family of equivalence relations between sets of traces that are indistinguishable
with respect to a given class of HyperLTL formulas.

6 Conclusion

We studied the expressiveness of specification languages with regard to linear-
time hyperproperties. The first-order formalism we introduced, Hypertrace
Logic, allowed us to systematically investigate the implications of alternating
trace and time quantifiers. Additionally, it enables us to lift techniques and
results from first-order logic to study linear-time hyperproperties. One interest-
ing direction would be to study extensions of Hypertrace Logic with decidable
first-order theories. For example, we can specify asynchronous two-state local
independence under segment semantics, Tasync

seg , with Hypertrace Logic when
interpreted with the theory of natural numbers with linear order and addition,
(N;<,+). We can use addition to encode the time shift between states for each
trace in the domain.

It will be interesting future work to characterize, more generally, the hyper-
properties that can be expressed in Hypertrace Logic. We focused in this paper,
instead, on a single paradigmatic sequential information-flow property, namely,
two-state local independence. We considered several natural variants and inter-
pretations of this hyperproperty, which arise mostly due to differences in the
power of the observer. Our main result proved that the asynchronous versions
of two-state local independence cannot be specified in HyperLTL, due to its
fixed order of trace and time quantifiers. It is therefore also interesting to ask, in
future work, if there are natural temporal-logic or automaton-based formalisms
for specifying general sequential information-flow properties, which can capture
some of the nuanced differences in interpretation that were characterized in this
paper using a first-order formalism.

Acknowledgments. This work was funded in part by the Wittgenstein Award Z211-
N23 of the Austrian Science Fund (FWF) and by the FWF project W1255-N23.

References

1. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

2. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal
logics. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 167–182. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0 11

3. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL. In:
2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1–13 (2021). https://doi.org/10.1109/LICS52264.2021.9470583

https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583

Flavors of Sequential Information Flow 19

4. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

5. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

6. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlog-
ics. In: Proceedings of LICS: the 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.
8785713

7. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27940-9 12

8. Fagin, R., Moses, Y., Halpern, J., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

9. Finkbeiner, B., Rabe, M.N.: The linear-hyper-branching spectrum of temporal log-
ics. IT Inf. Technol. 56(6), 273–279 (2014)

10. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In: 34th
Symposium on Theoretical Aspects of Computer Science (2017)

11. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 163–173 (1980)

12. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Log. 101(2), 399–
410 (2013)

13. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. Proc. ACM Program. Lang. 5(POPL), 1–29 (2021).
https://doi.org/10.1145/3434319

14. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)
15. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the spec-

ification and verification of hyperproperties. In: Leibniz International Proceedings
in Informatics, LIPIcs, vol. 117 (2018)

16. Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Inf. 41(7–8), 415–
434 (2005)

17. McLean, J.: A general theory of composition for a class of “possibilistic” properties.
IEEE Trans. Softw. Eng. 22(1), 53–67 (1996)

18. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS77: the 18th
Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE Com-
puter Society (1977). https://doi.org/10.1109/SFCS.1977.32

19. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17(5), 517–548 (2009)

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1145/3434319
https://doi.org/10.1109/SFCS.1977.32

Relational String Abstract Domains

Vincenzo Arceri1(B), Martina Olliaro2, Agostino Cortesi2, and Pietro Ferrara2

1 University of Parma, Parma, Italy
vincenzo.arceri@unipr.it

2 Ca’ Foscari University of Venice, Venice, Italy
{martina.olliaro,cortesi,pietro.ferrara}@unive.it

Abstract. In modern programming languages, more and more func-
tionalities, such as reflection and data interchange, rely on string values.
String analysis statically computes the set of string values that are pos-
sibly assigned to a variable, and it involves a certain degree of approxi-
mation. During the last decade, several abstract domains approximating
string values have been introduced and applied to statically analyze pro-
grams. However, most of them are not precise enough to track relational
information between string variables whose value is statically unknown
(e.g., user input), causing the loss of relevant knowledge about their
possible values. This paper introduces a generic approach to formalize
relational string abstract domains based on ordering relationships. We
instantiate it to several domains built upon different well-known string
orders (e.g., substring). We implemented the domain based on the sub-
string ordering into a prototype static analyzer for Go, and we exper-
imentally evaluated its precision and performance on some real-world
case studies.

Keywords: Relational abstract domains · Static analysis · String
analysis · Abstract interpretation

1 Introduction

String values play a fundamental role in most programming languages. Dynam-
ically inspecting and modifying objects, transforming text into executable code
at run-time, and handling data interchange formats (e.g., XML, JSON) are only
a few examples of scenarios where strings are heavily used.

The static analysis community has spent a great effort in proposing new
abstractions to better approximate and analyze string values. Unfortunately,
almost all the existing string abstract domains are in a position to track infor-
mation of single variables used in a program (e.g., if a string contains some
characters, or if it starts with a given sequence), without inspecting their rela-
tionship with other values (e.g., if a string is a substring of another one, despite
their actual values are unknown). Detecting relational information between vari-
ables is critical in vulnerability analysis, e.g., malware detection, or to verify if
the string values manipulated by a program comply with specified consistency
constraints.
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 20–42, 2022.
https://doi.org/10.1007/978-3-030-94583-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_2

Relational String Abstract Domains 21

Fig. 1. secName function.

For numerical values, advanced and sophisticated relational abstractions have
been studied and improved over the years to track relations between variables.
A representative example is the Polyhedra abstract domain [18], which has been
continuously and heavily improved over the years, as reported by the more recent
important works on its optimization, e.g., [9].

For string values not much attention has been given to a systematic design
of relational domains. We illustrate the problem by considering the function
secName1 in Fig. 1. The function takes as input three arguments of type string,
name, pr1 and pr2. Then, if name has pr1 as a prefix, the function returns pr2
concatenated to the substring of name starting at index 4. Function secName
behaves analogously when name starts with pr2, concatenating pr1 to name[4:].
Otherwise, name is returned. The relational information we aim to capture here is
the one relating pr1 and pr2 with name and the returned value. In particular, we
want to infer that name[4:] is always contained in the returned value, and pr1
(resp. pr2) is contained in the returned value if name starts with pr2 (resp. pr1).
Using non-relational abstract domains, there is no way to catch these relations.
It is clear that using relational domains considerably improves the accuracy of
any static analyzer, and the issue of providing a systematic construction of them
deserves to be deeply investigated.

1.1 Paper Contribution

In this paper, we define a constructive method upon which relational strings
abstract domains can be defined. We start from a string order of interest, and we
introduce a suite of relational abstract domains fitting the proposed framework,
based on length inequality, character inclusion, substring relations. Precisely, we
first formalize how to track relations between single string variables; then, we
extend the method to infer relations between string expressions and variables to
improve the analysis’s precision.

Abstract domains tracking relations among variables may lose information
about the values (i.e., the content) of each variable and the only relational infor-
mation may not be enough to precisely answer about programs of interest. Nev-
ertheless, one standard way to cope with this problem (exploited also in the
numerical world) is to combine the relational and non-relational abstractions

1 secName is the result of a slight modification made to the function available at
https://www.codota.com/code/java/classes/java.lang.String.

https://www.codota.com/code/java/classes/java.lang.String

22 V. Arceri et al.

by using Cartesian or reduced products [14]. One of these combinations is the
Pentagons abstract domain [28], which combines intervals (non-relational infor-
mation) with the strict upper bounds abstract domain (relational information)
by means of the reduced product. Also in this paper, we rely on abstract domain
combinations. In particular, we propose two combinations with our substring
relational abstract domain, discussing the benefits of them: one with the con-
stant propagation analysis and one with Tarsis [31], a non-relational finite-state
automata-based string domain.

The design of relational string abstract domains is agnostic w.r.t. the ana-
lyzed programming language. Therefore, our formalization targets a core imper-
ative language, while the examples and experimentation are based on real-word
programming languages, namely Go (https://golang.org/), a multi-paradigm
language heavily used for developing smart contracts for blockchains.

We implemented our framework2 and instantiated it with the substring rela-
tion using a prototype static analyzer for Go. The experimental results show
that the accuracy of our system outperforms state-of-the-art string analyses, as
well as the scalability of our proposal.

1.2 Paper Structure

Section 2 discusses related work. Section 3 recalls some background definitions.
Section 4 shows a core language for string-manipulating programs. Section 5 for-
malizes the construction of generic relational string abstract domains based on
a given textual order (Sect. 5.1), and a suite of instantiations capturing different
relational properties (Sect. 5.2, 5.3 and 5.4). In particular, Sect. 5.4 will present
the substring relational domain Sub�, which tracks the set of expressions that
are definitely substrings of each program variable. Section 6 presents the results
of our experimental evaluation on Sub�. Section 7 concludes.

2 Related Work

For numerical values, several relational abstract domains have been proposed,
such as Polyhedra [18], Octagons [30], Pentagons [28], and Stripes [19]. Over-
all, this work line inspired our approach and, in particular, the string relational
domains that we will define in Sect. 5. Indeed, consider the Octagons and the
Pentagons abstract domains. Octagons track relations of the form ±x ± y � k,
where k is a constant. Pentagons, a less precise domain than Octagons, combine
the numerical properties tracked by the Interval domain (i.e., x ∈ [n,m]) and
the symbolic ones captured by the Strict Upper Bound domain (i.e., x < y).
Similar to the Strict Upper Bound domain, our framework instantiates domains
that track information of the form x � y, where � is a general partial order over
string variables. Moreover, the framework extension we define to track relations
between string expressions and variables, like x+ y � z, has been modelled sim-
ilarly to Octagons. Other abstractions have been proposed to infer information
2 Available at https://github.com/UniVE-SSV/go-lisa.

https://golang.org/
https://github.com/UniVE-SSV/go-lisa

Relational String Abstract Domains 23

about the relations between heap-allocated data structures a program manip-
ulates [36]. In [22], an abstract domain that approximates “must” and “may”
equalities among pointer expressions has been defined. A relational abstract
domain for shape analysis has been presented in [23], built on the top of a set
of logical connectives, that represents relations among memory states.

On the string approximation side, a significant effort has been applied to
improve the accuracy of the abstraction. However, contrary to the numerical
world, most of the existing string abstractions only focus on the approximation
of a single variable. Such non-relational abstract domains were already intro-
duced a decade ago [12,13], such as Character Inclusion, Prefix, and Suffix. Pre-
cisely, they track the characters possibly and certainly contained in a string, its
prefix, and suffix, respectively. The finite-state automata abstract domain [5,7]
is a sophisticated domain that abstracts a string set as the minimum automaton
recognizing it. Even if it can keep information on programs that rely heavily on
string manipulation (such as the ones using eval [7]) it suffers from scalabil-
ity problems. M-String [11] is a (non-relational) parametric abstract domain for
strings in C. In particular, it uses an abstract domain for the content of a string
and an abstract domain for expressions, inferring when a string index position
corresponds to an expression of the considered abstract domain. Other general-
purpose string abstractions [2,29,38] or string abstract domains targeting a spe-
cific language [4,11,24–26,33] have been proposed. The abstract domains we
will introduce instead are general-purpose and can be adapted for analyzing
programs written in different programming languages. Note that our framework
can be easily instantiated with other basic string abstract domains leading to
even more precise analyses. Precisely, we start by defining a framework from
which domains capturing relations between string variables can be instantiated,
and we proceed by extending it for tracking relations between string variables
and expressions, enhancing the precision of the analysis. As future work, it could
be interesting to study the similarities between our proposal and the subterm
domain proposed in [21], a weakly relational abstract domain that infers syntac-
tic equivalences among sub-expressions. For instance, our enhanced framework
instantiated with the substring order could be seen as the reduced product [15]
between the basic substring domain we propose and the subterm domain.

Besides the string analysis context, which has the advantage of not relying
on SMT solvers, string abstractions are heavily used, among others, for string
constraint solving. In particular, several works have been proposed on study-
ing decidable fragments of string constraint formulas [1], and researching effec-
tive procedures to string constraints verification [1,3,35,37,38]. For example, a
recent work [3] approximates strings as a dashed string, namely a sequence of
concatenated blocks that specify the number of times the characters they contain
must/may appear.

24 V. Arceri et al.

3 Background

String Notation. Given an alphabet of symbols Σ, a string is a sequence of zero
or more symbols and it is denoted by σ. The Kleene-closure of Σ, denoted by Σ∗,
is the set of any string of finite length over the alphabet Σ. The empty string
is denoted by ε. Given σ, σ′ ∈ Σ∗, we denote by |σ| the length of σ, by σ · σ′

the concatenation of σ with σ′. Given σ ∈ Σ∗ and i ∈ [0, |σ − 1|], we denote by
σi the symbol at the i-th position of σ. Given σ ∈ Σ∗ and i, j ∈ [0, |σ|], with
i ≤ j < |σ|, we denote by σi . . . σj the substring from i to j of σ, and by σ′

� σ

if σ′ is a substring of σ, i.e., ∃i, j ∈ N. 0 ≤ i ≤ j ≤ |σ − 1|, σi . . . σj = σ′. Note
that �⊆ Σ∗ ×Σ∗ is a partial order. Given σ, σ′ ∈ Σ∗ such that σ′

� σ we denote
by idx(σ, σ′) the position of the first occurrence of σ′ in σ.

Order Theory. A pre-order is a reflexive and transitive binary relation, and if it
is also antisymmetric it is called a partial order. A set L with a partial ordering
relation � ⊆ L × L is a poset and it is denoted by 〈L,�〉. A poset 〈L,�,
,�〉,
where
 and � are respectively the least upper bound (lub) and greatest lower
bound (glb) operators of L, is a lattice if ∀x, y ∈ L we have that x
 y and x � y
belong to L. We say that a lattice is also complete when for each X ⊆ L we have
that

⊔
X,

�
X ∈ L. Any finite lattice is a complete lattice. A complete lattice

L, with ordering �, lub
, glb �, greatest element (top)
, and least element
(bottom) ⊥ is denoted by 〈L,�,
,�,
,⊥〉.
Abstract Interpretation. Abstract interpretation [14,16] is a theory to soundly
approximate program semantics, focusing on some run-time property of interest.
The concrete and the abstract semantics are defined over two complete lattices,
respectively called the concrete domain C and abstract domain A. Let C and A
be complete lattices, a pair of monotone functions α : C → A and γ : A → C
forms a Galois Connection (GC) between C and A if for every x ∈ C and for
every y ∈ A we have α(x) �A y ⇔ x �C γ(y). We denote a Galois Connection
by (C, α, γ, A). According to Prop. 7 of [17], a GC between two complete lattices
A and C can be induced also if the abstraction function is a complete join
preserving map, i.e., α(

⋃
X) =

⊔{α(x) | x ∈ X}, with X ⊆ C. Given (C, α, γ, A),
a concrete function f : C → C is, in general, not computable. Hence, an abstract
function f � : A → A must correctly approximate the concrete function f . If so,
we say that f � is sound. Formally, given (C, α, γ, A) and a concrete function f :
C → C, an abstract function f � : A → A is sound w.r.t. f if ∀c ∈ C.α(f(c)) �A

f �(α(c)).

4 The Imp Language

In this section, we briefly introduce a very generic imperative language providing
the basic operators on strings, as a reference programming language for the rest
of the paper. We consider the core running language Imp, whose syntax is given
in Fig. 2. Imp is an imperative language handling arithmetic, Boolean, and string
expressions. Its basic values are integers, booleans, and strings, ranging over Z,

Relational String Abstract Domains 25

Fig. 2. Imp syntax.

{true, false} and Σ∗, respectively. We consider four string operations, length,
indexOf, contains, and substr that respectively compute (i) the length of a
given string, (ii) the index of the first occurrence of a string in another one, (iii)
if a string is contained in another one, and (iv) the substring of a given string
between two specified indexes. Let P be an Imp program. Each Imp statement
is annotated with a label � ∈ LabP (not belonging to the syntax), where LabP

denotes the set of the P labels, i.e., its program points.
As usual in static analysis, a program can be analyzed by looking at its

control-flow graph (CFG for short), i.e., a directed graph that embeds the control
structure of a program, where nodes are the program points, and edges express
the flow paths from the entry to the exit block. Following [34], given a program
P ∈ Imp, we define the corresponding CFG GP � 〈NodesP, EdgesP, InP, OutP〉
as the CFG whose nodes are the program points, i.e., NodesP � LabP, InP is
the entry program point, and OutP is the last program point. The algorithm
computing the CFG of a program P is standard and can be found in [6,34]. An
example of CFG is depicted in Fig. 3. A CFG embeds the control structure of
the program. Hence, to define the behavior of a CFG, it is enough to formalize
the semantics of the edge labels, namely ImpCFG ::= skip | x = e | b, expressing
the effect that each edge has from its entry node to its exit node. Let Val �
Z ∪ Σ∗ ∪ {true, false} be the set of the possible values associated with a
variable. Let m ∈ M � X → Val be the set of (finite) memories, where m∅ = ∅

is the empty memory. The semantics of expressions is captured by the function
� e � : M → Val. Since the semantics of integer and Boolean expressions are
standard (and not of interest to this paper), in the following, we only give the
concrete semantics of string expressions.

26 V. Arceri et al.

Fig. 3. Example of CFG generation.

� x �m = m(x) � σ �m = σ � s1 + s2 �m = � s1 �m · � s2 �m

� substr(s, a1, a2) �m = σi . . . σj

where σ = � s �m, i = � a1 �m, j = � a2 �m, 0 ≤ i ≤ j < |σ|
� length(s) �m = |� s �m|

� contains(s1, s2) �m = � s2 �m � � s1 �m

� indexOf(s1, s2) �m =

{
idx(� s1 �m, � s2 �m) if � s2 �m � � s1 �m

−1 otherwise

Note that when the indexes of substr are out-of-bounds its semantics is
undefined and the execution stops as usual with standard concrete semantics
in case of runtime errors. We are finally in the position to formalize the edges
label semantics. Abusing the notation, we define the function � st � : M → M to
capture the semantics of the elements of ImpCFG.

� skip �m = m � x = e �m = m[x ← � e �m]

� b �m =

{
m if � b �m = true

m∅ if � b �m = false

As far as Boolean expressions are concerned, the semantics propagates the
input memory if the Boolean expression holds, the empty memory otherwise.

Finally, a store is a collection of memories for each program point, defined
as s ∈ S � LabP → M and it associates a memory to each program point.

Static analysis computes invariants for each program point. Thus, we first
define a collecting semantics which relates each program point (i.e., each node
of a CFG) to the set of the possible memories holding at that program point.
This boils down to lifting the concrete semantics � st � : M → M (working on
single memories), to the collecting semantics � st � : ℘(M) → ℘(M) working on
sets of memories. Thus, a collecting store mapping each program point to a set
of memories is s ∈ S � LabP → ℘(M).

Finally, we can apply standard fix-point analysis algorithms [34] which
returns a store s such that, for each � ∈ LabP, s(�) is the fix-point collecting

Relational String Abstract Domains 27

semantics (i.e., a set of memories) holding at �. However, the set of the possi-
ble values for each variable, and for each node of a CFG, are not computable
because of Rice’s Theorem. Hence, we need abstractions to make static analysis
decidable.

5 A Suite of String Relational Abstract Domains

This section provides a suite of relational string abstract domains based on
several well-known orders over strings. We start by proposing a general frame-
work to build string relational abstract domains parametrized on a given string
order. Within this framework, we present three different string relational abstract
domains: length inequality, character inclusion, and substring domains, with the
corresponding abstract semantics of Imp.

5.1 General Relational Framework

We aim at capturing relations between string variables of the form y � x w.r.t.
a given (partial or pre-order) relation � over strings, such as “the variable y is
a substring of the variable x”. As introduced in Sect. 2, in the numerical world
such a relation is captured by the (strict) upper bound abstract domain [28,30],
which expresses relations of the form y ≤ x. In this section, we generalize the
upper bound abstract domain to string variables, making it parametric w.r.t. a
given string order.

Our starting point is a (pre or partial) order �Σ∗ ⊆ Σ∗ ×Σ∗ between strings.
Then, given a Imp program P we aim to analyze, we abuse notation denoting by
Xstr ⊆ X the set of string variables used by the program P. Note that the set of
string variables used by an Imp program is always finite. At this point, we build
a new order � ⊆ Xstr ×Xstr between a pair of string variables, built upon �Σ∗ .
Finally, we design a relational string abstract domain based on �.

Definition 1 (General string relational abstract domain). Let � ⊆
Xstr × Xstr be an order over string variables. The general string relational
abstract domain A is defined as A � ℘({y � x | x, y ∈ Xstr}) ∪ {⊥A}, where
the top element, denoted by
A, corresponds to the empty set ∅ and the bottom
element is represented by the special element ⊥A. The least upper bound, greatest
lower bound, and the partial order of A are defined as follows3:

A1
A A2 �

⎧
⎪⎨

⎪⎩

A1 if A2 = ⊥A
A2 if A1 = ⊥A
Clos({y � x | y � x ∈ A1 ∧ y � x ∈ A2}) otherwise

A1 �A A2 �
{

⊥A if A1 = ⊥A ∨ A2 = ⊥A
{y � x | y � x ∈ A1 ∨ y � x ∈ A2} otherwise

A1 �A A2 ⇐⇒ A1 = ⊥A ∨ (A1 �= ⊥A ∧ A2 �= ⊥A ∧ A1 ⊇ A2)
3 In general, while � (order on string variables) can be a pre or partial order, �A

(order on the abstract domain A) is always a partial order.

28 V. Arceri et al.

where Clos : A → A performs the transitive closure of an abstract element A ∈ A,
i.e., ∀x, y, z ∈ Xstr if x � y, y � z ∈ A, then the function Clos returns a new
abstract element containing all the relations of A adding the relation x � z. In
the least upper bound, when one of the elements is bottom, the other is returned,
while in the greatest lower bound, when one of the elements is bottom, then
bottom is returned. Finally, the partial order captures the fact that the bottom
element ⊥A is the least element of A.

The abstract domain A is intended to collect �-must relations, i.e., informally
speaking, if a relation y � x is captured in the abstract world, it means that it
surely holds in the concrete world.

Note that elements of A are sets of relations y � x between string variables.
Moreover, the general abstract domain A is finite, given that the set of string
variables used by the program we aim to analyze is finite and, in turn, also
the number of possible relations. Thus, it is straightforward to prove that the
domain (A,�A,
A,�A,⊥A,
A) is a complete lattice and that its least upper
bound
A and greatest lower bound �A are defined as the intersection and
union between abstract elements, respectively. Abstraction and concretization
functions αA : ℘(M) → A and γA : A → ℘(M) are defined as follows:

αA(M) �
{

⊥A if M = ∅

{y � x | ∀m ∈ M. m(y) �Σ∗ m(x), x, y ∈ Xstr} otherwise
(1)

γA(A) �

⎧
⎪⎨

⎪⎩

∅ if A = ⊥A
℘(M) if A =
A
⋂

y�x∈A{m | m(x),m(y) ∈ Σ∗,m(y) �Σ∗ m(x)} otherwise
(2)

where we recall that �Σ∗ denotes an order over Σ∗. The abstraction function
takes as input a set of memories M and returns the least set of relations that
holds in any memory m ∈ M. Instead, the concretization function takes as input
an element A of the general string relational abstract domain A and returns
the empty set if A = ⊥A, the set of any possible concrete memory if A =
A,
and the least set of concrete memories where all the relations contained in A
holds, otherwise. (℘(M), αA, γA,A) is a Galois Connection, since ℘(M) and ⊥A
are complete lattices and αA is a join-morphism.

Running Example: Length Relational Abstract Domain. For instance, one may
be interested in capturing the relations concerning the length of a string vari-
able w.r.t. another, when they interact during the program execution. Formally,
we are interested in identifying the relation �len ⊆ Xstr × Xstr between string
variables such that, given x, y ∈ Xstr, y �len x iff the length of y is smaller than
or equal to the length of x. Note that �len is a partial order, but the string order
upon which is based is a pre-order. Indeed, two strings may have the same length,
but may not represent the same sequence of characters (the anti-symmetric prop-
erty does not hold). For this reason, when we have that x �len y and y �len x,
we can assert that x and y have the same length but we cannot assert that the
strings tracked by the variables are equal.

Relational String Abstract Domains 29

We instantiate the general abstract domain of Definition 1 over the pre-order
�len. In particular, we replace the general string order � with �len, obtaining
the relational string length abstract domain Len � ℘({y �len x | x, y ∈ Xstr}) ∪
{⊥len}, where the top element, denoted by
len, is the empty set ∅, and ⊥len

is a special element denoting the bottom element. The least upper bound and
greatest lower bound operators
len and �len and the partial order �len (over
Len) can be obtained by replacing any occurrence of � with �len in their general
definition in Definition 1.

Lemma 1. (Len,�len,
len,�len,⊥len,
len) is a complete lattice.

We define the abstraction αlen : ℘(M) → Len and the concretization
γlen : Len → ℘(M) functions of the relational string length abstract domain
instantiating Eq. 1 and 2 replacing �Σ∗ with �len.

αlen(M) �
{

⊥len if M = ∅

{y �len x | ∀m ∈ M. |m(y)| ≤ |m(x)|, x, y ∈ Xstr} otherwise

γlen(L) �

⎧
⎪⎨

⎪⎩

∅ if L = ⊥len

℘(M) if L =
len
⋂

y�lenx∈L{m | m(x),m(y) ∈ Σ∗, |m(y)| ≤ |m(x)|} otherwise

Theorem 1. (℘(M), αlen, γlen, Len) is a Galois Connection.

Proof. The Galois Connection’s existence comes from the fact that both ℘(M)
and Len are complete lattices, and αlen is a join-morphism (Prop. 7 of [17]).

At this point, we define a general and parametric abstract semantics of Imp.
In particular, given an abstract domain A, built upon the order � as shown in
Definition 1, we define the function � st �A : A → A, capturing the �-relations
between string variables generated by the statement st. We start by defining
the parametric abstract semantics of the assignment x = s. Here, the crucial
point is the definition of the auxiliary function extr : se → ℘(Xstr) that, given
a string expression s, extracts all the variables syntactically appearing in s that
are related w.r.t. � with s, i.e., it approximates the set of variables that are
�-related with s.

Extraction Function of Len. Given x = s, we can see the string expression
s as an ordered list of concatenated expressions s0, s1, . . . , sn, and the string
variables that surely have length less than or equal of x are the ones at the top-
level of a concatenation appearing in s. For instance, consider the assignment
x = y + z + w. The relations we aim to capture from it are y �len x, z �len x and
w �len x, that is y, z, w have length less than or equal to the length of x. These
variables are collected by the function extr : se → ℘(Xstr), which extracts the
variables that syntactically appears at the top-level of a string expression.

30 V. Arceri et al.

extr(s) =

⎧
⎪⎨

⎪⎩

{y} if s = y ∈ Xstr

extr(s1) ∪ extr(s2) if s = s1 + s2

∅ otherwise

Once defined the extraction function extr, we semantically interpret the syn-
tactic components it extracts giving the general abstract semantics of the assign-
ment � x = s �AA, which is defined by the steps shown below. For the sake of
simplicity, we suppose that the input abstract memory A is not ⊥A: in this case,
⊥A is simply propagated, skipping the above phases.

– [remove]: Ar =

{
A � {w � z | w = x, z ∈ Xstr} if x ∈ extr(s)
A � {w � z | w = x ∨ z = x} otherwise

– [add]: Aa = Ar ∪ {y � x | y ∈ extr(s)}
– [closure]: � x = s �AA = Clos(Aa)

The first phase is [remove]: given the input memory A ∈ A, it removes the
relations that surely do not hold anymore after the assignment execution. In
particular, we always remove the relations of the form x � z, for some z ∈ Xstr,
since x is going to be overwritten. Still, we also remove any relations of the
form w � x, for some w ∈ Xstr, iff x does not appear at the top-level of the
expression s. For instance, consider the fragment x = w; x = x + y; and the
relational abstract domain Len. From the first assignment, we collect the relation
w �len x. This information also holds after the second assignment’s execution,
since x appears at the top-level of the assignment expression and inherits any
previously gathered �len-relation. Hence, in this case, we do not remove the
previously gathered relations about the variable x. In the other cases, also the
previous length relations of the form w �len x are removed.

Then, [add] adds the �-relations y � x, for each variable y collected in
extr(s), and [closure] performs the transitive closure on the abstract memory
obtained from [add], i.e., Aa, by means of the function Clos, to derive the implicit
�-relations not yet present in Aa.

As far as conditional expressions are concerned, the only Imp Boolean expres-
sions that generate �-relations for the string domains presented in this paper
are contains(s1, s2), s1 == s2, conjunctive and disjunctive expressions. Note
that, given the expression contains(s1, s2), we infer �-relations only when s1
is a variable, otherwise no other information is gathered. As in the assignment
abstract semantics, we suppose that the input abstract memory A is not equal
to ⊥A, since in this case the bottom element is simply propagated.

� contains(x, s) �AA = Clos(A ∪ {y � x | y ∈ extr(s)})

Similarly, we can infer �-relations in the abstract semantics of s1 == s2 only
when either s1 or s2 is a string variable.

� x == s �AA = � s ==x �AA =

{
Clos(A ∪ {y � x, x � y}) if s = y ∈ Xstr

Clos(A ∪ {y � x | y ∈ extr(s)}) otherwise

Relational String Abstract Domains 31

As far as the semantics of the conjunctive and disjunctive expressions are
concerned, we rely on the least upper bound and greatest lower bound operators
given in Definition 1.

� e1 && e2 �AA = A ∪ (� e1 �AA
A � e2 �AA)

� e1 || e2 �AA = A ∪ (� e1 �AA �A � e2 �AA)

Unlike the assignment, Boolean expressions’ abstract semantics do not
remove previous substring relations since they do not alter the (concrete) mem-
ory. For the other Boolean expressions, the abstract semantics is the identity,
namely � b �AA = A.

Abstract Semantics of Len. The abstract semantics for Len is captured by the
function � st �len : Len → Len, that given an input abstract memory returns
an abstract memory containing the new string length relations introduced by
st, and it is defined by replacing any occurrence of � with �len, in the general
abstract semantics definition reported above.

Theorem 2. The abstract semantics of Len is sound. Indeed, it holds that:

∀M ∈ ℘(M). αlen(� x = s �M) �len (� x = s �lenαlen(M))

∀M ∈ ℘(M). αlen(� b �M) �len (� b �lenαlen(M))

Note that this general abstract semantics holds for the abstract domains
instantiated and presented in this paper and other abstract domains, derived
from other string orders, may define the abstract semantics also for other pro-
gram constructs that are not considered here. For example, consider the indexOf
operation. Its abstract semantics over Len does not generate new relations, while
this may happen if other relational abstract domains are considered. Also, the
extr function may differ from the one presented before if other string relations
are considered: for instance, the extr function for the abstract domain based on
the prefix relation is slightly different from the one used in Len: given extr(s), it
would extract just the string expressions that are prefixes of the s and not any
substring.

5.2 Character Inclusion Relational Abstract Domain

Within the formal framework presented above, we are able to generate sev-
eral relational string abstract domains. In the following, we present the charac-
ter inclusion relational abstract domain Char, tracking the characters included
between a pair of string variables. Given x, y ∈ Xstr, we are interested in captur-
ing “if all the characters which appear in y occur in x”. Formally, we introduce
the binary relation �char ⊆ Xstr×Xstr such that y �char x iff the set of characters

32 V. Arceri et al.

of y is contained or equal to the set of characters of x. Similar to �len in the Len
abstract domain, also �char is a partial order, based on the character inclusion
pre-order between string values. Hence, if we have that x �char y and y �char x
we can assert that x and y have the same characters but it is not guaranteed
that they track the same string value.

We define the relational character inclusion string abstract domain Char �
℘({y �char x | x, y ∈ Xstr}) ∪ {⊥char}. The top element is the empty set ∅, and
the bottom element is represented by the special element ⊥char.

5.3 Substring Relational Abstract Domain

The abstract domains Len and Char presented in the previous sections track
relations about the lengths and the characters of a pair of string variables. The
main limitation of these domains is that they are both based on strings pre-
orders: hence, as we have already argued before, when we have the relations
x � y and y � x, we cannot assert that the values tracked by the variables x and
y are equal. Moreover, Len loses any information about the content of a variable,
and Char loses any information about the shape of a variable. We propose then a
strictly more precise partial order-based relational string abstract domain, still
fitting in the formal framework presented in Sect. 5.1 and solving the problems
of Len and Char mentioned before.

Given x, y ∈ Xstr, let the binary relation �sub: Xstr × Xstr be such that
x �sub y iff x is a substring of y. The relation �sub is a partial order, being
reflexive, transitive and anti-symmetric, as well as the substring relation on
which �sub is based on. Unlike the Len and Char cases, if we havex �sub y and
y �sub x, we can surely assert that the strings tracked by x and y are equal.

At this point, we define the relational string abstract domain Sub � ℘({y �sub

x | x, y ∈ Xstr}) ∪ {⊥sub}, where the top element is the empty set ∅, and ⊥sub

is a special element representing the bottom element.

5.4 Extension to String Expressions

The abstract domain proposed in Sect. 5.3 can track when a single string variable
is a substring of another one. In this section, we show how to improve Sub to
catch even more substring relations. In order to highlight the limits of Sub (which
Len and Char also suffer from), consider the following fragment: x = y + y +
w; z = y + w;. If we analyze it with the substring abstract domain, the final
abstract memory is {y �sub x,w �sub x, y �sub z, w �sub z}. Still, other substring
relations may be inferred, such as z �sub x or y + w �sub x. In the following, we
slightly change the substring abstract domain to catch also such relations.

Given an Imp program P we aim to analyze, we recall that Xstr denotes the
finite set of string variables used by P. Similarly, we abuse notation denoting
by se the set of string expressions appearing in P. As Xstr, also the set of
string expressions appearing in P is finite. At this point, we introduce the binary
relation �sub�⊆ se×Xstr that relates string expressions with string variables. For
instance, y + y �sub� x means that the concatenation of y with y is a substring

Relational String Abstract Domains 33

Fig. 4. Lattice operations over Sub�.

of x. Upon �sub� , we build the new set of abstract memories able to relate string
expressions to variables. In particular, we define the abstract domain

Sub� � ℘({s �sub� x | s ∈ se, x ∈ Xstr}) ∪ {⊥sub�}

where the top element is the empty set ∅, and ⊥sub� is a special element present-
ing the bottom element. We denote by S� an element of Sub�. Note that Sub�

is still a finite domain, since, given a program P ∈ Imp, both the string vari-
ables and string expressions used by P are finite. Similarly to the previous cases,
(Sub�,�sub� ,
sub� ,�sub� ,⊥sub� ,
sub�) is a complete lattice, and the definition
of its lattice operators and partial order is reported in Fig. 4. The abstraction
αsub�

: ℘(M) → Sub� and concretization γsub�

: Sub� → ℘(M) functions, forming
again a Galois Connection, are defined as:

α
sub�

(M) �
{

⊥sub� if M = ∅

{s �sub� x | ∀m ∈ M. � s �m � m(x), x ∈ Xstr, s ∈ se} otherwise

γ
sub�

(S�) �

⎧⎪⎨
⎪⎩

∅ if S� = ⊥sub�

℘(M) if S� = �sub�⋂
s�sub� x∈S�{m | � s �m,m(x) ∈ Σ∗, � s �m � m(x)} otherwise

We define the abstract semantics of Sub�. Let extr� : se → ℘(se) extend the
function extr introduced in Sect. 5.1, extracting from a string expression s all
the sub-expressions that syntactically appear at the top-level of s. For instance,
extr�(y + w + "ab") = {y, w,w+“ab”, y+w, y+w+“ab”, “a”, “b”, “ab”}. Note
that, for some s ∈ se, we have that s ∈ extr�(s). The abstract semantics of
the assignment � x = s �sub

�S� is defined by the following steps. As before, we
suppose that S� is not the bottom element, since in this case the bottom element
is simply propagated skipping the above phases.

– [remove]: S�
r =

{S�
� {s′ �sub� z | x appears in s′, z ∈ Xstr} if x ∈ extr�(s)

S�
� {s′ �sub� z | z = x ∨ x appears in s′} otherwise

– [add]: S�
a = S�

r ∪ {s′ �sub� x | s′ ∈ extr�(s)}
– [inter-asg]: S�

i = S�
a ∪ {x �sub� y | ∀s′ �sub� x ∈ S�

a ∃s′ �sub� y ∈ S�
a}

34 V. Arceri et al.

Fig. 5. Imp example.

– [closure]: � x = s �sub
�S� = Clos(S�

i)

The [remove], [add] and [closure] phases are similar to those of the def-
inition of � · �A. The intermediate phase [inter-asg] instead differs from the
previous definitions and works as follows: if from the previous steps, any sub-
string of x is also a substring of a string variable y, as checked in the [inter-asg]
phase, we can safely assert that x is a substring of y and we can add that relation
to S�

a . It is worth noting that we can safely add the substring relation x �sub� y,
for some y ∈ Xstr, just because we are performing an assignment x = s. Indeed,
we are overwriting the variable x with the assignment and in the [add] phase we
surely add the relation s �sub� x; hence, if we found that any gathered substring
relation concerning x (included s �sub� x) is tracked also for y, we can safely say
that x �sub� y. The abstract semantics of Boolean expressions is straightforward.

Similarly, we can also extend the abstract domains Len and Char to make
them able to track relations between expressions and string variables, obtaining
Len� and Char�.

Capturing Other Implicit Substring Relations. In the previous section, we have
presented the substring domain Sub� tracking the string expressions that are
definitely substrings of a variable. As discussed in Sect. 1.1, we may lose any
information about the tracked string value, leading to the loss of some implicit
substring relations. Let us show the problem on Sub� considering the Imp frag-
ment reported in Fig. 5. If we analyze the Imp fragment with Sub�, the substring
relations concerning the variable w are: w are: y �sub� w, z �sub� w, y + z �sub�

w, “a” �sub� w, “b” �sub� w. Note that, Sub� cannot track that the variables y
and z are exactly the strings “a” and “b”, respectively, and in turn it is not able
to infer that x is a substring of w and viceversa, that is the variables x and w
have the same string value.

In order to cope with this problem and to be able to track also these implicit
relations, as discussed in Sect. 1.1, we rely on the reduced product combination of
Sub� with a non-relational domain. In particular, we rely on the string constant
propagation analysis, which tracks for each variable its constant value.4 We
model the constant propagation as a map, denoted by CS, associating each
string variable with the corresponding constant string value and if a variable is
not mapped by the analysis it means that it is not constant. For instance, if we
consider the fragment reported in Fig. 5, the constant propagation analysis, at
line 4, returns the following map: {x �→ “ab”, y �→ “b”, z �→ “b”, w �→ “ab”}.
At this point, the idea is to exploit the constant propagation analysis adding
a new phase, that we call [propagate], at the end of the assignment abstract
4 Full details about how the constant propagation analysis works are reported in [32].

Relational String Abstract Domains 35

semantics � x = s �sub
�S� presented before. Let us denote by S�

c the abstract
memory returned by the [closure] phase presented in the previous section and by
CS the constant propagation analysis holding at the assignment program point.

[propagate]:

� x = s �sub
�S� = S�

c ∪ {x �sub� y, y �sub� x | ∃y ∈ Xstr. CS(x) = CS(y)}
Before returning the assignment result, the [propagate] phase checks if there
exists a variable y ∈ Xstr such that y has the same constant value of the assigned
variable x. If so, the substring relations x �sub� y and y �sub� x are added to the
result. In this way, if we analyze again the fragment reported in Fig. 5, we exploit
the constant propagation analysis in order to infer, at line 4, that x �sub� w and
w �sub� x, and in turn, we can state that the two variables are equal.

6 Experimental Results

RSub is a prototype intraprocedural static analyzer for the Go language imple-
menting the Sub� relational abstract domain, available at https://github.com/
UniVE-SSV/go-lisa. Indeed, from a precision point of view, Sub� subsumes the
others string relational abstract domains presented in this paper. RSub is built
as an extension of LiSA [20] (https://github.com/UniVE-SSV/lisa), a library for
the development and the implementation of abstract interpretation-based static
analyzers. We tested RSub over several representative string case studies, taken
from real-world software and hand-crafted. In the following, we use two of these
fragments to show the limits and strengths of Sub�.

The rest of the section is structured as follows: in Sect. 6.1 we compare our
analysis with prefix Pr, suffix Su, char inclusion Ci and bricks Br abstract
domains [13], and with Tarsis [31]. Tarsis is a non-relational finite state
automata-based abstract domain that abstracts string values into regular expres-
sions. In Sect. 6.2 we show how to improve the precision of Tarsis by combining
it with Sub�. Finally, we evaluate the performance of Sub� through an experi-
mental comparison between Tarsis and its combination with Sub�, measuring
the overhead added by Sub�.

6.1 Case Studies

We consider two code fragments manipulating strings (cf. Fig. 6), ncon and rep
(slight modification of the programs in Chap. 5 of [10] and [31], respectively).
ncon overrides the variable x either with x + "c" or y + "c", depending on
whether the equality between x and y is satisfied or not. rep iteratively appends a
string read from the user input and stored in v concatenated with the string "\n"
to variable r. The value of the Boolean guards of both programs are supposed
to be statically unknown, as well as the value of v in rep.

Let us consider the program ncon. Table 1 illustrates the results of the anal-
ysis at the end of programs ncon where the second column reports the abstract

https://github.com/UniVE-SSV/go-lisa
https://github.com/UniVE-SSV/go-lisa
https://github.com/UniVE-SSV/lisa

36 V. Arceri et al.

Fig. 6. Program samples used for domain comparison.

Table 1. Analysis results for ncon (where the symbol � denotes “any string”).

Domain x abstract value Assert 7 Assert 8

Pr ε (unknown) ✗ ✗

Su c � ✗

Ci {c}, {Σ} � ✗

Br {�}(0, +∞) (unknown) ✗ ✗

Tarsis {�}c � ✗

RSub c �sub� x, y �sub� x � �

value of x at the end of each analysis, and third and forth columns are � if the
corresponding analysis proves that the assert conditions at lines 7–8 of ncon
hold, or ✗ otherwise. The analyses based on Pr and Br do not precisely verify all
the assertions since they abstract x with their corresponding top value. Instead,
Ci, Su, and Tarsis verify the assertion at line 7 but not the one at line 8, since
they cannot track any relation between the variables x and y. Finally, RSub
verifies all the assertions since it tracks that both string “c” and the variable y
are substrings of x.

Consider now rep, which involves a fix-point computation. The analysis
results at the end of the program rep are reported in Table 2, where the second
column reports the abstract value of r at the end of each analysis, and third
and forth columns are � if the corresponding analysis proves that the assert
conditions at lines 9–10 of rep hold, or ✗ otherwise. We must verify two asser-
tions for this program, those at lines 9–10, that certainly hold. Note that the
value (unknown) in Table 2 means that the corresponding analysis has returned
the top abstract value. Pr can verify the assertion at line 9 but not the ones at
line 10, since it loses any information on the rest of the string, except for the
common prefix, and it does not track the fact that variable v is undoubtedly
contained in r. Su, Ci, and Br analyses lose any information about the value
of r, abstracting it with their corresponding top value. So, these analyses are
unable to verify the assertions at lines 9–10. Tarsis abstracts the value of r as
the regular expression reported in Table 2, correctly verifying the assertion at
line 9 but not the one at line 10, being unable to track the relationship between

Relational String Abstract Domains 37

Table 2. Analysis results for rep (where the symbol � denotes “any string”).

Domain r abstract value Assert 9 Assert 10

Pr Elem: � ✗

Su ε (unknown) ✗ ✗

Ci {Σ}, {Σ} (unknown) ✗ ✗

Br {�}(0, +∞) (unknown) ✗ ✗

Tarsis Elem: �\n(�\n)∗ � ✗

RSub
Elem : �sub� r, v �sub� r, r + v + nn �sub� r

v + nn �sub� r, nn �sub� r
� �

Fig. 7. Golang program example.

the variables r and v. Instead, RSub behaves as Tarsis as far as assertion at
line 9 is concerned, since the string Elem: is definitely a substring of r. More-
over, RSub verifies the assertion at line 10, since it tracks that the variable v,
independently from its abstract value, is a substring of the variable r.

6.2 Improving Precision of Non-relational Abstract Domains

We evaluated the abstract domain Sub� as a standalone abstraction, w.r.t. to
some state-of-art string abstractions, showing that more relations can be cap-
tured. As discussed in Sect. 1.1, Sub� may lose information about the content of
string variables and its reduced product combination with a non-relational string
abstract domain can be investigated in order to cope with this problem. Note
that, the benefits of the combination of Sub� with a non-relational string abstract
domain can be already seen with the code fragment reported in Sect. 6.1: reduced
product combination between Pr and Sub� correctly verifies all the assertions
contained in ncon and rep.

In this section, we show and discuss how to improve the precision of
Tarsis [31] by combining it with Sub�. In particular, we show that the abstract
semantics of Tarsis can be refined, in terms of precision, when combined with

38 V. Arceri et al.

Sub�. We denote by Tarsis+ the Cartesian product between Tarsis and Sub�,
a new string abstract domain tracking both the regular expressions approximat-
ing the strings values of each program variable (the non-relational information
tracked by Tarsis) and the set of substring relations (the relational informa-
tion tracked by Sub�) holding at each program point. As far as integers are
concerned, we abstract them with the interval abstract domain [14]. Let us con-
sider the Write function reported in Fig. 7 that uses two string operations, i.e.,
Contains and Count, whose source code is reported on the left of Fig. 7. In par-
ticular, the Write function computes the number of occurrences of pt in text
after checking the containment of pt in text.

We aim to infer the integer abstract value of c at the hotspot labeled with •.
Note that the function parameters’ values are statically unknown; for this reason,
Tarsis approximates the values of c as the interval [0,+∞], introducing noise to
the resulting interval. Indeed, the spurious value 0 corresponds to have no occur-
rences of pt in text, even if the program checks the condition Contains(text,
pt). This happens because Tarsis, when reaching the hotspot •, cannot track
that pt is surely contained in text, causing the consequent loss of precision.
Then, we analyzed Write with Tarsis+. When the program point • is reached,
Tarsis+ captures that pt is a substring of text, capturing the substring relation
pt �sub� text, since to reach the hotspot, the Boolean guard Contains(text,
pt) must be traversed. Hence, the Tarsis analysis for the function Count can
be improved, refining the interval resulting from Tarsis semantics, i.e., [0,+∞],
with [1,+∞], since at least one occurrence of pt can be found in text. Note
that the interval resulting from the Tarsis+ analysis is the best possible inter-
val abstraction that we can obtain (in this sense, the analysis is complete for the
above function [8]). Similarly, also the Tarsis abstract semantics of other string
operations can be refined. For instance, let us consider two string variables x
and y and suppose that x �sub� y. Given Index(x, y), Tarsis would return
the interval [−1,maxLen(x)+1],5 having no information about x and y. Instead,
having the information x �sub� y, Tarsis+ can refine the aforementioned inter-
val in [0,maxLen(x) + 1]. Another example is the case of Replace(x, y, z):
having the information about the containment of y in x, tracked by Sub�, would
lead to a must-replacement, that returns the input automaton where any occur-
rence of y is replaced with z, rather than a may-replacement, that returns the lub
between the input automaton and the input automaton where any occurrence
of y is replaced with z [31].

6.3 Scalability of Sub�

We conclude the experimental evaluation by discussing the performance of Sub�.
As also discussed in [28], the upper bounds domain of the domains presented
in this paper offers an efficient implementation since it can be represented as a

5 maxLen(x) returns the maximum length of the string recognized by the automaton
abstracting x if it is finite, +∞ otherwise.

Relational String Abstract Domains 39

Table 3. Tarsis and Tarsis+ performance results. From left to right: the GitHub
repository name, the number of Go programs contained, the number of Go programs
that the static analyzer has analyzed, the total number of lines of code analyzed, Tarsis
and Tarsis+ execution times in seconds, and the overhead.

Repository Go files Analyzed LOCs Tarsist(s) Tarsis+
t(s)

Overhead

dnnrly/abbreviate 14 10 1837 25.77 26.93 1.93%

reiver/go-stringcase 25 17 541 46.16 48.33 4.48%

gookit/goutil 55 29 1256 110.68 113.34 2.34%

schigh/str 12 5 126 19.70 20.58 4.27%

ozgio/strutil 22 11 218 39.01 41.91 6.91%

andy-zhangtao/gogather 26 12 531 48.80 51.51 5.26%

woanware/lookuper 173 41 5436 420.16 427.13 1.63%

RamenSea/StringCheese 24 11 833 50.41 52.03 3.11%

bcampbell/fuzzytime 10 6 745 19.05 20.03 4.89%

Total 360 142 11523 779.74 801.79 2.75%

multi-valued map. For instance, the substring relations set {y �sub� x, z �sub�

x,w �sub� x} can be represented as the map x �→ {y, z, w}. To assert the
scalability of Sub�, we crawled from GitHub the Go repositories dealing with
the strings package, namely the Go package implementing popular functions
manipulating strings (https://golang.org/pkg/strings/). From these repositories,
we have selected the top best matched repositories (according to GitHub API),
we have filtered only the Go program files, and we have selected the repositories
with at least 10 Go programs. Finally, we ran our Go static analyzer with the
so obtained programs both using Tarsis and Tarsis+, recalling that the latter
corresponds to the combination between Tarsis and Sub�. At this point, we
computed the overhead added by Sub� in Tarsis+ w.r.t. Tarsis.

Table 3 summarizes the performance results for Tarsis and Tarsis+ for each
repository. The difference between the number of Go analyzed programs and the
total number of Go programs is due to Go features that are not currently sup-
ported by our static analyzer (e.g., channels, high-order functions, Go routines)
and not due to analysis weaknesses. As stated by Table 3, the addition of Sub�

to Tarsis does not considerably affect its analysis execution time, adding an
overhead no greater than the 7% for each repository. The overall results confirm
this, since the total overhead is below 3%, and almost 7% in the worst case.

7 Conclusion

In this paper, we introduced a general framework to generate new relational
abstract domains starting from orders on string values. In particular, we intro-
duced a new relational substring domain, Sub�, showing its impact on the accu-
racy of the analysis with respect to state-of-the-art string abstractions, even
when used as a standalone abstract domain. We have shown how to improve

https://golang.org/pkg/strings/

40 V. Arceri et al.

the precision of Tarsis, a finite-state automata-based string abstract domain,
by combining it with Sub�. Finally, we have provided experimental evidence
that the addition of Sub� to Tarsis does not considerably affect the Tarsis
performances.

As future works, we aim to formally investigate the precision increment
gained by Tarsis+ w.r.t. Tarsis, measuring the distance [27] between their
results. Furthermore, we aim to investigate the completeness property of
Tarsis+ by applying the techniques in [8]. Finally, we aim to combine the rela-
tional abstract domains proposed in this paper with sophisticated state-of-the-
art abstractions, e.g., the M-String abstract domain [11].

References

1. Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Jank̊u, P.: Chain-free string con-
straints. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 277–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 16

2. Amadini, R., et al.: Reference abstract domains and applications to string analysis.
Fundam. Inform. 158(4), 297–326 (2018). https://doi.org/10.3233/FI-2018-1650

3. Amadini, R., Gange, G., Stuckey, P.J.: Dashed strings for string constraint solving.
Artif. Intell. 289, 103368 (2020). https://doi.org/10.1016/j.artint.2020.103368

4. Amadini, R., et al.: Combining string abstract domains for JavaScript analysis: an
evaluation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
41–57. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 3

5. Arceri, V., Mastroeni, I.: An automata-based abstract semantics for string manipu-
lation languages. In: Proceedings of VPT 2019. EPTCS, vol. 299, pp. 19–33 (2019).
https://doi.org/10.4204/EPTCS.299.5

6. Arceri, V., Mastroeni, I.: Analyzing dynamic code: a sound abstract interpreter
for evil eval. ACM Trans. Priv. Secur. 24(2), 10:1–10:38 (2021). https://doi.org/
10.1145/3426470

7. Arceri, V., Mastroeni, I., Xu, S.: Static analysis for ECMAScript string manipula-
tion programs. Appl. Sci. 10, 3525 (2020). https://doi.org/10.3390/app10103525

8. Arceri, V., Olliaro, M., Cortesi, A., Mastroeni, I.: Completeness of string analysis
for dynamic languages. Inform. Comput. 104791 (2021). https://doi.org/10.1016/
j.ic.2021.104791

9. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

10. Bultan, T., Yu, F., Alkhalaf, M., Aydin, A.: String Analysis for Software Verifi-
cation and Security. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
319-68670-7

11. Cortesi, A., Lauko, H., Olliaro, M., Ročkai, P.: String abstraction for model check-
ing of C programs. In: Biondi, F., Given-Wilson, T., Legay, A. (eds.) SPIN 2019.
LNCS, vol. 11636, pp. 74–93. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-30923-7 5

12. Costantini, G., Ferrara, P., Cortesi, A.: Static analysis of string values. In: Qin, S.,
Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 505–521. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24559-6 34

https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.3233/FI-2018-1650
https://doi.org/10.1016/j.artint.2020.103368
https://doi.org/10.1007/978-3-662-54577-5_3
https://doi.org/10.4204/EPTCS.299.5
https://doi.org/10.1145/3426470
https://doi.org/10.1145/3426470
https://doi.org/10.3390/app10103525
https://doi.org/10.1016/j.ic.2021.104791
https://doi.org/10.1016/j.ic.2021.104791
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/978-3-030-30923-7_5
https://doi.org/10.1007/978-3-030-30923-7_5
https://doi.org/10.1007/978-3-642-24559-6_34

Relational String Abstract Domains 41

13. Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw. Pract. Exp. 45(2), 245–287 (2015). https://doi.
org/10.1002/spe.2218

14. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252 (1977). https://doi.org/10.1145/512950.512973

15. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Texas, USA,
January 1979, pp. 269–282. ACM Press (1979). https://doi.org/10.1145/567752.
567778

16. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of POPL 1979, pp. 269–282 (1979). https://doi.org/10.1145/567752.
567778

17. Cousot, P., Cousot, R.: Abstract interpretation and application to logic pro-
grams. J. Log. Program. 13(2 & 3), 103–179 (1992). https://doi.org/10.1016/0743-
1066(92)90030-7

18. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of POPL 1978, pp. 84–96 (1978). https://doi.org/
10.1145/512760.512770

19. Ferrara, P., Logozzo, F., Fähndrich, M.: Safer unsafe code for.net. In: Proceedings
of OOPSLA 2008, pp. 329–346. ACM (2008). https://doi.org/10.1145/1449764.
1449791

20. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for dummies: expe-
riencing LiSA. In: Do, L.N.Q., Urban, C. (eds.) SOAP@PLDI 2021: Proceedings
of the 10th ACM SIGPLAN International Workshop on the State Of the Art in
Program Analysis, Virtual Event, Canada, 22 June 2021, pp. 1–6. ACM (2021).
https://doi.org/10.1145/3460946.3464316

21. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: An abstract
domain of uninterpreted functions. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 85–103. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5 4

22. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Proceedings of PLDI
2006, pp. 376–386 (2006). https://doi.org/10.1145/1133981.1134026

23. Illous, H., Lemerre, M., Rival, X.: A relational shape abstract domain. In: Proceed-
ings of NFM 2017, pp. 212–229 (2017). https://doi.org/10.1007/978-3-319-57288-
8 15

24. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

25. Kashyap, V., et al.: JSAI: a static analysis platform for JavaScript. In: Proceedings
of FSE-22, pp. 121–132 (2014). https://doi.org/10.1145/2635868.2635904

26. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: Proceedings of
FOOL 2012 (2012)

27. Logozzo, F.: Towards a quantitative estimation of abstract interpreta-
tions. In: Workshop on Quantitative Analysis of Software. Microsoft,
June 2009. https://www.microsoft.com/en-us/research/publication/towards-a-
quantitative-estimation-of-abstract-interpretations/

https://doi.org/10.1002/spe.2218
https://doi.org/10.1002/spe.2218
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1016/0743-1066(92)90030-7
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/1449764.1449791
https://doi.org/10.1145/1449764.1449791
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1145/1133981.1134026
https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1145/2635868.2635904
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/
https://www.microsoft.com/en-us/research/publication/towards-a-quantitative-estimation-of-abstract-interpretations/

42 V. Arceri et al.

28. Logozzo, F., Fähndrich, M.: Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. Sci. Comput. Program. 75(9), 796–807
(2010). https://doi.org/10.1016/j.scico.2009.04.004

29. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Cohen, A.
(ed.) CC 2014. LNCS, vol. 8409, pp. 197–217. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54807-9 12

30. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

31. Negrini, L., Arceri, V., Ferrara, P., Cortesi, A.: Twinning automata and regular
expressions for string static analysis. In: Henglein, F., Shoham, S., Vizel, Y. (eds.)
VMCAI 2021. LNCS, vol. 12597, pp. 267–290. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-67067-2 13

32. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

33. Park, C., Im, H., Ryu, S.: Precise and scalable static analysis of jQuery using a
regular expression domain. In: Proceedings of DLS 2016, pp. 25–36 (2016). https://
doi.org/10.1145/2989225.2989228

34. Seidl, H., Wilhelm, R., Hack, S.: Compiler Design - Analysis and Transformation.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17548-0

35. Wang, H., Chen, S., Yu, F., Jiang, J.R.: A symbolic model checking approach to
the analysis of string and length constraints. In: Proceedings of ASE 2018, pp.
623–633. ACM (2018). https://doi.org/10.1145/3238147.3238189

36. Wilhelm, R., Sagiv, S., Reps, T.W.: Shape analysis. In: Proceedings of CC 2000,
pp. 1–17 (2000). https://doi.org/10.1007/3-540-46423-9 1

37. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Design 44(1), 44–70
(2013). https://doi.org/10.1007/s10703-013-0189-1

38. Yu, F., Bultan, T., Hardekopf, B.: String abstractions for string verification. In:
Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 20–37. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22306-8 3

https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-030-67067-2_13
https://doi.org/10.1007/978-3-030-67067-2_13
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1007/3-540-46423-9_1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/978-3-642-22306-8_3

Fanoos: Multi-resolution, Multi-strength,
Interactive Explanations for Learned

Systems

David Bayani(B) and Stefan Mitsch(B)

Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

dcbayani@alumni.cmu.edu, smitsch@cs.cmu.edu

Abstract. Machine learning is becoming increasingly important to con-
trol the behavior of safety and financially critical components in sophis-
ticated environments, where the inability to understand learned compo-
nents in general, and neural nets in particular, poses serious obstacles to
their adoption. Explainability and interpretability methods for learned
systems have gained considerable academic attention, but the focus of
current approaches on only one aspect of explanation, at a fixed level of
abstraction, and limited if any formal guarantees, prevents those expla-
nations from being digestible by the relevant stakeholders (e.g., end users,
certification authorities, engineers) with their diverse backgrounds and
situation-specific needs. We introduce Fanoos, a framework for combin-
ing formal verification techniques, heuristic search, and user interaction
to explore explanations at the desired level of granularity and fidelity. We
demonstrate the ability of Fanoos to produce and adjust the abstractness
of explanations in response to user requests on a learned controller for
an inverted double pendulum and on a learned CPU usage model.

1 Introduction

Explainability and safety in machine learning (ML) are a subject of increasing
academic and public concern. As ML continues to grow in success and adoption
by wide-ranging industries, the impact of these algorithms’ behavior on people’s
lives is becoming highly non-trivial. Unfortunately, many of the most performant
contemporary ML algorithms—neural networks (NNs) in particular—are widely
considered black-boxes, with the method by which they perform their duties
not being amenable to direct human comprehension. The inability to under-
stand learned components as thoroughly as more traditional software poses seri-
ous obstacles to their adoption [1,5,13,28,30,52,88,89] due to safety concerns,

This material is based upon work supported by the United States Air Force and DARPA
under Contract No. FA8750-18-C-0092. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the United States Air Force and DARPA.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 43–68, 2022.
https://doi.org/10.1007/978-3-030-94583-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_3&domain=pdf
http://orcid.org/0000-0001-5811-6792
http://orcid.org/0000-0002-3194-9759
https://doi.org/10.1007/978-3-030-94583-1_3

44 D. Bayani and S. Mitsch

difficult debugging and maintenance, and explicit legal requirements (e.g., the
“right to an explanation” legislation [24] adopted by the European Union). Sym-
biotic human-machine interactions can lead to safer and more robust agents, but
this task requires effective and versatile communication [66,79].

Interpretability of learned systems has been studied in the context of
computer science intermittently since at least the late 1980s, particularly in
the area of formal analysis (e.g., [15,42,55,81,85,86]), rule extraction (e.g.,
[4]), adaptive/non-linear control analysis (e.g., [18]), and various rule-learning
paradigms (e.g., inductive logic programming [56], association rule learning [3]).
Notwithstanding this long history, main-stream attention has risen only recently
due to increased impact on daily life of opaque AI [1] with novel initiatives
focused on the problem domain, e.g. [31,58] and workshops in IJCAI and ICAPS.

Despite this attention, however, most explanatory systems developed for ML
lack any formal guarantees with respect to how their descriptions reflect sys-
tem behavior and are hard-coded to provide a single type of explanation with
descriptions at a certain fixed level of abstraction. This not only prevents the
explanations generated from being digestible by multiple audiences (the end-
user, the intermediate engineers who are non-experts in the ML component, and
the ML-engineer for instance) as highlighted by the taxonomy presented in [6],
but in fact limits the use by any single audience since the levels of abstraction
and formal guarantees needed are situation and goal specific, not just a function
of the recipient’s background. When using a microscope, one varies between low
and high magnification in order to find what they are looking for and explore
samples; these same capabilities are desirable for XAI for much the same reasons.

For example, most consumers of autonomous vehicles may prefer to ask gen-
eral questions—for instance, “What do you do when you detect a person in front
of you?”—and receive a break-down of qualitatively different behaviors for differ-
ent situations, such as braking when traveling slowly enough, and doing a sharp
swerve when traveling too fast to brake. An engineer checking actuator compli-
ance, however, might require greater details, opting to specify precise parameters
of the scene and preferring that the car report exact motor commands; the con-
text of use and the audience determine which level of abstraction is best, and
supporting multiple types of abstractions in turn supports more use-cases and
audiences. Further, the explanations for such a component need to range from
formal guarantees to rough tendencies—it may be critical to formally guaran-
tee that the car will always avoid collisions, while it might be sufficient that it
usually (but perhaps not always) drives slowly when its battery is low.

The divide between formal and probabilistic explanations also relates to
events that are imaginable versus events that may actually occur; formal meth-
ods may check every point in a space for conformance to a condition, but if bad
behavior only occurs on measure-zero sets, the system would be safe while not
being provably so in formalizations lacking knowledge of statistics (e.g., if some
criteria demands that a car keep distance >10 cm from obstacles, formally we
can get arbitrarily close but not equal; in practice, the difference with ≥10 cm

Fanoos: Explanations for Learned Systems 45

might be irrelevant). Explainable ML systems should enable these sorts of search
and smooth variation in need, but at the moment they do not in general.

To address these needs, we introduce Fanoos,1 an algorithm blending a
diverse array of technologies to interactively provide explanations at varying
levels of abstraction and fidelity to meet user’s needs. Our algorithm is applica-
ble to currently ubiquitous ML methods, such as feed-forward neural networks
(FFNNs) and high-dimensional polynomial kernels. Fanoos offers the following
combination of capabilities, which are our contributions:

• Interactivity that allows users to query the learned system they want to under-
stand, and receive explanations characterizing the input requirements, output
behavior, or the combination of the two.

• Explanations that can either be formally sound or probabilistic based on the
user’s choice. Formal soundness is a capability missing from the vast majority
of XAI systems focused on ML, and leveraging verification techniques for ML-
related XAI has been underexplored.

• Explanations that can vary in abstraction level.

2 The Methodology of Fanoos

Fanoos is an interactive system that allows users to pose a variety of questions
grounded in a domain specification (e.g., asking what environmental conditions
cause a robot to swerve left), receive replies from the system, and request that
explanations be made more or less abstract. Crucially, Fanoos provides expla-
nations of high fidelity while considering whether the explanation should be for-
mally sound or probabilistically reasonable (which removes the “noise” incurred
by measure-zero sets that can plague formal descriptions). To this end, we com-
bine techniques from formal verification, interactive systems, and heuristic search
over knowledge domains when responding to user questions and requests.

2.1 Knowledge Domains and User Questions

In the following discussion, let L be the learned system under analysis (which
we will assume is piece-wise continuous), q be the question posed by the user,
SI be the (bounded) input space to L, and SO be the output space for L,
SIO = SI ∪ SO be the joint of the input and output space, and r be the
response given by the system. Subscripts I for input, O for output, etc., are
simply symbols, not any richer objects. In order to formulate question q and
response r, a library listing basic domain information (D) is provided to Fanoos;
D lists what SI and SO are and provides a set of predicates, P , expressed over
the domain symbols in SIO, i.e., for all p ∈ P , the free variables FV (p) are
chosen from the variable names V (SIO), that is FV(p) ⊆ V(SIO). Notably, P is
user-extensible and may be generated by automated or semi-automated means.
1 “Fanoos” () means lantern in Farsi. Our approach shines a light on black-box

AI. Source code can be found at [7], and an extended exposition is in [8].

46 D. Bayani and S. Mitsch

Table 1. Description of questions that can be posed to Fanoos

Type qt Question content qc Description

Accepts Illum. Restrictions

When do youa Subset s of SO s.t.

∃x ∈ s. qc(x). Found

with SAT-solver

SI No variables

from SI

Tell the user all sets (formal

consideration of all cases) in

the input space SI that have

the potential to cause qc

What do you

do whenb
Subset s of SI s.t.

∃x ∈ s. qc(x). Found

with SAT-solver

SO No variables

from SO

Tell user all possible learner

responses in the collection of

input states that qc accepts

What are the

circumstances

in whichc

Subset s of SIO s.t.

∃x ∈ s. qc(x). Found

with SAT-solver

SIO None Tell the user information

about what input-output pairs

occur in the subset of

input-outputs accepted by qc

. . . Usuallyd Subsets over which qc is

true at least once via

statistical sampling

Statistical tendency. Avoids

measure-zero sets that are

unlikely seen in practice
a when do you move at high speed?

︸ ︷︷ ︸

Predicate pinD

b what do you do when and (close to target orientation, close to target position)?

c what are the circumstances in which

and (close to target position, steer to right) or move at low speed?
d when do you usually move at low speed or steer to left?

For queries that formally guarantee behavior (see the first three rows in
Table 1), the relevant predicates in P need to expose their internals as first-
order formulas; this enables us to guarantee they are satisfied over all members
of sets we provide via typical SAT-solvers (such as Z3 [19]). Probabilistic queries
require only being able to evaluate question q on a variable assignment provided.

The members of P can be generated in a variety of ways, e.g., by form-
ing most predicates through procedural generation and then using a few hand-
tailored predicates to capture particular cases. Notably, since the semantics of the
predicates are grounded, they have the potential to be generated from demon-
stration. For example, operational definitions of “high”, “low”, etc., might be
derived from sample data by setting thresholds on quantile values—e.g., 90% or
higher might be considered “high” (see, for instance, Sect. 5); further resources
and considerations on predicate generation can be found in [8].

2.2 Reachability Analysis of the Learned System

Having established what knowledge Fanoos is given, we proceed to explain our
process. First, users select a question type qt and the content of the question qc to
query the system. That is, q = (qt, qc), where qt is a member of the first column
of Table 1 and qc is a sentence in disjunctive normal form (DNF) over a subset of
P that obeys the restrictions listed in Table 1. To ease discussion, we will refer
to variables and sets of variable assignments that q accepts (ACq) and those
that q illuminates (ILq), with the intuition being that the user wants to know
what configuration of illuminated variables result in (or result from) the variable

Fanoos: Explanations for Learned Systems 47

configurations accepted by qc; see Table 1 for example queries. When a user asks a
question, Fanoos answers by describing a collection of situations that necessarily
include those related to the user’s question; this answer is conservative in that
it may include additional situations, but never excludes cases.

With question q provided, we analyze the learned system L to find sub-
sets in the inputs SI and outputs SO that agree with configuration qc and the
(overapproximated) behavior of L. Specifically, we use CEGAR [16] with boxes
(hyper-cubes) as abstractions and a random choice between a bisection or tri-
section along the longest normalized axis as the refinement process to find the
collect of box tuples, B, specified below:

B = {(B(i)
I , B

(i)
O) ∈ B(SI)×B(SO) | B

(i)
O ⊇ L(B(i)

I)

∧∃(c, d)∈T.
(
ACq(B(i)

c) ∧ ILq(B
(i)
d)

)}

where B(X) is the set of boxes over space X and T = {(O, I), (I,O), (IO, IO)}.
For feed-forward neural nets with non-decreasing activation functions, B can
be found by (i) covering the input space, (ii) propagating boxes through the
network, (iii) testing membership to B of the resulting input- and output-boxes,
and (iv) refining abstract states as needed over input-boxes that produce output-
boxes overlapping with B; we detail this process further below.

Covering the Input Space. We cover the input space via iterative dissec-
tion informed by properties of the problem, avoiding a näıve gridding of the
entire space unless repeated refinement has revealed that to be necessary. The
exact sizes of the boxes found by CEGAR are determined by a series of hyper-
parameters, which Fanoos maintains in states. Hyper-parameters include, e.g.,
the maximum number of refinement iterations or the minimal size abstractions;
an overview of typical hyper-parameters to CEGAR can be found in [10,15,16].

Prior to proceeding, B may undergo some limited merging, particularly when
an increase of abstraction level is sought. Our merging process is closed over the
family of abstract states we have selected; up to a numerical precision threshold,
boxes may only merge together to form larger boxes, and only if the smaller
boxes formed a partition of the larger box. Value differences within the merging
threshold are considered a match (i.e., a soft-match), and allow the pertinent
sets of boxes to merge into larger boxes with slightly larger net volumes. Note
that enlarging boxes only makes our estimates conservative, and thus continues
to ensure the soundness of Fanoos. On exact matches, merging increases the
size of abstract states without anywhere increasing the volume of their union—
this is not necessarily what would occur if one attempted the CEGAR analysis
again with parameters promoting higher granularity. Essentially, merging here is
one strategy of increasing abstraction level while retaining some finer-resolution
details that might otherwise be lost in a larger volume superset. As before,
the state maintains parameters to control the extent of this stage’s merging.
Optimal box-merging itself is an NP-hard task, so we adopted a roughly greedy
approximation scheme interlaced with hand-written heuristics for accelerating

48 D. Bayani and S. Mitsch

match-finding (e.g., feasibility checks via shared-vertex lookups) and parameters
bounding the extent of computation.

Propagating Boxes Through Networks. In this subsection, we discuss how
we conduct our abstract interpretation domains (AIDs) analysis on an FFNN.

Here, we leverage the fact that we are using a pre-trained, fixed-weight feed-
forward neural net, that has a typical MLP-like (multi-layer perceptron-like)
structure: the network consists of layers of units, each unit being comprised of
a scalar-valued affine transformation of the previous layer’s output that is then
passed through a non-decreasing (and typically non-linear) activation function,
such as a tanh, sigmoidal, or piecewise linear function. For analyzing recurrent
neural nets or other systems with loops, more sophisticated mechanisms, such as
reachable-set fixed-point calculations, would be necessary in general (see [17]).

As introduced above, we use boxes as the abstract domain, which facilitate
a basic implementation since they are easier to manipulate and check for mem-
bership than more complex convex polytopes, at the price of typically being less
precise per unit volume;2 more complex AIDs can be added to Fanoos.

We first examine how boxes are transformed when passing through a single
unit, before extending the process to the entire network. Let u : R

Iu → R
Ou

be a unit of the network with input dimension Iu and output dimension Ou

(Iu, Ou ∈ N\{0}), and Iu be an input box×i∈[Iu]
[ai, bi] to unit u (Cartesian

product of closed, real intervals [ai, bi], and where [n] = {k ∈ N\{0} | k ≤ n}).
We want to calculate u(Iu). Further, let w ∈ R

Iu be the weights of the unit
u, β ∈ R be the bias, x ∈ R

Iu be the input value and ρ be a non-decreasing
activation function. We have that:

ulinear(x) = 〈w, x〉 + β , uρ(x) = ρ(〈w, x〉 + β) = ρ(ulinear(x))

where, 〈·, ·〉 is the L2 inner product. Since ρ is a non-decreasing function, the
extrema of uρ(x) and ulinear(x) occur at the same arguments. Thus, to find all
relevant extreme values over the input space, it suffices to find the values in Iu

that maximize or minimize 〈w, x〉 as follows:

argminx∈Iu
〈w, x〉 =

〈
bi1({w}i ≤ 0) + ai1({w}i > 0) | i ∈ [Iu]

〉

where 〈· | i〉 is sequence construction, {·}i accesses the i-th component of a
vector, and 1(·) is an indicator function (1(
) = 1, 1(⊥) = 0). The argmax can
be found in a similar fashion by swapping the roles of ai and bi. With this, we
compute the images of the input space under the activation functions as follows:

u(Iu) = [u(argmin
x∈Iu

〈x,w〉), u(argmax
x∈Iu

〈x,w〉)] where u ∈ {ulinear, uρ}.

Having established how a box should be propagated through a unit in the net-
work, propagation through the entire network follows immediately. Let ui,j be
2 In the case of interval arithmetic, this over-approximation and inclusion of additional

elements is often called the “wrapping effect” [42].

Fanoos: Explanations for Learned Systems 49

the ith unit on the jth layer, Mj be the jth layer’s size, Ii,j be the input box to
unit ui,j , and mi,j ⊆ [Mj] s.t. |mi,j | = Iui,j

: we simply feed the output box from
one layer into the next similar to the usual feed-forward operation:

ui,j+1(Ii,j+1) = ui,j+1

(×h∈mi,j+1
uh,j(Ih,j)

)
(1)

Finally, induction shows that these arguments together establish that this pro-
cess produces a set which contains the image of the network over the box. Notice
that approximations creep in during this recursive process; consider, for instance,
the bounding rectangle formed for a NN with a 2-d inner-layer whose output
exists on a diagonal line whenever the network processes instances in SI .

Various extensions exist, such as to handle common featurization pre- and
post-processings that preserve vector partial-orderings, as well as to aid effi-
ciency; see [8] for more details.

Refining Abstract States. CEGAR [16] is a well-regarded model checking
technique for soundly ensuring a system meets desirable properties. In short,
the approach uses abstract states carefully discovered through trial and error to
attempt verification or refutation; if the desirable property cannot be proven,
the algorithm iteratively refines the abstraction based on where the property is
in doubt, stopping when the property is either provable or has been disproven
by a discovered counterexample. When applied to certain families of discrete
programs, results returned by CEGAR are both sound and complete, at the cost
of unknown termination of CEGAR in the general case, when no approximations
are used. In practice, approximations used with CEGAR tend to err on the safe
side: if CEGAR indicates a property holds, then it is true, but the converse
might not hold. This flexibility has allowed for extensions of the technique to
many domains, including in hybrid system analysis [15], where the state space
is necessarily uncountably infinite and system dynamics do not typically have
exact numerical representations.

We now overview our CEGAR-like3 abstract state refinement, using boxes
as the abstraction domain. As before, we let L be a learned system L : SI → SO

with SI ⊂ R
IL and SO ⊆ R

OL ; further, suppose SI is a box×i∈[IL]
[aL,i, bL,i].4

Let φ : R
IL × R

OL → {
,⊥} be a formula which we would like to characterize
L’s conformance to over SI (i.e., find {(w, y) ∈ SI ×SO | φ(w, y)∧ (y = L(w))}).
Notice that φ need not use all of its arguments—so, for instance, the value of φ
might only vary with changes to input-space variables, thus specifying conditions

3 Elements of our abstract state refinement algorithm may be analogous to CEGAR
and its standard extensions—for instance, we perform sampling-based feasibility
checks prior to SAT-checks, which may be comparable to spuriousness checks in
CEGAR. However, to avoid implying a stringent adherence to canon (i.e., [16] ver-
batim), we use a different name.

4 Strictly speaking, we could discuss a box containing SI (i.e., a superset), but intro-
ducing an auxiliary, potentially larger definition domain might add confusion while
giving little benefit.

50 D. Bayani and S. Mitsch

over the input space but none over the output space. Since CEGAR is not gen-
erally guaranteed to terminate, we introduce a function STOP : SI → {
,⊥}
which will be used to prevent unbounded depth exploration of volumes whose
members have mixed truth values under φ.

We first form initial abstraction states over the input space; for this, our
implementation uses states that do not leverage any expert impressions as to
what starting sets would be informative for the circumstances. Instead, we opted
for the simple, broadly-applicable strategy of forming high-dimensional “quad-
rants”: 2IL hyper-cubes formed by bisecting the input space along each of its
axes; we could have just as easily used the universal bounding box undivided
to start. The algorithm takes an input-abstraction, w, that has yet to be tried
and generates an abstract state, õ, that contains L(w) (notice that w and L(w)
are both sets). If no member of w × õ is of interest (i.e., meets the condition
specified by φ), the algorithm returns the empty set. On the other hand, if w× õ
has the potential to contain elements of interest then the algorithm continues,
attempting to find the smallest allowed abstract states that potentially include
interesting elements. In general, further examination is performed by refining
the input abstraction, then recursing on the refinements; for efficiency, we also
check whether the entire abstract state satisfies φ, in which case we are then free
to partition it into smaller abstractions without further checks.

Given a box, we refine by splitting along its longest “scaled” axis, h:

h = argmax
i∈[IL]

b′
i − a′

i

bL,i − aL,i

We then either bisect (k = 2) or trisect (k = 3) the chosen axis with probability
0.8 or 0.2 respectively, a design choice balancing between faster analysis, further
exploration of diverse abstract states, and keeping boxes of reasonable size:

refinek(×
i∈[IL]

[a′
i, b

′
i]) =

k−1⋃

j=0

{×
i∈[IL]

[a′
i + 1(i = h)jCk, b′

i + 1(i = h)(j + 1 − k)Ck]
}

,

where Ck = b′
h−a′

h

k . The use of bL,i −aL,i in the denominator for h is an attempt
to control for differences in scaling and meaning among the variables comprising
the input space. For instance, 20 mm is not commiserate with 20 radians, and our
sensitivity to 3 cm of difference may be different given a quality that is typically
on par of kilometers versus one never exceeding a decimeter. Our refinement
strategy allows for efficient caching and reloading of refinement results by stor-
ing the refinement paths, as opposed to encoding entire boxes. Parameters in
the state determine if cached results are reused; reuse improves efficiency and
may help reduce uncalled-for volatility in descriptions reported to users, while
regenerating results may produce different AIDs which could lead to a better
outcome. Our analysis used the following STOP function:

STOP
(×i∈[IL]

[a′
i, b

′
i]
)

=
(
b′
h − a′

h ≤ ε(bL,i − aL,i)
)
. (2)

Fanoos: Explanations for Learned Systems 51

Algorithm 1: Pseudocode for CEGAR-like abstract state refinement, b is
an AID element over the input space (i.e., b ⊆ SI)
1 Function RefineAbstractState(b , STOP, φ, L):
2 õ ← approxImageL(b); // AIDs-based image approx., see Eq. (1)

3 verdict1 ← sat
(∀x ∈ b×õ. ¬φ(x)

)
;

4 if verdict1 then
5 return {};

6 if STOP(b) then
7 return {b};

8 verdict2 ← sat
(∀x ∈ b×õ. φ(x)

)
;

9 if verdict2 then
10 boxesToRefine ← {b}; result ← {};
11 while boxesToRefine is not empty do
12 c ← boxesToRefine.pop();
13 if STOP(c) then
14 result ← result ∪ {c};

15 else
16 boxesToRefine ← boxesToRefine ∪ refine(c);

17 return result;

18 return
⋃

r∈refine(b)RefineAbstractState(r, STOP, φ, L);

Here, ε is the refinement parameter initially specified by the user, but which
is then automatically adjusted by operators acting on the state as the user
interactions proceed. Similar to the choice of AID, our approach is amenable to
more sophisticated refinement and stopping strategies than presented here.

Algorithm 1 addresses formally sound question types; for probabilistic ques-
tion types (i.e., those denoted with “...usually”), verdict1 is determined by
repeated random sampling, and verdict2 is fixed as ⊥. In our implementation,
feasibility checks are done prior to calling the SAT-solver when handling a for-
mally sound question type.

2.3 Generating Descriptions

Having generated B, we produce an initial response, r0, to the user’s query
in three steps as follows: (i) for each member of B, we extract the box tuple
members that were illuminated by q (in the case where SIO is illuminated, we
produce a joint box over both tuple members), forming a set of joint boxes, B′;
(ii) next, we heuristically search over predicates P for members that describe box
B′ and compute a set of predicates covering all boxes; (iii) finally, we format the
box covering for user presentation. A sample result answer is shown in Fig. 1 (a),
and details on steps (ii) and (iii) follow below.

52 D. Bayani and S. Mitsch

Producing a Covering of B′. Our search over P for members covering B′

is largely based around the greedy construction of a set covering that uses a
carefully designed candidate evaluation score.

For each member b ∈ B′, we want to find a set of candidate predicates capa-
ble of describing the box to form a larger covering. We find a subset Pb ⊆ P
that is consistent with b in that each member of Pb passes the checks called for
by qt when evaluated on b (see the Description column of Table 1). This process
is expedited by a feasibility check of each member of P on a vector randomly
sampled from b, prior to the expensive check for inclusion in Pb. Having Pb, we
filter the candidate set further to P ′

b: members of Pb that appear most specific
to b; notice that in our setting, where predicates of varying abstraction level
co-mingle in P , Pb may contain many members that only loosely fit b. The sub-
set P ′

b is formed by sampling outside of b at increasing radii (in the �∞ sense)
and collecting those members of Pb that fail to hold true at the earliest radius.
Importantly, looking ahead to forming a full covering of B, if none of the pred-
icates fail prior to exhausting this sampling, we report P ′

b as empty, allowing
us to handle b downstream as we will detail in a moment; this avoids having
“difficult” boxes force the use of weak predicates that would “wash out” more
granular details. The operational meaning of “exhausting”, as well as the radii
sampled, are all parameters stored in the state. Generally speaking, we try to be
specific at this phase under the assumption that the desired description granu-
larity was determined earlier, primarily during the abstract state refinement. For
instance, if we want a subset of Pb that was less specific to b than P ′

b, we might
reperform the abstract state refinement so to produce larger abstract states. In
extensions of our approach, granularity can also be determined earlier by altering
P ; our current implementation has first steps in this direction, allowing users to
enable an optional operator that filters P based on estimates of a model trained
on previous interaction data. We comment further on this extension in Sect. 2.4
and indicate why this operator is left as optional in Sect. 5.

To handle boxes for which P ′
b was empty, in general we insert into P ′

b a box-
range predicate: a new atomic predicate that simply lists the variable ranges
in the box (e.g., “Box(x : [-1, 0], y: [0.5, 0.3])”). As a result of providing cover
for only one box, such predicates will only be retained by the (second) covering
we perform in a moment if no other predicates selected are capable of covering
the box’s axes. When a request to increase the abstraction level initially finds
P ′

b empty, we may (as determined by state parameters) set P ′
b equal to Pb as

opposed to introducing a box-range predicate. If Pb is empty as well, we are
forced to add the novel predicate.

We next leverage the P ′
b sets to construct a covering of B′, proceeding in an

iterative greedy fashion. Specifically, we form an initial covering

Kf = Cf

(⋃

b∈B′

⋃

p∈P ′
b

{(p, b)}, P

)

where Ci(R,H) is the covering established at iteration i, incrementing to

Ci+1(R,H) = Ci(R,H) ∪
{

argmaxp∈H\C i(R,H)μ(p,Ci(R,H), R)
}

Fanoos: Explanations for Learned Systems 53

where C0(R,H) = ∅, f is the iteration of convergence, and the cover score μ is

μ(p,Ci(R,H), R) =
∑

b∈B′ 1(|UV(b,Ci(R,H)) ∩ FV(p)| > 0)1((p, b) ∈ R)

and UV(b,Ci(R,H)) is the set of variables in b that are not constrained by
Ci(R,H)∩Pb; since the boxes are multivariate and our predicates typically con-
strain only a subset of the variables, we select predicates based on how many
boxes would have open variables covered by them. Notice that Kf is not nec-
essarily an approximately minimal covering of B with respect to members of
P . By forcing p ∈ P ′

b when calculating the cover score μ, we enforce additional
specificity criteria that the covering should adhere to. At this stage, due to the
nature of P ′

b being more specific than Pb, it is possible that some members of
Kf cover one another: there may exist p ∈ Kf such that Kf\{p} still covers as
much of B′ as Kf did. By forming Kf , we have found a collection of predicates
that can cover B′ to the largest extent possible, selected based on how much of
B′ they were specific over (given by the first argument to Cf when forming Kf).
We now remove predicates that are dominated by other (potentially less-specific)
predicates that we had to include by performing a second covering:

CF = CF

(⋃

b∈B′

⋃

p∈Pb

{(p, b)},Kf

)
.

Cleaning and Formatting Output for User. Having produced CF , we col-
lect the covering’s content into a formula in DNF. If b ∈ B′ and s is a max-
imal, non-singleton subset of CF ∩ Pb, then we form a conjunction over the
members of s, excluding conjuncts that are implied by others. Concretely, for
A =

⋃
b∈B′{Pb ∩ CF }, we construct:

d0 = {
∧

p∈s
p | s ∈ A ∧ ¬(∃s′∈A. s � s′)}.

The filtering done in d0 is only to aid efficiency; in a moment, we do a final
redundancy check that would achieve similar results even without the filtering
in d0. Ultimately, the members of d0 are conjunctions of predicates, with their
membership to the set being a disjunction. Prior to actually converting d0 to
DNF, we form d′

0 by: (i) removing any c ∈ d0 that are redundant given the rest of
d0 (in practice, d0 is small enough to simply do full one-vs-rest comparison and
determine results with a SAT-solver); (ii) attempting to merge any remaining
box-range predicates into the minimal number necessary to cover the sets they
are responsible for. Note that this redundancy check is distinct from forming CF

out of Kf , which worked at the abstract-state level (and so is unable to tell if a
disjunction of predicates covered a box when no individual predicate covered it
fully) and attempted to select predicates by maximizing a score.

Finally, r0 is constructed by listing each c that exists in d′
0 sorted by two

relevance scores: first, the approximate proportion of the volume in B′ uniquely
covered by c, and second by the approximate proportion of total volume c cov-
ers in B′. These sorting-scores can be thought of similarly to recall measures.

54 D. Bayani and S. Mitsch

Specificity is more difficult to tackle, since it would require determining the vol-
ume covered by each predicate (which may be an arbitrary first-order formula)
across the box bounding the universe, not just the hyper-cubes at hand; this can
be approximated for each predicate using set-inversion, but requires non-trivial
additional computation for each condition.

2.4 User Feedback and Revaluation

Based on the initial response r0, users can request a more abstract or less abstract
explanation. We view this alternate explanation generation as another heuristic
search, where the system searches over a series of states to find those that are
deemed acceptable by the user (consecutive user requests can be viewed in anal-
ogy to paths in a tree of Fanoos’s states). The states primarily include algorithm
hyper-parameters, the history of interaction, the question to be answered, and
the set B. Abstraction and refinement operators take a current state and produce
a new one, often by adjusting the system hyper-parameters and recomputing B.
This state-operator model of user response allows for rich styles of interaction
with the user, beyond and alongside of the three-valued responses of acceptance,
increase, or decrease of the abstraction level shown in Fig. 1(b).

For instance, a history-travel operator allows the state (and thus r) to return
to an earlier point in the interaction process, if the user feels that response
was more informative; from there, the user may investigate an alternate path
of abstractions. Other implemented operators allow for refinements of specified
parts of explanations as opposed to the entire reply; the simplest form of this is by
regenerating the explanation without using a predicate that the user specified be
ignored, while a more sophisticated operator determines the predicates to filter
out automatically by learning from past interaction. Underlying the discussion
of these mechanisms is the utilization of a concept of abstractness, a notion we
further comment on in the next subsection.

As future work, we are exploring the use of active learning leveraging user
interactions to select operators, with particular interest in bootstrapping the
learning process using operationally defined oracles to approximate users.

2.5 Capturing the Concept of Abstractness

The criteria to judge degree-of-abstractness in the lay sense are often difficult
to capture. We consider abstractness a diverse set of relations that subsume
the part-of-whole relation, and thus also generally includes the subset relation.
For our purposes, defining this notion is not necessary, since we simply wish to
utilize the fact of its existence. We understand abstractness to be a semantic con-
cept that shows itself by producing a partial ordering over semantic states (their
“abstractness” level) which is in turn reflected in the lower-order semantics of the
input-output boxes, and ultimately is reflected in our syntax via explanations of
different granularity. Discussions of representative formalisms most relevant to
computer science can be found in [17,38,48,49,72,74]: [17] features abstraction
in verification, [74] features abstraction at play in interpreting programs, [72]

Fanoos: Explanations for Learned Systems 55

is an excellent example of interfaces providing a notion of abstractness in net-
work communications, [48,49] discuss notions of abstractness relevant for type
systems in object-oriented programming languages, and [38] shows an adaptive
application in reinforcement learning. An excellent discussion of the philosophi-
cal underpinnings and extensions can be found in [26].

In this work, the primary method of producing explanations at desired levels
of abstraction is entirely implicit, without explicitly tracking what boxes or pred-
icates are considered more or less abstract (note that an operator that attempts
to learn such relations is invoked optionally by human users, and is not used
in the evaluations we present here). Instead, we leverage the groundedness of
our predicates to naturally form partial orderings over semantic states (their
“abstractness” level) which in turn are appropriately reflected in syntax.

On the opposite end of the spectrum is explicit expert tuning of abstrac-
tion orderings. Fanoos can easily be adapted to leverage expert labels (e.g.,
taxonomies as in [71], or even simply type/grouping-labels without explicit hier-
archical information) to preference subsets of predicates conditionally on user
responses, but for the sake of this paper, we reserve agreement with expert labels
as an independent metric of performance in our evaluation, prohibiting the free
use of such knowledge by the algorithm during testing. As a side benefit, by
forgoing direct supervision, we demonstrate that the concept of abstractness is
recoverable from the semantics and structure of the problem itself.

3 Fanoos Interaction Example

We present a user interaction example with our system in Fig. 1. Predicate defi-
nitions of the example can be found with the code at [7]. In practice, if users want
to know more about the operational meaning of predicates (e.g., the exact con-
ditions each tests), open-on-click hyperlinks and hover text showing the relevant
content from the domain definition can be added to the user interface.

Limited text is shown on screen until a user requests more, similar in spirit
to the Unix more command. Auto-complete is triggered by hitting tab, finish-
ing tokens when unambiguous and listing options available in the context. For
instance, suggestions and completions for predicates obey restrictions imposed
by Table 1 based on the question type specified by the user.

In Fig. 1, we show the user posing two questions on the IDP domain (see
Sect. 5). The initial question in Fig. 1(a) asks for which the situations typically
result in the NN outputting a low torque and high state value estimate (Line 1).
In order to produce an answer, Fanoos (Lines 2–3) asks for a preference of initial
refinement granularity (given relative to SI ’s side lengths; ε in Eq. (2)), and after
the user requests 0.125 (Line 4), lists several potential situations (Lines 5–13).
The user wants more details, and so requests a less abstract description (Line
16); Fanoos now responds with 18 more detailed situation descriptions (5 listed
in Fig. 1(b), Lines 17–23). In the second question in Fig. 1(c), the user (Line
25) wants to know the circumstances in which the learned component outputs a
high torque while its inputs (e.g., sensors) indicate that the first pole has a low

56 D. Bayani and S. Mitsch

Fig. 1. Fanoos user session on the inverted double pendulum example

rotational speed; Fanoos finds 32 descriptions (5 listed, Lines 26–34). The user
requests a more abstract summary (Line 35), which condenses the explanation
down to 3 situations (Lines 36–40). We see that in both cases—the first request
for less abstractness, and the second for greater—that the explanations adjusted

Fanoos: Explanations for Learned Systems 57

as one would expect, both with respect to the verbosity of the descriptions
returned and the verbiage used.

Our focus while developing Fanoos has been to ensure that the desired infor-
mation can be generated. In application, a user-facing front-end can provide a
more aesthetically pleasing presentation, and we elaborate options in [8].

4 Related Work and Discussion

Many methods are closely related to XAI, stemming from a diverse body of litera-
ture and various application domains, e.g., [3,4,9,18,35,41,63,70,83]. Numerous
taxonomies of explanation families have been proposed [1,4,5,11,13,14,27,30,
32,44,47,51,59,64,65,80], with popular divisions being (i) between explanations
that leverage internal mechanics of systems to generate descriptions (decompo-
sitional, a.k.a. “introspective”, approaches) versus those that exclusively lever-
age input-output relations (pedagogical, a.k.a. “rationalization”) [4,44] (ii) the
medium that comprises the explanation (such as with most-predictive-features
[63], summaries of internal states via finite-state-machines [45], natural language
descriptions [35,44] or even visual representations [39,44]), (iii) theoretical cri-
teria for a good explanation (see, for instance, [52]), and (iv) specificity and
fidelity of explanation. Of note, the vast majority of XAI methods for ML lack
any formal guarantees regarding the correspondence between the explanations
and the learned component’s true behavior (e.g., [25]).

Related to our work are approaches to formally analyze neural networks to
certify or verify them as well as to decompositionally extract rules from them.
Techniques related to our inner-loop reachability analysis have been used for sta-
bility and reachability analysis in systems that are otherwise hard to analyze ana-
lytically, often in the interest of ensuring safety. Reachability analysis for FFNNs
based on abstract interpretation domains, interval arithmetic, or set inversion
has been used in rule extraction and neural net stability analysis [4,20,75,84] and
continues to be relevant, e.g., for verification of MLPs [29,53,61], estimating the
reachable states of closed-loop systems with MLPs in the loop [88], estimating
the domain of validity of NNs [2], and analyzing security of NNs [82]. A similar
variety of motivations and applications exist for approaches to NN verification
and rule extraction that are based on symbolic decomposition of a network’s
units followed by constraint solving or optimization over the formulas extracted
[12,21–23,40,41,57,68,69,73,76,77,87]. While these works provide methods to
extract descriptions that faithfully reflect behavior of the network, they do not
generally consider end-user comprehension of descriptions, do not consider vary-
ing description abstraction, and do not explore the practice of strengthening
descriptions by ignoring the effects of measure-zero sets. Also, many such tech-
niques are only designed to characterize output behavior given particular input
sets, whereas we capture relations in multiple directions (i.e., input to output,
output to input, and both simultaneously).

Rule-based systems such as expert systems, and work in the (high-level)
planning community have a long history of producing explanations in various

58 D. Bayani and S. Mitsch

forms. Notably, hierarchical planning [35,54] naturally lends itself to explana-
tions of multiple abstraction levels. All these methods, however, canonically work
on the symbolic level, making them inapplicable to most modern ML methods.
High fidelity, comprehensible rules describing data points can also be discov-
ered with weakly-consistent inductive logic programming [56] or association rule
learning [3,37] typical in data-mining. However, these approaches are typically
pedagogical—not designed to leverage access to the internals of the system—do
not offer a variety of descriptions abstractions or strengths, and are typically not
interactive. While extensions of association rule learning (e.g., [33,34,71]) do con-
sider multiple abstraction levels, they are still pedagogical and non-interactive.
Further, they describe only subsets of the analyzed data5 and only understand
abstractness syntactically, requiring complete taxonomies be provided explic-
itly and up-front. Our approach, by contrast, leverages semantic information,
attempts to efficiently describe all relevant data instances, and produces descrip-
tions that necessarily reflect the mechanism under study.

The high-level components of our approach can be compared to [36], where
hand-tunable rule-based methods with natural language interfaces encapsulate a
module responsible for extracting information about the ML system, with expla-
nation generation in part relying on minimal set-covering methods to find pred-
icates capturing the model’s states. Extending this approach to generate more
varying-resolution descriptions, however, does not seem like a trivial endeavor,
since (i) it is not clear that the system can appropriately handle predicates
that are not logically independent, and expecting experts to explicitly know and
encode all possible dependencies can be unrealistic, (ii) the system described does
not have a method to vary the type of explanation provided for a given query
when its initial response is unsatisfactory, and (iii) the method produces expla-
nations by first learning simpler models via Markov decision processes (MDPs).
Learning simpler models by sampling behavior of more sophisticated models
is an often-utilized, widely applicable method to bootstrap human understand-
ing (e.g. [11,31,45]), but it comes at the cost of failing to leverage substantial
information from the internals of the targeted learned system. Crucially, such a
technique cannot guarantee the fidelity of their explanations with respect to the
learned system being explained, in contrast to our approach.

In [60], the authors develop vocabularies and circumstance-specific human
models to determine the parameters of the desired levels of abstraction, speci-
ficity and location in robot-provided explanations about the robot’s specific, pre-
vious experiences in terms of trajectories in a specific environment, as opposed to
the more generally applicable conditional explanations about the internals of the
learned component generated by Fanoos. The particular notions of abstraction
and granularity from multiple, distinct, unmixable vocabularies of [60] evaluate
explanations in the context of their specific application and are not immediately
applicable nor easily transferable to other domains. Fanoos, by contrast, does

5 Setting thresholds low enough to ensure each transaction is described would result
in a deluge of highly redundant, low-precision rules lacking most practical value, a
phenomena know as the “rare itemset problem” [50].

Fanoos: Explanations for Learned Systems 59

not require separate vocabularies and enables descriptions to include multiple
abstraction levels (for example, mixing them as in the sentence “House X and a
6m large patch on house Y both need to be painted”).

Closest in spirit to our work are the planning-related explanations of [70], pro-
viding multiple levels of abstraction with a user-in-the-loop refinement process,
but with a focus on markedly different search spaces, models of human inter-
action, algorithms for description generation and extraction, and experiments.
Further, we attempt to tackle the difficult problem of extracting high-level sym-
bolic knowledge from systems where such concepts are not natively embedded,
in contrast to [70], who consider purely symbolic systems.

In summary, current approaches focus on single aspects of explanations, fixed
levels of abstraction, or provide inflexible guarantees (if any) about the expla-
nations given.

5 Experiments and Results

We analyze learned systems from robotics control and more traditional ML pre-
dictors to demonstrate the applicability of Fanoos to diverse domains. Code and
other supporting information (e.g., predicate definitions) can be found in [7] and
at https://github.com/DBay-ani/Fanoos.

Inverted Double Pendulum (IDP). The control policy for an inverted
double-pendulum is tasked to keep a pole steady and upright. The pole con-
sists of two under-actuated segments attached end-to-end, rotationally free in
the same plane; the only actuated component is a cart with the pivot point of
the lower segment attached. Even though similar to the basic inverted single
pendulum example in control, this setting is substantially more complicated,
since multi-pendulum systems are known to exhibit chaotic behavior [43,46].
The trained policy was taken from reinforcement learning literature [62,67]. The
seven-dimensional observation space includes the segment’s angles, the cart x-
position, their time derivatives, and the y-coordinate of the second pole. The
output is a torque in [−1, 1]Nm and a state-value estimate, which is not a priori
bounded. The values chosen for the input space bounding box were inspired by
the 5% and 95% quantile values over simulated runs. We expanded the input
box beyond this range to consider rare inputs and observations the model was
not necessarily trained on; whether the analysis stays in the region trained-for
depends on the user’s question. For instance, the train and test environments
exited whenever the end of the second segment was below a certain height. In
real applications, users may want to ensure recovery is attempted.

CPU Usage (CPU). We also analyze a more traditional ML algorithm, a
polynomial kernel regression for modeling CPU usage. Specifically, we use a
three-degree fully polynomial basis over a 5-dimensional input space (which
includes cross-terms and the zero-degree element—e.g., x2y and 1 are mem-
bers) to linearly regress out a three-dimensional vector. We trained our model

https://github.com/DBay-ani/Fanoos

60 D. Bayani and S. Mitsch

using the publicly available data from [78].6 The observations are [lread, scall,
sread, freemem, freeswap], which are normalized with respect to the training
set min and max prior to featurization, and the response variables we predict
are [lwrite, swrite, usr]. We opted to analyze an algorithm with this featurization
since it achieved the highest performance—over 90% accuracy—on a 90%-10%
train-test split of the data compared to similar models with 1, 2, or 4 degree
kernels. While the kernel weights may be interpreted in some sense (e.g., indi-
cating which individual feature is, by itself, most influential), the joint correlation
between the features and non-linear transformations of the input values makes it
far from clear how the model behaves over the original input space. For Fanoos,
the input space bounding box was determined from the 5% and 95% quantiles
for each input variable over the full, normalized dataset.

5.1 Experiment Design

Tests were conducted using synthetically generated interactions, with the goal of
determining whether our approach properly changes the description abstractness
in response to the user request. The domain and question type were randomly
chosen, the latter selected among the options listed in Table 1. The questions
themselves were randomly generated to have up to four disjuncts, each with
conjuncts of length no more than four; conjuncts were ensured to be distinct,
and only predicates respecting the constraints of the question type were used.
After posing an initial question, interaction with Fanoos was randomly selected
from four alternatives (here, MA means “more abstract” and LA means “less
abstract”): (i or ii) initial refinement of 0.25 or 0.20 → make LA → make MA
→ exit; (iii or iv) initial refinement of 0.125 or 0.10 → make MA → make LA
→ exit. For the results presented here, over 130 interactions were held, resulting
in several hundred question-answer-descriptions.

5.2 Metrics

We evaluated the abstractness of Fanoos’s responses using metrics in the cate-
gories of reachability analysis, description structure, and human word labeling.

Reachability Analysis. We compare the reachability analysis results produced
during the interactions: we record statistics about the distribution of volumes of
input-boxes generated during the abstract state refinement, normalized to the
input space bounding box so that each axis is in [0, 1], yielding results comparable
across domains. The values provide a rough sense of the abstractness notion
implicit in the size of boxes and how they relate to descriptions. For brevity,
we only report volume, but we note that the distribution of sum-of-side-lengths
showed similar trends.

6 Dataset at https://www.openml.org/api/v1/json/data/562.

https://www.openml.org/api/v1/json/data/562

Fanoos: Explanations for Learned Systems 61

Description Structure. Fanoos responds to users with a multi-weighted DNF
description. This structure is summarized as follows to give a rough sense of
how specific each description is by itself: number of disjuncts, including atomic
predicates; number of non-singleton conjuncts, providing a rough measure of
the number of “complex” terms; number of distinct named predicates (atomic,
user-defined predicates that occur anywhere in the description, i.e., excludes box-
range predicates); number of box-range predicates that occur anywhere (i.e., in
conjuncts as well as stand-alone). The Jaccard score and overlap coefficients—
classic text analysis measures—are calculated over the set of atomic predicates
in the descriptions to measure verbiage similarity.

Human Word Labeling. We apply our intuitive, human understanding of
the relative abstractness of the atomic predicates to evaluate Fanoos’s responces
based on usage of more vs. less abstract verbiage. For simplicity we choose two
classes, more abstract (MA) vs. less abstract (LA), and count the number of
predicates both (a) accounting for multiplicity and, (b) accounting for unique-
ness; if an atomic predicate q has label MA (resp., LA) and occurs twice in a
sentence, it contributes twice to the (a) score, and only once to (b).

5.3 Results

Summary statistics of our results are listed in Table 2. We are chiefly interested
in how a description changes in response to a user-requested abstraction change.
Specifically, for pre-interaction state St and post-interaction state St+1, we col-
lect metrics m(St+1) − m(St) that describe relative change for each domain-
response combination (for the Jaccard and overlap coefficients, the computation
is simply m(St+1, St)). The medians of these distributions are in Table 2.

In summary, the reachability and structural metrics follow the desired trends:
when the user requests greater abstraction (MA), the boxes become larger, and
the sentences become structurally less complex—namely, they become shorter
(fewer disjuncts), have disjuncts that are less complicated (fewer explicit con-
juncts, hence more atomic predicates), use fewer unique terms overall (reduction
in named predicates) and refer less often to the exact values of a box (reduction
in box-range predicates). Symmetric statements can be made for less abstraction
(LA) requests. From the overlap and Jaccard scores, we can see that the changes
in response complexity are not simply due to increased verbosity—simply adding
or removing phrases to the descriptions from the prior steps—but also the result
of changes in the verbiage used.

Trends for the human word-labels are similar, though more subtle. We see
that use of LA-related terms follows the trend of user requests with respect to
multiplicity and uniqueness counts (increases for LA-requests, decreases for MA-
requests). We see that the MA counts, when taken relative to the same measures
for LA terms, are correlated with user requests in the expected fashion. Specif-
ically, when a user requests greater abstraction (MA), the counts for LA terms
decrease far more than those of MA terms, and the symmetric situation occurs

62 D. Bayani and S. Mitsch

Table 2. Median relative change in description before and after Fanoos adjusts the
abstraction in the requested direction

CPU CPU IDP IDP

Request LA MA LA MA

Reachability Boxes Number 8417.5 −8678.0 2.0 −16.0

Volume Max −0.015 0.015 −0.004 0.004

Median −0.003 0.003 −0.004 0.004

Min −0.001 0.001 −0.003 0.003

Sum −0.03 0.03 −0.168 0.166

Structural Jaccard 0.106 0.211 0.056 0.056

Overlap coefficient 0.5 0.714 0.25 0.25

Non-singleton conjuncts 1.0 −2.0 0.5 −2.5

Disjuncts 7.0 −7.5 2.0 −2.5

Named predicates 1.0 −1.0 1.0 −4.5

Box-range predicates 2.0 −2.0 1.5 −1.5

Words MA terms Multiplicity 3.0 −3.0 24.0 −20.0

Uniqueness 0.0 0.0 1.0 −1.5

LA terms Multiplicity 20.0 −21.5 68.5 −86.0

Uniqueness 2.0 −2.0 12.0 −14.0

for requests of lower abstraction (LA), as expected. These results—labelings
coupled with the structural trends—lend solid support that Fanoos can recover
elements of a human’s notion about abstractness by leveraging the grounded
semantics of the predicates.

6 Conclusions and Future Work

Fanoos is an explanatory framework for ML systems that mixes technologies
ranging from classical verification to heuristic search. Our experiments support
that Fanoos can produce and navigate explanations at multiple granularities
and strengths. We are investigating operator-selection learning and accelerating
knowledge base construction via further data-driven predicate generation.

We will continue to explore Fanoos’s potential, and hope that the commu-
nity finds inspiration in both the methodology and philosophical underpinnings
presented here. Additional content, such as pseudo-code, summary statistics,
extended descriptions and further pointers, can be found in [8].

Acknowledgments. We thank: Nicholay Topin for supporting our spirits at some
key junctures of this work; David Held for pointing us to the rl-baselines-zoo repos-
itory; David Eckhardt for his proof-reading of earlier versions of this document; the
anonymous reviewers for their thoughtful feedback.

Fanoos: Explanations for Learned Systems 63

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Adam, S.P., Karras, D.A., Magoulas, G.D., Vrahatis, M.N.: Reliable estimation of
a neural network’s domain of validity through interval analysis based inversion. In:
2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney,
Ireland, 12–17 July 2015, pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.
7280794

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC, USA, 26–28 May 1993, vol.
22, pp. 207–216. ACM (1993)

4. Andrews, R., Diederich, J., Tickle, A.: Survey and critique of techniques for extract-
ing rules from trained artificial neural networks. Knowl.-Based Syst. 6, 373–389
(1995). https://doi.org/10.1016/0950-7051(96)81920-4

5. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and
robots: results from a systematic literature review. In: Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, pp.
1078–1088. International Foundation for Autonomous Agents and Multiagent Sys-
tems (2019)

6. Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI
explainability techniques. CoRR abs/1909.03012 (2019)

7. Bayani, D.: Code for Fanoos: multi-resolution, multi-strength, interactive explana-
tions for learned systems (2021). https://doi.org/10.5281/zenodo.5513079. Method
of distribution is Zenodo, distributed in October, 2021

8. Bayani, D., Mitsch, S.: Fanoos: multi-resolution, multi-strength, interactive expla-
nations for learned systems. CoRR abs/2006.12453 (2020)

9. Benz, A., Jäger, G., Van Rooij, R.: Game Theory and Pragmatics. Springer, Hei-
delberg (2005). https://doi.org/10.1057/9780230285897

10. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y., et al.: Bounded model
checking. Adv. Comput. 58(11), 117–148 (2003)

11. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey.
In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, p. 1 (2017)

12. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal,
Canada, pp. 4795–4804 (2018)

13. Chakraborti, T., Kulkarni, A., Sreedharan, S., Smith, D.E., Kambhampati, S.:
Explicability? Legibility? Predictability? Transparency? Privacy? Security? The
emerging landscape of interpretable agent behavior. In: Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, vol. 29, pp. 86–96
(2019)

14. Chuang, J., Ramage, D., Manning, C., Heer, J.: Interpretation and trust: design-
ing model-driven visualizations for text analysis. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 443–452. ACM (2012)

https://doi.org/10.1109/IJCNN.2015.7280794
https://doi.org/10.1109/IJCNN.2015.7280794
https://doi.org/10.1016/0950-7051(96)81920-4
https://doi.org/10.5281/zenodo.5513079
https://doi.org/10.1057/9780230285897

64 D. Bayani and S. Mitsch

15. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 14

16. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

17. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

18. David, Q.: Design issues in adaptive control. IEEE Trans. Autom. Control 33(1),
50–58 (1988)

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Driescher, A., Korn, U.: Checking stability of neural NARX models: an interval
approach. IFAC Proc. Vol. 30(6), 1005–1010 (1997)

21. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Globerson, A., Silva, R. (eds.) Pro-
ceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, 6–10 August 2018, pp. 550–559. AUAI Press
(2018)

22. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

23. Etchells, T.A., Lisboa, P.J.: Orthogonal search-based rule extraction (OSRE) for
trained neural networks: a practical and efficient approach. IEEE Trans. Neural
Netw. 17(2), 374–384 (2006)

24. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46/EC (General Data Protection Regulation) (2016)

25. Fern, A.: Don’t get fooled by explanations. Invited Talk, IJCAI-XAI (2020).
Recording at: https://ijcai20.org/w41/. Schedule at: https://sites.google.com/
view/xai2020/home

26. Floridi, L.: The method of levels of abstraction. Mind. Mach. 18(3), 303–329 (2008)
27. Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender

systems. AI Mag. 32(3), 90–98 (2011)
28. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.

J. Mach. Learn. Res. 16(1), 1437–1480 (2015)
29. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,

M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21–23 May 2018, San Francisco, California, USA, pp. 3–18. IEEE Com-
puter Society (2018). https://doi.org/10.1109/SP.2018.00058

30. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A
survey of methods for explaining black box models. ACM Comput. Surv. (CSUR)
51(5), 93 (2019)

https://doi.org/10.1007/3-540-36577-X_14
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-68167-2_19
https://ijcai20.org/w41/
https://sites.google.com/view/xai2020/home
https://sites.google.com/view/xai2020/home
https://doi.org/10.1109/SP.2018.00058

Fanoos: Explanations for Learned Systems 65

31. Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence (XAI) program.
AI Mag. 40(2), 44–58 (2019). https://doi.org/10.1609/aimag.v40i2.2850

32. Hailesilassie, T.: Rule extraction algorithm for deep neural networks: a review.
arXiv preprint arXiv:1610.05267 (2016)

33. Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases.
In: VLDB, vol. 95, pp. 420–431. Citeseer (1995)

34. Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE
Trans. Knowl. Data Eng. 11(5), 798–805 (1999)

35. Hayes, B., Scassellati, B.: Autonomously constructing hierarchical task networks
for planning and human-robot collaboration. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 5469–5476. IEEE (2016)

36. Hayes, B., Shah, J.A.: Improving robot controller transparency through
autonomous policy explanation. In: 2017 12th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pp. 303–312. IEEE (2017)

37. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining-
a general survey and comparison. SIGKDD Explor. 2(1), 58–64 (2000)

38. Hostetler, J., Fern, A., Dietterich, T.G.: Progressive abstraction refinement for
sparse sampling. In: Meila, M., Heskes, T. (eds.) Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, UAI 2015, 12–16 July 2015,
Amsterdam, The Netherlands, pp. 365–374. AUAI Press (2015)

39. Huang, S.H., Held, D., Abbeel, P., Dragan, A.D.: Enabling robots to communicate
their objectives. Auton. Robot. 43(2), 309–326 (2019). https://doi.org/10.1007/
s10514-018-9771-0

40. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

41. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63387-9 5

42. Kearfott, R.B.: Interval computations: introduction, uses, and resources. Euromath
Bull. 2(1), 95–112 (1996)

43. Kellert, S.H.: In the Wake of Chaos: Unpredictable Order in Dynamical Systems.
University of Chicago Press (1993)

44. Kim, J., Rohrbach, A., Darrell, T., Canny, J.F., Akata, Z.: Textual explanations
for self-driving vehicles (2018). https://doi.org/10.1007/978-3-030-01216-8 35

45. Koul, A., Fern, A., Greydanus, S.: Learning finite state representations of recurrent
policy networks. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

46. Levien, R., Tan, S.: Double pendulum: an experiment in chaos. Am. J. Phys.
61(11), 1038–1044 (1993)

47. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016)

48. Liskov, B.: Keynote address-data abstraction and hierarchy. In: Addendum to the
Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions (Addendum), pp. 17–34 (1987)

49. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. (TOPLAS) 16(6), 1811–1841 (1994)

50. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum sup-
ports. In: Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 337–341 (1999)

https://doi.org/10.1609/aimag.v40i2.2850
http://arxiv.org/abs/1610.05267
https://doi.org/10.1007/s10514-018-9771-0
https://doi.org/10.1007/s10514-018-9771-0
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-01216-8_35
http://arxiv.org/abs/1606.03490

66 D. Bayani and S. Mitsch

51. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2018)

52. Miller, T., Howe, P., Sonenberg, L.: Explainable AI: beware of inmates running
the asylum or: how I learnt to stop worrying and love the social and behavioural
sciences. arXiv preprint arXiv:1712.00547 (2017)

53. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: International Conference on Machine Learning,
pp. 3575–3583 (2018)

54. Mohseni-Kabir, A., Rich, C., Chernova, S., Sidner, C.L., Miller, D.: Interactive
hierarchical task learning from a single demonstration. In: Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction, pp.
205–212. ACM (2015)

55. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)
56. Muggleton, S.: Inductive logic programming: issues, results and the challenge of

learning language in logic. Artif. Intell. 114(1–2), 283–296 (1999)
57. Murdoch, W.J., Szlam, A.: Automatic rule extraction from long short term memory

networks. arXiv preprint arXiv:1702.02540 (2017)
58. Neema, S.: Assured autonomy (2017). https://www.darpa.mil/attachments/

AssuredAutonomyProposersDay Program%20Brief.pdf
59. Papadimitriou, A., Symeonidis, P., Manolopoulos, Y.: A generalized taxonomy of

explanations styles for traditional and social recommender systems. Data Min.
Knowl. Disc. 24(3), 555–583 (2012)

60. Perera, V., Selvaraj, S.P., Rosenthal, S., Veloso, M.M.: Dynamic generation and
refinement of robot verbalization. In: 25th IEEE International Symposium on
Robot and Human Interactive Communication, RO-MAN 2016, New York, NY,
USA, 26–31 August 2016, pp. 212–218. IEEE (2016). https://doi.org/10.1109/
ROMAN.2016.7745133

61. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

62. Raffin, A.: RL baselines zoo (2018). https://web.archive.org/web/
20190524144858/https://github.com/araffin/rl-baselines-zoo

63. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggar-
wal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, 13–17 August 2016, pp. 1135–1144. ACM (2016). https://doi.
org/10.1145/2939672.2939778

64. Richardson, A., Rosenfeld, A.: A survey of interpretability and explainability in
human-agent systems. In: XAI Workshop on Explainable Artificial Intelligence, pp.
137–143 (2018)

65. Roberts, M., et al.: What was I planning to do. In: ICAPS Workshop on Explain-
able Planning, pp. 58–66 (2018)

66. Rosenthal, S., Biswas, J., Veloso, M.: An effective personal mobile robot agent
through symbiotic human-robot interaction. In: Proceedings of the 9th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp.
915–922. International Foundation for Autonomous Agents and Multiagent Sys-
tems (2010)

67. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

http://arxiv.org/abs/1712.00547
http://arxiv.org/abs/1702.02540
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program%20Brief.pdf
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program%20Brief.pdf
https://doi.org/10.1109/ROMAN.2016.7745133
https://doi.org/10.1109/ROMAN.2016.7745133
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://web.archive.org/web/20190524144858/https://github.com/araffin/rl-baselines-zoo
https://web.archive.org/web/20190524144858/https://github.com/araffin/rl-baselines-zoo
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/1707.06347

Fanoos: Explanations for Learned Systems 67

68. Setiono, R., Liu, H.: Understanding neural networks via rule extraction. In: IJCAI,
vol. 1, pp. 480–485 (1995)

69. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron con-
vex barrier for neural network certification. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC,
Canada, pp. 15072–15083 (2019)

70. Sreedharan, S., Madhusoodanan, M.P., Srivastava, S., Kambhampati, S.: Plan
explanation through search in an abstract model space. In: International Confer-
ence on Automated Planning and Scheduling (ICAPS) Workshop on Explainable
Planning, pp. 67–75 (2018)

71. Srikant, R., Agrawal, R.: Mining generalized association rules. In: Dayal, U., Gray,
P.M.D., Nishio, S. (eds.) VLDB 1995, Proceedings of 21st International Conference
on Very Large Data Bases, 11–15 September 1995, Zurich, Switzerland, pp. 407–
419. Morgan Kaufmann (1995)

72. International Standardization: ISO/IEC 7498–1: 1994 information technology-open
systems interconnection-basic reference model: the basic model. International Stan-
dard ISOIEC 74981, 59 (1996)

73. Taylor, B.J., Darrah, M.A.: Rule extraction as a formal method for the verification
and validation of neural networks. In: 2005 Proceedings of 2005 IEEE International
Joint Conference on Neural Networks, vol. 5, pp. 2915–2920. IEEE (2005)

74. Tennent, R.D.: The denotational semantics of programming languages. Commun.
ACM 19(8), 437–453 (1976). https://doi.org/10.1145/360303.360308

75. Thrun, S.: Extracting rules from artificial neural networks with distributed rep-
resentations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) 1994 Advances
in Neural Information Processing Systems 7, NIPS Conference, Denver, Colorado,
USA, pp. 505–512. MIT Press (1994)

76. Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer
programming. CoRR abs/1711.07356 (2017). http://arxiv.org/abs/1711.07356

77. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural
networks. Mach. Learn. 13(1), 71–101 (1993)

78. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in
machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/
2641190.2641198

79. Veloso, M.M., Biswas, J., Coltin, B., Rosenthal, S.: CoBots: robust symbiotic
autonomous mobile service robots. In: IJCAI, p. 4423 (2015)

80. Ventocilla, E., et al.: Towards a taxonomy for interpretable and interactive machine
learning. In: XAI Workshop on Explainable Artificial Intelligence, pp. 151–157
(2018)

81. Walter, E., Jaulin, L.: Guaranteed characterization of stability domains via set
inversion. IEEE Trans. Autom. Control 39(4), 886–889 (1994). https://doi.org/
10.1109/9.286277

82. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1599–1614
(2018)

83. Wellman, H.M., Lagattuta, K.H.: Theory of mind for learning and teaching: the
nature and role of explanation. Cogn. Dev. 19(4), 479–497 (2004)

https://doi.org/10.1145/360303.360308
http://arxiv.org/abs/1711.07356
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1109/9.286277
https://doi.org/10.1109/9.286277

68 D. Bayani and S. Mitsch

84. Wen, W., Callahan, J.: Neuralware engineering: develop verifiable ANN-based sys-
tems. In: Proceedings IEEE International Joint Symposia on Intelligence and Sys-
tems, pp. 60–66. IEEE (1996)

85. Wen, W., Callahan, J., Napolitano, M.: Towards developing verifiable neural net-
work controller. Technical report (1996)

86. Wen, W., Callahan, J., Napolitano, M.: Verifying stability of dynamic soft-
computing systems. Technical report NASA-IVV-97-002, WVU-CS-TR-97-005,
NASA/CR-97-207032, WVU-IVV-97-002 (1997)

87. Weng, L., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp.
5276–5285. PMLR, 10–15 July 2018

88. Xiang, W., Johnson, T.T.: Reachability analysis and safety verification for neural
network control systems. CoRR abs/1805.09944 (2018)

89. Yasmin, M., Sharif, M., Mohsin, S.: Neural networks in medical imaging applica-
tions: a survey. World Appl. Sci. J. 22(1), 85–96 (2013)

Loop Verification with
Invariants and Contracts

Gidon Ernst(B)

LMU Munich, Munich, Germany
gidon.ernst@lmu.de

Abstract. Invariants are the predominant approach to verify the cor-
rectness of loops. As an alternative, loop contracts, which make explicit
the premise and conclusion of the underlying induction proof, can some-
times capture correctness conditions more naturally. But despite this
advantage, the second approach receives little attention overall, and the
goal of this paper is to lift it out of its niche. We give the first compre-
hensive exposition of the theory of loop contracts, including a characteri-
zation of its completeness. We show concrete examples on standard algo-
rithms that showcase their relative merits. Moreover, we demonstrate a
novel constructive translation between the two approaches, which decou-
ples the chosen specification approach from the verification backend.

Keywords: Program verification · Loops · Invariants · Contracts

1 Introduction

Loop invariants [30] are the standard approach to verify programs with loops.
The technique is practically successful for both specifying and verifying loops in
automated tools. The corresponding proof obligations propagate invariants for-
wards over a single arbitrary iteration, and soundness is justified by the induction
principle of the least fixpoint of the loop.

The alternative approach is to specify loops in terms of a contract consist-
ing of a precondition and a relational postconditon (called “summary” here), as
advocated e.g. by Hehner [26,27]. Contracts have two important features: 1) they
tend to resemble the overall program specification more closely when compared
to their plain invariant counterparts, and 2) they can dually express proof argu-
ments that propagate backwards from the result. Essentially, loops are treated
analogously to tail-recursive procedures, but without the need for an explicit
syntactic translation. The benefits of such flexible proof schemas for loops are
widely acknowledged, e.g. [7,12,51], notably in Separation Logic, where tracking
ownership can be problematic with just invariants [9,17,37,54].

Surprisingly, while contracts have been described in the literature and imple-
mented in tools such as VeriFast [49], the theoretical connection between invari-
ants, loop pre- and postconditions, as well as completeness of the contract app-
roach appear to be unresolved. Moreover, examples tend to be given in the
context of Separation Logic but not for standard verification problems.
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 69–92, 2022.
https://doi.org/10.1007/978-3-030-94583-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_4

70 G. Ernst

Contribution and Outline: In this paper, we provide a deep investigation
of loop contracts in comparison to invariants, from a theoretical and from an
empirical point of view, leading to the following technical results:

– We formulate contract-based verification (Sect. 4) to clearly exhibit the coin-
cidence of invariants and loop preconditions, and the dual nature of invariants
and loop summaries. Thereby we generalize Hoare’s approach [30]; as well as
Hehner and Gravel’s technique for for-loops [27] to all while-loops.

– Just as variants capture the delta between partial and total correctness, loop
preconditions correspond to absence of runtime errors in the loop body, lead-
ing to yet a weaker correctness criterion for which loop summaries alone give
a complete verification method (Theorem 4).

– We provide constructive translations between plain invariants and loop con-
tracts (Propositions 1 and 2 in Sect. 5), which explains their parity and more-
over provides key guidelines for building and integrating tools.

– We reify Tuerk’s approach [54] as a syntactic proof rule (Sect. 6) that lends
itself directly for implementation in typical verification tools, by leveraging
specification statements [43].

The key take-away is that contracts offer a particular and useful way to think
about the correctness of loops, that is conceptually different from invariants, but
at the same time, the technical requirements for supporting this approach turn
out to be superficial, and tool support is straight-forward.

As a consequence, we are at liberty to choose the approach that fits a particu-
lar problem most. But what does that mean in practice? What are the advantages
and disadvantages of contracts in comparison to invariants?

– We specify the correctness of a number of well-known algorithms with con-
tracts (Sect. 7), characterize when and why loop summaries may carry the
bulk of the proof, and also give insights into their limitations.

We show that loop contracts may resemble the respective correctness require-
ments more closely and require minor generalizations only, when compared to
their invariant counterparts. Loop summaries are suitable for those properties
which naturally propagate backwards and are thus misaligned with the forward
computation of a loop. On the other hand, they tend to require additional frame
conditions to preserve modifications of data structures across iterations.

Proofs: A mechanization in Isabelle/HOL [47] of the theory presented in Sects. 4
and 5 is available at https://zenodo.org/record/5509953.

2 Motivation and Overview

In this section we exemplify proofs using invariants and proofs using loop con-
tracts. The running example is Challenge 1 from VerifyThis 2011 [8]: finding the
maximum in an array by elimination, as shown in Fig. 1. The program maintains
a subrange a[l..r + 1] wrt. two indices l and r of candidates for the maximum
in array a of length n. In each iteration, the smaller of the two candidates is

https://zenodo.org/record/5509953

Loop Verification with Invariants and Contracts 71

Fig. 1. Finding the maximum element in an array by elimination. Algorithm (left) and
different correctness arguments (right), which are all sufficient alone.

eliminated from the subrange, either by incrementing l or by decrementing r.
Correctness of the algorithm depends on the fact that the maximum remains in
that range. The specification, annotated at the top left, expresses that the return
value, denoted res, is equal to the result given by logic function max , where
a[0..n] denotes the non-empty sequence of array elements at indices 0, . . . , n − 1.
Subsequently, you may assume that arrays are unbounded, or that n = a.length.
Moreover, termination is not discussed in this paper, it is completely orthogonal.

Specification. At the top-right of Fig. 1, two example invariants are shown.
The one used by the Why 3 team in [8] imposes an ordering on the index vari-
ables (first •) and expresses that both the left part and the right part of the
array contains elements that have been rightfully excluded, i.e., one of the two
boundary values is greater than all of these (second •). The invariant discovered
by the KIV team expresses that there remains some index k within the range
that is maximum of the whole array, implying that this range remains non-empty
for the maximum to be well-defined. In both cases, the program’s postcondition
follows from the invariant when the loop guard becomes false, i.e., when l = r.

We can alternatively specify the loop using a contract, which consists of a
loop precondition, later called a “safe” invariant (cf. Definition 4), whose role is
to guarantee that the loop executes without error, and a summary, which estab-
lishes functional correctness. The latter is a relation between current unprimed
values and primed final values of the program variables. From whichever inter-
mediate indices l and r we jump into the execution of the loop, the element at
the final index l′ will be maximal for that subrange. The specification of the
program is implied for l′ = res wrt. initial values l = 0 and r = n − 1. The
loop precondition is about the ordering of indices to keep track that the range
remains nonempty.

We may appreciate that the contract reflects the intuition behind the algo-
rithm more naturally: It computes a final index l′ that points to the maximum.
Moreover, this summary occurs almost verbatim in the annotation of procedure
max, albeit with the fixed bounds 0 and n that have to be generalized (such gen-
eralization is, of course, unavoidable). In Sect. 5 we show a third possibility to
state an invariant, motivated by and constructed from this summary.

72 G. Ernst

Fig. 2. Forward propagation of invariant I. Blue: assumptions, red: to prove. (Color
figure online)

Fig. 3. Backward propagation conditions for a loop postcondition R with respect to
an iteration of the loop. Whe overall conclusion is marked green. (Color figure online)

Proofs. Schematically, we can describe a terminating execution of the loop,
using logical variables li and ri indexed by the i-th iteration, for i = 0, . . . , n,
where l0 = 0, r0 = n − 1, and ln = rn. Hence, I describes all states encountered
loop head, including those when the loop is entered first and right when the loop
exits. R describes the relation between these states at loop head and the final
states at loop exit. The proof that an invariant I is correct considers the usual
three conditions, visualized in Fig. 2: The invariant holds initially, propagates
forwards through an arbitrary iteration, and finally establishes the postcondition
of procedure max when the loop terminates. Dually, the conditions to show that
a summary is correct work their way backwards as visualized in Fig. 3: The
relation R adequately summarizes the computation of a loop that terminates
immediately and can be extended to cover an arbitrary leading iteration, too.
As a result, the entire computation of the loop is summarized by R, which
together with the precondition of max establishes the postcondition.

We briefly sketch the critical step of backwards propagation for the R shown
in Fig. 1, in the case that a[l] <= a[r] evaluates to true in the i-th iteration.
Let R(li, ri, ln, rn) denote the instantiation of the summary with l, r �→ li, ri and
l′, r′ �→ ln, rn (analogously for i + 1). From state i + 1 with

R(li+1, ri+1, ln, rn) ≡ a[ln] = max (a[li+1..ri+1 + 1]) (1)

where li+1 = li+1 and ri+1 = ri, we propagate R from back to state i and prove

R(li, ri, ln, rn) ≡ a[ln] = max (a[li..ri + 1]). (2)

Using equality max (a[li..ri +1]) = max (a[li],max (a[li +1..ri+1 +1])) and substi-
tuting variables, it remains to show that a[ln] = max (a[li], a[ln]), i.e., a[li] ≤ a[ln],

Loop Verification with Invariants and Contracts 73

which follows by transitivity from the if condition a[li] ≤ a[ri] and a[ri] ≤ a[ln]
as a consequence of (1). We remark that these reasoning steps are easy for auto-
matic provers when provided with the obvious properties of max .

3 Preliminaries

We consider imperative commands C, defined over a semantic domain of states S,
as relations C ⊆ S × Ŝ with Ŝ = S � {�} � {s↓ | s ∈ S}, where � signifies a
runtime error (e.g. failed assertion, division by zero, out of bounds array access),
and s↓ signifies early exit of a loop via a break command in state s. By notational
convention ŝ ∈ Ŝ, whereas s ∈ S strictly. Nontermination, which is orthogonal
to this paper, is reflected by the absence of successor states as usual. We use
suggestive naming: a state s0 denotes an initial state of a loop execution, si, si+1

are intermediate states, sn typically refers to a final state at loop exit.

Definition 1 (Validity of Hoare-Triples). A command C ⊆ S × Ŝ is par-
tially correct wrt. a precondition P ⊆ S and a postcondition Q ⊆ S, if the Hoare
triple {P }C {Q } is valid, written |= {P }C {Q }, and defined as usual

|= {P }C {Q } iff ∀ s, ŝ′. P (s) ∧ C(s, ŝ′) =⇒ ŝ′ ∈ S ∧ Q(ŝ′)

Given a starting state s with P (s), the possible final states ŝ′ after executing com-
mand C satisfy two constraints: They must be regular states ŝ′ ∈ S, ruling out
runtime errors in the loop body, and they must satisfy the postcondition Q(ŝ′) of
the triple. Analogously to splitting total correctness into termination and partial
correctness, we separate these aspects of safe execution and correctly establishing
the postcondition into two semantic judgements:
Definition 2 (Safety and Correctness of Hoare-Triples).

{P }C is safe iff ∀s, ŝ′. P (s) ∧ C(s, ŝ′) =⇒ ŝ′ ∈ S (3)
{P }C {Q } is correct iff ∀s, ŝ′. P (s) ∧ C(s, ŝ′) ∧ ŝ′ ∈ S =⇒ Q(ŝ′) (4)

which clearly satisfy this correspondence:

|= {P }C {Q } iff {P }C is safe and {P }C {Q } is correct (5)

Definition 3 (Semantics of Loops). Semantically, a loop W (t, B) ⊆ S × Ŝ
with test t ∈ S and body B ⊆ S × Ŝ is defined as the least fixpoint of

¬t(sn) =⇒ W (t, B)(sn, sn)
t(si) ∧ B(si,�) =⇒ W (t, B)(si,�)

t(si) ∧ B(si, sn↓) =⇒ W (t, B)(si, sn)
t(si) ∧ B(si, si+1) ∧ W (t, B)(si+1, ŝn) =⇒ W (t, B)(si, ŝn)

The first condition terminates the loop, the second condition propagates errors
in the body, the third condition propagates early loop exit, and the last condition
unrolls the loop once if the first iteration results in a regular state s′ ∈ S.

In the following we are concerned in verifying correctness of a loop W (t, B)
wrt. pre-states P and post-states Q, as expressed by |= {P }W (t, B) {Q },
respectively its constitutents of “safe” and “correct” execution via (5).

74 G. Ernst

4 Verification of Loops with Invariants and Contracts

This section succinctly states the approach to the verification with invariants and
loop contracts, and we prove soundness and completeness theorems. The results
have been mechanized in Isabelle/HOL [47]. The presentation here is based on
systems of cyclic Horn clauses [5]. Subsequently, we mark those conditions deal-
ing with runtime errors by (†), and those dealing with breaks by (‡).
Definition 4 (Loop Invariants, Floyd [20], Hoare [30]). Predicate I ⊆ S
is an inductive invariant of loop W (t, B) wrt. pre-state described by P ⊆ S, if

P (s0) =⇒ I(s0)
I(si) ∧ t(si) ∧ B(si, si+1) =⇒ I(si+1) (when si+1 ∈ S)

An inductive invariant I is safe wrt. executions of the loop body B, if

I(si) ∧ t(si) ∧ B(si,�) =⇒ false (†)

An inductive invariant I is correct wrt. post-states Q ⊆ S, if

I(sn) ∧ ¬t(sn) =⇒ Q(sn)

I(si) ∧ t(si) ∧ B(si, sn↓) =⇒ Q(sn) (‡)

The first condition establishes I initially, the second propagates I over a single
iteration of the body otherwise. The third condition (†) prevents errors in the
body. The last two lines ensure Q upon regular termination of the loop, as well
as directly after a break. Note, Q(sn) does not necessarily imply ¬t(sn), i.e., we
cannot take the negative loop test for granted if there are non-local exits of the
loop by break.

Relational invariants J ⊆ S×S are sometimes convenient [44], where J(s0, si)
additionally tracks the state s0 when the loop was entered first, which can of
course be encoded with auxiliary variables as I(si) := ∃ s0. P (s0) ∧ J(s0, si).

It is clear that we have chosen the notions of safe and correct invariants to
mirror precisely the semantic counterparts of safe and correct loops, respectively:

Theorem 1 (Soundness of Loop Invariants). For a loop W (t, B),

– given a safe invariant I wrt. P then {P }W (t, B) is safe, and
– given a correct invariant I wrt. P and Q then {P }W (t, B) {Q } is correct

Proof. We prove I(s) ∧ W (t, B)(s, ŝ′) =⇒ ŝ′ ∈ S ∧ Q(ŝ′) (first claim), resp.
I(s) ∧ W (t, B)(s, ŝ′) ∧ ŝ′ ∈ S =⇒ Q(ŝ′) (second claim), each by induction over
the least fixpoint of Definition 3 using the relevant conditions from Definition 4.

�

Loop Verification with Invariants and Contracts 75

Theorem 2 (Completeness of Loop Invariants). For a loop W (t, B),

– if {P }W (t, B) is safe then there exists a corresponding safe invariant I
– if {P }W (t, B) {Q } is correct, there is a corresponding correct invariant I
– if |= {P }W (t, B) {Q }, there is an invariant I that is safe and correct

Proof. Inductive invariant λ si. ∃ s0. P (s0) ∧ I∗(s0, si) proves all three claims,
where I∗ ⊆ S ×S is the strongest relation that characterizes regularly terminat-
ing loop iterations, defined as the least fixpoint of:

¬t(sn) =⇒ I∗(sn, sn)
t(si) ∧ B(si, si+1) ∧ I∗(si+1, sn) =⇒ I∗(si, sn)

We omit some technical lemmas that connect I∗ with W (t, B). �

The result states that all critical pieces of information (e.g. outcome of
loop test t) and key reasoning features from the underlying induction proof
are reflected somehow in the constraints of Definition 4. Of course, reasoning
about I∗ is by no means easier than a proof using the semantic definition and
the challenge in practice is to find closed-form solutions in a given background
theory.

Definition 5 (Loop Contract). A (correct) loop contract I,R consists of a
loop precondition I that is a safe invariant, and a correct summary R (cf. below).

The precondition of a loop contract, as discussed previously, is just a safe
invariant (cf. Definition 4), which must at least be strong enough to rule out
runtime errors. The summary component of a contract is a relation R ⊆ S × S
that characterizes remaining iterations, such that R(si, sn) holds between any
intermediate state si at loop head and final state sn at loop exit.

Definition 6 (Loop Summary). Relation R ⊆ S × S is an (inductive) sum-
mary of a loop W (t, B), if

¬t(sn) =⇒ R(sn, sn)
t(si) ∧ B(si, si+1) ∧ R(si+1, sn) =⇒ R(si, sn)

t(si) ∧ B(si, sn↓) =⇒ R(si, sn) (‡)
A summary R is called correct wrt. pre-/postcondition P ⊆ S and Q ⊆ S, if

P (s0) ∧ R(s0, sn) =⇒ Q(sn)

The first line establishes that R holds reflexively at a regular loop exit, as the
dual of the initialization condition of invariants. The second line lifts R from
remaining iterations until termination of the loop to a summary that accounts
for an additional leading iteration, whereas the third line (‡) establishes that R
summarizes the last partial execution of the loop body upon a break.

The last line applies the relation R to the original pre-state s0 that satisfies P
to establish Q. Assumption P (s0) is the counterpart to the negated loop test

76 G. Ernst

¬t(sn) in the exit condition of Definition 4. If the loop body B does not con-
tain breaks at all—which can be checked syntactically—we may enrich R(si, sn)
with ¬t(sn) for free, effectively adding it as an assumption in line three.

There is no safe counterpart for summaries, because they wrap up a loop
execution after the fact when it would be too late to catch runtime errors.

Loop contracts implicitly translate a loop into a tail-recursive procedure. The
summary, taking the role of its postcondition, can then be interpreted as a rela-
tion between the parameters of the procedure and its return value. This provides
an intuitive justification why non-relational summaries are not adequate.1

Theorem 3 (Soundness of Summaries). Given a correct summary R of loop
W (t, B) that satisfies Definition 6 wrt. P and Q, then {P }W (t, B) {Q } is correct.

Proof. We prove W (t, B)(s, ŝ′)∧ ŝ′ ∈ S =⇒ R(s, ŝ′) by induction over the least
fixpoint from Definition 3, the claim follows. �

“Bare” summaries R(si, sn) according to Definition 6 must adequately
describe execution suffixes even when intermediate state si is unreachable
from P . In practice, is natural to strengthen the conditions by known induc-
tive invariants I(si) to constrain such states, e.g. by using summaries of the
form I(si) =⇒ R(si, sn) (cf. Proposition 2 below). In any case, summaries
alone are sufficient to prove the correctness of loops according to Definition 1.

Theorem 4 (Completeness of Loop Summaries). For a loop W (t, B), if
{P }W (t, B) {Q } is correct, then there exists a corresponding loop summary R.

Proof. We take R∗ ⊆ S × S, defined as least fixpoint of

¬t(sn) =⇒ R∗(sn, sn)
t(si) ∧ B(si, sn↓) =⇒ R∗(si, sn)

t(si) ∧ B(si, si+1) ∧ R∗(si+1, sn) =⇒ R∗(si, sn)

This R∗ is the strongest relation that characterizes terminating loop iterations,
possibly ending with a break command (in contrast to I∗ of Theorem 2). We
rely on the presence of P (s0) in the third condition of Definition 6: R∗(s0, sn)
implies W (t, B)(s0, sn), which proves Q(sn) via validity of the Hoare triple. �

Corollary 1 (Adequacy of Loop Contracts). |= {P }W (t, B) {Q } if and
only if there exists a corresponding loop contract I,R wrt. P and Q.

5 Translating Between the Approaches

Having soundness and completeness of both approaches from Sect. 4 we now
characterize their relationship.

1 Dually to invariants, non-relational version of summary R would quantify over final
states as ∀sn.¬t(sn) =⇒ R(si, sn), but that condition is too strong at loop exit.

Loop Verification with Invariants and Contracts 77

Corollary 2. For a given loop W (t, B) there exists a safe and correct invari-
ant I that satisfies Definition 4 wrt. P and Q, if and only if there exists a correct
contract J,R such that J is a safe invariant and R satisfies Definition 6.

Proof. In both directions, we have that |= {P }W (t, B) {Q } by Theorems 1
and 3, respectively, the claim then follows by Theorems 2 and 4. �

This corollary is of course not surprising, but the proof via the completeness
theorems and the underlying constructions I∗ and R∗ is unsatisfactory. A direct
translation that avoids these artifacts is clearly more useful, by constructing I
from J and R, and vice-versa, R from I and Q, as shown with Propositions
1 and 2. Not only does this give a direct and obvious proof of Corollary 2, it
also tells us how to integrate tools for the respective approaches as discussed
subsequently.

Proposition 1 (Invariants from Contracts). Given a correct contract J,R
wrt. P,Q, then I is a corresponding safe and correct invariant, where:

I(si) := ∃ s0. P (s0) ∧ J(si) ∧ (∀sn. R(si, sn) =⇒ R(s0, sn)
)

(6)

The first conjunct keeps track of the initial state s0 that satisfies P , which is
needed to make use of the last property of R in Definition 6. The second conjunct
tracks the safe invariant J , whereas the third conjunct predicts that the loop
summary wrt. the remaining iterations between current state s and an arbitrary
final state sn can be lifted to a summary of the whole execution beginning at s0.

Proof. We prove conditions of Definition 4 for the lifted invariant (6). The inter-
esting part is the choice of sn in (6), which is immediate for the loop exit cases
with ¬t(sn) resp. sn↓. Otherwise, sn is the same for both instances of I when
propagating it over the iteration of the body. �

Proposition 1 has immediate application in verification tools: Contracts can
be supported straight-forward as a front-end feature of a deductive verifier like
Dafny [39] that takes specifications from the user. The only necessary extensions
are adding contract annotations to loops and expressing relational predicates,
e.g., with the widely-used old keyword or special naming conventions as in Veri-
Fast [49]. The analogue of (6) appears to be useful in Separation Logic [50], too.
It has has been noted in a similar form in [53] as an encoding of Tuerk’s app-
roach [54], but it is presented less precisely wrt. the states involved (cf. Sect. 8).

Conversely to Proposition 1, a tool with first-class support for contracts can
be turned into a purely invariant-based verifier. The gap between the conditions
of Definition 4 and Definition 6 wrt. condition Q can be closed by canonical
summaries:

Proposition 2 (Contracts from Invariants). If I is a safe and correct
invariant wrt. P,Q, then I,R is the corresponding correct contract, where

R(si, sn) := I(si) =⇒ ¬t(sn) ∧ I(sn) for loops without break (7)
R(si, sn) := I(si) =⇒ Q(sn) for all loops, possibly with break (‡)

78 G. Ernst

Intuitively, these summaries characterize that if we jump into the loop with
a state s that satisfies the invariant I(s), then the remaining iterations will
establish precisely what can be derived from Definition 4 for the final state sn,
respectively.

Proof. We prove the conditions of Definition 6 for this R from Definition 4 for I.
Premise I(si) is needed for the respective exit properties of I to demonstrate
R(sn, sn) when the loop terminates in si = sn. Negative polarity of I(si) turns
the known forward propagation of I into the required backward propagation
of R. �

While technically correct, the constructions (6) and (7) produce rather large
and unwieldy formulas. One might furthermore worry that the introduction of
the universal quantifiers into invariant (6) hampers proof automation when R
is a complex formula, indeed, Dafny would typically fail to infer appropriate
triggers for it. There is a class of properties where the overhead of the respective
translation disappears completely. This is the case when we are interested in
tracking a function f(x) over state variables x (or analogously a predicate p(x)).

Proposition 3 (Functional Invariants and Summaries). For a loop
W (t, B) with precondition P and program variables x, y:

– ∃ x0. P (x0) ∧ f(x) = f(x0) is an invariant iff f(x′) = f(x) is a summary
– y′ = f(x) is a summary implies that f(x) = f(x0) is an invariant

merely by simplifying the result of the respective translations (6) and (7). �
Note, the two cases coincide when f(x′) = y′ for all final x′, y′ with ¬t(x′, y′, . . .).

Example: Recall the specification of the loop in max from Fig. 1 with summary
a[l′] = max (a[l..r + 1]). Subsequently, we tacitly assume a′ = a as the array is
unchanged. The second case of Proposition 3 produces an inductive invariant by
substituting backwards the initial values 0 = l0 and n = r0 + 1, which is correct
together with 0 ≤ l ≤ r < n.

invariant max (a[l..r + 1]) = max (a[0..n]) (8)

In Sect. 7 we will see that this simplification applies fairly often in practice and
can uncover invariants that are notably different from the textbook solutions,
yet conceptually simple and insightful in some sense. Simplifying the translation
in the converse direction can work nicely, too. Recovering reasonable summaries
from the invariants from Sect. 2, however, is challenging. We do not necessarily
expect the reader to follow all the details, but for completeness of discussion we
do include an attempt to translate the invariant of the KIV team.

Example: The KIV invariant has the form I(s) ≡ ∃ k. J(k, s) where concretely,
J(k, s) consists of two conjuncts, 0 ≤ l ≤ k ≤ r < n and a[k] = max (a[0..n]).
Starting from (7) (first variant), we heuristically transform its conclusion ¬t(sn)
and ∃ k′. J(k′, sn) into a correct summary under the assumption J(k, s) for some
fixed k, where k′ is a fresh name to avoid confusing the two occurrences. Since
¬t(sn) guarantees that l′ = r′, index k′ with l′ ≤ k′ ≤ r′ can be eliminated.
The second conjunct in J(k′, sn) then becomes

Loop Verification with Invariants and Contracts 79

intermediate result a[l′] = max (a[0..n])

which as a candidate summary is unfortunately not inductive. The desired gen-
eralization via max (a[0..n]) = max (a[l..r + 1]) can be justified from J(k, s):
We know that a[k] = max (a[0..n]), but since this index k is definitely between l

and r, it suffices to consider the more precise range a[l..r + 1]. Substituting this
equivalence into the intermediate result above leads to

summary a[l′] = max (a[l..r + 1]) (9)

We conclude that while the translation from summaries to invariants was
completely mechanical in the example, the converse translation is less obvious
and harder due to the need for a creative generalization. We speculate that the
underlying reason is that the two occurrences of R in (6) are coupled via common
state sn, whereas a similar coupling is missing in (7), such that there are fewer
opportunities to collapse the formula into a simpler form.

6 Loop Contracts in Hoare Logic

In this section we present a Hoare logic proof rule for the verification of loops
with contracts that lends itself to a straight-forward implementation. The app-
roach works analogously with strongest postcondition and weakest precondition
predicate transformers, as explained in Alexandru’s thesis [1]. The idea mirrors
that of Tuerk [54], however, he uses a shallow embedding of formulas, programs,
and Hoare triples in the higher-order logic of the HOL system. The inductive
case for one iteration of the body B with test t is expressed in [54] as

∀x,C.
(∀y. {P (y) }C {Q(y) }) =⇒ { t(x) ∧ P (x) }B;C {Q(x) } (10)

where the premise of the implication amounts to the inductive hypothesis for
the remaining loop iterations, abstracted here by an arbitrary command C. The
primary question is how to represent the inductive hypothesis in (10) with-
out escaping to the meta-level with Hoare triples as first-class objects. The key
insight is that specification statements (Morgan [43]) lead to an elegant formu-
lation as rule LoopContract below.

To this end, we make the distinction between syntax and semantics more
precise: Predicates P,Q, I,R are represented as formulas here, where a relational
summary R may refer to primed variables as in Sect. 2. By P [x �→ y] we denote
the parallel renaming of variables x to y in P , where by convention we overline
vectors of variables x. Derivability of Hoare triples is written
 {P }C {Q }. We
omit treatment of break for simplicity, see e.g. [33].

A specification statement x : [P,Q] has a precondition P , a set of variables x
that are nondeterministically modified, and a relational postcondition Q that
constrains the transition. The proof rule for the specification introduces new
logical variables that capture the pre-state, and removes the primes in Q:

x0 fresh

 {P } x : [P,Q] {Q[x, x′ �→ x0, x] } Spec

80 G. Ernst

The proof rule to verify a loop while t do B with test t and body B using a
contract I,R is shown below. The variables x = mod(B) are those modified by
body B, and x0, xi, xn are fresh logical variables capturing intermediate states.

 {P } x : [I,R] {Q }

 { I ∧ ¬t ∧ x = xn } skip {R[x, x′ �→ xn, x] }

 { I ∧ t ∧ x = xi } B; x : [I,R] {R[x, x′ �→ xi, x] }

 {P } while t do B {Q } LoopContract

The first premise abstracts the computation of the entire loop by its contract I,R
using a specification statement. From rule Spec, proof obligations akin to those
in Definition 6 are immediate via an application of the consequence rule. The
second premise terminates the loop when ¬t, the variables xn capture this final
state. We encode the corresponding proof obligation as a Hoare triple with com-
mand skip,2 which is equivalent to I ∧ ¬t =⇒ R[x, x′ �→ x, x], mirroring
the exit condition from Definition 6. The third premise, in contrast to (10),
embeds the inductive hypothesis directly into the program as specification state-
ment x : [I,R] that summarizes the remaining iterations after executing B once.
Variables xi capture the state right before B is executed for later reference in
the postcondition, whereas the reference to the intermediate state i + 1 after B,
needed for R in x : [I,R], is handled implictly via rule Spec. Thus, rule Loop-
Contract nicely retains the syntax-oriented, compositional nature of Hoare’s
approach.

7 Specification of Examples and Comparison

In this section we specify some verification challenges using invariants and con-
tracts. The examples are chosen not for their difficulty, but because they high-
light specific aspects, advantages, and limitations of the respective approaches.

Variables in procedure annotations always refer back to the initial values
of the parameters and res denotes the result value returned by the procedure.
Moreover, we factor out the part of the verification that is common to both
approaches, in terms of a loop precondition that one should understand as part
of the invariant as well as the loop contract. Finally, for those algorithms that
do not contain break, we implicitly assume that the negated loop test is made
part of the summary (cf. Definition 6 and Proposition 2).

Fast Exponentiation. The fast exponentiation algorithm computes xn by
traversing over the binary representation of the exponent n. The program3 tracks
a multiplier p = x(2

i) for each binary digit that is applied to the intermediate
result r in the i-th iteration only if the i-th least significant bit in n’s binary

2 Tuerk [54] remarks that, more generally, the inductive hypothesis may encompass a
subsequent program fragment C right after the loop, i.e., while t do B;C, and this
(concrete) C would then replace skip in the second premise, with x = mod(B,C).

3 Presentation adapted from http://toccata.lri.fr/gallery/power.en.html.

http://toccata.lri.fr/gallery/power.en.html

Loop Verification with Invariants and Contracts 81

representation is one, where residual exponent e continuously shifts right such
that the lowest significant binary digit of e always corresponds to that bit.

int fastexp(int x, int n)

requires 0 ≤ n

ensures res = xn

{

int r = 1, p = x, e = n;

while(e > 0) {

if(e%2 == 1)

r = r * p;

p = p * p;

e = e / 2;

}

return r;

}

precondition (both)
0 ≤ e

invariant
r · pe = xn

summary
r′ = r · pe

Both the invariant as well as the summary require the same kind of gen-
eralization, to account for the intermediate result in variable r. This example
admits a functional characterization according to Proposition 3. The route from
the summary to the invariant is straight-forward, the converse can be best under-
stood by noting that the initial values of r, p, e denoted r0, p0, e0 as in Sect. 2,
coincide with 1, x, and n, such that the invariant can be written as r ·pe = r0 ·pe0

0 .

Linear Search. Linear search, as shown below, traverses an array a of length n

from front to back using index i to find an element x. To avoid using return

inside the loop (which we have not formalized in Sect. 4) we maintain a variable r

that becomes true once the element is found, in which case we break out of the
loop. Remember that in this case we establish the postcondition of the procedure
directly, so that ¬r is a valid invariant.

bool lsearch(int x, int a[], int n)

requires 0 ≤ n

ensures res ⇐⇒ x ∈ a[0..n]
{

int i = 0; bool r = false;

while(i < n) {

if(x == a[i])

{ r = true; break; }

i++;

}

return r;

}

precondition (both)
0 ≤ i ≤ n ∧ ¬r

invariant
x /∈ a[0..i]

summary
r′ ⇔ x ∈ a[i..n]

invariant via Proposition 1
x ∈ a[i..n] ⇔ x ∈ a[0..n]

The common condition is about the range of the index variable i and the
fact that the loop head is encountered only with when r is false. The invariant
states, as expected, that the element has not been found yet in the initial range
up to and not including i. The loop postcondition states that the final value
of r, denoted r′, will indicate whether the element is found in the remaining
range between i and n. It is quite similar to the procedure contract of lsearch,

82 G. Ernst

requiring only the generalization of the lower bound. Moreover, given ¬r, if we
write the invariant equivalently as r ⇔ x ∈ a[0..i], then the respective approaches
become entirely symmetric. The loop invariant lifted from the postcondition via
Proposition 1 gives a nice alternative characterization of the work that remains
to be done (searching from i) in relation to the overall work to be achieved.

Binary Search. In contrast to linear search, binary search tracks two indices,
somewhat similarly to maximum by elimination from Sect. 2. The code is shown
below, using lower index l and upper index u (both inclusive).

bool bsearch(int x, int a[], int n)

requires 0 ≤ n ∧ sorted(a)
ensures res ⇐⇒ x ∈ a[0..n]

{

int l = 0, u = n-1;

bool r = false;

while(i < n) {

int m = (l+u) / 2;

if (x > a[m]) { l = m+1; }

else if (x < a[m]) { u = m-1; }

else { r = true; break; }

}

return r;

}

precondition (both)
0 ≤ i ≤ n ∧ ¬r

invariant
x /∈ a[0..l] ∧ x /∈ a[u + 1..n]

summary
r′ ⇔ x ∈ a[l..u + 1]

invariant via Proposition 1
x ∈ a[l..u + 1] ⇔ x ∈ a[0..n]

The invariant for binary search now excludes two sub-ranges of the array,
whereas the summary incorporates only the minor additional generalization for
the upper bound from n to u+ 1. Like in max from Sect. 2 but unlike with linear
search, the array is divided into three logical parts, of which the shown invariant
considers two, whereas summaries can zoom into the single remaining part. This
effect has been noted by Furia and Meyer [22, Sect. 2.3] where it is addressed by
a heuristic called “uncoupling” that splits up ranges as needed. With respect to
binary search and similarly maximum by elimination from Sect. 2, approaching
the problem via contracts leads to a nice invariant via Proposition 1 that avoids
such uncoupling.

Phone Number Comparison. Summaries can mediate between a forward
computation, which is effectively a “left-fold”, and a correctness condition that
is a “right-fold” (cf. [36]). This case occurs e.g. when the logical specification
uses an intermediate abstraction step to algebraic lists or sequences, over which
functions and predicates are typically specified by structural recursion.

Consider the comparison of phone numbers4 by ignoring non-digit characters.
As an example, the phone numbers (0) 12/345 and 01-2345 should be regarded
the same, whereas 1-23-45 is different because of the missing leading 0.

The algorithm keeps two indices, i and j, into arrays a and b that store the
characters of the respective numbers, of lengths m and n. The algorithm consists
4 Example communicated by Rustan Leino, who based his verification on Eq. (11).

Loop Verification with Invariants and Contracts 83

of a loop that increments i and j according to several cases until the numbers
are fully compared (first if) or a mismatch is detected (last else). If a[i] is not a
digit then i moves forwards, similarly j for b[j], and both jointly move forward
over two equal digits. The result of the comparison is returned via variable r as
previously.

bool compare(int a[], int m, int b[], int n)

ensures res ⇐⇒ filter(isdigit, a[0..m]) = filter(isdigit, b[0..n])
{

bool r = false;

int i = 0, j = 0;

while(true) {

if(i == m && j == n) { r = true; break; }

else if(i < m && !isdigit(a[i]) { i++; }

else if(j < n && !isdigit(b[j]) { j++; }

else if(i < m && j < n && a[i] == b[j]) { i++; j++; }

else { r = false; break; }

}

return r;

}

A nice specification of this algorithm is in terms of algebraic lists, constructed
from nil and cons, where a[i..j] denotes cons(a[i], cons(. . . , cons(a[j −1], nil))),
the list of the elements from index i to and including j − 1 of a. We rely on
a function filter that keeps only those elements in the list that satisfying a
predicate p. Filtering is defined by structural recursion over the algebraic list:

filter(p, nil) = nil

filter(p, cons(x, xs)) =

{
cons(x,filter(p, xs)), if p(x)
filter(p, xs)), otherwise.

With these prerequisites, the specification of procedure compare states that
the boolean result indicates whether filtering for digits only produces identical
lists. An obvious candidate for the invariant follows the idea from linear search,
and generalizes the upper bounds of the ranges compared from the array length
to the respective counter variable:

invariant (problematic) filter(isdigit, a[0..i]) = filter(isdigit, b[0..j])

While correct, the approach has the significant drawback that we need a lemma
that unfolds the recurrence of filter(p, a[0..k + 1]) at the end instead of the
front like the definition, to accommodate the index increments, which in turn
is provable by induction only after a further generalization of the lower index
from 0 to a variable. Overall, this approach is somewhat cumbersome, and can
be avoided when the solution is approached with loop contracts:

summary r′ ⇐⇒ filter(isdigit, a[i..m]) = filter(isdigit, b[j..n])

84 G. Ernst

for which the proof is straight-forward, and from which we immediately get an
equally easy to prove invariant by Proposition 1:

invariant filter(isdigit, a[0..m]) = filter(isdigit, b[0..n]) (11)
⇐⇒ filter(isdigit, a[i..m]) = filter(isdigit, b[j..n])

The shown mismatch between the natural direction of the loop vs. that of the
property correlates to the insight that for some algorithms, a recursive version is
easier to verify, and some tools explicitly translate loops into recursive procedures
to that end [6]. Using loop contracts, one can avoid this intermediate step. For
a similar discussion in the context of separation logic we refer to [35,54].

We emphasize that it is not always possible to factor out specification func-
tions like filter nicely and to defer the complexity of additional lemmas to a
library, as one might be inclined to suggest. When such functions are specific to
the case study, or simply when higher order functions are not supported by the
tool, the ability to base the loop specification on right-fold loop summaries is
certainly a useful trick in the bag that deserves to be treated first class.

Array Copy. We turn to programs that manipulate arrays, which uncovers a
deficit of summaries. Recall that loop contracts reason about three states, an
initial one s0, an intermediate one s, and a final one sn (cf. Fig. 3), whereas
invariants reason only about the first two. While it increases expressive power as
demonstrated above, it comes at a cost, too: Summarizing the remaining loop
iterations from s to the final state sn by summary R(s, sn) does not automatically
reflect the array modifications applied to get from s0 to s. This occurs in the
program below that copies n entries from array a to b. This is an instance of the
more general problem of framing, that is long known [10] and well studied. A
comprehensive treatment is beyond the scope of this paper, but we show how it
surfaces in the example.

void copy(int a[], int b[], int n)

requires 0 ≤ n

ensures b[0..n] = a[0..n]
{

int i = 0;

while(i < n) {

b[i] = a[i];

i = i+1;

}

}

precondition (both)
0 ≤ i ≤ n

invariant
b[0..i] = a[0..i]

summary
b′[0..i] = b[0..i]
b′[i..n] = a[i..n]

The expected invariant specifies that the prefix up to current index i has been
copied already. Analogously, the summary predicts that executing the remainder
of the loop will copy the suffix starting from i into the resulting array b′ (second
equation in the listing). However, that is not enough: In the back-propagation
step from i + 1 to i, from b′[i + 1..n] = a[i + 1..n] alone we cannot conclude
b′[i..n] = a[i..n] because the assignment to the entry b[i] in the current entry
does not appear anywhere, it is “forgotten”. The condition missing from the

Loop Verification with Invariants and Contracts 85

summary is that the remaining iterations do not touch the indices again that
were modified so far, i.e., that the lower range of b is unmodified.

Bubble Sort. We now turn to sorting algorithms, which are a classic example,
starting with bubble sort. It turned out to be somewhat tricky to get out of
the mindset associated with invariants, and to find a nice notation for a natural
specification. Again, framing is crucial, and we will do it explicitly, in terms of
comparing array ranges a[i..j] = b[i..j]. In similar spirit, by a[i..j] � b[i..j] we
denote that the array range a[i..j] is a permuation of b[i..j], which is equivalent
to stating that the multiset of elements on both sides are the same (a com-
mon encoding in Dafny). The code is shown below, together with a graphical
visualization.

The algorithm gradually constructs a sorted suffix of the array, which is
shaded in grey in the figure on the right. Goal of the inner loop is to move the
largest element in the prefix up to the boundary of the sorted range, as visualized
by the arrow. The loop specifications are shown below.

Outer Loop

precondition (both)
0 ≤ i < n

invariant
a � old(a)
max (a[0..i]) ≤ max (a[i..n])
sorted(a[i..n])

summary
a′[0..i] � a[0..i]
a′[i..n] = a[i..n]
sorted(a′[0..i])

Inner Loop

precondition (both)
0 ≤ j < i ≤ n

invariant
a[0..i] � old(a[0..i])
a[i..n] = old(a[i..n])
0 < j =⇒ a[j] = max (a[0..j])

summary
a′[0..j] = a[0..j]
a′[j..i] � a[j..i]
a′[i..n] = a[i..n]
a′[i − 1] = max (a′[j..i])

Here, we employ the old keyword in the invariants to refer back to the state
before the loop (cf. Sect. 4). In both approaches, we keep track of which parts
of the array have been permuted and which are unchanged, albeit the summary
is more precise for both loops to account for framing, similarly to array copy.

The approaches for both loops are typically symmetric: as already seen with
linear search, the invariant refers to properties of the prefix whereas the summary

86 G. Ernst

refers to properties of the suffix. For the inner loop it suffices to keep track
of where we have placed the maximum of that range. For the outer loop, we
establish that a particular part is already sorted. Interestingly, in the contract
approach it is not necessary to specify that all elements in the prefix are smaller
than those of the suffix. This information follows from the strong framing of the
outer loop, together with the summary of the inner loop.

Summary. The examples shown in this section complement similar expositions
of verified algorithms where invariants are used, for example [21,46] as well as
the Toccata Gallery.5 The intention was to compare utility of loop contracts. The
case is not entirely clear but it is possible to distill some insights as evidence
that sometimes loop contracts are just the right tool.

Contracts reason about complete results of a computation, whereas invariants
reason about partial intermediate results. Sometimes, the former is easier to
describe, and moreover closer to the overall correctness property, which can
then be taken from the program’s annotation. This comment applies specifically
to those algorithms where the work done so far affects the overall result only in
minor ways, as it is the case with the search algorithms, but not with the ones
that modify the array. We envision that there is a hidden potential to be unlocked
to discover loop specifications automatically, as it is done with invariants in
e.g. [21], and the preliminary experiment in [18] is a first step into this direction.
Moreover, proof arguments for summaries run counter to the computation of the
loop, implicitly turning it into a recursion. This helps to bridge the gap when the
specification is naturally expressed as a right-fold. On the downside, with loop
contracts it may be necessary to preserve some additional information across
the round-trip to the final state, as shown with copy. In general, if correctness
of the loop depends on unbounded work done so far, the immediate constraints
from executing the body once are insufficient and need to be complemented by
an invariant resp. loop precondition.

Overall, expressing correctness properties as part of a summary provides an
alternative and important conceptual angle, regardless of the underlying verifica-
tion method. But it is clear from the examples that it is typically a combination
of invariants and summaries that together allows for a natural specification.

8 Related Work

We emphasize that the approach of using contracts is not new, see e.g. Hehner
[26] for practical examples. The work closest to the theory of Sect. 4 is by Hehner
and Gravel [27], which shows an analogue of Definition 6 as Rule F in [27,
Sec 10]. Their presentation is closely tied to reasoning about for-loops, where
starting and ending indices are known (as symbolic expressions). In contrast,
we delimit the loop in terms of precondition P and postcondition Q, which
lifts the idea to all loops in general. Moreover, Rule F does not make explicit
the relational nature of postconditions, whereas Rule G in [27] considers two

5 http://toccata.lri.fr/gallery.

http://toccata.lri.fr/gallery

Loop Verification with Invariants and Contracts 87

arbitrary execution segments of the loop, instead of a single segment known to
end in a final state (cf. Figs. 2 and 3), possibly with additional limitations wrt.
framing. Further work that is based on the same idea is [7,12]. A constructive
translation like the one shown Sect. 5 is not provided there or elsewhere as far
as we know.

Ideas to leverage the postcondition of a procedure contract to derive invari-
ants has been explored by Furia and Meyer [22]. Applying such techniques in a
setting with loop contracts is a natural step forward, but from Sect. 7 it is clear
that the necessary generalizations remain challenging. Progress in solving Horn
clauses [11,14,19,23,24,32,55] will tie into such work.

Induction for the verification of loops (and also recursive procedures) occurs
in a variety of forms in practice, specifically when strong specifications are desired
and manual effort is acceptable. In the context of Separation Logic, Tuerk [54]
demonstrates verification rules with contracts, mechanized in the HOL theorem
prover, we refer back to Sect. 6 for a comparison. VeriFast offers loop specifica-
tions in terms of pre-/postconditions, with first-class support for applying the
inductive hypothesis, which was used to solve a challenge with linked trees in the
VerifyThis competition 2012 by Jacobs et al. [37], noting that the proof “with a
loop invariant, would be somewhat painful”. Tools that embed program verifica-
tion into a general purpose theorem prover can make use of explicit induction,
too, as shown e.g. with KIV (for the same challenge, Ernst et al. [17]). Alterna-
tively, loops can be turned into recursive procedures to aid verification [45].

The support for magic wands in Schwerhoff and Summers [53] resembles the
encoding of contracts as invariants via (6). Specifically, [53, Sect. 7] spells this
out as prerest ∗ (postrest −∗postall), albeit this construction does not shed insight
into the state variables involved, lacking the analogue of sn in (6).

A proof system based on coinduction (i.e. forward reasoning) that generalizes
loop verification to any recurring program locations is [13], a similar approach to
tackle interleavings in concurrency is [52]. Brotherston [9] takes a similar route to
construct cyclic proofs, implicitly making use of induction. All three approaches
have in common that the inductive property is constructed on the fly instead of
being expressed by a fixed predicate or formula up-front.

Recent work on the verification of unstructured assembly programs [41] notes
that a negative loop test ¬t cannot be assumed by default in such a setting, as
it is the case with the conditions Definition 6. As discussed, our approach can
include this conclusion as part of the loop postcondition, in the absence of break.

The tools participating in SV-COMP [2] show a strong bias towards invari-
ants. As an example, the most successful configuration of CPAchecker [4], CPA-
seq, relies on k-Induction [3,16], which exploits correctness constraints from
inside the loop body, but disregards the constraints after a particular loop for its
verification. Likewise, Property Directed Reachability [42] reasons forward over
loops, but it is more precise wrt. different stages of a computation; Z3’s fixpoint
engine is fundamentally based on this idea [31,38].

Ultimate Automizer [28] abstracts traces in terms of automata, which may
contain loops. Whether there is a more fundamental connection between their
approach and loop contracts is not quite clear, and we leave this question for

88 G. Ernst

future work. SeaHorn [25] is a verification platform for Horn clause based veri-
fication of C programs, using the invariant approach.

Backwards program analysis, notably and combinations with forward analy-
sis, has been used in abstraction refinement [40,56]. In contrast to here, the idea
is to back-propagate information about counterexamples instead of correctness
conditions to derive invariants via interpolation. Loop summarization in log-
ics for underapproximation [15,48] similarly guarantees reachability of certain
states, the underlying “backwards variants” are incomparable to loop summaries.

In Spark/GNATprove, loop invariants can be specified to hold anywhere in
the loop body [29], and there is an equivalent to old, referring to the state of the
loop entry. The approach is demonstrated with a verification of the prefixsum
algorithm, a tricky challenge from VerifyThis 2012 [34]. We leave it to future
work to complete this challenge using the approach presented here. The app-
roach bears resemblance to k-Induction [16], because correctness conditions are
reflected inside the loop, not in the code that follows as with contracts.

9 Conclusion and Outlook

This paper presents a concise and accessible formulation of loop contracts, which
generalizes Hoare’s [30] proof approach for loops using invariants, and Hehner’s
refinement-based approach [27]. The presentation sheds light into fundamental
properties of loop contracts as a conceptually different but theoretically equal
proof method (Corollary 1). Moreover, the approaches can represent each other,
and we give constructive translations between them (Propositions 1 and 2),
such that a verification tool needs to support only one internally, while the
other approach can be regarded as syntactic sugar. We have exemplified the use
of summaries versus invariants to encode the bulk of the correctness of some
standard verification tasks. Both approaches have their respective advantages
and disadvantages, as discussed at the end of Sect. 7.

A clear path to future work is to develop algorithms that synthesize loop
summaries from procedure postconditions, similarly to Furia and Meyer [22] for
invariants, but potentially exploiting their close correspondence. A preliminary
evaluation with state-of-the-art Horn clause solvers [18] shows that these can
in fact instantiate contracts almost as well as invariants, for a substantial set
of benchmarks, however these benchmarks are almost exclusively numeric, and
therefore too simple to be conclusive. Overall, we hope that in the future, veri-
fication based on loop-contracts finds its way into mainstream tools, and helps
leverage their possibilities for those problems where they are beneficial.

Acknowledgement. We very are grateful for the detailed feedback and suggestions
received from the reviewers at TACAS’21, CAV’21, and VMCAI’22, as well as their
insightful questions (which unfortunately cannot all be addressed here). Many thanks
to Toby Murray for valuable feedback and encouragement. The presentation in Sect. 6
is part of Gregor Alexandru’s bachelor thesis [1]. The treatment of break and goto in
loop contracts was explored by Johannes Blau in a student project. We thank Rustan
Leino for the phone number example.

Loop Verification with Invariants and Contracts 89

References

1. Alexandru, G.: Specifying loops with contracts. Bachelor’s thesis, LMU Munich
(2019)

2. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In:
TACAS 2020. LNCS, vol. 12079, pp. 347–367. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45237-7_21

3. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. Autom. Reason. (JAR) 60(3), 299–335 (2018)

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

5. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

6. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification
system: Verification by translation to recursive functions. In: Proceedings of the
Workshop on Scala, pp. 1–10 (2013)

7. Bohórquez, J.: An elementary and unified approach to program correctness. Formal
Aspects Comput. (FAC) 22, 611–627 (2010)

8. Bormer, T., et al.: The COST IC0701 verification competition 2011. In: Beckert,
B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 3–21.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0_2

9. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554554_8

10. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. Mach. Intell. 7(23–50), 3 (1972)

11. Champion, A., Kobayashi, N., Sato, R.: HoIce: an ICE-based non-linear horn clause
solver. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275, pp. 146–156. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02768-1_8

12. Charguéraud, A.: Characteristic formulae for mechanized program verification.
Ph.D. thesis, Ph.D. thesis, Université Paris-Diderot (2010)

13. Chen, X., Trinh, M.T., Rodrigues, N., Peña, L., Roşu, G.: Towards a unified proof
framework for automated fixpoint reasoning using matching logic. Proc. ACM Pro-
gram. Lang. 4(OOPSLA), 1–29 (2020)

14. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying array pro-
grams by transforming verification conditions. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 182–202. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54013-4_11

15. de Vries, E., Koutavas, V.: Reverse hoare logic. In: Barthe, G., Pardo, A., Schneider,
G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 155–171. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24690-6_12

16. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7_26

17. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV–overview and
VerifyThis competition. Softw. Tools Technol. Transf. (STTT) 17(6), 677–694
(2015)

https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-31762-0_2
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-642-54013-4_11
https://doi.org/10.1007/978-3-642-54013-4_11
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1007/978-3-642-23702-7_26

90 G. Ernst

18. Ernst, G.: A complete approach to loop verification with invariants and summaries
(2020). https://arxiv.org/abs/2010.05812. Extended version of this article

19. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4_14

20. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds.) Program Verification. Studies in Cognitive Systems, vol. 14,
pp. 65–81. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-
7_4

21. Furia, C.A., Meyer, B., Velder, S.: Loop invariants: analysis, classification, and
examples. ACM Comput. Surv. (CSUR) 46(3), 1–51 (2014)

22. Furia, C.A., Meyer, B.: Inferring loop invariants using postconditions. In: Blass,
A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS,
vol. 6300, pp. 277–300. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15025-8_15

23. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. ACM SIGPLAN Not. 47(6), 405–416 (2012)

24. Gurfinkel, A., Bjørner, N.: The science, art, and magic of constrained Horn clauses.
In: Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 6–
10. IEEE (2019)

25. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4_20

26. Hehner, E.C.R.: Specified blocks. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005.
LNCS, vol. 4171, pp. 384–391. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-69149-5_41

27. Hehner, E.C.R., Gravel, A.M.: Refinement semantics and loop rules. In: Wing,
J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1497–1510.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48118-4_29

28. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0_7

29. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove.
Softw. Tools Technol. Transf. (STTT) 17(6), 695–707 (2015)

30. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

31. Hoder, K., Bjørner, N., de Moura, L.: µZ– an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_36

32. Hojjat, H., Rümmer, P.: The Eldarica horn solver. In: Proceedings of Formal Meth-
ods in Computer Aided Design (FMCAD), pp. 1–7. IEEE (2018)

33. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt
termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46428-X_20

34. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis verification competition
2012: organizers report. Technical report, KIT, Fakultät für Informatik (2013)

35. Huisman, M., Klebanov, V., Monahan, R.: Verifythis 2012 (2015)

https://arxiv.org/abs/2010.05812
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-642-15025-8_15
https://doi.org/10.1007/978-3-642-15025-8_15
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-540-69149-5_41
https://doi.org/10.1007/978-3-540-69149-5_41
https://doi.org/10.1007/3-540-48118-4_29
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/3-540-46428-X_20

Loop Verification with Invariants and Contracts 91

36. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct.
Program. (JAR) 9(4), 355–372 (1999)

37. Jacobs, B., Smans, J., Piessens, F.: Solving the VerifyThis 2012 challenges with
VeriFast. Int. J. Softw. Tools Technol. Transf. 17(6), 659–676 (2014). https://doi.
org/10.1007/s10009-014-0310-9

38. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39799-8_59

39. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

40. Lin, S.W., Sun, J., Xiao, H., Liu, Y., Sanán, D., Hansen, H.: Squeezing loop invari-
ants by interpolation between forward/backward predicate transformers. In: Pro-
ceedings of Automated Software Engineering (ASE), pp. 793–803. IEEE (2017)

41. Lundberg, D., Guanciale, R., Lindner, A., Dam, M.: Hoare-style logic for unstruc-
tured programs. In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310,
pp. 193–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-
0_11

42. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

43. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst.
(TOPLAS) 10(3), 403–419 (1988)

44. Mraihi, O., Louhichi, A., Jilani, L.L., Desharnais, J., Mili, A.: Invariant assertions,
invariant relations, and invariant functions. Sci. Comput. Program. (SCP) 78(9),
1212–1239 (2013)

45. Myreen, M.O., Gordon, M.J.: Transforming programs into recursive functions.
Electron. Notes Theor. Comput. Sci. 240, 185–200 (2009)

46. Nipkow, T., Eberl, M., Haslbeck, M.P.L.: Verified textbook algorithms. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 25–53. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59152-6_2

47. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9

48. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL), 1–32
(2019)

49. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: industrial case studies. Sci. Comput. Pro-
gram. (SCP) 82, 77–97 (2014)

50. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of Logic in Computer Science (LICS), pp. 55–74. IEEE (2002)

51. Roşu, G., Lucanu, D.: Circular coinduction: a proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2_10

52. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: a temporal logic
framework for compositional reasoning about interleaved programs. Ann. Math.
Artif. Intell. 71(1–3), 131–174 (2014)

https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-58768-0_11
https://doi.org/10.1007/978-3-030-58768-0_11
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-030-59152-6_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-03741-2_10

92 G. Ernst

53. Schwerhoff, M., Summers, A.J.: Lightweight suppoert for magic wands in an
automatic verifier. In: European Conference on Object-Oriented Programming
(ECOOP), vol. 37, pp. 614–638. Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2015)

54. Tuerk, T.: Local reasoning about while-loops. In: 2010 Proceedings of Verified
Software: Theory, Tools, and Experiments (VSTTE), p. 29 (2010)

55. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571–591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_30

56. Vizel, Y., Grumberg, O., Shoham, S.: Intertwined forward-backward reachability
analysis using interpolants. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 308–323. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36742-7_22

https://doi.org/10.1007/978-3-319-63390-9_30
https://doi.org/10.1007/978-3-642-36742-7_22
https://doi.org/10.1007/978-3-642-36742-7_22

EPMC Gets
Knowledge in

Multi-agent Systems

Chen Fu1,2(B) , Ernst Moritz Hahn3 ,
Yong Li1 , Sven Schewe4 , Meng Sun5 ,
Andrea Turrini1,6 , and Lijun Zhang1,2,6

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

fchen@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 University of Twente, Enschede, The Netherlands
4 University of Liverpool, Liverpool, UK

5 LMAM and Department of Information Science, School of Mathematical Sciences,
Peking University, Beijing, China

6 Institute of Intelligent Software, Guangzhou, China

Abstract. In this paper, we present EPMC, an extendible probabilistic
model checker. EPMC has a small kernel, and is designed modularly.
It supports discrete probabilistic models such as Markov chains and
Markov decision processes. Like PRISM, it supports properties speci-
fied in PCTL*. Two central advantages of EPMC are its modularity
and extendibility. We demonstrate these features by extending EPMC
to EPMC-petl, a model checker for probabilistic epistemic properties
on multi-agent systems. EPMC-petl takes advantage of EPMC to pro-
vide two model checking algorithms for multi-agent systems with respect
to probabilistic epistemic logic: an exact algorithm based on SMT tech-
niques and an approximated one based on UCT. Multi-agent systems and
epistemic properties are given in an extension of the modelling language
of PRISM, making it easy to model this kind of scenarios.

1 Introduction

In this paper, we present a new model checker called EPMC, an acronym for
Extendible Probabilistic Model Checker. Two main characteristics of EPMC are
its high modularity and its full extendibility. It achieves its flexibility by an
infrastructure that consists of a minimal core part and multiple plugins that

This work was supported in part by the Guangdong Science and Technology Depart-
ment (Grant No. 2018B010107004) and by the National Natural Science Foundation
of China (Grants Nos. 62102407, 62172019).

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreements 864075 (CAESAR), and 956123
(FOCETA).

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 93–107, 2022.
https://doi.org/10.1007/978-3-030-94583-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_5&domain=pdf
http://orcid.org/0000-0002-0397-7656
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0002-7301-9234
http://orcid.org/0000-0002-9093-9518
http://orcid.org/0000-0001-6550-7396
http://orcid.org/0000-0003-4343-9323
http://orcid.org/0000-0002-3692-2088
https://doi.org/10.1007/978-3-030-94583-1_5

94 C. Fu et al.

provide model checking functionalities. We believe that it is very convenient to
develop a new model checker based on the core parts of EPMC. While the model
checker historically starts from probabilistic models, it will be easy to extend it
to incorporate other model types.

The baseline includes model checking functionality for probabilistic systems.
Probabilistic systems play an important role in reasoning about randomised
network protocols, and biological and concurrent systems. They also find appli-
cations in analysing security protocols. Markov decision processes are among
the most important semantic models. As a result, several model checkers that
support MDP analysis have been developed, including the state-of-the-art prob-
abilistic model checker PRISM [35], Storm [15], MRMC [30], LiQuor [12],
MoChiBa [50], and IscasMc [22]. These model checkers differ in the model
and property types they support. For instance, MRMC and Storm handle
branching time properties specified in PCTL [25], whereas LiQuor, IscasMc
and MoChiBa are specialised in analysing linear time properties (PLTL) [5].
PRISM can handle both.

The first baseline of EPMC includes support for PCTL, PLTL, and their
extension to PCTL*. In addition, it can also be used to analyse Markov games.
To demonstrate the main features of EPMC, we extend it to the model checker
EPMC-petl. EPMC-petl is designed for the verification of probabilistic multi-
agent systems against PETL (probabilistic epistemic temporal logic) proper-
ties under uniform schedulers. Multi-agent systems have found many applica-
tions and verification techniques have also been proposed over the past decades.
Although there are model checkers for multi-agent systems, as we will see in
related works (Sect. 4), they can only handle restricted classes of the model we
are interested in, such as a non-probabilistic setting or, where they can handle
probability, they do not support epistemic accessibility relations. The algorith-
mic design, implementation, and validation based on an existing model checker
for probabilistic multi-agent systems against properties specified in PETL under
uniform schedulers is not available.

Exploiting the minimal kernel and multiple plugins of EPMC, we can con-
veniently implement the algorithms specific for the epistemic fragment of PETL
while reusing the core parts of EPMC for the management of the remaining
fragment, part of PCTL. In particular, the modularity of EPMC makes the
development of new functionalities rather independent from the existing ones,
without having to change existing code. This speeds up the implementation
and simplifies the debugging of the code, by isolating the different components
responsible for the different verification steps.

Summarising, the main features of EPMC include extendibility, modularity,
and the support of games and strategy synthesis. Beyond introducing EPMC,
we also present, with its extension to EPMC-petl, the first tool that supports
PETL model checking for probabilistic nondeterministic multi-agent systems.

Organisation of the Paper. Section 2 introduces the architecture of our tool. In
particular, we demonstrate how to develop the PETL model checker EPMC-
petl. Experimental results are presented in Sect. 3. Sect. 4 discusses related
works, and Sect. 5 concludes the paper.

EPMC Gets Knowledge in Multi-agent Systems 95

2 Architecture

We show the architecture of EPMC and how to build EPMC-petl on top of
it. EPMC contains two main components: a) EPMC core; b) various plugins.
Details of these components and the interface are provided below.

The larger part of EPMC is developed in Java. It uses JNA [3] to access
libraries written in C/C++ to improve the performance of some computation
or to provide access to legacy code. Instances of such libraries are the BDD
libraries (like CUDD [51]) used to store symbolically the models or the C imple-
mentation of different versions of value iteration algorithms. The compilation of
EPMC is managed by the software project management and comprehension tool
Maven [2]. Maven takes care of caching and retrieving all building dependencies
such as Ant [1] and JavaCC [4], used for the parsers. This allows for porting
EPMC to multiple platforms and architectures.

2.1 EPMC Core

EPMC consists of a minimal kernel and multiple plugins that provide the func-
tionalities needed for model checking. This kernel is rather small. It is only
responsible for the bootstrap phase, where the plugins are loaded, and for start-
ing the model checking procedure. It first initialises the data structures needed
to load the plugins and then loads and initialises each plugin according to the
order, in which they are specified. Finally, it starts the model checking procedure
by parsing the given models and properties and calling the appropriate solvers.

In order to maximise modularity, the kernel has no information about the
existing plugins until they are loaded and initialised; it is the duty of each plugin
to register itself in EPMC. In order to be recognised as a valid EPMC plugin,
it has to

– declare its name and that it is an EPMC plugin in its MANIFEST.MF file;
– list the plugins it depends on; and
– implement all interfaces defined by the plugin manager from the kernel part.

Once the plugin meets these requirements, it can be used in EPMC to provide
the expected functionalities. The plugin can be inserted into EPMC in two ways:
either its jar file is placed in the embeddedplugins directory contained in the
EPMC jar file and its name is listed in the embeddedplugins.txt file; or it
is specified at command line by means of the option plugin as a jar file or as
a directory containing the class files. During the kernel’s bootstrap phase, the
plugins listed in embeddedplugins.txt are loaded first, following the order in
which they appear in the file. Then the plugins specified by the option plugin
are loaded according to their order.

When loading a plugin, a set of specific methods defined by the plugin inter-
face are called. In these methods, the plugin can register itself with respect to its
functionalities. A plugin can, for example, add new command line options, new
commands, or new data types; or it can declare to support specific operations,

96 C. Fu et al.

such as model checking a specific logic operator. The registration performed by
a plugin can be altered by the plugins loaded later. A plugin loaded later has
therefore a higher priority than a plugin loaded earlier. In particular, one can
last load a simple plugin that removes or modifies some of the options provided
earlier in order to create a version of EPMC specialised for specific tasks within
a specific setting.

2.2 Plugins Available in EPMC

We will now introduce some of the plugins natively supported by EPMC; the
different flavours of EPMC can be obtained by choosing and combining multiple
plugins together: for instance, by selecting the appropriate set of plugins EPMC
becomes a tool for performing PCTL model checking on Markov chains or MDPs,
and with a different set of plugins we can obtain a tool for model checking Markov
decision processes against PLTL formulas. By combining the two sets of plugins,
the resulting EPMC is able to check these models against the whole of PCTL*.
Below we give an overview of the plugins of EPMC.

Algorithm Group: This group contains all plugins that provide the classical
algorithms that are used for probabilistic model checking, such as graph decom-
position into strongly connected components and maximal end components for
both symbolic and explicit representations. It currently only includes the plu-
gin algorithm, which provides standard algorithms, such as the following ones:
FoxGlynn, which follows the algorithm proposed in [28] for computing Poisson
probabilities for CTMCs; Tarjan, which implements the well-known strongly
connected component decomposition algorithm by Robert Tarjan [53] for explicit
data structures; and Bloem and Chatterjee, which compute strongly con-
nected components using BDDs and are based on the work of Roderick Bloem
et al. [6] and Krishnendu Chatterjee et al. [10], respectively.

Automata Group: The purpose of this group is to enclose the plugins that encode
ω-regular automata. It currently includes two plugins, namely the automata
and the automaton-determinisation plugins. automata provides a uniform
interface for automata such as Büchi and Rabin automata, while automaton-
determinisation provides the algorithms proposed by Sven Schewe, Thomas
Varghese, and Nir Piterman [46,48,49] to determinise nondeterministic Büchi
automata to deterministic Rabin and parity automata.

Command Group: This group provides three plugins that set the main function-
ality of EPMC: command-check calls the model checker to actually perform
the model checking operation; command-help prints out the usage messages;
and command-lump requires as input a probabilistic model and generates as
output a new model, which is bisimilar to the original model.

EPMC Gets Knowledge in Multi-agent Systems 97

BDD Group: The BDD group is dedicated to the symbolic representation of
models and properties by means of the Binary Decision Diagrams data struc-
tures. The dd plugin provides a uniform interface to use a BDD library and
therefore does not provide any actual implementation of BDD data structures.
Such an implementation is provided by one of the following plugins; each of
them implements the dd interface and at least one of them has to be included
whenever EPMC is expected to support the symbolic representation of models.

The dd-buddy plugin wraps the C library BuDDy [14], which is a small and
efficient BDD library. The dd-cacbdd plugin gives access to the C++ library
CacBDD [44], which implements a dynamic cache management algorithm. The
dd-cudd plugin provides the C library CUDD [51], which is the most well-
known BDD library used in several tools; it is the default BDD library of the
PRISM model checker [35,47]. The dd-cudd-mtbdd plugin is the companion
of dd-cudd for the multi-terminal binary decision diagrams (MTBDDs) offered
by CUDD. The dd-jdd plugin includes the library JDD [54], which is a Java
implementation of binary decision diagrams inspired by BuDDy. The dd-sylvan
and dd-sylvan-mtbdd plugins make the library Sylvan [17] available in EPMC;
Sylvan is a parallel (multi-core) BDD library written in C.

Bisimulation Algorithm Group: This group collects the plugins that compute
bisimulation relations on the models: the lumper-explicit-signature plugin
implements a signature based lumping algorithm for probabilistic systems; and
the lumper-dd plugin implements a lumping algorithm for probabilistic systems
by using MTBDDs.

Expression Group: This group hosts the expression-basic plugin, which is
designed to provide a uniform interface as well as the corresponding data struc-
tures to handle formulas from temperoal logics like PCTL and PLTL.

Graph Group: The single graph plugin available in this group provides a uniform
interface as well as the data structures to store various models as a graph. The
model can be a Markov chain, a Markov decision process, an automaton, or any
model that can be interpreted as a labelled graph. It also provides the interfaces
to access the properties in the nodes or the properties on the edges. For instance,
it permits to collect all atomic propositions that hold in a state via evaluating
the properties of this state node.

Graph Solver Group: Similar to the BDD group, we have the graphsolver plu-
gin, which defines a uniform interface for solving the linear programming prob-
lems used to compute the reachability probabilities the model checking problems
are reduced to. The actual implementation is provided by the graphsolver-
iterative plugin, which solves the given linear programming problem by value
iteration. It supports both Jacobi and Gauss-Seidel iteration methods.

JANI Format Group: This group contains all plugins related to the recently pro-
posed JANI model and interaction format [7]. There are currently three plugins:

98 C. Fu et al.

the jani-model plugin provides a parser to transform an input JANI model to
a graph or an MTBDD. It is also able to parse the input JANI formula; the
jani-exporter takes care of exporting models and properties in JANI format.

PRISM Format Group: The single prism-format plugin available in this group
provides a parser to transform a given PRISM model description to an explicit
graph or an MTBDD. It also provides a parser for the input formula.

Property Solver Group: The plugins contained in this group are responsible
for solving the properties analysed during the model checking phase. Simi-
larly to the BDD group, the specific property solvers are all implementations
of the common interface provided by the propertysolver plugin. There are
currently eight implementation plugins representing eight different classes of
properties: propertysolver-coalition provides a solution to solve a proba-
bilistic parity game against linear temporal properties; propertysolver-filter
handles the filter operation in the given PRISM formula; propertysolver-ltl-
lazy implements an efficient method to model check the PCTL* logic over
the probabilistic systems by means of advanced LTL verification techniques;
propertysolver-operator works with the operators that occur in the given
formula; propertysolver-pctl implements the PCTL model checking algorithm
over probabilistic systems; propertysolver-propositional provides a way to
identify all states that satisfy the given propositional formula; propertysolver-
reachability exemplifies how to write a plugin that handles the reachability
formula PFa over Markov chains; and propertysolver-reward implements a
model checking algorithm to handle probabilistic systems with rewards.

Util Group: The single plugin util available in this group provides basic utilities
useful for working with bits, JSON documents, and other native data types in a
JAVA-style approach.

Value Group: Similar to the expression group, this group hosts the value-basic
plugin, which is designed to provide a uniform interface to represent all kinds of
values and types that may be used in EPMC, as well as the implementation of
the standard values and type such as Booleans, integers, and reals.

Dependencies Between Plugins. Each plugin may have build-time and run-
time dependencies on other plugins. Build-time dependencies can be considered
as hard dependencies: they must be satisfied at compilation time as well as
during the bootstrap phase; these build-time dependencies are made explicit in
the MANIFEST.MF file, and the order the plugins are loaded in the bootstrap phase
has to respect such build-time dependencies. For instance, the property-solver-
pctl plugin has a build-time dependency on property-solver, since property-
solver-pctl implements the interfaces defined by property-solver.

The graph of build-time dependencies between the groups of plugins is shown
in Fig. 1, where an arrow from one group to another means that the former

EPMC Gets Knowledge in Multi-agent Systems 99

Fig. 1. Build-time dependencies between groups of plugins in EPMC

requires the latter. To simplify the graph, we omitted all arrows that can be
inferred by transitivity, such as the one between any group and util.

Run-time dependencies can be seen as soft dependencies: their satisfaction
depends on the actual steps performed during the model checking phase. For
instance, the property-solver-pctl plugin has only a run-time dependency
on graphsolver-iterative, since graphsolver-iterative is required during the
model checking phase only in cases the property cannot be decided via a sim-
ple graph exploration. (This happens for quantitative properties.) This means
that graphsolver-iterative has to be available at run-time for some properties,
while for other properties it may be missing. If EPMC is intended to be used
to check only qualitative properties, then graphsolver-iterative can safely be
omitted, while EPMC needs the graphsolver-iterative plugin (or any other
plugin implementing graphsolver) to analyse quantitative properties.

2.3 PETL Model Checker as a Plugin

The structure of EPMC-petl, largely shared with EPMC given its modular
architecture, is illustrated in Fig. 2.

To provide the PETL model checking algorithms for multi-agent systems
offered by EPMC-petl, we have developed the PETL plugins that add the cor-
responding functionalities, namely: the parser for the multi-agent system model
specification and the PETL properties; the data structures to store them; and
the algorithms for evaluating the properties against the given model.

In multi-agent systems, the agents have the capacity to perform certain
actions, which they choose according to their individual protocols. Given the
distributed nature of multi-agent systems, it is typical that the agents have
incomplete information about the state of the global system due to the fact that
they are only able to observe a limited part of the global state when they have to
choose their actions. The incompleteness of information is normally modelled by
defining, for each agent i, an equivalence relation ∼i over all global states of the
systems, then two global states are considered indistinguishable for a given agent
i if they are related by ∼i. Note that two states that are indistinguishable for
an agent may be distinguishable for another agent, so there is no constraint on
how two states are related by the different relations. Every agent makes its own

100 C. Fu et al.

Fig. 2. Architecture of EPMC-petl

decisions based only on the limited information it has, namely, the information
restricted by its own indistinguishability relation. Decisions of agents are usually
formalised by schedulers, which are functions that take the history executions as
input and decide (output) the next move for each agent. Schedulers that only
make use of the limited information each agent is aware of are called uniform.
Intuitively, a uniform scheduler for the agent i is expected to make the same
choice when given two executions that are equivalent under ∼i.

To build the model checker EPMC-petl, we have to first implement three
things in this plugin: the model, the property, and the equivalence relations.

Model. We use the PRISM language as input format and the model type should
be “mdp”, to represent the fact that the model has both probabilistic and nonde-
terministic behaviour. Each module in the MDP defines one agent’s behaviour,
with the name of the module being the agent’s name. The state space of the
overall multi-agent system is constructed following the PRISM approach, i.e.,
by considering all state variables, whether local to a module or global, and with
the usual PRISM restrictions on how transitions can update these variables.

Differently from the standard PRISM language semantics, at each step every
agent chooses one action among the enabled transitions, independent of whether
other agents have a transition with the same action that is enabled. The actions
labelling the transitions are therefore not used for the synchronisation of the
modules: they are instead the names of local actions, and each command must
be labelled by one action.

EPMC Gets Knowledge in Multi-agent Systems 101

The overall result is that the agents do not interact with each other by
synchronising on common actions, but by the effects of the individual transitions
chosen by the individual agents.

Property. To specify the properties of probabilistic multi-agent systems, in par-
ticular the temporal dynamics of agents’ knowledge, we adopt the probabilistic
epistemic temporal logic (PETL) (cf. [16]), which can be viewed as a combina-
tion of epistemic logic [18] and probabilistic computation tree logic (PCTL) [25].
To specify PETL formulas, we extend the PRISM language by adding the epis-
temic operators Ki and EG, CG, and DG to the set of operators that can occur
in a property formula, where i is (the name of) an agent and G is a set of agents.
Intuitively, the property Kiϕ means that agent i knows that property ϕ holds in
state s if ϕ holds in all states equivalent to s with respect to ∼i; properties EGϕ,
CGϕ, and DGϕ are similar, but refer to the common/distributed knowledge of
the group of agents. These epistemic operators are thus added to the PRISM
properties as K {agent} and E/C/D {agent1, ..., agentn}, respectively.

Equivalence Relations. Equivalence relations are encoded as sets of formu-
las shown in Fig. 3. Each agent in the model has its own equiv agent name
...equiv end block and each block contains a set of formulas. The formulas
are defined on all state variables that occur in the model definition and are not
restricted to those of the corresponding single agent.

Fig. 3. The format of
equivalence relations

Each formula induces one equivalence class, i.e., two
states that satisfy the same formula of agent j are consid-
ered to be related by ∼j . This means that formulas are
required to be pairwise disjoint; if a state does not satisfy
any formula, it is not equivalent to any other state, so it
belongs to its singleton equivalence class.

PETL Solvers. In general, the model checking problem for
probabilistic multi-agent systems against PETL properties
is undecidable [20], but is decidable when restricted to
the class of uniform memoryless schedulers. The decision
algorithm for the latter follows the PCTL approach: the
PETL property is checked bottom-up, with each operator
managed by its corresponding solver. Epistemic operators
are part of the state formulas while the temporal operators
are managed as in PCTL, except for the class of schedulers
considered for computing the Until operator.

The key parts of the PETL plugins are three solvers needed to verify PETL
properties: the first one focuses on the knowledge operators, while the other two
take care of the PCTL until operator (wrapped inside a probabilistic operator P,
as in PCTL), which needs to be computed on the class of uniform memoryless
schedulers instead of the general class of memoryless schedulers as done in PCTL;
these two solvers implement two different algorithms, an exact one based on
mixed integer non-linear programming and an approximation based on upper

102 C. Fu et al.

confidence bounds applied to trees (UCT) [31]. The remaining fragments of
PETL, like propositional formulas and the next operator, can be computed as
for PCTL. They can therefore be inherited from the existing plugins of EPMC.

MINLP Solver. This solver implements the PETL model checking algorithm
developed in [20]: it reduces the problem of checking the satisfaction of an until
formula to a mixed integer non-linear programming (MINLP) problem, which
can then be solved by, e.g., an SMT solver. Here we make use of the SMT solver
Z3 [45], which can be replaced by any other SMT solver that supports SMT-lib
version 2.5 as input format. The reduction ensures that the resulting scheduler
is uniform and memoryless, with a different encoding for Pmax=? and Pmin=?.

UCT Solver. This solver implements an approximated algorithm relative to the
until operator, based on the upper confidence bounds applied to trees (UCT)
algorithm [19]. This UCT based solver performs a Monte Carlo sampling of
the model, with heuristics guiding the choice between the exploration of new
parts of the state space, the analysis of already explored state space, and the
action to choose. This solver offers several parameters to the user to tune the
heuristics: time limit – how much time the solver should use when exploring
the model; depth limit – how many steps the solver should perform in the state
space exploration; B value – the bias parameter in the UCT formula between old
and new state exploration; and random seed – the random seed used to select
unvisited successors (so to be able to reproduce the solver’s execution).

The implementation of this solver makes use of specialised data structures to
store the information collected during the UCT sampling; in particular, the data
structure organises the information so to ensure that the underlying scheduler
is uniform, as required by the PETL decision algorithm. The basic idea is to
store the selected actions of each agent, and then exclude the actions making
the scheduler non-uniform when executing the next step in the exploration.

Knowledge Solver. This solver deals with the knowledge operators, namely Ki,
EG, DG, and CG. Depending on the actual knowledge property Z(ϕ), the solver
takes the satisfaction information about the state formula ϕ already computed
(recall that PETL model checking is based on a bottom-up approach similar
to PCTL) and returns the set of states that satisfy Z(ϕ), by implementing the
semantics of Z(ϕ).

Online Availability. EPMC, including its extension EPMC-petl, is an
open source tool. EPMC is freely available at https://github.com/ISCAS-PMC/
ePMC as a git repository to be forked and modified.

3 Empirical Evaluation

We have generated five different flavours of EPMC by loading different mod-
ules. One version that supports only PCTL; one that supports PCTL*; one

https://github.com/ISCAS-PMC/ePMC
https://github.com/ISCAS-PMC/ePMC

EPMC Gets Knowledge in Multi-agent Systems 103

Table 1. Different variations of EPMC. The runtime is given in seconds, and ‘ns’
and ‘to’ abbreviate ‘not supported’ and ‘time-out’ (set to 100 s, as performance
was not our concern). The properties used were ϕ1 = Pmax=?[Fnum crit > 1]
(PCTL); ϕ2 = Pmin=?[(GFp1! = 10 ∨ GFp1 = 0 ∨ FGp1 = 1) ∧ GFp1! =
0 ∧ GFp1 = 1] (PLTL); ϕ3 = P>=1[F“premium”] (PCTL); ϕ4 = P=?[(GFleft n =
16) ∨ ∨16

i=13 FGright n = i] (PLTL); ϕ5 = 〈〈1〉〉P>=1[(!“z1” U “z2”)] (Coalition);
ϕ6 = 〈〈1〉〉P>=1[(!“z1” U “z2”) ∧ F“z3”] (Coalition); ϕ7 = 〈〈1〉〉Pmin=?[(!“z1” U
“z2”)] (Coalition); ϕ8 = 〈〈1〉〉Pmax=?[(!“z1” U “z2”) ∧ (!“z4” U “z2”) ∧ F“z3”]
(Coalition); ϕ9 = Pmax=?[G(rw x �= rc x ∨ rw y �= rc y)] (PETL); and ϕ10 =
Pmax=?[GErw,rc(rw x �= rc x ∨ rw y �= rc y)] (PETL).

Experiment EPMC PRISM Rabinizer4 PRISM-games

PCTL PCTL* SMG PETL full

Mutual ϕ1 1.7 1.8 ns ns 1.8 0.0 0.0 0.0

Exclusion 4 ϕ2 ns 4.5 ns ns 4.5 14.4 10.4 13.3

Workstation ϕ3 1.1 1.0 ns ns 1.2 0.0 0.0 0.0

Cluster 16 ϕ4 ns 1.8 ns ns 1.7 to 0.7 to

Robot ϕ5 ns ns 2.9 ns 2.9 ns ns 0.6

10 ϕ6 ns ns 3.1 ns 3.2 ns ns 1.9

Robot shoot ϕ7 ns ns 5.2 ns 5.7 ns ns 0.0

7, 1, 0.3 ϕ8 ns ns 5.9 ns 5.5 ns ns 2.0

Reconnaissance ϕ9 ns ns ns 17.1 12.6 ns ns ns

2 ϕ10 ns ns ns 16.4 15.3 ns ns ns

for solving probabilistic parity games; one that supports PETL; and a version
that supports all of these. As comparison, we considered the following tools
PRISM [35], PRISM-games [11], and Rabinizer4 [34].

We have run these tools on a few MDP benchmarks taken from the PRISM
website [47], SMG games from [23,24] and multi-agent systems from [20]; we
considered some simple properties for these models. The goal of the comparison,
reported in Table 1, is to show the adaptability of EPMC in supporting different
logics and to use different modules, not the actual performance.

4 Related Work

We have already discussed related probabilistic model checkers in the introduc-
tion, all of which do not support PETL model checking. Here we list related
tools for analysing multi-agent systems or epistemic logics.

MCMAS [41–43] is an open-source, OBDD-based symbolic model checker for
verifying multi-agent systems. MCMAS is restricted to non-probabilistic mod-
els. There are some model checkers for multi-agent systems built on top of
MCMAS: MCMAS-SDD [36] introduces an SDD-based technique for the for-
mal verification of multi-agent systems; MCMAS-SLK [8] supports the verifi-
cation of systems against specifications expressed in strategy logic (SL) with
knowledge; MCMAS-SL[1G] [9] puts forward an automata-based methodology
for verifying and synthesising multi-agent systems against specifications given in

104 C. Fu et al.

SL[1G], which is the one-goal fragment of strategy logic; MCMASLDLK [32] can
verify properties given in LDLK (Linear Dynamic Logic with Knowledge) for
multi-agent systems; MCMASLDLfK [33] implements the algorithm for the ver-
ification of multi-agent systems against LDLfK specifications, which is LDLK
interpreted on finite traces. As for MCMAS, all these model checkers do not
consider probabilistic components in their systems and logics.

Probabilistic swarm systems support systems with an unbounded and time-
changing number of agents. Based on PRISM [35], Lomuscio and Pirovano have
introduced the software package PSV (probabilistic swarm verifier), with several
sub-components that support bounded time PSV-BD [38], counter abstraction
PSV-CA [39], strategic properties PSV-S [40], and faulty systems. The logics
these tools consider are either without epistemic operators, or they allow only a
single epistemic operator to occur as the top operator of the formula. While the
EPMC extension EPMC-petl we have discussed only analyses systems with a
fixed number of agents, it supports the nesting of epistemic operators as well as
their boolean combination.

MCK [21] is an OBDD-based model checker for multi-agent systems that
supports temporal-epistemic specifications. It has been extended in [26] to sup-
port probabilistic reasoning, but nondeterministic choices are not considered;
the work in [27] implements a symbolic BDD-based model checking algorithm
for an epistemic strategy logic with observational semantics also based on MCK.
Epistemic accessibility relations are studied in this work, but only for a non-
probabilistic setting. EPMC-petl supports the analysis of systems that com-
bine nondeterminism and probabilistic choices, which is missing in these tools.

MCTK [52] is a symbolic model checker for a temporal logic of knowledge. It
is developed from NuSMV [13]. Similarly, the authors of [37] propose a methodol-
ogy for model checking a temporal-epistemic logic by building upon an extension
of NuSMV. Verics [29] is a model checker for real-time and multi-agent systems.
It implements bounded model checking algorithms for CTL, real-time CTL, and
variants of CTL that include epistemic operators. Again, these tools can only
work with non-probabilistic multi-agent systems.

5 Conclusion

In this paper we have presented EPMC, an extendible probabilistic model
checker, and EPMC-petl, a tool for model checking epistemic properties
on multi-agent systems that exhibit both probabilistic and nondeterministic
behaviours. Key advantages of EPMC are its high degree of modularity and
full extendibility. We have exemplified by the particular extension of EPMC-
petl how this extensibility can be used to easily cover attractive new properties
that no other solver has covered before. Of course, besides demonstrating this
advantage of EPMC, EPMC-petl also provides this additional functionality,
which is novel and a contribution in itself.

EPMC Gets Knowledge in Multi-agent Systems 105

References

1. Apache AntTM website. http://ant.apache.org/
2. Apache Maven website. http://maven.apache.org/
3. Java Native Access (JNA) website. https://github.com/java-native-access/jna
4. JavaCCTM: The Java Compiler CompilerTM website. http://javacc.org/
5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

6. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. Formal Methods Syst. Des. 28(1), 37–56
(2006)

7. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

8. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

9. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: AAAI, pp. 2038–2044
(2015)

10. Chatterjee, K., Henzinger, M., Joglekar, M., Shah, N.: Symbolic algorithms for
qualitative analysis of Markov decision processes with Büchi objectives. Formal
Methods Syst. Des. 42(3), 301–327 (2013)

11. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

12. Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST, pp. 131–132 (2006)

13. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

14. Cohen, H., Whaley, J., Wildt, J., Gorogiannis, N.: BuDDy. http://sourceforge.net/
p/buddy/

15. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

16. Delgado, C., Benevides, M.: Verification of epistemic properties in probabilistic
multi-agent systems. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A.
(eds.) MATES 2009. LNCS (LNAI), vol. 5774, pp. 16–28. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04143-3 3

17. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 60

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (2004)

http://ant.apache.org/
http://maven.apache.org/
https://github.com/java-native-access/jna
http://javacc.org/
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/3-540-45657-0_29
http://sourceforge.net/p/buddy/
http://sourceforge.net/p/buddy/
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-04143-3_3
https://doi.org/10.1007/978-3-662-46681-0_60

106 C. Fu et al.

19. Fu, C., Turrini, A., Huang, X., Song, L., Feng, Y., Zhang, L.: Model checking for
probabilistic multiagent systems under uniform schedulers, submitted for publica-
tion, shared by the authors

20. Fu, C., Turrini, A., Huang, X., Song, L., Feng, Y., Zhang, L.: Model checking
probabilistic epistemic logic for probabilistic multiagent systems. In: IJCAI, pp.
4757–4763 (2018)

21. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

22. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

23. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: A simple algorithm for solving
qualitative probabilistic parity games. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 291–311. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41540-6 16

24. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: Synthesising strategy improvement
and recursive algorithms for solving 2.5 player parity games. In: Bouajjani, A.,
Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 266–287. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52234-0 15

25. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC
6(5), 512–535 (1994)

26. Huang, X., Luo, C., van der Meyden, R.: Symbolic model checking of probabilistic
knowledge. In: TARK, pp. 177–186 (2011)

27. Huang, X., van der Meyden, R.: Symbolic model checking epistemic strategy logic.
In: AAAI, pp. 1426–1432 (2014)

28. Jansen, D.N.: Understanding Fox and Glynn’s “Computing Poisson probabilities”.
Technical report. ICIS-R11001, Institute for Computing and Information Sciences,
Radboud Universiteit (2011)

29. Kacprzak, M., et al.: Verics 2007 - a model checker for knowledge and real-time.
Fundam. Informaticae 85(1–4), 313–328 (2008)

30. Katoen, J., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST,
pp. 243–244 (2005)

31. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

32. Kong, J., Lomuscio, A.: Model checking multi-agent systems against LDLK speci-
fications. In: IJCAI, pp. 1138–1144 (2017)

33. Kong, J., Lomuscio, A.: Model checking multi-agent systems against LDLK speci-
fications on finite traces. In: AAMAS, pp. 166–174 (2018)

34. Křet́ınský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to
your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96145-3 30

35. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

36. Lomuscio, A., Paquet, H.: Verification of multi-agent systems via SDD-based model
checking. In: AAMAS, pp. 1713–1714 (2015)

https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-41540-6_16
https://doi.org/10.1007/978-3-319-41540-6_16
https://doi.org/10.1007/978-3-319-52234-0_15
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

EPMC Gets Knowledge in Multi-agent Systems 107

37. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and
time with NuSMV. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12
January 2007, pp. 1384–1389 (2007)

38. Lomuscio, A., Pirovano, E.: Verifying emergence of bounded time properties in
probabilistic swarm systems. In: IJCAI, pp. 403–409 (2018)

39. Lomuscio, A., Pirovano, E.: A counter abstraction technique for the verification of
probabilistic swarm systems. In: AAMAS, pp. 161–169 (2019)

40. Lomuscio, A., Pirovano, E.: Parameterised verification of strategic properties in
probabilistic multi-agent systems. In: AAMAS, pp. 762–770 (2020)

41. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4 55

42. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1),
9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x

43. Lomuscio, A., Raimondi, F.: mcmas: a model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 31

44. Lv, G., Su, K., Xu, Y.: CacBDD: a BDD package with dynamic cache manage-
ment. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 229–234.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 15

45. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

46. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods Comput. Sci. 3(3) (2007)

47. PRISM web site. http://www.prismmodelchecker.org
48. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de

Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00596-1 13

49. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementa-
tion of generalised Büchi automata. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 42–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33386-6 5

50. Sickert, S., Křet́ınský, J.: MoChiBA: probabilistic LTL model checking using limit-
deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 9

51. Somenzi, F.: CUDD: CU decision diagram package release 2.5.0. http://vlsi.
colorado.edu/∼fabio/CUDD/

52. Su, K., Sattar, A., Luo, X.: Model checking temporal logics of knowledge via
OBDDs. Comput. J. 50(4), 403–420 (2007)

53. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

54. Vahidi, A.: JDD, a pure Java BDD and Z-BDD library. http://javaddlib.
sourceforge.net/jdd/

https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1007/978-3-540-78800-3_24
http://www.prismmodelchecker.org
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1007/978-3-319-46520-3_9
https://doi.org/10.1007/978-3-319-46520-3_9
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://javaddlib.sourceforge.net/jdd/
http://javaddlib.sourceforge.net/jdd/

High Assurance Software for Financial
Regulation and Business Platforms

Stephen Goldbaum1, Attila Mihaly1, Tosha Ellison2, Earl T. Barr3,
and Mark Marron4(B)

1 Morgan Stanley, New York, USA
{stephen.goldbaum,attila.mihaly}@morganstanley.com

2 Fintech Open Source Foundation (FINOS), Burlingame, USA
tosha.ellison@finos.org

3 University College London, London, UK
e.barr@ucl.ac.uk

4 Microsoft Research, Redmond, USA
marron@microsoft.com

Abstract. The financial technology sector is undergoing a transforma-
tion in moving to open-source and collaborative approaches as it works to
address increasing compliance and assurance needs in its software stacks.
Programming languages and validation technologies are a foundational
part of this change. Based on this viewpoint, a consortium of leaders from
Morgan Stanley and Goldman Sachs, researchers at Microsoft Research,
and University College London, with support from the Fintech Open
Source Foundation (FINOS) engaged to build an open programming
stack to address these challenges.

The resulting stack, Morphir, centers around a converged core inter-
mediate representation (IR), MorphirIR, that is a suitable target for
existing languages in use in major investment banks and that is amenable
to analysis with formal methods technologies. This paper documents the
design of the MorphirIR language and the larger Morphir ecosystem
with an emphasis on how they benefit from and enable formal methods
for error checking and bug finding. We also report our initial experi-
ences working in this system, our experience using formal validation in
it, and identify open issues that we believe are important to the Fintech
community and relevant to the research community.

Keywords: Fintech · Intermediate language · Software assurance

1 Introduction

The financial technology sector is undergoing a transformation in embracing
open-source and collaborative approaches to managing their collective industry
challenges. Many of those challenges involve sharing data models as well as busi-
ness logic and calculations. A prime example is the focus on leveraging commu-
nity initiatives around the digitization of regulatory needs to streamline industry
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 108–126, 2022.
https://doi.org/10.1007/978-3-030-94583-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_6

High Assurance Software for Financial Regulation and Business Platforms 109

efficiency. Managing the myriad regulations that any single organization must
comply with is a enormous task. Reuters Regulatory Intelligence tracks regula-
tory changes across 190 countries and reported an average of 257 daily alerts
in 2020.1 Programming languages and the tooling around them play a core role
in managing the complexity and engineering effort involved in fulfilling these
regulatory requirements and implementing critical business applications.

The current approach to high assurance development is based on classical pro-
cess quality and provenance. Legal teams review regulations, or process descrip-
tions, to generate a set of rules and compliance examples. Development teams
use these documents to produce the actual code and build an architecture that
implements the systems/regulations described in the documents. In this classic,
waterfall style method, the assurance of quality is based on the documenta-
tion, workflow checklists, and conformance tests provided by the legal team.
While effective, this process is a time consuming and expensive way to develop
high assurance systems. Since different companies have different platforms and
systems, this work is duplicated multiple times. Beyond the raw costs inher-
ent to this approach, the increasing complexity of financial rules creates situa-
tions where the rules are interpreted differently by different systems, resulting
in increased regulatory uncertainty and issues with interoperability.

These challenges require broad community engagement to overcome. Thus, a
consortium of leaders from Morgan Stanley and Goldman Sachs and researchers
at Microsoft Research and University College London drove this project, with
support from the Fintech Open Source Foundation (FINOS). The core challenge
involved creating a mechanism to share rules, calculations, and their data mod-
els in a form that spans the wide range of current and future technologies across
the industry. In this paper, we describe our experience in creating a program-
ming and validation ecosystem that can support the needs of financial services
companies in developing and delivering high assurance software and regulatory
compliance software artifacts. Three interlocking goals guided our work:

1. Developing a core IR and programming model that converge existing lan-
guages to leverage the hard won knowledge embedded in them and to max-
imise its deployability in and sharing throughout the ecosystem;

2. Setting up a baseline validation methodology to provide assurance guarantees
on programs in the core IR; and

3. Creating workflows that help the wider community integrate their frontend
platforms and backend validation tools into the ecosystem.

To achieve the first two goals, we developed MorphirIR, a converged, core
intermediate representation (IR) with two key properties: 1) it is a suitable target
for existing languages in use in major investment banks and 2) it is amenable to
analysis with formal methods technologies. MorphirIR, described in Sect. 4, is
based on a convergence of two languages—Morphir from Morgan Stanley [18]
1 According to Thomson Reuters “Cost of Compliance 2021” 78% of market partic-
ipants they surveyed expect the amount of regulatory information published by
regulators and exchanges to increase in 2021.

110 S. Goldbaum et al.

and Legend from Goldman Sachs [14]—with simplifications made to improve
its amenability to analysis.

The Fintech space has many bespoke domain specific and contract languages
(DSLs) that serve valuable purposes in their niche but are not large enough to
justify the cost of building a full toolchain. MorphirIR provides a core set of lan-
guage constructs that are sufficient to describe common business concepts, while
remaining simple enough to provide an easy translation target. As described
in Sect. 4, the converged MorphirIR language is based on a standard let-style
functional core calculus with algebraic types and polymorphic collections. This
core is augmented with a number of commonly useful types and operators such as
decimal numbers or dispatch tables. This allows a wide range of source languages
used in the community to, with a minimal investment to build a translator, gain
access to the full checking and compilation tooling stack provided.

MorphirIR has many features that make it well suited for formal analysis.
Its language core is purely functional, referentially transparent, fully determin-
istic, and utilizes a small number of collection functors (instead of recursion)
for most iterative processing. To provide a baseline for the effectiveness and
value that formal methods can provide beyond the current stacks, we transpiled
MorphirIR code to Microsoft Research’s Bosque language [3]. As described
in Sect. 3, the focus is on providing simple ways to encode high-level intents and
approaches to analyzing the code along with the intents to provide actionable
results and/or increased confidence that the code successfully implements the
specified properties.

Our experience with these systems, the corresponding workflows, and our
work to make these systems widely available are described in the Experience
Report (Sect. 5). Our experience translating existing languages, including Elm,
Legend, Bosque, and a few small DSLs show the viability of MorphirIR as a
shared intermediate language for this space. The initial experiences with valida-
tion have been similarly positive. The workflow, which supports full refutations of
errors, generation of witness failure inducing inputs, and partial checking [15,19]
results in an easy to use system that consistently provides actionable feedack
and confidence.

Based on these experiences and community feedback to date, we believe
Morphir establishes the basis for a vibrant software ecosystem in the Fintech
space as well as a unique opportunity to advance the state of the art in formal
methods and their practical application. Section 5 outlines where the expertise
and experience of the formal methods community will be particularly useful.
These areas range from the direct opportunity of demonstrating the effective-
ness and utility of new techniques in the Fintech proving ground by integrating
them into Morphir’s validation pipeline, to insights on the design of richer spec-
ification languages for MorphirIR, to the challenge of extending Morphir’s
validation stack from just code to the larger ecosystem of data and process com-
pliance, a space that calls for hybridising AI and verification techniques.

The contributions of this paper are:

High Assurance Software for Financial Regulation and Business Platforms 111

Fig. 1. MorphirIR technology stack.

– A report on our experience of building the MorphirIR core language as a
backend target for regulatory modeling languages and business platforms.

– Mapping of the MorphirIR language into the Bosque language and check-
ing ecosystem as a baseline for formal quality assurance.

– A report on our experience on using this tooling workflow with code coming
from Elm and Bosque applications.

– A fully open source language and analysis stack for the community, including
a suite of annotated code as an evaluation benchmark.

2 MorphirIR Stack

The converged MorphirIR core language provides a shared compiler and run-
time platform. The diagram in Fig. 1 shows the components of the Morphir
stack and where various members of the community are interacting with the
core MorphirIR language. The MorphirIR core language (Sect. 4) sits at the
center of the diagram and is the central component that enables innovation in
the rest of the stack.

2.1 Surface Languages

There are several surface languages, including Elm, Bosque, and Legend, that
can target the MorphirIR language. Currently, each one uses a custom tran-
spiler pass and interoperability requires manually projecting from the Mor-
phirIR representation to the semantics/types of the source language. The dot-
ted API abstraction component is a key open work item needed to develop a
higher level vocabulary of type and operation API’s to make interoperability
more transparent.

112 S. Goldbaum et al.

2.2 Validation Pipeline

The validation pipeline takes MorphirIR code into an underlying verifica-
tion language and tool for analysis. The default checker is currently BSQChk
(Sect. 3). Errors or other information are reported back into the original source
code using source maps maintained in the MorphirIR core model.

Our philosophy for validation tooling is pragmatic. In an ideal world, we
would have a full, and stable, specification for a task which we use to prove
that our implementation never fails and satisfies the specification. However, in
the world of under-specified and evolving regulations and business application
platforms, this ideal does not hold. Instead, we must deal with limited to no
specifications and, since our developers do not have time to debug/resolve proof
failures, we should be able to provide useful results even when proofs fail.

Thus, we consider the following hierarchy of confidence boosting results that
ensure useful feedback that either provides assurance the code is free of errors
or provides actionable information to fix a problem:

1a. Proof of infeasibility for all possible executions
1b. Feasibility witness input that reaches target state
2a. Proof of infeasibility on under-approximated executions
2b. No witness input found before search time exhausted

The 1a and 1b cases are our ideal outcomes where the system either proves
that the error is infeasible for all possible executions or provides a concrete
witness that can be used by the developer to debug the issue. The 2a and 2b
cases represent useful best effort results. While they do not entirely rule out the
possibility that a given error can occur, they do provide a substantial boost in
a developer’s confidence that the error is infeasible.

2.3 Monitoring and Compilation

Applications in the Fintech sector often run critical software, subject to exten-
sive compliance and auditing requirements. A common regulatory requirement
involves demonstrating to auditors exactly why any decision was made for up to
several years in the past. The Morphir tooling takes advantage of its functional
purity to reevaluate decisions to produce automated audit-quality explanations.
Explanations can take a variety of forms, such as natural language explanations
or flow charts. Evaluation can be injected into the code to publish explana-
tions through observability technologies or can be executed after the fact, for
example through an interactive web page that allows users to replay decision
evaluation much as a debugger would. Figure 1 shows a dedicated pipeline for
providing applicaton behavior observability [1], runtime safety monitoring, and
explanatory logic into the final executable images.

The explanatory logic component is an interesting feature that plays an
important role in audit compliance and in many business applications. Con-
sider the (simplified) regulatory code below derived from the 173 page FR 2052a
Liquidity Reporting instructions [13] for computing the category of an inflow:

High Assurance Software for Financial Regulation and Business Platforms 113

function classify(cashflow: CashFlow): FedCode {
if(netCashUSD(cashflow) >= 0) then

if(isOnshore(cashflow)) then IU1 else IU2
else

IU4
}

For a given transaction, an auditor (or analyst) may need to know why a
flow was categorized as IU2. In most systems, this would require looking into
the code and manually tracing the execution flows. Most analysts at a trading
desk, or, in this case, accountants, would not be comfortable with this type of
error prone task. Thus, the Morphir backend can automatically inject auto-
mated logging code for each branch to record which are taken and the values
of the arguments. Thus, if a user sees a flow categorized as IU2 (an Offshore
Placement), the Morphir system can explain this result by noting in the trace
log that the netCashUSD(cashflow) was positive and the flow was offshore e.g.
!isOnshore(cashflow).

Finally, the MorphirIR stack supports emitting source code in a variety
of languages for integration into the desired execution environment. The Java
Virtual Machine (via Scala or Java) is the standard output; SQL and JavaScript
are also supported. Each of these target languages currently requires a custom
emitter implementation but, as the MorphirIR language has special support
for types like Decimal and BigNat plus an opinionated container library, it also
requires non-trivial work to ensure full runtime support in each target as well.
The Morphir stack also provides cloud deployment and distributed execution
support via integration with the Dapr [4] platform.

3 Validation Methodology

The validation workflow for MorphirIR programs is modular to enable a vari-
ety of tooling for either general correctness properties or specialized analyses
for specific domains—e.g. checking for numerical stability or applying lint-style
checks to specific sections of code. In this paper, we focus on our experience with
the Bosque language’s validation system [15].

3.1 BSQChk Validation Workflow

The BSQChk checker first builds the code under analysis by translating the
MorphirIR code to the Bosque representation. Given the structure of the
MorphirIR code (Sect. 4), this translation is mostly a 1-1 process with book-
keeping to build source maps for error reporting. After this translation, BSQChk
loads the code and enumerates all possible error conditions it can check. For each
identified error, BSQChk follows the algorithm shown in Fig. 2.

The first action is to check if the error can be refuted under various definitions
of simplified models of the program – limited sizes on input values and numeric
bitwidth sizes ranging from 4-16. If the error can be show to be impossible in
these simplified models then the checker attempts a refutation proof with no

114 S. Goldbaum et al.

Fig. 2. BSQChk checker workflow.

limits on the size of inputs and 64 bitwidth sized numbers. If this is successful
then the checker has shown that the error is infeasible on all executions and we
achieved the highest quality, 1a, confidence level.

If we succeeded in proving the error infeasible for simplified models of the
program, but then failed to prove the infeasibility for the full case, we still
achieved the partial, 2a, confidence level.

If the refutation proofs fail then we search for a witness input for the error.
The small model search incrementally expands the input sizes and bitwidths
up to size 16. If we find an input that reaches the target error then we have
succeeded in producing a high value actionable result for the developer, 1b, in
our quality confidence level. With this result we know there is a real failure and
have a small input that can be used to trigger and debug it.

In the case we cannot generate a small witness we make a final witness gen-
eration attempt without limits on the input sizes and at the full 64 bitwidth for
numbers. If we find an input that reaches the target error then we have suc-
ceeded in producing a high value actionable result for the developer. Otherwise
we produce our minimal success result, 2b, where we aggressively explored the
input space.

The code in Fig. 3 shows a MorphirIR implementation of a business applica-
tion modeling example. The code snippet is focused on the available function.
This function computes the number of items still available to sell based on the
number at start of the day (initialPosition) and the list of buy transactions
(buys) so far. As a precondition it asserts that the initialPosition is non-
negative. As a postcondition it asserts that the result $result is bounded by
the initial position value.

The code to compute the number of buy transactions that have been com-
pleted successfully and the sum of the quantities from these purchases is concisely
expressed using the functor chain buys.filterType<BuyAccepted>().map(fn(x)=> x.quantity

).sum(). While this code is conceptually simple from a developer viewpoint, its

High Assurance Software for Financial Regulation and Business Platforms 115

Fig. 3. Bosque implementation of order processing code.

actual strongest postcondition logic semantics are quite complex. They include
a subset relation and predicate satisfaction relation on the filter, a quantified
user defined binary relation with the map, and an inductively defined relation as
a result of the sum. Thus, trying to prove that the postcondition is satisfied (or
finding an input that demonstrates the error is possible) is a challenging task
involving inductive reasoning, relationships between container sizes and contents,
and quantified formula.

Despite these complexities, the BSQChk checker can model this code, in
strongest postcondition form, as a logical formula in a decidable fragment of
first-order logic and instantaneously solve it [15]. The result is the following
assignment which satisfies all the input constraints and violates the ensures
condition:

initialPosition = 0 ∧ buys = List<Response>(BuyAccepted(“a” , 0.0,−1))

A developer can run the application on this witness, investigate the problem,
and identify the appropriate course of action to resolve the issue. In this case,
the fix uses the fact that the MorphirIR language supports BigNat, in addition
to BigInt, numbers to ensure that the buy quantity is always non-negative.

After this simple change, rerunning BSQChk instantaneously reports that
the program state where the ensures clause is false is unreachable for all possible
inputs. All of this analysis and proving is fully automated and does not require
any assistance, knowledge of the underlying theorem prover, or use of specialized
logical assertions by the developer.

116 S. Goldbaum et al.

4 MorphirIR Core Langauge

The MorphirIR language provides a unified target IR for various modeling
and platform development toolchains in use in the Fintech space and leverages
findings from recent work [15,21] on language design for automated reasoning,
to support advanced verification, error checking, and analysis tooling.

The initial source languages targeting this IR are a dialect of Elm (used in
the Morphir [18] stack) and Legend [14]. As these systems were built for mod-
eling financial data, logic, and calculations for business critical operations, their
designs already had most of the features we would want from the viewpoint of
building a high assurance ecosystem. They are pure, functional, and referentially
transparent. From this base, we refined the IR design based on experience with
the Bosque [3] language and tooling stack—making the programming model
fully deterministic, including additional primitive types, and expanding the set
of collection functors in the core library. The full language type grammar is
shown in Fig. 4 and the expression language in Fig. 5.

4.1 Types and Values

Primitives: MorphirIR provides the standard assortment of primitive types
and values including Bool, Int, and Float values. As the language is focused on
financial computation, we also provide a Decimal type. To support high assur-
ance programming, MorphirIR also supports overflow free BigInt numbers,
plus, the generally useful positive only numeric refinement types Nat and BigNat.
The MorphirIR String type represents immutable unicode string values.

Tuples and Records: Structural Tuple and Record types provide standard
forms of self describing types. MorphirIR records and tuples are always closed,
e.g. they must explicitly include all indices/properties.

Algebraic Data Types: The primary means of organizing data in MorphirIR
is classic algebraic datatypes. The members of the ADT can have named or
positional members.

Parametric Containers: Following the design of principles of the Bosque
language, we include List<T>, Set<T>, and Map<K, V> as core types in the
MorphirIR language. These types support a rich set of functors that enable
the majority of iterative processing tasks to be described without the use of
arbitrary iteration or recursion (see Fig. 6).

4.2 Expressions

Constants and Variables: MorphirIR has the usual constants for booleans,
numbers, and strings. Variables are used for function parameters and let bind-
ings in the usual way.

High Assurance Software for Financial Regulation and Business Platforms 117

Fig. 4. MorphirIR types.

Primitive Operators: The language provides a standard set of operations on
primitive types including, logical, arithmetic, and comparison operations. Arith-
metic operations on numeric types are always checked for overflow, underflow,
and div by 0. We do not allow implicit type coercions, so these operators are
only defined for values of the same types and conversions for mixed types must
be explicit. MorphirIR also provides the specialized // operator for integer
division (as opposed to the / operator for floating point divsion).

Constructors and Destructors: The constructor operations for the tuples,
records, and algebraic data types have familiar semantics. Patterns provide a
type safe way to destruct a value and access the constituent values.

Lambda: The use of functors to process collections is a major part of MorphirIR
programs. However, the widespread use of unrestricted higher order code greatly
increases the complexity and computational cost of program analysis. Combined
with our experiences, and the code style guidelines we have used, we opted to
restrict the use of raw lambdas. Thus, syntactically, lambda constructors are
only permitted in direct application positions. Consider the code:

function okc(l: List <Int >): Int {
return l.filter(fn(x) => x >= 0).size(); //ok - direct position

constructor
}

function okp(l: List <Int >, p: fn(Int) -> Bool): Int {
return l.filter(p).size(); //ok - direct position from parameter

}

function invalid(l: List <Int >): Int {
let fun = fn(x) => x >= 0; //error - lambda not in direct position

return l.filter(fun).size();
}

In the first function, okc, the lambda expression is in the direct call position to
the list filter functor. In the second function, okp, the lambda is a parameter
to the function which must be passed in from a direct declaration. In contrast, in
the invalid function, the lambda expression is indirectly assigned to a variable
before being passed to the filter functor and is an error in MorphirIR.

118 S. Goldbaum et al.

Function and Lambda Invocation: Function invocations are statically resolv-
able direct calls to the named function, or named lambda parameter, with the
given arguments. Since lambda uses are syntactically restricted to the direct
call positions, these uses can either be defunctionalized, so that all calls become
fully static (which is done when translating to Bosque for verification), or they
can be dynamically constructed as closures when compiling to a language like
JavaScript.

Assert: Assertions can be explicitly added to check for user defined conditions
and take a Bool typed condition expression along with a continuation ok expres-
sion. When the assert expression evaluates to true then the ok expression is
evaluated as the result otherwise the programs fails with an error.

Control Flow: Control flow is handled by a classic if-then-else construct or a
pattern matching and destructuring case operator. The case operation finds the
first condition in the list that matches the type of the value that is dispatched on
and binds variable names to the specified values from the constructor. The case
can be used on algebraic types, records, and tuples. There is a special wildcard
case “_” which matches everything and the cases must be exhaustive.

Decision Tables: Sets of rules that define business logic are a frequent occurrence
in Fintech applications. These rules can be encoded as nests of case, let, and if-
then-else statements. However, these encodings are complex and result in the loss
of information about the intent of the original rule structure. The MorphirIR
language includes decision tables as a first-class construct (the Table row in
Fig. 5). The argument expressions are evaluated and bound to a set of variables.
Then, in this scope, the Opt clauses are evaluated in order. For each clause
the expressions in the list are evaluated in short circuit && order. If all the
expressions in the list are true then the result of the expression is the evaluation
of the tail Expresult. If the set is not exhaustive or any Opt is unreachable it is
a program error.

function getDecision(f: Facts , env: Jurisdiction): Decision
dispatch(docType = f.documentType , law = getGoverningLaw(env , f)) [

[docType == DRV] => Yes ,
[docType == ISDA , law == England] => Yes ,
[docType == ISDA] => No

]
}

The getDecision program shows a (simplified) table for computing business
rules around derivatives handling. In this code if the docType is DRV the result
is always a Yes. In the other case the result depends on if the governing law is
England. Note that if we accidentally switched the last 2 opt clauses, so that
the opt where law == England was last, this would be an error.

Let: The let operation binds a value to a variable name in the expected manner
or binds a set of variables to the destructured value of a tuple/struct/datatype.

High Assurance Software for Financial Regulation and Business Platforms 119

Fig. 5. MorphirIR expressions.

4.3 Containers and Operations

The standard collection libraries play a central role in the design and use of
MorphirIR, which does not include looping constructs and where the use of
recursion is discouraged. Instead, we lean heavily on the use of a rich set of
collection operations to support iterative data processing. This has the advantage
of aligning well with development guidelines for high assurance software and,
as Marron and Kapur showed [15], allows us to reason about most container
manipulating code using decidable theories that are amenable to solving using
existing SMT provers. Figure 6 provides a brief summary of these operations.

List Operations: Lists can be constructed using a number of algebraic primitives,
including explicit initialization with fixed values, initialization using the contents
of another container, concatenation, and slicing. In addition, lists also provide
the usual size, get, and find index operations.

The functor family of algorithms provide higher order functions that reshape
lists based on user specified functions. These can filter subsets of elements in
a list, map functions over all elements in a list, or join two lists. We also pro-
vide operations for reorganizing lists, including the usual zip, reverse, sort, and
unique. In contrast to many languages which leave the algorithm used for these
operations under-specified, MorphirIR ensures these operations are always
order stable on the input lists.

120 S. Goldbaum et al.

Fig. 6. MorphirIR container operations.

The reduce family of algorithms is important as, following Mark and
Kapur [15], we do not have a general decidable logical specification for these
operations. Thus, we explicitly provide sum, min, max as special common cases
of reduction that we can axiomatize fairly effectively and a generic reduce that
involves heuristic inductive and/or unrolling to encode.

Set and Map Operations: The set and map datatypes are defined only for keys
that are numeric or string typed. Further, the map/set enumeration order is
defined to be the order of the underlying keys. These restrictions ensure that
the key based comparisons are decidable and the behavior of the operations is
always full deterministic.

In addition to simplifying the analysis of Sets/Maps via the semantics of the
allowable key types and ensuring ordering, we also explicitly limit some parts
of the API to reduce the introduction of difficult-to-reason-about constraints.
Notably, there is no direct size operation, as cardinality and set operations
are problematic to reason about simultaneously. With this design, we focus the
Set/Map operations on the core contains, lookup, and set theoretic operations
they can provide while encouraging to use of the rich, and simpler to reason
about, list operations as the default way to organize data.

5 Experience Report

The initial outcomes of this project have been very positive. The community
is already benefiting from the network effects of sharing a core language and
runtime. The validation capabilities add an additional value proposition: our

High Assurance Software for Financial Regulation and Business Platforms 121

initial success with the BSQChk pipeline shows the potential for formal methods
in this space. Based on these experiences, we anticipate growing investment in
and adoption of the MorphirIR language, platform, and ecosystem throughout
the financial services community. Despite (or perhaps because of) these successes,
more work needs to be done. We discuss scenarios that we encountered where
we believe the Morphir stack can be improved and have begun investigating
approaches for realizing those improvements.

5.1 Languages Targeting MorphirIR

To date, the main users of the MorphirIR stack are Morgan Stanley and Gold-
man Sachs. The bulk of models have been written in the Elm programming
language. Elm proved to be a natural match with most constructs directly map-
ping from Elm to the MorphirIR. Elm support for a small number of data
types, such as Decimal and LocalDate, was added via the MorphirIR SDK.

Elm and MorphirIR have fundamentally similar language principles and
design. They are both functional and aim for the simplest language without
sacrificing expressiveness. The result is a lambda calculus with a few, well-known
extensions like if-then-else, let expressions, and pattern-matching. The transpiler
code is ca. 3Kloc and is mostly a one-to-one mapping with a few exceptions where
the Elm code uses constructs that Morphir does not directly support.

The Legend platform uses its own programming language called Pure to
implement many features. One of those features is model-to-model mapping.
The translation from Pure to MorphirIR first runs these mappings to produce a
simplified Pure AST. This core AST is side-effect free and declarative; a subset of
MorphirIR’s semantics directly expresses it. Thus, the AST into MorphirIR
transpilation step is a simple rewrite/rename process.

We are also seeing interest and usage from other members of the Fintech
community. The most common use cases come from other entities that have a
bespoke domain specific modeling language, often encoding business logic rules,
models of financial instruments, or regulatory information, that they use inter-
nally or have developed as part of a product offering. Further afield there may
also be benefit for smart contract languages like Solidity [25,27] or legal formal-
ization languages like Catala [17].

For these types of DSLs, the MorphirIR platform is very appealing. It
eliminates the cost of maintaining the compiler/toolchain/runtime system for
the DSL. The network effect of the MorphirIR ecosystem also increases the
value of any DSL ported to it, as it gives them a simple, standard way to
interoperate with the wider range of definitions and computations available in
MorphirIR. This is particularly valuable in the Fintech space where systems
frequently involve codified rules or regulations, which can be large and costly
to implement. The ability to reuse, instead of re-implementing, them for every
specialized stack has tremendous value. The community interest in expanding
the set of surface languages that target the MorphirIR stack also introduces a
number of (currently) open challenges.

122 S. Goldbaum et al.

DSL Translation: The current model for adding a new source language (or
DSL) to the MorphirIR stack involves manually translating the source seman-
tics into the MorphirIR semantics and syntax. This is both time consuming
and error prone.

Interestingly, when compared to scenarios dealing with full fledged program-
ming languages, these DSLs are often fairly simple and resemble macro systems
for concisely encoding business or regulatory rules. This suggests the possibil-
ity of partially automating this translation process via the addition of a macro
system or even a specialized structured data transformation language. In partic-
ular, if this language included the capability to connect logical assertions from
the DSL into the MorphirIR code, this would enable us to generate (partially)
verified translations [11].

API Abstraction: As more source languages and DSLs are added to the Mor-
phir system, we believe there will be an increasing need for transparent inter-
operability support. Given the diversity of concepts in the source languages, e.g.
Legend includes multiplicity constraints in its model/type language, and the
desire for flexibility in the stack, we do not believe it is practical to build a shared
universal type language that captures all of these variations.

Instead, we are looking to the world of RESTful systems [7] and the suc-
cess of integrating polyglot systems there. Simplified systems, such as AWS
Smithy [24], have shown great success for building distributed cloud computing
systems. Starting from this perspective, we are very interested in constructing
a layer that combines types, service calls, and logical constraint specifications.
This layer would provide a common interoperation language to components writ-
ten in different systems, encoding common information in the type system and
expressing specialized information, such as the multiplicity data in some Legend
constructs, in an expressive constraint language.

5.2 Validation Pipeline

Our experience with the validation pipeline has focused on using BSQChk
(Sect. 2). Our work has focused on ca. 4Kloc of regulation code in a dialect
of Elm that implements a portion of the U.S. Liquidity Coverage Ratio rules
and ca. 2Kloc of code implementing a sample trading application. These appli-
cations have very few explicit assertions, so error checking is primarily of runtime
errors such as invalid casts, div-by-zero, etc.

In our experience to date with the trading application code, the checker has
found proofs of infeasibility for most errors it analyzes, result 1a in the outcomes
list (Sect. 3). In the remaining cases, the checker has not found any witness failure
inputs and has completed with result 2b from our outcome list. Our inspections
indicate these situations involve the use of reduction, which is not contained
in the BSQChk decidable fragment, or intensive bitvector operations, such as
converting 64bit ints to/from a Real representation of floating point numbers, so
the errors are very likely infeasible although not yet provably so by the checker.

High Assurance Software for Financial Regulation and Business Platforms 123

This experience led us to rewrite samples into the Bosque source language,
which has a richer type system than Elm and more support for adding pre/post
conditions, asserts, and data invariants. The example in Fig. 3 comes from one
of these experiments and shows how the addition of specifications capturing,
even partial, higher-level intents can expose code issues that the checker can
successfully analyze. Thus, the major takeaway from our initial work here is the
need to find ways to increase the scope of checkable properties.

Enriched MorphirIR Language: In the example code (Fig. 3), the fix
involves using a refined numeric type. This example is a simple case of the wide
range of ways numbers are heavily used in specific, and semantically distinct,
ways in these financially focused applications. In practice, base numeric types,
like Int and Decimal, are typedef ’d into many other conceptually distinct types
like currency, quantities, conversion rates, etc.. This simple typedef is insuffi-
cient, as the typedef mechanism maps to underlying types before checking, and
can result in errors with confused types. Conversely, creating a full, new nom-
inal type for each concept generates an unwieldy amount of boiler plate code
to provide the needed operations on each numerical value. It is unclear if there
is a compact unit-of-measure [10] algebra, as for physical quantities, that can
model these types. In our experience, the ontology of numeric types present in
financial software systems does not fit into a simple system that depends on a
small number of base units. Instead, this may be an opportunity to introduce a
novel, language-level typed numeric feature.

The example code in Fig. 3 illustrates the utility of first class support for
including specifications in the language and the need for simple ways to specify
properties of interest. Many interesting properties, like the strict reduction in the
initialPosition value, can be easily expressed in code directly as part of an
assertion. For such properties, there is a need to provide language support to ease
the insertion of conditions, like first class pre/post conditions, data invariants,
etc.., and we also are working to provide a library of commonly used predicates
for properties like primary key uniqueness, domain/range subset relations for
maps, etc.. However, other properties are not so easily expressed in code, such
as implicit global quantification like the multiplicity constraints in Legend. An
open question here is “Do we need to introduce a single (or perhaps dialects of)
specialized domain modeling languages for expressing assertions?”.

Lifting Checkers to the Data Layer: The semantic information that is added
to the MorphirIR code often contains information about data types (shapes)
and invariants on them. These implicit data invariants present a rich source of
information that can be used in data quality [23] assurance tasks. At the basic
level, we can look at data flows and type information to extract core type and
structure checks including numeric, string, enum values, and record or tuple
structures. To the extent that ADT constructors contain validation rules (or
invariants) and functions have pre/post conditions, we would also like to use a
weakest-precondition style analysis to infer other checks.

124 S. Goldbaum et al.

For example, a Trade record might have tradeDate and settlementDate
with a check in the constructor that tradeDate < settlementDate. We can
use this check both for analysis that the code does not construct any invalid
objects internally but if we push this condition to the interface with the data
sources, say a SQL database, we can also generate and check this assertion on
the appropriate tables. This ensures that any data flowing into the system, even
if entered manually, will be validated.

Alternative and Specialized Checkers: The focus of our experience in the
validation pipeline has been on checking language level assertions, like invalid
casts or div-by-0, and user defined assert conditions. Many applications and
DSLs have richer sets of conditions that are of interest. In some cases, these are
additional checks that should be applied to all code in a certain domain and look
like linter rules [9] and could be checked with the same underlying approaches
as for other semantic errors. Other conditions may need to be addressed with
specialized checking methodologies. One specific example that we explored was
numerical stability checking [2,20], as we noticed that our application makes
extensive use of float and decimal types. Interestingly, the outcome of this inves-
tigation for our target applications was that the combination of a true Decimal
type combined with a business rule specified rounding and computation ordering
resulted in numerical stability being a very low priority concern. As other users
of the MorphirIR stack emerge, e.g. in the algorithmic trading space, this may
become a property of substantial interest.

Outside of the need for checkers for specialized properties, we are also inter-
ested in supporting a range of checkers in the validation pipeline. The BSQChk
checker we currently use is SMT based (using Z3 [5]) so, as our experience with
inductive code illustrated, it is limited when dealing with certain scenarios and,
at some point, we will experience scalability issues. Many of the features of
the MorphirIR language that enable BSQChk to perform well should also
boost the performance and effectiveness of other verification and error detec-
tion techniques. The elimination of mutation and aliasing alone eliminate two
of the major causes of information loss and scalability problems for automated
reasoning systems. Combined with the additional benefits of specialized code
for common loop patterns [6,15,16], we expect the MorphirIR stack to be a
place where formal methods are able to showcase [21] the value they can have
in software development.

5.3 Injection of Compliance and Audit Logs

Centralizing the injection of cross-cutting auditing and observability logic at a
single point in the stack has a major benefit in ensuring compliance requirements
and business needs. An example is code that is part of a regulated system that
takes in data from various upstream sources. The lineage of this data, includ-
ing the origin, the decisions made using it, and the outcome are all subject to
compliance checks and audits. This data is usually stored, and when needed,
processed to produce flow and provenance graphs. Those same tools can be used

High Assurance Software for Financial Regulation and Business Platforms 125

at modeling time to provide quick interaction with domain experts to ensure
that the model reflects their ideas. In a report, users might want to look up the
associated definition for a field and what data sources are used in the calculation.
As these tasks become more complex, tools can navigate the call path on the
fly and display relevant information to help users understand how a particular
value was calculated.

These problems have many interesting flavors from the topics of taint anal-
ysis [22], program question answering [12], and logging management [26]. The
ability to prove that a given set of values recorded in the audit (or observability)
pipeline are sufficient to answer specific questions or demonstrate the reasoning
for a given decision will have massive value. This type of proof would ensure that
the application satisfies the relevant regulations, which today is often done by
verbose logging, and would position us to confidently optimize the logging and
data retention code to remove redundant output.

Our experience with program and flow visualization to understand data lin-
eage and computation flows indicates that it is very effective for smaller applica-
tions or small numbers of data sources. However, the output becomes noisy and
too complex to be reasonably understood [8,12] as system size increases. Devel-
oping heuristic or analytic techniques that abstract, organize, and visualize the
most relevant aspects of these flows and lineages are of great interest.

6 Conclusion

This paper outlines our thoughts on the development of and initial experiences
with the Morphir stack. This open-source platform is a collaboration across
the Fintech community, academic researchers, and partners in the technology
space with the goal of building a standard platform for implementing, executing,
and validating regulatory compliance code as well as financial business platform
applications. In these domains, building high assurance code is a foundational
requirement for the system and the Morphir stack is explicitly designed to
support the use of formal methods. Our experiences with the system have vali-
dated these designs and are already showing the value of this collaborative and
assurance focused approach to the wider Fintech community. These experiences
have also highlighted areas where we believe the system can be further improved
or where innovation in verification and error checking can happen. Our hope
with this experience report paper is to start a wider collaboration that will fuel
the development of a vibrant software ecosystem in the Fintech space as well as
create a unique opportunity to advance the state of the art in formal methods
and their practical application.

Acknowledgments. We would like to thank Beeke-Marie Nelke, Pierre De Belen,
and Jianglai (Teddy) Zhang at Goldman Sachs for their technical contributions and
feedback on this work. Thanks to our reviewers and numerous colleagues for their
constructive comments and insights.

126 S. Goldbaum et al.

References

1. AppInsights (2021). https://docs.microsoft.com/en-us/azure/azure-monitor/app/
app-insights-overview

2. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point exceptions.
In: POPL (2013)

3. Bosque repository (2021). https://github.com/microsoft/BosqueLanguage
4. Dapr (2021). https://dapr.io/
5. de Moura, L., Bjørner, N., et al.: Z3 SMT Theorem Prover (2021). https://github.

com/Z3Prover/z3
6. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In:

POPL 2011 (2011)
7. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based

software architectures. Ph.D. thesis (2000)
8. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE

TSE 17 (1991)
9. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39, 92–106 (2004)

10. Jiang, L., Su, Z.: Osprey: a practical type system for validating dimensional unit
correctness of C programs. In: ICSE (2006)

11. Kirkegaard, C., Moller, A., Schwartzbach, M.I.: Static analysis of XML transfor-
mations in Java. IEEE TSE 30, 181–192 (2004)

12. Ko, A.J., Myers, B.A.: Designing the Whyline: a debugging interface for asking
questions about program behavior. In: CHI (2004)

13. Complex Institution Liquidity Monitoring Report (2019). https://www.
federalreserve.gov/reportforms/forms/FR_2052a20190331_f.pdf

14. Legend repository (2021). https://github.com/finos/legend
15. Marron, M., Kapur, D.: Comprehensive reachability refutation and witnesses gener-

ation via language and tooling co-design. Technical report MSR-TR-2021-17 (2021)
16. Marron, M., Stefanovic, D., Hermenegildo, M., Kapur, D.: Heap analysis in the

presence of collection libraries. In: PASTE (2007)
17. Merigoux, D., Chataing, N., Protzenko, J.: A programming language for the law.

In: ICFP, Catala (2021)
18. Morphir repository (2021). https://github.com/finos/morphir
19. O’Hearn, P.W.: Incorrectness logic. In: POPL (2019)
20. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-

ing accuracy for floating point expressions. PLDI (2015)
21. Passmore, G., et al.: The Imandra automated reasoning system (system descrip-

tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_30

22. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21, 5–19 (2003)

23. Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F., Grafberger, A.:
Automating large-scale data quality verification. Proc.VLDBEndow.11, 1781–1794
(2018)

24. Smithy (2021). https://awslabs.github.io/smithy/
25. Solidity repository (2021). https://docs.soliditylang.org/
26. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnos-

ability via log enhancement. ASPLOS (2011)
27. Zakrzewski, J.: Towards verification of Ethereum smart contracts: a formalization

of core of solidity. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol.
11294, pp. 229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03592-1_13

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://github.com/microsoft/BosqueLanguage
https://dapr.io/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://www.federalreserve.gov/reportforms/forms/FR_2052a20190331_f.pdf
https://www.federalreserve.gov/reportforms/forms/FR_2052a20190331_f.pdf
https://github.com/finos/legend
https://github.com/finos/morphir
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30
https://awslabs.github.io/smithy/
https://docs.soliditylang.org/
https://doi.org/10.1007/978-3-030-03592-1_13
https://doi.org/10.1007/978-3-030-03592-1_13

Gradient-Descent
for Randomized

Controllers Under
Partial Observability

Linus Heck1 , Jip Spel1(B) , Sebastian Junges2 , Joshua Moerman1,3 ,
and Joost-Pieter Katoen1

1 RWTH Aachen University, Aachen, Germany
jip.spel@cs.rwth-aachen.de

2 Radboud University, Nijmegen, The Netherlands
3 Open University of the Netherlands, Heerlen, The Netherlands

Abstract. Randomization is a powerful technique to create robust con-
trollers, in particular in partially observable settings. The degrees of ran-
domization have a significant impact on the system performance, yet they
are intricate to get right. The use of synthesis algorithms for parametric
Markov chains (pMCs) is a promising direction to support the design
process of such controllers. This paper shows how to define and evalu-
ate gradients of pMCs. Furthermore, it investigates varieties of gradient
descent techniques from the machine learning community to synthesize
the probabilities in a pMC. The resulting method scales to significantly
larger pMCs than before and empirically outperforms the state-of-the-
art, often by at least one order of magnitude.

1 Introduction

Markov chains (MCs) are the common operational model to describe closed-
loop systems with probabilistic behavior, i.e., systems together with their con-
trollers whose behavior is described by a stochastic process (Fig. 1(a)). Exam-
ples include self-stabilizing protocols for distributed systems [30] and exponen-
tial back-off mechanisms in wireless networks. Randomization is also important
for robustness in autonomous systems with noisy sensors [60], obfuscation and
(fuzz) test-coverage [19]. Such systems are typically subject to temporal specifi-
cations, e.g., with high probability an autonomous system should not crash, and
a self-stabilizing protocol should reach a stable configuration in few expected
steps. Checking system models against these specifications can be efficiently
done using state-of-the-art probabilistic model checking [28,38]. We highlight
that while controllers for these systems operate under partial information, the
analysis of a system with controller does not need to take partial observability
into account.

Supported by DFG RTG 2236 “UnRAVeL” and ERC AdG 787914 FRAPPANT.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 127–150, 2022.
https://doi.org/10.1007/978-3-030-94583-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_7&domain=pdf
http://orcid.org/0000-0002-4774-7609
http://orcid.org/0000-0002-9113-2791
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0001-9819-8374
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-94583-1_7

128 L. Heck et al.

Controller Environment

observation

fixed probability for action

system = Markov chain

(a) Verification of closed-loop
systems. Memory of the con-
troller is part of the system.

Controller Environment

observation

which action?
which

update?

system = e.g. POMDP

(b) Synthesis of controllers.
Memory not fixed and thus not
part of the system.

Controller Environment

observation

which probability for action?

system = pMC

(c) Parameter synthesis for
controllers. Memory fixed and
part of the system.

Fig. 1. Verification and (syntax-guided) synthesis for controllers

One step beyond verification is the correct-by-construction synthesis of con-
trollers for such systems via Partially Observable Markov Decision Processes
(POMDPs) (Fig. 1(b)). In general, the synthesis for partial-information con-
trollers is undecidable [4,21,42]. Syntax-guided synthesis [2] takes a simpler
perspective and synthesizes only particular system aspects starting from a user-
provided template. In this paper, we focus on being provided with a template
controller with a fixed memory structure (influencing the number of indistin-
guishable states) and a fixed set of potential actions that we want to randomize
over. This setting is useful, as in many systems one randomizes on purpose, e.g.,
in distributed protocols to break symmetry or for robustness. In particular, the
randomization is controllable, but selecting a (near-)optimal way to randomize
is non-trivial.

The synthesis task reduces to randomize appropriately in a system with a
fixed topology (Fig. 1(c)). In this context, a controller selects a fixed set of actions
(of the POMDP) α1, . . . , αn with probabilities p1, . . . , pn. The aim is to synthe-
size a realizable controller, that is, the result of the synthesis should not enforce
to randomize differently in indistinguishable states—such a controller depends
on information which is not available at runtime and therefore cannot be imple-
mented. Consequently, for indistinguishable states, a realizable controller must
take an action α with the same probability pi. Synthesizing such controllers can
be formally described [34] as feasibility synthesis in parametric Markov chains
(pMCs), i.e., MCs with symbolic probabilities p1, . . . , pn [14,39]. The feasibility
synthesis task asks to find values u1, . . . , un for the parameters such that the
MC satisfies a given property. This problem has been studied extensively in the
literature, e.g. in [11,12,20,22,50], see also the related work section.

Example 1. Figure 2(a) depicts a POMDP. The colors match the observations
at a state. When observing a red state, s1 or s3, with probability q1 action α1

is taken and with probability q2 action α2. At state s0 action αi is taken with
probability pi. This directly results in the pMC of Fig. 2(b).

The challenge in applying parameter synthesis is twofold: whereas the prob-
lem is ETR-complete1 [35], the number of parameters grows linear in the number

1 ETR = Existential Theory of the Reals. ETR-complete decision problems are as
hard as finding the roots of a multivariate polynomials.

Gradient-Descent for Randomized Controllers Under Partial Observability 129

s0 s2

s1

s3

α1

α2

α3

α1

α2

α1

α2

1

1/2

1/2

1

1
1/2

1/2

1

1

(a) POMDP

s0 s2

s1

s3

p1 · 1

p2 · 1/2

p3 + p2 · 1/2

q2

q1

1/2 · q2

q1 + 1/2 · q2

1

(b) pMC

Fig. 2. From POMDPs to pMCs [32, p. 182].

of different observations and the number of actions available to the controller.
For many real-life applications we must thus deal with thousands of parameters.
This scale is out of reach for exact or complete methods [15]. Heuristic methods
have shown some promise. These methods either rely on efficient model checking
but are heavily sample-inefficient [11], or rely on the efficiency of convex solvers
to search the parameter space in a more principled way [13].

This paper presents a novel method that advances the state-of-the-art in
feasibility synthesis often by one or more orders of magnitude. The method is
rooted in two key observations:

– gradient-based search methods, i.e., variants of gradient search, scale to high-
dimensional search spaces, and

– in pMCs, the gradient at a parameter evaluation can be efficiently evaluated.

In this paper, we show a principled way to evaluate gradients in parametric MCs.
We characterize gradients as solutions of a linear equation system over the field
over rational functions and alternatively as expected rewards of an automaton
that is easily derived from the pMC at hand. Using the efficient computation
of gradients, we evaluate both classical (Plain GD, Momentum GD [52], and
Nesterov accelerated GD [47,59]) and adaptive (RMSProp [61], Adam [37], and
RAdam [40]) gradient descent methods. We also consider the classical gradient
descent methods where we only respect the sign of the gradient. Furthermore,
we investigate various methods (projection, barrier function, logistic function) to
deal with restrictions on the parameter space (e.g. parameters should represent
probabilities). Using an empirical evaluation, we show that 1) projection outper-
forms the other restriction methods, 2) Momentum-Sign outperforms the other
gradient descent methods, and 3) Momentum-Sign often outperforms state-of-
the-art methods QCQP and PSO. Moreover, we discuss some domain-specific
properties and the consequences for gradient descent.

We formalize our problem statement in Sect. 2.3, discuss the evaluation of
gradient in Sect. 3, consider the use of gradient descent in Sect. 4, give an
empirical evaluation in Sect. 5, and discuss related work in Sect. 6. Section 7
concludes and provides pointers for future work.

130 L. Heck et al.

2 Preliminaries

2.1 Parametric Markov Chains

Let V be a set of n real-valued parameters (or variables) p1, . . . , pn. Let R[V]
denote the set of multivariate polynomials over V .

A parameter instantiation is a function u : V → R. We often denote u as
a vector �u ∈ R

n by ordering the set of variables V = {p1, . . . , pn} and setting
ui = u(pi). We assume that all parameters are bounded, i.e., lbi ≤ u(pi) ≤ ubi

for each parameter pi. Let Ri = [lbi, ubi] denote the bounds for parameter pi in
region R. The parameter space of V , denoted U ⊆ R

V , is the set of all possible
parameter values, i.e. the hyper-rectangle spanned by the intervals [lbi, ubi]. A
set R ⊆ U of instantiations is called a region.

A polynomial f can be interpreted as a function f : Rn → R where f(u) is
obtained by substitution, i.e. in f(u) each occurrence of pi in f is replaced by
u(pi). To make clear where substitution occurs, we write f [u] instead of f(u)
from now on. We let ∂pf denote the partial derivative of f with respect to p.

Let X be any set and let pFun(X) = {f | f : X → R[V]} denote the set of
generalized functions. Now, let pDistr(X) ⊂ pFun(X) denote the set of paramet-
ric probability distributions over X, i.e., the set of functions μ : X → R[V] such
that 0 ≤ μ(x)[u] ≤ 1 and

∑
x∈X μ(x)[u] = 1 for all u in the parameter space U .

Definition 1. A parametric Markov chain (pMC) is a tuple M =
(S, sI , T , V ,P) with a finite set S of states, an initial state sI ∈ S, a finite
set T ⊆ S of target states, a finite set V of real-valued variables (parameters)
and a transition function P : S → pDistr(S).

The parametric probability of going from state s to t, denoted P(s, t), is
given by P(s)(t). A pMC with V = ∅ is a Markov chain (MC). We will use
M to range over pMCs and D to range over MCs. Applying an instantiation
u to a pMC M yields MC M[u] by replacing each transition f ∈ R[V] in M
by f [u]. An instantiation u is graph-preserving (for M) if the topology of M is
preserved, i.e., P(s, s′) �= 0 implies P(s, s′)[u] �= 0 for all states s, s′. A region R
is graph-preserving if all u ∈ R are graph-preserving.

Example 2. Figure 3(a) depicts pMC M with a single parameter p. Region R =
[0.1, 0.9] is graph-preserving, while R = [0, 0.9] is not graph-preserving.

We fix an MC D. Let Paths(s) denote the set of all infinite paths in D
starting from s, i.e., infinite sequences of the form s0s1s2 . . . with s0 = s and
P(si, si+1) > 0. A probability measure PrD is defined on measurable sets of
infinite paths using a standard cylinder construction; for details, we refer to,
e.g., [6, Ch. 10]. For T ⊆ S and s ∈ S, let

PrD(s |= ♦T) = PrD{s0s1s2 . . . ∈ Paths(s) | ∃i. si ∈ T} (1)

denote the probability to eventually reach some state in T from s. For a pMC
M, the reachability probability depends on the parameters and so we define it

Gradient-Descent for Randomized Controllers Under Partial Observability 131

Fig. 3. A (left) sample parametric MC and (right) its derived weighted automaton

as a function Prs→T
M : U → [0, 1] given by Prs→T

M [u] = PrM[u](s |= ♦T) [14]. For
conciseness we typically omit the subscript M and write Prs→T . Zero and one
reachability probabilities are preserved for graph-preserving instantiations, i.e.,
for all graph-preserving u, u′ ∈ U , we have Prs→T [u] = 0 implies Prs→T [u′] = 0
and analogously for = 1. In these cases, we just write Prs→T = 0 or = 1. Let

denote all states s ∈ S with Prs→T = 0. W.l.o.g., we assume that there is at
most one state (this is standard preprocessing [6, Ch. 10]). Furthermore, we
merge all states s ∈ T into a single state.

Example 3. For all states s ∈ S in pMC M from Fig. 3(a), we have Prs→ = 1.
Therefore, the pMC M has no state.

2.2 Expected Rewards

We are not only concerned with reachability probabilities but also with expected
rewards. Let state reward function rew : S → R associate a reward to each state.
The cumulative reward for a finite path π̂ = s0s1 . . . sn is defined by:

rew(π̂) = rew(s0) + rew(s1) + . . . + rew(sn−1).

For infinite paths π = s0s1s2 · · · the reward to eventually reach in M is:

rew(π,♦) =

{
rew(s0s1 . . . sn) if si �= for 0 ≤ i < n and sn =
∞ if π �|= ♦ .

Remark 1. For the sake of simplicity, we restrict ourselves to constant rewards.
However, all notions and concepts considered in the remainder of this paper can
be generalized to parametric reward functions in a straightforward manner.

Remark 2. From now on, we only consider graph-preserving regions and we
restrict ourselves to pMCs where every state s eventually reaches almost surely,
i.e., Prs→ = 1.

132 L. Heck et al.

Definition 2 (Expected reward). The expected reward until reaching
from s ∈ S for an MC D is defined as follows:

ERD(s |= ♦) =
∫ Paths(s)

π|=♦
rew(π,♦) · Pr(π).

The expected reward for a pMC M is defined analogously, but as a function
ERs→

M : U → R, given by ERs→
M [u] = ERM[u](s |= ♦). Again, for conciseness

we typically omit the subscript M.

Example 4. Reconsider the pMC M from Fig. 3(a) with a state reward function
rew(si) = i for si ∈ S \ { }. The expected reward function ERs0→ is given by
3 · p2 + 4 · p · (1−p) + 2 · (1−p) = −p2 + 2 · p + 2.

On a graph-preserving region, the function ERs→ is always continuously dif-
ferentiable [50] and admits a closed-form as a rational function over V [14,23].

Remark 3. Reachability probabilities are obtained by using expected rewards by
letting rew(s) = 0 for s ∈ S \ { } and rew() = 1. We add one sink state s′ s.t.
P(s, s′) = 0 if s ∈ S \ { , } and P(s, s′) = 1 otherwise. The quantity ERs0→s′

now equals the reachability probability of eventually reaching .

2.3 Problem Statement

This paper is concerned with the question of synthesising a randomized con-
troller under partial observability. Synthesizing these controllers can formally
be described [34] as feasibility synthesis in pMCs. Therefore, we consider the
following question on the expected reward of eventually reaching a target state

in a given pMC M and a graph-preserving region2 R:

Given λ ≥ 0, and comparison operator ∼, find an instantiation u ∈ R with:

ERM[u](s |= ♦{ }) ∼ λ.

To solve this problem, we first show how to compute the derivative of ERs→

and introduce a derived weighted automaton. Then, we exploit this derivative
by considering several gradient descent methods and applying them to solve our
problem. Finally, we show how our approach experimentally compares to existing
methods from [11,13].

2 Technically, we use graph-preserving to ensure continuously differentiability of

ERs→
M . For acyclic pMCs, these functions are continuously differentiable without

assuming graph-preservation [35].

Gradient-Descent for Randomized Controllers Under Partial Observability 133

3 Computing Gradients for Expected Rewards

In this section, we show that we can efficiently evaluate the gradient of the func-
tion ERs→ with respect to a parameter p at an instantiation u. We note that
first computing ERs→ and deriving this function symbolically is intractable:
the function can be exponentially large in the number of parameters [5]. A
tractable construction follows from taking the derivative of the equation sys-
tem that characterizes the expected reward [6, Ch. 10]. Alternatively, it can be
obtained as an equation system for the expected rewards of a “derived” pMC.
Let M = (S, sI , { }, V ,P) with reward function rew and parameter p ∈ V .

3.1 Equation-System Based Characterisation

Definition 3. The system of equations for the partial derivative of ERs→
M w.r.t.

p ∈ V is given by:

xs = 0, ∂pxs = 0 if s =

xs = rew(s) +
∑

s′∈S

P(s, s′) · xs′ for s ∈ S \ { }

∂pxs =
∑

s′∈S

(
∂pP(s, s′) · xs′ + P(s, s′) · ∂pxs′

)
for s ∈ S \ { }.

where ∂pP(s, s′) is the derivative of the probability function P(s, s′) w.r.t. p.

Note that we obtain the derivative for xs, i.e. ∂pxs, by applying the sum rule and
the product rule to xs. This equation system is equivalent to an equation system
for POMDPs in [1, pp. 47–48]. We remark that the equation system is linear
with coefficients in a polynomial ring. However, if the parameters are considered
to be variables, then the system of equations is nonlinear (and nonconvex) [12].
Observe that the equations for xs do not depend on the equations for ∂pxs

and thus can be solved independently first. The equations for xs have a unique
solution which coincides with ERs→ . This is a known result for MCs [6, Ch.
10] and carries over to pMCs [32]. We show below that the equation system for
∂pxs has a unique solution as well and yields the derivative ∂pERs→ .

Example 5. For our running example we obtain the following equation system:

x0 = 0 + p · x1 + (1−p) · x2 ∂px0 = 1 · x1 + p · ∂px1 + −1 · x2 + (1−p) · ∂px2

x1 = 1 + p · x2 + (1−p) · x3 ∂px1 = 1 · x2 + p · ∂px2 + −1 · x3 + (1−p) · ∂px3

x2 = 2 + 1 · x ∂px2 = 1 · ∂px

x3 = 3 + 1 · x ∂px3 = 1 · ∂px

x = 0 ∂px = 0.

Solving these equations yields x0 = −p2 +2 ·p+2, the expected reward function
ERs0→ , see Example 4, and ∂px0 = −2 · p + 2, i.e., ∂pERs0→ .

134 L. Heck et al.

Theorem 1. The equation system of Definition 3 has exactly one solution: xs

equals ERs→ and ∂pxs equals ∂pERs→ for each s ∈ S.

The proof is given in the extended version [26].
From a computational point, we notice that computing ∂pERs→ by solving

the equation system (over the field of rational functions R(V)) is intractable, as
this function may be exponential in the number of parameters. Matters appear
worse as we aim to compute the derivative w.r.t. to a subset of the parameters
V ′ ⊆ V , rather than with respect to a single parameter. However, we observe
that, for a gradient descent, we are only interested in computing

(
∂pERs→

)
[u],

and the equation system can be solved efficiently when we substitute all P(s, s′)
by P(s, s′)[u] and solve for

(
∂pERs→

)
[u] using constant coefficients from the

rationals or reals3. Furthermore, as the xs variables can be solved independently
of the ∂pxs variables, we first solve the xs-equation system with |S| variables and
equations. In a second step, we construct for every p ∈ V ′ an equation system
(with |S| variables and equations) by directly substituting the xs variables with
the expected reward ERs→ [u]. In total, this means that we evaluate (|V ′| + 1)
equation systems with |S| equations and variables each.

3.2 Derived Automaton

We now show that an alternative way to obtain ∂pERs→ is by the standard

equation system for ERs→ on the “derivative” of pMC M. To that end, we
mildly generalize pMCs to (parametric) weighted automata [16] and show that
we can describe “taking the derivative” as an operation on these weighted
automata. We do so by relaxing our parametric probability distributions by drop-
ping the requirement that 0 ≤ μ(x)[u] ≤ 1; in particular, negative real values
are allowed. These functions are called quasi-distributions as

∑
x∈X μ(x)[u] = 1

still holds. Let pDistr(X) ⊂ pFun(X) denote the set of quasi-distributions.

Definition 4. A weighted finite automaton (WFA) is a tuple A =
(S, sI , T , V ,E) where S, sI , T , V are as in Definition 1 and E : S → pDistr(S).

Example 6. Figure 3(b) depicts WFA A with single parameter p. Note that some
of the transitions are labelled with p and 1−p (as in Fig. 3(a)). We will later
explain the relation of this WFA to the pMC in Fig. 3(a).

Instead of creating a system of equations to compute the derivative, we can
alternatively construct an automaton which has the derivative as its semantics.
This is called the derived weighted automaton. Intuitively, the automaton ∂pM
of a pMC M is constructed by applying product and sum rules directly to M.

Definition 5. Let M = (S, sI , T , V ,P) be a pMC with reward function rew and
let p ∈ V a parameter. The derived weighted automaton of M w.r.t. p is the
WFA ∂pM = (S′, ∂psI , T, V ,E) with the reward function rew′ where
3 In our implementation, we support exact rationals or floating point arithmetic.

Gradient-Descent for Randomized Controllers Under Partial Observability 135

– S′ = S ∪̇ ∂pS with ∂pS = { ∂ps | s ∈ S },
– the transition function E is given by:

E(s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P(s, t) if s, t ∈ S,

P(s′, t′) if s, t ∈ ∂pS and s = ∂ps
′ and t = ∂pt

′,
∂pP(s′, t) if s ∈ ∂pS and s = ∂ps

′ and t ∈ S,

0 otherwise,

– the reward function rew′ is given by rew′(s) = rew(s) for s ∈ S and rew′(s) = 0
for s ∈ ∂pS.

The intuition behind this derived automaton is as follows. “Deriving” the
state s ∈ S with respect to p ∈ V yields the new state ∂ps. For every transition
P(s, s′) �= 0 for s, s′ ∈ S, we “use the product rule” and add the transitions
P(∂ps, ∂ps

′) = P(s, s′) and P(∂ps, s
′) = ∂pP(s, s′) to ∂pM.

Example 7. Applying Definition 5 to the pMC M from Fig. 3(a) results in the
derived weighted automaton ∂pM in Fig. 3(b).

Note that although ∂pM is not a pMC as some transitions have negative

weights, the parametric expected reward ER∂psI →
∂pM can be computed as in Def-

inition 3 as we restrict ourselves to graph-preserving regions, ensuring contin-
uously differentiability of ERs→

M . The derivative of the expected reward in M
can now be obtained as the parametric expected reward (ER∂psI →

∂pM) in ∂pM.

Proposition 1. For each pMC M we have: ER∂psI →
∂pM = ∂pERsI →

M .

Stated in words, the expected reward of the derived automaton ∂pM equals the
partial derivative of the expected reward of the pMC M.

4 Gradient Descent

Gradient descent (GD) is a first-order4 optimization technique to maximize an
objective function f(u). It updates the GD parameters in the direction of its
gradient ∂pf(u). We want to use GD to solve the problem introduced in Sect.
2.3, i.e., given λ ≥ 0, and comparison operator ∼, find an instantiation u ∈ R

with: ERs0→ [u] ∼ λ.
We consider several GD update methods (Plain GD, Momentum GD [52], and

Nesterov accelerated GD [47,59], RMSProp [61], Adam [37], and RAdam [40]).
Three variants of GD are common in the literature. Batch GD computes the
gradient of f w.r.t. all parameters. In contrast, stochastic GD performs updates
for each parameter separately. Mini-batch GD sits in between and performs an
update for a subset of parameters. We describe the GD update methods w.r.t.
4 It is only based on the first derivative and not on higher ones.

136 L. Heck et al.

Algorithm 1. GD
1: while f [u] ≤ λ do
2: if u is a local optimum then
3: pick new u
4: update u with GD-method
5: return u

Fig. 4. Different GD methods on f for R = [0, 3]

stochastic GD, i.e., at step t we update the instantiation at parameter pi(t), while
the other valuations remain the same. We update the parameters in round-robin
fashion: i(t) = t mod |V |. Clearly, stochastic GD can be extended to mini-batch
and batch GD, by updating more/all parameters at the same time. We assume
that the objective function f , starting instantiation u, and bound λ are given
and focus on ∼ = >. Algorithm 1 shows the algorithm to find a feasible solution.
First of all, we discuss Plain GD, after which we consider other existing GD
update methods. Finally, we discuss several region restriction methods to deal
with parameter regions.

4.1 Plain GD

Plain GD is the simplest type of GD. A fixed learning rate η is used to determine
the step size taken to reach a (local) maximum. The parameter pi gets updated
in u based on ∂pi

f [u] as follows:

ut+1
i = ut

i + η · ∂pi
f [ut

i],

where ut
i = ut(pi), i.e., the value of pi with instantiation ut.

Example 8. Consider f(p) = 1
2p4 − 4p3 + 9p2 − 4p + 2 on a region R = [0, 3].

Assume that our initial instantiation is u0(p) = 1 and that we take η = 0.1
and λ = 5.9. The red halfdots in Fig. 4(a) illustrate how the value of p changes
over time when using Plain GD. The blue dot indicates the optimum. At t = 0,
the gradient is 4 and so p is updated to 1.4. For t = 1, the gradient is 3.17,
increasing p again. This is repeated until at t = 3, we have f [ut] = 5.96. As this
value exceeds λ, a feasible instantiation (p = 2.08) is found.

Gradient-Descent for Randomized Controllers Under Partial Observability 137

4.2 GD Update Methods

Intuitively, all GD methods attempt to “guess” how the gradient will change
by guiding the search for maxima based upon the past behaviour of the gra-
dient. Many GD optimization methods exist and a recent overview is given by
Ruder [51]. We consider the following methods: Momentum, Nesterov accelerated
GD (NAG), RMSProp, Adam, and RAdam. Momentum and NAG are classical
and very similar to Plain GD. The latter three are adaptive algorithms, i.e.,
their learning rate is changing over time and each parameter has its own learn-
ing rate. Parameters with larger gradients have smaller learning rates than the
ones with smaller gradients. The latter three have been developed for machine
learning purposes [40]. We will elaborate on the Momentum and NAG method
and briefly sketch the other methods.

Momentum [52]. Instead of only considering the current derivative, the Momen-
tum method also takes into consideration previous derivatives. They are weighted
by the average decay factor γ ∈ [0, 1) (typically at least 0.9). This method uses an
additional update vector v. Momentum GD adjusts the parameter value accord-
ing to the following equation. (Note that, if γ = 0, Momentum GD is equal to
Plain GD.)

vt+1
i = γ · vt

i + η · ∂pi
f [ut

i] (2)

ut+1
i = ut

i + vt+1
i . (3)

Nesterov Accelerated GD (NAG) [47,59]. As for Momentum GD, NAG weighs
the past steps by γ. Additionally, it attempts to predict the future by guess-
ing the next instantiation of u, denoted u′ (Eq. (4)). This should prevent us
from moving to the other side of the optimum (Example 9). As for Momentum,
the instantiation is updated according to Eq. (3), whereas the update vector is
obtained as in Eq. (5):

u′
j =

{
ut

j − γ · vt
j if j = i

ut
j otherwise

(4)

vt+1
i = γ · vt

i + η · ∂pi
f [u′]. (5)

Example 9. Reconsider our running example. Figures 4(b) and 4(c) show how
the value of p changes over time using Momentum GD and NAG respectively.
Note that for both methods we need one step less compared to Plain GD, i.e., a
feasible instantiation is found at t = 2. This is due to taking results of previous
steps into account. Furthermore, observe that for Momentum GD at t = 2 the
instantiation of p actually passed the optimum, whereas for NAG this does not
occur.

Adaptive Methods. RMSProp (Root Mean Square Propagation) [61] is akin to
Momentum and NAG, but its learning rate is adapted based on the previous

138 L. Heck et al.

squared gradient (Eq. (7)). This squared gradient is recursively defined as the
sum of β ∈ [0, 1) times the past squared gradient, and 1 − β times the current
squared gradient (Eq. (6)). β is called the squared average decay. In Eq. (7) a
small amount ε > 0 is added to the update vector at pi to avoid division by zero.

vt+1
i = β · vt

i + (1 − β) · (∂pi
f [u])2 (6)

ut+1
i = ut

i +
μ

√
vt

i + ε
· ∂pi

f [u]. (7)

In addition to the mean, Adam (Adaptive Moment Estimation) [37] takes the
second moment (the uncentered variance) of the gradients into account. RAdam
(Rectified Adam) [40] solves an issue with Adam in which the variance of learning
rate is too large in the initial steps of the algorithm.

Sign Methods [46]. For the non-adaptive methods, we additionally implemented
variants that only respect the signs of the gradients and not their magnitudes.
That is, we update the parameter as

ut+1
i = ut

i + η · sgn(∂pi
f [ut]).

Note that this implies we don’t need to calculate the full gradient.

4.3 Dealing with Parameter Regions

So far we dealt with unconstrained GD. However, as a graph-preserving region
R is given, we need to deal with parameter values getting out of R. To do so,
we discuss the following methods: Projection, Penalty Function, Barrier Func-
tion, and logistic Function. Recall that, Ri = [lbi, ubi] denotes the bound for
parameter pi in region R.

Projection. The projection method acts as a hard wall around the region.
As soon as ui �∈ Ri, ui gets set to the bound of the region, i.e., ut

i
′ =

min(max(ut
i, lbi), ubi). Furthermore, if the parameter pi got out of the given

region, we set its past gradients to 0, i.e. vt+1
i = 0.

Example 10. Reconsider our running example. However, now consider region
R′ = [0.5, 1.5]. For t = 0, the gradient is 4, and p is updated to 1.4. For t = 1,
the gradient is 3.17, yielding p to be updated to 1.72. As this is out of the region
R′, p is projected to 1.5.

Penalty Function. The penalty method [56] transforms the constrained problem
into an unconstrained one, by adding a penalty function to f [ut]. This penalty
depends on how bad the violation is, e.g. what the difference is between ui

and the bounds of Ri. It can be interpreted as a red warning zone outside of
the region. As this might yield non-graph-preserving instantiations, we do not
further look into this.

Gradient-Descent for Randomized Controllers Under Partial Observability 139

Barrier Function. The barrier function [62] (also called indicator function) works
as a soft wall inside of the region, discouraging one to get to close to the wall. It
is independent of how bad the violation is. We consider the log-barrier function
for maximizing f (see Eqs. (10)–(11c))5, as this yields a differentiable function.
The barrier function is weighted by μ ∈ [0, 1]. The equations are:

f [ut] = f [ut] + μ · bar[ut] (8)

∂pi
f ′[ut] = ∂pi

f [ut] + μ · ∂pi
bar[ut] (9)

bar[ut] =
∑

i

bari[ut] (10)

bari[u] =

⎧
⎪⎨

⎪⎩

log(ui − lbi) if lbi + ubi−lbi
2 < ui and ui ∈ Ri (11a)

log(ubi − ui) if lbi + ubi−lbi
2 ≥ ui and ui ∈ Ri (11b)

−∞ otherwise. (11c)

∂pi
bari[u] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
ui − lbi

if lbi + ubi−lbi
2 < ui and ui ∈ Ri (12a)

1
ubi − ui

if lbi + ubi−lbi
2 ≥ ui and ui ∈ Ri (12b)

∞ otherwise. (12c)

Note that for higher learning rates, the barrier function might not be strong
enough to prevent ui �∈ R, see also the upcoming example.

Example 11. Reconsider our running example with μ = 0.1. We observe that at
all t where ui ∈ Ri case Eq. (11a) applies, so the barrier function is given by
bart = log(1.5 − p). For learning rate 0.1, at t = 0, the gradient is 4 − μ · 1

1.5−p ,
so p is updated to 1.38. For t = 1, the gradient is 0.24. So p is updated to 1.62,
which is outside region R′. When considering a smaller learning rate, e.g. 0.01,
at t = 0 p is updated to 1.038. This converges around t = 30 with p ≈ 1.46 ∈ R′.

Logistic Function. For the logistic function, we map each restricted parameter
pi to unrestricted parameter qi by using a sigmoid function [24] (see Eq. (13))
tailored to Ri. We denote instantiations of q with u′. u′

i,0 is the value of the
sigmoid’s midpoint. u′ gets updated according to the GD method. The gradient
(v′

i) at u′ is computed according to Eq. (14).

u′
i,0 =

ubi − lbi

2

ui =
ubi − lbi

1 + e−(u′
i−u′

i,0)
+ lbi (13)

v′
i[u

′] =
eu′

i · vi[u]
(1 + eu′

i)2
. (14)

5 When considering a minimization problem, bar is subtracted from f .

140 L. Heck et al.

Example 12. Reconsider our running example. Let the learning rate be 0.1, and
u′0(q) = 0.5. The sigmoids midpoint is u′

i,0 = 0.5. For t = 0, we have u0
i = 1.

The gradient at this point v′0
i [u′0] = 0.94, so q is updated to 0.59. Therefore, p

is set to 1.02. At each iteration p and q get updated. E.g. at t = 100, q = 3.63
and p = 1.45.

5 Empirical Evaluation

We implemented all gradient descent methods from Sect. 4 in the probabilistic
model checker Storm [28]. All parameters, i.e. batch-size, learning rate, average
decay and squared average decay, are configurable via Storm’s command line
interface. We evaluate the different gradient descent methods and compare them
to two baselines: One approach based on Quadratically-Constrained Quadratic
Programming (QCQP) [13], which uses convex optimization methods, and one
sampling-based approach, called Particle Swarm Optimization (PSO) [11]. These
baselines are implemented in the tool PROPhESY [15]. All methods use the
same version of Storm for model building, simplification, model checking, and
solving of linear equation systems. We specifically answer the following questions
experimentally:

Q1 Which region restriction method works best?
Q2 Which GD methods works best?
Q3 How does GD compare to previous techniques (QCQP and PSO)?

5.1 Set-Up

We took the approach as described in Sect. 3.1, i.e., one sparse matrix is created
per parameter and instantiated at the current position. Our implementation
works with Mini-Batch GD as described above. This means that we compute
the derivative w.r.t. k parameters and then perform one step. We allow for
stochastic GD and batch GD by setting k to 1 or |V |, respectively.

For the experiments, we solve equation systems with GMRES from the gmm++
linear equation solver library included in Storm, which uses floating-point arith-
metic. All experiments run on a single thread and perform some preprocessing
(e.g. bisimulation minimization). The times reported are the runtimes for GD,
PSO and QCQP and do not include preprocessing. We set a time-out of two
hours. We have used machines with an Intel Xeon Platinum 8160 CPU and
32 GB of RAM. In the comparisons with QCQP and PSO, we report the aver-
age runtime over five runs.

Settings. For all constants except the learning rate, we chose the default from
the literature (e.g., [37,40,51,61]), i.e. we set the batch size k to 32, average
decay γ to 0.9 and squared average decay β to 0.999. Whereas in the literature
the learning rate is often set between 0.001 and 0.1, we stick to 0.1. As we are
interested in finding a feasible instantiation, we can take the risk of jumping over

Gradient-Descent for Randomized Controllers Under Partial Observability 141

a local optimum due to a too high learning rate. Also, our experiments show that
lower learning rates slow down the search process (see Fig. 5). Furthermore, we
start at ui = 0.5 + ε for all parameter pi with ε = 10−6, to overcome possible
saddle points at pi = 0.5. After every parameter has performed a step of less than
10−6 in sequence, we conclude a local optimum has been found (we are aware this
is an impatient criterion, tweaking this is a matter for further research). When
an infeasible local optimum is found, a new starting point is selected randomly
(see Algorithm 1, Line 3). Consequently, the GD methods may yield different
runtimes on different invocations on the same benchmark, though in practice we
observe only a small deviation in the runtimes. For the barrier region restriction
method, we initially set μ to 0.1. If no feasible solution is found, we divided μ by
10. We continue this procedure until a feasible solution is found, or μ < 10−6.

Benchmarks. We consider pMCs obtained from POMDPs (cf. [34]) and Bayesian
networks (cf. [53]) with a large number of parameters. We took at least one vari-
ant of all POMDPs with reachability or expected reward properties from [8,48],
except for the dining cryptographer’s protocol which has a constant reachabil-
ity probability. Furthermore, we took a medium and large Bayesian network
from [54]. We excluded the typical pMC examples [25] with only two or four
parameters. We observed that for some benchmarks (e.g., drone and refuel)
the optimum for some parameters is often at its bound. We refer to these param-
eters as “easy-parameters”.6

Table 1 shows the benchmarks. The first seven benchmarks consider reacha-
bility properties, whereas the latter four consider expected rewards. The table
includes the required property (Bound) and the instance of the benchmark.
For network2-prios, “ps” refers to successfully delivered packets and “dp”
refers to dropped packets. For each benchmark we denote the number of states,
transitions and parameters after minimization, as well as the number of “easy-
parameters”. The entry N/A for “easy-parameters” means that all runs for GD
timed out, therefore, no feasible instantiation was found and the number of
“easy-parameters” could not be determined.

To obtain bounds for the feasible instantiations, we considered values close to
known optima from the literature. For those benchmarks where the optimal was
not available, we approximated it by applying GD several times and picking the
optimum solution found. We checked feasibility against the optimum-bounds,
and the relaxed bounds, where we relaxed all bounds by 10% and 20%, respec-
tively. The plots for 10% are similar to those for 20% and therefore omitted.

5.2 Results

Our experiments show that GD can be used to find feasible parameter instanti-
ations. In the following, we provide the numerical results and then answer the
questions Q1–Q3 in the next paragraphs.
6 The feasibility problem remains a combinatorially hard problem, but the presence

of easy parameters typically (but not always) indicates that the gradient remains
(positive/negative) over the complete space.

142 L. Heck et al.

Table 1. Model characteristics

Model Bound Instance States Trans. |V | |Veasy|
Reachability probabilites hailfinder ≥0.145 (2000) 1540 324982 1249 0

nrp ≤0.001 (16,2) 787 1602 95 32

(16,5) 5806 11685 704 340

drone ≥0.85 (5,1) 3678 27376 756 667

(5,2) 3678 27376 2640 404

4x4grid-avoid ≥0.9 (5) 1216 2495 99 42

(10) 4931 9990 399 158

newgrid ≥0.99 (8,10) 30191 60410 399 244

(15,10) 98441 196910 399 79

child ≤0.43 (240) 243 3277 223 170

refuel ≥0.35 (5,3) 1564 4206 452 317

(8,3) 7507 21468 794 570

Expected reward network2-prios ≤0.1 (8,5, ps) 397 2837 140 128

≤3.5 (8,5, dp) 2822 69688 888 537

samplerocks ≤40 (8) 11278 25205 2844 644

4x4grid ≤4.2 (5) 1410 2879 99 38

(10) 5780 11659 399 177

maze2 ≤6 (15) 5340 10799 2624 1257

(50) 61000 121799 29749 N/A

Numerical Results. The scatter plots in Fig. 5 show how the different region
restriction methods compare for Momentum-Sign and Adam. Point (x, y)
denotes that the restriction method projection took x seconds and the alter-
native took y seconds to find a feasible instantiation for the given GD method.
The scatter plots in Figs. 6 and 7 show how the different GD methods and the
baseline methods QCQP and PSO (y-axis) compare to Momentum-Sign (x-axis),
respectively. Note that all scatter plots are log-log scale plots. Point (x, y) denotes
that Momentum-Sign took x seconds and the alternative took y seconds to find
a feasible instantiation. All implicit vertical lines denote the same benchmark.
Points on the TO/MO line denote that the method has timed out or used too
much memory and the ERR line denotes that the method has encountered some
internal error. The dashed lines denote differences of a factor 10 and 100.

Comparison of Region Restriction Methods. Figure 5(a) (Fig. 5(b)) displays how
projection with learning rate 0.1 (x-axis) compares to all other restriction methods
for the optimum-bounds of all benchmarks on Momentum-Sign (Adam). The ERR
line indicates that we found an infeasible parameter instantiation. This occurs
when the learning rate is too high, and thus the barrier function not strong enough
(see also Example 11). Imagine a vertical line through x = 0.1. This line represents
the benchmark for which momentum-sign needed ≈0.1 s. We now obtain that the
barrier function timed-out or threw an error for all learning rates.

First of all, we observe that for Momentum-Sign the logistic-function is
slightly outperformed by projection. Secondly, we observe that for Adam the

Gradient-Descent for Randomized Controllers Under Partial Observability 143

Fig. 5. Comparison of different region restriction methods

Fig. 6. Comparison of different GD methods

logistic-function is outperformed by projection often up to orders of magnitude.
Finally, we observe that for learning rate 0.1, the barrier function method is out-
performed by projection. As many “easy-parameters” occur, the optima often
lie at the edges of the region. Therefore, we choose a relatively large learning
rate. The barrier function method tends to push us away from the edges, as the
steps taken are too large, we cannot get close enough to the edge.

Comparison of GD Methods. When comparing the different GD Methods, we fix
the region restriction method to projection. Figure 6(a) displays how Momentum-
Sign (x-axis) compares to all other methods for the optimum-bounds of all bench-
marks. First of all, we observe that Momentum-Sign typically obtains better
runtimes compared to the adaptive methods (RMSProp, Adam, RAdam). As
our parameters occur with almost the same frequency, the adaptive methods are
less suited for our benchmarks. Secondly, we observe that for the non-adaptive
methods, the methods where only the sign of the gradient is respected (and not
the value gradient itself) often outperform their alternative. This is caused by 1)
the occurrence of the “easy-parameters” and 2) the influence a single parameter

144 L. Heck et al.

Fig. 7. Comparison of GD with QCQP and PSO against optimum-bounds (upper) and
20% relaxed-bounds (lower)

may have on the reachability probability/expected reward. If a more influential
parameter gets changed at the first parameter batch, this might yield a feasible
solution before we have even updated all parameters. Monotonicity could be a
cause, and the ordering of parameters on influentiallity needs further investiga-
tion (see Sect. 7).

Comparison to State-of-the-Art Feasibility Methods. Figure 7 shows Momentum-
Sign with projection versus QCQP and PSO respectively, on both the optimum-
bounds (upper) and 20% relaxed-bounds (lower). First of all, our experiments
reveal that Momentum-Sign always outperforms PSO, on both the optimum-
bounds and the relaxed-bounds. Secondly, note that PSO throws an error dur-
ing preprocessing of the MC on some benchmarks as they violate an implicit
assumption by the PSO implementation. Thirdly, Momentum-Sign outperforms
QCQP often by at least one order of magnitude. Finally, we observe that QCQP
outperforms Momentum-Sign for the samplerocks benchmarks. Based on the
structure of the samplerocks benchmark, preprocessing with e.g. monotonicity
checking might improve Momentum-Sign (see Sect. 7).

Gradient-Descent for Randomized Controllers Under Partial Observability 145

6 Related Work

Finding Satisfying Instantiations of Parametric MCs. Parametric MCs [14,39]
have received quite some attention. The classical focus has been on comput-
ing closed forms for solution functions that map parameter values to expected
rewards [5,14,17,18,23,31,33]. Feasibility as considered in this paper—finding a
satisfying instantiation—and its extension to model repair [7] has been formu-
lated as a search problem before: Chen et al. [11] considered three different search
methods: PSO, Markov Chain Monte Carlo and Cross-Entropy. In this context,
PSO was most successful. Model repair and feasibility have also been studied as
optimization problems: [7] considered a one-shot encoding, whereas [12,13] took
iterative approaches in which the encoding was simplified around a point to guide
the search. Spel et al. [58] present a graph-based heuristic to determine whether
a pMC is monotonic, i.e., whether the gradient w.r.t. some parameter is posi-
tive on the complete parameter space. Chen et al. [10] analyze (non-controllable)
perturbations in MCs from a robustness perspective. Fast sampling of the param-
eter space and evaluating the corresponding pMCs is also a preprocessing step
to other methods [22,33]. Storm offers optimized routines, and for large numbers
of samples, just-in-time compilation is a feasible alternative [20].

Controller Synthesis Under Partial Observability. The standard model for con-
troller synthesis under partial observability are partially observable MDPs
(POMDPs) [36]. Controller synthesis in finite POMDPs can equivalently be
reformulated as controller synthesis for infinitely large belief-MDPs. Due to the
curse of history, finding a feasible controller for a quantitative objective—the
setting discussed in this paper—is undecidable [42]. At the beginning of this
millennium, this lead to trying to search for memoryless or small-memory con-
trollers in POMDPs [43]. Among others, the use of gradient descent methods to
learn finite-state controllers for partially observable environments was explored
by Meuleau et al. [44]. This approach has further developed into deep learn-
ing for POMDPs, as e.g. used to learn Atari-games [45]. Some methods allow
explicit extraction of the finite-state controllers [9]. Those approaches are gener-
ally model-free—they learn policies from sets of demonstrations or traces. Closest
to our approach is the work by Aberdeen [1] in using a model-based approach
to find memoryless strategies in POMDPs via gradient descent. The major dif-
ferences are in computing the gradients by using value-iteration and a softmax
operation, and the use of stochastic gradient descent. The approach back then
could and did not compare to the current state-of-the-art methods.

Quickly afterwards, breakthroughs in point-based solvers [49,57] and Monte-
Carlo methods for finding solutions [55] shifted attention back to the belief-
MDP [29,63] (although some of those ideas also influenced the deep-RL com-
munity). Likewise, most recent support in the probabilistic model checkers
PRISM [48] and Storm [8] is based on an abstraction of the belief-MDP [41]
and abstraction refinement. The use of [64] of game-based abstraction leads to
non-randomized controllers. Winterer et al. [65] support a finite set of uniform
randomizations. In contrast, we consider an infinite combination of possibilities.

146 L. Heck et al.

Likewise, Andriushenko et al. [3] recently consider syntax-guided synthesis for
partial information controllers with a finite set of options.

7 Conclusion and Future Work

This paper has shown that gradient descent often outperforms state-of-the-art
methods for tackling the feasibility problem: find an the instance of a parametric
Markov chain that satisfies a reachability objective. As synthesizing a realizable
controller with a fixed memory structure and a fixed set of potential actions
can formally be described as feasibility synthesis in pMCs [34]. Our approach
supports the correct-by-construction synthesis of controllers for systems whose
behavior is described by a stochastic process. Experiments showed that 1) pro-
jection outperforms other region restriction methods, 2) basic gradient descent
methods perform better on our problem than more sophisticated ones, and 3)
Momentum-Sign often outperforms QCQP and PSO.

Outlook. As observed in the evaluation of the results, future work consists of
extending the preprocessing of the parametric Markov chains with monotonicity
checking and investigating a possible ordering of parameters based on the influ-
ence on the property. Also, models with a large state space could be handled by
e.g. using value iteration to solve the system of equations. Furthermore, ques-
tions regarding the derived weighted automaton can be asked, e.g. regarding the
applicability of bisimulation minimisation or parameter lifting [50].

Data Availibility Statement. The tools used and data generated in our experimen-
tal evaluation are archived at DOI 10.5281/5568910 [27].

References

1. Aberdeen, D.A.: Policy-gradient algorithms for partially observable Markov deci-
sion processes. Ph.D. thesis, The Australian National University (2003)

2. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series D: Information and Commu-
nication Security, vol. 40, pp. 1–25. IOS Press (2015)

3. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P.: Inductive synthesis for
probabilistic programs reaches new horizons. In: Groote, J.F., Larsen, K.G. (eds.)
TACAS 2021. LNCS, vol. 12651, pp. 191–209. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72016-2 11

4. Baier, C., Größer, M., Bertrand, N.: Probabilistic ω-automata. J. ACM 59(1),
1:1-1:52 (2012)

5. Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J.P., Klein, J.: Para-
metric Markov chains: PCTL complexity and fraction-free Gaussian elimination.
Inf. Comput. 272, 104504 (2020)

6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

https://doi.org/10.5281/zenodo.5568910
https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-030-72016-2_11

Gradient-Descent for Randomized Controllers Under Partial Observability 147

7. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

8. Bork, A., Junges, S., Katoen, J.-P., Quatmann, T.: Verification of indefinite-horizon
POMDPs. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp.
288–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 16

9. Carr, S., Jansen, N., Topcu, U.: Verifiable RNN-based policies for POMDPs under
temporal logic constraints. In: IJCAI, pp. 4121–4127. ijcai.org (2020)

10. Chen, T., Feng, Y., Rosenblum, D.S., Su, G.: Perturbation analysis in verification
of discrete-time Markov chains. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 218–233. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44584-6 16

11. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: TASE. IEEE (2013)

12. Cubuktepe, M., et al.: Sequential convex programming for the efficient verification
of parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 8

13. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in
pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 10

14. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

15. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

16. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009)

17. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model check-
ing through model fragmentation. In: ICSE, pp. 835–846. IEEE (2021)

18. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: ICSE. ACM (2011)

19. Fremont, D.J., Seshia, S.A.: Reactive control improvisation. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 307–326. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 17

20. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 18

21. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 14

22. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5 12

https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-030-59152-6_16
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-030-01090-4_10
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-540-75454-1_14
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12

148 L. Heck et al.

23. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 88–
106. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02652-2 10

24. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed
of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS,
vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
59497-3 175

25. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

26. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.P.: Gradient-descent for
randomized controllers under partial observability. CoRR abs/2111.04407 (2021,
extended version)

27. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.P.: Gradient-descent for ran-
domized controllers under partial observability (artifact). Zenodo (2021). https://
doi.org/10.4121/14910426

28. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. CoRR abs/2002.07080 (2020)

29. Horák, K., Bosanský, B., Chatterjee, K.: Goal-HSVI: heuristic search value itera-
tion for goal POMDPs. In: IJCAI, pp. 4764–4770. ijcai.org (2018)

30. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: PODC, pp. 119–131. ACM (1990)

31. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,
G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

32. Junges, S.: Parameter synthesis in Markov models. Ph.D. thesis, RWTH Aachen
University, Germany (2020)

33. Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J.P., Quatmann, T.,
Volk, M.: Parameter synthesis for Markov models. CoRR abs/1903.07993 (2019)

34. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.
In: UAI. AUAI Press (2018)

35. Junges, S., Katoen, J.P., Pérez, G.A., Winkler, T.: The complexity of reachability
in parametric Markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)

36. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

37. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR
(Poster) (2015)

38. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

39. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109
(2007)

40. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. In: ICLR.
OpenReview.net (2020)

41. Lovejoy, W.S.: Computationally feasible bounds for partially observed Markov deci-
sion processes. Oper. Res. 39(1), 162–175 (1991)

42. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)

https://doi.org/10.1007/978-3-642-02652-2_10
https://doi.org/10.1007/3-540-59497-3_175
https://doi.org/10.1007/3-540-59497-3_175
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.4121/14910426
https://doi.org/10.4121/14910426
https://doi.org/10.1007/978-3-319-10696-0_31
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Gradient-Descent for Randomized Controllers Under Partial Observability 149

43. Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann
(1999)

44. Meuleau, N., Peshkin, L., Kim, K., Kaelbling, L.P.: Learning finite-state controllers
for partially observable environments. In: UAI, pp. 427–436. Morgan Kaufmann
(1999)

45. Mnih, V., et al.: Playing Atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013)

46. Moulay, E., Léchappé, V., Plestan, F.: Properties of the sign gradient descent
algorithms. Inf. Sci. 492, 29–39 (2019)

47. Nesterov, Y.E.: A method for solving the convex programming problem with con-
vergence rate O(1/k2). In: Dokl. akad. nauk Sssr, vol. 269, pp. 543–547 (1983)

48. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017). https://doi.org/10.
1007/s11241-017-9269-4

49. Pineau, J., Gordon, G.J., Thrun, S.: Point-based value iteration: an anytime algo-
rithm for POMDPs. In: IJCAI, pp. 1025–1032. Morgan Kaufmann (2003)

50. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

51. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

52. Rumelhart, D.E.: Parallel Distributed Processing. MIT Press, Cambridge (1989)
53. Salmani, B., Katoen, J.-P.: Bayesian inference by symbolic model checking. In:

Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp.
115–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59854-9 9

54. Scutari, M.: Bayesian network repository (2021). https://www.bnlearn.com/
bnrepository/

55. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: NIPS, pp. 2164–
2172. Curran Associates, Inc. (2010)

56. Smith, A.E., Coit, D.W., Baeck, T., Fogel, D., Michalewicz, Z.: Penalty functions.
Handb. Evol. Comput. 97(1), C5 (1997)

57. Spaan, M.T.J., Vlassis, N.A.: Perseus: randomized point-based value iteration for
POMDPs. J. Artif. Intell. Res. 24, 195–220 (2005)

58. Spel, J., Junges, S., Katoen, J.-P.: Are parametric Markov chains monotonic? In:
Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp.
479–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3 28

59. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of ini-
tialization and momentum in deep learning. In: ICML (3). JMLR Workshop and
Conference Proceedings, vol. 28, pp. 1139–1147. JMLR.org (2013)

60. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge
(2005)

61. Tieleman, T., Hinton, G.: Lecture 6.5–RMSProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning (2012)

62. Vanderbei, R.J.: Linear programming - foundations and extensions, Kluwer Inter-
national Series in Operations Research and Management Service, vol. 4. Kluwer
(1998)

63. Walraven, E., Spaan, M.T.J.: Accelerated vector pruning for optimal POMDP
solvers. In: AAAI, pp. 3672–3678. AAAI Press (2017)

https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
http://arxiv.org/abs/1609.04747
https://doi.org/10.1007/978-3-030-59854-9_9
https://www.bnlearn.com/bnrepository/
https://www.bnlearn.com/bnrepository/
https://doi.org/10.1007/978-3-030-31784-3_28

150 L. Heck et al.

64. Winterer, L., et al.: Strategy synthesis for POMDPs in robot planning via game-
based abstractions. IEEE Trans. Autom. Control 66(3), 1040–1054 (2021)

65. Winterer, L., Wimmer, R., Jansen, N., Becker, B.: Strengthening deterministic
policies for POMDPs. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D.
(eds.) NFM 2020. LNCS, vol. 12229, pp. 115–132. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-55754-6 7

https://doi.org/10.1007/978-3-030-55754-6_7
https://doi.org/10.1007/978-3-030-55754-6_7

Automata-Driven
Partial Order
Reduction and

Guided Search for LTL
Model Checking

Peter Gjøl Jensen, Jǐŕı Srba, Nikolaj Jensen Ulrik(B),
and Simon Mejlby Virenfeldt

Department of Computer Science, Aalborg University,
Aalborg, Denmark
njul@cs.aau.dk

Abstract. In LTL model checking, a system model is synchronized
using the product construction with Büchi automaton representing all
runs that invalidate a given LTL formula. An existence of a run with
infinitely many occurrences of an accepting state in the product automa-
ton then provides a counter-example to the validity of the LTL formula.
Classical partial order reduction methods for LTL model checking allow
to considerably prune the searchable state space, however, the majority
of published approaches do not use the information about the current
Büchi state in the product automaton. We demonstrate that this addi-
tional information can be used to significantly improve the performance
of existing techniques. In particular, we present a novel partial order
method based on stubborn sets and a heuristically guided search, both
driven by the information of the current state in the Büchi automaton.
We implement these techniques in the model checker TAPAAL and an
extensive benchmarking on the dataset of Petri net models and LTL for-
mulae from the 2021 Model Checking Contest documents that the com-
bination of the automata-driven stubborn set reduction and heuristic
search improves the state-of-the-art techniques by a significant margin.

1 Introduction

The state space explosion problem is one of the main barriers to model check-
ing of large systems as the number of reachable states can be exponentially
larger than the size of a high-level system description in a formalism like e.g. a
Petri net [31]. Addressing this problem has been the subject of much research,
with directions including partial order reductions [19,29,38], symbolic model
checking [3,7], guided searches using heuristics [13,14], and symmetry reduc-
tions [8,34]. Some system description languages afford specialized techniques in
addition to the above. For example, state space explosion of Petri nets can be
addressed with structural reductions [4,16,28].
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 151–173, 2022.
https://doi.org/10.1007/978-3-030-94583-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_8

152 P. G. Jensen et al.

We focus on partial order reductions, a family of techniques designed to
prune the state space search that arises from interleaving executions of con-
currently running system components. An important category of partial order
reduction techniques are the ample set [29], persistent set [19], and in particu-
lar the stubborn set methods [39] which are the main focus of the paper. The
goal of the techniques is, given a specific state, to determine a subset of actions
to explore such that all representative executions are preserved with respect to
the desired property. Partial order reduction techniques are supported in several
well-established tools, e.g. Tapaal [10], LoLA 2 [43], and Spin [21], and have
proven to be useful in practice [4,22,25].

The main approach to Linear Temporal Logic (LTL) model checking [32] is
based on a translation of the negation of an LTL formula into a Nondetermin-
istic Büchi Automaton (NBA) and then synchronizing it with the system being
verified. The goal is then to find a reachable accepting cycle in the synchronized
product. While much research has been done on optimizing the construction of
NBAs [1,15,42], and on the state space reductions described above, only few
state space techniques take the Büchi automaton into account. For example,
the classical next-free LTL preserving partial order method by Valmari [39] is
based only on the syntax of the formula and is completely agnostic to the choice
of verification algorithm and the Büchi state in the product automaton [40].
Some of the work done within the field of stubborn sets includes a specialized,
automata-driven approach for a subclass of LTL formulae called simple LTL
formulae [25], and more recently Liebke [26] introduced an automaton-based
stubborn set approach for the full LTL logic. While his method is theoretically
interesting, no implementation and experimental evaluation is available yet.

During the state-space exploration, the choice of which successor state to be
explored first, has a large impact on the performance of depth-first algorithms for
LTL model checking such as Nested Depth First Search (NDFS) [9] and Tarjan’s
algorithm [17]. A poor choice of successor can cause a lot of time to be wasted by
exploring executions where accepting cycles do not exist. A way of addressing this
problem is by using heuristics to guide the search in a direction that is more likely
to be relevant for the given property. Previous work in this direction includes [12,
13] in which A∗ is used as a search algorithm with heuristics based on finite state
machine representations, and [23] presents a best-first search algorithm using a
syntax-driven heuristic, both focusing on reachability properties. To the best
of our knowledge, heuristic search techniques for LTL and in particular based
on the information of the current Büchi state, have not yet been systematically
explored.

We contribute with a novel automata-driven stubborn set partial order
method and automata-driven heuristics for guided search for model checking
of LTL formulae on Petri nets. The stubborn set method is a nontrivial exten-
sion of the stubborn set technique for reachability analysis presented in [4]. This
new method looks at the local structure of the NBA and considers as stubborn
all actions that can cause the change of NBA state. The guided search is based
on the heuristics of [23] describing the distance between a state (marking) and

Automata-Driven LTL Model Checking 153

the satisfaction of a formula. We extend this method such that in nonaccepting
NBA states we estimate the distance to possible accepting states where we can
progress. Common to our techniques is the desire to leave nonaccepting NBA
states as quickly as possible in order to find an accepting state earlier than
otherwise.

We provide an implementation of these techniques as an extension of the
open-source engine verifypn [23] used in the model checker Tapaal [10]. We
evaluate its performance using the LTL dataset of the 2021 edition of the Model
Checking Contest (MCC) [24] and compare it to the baseline LTL model checker
implementing the Tarjan’s algorithm [17], as well as the classical stubborn set
method of Valmari [39,40] and the most recent automata-driven partial order
technique of Liebke [26]. We implemented all these approaches in the Tapaal
framework and conclude that while the Valmari’s as well as Liebke’s method
considerably improve the performance of the baseline Tarjan’s algorithm (and
Liebke’s approach is performing in general better than the classical reduction),
our automata-driven approach improves the performance a degree further, in
particular when combined with the heuristic search. Finally, we compare our
implementation with the ITS-Tools model checker [37] that scored second after
Tapaal at the 2021 Model Checking Contest [24]. We conclude that while ITS-
Tools solves 87.8% of all LTL queries in the benchmark, our tool with automata-
driven partial order reduction and heuristic search answers 94% of all queries.

Related Work. Stubborn set methods have been applied to a wide range of prob-
lems outside of the previously mentioned work. In [33] stubborn set methods are
presented for many Petri net properties such as home marking or transition live-
ness among others. There are also reachability-preserving stubborn sets for timed
systems [4,20] and more recently for timed games [6]. Regarding LTL model
checking, the classical approaches for partial order reduction by Valmari [39,40]
do not consider the Büchi state that is a part of the product system where we
search for an accepting cycle. The initial work by Peled, Valmari and Kokkari-
nen [30] on automata-driven reduction received only little attention but it was
recently revived by Liebke [26] for the use in LTL model checking, based on
the insight from [25]. Liebke’s idea is to design a stubborn set reduction so that
sequences of non-stubborn actions cannot change the current Büchi state, allow-
ing him to weaken and drop some requirements used in the classical partial order
approach for LTL. Even though theoretically promising, the approach has not
yet been implemented and experimentally evaluated. While our method relies on
similar ideas as [26], the approaches differ in how we handle the looping formula
of Büchi states: Liebke’s method introduces more stubborn actions related to
the looping formula whereas our method only adds stubborn actions for the for-
mulae that change Büchi state (and possibly for the implicit formula leading to
a sink state). We moreover implement both the classical and Liebke’s techniques
and compare them to our approach on a large benchmark of LTL formulae for
Petri net model.

154 P. G. Jensen et al.

In [13] guided search strategies for LTL model checking using variants of A∗

search are presented. Their guided search addresses situation where an accepting
state has been found and a cycle needs to be closed, in contrast with the heuristics
in our work that guides the search towards any form of state change in the NBA.
The work in [13] assumes that individual (fixed number of) processes are given
as finite state machines, an approach that is less general than Petri nets. Another
approach to guided search is presented in [35] where state equations are used to
guide the search, but it has not yet been extended to LTL model checking and it
is computationally more demanding. In contrast, we emphasize simple heuristics
that are faster to compute and efficient on a large number of models.

2 Preliminaries

We now define basic concepts of LTL model checking and recall the Petri net
model. Let N

0 denote the natural numbers including zero and let ∞ be such
that x < ∞ for all x ∈ N

0. By tt and ff we denote true and false, respectively.

2.1 Labelled Transition Systems

Let AP be a fixed set of atomic propositions. A Labelled Transition System
(LTS) with propositions is a tuple T = (S,Σ,→, L, s0) where

– S is a set of states,
– Σ is a finite set of actions,
– → ⊆ S × Σ × S is a transition relation,
– L : S → 2AP is a labelling function, and
– s0 ∈ S is a designated initial state.

We write s
α−→ s′ if (s, α, s′) ∈ →, and s → s′ if there exists α such that

s
α−→ s′. We write s

ε−→ s where ε is the empty string, and s
αw−−→ s′ if s

α−→ s′′ and
s′′ w−→ s′ where α ∈ Σ and w ∈ Σ∗. For s ∈ S, if no state s′ exists such that
s → s′, we call s a deadlock state, written s �→, and if s is not a deadlock state
we write s →. We use →∗ to denote the reflexive and transitive closure of →.
We say that α is enabled in s, written s

α−→, if there exists s′ such that s
α−→ s′,

and the set of all enabled actions in s is denoted en(s) = {α ∈ Σ | s
α−→}. For

any a ∈ AP we say that s satisfies a, written s |= a, if a ∈ L(s), and define
�a� = {s ∈ S | s |= a} to be the set of states satisfying a.

Let T = (S,Σ,→, L, s0) be an LTS. A run π in T is an infinite sequence
of states s1s2 . . . such that for all i ≥ 1, either si → si+1 or si is a deadlock
state and si+i = si. An infinite run π = s1s2 . . . induces an infinite word σπ =
L(s1)L(s2) . . . ∈ (2AP)ω. We define Runs(s) as the set of runs starting in s, and
Runs(T) = Runs(s0) where s0 is the initial state of T . We define the language
of s as L(s) = {σπ ∈ (2AP)ω | π ∈ Runs(s)}. For a word σ = A0A1 . . . we define
σi = AiAi+1 . . . to be the ith suffix of σ for i ≥ 0.

Automata-Driven LTL Model Checking 155

2.2 Linear Temporal Logic

The syntax of Linear Temporal Logic (LTL) [32] is given by

ϕ1, ϕ2 :: = a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 | Fϕ1 | Gϕ1 | Xϕ1 | ϕ1 U ϕ2

where ϕ1 and ϕ2 range over LTL formulae and a ∈ AP ranges over atomic
propositions. An infinite word σ = A0A1 . . . ∈ (2AP)ω satisfies an LTL formula
ϕ, written σ |= ϕ, according to the following inductive definition:

σ |= a ⇐⇒ a ∈ A0

σ |= ϕ1 ∧ ϕ2 ⇐⇒ σ |= ϕ1 and σ |= ϕ2

σ |= ϕ1 ∨ ϕ2 ⇐⇒ σ |= ϕ1 or σ |= ϕ2

σ |= ¬ϕ1 ⇐⇒ not σ |= ϕ1

σ |= Fϕ1 ⇐⇒ ∃i ≥ 0 . σi |= ϕ1

σ |= Gϕ1 ⇐⇒ ∀i ≥ 0 . σi |= ϕ1

σ |= Xϕ1 ⇐⇒ σ1 |= ϕ1

σ |= ϕ1 U ϕ2 ⇐⇒ ∃j ≥ 0 . σj |= ϕ2 and ∀i ∈ {0, 1, . . . , j − 1} . σi |= ϕ1

Let T = (S,Σ,→, L, s0) be an LTS. For a state s ∈ S, we say that s |= ϕ if
and only if for all words σ ∈ L(s) we have σ |= ϕ, and we say that T |= ϕ if and
only if s0 |= ϕ.

Example 1. Figure 1a illustrates an LTS T = (S,Σ,→, L, s0) with the set of
actions Σ = {α, β} and the set of atomic propositions AP = {a, b}. The initial
state s0 satisfies the formula FG(¬a∨b) as every infinite run either loops between
s0 and s1 (and then satisfies G¬a already from the initial state) or it loops in s3
(and then it satisfies FGb).

2.3 Nondeterministic Büchi Automata

The standard approach for verifying whether s |= ϕ for some state s and LTL
formula ϕ seeks to find a counterexample to ϕ in the system synchronized with a
Nondeterministic Büchi Automaton (NBA) equivalent to ¬ϕ (see e.g. [2]). Before
we define NBA, we introduce a logics for the propositions we may find as guards
in the NBA. We let B(AP) denote the set of propositions over the set of atomic
propositions AP , given by the grammar

b1, b2 :: = tt | ff | a | b1 ∧ b2 | b1 ∨ b2 | ¬b1

156 P. G. Jensen et al.

Fig. 1. Example LTS T and NBA A¬FGa; T �|= FGa due to the accepting cycle
(〈s0, q0〉〈s1, q0〉)ω in T ⊗ A¬FGa.

where a ∈ AP and b1, b2 ∈ B(AP). We define satisfaction of a proposition b by
a set of atomic propositions A ⊆ AP , written A |= b, inductively as:

A |= tt

A �|= ff

A |= a ⇐⇒ a ∈ A

A |= b1 ∧ b2 ⇐⇒ A |= b1 and A |= b2

A |= b1 ∨ b2 ⇐⇒ A |= b1 or A |= b2

A |= ¬b1 ⇐⇒ A �|= b1.

For a proposition b ∈ B(AP) and an LTS state s ∈ S, we write s |= b if L(s) |= b.
We let the denotation of a proposition be the set of sets of atomic propositions
given by �b� = {A ∈ 2AP | A |= b}. We also write b1 = b2 iff �b1� = �b2�.

A Nondeterministic Büchi Automaton (NBA) is a tuple A = (Q, δ,Q0, F)
where

– Q is a set of states,
– δ ⊆ Q × B(AP) × Q is a transition relation such that for each q ∈ Q, there

exist only finitely many b ∈ B(AP) and q′ ∈ Q such that (q, b, q′) ∈ δ,
– Q0 ⊆ Q is a finite set of initial states, and
– F ⊆ Q is a set of accepting states.

Automata-Driven LTL Model Checking 157

Fig. 2. NBA Aϕ where ϕ = ((Ga) U (Fa)) ∨ b with complex edge propositions

We write q
b−→ q′ if (q, b, q′) ∈ δ. We consider only NBAs in a normal form so

that for any pair of states q, q′ ∈ Q, if q
b−→ q′ and q

b′
−→ q′ then b = b′. This

normal form can be ensured by merging the transitions q
b−→ q′ and q

b′
−→ q′ into

a single transition q
b∨b′
−−−→ q′. For a state q ∈ Q we define the set of progressing

propositions as Prog(q) = {b ∈ B(AP) | q
b−→ q′ for some q′ ∈ Q \ {q}}, and the

retarding proposition as Ret(q) = b ∈ B(AP) such that q
b−→ q or Ret(q) = ff if

no such b exists.
Let σ = A0A1 . . . ∈ (2AP)ω be an infinite word. We say that an NBA A

accepts σ if and only if there exists an infinite sequence of states q0q1 . . . such
that

– q0 ∈ Q0,
– qi

bi−→ qi+1 and Ai |= bi for all i ≥ 0, and
– qi ∈ F for infinitely many i ≥ 0.

The language of an NBA A is L(A) = {σ ∈ (2AP)ω | A accepts σ}.
Automata-based model checking of LTL formulae is possible due to the fol-

lowing well-known result.

Theorem 1 ([2]). Let ϕ be an LTL formula. There exists an NBA Aϕ with
finitely many states such that L(Aϕ) = L(ϕ).

Example 2. Figure 2 shows an NBA equivalent to the formula ((Ga)U (Fa)) ∨ b.
The set of progressing propositions from q0 is Prog(q0) = {a ∨ b,¬a ∧ ¬b}, and
it has the retarding proposition ff . The set of progressing propositions of q1 is
the singleton set Prog(q1) = {a}, and the retarding proposition is Ret(q1) = ¬a.

From Theorem 1 we know that any infinite word σ that satisfies ϕ must be
accepted by Aϕ and vice versa. Recall that an LTS T = (S,Σ,→, L, s0) satisfies
ϕ if and only if for all σ ∈ L(s0) we have σ |= ϕ. Conversely, if there exists a
word σ ∈ L(s0) such that σ �|= ϕ then T �|= ϕ, and σ is accepted by A¬ϕ. We
therefore synchronize T with A¬ϕ and look for counterexamples.

158 P. G. Jensen et al.

Definition 1 (Product). Let T = (S,Σ,→, L, s0) be an LTS and let
A = (Q, δ,Q0, F) be an NBA. Then the product T ⊗ A = (Q′, δ′, Q′

0, F
′) is

an NBA such that

– Q′ = S × Q,
– 〈s, q〉 tt−→ 〈s′, q′〉 if either s → s′ or s is a deadlock and s = s′, and q

b−→ q′ for
some b ∈ B(AP) s.t. s′ |= b,

– Q′
0 = {〈s0, q〉 ∈ Q′ | ∃q0 ∈ Q0 . q0

b−→ q for some b ∈ B(AP) s.t. s0 |= b}, and
– F ′ = {〈s, q〉 ∈ Q′ | q ∈ F}.

The following theorem states the key property of the product construction.

Theorem 2 ([2]). Let T be an LTS with initial state s0, ϕ be an LTL formula
and A¬ϕ be an NBA such that L(A¬ϕ) = L(¬ϕ). Then s0 |= ϕ if and only if
L(T ⊗ A¬ϕ) = ∅.

In other words, the product construction is suitable for verifying whether
T |= ϕ. The model checking procedure consists of constructing the product
T ⊗ A¬ϕ and searching for accepting runs. In practice this becomes a search for
reachable cycles containing accepting states, since such cycles generate infinite
accepting runs. We use a specialized variant of Tarjan’s connected component
algorithm described in [17] for checking the emptiness of the product automaton.

Example 3. The LTS T depicted in Fig. 1a does not satisfy the LTL formula
FGa. In order to show this, Fig. 1b depicts the NBA A¬FGa equivalent to the
LTL formula ¬FGa, and Fig. 1c shows the reachable part of the product T ⊗
A¬FGa. Since the looping run (〈s0, q0〉〈s1, q0〉)ω visits the accepting state 〈s0, q0〉
infinitely often, we can conclude that T �|= FGa, and the run (s0s1)ω can be used
as a diagnostic counterexample.

2.4 Petri Nets

A Petri net (with inhibitor arcs) is a 4-tuple N = (P, T,W, I) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– W : (P × T) ∪ (T × P) → N

0 is the arc weight function, and
– I : (P × T) → N ∪ {∞} is the inhibitor arc weight function.

A marking is a function M : P → N
0 assigning to each place a number of

tokens. We write M(N) to denote the set of all markings of Petri net N . The
semantics of a Petri net N = (P, T,W, I) is given by the transition relation
between markings such that M

t−→ M ′ if for all p ∈ P we have M(p) ≥ W (p, t),
M(p) < I(p, t), and M ′(p) = M(p) − W (p, t) + W (t, p).

For x ∈ P ∪ T , we write •x to mean {y ∈ T ∪ P | W (y, x) > 0}, called
the preset, and x• to mean {y ∈ T ∪ P | W (x, y) > 0}, called the postset.
We straightforwardly extend this to sets X ⊆ T and X ⊆ P such that •X =

Automata-Driven LTL Model Checking 159

⋃
x∈X

•x and X• =
⋃

x∈X x•. For a place p ∈ P we define the increasing preset
of p as +p = {t ∈ •p | W (t, p) > W (p, t)}, and the decreasing postset of p as
p− = {t ∈ p• | W (t, p) < W (p, t)}. The inhibitor postset of p ∈ P is p◦ = {t ∈
T | I(p, t) < ∞} and the inhibitor preset of t ∈ T is ◦t = {p ∈ P | I(p, t) < ∞}

A net N = (P, T,W, I) gives rise to an LTS T = (M(N), T,→, L,M0) where
M0 is a designated initial marking and the set AP of atomic propositions is
formed by the grammar

a :: = t | e1
� e2

e :: = p | c | e1 ⊕ e2

where t ∈ T , p ∈ P , c ∈ N
0,
� ∈ {<,≤, �=,=, >,≥}, and ⊕ ∈ {·,+,−}. Given

a Petri net N = (P, T,W, I), the satisfaction of a marking M ∈ M(N) of an
atomic proposition a ∈ AP is given by

M |= t iff M
t−→

M |= e1
� e2 iff evalM (e1)
� evalM (e2)

and where evalM (p) = M(p), evalM (c) = c and evalM (e1 ⊕ e2) = evalM (e1) ⊕
evalM (e2).

For t ∈ T , the fireability proposition t can be rewritten into the cardinality
proposition

∧
p∈•t(p ≥ W (p, t))∧

∧
p∈◦t(p < I(p, t)) requiring that all pre-places

of t are sufficiently marked and no inhibitor arc of t is sufficiently marked. In
the following, we assume that all propositions are cardinality propositions.

3 Automata-Guided Partial Order Reduction

Partial order reductions are techniques that address the state space explosion
problem by reducing the number of interleavings of concurrent actions and
exploring only their representative permutations; this can result in exponen-
tial reductions in the size of the state space (see e.g. [39,41]). We shall now
present our approach improving the classical stubborn set partial order tech-
nique [39,40] for LTL without the next operator. We adapt and extend the
ideas of the reachability-preserving stubborn set construction from [4,6,33] to
automata-driven technique for the full LTL logic. First, we prove the formal cor-
rectness of the method on the low level formalism of labelled transition systems
and later on we specialize it to Petri nets.

3.1 Automata-Driven Stubborn Set Method for LTL

The basic idea of our approach is to apply the reachability-preserving stubborn
set method from [4,6,33], where the reachability problem is the proposition∨

b∈Prog(q) b for Büchi state q. In order to make this work for the full LTL logic,
we have to do further considerations.

In the rest of this section, let Sink(q) = ¬(
∨

b∈Prog(q) b ∨ Ret(q)) be the sink
state proposition. We note that (∨b∈Prog(q)b)∨Ret(q)∨Sink(q) = tt for any Büchi

160 P. G. Jensen et al.

state q. In order to preserve correctness of the method for LTL, we require that
our stubborn sets do not contain unsafe actions, which are actions that can cause
some progressing proposition to become satisfied.

Definition 2 (Safe action). Let T = (S,Σ,→, L, s0) be an LTS and let A =
(Q, δ,Q0, F) be an NBA. For a state s ∈ S and proposition b ∈ B(AP), a set
Safe(s, b) ⊆ Σ is safe wrt. b if for all α ∈ Safe(s, b) and all w ∈ (Σ \ {α})∗,
if s

w−→ s′, s
αw−−→ s′′, and s′ �|= b, then s′′ �|= b. For states s ∈ S and q ∈ Q,

a set Safe(s, q) ⊆ Σ is safe wrt. q if Safe(s, b) ⊆ Safe(s, q) for all propositions
b ∈ Prog(q) ∪ {Sink(q)}. Actions from the set Safe(s, q) are called safe in the
product state 〈s, q〉.

The property of a safe action α is that if in a state s of an LTS we execute
a sequence of actions w after which we do not satisfy b then executing α first
followed by w does not satisfy b either. In particular, when w is empty, if s �|= b

and s
α−→ s′, then s′ �|= b. The idea of safe actions is inspired by a stubborn set

technique for games [6] but adapted to our LTL model checking problem.
The main characteristics of our automata-driven method is that the partial

order reduction no longer only depends on the current LTS state, but we also
consider the NBA state we are in at the moment. For this reason, we formally
define a reduction on the product state space.

Definition 3 (Product reduction). Let T = (S,Σ,→, L, s0) be an LTS and
A = (Q, δ,Q0, F) be an NBA. A product reduction is a function St : S×Q → 2Σ.
Let T ⊗St A be the reduced product of the product T ⊗ A restricted by St such
that 〈s, q〉 →St 〈s′, q′〉 in T ⊗St A if and only if 〈s, q〉 → 〈s′, q′〉 in T ⊗ A and
s

α−→ s′ for some α ∈ St(s, q).

We can now present the list of axioms required by our stubborn set method
for LTL model checking.

Definition 4 (Axioms on product reduction). Let T = (S,Σ,→, L, s0) be
an LTS, A = (Q, δ,Q0, F) be an NBA and let St : S × Q → 2Σ be a product
reduction. The following four axioms are defined as follows (universally quanti-
fied for all s ∈ S and all q ∈ Q):

COM If α ∈ St(s, q) and α1, α2, . . . , αn ∈ St(s, q)
∗
and s

α1...αnα−−−−−−→ s′ then
s

αα1...αn−−−−−−→ s′.
R If α1 . . . αn ∈ St(s, q)

∗
and for all b ∈ Prog(q) we have s �|= b then s

α1...αn−−−−−→ s′

implies that s′ �|= b for all b ∈ Prog(q).
SAFE Either en(s) ∩ St(s, q) ⊆ Safe(s, q) and s �|= b for all propositions b ∈

Prog(q) ∪ {Sink(q)}, or St(s, q) = Σ.
KEY If en(s) �= ∅ and q ∈ F , then there is some key action αkey ∈ St(s, q)

such that whenever s
α1...αn−−−−−→ sn for α1, . . . , αn ∈ St(s, q)

∗
then sn

αkey−−−→.

Axioms COM and R are adapted from the standard reachability-preserving
stubborn set methods, see e.g. [4,33], and made sensitive to preserve at least one

Automata-Driven LTL Model Checking 161

execution (under the stubborn actions from the set St(s, q)) to each configuration
where some of the progressing formulae becomes enabled. The axiom SAFE
ensures that we do not prune any outgoing transition (St(s, q) = Σ) if some
unsafe stubborn action is enabled or if some progressing proposition is already
satisfied. Note that while the sink state proposition is important for the axiom
SAFE, it is not important for R. Finally, the axiom KEY asserts that there
is a key stubborn action in accepting Büchi states, ensuring that we preserve at
least one infinite accepting run.

We are now ready to prove the main correctness theorem for our stubborn
set method for LTL model checking.

Theorem 3. Let T = (S,Σ,→, L, s0) be an LTS, A = (Q, δ,Q0, F) be an NBA,
St : S ×Q → 2Σ be a product reduction satisfying COM, R, SAFE, and KEY,
and T ⊗StA be the reduced state space of T ⊗A given by St. Then T ⊗A contains
an accepting run if and only if T ⊗St A contains an accepting run.

3.2 Stubborn Sets for LTL Model Checking on Petri Nets

We now present a syntax-driven method for efficiently computing stubborn sets
for markings in a Petri net. We start by defining a COM-saturated set of Petri
net transitions, using the increasing presets and decreasing postsets of transitions
(see also [4]).

Definition 5 (COM-saturation). Let N = (P, T,W, I) be a Petri net and
M ∈ M(N) be a marking. We say that a set T ′ ⊆ T is COM-saturated in M if

1. for all t ∈ T ′, if M
t−→ then

– for all p ∈ •t where t ∈ p− we have p• ⊆ T ′, and
– for all p ∈ t• where t ∈ +p we have p◦ ⊆ T ′, and

2. for all t ∈ T ′, if M � t−→ then
– there exists a p ∈ •t such that M(p) < W (p, t) and +p ⊆ T ′, or
– there exists a p ∈ ◦t such that M(p) ≥ I(p, t) and p− ⊆ T ′.

Intuitively, Condition 1 requires that if t is enabled and decreases the number of
tokens in the place p ∈ •t, then any t′ that has p as a pre-place, i.e. p ∈ •t ∩ •t′, is
in conflict with t since t can disable t′ and must be a part of the set T ′. Likewise
if t increases the number of tokens in a place p with outgoing inhibitor arcs, the
transitions inhibited by p are also in conflict with t and must be a part of T ′.
Condition 2 states that a transition t′ that can cause a disabled transition t to
become enabled cannot be commuted with t and must be added to T ′. This is
the case if either t′ adds tokens to some insufficiently marked pre-place p ∈ •t or
if t′ removes tokens from a sufficiently marked place p ∈ ◦t that has an inhibitor
arc to t.

The following lemma states that transitions from a COM-saturated set T ′

can be commuted with any sequence of transitions that are not in T ′, or in
other words that T ′ satisfies the COM axiom. The lemma moreover shows that
an enabled stubborn transition cannot be disabled by firing any sequence of
nonstubborn transitions.

162 P. G. Jensen et al.

Lemma 1. Let N = (P, T,W, I) be a Petri net, let M ∈ M(N) be a marking
and let T ′ ⊆ T be COM-saturated in M . For all t ∈ T ′ and all t1, . . . , tn ∈ T \T ′

a) if M
t1...tnt−−−−→ M ′ then M

tt1...tn−−−−→ M ′, and
b) if M

t1...tn−−−−→ M ′ and M
t−→ then M ′ t−→.

The conditions in Definition 5 give rise to a straightforward closure algo-
rithm that starting from some set of transitions T ′ iteratively includes additional
transitions as required by Conditions 1 and 2 until the set of transitions gets
saturated, however, due to the choice of the place p in Condition 2, it is not
guaranteed that we always get the same COM-saturated set.

The next definition of increasing and decreasing transitions of an arithmetic
expression is needed for constructing safe stubborn sets and for axiom R.

Definition 6 (Increasing/decreasing transitions). Let N = (P, T,W, I) be
a Petri net and let e ∈ E be an arithmetic expression. The sets of increasing
transitions incr(e) and decreasing transitions decr(e) are recursively defined by:
incr(p) = +p, decr(p) = p−, incr(c) = decr(c) = ∅, incr(e1 + e2) = incr(e1) ∪
incr(e2), decr(e1 + e2) = decr(e1) ∪ decr(e2), incr(e1 − e2) = incr(e1) ∪ decr(e2),
decr(e1 − e2) = decr(e1) ∪ incr(e2), decr(e1 · e2) = incr(e1 · e2) = incr(e1) ∪
incr(e2) ∪ decr(e1) ∪ decr(e2).

The sets incr(e) and decr(e) contain all transitions that can possibly increase,
resp. decrease the value of the expression e ∈ E; this is formalized as follows.

Lemma 2 ([4]). Let N = (P, T,W, I) be a Petri net, let e ∈ E be an expression,
and let M,M ′ ∈ M(N) be markings such that M

t1...tn−−−−→ M ′ for t1, . . . , tn ∈ T .
If evalM (e) < evalM ′(e) then there is i such that ti ∈ incr(e), and if evalM (e) >
evalM ′(e) then there is i such that ti ∈ decr(e).

In order to preserve the axiom SAFE, we shall define the notion of strictly
interesting transitions, i.e. those transitions that have the potential to change
a value of a given Boolean combination of atomic propositions. The purpose of
the set of strictly interesting transitions A+

M given in the following definition is
to efficiently compute syntactic over-approximations of all unsafe transitions in
a marking M .

Definition 7 (Strictly interesting transitions). Let N = (P, T,W, I) be a
Petri net and let b ∈ B(AP) be a proposition. For a marking M ∈ M(N) the
set A+

M (b) ⊆ T of strictly interesting transitions of b is defined as

Automata-Driven LTL Model Checking 163

A+
M (tt) = A+

M (ff) = ∅
A+

M (e1 < e2) = A+
M (e1 ≤ e2) = decr(e1) ∪ incr(e2)

A+
M (e1 > e2) = A+

M (e1 ≥ e2) = incr(e1) ∪ decr(e2)

A+
M (e1 = e2) =

{
decr(e1) ∪ incr(e2) if evalM (e1) > evalM (e2)
incr(e1) ∪ decr(e2) if evalM (e1) < evalM (e2)

A+
M (e1 �= e2) = incr(e1) ∪ decr(e2) ∪ decr(e1) ∪ incr(e2)

A+
M (b1 ∨ b2) = A+(b1 ∧ b2) = A+

M (b1) ∪ A+
M (b2)

A+
M (¬(e1 < e2)) = A+

M (e1 ≥ e2)

A+
M (¬(e1 > e2)) = A+

M (e1 ≤ e2)

A+
M (¬(e1 = e2)) = A+

M (e1 �= e2)

A+
M (¬(b1 ∧ b2)) = A+

M (¬b1 ∨ ¬b2)

A+
M (¬(e1 ≤ e2)) = A+

M (e1 > e2)

A+
M (¬(e1 ≥ e2)) = A+

M (e1 < e2)

A+
M (¬(e1 �= e2)) = A+

M (e1 = e2)

A+
M (¬(b1 ∨ b2)) = A+

M (¬b1 ∧ ¬b2)

Lemma 3. Let N = (P, T,W, I) be a Petri net and b ∈ B(AP) be a proposition.
Then for any marking M ∈ M(N) where M �|= b, the set T \ A+

M (b) is safe wrt.
b, i.e. for any t /∈ A+

M (b) and any w ∈ (T \ {t})∗, if M
w−→ M ′, M

tw−→ M ′′, and
M ′ �|= b, then M ′′ �|= b.

In order to satisfy axiom R, we can define a weaker notion of interesting
transitions as used in [4].

Definition 8 (Interesting transitions). Let N = (P, T,W, I) be a Petri net
and let b ∈ B(AP) be a proposition. For a marking M ∈ M(N) the set AM (b) ⊆
T of interesting transitions of b is defined inductively as AM (b) = ∅ if M |= b,
and otherwise

AM (b) =

{
AM (bi) for some i where M �|= bi if b = b1 ∧ b2

A+
M (b) otherwise.

Lemma 4 ([4]). Let N = (P, T,W, I) be a Petri net, let M ∈ M(N) be a
marking, and let b ∈ B(AP) be a proposition. If M �|= b and M

w−→ M ′ for some
w ∈ AM (b)

∗
, then M ′ �|= b.

We now state our main theorem that allows for a syntax-driven implemen-
tation of automata-driven stubborn set reduction for full LTL on Petri nets.

Theorem 4. Let N = (P, T,W, I) be a Petri net, A = (Q, δ,Q0, F) be an NBA,
and St : M(N) × Q → 2T be a product reduction that for all markings M ∈
M(N) and states q ∈ Q satisfies

1. St(M, q) is a COM-saturated set in M , and
2.

⋃
b∈Prog(q) AM (b) ⊆ St(M, q), and

164 P. G. Jensen et al.

Fig. 3. Example of our stubborn set method applied to Petri nets

3. either en(M) ∩ St(M, q) ⊆ T \ A+
M (b) and M �|= b for all b ∈ Prog(q) ∪

{Sink(q)}, or St(M, q) = T , and
4. if en(M) �= ∅ and q ∈ F then en(M) ∩ St(M, q) �= ∅.

Then St satisfies the axioms COM, R, SAFE and KEY.

Proof. By Lemma 3, Condition 3 ensures axiom SAFE. By Lemma 4, Con-
dition 2 ensures R, and by Lemma 1 part a) our Condition 1 ensures
COM. Condition 4 ensures KEY by Lemma 1 part b) as St(M, q) is COM-
saturated. ��

Hence by Theorem 3, any reduction satisfying the conditions of Theorem 4 is
LTL-preserving stubborn set reduction. The theorem also provides an algorith-
mic way to generate the LTL-preserving stubborn set St(M, q). First, if some
progressing proposition b ∈ Prog(q) ∪ {Sink(q)} is satisfied by M , then the set
of all transitions is returned. Otherwise, the COM-saturation algorithm is run
on AM (b) for b ∈ Prog(q) to obtain a stubborn set satisfying COM and R. To
ensure SAFE is satisfied, the resulting stubborn set is checked for whether there
is any overlap with enabled strictly interesting transitions, in which case the set
of all transitions is returned, otherwise the computed stubborn set is returned.
If q ∈ F and en(M) ∩ St(M, q) = ∅, an arbitrary enabled transition is added to
St(M, q) to ensure KEY is not violated, and the previous checks for COM and
SAFE are repeated.

Example 4. We shall now give an example of the computation of a stubborn set
for the Petri net shown in Fig. 3a (here we use the classical graphical notation for
Petri nets where circles represent places and rectangles transitions; the default
weight of all arcs is 1) and the NBA in Fig. 3b. In the initial marking M0, the
enabled transitions are en(M0) = {t1, t2, t4}. When computing the stubborn set
St(M0, q1) we note that the progressing formula p4 ≥ 1 is not satisfied, and

Automata-Driven LTL Model Checking 165

Fig. 4. Heuristic distance function between a marking and a LTL formula

the sink formula is ff , so a reduction is possible. First, we determine the set of
interesting transitions

AM0(p4 ≥ 1) = incr(p4) ∪ decr(1) = {t3} ∪ ∅ = {t3}.

Next, we determine a COM-saturated set that contains t3 which turns out to be
St(M0, q1) = {t1, t2, t3}. We now ensure that none of the enabled transitions in
this set are strictly interesting. Indeed, the only interesting transition t3 is not
enabled, thus en(M0) ∩ St(M0, q1) ⊆ T \ A+

M0
(p4 ≥ 1) and therefore SAFE is

satisfied. We can so conclude that St(M0, q1) = {t1, t2, t3} is a valid stubborn
set. Since the enabled transition t4 is not in the stubborn set, we avoid exploring
the interleavings with the transition t4, reducing the size of the state space that
we search.

4 Automata-Driven Guided Search

When performing explicit state model checking using depth-first search algo-
rithms, such as the on-the-fly variant of Tarjan’s algorithm [17,36] used for LTL
model checking, the order in which we explore the successors may significantly
influence how fast we can find an accepting cycle and possibly avoid exploring
parts of the state space where such a cycle is not present. We shall now design an

166 P. G. Jensen et al.

Fig. 5. Example system where heuristics are advantageous when considering the LTL
formula ϕ = ¬F(p0 > 3 ∧ XFp1 > 3).

automata-driven heuristic approach that aims to guide the search to the parts
of the state space where a cycle is more likely to be present.

In a marking M , the heuristic function assigns a nonnegative number to each
M ′ where M → M ′ such that the markings with smaller numbers are explored
first as they are believed to be more likely to lead us to an accepting cycle.

We first extend the distance-based heuristic for reachability [23] to the full
LTL logic. The idea of this heuristic is to provide a distance from one marking
to another by counting how many tokens must be added/removed in order to
make the two markings equal—this idea is then extended to the atomic proposi-
tions. Our distance measure is calculated using the recursive function dist given
in Fig. 4. For a Petri net N , an LTL formula ϕ, and a marking M ∈ M(N)
our heuristic function dist(M,ϕ, tt) returns the distance of the marking M to
satisfying the LTL formula ϕ.

The following example shows that the distance-based heuristic can be already
useful by itself for guiding the state space search, even without considering the
current state in the Büchi automaton.

Example 5. Consider the Petri net N in Fig. 5a and the LTL formula ϕ =
¬F(p0 > 3∧XFp1 > 3). We want to determine whether N |= ϕ. We let Mi denote
the marking we reach after firing the transition ti. Then dist(M0, ϕ, tt) = 4,
dist(M1, ϕ, tt) = 4, and dist(M2, ϕ, tt) = 3. The heuristic prioritises to first fol-
low the transition t2, leading us one step closer to satisfying Fp1 > 3. Repeating
the procedure, after three additional firings of t2, we end up in a marking with
M(p1) = 4 where we satisfy the LTL formula.

As a next step, we use the distance metrics to design a more efficient
automata-driven heuristic technique that takes the current Büchi state into
consideration. Instead of looking at the entire LTL formula, we consider the
progressing formulae of the current state in the NBA. The main idea of this
approach is that if we are not in an accepting state then we try to leave the
current state as fast as possible in order to move closer to an accepting Büchi

Automata-Driven LTL Model Checking 167

state. As such, we prioritise transitions that are more likely to enable progressing
formulae, including the consideration how far is the resulting NBA state from
some accepting state.

Let N be a Petri net, T = (M(N), T,→, L,M0) be an LTS, A = (Q, δ,Q0, F)
be an NBA, and for q ∈ Q let BFS(q) be the shortest path distance from q to
some q′ ∈ F (if q ∈ F then BFS(q) = 0). Then given a state 〈M, q〉 in T ⊗ A
where q /∈ F , we calculate the heuristic for each successor marking M ′ of M as
the minimum of (1 + BFS(q′)) · dist(M ′, b, ff) over all q′ ∈ Q where q

b−→ q′.

Example 6. Let us again consider the Petri net in Fig. 5a, and the NBA corre-
sponding to ¬ϕ, presented in Fig. 5b. In the product construction given in Defini-
tion 1, we create the initial Büchi states of the product state space; as the initial
marking satisfies the progressing proposition p0 > 3 but not the retarding propo-
sition ¬p0 > 3, there is only one initial product state (where the Büchi automa-
ton is in the state q1). Now we calculate the heuristic value where, as before, Mi is
the marking resulting from firing the transition ti. There is only one progressing
proposition, so the heuristic value is given by (1+BFS(q1)) ·dist(Mi, p1 > 3, ff).
This gives the values 2 · dist(M0, p1 > 3, ff) = 8, 2 · dist(M1, p1 > 3, ff) = 0,
and 2 ·dist(M2, p1 > 3, ff) = 6 for the transitions t0, t1 and t2, respectively. The
transition with the highest priority is t1 which immediately leads to a marking
satisfying p1 > 3 and we move to the accepting state. This illustrates the advan-
tage of automata-driven heuristics over the distance-based one relying on the
whole LTL formula, namely that it can disregard parts of the formula that are
not relevant at the moment.

5 Experimental Evaluation

We shall now evaluate the performance of our automata-driven techniques for
partial order reduction and guided search on the benchmark of Petri net mod-
els and LTL formulae from the 2021 edition of the Model Checking Contest
(MCC) [24]. The benchmark consists of 1181 P/T nets modelling academic and
industrial use cases, each with 32 LTL formulae split evenly between cardinal-
ity formulae and fireability formulae. This gives a total of 37792 queries for our
evaluation, each executed with 15 min timeout and 16 GiB of available memory
on one core of an AMD Opteron 6376 processor.

We implemented our automata-driven techniques described in this paper
as an extension of the verification engine verifypn [23] that is a part of the
Tapaal model checker [10]. Our LTL engine uses version 2.9.6 of the Spot
library [11] for translating LTL formulae into NBAs, and a derivative of Tarjan’s
algorithm [17,36] for searching for accepting cycles. To speed up the verification,
we also employ the query simplifications from [5] and most of the structural
reductions from [4]. We moreover implemented within the verifypn engine the
classical partial order reduction of Valmari [39,40] (referred to as Classic POR)
as well as the automata-based reduction of Liebke [26] (referred to as Liebke
POR) that has been theoretically studied but so far without any implementation

168 P. G. Jensen et al.

Table 1. Number of answered positive and negative queries, total number of queries
and percentage compared to number of solved queries by at least one method (3508
in total)

(a) Partial order reductions without heuristic search

Positive Negative Total Solved

Baseline (no POR) 501 1708 2209 61.5%
Classic POR 527 1846 2373 66.1%
Liebke POR 551 1868 2419 67.3%
Automata-driven POR 564 2004 2568 71.5%

(b) Partial order reductions with heuristic search

Positive Negative Total Solved

Baseline (heuristic) 496 2463 2959 82.4%
Classic HPOR 523 2530 3053 85.0%
Liebke HPOR 555 2512 3067 85.4%
Automata-driven HPOR 565 2640 3205 89.2%

nor experimental evaluation. In our experiments, we benchmark the baseline
implementation (without any partial order reduction nor heuristic search) and
our stubborn set reduction (referred to as automata-driven POR) against Classic
POR and Liebke POR, both using the standard depth-first search as well as
our heuristic search technique (referred to as HPOR). We also provide a full
reproducibility package [18].

According to [27], the MCC benchmark contains a large number of trivial
instances that all model checkers can solve without much computation effort, as
well as instances that are too difficult for any model checker to solve. In our first
experiment, we thus selected a subset of interesting/nontrivial instances such
that our baseline implementation needed at least 30 s to solve them and at least
one of the methods provided an answer within 15 min. This selection resulted in
3508 queries on which we evaluate the techniques.

Table 1a shows the number of answers obtained for each method without
employing the heuristic search and Table 1b with heuristic search (we report
here on the automata-driven heuristics only as it provides 233 additional answers
compared to the distance-based one). The first observation is that our heuristic
search technique gives for all of the partial order methods about 20% improve-
ment in the number of answered queries. Second, while both classic and Liebke’s
partial order reduction techniques (that are essentially comparable when using
heuristic search and without it Liebke solves 1.2% more queries) provide a sig-
nificant 3–6% improvement in the number of answered queries over the baseline

Automata-Driven LTL Model Checking 169

Fig. 6. Comparison of the different methods versus the baseline; on x-axis all instances
sorted by the increasing running time (independently per method); on y-axis the run-
ning time (in seconds and logarithmic scaling)

(both with and without the heuristic), our method achieves up to 10% improve-
ment.

While in absolute numbers the additional points are primarily due to negative
answers (where an accepting cycle exists), we can see also a similar trend in the
increased number of positively answered queries. In general, positive answers are
expected to be harder to obtain than negative answers, as they require disproving
the existence of any counter example and hence full state space search. This
is also the reason why adding a heuristic search on top of the partial order
techniques can have a negative effect on the number of answered positive queries;
here the search order does not matter but the heuristic search method has an
overhead for computing the distance functions in every discovered marking.

Overall, while the baseline method solved only 61.5% of queries, our par-
tial order technique in combination with the automata-driven heuristic search
now answers 89.2% of queries, which is a considerable improvement and shows
that the two techniques can be applied in combination in order to increase the
verification performance.

In Fig. 6 we focus for each method on the most difficult 1500 queries from the
benchmark. For each method, we independently sort the running times (plotted
on the y-axis, note the logarithmic scale) in increasing order for all the query
instances (plotted on the x-axes). Hence the plot does not provide a running
time comparison per instance (in fact there are even a few queries that the
baseline answers but not our heuristic POR method), however, it shows the
overall performance trends on the whole dataset. The plot confirms with the
general observation we made on the number of answered queries and moreover

170 P. G. Jensen et al.

Table 2. Number of answers in the MCC setup.

Positive Negative Total Solved

Tapaal 9415 26219 35629 94.3%

Tapaal (no POR, no heuristic) 9345 25865 35210 93.2%

ITS-Tools 8395 24775 33170 87.8%

shows that without the heuristic search (thinner lines in the left part of the plot)
Liebke’s method is in general performing faster than the classic method. The
addition of the heuristic search to the partial order reduction makes a significant
improvement, as shown by the thick curves in the right part of the plot. Here
the classic and Liebke’s have more similar performance, whereas our automata-
driven method most significantly profits from the addition of heuristic search.

Finally, in Table 2 we provide the comparison with the model checker ITS-
Tools [37] that was second after Tapaal in the 2021 edition of the Model Check-
ing Contest [24]. In the MCC, 16 queries are verified in parallel with a 1 h time
out, 16 GiB memory limit and 4 available cores. The scripts that execute the
verification are taken from the available virtual machines (for the details of the
setup consult the MCC webpage1) and executed on the total of 37792 queries in
the batches of 16 queries. While ITS-tools can solve 87.8% of all queries, Tapaal
(the winner in 2021 contest) without partial order reduction and heuristic search
answers 93.2% of all queries. The addition of our automata-driven techniques
improves the score to 94.3% of answered queries, which is a very satisfactory
improvement given that the MCC benchmark contains a significant percentage
of models and queries that are beyond the reach of the current model checkers.

6 Conclusion

We presented two automata-driven techniques, stubborn set partial order reduc-
tion and a heuristic search method, for improving the performance of LTL model
checking. The common element in these methods is that we exploit the fact that
states in the product system (where we search for an accepting cycle) contain
also the information about the current state of Büchi automaton. Recent work
by Liebke [26] suggests a similar approach trying to weaken the classical LTL
axioms for partial order reduction; we instead extend the reachability-preserving
axioms to the full LTL logic. Our approach is presented first in a general way
and then specialized to the Petri net model.

We implemented both the baseline Tarjan’s algorithm for LTL model check-
ing, the classical and Liebke’s partial order reductions as well as our automata-
driven methods and compare them on a large benchmark of LTL models from
the 2021 Model Checking Contest. The conclusion is that while both the classical
and Liebke’s methods provide a significant performance improvement over the

1 https://mcc.lip6.fr/.

https://mcc.lip6.fr/

Automata-Driven LTL Model Checking 171

baseline algorithm, our automata-driven partial order technique improves the
state-of-the-art techniques by another degree. Moreover, our heuristic search is
clearly beneficial in combination with all partial order methods and our current
best implementation in the tool Tapaal beats the second best tool in the yearly
Model Checking Contest by the margin of 6.5%.

In the future work we plan to further improve the performance of our method
for example for the subclass of weak Büchi automata and extend the ideas to
other logics like CTL.

Acknowledgments. We thank to Yann Thierry-Mieg for creating the oracle database
of correct answers for queries from the model checking contest that we used extensively
for testing our implementation.

References

1. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 8

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

4. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M., Srba, J.: Start pruning
when time gets urgent: partial order reduction for timed systems. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 527–546. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 28

5. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simplification of
CTL formulae for efficient model checking of Petri nets. In: Khomenko, V., Roux,
O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 143–163. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91268-4 8

6. Bønneland, F., Jensen, P., Larsen, K., Muniz, M., Srba, J.: Stubborn set reduc-
tion for two-player reachability games. Logical Methods Comput. Sci. 17(1), 1–26
(2021)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

8. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

9. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods Syst. Des. 1(2–
3), 275–288 (1992). https://doi.org/10.1007/BF00121128

10. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-96145-3_28
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/BFb0028741
https://doi.org/10.1007/BF00121128
https://doi.org/10.1007/978-3-642-28756-5_36

172 P. G. Jensen et al.

11. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

12. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari, A.
(ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006). https://
doi.org/10.1007/11691617 1

13. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45139-0 5

14. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Sur-
vey on directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 65–89. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00431-5 5

15. Esparza, J., Křet́ınskỳ, J., Sickert, S.: One theorem to rule them all: a unified trans-
lation of LTL into ω-automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, pp. 384–393. Association
for Computing Machinery, New York (2018). https://doi.org/10.1145/3209108.
3209161

16. Esparza, J., Schröter, C.: Net reductions for LTL model-checking. In: Margaria,
T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310–324. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44798-9 25

17. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tar-
jan’s algorithm. Theor. Comput. Sci. 345(1), 60–82 (2005). https://doi.org/10.
1016/j.tcs.2005.07.004

18. Gjøl Jensen, P., Srba, J., Jensen Ulrik, N., Mejlby Virenfeldt, S.: Reproducibility
Package: Automata-Driven Partial Order Reduction and Guided Search for LTL
(2021). https://doi.org/10.5281/zenodo.5704172

19. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

20. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 26

21. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston (2003)

22. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

23. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T Nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on
Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 16

24. Kordon, F., et al.: Complete Results for the 2020 Edition of the Model Checking
Contest, June 2021. http://mcc.lip6.fr/2021/results.php

25. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time proper-
ties. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp.
228–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-
4 13

26. Liebke, T.: Büchi-automata guided partial order reduction for LTL. In: PNSE@
Petri Nets, pp. 147–166 (2020)

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/11691617_1
https://doi.org/10.1007/11691617_1
https://doi.org/10.1007/3-540-45139-0_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1007/978-3-642-00431-5_5
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/3-540-44798-9_25
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.5281/zenodo.5704172
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-662-53401-4_16
http://mcc.lip6.fr/2021/results.php
https://doi.org/10.1007/978-3-642-31131-4_13
https://doi.org/10.1007/978-3-642-31131-4_13

Automata-Driven LTL Model Checking 173

27. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 18

28. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). https://doi.org/10.1109/5.24143

29. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7 34

30. Peled, D.A., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods Syst. Des. 19(3), 275–289 (2001). https://doi.org/10.
1023/A:1011202615884

31. Petri, C.A.: Communication with automata. Ph.D. thesis, Universität Hamburg
(1966)

32. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13(1), 45–60 (1981). https://doi.org/10.1016/0304-3975(81)90110-9

33. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X 4

34. Schmidt, K.: How to calculate symmetries of Petri nets. Acta Informatica 36(7),
545–590 (2000). https://doi.org/10.1007/s002360050002

35. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fund.
Inform. 47(3–4), 325–335 (2001)

36. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972). https://doi.org/10.1137/0201010

37. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

38. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

39. Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des.
1(4), 297–322 (1992)

40. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

41. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs, A.
(eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32582-8 16

42. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69738-1 10

43. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H.
(eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91268-4 18

https://doi.org/10.1007/978-3-030-21571-2_18
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1023/A:1011202615884
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/s002360050002
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.1007/978-3-319-91268-4_18

Verifying Pufferfish Privacy in Hidden Markov
Models

Depeng Liu1,2(B), Bow-Yaw Wang3, and Lijun Zhang1,2,4

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{liudp,zhanglj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Institute of Information Science, Academia Sinica, Taipei, Taiwan
bywang@iis.sinica.edu.tw

4 Institute of Intelligent Software, Guangzhou, China

Abstract. Pufferfish is a Bayesian privacy framework for designing and analyz-
ing privacy mechanisms. It refines differential privacy, the current gold standard
in data privacy, by allowing explicit prior knowledge in privacy analysis. In prac-
tice, privacy mechanisms often need be modified or adjusted to specific appli-
cations. Their privacy risks have to be re-evaluated for different circumstances.
Privacy proofs can thus be complicated and prone to errors. Such tedious tasks are
burdensome to average data curators. In this paper, we propose an automatic veri-
fication technique for Pufferfish privacy.We use hiddenMarkovmodels to specify
and analyze discrete mechanisms in Pufferfish privacy. We show that the Puffer-
fish verification problem in hidden Markov models is NP-hard. Using Satisfiabil-
ity Modulo Theories solvers, we propose an algorithm to verify privacy require-
ments. We implement our algorithm in a prototypical tool called FAIER, and
analyze several classic privacy mechanisms in Pufferfish privacy. Surprisingly,
our analysis show that naı̈ve discretization of well-established privacy mecha-
nisms often fails, witnessed by counterexamples generated by FAIER. In dis-
crete Above Threshold, we show that it results in absolutely no privacy. Finally,
we compare our approach with state-of-the-art tools for differential privacy, and
show that our verification technique can be efficiently combined with these tools
for the purpose of certifying counterexamples and finding a more precise lower
bound for the privacy budget ε.

1 Introduction

Differential privacy is a framework for designing and analyzing privacy measures [16,
17]. In the framework, data publishing mechanisms are formalized as randomized algo-
rithms. On any input data set, such mechanisms return randomized answers to queries.
In order to preserve privacy, differential privacy aims to ensure that similar output dis-
tributions are yielded on similar input data sets. Differential privacy moreover allows
data curators to evaluate privacy and utility quantitatively. The framework has attracted
lots of attention from academia and industry such as Microsoft [13] and Apple [2].

Pufferfish is a more recent privacy framework which refines differential pri-
vacy [23]. In differential privacy, there is no explicit correlation among entries in data
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 174–196, 2022.
https://doi.org/10.1007/978-3-030-94583-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_9

Verifying Pufferfish Privacy in Hidden Markov Models 175

sets during privacy analysis. The no free lunch theorem [22] in data privacy shows that
prior knowledge about data sets is crucial to privacy analysis. The Pufferfish privacy
framework hence allows data curators to analyze privacy with prior knowledge about
data sets. Under the Bayesian privacy framework, it is shown that differential privacy
preserves the same level of privacy if there is no correlation among entries in data sets.

For differential and Pufferfish privacy, data publishing mechanisms are analyzed –
often on paper– with sophisticated mathematical tools. The complexity of the problem
is high [19], and moreover, it is well-known that such proofs are very subtle and error-
prone. For instance, several published variations of differentially private mechanisms
are shown to violate privacy [11,26]. In order to minimize proof errors and misinterpre-
tation, the formal method community has also started to develop techniques for check-
ing differentially private mechanisms, such as verification techniques based on approx-
imate couplings [1,5–8,18], randomness alignments [32–34], model checking [24] as
well as those with well-defined programming semantics [3,27] and techniques based on
testing and searching [9,10,14,35].

Reality nevertheless can be more complicated than mathematical proofs. Exist-
ing privacy mechanisms hardly fit their data publishing requirements perfectly. These
algorithms may be implemented differently when used in practice. Majority of differ-
entially private mechanisms utilize continuous perturbations by applying the Laplace
mechanism. Computing devices however only approximate continuous noises through
floating-point computation, which is discrete in nature. Care must be taken lest pri-
vacy should be lost during such finite approximations [28]. Moreover, adding continu-
ous noises may yield uninterpretable outputs for categorical or discrete numerical data.
Discrete noises are hence necessary for such data. A challenging task for data cura-
tors is to guarantee that the implementation (discrete in nature) meets the specification
(often continuous distributions are used). It is often time consuming – if not impossible,
to carry out privacy analysis for each modification. Automated verification and testing
techniques are in this case a promising methodology for preserving privacy.

In this work, we take a different approach to solve the problems above. We focus on
Pufferfish privacy, and propose a lightweight but automatic verification technique. We
propose a formal model for data publishing mechanisms and reduce Pufferfish privacy
into a verification problem for hidden Markov models (HMMs). Through our formal-
ization, data curators can verify their specialized privacy mechanisms without going
through tedious mathematical proofs.

We have implemented our algorithm in a prototypical tool called FAIER (the puffer-
Fish privAcy verifIER). We consider privacy mechanisms for bounded discrete numer-
ical queries such as counting. For those queries, classical continuous perturbations may
give unusable answers or even lose privacy [28]. We hence discretize privacy mecha-
nisms by applying discrete perturbations on such queries. We report case studies derived
from differentially private mechanisms. Our studies show that naı̈ve discretization may
induce significant privacy risks. For the Above Threshold example, we show that dis-
cretization does not have any privacy at all. For this example, our tool generates coun-
terexamples for an arbitrary small privacy budget ε. Another interesting problem for
differential privacy is to find the largest lower bound of ε, below which the mecha-
nism will not be differentially private. We discuss how our verification approach can be
efficiently combined with testing techniques to solve this problem.

176 D. Liu et al.

Below we summarize the main contributions of our paper:

1. We propose a verification framework for Pufferfish privacy by specifying privacy
mechanisms as HMMs and analyzing privacy requirements in the models (Sect. 4).
To our best knowledge, the work of Pufferfish privacy verification had not been
investigated before.

2. Then we study the Pufferfish privacy verification problem on HMMs and prove the
verification problem to be NP-hard (Sect. 5.1).

3. On the practical side, nevertheless, using SMT solvers, we design a verification algo-
rithm which automatically verifies Pufferfish privacy (Sect. 5.2).

4. The verification algorithm is implemented into the tool FAIER (Sect. 6.1). We then
perform case studies of classic mechanisms, such as Noisy Max and Above Thresh-
old. Using our tool, we are able to catch privacy breaches of the specialized mecha-
nisms (Sect. 6.2, 6.3).

5. Compared with the state-of-the-art tools DP-Sniper [10] and StatDP [14] on finding
the privacy budget ε (or finding privacy violations) for differential privacy, our tool
has advantageous performances in obtaining the most precise results within accept-
able time for discrete mechanisms. We propose to exploit each advantage to the full
to efficiently obtain a precise lower bound for the privacy budget ε (Sect. 7).

2 Preliminaries

A Markov Chain K = (S, p) consists of a finite set S of states and a transition dis-
tribution p : S × S → [0, 1] such that

∑
t∈S p(s, t) = 1 for every s ∈ S. A Hidden

Markov Model (HMM) H = (K,Ω, o) is a Markov chain K = (S, p) with a finite
set Ω of observations and an observation distribution o : S × Ω → [0, 1] such that∑

ω∈Ω o(s, ω) = 1 for every s ∈ S. Intuitively, the states of HMMs are not observable.
External observers do not know the current state of an HMM. Instead, they have a state
distribution (called information state) π : S → [0, 1] with

∑
s∈S π(s) = 1 to represent

the likelihood of each state in an HMM.
Let H = ((S, p), Ω, o) be an HMM and π an initial state distribution. The HMM H

can be seen as a (randomized) generator for sequences of observations. The following
procedure generates observation sequences of an arbitrary length:

1. t ← 0.
2. Choose an initial state s0 ∈ S by the initial state distribution π.
3. Choose an observation ωt by the observation distribution o(st, •).
4. Choose a next state st+1 by the transition distribution p(st, •).
5. t ← t + 1 and go to 3.

Given an observation sequence ω = ω0ω1 · · · ωk and a state sequence s =
s0s1 · · · sk, it is not hard to compute the probability of observing ω along s on an HMM
H = ((S, p), Ω, o) with an initial state distribution π. Precisely,

Pr(ω, s|H) = Pr(ω|s,H) × Pr(s,H)
= [o(s0, ω0)· · ·o(sk, ωk)]×[π(s0)p(s0, s1)· · ·p(sk−1, sk)]
= π(s0)o(s0, ω0) · p(s0, s1)· · ·p(sk−1, sk)o(sk, ωk). (1)

Since state sequences are not observable, we are interested in the probability
Pr(ω|H) for a given observation sequence ω. Using (1), we have Pr(ω|H) =

Verifying Pufferfish Privacy in Hidden Markov Models 177

∑
s∈Sk+1 Pr(ω, s|H). But the summation has |S|k+1 terms and is hence inefficient to

compute. An efficient algorithm is available to compute the probability αt(s) for the
observation sequence ω0ω1 · · · ωt with the state s at time t [31]. Consider the following
definition:

α0(s) = π(s)o(s, ω0) (2)

αt+1(s′) =

[
∑

s∈S

αt(s)p(s, s′)

]

o(s′, ωt+1). (3)

Informally, α0(s) is the probability that the initial state is s with the observation ω0. By
induction, αt(s) is the probability that the t-th state is s with the observation sequence
ω0ω1 · · · ωt. The probability of observing ω = ω0ω1 · · · ωk is therefore the sum of
probabilities of observing ω over all states s. Thus Pr(ω|H) =

∑
s∈S αk(s).

3 Pufferfish Privacy Framework

Differential privacy is a privacy framework for design and analysis of data publishing
mechanisms [16]. LetX denote the set of data entries. A data set of size n is an element
in X n. Two data sets d,d

′ ∈ X n are neighbors (written Δ(d,d
′
) ≤ 1) if d and

d
′
are identical except for at most one data entry. A data publishing mechanism (or

simply mechanism) M is a randomized algorithm which takes a data set d as inputs. A
mechanism satisfies ε-differential privacy if its output distributions differ by at most the
multiplicative factor eε on every neighboring data sets.

Definition 1. Let ε ≥ 0. A mechanism M is ε-differentially private if for all r ∈
range(M) and data sets d,d

′ ∈ X n with Δ(d,d
′
) ≤ 1, we have Pr(M(d) = r) ≤

eε Pr(M(d
′
) = r).

Intuitively, ε-differential privacy ensures similar output distributions on similar data
sets. Limited differential information about each data entry is revealed and individual
privacy is hence preserved. Though, differential privacy makes no assumption nor uses
any prior knowledge about data sets. For data sets with correlated data entries, differen-
tial privacy may reveal too much information about individuals. Consider, for instance,
a data set of family members. If a family member has contracted a highly contagious
disease, all family are likely to have the same disease. In order to decide whether a
specific family member has contracted the disease, it suffices to determine whether any
member has the disease. It appears that specific information about an individual can
be inferred from differential information when data entries are correlated. Differential
privacy may be ineffective to preserve privacy in such circumstances [22].

Pufferfish is a Bayesian privacy framework which refines differential privacy. The-
orem 6.1 in [23] shows how to define differential privacy equivalently in Pufferfish
framework. In Pufferfish privacy, a random variableD represents a data set drawn from
a distribution θ ∈ D. The set D of distributions formalizes prior knowledge about data
sets, such as whether data entries are independent or correlated. Moreover, a set S of
secrets and a set Spairs ⊆ S×S of discriminative secret pairs formalize the information

178 D. Liu et al.

to be protected. A mechanism M satisfies ε-Pufferfish privacy if its output distributions
differ by at most the multiplicative factor eε when conditioned on all the secret pairs.

Definition 2. Let S be a set of secrets, Spairs ⊂ S × S a set of discriminative secret
pairs, D a set of data set distributions scenarios, and ε ≥ 0, a mechanism M is ε-
Pufferfish private if for all r ∈ range(M), (si, sj) ∈ Spairs, θ ∈ D with Pr(si|θ) 	= 0
and Pr(sj |θ) 	= 0, we have

Pr(M(D) = r|si, θ) ≤ eε Pr(M(D) = r|sj , θ)

where D is a random variable with the distribution θ.

In the definition, Pr(si|θ) 	= 0 and Pr(sj |θ) 	= 0 ensure the probabilities Pr(M(D)
= r|si, θ) and Pr(M(D) = r|sj , θ) are defined. Hence Pr(M(D) = r|s, θ) is the
probability of observing r conditioned on the secret s and the data set distribution θ.
Informally, ε-Pufferfish privacy ensures similar output distributions on discriminative
secrets and prior knowledge. Since limited information is revealed from prior knowl-
edge, each pair of discriminative secrets is protected.

4 Geometric Mechanism as Hidden Markov Model

We first recall in Sect. 4.1 the definition of geometric mechanism, a well-known discrete
mechanism for differential privacy. In Sect. 4.2, we then recall an example exploiting
Markov chains to model geometric mechanisms, followed by our modeling formalism
and Pufferfish privacy analysis using HMMs in Sect. 4.3.

4.1 Geometric Mechanism

Consider a simple data set with only two data entries. Each entry denotes whether an
individual has a certain disease. Given such a data set, we wish to know how many
individuals contract the disease in the data set. More generally, a counting query returns
the number of entries satisfying a given predicate in a data set d ∈ X n. The number of
individuals contracting the disease in a data set is hence a counting query. Note that the
difference of counting query results on neighboring data sets is at most 1.

Counting queries may reveal sensitive information about individuals. For instance,
suppose we know John’s record is in the data set. We immediately infer that John has
contracted the disease if the query answer is 2. In order to protect privacy, several mech-
anisms are designed to answer counting queries.

Consider a counting query f : X n → {0, 1, . . . , n}. Let α ∈ (0, 1). The α-
geometric mechanism Gf for the counting query f on the data set d outputs f(d) + Y
on a data set d where Y is a random variable with the geometric distribution [20,21]:
Pr[Y = y] = 1−α

1+αα|y| for y ∈ Z. For any neighboring data sets d,d
′ ∈ X n, recall

that |f(d) − f(d
′
)| ≤ 1. If f(d) = f(d

′
), the α-geometric mechanism has the same

output distribution for f on d and d
′
. If |f(d) − f(d

′
)| = 1, it is easy to conclude that

Pr(Gf (d) = r) ≤ e− lnα Pr(Gf (d
′
) = r) for any neighboring d,d

′
and r ∈ Z. The

Verifying Pufferfish Privacy in Hidden Markov Models 179

α-geometric mechanism is − lnα-differentially private for any counting query f . To
achieve ε-differential privacy, one simply chooses α = e−ε.

The range of the geometric mechanism is Z. It may give nonsensical outputs such as
negative integers for non-negative queries. The truncated α-geometric mechanism over
{0, 1, . . . , n} outputs f(d) + Z where Z is a random variable with the distribution:

Pr[Z = z] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if z < −f(x)
αf(x)

1+α if z = −f(x)
1−α
1+αα|z| if − f(x) < z < n − f(x)
αn−f(x)

1+α if z = n − f(x)
0 if z > n − f(x)

Fig. 1. Truncated 1
2
-geometric mechanism

Note the range of the truncated α-geometric mechanism is {0, 1, . . . , n}. The trun-
cated α-geometric mechanism is also − lnα-differentially private for any counting
query f . We will study several examples of this mechanism to get a better understanding
of Pufferfish privacy and how we use models to analyze it.

4.2 Differential Privacy Using Markov Chains

We present a simple example taking from [24], slightly adapted for analyzing different
models, i.e., the Markov chain and the hidden Markov model.

Example 1. To see how differential privacy works, consider the truncated 1
2 -geometric

mechanism (Fig. 1a). In the table, we consider a counting query f : X 2 → {0, 1, 2}.
For any data set d, the mechanism outputs j when f(d) = i with probability indicated
at the (i, j)-entry in the table. For instance, the mechanism outputs 0̃, 1̃, and 2̃ with
probabilities 2

3 ,
1
6 , and

1
6 respectively when f(d) = 0.

Let f be the query counting the number of individuals contracting a disease. Con-
sider a data set d whose two members (including John) have contracted the disease.
The number of individuals contracting the disease is 2 and hence f(d) = 2. From the
table in Fig. 1a, we see the mechanism answers 0̃, 1̃, and 2̃ with probabilities 1

6 ,
1
6 , and

180 D. Liu et al.

2
3 respectively. Suppose we obtain another data set d

′
by replacing John with an indi-

vidual who does not contract the disease. The number of individuals contracting the
disease for the new data set is 1 and thus f(d

′
) = 1. Then, the mechanism answers 0̃,

1̃, and 2̃ with the probability 1
3 .

The probabilities of observing 0̃ on the data sets d and d
′
are respectively 1

6 and
1
3 . They differ by the multiplicative factor 2. For other outputs, their observation prob-
abilities are also bounded by the same factor. The truncated 1

2 -geometric mechanism is
hence ln(2)-differentially private.

In order to formally analyze privacy mechanisms, we specify them as probabilistic
models. Figure 1b shows a Markov chain for the truncated 1

2 -geometric mechanism. We
straightly turn inputs and outputs of the table in Fig. 1a into states of the Markov chain
and output probabilities into transition probabilities. In the figure, thin arrows denote
transitions with probability 1

6 ; medium arrows denote transitions with probability 1
3 ;

thick arrows denote transitions with probability 2
3 . For instance, state 0 can transit to

state 0̃ with probability 2
3 while it can transit to the state 1̃ with probability 1

6 . �

The Markov chain model is straightforward but can become hazy for complicated
privacy mechanism. We next discuss how to use an HMM to model the mechanism.

4.3 Pufferfish Privacy Using Hidden Markov Models

We denote data sets as states and possible outputs of the mechanism are denoted by
observations. The transition distribution stimulates the randomized privacy mechanism
performed on data sets. Distributions of data sets are denoted by initial information
states. Privacy analysis can then be performed by comparing observation probabilities
from the two initial information states. We illustrate the ideas in examples.

Example 2. Fig. 1c gives an HMM for the truncated 1
2 -geometric mechanism. For any

counting query f from X 2 to {0, 1, 2}, it suffices to represent each d ∈ X 2 by f(d)
because the mechanism only depends on f(d). The order of entries, for instance, is
irrelevant to the mechanism.We hence have the states 0, 1 and 2 denoting the set {f(d) :
d ∈ X 2} in the figure. Let {0̃, 1̃, 2̃} be the set of observations. We encode output
probabilities into observation probabilities at states. At state 0, for instance, 0̃, 1̃, 2̃ can
all be observed with probability 2

3 ,
1
6 ,

1
6 respectively. It is obvious that the number of

states are reduced by half compared with the Markov chain. Generally, HMMs allow
multiple observations to show at one single state, which leads to smaller models.

Fix an order for states, say, 0, 1, 2. An information state can be represented by an
element in [0, 1]3. In differential privacy, we would like to analyze probabilities of every
observation from neighboring data sets. For counting queries, neighboring data sets can
change query results by at most 1. Let d be a data set. Consider the initial information
state π = (0, 0, 1) corresponding to f(d) = 2. For any neighbor d

′
of d, we have

f(d
′
) = 2 or f(d

′
) = 1. It suffices to consider corresponding information states π or

τ = (0, 1, 0). Let’s compare the probability of observing ω = 1̃ from information states
π and τ . Starting from π, we have α0 = π and probabilities of 1

6 ,
1
3 and 1

6 respectively
observing 1̃ at each state. So the probability of observing ω is 1

6 . On the other hand, we

Verifying Pufferfish Privacy in Hidden Markov Models 181

have α0 = τ and the probability of observing ω is 1
3 . Similarly, one can easily check

the probabilities of observing 0̃ and 2̃ on any neighboring data sets and the ratio of one
probability over the other one under the same observation will not be more than 2. �

Differential privacy provides a framework for quantitative privacy analysis. The
framework ensures similar output distributions regardless of the information about an
arbitrary individual. In other words, if an attacker gets certain prior knowledge about
the data sets, chances are that differential privacy will underestimate privacy risks. Since
all data entries are correlated, replacing one data entry does not yield feasible data sets
with correlated entries. Consequently, it is questionable to compare output distributions
on data sets differing in only one entry. Instead, this is the scenario where Pufferfish
privacy should be applied.

Example 3. Consider a data set about contracting a highly contagious disease contain-
ing John and a family member he lives with. An attacker wishes to know if John has
contracted the disease. Since the data set keeps information on the contagious disease
about two family members, an attacker immediately deduces that the number of indi-
viduals contracting the disease can only be 0 or 2. The attacker hence can infer whether
John has the disease by counting the number of individuals contracting the disease.

Suppose a data curator tries to protect John’s privacy by employing the truncated
1
2 -geometric mechanism (Fig. 1). We analyze this mechanism formally in the Pufferfish
framework. Let the set of data entries X = {0, 1} and there are four possible data sets
in X 2. For any 0 < p < 1, define the data set distribution θp : X 2 → [0, 1] as follows.
θp(0, 0) = 1 − p, θp(1, 1) = p, and θp(0, 1) = θp(1, 0) = 0. Consider the distribution
set D = {θp : 0 < p < 1}. Note that infeasible data sets are not in the support of θp.

Assume John’s entry is in the data set. Define the set of secrets S = {c, nc} where
c denotes that John has contracted the disease and nc denotes otherwise. Our set of
discriminative secret pairs Spairs is {(c, nc), (nc, c)}. That is, we would like to compare
probabilities of all outcomes when John has the disease or not.

When John has not contracted the disease, the only possible data set is (0, 0) by the
distribution θp. The probability of observing 0̃ therefore is 2

3 (Fig. 1a). When John has
the disease, the data set (0, 0) is not possible under the condition of the secret and the
distribution θp. The only possible data set is (1, 1). The probability of observing 0̃ is 1

6 .
Now we have 2

3 = Pr(Gf (D) = 0̃|nc, θp) 	≤ 2 × 1
6 = 2 × Pr(Gf (D) = 0̃|c, θp). We

conclude the truncated 1
2 -geometric mechanism does not conform to ln(2)-Pufferfish

privacy. Instead, it satisfies ln(4)-Pufferfish privacy. �
Table 1. Pufferfish analysis of 1

2
-geometric

mechanism

Data Sets\Observations 0̃ 1̃ 2̃

Without John’s record p2−4p+4
6

−2p2+2p+1
6

p2+2p+1
6

With John’s record 4−3p
12−6p

4−3p
12−6p

2
6−3p

With the formal model (Fig. 1c), it
is easy to perform privacy analysis in
the Pufferfish framework. More pre-
cisely, the underlying Markov chain
along with observation distribution
specify the privacy mechanism on
input data sets. Prior knowledge about data sets is nothing but distributions of them.
Since data sets are represented by various states, prior knowledge is naturally formal-
ized as initial information states in HMMs. For Pufferfish privacy analysis, we again
compare observation probabilities from initial information states conditioned on secret

182 D. Liu et al.

pairs. The standard algorithm for HMMs allows us to perform more refined privacy
analysis. Besides, it is interesting to observe the striking similarity between the Puffer-
fish privacy framework and HMMs. In both cases, input data sets are unknown but
specified by distributions. Information can only be released by observations because
inputs and hence computation are hidden from external attackers or observers. Puffer-
fish privacy analysis with prior knowledge is hence closely related to observation prob-
ability analysis from information states. Such similarities can easily be identified in the
examples.

Example 4. Consider a non-contagious disease. An attacker may know that contracting
the disease is an independent event with probability p. Even though the attacker does
not know how many individuals have the disease exactly, he infers that the number of
individuals contracting the disease is 0, 1, and 2 with probabilities (1− p)2, 2p(1− p),
and p2 respectively. The prior knowledge corresponds to the initial information state
π = ((1 − p)2, 2p(1 − p), p2) in Fig. 1c. Assume John has contracted the disease.
We would like to compare probabilities of observations 0̃, 1̃, and 2̃ given the prior
knowledge and the presence or absence of John’s record.

Suppose John’s record is indeed in the data set. Since John has the disease, the
number of individuals contracting the disease cannot be 0. By the prior knowledge, one
can easily obtain the initial information state π = (0, 2p(1−p)

2p(1−p)+p2 ,
p2

2p(1−p)+p2) = (0,
2−2p
2−p , p

2−p). If John’s record is not in the data set, the initial information state remains

as τ = ((1−p)2, 2p(1−p), p2). Then one can compute all the observation probabilities
starting from π and τ respectively, which are summarized in Table 1:

For the observation 0̃, it is not hard to check 1
2 × 4−3p

12−6p ≤ p2−4p+4
6 ≤ 2 × 4−3p

12−6p

for any 0 < p < 1. Similarly, we have 1
2 × 4−3p

12−6p ≤ −2p2+2p+1
6 ≤ 2 × 4−3p

12−6p and
1
2 × 2

6−3p ≤ p2+2p+1
6 ≤ 2× 2

6−3p for observations 1̃ and 2̃ respectively. Therefore, the
truncated 1

2 -geometric mechanism satisfies ln(2)-Pufferfish privacy when contracting
the disease is independent. �

The above example demonstrates that certain prior knowledge, such as indepen-
dence of data entries, is indeed not harmful to privacy under the Pufferfish framework.
In [23], it is shown that differential privacy is subsumed by Pufferfish privacy (Theo-
rem 6.1) under independence assumptions. The above example is also an instance of
the general theorem but formalized in an HMM.

5 Pufferfish Privacy Verification

In this section, we formally define the verification problem for Pufferfish privacy and
give the computation complexity results in Sect. 5.1. Then we propose an algorithm to
solve the problem in Sect. 5.2.

5.1 Complexity of Pufferfish Privacy Problem

We model the general Pufferfish privacy problems into HMMs and the goal is to check
whether the privacy is preserved. First, we define the Pufferfish verification problem:

Verifying Pufferfish Privacy in Hidden Markov Models 183

Definition 3. Given a set of secrets S, a set of discriminative secret pairs Spairs, a set of
data evolution scenariosD, ε > 0, along with mechanism M in a hidden Markov model
H = (K,Ω, o), where probability distributions are all discrete. Deciding whether M
satisfies ε-Pufferfish privacy under (S, Spairs, D) is the Pufferfish verification problem.

The modeling intuition for H is to use states and transitions to model the data sets
and operations in the mechanism M, obtain initial distribution pairs according to prior
knowledge D and discriminative secrets Spairs, and set outputs as observations in states.
Then the goal turns into checking whether the probabilities under the same observation
sequence are mathematically similar, i.e., differ by at most the multiplicative factor eε,
for every distribution pair and every observation sequence. Therefore, our task is to find
the observation sequence and distribution pair that make the observing probabilities
differ the most. That is, in order to satisfy Pufferfish privacy, for every observation
sequence ω = ω1ω2 . . ., secret pair (si, sj) ∈ Spairs and θ ∈ D, one should have

max
ω,(si,sj),θ

Pr(M(D) = ω|si, θ) − eε Pr(M(D) = ω|sj , θ) (4)

max
ω,(si,sj),θ

Pr(M(D) = ω|sj , θ) − eε Pr(M(D) = ω|si, θ) (5)

no more than 0. However, by showing a reduction from the classic Boolean Satisfiability
Problem [30], this problem is proved to be NP-hard (in the full version [25]):

Theorem 1. The Pufferfish verification problem is NP-hard.

To the best of our knowledge, this is the first complexity result for the Pufferfish
verification problem. Note that differential privacy is subsumed by Pufferfish privacy.
Barthe et al. [3] show undecidability results for differential privacy mechanisms with
continuous noise. Instead, we focus on Pufferfish privacy with discrete state space in
HMMs. The complexity bound is lower if more simple models such as Markov chains
are used. However some discrete mechanisms in differential privacy, such as Above
Threshold, can hardly be modeled in Markov chains [24].

5.2 Verifying Pufferfish Privacy

Given the complexity lower bound in the previous section, next goal is to develop an
algorithm to verify ε-Pufferfish privacy on any given HMM. We employ Satisfiability
Modulo Theories (SMT) solvers in our algorithm. For all observation sequences of
length k, we will construct an SMT query to find a sequence violating ε-Pufferfish
privacy. If no such sequence can be found, the given HMM satisfies ε-Pufferfish privacy
for all observation sequences of length k.

Let H = ((S, p), Ω, o) be an HMM, π, τ two initial distributions on S, c ≥ 0 a real
number, and k a positive integer. With a fixed observation sequence ω, computing the
probability Pr(ω|π,H) can be done in polynomial time [31]. To check if Pr(ω|π,H) >
c·Pr(ω|τ,H) for any fixed observation sequence ω, one simply computes the respective
probabilities and then checks the inequality.

Our algorithm exploits the efficient algorithm of HMMs for computing the proba-
bility of observation sequences. Rather than a fixed observation sequence, we declare k

184 D. Liu et al.

Algorithm 1. Pufferfish Check
Require: H = ((S, p), Ω, o): a hidden Markov model; π, τ : state distributions on S; c: a non-

negative real number; k: a positive integer
Ensure: An SMT query q such that q is unsatisfiable iff Pr(ω|π, H) ≤ c ·Pr(ω|τ, H) for every

observation sequences ω of length k
1: function PUFFERFISHCHECK(H , π0, π1, c, k)
2: for s ∈ S do
3: α0(s) ← PRODUCT(π(s), SELECT(w0, Ω, o(s, •)))
4: β0(s) ← PRODUCT(τ(s), SELECT(w0, Ω, o(s, •)))
5: for t ← 1 to k − 1 do
6: for s′ ∈ S do
7: αt(s

′) ← PRODUCT(DOT(αt−1, p(•, s′)),
SELECT(wt, Ω, o(s′, •)))

8: βt(s
′) ← PRODUCT(DOT(βt−1, p(•, s′)),

SELECT(wt, Ω, o(s′, •)))
9: return GT(SUM(αk−1), PRODUCT(c, SUM(βk−1))) ∧ ∧k−1

t=0 wt ∈ Ω

SMT variables w0,w1, . . . ,wk−1 for observations at each step. The observation at each
step is determined by one of the k variables. Let Ω = {ω1, ω2, . . ., ωm} be the set of
observations. We define the SMT expression SELECT (w, {ω1, ω2, . . ., ωm}, o(s, •))
equal to o(s, ω) when the SMT variable w is ω ∈ Ω. It is straightforward to formulate
by the SMT ite (if-then-else) expression:

ite(w = ω1, o(s, ω1),ite(w = ω2, o(s, ω2), . . . , ite(w = ωm, o(s, ωm),w) . . .))

Using SELECT(w, {ω1, ω2, . . . , ωm}, o(s, •)), we construct an SMT expression to
compute Pr(w|π,H) where w is a sequence of SMT variables ranging over the obser-
vations Ω (Algorithm 1). Recall the Eqs. (2) and (3). We simply replace the expression
o(s, ω) with the new one SELECT(w, {ω1, ω2, . . . , ωm}, o (s, •)) to leave the obser-
vation determined by the SMT variable w. In the algorithm, we also use auxiliary func-
tions. PRODUCT(smtExp0, . . . , smtExpm) returns the SMT expression denoting the
product of smtExp0, . . . , smtExpm. Similarly, SUM(smtExp0, . . . , smtExpm) returns
the SMT expression for the sum of smtExp0, . . . , smtExpm. GT(smtExp0, smtE xp1)
returns the SMT expression for smtExp0 greater than smtExp1. Finally, DOT ([a0, a1,
. . . , an], [b0, b1, . . . , bn]) returns the SMT expression for the inner product of the two
lists of SMT expressions, namely, SUM(PRODUCT(a0, b0), . . . , PRODUCT(an, bn)).

Algorithm 1 is summarized in the following theorem.

Theorem 2. Let H = ((S, p), Ω, o) be a hidden Markov model, π, τ state distributions
on S, c > 0 a real number, and k > 0 an integer. Algorithm 1 returns an SMT query such
that the query is unsatisfiable iff Pr(ω|π,H) ≤ c · Pr(ω|τ,H) for every observation
sequence ω of length k.

In practice, the integer k depends on the length of observation sequence we want
to make sure to satisfy Pufferfish privacy. For instance, in the model of Fig. 1c, the
maximal length of observation sequence is 1 and thus k = 1. If there exist cycles in

Verifying Pufferfish Privacy in Hidden Markov Models 185

models such as Fig. 3, which implies loops in the mechanisms, k should keep increasing
(and stop before a set value) in order to examine outputs of different lengths.

6 Pufferfish Privacy Verifier: FAIER

We implement our verification tool and present experimental results in Subsect. 6.1. For
the well-known differential privacy mechanisms Noisy Max and Above Threshold, we
provide modeling details in HMMs and verify the privacy wrt. several Pufferfish privacy
scenarios in Subsect. 6.2 and 6.3, accordingly.

6.1 Evaluation for FAIER

We implement our verification algorithm (Algorithm 1) into the tool FAIER, which is
the pufferFish privAcy verifIER. It is implemented in C++ environment with the SMT
solver Z3 [29] and we performed all experiments on an Intel(R) Core i7-8750H @
2.20GHz CPU machine with 4 GB memory and 4 cores in the virtual machine. All the
examples in this paper have been verified.

The inputs for our tool include an HMM H of the mechanism to be verified, dis-
tribution pair (π,τ) on states in H , a non-negative real number c indicating the pri-
vacy budget and an input k specifying the length of observation sequences. Note that
unknown parameters are also allowed in the SMT formulae, which can encode certain
prior knowledge or data sets distributions.

Table 2. Experiment results: ✓ indicates the property holds, and ✗ not.

Mechanism Privacy scenario
Result

Query answer Counterexample

ln(2)-differential ✓
Truncated privacy (Ex. 2)

1
2
-geometric ln(2)-pufferfish ✗ 2̃

Mechanism privacy (Ex. 3)

ln(2)-pufferfish ✓
privacy (Ex. 4)

ln(2)-pufferfish ✓
Discrete Noisy Max privacy (Ex. 5)

(Algorithm 2) ln(2)-pufferfish ✗ ⊥, 3̃; pA = pB = pC = 1
2

privacy (Ex. 6)

Above Threshold Algorithm 4 ln(2)-differential ✗ ��, 01,⊥, 12,⊥, 12,⊥, 12,
(Algorithm 3) privacy ⊥, 21,�

We summarize the experiment results in this paper for pufferfish privacy, as well as
differential privacy in Table 2. FAIER has the following outputs:

– Counterexample: If the privacy condition does not hold (marked by ✗), FAIER will
return a witnessing observation sequence leading to the violation.

186 D. Liu et al.

– Parameter Synthesis: If there exist unknown parameters in the model, such as the
infection rate p for some disease, a value will be synthesized for the counterexample.
See Example 6 where counterexample is found when pA, pB , pC are equal to 1

2 ; Or,
no value can be found if the privacy is always preserved. See Example 5.

– ✓ is returned if the privacy is preserved.

Note that if there exists a loop in the model, the bound k should continue to increase
when an ‘UNSAT’ is returned. Specially, the bound is set at a maximum of 15 for
Above Threshold. It may happen that FAIER does not terminate since some nonlinear
constraints are too complicated for Z3, such as Example 5, which cannot solved by Z3
within 60min. Thus we encode them into a more powerful tool REDLOG for nonlinear
constraints [15]. For every experiment in the table, the time to construct the HMM
model and SMT queries is less than 1 s; the time for solving SMT queries are less than
2 s, except for Example 5.

Among the mechanisms in Table 2, Algorithm 2, 3 need our further investigation.
We examine these algorithms carefully in the following subsections.

6.2 Noisy Max

Noisy Max is a simple yet useful data publishing mechanism in differential privacy [14,
16]. Consider n queries of the same range, say, the number of patients for n different
diseases in a hospital. We are interested in knowing which of the n diseases has the
maximal number of patients in the hospital. A simple privacy-respecting way to release
the information is to add independent noises to every query result and then return the
index of the maximal noisy results.

Algorithm 2. Discrete Noisy Max
Require: 0 ≤ v1, v2, . . . , vn ≤ 2
Ensure: The index r with the maximal ṽr among ṽ1, ṽ2, . . . , ṽn
1: function DISCRETENOISYMAX(v1, v2, . . . , vn)
2: M, r, c ← −1, 0, 0
3: for each vi do
4: match vi with 	 apply 1

2
-geometric mechanism

5: case 0: ṽi ← 0, 1, 2 with probability 2
3
, 1
6
, 1
6

6: case 1: ṽi ← 0, 1, 2 with probability 1
3
, 1
3
, 1
3

7: case 2: ṽi ← 0, 1, 2 with probability 1
6
, 1
6
, 2
3

8: if M = ṽi then
9: c ← c + 1
10: r ← i with probability 1

c

11: if M < ṽi then
12: M, r, c ← ṽi, i, 1

13: return r

In [16], NoisyMax algorithm adds continuous Laplacian noises to each query result.
The continuous Noisy Max algorithm is proved to effectively protect privacy for neigh-
boring data sets [14]. In practice continuous noises however are replaced by discrete

Verifying Pufferfish Privacy in Hidden Markov Models 187

noises using floating-point numbers. Technically, the distribution of discrete floating-
point noises is different from the continuous distribution in mathematics. Differential
privacy can be breached [28]. The proof for continuous Noisy Max algorithm does not
immediately apply. Indeed, care must be taken to avoid privacy breach.

Fig. 2. Hidden Markov model for noisy max

We introduce our algorithm and
model. The standard algorithm is
modified by adding discrete noises
to query results (Algorithm 2). In
the algorithm, the variables M and
r contain the maximal noisy result
and its index respectively. We apply
the truncated 1

2 -geometric mecha-
nism to each query with the corre-
sponding discrete range. To avoid
returning a fixed index when there
are multiple noisy results with the
same value, the discrete algorithm explicitly returns the index of the maximal noisy
value with an equal probability (Line. 8–14).

The HMM model with n = 3 queries is illustrated in Fig. 2. The top states labeled
011 and 120 correspond to three query results (on neighboring data sets) and ��, i.e.
nothing, is observed in the initial states. Both states have a transition to the state 022,
representing the perturbed query results obtained with different probabilities. The index
of the maximal result will be observed, which is 2 or 3 with probability 1

2 . Next we
analyze Algorithm 2 under the Pufferfish framework.

Example 5. Consider three counting queries fA, fB , and fC for the number of indi-
viduals contracting the diseases A, B, and C respectively in the data set X 2 with
X = {(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)}. An element (a, b, c) ∈ X denotes whether the
data entry contracts the diseases A, B, and C respectively. Assume that the contraction
of each disease is independent among individuals and the probabilities of contracting
the diseases A, B, and C are pA, pB , and pC respectively. The prior knowledge induces
an information state for the model in Fig. 2. For example, the state 120 has the proba-
bility 2pA(1 − pA) · p2B · (1 − pC)2.

Suppose John is in the data set and whether John contracts the disease A is a secret.
We would like to check if the discrete Noisy Max algorithm can protect the secret using
the Pufferfish privacy framework. Let us compute the initial information state π given
that John has not contracted disease A. For instance, the initial probability of the state
120 is 2pA(1−pA)

(1−pA)2+2pA(1−pA) · p2B · (1 − pC)2. The initial information state π is obtained

by computing the probabilities of each of the 33 top states. Given that John has the
disease A, the initial information state τ is computed similarly. In this case, the initial
probability of the state 120 becomes 2pA(1−pA)

2pA(1−pA)+p2
A

· p2B · (1 − pC)2. Probabilities of

the 33 top states form the initial information state τ . From the initial information state
π and τ , we compute the probabilities of observing ��1̃, ��2̃, and ��3̃ in the formal model
(Fig. 2). The formulae for observation probabilities are easy to compute. However, the
SMT solver Z3 cannot solve the non-linear formulae generated by our algorithm. In

188 D. Liu et al.

order to establish Pufferfish privacy automatically, we submit the non-linear formulae
to the constraint solver REDLOG. This time, the solver successfully proves the HMM
satisfying ln(2)-Pufferfish privacy. �

Algorithm 2 is ln(2)-Pufferfish private when the contraction of diseases is indepen-
dent for data entries. Our next step is to analyze the privacy mechanism model when
the contraction of the disease A is correlated among data entries.

Example 6. Assume that the data set consists of 2 family members, including John,
and there are 5 queries which ask the number of patients of 5 diseases in the data set.
To protect privacy, Algorithm 2 is applied to query results. Now assume an attacker
has certain prior knowledge: 1. Disease 1 is so highly contagious that either none or
both members infect the disease; 2. Disease 2 to Disease 5 are such diseases that every
person has the probability of pk to catch Disease k; and 3. The attacker knows the
values of probabilities: pk = k

10 for k ∈ {3, 4, 5}, but does not know the value of p2.
Suppose the secret is whether John has contracted Disease 1 and we wonder whether
there exists such a p2 that ln(2)-Pufferfish private is violated. We can compute the
initial distribution pair π and τ given the above information. For instance, if John has
contracted Disease 1, then the initial probability for state 21110 is p2(1−p2) · (3

10)(1−
3
10) · (4

10)(1 − 4
10)(1 − 5

10)
2. Similarly, we obtain the initial information state given

that John has not contracted the disease. Then FAIER verifies the mechanism does not
satisfy ln(2)-Pufferfish private with the synthesized parameter p2 = 1

2 . �

Provably correct privacy mechanisms can leak private information by seemingly
harmless modification or assumed prior knowledge. Ideally, privacy guarantees of prac-
tical mechanisms need be re-established. Our verification tool can reveal ill-designed
privacy protection mechanisms easily.

6.3 Above Threshold

Above threshold is a classical differentially private mechanism for releasing numeri-
cal information [16]. Consider a data set and an infinite sequence of counting queries
f1, f2, We would like to know the index of the first query whose result is above
a given threshold. In order to protect privacy, the classical algorithm adds continuous
noises on the threshold and each query result. If the noisy query result is less than
the noisy threshold, the algorithm reports ⊥ and continues to the next counting query.
Otherwise, the algorithm reports � and stops.

We consider counting queries with range {0, 1, 2} and apply the truncated geomet-
ric mechanism for discrete noises. The discrete above threshold algorithm is shown
in Algorithm 3. The algorithm first obtains the noisy threshold t̃ using the truncated
1
4 -geometric mechanism. For each query result ri, it computes a noisy result r̃i by
applying the truncated 1

2 -geometric mechanism. If r̃i < t̃, the algorithm outputs ⊥ and
continues. Otherwise, it halts with the output �.

Algorithm andModel. To ensure ε-differential privacy, the classical algorithm applies
the 2

ε - and
4
ε -Laplace mechanism to the threshold and each query result respectively.

Verifying Pufferfish Privacy in Hidden Markov Models 189

The continuous noisy threshold and query results are hence ε
2 - and

ε
4 -differentially pri-

vate. In Algorithm 3, the discrete noisy threshold and query results are 2 ln(2)- and
ln(2)-differentially private. If the classical proof still applies, we expect the discrete
above threshold algorithm is 4 ln(2)-differentially private for ε

2 = 2 ln(2).
Figure 3 gives an HMM for Algorithm 3. In the model, the state tirj represents the

input threshold t = i and the first query result r = f1(d) = j for an input data set
d. From the state tirj , we apply the truncated 1

4 -geometric mechanism. The state t̃irj

hence means the noisy threshold t̃ = i with the query result r = j. For instance, the
state t0r1 transits to t̃1r1 with probability 3

20 . After the noisy threshold is obtained, we
compute a noisy query result by the truncated 1

2 -geometric mechanism. The state t̃ir̃j

represents the noisy threshold t̃ = i and the noisy query result r̃ = j. In the figure,
we see that the state t̃1r0 moves to t̃1r̃0 with probability 2

3 . At the state t̃ir̃j , � is
observed if j ≥ i; otherwise, ⊥ is observed. From the state t̃ir̃j , the model transits to
the states t̃ir0, t̃ir1, t̃ir2 with uniform distribution. This simulates the next query result
in Algorithm 3. The model then continues to process the next query.

Algorithm 3. Input: private database d, counting queries fi : d → {0, 1, 2}, threshold
t ∈ {0, 1, 2}; Output: a1, a2, . . .

1: procedure ABOVETHRESHOLD(d, {f1, f2, . . .}, t)
2: match t with 	 apply 1

4
-geometric mechanism

3: case 0: t̃ ← 0, 1, 2 with probability 4
5
, 3
20

, 1
20

4: case 1: t̃ ← 0, 1, 2 with probability 1
5
, 3
5
, 1
5

5: case 2: t̃ ← 0, 1, 2 with probability 1
20

, 3
20

, 4
5

6: for each query fi do
7: ri ← fi(d)
8: match ri with 	 apply 1

2
-geometric mechanism

9: case 0: r̃i ← 0, 1, 2 with probability 2
3
, 1
6
, 1
6

10: case 1: r̃i ← 0, 1, 2 with probability 1
3
, 1
3
, 1
3

11: case 2: r̃i ← 0, 1, 2 with probability 1
6
, 1
6
, 2
3

12: if r̃i ≥ t̃ then halt with ai = � else ai = ⊥

The bottom half of Fig. 3 is another copy of the model. All states in the second copy
are underlined. For instance, the state t̃2r0 represents the noisy threshold is 2 and the
query result is 0. Given an observation sequence, the two copies are used to simulate
the mechanism conditioned on the prior knowledge with the two secrets. In the figure,
we define the observation set Ω = {��,⊥,�, 00, 01, 10, 11, 12, 21, 22, ♠, ♥, ♦, ♣}. At
initial states tirj and tirj , only �� can be observed. When the noisy threshold is greater
than the noisy query result (t̃ir̃j and t̃ir̃j with i > j), ⊥ is observed. Otherwise, � is
observed at states t̃ir̃j and t̃ir̃j with i ≤ j. Other observations are used to “synchronize”
query results for neighboring data sets. More details are explained in [25].

Differential Privacy Analysis. We can now perform differential privacy analysis using
the HMM in Fig. 3. By construction, each observation corresponds to a sequence of

190 D. Liu et al.

queries on neighboring data sets and their results. If the proof of continuous above
threshold mechanism could carry over to our discretized mechanism, we would expect
differences of observation probabilities from neighboring data sets to be bounded by
the multiplicative factor of e4 ln(2) = 16. Surprisingly, our tool always reports larger
differences as the number of queries increases. After generalizing finite observations
found by Z3, we obtain an observation sequence of an arbitrary length described below.

Fix n > 0. Consider a data set d such that fi(d) = 1 for 1 ≤ i ≤ n and fn+1(d) =
2. A neighbor d

′
of d may have fi(d

′
) = 2 for 1 ≤ i ≤ n and fn+1(d

′
) = 1. Note

that |fi(d) − fi(d
′
)| ≤ 1 for 1 ≤ i ≤ n + 1. fi’s are counting queries. Suppose the

threshold t = 2. Let us compute the probabilities of observing ⊥n� on d and d
′
.

Fig. 3. Hidden Markov model for above threshold

If t̃ = 0, f̃1 ≥ t̃. The algorithm reports � and stops. We cannot observe ⊥n�: recall
the assumption that n > 0. It suffices to consider t̃ = 1 or 2. When t̃ = 1, f̃i(d) = 0
for 1 ≤ i ≤ n and f̃n+1(d) ≥ 1. Recall fi(d) = 1 for 1 ≤ i ≤ n and fn+1(d) = 2.
The probability of observing ⊥n� is (13)

n · 5
6 . When t̃ = 2, f̃1(d) ≤ 1 for 1 ≤ i ≤ n

and f̃n+1(d) = 2. The probability of observing ⊥n� is thus (23)
n · 2

3 . In summary, the
probability of observing ⊥n� with d when t = 2 is 3

20 · (13)n · 5
6 + 4

5 · (23)n · 2
3 . The

case for d
′
is similar. When t̃ = 1, the probability of observing ⊥n� is (16)

n · 2
3 . When

t̃ = 2, the probability of observing the same sequence is (13)
n · 1

3 . Hence the probability

of observing ⊥n� with d
′
when t = 2 is 3

20 · (16)n · 2
3 + 4

5 · (13)n · 1
3 . Now,

Verifying Pufferfish Privacy in Hidden Markov Models 191

Pr(ω = ⊥n�|d, t = 2)

Pr(ω = ⊥n�|d′
, t = 2)

=
3
20 · (13)n · 5

6 + 4
5 · (23)n · 2

3
3
20 · (16)n · 2

3 + 4
5 · (13)n · 1

3

>
4
5 · (23)n · 2

3
3
20 · (13)n · 2

3 + 4
5 · (13)n · 1

3

=
8
15 (

2
3)

n

11
30 (

1
3)

n
=

16
11

· 2n.

We see that the ratio of Pr(ω = ⊥n�|d, t = 2) and Pr(ω = ⊥n�|d′
, t = 2) can be

arbitrarily large. Unexpectedly, the discrete above threshold cannot be ε-differentially
private for any ε. Replacing continuous noises with truncated discrete noises does not
preserve any privacy at all. This case emphasizes the importance of applying verification
technique to practical implementations.

7 Combining Techniques for Differential Privacy

In this section, we investigate into two state-of-the-art tools for detecting violations
of differential privacy, namely StatDP [14] and DP-Sniper [10], to compare with our
tool. We decide to choose these tools as baselines since they support programs with
arbitrary loops and arbitrary sampling distributions. On the contrary, DiPC [3,4], DP-
Finder [9] and CheckDP [32] et al. do not support arbitrary loops or only synthesize
proofs for privacy budget ε when Laplace distributions are applied. In order to compare
with our tool FAIER, the discrete mechanisms with truncated geometric distributions
are implemented in these tools. We present comparisons in Subsect. 7.1, and moreover,
in Subsect. 7.2, we discuss how testing and our verification technique can be combined
to certify counterexamples and find the precise lower bound for privacy budget.

7.1 Comparison

Different Problem Statements. As all the tools can be used to find the privacy budget
ε for differential private mechanisms, the problem statements they address are different:
I. With a fixed value of ε, StatDP runs the mechanism repeatedly and tries to report the
output event that makes the mechanism violate ε-differential privacy, with a p-value as
the confidence level. If the p-value is below 0.05, StatDP is of high confidence that ε-
differential privacy is violated; Otherwise the mechanism is very likely (depending on
the p-value) to satisfy. II. On the other hand, DP-Sniper aims to learn for the optimal
attack that maximizes the ratio of probabilities for certain outputs on all the neighboring
inputs. Therefore it returns the corresponding “optimal” witness (neighboring inputs)
along with a value ε such that the counterexample violates ε-differential privacy with ε
as large as possible. III. Differently, FAIERmakes use of the HMMmodel and examines
all the pairs of neighboring inputs and outputs to make sure that ε-differential privacy is
satisfied by all cases, or violated by an counterexample, with a fixed value of ε. IV. Note
that FAIER is aimed at Pufferfish privacy verification where prior knowledge can affect
the data sets distributions and unknown parameters are allowed, which are not involved
in the other tools. Meanwhile, the others support continuous noise while FAIER does
not (unless an HMM with finite state space can be obtained).

192 D. Liu et al.

Table 3. Heuristic input patterns used in StatDP and
DP-Sniper, from [14]

Category D1 D2

One Above [1, 1, 1, 1, 1] [2, 1, 1, 1, 1]

One Below [1, 1, 1, 1, 1] [0, 1, 1, 1, 1]

One Above Rest Below [1, 1, 1, 1, 1] [2, 0, 0, 0, 0]

One Below Rest Above [1, 1, 1, 1, 1] [0, 2, 2, 2, 2]

Half Half [1, 1, 1, 1, 1] [0, 0, 2, 2, 2]

All Above & All Below [1, 1, 1, 1, 1] [2, 2, 2, 2, 2]

X Shape [1, 1, 0, 0, 0] [0, 0, 1, 1, 1]

Efficiency and Precision. We make
comparison of the tools in terms of
efficiency and precision by perform-
ing experiments on Discrete Noisy
Max (Algorithm 2) with n = 5
queries. The lower bound [9] of the
privacy budget, i.e., the largest ε that
the mechanism is not ε-differential
privacy, is 1.372 up to a precision of
0.001. I. Fix an ε, StatDP takes 8 s
on average to report an event 0 along
with a p-value under the usual setting
of 100k/500k times for event selection/counterexample detection. However, there is a
need for specifying the range of ε in advance and more values of ε to test will consume
more time. We first select ε increasingly with a step of 0.1 in the range of [0, 2]. Then
the range is narrowed down according to the p-values and we select ε in the range with
a smaller step 0.01 and so on. The similar process also applies for FAIER. Altogether
StatDP takes around 600 s to get an overview of the results. Fast enough, though, it has
the drawback of instability and the precision is lower than the other tools. It reports the
mechanism satisfies 1.344-differential privacy in the first execution, which is incorrect,
and reports it violates 1.353-differential privacy in the second execution.

II. DP-Sniper returns a witness [0, 2, 2, 2, 2] and [1, 1, 1, 1, 1] with ε = 1.371 for
three times, which is correct, stable and the result is almost the true lower bound. How-
ever, it takes around 4600 s on average to train a multi-layer perceptron with 10000k
samples and get this result. Unlike the evaluation in [10], DP-Sniper performs much
slower than StatDP when it comes to discrete random noise. The reason is that DP-
Sniper cannot use high-efficient sampling commands such as numpy.random.laplace to
get all the samples at once. It has to calculate and sample different distributions accord-
ing to different inputs. We’ve tried to use numpy.random.choice to sample different
distributions, but it is inefficient for small vectors and wouldn’t terminate for more than
10 h in our experiment. We’ve also tried to reduce the number of samples to 1000k.
This time it terminates with 308 s with an imprecise ε = 1.350.

III. FAIER takes less than 1 s to build the HMM model and 160 s to compute SMT
query for every data set (possible initial state), which will be later used to compute on
neighboring data sets if an ε is assigned. The results returned by FAIER are the most
precise ones. It takes Z3 523 s to verify that 1.373-differential privacy is satisfied and
234 s that 1.372-differential privacy is violated witnessed by the input pair [0, 2, 2, 2,
2] and [1, 1, 1, 1, 1] and output event 1. It takes only 40 s to verify when ε = 1.34, a
little far away from the true lower bound. Altogether it takes around 1600 s to assure
the true bound, which is acceptable.

7.2 Combining Verification and Testing

The findings during experiments inspire us to combine verification (FAIER) and testing
(DP-Sniper, StatDP) together to efficiently make use of each tool. First, we can see that
the witnesses found by FAIER and DP-Sniper are the same one. Actually, if heuristic

Verifying Pufferfish Privacy in Hidden Markov Models 193

searching strategies for input pairs are used, i.e., Table 3 used in DP-Sniper and StatDP,
FAIER will quickly find the violation pairs, which saves huge time in the occasions
of privacy violations. Second, since the witness returned by DP-Sniper is the optimal
input pair that maximize the probability difference, FAIER can precisely verify whether
the “optimal” witness satisfies ε-differential privacy, whereby FAIER will more likely
to find the true lower bound as ε increase in short time. Third, since StatDP returns an
imprecise result quickly given an ε, we can combine StatDP and FAIER to efficiently
get a precise lower bound. The pseudo-code is in Algorithm 4.

Algorithm 4 first feeds mechanism M as input to the testing tool StatDP, to obtain
an interval I whose left end point is ε with p-value <0.05 and right end point with
p-value = 1. StatDP can conclude if p-value<0.05, the mechanism doesn’t satisfy ε-
differential privacy with high confidence and if p-value= 1, the mechanism satisfies for
sure. However, for other p-values, StatDP is not confident to give useful conclusions.
Here is where our tool can work out—FAIER can determine whether M satisfies ε-
differential privacy, given any ε. As a result we can combine to efficiently get arbitrarily
close to the lower bound ε wrt. a given precision by binary search. For instance, we
apply StatDP on Algorithm 2 to get an interval I = [1.34, 1.38] according to the p-value
graph, and then apply our tool FAIER to verify ε-differential privacy. Consequently, our
tool reports the lower bound is 1.372 (up to a precision of 0.001).

Algorithm 4. Pseudo-code to compute the lower bound
1: procedure COMPUTE LOWER BOUND(Mechanism M)
2: Use StatDP with input M to get an interval I 	 the left end point is an ε with

p-value< 0.05 and the right one is one with p-value= 1
3: Apply binary search on I, in each iteration the value is ε
4: repeat
5: Use FAIER with input M and ε
6: if result is SAT then 	 not satisfy ε-differential privacy
7: left end point = ε
8: else 	 satisfy ε-differential privacy
9: right end point = ε

10: until reaching required precision
11: return ε

8 Related Work

Methods of proving/testing differential privacy. Barthe et al. [7,8] proposed to prove
differential privacy at the beginning. Then a number of work [1,5,6] extended proba-
bilistic relational Hoare logic and applied approximate probabilistic couplings between
programs on adjacent inputs. They successfully proved differential privacy for sev-
eral algorithms, but cannot disprove privacy. Zhang et al. [32–34] proposed to apply
randomness alignment to evaluate privacy cost and implemented CheckDP that could

194 D. Liu et al.

rewrite classic privacy mechanisms involving Laplacian noise to verify differential pri-
vacy. Bichsel et al. [9], Ding et al. [14] and Zhang et al. [35] used testing and searching
to find violations for differential privacy mechanisms, the results of which may be too
coarse or imprecise. Liu et al. [24] chose Markov chains and Markov decision processes
to model deferentially private mechanisms and verify privacy properties in extended
probabilistic temporal logic. McIver et al. [27] applied Quantitative Information Flow
to analyze Randomized response mechanism in differential privacy. We note that all the
automated tools above for proving or testing differential privacy, plus ours, have not
been well studied in privacy mechanisms with considerably large data sets.

Complexity in Verifying Differential Privacy. Gaboardi et al. [19] studied the problem
of verifying differential privacy for probabilistic loop-free programs. They showed that
to decide ε-differential privacy is coNP#P-complete and to approximate the level of
differential privacy is both NP-hard and coNP-hard. Barthe et al. [3] first proved
that checking differential privacy is undecidable. The difference with our work lies in
that we study verification problems for mechanisms modeled in HMMs in Pufferfish
privacy. Chistikov et al. [12] proved that the big-O problem for labeled Markov chains
(LMCs) is undecidable, which is similar to deciding the ratio of two probabilities in
differential privacy. Though, their proof does not apply here since HMMs in our paper
do not have the same non-deterministic power as LMCs.

Acknowledgements. Wewould like to thank the anonymous reviewers for their valuable sugges-
tions and comments about this paper. The work is supported by Ministry of Science and Technol-
ogy of Taiwan under the Grant Number 108-2221-E-001-010-MY3; the Data Safety and Talent
Cultivation Project AS-KPQ-109-DSTCP and NSFC under the Grant Number 61836005.

References

1. Albarghouthi, A., Hsu, J.: Synthesizing coupling proofs of differential privacy. Proc. ACM
Program. Lang. 2(POPL), 1–30 (2017)

2. Apple: About privacy and location services in IOS and IPADOS (2020). https://support.
apple.com/en-us/HT203033/. Accessed 9 Sept 2021

3. Barthe, G., Chadha, R., Jagannath, V., Sistla, A., Viswanathan, M.: Deciding differential
privacy for programs with finite inputs and outputs, pp. 141–154 (2020). https://doi.org/10.
1145/3373718.3394796

4. Barthe, G., Chadha, R., Jagannath, V., Sistla, A.P., Viswanathan, M.: Automated methods for
checking differential privacy. CoRR abs/1910.04137 (2019). http://arxiv.org/abs/1910.04137

5. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Proving differential privacy via
probabilistic couplings (2016)

6. Barthe, G., Gaboardi, M., Hsu, J., Pierce, B.: Programming language techniques for differ-
ential privacy. ACM SIGLOG News 3(1), 34–53 (2016). https://doi.org/10.1145/2893582.
2893591

7. Barthe, G., Köpf, B., Olmedo, F., Zanella Béguelin, S.: Probabilistic relational reasoning
for differential privacy. In: POPL ’12, pp. 97–110 (2012). https://doi.org/10.1145/2103656.
2103670

8. Barthe, G., Köpf, B., Olmedo, F., Zanella Béguelin, S.: Probabilistic relational reasoning for
differential privacy. SIGPLAN Not. 47(1), 97–110 (2012). https://doi.org/10.1145/2103621.
2103670

https://support.apple.com/en-us/HT203033/
https://support.apple.com/en-us/HT203033/
https://doi.org/10.1145/3373718.3394796
https://doi.org/10.1145/3373718.3394796
http://arxiv.org/abs/1910.04137
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/2103621.2103670
https://doi.org/10.1145/2103621.2103670

Verifying Pufferfish Privacy in Hidden Markov Models 195

9. Bichsel, B., Gehr, T., Drachsler-Cohen, D., Tsankov, P., Vechev, M.: Dp-finder: finding dif-
ferential privacy violations by sampling and optimization, pp. 508–524 (2018). https://doi.
org/10.1145/3243734.3243863

10. Bichsel, B., Steffen, S., Bogunovic, I., Vechev, M.: DP-sniper: black-box discovery of dif-
ferential privacy violations using classifiers. In: SP’21, pp. 391–409 (2021). https://doi.org/
10.1109/SP40001.2021.00081

11. Chen, Y., Machanavajjhala, A.: On the privacy properties of variants on the sparse vector
technique. CoRR abs/1508.07306 (2015). http://arxiv.org/abs/1508.07306

12. Chistikov, D., Kiefer, S., Murawski, A.S., Purser, D.: The Big-O problem for labelled
markov chains and weighted automata. In: CONCUR 2020. Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 171, pp. 41:1–41:19 (2020). https://doi.org/10.4230/LIPIcs.
CONCUR.2020.41

13. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: NIPS’17, pp.
3574–3583 (2017)

14. Ding, Z., Wang, Y., Wang, G., Zhang, D., Kifer, D.: Detecting violations of differential pri-
vacy. In: Backes, M., Wang, X. (eds.) CCS, pp. 475–489 (2018)

15. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. SIGSAMBull.
31(2), 2–9 (1997). https://doi.org/10.1145/261320.261324

16. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends
Theoret. Comput. Sci. 9(3–4), 211–407 (2014)

17. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.
1007/11787006 1

18. Farina, G.P., Chong, S., Gaboardi, M.: Coupled relational symbolic execution for differential
privacy. In: Programming Languages and Systems, pp. 207–233 (2021)

19. Gaboardi, M., Nissim, K., Purser, D.: The complexity of verifying loop-free programs as
differentially private. In: ICALP 2020. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 168, pp. 129:1–129:17 (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.
129

20. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. In: STOC, pp. 351–360. ACM, New York (2009)

21. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. SIAM J. Comput. 41(6), 1673–1693 (2012)

22. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: SIGMOD, pp. 193–204
(2011)

23. Kifer, D., Machanavajjhala, A.: Pufferfish: a framework for mathematical privacy definitions.
ACM Trans. Database Syst. 39(1), 3:1–3:36 (2014)

24. Liu, D., Wang, B.-Y., Zhang, L.: Model checking differentially private properties. In: Ryu,
S. (ed.) APLAS 2018. LNCS, vol. 11275, pp. 394–414. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02768-1 21

25. Liu, D., Wang, B., Zhang, L.: Verifying pufferfish privacy in hidden Markov models. CoRR
abs/2008.01704 (2020). https://arxiv.org/abs/2008.01704

26. Lyu, M., Su, D., Li, N.: Understanding the sparse vector technique for differential privacy.
Proc. VLDB Endow. 10(6), 637–648 (2017). https://doi.org/10.14778/3055330.3055331

27. McIver, A., Morgan, C.: Proving that programs are differentially private. In: Lin, A.W. (ed.)
APLAS 2019. LNCS, vol. 11893, pp. 3–18. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34175-6 1

28. Mironov, I.: On significance of the least significant bits for differential privacy. In: CCS’12,
pp. 650–661 (2012)

https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1109/SP40001.2021.00081
https://doi.org/10.1109/SP40001.2021.00081
http://arxiv.org/abs/1508.07306
https://doi.org/10.4230/LIPIcs.CONCUR.2020.41
https://doi.org/10.4230/LIPIcs.CONCUR.2020.41
https://doi.org/10.1145/261320.261324
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.4230/LIPIcs.ICALP.2020.129
https://doi.org/10.4230/LIPIcs.ICALP.2020.129
https://doi.org/10.1007/978-3-030-02768-1_21
https://doi.org/10.1007/978-3-030-02768-1_21
https://arxiv.org/abs/2008.01704
https://doi.org/10.14778/3055330.3055331
https://doi.org/10.1007/978-3-030-34175-6_1
https://doi.org/10.1007/978-3-030-34175-6_1

196 D. Liu et al.

29. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

30. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math.
Oper. Res. 12(3), 441–450 (1987)

31. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech
recognition. Proc. IEEE 77(2), 257–286 (1989)

32. Wang, Y., Ding, Z., Kifer, D., Zhang, D.: CheckDP: an automated and integrated approach
for proving differential privacy or finding precise counterexamples. In: CCS ’20, pp. 919–
938 (2020). https://doi.org/10.1145/3372297.3417282

33. Wang, Y., Ding, Z., Wang, G., Kifer, D., Zhang, D.: Proving differential privacy with shadow
execution. In: PLDI’19, pp. 655–669 (2019)

34. Zhang, D., Kifer, D.: LightDP: towards automating differential privacy proofs. In: POPL’17,
vol. 52, pp. 888–901 (2017)

35. Zhang, H., Roth, E., Haeberlen, A., Pierce, B.C., Roth, A.: Testing differential privacy with
dual interpreters. Proc. ACM Program. Lang. 4(OOPSLA) (2020). https://doi.org/10.1145/
3428233

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3372297.3417282
https://doi.org/10.1145/3428233
https://doi.org/10.1145/3428233

A Flow-Insensitive-Complete Program
Representation

Solène Mirliaz1(B) and David Pichardie2

1 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
solene.mirliaz@ens-rennes.fr

2 Facebook, Paris, France

Abstract. When designing a static analysis, choosing between a flow-
insensitive or a flow-sensitive analysis often amounts to favor scalability
over precision. It is well known than specific program representations can
help to reconcile the two objectives at the same time. For example the
SSA representation is used in modern compilers to perform a constant
propagation analysis flow-insensitively without any loss of precision.

This paper proposes a provably correct program transformation that
reconciles them for any analysis. We formalize the notion of Flow-
Insensitive-Completeness with two collecting semantics and provide a
program transformation that permits to analyze a program in a flow
insensitive manner without sacrificing the precision we could obtain with
a flow sensitive approach.

1 Introduction

Static analysis designers must face two main challenges. The first one is scal-
ability because the analysis should compute a sound approximation within a
reasonable amount of time. The second one is precision because the approxi-
mation should be accurate enough to prove the target properties on as many
programs as possible.

Abstract interpretation provides a rich methodology to guide the static anal-
ysis design but precision and scalability are often difficult to optimize at the same
time. At one side of the spectrum stand relational abstract interpreters [4,12,14]
that compute expressive symbolic relations on program variables at each pro-
gram point (flow sensitivity). At an other side of the spectrum, flow-insensitive
analyses [17] (such as Andersen’s pointer analysis [2]) compute one global invari-
ant for the whole program, sparing time and memory.

Flow sensitivity allows to compute local invariants at each program point,
without polluting the inferred properties with too many infeasible paths. But
this technique generally requires to remember an invariant at several program
points of the program. This may have bad impact on performance, in particular
memory usage.

On very specific programs, flow-insensitive and flow-sensitive analyses have
the same precision. Figure 1 shows two examples. On the left, the global invari-
ant x = y = 0 is invalid after the last assignment x := 1. However, after a simple
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 197–218, 2022.
https://doi.org/10.1007/978-3-030-94583-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_10

198 S. Mirliaz and D. Pichardie

Fig. 1. Comparing flow insensitive analysis precision losses on two programs.

renaming we obtain the program on the right where x0 = y0 = 0 is a valid global
invariant. This renaming is a very simple case of Static Single Assignment trans-
formation (SSA) [5] where each variable is given a unique definition point. The
SSA intermediate representation is very popular in compiler frameworks because
many flow sensitive program optimizations can be performed with a flow insen-
sitive approach on a SSA representation without loss of precision. This has been
observed for constant propagation analysis [10] in an analysis named Sparse
conditional constant propagation [20].

But SSA transformation is not always enough. For example, a popular com-
piler optimization, Global Value Numbering [1] is performed flow insensitively on
SSA form in order to detect equivalence between program sub-expressions and
perform common sub-expressions elimination. But Gulwani and Necula show [6]
it is not precise enough and provide a provably more precise flow sensitive alter-
native version.

An alternative program representation to SSA, the Static Single Information
(SSI) form [19], extends the SSA form with extra-properties. In [19], Pereira
and Rastello consider non-relational analyses which bind information to i) each
program variable, and ii) each program point where the variable is live. They
design the SSI form in order to ensure that each variable will respect the same
invariant at any point where it is alive. Their work shows that for non-relational
analyses, the SSI transformation allows to compute, with a flow insensitive anal-
ysis of the SSI program, the same amount of information than with a standard
flow sensitive analysis of the original program. But they also conclude with the
remark that this property does not hold for relational analyses that compute
relations between program variables. Part of this limitation is removed with [16]
for what is called semi-relational analyses.

This paper is the first to explore the problem without restrictions on the
relational nature of the analysis. We take a semantic approach and do not bind
our work to a specific numerical analysis or abstract domain. We make the
following contributions:

– We propose a new program transformation technique that inserts enough
move instructions (called σ copies in the SSI vocabulary and simply copies
in this paper) to turn a SSA program into an equivalent Flow Insensitive
Complete (FIC) program. The obtained program can be analyzed with a flow
insensitive approach without loss of precision compare to a flow sensitive
manner.

A Flow-Insensitive-Complete Program Representation 199

– We formalize the notion of Flow Insensitive Completeness with two collect-
ing semantics. The flow-sensitive collecting semantics characterizes the set of
reachable states in term of program paths while the flow-insensitive collecting
semantics characterizes another set of states with respect to any permutation
of blocks of instructions.

– We prove that the two collecting semantics detect the same set of assert
failures for all Flow Insensitive Complete programs.

– We implement the transformation for Java bytecode in SSA form and observe
that the total number of variables remains reasonable compared to the size
of flow-sensitive analyses invariants.

2 Motivating Example

We present in Fig. 2 an example that explains why the SSI form does not intro-
duce enough variables to allow relational reasoning, and how our approach han-
dles the problem.

Figure 2 contains both the source program and its SSA form in a graph
representation. We iterate the loop 10 times (using the loop counter i). Since
j is initialized at 0, and is incremented by one or two at each iteration, it is
expected to be in the range [10, 20] at the end of the loop.

Note that, in our SSA representation, φ instructions are performed before
each junction points, rather than at the entrance. This inoffensive convention
makes our proof easier to expose.

We present in Fig. 3a a SSI form of this program. According to the standard
SSI transformation, copy instructions (σ copies of the form x

σ← y) have been
added to all branching points, for all the variables used in the corresponding
branching test (i1 for the loop test and x0 for the conditional test), and to
blocks containing assumes, for all the variables used in them (j1 in b5).

As expected, on this SSI program, a non-relational flow insensitive analysis
like an interval analysis will be as precise as a flow sensitive version. But such a
non-relational analysis will conclude that i4 = 10 and j1 ∈ [0,+∞] and it will
fail to verify the assertion because it fails to discover the relational invariant
between i and j.

A relational abstract domain, like the polyhedral one will not solve the pre-
cision problem either, if it is performed in a flow insensitive style. Indeed the
global polyhedral fixpoint should be closed by operations �i1 ← 0|j1 ← 0� (par-
allel assignment of i1 and j1) and �j4

σ← j1� so assertion at block b5 will raise an
alarm because j4 seems to be 0.

The current paper proposes a FIC form displayed in Fig. 3b to fix this impre-
cision. It is build from the SSA form, by adding copies in strategic blocks. In this
new form, the assertion block b5 now uses j4, not j1, so it can only be applied
on a state where j4 has been defined by b4. This time, the previous problem
does not hold because the global polyhedral fixpoint should be closed by the
operation �j4 ← j1� ◦ �i1 ≥ 10� which prevents the case i1 = 0; j1 = 0 to be
spuriously propagated into j4.

200 S. Mirliaz and D. Pichardie

Fig. 2. A program and its SSA form with relational information to infer

Notice that we do not introduce copies for i1 in b4 before the assume, unlike
the SSI form. The FIC form only ensures completeness w.r.t the assertions, not
to any point of the program. Such consideration avoid the insertion of copies
for every original variable (i, j and k) at each block. The number of variables
would be overwhelming for most abstract domains and one will lose the benefits
of flow-insensitivity on memory saving. Generally speaking, if the number of
variables in the FIC form is greater or equal to the number of blocks times the
number of variables in the original program, then a flow-insensitive analysis on
the FIC form is not an improvement compared to a flow-sensitive analysis on
the source program.

3 Background Definitions

This section introduces the definition of programs used in this paper. The section
ends with the definition of both the flow-sensitive and the flow-insensitive seman-
tics.

3.1 Program

A program P is defined as a graph connecting program points, and whose edges
are labeled with basic blocks. The program as a unique entry point pen and a

A Flow-Insensitive-Complete Program Representation 201

Fig. 3. Comparison of the SSI form and the FIC form of the program from Fig. 2

unique exit point pex. A basic block b is a tuple 〈body, c, φ〉. The body is composed
of a sequence of atomic instructions which can be assignments, assumes or asser-
tions. The second element, c, is a set of (parallel) copies e.g. �x1 ← x0|y1 ← y0�
assigns x1 and y1 in parallel. Similarly the last element φ is a set of (parallel) φ-

definitions e.g. �x1
φ← x0|y1 φ← y0�. A more precise definition of their semantics is

developed in Sect. 3.3. A basic block labels an edge between two program points
and thus entry(b) and exit(b) respectively define the unique program points from
and to which the edge goes. For instance in Fig. 2, b1 and b4 have the same entry
point p1 and b0, b2 and b3 share the same exit point p1. All edges should be
labeled with a non-empty block. We note p

b→ p′ the fact that block b labels an
edge from p to p′.

For each program point p we define its set of predecessors blocks pred(p) such
that b ∈ pred(p) ⇐⇒ exit(b) = p.

Definition 1 (Program point path). A path from program point p to program
point p′ is a sequence of program points p, p1, . . . pn, p′ such that p

b0→ p1
b1→

. . .
bn−1→ pn

bn→ p′.

202 S. Mirliaz and D. Pichardie

Definition 2 (Dominance). p dominates p′ if all paths from pen to p′ must go
through p.

The dominance is strict if p �= p′. The dominance relation is transitive, and
it is possible to organize all points in a dominance tree where the parents of a
node dominate it. For instance the dominance tree of Fig. 2 is

pen

p1

p2 p3

pex

The direct dominator of a program point is its parent in the dominance tree.
We extend the notion of dominance to blocks.

Definition 3 (Block dominance). A program point p dominates a block b iff
it dominates its entry point.

3.2 Static Information

Let V be the set of variables in the program p. We can define for each block the
set of variables it uses and defines: uses(b) and defs(b). These sets do not include
temporary variables, meaning that the set uses(b) does not include variables that
are defined before their usage in block b, and the set defs(b) does not include
variables that are not used outside of b. For instance in Fig. 3b, the initial block
b0 is not considered to be defining nor using i0 and j0 because these variables
are defined by this block but never used outside of it. The initial block defines
i1 and j1 and uses no variables. The block b2 uses x0, j5 and i2 and defines i1
and j1.

Unlike textbook SSA form, our φ-definitions are parts of the predecessors
of the junction point. Because of this convention, a variable is not necessar-
ily defined in a unique block. Despite the unconventional choice, our notion of
program still enjoys the foundational property of definition dominance of SSA
programs.

Invariant 1 (SSA dominance). Let x be a variable, and B be the set of blocks
defining it. Then the set of exit points of B is a singleton {p} and p dominates
all blocks b′ such that x ∈ uses(b′).

In textbook SSA form, all variables have a unique definition point. In our repre-
sentation, we split the φ-function x3

φ← (x1 : b1, x2 : b2) attached to a junction

point p, so that there is a φ-definition x3
φ← x1 in block b1 and x3

φ← x2 in b2.
This definition is in the φ component of the block. All other definitions from the
textbook SSA form are found in the body component of the blocks. So, in the
property, B is not a singleton iff x is defined by φ-definitions.

A Flow-Insensitive-Complete Program Representation 203

Definition 4 (Program points definitions). The definitions of a program
point p is the set of variables defined by all its predecessors:

defs(p) =
⋂

∀b∈pred(p)

defs(b)

3.3 Block Local Semantics

States. Let V be the set of variables, we note s ∈ S = V ⇀ Z a state. It is a
partial function from the variables to integer values and its domain dom(s) ⊆ V

is the set of variables for which it is defined. Partial functions are useful in a
flow-insensitive analysis to account for the variables never assigned. The initial
state s∅ has an empty domain reflecting the fact that no variable is initially
assigned.

Definition 5 (State equivalence). Two states s and s′ are said equivalent
on a set of variables V , noted s ≈V s′, iff they both include this set in their
domains and if they are equal on these variables.

s ≈V s′ ⇐⇒ (V ⊆ dom(s) ∧ V ⊆ dom(s′) ∧ ∀v ∈ V, s(v) = s′(v))

The symbol Ω denotes an halting state obtained when an assert failed. As a
convention its domain is empty. S

Ω = S ∪ {Ω} denotes the complete set of
states.

Semantics. We use the notation �a� : S → P (
S

Ω
)

for the concrete semantics of
a list of instructions a. The output is a set of states since our semantics is non-
deterministic (for instance with the call to rand()). We extend the semantics to
any set of states S ⊆ S

Ω , �a�(S) =
⋃

s∈S �a�(s) with �a�(Ω) = ∅.
The semantics of a block is the composition of its parts: �φ� ◦ �c� ◦ �body�.
We only consider programs which manipulate variables, not memory.

Assumes are supposed to block the execution for states not satisfying its condi-
tion, while an assertion will result in a halting state Ω.

�assume(false)� = ∅ �assert(false)� = Ω

The exact definition of the semantics of blocks �b� is not important for the
proofs as long as it respects the following two characterization.

Invariant 2 (Semantic characterization of uses). The semantics of a block
only depends on the variables it uses.

∀b, ∀s1, s2, s
′
1 ∈ S

Ω ,
(
s1 ≈uses(b) s2 ∧ s′

1 ∈ �b�(s1)
)

=⇒ ∃s′
2 ∈ �b�(s2), s

′
1 ≈defs(b) s′

2

With the special case for Ω:

∀b,∀s1, s2 ∈ S
Ω , s1 ≈uses(b) s2 =⇒ (Ω ∈ �b�(s1) ⇐⇒ Ω ∈ �b�(s2))

204 S. Mirliaz and D. Pichardie

The non-determinism prevents the conclusion that any state out of �b�(s2) is
equivalent to s′

1.

Invariant 3 (Semantic characterization of definitions). The semantics of
a block only modifies the variables it defines.

∀b,∀s ∈ S
Ω ,∀s′ ∈ �b�(s), s′ ≈V\defs(b) s

This two characterization consider that temporary variables of a block b are
not in the domain of a state s′ ∈ �b�(s) (for any s). They can be ignored or
remove from the domain of s′.

3.4 Flow-Sensitive Collecting Semantics

The flow-sensitive collecting semantics of a program associates to each program
point a set of reachable states Local(p). The function is defined as the least
fixpoint of the following equations.

∀p,Local(p) =

⎧
⎪⎨

⎪⎩

{s∅} if p = pen⋃

p′ b→p

�b� ◦ Local(p′) otherwise

Lemma 1. For all program points p,

Local(p) =
⋃

pen
b1→...

bn→p a path

�bn� ◦ · · · ◦ �b1�(s∅)

The proof of this lemma is classical for least fixpoints and is available in
Appendix A of the full version of this paper [15].

3.5 Flow-Insensitive Collecting Semantics

For the flow-insensitive collecting semantics, the information is not associated to
program points but to the whole program. States are collected from anywhere
in the program: Global ∈ P (

S
Ω

)
. The flow-insensitive semantics is the least

fixpoint satisfying the following equation.

Global = {s∅} ∪
⋃

b

�b�(Global)

In other word it is the smallest set of states containing the initial state s∅ closed
by �b� for any block b.

s∅ ∈ Global and ∀b, �b�(Global) ⊆ Global

In this settings, a block b can be applied to any state, any partial function. In
case the state s does not have a domain containing all variables used by b, then
the semantics of the block is an empty set: uses(b) �⊆ dom(s) =⇒ �b�(s) = ∅.

A Flow-Insensitive-Complete Program Representation 205

Lemma 2. Any elements of Global is actually the result of the application of
a sequence of blocks on the state s∅. There is no restriction on the order of these
blocks.

Global =
⋃

(b1,...,bn)

�bn� ◦ · · · ◦ �b1�(s∅)

Thanks to this lemma, it is easy to see that the flow-insensitive semantics
always contains each local invariants.

Corollary 1. For all program points p,

Local(p) ⊆ Global

4 Flow-Insensitive Complete (FIC) Programs

The example in Sect. 2 illustrates the need of a different representation of pro-
gram to ensures the equivalence to a flow-insensitive semantics. This section
presents the intrinsic properties expected of the FIC representation. We rely on
these properties to ensure the main theorem of precision in Sect. 5. Section 6.2
presents a transformation from an SSA program to a program in FIC form.

Incoherence from Disjoint Definition Points in SSA Form. A first issue of the
SSA form to establish flow-insensitive invariants on variables is the potentially
different definition points of the variables used by a block. The flow-insensitive
semantics can collect states where it applies these definitions in any order, and
any number of times. In Fig. 3a for instance, in block b3, both the variables i3
and j1 are used but they are defined in different blocks. i3 is defined in b1 and j1
in b0, b2 and b3. Let us consider a state s ∈ �b3�◦�b3�◦�b1�◦�b0�(s∅) ⊆ Global.
This state has the following evaluations:

s(i1) = 0 s(i3) = 1 s(j3) = 4 = s(j1) (since we applied b3 twice)

But with this state we already lost the invariant linking i3 and j3 at the end of
b3 : i3 ≤ j3 ≤ 2 × i3. To prevent this, if variables are used in a block b′, then
any block b defining some of them must actually redefine all of them, to ensure
coherence.

Intrinsic FIC property 1 (Comprehensive definition coverage). For
any blocks b and b′, if b defines some variables used by b′, then it defines all
variables used by b′. defs(b) ∩ uses(b′) �= ∅ =⇒ uses(b′) ⊆ defs(b)

On the example in FIC form, the version j5 introduced in b1 ensures the
coherence between i and j.

Invisible Path from Definition to Use. In the introduction we observed that the
assertion was violated because we could apply the block b0 first, defining j1, and

206 S. Mirliaz and D. Pichardie

then the block b5, which uses j1 for the assertion, without taking into account
the assume in block b4. This block b4 dominates b5 and restricts its reachable
states. To account for this control, a new version of j is introduced in b4. This
new version will be defined only in states where the condition i1 ≥ 10 holds.

The minimal property we expect is that for any state reaching the exit of
a definition block b′, there exists a path from exit(b′) = p to entry(b) which is
non-altering for the variables used by b.

Definition 6 (Non-altering path). Let p be a program point, b a block, and
s ∈ Local(p), a non-altering path for s from p to b is a path p

b1→ . . .
bn→ entry(b)

such that
∃s′ ∈ �bn� ◦ · · · ◦ �b1�(s), s′ ≈uses(b) s

Intrinsic FIC property 2 (Non-altering def-use path). If ∀p,Ω �∈
Local(p) then for any block b and any program point p,

defs(p) ∩ uses(b) �= ∅ =⇒
(∀s ∈ Local(p),

∃ a non-altering path from p to b for s

)

We also add a special case for any block which uses no variable. In that case
we only require the existence of some state s′ reaching the block.

uses(b) = ∅ =⇒ ∃s′ ∈ Local(entry(b))

As it is a strong property on the semantics, we define in the Sect. 6.1 syn-
tactical conditions to ensure this property. However we use this property in the
proof of our central Theorem2, in order to be as general as possible on the shape
of the program graph.

Definition 7 (FIC form). A Flow-Insensitive Complete program is a SSA pro-
gram that respects properties 1 and 2.

5 Main Theorem: Flow Insensitive Completeness

The completeness of the flow-insensitive semantics w.r.t the flow-sensitive one
is evaluated through the violation of assertions. The flow-insensitive semantics
must find an assertion violation (Ω ∈ Global) if and only if there exists a
block b which also violates an assertion in the flow-sensitive semantics (∃p,Ω ∈
Local(p)).

Theorem 1 (Semantics completeness). For any program p in FIC form,

(∃p,Ω ∈ Local(p)) ⇐⇒ Ω ∈ Global

The implication ∃p,Ω ∈ Local(p) ⇒ Ω ∈ Global trivially holds according
to Corollary 1.

A Flow-Insensitive-Complete Program Representation 207

The other implication is more challenging because Global contains more
states than the flow-sensitive semantics. The Theorem 2 below provides an equiv-
alence which is needed between these states and the states in the flow-sensitive
semantics. With this equivalence theorem we can prove Theorem 1. If there is a
violation of an assert in the flow-insensitive semantics, then it is raised by some
state s at block b, and there must be a flow-sensitive state at entry(b) which is
equivalent to s and will thus also lead to a violation.

Theorem 2 (Equivalence preservation). If ∀p,Ω �∈ Local(p), then any
state s of Global respects the following property P (s).

P (s) : ∀b,uses(b) ⊆ dom(s) =⇒ (∃s′ ∈ Local(entry(b)), s ≈uses(b) s′)

Proof. We suppose that Ω �∈ Local(p) for any p. Any state s of Global is the
result of the application of a sequence b1, . . . , bn of blocks on s∅ as stated by
Lemma 2. The proof is made by strong induction on the size n of the sequence.

(n = 0) No block is applied and s = s∅. For any block b such that uses(b) =
∅, property 2 requires that b is reachable and that there exists a state s′ ∈
Local(entry(b)). Since the set of variables used by b is empty, s ≈uses(b) s′.

(n+1) We suppose that we have s1 ∈ �bn�◦ · · · ◦ �b1�(s∅) and that P (s) holds
for any intermediate state s of this sequence. Let us take s2 ∈ �bn+1�(s1), we
want to prove P (s2).

s∅ . . . s1 s2
�b1� �bn� �bn+1�

Let b such that uses(b) ⊆ dom(s2). We do a case study on defs(bn+1)∩uses(b) =
∅.

� Case defs(bn+1) ∩ uses(b) = ∅, the block bn+1 does not define variables
used by b. It implies that all variables used by b are already in dom(s1) since
uses(b) ⊆ dom(s2) = dom(s1) ∪ defs(bn+1). By P (s1), there exists a state s′

1 ∈
Local(entry(b)) such that s′

1 ≈uses(b) s1 ≈uses(b) s2 since the application of bn+1

on s1 cannot change the valuation of uses(b). We found s′
1 as a candidate for

P (s2).
� Case defs(bn+1) ∩ uses(b) �= ∅, bn+1 defines some variables used by b. By

intrinsic FIC property 1 it defines all of them. The existence of s2 ∈ �bn+1�(s1)
implies that uses(bn+1) ⊆ dom(s1). By induction P (s1) holds so there exists
s′
1 ∈ Local(entry(bn+1)) such that s′

1 ≈uses(bn+1) s1.
Let us note p the entry of block bn+1, p′ its exit. Proving the existence of the

intermediate state s′
3 in the figure below will help find the state s′

2 associated to
s2 in P (s2).

s1 s2

s′
1 ∈ Local(p) s′

3 ∈ Local(p′) s′
2 ∈ Local(entry(b))

�bn+1�

≈uses(bn+1) ≈uses(b)

�bn+1�
�dk� ◦ · · · ◦ �d1�

≈uses(b)

208 S. Mirliaz and D. Pichardie

The semantic characterization of definitions (Invariant 2) ensures that there
is a state s′

3 ∈ �bn+1�(s′
1) ⊆ Local(p′) such that s′

3 ≈defs(bn+1) s2 ∈ �bn+1�(s1).
Since uses(b) ⊆ defs(bn+1) by hypothesis, we can restrict the equivalence:
s′
3 ≈uses(b) s2.

Since bn+1 defines the variables used by b, and since ∀p,Ω �∈ Local(p),
the intrinsic FIC property 2 implies the existence of a non-altering path p′ d1→
. . .

dk→ entry(b) associated to s′
3. The property ensures the existence of s′

2 ∈
�dk� ◦ . . . �d1�(s′

3) such that s′
2 ≈uses(b) s′

3. Also, s′
2 ∈ Local(entry(b)) because

exit(dk) = entry(b). By transitivity s′
2 ≈uses(b) s2 and we found s′

2 with the good
properties so that P (s2) holds.

By induction, P (s) holds for any s resulting from a sequence of blocks and
thus it holds for any state of the flow-insensitive collecting semantics.

We can now make the complete proof of our central Theorem1.

Proof. (⇒) Trivially holds by Corollary 1.
(⇐) Let us suppose that there is no program point p such that Ω ∈ Local(p)

but that Ω ∈ Global. Then there exists a (potentially infinite) sequence of
blocks b1, . . . , bn such that Ω ∈ �bn� ◦ · · · ◦ �b1�(s∅). Let us consider the state
s �= Ω such that s ∈ �bn−1� ◦ · · · ◦ �b1� and Ω ∈ �bn�(s). To have such output
state from applying bn, we necessarily have that uses(bn) ⊆ dom(s). Since P (s)
by Theorem 2, and since ∀p,Ω �∈ Local(p), there exists a flow-sensitive state
s′ ∈ Local(entry(bn)) such that s′ ≈uses(bn) s. Since the behavior of a block can
only depend on its used variables by property 2, if there is an assert violated by
s in bn it is also violated by s′. So Ω ∈ �bn�(s) ⊆ Local(exit(bn)) and we found
a contradiction. The hypothesis that ∀p,Ω �∈ Local(p) is false and we proved
that Ω ∈ Global =⇒ ∃p,Ω ∈ Local(p).

6 Transformation to Flow Insensitive Complete Form

This section presents a transformation from a SSA program into a FIC one. It
ensures that the final program respects the two intrinsic FIC properties 1 and 2
which do not refer to the asserts. It is expected that the SSA program has been
sliced [13] with respect to the asserts. The sliced program has the same semantics
than the original program with respect to the asserts, which is enough to ensure
the semantics completeness (Theorem 1).

This section of the paper makes the simplifying assumptions that the program
is well-structured and terminating.

A well-structured program comes from a structured language such as a While
language. A more precise definition is available in Appendix B of the full version
of this paper [15].

A terminating program is either one that has a failed assertion, or one where
for all reachable states s in p we can find a non-blocking path from p to the exit
pex.

A Flow-Insensitive-Complete Program Representation 209

Definition 8 (Terminating program). A program is terminating iff
(
∀p,∀s ∈ Local(p),∃p

b1→ . . .
bn→ pex, �bn� . . . �b1�(s) �= ∅

)
∨ ∃p,Ω ∈ Local(p)

Issues with Infinite Executions. Infinite executions are problematic to ensure
the existence of a path from dominator to dominated. For instance consider the
program on the left of Fig. 4.

b = false;

if (true) {

while (true) {}

}

assert(b)

b = false;

if (true) {

while (true) {};

end = true

}

assert(end) ; assert(b)

Fig. 4. Infinite loops need a variable to assess their termination

Let us consider the block containing the assignment b = false. Any state
out of this block will go into the infinite loop and cannot reach the assertion.
Thus this program does not satisfy FIC property 2. To satisfy the property, we
would need to artificially introduce a variable that can only be assigned after
the loop and we would need to add a use of such a variable in the block of the
assertion, as we did on the right program of Fig. 4.

6.1 Sufficient Conditions for FIC Form

The intrinsic property 2 we expect from the FIC form is difficult to ensure in the
general case as it relies on the semantics of paths. The main idea of our algorithm
is to look at the paths in the dominance tree from definitions to uses and ensure
that they are constant. This is simpler than checking the existence of a non-
altering path. If the program is well-structured and terminating, constanteness
in the dominance tree ensures the existence of a non-altering path.

Constant Def-use Path. A definition point p of a variable x always dominates
its usage in a block b: it dominates entry(b). We must ensure that the path from
p to entry(b) is constant for the set of variables uses(b).

Definition 9 (Constant path). Let V be a set of variables and let p and p′

be two program points such that p dominates p′ and such that p → p1 → · · · →
pn → p′ is the path in the dominance tree from p to p′. The path is constant
for V if for all the points pi in {p1, . . . , pn, p′}, pi is either a joining point or its
unique predecessor block b does not contain an assume nor definitions of V .

For instance pen dominates p3 but the path pen → p1 → p3 is not constant
for any set V because p3 has exactly one predecessor block, b4 and it contains
an assume.

210 S. Mirliaz and D. Pichardie

Definition 10 (Constant paths completeness). A program is constant
paths complete if and only if for any blocks b and b′, if defs(b) ∩ uses(b′) �= ∅,
then there is a constant path from exit(b) to entry(b′) for uses(b′).

Such property on the program is both easy to ensure and to check since we only
have to look at the dominance tree and add copies to split the def-use path of
a variable into two constant paths. The transformation of next Sect. 6.2 directly
enforces this property.

Theorem 3. A well-structured, terminating and constant paths complete pro-
gram satisfies the intrinsic FIC property 2.

To prove this theorem we rely on a lemma: the constant paths imply the exis-
tence of a non-blocking path if the program is well-structured and terminating.

Lemma 3 (Existence of a non-blocking path). In a well-structured termi-
nating program, either there exists a point p such that Ω ∈ Local(p) or for
any points p and p′, if there is a constant path from p to p′ then for any state s
reaching p, there exists a non-blocking path from p to p′ such that p only appears
as the first point of the path.

Proof. The proof is available in Appendix C of the full version of this paper [15].
It proceeds by recurrence on the length of the constant path, and for each pair
pi, pi+1 it reasons by induction on the syntax of the program. Most cases of
pairs where pi dominates a point pi+1 in the program show an obvious path
for any s ∈ Local(p), or the direct domination is not a constant path. One
case is to consider with care: the conditional. Indeed the entry of the conditional
dominates its exit, a joining point and the path between the two is constant.
However, to ensure that a state reaching the entry will reach the exit requires
the termination of the program. Otherwise, the state may start an infinite loop
in a branch, never to leave it to reach the exit, as shown on Fig. 4.

The proof of the Theorem 3 is the following.

Proof. If there exists p such that Ω ∈ Local(p) then the intrinsic FIC property 2
trivially holds. Let us suppose that it is not the case. Let us take b and b′ such that
defs(b) ∩ uses(b′) �= ∅. Then by constant paths completeness there exists a con-
stant path from exit(b) to entry(b′) for uses(b′). Let us take s ∈ Local(exit(b)).
By Lemma 3, and since the program is terminating, there is a non-blocking path
exit(b) b1→ . . .

bn→ entry(b′) such that �bn� ◦ · · · ◦ �b1�(s) �= ∅. We only need to
show that this path is non-altering for the variables of uses(b′). All definitions
of uses(b′) must dominate their use in b′. Thus if some bi modifies uses(b′) then
exit(bi) is a dominator of b′. It can strictly dominate or be dominated by exit(b).
If exit(bi) is strictly dominated by exit(b) we found a program point in the domi-
nance path from exit(b) to entry(b′) which violates the constanteness. This case is
thus impossible. In the other case, exit(bi) strictly dominates exit(b) but defines
some variables used by b′ and thus we are violating constant paths completeness

A Flow-Insensitive-Complete Program Representation 211

since exit(b) is in the way of the constant path from definitions in bi to use in
b′. So bi cannot exist, no definition of uses(b′) can be encountered on the path
and thus it respects the intrinsic FIC property 2: ∃s′ ∈ �bn� ◦ · · · ◦ �b1�(s) such
that s ≈uses(b′) s′.

6.2 Transformation of a SSA Program Form to FIC Form

Our transformation algorithm is developed in Algorithm1. It proceeds as such:
for any block b′ whose uses has not been checked, we explore the dominance tree
of the program points from its entry to the top of the dominance tree. During this
exploration, the path from the current program point p to entry(b′) is constant
for uses(b′). When the path is no longer constant, we introduce copies at the
current program point p to ensure the intrinsic FIC property 1. The introduction
of copies changes the uses of the predecessors blocks of p, which must be checked
again and is placed in the workset W . It is thus more efficient to check the blocks
whose entry point are the lowest in the dominance tree first (line 45).

6.3 Correctness of the Transformation

The algorithm preserves the invariants of the SSA form (unique definition point
and dominance of the definitions over the uses). These properties are available
as lemmas in Appendix D of the full version of this paper [15] and rely on the
following invariant on the call context of procedure Check point.

Lemma 4 (Program point invariant). The procedure Check point is
always called with a program point p which dominates the entry point of b′.
Let p → · · · → entry(b′) be the path in the dominance tree from p to the entry of
b′. This path is constant for uses(b′).

Proof. The proof is made by recurrence on the recursive calls of Check point.
If the invariant on the path does not hold we do not make another call. The
complete proof is in Appendix D of the full version of this paper [15].

A direct consequence of this lemma is that p and b′ preserve this relation in
the call to procedure Add missing variables.

To prove that the algorithm ensures constant path completeness on the final
program, we rely on the following lemma. When the algorithm terminates no
block is left in W ensuring the completeness.

Lemma 5 (Constant paths enforcement). At each iteration of the loop, line
44, if a block b′ is not in W then for any other block b, if defs(b) ∩ uses(b′) �= ∅
then there is a constant path from exit(b) to entry(b′) for uses(b′).

Proof. The complete proof is in Appendix D of the full version of this paper [15].
At the loop entry the invariant holds since all blocks are in W . It is then preserved
through the iteration. For the preservation, we need to check the newly marked
block b′, selected in the loop iteration, and we need to check that the invariant
still holds for the blocks that were and still are out of the workset W .

212 S. Mirliaz and D. Pichardie

Algorithm 1. Transformation
1: function Get copy(u, p) � u is a source variable
2: if p is a joining point then

3: if ∃u′, ∀b′′ ∈ pred(p), ∃u′′ such that source[u′′] = u ∧ u′ φ← u′′ ∈ b′′ then
4: return u′

5: else
6: Let u′ be a fresh version of u
7: source[u′] ← u
8: for ∀b′′ ∈ pred(p) do
9: Let u′′ be a fresh version of u

10: Add u′′ ← u in component c of b′′.

11: Add u′ φ← u′′ in component φ b′′.
12: b′′ is added to W
13: return u′

14: else
15: b ← pred(p)
16: if ∃u′ such that source[u′] = u ∧ u′ ∈ defs(b) then
17: return u′

18: else
19: Let u′ be a fresh version of u
20: source[u′] ← u
21: Add u′ ← u in component c of b
22: b′′ is added to W
23: return u′

24: procedure Add Missing Variables(p, b′)
25: for m ∈ uses(b′) \ defs(p) do
26: u ← source[m]
27: u′ ← Get Copy(u, p)
28: Replace every use of m in b′ by a use of u′

29: procedure Check point(p, b′) � p dominates b′

30: if p is a joining point then
31: if ∃b′′ ∈ pred(p), defs(b′′) ∩ uses(b′)
= ∅ then
32: Add Missing Variables(p, b′)
33: else
34: Check point(Direct dominator of p, b′)

35: else
36: b ← pred(p)
37: if defs(b) ∩ uses(b′)
= ∅ or b contains an assume then
38: Add Missing Variables(p, b′)
39: else
40: Check point(Direct dominator of p, b′)

41: procedure Transform()
42: W ← all blocks
43: For all variables v, source[v] = v
44: while W
= ∅ do
45: Let b′ be one of the lowest blocks of W (in the dominance tree)
46: Mark b′ as unmodified
47: Check point(entry(b′), b′)

A Flow-Insensitive-Complete Program Representation 213

For b′, the invariant on the program point is given by Lemma4.
As for the other blocks still out of W , we did not change their uses (or they

would have been added to W). But we did not change the definition points either:
we only add definitions, never remove them. Thus for all blocks b′′ in W before
and after the loop iterations, the uses have not changed and the definitions of
these uses neither, the set of blocks b such that uses(b′′) ∩ defs(b) �= ∅ remains
the same. The paths are still constant as we did not add assumes nor did we add
definitions for existing variables, which include uses(b′′) and defs(b).

The loop invariant of line 44 thus holds.

A similar lemma can be proved to ensure comprehensive definition coverage.

Lemma 6 (Comprehensive definitions enforcement). At each iteration of
the loop, line 44, if a block b′ is not in W then for any other block b, if defs(b) ∩
uses(b′) �= ∅ then uses(b′) ⊆ defs(b).

Proof The proof is made on a similar fashion than the previous lemma.

Theorem 4 (Correctness). The final program is in FIC form.

Proof. When the program terminates, all blocks are out of W . According to
Lemmas 5 and 6, all blocks satisfy the intrinsic properties 1 and 2. Thus the
program is in FIC form.

Theorem 5 (Termination). The procedure Transform terminates.

Proof. The procedure terminates if each block can be added to W only a limited
amount of time. To prove it, we show that the number of copies created is limited.
In all the copies · · · ← u inserted by Get Copy, u is a variable from the source
program (in SSA form). The function will not add a copy for the source variable
u in block b if it already contains one. Even in the case where p is a joining
point we will not add copies twice. Indeed if p is a junction point, then the first
time Get copy will be called, all the direct predecessors of p will receive a
copy of u, and therefore the condition line 3 will be satisfied at the next call.
Since the variables of the source program and the program points are limited,
the procedure will add blocks to W a limited amount of time.

Complexity. We propose an asymptotic estimation of the time complexity of
our transformation. The transformation maintains a workset of modified blocks.
Each time a block is picked from this workset, it runs a number of operations
that is proportional to the height of the dominance tree. We call H this height. It
remains to over-approximate the size of the workset. Initially each block belongs
to it. We call B the number of blocks. But a block b may be put again in the
workset by function Get Copy after adding new variable copies to b. This
operation can not occur more than the number of variables in the original SSA
program. We call V this number. At worst, the number of operations is then
proportional to H · V · B.

214 S. Mirliaz and D. Pichardie

Fig. 5. Comparison of the number of variables introduced by the FIC transformation
with the number of variables in a flow-insensitive analysis

7 Experiments

For our experiments, we did not exercise a complete analysis because we don’t
have abstract domains that are well suited to our notion of flow-insensitive anal-
ysis. Instead, we measure the number of variables generated by our FIC transfor-
mation and compare the number of variables in a FIC program with the number
in the original program. We did not perform a slicing on the program, thus we
can expect the number of variables in the FIC form to be lower with asserts
taken into account.

We implemented1 the transformation described in Sect. 6.2 in OCaml on top
of the Sawja library [9] which parses Java bytecode programs. The input of
our transformation is the JBirSSA intermediate representation which is already
in SSA form. The benchmark used is composed of soot-2.5.0, an optimization
framework, jtopas-0.8, a parsing java library, and finally ivy-2.5.0, a dependency
manager and sub-project of the Apache Ant Project. The whole represents more
than 40K functions.

In term of execution time the FIC transformation rarely dominates the time
of the SSA transformation.

For the first experiment, we compare the number of variables in a FIC pro-
gram with the expected size of invariants in a textbook flow-sensitive analysis
(on the original program). This estimation is computed as the product:
1 The source code can be found at https://github.com/SemDyal/fic-transform.

https://github.com/SemDyal/fic-transform

A Flow-Insensitive-Complete Program Representation 215

Fig. 6. Comparison of the number of variables introduced by the FIC transformation
with the number of variables in a sparse flow-insensitive analysis

|number of variables| × |number of program points|

Figure 5 displays this comparison. A reference line of equation y = x confirms
that the textbook analysis globally requires to track more versions of variables
than the FIC form.

But some state of the art work try to keep their analysis as sparse as possi-
ble [8]. They keep the invariant only at junction points where the information
must be accumulated, while for other points it can be recomputed on demand. In
a second experiment, we thus compare our number of variables to the number of
joining points times the number of original variables. This corresponds to Fig. 6
which also have a reference line of equation y = x. This figure shows that our
number of variables is comparable to the number of versions required by sparse
analyses.

For graphs readability we actually removed 7 functions from the benchmark
as the size of the invariants were important and it compresses the set of points.
In the first figure, for the removed functions, the number of FIC variables was
greatly inferior to the product for all but one. In the second figure, the functions
omitted had less FIC variables than the result of the product for all but three
functions.

These results show that we can expect a flow-insensitive invariant whose size
is in the same order of magnitude than flow-sensitive ones in state-of-the-art
sparse analyses.

216 S. Mirliaz and D. Pichardie

8 Related Work

Flow-insensitive analyses have often been considered because of their efficiency,
but few of them are able to provide relational invariants.

ABCD [3] is an analysis that check that array accesses are safe (that is within
the bound of the array). Such analysis is used to remove the check around the
accesses, hence speed up the program. To perform an efficient flow-insensitive
analysis while keeping precision, ABCD uses the extended SSA form which is an
intermediate form that closely resemble the SSI form. It uses the φ-functions at
junction point, but instead of σ-functions before the branching, it insert π-copies
to the beginning of each branch. With its specific goal of ensuring inequalities,
ABCD represents its invariant as a graph where an edge v →c w denotes the
constraint w − v ≤ c between the variables v and w and the constant c. This
method cannot be applied to any relational abstract domain.

The idea to use an extended SSA form for relational analyses has been imple-
mented to validate memory accesses [16] in a compiler setting. The analysis
is based on abstract interpretation but not fully relational: it targets a semi-
relational abstract domain of symbolic intervals. They do not provide semantic
evidences of completeness.

Oh et al. present in [18] a general method for sparse analysis. Sparse analy-
ses try to avoid unnecessary propagations in abstract fixpoint resolution. Their
goal is then similar to us but they directly reason in term of abstract domain
shape. We follow a more theoretical approach and directly reason on collecting
semantics. We leave for further work the design of an abstract relational domain
that would particularly fit our theoretical framework. Experiments in [18] are
rather reassuring because they show a clear performance benefit when using flow
insensitive analyses.

Hardekopf and Lin also demonstrate the benefit of sparse analysis for scal-
ability of pointer analysis on large code bases [7]. They perform a first flow-
insensitive analysis that generate conservative def-use information, and then use
this information to perform a sparse flow-sensitive pointer analysis.

9 Conclusion

We provide a theoretical contribution to the quest for a fast but precise rela-
tional static analysis. We propose a variation of SSI program representation that
permits to analyze a program in a flow insensitive manner without sacrificing
the precision we could obtain with a flow sensitive approach.

The current work is a preliminary theoretical step before building a static
analysis tool that would benefit from this idea. Our main theorem expresses
a completeness property in term of collecting semantics but we do not pro-
vide guarantees about completeness of abstraction. The flow sensitive and flow
insensitive semantics have different forms and their abstraction may behave dif-
ferently. We believe the flow insensitive semantics has a promising potential for
in-place abstraction algorithms. In particular, an abstract domain would greatly

A Flow-Insensitive-Complete Program Representation 217

benefit from this semantics if it is equipped with an in-place abstract operator
that over-approximates the operation X �→ X ∪ F (X). We believe a relational
domain as Octogon could be enhanced with such features. This is left as future
work.

An other requirement on the abstract domain is the capacity to track partial
states. The global fixpoint represents properties on states with different domains
and the analysis should not blur the information about one variable when it is
potentially undefined on some paths. This problem has already been tackled by
Liu and Rival [11] with relational domains.

Once we have equipped the FIC form with such analysis, we would like
to perform experiments to measure efficiency gain and compare the abstract
precision with a flow sensitive version.

Acknowledgments. This work was supported by a European Research Council
(ERC) Consolidator Grant for the project VESTA, funded under the European Union’s
Horizon 2020 Framework Programme (grant agreement 772568). ENS Rennes was the
only recipient of this grant.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: POPL (1988)

2. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. Ph.D. thesis. Datalogisk Institut (1994)

3. Bod́ık, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI. ACM (2000)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference of POPL’78, pp. 84–96. ACM Press (1978)

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

6. Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value number-
ing. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 212–227. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27864-1 17

7. Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: Proceedings of CGO’11. ACM Press (2011)

8. Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyser. Electr.
Notes Theor. Comput. Sci. 289, 15–25 (2012)

9. Hubert, L., et al.: Sawja: static analysis workshop for java. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 92–106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18070-5 7

10. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of POPL’73, pp. 194–206. ACM Press (1973)

11. Liu, J., Rival, X.: Abstraction of optional numerical values. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 146–166. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 9

12. Logozzo, F., Fähndrich, M.: Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. Sci. Comput. Program. 75(9), 796–807
(2010)

https://doi.org/10.1007/978-3-540-27864-1_17
https://doi.org/10.1007/978-3-642-18070-5_7
https://doi.org/10.1007/978-3-319-26529-2_9

218 S. Mirliaz and D. Pichardie

13. Maroneze, A.O.: Certified compilation and worst-case execution time estimation.
Theses, Université Rennes 1 (2014). https://hal.archives-ouvertes.fr/tel-01064869

14. Miné, A.: The octagon abstract domain. In: Proceedings of WCRE’01, p. 310.
IEEE Computer Society (2001)

15. Mirliaz, S., Pichardie, D.: A flow-insensitive-complete program representation
(2021). https://hal.archives-ouvertes.fr/hal-03384612. working paper or preprint

16. Nazaré, H., Maffra, I., Santos, W., Barbosa, L., Gonnord, L., Quintão Pereira,
F.M.: Validation of memory accesses through symbolic analyses. ACM SIGPLAN
Not. 49(10), 791–809 (2014)

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2004). https://books.google.fr/books?id=RLjt0xSj8DcC

18. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. In: Proceedings of PLDI’12. ACM Press (2012)

19. Pereira, F., Rastello, F.: Static Single Information form (2018). http://ssabook.
gforge.inria.fr/latest/book.pdf. Chapter 11 in the SSA-book

20. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
In: Proceedings of POPL’85, pp. 291–299. ACM Press (1985)

https://hal.archives-ouvertes.fr/tel-01064869
https://hal.archives-ouvertes.fr/hal-03384612
https://books.google.fr/books?id=RLjt0xSj8DcC
http://ssabook.gforge.inria.fr/latest/book.pdf
http://ssabook.gforge.inria.fr/latest/book.pdf

Lightweight Shape
Analysis Based

on Physical Types

Olivier Nicole1,2,3(B),
Matthieu Lemerre1,
and Xavier Rival2,3

1 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
olivier.nicole@ens.fr

2 Département d’informatique de l’ENS, CNRS, PSL University, Paris, France
3 Inria, Paris, France

Abstract. To understand and detect possible errors in programs
manipulating memory, static analyses of various levels of precision have
been introduced, yet it remains hard to capture both information about
the byte-level layout and precise global structural invariants. Classical
pointer analyses struggle with the latter, whereas advanced shape anal-
yses incur a higher computational cost. In this paper, we propose a new
memory analysis by abstract interpretation that summarizes the heap
by means of a type invariant, using a novel kind of physical types, which
express the byte-level layout of values in memory. In terms of preci-
sion and expressiveness, our abstraction aims at a middle point between
typical pointer analyses and shape analyses, hence the lightweight shape
analysis name. We pair this summarizing abstraction with a retained and
staged points-to predicates abstraction which refines information about
the memory regions that are in use, hereby allowing strong updates with-
out introducing disjunctions. We show that this combination of abstrac-
tions suffices to verify spatial memory safety and non-trivial structural
invariants in the presence of low-level constructs such as pointer arith-
metic and dynamic memory allocation, on both C and binary code.

1 Introduction

Memory errors have long been a very important concern for programmers, due to
the potential safety and security issues that they raise. In particular, programs
that perform low-level pointer and memory operations are particularly tedious to
reason about in languages like C/C++ or assembly. For instance, such patterns
are very common in system software, which makes its correct implementation
challenging.

Many verification techniques aimed at verifying the correctness of memory
manipulating programs have been developed. In particular, several families of
automatic and conservative static analysis focus on such errors. Pointer analy-
ses [34] based on abstractions of aliasing relations [1] or access paths [9] infer
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 219–241, 2022.
https://doi.org/10.1007/978-3-030-94583-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_11

220 O. Nicole et al.

basic conservative relations between pointer values and can tackle basic memory
errors. However, they are of limited expressiveness, which implies they cannot
establish safety when doing so requires reasoning over structural invariance. On
the other hand, shape analyses based on three valued logics like TVLA [32] or
on separation logics [30] such as Infer [10] or Xisa [6] attempt to establish precise
structural invariants such as the existence of some list or tree data-structures.
Such analyses can cope with the verification of memory safety in presence of
sophisticated structures, yet they are typically less scalable than basic pointer
analyses and also less resilient to a local precision loss in the sense that losing
precision over a fragment of the memory often entails no information can be
recovered about that region. Another limitation is that such analyses are dif-
ficult to apply to low-level code, like low-level C or binary code, even though
some abstractions have been adapted to deal with some forms of pointer arith-
metics [17,19]. Few analyses have been aimed for a precision level that sits in
between those two large classes, like graph heap models [26], but these do not
cope with a low-level memory description.

In this paper, we are interested in memory abstractions expressive enough
to verify type safety, i.e. the preservation of structural invariants expressed by
types, in non-trivial linked data-structure manipulations in both high- and low-
level code (such as assembly or low-level C). This type safety entails spatial
memory safety, namely that each memory access is done on an address that was
previously allocated (and thus that null or out-of-bound pointer dereferences are
impossible). We also seek for a high level of automation (i.e., by avoiding the
requirement of complex handwritten program annotations) and of efficiency.

To achieve this, we propose a novel memory abstraction that is inspired
by the classical notion of types, but applies to the physical representation of
data-structures (Sect. 4). Our abstract domain (Sect. 5) represents the heap in
a flow-insensitive way, which is less expressive than shape analyses, but allows
a simpler representation of abstract states and simpler, more efficient analysis
operations (Sect. 6). Combined with two independent extensions of the domain
to track “retained” and “staged” points-to predicates (Sect. 7), we show that the
combination naturally deals with both C and binary code manipulating dynamic
data structures (Sect. 8).

2 Overview Example

We demonstrate the main features of our analysis on a low-level implementation
of a classical union-find structure inspired by Kennedy [16]. The representation
combines the union-find structure based on chains of pointers to class represen-
tatives in reverse tree shapes with doubly linked-lists for efficient iteration over
the elements of an equivalence class. The whole code is presented in Fig. 1. It is
written in C for the sake of readability, but we are interested in analysis tech-
niques that would also cope with the corresponding assembly code just as well.
Structures uf and dll respectively represent the union find and doubly linked
list structures. Following a pattern common in low-level and system code [3],
the structure node comprises both sub-structures uf and dll. Function uf_find

Lightweight Shape Analysis Based on Physical Types 221

Fig. 1. An algorithm for union-find and listing elements in a partition.

returns the representative of the class of an element and halves [35] the paths
to the root to speed up subsequent calls. Functions dll_union and uf_union
respectively merge doubly linked-lists and union-finds. Last, merge merges two
node structures and make creates a new node.

Figure 2(a) displays an example concrete state, with a class made of three
nodes (and where the node at address 0x60 is the representative). Such states
contain a very high degree of sharing due to the interleaved union-find and
doubly-linked list structures. Moreover, these structures are unbounded. There-
fore, pointer analysis techniques would require tricky and ad hoc adaptations
regarding sensitivity to be precise, so as to divide heaps in regions of pointers
with similar properties; these techniques are too imprecise to verify type or mem-
ory safety for C or assembly. In the same time, shared data structures such as
union-find are notoriously hard to handle for shape analysis abstractions and we
are not aware of any successful shape analysis based verification for a structure
similar to that of Fig. 1.

Our key contribution is to propose an abstract interpretation framework
based on a semantic interpretation of physical types, that simultaneously veri-
fies the preservation of type-based structural invariants, and uses these invariants
to perform and improve the precision of the analysis. This contrasts with the
usual method where syntactic type checking and type-based pointer analyses are
separate analyses, each insufficiently precise to verify type safety for low-level
languages like C or binary. The type-based structural invariant implies divid-
ing the heap into partitions, which are attached flow-insensitive information,

222 O. Nicole et al.

Fig. 2. Concrete and abstract states based on physical types.

allowing for efficient static analysis operations. To further improve precision,
our analysis is strengthened by flow-sensitive points-to predicates, whose effect
is comparable to materialization in shape analysis, but the memory summary is
provided by the type-based structural invariants. In this section, we informally
present the basic predicates of our analysis.

Let us examine the types and structural invariants on our example code.
The types are given in Fig. 2(b). They must be provided by the analysis user,
and possibly derived in part from the C types, although they express stronger
invariants. Note that our analysis is independent from C typing rules; in partic-
ular C is not type-safe, while we can verify type-safety on both C and compiled
programs. Intuitively, dll.(0)∗�=0 denotes a non-null pointer to the base address
of another, well-formed dll instance. In the case of uf, the parent pointer may
be null, hence the subscript ∗�=0 is absent. Finally, type node_kind is a type
refined with a predicate restraining its possible values: it corresponds to 4-byte
bit vectors whose unsigned value is lesser than 5. Thus, these types can be more
precise than C types, although C types can be translated to our type language.
But they are less precise than shape invariants, as they cannot represent the
relation between different elements of a same type: our dll structure could e.g.
represent a binary tree with leaves pointing to the root.

These types entail structural invariants, some of which are presented in
Fig. 2(d), that a well-typed state must fulfill. These invariants relate types, inter-
preted as sets of values: � t �L,ν represents the set of values for type t. Equation
(1) relates adjacent addresses; Equation (2) describes a subtyping relationship;
Equation (3) relates the type of an address with its contents; and Equation (4)
describes a partitioning of the heap in distinct regions. Note that the correctness
of these invariants implies that the memory layout of the heap must be com-
patible with these equations (as is Fig. 2(a)), which is why the interpretation of
types depends on the heap layout L.

We now turn our attention to our abstract domain. The abstract state shown
in Fig. 2(c) represents the initial state when execution of the merge function
begins (this function requires that it is given non-null pointers to node as argu-
ments). Each variable is associated to both an abstract type describing possible

Lightweight Shape Analysis Based on Physical Types 223

Fig. 3. Abstract state before line 19 .

values stored in the variable, and to a symbolic variable used to attach numer-
ical constraints to this value. For instance, variable x is bound to physical type
node.(0)∗�=0, meaning that its value belongs to � node.(0)∗�=0 �L,ν ; furthermore it
is bound to symbolic variable α which is constrained to be not null. Combined
with structural invariants of Equations (1),(2) and (3), we can verify that x+4
(the low-level counterpart of &x->dll) points to a valid address, that can be
safely casted as type dll.(0)∗�=0, and that reading from this address will return
a value that also has type dll.(0)∗�=0. Eventually, using these invariants we can
verify that all memory accesses performed by the call to dll_union are valid,
but also that each statement preserves these structural invariants.

However, this approach does not suffice when considering more complex func-
tions, like uf_find. First, we remark that the function may run correctly only
when argument x is non-null due to the dereference at line 15, although the
uf physical type does not require pointers to parent be non-null. Therefore,
the verification of this function will use semantic information coming from the
numerical abstract domain. Next, we observe that to prove the validity of the
access to parent->parent at line 17 , the analysis needs to establish that parent
is non-null, by observing that it is equal to x->parent, which is non-null due
to the condition at line 15. Such reasoning cannot be performed solely using a
combination of types and numerical predicates, because the type-based invari-
ants cannot attach different information to different heap objects of the same
type. Therefore, we augment variable-type predicates with additional boxes, also
defined with a symbolic variable and a physical type, but that corresponds to
some selected heap addresses. Only boxes that are reachable from a variable
finite chain of points-to predicates may be retained this way. Figure 3 shows the
abstract state at line 19 that enables to proves the parent->parent access. In
the following, we call such predicates retained points-to predicates. Such predi-
cates are obtained by retaining information about recent memory writes, loads,
or condition tests and need to be abstracted away as soon as they cannot be
proved to be preserved. Indeed, when the analysis encounters a memory write,
it drops all such boxes for which the absence of aliasing cannot be established
with the current information; some aliasing information (e.g. Equation(4)) comes
from the partitioning of the heap. This process will be referred to as blurring as
it carries some similarity with the blurring encountered in some shape analyses.
Note that the retained points-to predicates offer a very lightweight way to keep
some memory cells represented precisely without resorting to unfolding/focusing
which is generally more costly (but also more powerful in the logical point of
view), as retaining a heap address or blurring it does not require modifying the
summarized heap representation. Physical types coupled with retained points-to
predicates allow to verify memory safety and typing preservation for the four
functions dll_union, uf_find, uf_union and merge.

224 O. Nicole et al.

Fig. 4. Language Whilemem

Finally, we consider function make. For the sake of simplicity, we assume
that malloc always returns a non-null pointer. We note that variable n does not
point to a valid node object until the very end of the function, thus attempting to
prove it satisfies physical type node.(0)∗�=0 before that point will fail. In general,
some code patterns like memory allocation or byte-per-byte copy temporarily do
not preserve the structural invariants described by our types. To alleviate this,
we augment our abstraction with a notion of staged points-to predicates that
represent precisely the effect of sequences of store instructions such as the body
of make, allowing to delay their abstraction into types at a later point.

The abstractions sketched so far may also be applied to binary code provided
type information can be recovered from, e.g., debugging information. In the rest
of the paper, we describe more precisely physical types in Sect. 4 whereas retained
points-to predicates and buffered write predicates are formalized in Sect. 7.

3 Language and Semantics

Although our analysis was implemented both for C and binary code, we adopt a
simple imperative language for the sake of presentation. As the grammar in Fig. 4
shows, Whilemem features basic assignments, usual arithmetic expressions, mem-
ory allocation, and standard control flow commands. Memory locations include
a finite set of variables X and addresses A that can be computed using usual
pointer arithmetic operations. The analysis is parameterized by the choice of an
application binary interface (or ABI) that fixes endianness, basic types sizes and
alignments. In the following, we assume a little-endian ABI is fixed and let W
denote the size of words. Memory access patterns of C can be translated into
Whilemem; for instance, assuming a pointer size of 4 bytes, x->prev turns into
∗4(x+4). We leave out functions, that our analysis handles in a context sensitive
manner.

We assume that instances of malloc are marked with a type t, though we
define the set of types in Sect. 4.

The values manipulated by Whilemem are bit vectors, i.e., non-negative inte-
gers as fixed-size sequences of bytes, so the set of values V is defined by:

V = {(�, v) | � ∈ N, v ∈ [0, 28� − 1]}
If n > 0, we let Vn denote the set of bit vectors of length n. We extend the binary
operator notation to bit vectors of the same byte length, i.e., (�, v1)�(�, v2) means

Lightweight Shape Analysis Based on Physical Types 225

(�, v1 � v2). The concatenation of any two bit vectors x and y is denoted x :: y
and is defined by (�1, v1) :: (�2, v2) = (l1+ l2, v1+28�1v2). The set of addresses A
is a subset of VW . As usual, we let stores map variables to their contents (thus,
˚ = X → V) and heaps be partial functions from addresses to their contents
(H = A ⇀ V1). Moreover, the set of states is S = ˚ × H.

Given a heap h ∈ H, a ∈ A, and � ∈ N, we let h[a..a + �] denote the reading
of a cell of size � at address a. It is defined by h[a..a + �] = h(a) :: h(a + 1) ::
· · · :: h(a + � − 1). We denote by σ[x ← v] the store σ with x now mapped to
v, and by h[a..a + � ← v] the heap h with values at addresses a (included) to
a + � (excluded) replaced with the bytes from v. Finally, dropping a range of
mappings from a heap is noted h[a..a + � ← ⊥].

The semantics of the language is given by a transition relation → ∈ (stmt ×
S) × (stmt ×S) whose definition is standard (and given in the appendices of the
paper [29]). We let Ω denote the state after a run-time error (such as division
by zero or null pointer dereference), and E�e� : S → V × {Ω} denote expression
evaluation. Last, to express the soundness of the analysis, we define a collecting
semantics as follows. Given a program p, the semantics �p� : P(S) → P(S) maps
a set of input states into a set of output states and is such that (σ′, h′) ∈ �p�(S)
if and only if there exists (σ, h) ∈ S, and a sequence of transitions (p, (σ, h)) →
(p1, (σ1, h1)) → . . . → (pn, (σn, hn)) → (skip, (σ′, h′)).

4 Physical Representation Types

In this section, we formalize physical representation types (or, for short, physical
types) and a typed semantics, that serve as a basis for our analysis. The core
idea here is to define a notion of well-typed state which will be used as the base
invariant representing the summarized regions of memory.

Definition. As shown in Sect. 2, physical representation types are aimed at
describing the memory layout of memory regions using predicates inspired by the
standard types, but extended with additional properties. Therefore, the set of
physical types comprise standard types for the representation of not only base
values, but also structures and arrays. Moreover, they attach to each pointer
variable not only the type of the structure that is pointed but also the offset in
the block and information about the possible nullness of the pointer.

In order to describe additional constraints such as array indexes, physical
types may be refined [14,31] with numerical constraints, that may bind not
only the corresponding value, but also existentially quantified symbolic vari-
ables (representing e.g. the unknown size of an array). To this effect, we let
V� = {α0, α1, . . .} denote a countable set of symbolic variables. Moreover, the
concretization of types needs to reason over the actual value of symbolic vari-
ables. Such a realization of symbolic variables to values is called a valuation and
is usually noted ν : V� → V.

Finally, the analysis is parameterized by a fixed set of type names N , and a
mapping M ∈ N → T binding type names to types. Type names have two uses:

226 O. Nicole et al.

Fig. 5. Definition of physical representation types.

first they break cycles in the definition of recursive types; second they distinguish
types otherwise structurally equal (i.e. it allows the type system to be nominal),
and in particular pointers to two structurally equal types with different names
will not alias. For instance, in Sect. 2, we considered recursive types dll and uf,
and Fig. 2(b) gives an example of a mapping M.

Definition 1 (Physical representation types). The set T of physical rep-
resentation types is defined by the grammar in Fig. 5.

Note that, a type refined by a predicate makes use of a local variable x that
denotes the value of this type and is meant to be constrained in the matching
pred(x) predicate, which is why grammar entries predexpr(x) and pred(x) take a
variable as parameter. An address type t.(k) ∈ TA represents the k-th byte in a
value of type t. Finally, the pointer types ta∗ and ta∗�=0 respectively account for
the possibly null and definitely non-null cases. Thus, t.(k)∗�=0 should be inter-
preted as the address of the k-th byte of a value of type t and t.(k)∗ represents
the same set of values, with the addition of the value 0.

Example 1 (Doubly linked-lists and structures). Based on Definition 1, the fact
that a dll object boils down to a pair of non-null dll pointers can be expressed
by the type dll.(0)∗�=0 × dll.(0)∗�=0. We also remark that padding bytes added
in structures to preserve field alignments can be added using . . . × wordk.

Before we can formally define the denotation of types, we need to introduce
a few notions. As usual in languages like C, we can compute the size of the
representation of a type. Since arrays may not be of a statically known size,
the size may depend on the actual value of symbolic variables, hence it needs
to be parameterized by a valuation ν. Then, size is computed by the function
sizeν : T → N defined by:

sizeν(wordn) = n
sizeν(ta∗) = sizeν(ta∗�=0) = W

sizeν({x : t | p(x)}) = sizeν(t)

sizeν(t1 × t2) = sizeν(t1) + sizeν(t2)

sizeν(t[s]) =
{

s · sizeν(t) if s ∈ N
ν(s) · sizeν(t) if s ∈ V�

Lightweight Shape Analysis Based on Physical Types 227

Memory Labeling. Physical types are aimed at describing not only variables like
standard types do, but also memory locations. To formalize this, we introduce
labelings as mappings from addresses to physical types.

Definition 2 (Labeling). A labeling is a function L : A → TA such that each
tagging of a region with a type is whole and contiguous, i.e., for all types t ∈ T,
for all addresses a ∈ A, if we let n = sizeν(t), and if there exists k ∈ [0, n − 1]
such that L(a + k) = t.(k), then:

L(a) = t.(0) ∧ L(a + 1) = t.(1) ∧ . . . ∧ L(a + n − 1) = t.(n − 1)

We extend this notion by letting labelings return a type: if L(a) = t, then it
should satisfy the above property. Moreover, we let L denote the set of labelings.
Intuitively, L(a) = t means both that a points to a value of type t, and that a
has type t.(0)∗�=0.

Example 2 (Labeling). We consider the state of Fig. 2(a). In this case, the rela-
tions below form a valid labeling of the memory:

L : 0x20 	→ node.(0) 0x21 	→ node.(1) . . . 0x2c 	→ node.(15)
0x60 	→ node.(0) 0x61 	→ node.(1) . . . 0x6c 	→ node.(15)
0x80 	→ node.(0) 0x81 	→ node.(1) . . . 0x8c 	→ node.(15)

Subtyping Relation. In Example 2, the labeling L conveys that the type of
address 0x24 is node.(4). But we could also view this offset as the base address of
a doubly-linked list and give it type dll.(0), since node contains a dll at offset
4. However, the former is more precise: all memory cells that contain a node.(4)
contain a dll.(0), but the converse is not true. This remark motivates the def-
inition of a physical form of subtyping relation. Intuitively, the above remark
should be noted node.(4)
 dll.(0). More generally, t.(n)
 u.(m) means that t
“contains” a u somewhere in its structure.

Definition 3 (Subtyping between address types). The relation
 ∈ TA ×
TA is defined inductively according to the rules below:

t.(k)
 t.(k)
t = M(n) 0 ≤ k < sizeν(t)

n.(k)
 t.(k)
t.(k)
 u.(l) u.(l)
 v.(m)

t.(k)
 v.(m)
0 ≤ k < sizeν(t1)

(t1 × t2).(k)
 t1.(k)
0 ≤ k < sizeν(t2)

(t1 × t2).(sizeν(t1) + k)
 t2.(k)
0 ≤ q < s 0 ≤ k < sizeν(t)
t[s].(q · sizeν(t) + k)
 t.(k)

Interpretation of Types. We now give the meaning of types in terms of an inter-
pretation function that maps each type into a set of values. Unlike classical
notions of types, the interpretation of a physical type depends on the data of
a labeling L to resolve field pointers to other structures and on a valuation
ν : V� → V in order to check that side predicates are satisfied. In the following,
we let evalν : pred ×V → B be the function that maps a predicate to its boolean
value for valuation ν (the definition of evalν is classical thus omitted).

228 O. Nicole et al.

Definition 4 (Interpretation of types). Given labeling L and valuation ν
the interpretation function � · �L,ν : T → P(N) is defined by:

� wordn �L,ν = Vn � ta∗�=0 �L,ν = {a ∈ A | L(a)
 ta}
� t1 × t2 �L,ν = {v1 :: v2 | ∀i, vi ∈ � ti �L,ν} � ta∗ �L,ν = � ta∗�=0 �L,ν ∪ {0}

� {x : t | p(x)} �L,ν = {v ∈ � t �L,ν | evalν(p, v) = true}
� t[s] �L,ν = {v0 :: v1 :: · · · :: vs−1 | v0, . . . , vs−1 ∈ � t �L,ν}

As shown below, the interpretation is monotone with respect to subtyping, which
is consistent with Liskov’s substitution principle [22], which means that all prop-
erties of addresses of type τ also hold for addresses of type υ, where υ
 τ :

Lemma 1 (Monotonicity). Let t.(n) and u.(m) be two address types such that
t.(n)
 u.(m). Then � t.(n)∗�=0 �L,ν ⊆ �u.(m)∗�=0 �L,ν .

Example 3. In Fig. 2(a), and using the labeling of Example 2, � node.(4)∗�=0 �L,ν

and � dll.(0)∗�=0 �L,ν both denote the set of addresses {0x24, 0x64, 0x84}.

In the analysis, the notion of subtyping and its properties with respect to inter-
pretation have two applications: first, they allow verifying memory safety and
the preservation of structural invariants by checking subtyping is preserved by
memory updates; second, they also allow to over-approximate aliasing relations
as we demonstrate now.

Definition 5 (Set of addresses covered by a type). Let L ∈ L, ν : V� → V,
and t be a type. Then, the set of addresses covered by type t is:

addrL,ν (t) ::= {a ∈ A | ∃i, 0 ≤ i < sizeν(t) ∧ L(a)
 t.(i)}.

Definition 6 (Type containment). Let ν : V� → V be a valuation and t, u ∈ T
be types. We say that “t contains u” if and only if:

∃i ∈ [0, sizeν(t)) , ∀k ∈ [0, sizeν(u)) , t.(i + k)
 u.(k).

Theorem 1 (Physical types and aliasing). Let t, u ∈ T. Then, either t
and u cover disjoint regions, or one contains the other, i.e., if addrL,ν (t) ∩
addrL,ν (u) �= ∅, then t contains u or u contains t.

Proof. This comes from the fact that
 is a tree relation.

This result entails that physical types can be used to compute must-not alias
information. As an example, in Fig. 2(a), if we consider types uf and dll, neither
of them contains the other, thus their addresses are disjoint.

States in a Typing Environment. In the following paragraphs, we define a typed
semantics for Whilemem. This semantics is conservative in the sense that it
rejects some programs and executions that could be defined in the semantics of
Sect. 3. In this second semantics, states are extended with typing information.
Its goal is to serve as a step towards the verification of preservation of physical

Lightweight Shape Analysis Based on Physical Types 229

Fig. 6. Typing rules for Whilemem expressions.

types. More precisely, a state should enclose not only a store and a heap, but
also a labeling and a map from variables to types. Furthermore, such a state is
well typed if the heap is consistent with the labeling and the variable values are
consistent with their types.

Definition 7 (Well-typed state). A state is a 4-tuple (σ, h,L, Γ), where σ ∈
˚, h ∈ H, L is a labeling, and Γ : X → T maps variables to types. We write St

for the set of such 4-tuples.
Moreover, state (σ, h,L, Γ) is well typed if and only if:

1. The labeling is consistent with the heap: for all address a ∈ A, if there exists
a type t such that L(a) = t.(0), then h[a..a + sizeν(t)] ∈ � t �L,ν ;

2. Variables are well-typed: for all variable x ∈ X, σ(x) ∈ �Γ (x) �L,ν .

Typed Semantics of Expressions. Typing of expressions aims at proving that the
evaluation of an expression will either return a value consistent with the type or
a runtime error. Unlike classical type systems, we do not use physical types to
prevent runtime errors directly; instead, we let the analysis discharge the verifi-
cation of memory safety as a second step, after types have been computed. Given
a store σ, a heap h, a labeling L, a typing of variables Γ , an expression e, and a
type t, we write (σ, h,L, Γ) � e : t when expression e can be given type t in the
typing state (σ, h,L, Γ). The typing of expressions are given in Fig. 6. Intuitively,
the type of addresses (resp., variables) is resolved by L (resp., Γ). Rules for base
values and binary operators are classical. Memory reads and pointer arithmetics
are typed using corresponding offset calculation over physical types. Subtyping
allows replacing a type to a container type at pointer dereference points. Finally,
types of expressions can be refined by the values these expressions evaluate to.
This typing is sound in the following sense:

Theorem 2 (Soundness of typing of expressions). Let an expression e,
a valuation ν ∈ V� → V, a typing state (σ, h,L, Γ) and a type t ∈ T. Then, if
(σ, h,L, Γ) is well typed under ν, if (σ, h,L, Γ) � e : t, and if E�e�(σ, h) = v,
then either v = Ω or v ∈ � t �L,ν .

230 O. Nicole et al.

Fig. 7. Selected transition rules for programs.

Note that an expression may be given several types in a same state due not only
to subtyping but also to pointer arithmetics. For instance, if 8 has type t.(0)∗,
and 16 has type u.(0)∗, then 8+16 is at the same time of type t.(16)∗ and u.(8)∗.

Typed Semantics of Statements. The typed semantics of instructions is defined
by a relation →t ∈ (stmt ×St)× (stmt ×St). It is mostly similar to the untyped
semantics, but rules involving memory writes differ. Figure 7 displays the rules
regarding memory writes. The rule for assignment not only updates the store but
also the typing environment Γ . We note that this semantics is non-deterministic
since the type of an expression is not unique in general. This semantics enjoys
the type preservation property:

Theorem 3 (Preservation of typing of states). Let a valuation ν :
V� → V, and a typing state (σ0, h0,L0, Γ0), well typed under ν, such that
(σ0, h0,L0, Γ0) →t (σ1, h1,L1, Γ1). Then, (σ1, h1,L1, Γ1) is well typed under ν.

Therefore, as we consider executions starting in a well-typed state only, The-
orem 3 entails that well-typedness is an invariant. This semantics is not com-
putable in general.

Last, we note that the typed semantics is more restrictive than the untyped
one:

Theorem 4 (Semantic comparison). If the typing states (σ0, h0,L0, Γ0) and
(σ1, h1,L1, Γ1) are such that (p0, (σ0, h0,L0, Γ0)) →t (p1, (σ1, h1,L1, Γ1)), then
(p0, (σ0, h0)) → (p1, (σ1, h1)).

Intuitively, the typed semantics is more restrictive than the untyped semantics
in two ways: first, it considers only well-typed initial states only; second, it
considers ill-typed memory writes as blocking, even though such a write may
be part of a program fragment that overall preserves invariants. Finally, note
that malloc calls cannot be readily incorporated in the typed semantics; this is
solved in Sect. 7.

5 Type-Based Shape Domain

We now set up the type-based shape abstract domain which serves as a basis for
our analysis by defining its abstract elements and concretization function. This
abstract domain combines type information with numerical constraints. Types

Lightweight Shape Analysis Based on Physical Types 231

constrain the regions pointed to by variables and may contain symbolic variables
denoting numerical values. To cope with numerical constraints, our abstract
domain is parameterized by a numerical domain such as that of intervals [8] or
any other abstract domain. Thus, we assume such an abstract domain D�

num is
fixed, together with a concretization function γN : D�

num → (V� → V).

Abstract Types. First, an abstract type defines a set of types where all symbolic
variables are mapped into a numerical value. Due to the dependency on the
association of symbolic variables to numerical values, its concretization returns
pairs including a valuation ν : V� → V. It boils down to either a physical type or
either of the ⊥,� constant elements.

Definition 8 (Abstract types). The set of abstract types T� is defined by
the grammar below together with its concretization γT : T� → P(T × (V� → V)):

T� � t� ::= ⊥
| t.(α)∗
| t.(α)∗�=0

| �

γT : ⊥ 	−→ ∅
� 	−→ T × (V� → V)
t.(α)∗ 	−→ {(t.(ν(α))∗, ν) | 0 ≤ ν(α) < sizeν(t)}
t.(α)∗�=0 	−→ {(t.(ν(α))∗�=0, ν) | 0 < ν(α) < sizeν(t)}

Example 4 (Array type). As an example, the abstract type and numerical con-
straints below abstract the information that one would attach to a pointer to
some array of 10 integers:

– abstract type int[10].(α) states that we are looking at an address somewhere
into such an array;

– numerical constraints α ∈ [0, 39] ∧ ∃k ∈ N, α = 4k (expressible in a reduced
product of intervals and congruences) refines the above abstract type by fil-
tering out misaligned pointers.

Note that an address into an array of statically unknown length would write
down int[α′].(α), with matching numerical constraints.

Type-Based Shape Abstraction. At this point, we can formalize the type based
shape domain as follows, by letting each variable be abstracted by an abstract
type. In order to also express constraints over the contents of variables, this
abstraction also needs to attach to each variable a symbolic variable denoting
its value.

Definition 9 (Type-based shape domain). We let the type-based shape
domain H� denote the set of pairs (σ�, Γ �) pairs called abstract stores, where:

– σ� : X → V� is a mapping from variables to symbolic variables,
– and Γ � ∈ X → T� is a mapping from variables to abstract types.

Moreover, the concretization for H� is the function γH : H� → P(St × (V� → V))
defined by:

γH

(
Γ �

)
=

{(
(σ, h,L, Γ), ν

) ∣∣ (σ, h,L, Γ) is well typed under ν
and ∀x ∈ X,

(
Γ (x), ν

) ∈ γT (Γ �(x))
and ∀x ∈ X, σ(x) = ν(σ�(x))

}

232 O. Nicole et al.

Definition 9 does not provide representable abstract states quite yet. Indeed,
we still need to reason over the possible numerical values denoted by symbolic
variables. The numerical abstract domain allows completing this last step.

Definition 10 (Combined shape abstraction). The combined shape-
numeric abstract domain S� and its concretization γS : S� → P(St × (V� → V))
are defined as follows:

S� ::= H� × D�
num γS(h�, ν�) = {(s, ν) ∈ γH(h�) | ν ∈ γN (ν�)}

Figure 2(c) provides an example of an abstract state in this combined abstrac-
tion.

6 Static Analysis

Our static analysis is a standard, forward, abstract interpretation-based static
analysis [8]. We focus on important operations, like verifying that stores preserve
type invariants, or the lattice operations. Both of these operations rely on a
procedure called abstract type checking.

Structure of the Interpreter. The analysis of Whilemem expressions and state-
ments is respectively performed by the two functions E�·�� : expr × S� →
(V� × T�) × D�

num and �·�� : stmt × S� → S�. The evaluation of expressions
manipulates abstract values V�

t
def= V� ×T�, which are the counterpart of concrete

values in the concrete semantics. An abstract value αt� is just a pair (α, t�) ∈ V�
t

with a symbolic variable α and an abstract type t� respectively describing all
the possible values and some possible types for an expression. The evaluation
of symbolic variables is standard [5] (each node in the expression tree creates a
fresh symbolic variable and updates the numerical domain accordingly), and the
computation of abstract types follows closely the concrete typing rules given in
Fig. 6.

Abstract Type Checking. Abstract type checking verifies that, given the numer-
ical constraints of ν�, casting an abstract value αt� into type u� is safe (this

is written as α : t�
ν�

� u�). In most type checks (that we call upcasts), this is
done by checking that t�
�

ν� u�, where
� is an ordering between abstract types
which derives from the subtyping relation (
) between concrete address types:

Theorem 5 (Soundness of abstract subtyping). Let ν� ∈ D�
num, t�, u� ∈ T�,

t.(i) and u.(j) ∈ TA. If t�
�
ν� u�, then

∀ν ∈ γN (ν�), (t.(i), ν)∗ ∈ γT (t�) ∧ (u.(j), ν)∗ ∈ γT (u�) =⇒ t.(i)
 u.(j).

Example 5. (Upcasting after pointer arithmetics) Following Definition 3,
int[10].(α)∗
�

v� int.(0)∗ holds when both numerical constraints α ∈ [0, 39] ∧
∃k ∈ N, α = 4k hold. Thus the abstract type given in Example 4 can be
safely casted into an int∗. Note that querying the numerical abstract domain is
necessary to check the safety of this cast.

Lightweight Shape Analysis Based on Physical Types 233

Some other type checks, like verifying that it is safe to transform a t∗ pointer
to a t∗�=0 pointer, or checking that the predicate of a refinement type holds, are
downcast operations: to verify the safety of the cast, we examine not only the
types, but also the numerical properties of the value being type checked:

Example 6. (Downcasting to a ∗�=0 pointer) In Fig. 1, the merge function gives
&x->dll, whose type is node.(α)∗ with α = 4, as an argument to dll union,
which eventually gets written into y->prev, a memory location that may contain
values in the abstract type dll.(β)∗�=0 with β = 0 : this requires to perform a
type check. Casting to dll.(β)∗ can be done using the abstract subtyping relation
node.(α)∗
�

ν� dll.(β)∗, but to cast to dll.(β)∗�=0, we must additionally check
that the value x->dll (i.e. &x + offset 4) cannot be 0; this makes use of the fact
that pointer arithmetics inside a valid object cannot wrap around.

The soundness of the abstract type checking operation and its proof are
established using the interpretation of the types:

Theorem 6 (Soundness of abstract type checking). Let (h�, ν�) ∈ S�. Let

α ∈ V� be a symbolic variable and t�, u� be two abstract types. If α : t�
ν�

� u� then

∀((σ, h,L, Γ), ν) ∈ γS(h�, ν�), ν(α) ∈ � t� �L,ν =⇒ ν(α) ∈ �u� �L,ν .

Interpretation of Base Statements. As shown in Example 6, the analysis must
ensure that all memory updates preserve the typing of states (Theorem 3), and
abstract type checking is a central operation for doing this. The interpretation
of memory updates is done as follows:

�∗�e1 := e2�
�(h�, ν�)

def
= (h�, ν�

2) if α : t� ν
�
2� u� where u� is a non-null pointer type

and (α, t�, ν�
1) = E�e1�

�(h�, ν�) and (β, w�, ν�
2) = E�e2�

�(h�, ν�
1)

and w� is the type of the values pointed by (α, u�)

�∗�e1 := e2�
�(h�, ν�)

def
= � otherwise

Note that memory updates do not modify the representation of the abstract
heap, and is thus a fast operation. The evaluation of assignments is also fast,
since it only needs to evaluate an expression and to record the abstract value in
the abstract store:

�x := e�
�((σ�, Γ �), ν�) def= (σ�[x ← α], Γ �[x ← t�], ν�

1)

where (α, t�, ν�
1) = E�e�

�((σ�, Γ �), ν�)

Lattice Operations. The analysis of condition and loop commands is based on
approximations for concrete unions and on conservative inclusion checks �Φ,S�

to test whether a post-fixpoint is reached [8]. The latter relies on abstract type
checking. This operation consists in type-checking every Whilemem variable, in
addition to verifying the inclusion of the numerical constraints:

((σ�
1, Γ

�
1), ν�

1) �Φ,S� ((σ�
2, Γ

�
2), ν�

2)
def=

ν�
1 �Φ,D�

num
ν�
2 and ∀x ∈ X : (σ�

1(x) : Γ �
1(x)

ν�
1� Γ �

2(x))

234 O. Nicole et al.

where Φ : V� → V� is a renaming function that handles the fact that each
abstract state refers to different variables [5]) (here it can be defined as
∀x ∈ X : Φ(σ�

1(x)) = σ�
2(x)).

Theorem 7 (Soundness of inclusion). Let s�
1, s

�
2 ∈ S�. Then:

s�
1 �Φ,S� s�

2 =⇒ ∀(s, ν) ∈ γS(s�
1), (s, ν ◦ Φ) ∈ γS(s�

2)

The join operation can be deduced from the definition of �Φ,S� . These lattice
operations are necessary to define the interpretation of while and if statements
(which is standard). The interpretation of other statements is also standard.

Theorem 8 (Soundness of the abstract semantics). Let s� ∈ S� be an
abstract state and c ∈ stmt be a statement. Then, γS(�c��(s�)) ⊇ �c�(γS(s�)).

7 Retained and Staged Points-To Predicates

The type-based shape abstraction suffers from two important limitations. First,
the heap is represented only in a summarized form by the type constraints, and
there is no way to retain additional information about the contents of the heap.
Second, all stores to memory must preserve the type invariants—situations where
the type invariants are temporarily violated are not handled. This happens when
data is allocated but not yet initialized (as in function make in Fig. 1), when
updating a value with an invariant that spans multiple words, and in other
situations.

We solve both problems by tracking some points-to predicates and attaching
specific properties to them. The meaning of a points-to predicate αt� 	→� βu�

is, that for all possible valuations ν, the value (of size �) stored in the heap
at address ν(α) is ν(β) and that α satisfies the abstract type t� and β the
abstract type u�. Points-to predicates are represented using a simple map p
mapping a symbolic variable to another variable and size, and is concretized by
considering all the possible values for each symbolic variable. In the following,
we define and track the so-called retained and staged points-to predicates. Their
combination is formally defined in Fig. 8 (where each points-to predicate αt� 	→�

βu� is represented by bindings αt� 	→ (�, βu�) of a function p� ∈ P�).

Retained Points-to Predicates. The type-based shape domain remembers flow-
sensitive information only about the store, as the heap is represented only using
the type invariants. We use retained points-to predicates αt� 	→� βu� to store
flow-sensitive information about the heap: they provide symbolic variables, like
β, to represent values stored in the heap, so that they can be attached numerical
and type information. In practice, retained points-to predicates achieve an effect
comparable to materialization in shape analyses1. The concretization of these
predicates is done by standard intersection.
1 A difference is that retained point-to predicate only retains information about a

given cell, instead of modifying the heap summary to be precise on this cell.

Lightweight Shape Analysis Based on Physical Types 235

Fig. 8. Extending the base domain (s�) with retained (r�) and staged (p�) points-to
predicates

Example 7 (Retained points-to predicate). Consider the abstract state (Fig. 3)
at line 19 of Fig. 1. The binding from (β, uf.(0)∗) to (δ, uf.(0)∗) (represented
by an arrow) has been added by the read parent->parent at line 17. Having a
variable δ materialized to represent the contents of β allows inferring δ �= 0 from
the test parent->parent != 0.

Staged Points-to Predicates. A staged points-to predicate α 	→� β represents a
store operation performed by the program, but that is not yet propagated to the
main domain S�. The idea is that if that if an invariant is temporarily violated,
subsequent stores may restore it; by grouping and delaying the stores to the
type-based abstract domain S�, we prevent S� from needing to take ill-typed
states into account. In the concretization, the heap represented by the staged
points-to predicates take precedence (operator �) over the heap represented by
the type-based domain. Note this concretization allows describing states that
are not well-typed, hence the codomain of γU is P (

S × (V� → V)
)

instead of
P (

St × (V� → V)
)
.

Example 8 (Staged points-to predicate). The contents of the memory allocated
at line at line 40 of Fig. 1 are unconstrained, and may not correspond to the type
node* of the address returned by malloc: the reachable states at this line include
ill-typed states that are not representable by S�. This is fixed by introducing
staged points-to predicates from the address returned by malloc, which allows
the abstract value of the typed domain to represent only well-typed states, but
still take into account the call to malloc. These staged points-to predicates are
modified by the subsequent statements, and from line 44, the staged points-
to predicates can be dropped by performing the corresponding stores to the
memory, because the reachable states are now well-typed.

236 O. Nicole et al.

Static Analysis Operations. The addition of points-to predicates only changes
the behaviour of memory operations (load,store, and malloc). The definition
of these operations rely on determination of must and may-alias information
between pairs (αt, βu) of abstract values. This is done using both the types
(Theorem 1) and numerical information about addresses (e.g. addresses of an
array at two indices i and j with i < j will not alias), but this can be enhanced
with information coming from other domains (like allocation sites [1]).

A malloct of type t is interpreted simply by adding a staged points-to pred-
icate αt∗ 	→� βt where both α and β are fresh symbolic variables.

Loading a value of size � at address αt returns the value βu if a points-to
predicate εv 	→� βu exists in the domain and we can prove α = ε. Otherwise we
performs a “weak read” by evaluating the load on the type-based domain, and
joining the result with the values of all the staged points-to predicates whose
addresses may alias with αt. Finally, if βu is the result of this operation, the
analysis adds a new retained points-to predicate αt 	→� βu.

Storing a value δu of size � at address αt first needs to remove all points-
to predicates that may alias with αt. Retained points-to predicates are simply
dropped, but staged points-to predicate must be propagated by performing the
corresponding stores to the type-based shape domain. Then, a new staged points-
to predicate αt 	→� δu is added.

Example 9. Consider again the abstract state (Fig. 3) at line 19 of Fig. 1.
The statement x->parent = parent->parent first reads parent->parent from
memory, and retrieves δ, from the points-to predicate β 	→ δ. The store to
x->parent (corresponding to address α) first needs to drop points-to predicates
that may alias with α; on this abstract state, only β 	→ δ is concerned. Finally,
a new points-to predicate α 	→ δ is added. Note that α �= β is an invariant of
the program; if the type based shape domain were complemented with a more
precise abstraction, then the points-to predicate β 	→ δ would not need to be
dropped.

8 Experimental Evaluation

Research Questions. The goal of our experimental evaluation is to evaluate the
performance and precision of our analysis, the effort required for its parametriza-
tion, its ability to handle low-level (binary and system) code and complex sharing
patterns.

Methodology. We have implemented two analyses (available at https://zenodo.
org/record/5512941) using the Codex library for abstract interpretation: one for
C code using the Frama-C platform (Frama-C/Codex); one for binary code
using the Binsec platform (Binsec/Codex) . All analyses have been conducted
on a standard laptop (Intel Xeon E3-1505M 3Ghz, 32GB RAM). We took the
mean values between 10 runs, and report the mean (all standard deviations were
below 4%).

https://zenodo.org/record/5512941
https://zenodo.org/record/5512941

Lightweight Shape Analysis Based on Physical Types 237

We ran our analysis on all the C benchmarks from two shape analysis pub-
lications; moreover we analyze their compiled version using gcc 10.3.0 with
different levels of optimizations. These benchmarks are challenging: the graph-*
benchmarks from Li et al. [21] were used to verify unstructured sharing patterns;
to complete this evaluation we extend this with our running example. The other
benchmarks from Li et al. [20] were used to demonstrate scalability issues faced
by shape analyzers. Both benchmarks were created to demonstrate shape anal-
ysis, which is a more precise abstraction than the one we propose. Thus, they
are suitable to evaluate performance, ability to handle complex sharing patterns,
and precision.

This evaluation completes that in Nicole et al. [28], where we ran our analyzer
on the kernel executable of an industrial embedded kernel (Asterios, developed
by Krono-safe) to verify security properties (including full memory safety), with
only 58 lines of manual annotations, which demonstrated the ability to handle
low-level code, precision, performance and low amount of parametrization on a
larger use case.

Results. Table 1 provides the results of the evaluation. The benchmarks are
grouped by the data structure they operate on; we report the number of lines
describing physical types (generated from existing types information, or manu-
ally edited) shared by a group. The annotations mostly consist in constraining
some pointers types to be non-null. The pre column describes necessary pre-
conditions of the verified function (e.g. that a pointer argument must not be
null). The LOC column is the number of lines of code of each function, excluding
comments, blank lines and subroutines. The ratio of lines of manual annotations
per line of code for a group, goes from 0% to 7.8%, with a mean of 3.2% and
median of 2.7%.

The next columns in the table provide the Time taken by the full analysis
(in s), the number of alarms of the full analysis (→ column) and the analy-
sis without the retained and staged points-to predicates (�	→ column), for the
C version of the code and the various binaries produced by GCC. For brevity
we have omitted the time taken by the �	→ analysis in the benchmarks; on aver-
age this analysis takes 1.5% less time for the C, and 20% less for binary code
(maximum: 45%). The number of alarms is counted differently in C (one possi-
ble alarm each time the analyzer evaluates a statement) and in binary (where
alarms are uniquified per instruction), but in both 0 alarms means that the ana-
lyzer verified type-safety. We observe that the full analyzer succeeds in verifying
30 benchmarks (out of 34), both in C and binary code. Removing the points-to
predicates makes the analysis significantly less precise, as only 13 benchmarks
are verified in C, and between 16 (for -O0) and 21 (for -O1,-O2,-O3) in binary
code.

Discussion and Conclusions. Our combination of domains is effective at veri-
fying type safety (which entails spatial memory safety) on C and binary code,
even for benchmarks that have complex sharing patterns, with a low amount of
annotations. The analysis performs evenly well on all benchmarks, and scales

238 O. Nicole et al.

Table 1. Results of the evaluation

Benchmark Annotations LOC C O0 O1 O2 O3

gen/ ed/ pre Time/ �→/��→ Time/ �→/��→ Time/ �→/��→ Time/ �→/��→ Time/ �→/��→
sll-delmin 11 0 1 25 0.27 0 0 0.13 0 0 0.15 0 0 0.15 0 0 0.13 0 0

sll-delminmax 1 49 0.30 0 0 0.19 0 0 0.17 0 0 0.17 0 0 0.16 0 0

psll-bsort 10 0 0 25 0.30 0 22 0.41 0 3 0.25 0 3 0.26 0 3 0.29 0 3

psll-reverse 0 11 0.28 0 2 0.10 0 1 0.13 0 1 0.10 0 1 0.10 0 1

psll-isort 0 20 0.29 0 2 0.34 0 1 0.34 0 1 0.32 0 1 0.33 0 1

bstree-find 12 0 1 26 0.27 0 0 0.14 0 0 0.13 0 0 0.15 0 0 0.16 0 0

gdll-findmin 25 5 1 49 0.50 0 0 0.41 0 0 0.39 0 0 0.41 0 0 0.42 0 0

gdll-findmax 1 58 0.55 0 0 0.33 0 0 0.22 0 0 0.21 0 0 0.20 0 0

gdll-find 1 78 0.56 0 0 0.15 0 0 0.15 0 0 0.14 0 0 0.14 0 0

gdll-index 1 55 0.53 0 0 0.32 0 0 0.33 0 0 0.30 0 0 0.29 0 0

gdll-delete 1 107 0.57 0 2 0.16 0 0 0.14 0 0 0.13 0 0 0.13 0 0

javl-find 45 12 2 25 0.35 0 0 0.23 0 0 0.28 0 0 0.18 0 0 0.19 0 0

javl-free 1 27 0.35 0 4 0.11 0 3 0.12 0 0 0.10 0 0 0.11 0 0

javl-insert 2 95 0.53 6 56 0.52 12 20 0.39 30 34 0.43 29 34 0.43 29 34

javl-insert-32× 2 95 16.68 192 1792 28.28 14 20 33.14 34 34 32.00 32 34 40.01 32 34

gbstree-find 23 5 1 53 0.58 0 0 0.38 0 0 0.40 0 0 0.56 0 0 0.59 0 0

gbstree-delete 1 165 0.81 0 0 0.90 0 0 0.72 0 0 0.67 0 0 0.66 0 0

gbstree-insert 1 133 0.55 0 7 0.26 0 0 0.21 0 0 0.23 0 0 0.24 0 0

brbtree-find 24 3 2 29 0.32 0 0 0.17 0 0 0.19 0 0 0.23 0 0 0.23 0 0

brbtree-delete 2 329 0.79 103 127 1.15 44 73 1.23 46 53 0.85 58 63 0.84 58 63

brbtree-insert 2 177 0.61 24 47 0.90 11 23 0.47 16 17 1.22 21 17 0.97 21 17

bsplay-find 22 1 1 81 0.53 0 18 0.25 0 7 0.23 0 7 0.23 0 7 0.23 0 7

bsplay-delete 1 95 0.72 0 38 0.45 0 11 0.44 0 10 0.44 0 10 0.44 0 10

bsplay-insert 1 101 0.57 0 18 0.25 0 7 0.25 0 7 0.25 0 7 0.25 0 7

graph-nodelisttrav 23 0 1 12 0.20 0 0 0.10 0 0 0.10 0 0 0.10 0 0 0.11 0 0

graph-path 1 19 0.21 0 14 0.15 0 5 0.16 0 0 0.14 0 0 0.16 0 0

graph-pathrand 1 25 0.22 0 10 0.13 0 0 0.21 0 0 0.12 0 0 0.11 0 0

graph-edgeadd 1 15 0.27 0 2 0.12 0 1 0.11 0 1 0.10 0 1 0.10 0 1

graph-nodeadd 1 15 0.26 0 2 0.10 0 1 0.08 0 1 0.09 0 1 0.10 0 1

graph-edgedelete 1 11 0.20 0 2 0.10 0 1 0.10 0 0 0.10 0 0 0.11 0 0

graph-edgeiter 1 22 0.23 0 0 0.13 0 0 0.11 0 0 0.12 0 0 0.12 0 0

uf-find 33 3 1 11 0.31 0 24 0.07 0 6 0.09 0 0 0.08 0 0 0.07 0 0

uf-merge 1 17 0.34 0 50 0.13 0 7 0.18 0 0 0.18 0 0 0.15 0 0

uf-make 0 9 0.31 0 4 0.05 0 3 0.06 0 3 0.07 0 3 0.06 0 3

Total verified 30 13 30 16 30 21 30 21 30 21

well on javl − insert−32×, which is challenging even for shape analysis with
disjunctive clumping [20]. We interpret the fact that binary analysis is faster
than the C analysis by implementation issues in the C analyzer.

The points-to predicates are very important for precision, as otherwise the
number of false alarms raises significantly. The analysis succeeds equally on
binary programs and on C programs, despite the complex code patterns that the
C compiler may produce. Note that without points-to predicates, more binary
codes are verified than in C: indeed in some cases the compiler performs a register
promotion of a heap value, which removes the need for a points-to predicate.

9 Related Works and Conclusion

Memory Analyses Based on Type Inference. Several analyses that partially ver-
ify spatial memory safety using static type inference have been proposed. As

Lightweight Shape Analysis Based on Physical Types 239

unification-based type inference is less expressive than abstract interpretation,
it is insufficiently precise to verify spatial memory safety, which is generally
addressed by also using dynamic verification (e.g. Cyclone [15], CCured [27],
CheckedC [13]). Still, the structural subtyping notion that we use is similar to
the physical subtyping by Chandra and Reps [4], even if the physical type safety
property that they verify does not include spatial memory safety (e.g. it does
not check pointer arithmetics or null pointer dereferences). Liquid types [31]
provide refinement types similar to ours, that are type checked by enhancing
type inference with abstract interpretation and SMT solving. They discuss sev-
eral limitations that our work solves: lack of structural subtyping (that we solve
using our ordering on concrete and abstract types), and conservative decisions of
when to fold and unfold variables (that we solve by using abstract interpretation
instead of type inference [7], which allows our focusing decisions to be based on
the current results of the analysis).

Other Type-Based Memory Analyses. Type-based alias analyses [11] propose a
system to determine aliasing based on subtyping relations, which is present in our
work (Theorem 1). These analyses assume that type safety is verified by other
means (e.g. type checking), while our abstract interpretation also verifies type
safety, on unsafe languages like C and binary code. Data structure analysis [18]
produces a flow-insensitive description of data structure layout similar to our
description of types (excluding numerical predicates), which could be used to
split our types into distinct subtypes, making our analysis more precise. The
structural analysis by Marron et al. [25] is also an intermediate between pointer
and shape analyses, which is more precise than our type-based shape domain as
it builds a flow-sensitive abstract heap information (the storage shape graph),
while our description of types is flow-invariant. But their analysis proceeds on
a type-safe language with no type cast, pointer arithmetic, interior pointers,
or uninitialized data. Contrary to their results, our experience indicates that
strong updates are important to verify the preservation of structural invariants,
which we believe comes from the lower-level nature of our source languages. In a
previous work [28] we used our type-based domain to verify security properties of
an industrial embedded kernel; this work formally presents the analysis, extended
with retained and staged points-to predicates and support for dynamic memory
allocation.

Shape Analyses. Many challenges arise in programs manipulating memory. These
have been individually adressed by existing work on shape analyses, for instance
to limit disjunctions [20,24], to adapt to custom data structures [6,33], to inter-
pret low-level memory operations [12,17,19], to allow composite data structures
[2,36], interaction with arrays [23], data structure invariants [6], or unstructured
sharing [21]. Our type-based analysis is less precise than a full shape analysis,
as e.g. it cannot verify temporal memory safety (i.e. use-after-free errors), but it
simultaneously handles all the above aspects in a simpler analysis, which is suffi-
ciently precise to verify preservation of structural invariants and spatial memory
safety.

240 O. Nicole et al.

References

1. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. Ph.D. thesis, DIKU (1994)

2. Berdine, J., et al.: Shape analysis for composite data structures. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 22

3. Brown, N.: Linux kernel design patterns - part 2. Linux Weekly News, June 2009
4. Chandra, S., Reps, T.: Physical type checking for C. In: ACM SIGSOFT Software

Engineering Notes, vol. 24, pp. 66–75. ACM (1999)
5. Chang, B.Y.E., Rival, X.: Modular construction of shape-numeric analyzers. In:

Semantics, Abstract Interpretation, and Reasoning about Programs: Essays Dedi-
cated to David A. Schmidt on the Occasion of his Sixtieth Birthday, EPTCS, vol.
129, pages 161–185 (2013)

6. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 24

7. Cousot, P.: Types as abstract interpretations. In: Symposium on Principles of
Programming Languages (POPL). ACM (1997)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principles of Programming Languages (POPL). ACM (1977)

9. Deutsch, A.: Interprocedural may-alias analysis for pointers: beyond k-limiting. In:
Conference on Programming Languages Design and Implementation (PLDI), pp.
230–241. ACM (1994)

10. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

11. Diwan, A., McKinley, K.S., Moss, J.E.B.: Type-based alias analysis. In: Confer-
ence on Programming Languages Design and Implementation (PLDI), pp. 106–117
(1998)

12. Dudka, K., Peringer, P., Vojnar, T.: Byte-precise verification of low-level list manip-
ulation. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 215–
237. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9 13

13. Elliott, A.S., Ruef, A., Hicks, M., Tarditi, D.: Checked C: making C safe by exten-
sion. In: 2018 IEEE Cybersecurity Development (SecDev ’18), pp. 53–60. IEEE,
September 2018

14. Freeman, T., Pfenning, F.: Refinement types for ML. In: Wise, D.S. (ed.) Proceed-
ings of the ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation (PLDI), Toronto, Ontario, Canada, 26–28 June 1991, pp. 268–277.
ACM (1991)

15. Jim, T., Morrisett, J.G., Grossman, D., Hicks, M.W., Cheney, J., Wang, Y.:
Cyclone: a safe dialect of C. In: USENIX Annual Technical Conference, General
Track, pp. 275–288 (2002)

16. Kennedy, A.: Compiling with continuations, continued. In: International Collo-
quium on Functional Programming (ICFP), p. 14 (2007)

17. Kreiker, J., Seidl, H., Vojdani, V.: Shape analysis of low-level C with overlapping
structures. In: Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI), pp. 214–230 (2010)

18. Lattner, C.: Macroscopic data structure analysis and optimization. Ph.D. thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL,
May 2005. http://llvm.cs.uiuc.edu

https://doi.org/10.1007/978-3-540-73368-3_22
https://doi.org/10.1007/978-3-540-74061-2_24
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-3-642-38856-9_13
http://llvm.cs.uiuc.edu

Lightweight Shape Analysis Based on Physical Types 241

19. Laviron, V., Chang, B.-Y.E., Rival, X.: Separating shape graphs. In: Gordon, A.D.
(ed.) ESOP 2010. LNCS, vol. 6012, pp. 387–406. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11957-6 21

20. Li, H., Berenger, F., Chang, B.Y.E., Rival, X.: Semantic-directed clumping of dis-
junctive abstract states. In: Symposium on Principles of Programming Languages
(POPL), pp. 32–45 (2017)

21. Li, H., Rival, X., Chang, B.-Y.E.: Shape analysis for unstructured sharing. In:
Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 90–108. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 6

22. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. (TOPLAS) 16(6), 1811–1841 (1994)

23. Liu, J., Rival, X.: An array content static analysis based on non-contiguous parti-
tions. Comput. Lang. Syst. Struct. 47, 104–129 (2017)

24. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially disjunctive heap
abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27864-1 20

25. Marron, M.: Structural analysis: shape information via points-to computation.
arXiv e-prints, arXiv:1201.1277 (2012)

26. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient context-
sensitive shape analysis with graph based heap models. In: Hendren, L. (ed.) CC
2008. LNCS, vol. 4959, pp. 245–259. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78791-4 17

27. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: type-
safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. (TOPLAS)
27(3), 477–526 (2005)

28. Nicole, O., Lemerre, M., Bardin, S., Rival, X.: No crash, no exploit: automated
verification of embedded kernels. In: 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 27–39 (2021)

29. Nicole, O., Lemerre, M., Rival, X.: Lightweight shape analysis based on physical
types (full version). Technical report, CEA List, ENS (2021). https://binsec.github.
io/assets/publications/papers/2021-vmcai-full-with-appendices.pdf

30. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Sym-
posium on Logics In Computer Science (LICS), pp. 55–74. IEEE (2002)

31. Rondon, P.M., Kawaguchi, M., Jhala, R.: Low-level liquid types. In: Proceedings
of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’10), Madrid, Spain, pp. 131–144. Association for
Computing Machinery (2010)

32. Sagiv, M., Reps, T., Whilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM Trans. Program. Lang. Syst. (TOPLAS) 20(1),
50 (1998)

33. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. (TOPLAS) 24(3), 217–298 (2002)

34. Smaragdakis, Y., Balatsouras, G.: Pointer analysis. FNT in programming lan-
guages 2(1), 1–69 (2015)

35. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. JACM
31, 245–281 (1984)

36. Toubhans, A., Chang, B.-Y.E., Rival, X.: Reduced product combination of abstract
domains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 375–395. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35873-9 23

https://doi.org/10.1007/978-3-642-11957-6_21
https://doi.org/10.1007/978-3-662-48288-9_6
https://doi.org/10.1007/978-3-540-27864-1_20
http://arxiv.org/abs/1201.1277
https://doi.org/10.1007/978-3-540-78791-4_17
https://doi.org/10.1007/978-3-540-78791-4_17
https://binsec.github.io/assets/publications/papers/2021-vmcai-full-with-appendices.pdf
https://binsec.github.io/assets/publications/papers/2021-vmcai-full-with-appendices.pdf
https://doi.org/10.1007/978-3-642-35873-9_23
https://doi.org/10.1007/978-3-642-35873-9_23

Fast Three-Valued
Abstract Bit-Vector

Arithmetic

Jan Onderka1(B)

and Stefan Ratschan2

1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic
onderjan@fit.cvut.cz

2 Institute of Computer Science, The Czech Academy of Sciences,
Prague, Czech Republic

stefan.ratschan@cs.cas.cz

Abstract. Abstraction is one of the most important approaches for
reducing the number of states in formal verification. An important
abstraction technique is the usage of three-valued logic, extensible to
bit-vectors. The best abstract bit-vector results for movement and logical
operations can be computed quickly. However, for widely-used arithmetic
operations, efficient algorithms for computation of the best possible out-
put have not been known up to now.

In this paper, we present new efficient polynomial-time algorithms
for abstract addition and multiplication with three-valued bit-vector
inputs. These algorithms produce the best possible three-valued bit-
vector output and remain fast even with 32-bit inputs.

To obtain the algorithms, we devise a novel modular extreme-finding
technique via reformulation of the problem using pseudo-Boolean mod-
ular inequalities. Using the introduced technique, we construct an algo-
rithm for abstract addition that computes its result in linear time,
as well as a worst-case quadratic-time algorithm for abstract multipli-
cation. Finally, we experimentally evaluate the performance of the algo-
rithms, confirming their practical efficiency.

Keywords: Formal verification · Three-valued abstraction · Computer
arithmetics · Addition and multiplication · Pseudo-Boolean modular
inequality

1 Introduction

In traditional microprocessors, the core operations are bitwise logical operations
and fixed-point wrap-around arithmetic. Behaviour of programs in machine code

This work was supported by the Czech Technical University (CTU) grant
No. SGS20/211/OHK3/3T/18 and institutional financing of the Institute of Computer
Science (RVO:67985807).

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 242–262, 2022.
https://doi.org/10.1007/978-3-030-94583-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_12&domain=pdf
http://orcid.org/0000-0003-2069-8584
http://orcid.org/0000-0003-1710-1513
https://doi.org/10.1007/978-3-030-94583-1_12

Fast Three-Valued Abstract Bit-Vector Arithmetic 243

can be formally verified by model checking, enumerating all possible system
states and transitions (state space) and then verifying their properties. Unfor-
tunately, näıve exhaustive enumeration of states quickly leads to prohibitively
large state spaces (state space explosion), making verification infeasible.

State space explosion may be mitigated by a variety of techniques. One
of them is abstraction, where a more efficient state space structure preserving
certain properties of the original is constructed [3, p. 17]. Typically, the formal
verification requirement is that it should be impossible to prove anything not
provable in the original state space (soundness for true), while allowing overap-
proximation, leading to the possibility of a false counterexample.

For machine-code model checking, three-valued abstract representation
of bits was introduced in [7] where each abstract bit can have value “zero”, “one”,
or “perhaps one, perhaps zero” (unknown). Using this abstraction, bit and bit-
vector movement operations may be performed directly on abstract bits. Each
movement operation produces a single abstract result, avoiding state space explo-
sion. The caveat is that overapproximation is incurred as relationships between
unknown values are lost.

Three-valued representation was further augmented in [11] via bitwise logic
operations (AND, OR, NOT. . .) with a single abstract result, further reducing
state space explosion severity. However, other operations still required instantia-
tion of the unknown values to enumerate all concrete input possibilities, treating
each arising output possibility as distinct. This would lead not only to output
computation time increasing exponentially based on the number of unknown bits,
but also to potential creation of multiple new states and the possibility of severe
state space explosion. For example, an operation with two 32-bit inputs and
a 32-bit output could require up to 264 concrete operation computations and
could produce up to 232 new states.

The necessity of instantiation when encountering arithmetic operations had
severely reduced usefulness of a microcontroller machine-code model checker with
three-valued abstraction developed by one of the authors [8]. This prompted our
research in performing arbitrary operations without instantiation, with emphasis
on fast computation of results of arithmetic operations.

1.1 Our Contribution

In this paper, we formulate the forward operation problem, where an arbitrary
operation performed on three-valued abstract bit-vector inputs results in a sin-
gle three-valued abstract bit-vector output which preserves soundness of model
checking. While the best possible output can always be found in worst-case time
exponential in the number of three-valued input bits, this is slow for 8-bit binary
operations and infeasible for higher powers of two.

To aid with construction of polynomial-time worst-case algorithms, we devise
a novel modular extreme-search technique. Using this technique, we find a linear-
time algorithm for abstract addition and a worst-case quadratic-time algorithm
for abstract multiplication.

244 J. Onderka and S. Ratschan

Our results will allow model checkers that use the three-valued abstraction
technique to compute the state space faster and to manage its size by only per-
forming instantiation when necessary, reducing the risk of state space explosion.

2 Related Work

Many-valued logics have been extensively studied on their own, including Kleene
logic [6] used for three-valued model checking [11]. In [10], three-valued logic was
used for static program analysis of 8-bit microcontroller programs. Binary deci-
sion diagrams (BDDs) were used to compress input-output relationships for arbi-
trary abstract operations. This resulted in high generation times and storage
usage, making the technique infeasible to use with 16-bit or 32-bit operands.
These restrictions are not present in our approach where we produce the abstract
operation results purely algorithmically, but precomputation may still be useful
for abstract operations with no known worst-case polynomial-time algorithms.

In addition to machine-code analysis and verification, multivalued logics are
also widely used for register-transfer level digital logic simulation. The IEEE 1164
standard [5] introduces nine logic values, out of which ‘0’ (zero), ‘1’ (one),
and ‘X’ (unknown) directly correspond to three-valued abstraction. For easy
differentiation between concrete values and abstract values, we will use the
IEEE 1164 notation in this paper, using single quotes to represent an abstract
bit as well as double quotes to represent an abstract bit-vector (tuple of abstract
bits), e.g. “0X1” means (‘0’, ‘X’, ‘1’). While we primarily consider microprocessor
machine-code model checking as our use case, we note that the presented algo-
rithms also might be useful for simulation, automated test pattern generation,
and formal verification of digital circuits containing adders and multipliers.

In [14], it was proposed that instantiation may be performed based only
on interesting variables. For example, if a status flag “zero” is of interest, a tuple
of values “XX” from which the flag is computed should be replaced by the possi-
bilities {“00”, “1X”, “X1”}. This leads to lesser state space explosion compared
to näıve instantiation, but is not relevant for our discussion as we discuss avoid-
ing instantiation entirely during operation resolution.

In the paper, we define certain pseudo-Boolean functions and search for their
global extremes. This is also called pseudo-Boolean optimization [2]. Problems
in this field are often NP-hard. However, pseudo-Boolean functions for addition
and multiplication that we will use in this paper have special forms that will allow
us to resolve the corresponding problems in polynomial time without having
to resort to advanced pseudo-Boolean optimization techniques.

3 Basic Definitions

Let us consider a binary concrete operation which produces a single M -bit output
for each combination of two N -bit operands, i.e. r : BN × B

N → B
M . We define

the forward operation problem as the problem of producing a single abstract bit-
vector output given supplied abstract inputs, preserving soundness. The output

Fast Three-Valued Abstract Bit-Vector Arithmetic 245

is not pre-restricted (the operation computation moves only forward). To pre-
serve soundness, the abstract output must contain all possible concrete outputs
that would be generated by first performing instantiation, receiving a set of con-
crete possibilities, and then performing the operation on each possibility.

To easily formalize this requirement, we first formalize three-valued abstrac-
tion using sets. Each three-valued abstract bit value (‘0’,‘1’,‘X’) identifies all
possible values the corresponding concrete bit can take. We define the abstract
bit as a subset of B = {0, 1} and the abstract bit values as

‘0’ def= {0}, ‘1’ def= {1}, ‘X’ def= {0, 1}. (1)

This formalization corresponds exactly to the meaning of ‘X’ as “possibly 0,
possibly 1”. Even though ∅ is also a subset of B, it is never assigned to any
abstract bit as there is always at least a single output possibility.

If an abstract bit is either ‘0’ or ‘1’, we consider it known; if it is ‘X’, we
consider it unknown. For ease of representation in equations, we also introduce
an alternative math-style notation X̂

def= {0, 1}.
Next, we define abstract bit-vectors as tuples of abstract bits. For clarity, we

use hat symbols to denote abstract bit-vectors and abstract operations. We use
zero-based indexing for simplicity of representation and correspondence to typ-
ical implementations, i.e. â0 means the lowest bit of abstract bit-vector â. We
denote slices of the bit-vectors by indexing via two dots between endpoints, i.e.
â0..2 means the three lowest bits of abstract bit-vector â. In case the slice reaches
higher than the most significant bit of an abstract bit-vector, we assume it to be
padded with ‘0’, consistent with interpretation as an unsigned number.

3.1 Abstract Bit Encodings

In implementations of algorithms, a single abstract bit may be represented
by various encodings. First, we formalize a zeros-ones encoding of abstract bit âi

using concrete bits a0
i ∈ B, a1

i ∈ B via

a0
i = 1 ⇐⇒ 0 ∈ âi, a1

i = 1 ⇐⇒ 1 ∈ âi, (2)

which straightforwardly extends to bit-vectors a0, a1. Assuming â has A ∈ N0

bits, â ∈ (2B)A, while a0 ∈ B
A, a1 ∈ B

A, i.e. they are concrete bit-vectors.
We also formalize a mask-value encoding: the mask bit am

i = 1 exactly when
the abstract bit is unknown. When the abstract bit is known, the value bit av

i

corresponds to the abstract value (0 for ‘0’, 1 for ‘1’), as previously used in [11].
For simplicity, we further require av

i = 0 if am
i = 1. We formalize the encoding

of abstract bit âi using concrete bits am
i ∈ B, av

i ∈ B via

am
i = 1 ⇐⇒ 0 ∈ âi ∧ 1 ∈ âi, av

i = 1 ⇐⇒ 0 /∈ âi ∧ 1 ∈ âi, (3)

which, again, straightforwardly extends to bit-vectors am ∈ B
A and av ∈ B

A.
We note that the encodings can be quickly converted via

a0
i = 1 ⇐⇒ am

i = 1 ∨ av
i = 0, a1

i = 1 ⇐⇒ am
i = 1 ∨ av

i = 1,

am
i = 1 ⇐⇒ a0

i = 1 ∧ a1
i = 1, av

i = 1 ⇐⇒ a0
i = 0 ∧ a1

i = 1.
(4)

246 J. Onderka and S. Ratschan

We note that when interpreting each concrete possibility in abstract bit-vector
â as an unsigned binary number, av corresponds to the minimum, while a1

corresponds to the maximum. For conciseness and intuitiveness, we will not
explicitly note the conversions in the presented algorithms. Furthermore, where
usage of arbitrary encoding is possible, we will write the hat-notated abstract
bit-vector, e.g. â.

3.2 Abstract Transformers

We borrow the notions defined in this subsection from abstract interpretation
[4,12], adapting them for the purposes of this paper.

The set of concrete bit-vector possibilities given by a tuple containing A

abstract bits, â ∈ (2B)A, is given by a concretization function γ : (2B)A → 2(B
A),

γ(â) def= {a ∈ B
A | ∀i ∈ {0, . . . , A − 1} . ai ∈ âi}. (5)

Conversely, the transformation of a set of bit-vector possibilities C ∈ 2(B
A)

to a single abstract bit-vector â ∈ (2B)A is determined by an abstraction func-
tion α : 2(B

A) → (2B)A which, to prevent underapproximation and to ensure
soundness of model checking, must fulfill C ⊆ γ(α(C)).

An abstract operation r̂ : (2B)N ×(2B)N → (2B)M corresponding to concrete
operation r : B

N × B
N → B

M is an approximate abstract transformer if it
overapproximates r, that is,

∀â ∈ (2B)N , b̂ ∈ (2B)N . {r(a, b) | a ∈ γ(â), b ∈ γ(b̂)} ⊆ γ(r̂(â, b̂)). (6)

The number of concrete possibilities |γ(α(C))| should be minimized to prevent
unnecessary overapproximation. For three-valued bit-vectors, the best abstrac-
tion function αbest is uniquely given by

∀i ∈ {0, . . . , A − 1} . (αbest(C))i
def= {ci ∈ B | c ∈ C}. (7)

By using αbest to perform the abstraction on the minimal set of concrete results
from Eq. 6, we obtain the best abstract transformer for arbitrary concrete oper-
ation r, i.e. an approximate abstract transformer resulting in the least amount
of overapproximation, uniquely given as

r̂bestk (â, b̂) = αbest({rk(a, b) | a ∈ γ(â), b ∈ γ(b̂)}). (8)

We note that when no input abstract bit is ∅, there is at least one concrete result
r(a, b) and no output abstract bit can be ∅. Thus, three-valued representation is
truly sufficient.

3.3 Algorithm Complexity Considerations

We will assume that the presented algorithms are implemented on a general-
purpose processor that operates on binary machine words and can compute

Fast Three-Valued Abstract Bit-Vector Arithmetic 247

bitwise operations, bit shifts, addition and subtraction in constant time. Every
bit-vector used fits in a machine word. This is a reasonable assumption, as it is
likely that the processor used for verification will have machine word size equal to
or greater than the processor that runs the program under consideration.

We also assume that the ratio of M to N is bounded, allowing us to express
the presented algorithm time complexities using only N . Memory complexity is
not an issue as the presented algorithms use only a fixed amount of temporary
variables in addition to the inputs and outputs.

3.4 Näıve Universal Abstract Algorithm

Equation 8 immediately suggests a näıve algorithm for computing r̂best for any
given â, b̂: enumerating all a, b ∈ 2(B

N), filtering out the ones that do not satisfy
a ∈ γ(â) ∧ b ∈ γ(b̂), and marking the results of r(a, b), which is easily done
in the zeros-ones encoding. This näıve algorithm has a running time of Θ(22N).

Average-case computation time can be improved by only enumerating
unknown input bits, but worst-case time is still exponential. Even for 8-bit binary
operations, the worst-case input combination (all bits unknown) would require
216 concrete operation computations. For 32-bit binary operations, it would
require 264 computations, which is infeasible. Finding worst-case polynomial-
time algorithms for common operations is therefore of significant interest.

4 Formal Problem Statement

Theorem 1. The best abstract transformer of abstract bit-vector addition is
computable in linear time.

Theorem 2. The best abstract transformer of abstract bit-vector multiplication
is computable in worst-case quadratic time.

In Sect. 5, we will introduce a novel modular extreme-finding technique which will
use a basis for finding fast best abstract transformer algorithms. Using this tech-
nique, we will prove Theorems 1 and 2 by constructing corresponding algorithms
in Sects. 6 and 7, respectively. We will experimentally evaluate the presented
algorithms to demonstrate their practical efficiency in Sect. 8.

5 Modular Extreme-Finding Technique

The concrete operation function r may be replaced by a pseudo-Boolean function
h : BN × B

N → N0 where the output of r is the output of h written in base 2.
Surely, that fulfills

∀a ∈ B
N , b ∈ B

N ,∀k ∈ {0, . . . , M − 1} .

rk(a, b) = 1 ⇐⇒ (h(a, b) mod 2k+1) ≥ 2k.
(9)

248 J. Onderka and S. Ratschan

The best abstract transformer definition in Eq. 8 is then equivalent to

∀k ∈ {0, . . . , M − 1} .

(0 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) ≥ 2k).

(10)

The forward operation problem is therefore transformed into a problem of solving
certain modular inequalities, which is possible in polynomial time for certain
operations. We will later show that these include addition and multiplication.

If the inequalities were not modular, it would suffice to find the global min-
imum and maximum (extremes) of h. Furthermore, the modular inequalities
in Eq. 10 can be thought of as alternating intervals of length 2k. Intuitively, if it
was possible to move from the global minimum to the global maximum in steps
of at most 2k by using different values of a ∈ â, b ∈ b̂ in h(a, b), it would suffice to
find the global extremes and determine whether they are in the same 2k interval.
If they were, only one of the modular inequalities would be satisfied, resulting
in known rk (either ‘0’ or ‘1’). If they were not, each modular inequality would
be satisfied by some a, b, resulting in rk = X̂.

We will now formally prove that our reasoning for this modular extreme-
finding method is indeed correct.

Lemma 1. Consider a sequence of integers t = (t0, t1, . . . , tT−1) that fulfills

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k. (11)

Then,
∃v ∈ [min t,max t] . (v mod 2k+1) < 2k ⇐⇒
∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k.

(12)

Proof. As the sequence t is a subset of range [min t,max t], the backward direc-
tion is trivial. The forward direction trivially holds if v is contained in t. If it
is not, it is definitely contained in some range (v−, v+), where v−, v+ are suc-
cessive values in the sequence t. Since |v+ − v−| ≤ 2k, (v− mod 2k+1) < 2k, and
(v+ mod 2k+1) < 2k, the value v in range (v−, v+) definitely must also fulfill
(v mod 2k+1) < 2k. ��
Theorem 3. Consider a pseudo-Boolean function f : BN × B

N → Z, two inputs
â, b̂ ∈ (2B)N , and a sequence p = (p0, p1, . . . , pP−1) where each element is a pair
(a, b) ∈ (γ(â), γ(b̂)), that fulfill

∀n ∈ [0, P − 2] . |f(pn+1) − f(pn)| ≤ 2k,

f(p0) = min
a∈γ(â)

b∈γ(b̂)

f(a, b),

f(pP−1) = max
a∈γ(â)

b∈γ(b̂)

f(a, b).

(13)

Fast Three-Valued Abstract Bit-Vector Arithmetic 249

Then,

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k

⇐⇒ ∃n ∈ [0, P − 1] . ((f(pn) + C) mod 2k+1) < 2k).
(14)

Proof. Since each element of p is a pair (a, b) ∈ (γ(â), γ(b̂)), the backward direc-
tion is trivial. For the forward direction, use Lemma 1 to convert the sequence
(f(pn)+C)P−1

n=0 to range [f(p0)+C, f(pP−1)+C] and rewrite the forward direc-
tion as

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k =⇒

∃v ∈
[

min
a∈γ(â)

b∈γ(b̂)

(f(a, b) + C) , max
a∈γ(â)

b∈γ(b̂)

(f(a, b) + C)
]

. (v mod 2k+1) < 2k). (15)

The implication clearly holds, completing the proof. ��
While Theorem 3 forms a basis for the modular extreme-finding method,

there are two problems. First, finding global extremes of a pseudo-Boolean func-
tion is not generally trivial. Second, the step condition, that is, the absence
of a step longer than 2k in h, must be ensured. Otherwise, one of the inequality
intervals could be “jumped over”. For non-trivial operators, steps longer than 2k

surely are present in h for some k. However, instead of h, it is possible to use a
tuple of functions (hk)M−1

k=0 where each one fulfills Eq. 10 for a given k exactly
when h does. This is definitely true if each hk is congruent with h modulo 2k+1.

Fast best abstract transformer algorithms can now be formed based on find-
ing extremes of hk, provided that hk changes by at most 2k when exactly one
bit of input changes its value, which implies that a sequence p with proper-
ties required by Theorem 3 exists. For ease of expression of the algorithms, we
define a function which discards bits of a number x below bit k (or, equivalently,
performs integer division by 2k),

ζk(x) =
⌊ x

2k

⌋
. (16)

For conciseness, given inputs â ∈ (2B)N , b̂ ∈ (2B)N , we also define

hmin
k

def= min
a∈γ(â)

b∈γ(b̂)

hk(a, b), hmax
k

def= max
a∈γ(â)

b∈γ(b̂)

hk(a, b),
(17)

Equation 10 then can be reformulated as follows: if ζk(hmin
k) �= ζk(hmax

k), both
inequalities are definitely fulfilled (as each one must be fulfilled by some element
of the sequence) and output bit k is unknown. Otherwise, only one inequality
is fulfilled, the output bit k is known and its value corresponds to ζk(hmin

k) mod 2.
This forms the basis of Algorithm 1, which provides a general blueprint for fast
abstract algorithms. Proper extreme-finding for the considered operation must
be added to the algorithm, denoted by (. . .) in the algorithm pseudocode. We will
devise extreme-finding for fast abstract addition and multiplication operations
in the rest of the paper.

250 J. Onderka and S. Ratschan

Algorithm 1. Modular extreme-finding abstract algorithm blueprint

1: function Modular Algorithm Blueprint(â, b̂)
2: for k ∈ {0, . . . , M − 1} do
3: hmin

k ← (. . .) � Compute extremes of hk

4: hmax
k ← (. . .)

5: if ζk(hmin
k) �= ζk(hmax

k) then
6: ck ← X̂ � Set result bit unknown
7: else
8: cmk ← 0, cvk ← ζk(hmin

k) mod 2 � Set value
9: end if

10: end for
11: return ĉ
12: end function

6 Fast Abstract Addition

To express fast abstract addition using the modular extreme-finding technique,
we first define a function expressing the unsigned value of a concrete bit-vector a
with an arbitrary number of bits A,

Φ(a) def=
A−1∑
i=0

2iai. (18)

Pseudo-Boolean addition is then defined simply as

h+(a, b) def= Φ(a) + Φ(b). (19)

To fulfill the step condition, we define

h+
k (a, b) = Φ(a0..k) + Φ(b0..k). (20)

This is congruent with h+ modulo 2k+1. The step condition is trivially fulfilled
for every function h+

k in (h+
k)M−1

k=0 , as changing the value of a single bit of a or
b changes the result of h+

k by at most 2k. We note that this is due to h+ having
a special form where only single-bit summands with power-of-2 coefficients are
present. Finding the global extremes is trivial as each summand only contains
a single abstract bit. Recalling Subsect. 3.1, the extremes can be obtained as

h+,min
k ← Φ(av

0..k) + Φ(bv0..k),

h+,max
k ← Φ(a1

0..k) + Φ(b10..k).
(21)

The best abstract transformer for addition is obtained by combining Eq. 21 with
Algorithm 1. Time complexity is trivially Θ(N), proving Theorem 1. Similar

Fast Three-Valued Abstract Bit-Vector Arithmetic 251

reasoning can be used to obtain fast best abstract transformers for subtraction
and general summation, only changing computation of hmin

k and hmax
k .

For further understanding, we will show how fast abstract addition behaves
for “X0” + “11”:

k = 0 : “0” + “1”, 1 = ζ0(0 + 1) = ζ0(0 + 1) = 1 → r0 = ‘1’,
k = 1 : “X0” + “11”, 1 = ζ1(0 + 3) �= ζ1(2 + 3) = 2 → r1 = ‘X’,
k = 2 : “0X0” + “011”, 0 = ζ2(0 + 3) �= ζ2(2 + 3) = 1 → r2 = ‘X’,

k > 2 : ζk(h+,min
k) = ζk(h+,max

k) = 0 → rk = ‘0’.

(22)

For M = 2, the result is “XX1”. For M > 2, the result is padded by ‘0’ to the left,
preserving the unsigned value of the output. For M < 2, the addition is modular.
This fully corresponds to behaviour of concrete binary addition.

7 Fast Abstract Multiplication

Multiplication is typically implemented on microprocessors with three different
input signedness combinations: unsigned × unsigned, signed × unsigned, and
signed × signed, with signed variables using two’s complement encoding. It is
a well-known fact that the signed-unsigned and signed multiplication can be con-
verted to unsigned multiplication by extending the signed multiplicand widths
to product width using an arithmetic shift right. This could pose problems when
the leading significant bit is ‘X’, but it can be split beforehand into two cases,
‘0’ and ‘1’. This allows us to only consider unsigned multiplication in this section,
signed multiplication only incurring a constant-time slowdown.

7.1 Obtaining a Best Abstract Transformer

Abstract multiplication could be resolved similarly to abstract addition by
rewriting multiplication as addition of a sequence of shifted summands (long
multiplication) and performing fast abstract summation. However, this does not
result in a best abstract transformer. The shortest counterexample is “11” · “X1”.
Here, the unknown bit b1 is added twice before influencing r2, once as a summand
in the computation of r2 and once as a carryover from r1:

(23) (22) (21) (20)

1 1
· b1 1
(b1) (b1) b1 1

b1 1
b1 2b1 1 + b1 1

In fast abstract summation, the summand b1 is treated as distinct for each output
bit computation, resulting in unnecessary overapproximation of multiplication.

252 J. Onderka and S. Ratschan

Instead, to obtain a fast best abstract transformer for multiplication, we
apply the modular extreme-finding technique to multiplication itself, without
intermediate conversion to summation. Fulfilling the maximum 2k step condition
is not as easy as previously. The multiplication output function h∗ is defined as

h∗(a, b) def= Φ(a) · Φ(b) =
N−1∑
i=0

N−1∑
j=0

2i+jaibj . (23)

One could try to use congruences to remove some summands from h∗
k while

keeping all remaining summands positive. This would result in

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj . (24)

Changing a single bit ai would change the result by
∑k−i

j=0 2i+jbj . This sums
to at most 2k+1 − 1 and thus does not always fulfill the maximum 2k step con-
dition. However, the sign of the summand 2kaibk−i can be flipped due to con-
gruence modulo 2k+1, after which the change of result from a single bit flip is
always in the interval [−2k, 2k − 1]. Therefore, to fulfill the maximum 2k step
condition, we define h∗

k : BN × B
N → Z as

h∗
k(a, b) def=

(
−

k∑
i=0

2kaibk−i

)
+

⎛
⎝k−1∑

i=0

k−i−1∑
j=0

2i+jaibj

⎞
⎠ . (25)

For more insight into this definition, we will return to the counterexample
to the previous approach, “11” · “X1”, which resulted in unnecessary overap-
proximation for k = 2. Writing h∗

2 computation as standard addition similarly
to the previously shown long multiplication, the carryover of b1 is counteracted
by the summand −22b1:

(23) (22) (21) (20)

(b1) b1 1
−b1 1
0 1 + b1 1

It is apparent that ζ2(hmin
2) = ζk(hmax

2) = 0 and unnecessary overapproxima-
tion is not incurred. Using that line of thinking, the definition of h∗

k in Eq. 25
can be intuitively regarded as ensuring that the carryover of an unknown bit
into the k-th column is neutralized by a corresponding k-th column summand.
Consequently, if the unknown bit can appear only in both of them simultane-
ously, no unnecessary overapproximation is incurred.

While the maximum 2k step condition is fulfilled in Eq. 25, extreme-finding
is much more complicated than for addition, becoming heavily dependent on
abstract input bit pairs of form (âi, b̂k−i) where 0 ≤ i ≤ k. Such pairs result
in a summand −2kaibk−i in h∗

k. When multiplication is rewritten using long

Fast Three-Valued Abstract Bit-Vector Arithmetic 253

multiplication as previously, this summand is present in the k-th column. We
therefore name such pairs k-th column pairs for conciseness.

In Subsect. 7.2, we show that if at most one k-th column pair where âi =
b̂k−i = X̂ (double-unknown pair) exists, extremes of h∗

k can be found easily. In
Subsect. 7.3, we prove that if at least two double-unknown pairs exist, rk = X̂.
Taken together, this yields a best abstract transformer algorithm for multiplica-
tion. In Subsect. 7.4, we discuss implementation considerations of the algorithm
with emphasis on reducing computation time. Finally, in Subsect. 7.5, we present
the final algorithm.

7.2 At Most One Double-Unknown k-th Column Pair

An extreme is given by values a ∈ â, b ∈ b̂ for which the value h∗
k(a, b) is minimal

or maximal (Eq. 17). We will show that such a, b can be found successively when
at most one double-unknown k-th column pair is present.

First, for single-unknown k-th column pairs where âi = X̂, b̂k−i �= X̂, we
note that in Eq. 25, the difference between h∗

k when ai = 1 and when ai = 0 is

h∗
k(a, b | ai = 1) − h∗

k(a, b | ai = 0) = −2kbk−i +
k−i−1∑

j=0

2i+jbj . (26)

Since the result of the sum over j must be in the interval [0, 2k −1], the direc-
tion of the change (negative or non-negative) is uniquely given by the value of
bk−i, which is known. It is therefore sufficient to ensure amin

i ← bk−i when mini-
mizing and amin

i ← 1 − bk−i when maximizing. Similar reasoning can be applied
to single-unknown k-th column pairs where âi �= X̂, b̂k−i = X̂.

After assigning values to all unknown bits in single-unknown k-th column
pairs, the only still-unknown bits are the ones in the only double-unknown k-th
column pair present. In case such a pair âi = X̂, b̂j = X̂, j = k − i is present,
the difference between h∗

k when ai and bj are set to arbitrary values and when
they are set to 0 is

h∗
k(a, b) − h∗

k(a, b | ai = 0, bj = 0) =

− 2kaibj + 2iai

(
j−1∑
z=0

2zbz

)
+ 2jbj

(
i−1∑
z=0

2zaz

)
.

(27)

When minimizing, it is clearly undesirable to choose amin
i �= bmin

j . Considering
that the change should not be positive, amin

i = bmin
j = 1 should be chosen if and

only if

2i

(
j−1∑
z=0

2zbz

)
+ 2j

(
i−1∑
z=0

2zaz

)
≤ 2k. (28)

254 J. Onderka and S. Ratschan

When maximizing, it is clearly undesirable to choose amax
i = bmax

j . That said,
amax

i = 1, bmax
j = 0 should be chosen if and only if

2j

(
i−1∑
z=0

2zaz

)
≤ 2i

(
j−1∑
z=0

2zbz

)
. (29)

Of course, the choice is arbitrary when both possible choices result in
the same change. After the case of the only double-unknown k-th column pair
present is resolved, there are no further unknown bits and thus, the values of h∗

k

extremes can be computed as

h∗,min
k =

(
−

k∑
i=0

2kamin
i bmin

k−i

)
+

⎛
⎝k−1∑

i=0

k−i−1∑
j=0

2i+jamin
i bmin

j

⎞
⎠ ,

h∗,max
k =

(
−

k∑
i=0

2kamax
i bmax

k−i

)
+

⎛
⎝k−1∑

i=0

k−i−1∑
j=0

2i+jamax
i bmax

j

⎞
⎠ .

(30)

7.3 Multiple Double-Unknown k-th Column Pairs

Lemma 2. Consider a sequence of integers t = (t0, t1, . . . , tT−1) that fulfills

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k, t0 + 2k ≤ tT−1. (31)

Then,
∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k. (32)

Proof. Use Lemma 1 to transform the claim to equivalent

∃v ∈ [min t,max t] . (v mod 2k+1) < 2k. (33)

Since [t1, t1 + 2k] ⊆ [min t,max t], such claim is implied by

∃v ∈ [t0, t0 + 2k] . (v mod 2k+1) < 2k. (34)

As [t0, t0 +2k] mod 2k+1 has 2k +1 elements and there are only 2k elements that
do not fulfill (v mod 2k+1) < 2k, Eq. 34 holds due to the pigeonhole principle. ��
Corollary 1. Given a sequence of integers (t0, t1, . . . , tT−1) that fulfills
Lemma 2 and an arbitrary integer C ∈ Z, the lemma also holds for sequence
(t0 + C, t1 + C, . . . , tT−1 + C).

Theorem 4. Let r̂∗,best
k be the best abstract transformer of multiplication. Let â

and b̂ be such that there are p1, p2, q1, q2 in {0, . . . , k} where

p1 �= p2, p1 + q2 = k, p2 + q1 = k,

âp1 = X̂, âp2 = X̂, b̂q1 = X̂, b̂q2 = X̂.
(35)

Then r̂best,∗
k (â, b̂) = X̂.

Fast Three-Valued Abstract Bit-Vector Arithmetic 255

Proof. For an abstract bit-vector ĉ with positions of unknown bits u1, . . . , un,
denote the concrete bit-vector c ∈ γ(ĉ) for which ∀i ∈ {1, . . . , n} . cui

= si

by γs1,...,sn
(ĉ). Let Φs1,...,sn

(ĉ) def= Φ(γs1,...,sn
(ĉ)).

Now, without loss of generality, assume â only has unknown values in posi-
tions p1 and p2 and b̂ only has unknown positions q1, q2 and p1 < p2, q1 < q2.
Then, for s1, s2, t1, t2 ∈ B, using h(a, b) = Φ(a) · Φ(b),

h(γs1,s2(â), γt1,t2(b̂)) = (2p1s1 + 2p2s2 + Φ00(â)) · (2q1t1 + 2q2t2 + Φ00(b̂)).
(36)

Define A
def= Φ00(â) and B

def= Φ00(b̂) and let them be indexable similarly to
bit-vectors, i.e. A0..z = (A mod 2z+1), Az = ζz(A0..z). Define

hproof
k (γs1,s2(â), γt1,t2(b̂))

def=

2p1+q1s1t1 + 2p1+q2s1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1 +

2p2+q1s2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1 + AB.

(37)

As Ap1 = Ap2 = Bq1 = Bq2 = 0, hproof
k and h are congruent modulo 2k+1. Define

D(s1, s2, t1, t2)
def= hproof

k (γs1,s2(â), γt1,t2(b̂)) − hproof
k (γ00(â), γ00(b̂)). (38)

As p1 + q2 = k and p2 + q1 = k,

D(s1, s2, t1, t2) = 2p1+q1s1t1 + 2ks1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1+

2ks2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1.
(39)

Set s1, s2, t1, t2 to specific chosen values and obtain

D(1, 1, 0, 0) = D(1, 0, 0, 0) + D(0, 1, 0, 0),
D(0, 0, 1, 1) = D(0, 0, 1, 0) + D(0, 0, 0, 1),

D(1, 0, 0, 1) = 2k + D(1, 0, 0, 0) + D(0, 0, 0, 1).

(40)

Inspecting the various summands, note that

D(1, 0, 0, 0) ∈ [0, 2k − 1], D(0, 1, 0, 0) ∈ [0, 2k − 1],

D(0, 0, 1, 0) ∈ [0, 2k − 1], D(0, 0, 0, 1) ∈ [0, 2k − 1],

D(1, 1, 0, 0) − D(1, 0, 0, 0) ∈ [0, 2k − 1],

D(0, 0, 1, 1) − D(0, 0, 1, 0) ∈ [0, 2k − 1].

(41)

Recalling Eq. 10, the best abstract transformer can be obtained as

0 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (hproof
k (a, b) mod 2k+1) < 2k,

1 ∈ r̂bestk ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . ((hproof
k (a, b) + 2k) mod 2k+1) < 2k.

(42)

Constructing a sequence of hproof
k (γs1,s2(â), γt1,t2(b̂)) that fulfills the conditions

of Lemma 2 then implies that both inequalities can be fulfilled due to Corollary 1,

256 J. Onderka and S. Ratschan

which will complete the proof. Furthermore, as D(s1, s2, t1, t2) only differs from
hproof

k (γs1,s2(â), γt1,t2(b̂)) by the absence of summand AB that does not depend
on the choice of s1, s2, t1, t2, it suffices to construct a sequence of D(s1, s2, t1, t2)
that fulfills Lemma 2 as well.

There is at least a 2k step between D(0, 0, 0, 0) and D(1, 0, 0, 1). They will
form the first and the last elements of the sequence, respectively. It remains
to choose the elements in their midst so that there is at most 2k step between
successive elements.

Case 1. D(0, 1, 0, 0) ≥ D(0, 0, 0, 1). Considering Eqs. 40 and 41, a qualifying
sequence is

(D(0, 0, 0, 0),D(1, 0, 0, 0),D(1, 1, 0, 0),D(1, 0, 0, 1)). (43)

Case 2. D(0, 1, 0, 0) < D(0, 0, 0, 1). Using Eq. 39, rewrite the case condition to

2p2−p1D(1, 0, 0, 0) < 2q2−q1D(0, 0, 1, 0). (44)

As p1 + q2 = k, p2 + q1 = k, it also holds that q2 − q1 = p2 − p1. Rewrite the case
condition further to

2p2−p1D(1, 0, 0, 0) < 2p2−p1D(0, 0, 1, 0). (45)

Therefore, D(1, 0, 0, 0) < D(0, 0, 1, 0). Considering Eqs. 40 and 41, a qualifying
sequence is

(D(0, 0, 0, 0),D(0, 0, 1, 0),D(0, 0, 1, 1),D(1, 0, 0, 1)). (46)

This completes the proof. ��

7.4 Implementation Considerations

There are some considerations to be taken into account for an efficient imple-
mentation of the fast multiplication algorithm.

The first question is how to detect the positions of single-unknown and
double-unknown k-th column pairs. As such pairs have the form 2kaibk−i, it is
necessary to perform a bit reversal of one of the bit-vectors before bitwise logic
operations can be used for position detection. Fortunately, it suffices to perform
the reversal only once at the start of the computation. Defining the bit reversal
of the first z bits of b as λ(b, z) = (bz−1−i)z−1

i=0 , when the machine word size
W ≥ k+1, reversal of the first k+1 bits (i.e. the bits in b0..k) may be performed
as

λ(b, k + 1) = ((bk−i)k
i=0) = ((bW−1−i)W−1

i=W−k−1) = λ(b,W)W−k−1..W−1. (47)

It is thus possible to precompute λ(b,W) and, for each k, obtain λ(b, k + 1) via
a right shift through W − k − 1 bits, which can be performed in constant time.
Furthermore, power-of-two bit reversals can be performed in logarithmic time

Fast Three-Valued Abstract Bit-Vector Arithmetic 257

on standard architectures [1, p. 33–35], which makes computation of λ(b,W)
even more efficient.

The second problem is finding out whether multiple double-unknown k-th
column pairs exist, and if there is only a single one, what is its position. While
that can be determined trivially in linear time, a find-first-set algorithm can also
be used, which can be implemented in logarithmic time on standard architec-
tures [1, p. 9] and also is typically implemented as a constant-time instruction
on modern processors.

The third problem, computation of h∗
k extremes in Eq. 30, is not as easily

mitigated. This is chiefly due to removal of summands with coefficients above 2k

due to 2k+1 congruence. While typical processors contain a single-cycle multi-
plication operation, we have not found an efficient way to use it for computation
of Eq. 25. To understand why this is problematic, computation of h∗

k with 3-bit
operands and k = 2 can be visualised as

(24) (23) (22) (21) (20)

a2 a1 a0

· b2 b1 b0
(−a2b0) a1b0 a0b0

������a2b1 (−a1b1) a0b1

������a2b2 ������a1b2 (−a0b2)
. . .

The striked-out operands are removed due to 2k+1 congruence, while the k-th
column pair summands are subtracted instead of adding them. These changes
could be performed via some modifications of traditional multiplier implementa-
tion (resulting in a custom processor instruction), but are problematic when only
traditional instructions can be performed in constant time. Instead, we propose
computation of h∗

k via

h∗
k(a, b) =

k∑
i=0

ai

(−2kbk−i + 2iΦ(b0..k−i−1)
)
. (48)

As each summand over i can be computed in constant time on standard architec-
tures, h∗

k(a, b) can be computed in linear time. Modified multiplication techniques
with lesser time complexity such as Karatsuba multiplication or Schönhage-
Strassen algorithm [13] could also be considered, but they are unlikely to improve
practical computation time when N corresponds to the word size of normal
microprocessors, i.e. N ≤ 64.

7.5 Fast Abstract Multiplication Algorithm

Applying the previously discussed improvements directly leads to Algorithm 2.
For conciseness, in the algorithm description, bitwise operations are denoted
by the corresponding logical operation symbol, shorter operands have high zeros
added implicitly, and the bits of amin, amax, bmin, bmax above k are not used, so
there is no need to mask them to zero.

258 J. Onderka and S. Ratschan

Algorithm 2. Fast abstract multiplication algorithm

1: function Fast Abstract Multiplication(â, b̂)
2: av

rev ← λ(bv,W) � Compute machine-word reversals for word size W
3: bvrev ← λ(bv,W)
4: am

rev ← λ(am,W)
5: bmrev ← λ(bm,W)
6: for k ∈ {0, . . . , M} do
7: sa ← am ∧ ¬bmrev,W−k−1..W−1 � Single-unknown k-th c. pairs, ‘X’ in a

8: amin ← av ∨ (sa ∧ bvrev,W−k−1..W−1) � Minimize such pairs
9: amax ← av ∨ (sa ∧ ¬bvrev,W−k−1..W−1) � Maximize such pairs

10: sb ← bm ∧ ¬am
rev,W−k−1..W−1 � Single-unknown k-th c. pairs, ‘X’ in b

11: bmin ← bv ∨ (sb ∧ av
rev,W−k−1..W−1) � Minimize such pairs

12: bmax ← bv ∨ (sb ∧ ¬av
rev,W−k−1..W−1) � Maximize such pairs

13: d ← am ∧ bmrev,W−k−1..W−1 � Double-unknown k-th column pairs
14: if Φ(d) �= 0 then � At least one double-unknown 2k pair
15: i ← Find First Set(d)
16: if Φ(d) �= 2i then � At least two double-unknown k-th col. pairs
17: ck ← X̂ � Theorem 4
18: continue
19: end if
20: j ← k − i � Resolve singular double-unknown k-th column pair
21: if 2iΦ(bmin

0..j−1) + 2jΦ(amin
0..i−1) ≤ 2k then � Equation 28

22: amin
i ← 1

23: bmin
j ← 1

24: end if
25: if 2jΦ(amax

0..i−1) ≤ 2iΦ(bmax
0..j−1) then � Equation 29

26: amax
i ← 1

27: else
28: bmax

j ← 1
29: end if
30: end if
31: h∗,min

k ← 0 � Computed amin, bmin, compute minimum of h∗
k

32: h∗,max
k ← 0 � Computed amax, bmax, compute maximum of h∗

k

33: for i ∈ {0, . . . , k} do � Compute each row separately
34: if amin

i = 1 then
35: h∗,min

k ← h∗,min
k − (2kbmin

k−i) + (2iΦ(bmin
0..k−i−1))

36: end if
37: if amax

i = 1 then
38: h∗,max

k ← h∗,max
k − (2kbmax

k−i) + (2iΦ(bmax
0..k−i−1))

39: end if
40: end for
41: if ζk(h∗,min

k) �= ζk(h∗,max
k) then

42: ck ← X̂ � Set result bit unknown

Fast Three-Valued Abstract Bit-Vector Arithmetic 259

43: else
44: cmk ← 0, cvk ← ζk(h∗,min

k) mod 2 � Set value
45: end if
46: end for
47: return ĉ
48: end function

Upon inspection, it is clear that the computation complexity is dominated
by computation of hmin

k , hmax
k and the worst-case time complexity is Θ(N2), prov-

ing Theorem 2. Since the loops depend on M which does not change when signed
multiplication is considered (only N does), signed multiplication is expected to
incur at most a factor-of-4 slowdown when 2N fits machine word size, the pos-
sible slowdown occurring due to possible splitting of most significant bits of
multiplicands (discussed at the start of Sect. 7).

8 Experimental Evaluation

We implemented the näıve universal algorithm, the fast abstract addition algo-
rithm, and the fast abstract multiplication algorithm in the C++ programming
language, without any parallelization techniques used. In addition to successfully
checking equivalence of näıve and fast algorithm outputs for N ≤ 9, we mea-
sured the performance of algorithms with random inputs. The implementation
and measurement scripts are available in the accompanying artifact [9].

To ensure result trustworthiness, random inputs are uniformly distributed
and generated using a C++ standard library Mersenne twister before the mea-
surement. The computed outputs are assigned to a volatile variable to prevent
their removal due to compile-time optimization. Each measurement is taken 20
times and corrected sample standard deviation is visualised.

The program was compiled with GCC 9.3.0, in 64-bit mode and with maxi-
mum speed optimization level -O3. It was ran on the conference-supplied virtual
machine on a x86-64 desktop system with an AMD Ryzen 1500X processor.

8.1 Visualisation and Interpretation

We measured the CPU time taken to compute outputs for 106 random input
combinations for all algorithms for N ≤ 8, visualising the time elapsed in Fig. 1.
As expected, the näıve algorithm exhibits exponential dependency on N and
the fast addition algorithm seems to be always better than the näıve one. The fast
multiplication algorithm dominates the näıve one for N ≥ 6. The computation
time of the näıve algorithm makes its usage for N ≥ 16 infeasible even if more
performant hardware and parallelization techniques were used.

For the fast algorithms, we also measured and visualised the results up to
N = 32 in Fig. 2. Fast addition is extremely quick for all reasonable input sizes
and fast multiplication remains quick enough even for N = 32. Fast multiplica-
tion results do not seem to exhibit a noticeable quadratic dependency. We con-
sider it plausible that as N rises, so does the chance that there are multiple

260 J. Onderka and S. Ratschan

double-unknown k-th column pairs for an output bit and it is set to ‘X’ quickly,
counteracting the worst-case quadratic computation time.

Finally, we fixed N = 32, changing the independent variable to the number of
unknown bits in each input, visualising the measurements in Fig. 3. As expected,
the fast multiplication algorithm exhibits a prominent peak with the easiest
instances being all-unknown, as almost all output bits will be quickly set to ‘X’
due to multiple double-unknown k-th column pairs. Even at the peak around
N = 6, the throughput is still above one hundred thousands computations per
second, which should be enough for model checking usage.

In summary, while the näıve algorithm is infeasible for usage even with 16-bit
inputs, the fast algorithms remain quick enough even for 32-bit inputs.

Fig. 1. Measured computation times for 106 random abstract input combinations.

Fig. 2. Measured computation time for 106 random abstract input combinations, fast
algorithms only.

Fast Three-Valued Abstract Bit-Vector Arithmetic 261

Fig. 3. Measured computation times for 106 random abstract input combinations with
fixed N = 32, while the number of unknown bits in each input varies.

9 Conclusion

We devised a new modular extreme-finding technique for construction of fast
algorithms which compute the best permissible three-valued abstract bit-vector
result of concrete operations with three-valued abstract bit-vector inputs when
the output is not restricted otherwise (forward operation problem). Using
the introduced technique, we presented a linear-time algorithm for abstract addi-
tion and a worst-case quadratic algorithm for abstract multiplication. We imple-
mented the algorithms and evaluated them experimentally, showing that their
speed is sufficient even for 32-bit operations, for which näıve algorithms are infea-
sibly slow. As such, they may be used to improve the speed of model checkers
which use three-valued abstraction.

There are various research paths that could further the results of this paper.
Lesser-used operations still remain to be inspected, most notably the division and
remainder operations. Composing multiple abstract operations into one could
also potentially reduce overapproximation. Most interestingly, the forward oper-
ation problem could be augmented with pre-restrictions on outputs, which would
allow not only fast generation of the state space in forward fashion, but its
fast pruning as well, allowing fast verification via state space refinement. Fur-
thermore, verification of hardware containing adders and multipliers could be
improved as well, e.g. by augmenting Boolean satisfiability solvers with algo-
rithms that narrow the search space when such a structure is found.

262 J. Onderka and S. Ratschan

References

1. Arndt, J.: Bit wizardry. In: Arndt, J. (ed.) Matters Computational, pp. 2–101.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14764-7 1

2. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discret. Appl. Math.
123(1), 155–225 (2002)

3. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In:
Handbook of Model Checking, pp. 1–26. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-10575-8 1

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’79, pp. 269–282. Association for Computing Machin-
ery, New York (1979). https://doi.org/10.1145/567752.567778

5. Institute of Electrical and Electronics Engineers: IEEE standard multivalue logic
system for VHDL model interoperability (std logic 1164). IEEE Std 1164–1993 pp.
1–24 (1993)

6. Kleene, S.C.: On notation for ordinal numbers. The Journal of Symbolic Logic
3(4), 150–155 (1938)

7. Noll, T., Schlich, B.: Delayed nondeterminism in model checking embedded sys-
tems assembly code. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 185–201.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77966-7 16

8. Onderka, J.: Deadline verification using model checking. Master’s thesis, Czech
Technical University in Prague, Faculty of Information Technology (2020). http://
hdl.handle.net/10467/87989

9. Onderka, J.: Operation checker for fast three-valued abstract bit-vector arithmetic
(2021). Companion artifact to this paper

10. Regehr, J., Reid, A.: HOIST: a system for automatically deriving static analyzers
for embedded systems. SIGOPS Oper. Syst. Rev. 38(5), 133–143 (2004)

11. Reinbacher, T., Horauer, M., Schlich, B.: Using 3-valued memory representation
for state space reduction in embedded assembly code model checking. In: 2009
12th International Symposium on Design and Diagnostics of Electronic Circuits
Systems, pp. 114–119 (2009)

12. Reps, T., Thakur, A.: Automating abstract interpretation. In: Jobstmann, B.,
Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 3–40. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49122-5 1

13. Skiena, S.S.: Introduction to algorithm design. In: Skiena, S.S. (ed.) The Algorithm
Design Manual, pp. 3–30. Springer, London (2008). https://doi.org/10.1007/978-
1-84800-070-4 1

14. Yamane, S., Konoshita, R., Kato, T.: Model checking of embedded assembly pro-
gram based on simulation. IEICE Trans. Inf. Syst. E100.D(8), 1819–1826 (2017)

https://doi.org/10.1007/978-3-642-14764-7_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-540-77966-7_16
http://hdl.handle.net/10467/87989
http://hdl.handle.net/10467/87989
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-1-84800-070-4_1
https://doi.org/10.1007/978-1-84800-070-4_1

Satisfiability and Synthesis Modulo
Oracles

Elizabeth Polgreen1,2(B), Andrew Reynolds3, and Sanjit A. Seshia1

1 University of California, Berkeley, Berkeley, USA
2 University of Edinburgh, Edinburgh, UK

elizabeth.polgreen@ed.ac.uk
3 University of Iowa, Iowa, USA

Abstract. In classic program synthesis algorithms, such as counter-
example-guided inductive synthesis (CEGIS), the algorithms alternate
between a synthesis phase and an oracle (verification) phase. Many syn-
thesis algorithms use a white-box oracle based on satisfiability modulo
theory (SMT) solvers to provide counterexamples. But what if a white-
box oracle is either not available or not easy to work with? We present a
framework for solving a general class of oracle-guided synthesis problems
which we term synthesis modulo oracles (SyMo). In this setting, oracles
are black boxes with a query-response interface defined by the synthesis
problem. As a necessary component of this framework, we also formalize
the problem of satisfiability modulo theories and oracles (SMTO), and
present an algorithm for solving this problem. We implement a proto-
type solver for satisfiability and synthesis modulo oracles and demon-
strate that, by using oracles that execute functions not easily modeled in
SMT-constraints, such as recursive functions or oracles that incorporate
compilation and execution of code, SMTO and SyMO can solve problems
beyond the abilities of standard SMT and synthesis solvers.

1 Introduction

A common formulation of program synthesis is to find a program, from a specified
class of programs, that meets some correctness specification [4]. Classically, this
is encoded as the 2nd-order logic formula ∃�f.∀�x. φ, where �f is a set of target
functions to be synthesized, �x is a set of 0-ary symbols, and φ is a quantifier-free
formula in a logical theory (or combination of theories) T . A tuple of functions
�f∗ satisfies the semantic restrictions if the formula ∀�x φ is valid in T when the
tuple is substituted for �f in φ. Many problems are specified in this form, and
the SyGuS-IF format [24] is one way of specifying such syntax-guided synthesis
(SyGuS) problems.

Whilst powerful, this format is restrictive in one key way: it requires the cor-
rectness condition to be specified with static constraints, as satisfiability modulo
theories (SMT) [8] formulas, before the solving process begins. This limits the
problems that can be specified, as well as the oracles that can be used to guide
the search. For example, if one wants to synthesize (parts of) a protocol whose
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 263–284, 2022.
https://doi.org/10.1007/978-3-030-94583-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_13

264 E. Polgreen et al.

correctness needs to be checked by a temporal logic model checker (e.g. [30]),
such a model-checking oracle cannot be directly invoked within a general-purpose
SyGuS solver and instead requires creating a custom solver.

Similarly, SMT solvers, used widely in verification and synthesis, require
their input to be encoded as a logical formula prior to the initiation of solving.
Whilst the language of SMT-LIB is powerful and expressive, many formulas are
challenging for current SMT solvers to reason about; e.g., as in Fig. 1, finding a
prime factorization of a given number. Here it would be desirable to abstract this
reasoning to an external oracle that can be treated as a black-box by the SMT
solver, rather than rely on the SMT solver’s ability to reason about recursive
functions.

Fig. 1. SMT problem fragment: find prime factors of 76. Unsolved by CVC5 v1.0.
Solved by SMTO using isPrime oracle in <1 s.

This motivates our introduction of oracles to synthesis and SMT solving. Ora-
cles are black-box implementations that can be queried based on a pre-defined
interface of query and response types. We call these “black-box” because the
SMT solver does not view the internal implementation of the oracle, and instead
queries the oracle via the interface. Examples of oracles could be components of
systems that are too large and complex to analyze or model with logical formulas
(but which can be treated as black boxes and executed on inputs) or external
verification engines solving verification queries beyond SMT solving.

Prior work has set out a theoretical framework expressing synthesis algo-
rithms as oracle-guided inductive synthesis [21], where a learner interacts with an
oracle via a pre-defined oracle interface. However, that work does not give a gen-
eral algorithmic approach to solve oracle-guided synthesis problems or demon-
strate the framework on practical applications. An important contribution we
make in this work is to give a unified algorithmic approach to solving oracle-
guided synthesis problems, termed SyMO. The SyMO approach is based on a
key insight: that query and response types can be associated with two types of

Satisfiability and Synthesis Modulo Oracles 265

logical formulas: verification assumptions and synthesis constraints. The former
provides a way to encode semantic restrictions on black-box oracle behavior into
an SMT formula, whereas the latter provides a way for oracles to guide the
search of the synthesizer.

(a) Original image (b) Target image

Fig. 2. Image manipulation: given two images, SyMO synthesizes the pixel-by-pixel
transformation in <1 s.

To explain the use-case for assumptions, let us first introduce oracle function
symbols and Satisfiability Modulo Theories and Oracles (SMTO). Oracle func-
tion symbols are n-ary symbols whose behavior is associated with some oracle.
Intuitively we use these to model parts of the system that are challenging for the
SMT solver, e.g., the problem of checking if a number is prime is shown modeled
using an oracle in Example 1 (Sect. 2.1). Here the oracle symbol is θP .

In general, consider a quantifier-free formula ρ which contains an oracle func-
tion symbol θ. SMTO looks for a satisfying assignment to the formula based on
initially assuming θ is a universally quantified uninterpreted function (i.e., we
look for a satisfying assignment that would work for any possible implementa-
tion of the oracle): ∀θ.ρ. As we make calls to the oracle, we begin to learn more
about its behavior, and we encode this behavior as assumptions α, such that the
formula becomes ∀θ.α ⇒ ρ. Specifically, for the example in Example 1, we must
call the oracle on a specific value to generate an assumption that constrains the
behavior of θP to return true on that input value. This is the primary use case
for assumptions generated by oracles, they are used to constrain the behavior of
oracle function symbols.

In SyMO, we can use these oracles to model external verification modules.
Thus determining the correctness of a candidate function is an SMTO problem,
and assumptions generated by oracles are used in the SMTO solving process.
We also use oracles to generate additional constraints that further constrain the
search space of the synthesis.

As an exemplar of an existing oracle-guided synthesis algorithm, consider
ICE-learning [19] for invariant synthesis. ICE-learning uses three oracles: an
oracle to provide positive examples (examples which should be contained within
the invariant); an oracle to provide negative examples (examples which should
not be contained within the invariant); and an oracle to provide implication

266 E. Polgreen et al.

examples (an example pair where if the first element is contained within the
invariant, both must be contained). Whilst it is possible to build some of these
oracles using an SMT solver, it is often more effective to construct these oracles
in other ways, for instance, the positive example oracle can simply execute the
loop or system for which an invariant is being discovered and return the output.
These oracles gradually constrain the search space of the synthesis until a correct
invariant is found.

We implement SyMO in a prototype solver Delphi, and hint at its broad
utility by demonstrating several applications including programming by exam-
ple, synthesis of controllers for LTI systems, synthesizing image transformations
(e.g., Fig. 2), and satisfiability problems that reason about primes (e.g., Fig. 1).
This illustrates the power of being able to incorporate oracles into SyMO that
are too complex to be modeled or for SMT solvers to reason about.

To summarize, the main contributions of this paper are:

• A formalization of the problem of satisfiability and synthesis modulo oracles
(Sect. 2);

• A unifying algorithmic approach for solving these problems (Sect. 3 and
Sect. 4);

• Demonstration of how this approach can capture popular synthesis strategies
from the literature (Sect. 5), and

• A prototype solver Delphi, and an experimental demonstration of the broad
applicability of this framework (Sect. 6).

Related Work. Almost all synthesis algorithms can be framed as some form
of oracle-guided synthesis. Counterexample-guided inductive synthesis (CEGIS)
is the original synthesis strategy used for Syntax-Guided Synthesis [29], and
uses a correctness oracle that returns counterexamples. Further developments
in synthesis typically fall into one of two categories. The first comprises innova-
tive search algorithms to search the space more efficiently; for instance, genetic
algorithms [16], reinforcement learning [28], or partitioning the syntactic search
space in creative ways [5]. It is worth noting that the framework we present
uses constraints to guide the search of the synthesis solver but these con-
straints are restricted to semantic and not syntactic constraints. The second cat-
egory comprises extensions to the communication paradigm permitted between
the synthesis and the verification phase. For instance, CEGIS modulo theo-
ries [3], CEGIS(T), extends the oracle interface over standard CEGIS to permit
responses in the form of a restricted set of constraints over constants in the can-
didate program. Other work leverages the ability to classify counterexamples as
positive or negative examples [23]. There are also notable algorithms in invariant
synthesis based on innovative use of different query types [19,23]. Our work has
one key stand-out difference over these: in all of these algorithms, the correct-
ness criteria must be specified as a logical formula, whereas in our framework we
enable specification of the correctness criteria as a combination of a logical for-
mula and calls to external oracles which may be opaque to the solver. Synthesis
with distinguishing inputs [20] is an exception to this pattern and uses a specific

Satisfiability and Synthesis Modulo Oracles 267

set of three interacting black-box oracles, to solve the very specific problem of
synthesis of loop-free programs from components. Our work differs from this and
the previously-mentioned algorithms in that they are customized to use certain
specific types of oracle queries, whereas, we give a “meta-solver” allowing any
type of oracle query that can be formulated as either generating a constraint or
an assumption in the form of a logical formula.

The idea of satisfiability with black-boxes has been tackled before in work on
abstracting functional components as uninterpreted/partially-interpreted func-
tions (see, e.g., [6,12,13]), which use counterexample-guided abstraction refine-
ment [14]. Here, components of a system are abstracted and then refined based
on whether the abstraction is sufficiently detailed to prove a property. However,
to do this, the full system must be provided as a white-box. The key contribu-
tion our work makes in this area is a framework allowing the use of black-box
components that obey certain query-response interface constraints, where the
refinement is dictated by these constraints and the black-box oracle interaction.
A related problem is synthesising summaries of black-boxes, where existing tech-
niques use only input-output examples [15].

2 Oracles

In this section, we introduce basic definitions and terminology for the rest of the
paper. We begin with some preliminaries about SMT and synthesis.

2.1 Preliminaries and Notation

We use the following basic notations throughout the paper. If e is an expression
and x is free in e, let e·{x → t} be the formula obtained from the formula e by
proper substitution of the variable x by the variable t.

Satisfiability Modulo Theories (SMT). The input to an SMT problem is a
first-order logical formula ρ. We use ≈ to denote the (infix) equality predicate.
The task is to determine whether ρ is T -satisfiable or T -unsatisfiable, that is,
satisfied by a model which restricts the interpretation of symbols in ρ based on
a background theory T . If ρ is satisfiable, a solver will usually return a model
of T that makes ρ true, which will include assignments to all free variables in ρ.
We additionally say that a formula is T -valid if it is satisfied by all models of T .

Syntax-Guided Synthesis. In syntax-guided synthesis, we are given a set
of functions �f to be synthesized, associated languages of expressions �L =
L1, . . . , Lm (typically generated by grammars), and we seek to solve a formula
of the form

∃�f ∈ �L.∀�x. φ

where �x = x1 . . . xn is a set of 0-ary symbols and φ is a quantifier-free formula in
a background theory T . In some cases, the languages Li include all well-formed

268 E. Polgreen et al.

expressions in T of the same sort as fi, and thus Li can be dropped from the
problem. A tuple of candidate functions �f∗ satisfies the semantic restrictions for
functions-to-synthesize �f in conjecture ∃�f.∀�x. φ in background theory T if ∀�x φ
is valid in T when �f are defined to be terms whose semantics are given by the
functions (�f∗) [4,24].

2.2 Basic Definitions

We use the term oracle to refer to a component that can be queried in a pre-
defined way by the solver. An oracle interface defines how an oracle can be
queried. Apart from queries made via the oracle interface, the oracle is treated
by the solver as a black-box. This concept is borrowed from [21]. We extend the
definition of oracle interfaces to also provide the solver with information on the
meaning of the response, in the form of expressions that generate assumptions
or constraints.

Definition 1 (Oracle Interface). An oracle interface I is a tuple (�y, �z, αgen,
βgen) where:

– �y is a list of sorted variables, which we call the query domain of the oracle
interface;

– �z is a list of sorted variables, which we call its response co-domain;
– αgen is a formula whose free variables are a subset of �y, �z, which we call its

assumption generator; and
– βgen is a formula whose free variables are a subset of �y, �z, which we call its

constraint generator. �

Notice that αgen and βgen may contain any symbols of the background theory,
as well as user-defined function symbols, which in particular will include oracle
function symbols, as we introduce later in this section. We assume that all oracle
interfaces have an associated oracle that implements their prescribed interface for
values of the input sort, and generates concrete values as output. In particular,
an oracle for an oracle interface of the above form accepts a tuple of values
with sorts matching �y, and returns a tuple of values with sorts matching �z. It
is important to note that the notion of a value is specific to a sort, which we
intentionally do not specify here. In practice, we assume e.g. the standard values
for the integer sort; we assume all closed lambda terms are values for higher-order
sorts, and so on.

An oracle interface defines how assumptions and constraints can be given to
a solver via calls to black-box oracles, as given by the following definition.

Definition 2 (Assumptions and Constraints Generated by an Oracle
Interface). Assume I is an oracle interface of form (�y, �z, αgen, βgen). We say
formula αgen·{�y → �c, �z → �d} is an assumption generated by I if calling its
associated oracle for input �c results in output �d. In this case, we also say that
βgen·{�y → �c, �z → �d} is a constraint generated by I. �

Satisfiability and Synthesis Modulo Oracles 269

We are now ready to define the main problems introduced by this paper.
In the following definition, we distinguish two kinds of function symbols: oracle
function symbols, which are given special semantics in the following definition;
all others we call ordinary function symbols. As we describe in more detail in
Sect. 3, oracle function symbols allow us to incorporate function symbols that
correspond directly to oracles in specifications and assertions.

Definition 3 (Satisfiability Modulo Theories and Oracles). A satisfia-
bility modulo theories and oracles (SMTO) problem is a tuple (�f, �θ, ρ, �I), where
�f is a set of ordinary function symbols, �θ is a set of oracle function symbols, ρ is
a formula in a background theory T whose free function symbols are �f � �θ, and
�I is a set of oracle interfaces. We say this input is:

– unsatisfiable if ∃�f.∃�θ.A ∧ ρ ∧ B is T -unsatisfiable,
– satisfiable if ∃�f.∀�θ.A ⇒ (ρ ∧ B) is T -satisfiable,

where, in each case, A (resp. B) is a conjunction of assumptions (resp. con-
straints) generated by �I. �

According to the above semantics, constraints are simply formulas that we
conjoin together with the input formula. Assumptions play a different role. In
particular, they restrict the possible interpretations of �θ that are relevant. As
they appear in the antecedent in our satisfiability criteria, values of �θ that do
not satisfy our assumptions need not be considered when determining whether
an SMTO input is satisfiable. As a consequence of the quantification of �θ, by
convention we will say a model M for an SMTO problem contains interpretations
for function symbols in �f only; the values for �θ need not be given.

It is important to note the role of the quantification for oracle symbols �θ in
the above definition. An SMTO problem is unsatisfiable if the conjunction of
assumptions, input formula, and constraints are unsatisfiable when treating �θ
existentially, i.e. as uninterpreted functions. Conversely, an SMTO problem is
satisfiable only if there exists a model satisfying (ρ ∧ B) for all interpretations
of �θ for which our assumptions A hold. An example satisfiable SMTO problem
is shown in Example 1.

Example 1: SMTO problem, searching for prime factors:

(�f = {f1, f2}, �θ = {θp}, θP (f1) ∧ θP (f2) ∧ f1 ∗ f2 ≈ 91, �J = {JP })

where JP is defined as follows:

JP = ((x : Int), (z : Bool), θP (x) ≈ z, �)

This problem is satisfiable, and a satisfying assignment is f1 ≈ 7, f2 ≈ 13, when
the following assumptions are generated A = {θP (7) ≈ true, θP (13) ≈ true}.

270 E. Polgreen et al.

In the absence of restrictions on oracle interfaces �I, an SMTO problem can be
both satisfiable and unsatisfiable, depending on the constraints and assumptions
generated. For instance, when A becomes equivalent to false, the input is trivially
both unsatisfiable and satisfiable. However, in practice, we define a restricted
fragment of SMTO, for which this is not the case, and we present a dedicated
procedure for this fragment in Sect. 3. To define this fragment, we introduce the
following definition.

Definition 4 (Oracle Interface Defines Oracle Function Symbol). An
oracle interface J defines an oracle function symbol θ if it is of the form
((y1, . . . yj), (z), θ(y1, . . . yj) ≈ z, ∅), and its associated oracle O is functional.
In other words, calling the oracle interface generates an equality assumption of
the form θ(y1, . . . yj) ≈ z only. �

From here on, as a convention, we use J to refer to an oracle interface that
specifically defines an oracle function symbol, and I to refer to a free oracle
interface, i.e., an oracle interface that may not define an oracle function symbol.

Definition 5 (Definitional Fragment of SMTO). An SMTO problem
(�f, �θ, ρ, �J) is in the Definitional Fragment of SMTO if and only if �θ =
(θ1, . . . , θn), �J = (J1, . . . ,Jn), and Ji is an oracle interface that defines θi

for i = 1, . . . , n. �

Note that each oracle function symbol is defined by one and only one oracle
interface. Example 1 is in the definitional SMTO fragment.

We are also interested in the problem of synthesis in the presence of oracle
function symbols, which we give in the following definition.

Definition 6 (Synthesis Modulo Oracles). A synthesis modulo oracles
(SyMO) problem is a tuple (�f, �θ,∀�x. φ, �I), where �f is a tuple of functions (which
we refer to as the functions to synthesize), �θ is a tuple of oracle function symbols,
∀�x. φ is a formula is some background theory T where φ is quantifier-free, and
�I is a set of oracle interfaces. A tuple of functions �f∗ is a solution for synthesis
conjecture if (�x, �θ,¬φ·{�f → �f∗}, �I) is unsatisfiable modulo theories and oracles.

�

An example SyMO problem is shown in Example 2. Although not mentioned
in the above definition, the synthesis modulo oracles problem may be combined
with paradigms for synthesis that give additional constraints for �f that are not
captured by the specification, such as syntactic constraints in syntax-guided
synthesis. In Sect. 4, we present an algorithm for a restricted form of SyMO
problems where the verification of candidate solutions �f∗ reduces to Definitional
SMTO.

Satisfiability and Synthesis Modulo Oracles 271

Example 2: SyMO problem, searching for a digital controller:

(�f = {k1, k2}, �θ = {θstable}, ∀�x.θstable(k1, k2) ∧ S, �J = {Jstable})

where S is a logical formula representing a safe unrolling of the system and where
Jstable is defined as follows:

Jstable = ((y1 : BV, y2 : BV), (z : Bool), θstable(y1, y2) ≈ z, �)

This formula is satisfied when controllers k1, k2 are found such that θstable(k1, k2)
returns true, and the formula S is true for all �x.

3 Satisfiability Modulo Theories and Oracles

In this section, we describe our approach to solving inputs in the definition frag-
ment of SMTO, according to Definition 5. First, we note a subtlety with respect
to satisfiability of SMTO problems in the definition fragment vs. the general
problem. Namely that a problem must be either satisfiable and unsatisfiable and
not both, and once a result is obtained for Definitional SMTO, the result will
not change regardless of subsequent calls to the oracles. This is not true for the
general SMTO problem. In particular, note the following scenarios:

Conflicting Results. Assume that ∃�f.∃�θ.Ai ∧ ρ ∧ Bi is T -unsatisfiable, where Ai

(resp. Bi be the conjunction of assumptions (resp. constraints) obtained after
i calls to the oracles. In unrestricted SMTO, it is possible that Ai alone is T -
unsatisfiable, thus ∀�θAi ⇒ (ρ ∧ Bi) is T -satisfiable and the problem is both
satisfiable and unsatisfiable. However, in Definitional SMTO, it is impossible
for Ai alone to be unsatisfiable, since all oracle interfaces defining oracle func-
tion symbols, which generate assumptions only of the form θ(�y) ≈ z and the
associated oracles are functional.

Vacuous Results. In general, it is possible for an SMTO problem to be neither
satisfiable and unsatisfiable. As a simple example, consider the case where the
assumption and constraint generators are both �. Let ρ be a formula such that
∃�f.∃�θ.ρ is T -satisfiable, and ∃�f.∀�θ.ρ is T -unsatisfiable. In other words, ρ holds
for some but not all functions �θ. In this case, the SMTO problem is neither
satisfiable and unsatisfiable. In contrast, in Definitional SMTO, in the limit, Ai

corresponds to complete definitions for all oracle functions in �θ, at which point
∃�f.∃�θ.Ai ∧ ρ is equivalent to ∃�f.∀�θ.Ai ⇒ ρ. Hence any Definitional SMTO is
either satisfiable or unsatisfiable.

Non-fixed Results. Assume that ∃�f.∀�θ.Ai ⇒ (ρ ∧ Bi) is T -satisfiable, where Ai

(resp. Bi) is the conjunction of assumptions (resp. constraints) obtained after i
calls to the oracles. Thus, by Definition 3, our input is satisfiable. In unrestricted

272 E. Polgreen et al.

SMTO, it is possible for an oracle to later generate an additional constraint β
such that ∀�θAi ⇒ (ρ ∧ Bi ∧ β) is T -unsatisfiable, thus invalidating our previous
result of “satisfiable”. However, in Definitional SMTO, this cannot occur, since
oracles that generate non-trivial constraints are not permitted. It is trivial that
once any SMTO is unsatisfiable, it remains unsatisfiable. Thus the satisfiability
results for Definitional SMTO, once obtained, are fixed.

SMT Solver

Oracle Consistency
Checker

UNSAT

SAT

O1 O2 O3

oracles

model assumptions α

Fig. 3. Satisfiability modulo oracle solver

3.1 Algorithm for Definitional SMTO

Our algorithm for Definitional SMTO is illustrated in Fig. 3 and given as Algo-
rithm 1. The algorithm maintains a dynamic set of assumptions A generated by
oracles. In its main loop, we invoke an off-the-shelf SMT solver (which we denote
SMT) on the conjunction of ρ and our current assumptions A. If this returns
UNSAT, then we return UNSAT along with the set of assumptions A we have
collected. Otherwise, we obtain the model M generated by the SMT solver from
the previous call.

The rest of the algorithm (lines 8 to 20) invokes what we call the oracle
consistency checker. Intuitively, this part of the algorithm checks whether our
assumptions A about �θ are consistent with the external implementation the
oracle function symbols are associated with.

We use the following notation: we write e[t] to denote an expression e having a
subterm t, and e[s] to denote replacing that subterm with s. We write t↓ to denote
the result of partially evaluating term t. For example, (θ(1 + 1) + 1)↓ = θ(2)+1.

In the oracle consistency checker, we first construct the formula μ which
replaces in ρ all occurrences of ordinary function symbols f with their value in the
model M , and partially evaluate the result. Thus, initially, μ is a formula whose
free symbols are �θ only. The inner loop (lines 9 to 17) incrementally simplifies
this formula by calling external oracles to evaluate (concrete) applications of
functions from �θ. In particular, while μ contains at least one application of a
function from �θ, that is, it is of the form μ[θi(�c)] where �c is a vector of values. We

Satisfiability and Synthesis Modulo Oracles 273

Algorithm 1: Satisfiability Modulo Theories and Oracles (SMTO)

input : (�f, �θ, ρ, �J)
output: UNSAT/SAT + assumptions A + (model M)?

1 Algorithm SMTO
2 A ← true
3 while true do
4 if SMT(ρ ∧ A)=UNSAT then
5 return UNSAT, A
6 else
7 Let M be model for ρ ∧ A from SMT

8 Let μ be (ρ·{�f → �fM})↓
9 while μ is of the form μ[θi(�c)] do

10 if (θi(�c) ≈ d) ∈ A for some d then
11 μ ← μ[d]↓
12 else
13 Let d = call oracle(Ji,�c)
14 A ← A ∪ (θi(�c) ≈ d)
15 μ ← μ[d]↓
16 end

17 end
18 if μ is true then
19 return SAT, A, M |�f

20 end

21 end

22 end

know that such a term exists by induction, noting that an innermost application
of a function from �θ must be applied to values. We replace this term with the
output d obtained from the appropriate oracle. The call to the oracle for input
values �c may already exist in A; otherwise, we call the oracle Ji for this input and
add this assumption to A. After replacing the application with d, we partially
evaluate the result and proceed. In the end, if our formula μ is the formula true,
the consistency check succeeds and we return SAT, along with the current set of
assumptions and the model M . We restrict the returned model so that it contains
only interpretations for �f and not �θ, which we denote M |�f . This process repeats
until a model is found that is consistent with the oracles, or until the problem
is shown to be unsatisfiable.

We will now show that this intuitive approach is consistent with the previ-
ously defined semantics for SMTO.

Theorem 1 (Correctness of SMTO algorithm). Algorithm 1 returns
UNSAT (resp. SAT) only if the SMTO problem (�f, �θ, ρ, �J) is unsatisfiable (resp.
satisfiable) according to Definition 3.

274 E. Polgreen et al.

Proof. UNSAT case: By definition, an SMTO problem is unsatisfiable if
∃�f.∃�θ.A∧ρ is T -unsatisfiable, noting that for the definitional fragment of SMTO,
B is empty. Algorithm 1 returns UNSAT when the underlying SMT solver
returns UNSAT on the formula ρ ∧ A0 for some A0. Since A0 is generated by
oracles �J , it follows that our input is unsatisfiable.

SAT case: By definition, an SMTO problem is SAT iff ∃�f.∀�θ.A ⇒ ρ is T -
satisfiable for some A. Algorithm 1 returns SAT when ρ∧A0 is SAT with model
M for some A0, and when the oracle consistency check subsequently succeeds.
Assume that the inner loop (lines 9 to 17) for this check ran n times and that
a superset An of A0 is returned as the set of assumptions on line 19. We claim
that M |�f is a model for ∀�θ.An ⇒ ρ. Let M ′ be an arbitrary extension of
M |�f that satisfies An. Note that such an extension exists, since, by definition of
Definitional SMTO, An is a conjunction of equalities over distinct applications of
�θ. Let μ0, μ1, . . . , μn be the sequence of formulas such that μi corresponds to the
value of μ after i iterations of the loop on lines 9 to 17. We show by induction on i,
that M ′ satisfies each μi. When i = n, μi is true and the statement holds trivially.
For each 0 ≤ i < n, we have that μi is the result of replacing an occurrence of
θ(�c) with d in μi−1 and partially evaluating the result, where θ(�c) ≈ d ∈ An.
Since M ′ satisfies θ(�c) ≈ d ∈ An and by the induction hypothesis satisfies μi,
it satisfies μi−1 as well. Thus, M ′ satisfies μ0, which is (ρ·{�f → �fM})↓. Thus,
since M ′ is an arbitrary extension of M |�f satisfying An, we have that M |�f

satisfies ∀�θ.An ⇒ ρ and thus the input is indeed satisfiable.

Theorem 2 (Completeness for Decidable T and Finite Oracle Dom-
ains). Let background theory T be decidable, and let the domain of all oracle
function symbols be finite. In this case, Algorithm 1 terminates.

Proof Sketch: Since T is decidable, the calls to satisfiability within the algorithm
terminate. On any given iteration of the loop in which the algorithm does not
terminate, we have that M is a model for ρ ∧ A. It must be the case that at
least one new constraint is added to A on line 14, or otherwise μ would simplify
to true since M satisfies A. Since the domains of oracle functions are finite by
assumption, all input-output pairs for each oracle will be added as constraints
to A, and the algorithm terminates.

Termination is not guaranteed in all background theories since it may be
possible to write formulas where the number of input valuations to the oracle
function symbols that must be enumerated is infinite, for example, if an oracle
function symbol has integer arguments.

4 Synthesis Modulo Oracles

A SyMO problem consists of: a tuple of functions to synthesize �f ; a tuple of oracle
function symbols �θ; a specification in the form ∀�x. φ, where φ is a quantifier-free
formula in some background theory T , and a set of oracle interfaces �I � �J . We
present an algorithm for a fragment of SyMO, where the verification condition

Satisfiability and Synthesis Modulo Oracles 275

Algorithm 2: Synthesis Modulo Oracles

input : (�f, �θ, ∀�xφ, �J � �I)

output: solution �f∗ or no solution
1 A ← true ; // conjunction of assumptions
2 S ← true ; // synthesis formula
3 while true do

4 �f∗ ←Synthesize(∃�f .S ∧ A) ;

5 if �f∗ = ∅ then
6 return no solution;
7 else
8 V ← A ∧ ¬φ ; // verification formula

9 (r, α, M) ← SMTO(�x, �θ, V ·{�f → �f∗}, �J) ;
10 if r=UNSAT then

11 return �f∗

12 else

13 β ← call additional oracles(�I, φ, M) ;
14 A ← A ∪ α ;

15 S ← S ∪ φ·{�x → �xM} ∪ β;

16 end

17 end

18 end

reduces to a Definitional SMTO problem. To that end, we require that �J is a
set of oracle interfaces that define �θ, and �I is a set of oracle interfaces that only
generate constraints, i.e., αgen is empty. We will show that these restrictions
permit us to use the algorithm for Definitional SMTO to check the correctness
of a tuple of candidate functions in Theorem 3.

4.1 Algorithm for Synthesis with Oracles

We now proceed to describe an algorithm for solving synthesis problems using
oracles, illustrated in Fig. 4. Within each iteration of the main loop, the algorithm
is broken down into two phases: a synthesis phase and an oracle phase. The
former takes as input a synthesis formula S which is incrementally updated over
the course of the algorithm and returns a (tuple of) candidate solutions �f∗. The
latter makes a call to an underlying SMTO solver for the verification formula V ,
which is a conjunction of the current set of assumptions A we have accumulated
via calls to oracles, and the negated conjecture ¬φ. In detail:

– Synthesis Phase: The algorithm first determines if there exists a set of
candidate functions �f∗ that satisfy the current synthesis formula S. If so, the
candidate functions are passed to the oracle phase.

– Oracle Phase I: The oracle phase calls the SMTO solver as described in
Sect. 3 on the following Definitional SMTO problem: (�x, �θ, V ·{�f → �f∗}, �J).

276 E. Polgreen et al.

Synthesize
∃�f.β1 ∧ . . . ∧ βi ∧

φ{�x → �xM1} ∧ . . . ∧ φ{�x → �xMi}

SMTO solver
∃�x.(α1 ∧ . . . ∧ αi) ∧ ¬φ

no solution

solution �f∗

O1 O2 O3

oracles

constraints
βi+1

model
Mi+1

candidates �f∗

Fig. 4. SyMO algorithm illustration

If the SMTO solver returns UNSAT, then �f∗ is a solution to the synthe-
sis problem. Otherwise, the SMTO solver returns SAT, along with a set of
assumptions α and a model M . The assumptions α are appended to the set
of overall assumptions A. Furthermore, an additional constraint φ·{�x → �xM}
is added to the current synthesis formula S. This formula can be seen as a
counterexample-guided refinement, i.e. future candidate solutions must sat-
isfy the overall specification for the values of x in the model M returned by
the SMTO solver.

– Oracle Phase II: As an additional step in the oracle phase, the solver may
call any further oracles �I and the constraints β are passed to the synthesis
formula. Note the oracles in �I generate constraints only and not assumptions.

Theorem 3 (Soundness). If Algorithm 2 returns �f∗, then �f∗ is a valid solu-
tion for the SyMO problem (�f, �θ,∀�xφ, �J � �I).

Proof. According to Definition 6, a solution �f∗ is valid for our synthesis problem
iff (�x, �θ,¬φ·{�f → �f∗}, �J � �I) is unsatisfiable modulo theories and oracles, i.e.
when ∃�θ.A ∧ (¬φ·{�f → �f∗} ∧ B) is T -unsatisfiable for assumptions A and con-
straints B generated by oracle interfaces �J ��I. By definition, Algorithm 2 returns
a solution if the underlying SMTO solver finds that (�x, �θ,A ∧ ¬φ·{�f → �f∗}, �J)
is unsatisfiable modulo theories and oracles, i.e. ∃�θ.A ∧ (¬φ·{�f → �f∗}) is T -
unsatisfiable, which trivially implies that the above statement holds. Thus, and
since the SMTO solver is correct for UNSAT responses due to Theorem 1, any
solution returned by Algorithm 2 is a valid solution.

Inferring Inputs for Additional Oracles: Although not described in detail in Algo-
rithm 2, we remark that an implementation may infer additional calls to ora-
cles based on occurrences of terms in constraints from �I and ground terms in

Satisfiability and Synthesis Modulo Oracles 277

φ under the current counterexample from M . For example, if f(7) appears in
φ·{�x → �xM}, and there exists an oracle interface with a single input z and the
generator βgen : f(z) ≈ y, we call that oracle with the value 7. Inferring such
inputs amounts to matching terms from constraint generators to concrete terms
from φ·{�x → �xM}. Our implementation in Sect. 6 follows this principle.

5 Instances of Synthesis Modulo Oracles

A number of different queries are categorized in work by Jha and Seshia [21].
Briefly, these query types are

– membership queries: the oracle returns true iff a given input-output pair is
permitted by the specification

– input-output queries: the oracle returns the correct output for a given input
– positive/negative witness queries: the oracle returns a correct/incorrect input-

output pair
– implication queries: given a candidate function which the specification

demands is inductive, the oracle returns a counterexample-to-induction
[11,19].

– Counterexample queries: given a candidate function, the oracle returns an
input on which the function behaves incorrectly if it is able to find one

– Correctness queries: the oracle returns true iff the candidate is correct
– Correctness with counterexample: the oracle returns true iff the candidate is

correct and a counterexample otherwise
– Distinguishing inputs: given a candidate function, the oracle checks if there

exists another function that behaves the same on the set of inputs seen so
far, but differently on a new input. If one exists, it returns the new input and
its correct output.

All of these query types can be encapsulated within the framework we present,
and we show the oracle interfaces for each of the classic query types in Table 1.
Thus, the SyMO framework is a flexible and general framework for program syn-
thesis that can implement any inductive synthesis algorithm, i.e., any synthesis
algorithm where the synthesis phase of the algorithm iteratively increases the
semantic constraints over the synthesis function.

In Table 1, we give example synthesis algorithms next to the corresponding
oracle interfaces. To illustrate these equivalences, we describe in more detail
two exemplars: how CEGIS [29] is SyMO with a single counterexample-with-
correctness interface Jccex; and how SyMO implements ICE-learning [19] using
interfaces Jcorr, Iimp, Ipos, Ineg.

Exemplar 1: CounterExample Guided Inductive Synthesis in SyMO: Suppose we
are solving a synthesis formula with a single variable x and a single synthesis
function f , where f : σ → σ′. CEGIS consists of two phases, a synthesis phase
that solves the formula S = ∃f.∀x. ∈ Xcex.φ, where Xcex is a subset of all pos-
sible values of x, and a verification phase which solves the formula V = ∃x.¬φ.

278 E. Polgreen et al.

Table 1. Common oracle interfaces, illustrated for synthesizing a single function which
takes two inputs f(x1, x2). y indicates query variables, except where they are the
candidate function, in which case we use f∗, and z indicates response variables, where
zb is a Boolean.

Query type Oracle interface Example algorithms

Constraint generating oracles

Membership Imem({y1, y2, y}, zb, �, zb ⇔ f(y1, y2) ≈ y) Angluin’s L∗ [7]

Input-Output Iio({y1, y2}, z, �, z ≈ f(y1, y2)) Classic PBE

Negative witness Ineg(∅, {z1, z2, z}, �, f(z1, z2) 	≈ z) ICE-learning [19]

Positive witness Ipos(∅, {z1, z2, z}, �, f(z1, z2) ≈ z) ICE-learning [19]

Implication Iimp(f
∗, {z1, z2, z′

1, z′
2}, �, f(z1, z2) ⇒ f(z′

1, z′
2) ICE-learning [19]

Counterexample Icex(f
∗, �z, �, φ{�x→ �z}) Synthesis with

validators [23]

Distinguishing-input Idi(f
∗, {z1, z2, z}, �, f(z1, z2) ≈ z) Synthesis with

distinguishing

inputs [20]

Constraint and assumption generating oracles

Correctness Jcorr(f
∗, zb, θ(f∗) ≈ zb, �) ICE-learning [19]

Correctness with cex Jccex(f
∗, zb, �z, θ(f∗) ≈ zb, φ{�x→ �z}) classic CEGIS [29]

There are two ways of implementing CEGIS in our framework. The first is sim-
ply to pass the full SMT-formula φ to the algorithm as is, without providing
external oracles. The second method is to replace the specification given to the
oracle guided synthesis algorithm with ∃f.∀θ .θ(f) and use an external correct-
ness oracle with counterexamples, illustrated here for a task of synthesizing a
function f , and receiving a candidate synthesis function y : σ → σ′:

Icorr = ((y : (σ → σ′)), (z1 : σ, z2 : bool), θ(y) = z2, φ(x → z1))

By inspecting the formula solved by the synthesis phase at each iteration, we
can see that, after the first iteration, the synthesis formula are equisatisfiable
if the sequence of counterexamples obtained is the same for both algorithms.
Thus CEGIS can be implemented as a specific instance of the SyMO framework
(Table 2).

Table 2. Comparison of the synthesis formula at each iteration, showing that, if the
same sequence of counterexamples is obtained, the synthesis formulas are equisatisfiable
at each step, i.e., CEGIS reduces to SyMO.

Iter. CEGIS SyMO with correctness oracle

1 Xcex = ∅
∃f.∃x.φ ∃f.true

2 Xcex = c1 β1 = φ(x → k1)

. ∃f.∀x ∈ Xcex .φ(x) ∃f.β1

3 Xcex = c1, c2 β2 = φ(x → k2)

. ∃f.∀x ∈ Xcex .φ(x) ∃f.β1 ∧ β2

.

Satisfiability and Synthesis Modulo Oracles 279

Exemplar 2: ICE Learning. ICE learning [19] is an algorithm for learning invari-
ants based on using examples, counterexamples and implications. Recall the
classic invariant synthesis problem is to find an invariant inv such that:

∀x, x′ ∈ X.(init(x) ⇒ inv(x)) ∧ (inv(x) ∧ trans(x, x′) ⇒ inv(x′))
∧ (inv(x′) ⇒ φ)

where init defines some initial conditions, trans defines a transition relation and
φ is some property that should hold. Given a candidate inv∗, if the candidate
is incorrect (i.e., violates the constraints listed above) the oracle can provide:
positive examples E ⊆ X, which are values for x where inv(x) should be true;
negative examples C ⊆ X, which are values for x where inv(x) should be false;
and implications I ⊆ X × X, which are values for x and x′ such that inv(x) ⇒
inv(x′). The learner then finds a candidate inv, using a symbolic encoding, such
that

(∀x ∈ E.inv(x)) ∧ (∀x ∈ C.¬inv(x)) ∧ (∀(x, x′) ∈ I.inv(x) ⇒ inv(x′)).

The SyMO algorithm described in this work will implement ICE learning
when given a correctly defined set of oracles and oracle interface and a constraint
θcorr(inv) = true. Interfaces for these oracles are shown in Table 1.

6 Delphi: A Satisfiability and Synthesis Modulo Oracles
Solver

We implement the algorithms described above in a prototype solver Delphi1.
Delphi can use any SMT-lib compliant SMT solver as the sub-solver in the SMTO
algorithm, or bitblast to MiniSAT version 2.2 [17], and it can use any SyGuS-IF
compliant synthesis solver in the synthesis phase of the SyMO algorithm, or a
symbolic synthesis encoding based on bitblasting. In the evaluation we report
results using CVC5 [10] v1.0 pre-release in the synthesis phase and as the sub-
solver for the SMTO algorithm. The input format accepted by the solver is an
extension of SMT-lib [9] and SyGuS-IF [24].

6.1 Case Studies

We aim to answer the following research questions: RQ1 – when implementing
a logical specification as an oracle executable, what is the overhead added com-
pared to the oracle-free encoding? RQ2 – can SMTO solve satisfiability problems
beyond state-of-the-art SMT solvers? RQ3 – can SyMO solve synthesis problems
beyond state-of-the-art SyGuS solvers? To that end, we evaluate Delphi on the
following case studies.

1 link: https://github.com/polgreen/delphi.

https://github.com/polgreen/delphi

280 E. Polgreen et al.

Table 3. Solving times for Delphi and CVC5 on math examples using oracle and
recursive function encodings. “ – ” indicates the timeout of 600 s was exceeded.

Benchmark Delphi (oracles) Delphi (no oracles) CVC5 (no oracles)

1b-square <0.2 s <0.2 s –

1d-prime <0.2 s – <0.2 s

1f-prime 3.1 s – <0.2 s

1h-triangle <0.2 s – <0.2 s

1j-square, prime <0.2 s – –

1l-triangle <0.2 s – <0.2 s

1m-triangle <0.2 s – <0.2 s

ex7-prime 2.3 s – –

ex8-prime – – –

ex9-prime 3.2 s – –

ex10-prime – – –

ex11-prime <0.2 s – –

Reasoning About Primes (Math): We convert a set of 12 educational mathe-
matics problems [22] that reason about prime numbers, square numbers, and
triangle numbers into SMT and SMTO problems. These benchmarks are taken
from Edexcel mathematics questions. The questions require the SMT solver to
find numbers that are (some combination of) factors, prime-factors, square and
triangle numbers. The encodings without oracles used recursive functions to
determine whether a number is a prime or a triangle number. We note the ora-
cle used alongside the benchmark number in Table 3. We enable the techniques
described by Reynolds et al. [26] when running CVC5 on problems using recur-
sive functions. We demonstrate that using an oracle to determine whether a
number is a prime, a square or a triangle number is more efficient than the pure
SMT encoding.

Image Processing (Images): Given two images, we encode a synthesis problem
to synthesize a pixel-by-pixel transformation between the two. Figure 2 shows
an example transformation. The SyMO problem uses an oracle, shown in Fig. 5,
which loads two JPEG images of up to 256 × 256 pixels: the original image, and
the target image. Given a candidate transformation function, it translates the
function into C code, executes the compiled code on the original image and com-
pares the result with the target image, and returns “true” if the two are identical.
If the transformation is not correct, it selects a range of the incorrect pixels and
returns constraints to the synthesizer that give the correct input-output behav-
ior on those pixels. The goal of the synthesis engine is to generalize from few
examples to the full image. The oracle-free encoding consists of an equality con-
straint per pixel. This is a simplification of the problem which assumes the image
is given as a raw matrix and omits the JPEG file format decoder.

Satisfiability and Synthesis Modulo Oracles 281

SyGuS to C
translator

Compiler Execute

Image Processing
Library

Original
image

Target
image

SAT/UNSAT
constraint: f(i1) = o1 ∧ f(i2) = o2 ∧ . . .

f∗

Fig. 5. Oracle for image transformations

Table 4. Comparison of Delphi and CVC5. # is the number of benchmarks solved
within the 600s timeout, and t is the average run-time for solved benchmarks. The
first column shows results on SyMO and SMTO problems, the second two columns
show results on the equivalent oracle-free encodings.

Problem class Benchmarks (#) Delphi (oracles) Delphi (no oracles) CVC5 (no oracles)

t # t # t

SyMO Images(10) 9 21.6 s 0 – 0 –

SMTO Math(12) 9 <0.5 s 1 <0.2 s 5 2.2 s

SyMO Control-stability(112) 104 29.3 s – – 16 19.4 s

SyMO Control-safety(112) 31 59.9 s 0 – 0 –

SMTO PBE(150) 148 0.5 s 150 1.6 s 150 <0.2 s

Digital Controller Synthesis: These benchmarks, fully described in [2], synthe-
size single- and double-point precision floating-point controllers that guarantee
stability and bounded safety for Linear Time Invariant systems. We use a state-
space representation, which is discretized in time with 6 different constant sam-
pling intervals Ts, generating 6 benchmarks per system: ẋt+1 = A�xt+B�ut, where
�x ∈ R

n, �u ∈ R
p is the input to the system, calculated as K�x where K is the

controller to be synthesized, A ∈ R
n×n is the system matrix, B ∈ R

n×p is the
input matrix, and subscript t indicates the discrete time step.

For stability benchmarks, we aim to find a stabilizing controller, such that
absolute values of the (potentially complex) eigenvalues of the closed-loop matrix
A − BK are less than one. For bounded safety benchmarks, we aim to find
a controller that is both stable, as before, and guarantees the states remain
within a safe region of the state space up to a given number of time steps.
The SyMO encoding uses an oracle to determine the stability of the closed-loop
matrix. The encoding without oracles requires the SMT solver to find roots of
the characteristic polynomial. The results are summarized in Table 4.

Programming by Example: We encode PBE [1] benchmarks as SyMO problems
using oracles that demonstrate the desired behavior of the function to be syn-
thesized. These examples show that PBE benchmarks have a simple encoding in
our framework. The results are summarized in Table 4.

282 E. Polgreen et al.

6.2 Observations

We report a summary of the results for these case-studies in Table 4 and make
the following observations:

RQ1. The overhead incurred by using oracles is small: performance on PBE
problems encoded with oracles is similar to PBE problems encoded without ora-
cles, with a small overhead incurred by calling external binaries. Given this low
overhead, SyMO would be amenable to integration with many more sophisti-
cated synthesis search approaches [5,18,25].

RQ2. Delphi solves more educational mathematics questions than CVC5,
demonstrating that SMTO does enable SMT solvers to solve problems beyond
the state-of-the-art by delegating challenging reasoning to an external oracle.

RQ3. Delphi solves control synthesis problems and image transformation prob-
lems that cannot be easily expressed as SyGuS and elude CVC5, demonstrating
that SyMO can solve synthesis problems beyond state-of-the-art solvers. When
tackling the image transformation problems, SyMO dynamically generates small
numbers of informative constraints, rather than handling the full image at once.

We also note that in many cases the encodings for SyMO and SMTO prob-
lems are more compact and (we believe) easier to write in comparison to pure
SMT/SyGuS encodings. For instance, Fig. 1 reduces to two assertions and a
declaration of a single oracle function symbol.

Future Work: We see a lot of scope for future work on SyMO. In particu-
lar, we plan to embed SMTO solving into software verification tools such as
UCLID5 [27]; allowing the user to replace functions that are tricky to model
with oracle function symbols. The key algorithmic developments we plan to
explore in future work include developing more sophisticated synthesis strate-
gies that decide when to call oracles based on the learned utility and cost of the
oracles, and lifting the requirement for the verification problem to be in defini-
tional SMTO. An interesting part of future work will be to explore interfaces
to oracles that provide syntactic constraints, such as those used in [3,18], which
will require the use of context-sensitive grammars in the synthesis phase.

7 Conclusion

We have presented a unifying framework for synthesis modulo oracles, identifying
two key types of oracle query-response patterns: those that return constraints
that can guide the synthesis phase and those that assert correctness. We proposed
an algorithm for a meta-solver for solving synthesis modulo oracles, and, as a
necessary part of this framework, we have formalized the problem of satisfiability
modulo oracles. Our case studies demonstrate the flexibility of a reasoning engine
that can incorporate oracles based on complex systems, which enables SMTO

Satisfiability and Synthesis Modulo Oracles 283

and SyMO to tackle problems beyond the abilities of state-of-the-art SMT and
Synthesis solvers, and allows users to specify complex problems without building
custom reasoning engines.

Acknowledgments. We thank Susmit Jha, Michael O’Boyle, Federico Mora, Adwait
Godbole, Yatin Manerkar and Sebastian Junges for their feedback on earlier versions
of this paper. This work was supported in part by NSF grants CNS-1739816 and CCF-
1837132, by the DARPA LOGiCS project under contract FA8750-20-C-0156, by the
iCyPhy center, and by gifts from Intel, Amazon, and Microsoft.

References

1. Sygus competition. https://sygus.org/. Accessed 19 May 2021
2. Abate, A., et al.: Automated formal synthesis of provably safe digital controllers

for continuous plants. Acta Inform. 57(1–2), 223–244 (2020)
3. Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample

guided inductive synthesis modulo theories. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10981, pp. 270–288. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96145-3 15

4. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering. NATO Science for Peace and Security Series, D: Information and Com-
munication Security, vol. 40, pp. 1–25. IOS Press (2015)

5. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 18

6. Andraus, Z.S., Sakallah, K.A.: Automatic abstraction and verification of Verilog
models. In: Proceedings of the 41th Design Automation Conference, DAC 2004,
San Diego, CA, USA, 7–11 June 2004, pp. 218–223. ACM (2004)

7. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

8. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, chap.
26, pp. 825–885. IOS Press (2009)

9. Barrett, C., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0
10. Barrett, C.W.: CVC4 at the SMT competition 2018. CoRR, abs/1806.08775 (2018)
11. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,

Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

12. Brady, B.A., Bryant, R.E., Seshia, S.A.: Learning conditional abstractions. In:
FMCAD, pp. 116–124. FMCAD Inc. (2011)

13. Brady, B.A., Bryant, R.E., Seshia, S.A., O’Leary, J.W.: ATLAS: automatic term-
level abstraction of RTL designs. In: Proceedings of the Eighth ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign (MEMOCODE),
pp. 31–40, July 2010

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

https://sygus.org/
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-319-96145-3_15
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15

284 E. Polgreen et al.

15. Collie, B., Woodruff, J., O’Boyle, M.F.P.: Modeling black-box components with
probabilistic synthesis. In: GPCE, pp. 1–14. ACM (2020)

16. David, C., Kesseli, P., Kroening, D., Lewis, M.: Program synthesis for program
analysis. ACM Trans. Program. Lang. Syst. 40(2), 5:1-5:45 (2018)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

18. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program synthesis using conflict-
driven learning. In: PLDI, pp. 420–435. ACM (2018)

19. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 5

20. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: International Conference on Software Engineering (ICSE),
pp. 215–224. ACM (2010)

21. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Inform. 54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

22. Kent, M.: GCSE Maths Edexcel Higher Student Book. Harpercollins Publishers,
New York (2015)

23. Miltner, A., Padhi, S., Millstein, T.D., Walker, D.: Data-driven inference of repre-
sentation invariants. In: PLDI, pp. 1–15. ACM (2020)

24. Udupa, A., Raghothaman, M., Reynolds, A.: The SyGuS language standard version
2.0 (2019). https://sygus.org/language/

25. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019. LNCS, vol. 11562, pp. 74–83. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25543-5 5

26. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 133–151. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 10

27. Seshia, S.A., Subramanyan, P.: UCLID5: integrating modeling, verification, syn-
thesis and learning. In: MEMOCODE, pp. 1–10. IEEE (2018)

28. Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-
guided program synthesis. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net
(2019)

29. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

30. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,
Alur, R.: TRANSIT: specifying protocols with concolic snippets. In: Boehm, H.-
J., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 287–296. ACM (2013)

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/s00236-017-0294-5
https://sygus.org/language/
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-319-40229-1_10

Bisimulations for Neural Network
Reduction

Pavithra Prabhakar(B)

Kansas State University, Manhattan, KS 66506, USA
pprabhakar@ksu.edu

Abstract. We present a notion of bisimulation that induces a reduced
network which is semantically equivalent to the given neural network.
We provide a minimization algorithm to construct the smallest bisimu-
lation equivalent network. Reductions that construct bisimulation equiv-
alent neural networks are limited in the scale of reduction. We present
an approximate notion of bisimulation that provides semantic close-
ness, rather than, semantic equivalence, and quantify semantic deviation
between the neural networks that are approximately bisimilar. The latter
provides a trade-off between the amount of reduction and deviations in
the semantics.

Keywords: Neural networks · Bisimulation · Verification · Reduction

1 Introduction

Neural networks (NN) with small size are conducive for both automated anal-
ysis and explainability. Rigorous automated analysis using formal methods has
gained momentum in recent years owing to the safety-criticality of the appli-
cation domains in which NN are deployed [3,11,12,16,19,20]. For instance, NN
are an integral part of control, perception and guidance of autonomous vehicles.
However, the scalability of these analysis techniques, for instance, for computing
output range for safety analysis [6,12], is limited by the large size of the neural
networks encountered and the computational complexity due to the presence of
non-linear activation functions. In this paper, we borrow ideas from formal meth-
ods to design novel network reduction techniques with formal relations between
the given and the reduced networks, that can be applied to reduce the verifica-
tion time. It can also potentially impact explainability by presenting to the user
a smaller network with guaranteed bounds on the deviation from the original
network.

Bisimulation [14] is a classical notion of equivalence between systems in pro-
cess algebra that guarantees that processes that are bisimilar satisfy the same
set of properties specified in certain branching time logics [2]. A bisimulation is
an equivalence relation on the states of a system that requires similar behav-
iors with respect to one step of computation, which then inductively guarantees
global behavioral equivalence. Bisimulation algorithm [2] allows one to construct
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 285–300, 2022.
https://doi.org/10.1007/978-3-030-94583-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_14

286 P. Prabhakar

the smallest systems, bisimulation quotients, that are bisimilar to a given (finite
state) system.

Our first result consists of a definition of bisimulation for neural networks,
namely, NN-bisimulation, that defines a notion of equivalence between neural
networks. The challenge arises from the fact that neural networks semantically
have multiple parallel threads of computation that are both branching and merg-
ing at each step of computation. We observe that the global equivalence can be
established by imposing a one-step backward pre-sum equivalence, wherein we
require two nodes that belong to the same class to agree on the biases, the
activation functions, and the pre-sums, wherein a pre-sum corresponds to the
sum of the weights on the incoming edges from a given equivalence class. Our
notion resembles that of probabilistic bisimulation [13], however, our notion is
based on pre-sum equivalences rather than post-sum equivalences. We define a
quotienting operation on an NN with respect to a bisimulation that yields a
smaller network which is input-output equivalent to the given network. We also
show that there exists a coarsest bisimulation which yields the smallest neural
network with respect to the quotienting operation. We provide a minimization
algorithm that outputs this smallest neural network.

The notion of bisimulation can be stringent, since, it preserves the exact
input-output relation. It has been observed, for instance, in the context of con-
trol systems, that a strict notion of equivalence, such as, bisimulation, does
not allow for drastic reduction in state-space, thereby, motivating the notion of
approximate bisimulation. Approximate bisimulations [8,9] have a notion of dis-
tance between states, and allow a bounded ε deviation between the executions
of the systems in each step. The notion of approximate bisimulation was suc-
cessfully used to construct smaller systems in the setting of dynamical systems
and control synthesis [10].

We extend the notion of NN-bisimulation to an approximate notion, wherein
we require nodes belonging to the same class to have bounded deviation, ε, in the
biases and the pre-sums. The quotienting operation no more results in a unique
reduced network, but a set of reduced networks. Moreover, these reduced net-
works may not have the same input-output relation as the given neural network.
However, we provide a bound on the deviation in the semantics of two approx-
imately bisimilar NNs. It gives rise to a nice trade-off between the amount of
reduction and the deviation in the semantics, that translates to a trade-off in the
precision and verification time in an approximation based verification scheme.

Related Work. Neural network reduction techniques have been explored in
different contexts. There is extensive literature on compression techniques,
see, for instance, surveys on network compression [4,5]. However, these tech-
niques typically do not provide formal guarantees on the relation between the
given and reduced systems. Abstraction techniques [7,15,17] computing over-
approximations of the input-output relations have been explored in several
works, however, they use slightly different kinds of networks such as interval
neural networks and abstract neural networks, or are limited to certain kinds of
activation functions such as ReLU. Notions of bisimulation for DNNs have not

Bisimulations for Neural Network Reduction 287

been explored much in the literature. Equivalence between DNNs is explored [1],
however, the work is restricted to ReLU functions and does not consider approx-
imate notions.

2 Preliminaries

Let [k] denote the set {0, 1, · · · , k} and (k] the set {1, 2, · · · , k}. Let R denote
the set of real numbers. We use |x| to denote the absolute value of x ∈ R.
Given a set A, we use |A| to denote the number of elements of A. Given a
function f : A → R, we define the infinity norm of f to be the supremum of
the absolute values of elements in the range of f , that is, ||f ||∞ = supa∈A |f(a)|.
Given functions f : A → B and g : B → C, the composition of f and g,
g ◦ f : A → C, is given by, for all a ∈ A, g ◦ f(a) = g(f(a)).

Partitions. Given a set S, a (finite) partition of S is a set P = {S1, · · · ,Sn},
such that

⋃
i Si = P and Si ∩ Sj = ∅ for all i �= j. We refer to each element of a

partition as a region or a group. A partition P of S can be seen as an equivalence
relation on S, given by the relation s1Ps2 whenever s1 and s2 belong to the same
group of the partition. Given two partitions P and P ′, we say that P is finer
than P ′ (or equivalently, P ′ is coarser than P), denoted P � P ′, if for every
S ∈ P, there exists S′ ∈ P ′ such that S ⊆ S ′.

3 Neural Networks

In this section, we present the preliminaries regarding the neural network. Recall
that a neural network (NN) consists of a layered set of nodes or neurons, includ-
ing an input layer, an output layer and one or more hidden layers. Each node
except those in the input layer are annotated with a bias and an activation func-
tion, and there are weighted edges between nodes of adjacent layers. We capture
these elements of a neural network using a tuple in the following definition.

Definition 1. A neural network (NN) is a tuple N =
(
k,Act, {Si}i∈[k],

{Wi}i∈(k], {bi}i∈(k], {Ai}i∈(k]

)
, where:

– k represents the number of layers (except the input layer);
– Act is a set of activation functions;
– for each i ∈ [k], Si is a set of nodes of layer i, we assume Si ∩ Sj = ∅ for

i �= j;
– for each i ∈ (k], Wi : Si−1 × Si → R is the weight function that captures the

weight on the edges between nodes at layer i − 1 and i;
– for each i ∈ (k], bi : Si → R is the bias function that associates a bias with

nodes of layer i;
– for each i ∈ (k], Ai : Si → Act is an activation association function that

associates an activation function with each node of layer i.

288 P. Prabhakar

s0,1

s0,2

s1,1

s1,2

s1,3

s2,2

s2,1

s2,3

s3,1

1

1
2

2

3
3

1
3

2
2

1

3

1

1

1

2

1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Fig. 1. Neural network N

S0 and Sk are the set of nodes corresponding to the input and output lay-
ers, respectively. We will fix the NN N =

(
k,Act, {Si}i∈[k], {Wi}i∈(k], {bi}i∈(k],

{Ai}i∈(k]

)
for the rest of the paper.

Example 1. The neural network N shown in Fig. 1 consists of an input layer with
2 nodes, 2 hidden layers with 3 nodes each, and an output layer. The weights on
the edges are shown, for instance, W2(s1,2, s2,2) = 2. The biases are all 0s and
the activation functions are all ReLUs (not shown).

In the sequel, the central notion to the definition of bisimulation will be the
total weight on the incoming edges for a node s′ of the i-th layer from a set of
nodes S of the i− 1-st layer. We will capture this using the notion of a pre-sum,
denoted PreSumN

i (S, s′). For instance, PreSumN
2 ({s1,1, s1,2}, s2,2) = 2 + 2 = 4.

Definition 2. Given a set S ⊆ Si−1 and s′ ∈ Si, we define PreSumN
i (S, s′) =∑

s∈S Wi(s, s′).

Next, we capture the operational behavior of a neural network. A valuation v
for the i-th layer of N refers to an assignment of real-values to all the nodes in Si,
that is, v : Si → R. Let Val(Si) denote the set of all valuations for the i-th layer
of N . By the operational semantics of N , we mean the assignments for all the
layers of N , that are obtained from an assignment for the input layer. We define
[[N]]i(v), which given a valuation v for layer i − 1, returns the corresponding
valuation for layer i according to the semantics of N . The valuation for the
output layer of N is then obtained by the composition of the functions [[N]]i.

Definition 3. The semantics of the i-the layer is the function [[N]]i :
Val(Si−1) → Val(Si), where for any v ∈ Val(Si−1), [[N]]i(v) = v′, given by

∀s′ ∈ Si, v′(s′) = Ai(s′)
(∑

s∈Si−1

Wi(s, s′)v(s) + bi(s′)
)
.

Bisimulations for Neural Network Reduction 289

To capture the input-output semantics, we compose these one layer semantics.
More precisely, we define [[N]]i to be the composition of the first i layers, that
is, [[N]]i(v) provides the valuation of the i-th layer given v as input. It is defined
inductively as:

[[N]]1 = [[N]]1

∀i ∈ (k]\{1}, [[N]]i = [[N]]i ◦ [[N]]i−1

Definition 4. The input-output semantic function, represented by [[N]] :
Val(S0) → Val(Sk), is defined as:

[[N]] = [[N]]k

The notion of bisimulation requires the notion of a partition of the nodes of
N . We define a partition on N as an indexed set of partitions each corresponding
to a layer.

Definition 5. A partition of an NN N is an indexed set P = {Pi}i∈[k], where
for every i, Pi is a partition of Si.

A Note on Lipschitz Continuity. A function f : Rm → R
n is said to be Lipschitz

continuous if there exists a constant L(f), referred to as Lipschitz constant for
f , such that for all x, y ∈ R

m,

||f(x) − f(y)||∞ ≤ L(f)||x − y||∞.

Several activation functions including ReLU, Leaky ReLU, SoftPlus, Tanh, Sig-
moid, ArcTan and Softsign are known to be 1-Lipschitz continuous [18], that is,
satisfy the above constraint with L(f) = 1. In fact, the function [[N]] is itself Lip-
schitz continuous, when the activation functions are Lipschitz continuous [18].
We will use L(N) to denote an upper bound on L([[N]]i) over all i. Hence, given
an input v, we know that ||[[N]]i(v)||∞ ≤ L(N)||v||∞.

4 NN-Bisimulation and Semantic Equivalence

In this section, we define a notion of bisimulation on neural networks, which
induces a reduced system that is equivalent to the given network. A partition of
N is an NN-bisimulation if the biases and activation functions associated with
the nodes in any region are the same, and the pre-sums of nodes in any region
with respect to any region of the previous layer are the same.

Definition 6. An NN-bisimulation for N is a partition P = {Pi}i∈[k] such that
for all i ∈ (k], S ∈ Pi−1 and s′1, s

′
2 ∈ Si with s′1Pis′2, the following hold:

1. Ai(s′1) = Ai(s′2),
2. bi(s′1) = bi(s′2), and
3. PreSumN

i (S, s′1) = PreSumN
i (S, s′2).

290 P. Prabhakar

Our notion is inspired by the well-known notion of probabilistic bisimulation [13],
where post-sums are used instead of pre-sums to characterize which nodes have
the same branching structure. Though neural networks consist of branching in
both forward and backward directions, surprisingly, just pre-sum equivalence
suffices to guarantee input-output relation equivalence.

Bisimulation naturally induces a reduced system, which corresponds to merg-
ing the nodes in a group of the partition, and choosing a representative node
from the group to assign the activation functions, biases and pre-sums. We rep-
resent the reduced system obtained by taking the quotient of N with respect to
a bisimulation P as N/P.

Definition 7. Given an NN-bisimulation P for N , the reduced system N/P =
(
k,Act, {Ŝi}i∈[k], {Ŵi}i∈(k], {b̂i}i∈(k], {Âi}i∈(k]

)
, where:

1. ∀i ∈ [k], Ŝi = Pi;
2. ∀i ∈ (k], ŝ ∈ Ŝi−1, ŝ

′ ∈ Ŝi, Ŵi(̂s, ŝ
′) = PreSumN

i (̂s, s′) for some s′ ∈ ŝ′.
3. ∀i ∈ (k], ŝ′ ∈ Ŝi, b̂i(̂s

′) = bi(s′) for some s′ ∈ ŝ′.
4. ∀i ∈ (k], ŝ′ ∈ Ŝi, Âi(̂s

′) = Ai(s′) for some s′ ∈ ŝ′.

Note that though the definition depends on the choice of s′, the reduced system
is unique, since, from the definition of NN-bisimulation, the values of biases,
activation functions and pre-sums, corresponding to different choices of s′ within
a group are the same. We also use just bisimulation to refer to NN-bisimulation.

In order to formally establish the connection between the NN N and its
reduction N/P, we define a mapping from the valuations of N to those of N/P,
but only for certain valuations that are consistent in that they map all the related
nodes in P to the same value.

Definition 8. A valuation v ∈ Val(Si) is P-consistent, if for all s1, s2 ∈ Si, if
s1Pis2, then v(s1) = v(s2).

Our first result is that a consistent input valuation leads to a consistent
output valuation, when P is a bisimulation. We show this for a particular layer;
the extension to the whole network follows from a simple inductive reasoning.

Lemma 1. Let P be a bisimulation on N . If v1 ∈ Val(Si−1) is P-consistent,
then v2 = [[N]]i(v1) is P-consistent.

Proof. Let s′, s′′ ∈ Si such that s′Pis′′. We need to show that v2(s′) = v2(s′′).
v2(s′) = Ai(s′)(

∑
s∈Si−1

Wi(s, s′)v1(s) + bi(s′)) = Ai(s′)(
∑

S∈Pi−1

∑
s∈S Wi(s, s′)

v1(s) + bi(s′)). Since, v1 is P-consistent, for each S, we have a value vS
1 that all

elements of S are mapped to by v1, that is, vS
1 = v1(s) for all s ∈ S. Replacing

v1(s) for each s, by vS
1 , we obtain v2(s′) = Ai(s′)(

∑
S∈Pi−1

∑
s∈S Wi(s, s′)vS

1 +
bi(s′)). From the definition of pre-sum, we can replace

∑
s∈S Wi(s, s′) by

PreSumN
i (S, s′), which is also equal to PreSumN

i (S, s′′) from the definition of
bisimulation, since P is a bisimulation and s′Pis′′. Also, Ai(s′) = Ai(s′′) and
bi(s′) = bi(s′′). So, we obtain, v2(s′) = Ai(s′′)(

∑
S∈Pi−1

PreSumN
i (S, s′′)vS

1 +
bi(s′′)). Expanding back PreSumN

i (S, s′′), and vS
1 = v1(s) for all s ∈ S, we

obtain v2(s′) = Ai(s′′)(
∑

S∈Pi−1

∑
s∈S Wi(s, s′′)v1(s) + bi(s′′)) = v2(s′′).

Bisimulations for Neural Network Reduction 291

Note that if we do not group together the nodes in the input and output
layers, there is a bijection between S0 and Ŝ0 and Sk and Ŝk, and hence, a
bijection between their valuations. We will show that both N and N/P have the
“same” input-output relation modulo the bijection between their nodes. First,
we define a formal relation between P-consistent valuations of N and valuations
of N/P.

Definition 9. Let P be a bisimulation on N , and v ∈ Val(Si) be a P-consistent
valuation. The abstraction of v, denoted, α(v)N ,P ∈ Val(Ŝi), is defined as, for
every ŝ ∈ Ŝi, α(v)N ,P(ŝ) = v(s) for some s ∈ ŝ.

Note that α(v)N ,P is well defined, since, from the P-consistency of v, v(s) is the
same for any choice of s ∈ ŝ. When N and P are clear from the context, we
will drop the subscript and write α(v)N ,P as just α(v). The next result states
that the output of the i-th layer of N/P with the abstraction of a P-consistent
valuation v of the i − 1-st layer of N as input, results in a valuation that is the
abstraction of the output of the i-th layer of N on input v. In other words, it
says that propagating a valuation for one-step in N is the same as propagating
its abstraction in N/P.

Lemma 2. Let P be a bisimulation on N , and v ∈ Val(Si) be P-consistent.
Then, α([[N]]i(v)) = [[N/P]]i(α(v)).

Proof. From Lemma 1, we know that v′ = [[N]]i(v) is P-consistent. Hence, for
any ŝ′ ∈ Ŝi, α(v′)(ŝ′) = v′(s′) for some (any) s′ ∈ ŝ′. Let us fix s′ ∈ ŝ′.

α(v′)(ŝ′) = v′(s′) = Ai(s′)
(∑

s∈Si−1

Wi(s, s′)v(s) + bi(s′)
)

from the semantics of N . Further,
∑

s∈Si−1

Wi(s, s′)v(s) =
∑

S∈Pi−1

∑

s∈S
Wi(s, s′)v(s)

From P-consistency of v, v(s) = α(v)(S) for any s ∈ S. Hence,
∑

s∈S
Wi(s, s′)v(s) =

∑

s∈S
Wi(s, s′)α(v)(S) = PreSumN

i (S, s′)α(v)(S).

From the definition of N/P, Âi(ŝ′) = Ai(s′), Ŵi(S, ŝ′) = PreSumN
i (S, s′), b̂i(ŝ′)

= bi(s′), and Pi−1 = Ŝi−1. From P-consistency of v, α(v)(S) = v(s) for any
s ∈ S. Therefore, for any ŝ′ ∈ Ŝi,

α([[N]]i(v))(ŝ′) = α(v′)(ŝ′)

= Âi(ŝ′)
(∑

S∈ ̂Si−1

Ŵi(S, ŝ′)α(v)(S) + b̂i(ŝ′)
)

= [[N/P]]i(α(v))(ŝ′).

292 P. Prabhakar

The following theorem follows by composing the results from Lemma 2 for
the different layers.

Theorem 1. Given P a bisimulation on N , and v ∈ Val(S0) that is P-
consistent, we have α([[N]](v)) = [[N/P]](α(v)).

Proof. We can show by induction on i that α([[N]]i(v)) = [[N/P]]i(α(v)).

s0,1

s0,2

s1,2

s1,3

s2,2

s2,3

s3,11

2

3

4
1

3

1
2

33

s1,1 s2,1

0.0

0.0

0.0

0.0

0.0

Fig. 2. Reduced system N/P

Example 2. Consider a partition P for the NN N in Fig. 1 where each node
appears as a region by itself except for the regions S1 = {s1,1, s1,2}, and
S2 = {s2,1, s2,2}. We can verify that this is a bisimulation. For instance,
PreSumN

2 (S1, s2,1) = 1 + 3 and PreSumN
2 (S1, s2,2) = 2 + 2, which are the same.

The reduced system is given by the NN N/P in Fig. 2. Here, Ŵ2(S1,S2) = 4.

5 δ-NN-Bisimulation and Semantic Closeness

NN-bisimulation provides a foundation for reducing a neural network while pre-
serving the input-output relation. However, existence of such bisimulations lead-
ing to equivalent reduced networks with much fewer neurons is limited in that for
many networks no bisimulation quotient may lump together lot of nodes. Hence,
we relax the notion of bisimulation to an approximate notion wherein we allow
potentially large reductions, however, the reduced systems may not be semanti-
cally equivalent, but only be semantically close to the given neural network. We
quantify the deviation of the reduced system in terms of the “deviation” of the
approximate notion from the exact bisimulation.

The approximation notion of bisimulation we consider is inspired by the
notion of approximate bisimulation in the context of dynamical systems [8,9].
We essentially relax the requirement of the NN-bisimulation that the biases and
pre-sums match by allowing them to be within a δ. This is formalized in the
following definition.

Definition 10. A δ-NN-bisimulation for an NN N and δ ≥ 0 is a partition
P = {Pi}i∈[k] such that for all i ∈ (k], S ∈ Pi−1 and s′1, s

′
2 ∈ Si with s′1Pis′2, the

following hold:

Bisimulations for Neural Network Reduction 293

1. Ai(s′1) = Ai(s′2),
2. |bi(s′1) − bi(s′2)| ≤ δ, and
3. |PreSumN

i (S, s′1) − PreSumN
i (S, s′2)| ≤ δ.

We will also use δ-bisimulation to refer to δ-NN-bisimulation. The reduced
system can be constructed similar to that for NN-bisimulation. However, the
choice of the nodes s′ ∈ ŝ′ used to construct the weights and biases of the reduced
system could lead to different neural networks. Hence, we obtain a finite set of
possibilities for the reduced system that we denote by N/δP.

s0,1

s1,1

s1,2

s1,3

s2,1

1.0

1.0

1.0

0.0

0.0

0.0

0.0

1.0

0.8

1.2

s0,1

s1,3

s2,1

1.0

0.0

0.0

0.0

0.8

1.2

2.0
s1,2
s1,1

s0,1 s1,2

s1,3

s2,1

1.0

0.00.0

0.0

1.0

1.2

2.0s1,1

Fig. 3. Illustration of N ∗/δP on NN N ∗

Example 3. Consider the NN N ∗ in Fig. 3 (top left) and a partition P = {Pi}i,
where P0 = {{s0,1}}, P2 = {{s2,1}} and P1 = {{s1,1, s1,2}, {s1,3}}, that is, P
merges nodes s1,1 and s1,2. Note that P is a δ-bisimulation on N ∗ for δ = 0.2. For
instance, PreSumN ∗

1 ({s0,1}, s1,1) = 0.8 and PreSumN ∗
1 ({s0,1}, s1,2) = 1.0 whose

difference is ≤ 0.2 = δ. N/δP consists of N ∗
1 and N ∗

2 in Fig. 3 (top right and
bottom), one which is obtained by choosing the pre-sum corresponding to s1,1

and other by choosing the pre-sum corresponding to s1,2.

Our objective is to give a bound on the deviation of the semantics of any
N ′ ∈ N/δP from that of N . We start by quantifying this deviation in one step
of computation. For that, we extend the notion of consistent valuations to an
approximate notion, wherein we require the valuations of related states to be
within a bound rather than match exactly.

Definition 11. A valuation v ∈ Val(Si) is ε,P-consistent, if for all s1, s2 ∈ Si

with s1Pis2, |v(s1) − v(s2)| ≤ ε.

294 P. Prabhakar

Our next step is to establish a relation between the valuation propagation in
N and any N ′ ∈ N/δP analogous to Lemma 2. First, we will need to relax the
notion of the abstraction of a valuation, however, unlike in the previous case, we
obtain a set of abstractions αε(v).

Definition 12. Let P be a partition of N , and v ∈ Val(Si). The ε-abstraction
of v, denoted, αε(v)N ,P , consists of v̂ ∈ Val(Pi) such that for all ŝ ∈ Pi, s ∈ ŝ,
|v̂(ŝ) − v(s)| ≤ ε.

When N and P are clear from the context, we will drop the subscript and write
αε(v)N ,P as just αε(v). The next result states that the ε-abstraction for any
ε,P-consistent valuation is non-empty.

Proposition 1. Let v ∈ Val(Si) be an ε,P-consistent valuation. Then αε(v) is
non-empty.

Proof. Note that the valuation v̂, given by v̂(ŝ) = v(s) for some s ∈ ŝ gives a
valuation in αε(v)N ,P .

The converse of the above theorem also holds with a slight modification of the
error.

Proposition 2. Let v ∈ Val(Si), such that αε(v)N ,P is non-empty. Then, v is
a 2ε,P-consistent valuation.

Proof. Note that there is some v̂, such that ∀ŝ ∈ Pi, s ∈ ŝ, |v̂(ŝ)− v(s)| ≤ ε. Then
for all s, s′ ∈ ŝ, |v(s) − v(s′)| ≤ 2ε.

Now, we give a bound on the deviation of the output of the i-th layer of
N/δP from that of N in terms of the deviation in their inputs. Let L(Ai) =
maxs′∈Si

L(Ai(s′)).

Lemma 3. Let P be a δ-bisimulation on N , and v ∈ Val(Si−1) be ε,P-
consistent. Then, for every v̂ ∈ αε(v), and N ′ ∈ N/δP,

[[N ′]]i(v̂) ∈ αε′
([[N]]i(v)),

where ε′ = aiε + bi, ai = L(Ai)|Si−1|||Wi||∞, and bi = L(Ai)(|Pi−1|||v||∞ + 1)δ.

Proof. Let v′ = [[N]]i(v) and v̂′ = [[N ′]]i(v̂). We need to show that v̂′ ∈ αε′
(v′).

Consider any ŝ′ ∈ Ŝi and s′ ∈ ŝ′. We need to show that |v̂′(ŝ′) − v′(s′)| ≤ ε′.
Since, v̂′ = [[N ′]]i(v̂), from the semantics of N ′, we have

v̂′(ŝ′) = Âi(ŝ′)
(∑

ŝ∈ ̂Si−1

Ŵi(ŝ, ŝ′)v̂(ŝ) + b̂i(ŝ′)
)
,

and from the fact that N ′ ∈ N/δP, we have Ŵi(ŝ, ŝ′) = PreSumN
i (ŝ, s′1) for

some s′1 ∈ ŝ′, b̂i(ŝ′) = bi(s′2) for some s′2 ∈ ŝ′. Since P is a δ-bisimulation,

Bisimulations for Neural Network Reduction 295

|PreSumN
i (ŝ, s′1) −PreSumN

i (ŝ, s′)| ≤ δ, |bi(s′2) − bi(s′)| ≤ δ, and Âi(ŝ′) = Ai(s′).
Therefore,

v̂′(ŝ′) = Ai(s′)
(∑

ŝ∈Pi−1

(PreSumN
i (ŝ, s′) + δŝ)v̂(ŝ) + bi(s′) + δs′

)
,

= Ai(s′)
(∑

ŝ∈Pi−1

PreSumN
i (ŝ, s′)v̂(ŝ) + bi(s′) + ε1 + δs′

)
,

where ε1 =
∑

ŝ∈Pi−1
δŝv̂(ŝ) and δŝ, δs′ ∈ [−δ, δ]. We will examine the terms in

the above expression in more detail.
∑

ŝ∈Pi−1

PreSumN
i (ŝ, s′)v̂(ŝ) =

∑

ŝ∈Pi−1

[
∑

s∈ŝ

Wi(s, s′)v̂(ŝ)]

(Further, since, v̂ ∈ αε(v), we have for any s ∈ ŝ, |v̂(ŝ) − v(s)| ≤ ε.)

=
∑

ŝ∈Pi−1

[
∑

s∈ŝ

Wi(s, s′)(v(s) + εs)] =
∑

s∈Si−1

Wi(s, s′)(v(s) + εs)]

=
∑

s∈Si−1

Wi(s, s′)v(s) +
∑

s∈Si−1

Wi(s, s′)εs

Plugging the above into the expression for v̂′(ŝ′), we obtain

v̂′(ŝ′) = Ai(s′)
(∑

s∈Si−1

Wi(s, s′)v(s) + bi(s′) + ε1 + ε2 + δs′
)

where ε2 =
∑

ŝ∈Pi−1
δŝv̂(ŝ). Note that the expression for v̂′(ŝ′) looks similar

to v′(s′) = Ai(s′)
(∑

s∈Si−1
Wi(s, s′)v(s) + bi(s′)) except for the additional error

terms ε1 + ε2 + δs′ . From the Lipschitz continuity of Ai(s′), we obtain

|v̂′(ŝ′) − v′(s′)| ≤ L(Ai)(s′)(|ε1 + ε2 + δs′ |)
Note that L(Ai)(s′) ≤ L(Ai), |ε1| = |∑s∈Si−1

Wi(s, s′)εs| ≤ |Si−1|||Wi||∞ε,
|ε1| = |∑ŝ∈Pi−1

δŝv̂(ŝ)| ≤ |Pi−1|δ||v||∞, and |δs′ | ≤ δ. Hence,

|v̂′(ŝ′)−v′(s′)| ≤ L(Ai)(s′)(|ε1+ε2+δs′ |) ≤ L(Ai)(|Si−1|||Wi||∞ε+|Pi−1|δ||v||∞+δ)

= L(Ai)|Si−1|||Wi||∞ε + L(Ai)(|Pi−1|||v||∞ + 1)δ = ε′

Lemma 3 provides a bound on the error propagation in one step. The next
theorem provides a global bound on the deviation of the output of the reduced
system with respect to that of the given neural network. Let L(A) = maxi L(Ai),
|P| = maxi |Pi|, ||W||∞ = maxi ||Wi||∞ and |S| = |maxi Si|.
Theorem 2. Let P be a δ-bisimulation on N , and v ∈ Val(S0) be ε,P-
consistent. Then, for every v̂ ∈ αε(v), and N ′ ∈ N/δP,

[[N ′]](v̂) ∈ αε′′
([[N]](v)),

where ε′′ = [(2/a)k − 1]b/(2a − 1), a = L(A)|S|||W||∞, and b = L(A)
(|P|L(N)||v||∞ + 1)δ.

296 P. Prabhakar

Proof. Let us define:
v0 = v, v̂0 = v̂, ε0 = ε′

0 = 0

and for all i ∈ (k],
vi = [[N]]i(v), v̂i = [[N ′]]i(v̂).

ε′
i = aεi−1 + b, εi = 2ε′

i.

We will show by induction on i that for all i ∈ [k], vi is εi,P-consistent and
v̂i ∈ αε′

i(vi).

Base Case: Base case trivially holds from the assumptions of the theorem state-
ment.

Induction Step: For i ∈ (k], we know from Lemma 3, that if vi−1 ∈
Val(Si−1) is εi−1,P-consistent and v̂i−1 ∈ αεi−1(vi−1), then v̂i = [[N ′]]i(v̂i−1) ∈
αε′

([[N]]i(vi−1)) = αε′
(vi), where ε′ = aiεi−1 + bi.

ai = L(Ai)|Si−1|||Wi||∞ ≤ L(A)|S|||W||∞ = a,

bi = L(Ai)(|Pi−1|||vi||∞ + 1)δ ≤ L(A)(|P|L(N)||v||∞ + 1)δ = b

Hence, ε ≤ ε′
i and v̂i ∈ αε′

i(vi). Further from Proposition 2, we obtain vi is
εi,P-consistent.

We will show that ε′
k = ε′′. Unrolling the recursive equation, we obtain ε′

i =
2aε′

i−1 + b = (2a)iε′
0 + [(2a)i−1 + · · · + 1]b = [(2/a)i − 1]b/(2a − 1). Hence,

ε′
k = [(2/a)k − 1]b/(2a − 1) = ε′′

We finish the proof by noting that [[N ′]](v̂) = v̂k ∈ αε′
k(vk) = αε′′

([[N]](v)).

Remark 1. Note that for δ = 0, all the notions and results reduce to that of
NN-bisimulation.

6 Minimization Algorithm

In this section, we show that there is a coarsest NN-bisimulation for a given
NN, that encompasses all other bisimulations. This implies that the induced
reduced network with respect to this coarsest bisimulation is the smallest NN-
bisimulation equivalent network. We will provide an algorithm that outputs the
coarsest NN-bisimulation.

We note that a coarsest δ-NN-bisimulation may not exist in general. For
instance, consider the NN N ∗ from Fig. 3, along with the 0.2-bisimulation P
that induces the reduced systems N ∗

1 and N ∗
2 . There is another 0.2-bisimulation

P ′ which is obtained by merging s1,2 and s1,3 instead of s1,1 and s1,2 as in P.
Note that the reduced networks in N ∗/0.2P and N ∗/0.2P ′ have the same size.
However, there is no 0.2-bisimulation that is coarser than both P and P ′, since,
that would require merging s1,1, s1,2 and s1,3, which would violate the 0.2 bound
on the difference between the pre-sums of s1,1 and s1,3.

Bisimulations for Neural Network Reduction 297

The broad algorithm for minimization consists of starting with a partition in
which all the nodes in a layer are merged together and then splitting them such
that the regions in the partition respect the activation functions, biases and the
pre-sums. We use the function SplitActBias(S) in the algorithm that splits a set
of nodes S into maximal groups such that the elements in each group agree on
the activation functions and the biases. More precisely, SplitActBias(S) takes
S ⊆ Pi as input and returns a partition PS such that for all s1, s2 ∈ S, s1PSs2
if and only if Ai(s1) = Ai(s2) and bi(s1) = bi(s2). Further, we split those regions
that have nodes with inconsistent pre-sums. Next, we define inconsistent pairs
of regions with respect to pre-sums and the corresponding splitting operations.

Definition 13. Given a partition P = {Pi}i of NN N , a region S ′ ∈ Pi is
inconsistent in N with respect to S ∈ Pi−1, written (S ′,S) inconsistent, if there
exist s′1, s

′
2 ∈ S ′, such that PreSumN

i (S, s′1) �= PreSumN
i (S, s′2).

The algorithm searches for inconsistent pairs (S ′,S) and splits S ′ into maxi-
mal groups such that all nodes in a group have the same pre-sum with respect to
S. More precisely, SplitPre(S ′,S) takes S ′ and S as input and returns a partition
P ′ of S ′ such that PreSumN

i (S, s′1) = PreSumN
i (S, s′1) if and only if s′1P ′s′2.

Algorithm 1: MinNN: Minimization Algorithm

Input: A NN N
Output: Coarsest Bisimulation P, and Minimized NN N/P
begin1

P = {S0}2

for i ∈ (k] do3

P = P ∪ SplitActBias(Si)4

while Exists S,S ′ ∈ P, such that (S,S ′) inconsistent do5

P = P\{S ′} ∪ SplitPre(S ′,S)6

return Return P and N/P7

end8

Next, we show that Algorithm 1 returns the coarsest bisimulation, and hence,
the reduced network is the smallest bisimulation equivalent network.

Definition 14. A partition P of N is the coarsest bisimulation, if it is an NN
bisimulation and it is coarser than every NN-bisimulation P ′ of N .

Theorem 3. Algorithm 1 terminates and returns the coarsest bisimulation P
of N .

Proof. Termination of the algorithm is straightforward, since, if there exists an
inconsistent pair (S ′,S), then SplitPre(S ′,S) splits S ′ into at least two regions.

298 P. Prabhakar

Hence, the number of regions in P strictly increases. However, since, N has
finitely many nodes, the number of regions in P is upper-bounded.

Next, we will argue that P that is returned is an NN-bisimulation. After the
SplitActBias(Si) operations, P only consists of regions which agree on the activa-
tion functions and biases. When the while loop terminates, there are no inconsis-
tent pairs, that is, the pre-sum condition of the bisimulation definition is satisfied.
Hence, the value of P when exiting the while loop is an NN-bisimulation.

To show that P is the coarsest bisimulation, it remains to show that P is
coarser than any bisimulation of N . Let P ′ be any bisimulation of N . We will
show that P ′ is finer than P at every stage of the algorithm.

Note that after exiting the for loop, P contains the maximal groups which
agree on both the activation functions and biases. Every region of P ′ has to
agree on the activation functions and biases, since it is a bisimulation. So, every
region of P ′ is contained in some regions of P, that is, P ′ � P.

Next, we show that P ′ � P is an invariant for the while loop, that is, if it
holds at the beginning of the loop, then it also holds at the end of the loop.
So, when the while loop exits, we still have P ′ � P. More precisely, we need
to show that if P ′ � P, then replacing S ′ by SplitPre(S ′,S) will still result in
a partition that is coarser than P ′. In particular, we need to ensure that each
region of P ′ that is contained in S ′ is not split by the SplitPre(S ′,S) operation.
Suppose a region S ′′ ⊆ S ′ of P ′ is split, then there exists s′′1 , s′′2 ∈ S ′′ such
that PreSumN

i (S, s′′1) �= PreSumN
i (S, s′′1). But S is the disjoint union of some

sets {S ′′
1 , · · · ,S ′′

l } of P ′. Hence, PreSumN
i (S ′′

i , s′′1) �= PreSumN
i (S ′′

i , s′′1) for some
i, since PreSumN

i (S, s′′) =
∑

i PreSum
N
i (S ′′

i , s′′). However, this contradicts the
fact that P ′ is an NN-bisimulation.

Next, we present some complexity results on checking if a partition is a
bisimulation/δ-bisimulation, complexity of constructing reduced systems from a
bisimulation/δ-bisimulation and the complexity of computing the coarsest bisim-
ulation.

Theorem 4. Given an NN N , a partition P and ε ≥ 0, checking if P is a
bisimulation and checking if P is an δ-NN-bisimulation both take time O(m),
where m is the number of edges of N . Further, constructing N/P for some
N ′ ∈ N/δP takes time O(m) as well.

Proof. To check if P is a bisimulation, we can iterate over all the nodes in a
region to check if they have same activation function, bias, and pre-sums with
respect to every region of Pi−1. In doing so, we need to access each node and
each edge at most once, hence, the complexity is bounded by O(m). For the
δ-bisimulation, we need to check if the biases and pre-sums are within ε. We
can compute the biases and pre-sums in one pass over the network in time
O(m) as before. Then we can find the max and min values of the bias/pre-sum
values within each region, and check if the max and min values are within ε, this
will take time O(m). For constructing the reduced system, we need to find the
activation functions and biases of all the nodes in the reduced system, and the

Bisimulations for Neural Network Reduction 299

weight on the edge between two groups. The total computation needs to access
each edge at most once.

Theorem 5. The minimization algorithm has a time complexity of O(n̂(m +
n log n)), where n is the number of nodes and m is the number of edges of N ,
and n̂ is the number of nodes in the minimized neural network.

Proof. SplitActBias(Si) needs to sort the elements in every group by the activa-
tion function/bias values, hence, takes time O(n log n). Finding an inconsistent
pair takes the same time as checking whether P is a bisimulation, that is, O(m).
SplitPre(S ′,S) take time at most O(m) to compute the pre-sums and O(n log n)
to split. Replacing S ′ by SplitPre(S ′,S) takes time at most O(n̂) which is upper-
bounded by O(n). So, each loop takes time O(m + n log n). The number of
iterations of the while loop is upper bounded by the number of regions in the
minimized neural network, that is, O(n̂). Hence, the minimization algorithm has
a runtime of O(n̂(m + n log n)).

7 Conclusions

We presented the notions of bisimulation and approximate bisimulation for neu-
ral networks that provide semantic equivalence and semantic closeness, respec-
tively, and are applicable to neural networks with a wide range of activation
functions. These provide foundational theoretical tools for exploring the trade-
off between the amount of reduction and the semantic deviation in an approx-
imation based verification paradigm for neural networks. Our future work will
focus on experimental analysis of this trade-off on large scale neural networks.
The notions of bisimulation explored are syntactic in nature, and we will explore
semantic notions in the future. We provide a minimization algorithm for finding
the smallest NN that is bisimilar to a given neural network. Though a unique
minimal network does not exist with respect to δ-bisimulations, we will explore
heuristics for constructing small networks that are δ-bisimilar.

References

1. Ashok, P., Hashemi, V., Kvret́ınský, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA
2020. LNCS, vol. 12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59152-6 5

2. Baier, C., Katoen, J.P.: Principles of Model Checking. Representation and Mind
Series, The MIT Press, Cambridge (2008)

3. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Piecewise linear
neural network verification: a comparative study. CoRR (2017)

4. Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and
acceleration for deep neural networks. CoRR (2017)

5. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware accel-
eration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532
(2020)

https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/10.1007/978-3-030-59152-6_5

300 P. Prabhakar

6. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

7. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

8. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid
systems. Discret. Event Dyn. Syst. 18(2), 163–179 (2008)

9. Girard, A., Pappas, G.J.: Approximate bisimulation relations for constrained linear
systems. Automatica 43(8), 1307–1317 (2007)

10. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for
incrementally stable switched systems. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 201–214. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78929-1 15

11. Huang, X., et al.: Safety and trustworthiness of deep neural networks: a survey.
CoRR abs/1812.08342 (2018)

12. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. CoRR (2017)

13. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

14. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Hoboken (1989)
15. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural

networks (2019)
16. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of

artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

17. Sotoudeh, M., Thakur, A.V.: Abstract neural networks. In: Pichardie, D., Sighire-
anu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 65–88. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65474-0 4

18. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks: analysis
and efficient estimation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31, pp. 3835–3844. Curran Associates, Inc. (2018)

19. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. CoRR abs/1810.01989 (2018)

20. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verifica-
tion for multi-layer neural networks. CoRR abs/1708.03322 (2017)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-540-78929-1_15
https://doi.org/10.1007/978-3-540-78929-1_15
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-030-65474-0_4

NP Satisfiability for Arrays as Powers

Rodrigo Raya(B) and Viktor Kunčak

School of Computer and Communication Science, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, Switzerland

{rodrigo.raya,viktor.kuncak}@epfl.ch

Abstract. We show that the satisfiability problem for the quantifier-
free theory of product structures with the equicardinality relation is in
NP. As an application, we extend the combinatory array logic fragment
to handle cardinality constraints. The resulting fragment is independent
of the base element and index set theories.

1 Introduction

Arrays are a fundamental data structure in computer science. Decision proce-
dures for arrays are therefore of paramount importance for deductive program
verification. A number of results have examined fragments that strike interesting
trade-offs between expressive power and complexity [4,5,10,12,17,21].

A particularly important fragment for formal verification is combinatory
array logic (CAL) fragment [19], which is implemented in the widely used Z3 the-
orem prover [20]. A key to expressive power of the generalized array fragment is
that it extends the extensional quantifier-free theory of arrays [21] (which sup-
ports only equality, lookup, and update operations) with point-wise functions
and relations, analogous to “vector operations”.

In this paper, we start by observing that the generalized array fragment sig-
nature corresponds to the signature of a product structure [13]. The decidability
of product structures has been studied in the literature on model theory [7,18].
Moreover, the results from model theory also permit formulas that constrain
sets of indices using, for example, equicardinality relation [7], which provides
additional expressive power. Unfortunately, the existing presentations of results
from model theory typically consider quantified first-order theory, resulting in
high complexity [8] even when instantiated to the case of no quantifier alter-
nations. The basic source of this inefficiency is that the underlying procedure
explicitly constructs exponentially many formulas.

In contrast to these claims about quantified formulas, the results on general-
ized arrays theories suggest (Theorem 17 in [19]) that the satisfiability problem
of the quantifier-free theory of a power structure is in NP whenever the theory
of the components is.

In this paper, we present a direct proof of the NP membership for satisfiability
of formulas in power structures. The proof is largely independent of the theories

Research supported in part by the Swiss NSF Project #200021 197288.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 301–318, 2022.
https://doi.org/10.1007/978-3-030-94583-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_15&domain=pdf
http://orcid.org/0000-0002-0866-9257
http://orcid.org/0000-0001-7044-9522
https://doi.org/10.1007/978-3-030-94583-1_15

302 R. Raya and V. Kunčak

of the indices and the theory of array elements. As a consequence, we obtain that
the satisfiability problem of the quantifier-free fragment of Skolem arithmetic is
in NP [11], which, interestingly, was previously shown by appealing to results in
number theory.

As a main contribution, we generalize this construction to prove that the
satisfiability problem of the quantifier-free fragment of BAPA [14] is in NP when
set variables are interpreted with index sets defined by formulas of the language
of the component theory. Whereas the quantifier-free fragment of BAPA (termed
QFBAPA) was shown to be in NP [16], it was not clear that such construction
carries over to the situation where index sets are interpreted to be positions in
the arrays. In this paper we show that interpreting QFBAPA sets as sets of
array indices that satisfy certain formula results in a logic whose satisfiability is
still in NP. We call this new quantifier-free theory QFBAPAI. We show how to
use it to encode constraints that mimic those of combinatory array logic (CAL)
[19]. The result is an extension of CAL that can additionally express cardinality
constraints that hold componentwise. Unlike [5], the logic is independent of the
component or the index theory. Our formalism shows that QFBAPA sets can be
interpreted, overcoming a limitation pointed out in [1]. The use of cardinality
constraints makes our results out of scope of [19], whereas avoiding explicit
construction of all Venn regions allows us to, unlike, [7], establish membership
in NP.

2 NP Complexity for Power Structures

Throughout the paper, we fix a first-order language L, a non-empty set I and a
structure M with carrier M for the components of the arrays. We model arrays
as a particular kind of product structure:

Definition 1. The power structure Π has the function space M I as domain and
interprets the symbols of the language L as follows:

– For each constant c and i ∈ I, cΠ(i) = cM.
– For each function symbol f , i ∈ I, n ∈ N and (a1, . . . , an) ∈ (M I)n:

fΠ(a1, . . . , an)(i) = fM(a1(i), . . . , an(i))

– For each relation symbol R, n ∈ N and (a1, . . . , an) ∈ (M I)n:

(a1, . . . , an) ∈ RΠ if and only if for every i ∈ I, (a1(i), . . . , an(i)) ∈ RM

We will write tuples (a1, . . . , an) ∈ (M I)n as a and (a1(i), . . . , an(i)) as a(i).

Definition 2. The quantifier-free theory of a model N , Th∃∗(N), is the set of
existentially quantified formulas ϕ of L such that N |= ϕ. A solution of the
formula is a satisfying assignment to the existential variables.

Lemma 1. Let ψ be a first-order formula in prenex form and C a disjunct of
the DNF form of its matrix. Then |C| = O(|ψ|).

NP Satisfiability for Arrays as Powers 303

Proof. The DNF conversion only affects the propositional structure of the for-
mula. Thus, in C one may at most have the relations occurring in ψ and their
negations. In the worst case, one gets at most 2|ψ| symbols accounting for the
relations and at most 4|ψ| symbols accounting for the conjunctions and nega-
tions. Therefore, |C| ≤ 6 · |ψ|.

The following result shows the spirit of our complexity analysis: we take a
classical construction (power structure) but analyze its complexity for quantifier-
free fragment that is relevant for program verification.

Theorem 1. Th∃∗(M) ∈ NP if and only if Th∃∗(Π) ∈ NP.

Proof. 1) Assume that VC is a polynomial time verifier for Th∃∗(M). Figure 1
gives a polynomial time verifier V for Th∃∗(Π). In what follows, we will use x
to refer to the formula to be satisfied and w for the certificate or witness that
the verifier takes. tij are terms in the logical language L. We use aj to indicate
the arity of the relation symbol Rj . t is a natural number greater or equal than
one. We show that the machine is a verifier for Th∃∗(Π):

On input 〈x, w〉:

1. Take w and interpret it as:

– Some disjunct of the DNF form for x:

ϕ ≡ ∃x1, . . . , xn.
l∧

i=1
Ri(t

i
1, . . . , t

i
ai

) ∧ k∧
j=l+1

¬Rj(t
j
1, . . . , t

j
aj

)

– A partition P = {p1, . . . , pt} of {l + 1, . . . , k}.

– Certificates C0, . . . , Ct for VC on inputs:

ϕ0 ≡ ∃x1, . . . , xn.
l∧

i=1
Ri(t

i
1, . . . , t

i
ai

)

ϕd ≡ ∃x1, . . . , xn.
l∧

i=1
Ri(t

i
1, . . . , t

i
ai

) ∧ ∧
e∈pd

¬Re(t
e
1, . . . , t

e
ae

)

for each pd ∈ P .

2. If t ≤ |I| then reject.

3. Otherwise, run VC with 〈ϕd, Cd〉 for d = 0, . . . , t.

4. Accept iff all runs accept.

Fig. 1. Verifier for Th∃∗(MI)

304 R. Raya and V. Kunčak

– w has polynomial size in |x|:
By Lemma 1, |ϕ| = O(|x|).
Thus, k = O(|x|).
P = O(|x|2) since P can be written with k log(k) + k bits.
Since |Cd| = O(|ϕd|cd) and |ϕd| ≤ |ϕ| = O(|x|), |Cd| = O(|x|cd).
Thus, |w| = |ϕ| + |P | +

∑

d=0,...,t

|Cd| = O
(
|x|max{2,max

d
cd})

.

– V runs in polynomial time in |x|:
Building the list of ϕd is O(|x|2).
As above, |ϕd| ≤ |ϕ| = O(|x|).
So each call to VC runs in O(|x|f) (VC is polynomial time).
Like before, k = O(|x|).
Therefore, V runs in O

(
|x|max{2,f+1}

)
.

– V is a verifier for Th∃∗(Π):
⇒) If x ∈ Th∃∗(Π) then writing x in prenex DNF form, there is at least one
disjunct ϕ (as in Fig. 1) true in the product. Thus, there is s ∈ M I satisfying:

. .

(ti1
Π [x �→ s], . . . , tiai

Π [x �→ s]) ∈ RΠ
i

. .

(tj1
Π

[x �→ s], . . . , tjaj

Π [x �→ s]) /∈ RΠ
j

. .

Using the semantics of products this means:

. .

∀r ∈ I.(ti1
M[x �→ s(r)], . . . , tiai

M[x �→ s(r)]) ∈ RM
i

. .

∃r ∈ I.(tj1
M

[x �→ s(r)], . . . , tjaj

M[x �→ s(r)]) /∈ RM
j

. .

So there is a map r : {l + 1, . . . , k} → I that assigns to each formula, one
index where it holds. r induces a partition P = r−1(I) of {l + 1, . . . , k} with
t = |P | ≤ min(|I|, k − l). Each part pd = {e1, . . . , em} and each associated
index rd = r(ei), satisfy the following system:

. .
(ti1

M[x �→ s(rd)], . . . , tiai

M[x �→ s(rd)]) ∈ RM
i

. .
(te1

1
M[x �→ s(rd)], . . . , te1

ae1

M[x �→ s(rd)]) /∈ RM
e1

. .
(tem

1
M[x �→ s(rd)], . . . , tem

aem

M[x �→ s(rd)]) /∈ RM
em

Equivalently, for each d ∈ {1, . . . , t}, M |= ϕd[x �→ s(rd)]. For d = 0, we set:

r0 =

{
any index i ∈ I if t = 0
some rd ∈ {r1, . . . , rt} if t > 0

NP Satisfiability for Arrays as Powers 305

Then M |= ϕ0[x �→ s(r0)]. By definition of VC , there are polynomially-
sized certificates C0, . . . , Ct such that VC accepts 〈ϕd, Cd〉 for each d. Thus V
accepts 〈x, 〈ϕ,P,C0, . . . , Ct〉〉.

⇐) Let w = 〈ϕ,P, {Cd}d∈{0,...,t}〉 be a certificate such that V accepts 〈x,w〉.
Then, by step 2, t = |P | ≤ |I| and for each d ∈ {0, . . . , t}, VC accepts 〈ϕd, Cd〉,
i.e. M |= ϕd. So there are solutions x·i = (x1i, . . . , xni)t to the formulas:

ϕ0 ≡ ∃x10, . . . ,∃xn0.
l∧

i=1
Ri(ti1, . . . , t

i
ai

)

ϕd ≡ ∃x1d, . . . ,∃xnd.
l∧

i=1
Ri(ti1, . . . , t

i
si

) ∧ ∧
e∈pd

¬Re(te1, . . . , t
e
ae

)

Fix distinct i1, . . . , it ∈ I. Consider the n × |I| matrix with entries:

sji =

{
xji if i ∈ {i1, . . . , it}
xj0 otherwise

The rows of this matrix s = {s1, . . . , sn} are solutions of ϕ in the product
structure:

. .

(ti1
Π [x �→ s], . . . , tiai

Π [x �→ s]) ∈ RΠ
i

. .

(tj1
Π

[x �→ s], . . . , tjaj

Π [x �→ s]) /∈ RΠ
j

. .

Using the definition of product, it is sufficient to show:

. .

∀r ∈ I.(ti1
M[x �→ s(r)], . . . , tiai

M[x �→ s(r)]) ∈ RM
i

. .

∃r ∈ I.(tj1
M

[x �→ s(r)], . . . , tjaj

M[x �→ s(r)]) /∈ RM
j

. .

For i ∈ {1, . . . , l} and each r ∈ I, the following formula needs to hold:

(ti1
M

[x �→ s(r)], . . . , tisi

M
[x �→ s(r)]) ∈ RM

i

If r ∈ {i1, . . . , it} then s(r) = x·r (i.e. all x1r, . . . , xnr) and the equation
holds since M |= ϕr[x·r]. Otherwise, s(r) = x·0 and the equation holds since
M |= ϕ0[x·0].

For j ∈ {l + 1, . . . , k} and some r ∈ I, the following formula needs to hold:

(tj1
M

[x �→ s(r)], . . . , tjsj

M
[x �→ s(r)]) /∈ RM

j

We take r = id such that j ∈ pd. Then s(r) = x·r and the equation holds
since M |= ϕr[x·r].

306 R. Raya and V. Kunčak

2) Conversely, assume that V is a verifier for Th∃∗(Π) and let’s give a formal
argument to show that Th∃∗(M) is in NP. The idea is that one can extend the
signature of L with relations R whose interpretation is that of any quantifier-free
formula ϕ while retaining NP complexity. Indeed, let N be any structure for the
language L and let ϕ(x1, . . . , xn) be any formula of L. Define R(x1, . . . , xn) :=
ϕ(x1, . . . , xn) and N ext the model N extended with the relation symbol R in
such a way that RN ext

(v1, . . . , vn) = ϕN (v1, . . . , vn) for values vi of the carrier
of N . We show that:

Th∃∗(N) ∈ NP ⇐⇒ Th∃∗(N ext) ∈ NP

First observe that |ϕ(x1, . . . , xn)| is an affine function in |xi|: there is a constant
term accounting for the logical symbols, plus terms ai|xi| accounting for the
occurrences of the xi. Now, if ψ ∈ Th∃∗(N) then when we contract the occur-
rences of ϕ into R and we still get a linear size in |ψ|. Therefore, the verifier for
Th∃∗(N ext) gives the result. If on the other hand, ψ ∈ Th∃∗(N ext) then expand-
ing the occurrences of R each |xi| is bounded in |ψ|, so the expanded expression
augments its size by a quadratic factor O(|ψ|2). The verifier for Th∃∗(N) gives
the result. Finally, let’s see that:

Th∃∗(Πext) ∈ NP =⇒ Th∃∗(M) ∈ NP

Given ϕ ∈ Th∃∗(Πext), we define a relation R := ϕ and consider the correspond-
ing extended language Th∃∗(Πext(ϕ)) which by assumption is in NP. Thus, it is
decidable in NP that R holds in the product structure. But, RΠ ≡ ∀i ∈ I.ϕM.
Given that I is non-empty, we have that the verifier for Th∃∗(Πext(ϕ)) can deter-
mine if ϕ ∈ Th∃∗(M).

2.1 Corollary: Quantifier-Free Skolem Arithmetic is in NP

Although not needed for our final result, the technique of Theorem1 is of inde-
pendent interest. An example is showing that the satisfiability problem for the
quantifier-free fragment of Skolem arithmetic is in NP. This result was first
proved by Grädel [11] using results by Sieveking and von zur Gathen [9] with
a proof that appears, on the surface, to be specific to the arithmetic theories.
We reproduce here the relevant definitions for the convenience of the reader. For
more details see [7,8,11].

Informally, Skolem arithmetic is a fragment of Peano arithmetic with multi-
plication (and equality) but no addition. Its decidability properties are based on
representing natural numbers in terms of their prime factors, which makes the
structure isomorphic to a power structure with finitely many non-zero elements.

Definition 3. Let e be a constant denoting an element in the base structure M.
The weak power structure Π∗ over I has domain:

M I
∗ = {f : I → M | f(i) �= e for only finitely many i ∈ N}

and interprets the symbols of L as in the power structure.

NP Satisfiability for Arrays as Powers 307

Definition 4. Skolem arithmetic, abbreviated by SA, is the first-order theory of
the structure 〈N \ {0}, ·, |〉.

Note that equality is easily definable writing a|b ∧ b|a for a = b.

Lemma 2. SA is isomorphic to the weak power of 〈N,+,≤〉 over N.

Proof. We give an isomorphism [13, Section 1.2] between the structures of SA
and the weak product 〈N,+,≤〉N∗ . Let ϕ : N → N

N
∗ be a function given by n �→

(e0, e1, . . . , ei, . . .), where ei are the exponents of the unique factor decomposition
given by the fundamental theorem of arithmetic. Here, the tuples are taken with
respect to some previously agreed order of primes p0, p1, . . . , pi,

ϕ is well-defined because a natural number can only have a finite number of
prime factors. We use the constant symbol 0 for the constant e appearing in Def-
inition 3. Furthermore, it is clear that ϕ is bijective by the fundamental theorem.
It also respects the function and relation symbols. Thus, ϕ is an isomorphism.

Since two isomorphic structures are also elementary equivalent [13,
Section 2.3], both structures satisfy the same first-order statements. In particu-
lar, the existential sentences of both structures coincide. We can now show:

Corollary 1. Th∃∗(SA) ∈ NP.

Proof. By Lemma 2, Th∃∗(SA) ∈ NP if and only if Th∃∗(〈N,+,≤〉N∗) ∈ NP. A
variation of the verifier in Fig. 1, checking that, in the case that |I| is infinite,
0n is a solution of ϕ0 seen as a formula in M, shows that this is equivalent to
Th∃∗(〈N,+,≤〉) ∈ NP. But this last statement follows from the NP complexity
of the satisfiability problem for quantifier-free formulas of Presburger arithmetic.

3 Explicit Sets of Indices and a Polynomial Verifier
for QFBAPA

To prepare for generalization of the result from the previous section, we now
review the QFBAPA complexity [16] using the notation of the present paper.
The intuition for our approach is that the verifier of Fig. 1 is solving constraints
on the array indices which can be schematically presented as in Fig. 2. The
figure presents a Venn region of sets defined by formulas of L. All indices must
remain within the boundaries of the main region A. This region corresponds

to the positive literals of ϕ in Fig. 1:
l∧

i=1
Ri(ti1, . . . , t

i
ai

). The negative literals
k∧

j=l+1
¬Rj(t

j
1, . . . , t

j
aj

) generate existential constraints. These can be interpreted

as requiring a cardinality greater or equal than one in certain subregions of A.
To generalize our result we use the logic BAPA [14], whose language allows

to express boolean algebra and cardinality constraints on sets. The satisfiability
problem for the quantifier-free fragment of BAPA, often written as QFBAPA, is
in NP (see Sect. 3 of [16]). Figure 3 shows the syntax of the fragment. F presents

308 R. Raya and V. Kunčak

Fig. 2. An example Venn region with product constraints.

the boolean structure of the formula, A stands for the top-level constraints, B
gives the boolean restrictions and T the Presburger arithmetic terms. U repre-
sents the universal set and MAXC gives the cardinality of U . We will assume
this cardinality to be finite for simplicity of the presentation. That said, we
believe it is straightforward to generalize the NP membership result to the case
where the universe is infinite and the language contains additional predicate
expressing finiteness of a set [15, Section 3], which is useful for expressing gener-
alizations of weak powers through formulas stating that that the set of indices
where a condition holds is finite.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 ≤ T2 | K dvd T

B ::= x | ∅ | U | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Fig. 3. QFBAPA’s syntax

The basic argument to establish NP complexity of QFBAPA is based on a
theorem by Eisenbrand and Shmonin [6], which in our context says that any
element of an integer cone can be expressed in terms of a polynomial number
of generators. Figure 4 gives a verifier for this basic version of the algorithm.
The algorithm uses an auxiliary verifier VPA for the quantifier-free fragment of
Presburger arithmetic.

The key step is showing equisatisfiability between 2.(b) and 2.(c). If x1, . . . , xk

are the variables occurring in b0, . . . , bp then we write pβ =
k⋂

i=1

xei
i for β =

(e1, . . . , ek), �bi�βj
the evaluation of bi as a propositional formula with the assign-

NP Satisfiability for Arrays as Powers 309

ment given in β and introduce variables lβ = |pβ |. Now, |bi| =
2e−1∑

j=0

�bi�βj
lβj

, so

the restriction
k∧

i=0

|bi| = ki becomes
p∧

i=0

2e−1∑

j=0

�bi�βj
lβj

= ki which can be seen as

a linear combination in {(�b0�βj
, . . . , �bp�βj

).j ∈ {0, . . . , 2e − 1}}. Eisenbrand-
Shmonin’s result allows then to derive 2.(c) for N polynomial in |x|. In the other
direction, it is sufficient to set lβj

= 0 for j ∈ {0, . . . , 2e −1}\{i1, . . . , iN}. Thus,
we have:

Theorem 2 ([16]). QFBAPA is in NP.

4 NP Complexity for QFBAPAI

We are now ready to present our main result, which extends NP member-
ship of product structures and of QFBAPA to the situation where we interpret
QFBAPA sets as sets of indices (subsets of the set I) in which quantifier-free
formulas hold.

Definition 5. We consider the satisfiability problem for QFBAPA formulas F
whose set variables are index sets defined by quantifier-free formulas ϕi of L
applied to either component theory constants or to components of the array vari-
ables:

∃c1, . . . , cm.∃x1, . . . , xn.

F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I | ϕi(x1(r), . . . , xn(r), c1, . . . , cm)}

We call this problem QFBAPAI, standing for interpreted QFBAPA.

Theorem 3. Th∃∗(M) ∈ NP if and only if QFBAPAI ∈ NP.

Proof. 1) Let VQFBAPA be a polynomial time verifier for QFBAPA and let VC

be a polynomial time verifier for the component theory. Figure 5 gives a verifier
V for QFBAPAI. We abbreviate (x1, . . . , xn) by x and (c1, . . . , cm) by c.

⇒) If x ∈ QFBAPAI then there exist c, s satisfying:

F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I|ϕi(s(r), c)}

Define Si := {r ∈ I|ϕi(s(r), c)}. Then, the method of Theorem 2 applied to

F (S1, . . . , Sk) yields a formula G ∧ ∧p
i=0 |bi| = ki. Using |bi| =

∑

β|=bi

∣
∣
∣

k⋂

i=1

S
β(i)
i

∣
∣
∣

and setting pβ :=
k⋂

i=1

S
β(i)
i , lβ :=

∣
∣
∣pβ

∣
∣
∣, yields G∧

p∧

i=0

2e−1∑

j=0

�bi�βj
· lβj

= ki. Remove

those β where lβ = 0. Since:

pβ =
k⋂

i=1

{r ∈ I|ϕi(s(r), c)}β(i) =

{

r ∈ I

∣
∣
∣
∣
∣

k∧

i=1

ϕi(s(r), c)β(i)

}

310 R. Raya and V. Kunčak

Fig. 4. Verifier for QFBAPA

this includes those β such that
k∧

i=1

ϕi(s(r), c)β(i) is not satisfiable. We obtain

a reduced set of indices R ⊆ {0, . . . , 2e − 1} where G ∧
p∧

i=0

∑

β∈R
�bi�β · lβ = ki.

Eisenbrand-Shmonin’s theorem yields a polynomial family of indices such that

G ∧
p∧

i=0

∑

β∈{i1,...,iN}⊆R
�bi�β · l′β = ki for non-zero l′β .

For each β ∈ {i1, . . . , iN}, since lβ �= 0, there exists rβ ∈ I such that
k∧

i=1

ϕi(s(rβ), c)β(i). So the formula y without (*) is satisfied.

NP Satisfiability for Arrays as Powers 311

On input 〈x, w〉:

1. Interpret w as:

(a) a list of indices i1, . . . , iN ∈ {0, . . . , 2e − 1} where e is the number of set
variables in y.

(b) a certificate C for VC on input y defined below.

(c) a certificate C′ for VPA on input y′ defined below.

(d) a bit b indicating if the solution sets cover the whole I.

2. Set y = ∃c, x1, . . . , xN .
∧

βj∈{i1,...,iN}

k∧

i=1

ϕi(xj , c)
βj(i) (∗).

3. Set y′ = ∃S′
1, . . . , S

′
k.F (S′

1, . . . , S
′
k) ∧ ∧

βj∈{i1,...,iN}

k⋂

i=1

S
′βj(i)

i �= ∅ (∗∗).

4. If b = 0 then set (∗) = ∧ ¬ ∨

βj∈{i1,...,iN}

k∧

i=1

ϕi(x0, c)
βj(i) and add x0 as a

top-level existential quantifier.

If b = 1 then set (∗∗) = ∧ ⋃

βj∈{i1,...,iN}

k⋂

i=1

S
′βj(i)

i = I.

5. Run VC on
〈
y, C

〉
.

6. Run VQFBAPA on
〈
y′, 〈{i1, . . . , iN}, C′〉

〉
.

7. Accept iff all runs accept.

Fig. 5. Verifier for QFBAPA interpreted over index-sets.

The satisfiability of the cardinality restrictions on l′β implies the existence of
sets of indices S′

i such that for each β ∈ {i1, . . . , iN}, |p′
β | = l′β . Observe that

|I| =
∑

β∈R
lβ . Distinguish two cases:

– If |I| >
∑

β∈{i1,...,iN}
l′β then there is at least one index r0 such that s(r0)

satisfies
k∧

i=1

ϕi(s(r0), c)β(i) for β /∈ {i1, . . . , iN}. Therefore, the formula y with

(*) is satisfied. In this case, define:

s′(r) =

{
s(rβ) if r ∈ p′

β and β ∈ {i1, . . . , iN}
s(r0) otherwise

312 R. Raya and V. Kunčak

and choose b = 0.
– If |I| =

∑

β∈{i1,...,iN}
l′β then define:

s′(r) =
{

s(rβ) if r ∈ p′
β and β ∈ {i1, . . . , iN}

Here we choose b = 1.

In any case, the formula y that VC receives as input is satisfied. Since N
is polynomial in |x|, this gives a polynomially-sized certificate C such that VC

accepts 〈y, C〉 in polynomial time.
Let S′′

i = {r ∈ I|ϕi(s′(r), c)}. Then S′′
1 , . . . , S′′

k satisfy y′ by construction:

– Observe that for each β ∈ {i1, . . . , iN}, p′′
β = p′

β .
– For each β ∈ {i1, . . . , iN}, p′′

β �= ∅, since l′β �= 0.
– If b = 1 then

⋃

β∈{i1,...,iN}
p′′

β = I since |I| =
∑

β∈{i1,...,iN}
l′β .

– The cardinality restrictions are satisfied by definition.

Again, since N is polynomial in |x|, |y′| is polynomial in |x| too. By the
above, it is also satisfiable. Thus, there exists a polynomially-sized certificate C ′

for VPA such that VQFBAPA accepts 〈{i1, . . . , iN}, C ′〉 in polynomial time. So V
accepts 〈x, 〈{i1, . . . , iN}, C, C ′, b〉〉 in polynomial time.

⇐) If V accepts 〈x,w〉 in polynomial time then:

–
〈
y, C

〉
is accepted by VC , so there is a tuple c and for each β ∈ {i1, . . . , iN},

there are tuples sβ , such that
k∧

i=1

ϕi(sβ(1), . . . , sβ(n), c)β(i).

– 〈y′, 〈{i1, . . . , iN}, C ′〉〉 is accepted by VQFBAPA, so there exist sets S′
i such

that:

F (S′
1, . . . , S

′
k) ∧

∧

β∈{i1,...,iN}

k⋂

i=1

S
′β(i)
i �= ∅

Interpreting S′
i as index sets, we define an array s distinguishing two cases:

– If b = 0 then VC accepts:

〈
∃c,∃x1, . . . , xN , x0. . . . ¬

∨

β∈{i1,...,iN}

k∧

i=1

ϕi(x0, c)β(i), C
〉

Let s0 be a satisfying tuple for x0. Define:

s(r) =

{
sβ if r ∈ p′

β and β ∈ {i1, . . . , iN}
s0 otherwise

NP Satisfiability for Arrays as Powers 313

– If b = 1 then S′
i satisfies

⋃

β∈{i1,...,iN}

k⋂

i=1

S
′β(i)
i = I. Define:

s(r) =
{

sβ if r ∈ p′
β and β ∈ {i1, . . . , iN}

Then, by construction, c, s form a solution of:

∃c, x.F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I | ϕi(x(r), c)}

For each β ∈ {i1, . . . , iN}:

pβ =
{

r ∈ I
∣
∣
∣

k∧

i=1

ϕ(s(r), c)β(i)
}

= pβ′

so the cardinality conditions are met.
2) Conversely, if we assume that QFBAPAI ∈ NP then it is easy to give

a poly-time reduction from Th∃∗(M) to QFBAPAI and using the preservation
property of NP obtain that Th∃∗(M) ∈ NP too. To be concrete, the reduction
maps each formula ∃y1, . . . , yn.ϕ(y1, . . . , yn) to the formula:

∃y1, . . . , yn.I = {r ∈ I|ϕ(y1(r), . . . , yn(r))}

The reduction is clearly polynomial and the correctness property also holds:
a solution of the component formula can be repeated to get a solution of the
array formula and any component of the array formula gives a solution for the
component formula.

5 Combination with the Array Theory

In this section we show, through a syntactic translation, that the conventional
and generalized array operations can be expressed in QFBAPAI. The combina-
tory array logic (CAL) fragment of de Moura and Bjørner [19] can be presented
as a multi-sorted structure:

A = 〈A, I, V, ·[·], store(·, ·, ·), {cv
i }, {fv

i }, {Rv
i }, {cj}, {fj}, {Rj}〉

where V = 〈V, {cv
i }, {fv

i }, {Rv
i }〉 is the structure modelling array elements and

I is a non-empty set which parametrizes the read (·[·]) and store (store(·, ·, ·))
operations. Finally, Π = VI = 〈A, {cj}, {fj}, {Rj}〉 is the power structure with
base V and index set I. Note that, according to the definition of a power struc-
ture, there is a one to one correspondence between the symbols of the component
language and those of the array language. We use the superscript v to distinguish
between value symbols and power structure symbols. The read and store opera-
tions use a mixture of sorts. The read operation corresponds to a parametrized

314 R. Raya and V. Kunčak

version of the canonical projection homomorphism of product structures [13]. It
is interpreted as:

·[·] : A × I −→ V

(a, i) �−→ a(i)

On the other hand, the store operation lacks a canonical counterpart in model
theory. It is to be interpreted as the function:

store : A × I × V −→ A

(a, i, v) �−→ store(a, i, v)

where:

store(a, i, v)(j) =

{
a(j) if j �= i

v if j = i

The goal of this section is to give a satisfiability preserving translation from CAL
to QFBAPAI in such a way that the size of the transformed formula is bounded
by a polynomial in the size of the original input. Since CAL formulas cannot
express equicardinality constraints, |A| = |B|, this means that we have increased
the expressive power of the fragment while retaining the same complexity bound.
The translation is written in terms of a list of basic primitives explained below.
The complete translation is shown in Fig. 6.

Since we are dealing with quantifier-free formulas, we map the proposi-
tional structure to boolean operations and concentrate in the encoding of non-
propositional symbols. These symbols are atomic relations in either the compo-
nent theory or the array theory.

Relations in the Component Theory. An atomic formula of the component
theory has the following shape:

Rv(fi{a1[i1], . . . , an[in], c1, . . . , cm})

Here and in the rest of the section we use the notation R(fi{p1, . . . , pn}) for a
list of arity(R) function terms of the form fi{p1, . . . , pn} where fi is a function
symbol using a subset of the parameters in {p1, . . . , pn}. Both fi and the param-
eters pi must have the same sort as R. We use the letter a to denote either an
array variable x or a store term and the letter v to denote an element value in
contrast to a read term a[j].

We transform the above constraint using the following rules:

1. ABSTRACT READS (≤1): if there are more than two parameters that use
the read function ·[·] applied to a variable, we rewrite all occurrences xj [i]
but one into value constants xji. Note that a read from a constant array need
not create a new value variable. Instead, we rewrite c[i] as cv. In this case, no
further changes are required in later stages.

2. IMPOSE READS: for each abstracted read xj [i] add the condition:

{l ∈ I|xj(l) = xji} ⊇ {i}

NP Satisfiability for Arrays as Powers 315

3. ABSTRACT WRITES: rewrite the innermost store operations store(x, i, v)
into array variables xiv.

4. IMPOSE WRITES: for each abstracted store xiv, we impose the condition:

{l ∈ I|xiv(l) = v} ⊇ {i} ∧ {l ∈ I|xiv(l) = x(l)} ⊇ {i}c

This process is repeated until there is no change in the manipulated formula.
In this last case, we have obtained a relation:

Rv(fi{x[i], abs1, . . . , absk, c1, . . . , cm})

where absj are the newly introduced array or value variables. We then perform
one last step:

5. IMPOSE VALUE CONSTRAINT: add the constraint:

{l ∈ I|Rv(fi{x(l), abs1, . . . , absk, c1, . . . , cm})} ⊇ {i}

Relations in the Power Structure Theory. An atomic formula of the prod-
uct theory has the shape:

R(fi{a1, . . . , an, c1, . . . , cm})

where c1, . . . , cm are to be interpreted as constants of the product. We repeat
a variation of the steps 1–4 where ABSTRACT READS (≤1) is changed into
ABSTRACT READS (=0). The only difference between the two is that the
latter removes all reads. The result of this operation is a relation:

R(fi{x1, . . . , xs, abs1, . . . , absk, c1, . . . , cm})

where absj are the newly introduced array variables. We cannot have value
variables since in this case value expressions are not top-level.

In this case, we do the following as a last step:

5. IMPOSE ARRAY CONSTRAINT: add the constraint:

{l ∈ I|R(fi{x1(l), . . . , xs(l), abs1(l), . . . , absk(l), c1, . . . , cm})} = I

Satisfiability Preservation and Size of the Transformed Formula. It
is clear that each transformation step yields an equisatisfiable formula. In par-
ticular, this ensures that the order of introduction of new variables does not
matter. Even if the transformed formula may contain duplicates, the existence
of a solution is equivalent in both formulas.

Regarding the size of the transformed formula, we observe that during the
analysis of a relation we create as many variables as the size of such relation.
Thus, the number of variables created is at most linear in the size of the formula.
This means that the total number of variables and constants that are either
present in the original formula or created by the algorithm, C, is in O(|ψ|).

316 R. Raya and V. Kunčak

Given a formula ψ of CAL in negation normal form:

1. Rewrite ∩→�∧ , ∪→�∨ and ·→�¬ c.

2. Consider the following auxiliary procedure P receiving one bit b as parameter.

Repeat until no more constraints are added:

(a)
If b = 0 then ABSTRACT READS(= 0)

else ABSTRACT READS(<= 1).

(b) IMPOSE READS

(c) ABSTRACT WRITES

(d) IMPOSE WRITES

3. For each relation in the array theory call P with b = 0.

4. For each relation in the component theory call P with b = 1.

Fig. 6. Translation scheme from CAL to QFBAPAI.

The creation of each variable implies the creation of at most three restrictions:
this happens in the IMPOSE WRITES case, where the third restriction specifies
that the size of {i} is one. Each restriction uses at most two variables, so we can
encode it using O(log2(|ψ|)) space. Thus, to encode all the added restrictions we
need O(|ψ| log2(|ψ|)) space.

Each relation generates an additional constraint, which may use all the set
of C variables. So we may need up to O(|ψ| · log2(|ψ|)) to encode the constraint.
Since there are O(|ψ|) relations, we need O(|ψ|2 log2(|ψ|)) space to encode them.

Overall, the size increase is in O(|ψ|2 log2(|ψ|), as desired to preserve NP
complexity.

6 Further Related Work

Our work is related to a long tradition of decision procedures for the theories of
arrays [4,5,10,12,17,21]. Our direct inspiration is combinatory array logic [19].
We have extended this fragment with cardinality constraints while preserving
membership in NP.

In our study, we have given priority to those procedures that decide satis-
fiability within the NP complexity class. From these, [1] and [5] are the more
closely related since they also address counting properties. The main difference
with these works is that our index theory is arbitrary and that the element the-
ory is any one in NP. This gives access to a greater degree of compositionality.
For instance, we can profit of the properties of QFBAPA to handle infinite car-
dinalities in the index theory [15]. On the other hand, the work of [5] allows for
a great expressivity, achieving NP complexity on particular fragments, but it is
PSPACE-complete in the general case.

NP Satisfiability for Arrays as Powers 317

Other influential works in the theory of integer arrays include [4] and [12].
[4] treats a fragment capable of expressing ordering conditions and Presburger
restrictions on the indices. [12] complements the work above based on automata
considerations. In both cases, the complexity of the satisfiability problem for
the full fragment remains, to our knowledge, open. Parametric theories of arrays
include [19,21] and [3]. However, the line of work in [3] as consolidated in the
doctoral thesis [2], only shows decidability and NEXPTIME completeness on
particular instances. None of [2–4,12,19,21] treat cardinality constraints.

7 Conclusion and Future Work

We have identified the model theoretic structure behind a state of the art frag-
ment of the theory of arrays. We have given self-contained proofs of complexity
which shed light on the underlying constraints that the fragment addresses.
This has allowed to generalize the fragment to encode arbitrary cardinality con-
straints. Our work also shows that the set variables of BAPA can be interpreted
to encode useful restrictions.

As future work, we plan to build on the efforts in [19], to provide an effi-
cient implementation of the fragment. We would also like to perform a cross-
fertilization with other fragments of the theory of arrays providing counting
capabilities, while exploring the interactions between their seemingly different
foundations.

References

1. Alberti, F., Ghilardi, S., Pagani, E.: Cardinality constraints for arrays (decidabil-
ity results and applications). Formal Methods Syst. Des. 51(3), 545–574 (2017).
https://doi.org/10.1007/s10703-017-0279-6

2. Alberti, F.: An SMT-based verification framework for software systems handling
arrays. Ph.D. thesis, Università della Svizzera Italiana, April 2015. http://www.
falberti.it/thesis/phd.pdf

3. Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array prop-
erties. J. Autom. Reason. 54(4), 327–352 (2015). https://doi.org/10.1007/s10817-
015-9323-7

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 28

5. Daca, P., Henzinger, T.A., Kupriyanov, A.: Array folds logic. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 230–248. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 13

6. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.
Lett. 34(5), 564–568 (2006). https://doi.org/10.1016/j.orl.2005.09.008

7. Feferman, S., Vaught, R.: The first order properties of products of algebraic sys-
tems. Fundam. Math. 47(1), 57–103 (1959). https://eudml.org/doc/213526

8. Ferrante, J., Rackoff, C.W.: The Computational Complexity of Logical Theories.
Lecture Notes in Mathematics, vol. 718. Springer, Heidelberg (1979). https://doi.
org/10.1007/BFb0062837

https://doi.org/10.1007/s10703-017-0279-6
http://www.falberti.it/thesis/phd.pdf
http://www.falberti.it/thesis/phd.pdf
https://doi.org/10.1007/s10817-015-9323-7
https://doi.org/10.1007/s10817-015-9323-7
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1016/j.orl.2005.09.008
https://eudml.org/doc/213526
https://doi.org/10.1007/BFb0062837
https://doi.org/10.1007/BFb0062837

318 R. Raya and V. Kunčak

9. von zur Gathen, J., Sieveking, M.: A bound on solutions of linear integer equalities
and inequalities. Proc. Am. Math. Soc. 72(1), 155–158 (1978). https://doi.org/10.
2307/2042554

10. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for exten-
sions of the theory of arrays. Ann. Math. Artif. Intell. 50(3), 231–254 (2007).
https://doi.org/10.1007/s10472-007-9078-x

11. Grädel, E.: Dominoes and the complexity of subclasses of logical theo-
ries. Ann. Pure Appl. Logic 43(1), 1–30 (1989). https://doi.org/10.1016/0168-
0072(89)90023-7

12. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays?
In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78499-9 33

13. Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applica-
tions, Cambridge University Press, Cambridge (1993). https://doi.org/10.1017/
CBO9780511551574

14. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean algebra with Presburger
arithmetic. J. Autom. Reason. 36(3), 213–239 (2006). https://doi.org/10.1007/
s10817-006-9042-1

15. Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 5

16. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean alge-
bra with Presburger arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 215–230. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73595-3 15

17. McCarthy, J.: Towards a mathematical science of computation. In: Colburn, T.R.,
Fetzer, J.H., Rankin, T.L. (eds.) Program Verification: Fundamental Issues in Com-
puter Science. Studies in Cognitive Systems, pp. 35–56. Springer, Dordrecht (1993).
https://doi.org/10.1007/978-94-011-1793-7 2

18. Mostowski, A.: On direct products of theories. J. Symbol. Logic 17(1), 1–31 (1952).
https://doi.org/10.2307/2267454

19. de Moura, L., Bjorner, N.: Generalized, efficient array decision procedures. In:
2009 Formal Methods in Computer-Aided Design, Austin, TX, pp. 45–52. IEEE,
November 2009. https://doi.org/10.1109/FMCAD.2009.5351142

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

21. Stump, A., Barrett, C., Dill, D., Levitt, J.: A decision procedure for an exten-
sional theory of arrays. In: Proceedings 16th Annual IEEE Symposium on Logic in
Computer Science, Boston, MA, USA, pp. 29–37. IEEE Computer Society (2001).
https://doi.org/10.1109/LICS.2001.932480

https://doi.org/10.2307/2042554
https://doi.org/10.2307/2042554
https://doi.org/10.1007/s10472-007-9078-x
https://doi.org/10.1016/0168-0072(89)90023-7
https://doi.org/10.1016/0168-0072(89)90023-7
https://doi.org/10.1007/978-3-540-78499-9_33
https://doi.org/10.1017/CBO9780511551574
https://doi.org/10.1017/CBO9780511551574
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/978-3-642-15205-4_5
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.2307/2267454
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/LICS.2001.932480

STAMINA 2.0: Improving
Scalability of Infinite-State
Stochastic Model Checking

Riley Roberts1(B) ,
Thakur Neupane1 ,

Lukas Buecherl2 , Chris J. Myers2 , and Zhen Zhang1

1 Utah State University, Logan, UT, USA
{riley.roberts,A02262317,zhen.zhang}@usu.edu

2 University of Colorado Boulder, Boulder, CO, USA
{lukas.buecherl,chris.myers}@colorado.edu

Abstract. Stochastic model checking (SMC) is a formal verification technique
for the analysis of systems with probabilistic behavior. Scalability has been a
major limiting factor for SMC tools to analyze real-world systems with large or
infinite state spaces. The infinite-state Continuous-time Markov Chain (CTMC)
model checker, STAMINA, tackles this problem by selectively exploring only a
portion of a model’s state space, where a majority of the probability mass resides,
to efficiently give an accurate probability bound to properties under verifica-
tion. In this paper, we present two major improvements to STAMINA, namely,
a method of calculating and distributing estimated state reachability probabili-
ties that improves state space truncation efficiency and combination of the previ-
ous two CTMC analyses into one for generating the probability bound. Demon-
stration of the improvements on several benchmark examples, including hazard
analysis of infinite-state combinational genetic circuits, yield significant savings
in both run-time and state space size (and hence memory), compared to both
the previous version of STAMINA and the infinite-state CTMC model checker
INFAMY. The improved STAMINA demonstrates significant scalability to allow
for the verification of complex real-world infinite-state systems.

Keywords: Stochastic Model Checking · Infinite-state systems · Markov
chains · Synthetic biology

1 Introduction

Stochastic model checking (SMC) is a formal verification technique to analyze systems
that possess probabilistic characteristics. In order to perform SMC, the state space of
the system must be generated and stored. Many real-world systems can be modeled
as Continuous-Time Markov Chains (CTMCs) with large or infinite state spaces. In
particular, synthetic biological circuits have become a topic of interest recently, and
can be modeled well by CTMCs. However, traditional SMC tools cannot directly ana-
lyze them due to the possibly infinite amount of memory required to store their state
spaces. Many approaches, such as symbolic model checking [14], attempt to alleviate
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 319–331, 2022.
https://doi.org/10.1007/978-3-030-94583-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_16&domain=pdf
http://orcid.org/0000-0002-8676-3767
http://orcid.org/0000-0002-1870-4079
http://orcid.org/0000-0002-4844-6605
http://orcid.org/0000-0002-8762-8444
http://orcid.org/0000-0002-8269-9489
https://doi.org/10.1007/978-3-030-94583-1_16

320 R. Roberts et al.

this issue by compactly representing states symbolically. However, these methods are
inefficient in representing states with many probabilistic transitions [14], and still can-
not handle infinite-state systems. Satisfiability Modulo Theories-based approaches to
model checking large Discrete-Time Markov Chains have recently emerged [15]. How-
ever, they are not yet extended to analyzing infinite-state CTMCs. The STAR tool [10]
primarily focuses on state reachability probability analysis, instead of checking a given
probabilistic property, for infinite-state bio-chemical reaction networks by combining
moment-based and state-based representations of probability distributions. Similarly,
the SeQuaiA tool [3] analyzes state reachability probabilities for chemical reaction net-
works using accelerated abstraction techniques to preserve the most probable behavior
of a CTMCmodel. The INFAMYmodel checker [6] was among the first tools to quanti-
tatively verify infinite-state CTMCs. It truncates the model’s state space on-the-fly after
exploring it up to a certain finite depth. STAMINA [11] was created to model check
transient Continuous Stochastic Logic (CSL) [1,8] properties on infinite-state CTMCs.
It selectively explores a portion of the model’s state space to efficiently give an accu-
rate probability window in which the true probability of the property lies. Rather than
exploring all state-transition paths up to the same fixed depth, STAMINA estimates
state reachability probabilities during state expansion and uses them to determine paths
to either further explore or terminate, effectively exploring the part of the state space
where the probability mass lies. STAMINA was shown to outperform INFAMY in [11].

In this work, we present algorithmic improvements to STAMINA that result in sig-
nificant gains in both state space size and runtime, with improved precision of the
results. These algorithmic improvements include a new method of calculating and dis-
tributing predicted state reachability probabilities, as well as a method for analyzing the
truncated state space using only one CTMC analysis rather than two. For highly com-
plex models, the achieved reduction in both state-space size and runtime is observed to
be as large as 90%. We present results from a case study of a synthetic biological circuit
and from the benchmarks previously used for STAMINA [11].

2 Overview of the STAMINA Tool

The STAMINA tool takes in a CTMC model, specified in the PRISM modeling lan-
guage, and a CSL property, and outputs an upper and lower bound for the probability
of the property being satisfied for that model. It operates on the basis that it preserves,
within an extremely large or infinite state space, a small subset of the states where a
majority of the probability mass is located. STAMINA determines and explores this
small subset and interfaces with the PRISM probabilistic model checker [9] to obtain a
probability window that encloses the true probability of the property under verification.

As STAMINA expands a model’s state space using breath-first search, it terminates
state expansion if the estimated state reachability probability of the next state along a
state exploration path drops below a pre-defined state reachability probability threshold
κ. We denote the estimated state reachability probability (reachability probability, for
short) for a state s as π̂(s) and assume π̂(s0) = 1 for initial state s0. It is an estima-
tion because STAMINA computes the probability of choosing a particular next state,
but does not consider the time-dependent probability of remaining in each state. The
reachability probability to reach from s to s′ is defined as p(s, s′) = R(s,s′)

E(s) , where

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 321

the exit rate E(s) =
∑

s′∈post(s) R(s, s′) is the sum of all outgoing transition rates

R(s, s′) for state s. The probability of leaving state s is 1 − eE(s)·t, a function of real
time t. STAMINA estimates reachability probability on-the-fly during state expansion.
It computes π̂(s′) by summing up reachability probabilities from all explored predeces-
sor states of s′, denoted as pre(s′), as π̂(s′) =

∑
s∈pre(s′)(π̂(s) · p(s, s′)), and π̂(s)

is computed similarly. Whenever π̂(s′) < κ, it stops generating successor states of s′.
Instead, it redirects outgoing transitions destined to these unexplored successor states to
an artificially created absorbing state, ŝ, that is not part of the original model. We refer
to states that have their transitions routed to ŝ as terminal states.

STAMINA’s algorithm computes S, the set of all explored states, andT ⊆ S, the set
of all terminal states. By utilizing PRISM’s state space construction and model checking
methods through subclassing, STAMINA performs reachability analysis and state-space
truncation before invoking PRISM to perform the state-space construction, overriding
certain methods so as to only generate the states inS and to route all outgoing transitions
from states inT to ŝ. After state space construction, STAMINA again utilizes PRISM’s
API to compute a probability window that encloses the true probability for the CSL
property under verification [12]. Figure 1 illustrates a simple overview of STAMINA’s
architecture.

Fig. 1. High-level overview of STAMINA’s architecture.

When checking a non-nested CSL property P=?(φ), which queries the probability
that the path formula φ holds, the lower bound Pmin is the probability of φ being satisfied
within S and the true probability is at least Pmin. In the extreme case, all unexplored
states abstracted by ŝ satisfy φ, and therefore, the upper bound probability Pmax is
the sum of Pmin and the probability (as determined by PRISM) of reaching ŝ within
the time bounds designated in φ. In the previous STAMINA implementation [11], it
invokes PRISM twice to check two separate modified properties, namely, P=?(φ ∧ ¬ŝ)
and P=?(φ ∨ ŝ), to obtain Pmin and Pmax, respectively. If Pmax − Pmin > w, where w
is a user-defined tightness of the probability window, STAMINA would reduce κ by a
reduction factor (default 1000) so that it can continue state space expansion; after which,
it invokes PRISM to check the two properties again. It repeats this procedure until

322 R. Roberts et al.

the probability window is tight enough, the machine runs of out memory, or an upper
bound on iterations (default 10) is reached. During state expansion, STAMINA applies
property-guided early path termination if the CSL property under verification is, or
can be converted to, a non-nested and time-bounded “until” formula P=?(Φ U [0,t] Ψ).
A path satisfies Φ U [0,t] Ψ , if Φ holds in every state of the path from the initial state
up until a state where Ψ evaluates to true within t time units. For time-abstract state
exploration carried out by STAMINA, it terminates state expansion along a path when
encountering a state s known to satisfy or dissatisfy Φ U Ψ , i.e., s � (¬Φ∨Ψ). Instead,
it makes s absorbing to contain probabilities flowing into it from its incoming paths.
For detailed algorithms, readers are encouraged to read [11,12]. As the improvements
to STAMINA are set forth, we will refer to the original algorithm as STAMINA 1.0,
and the new algorithm presented in this paper as STAMINA 2.0, for clarity.

3 Improvements over STAMINA 1.0

Combined Analysis. When benchmarking STAMINA 1.0, we observed that a signif-
icant portion of the runtime was spent on performing CTMC analysis. One reason
for this is that two separate CTMC analyses had to be carried out to calculate Pmin

and Pmax. If the property being checked is a non-nested CSL property of the form
P=?(Φ U [0,t] Ψ), we have been able to improve this by combining the two analyses
into a single analysis. The transient analysis performed by PRISM yields Pt(s) to indi-
cate the probability of being in state s at time t. Due to the property-guided early path
termination described in Sect. 2, we obtain Pmin =

∑
Pt(si) for all states si satisfying

Ψ , excluding ŝ. The transient analysis also returns Pt(ŝ) for the absorbing state ŝ, Pmax

is simply Pmin + Pt(ŝ). This combined analysis results in significant time savings.

Re-exploration of States. We observe that re-visiting a previously explored state can
cause its reachability probability to become trapped. In STAMINA 1.0, the tool does not
re-explore an already explored state, to avoid never-ending state re-exploration within
cycles, which represent one example of state re-visitation. However, this strategy causes
the following issue. Suppose si is explored for the first time, its reachability probability
π̂(si) is below κ, but at a later step, it discovers a new incoming transition to si, which
brings π̂(si) to be equal to or above κ. Since si is not re-explored, it traps π̂(si), even if
it increases again in future state exploration steps. Figure 2 illustrates a situation where
this problem can manifest. Each state is labeled with its name and reachability proba-
bility. We consider the situation starting with the state shown in Fig. 2a: s3 and s4 are
the next to be explored, π̂(s3) = 0.1, and π̂(s4) = 0.9. Then, s5 is visited, resulting in
π̂(s5) = 0.1 in Fig. 2b. Then, s4 has a transition returning to s3, which causes π̂(s3) to
increase to 1.0. However, since s3 is not re-explored, the updated π̂(s3) is never passed
on to s5. Instead, it has become trapped in s3, as shown in Fig. 2c. If s5 had some suc-
cessor states si that were truncated due to π̂(si) < κ, they will not be explored, even
though their reachability probabilities would be sufficiently high to be explored if the
reachability could properly pass through s5.

The STAMINA 1.0 algorithm attempted to solve this problem in the following way:
after finishing an iteration of state expansion, it walks through the entire explored state
space to find all terminal states to be re-explored. Note that this step was not described

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 323

in the original algorithm presented in [11,12]. Once it finishes exploration again, it
will repeat the process of re-exploring all terminal states until the change in state space
size between iterations becomes sufficiently small. The two main drawbacks of this
strategy are (1) the non-trivial time complexity required to repeatedly search the state
space for the terminal states; and (2) its inability to release trapped probabilities in non-
terminal states as they are not re-explored. In Fig. 2, if s5 was not a terminal state, but
its successors were, the STAMINA 1.0 algorithm would not alleviate this issue.

Calculating Reachability. In order to set the stage for how STAMINA 2.0 solves this
problem, we must first define a new method of calculating π̂(s), as the previous method
does not allow for the re-exploration of a previously visited non-terminal state, because
doing so would cause reachability probability that has already been passed on to the
successors to be passed on again. To alleviate this issue, π̂(s) is now calculated in the
following way: when a particular state s is explored, we first update the reachability
probability for every successor state s′ as follows: π̂(s′) = π̂(s′)+ π̂(s) ·p(s, s′). Then,
π̂(s) is assigned to zero, indicating it has passed all of its reachability on to the successor
states. By reducing π̂(s) to zero after exploration, if s is re-explored in the future and
π̂(s) > 0, we know that this non-zero reachability probability must have come from
a transition that has returned to s since the last time it was explored. In this way, re-
exploring s will only pass on the probability flowing into it since its most recent visit.
As an additional benefit, this method is much less computationally expensive, as it can
be performed as each state is visited, rather than needing to iterate over the predecessors.

(a) (b)

(c)

Fig. 2. Example of STAMINA 1.0 state exploration resulting in trapped reachability.

Algorithm Improvements. Using the improved method, the trapped reachability prob-
lem was solved by restructuring the STAMINA 1.0 algorithm in the following way:
after state exploration finishes with a particular κ, we begin a re-exploration of the state
space, starting from the initial state, in order to push the reachability probabilities of
all states toward the outer boundaries of the explored state space. In STAMINA 1.0,
κ starts from a small value of 1.0e-6 and is reduced infrequently, with the state space
being verified between each reduction. STAMINA 2.0 changes this strategy, alleviating

324 R. Roberts et al.

another challenge of STAMINA 1.0, which is the determination of a proper κ for a given
PRISM model. In STAMINA 2.0, κ starts at its maximal value 1.0. When there are no
more states to explore with the current κ, it is divided by a reduction factor, rκ (default
of 1.25), and the exploration repeats from s0. Note that rκ is much smaller than that
used in STAMINA 1.0, which has a default value of 1000. Therefore, it causes κ to be
reduced more frequently but by a smaller amount each time, allowing state reachability
probabilities to properly pass through explored states, which in turn results in improved
choice of state exploration paths with a larger portion of the total probability mass.

With significantly increased frequency of reducing κ, it is no longer reasonable
to perform CTMC analysis prior to each reduction. Instead, to determine termination,
we define Π̂ =

∑
si∈T π̂(si) as an estimate of (Pmax − Pmin), where T is the ter-

minal state set. Heuristically, we find that (Pmax − Pmin) tends to be smaller than w
when Π̂ becomes less than half of w. Thus, we specify a user-defined parameter mis-
prediction factor m (default of 2 to match heuristic). Prior to each reduction of κ, we
compute Π̂ and terminate exploration when Π̂ < w

m . The state space is then passed to
PRISM to compute the probability window. If it does not meet the desired tightness,
i.e., (Pmax − Pmin) > w, m is increased in a manner proportional to the relative error
between (Pmax −Pmin) and w. Specifically m is multiplied by 4 times Pmax−Pmin

w , except
that if Pmax−Pmin

w > 100, 100 is used instead. The multiplier 4 is an additional heuristic.
It is worth noting that STAMINA 2.0’s algorithm contains several parameters that were
determined heuristically, the majority of which can be tuned by the user if necessary,
but are set by default to a value that tended to perform well across many different case
studies. The reason for including these heuristics is that each particular model has a
state space structure that will affect STAMINA’s probability reachability estimations in
different ways. To prevent the user from having to tune many different parameters for
a particular model in order to get STAMINA to perform well, the parameter defaults
were chosen heuristically to perform well across a large set of models. To the best of
our knowledge gained through testing the tool across various use cases, there does not
seem to be a strong theoretical basis for why certain values for these parameters would
perform better on one model than another, so optimizing them for the general cases
appears the best course of action. This new algorithm fully automates the choice of an
accurate κ for STAMINA, in order to optimize runtime and state-space size, relieving
the user of making such a choice. In addition, it allows a tighter probability window to
be found with reduced states (and hence memory) using less time in almost all tested
case studies. The improved accuracy of choosing portions of the state space to explore
far outweighs the added computational complexity of re-exploring the state space.

Convergence of the STAMINA Algorithm. Algorithm 1 shows the full STAMINA
2.0 algorithm. The set post(s) is defined as the set of successor states of state s and is
generated from the input PRISM CTMC model. Additionally, note that for the notation
of the algorithm, S is the set of all states explored up to the current execution point
in the algorithm, while explored is the set of states that have been explored using
the current value of κ and is emptied after κ gets updated. In order to reason about
the convergence of the algorithm, we first define emb(C) as the embedded Discrete-
Time Markov Chain (DTMC) of the PRISM CTMC model C under verification, as
our estimates of reachability are calculated based on the transition probabilities of this

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 325

embedded DTMC. Note that the entire embedded DTMC is never generated, we simply
compute the transition probabilities during exploration of a particular state. We then
define a path, pa, as a sequence of states that start from the initial state s0, that can be
traversed in emb(C). Denote P (si, sj) as the probability of transitioning from si to sj

as encoded in the transition probability matrix of emb(C). Let pa(j) be the j-th state
in pa and len(pa) be the length of pa. We also define paths(si) as the set of all paths
whose last state is si, and prob(pa) as the probability of the path pa, which is equal to
∏len(pa)−2

i=0 P (si, si+1). Finally, we let pam < |pan indicate that pam is a subpath of
pan, i.e. ∀j = 0, 1, ..., len(pam) − 1, pam(j) = pan(j) and len(pam) < len(pan).

Next, we reason about the estimated state reachability for state si, π̂(si), in terms of
the definitions we have set forth. At any time point during the execution of Algorithm 1,
π̂(si) =

∑
pa∈σ(si)

prob(pa), where σ(si) ⊆ paths(si) and ∀pax, pay ∈ σ(si), where
x �= y, pax �< |pay . We then denote π(si) as the true probability (as opposed to the
estimate probability π̂(si) calculated by STAMINA) of eventually reaching si for the
first time in emb(C). Note that a path can have possibly many revisits to si after its first
visit, and it is the probability of the first visit to this state considered here. So define
X(si) = {pa | pa ∈ paths(si) ∧ pa(j) �= si, ∀0 � j < len(pa) − 1} as the set
of paths that end with their first visit to state si. Then π(si) =

∑
pa∈X(si)

prob(pa).
In other words, π(si) aggregates the reachability probabilities for all paths at their the
first visit to si. These definitions then allow us to derive the following statement, which
we will use as the basis for convergence reasoning: π̂(si) � π(si) is an invariant of
Algorithm 1 that holds true during all points of execution. This is due to the fact that
every path paj ∈ σ(si) meets one of two following conditions: Either paj ∈ X(si) or
paj is part of a set of paths e ⊆ σ(si), where the set e satisfies the following condition:
there must exist a path pak ∈ X(si) such that ∀pal ∈ e, pak < |pal. In this latter case,
we know that all paths for which pak is a subpath will have a combined probability
of prob(pak), and the sum of probabilities of all paths in e will be at most prob(pak),
i.e.,

∑
pal∈e prob(pal) � prob(pak). Intuitively, paths belonging to e are explored

on-the-fly during STAMINA’s state exploration, and it is possible that a path pa ∈
paths(si), for which pak < |pa, is not added to e because pa gets truncated before si

appears as its last state. In simpler terms, every probability contributing to the sum of
the estimate either contributes directly to the sum of the true reachability, or is part of a
set of probabilities contributing to the estimate that are in aggregate less than or equal
to a corresponding probability contributing to the true reachability.

Now we can reason about the convergence of this algorithm with respect to the
convergence of each of the three while loops contained within it. Note that although
the algorithm is guaranteed to eventually converge under the constraints given here, it
is not guaranteed to do so within the hardware limits, such as memory of the machine
running it. Additionally, note that the conditions given for convergence are sufficient,
but not necessary, as the algorithm may converge even when the conditions are not met,
depending on the structure of the state space and the property being checked.

In order for the loop beginning on line 6 to terminate, all states that the algorithm
encounters that have not yet been explored must have an estimated reachability of less
than κ. This can be guaranteed under the following condition: There does not exist an
infinitely long path, pai, in emb(C) such that π(sj) ≥ κ,∀sj ∈ pai and �k, l where

326 R. Roberts et al.

k �= l and pai(k) = pai(l). The final condition regarding k, l comes from the fact
that if a path encounters a state that has already been explored, this particular loop will
terminate. Then, the loop beginning on line 4 terminates when the estimated reachability
of all terminal states sums to less than w

m . This can be guaranteed to eventually occur
under the following condition: There exists a κ > 0 such that for all states s in emb(C)
with π(s) < κ,

∑
π(s) < w

m . Note that m will get larger until the conditions for
the outermost loop of the algorithm are satisfied. The convergence of this outermost
loop, beginning on line 2, is somewhat simpler to reason about. We first recognize that
Pmax − Pmin is equal to the probability of reaching a state (in the original CTMC) that
the algorithm did not explore, within the time constraints specified by the CSL property.
Thus, as the algorithm explores more states, Pmax−Pmin must necessarily grow smaller.
The inner two loops shown before operate with an increasingly small κ, which causes
more states to be explored, and thus the termination of the outermost loop. In future
work, we plan to investigate the incorporation of the temporal information available in
the CTMC to expand the conditions for convergence to a larger number of models, as
well as to further improve STAMINA’s performance.

4 Results

We obtained all results on a machine with an AMD Ryzen Threadripper 12-Core
3.5GHz Processor and 132 GB of RAM, running Ubuntu Linux (v18.04.3). 120GB of
RAM was allocated to the Java Virtual Machine used by STAMINA. Both STAMINA
1.0 and 2.0 utilized PRISM v4.5 and OpenJDK 11.0.10. All INFAMY results use the
same parameters as in [11]. STAMINA 2.0 uses the default parameters for all exam-
ples. Both STAMINA versions attempted to obtain a user-desired probability window
w of at least 1e−3, and INFAMY used a precision of 1e−3. This w was achieved by
STAMINA 2.0 and INFAMY for all models; STAMINA 1.0 failed to achieve it in some
cases, which are noted. Because each tool, other than those noted exceptions, obtained
the specified w, the tools need only be compared in terms of the runtime and number
of states (which translates to memory usage) required to reach the specified window.
All benchmarks and case studies presented in this section, detailed tables of results
comparison, and its source code can be found at: https://github.com/fluentverification/
stamina.

Hazard Analysis in Genetic Circuits.Recent efforts in synthetic biology work towards
applying principles from electric circuit design to genetic circuit design. One example
is the genetic design automation (GDA) tool Cello [13] that was designed to acceler-
ate and simplify the genetic design process. To verify the functionality of the tool, 60
combinational genetic were generated and tested in Escherichia coli. One of the gener-
ated circuits, circuit 0×8E, showed an unwanted switching behavior in vivo. Namely, in
response to an input change, the output of the circuit was supposed to remain high, but
it glitched low for a short time. In [5], it was demonstrated that this glitch was due to a
function hazard (i.e., a property of the function being implemented). In [2] a stochas-
tic analysis of the circuit was performed using both simulation and STAMINA 1.0 to
evaluate the robustness of this design. The glitching behavior of this circuit is investi-
gated under 12 possible transition patterns, where the transitions indicate a change in

https://github.com/fluentverification/stamina
https://github.com/fluentverification/stamina

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 327

Algorithm 1: Improved state re-exploration algorithm in STAMINA 2.0.
Input : A PRISM CTMC model file, a CSL property, and w.
Output: Pmin and Pmax.

1 Pmin := 0.0; Pmax := 1.0; π̂(s0) := 1.0; S := {s0}; T := {s0};
2 while Pmax − Pmin > w do
3 Π̂ := 1.0;

4 while Π̂ > w
m

do
5 enqueue(queue, s0); explored := ∅;
6 while queue �= ∅ do
7 s := dequeue(queue);
8 if s /∈ T ∨ π̂(s) � κ then
9 if π̂(s) = 0 then

10 forall the s′ ∈ post(s) do
11 enqueue(queue, s′);
12 else
13 if s ∈ T then
14 T.remove(s);
15 forall the s′ ∈ post(s) do
16 π̂(s′) := π̂(s′) + π̂(s) · p(s, s′);
17 if s′ /∈ explored then
18 explored := explored ∪ {s′};
19 enequeue(queue, s′);
20 if s′ /∈ S then
21 T := T ∪ {s′}; S := S ∪ {s′};
22 π̂(s) := 0;

23 Π̂ :=
∑

si∈T π̂(si);

24 κ := κ
rκ

;

25 Instruct PRISM to build the proper statespace based on the states in S and T, and the
original inputted PRISM model;

26 Compute Pmin and Pmax of the inputted CSL property, using PRISM;
27 if Pmax − Pmin > w then
28 m := m ∗ 4 ∗ min(100, (Pmax−Pmin

w
))

the amount of each of the circuit’s three inducer molecules: IPTG, aTc, and Ara. Tran-
sitions are labeled as a set of 3 digits, each a 0 (low) or 1 (high) representing the amount
of IPTG, aTc, and Ara, respectively. Since this genetic circuit is inherently noisy and
has an infinite state space, it is an excellent candidate to be checked by STAMINA.

Originally, STAMINA 1.0 performed poorly when attempting to model check the
genetic hazard circuit. Through a study of STAMINA’s behavior when checking this cir-
cuit, we discovered the inefficiencies of the original algorithms as described in Sect. 3,
and in particular, the issue showcased in Fig. 2, and optimized these algorithms in
STAMINA 2.0. Figure 3 shows a comparison of the two versions of STAMINA’s perfor-
mance on the hazard genetic circuit model. STAMINA 1.0 was initially tested with its
default value for κ, 1e−6, and then was reduced to 1e−20, but failed to compute an ade-
quately small probability window for both values. The results presented here are for an

328 R. Roberts et al.

initial κ of 1e−35. We can see that even after manually searching for a proper κ value,
STAMINA 1.0 still cannot outperform 2.0. On those transitions that STAMINA 1.0
is able to compute bounds with the desired tightness, the improved algorithms imple-
mented in STAMINA 2.0 achieved the same with approximately 90% less states (and
by extension less memory) and 90% less time. STAMINA 1.0 was capped to a max-
imum of 10 iterations where κ is reduced before forced termination in order to avoid
spending excessive time. In addition, STAMINA 1.0 failed to achieve the desired prob-
ability window for some transitions due to running out of memory. This does not affect
the result comparison, because all runs that were either stopped after 10 iterations or ran
out of memory had far surpassed STAMINA 2.0 in state-space size and runtime, despite
not yet achieving the desired probability window size. In reality, if STAMINA 1.0 were
allowed to run to completion, assuming no bound on runtime or memory, the improve-
ments for both state space size and runtime would be greater than those reported for the
models STAMINA 1.0 could not complete. Table 1 shows a comparison of the proba-
bility windows for examples that STAMINA 1.0 did not obtain an adequate probability
window. From this table, we can observe the drastically tightened probability window
STAMINA 2.0 was able to obtain despite it’s lower runtime and state-space sizes. We
were unable to obtain results for INFAMY on this 0×8E genetic hazard circuit model,
as its PRISM parser could not parse the model’s transition rate formulas.

Table 1. Probability window comparison between STAMINA 2.0 and 1.0 on hazard circuit tran-
sitions for which the latter failed to produce a probability window that met the desired tightness.

Transition STAMINA 2.0 STAMINA 1.0 Transition STAMINA 2.0 STAMINA 1.0

010 to 111 [0.0166, 0.0168] [0.0060, 0.9218] 100 to 111 [0.0166, 0.0168] [0.0125, 0.5405]

011 to 101 [0.9895, 0.9897] [0.8608, 0.9990] 000 to 011 [0.8260, 0.8262] [0.6661, 0.9669]

010 to 101 [0.9902, 0.9905] [0.9477, 0.9998] 101 to 011 [0.9895, 0.9898] [0.8498, 0.9981]

Other Benchmarks. While the hazard circuit represents one of the more complex sys-
tems STAMINA may be used on, it can also perform well on simpler models. We tested
STAMINA 2.0 on the same set of benchmarks used to evaluate STAMINA 1.0 in [11],
in order to illustrate that STAMINA 2.0 was not simply optimized for the hazard cir-
cuit case. These benchmark examples come from both the PRISM benchmark suite [7]
and the INFAMY tool’s case studies at https://depend.cs.uni-saarland.de/tools/infamy/
casestudies/. Many of these case studies are not infinite state models, but contain param-
eters that can be scaled to increase the state space size to an arbitrarily large size. It
should be noted that STAMINA can analyze very large, but finite, state spaces as well
as infinite state spaces. These particular case studies were chosen because they have
been previously tested using either PRISM or INFAMY, and are accessible on these
tools’ respective websites for users to test other tools against STAMINA’s results. A
brief description of each of these benchmark models, the corresponding CSL prop-
erties being checked, and the meaning of the parameters can be found in [11]. It is
worth mentioning that for the Robot models, the property being checked is a nested
CSL formula, so the combined analysis improvement does not apply. All performance

https://depend.cs.uni-saarland.de/tools/infamy/casestudies/
https://depend.cs.uni-saarland.de/tools/infamy/casestudies/

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 329

Fig. 3. STAMINA 2.0 improvement over 1.0 on the 0×8E genetic hazard circuit. Columns labeled
with a * indicate that STAMINA 1.0 did not achieve the desired probability window due to mem-
ory or iteration constraints.

Fig. 4. STAMINA 2.0 improvement on the Benchmark models.

gains on this model come from the other discussed improvements. Figure 4 shows the
performance improvements of STAMINA 2.0 on these benchmarks, relative to both
STAMINA 1.0 and INFAMY. Because these models are simpler, there is not as much
room for improvement, and the gains tend to be smaller than those for the hazard cir-
cuit. However, the average gains remain substantial. Of particular note, the Polling
benchmark needed only 1 state with STAMINA 2.0, regardless of the parameters. This
is due to the fact that the property under verification is satisfied in the initial state.
STAMINA 2.0 is able to recognize this and stop state expansion while STAMINA 1.0
and INFAMY still expand the state space to sizes in the tens of thousands, and even
millions, of states. Note that STAMINA 1.0 had the property-guided truncation imple-

330 R. Roberts et al.

mented, but its attempted solution to the problem shown in Fig. 2 caused it to explore
additional states anyway. Also of note, the Jackson case study with parameters (4/5) is
the only example for which STAMINA 1.0 performs better than STAMINA 2.0 in terms
of states generated. In order to understand this, first note that STAMINA 1.0 relied on a
user-determined probability window to determine stoppage, rather than using heuristics
based on the calculated estimates as STAMINA 2.0 does. In most cases, the heuristic
finds a cutoff that is much closer to optimal than the user defined cutoff can; however, in
rare cases, such as this particular Jackson example, the arbitrarily chosen cutoff works
well with the model structure and stops closer to the optimum cutoff. However, the
STAMINA 2.0 algorithm still performs notably better than STAMINA 1.0 in terms of
runtime for this example.

5 Conclusion

The algorithmic improvements made to STAMINA 2.0 result in significant savings of
both runtime and memory usage. In particular, for highly complex models the new ver-
sion is able to achieve gains on the order of 90% for both runtime and state space size.
Through these improvements, the tool is able to obtain results on models it previously
failed on. The STAMINA 2.0 tool allows us to obtain guarantees about the probabilistic
behavior of infinite-state systems that would otherwise be impossible. In the future, we
plan to create a version of the tool that integrates with the STORM model checker [4].
We also plan to integrate an estimate of state resident time into the STAMINA algo-
rithm, in order to further improve the choice of states to be explored.

Acknowledgement. The authors of this work are supported by the National Science Founda-
tion under Grant Nos. 1856733, 1856740, 1939892 and 1856733, DARPA FA8750-17-C-0229,
Dean’s Graduate Assistantship at the University of Colorado Boulder, and the University of
Colorado Palmer Chair funds. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
funding agencies.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov
chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

2. Buecherl, L., et al.: Genetic circuit hazard analysis using stamina. In: 12th International
Workshop on Bio-design Automation, pp. 39–40 (2020)

3. Češka, M., Chau, C., Křetı́nský, J.: SeQuaiA: a scalable tool for semi-quantitative analysis of
chemical reaction networks. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification,
pp. 653–666. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-
3-030-53288-8 32

4. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilis-
tic model checker. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp.
592–600. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

https://doi.org/10.1007/978-3-030-53288-8_32
https://doi.org/10.1007/978-3-030-53288-8_32
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31

STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking 331

5. Fontanarrosa, P., Doosthosseini, H., Borujeni, A.E., Dorfan, Y., Voigt, C.A., Myers, C.:
Genetic circuit dynamics: hazard and glitch analysis. ACS Synth. Biol. 9(9), 2324–2338
(2020)

6. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state Markov
model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 641–
647. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 49

7. Kwiatkowsa, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Quantitative
Evaluation of Systems, International Conference on(QEST), pp. 203–204, 09 2012. https://
doi.org/10.1109/QEST.2012.14

8. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72522-0 6

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 47

10. Lapin, M., Mikeev, L., Wolf, V.: SHAVE: stochastic hybrid analysis of Markov population
models. In: Proceedings of the 14th International Conference on Hybrid Systems: Computa-
tion and Control, HSCC 2011, pp. 311–312. ACM, New York (2011)

11. Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: STAMINA: stochastic approx-
imate model-checker for infinite-state analysis. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification, pp. 540–549. Springer International Publishing, Cham (2019). https://
doi.org/10.1007/978-3-030-25540-4 31

12. Neupane, T., Zhang, Z., Madsen, C., Zheng, H., Myers, C.J.: Approximation techniques for
stochastic analysis of biological systems. In: Liò, P., Zuliani, P. (eds.) Automated Reasoning
for Systems Biology andMedicine. CB, vol. 30, pp. 327–348. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17297-8 12

13. Nielsen, A.A.K., et al.: Genetic circuit design automation. Science 352(6281), aac7341
(2016). https://doi.org/10.1126/science.aac7341, http://science.sciencemag.org/content/352/
6281/aac7341

14. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D.
Thesis, University of Birmingham (2002)

15. Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic approx-
imation of the bounded reachability probability in large Markov chains. In: Norman, G.,
Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 388–403. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10696-0 30

https://doi.org/10.1007/978-3-642-02658-4_49
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1109/QEST.2012.14
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1007/978-3-030-25540-4_31
https://doi.org/10.1007/978-3-030-17297-8_12
https://doi.org/10.1007/978-3-030-17297-8_12
https://doi.org/10.1126/science.aac7341
http://science.sciencemag.org/content/352/6281/aac7341
http://science.sciencemag.org/content/352/6281/aac7341
https://doi.org/10.1007/978-3-319-10696-0_30

Generalized Arrays
for Stainless Frames

Georg Stefan Schmid(B)

and Viktor Kunčak

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Laboratory for Automated Reasoning and Analysis (LARA),

1015 Lausanne, Switzerland
{georg.schmid,viktor.kuncak}@epfl.ch

Abstract. We present an approach for verification of programs with
shared mutable references against specifications such as assertions, pre-
conditions, postconditions, and read/write effects. We implement our
tool in the Stainless verification system for Scala.

A novelty of our approach is to translate imperative function contracts
(including frame conditions) using quantifier-free formulas in first-order
logic, instead of quantifiers or separation logic. Our quantifier-free encod-
ing enables SMT solvers to both prove safety and to report counterex-
amples relative to the semantics of procedure contracts. Our encoding is
possible thanks to the expressive power of the extended array theory of
de Moura and Bjørner, implemented in the SMT solver Z3, whose map
operators allow us to project heaps before and after the call onto the
declared reads and modifies clauses.

To support inductive proofs about the preservation of invariants, our
approach permits capturing a projection of heap state as a history vari-
able and evaluating imperative ghost code in the specified captured heap.

We also retain the efficiency of reasoning about purely functional lay-
ers of data structures, which need not be represented using heap ref-
erences but often map directly to SMT-LIB algebraic data types and
arrays. We thus obtain a combination of expressiveness for shared muta-
ble data where needed, while retaining automation for purely functional
program aspects. We illustrate our approach by proving detailed correct-
ness properties of examples manipulating mutable linked structures.

Keywords: Verification · Satisfiability modulo theories · Shared
mutable data structures · Array theories · Dynamic frames

1 Introduction

Formal verification of programs with shared mutable data structures is a long-
standing problem. Among the most promising techniques used in today’s ver-
ification tools are separation logic and dynamic frames. Separation logic [33]
with bi-abduction [9] has proved practical; its variant is implemented in the
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 332–354, 2022.
https://doi.org/10.1007/978-3-030-94583-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_17

Generalized Arrays for Stainless Frames 333

Infer tool [12] used by Facebook. It is also a common framework for foun-
dational semantic-based approaches for reasoning about state inside the Coq
proof assistant [20]. On the other hand, we are attracted to dynamic frames [21]
because they are both semantically straightforward and expressive. Tools that
embrace them, such as Dafny [25], were used to verify complex software systems
at Microsoft [18]. Separation logic and dynamic frames are closely related and
one can view separation logic as a logical framework that infers sets that rep-
resent dynamic frames in certain circumstances, as illustrated by the VeriFast
tool [37], a relationship that was rigorously analyzed in subsequent research [34].

This paper presents an alternative approach for reasoning about mutable
programs and presents its realization in the Stainless verifier [17] for a subset
of the Scala programming language [32]. Like the dynamic frames approach, we
use constrained sets of objects to specify frame conditions. Like Dafny, our tool
uses SMT solvers to establish properties instead of dedicated symbolic execution
for heap-manipulating programs as in several other approaches [5,13,19,30]. We
also model the heap as a function from storage locations to values.

However, our encoding of frame conditions is different from the one in Dafny.
Whereas Dafny makes use of universal quantifiers with triggers to encode frame
conditions (expressing that all non-modified locations remain the same), we
avoid quantifiers and instead use the generalized theory of arrays [29] of Z3.
Notably, this expressive array theory retains completeness guarantees for satis-
fiability checking of quantifier-free formulas even in the presence of model-based
theory combination [27] with other decidable theories. Thanks to our new encod-
ing and the decision procedures of Z3, our verification tool can report meaning-
ful counterexamples for invalid properties, even in those cases where the bodies
of methods are abstracted by their modifies clauses. In contrast, SMT solvers
either refuse to report counterexamples to satisfiability for formulas with uni-
versal quantifiers, or permit extraction of assignments that may or may not be
witnesses to satisfiability. Unlike Dafny, which reduces programs to a guarded-
command language Boogie [3], our approach reduces imperative code to recur-
sive functional programs that manipulate data types supported by the Z3 SMT
solver [28], building on the existing Stainless infrastructure [17]. While Stain-
less could already deal with imperative constructs [7], the supported fragment
did not permit any aliasing. In contrast, the new encoding we describe enables
Stainless to verify shared mutable data structures.

Our approach reduces verification conditions to functional programs but need
not encode immutable algebraic data types using the heap. Read-only functions
do not return a heap in our encoding, whereas functions that do not read mutable
references do not even take a heap argument. The result is a better verification
experience on a mix of purely functional and mutable code, compared to a more
uniform encoding. This feature enables users to leverage the expressive power
of recursive functional programming in implementation and specification, and
encourages the use of executable specifications. Following this paradigm, we fur-
ther allow users to define inductive heap predicates as Boolean -typed recursive
functions. Lemmas about such predicates typically require inductive proofs and
the ability to explicitly relate to states at different program points. We propose

334 G. S. Schmid and V. Kunčak

first-class heaps as a solution which provides the necessary fine-grained control
and is readily expressible using our approach.
Contributions. This paper makes the following contributions:

– We describe a novel translation of frame conditions into quantifier-free for-
mulas of combinatory array logic, yielding a heap encoding that can reliably
produce abstract counterexamples modulo function contracts.

– We show how to soundly incorporate into our approach the notion of first-
class heaps, affording additional flexibility in proving lemmas about inductive
heap predicates, while coming at essentially no additional cost in translation.
First-class heaps also increase our system’s expressive power in that they
enable writing proofs of hyperproperties [10,16,22].

– We integrate our solution into the Stainless verifier. Our implementation sup-
ports imperative and functional features, including higher-order functions and
generics, and uses dynamic frames as a specification mechanism. 1

2 First Example: Stack

As a simplest example to illustrate a mix of functional and imperative pro-
gramming, Fig. 1 presents a mutable stack implementation using the textbook
singly-linked list. (The code is valid Scala accepted by the Scala 2.12/2.13 com-
pilation pipeline given appropriate library imports.) The data structure is simple
to specify: a minimal specification would only include reads and modifies clauses,
with bodies of functions themselves serving as specifications.

Figure 1 extends such basic specification by introducing the abstraction func-
tion list and calling it in postconditions (ensuring) to re-state the precise effect
of the function. For instance, the postcondition of push states that list == a ::
old(list) , meaning that the result of invoking parameter-less abstraction function
list in the post-state is structurally equivalent (==) to element a cons-ed (::) with
list evaluated in the pre-state (old(list)). The proofs of all these conditions in push
and pop are trivial and our system performs them in a fraction of a second. The
clients can reason about the behavior of stack by referring to the immutable
list, which is suited for inductive proofs, much like such list data types in proof
assistants Coq [6] and Isabelle [31]. Users can create shared references to such
mutable stacks, which goes beyond what was possible with the previous, unique
mutable reference model of Stainless, inherited from Leon [7, Ch. 3].

3 Extended Example: Map on a Tree

Moving to a slightly more complex example, Fig. 2 shows a binary tree data
whose interior nodes are immutable but whose leaves are mutable and store

1 Our implementation is part of Stainless (https://github.com/epfl-lara/stainless/)
and can be tested on examples in frontends/benchmarks/full-imperative via the
--full-imperative flag. Artifact available at https://zenodo.org/record/5683321.

https://github.com/epfl-lara/stainless/
https://zenodo.org/record/5683321

Generalized Arrays for Stainless Frames 335

Fig. 1. A mutable stack.

Fig. 2. A tree with mutable leaves and a parallelizable in-place map, including read
and write frame conditions. The ++ symbol denotes union of sets, as in scala.

336 G. S. Schmid and V. Kunčak

values of generic type T. We support a fragment of Scala with functional features
(such as pure first-class functions) as well as imperative features (mutable fields)
and object-oriented features (traits and dynamic dispatch). For any class, users
explicitly opt into mutability and heap reasoning by inheriting from AnyHeapRef.
For instance, in our example the class Tree inherits from AnyHeapRef. It is also
marked as sealed, indicating that all of Tree’s subclasses are defined locally (as
opposed to Scala’s default behavior of keeping type hierarchies open). In effect,
Tree constitutes an algebraic data type with constructors Leaf and Branch.

Our focus is the method def tmap(f: T ⇒ T) on the Tree class, which
applies an in-place transformation f to all leaf cells. For example, given a tree:
Tree[BigInt], invoking tree.tmap(n ⇒ n + 1) increments the values in all the
leaves of tree by one. The method recursively traverses the tree and updates
all cells upon reaching the leaves.

Verifying Effects. Figure 2 is also a minimally-specified program accepted by our
tool, which automatically verifies the conformance of tmap to its declared effects.
The reads clause indicates that the only mutable references that tmap reads are
given by the value returned from auxiliary function repr, which computes the set
of mutable cells in a given tree. Similarly, modifies indicates that these are the
only sets the method is allowed to modify, which means that all other mutable
objects remain the same after a call to tmap. The @ghost annotation ensures
that the repr function is not accidentally executed, but can only be used in
specifications that are erased at run time.

If we try to omit a reads or modifies clause, or incorrectly define repr to not
descend into subtrees, the tool reports a counterexample state detecting that
the specification reads or modifies is violated, with a message such as

tmap body assertion: reads of Tree.tmap invalid

pointing to an undeclared effect in line 17 of Fig. 2.

Counterexamples. Our approach enables the generation of counterexamples on
the basis of function contracts alone. Consider the following test method:
def test[T](t: Tree[T], c: Cell[T], y: T) = {
reads(t.repr ++ Set[AnyHeapRef](c))
modifies(t.repr)

t.tmap(x ⇒ y)
} ensuring(⇒ c.value == old(c.value))

If we mark tmap using the @opaque annotation to prevent it from being
unfolded and try to verify test, the system reports a counterexample, such as
this one:
Found counter−example:
t: Tree[T] → Leaf[Object](HeapRef(12))
c: HeapRef → HeapRef(12)
y: T → SignedBitvector32(1)

Generalized Arrays for Stainless Frames 337

heap0: Map[HeapRef, Object] → {HeapRef(12) →
Cell(Cell[Object](SignedBitvector32(0))), ∗ → SignedBitvector32(2)}

indicating that, when tmap is approximated with its effects, the ensuring clause
can be violated when tree t contains precisely the reference c.

Tools such as Dafny have difficulties in discovering such counterexamples, as
they rely on an encoding of frame conditions that involves quantifiers. Aiming
for soundness of counterexamples, the underlying SMT solvers may refuse to
produce any output or, in some cases, may produce an assignment that is not
guaranteed to be a model. This limitation is due to the fact that certifying that
a model exists in the presence of general quantifiers is a very difficult problem.
Generalized arrays [29] avoid it by “building in” restricted forms of quantifiers
into the semantics of pointwise (map) operators, improving the predictability.

Verifying Functional Correctness. To illustrate specification of stronger correct-
ness properties, we show that tmap behaves like map on purely functional lists.
This stronger specification of tmap is in the ensuring (postcondition) clause of
the version of tmap in Fig. 3 (line 18). The property is interesting because it gives
us assurance of correctness while being able to write code that reuses memory
locations and permits parallelization. The property is expressed by defining an
abstraction function [1] toList that maps the tree into the sequence of elements
stored in its leaf cells. (The purely functional List data type and the map function
on lists are defined in the standard library of Stainless.) To prove the ensuring
clause, it is necessary to introduce a precondition for tmap, expressed using the
construct require(valid). The valid method returns true when all subtrees store
disjoint cells. The tmap method may then only be called when this predicate
holds. The assertion on line 14 follows directly from valid and expresses disjoint-
ness of the side effects of calls on line 15.

In many cases our tool can automatically prove properties of interest thanks
to SMT solvers and the unfolding algorithm of Stainless. For instance, the valid
method (which we use to establish separation of subtrees) does not depend on
the content of mutable cells, but only on the identity of references. Our tool
checks this independence thanks to the absence of reads and modifies clauses
in the signature of valid. Because it does not depend on mutable state, valid
trivially continues to hold after each invocation of tmap on line 15.

On the other hand, showing complex properties such as functional correct-
ness may require more elaborate reasoning. The first challenge in our example
is to establish on line 16, after the modifications have taken place, the correct-
ness property we desire for each subtree, i.e., left.toList == oldList1.map(f) and
right.toList == oldList2.map(f). This requires using the heap separation between
left and right (witnessed by valid) to deduce that the two recursive calls are in
fact entirely independent of another. This, in turn, requires taking into account
tmap’s modifies clause, which states that only objects in repr are modified. In
previous works such a clause is encoded in one of two ways. Systems such as
Dafny encode frame axioms as quantified first-order formulas and rely on triggers
to automate their instantiation. In contrast, separation logic verifiers explicitly

338 G. S. Schmid and V. Kunčak

Fig. 3. Functional correctness of the tmap method including the abstraction function,
the invariant, and a proven lemma about purely functional lists. We use ∩ to display
intersection of sets, and use ∅ for the empty set of heap references Set[AnyHeapRef]().
The ++ symbol denotes concatenation of functional lists and union of sets, as in Scala.

Generalized Arrays for Stainless Frames 339

control the choice of frame, and thus move the burden of instantiations out of
the SMT solver. We propose a third solution, which is to encode the frame condi-
tions as quantifier-free assumptions in array theory, injected at each function call
site. Our approach avoids the need for quantifiers, but retains the automation
of SMT solvers.

Despite that automation and the decidability of the generalized array the-
ory, the size and complexity of SMT formulas may overwhelm the solver. In such
cases the user can add auxiliary assertions, e.g., expressed through assert and
check statements in Fig. 3. Furthermore, certain properties may require explicit
guidance on inductive proofs when reasoning does not follow the pattern of
functions that are iteratively unfolded. In such cases, we need to introduce lem-
mas and prove them using recursion to express inductive arguments, as with
lemmaMapConcat defined in lines 36–41 and instantiated on line 16. This lem-
mas is independent of any state reasoning and would naturally fit in a standard
list library. With these specifications and hints in place, our tool successfully
verifies the functional correctness of tmap.

4 First-Class Heaps

For some proofs it is useful to directly refer to and manipulate the heap states at
different points in the program. In our system’s surface language we expose heaps
as first-class values of abstract type Heap, and our standard library contains
several primitives to manipulate such values: a function Heap.get which returns
the current implicit heap, a primitive h.eval(e) which evaluates expression e in the
context of heap h, and the function Heap.unchanged(s, h0, h1) which evaluates
to true iff there exists no object o in the set s: Set[AnyHeapRef] such that heaps
h0 and h1 interpret o differently (in the shallow sense).

For instance, we might want to re-establish an inductive heap predicate after
having modified a node-based data structure:

case class Node(var next: Option[Node]) extends AnyHeapRef

def sll(nodes: List[Node]): Boolean = {
reads(nodes.content.asRefs)
nodes match {
case Cons(node1, rest @ Cons(node2,)) ⇒
node1.next == Some(node2) && sll(rest)

case ⇒ true
} }

In the above example we have a heap type of Nodes with pointers to next nodes
and an inductive heap predicate, sll, witnessing that a given sequence of nodes
forms a singly-linked list. Note that nodes: List[Node] itself is a purely functional
data structure and only present for specification purposes; one would typically
store it as a @ghost variable.

Say we would like to prove that removing the last element of a non-empty
singly-linked list nodes maintains the sll property. This is easy to specify using our

340 G. S. Schmid and V. Kunčak

functional abstraction nodes: assuming sll(nodes) holds in the pre-state, we would
like to show that sll(nodes.init) holds in the post-state, where .init is a method in
the standard library that drops the last element of a List[T]. When nodes consists
of a single element, the property follows immediately, since sll(nodes.init) reduces
to sll(Nil) which holds by definition of sll. On the other hand, if nodes contains at
least two elements, we need to modify the next field of the second-to-last node,
i.e., set nodes(nodes.size − 2).next = None(). In the latter case we effectively
want to establish the Hoare triple

{sll(nodes) ∧ F} nodes(nodes.size − 2).next = None() {sll(nodes.init)}
where F is some additional precondition ensuring that the list has at least two
elements, and that all nodes up to the last two are separate from the rest.

// A lemma proving that popping from a SLL maintains singly−linked−ness.
def sllPopLemma(h0: Heap, h1: Heap, nodes: List[Node]): Unit = {
require(
nodes.nonEmpty &&
h0.eval { sll(nodes) } &&
(nodes.size == 1 || (
Heap.unchanged(nodes.init.init.content.asRefs, h0, h1) &&
h1.eval { nodes(nodes.size − 2).next == None() }

)))
if (nodes.size > 1) sllPopLemma(h0, h1, nodes.tail)

} ensuring (⇒ h1.eval { sll(nodes.init) })

Above, sllPopLemma establishes the desired property by explicitly referring to
the pre-state as h0 and the post-state as h1. Its proof proceeds by induction on
nodes, and is mostly automatic; we merely have to invoke the right induction
hypothesis when nodes.size > 1. An implementation of pop would likely resort
to a stronger invariant like distinctness of all objects in nodes, and then invoke
the lemma after the modification as follows

val h0 = Heap.get // Get the pre−state
if (nodes.size > 1) nodes(nodes.size − 2).next = None() // Unlink last element
sllPopLemma(h0, Heap.get, nodes)

along with some hints that deduce F from the stronger invariant (not shown).
In addition, for nodes to be marked @ghost, we would need to maintain
nodes(nodes.size − 2) in a separate non-@ghost variable. Our benchmark suite
includes similar, but more elaborate examples Queue and NodeCycle.

While our current system does not provide as much automation as separation
logic for tree-like data, our approach is not limited to such structures and retains
full flexibility in treating heaps as first-class values. Interestingly, this also enables
us to prove hyperproperties, i.e., properties such as determinism, which involve
multiple heap states. For example, consider the following lemma stating that a
memoized function f : Int ⇒ Int evaluates to the same result in every heap:

def lemmaHeapIsIrrelevant(h0: Heap, h1: Heap, x: Int) = { () }
ensuring (⇒ h0.eval { f(x) } == h1.eval { f(x) })

Generalized Arrays for Stainless Frames 341

In many cases such lemmas can be proven automatically by our system, as
demonstrated, for instance, by the FibCache benchmark.

5 Heap Encoding

In the following, we introduce our heap encoding and how it achieves framing
without quantification. Our approach builds upon the existing counterexample-
complete unfolding procedure of the Stainless verifier and exploits the additional
expressive power afforded by combinatory array logic [29], an extended array
theory available in Z3. This use of array combinators for framing is, to the best
of our knowledge, novel. Notably, our encoding allows for a high degree of proof
automation without giving up counterexamples.

Our tool models stateful operations by explicitly reading from and updating
a locally-mutable map that relates each object to its state. In a later trans-
formation step such programs with local mutations are reduced to functional
ones. Each stateful function gains an explicit heap parameter and returns a
new, potentially updated heap along with its regular output. In terms of Scala’s
type system, the heap can be thought of as a map heap of type HeapMap =
Map[HeapRef, Any] where Any is the top type and HeapRef is a data type rep-
resenting an object’s identity. Conceptually, our approach employs a monadic
translation [26,41] that we partially-evaluate [2], replacing stateful operations
such as reads and writes by pure operations on a map.

5.1 Encoding tmap

We first give an informal explanation of our encoding by the example of the
minimally-specified version of tmap on Tree (the version without postconditions,
shown in Fig. 2). In Fig. 4 we show the data types after transformation.

We treat heap types, i.e., descendants of AnyHeapRef, like Cell, differently from
immutable types such as Tree. The latter are translated into algebraic data types
in the obvious way (lines 5–7). References to heap types, on the other hand, are
erased to the internal ADT HeapRef that represents locations on the heap (line
1). For instance, the field data: Cell[T] of Leaf becomes dataref: HeapRef (line 6).
Additionally, each heap class like Cell is translated to a single-constructor ADT
that encapsulates an object’s state at a given time, e.g., CellData (line 3).

In Fig. 5 we show the encoding of tmap itself. The method is reduced to a
type-parametric function that takes its original argument f, the method receiver
t and a heap parameter h0. The imperative operations in tmap are translated to
functional operations on HeapMap as mentioned above, and the modified heap
is returned along with the original return value. In particular, if the current tree
t is a leaf, then we extract its reference to a cell dataref (line 4) and index the
initial heap h0 at dataref (line 9). Note that since the heap map stores values
of type Any we have to perform a downcast (lines 8–9). This is safe, since we
will only verify well-typed Scala programs, so any such cast will be correct by

342 G. S. Schmid and V. Kunčak

Fig. 4. The data types of the tmap example in Fig. 2 after our encoding.

Fig. 5. The result of encoding the minimally-specified tmap method of Fig. 2. We use
⊆ to typeset subsetOf, ∈ for contains, and abbreviate Set[AnyHeapRef] by RSet.

construction. In a later type-encoding phase [40] Stainless translates type tests
such as line 8 to conditions in the theory of inductive data types. On line 11
we apply the function f to the old value of data and construct a CellData value

Generalized Arrays for Stainless Frames 343

reflecting the new state of data. We then return the updated heap on line 12. In
case the tree t is a Branch we simply perform two recursive calls (lines 15–16),
albeit through the newly-introduced wrapper function tmapshim.

Our encoding achieves modular verification of heap contracts (reads and
modifies) by injecting some additional assertions and assumptions. We bind the
reads and modifies sets (rs and ms) at the top of the function (line 2). For each
object that is read or modified we check that the object is in the respective set
(lines 5–6). For function calls we check that the callee’s reads, resp. modifies,
set is subsumed by the caller’s. We achieve this by invoking a wrapper function
tmapshim, that additionally takes as parameters the domains on which the passed
heap is defined for reads and modifications (rd and md). Within the wrapper we
bind the original function’s reads and modifies sets (line 21), check subsumption
wrt. the domains (lines 22–23) and call the original function tmap (line 24).

Finally, we assume the modular guarantees about tmap wrt. the pre- and
post-state, i.e., its frame conditions: On lines 26–27 we state that the result
of tmap only depends on the reads subset of the heap, whereas on line 28 we
state that the heap resulting from tmap may only have changed on objects in
modifies. For the reads-related frame conditions we depend on a “hypotheti-
cal” application of f to the projected heap rs.mapMerge(h0, dummyHeap), which
contains the state of h0 for all objects in rs and that of dummyHeap elsewhere.
The first assumption thus states that the result computed by f is the same no
matter whether we apply it to h0 or to some other arbitrary (but well-typed)
heap that is only known to agree on the valuations of objects in rs. The second
assumption states the analogous property about the locations that might have
been modified by f. Finally, the third assumption expresses that the pre-state
equals the post-state in all locations but those in the modifies clause, i.e., the
set ms.

The crucial component of our encoding here is the mapMerge primitive,
which can be seen as a ternary operator of type ∀ K V. Set[K] ⇒ Map[K,V] ⇒
Map[K,V] ⇒ Map[K,V]. Specifically, mapMerge takes a set s along with two maps
m1, m2 and produces a map m’ = s.mapMerge(m1, m2) such that ∀ k:K. (k ∈ s
→ m’[k] = m1[k]) ∧ (k �∈ s → m’[k] = m2[k]). We will discuss how mapMerge is
translated to Z3’s extended array theory in Sect. 5.3.

5.2 Translation Rules

We now describe the general translation rules as applied in our system. We will
consider only a subset of the language supported, focussing on constructs of
particular interest in the translation (shown in Fig. 6).

We distinguish the terms t and types T of the surface language from those of
the language after encoding. The surface language comprises of both (immutable)
algebraic data types D and (mutable) heap types C, along with terms for field
reads t.f and updates t.f :=t, which are interpreted as either functional or imper-
ative operations, depending on whether the receiver is an ADT or a heap type.
In the lowered language the latter are always interpreted functionally, and the
only imperative feature available are locally-mutable variables let var x = t in t

344 G. S. Schmid and V. Kunčak

Fig. 6. Selected terms and types of the languages before and after heap encoding.

and assignments thereof, x :=t. Though not discussed here, it is straightforward
to convert programs with local mutation into purely functional ones [7,15]. Our
simplified language also omits first-class functions. In practice, we require them
to be pure, while side-effectful ones can be encoded using abstract classes with
heap contracts (see Task in Fig. 10 for an example).

At its heart, our translation turns imperative operations on heap types
C1,C2, . . . into functional operations on a map representing the entire heap.
What should be the key and value types of the heap map? For keys, i.e., the
references in our heap model, we choose an abstract type HeapRef isomorphic
to the natural numbers, but with equality as its only operation. For values, i.e.,
the state of individual objects, we pick the top type Any as the trivial solution
which subsumes the representations of all heap types. While SMT solvers do not
directly support subtyping, this is convenient in Stainless, as we can leverage
its existing support for subtyping and Any [40]. Our design differs from that
supported by the Boogie verifier, whose type system provides higher-rank map
types [24] in which the heap map may be typed as ∀T. Map[Ref[T], T], avoiding
the need for (correct-by-construction) downcasts and an additional type encod-
ing phase to deal with the Any type.

Due to our choice of heap representation, the lowered language includes maps
and type-tests to express various assumptions about the heap that are correct
by construction. For maps, we use t [tk] to denote indexing and t.update(tk, tv)
to denote the (functional) result of updating a map t at key tk. To recover infor-

Generalized Arrays for Stainless Frames 345

mation from Any-typed values, we provide t.isInstOf[T] to express type tests
and t.asInstOf[T] for the corresponding downcasts. Furthermore, assume(t); t
and assert(t); t mark assumptions and assertions to be used during VC gener-
ation. Combining these constructs, we can express a downcast of t to T that
is assumed correct as let x = t1 in assume(x.isInstOf[T]); t2{x 	→ x.asInstOf[T]},
which we abbreviate by let x = t1 as T in t2. As in the example in Sect. 5.1,
we take HeapMap and RSet to be shorthands for Map[HeapRef,Any] and
Set[HeapRef], respectively.

We define two translation relations that take types T, resp. well-typed terms
t, and produce their lowered counterparts. The translation relation for types,
T �T′, witnesses the erasure of type T to T′; for instance, if Cell is a heap type,
then Set[Cell] �Set[HeapRef]. The translation relation for terms is notated as
h, ρ,μ;Γ
 t � t′ and depends on a locally-mutable heap variable h, its reads and
modifies domains, ρ and μ, and the typing environment Γ . When implicitly clear
or the same in all occurrences, we omit h, ρ, μ and Γ and simply write t � t′. We
assume the existence of a typing relation Γ
 t : T and also omit Γ when it is
clear from the context.

The encoding proceeds by translating each definition of an ADT D, heap type
C, or function f in the surface program to a corresponding lowered definition.
The data type definitions of the encoded program are obtained by taking all of
the ADT definitions D with argument types erased by T �T′, and additionally
introducing one single-constructor ADT for each heap type C (also with its field
types erased). We refer to the resulting lowered ADTs as DD and DC. For each
function definition def f(x : T) : S = {reads(tρ);modifies(tμ); t} in the original
program we introduce two functions f and fshim in the encoded program. The
encoded function f takes the pre-state as an additional argument, and returns
the resulting post-state along with its result value, yielding

def f(h0 : HeapMap, x : T′) : (S′,HeapMap) = {let ρ = t′ρ in let μ = t′μ in t′}

where h0, ρ,μ;Γ0
 t � t′, as well as h0, ρ, ∅;Γ0
 ts � t′s for s ∈ {ρ,μ}, Γ0 = x : T,
T �T′ and S � S′. Its companion, fshim, encapsulates both the assumption of frame
conditions and the checking of the associated heap contracts at each call site of f:

def fshim(h0 : HeapMap, ρdom : RSet, μdom : RSet, x : T′) : (S′,HeapMap) = {
let ρ = t′ρ in let μ = t′μ in

assert(ρ ⊆ ρdom); assert(μ ⊆ μdom);
let yres = f(h0, x) in

let yresR = f(ρ.mapMerge(h0, dummyHeap), x) in

assume(yres. 1 = yresR. 1);
assume(yres. 2 = μ.mapMerge(yresR. 2, yres. 2));
assume(yres. 2 = μ.mapMerge(yres. 2, h0));
yres

}

346 G. S. Schmid and V. Kunčak

As an optimization, we omit the parts of the encoding that relate to the post-
state when the modifies clause is empty. When the reads clause is empty as well,
we avoid changing the function’s signature altogether, so that pure functions
remain pure.

The crucial rules of t � t′ are listed in Fig. 7. Both FieldReadI and Field-
UpdateI deal with field accesses of immutable data types and do not require
interaction with the heap. In general, pure constructs are left untouched and
their translation rules merely map over subexpressions. Imperative constructs,
on the other hand, read or modify the locally-mutable heap h and refer to ρ and
μ to enforce the heap contracts. For instance, FieldReadM handles field reads
from a heap type C. It translates a read t.f to an assertion that the receiver object
is in the reads set (t′ ∈ ρ), after which the object state is read from the heap
(h [t′]) and downcast to the corresponding lowered data type DC, from which the
actual value is then projected (x.f). The rule for function calls, Call, merely
rewrites invocations of f to invocations of fshim, passing in the current heap h
and the domains on which the callee is permitted to read and modify the heap.
We always inline these shim functions, so the assertions in fshim are effectively
lifted to each call site of f and ensure that the reads and modifies clauses of the
callee is subsumed by the caller’s.

5.3 Quantifier-Free Frame Conditions

In the previous subsection we assumed a language construct called mapMerge
that made it straightforward to express the necessary frame conditions. The cru-
cial question that remains is how to lower mapMerge and its arguments to an
efficiently decidable theory supported by an SMT solver. Our solution is to target
the theory of (infinite, extensional) arrays in Z3, leveraging the fact that Stainless
translates both sets and maps to such arrays. This means that reads and modi-
fies expressions of type Set[HeapRef] become arrays typed HeapRef⇒Boolean,
while heap maps of type Map[HeapRef,Any] are translated to HeapRef⇒Any.
We can then use the array combinator mapf (a1, . . . , an) to express mapMerge
efficiently. This array combinator is part of Z3’s extended array theory [29] and
axiomatized as ∀i.mapf (a1, . . . , an)[i] = f(a1[i], . . . , an[i]). While the combina-
tor can in practice only be applied to built-in functions, this is sufficient for our
purposes: Given Stainless’ encoding of sets and maps, one can use the if-then-else
function ite of Z3, and translate s.mapMerge(m1,m2) as mapite([s], [m1], [m2]).

5.4 First-Class Heaps

A benefit of our encoding is that it naturally extends to explicit reasoning about
alternative heap states within the program logic. Since our heaps are merely
Maps, we can consider contexts with multiple heaps and express hyperproper-
ties like determinism. Compare this to verifiers based on imperative languages,
where relational verification requires constructions such as self-composition and
product programs, limiting the applicability of existing toolchains [4,14].

Generalized Arrays for Stainless Frames 347

Fig. 7. Basic rules of the term translation relation h, ρ, μ; Γ � t � t′. We abbreviate the
relation as t � t′, since the omitted arguments are merely passed through by the above
rules. The form let x = t1 as T in t2 is syntactic sugar for downcasts (see Sect. 5.2).

Fig. 8. Syntax of the surface language with first-class heaps and related term transla-
tion rules. The symbol U denotes the universal set of all HeapRefs.

The syntax extensions related to first-class heaps are shown in Fig. 8
alongside the additional translation rules. The type translation simply erases
Heap �HeapMap. All of the new constructs are straightforward to encode in our
scheme. Heap.get exposes the currently readable heap (HeapGet). We reduce
th.eval(te) to translating te in the context of a fresh heap variable initialized
to th (HeapEval). Notably, during this translation we do not inject any fur-

348 G. S. Schmid and V. Kunčak

Fig. 9. Evaluation results. For each benchmark we list the # of verification conditions
discharged, the # lines of Scala code (including annotations), the total runtime T, the
time spent checking VCs C, and the particular amount of time spent on VCs of heap
contracts HC. Timings are given in seconds.

ther checks of reads and modifies by setting ρ and μ to the sentinel value U
(denoting the universal set). While the lack of checks allows for reads outside a
heap’s original domain, they are well-defined (i.e., they equal the dummyHeap
on those locations). Finally, Heap.unchanged(ts, th1, th2) translates to an equality
that holds iff for all objects in ts the heaps th1 and th2 agree. The correspond-
ing lowering rule HeapUnchanged leverages mapMerge in a way similar to our
encoding of frame conditions. Namely, we take t′s.mapMerge(t′h2, t

′
h1) (the heap

which interprets all objects as t′h1, except those in t′s, which it interprets as in
t′h2), and require that it equals t′h1 itself.

6 Evaluation

We used our system to verify a number of benchmarks ranging in size and com-
plexity. Among the examples we developed are both shallowly and deeply muta-
ble data structures, a model of an object allocator, and a parallelization primitive
for the fork-join model. In Fig. 9 we summarize these benchmarks quantitatively
in terms of total lines of code, and the time our system takes to verify the exam-
ple. In particular, we report T, the total wall time elapsed when running an
individual benchmark, which includes the time it takes the Scala compiler to
process both our standard library and the benchmark, our extraction pipeline
to lower from imperative Scala code to the functional fragment, and the time
spent on generating and checking verification conditions. The latter component
is reported separately as C, and the time thereof spent on checking heap con-
tracts as HC. The reported numbers were obtained on a machine with an AMD

Generalized Arrays for Stainless Frames 349

Ryzen 3700X 8-core CPU @ 3.6 GHz and 32 GB of RAM running Ubuntu 20.04,
and using Z3 version 4.8.12. We explicitly list an empty benchmark that entails
no verification conditions, but provides a baseline for the time spent on JVM
startup, and, more importantly, extraction through the traditional Scala com-
pilation pipeline plus various lowerings in Stainless before the actual generation
and solving of VCs. We next discuss our experience using the tool and elaborate
on some of the benchmarks listed.

Shallowly-Mutable Data Structures. We first consider “shallowly-mutable” data
structures such as Cell[T] seen in Sect. 3 whose mutable data is stored directly
in its fields, i.e., without any indirection. They provide a simple baseline for
our system and play an important role as building blocks for larger data struc-
tures such as trees and arrays with fine-grained separation properties. However,
shallowly-mutable data structures are useful in their own right: For instance, we
implemented UpCounter which tracks a monotonically increasing variable and
maintains an invariant relative to the counter’s initial value. We also imple-
mented a simple array (ArraySimple) and stack (StackSimple) which essentially
act as wrappers around functional data structures in that they only store the ref-
erence to the head of an immutable list. For instance, ArraySimple[T] consists of a
single mutable field var list: List[T]. In our examples we show safety wrt. bounds
checks and non-emptyness when popping an element off the stack. We found
that our system easily deals with this kind of mutability, requiring no additional
proof hints whatsoever, in particular since the associated operations typically
require no recursion through stateful functions, making them straightforward to
verify and invalidate with counter-examples.

Mutable Linked Lists and Queues. As an example of a more complex data struc-
ture we implemented multiple variations of a mutable, acyclic, singly-linked list.
We focussed on an append operation, which takes two valid linked lists l1 and l2
with disjoint representations and concatenates them, leaving l1 in a valid state.
This is challenging in a system without a built-in notion of lists or trees, since
establishing the well-formedness of lists (e.g., the absence of cycles) requires
knowledge of heap separation and an inductive proof that maintains the prop-
erty for intermediate nodes.

We considered several options to track a node’s representation repr. One
could express repr as a recursive function as in Sect. 3, or, instead, as a mutable
@ghost field on each node. In our benchmarks we present two variants of the
latter approach: MutList encodes the ghost field repr as List[AnyHeapRef], which
has the added benefit of allowing predicates like valid to recurse on the represen-
tation, and can be converted to a Set[AnyHeapRef] as required by our reads and
modifies clauses. MutListSetsOnly instead implements repr as Set[AnyHeapRef],
whose encoded form requires no further conversion to interact with the mapMerge
primitive we use for framing.

We used a similar approach to implement Queue, which provides constant-
time enqueue and dequeue methods using references to the first and last nodes.
Given a valid queue we prove that enqueue and dequeue maintain validity and are

350 G. S. Schmid and V. Kunčak

Fig. 10. An interface for asynchronous computations and a sequential specification for
fork-join parallelism. The ??? denotes unimplemented code in abstract classes.

functionally correct with respect to a serialized representation similar to toList
in Sect. 3. The example demonstrates how safety properties can be established
even in the presence of sharing and arbitrarily deep data structures.

The NodeCycle example illustrates how to define the inductive heap predicate
for a cyclic list. We also establish that the prepend operation on such a list
maintains cyclicity. Both this and the aforementioned example leverage first-
class heaps to carry out the inductive proofs showing that the corresponding
heap predicates continue to hold after modifications to the data structure.

Slices and Monolithic Arrays. Arrays are one of the most common data struc-
tures found in imperative code and thus a worthwhile target for verification.
When specifying algorithms involving arrays it often pays to introduce slices,
i.e., subarrays, as a means of abstraction. By extending the ArraySimple exam-
ple we arrived at ArraySlice which provides safe indexing, update and re-slicing
operations wrt. an underlying array. In the absence of sharing, this solution of
encapsulating all array state in a single “monolithic” mutable heap object (the
underlying array) is the natural and practical choice.

Fork-Join Parallelism. Since dynamic frames in our system are simply given
by read-only expressions, users may define their own imperative abstractions.
For instance, in TaskParallel we demonstrate how one can specify a primitive
modelling fork-join parallelism. Figure 10 shows an excerpt introducing the Task
interface that encapsulates an asynchronous computation and declares the set
of heap objects that may be read and modified in the process. Further below we
define the parallel(t1, t2) construct [23] itself, imposing a number of restrictions:
Firstly, callers of parallel have to establish accessibility to both t1 and t2’s frames
(lines 9–10). Secondly, we require that the read set of t1 is disjoint from t2’s write
set and vice-versa (lines 11–12). This separation property justifies replacing our
sequential model of parallel by a more efficient runtime implementation executing

Generalized Arrays for Stainless Frames 351

the two tasks concurrently. Users can define new asynchronous tasks by imple-
menting Task. Operations such as those on cell-based data structures discussed
above are straightforward to parallelize in this way. Our introductory example of
Sect. 3 could be parallelized by defining a new class TMapTask[T](t: Tree[T], f:
T ⇒ T) whose run method calls tmap, and replacing the recursive calls in tmap
by parallel(TMapTask(left, f), TMapTask(right, f)).

7 Conclusions

We have presented an approach that extends the Stainless verifier with support
for shared mutable data. Our goal was to preserve as much as possible certain
features of Stainless that we consider useful: the ability to reason about purely
functional programs efficiently and the ability to report counterexamples. Our
strategy to report counterexamples is to avoid the use of quantifiers. This is by
no means the only possibility, as witnessed by the success of approaches that
use them effectively. Yet we believe that the use of decision procedures in the
long term results in a more predictable verification experience than direct use of
general quantifiers. Our experiments suggest that the approach holds promise,
even though the performance of map operators indicates that they nonetheless
require non-trivial reasoning in the Z3 solver.

An integration of insights from verifiers and proof frameworks based on sep-
aration logic is a promising direction to potentially improve usability of our
approach. SMT-LIB notations and competitions for separation logic [36] are
likely to be a useful resource for this task, even if these benchmarks typically
do not focus on reasoning about as detailed functional correctness properties as
our examples. Another direction for improving automation is inductive reason-
ing, both for separation logic predicates themselves [39] and for pure recursive
functions [35].

In conclusion, our paper makes the initial case for an approach that is seman-
tically simple and promises to be predictable. We hope that it will motivate both
the SMT solver builders and verification tool builders to work jointly to improve
the performance, the predictability, and the ability to report counterexamples for
verification, with array theories being among the most promising future direc-
tions [8,11,29,38].

Acknowledgments. We thank Antoine Brunner for helping implement a first proto-
type in Stainless, and the anonymous reviewers for their valuable feedback. This work
is supported by the Swiss National Science Foundation project number 200021 175676.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P

2. Ahman, D., et al.: Dijkstra monads for free. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, pp. 515–529 (2017)

https://doi.org/10.1016/0304-3975(91)90224-P

352 G. S. Schmid and V. Kunčak

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11575467 5 Kindly provide complete details
for Ref. [6]

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development-
Coq’Art: The Calculus of Inductive Constructions. Springer (2004). https://doi.
org/10.1007/978-3-662-07964-5

7. Blanc, R.W.: Verification by Reduction to Functional Programs. Ph.D. The-
sis, EPFL, Lausanne (2017). https://doi.org/10.5075/epfl-thesis-7636, http://
infoscience.epfl.ch/record/230242

8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). https://doi.org/10.1007/11609773 28

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1-26:66 (2011). https://doi.org/
10.1145/2049697.2049700

10. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

11. Daca, P., Henzinger, T.A., Kupriyanov, A.: Array folds logic. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 230–248. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 13

12. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analy-
ses at Facebook. Commun. ACM 62(8), 62–70 (2019). https://doi.org/10.1145/
3338112

13. Distefano, D., Parkinson J, M.J.: jStar: Towards practical verification for java.
ACM Sigplan Not. 43(10), 213–226 (2008). https://doi.org/10.1145/1449955.
1449782

14. Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. (TOPLAS) 42(1), 1–37 (2019). https://doi.org/10.1145/3324783

15. Filliâtre, J.C.: Verification of non-functional programs using interpretations in
type theory. J. Funct. Program. 13(4), 709–745 (2003). https://doi.org/10.1017/
S095679680200446X

16. Finkbeiner, B.: Model checking algorithms for hyperproperties (invited paper). In:
Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp.
3–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67067-2 1

17. Hamza, J., Voirol, N., Kunčak, V.: System FR: formalized foundations for the
stainless verifier. Proc. ACM Program. Lang. OOPSLA (2019). https://doi.org/
10.1145/3360592

18. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA, 4–7 October 2015, pp. 1–17.
ACM (2015). https://doi.org/10.1145/2815400.2815428

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.5075/epfl-thesis-7636
http://infoscience.epfl.ch/record/230242
http://infoscience.epfl.ch/record/230242
https://doi.org/10.1007/11609773_28
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/1449955.1449782
https://doi.org/10.1145/1449955.1449782
https://doi.org/10.1145/3324783
https://doi.org/10.1017/S095679680200446X
https://doi.org/10.1017/S095679680200446X
https://doi.org/10.1007/978-3-030-67067-2_1
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/2815400.2815428

Generalized Arrays for Stainless Frames 353

19. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

20. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://doi.org/10.1017/S0956796818000151

21. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040 19

22. Kovács, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the
verification of 2-hypersafety properties. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security. CCS 2013, pp. 211–222.
Association for Computing Machinery, New York (2013). https://doi.org/10.1145/
2508859.2516721

23. Kuncak, V., Prokopec, A.: Parallel programming (Lecture 1.4: Running computa-
tions in parallel). EPFL Courseware, February 2018. https://courseware.epfl.ch/
courses/course-v1:EPFL+parprog1+2018 T1/about and https://www.youtube.
com/watch?v=DbVt8C0-Oe0

24. Leino, K.R.M.: This is Boogie 2. Manuscript KRML 178(131), 9 (2008)
25. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

26. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

27. de Moura, L.M., Bjørner, N.: Model-based theory combination. Electron. Notes
Theor. Comput. Sci. 198(2), 37–49 (2008). https://doi.org/10.1016/j.entcs.2008.
04.079

28. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

29. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas, USA, pp.
45–52. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351142

30. Müller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 405–425. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4 22

31. Nipkow, T., Wenzel, M., Paulson, Lawrence C.. (eds.): Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45949-9

32. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, Fourth Edition
(A comprehensive step-by-step guide). Artima (2019). https://www.artima.com/
shop/programming in scala 4ed

33. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1145/2508859.2516721
https://doi.org/10.1145/2508859.2516721
https://courseware.epfl.ch/courses/course-v1:EPFL+parprog1+2018_T1/about
https://courseware.epfl.ch/courses/course-v1:EPFL+parprog1+2018_T1/about
https://www.youtube.com/watch?v=DbVt8C0-Oe0
https://www.youtube.com/watch?v=DbVt8C0-Oe0
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/j.entcs.2008.04.079
https://doi.org/10.1016/j.entcs.2008.04.079
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/3-540-45949-9
https://www.artima.com/shop/programming_in_scala_4ed
https://www.artima.com/shop/programming_in_scala_4ed
https://doi.org/10.1007/3-540-44802-0_1

354 G. S. Schmid and V. Kunčak

34. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-
5 23

35. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 5

36. Sighireanu, M., et al.: SL-COMP: competition of solvers for separation logic. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol.
11429, pp. 116–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 8

37. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.
Lang. Syst. 34(1), 2:1–2:58 (2012). https://doi.org/10.1145/2160910.2160911

38. Stump, A., Barrett, C., Dill, D., Levitt, J.: A decision procedure for an extensional
theory of arrays. In: Proceedings 16th Annual IEEE Symposium on Logic in Com-
puter Science, pp. 29–37. IEEE Computer Society, Boston (2001). https://doi.org/
10.1109/LICS.2001.932480

39. Ta, Q.-T., Le, T.C., Khoo, S.-C., Chin, W.-N.: Automated mutual induction proof
in separation logic. Formal Aspects Comput. 31(2), 207–230 (2018). https://doi.
org/10.1007/s00165-018-0471-5

40. Voirol, N.C.Y.: Verified Functional Programming. Ph.D. Thesis, EPFL, Lau-
sanne (2019). https://doi.org/10.5075/epfl-thesis-9479, http://infoscience.epfl.ch/
record/268824

41. Wadler, P.: Comprehending monads. In: Proceedings of the 1990 ACM Conference
on LISP and Functional Programming, pp. 61–78 (1990). https://doi.org/10.1145/
91556.91592

https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-030-17502-3_8
https://doi.org/10.1007/978-3-030-17502-3_8
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1109/LICS.2001.932480
https://doi.org/10.1109/LICS.2001.932480
https://doi.org/10.1007/s00165-018-0471-5
https://doi.org/10.1007/s00165-018-0471-5
https://doi.org/10.5075/epfl-thesis-9479
http://infoscience.epfl.ch/record/268824
http://infoscience.epfl.ch/record/268824
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592

Making PROGRESS
in Property Directed

Reachability

Tobias Seufert1(B),
Christoph Scholl1, Arun Chandrasekharan2,

Sven Reimer2, and Tobias Welp2

1 University of Freiburg, Freiburg im Breisgau, Germany
{seufert,scholl}@informatik.uni-freiburg.de

2 OneSpin Solutions, Munich, Germany
{arun.chandrasekharan,sven.reimer,tobias.welp}@onespin.com

Abstract. With Proof-Guided Restriction Skipping (PROGRESS) we
present a fully automatic and complete approach for Hardware Model
Checking under restrictions. We use the PROGRESS approach in the
context of PDR/IC3 [9,18]. Our implementation of PDR/IC3 restricts
input signals as well as state bits of a circuit to constants in order to
quickly explore long execution paths of the design. We are able to iden-
tify spurious proofs of safety along the way and exploit information from
these proofs to guide the relaxation of the restrictions. Hence, we greatly
improve the capability of PDR to find counterexamples, especially with
long error paths. In experiments with HWMCC benchmarks our app-
roach is able to double the amount of detected deep counterexamples
in comparison to Bounded Model Checking as well as in comparison to
PDR.

1 Introduction

Lately, there have been many advances in the field of safety verification of sequen-
tial circuits. With modern solvers for the Boolean satisfiability problem (SAT),
especially SAT-based Model Checking has become more and more popular. How-
ever, formal verification of systems with large state spaces remains a challenging
problem.

A popular approach to counteract growing state spaces is by abstraction
and abstraction refinement such as Counterexample-Guided Abstraction Refine-
ment (CEGAR) [15,28,42]. This means that the behaviour of the circuit is over-
approximated. For instance, variables representing the state of storage elements
are handled as user inputs, disconnecting them from their transition function
(called localization abstraction [42]). As a result, the underlying problem gets
less complex and the state space is reduced. However, abstraction comes with
the drawback of incompleteness. Over-approximating the behaviour of a circuit
may lead to spurious counterexamples which are not valid in the original system.
Proofs of safety though are also correct under over-approximation. CEGAR can
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 355–377, 2022.
https://doi.org/10.1007/978-3-030-94583-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_18

356 T. Seufert et al.

original
problem

abstraction restrictionrefine coarsen

spurious? check check spurious?

counter-
example

counter-
exampleproof

proof

yes yes

no no

CEGAR PROGRESS

report unsafe report safe report unsafe report safe

Fig. 1. Comparing CEGAR and PROGRESS.

be used to recover completeness: Based on the analysis of spurious counterex-
amples, the abstraction is subsequently refined until it terminates with a correct
result.

In contrast to abstraction, it is also possible to introduce a restriction and
under-approximate the behaviour of the system under verification. For instance,
we may assume primary inputs of the sequential circuit as constants as well
as consider only transitions from/to states with some latches fixed to constants.
Intuitively, this makes sense if an engineer has prior knowledge of the system and
only wants to consider parts of the system under some special control signals. A
simple example could be the verification of the multiplier unit of an ALU - the
engineer would restrict its control signal to ‘multiply’. Another example is the
search for a counterexample to the correctness of a processor with a pipelined
multiplier. If a counterexample exists that does not make use of multiplication,
then the internal pipeline registers of the multiplier can be fixed to constants
without compromising the possibility to find such a counterexample. In practice,
restriction requires a deep understanding of the circuit and the verification tech-
nology, and is usually custom made for the given system only. A counterexample
found for an under-approximated system behavior is also valid wrt. the original
system. However, a proof of safety may be spurious and incomplete. In general,
abstraction and restriction are complementary techniques. While abstraction
techniques mainly aim to improve the capabilities of finding a proof of safety,
restrictions focus on certain parts of the system behaviour only and enable the
examination of long error paths.

In this work, we pick up the idea of restrictions. Instead of restricting spe-
cific signals based on prior knowledge, we present a fully automatic approach
that can be applied to any given circuit. We start with stringent restrictions
to the system behaviour. If we find a counterexample under these restrictions,
it is valid. In the case that we find an incomplete proof due to the restric-
tions, we apply a technique which we call Proof-Guided Restriction Skipping
(PROGRESS). PROGRESS can be considered as the dual of CEGAR. For
the relation of PROGRESS and CEGAR see also the illustration in Fig. 1. By
analyzing the proof, we deduce restrictions which we have to skip in order to

Making PROGRESS in Property Directed Reachability 357

continue. This process is repeated and we coarsen the restrictions in each itera-
tion. The loop ends either with a counterexample or with a proof for the com-
plete (unrestricted) system. In that way we provide a complete model checking
algorithm. Our concrete realization of the PROGRESS approach is based on
Property Directed Reachability (PDR) also known as IC3 [9,18]. We call our
implementation PROGRESS-PDR.

Apparently, restrictions are not only applicable in PDR. We chose PDR
though, because it is widely considered as the strongest unbounded and com-
plete method in the field of safety verification of sequential circuits. PDR con-
siders only single instances of the transition relation and produces a large num-
ber of small and easy SAT problems. In contrast, Bounded Model Checking
(BMC) [3] considers unrollings of the transition relation leading to more and
more expensive SAT problems with each added unrolling. In our experiments
on Hardware Model Checking Competition (HWMCC) benchmarks, we show
that PROGRESS-PDR greatly improves the ability of finding counterexamples
in PDR in general. Furthermore, we observe that PROGRESS-PDR is superior
to BMC in finding counterexamples with long error paths.

PROGRESS-PDR also performs better than standard PDR on some safe
problem instances and achieves a better overall performance.

In summary, our contributions are as follows.

– We present a novel paradigm called PROGRESS which is the dual of CEGAR
and skips restrictions based on the analysis of spurious proofs.

– We introduce a fully automatic and complete Model Checking algo-
rithm, applying the new paradigm in the context of PDR, leading to the
PROGRESS-PDR approach.

– Additionally, we give an insight on how restrictions (instead of abstractions)
affect the inner workings of PDR.

– Finally, we show that PROGRESS-PDR is significantly stronger than BMC
as well as original PDR in finding deep counterexamples.

Structure of the Paper. In Sect. 2 we discuss related work and in Sect. 3 we give
some preliminaries needed for this paper. We define restrictions in the context of
PDR in Sect. 4, our algorithm including a restriction skipping loop in Sect. 5, and
further implementation details in Sect. 6. An experimental evaluation is given in
Sect. 7, and Sect. 8 summarizes the results with directions for future research.

2 Related Work

Lately, there have been many efforts to improve the efficiency of PDR [2,23,26,
36]. Some of these extensions to PDR make use of abstraction [1,7,24,41] and
abstraction refinement such as Counterexample-Guided Abstraction Refinement
(CEGAR) [15,28].

Apart from counterexamples, also proofs (or both) have been used to guide
abstractions [17,30,31]. In those approaches, proofs of safety up to a particular
bound (time frame) in BMC are exploited in order to find abstractions whereas
spurious BMC counterexamples are used to refine the abstraction.

358 T. Seufert et al.

Compared to abstractions like localization abstraction [42], restrictions do
not replace state bits (for instance) by free variables, but by constants, leading to
simplifications of the transition relation by unit propagation. Exploiting restric-
tions is a typical method used in interactive bug hunting. However, to the best
of our knowledge, restrictions have not been used so far in the context of a fully
automatic and complete proof technique for verifying sequential circuits. Never-
theless, restrictions or under-approximations in general have already been used
in various contexts related to bit-level hardware model checking. E.g. [32] defines
both under- and over-approximations in the context of symbolic model checking
for sequential circuits, but does not provide any refinement loop for manually
chosen approximations. [16] considers a series of over- and under-approximations
for state set collection as well as next state computation during model checking
of real-time systems. The approximations become more and more precise until a
proof using over-approximations or a refutation using under-approximations is
found. The approximation techniques are tailored towards the computation of
symbolic state set representations for timed systems and thus are not applicable
in the context of hardware verification using SAT solving. Under-approximations
as well as over-approximations were also considered for decision procedures for
Presburger arithmetic [27] and for array and bit-vector theories [12,13]. Similar
ideas have also been used in [11] for approximating floating-point operations in
software verification.

Many of the approaches mentioned above use a refinement loop for approxi-
mations (as our approach). Whereas the CEGAR based approaches refine only
over-approximations by different methods, [12,13,27] rely on an alternating gen-
eration of under-approximations (by bit-width restrictions relaxed by counterex-
amples from over-approximations) and over-approximations (derived from unsat-
isfiable solver calls for under-approximations). The refinement loop of [11] devi-
ates from strict alternations of over- and under-approximations, but is restricted
to floating-point operations. Our approach refines only under-approximations
by restriction skipping, but it aims at (unbounded) safety verification of sequen-
tial circuits rather than solving combinational formulas as in [11–13,27]. In this
context, we analyze possibly spurious inductive invariants in refinement steps
skipping restrictions. From a technical point of view, this step is most closely
related to the refinement step for under-approximations on the CNF layer intro-
duced in [12].

3 Preliminaries

In the following, we introduce notations, the necessary background on finite state
transition systems, and a basic review of PDR.

3.1 Basics and Notations

We discuss reachability analysis in finite state transition systems for the verifi-
cation of invariant properties. In a finite state transition system we have a finite

Making PROGRESS in Property Directed Reachability 359

set of states and a transition relation which encodes transitions between states
under certain inputs. States are obtained by assigning Boolean values to the
(present) state variables #«s = (s1, . . . , sm), inputs by assigning Boolean values
to the input variables

#«
i = (i1, . . . , in). For representing transitions we intro-

duce a second copy #«s ′ of the state variables, the so-called next state variables.
The transition relation is then represented by a predicate T (#«s ,

#«
i , #«s ′), the set

of initial states by a predicate I(#«s). The set of unsafe states are represented by
a predicate ¬P (#«s). For brevity, we often omit the arguments of the predicates
and write them without parenthesis.

A literal represents a Boolean variable or its negation. Cubes are conjunctions
of literals, clauses are disjunctions of literals. The negation of a cube is a clause
and vice versa. A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. As usual, we often represent a clause as a set of literals
and a CNF as a set of clauses. A cube c = sσ1

i1
∧ . . . ∧ sσk

ik
of literals over state

variables with ij ∈ {1, . . . , m}, σj ∈ {0, 1}, s0ij = ¬sij and s1ij = sij represents
the set of all states where sij is assigned to σj for all j = 1, . . . , k. We usually
use letters c or ĉ to denote cubes of literals over present state variables, d′ or
d̂′ to denote cubes of literals over next state variables, and i to denote cubes
of literals over input variables. By minterms (often named m) we denote cubes
containing literals for all state variables. Minterms represent single states.

We assume that the transition relation T of a finite state transition sys-
tem has been translated into CNF by standard methods like [40]. Modern SAT
solvers [39] are able to check the satisfiability of Boolean formulas in CNF. Fur-
thermore, SAT-based Model Checking heavily relies on incremental SAT solv-
ing [25]. Incremental SAT solvers allow for several queries on the same solver
instance, reusing knowledge (e.g. conflict clauses) from previous runs. To each
query so called assumptions can be added. These are literals which are conjoined
to the solvers’ internal CNF formula for exactly one query - and removed after-
wards. In the case of an unsatisfiable solver call, most modern incremental SAT
solvers are able to give a reason for the unsatisfiability, e.g. a so called UNSAT-
core which contains a subset of the assumption literals which is sufficient to
cause unsatisfiablity.

Reachability analysis (e.g. by PDR) often makes use of special properties
of the transition relation T . E.g., when T results from a circuit, then it repre-
sents a function, i.e., it is right-unique and left-total. A relation T (#«s ,

#«
i , #«s ′) is

right-unique iff for all assignments #«σ to #«s and #«ι to
#«
i there is at most one

assignment #«σ ′ to #«s ′ such that (#«σ , #«ι , #«σ ′) ∈ T . T (#«s ,
#«
i , #«s ′) is left-total iff for all

assignments #«σ to #«s and #«ι to
#«
i there is at least one assignment #«σ ′ to #«s ′ such

that (#«σ , #«ι , #«σ ′) ∈ T .

3.2 An Overview of PDR

In this paper, we consider Property Directed Reachability (PDR) [18] (also called
IC3 [9]). PDR produces stepwise reachability information in time frames without
unrolling the transition relation as in Bounded Model Checking (BMC) [3]. Each
time frame k corresponds to a predicate Fk represented as a set of clauses, leading

360 T. Seufert et al.

1 function Pdr(I, T , P)

2 if BaseCases() = ‘Unsafe’ then return ‘Unsafe’
3 while true do
4 if Strengthen() = ‘Unsafe’ then return ‘Unsafe’
5 N ← N + 1, add new FN ← P /* New time frame. */

6 if Propagate() = ‘Safe’ then return ‘Safe’

Algorithm 1: PDR: main loop.

1 function Strengthen()

2 while SAT?[FN ∧ T ∧ ¬P ′] do /* SAT: error predecessor */

3 m ← satisfying present state assignment
4 c ← SatGeneralization(m)

5 if ResolveRecursively(c, N) = ‘Unsafe’ then return ‘Unsafe’

6 return ‘strengthened’ /* successfully strengthened. */

Algorithm 2: PDR: strengthen the trace.

to a ‘trace’ of predicates F0, . . . , FN in main loop N of PDR.1 F0 is always equal
to I(#«s), for k ≥ 1 Fk over-approximates the set of states which can be reached
from I(#«s) in up to k steps, and the state sets F0, . . . , FN are monotonically
increasing by construction.

The PDR main algorithm (see Algorithm 1) first excludes error paths of
lengths 0 and 1 in procedure BaseCases() (line 2) by proving unsatisfiability of
I ∧ ¬P and I ∧ T ∧ ¬P . If there is no counterexample in BaseCases(), N is
initialized to 1, F1 is initialized to P and F1 thus overapproximates the states
reachable in up to one step. In general, PDR tries to prove the absence of error
paths of length N +1 in the main loop N of Algorithm 1 by extracting single step
predecessors of ¬P (#«s). To do so, the procedure Strengthen() (Algorithm 2) is
called in line 4. If a predecessor minterm m is detected in line 2 of Algorithm 2, it
is extracted from the satisfying assignment. Furthermore, m is ‘generalized’ (line
4) to a cube c where c represents only predecessor states of the unsafe states.
Now it has to be proven that there is no path from the initial states to c. To do so,
the proof obligation (c,N) (also called Counterexample To Induction (CTI)) has
to be recursively resolved by calling ResolveRecursively(c,N) (Algorithm 3)
in line 5.

In general, a proof obligation(d, k) leads to new SAT calls SAT? [Fk−1 ∧
T ∧ d′] (line 4 of Algorithm 3).2 If this SAT query is unsatisfiable, then d

has no predecessor in Fk−1 and (after a possible generalization into d̂ (line 8))
this cube can be blocked in Fk by Fk ← Fk ∧ ¬d̂. (Since the sets F0, . . . , Fk

1 In the following we often identify predicates Fk with the state sets represented by
them. We further identify the predicate T with the transition relation represented
by it.

2 It can be proven that strengthening the SAT query into SAT? [¬d ∧ Fk−1 ∧ T ∧ d′]
by adding ¬d does not affect the correctness of the overall method [9].

Making PROGRESS in Property Directed Reachability 361

1 function ResolveRecursively(d, k)
2 if k = 0 then /* Proof obligation in frame 0. */

3 return ‘Unsafe’

4 while SAT?[¬d ∧ Fk−1 ∧ T ∧ d′] do /* SAT: predecessor in Fk−1 */

5 m̂ ← satisfying present state assignment
6 ĉ ← SatGeneralization(m̂)

7 if ResolveRecursively(ĉ, k − 1) = ‘Unsafe’ then return ‘Unsafe’

8 d̂ ← UnsatGeneralization(d) /* d unreachable in up to k steps */

9 F1 ← F1 ∧ ¬d̂, . . . , Fk ← Fk ∧ ¬d̂
10 return ‘resolved’

Algorithm 3: PDR: recursively resolve proof obligation (d, k).

1 function Propagate()

2 for i ∈ {1, . . . , N − 1}, c blocked in Fi do
3 if ¬ SAT?[Fi ∧ T ∧ c′] then
4 Fi+1 ← Fi+1 ∧ ¬c /* UNSAT: push forward */

5 if Fi ≡ Fi+1 then
6 return ‘Safe’ /* Proof of safety. */

7 return ‘propagated’

Algorithm 4: PDR: propagate blocked cubes forward.

are monotonically increasing by construction, ¬d̂ can then be blocked from all
previous Fi with 0 < i < k as well (line 9).) If the SAT query in line 4 is
satisfiable, a new predecessor minterm m̂ has been found (line 5), it is again
generalized and a new proof obligation (ĉ, k −1) at level k −1 is formed (lines 6,
7).

If all proof obligations have been recursively resolved and the SAT query from
Strengthen() becomes unsatisfiable, then the trace is strong enough to prove
the absence of counterexamples of length N + 1. Then, Algorithm 1 increments
N by 1 and initializes FN by P . After that, Algorithm 1 tries to propagate
all recently blocked cubes (learned clauses) into higher time frames by calling
Propagate() (Algorithm 4) in line 6. PDR terminates, if a proof obligation in
frame 0 is found in line 3 of ResolveRecursively, or if some Fi and Fi+1 become
equivalent in line 6 of Propagate. In the latter case an inductive invariant Fi

has been found.
Function SatGeneralization(m) generalizes proof obligations originating

from a satisfiable solver call and UnsatGeneralization(c) generalizes blocked
cubes originating from an unsatisfiable one. Usually, SatGeneralization
applies techniques like ternary simulation [18] or lifting [14,34], whereas
UnsatGeneralization may subsequently remove literals from c and check if
it still remains unreachable [18] (‘literal dropping’). Apart from those gener-
alizations, a few other optimizations contribute to the efficiency of PDR. We
focus on one particular optimization which enables PDR to find counterexam-

362 T. Seufert et al.

ples which are longer than the trace. When inserting the proof obligation (d, k),
we know that we can reach ¬P (#«s) from all states in the cube d. Therefore PDR
can insert also proof obligations (d, l) with k < l ≤ N , since traces from I(#«s) to
d of lengths larger than k should also be excluded, if the property holds. Thus,
instead of recursive calls for proof obligations a queue of proof obligations is used
and proof obligations are dequeued in smaller time frames first.

4 Restrictions

We consider the notion of restrictions in contrast to abstractions. While abstrac-
tions over-approximate the behaviour of the transition relation T , restrictions
under-approximate it. We restrict variables to constant values.

Definition 1. Consider a set of signal variables V = {s1, . . . , sm, s′
1, . . . , s

′
m,

i1, . . . , in} (representing present resp. next state variables and input variables).
A restriction function ρ : V �→ {0, 1} maps signal variables to constants 0 or 1.
A restriction set R is a subset of V , the set of restricted variables. A restriction
for restriction function ρ and restriction set R is the function ρR : R �→ {0, 1}
with ρR(v) = ρ(v) for all v ∈ R .

Applying a restriction ρR with R = {v1, . . . , vp} to a transition relation
T means replacing T by T ρR = T ∧ CρR with CρR =

∧p
i=1(vi ≡ ρ(vi)) =

∧p
i=1 v

ρ(vi)
i . Since our method fixes the restriction function ρ in the beginning

and changes (reduces) only the set of restricted variables R, we will simply
write CR instead of CρR and TR instead of T ρR in the following. Obviously,
every transition (s, i, t) ∈ TR is also a transition in T but not vice-versa. Thus,
when considering a safety model checking problem, a counterexample under
some restriction is also a counterexample in the original system. A proof of safety
though could be spurious, since the restricted system may miss transitions which
are present in the original system.

In the following we analyze how exactly restrictions affect the main ingredi-
ents of PDR.

4.1 Finding Proof Obligations

PDR proof obligations produced under a restricted transition relation TR are
also valid proof obligations under the original transition relation T . By definition,
every single state of a proof obligation p under TR reaches the unsafe states. Since
every state which is reachable from p under TR is also reachable under T (TR

under-approximates T), the proof obligation p is also a valid proof obligation
under T . However, this does not hold vice versa. A proof obligation under T
might not have a valid successor under TR which then implies that it is not
a predecessor of the unsafe states and therefore it is not a proof obligation
under TR. Thus, due to the restriction we may miss proof obligations, we may
conclude the absence of error paths up to some length i prematurely, and we
may miss counterexamples.

Making PROGRESS in Property Directed Reachability 363

4.2 Generalizing Proof Obligations

Most commonly, generalization of proof obligations is done by applying lift-
ing [14,34]. An important precondition for the correctness of lifting is left total-
ity, which is (apart from right uniqueness) one part of the function property.
This precondition is fulfilled, if T represents a digital circuit (which we assume
in this paper) and therefore behaves like a function. When we encounter a proof
obligation state m as a predecessor of proof obligation d under input i, lifting
removes literals from m, leading to s, as long as the formula s ∧ i ∧ T ∧ ¬d′

remains unsatisfiable. If this formula is unsatisfiable, all s-states do not have
successors under i into ¬d′. It is easy to see that we may add all s-states to
the proof obligation then: It follows directly from left totality that if from some
state there is no successor under i into ¬d′, there has to be a successor under
i into d′. Therefore, since d is a proof obligation, all s-states can be considered
proof as obligation states, i.e., predecessors of the unsafe states.

However, restricted state variables may break the left totality of the transi-
tion relation. Due to restricted state variables it is possible, e.g., that we may
encounter dead-end states (with no successor at all). Consider a state m = s ∧ l
with a literal l. Assume that m is a proof obligation as a predecessor of proof obli-
gation d under input i wrt. TR. Now assume that s ∧ ¬l violates the restriction
and thus is a dead-end state under TR. If T is right unique, then s ∧ i ∧ TR ∧ ¬d′

is unsatisfiable and lifting would erroneously classify s as a proof obligation.
Thus, applying lifting to restricted transition relations TR may lead to spurious
counterexamples.

The easiest way out is to just use proof obligation generalization techniques
which do not depend on left totality, like don’t care reasoning with ternary
logic [18,20] or the Implication Graph Based Generalization (IGBG) from [34,
38]. IGBG traverses the implication graph of the SAT solver backwards and
determines which assignments to present state variables were responsible for
implying a particular next state valuation.

Another possibility is to extend lifting as follows. Assume that we have a proof
obligation cube d and a predecessor state (minterm) m where m ∧ i ∧ TR ∧ d′

is satisfiable. Standard lifting would verify SAT?[m ∧ i ∧ TR ∧ ¬d′]. We recall
that m could be enlarged by adding states m̂ for which m̂ ∧ i ∧ TR is already
unsatisfiable. To work around this, we can alter lifting and employ the original
unconstrained transition relation T . We consider the call SAT?[m ∧ i ∧ T ∧
(¬d′ ∨ ¬CR)]. Assume that this SAT instance is unsatisfiable even for a sub-
cube s instead of m (resulting from the computation of an unsatisfiable core).
Unsatisfiability implies that each satisfying assignment to s ∧ i ∧ T satisfies
d′ ∧ CR. Since T is left total, each s-state m̂ has indeed a successor under i wrt.
T . Thus, each s-state m̂ has a successor in d under i wrt. TR = T ∧ CR, i.e., s
is a proof obligation wrt. TR. We will evaluate in Sect. 7 which variant achieves
the best results.

4.3 Blocking Cubes

A cube d may be blocked in frame Fi once the formula ¬d ∧ Fi ∧ T ∧ d′ is
unsatisfiable. However, the formula ¬d ∧ Fi ∧ TR ∧ d′ with a restricted transition

364 T. Seufert et al.

relation TR, which under-approximates T , is more likely to be unsatisfiable.
Thus, if d can be blocked under T it can also be blocked under TR but not
necessarily vice versa. Hence, we may encounter spuriously blocked cubes under
restrictions.

4.4 Generalizing Blocked Cubes

Interestingly, with restrictions on next state variables there are constellations
for which the literals can be immediately removed from a blocked cube without
additional SAT checks when generalizing blocked cubes, i.e., when removing
literals from d resulting in d̂ such that ¬d̂ ∧ Fi ∧ TR ∧ d̂′ is still unsatisfiable.
This can be easily seen when considering the idea of literal dropping [18,34] which
is usually done after the extraction of an unsatisfiable core during generalization
of blocked cubes. Literal dropping sequentially tries to remove literals l from
blocked cubes. However, it is easy to see that all literals l occurring in d where the
corresponding next state literal l′ is in R and l′ is consistent with the restrictions,
i.e., l′ = s′

i
ρ(s′

i) for some next state variable s′
i, can immediately be removed from

d: Let d = d̃ ∧ s
ρ(s′

i)
i , s′

i ∈ R, and let ¬d ∧ Fi ∧ TR ∧ d′ be unsatisfiable. Since
¬s′

i
ρ(s′

i) ∧ CR = 0, ¬(d̃ ∧ ¬s
ρ(s′

i)
i) ∧ Fi ∧ TR ∧ d̃′ ∧ ¬s′

i
ρ(s′

i) is unsatisfiable
as well and so ¬d̃ ∧ Fi ∧ TR ∧ d̃′ is unsatisfiable. Thus, additional SAT checks
for removing literals with the mentioned property from d are not needed. As a
result, restrictions may lead to more general blocked cubes.

However, a blocked cube (learned clause) may be spurious iff the unsatisfi-
ability proof used to block or generalize it is based on restrictions or any other
spurious cube blocked in Fi.

4.5 Overall Algorithm

Counterexamples under restrictions are valid for the original sequential circuit if
the generalization of proof obligations is applied in a correct way (see Sect. 4.2).
Since proofs based on restricted transition relations may be spurious, we will
need a coarsening approach, which is able to detect spurious proofs and relax
the restrictions accordingly, such that PDR will not find the same spurious proof
again. The observations made above imply that we can re-use proof obligations
with relaxed restrictions, but we have to be careful when re-using blocked cubes.

5 Skipping Restrictions by Analyzing a Spurious Proof

In this section we present the main idea of Proof-Guided Restriction Skipping
(PROGRESS) in the context of PDR. Note that this idea does not really depend
on using PDR, but is applicable to any verification method providing safety
proofs in form of safe inductive invariants [9].

PDR decides that a system under verification is safe once it has found a
CNF formula Inv which represents a safe inductive invariant. To act as a safe
inductive invariant, Inv must satisfy certain requirements.

Making PROGRESS in Property Directed Reachability 365

Definition 2. A boolean formula Inv is a safe inductive invariant, iff I =⇒
Inv, Inv ∧ T =⇒ Inv ′, and Inv =⇒ P holds.

In Sect. 4 we discussed how PDR under a restriction ρR may find spurious
inductive invariants. Here we discuss how to detect whether a safe inductive
invariant is spurious or not, i.e., whether it is a safe inductive invariant for the
unrestricted system or not. Furthermore, we present an algorithm which detects
restrictions that are responsible for a spurious proof and removes them from the
set of restricted variables accordingly.

5.1 Detecting Spurious Proofs in PDR

PDR deduces safety of a system, if the CNF formulae of two adjacent time frames
i and i+1 are equivalent, i.e., if Fi ≡ Fi+1, see Sect. 3.2. Hence, we assume that
Inv = Fi. The first property I =⇒ Inv holds by definition of PDR, since Fi

over-approximates the states which are reachable from I within up to i steps.
The second property Inv ∧ T =⇒ Inv ′ is satisfied, since Fi ∧ T =⇒ F ′

i+1

holds as an invariant of the PDR algorithm and Fi ≡ Fi+1 as well as Inv = Fi.
The third property Inv =⇒ P holds by definition of PDR based on [9], which
initializes the time frame formula FN with P in main loop N (see Sect. 3.2).

Now assume a restricted transition relation TR. We assume that PDR with
transition relation TR does not find a counterexample, but a safe inductive
invariant Inv . Note that we change only T into TR by the restriction ρ, we do
not change I and P . Therefore it immediately follows that I =⇒ Inv and
Inv =⇒ P . However, the property Inv ∧ TR =⇒ Inv ′ may hold only due to
the restrictions. In order to detect whether Inv is also an invariant under the
unrestricted transition relation T we can use a SAT solver: We insert

∧
v∈R vρ(v)

as assumptions into the SAT solver [19] and call the SAT solver on the unre-
stricted transistion relation with Inv ∧ T ∧ ¬Inv ′. The call will be unsatisfiable
since assuming the restrictions is equivalent to using the restricted transition
relation TR. If the UNSAT-core over the assumptions contains at least one of
the restricted variables, we conclude that the invariant may be spurious and may
hold only due to the imposed restrictions. If not, the restrictions are not needed
to prove that Inv ∧ T =⇒ Inv ′, i.e., Inv is a safe inductive invariant wrt. T .

5.2 Restriction Skipping Loop

In Algorithm 5 we present a main ingredient of Proof-Guided Restriction Skip-
ping (PROGRESS) which we call the Restriction Skipping Loop. We check the
satisfiability of Inv ∧ T ∧ ¬Inv′ (line 4) with assumptions

∧
v∈R vρ(v) (line 3) as

already mentioned above. If the SAT solver returns UNSAT, then the UNSAT-
core of the SAT solver can then be used to guide the removal of restrictions.
For removing restrictions we have implemented two options: The ‘careful’ app-
roach removes exactly one restriction from the UNSAT core (line 13) and checks
whether it was sufficient to break the possibly spurious invariant and the ‘aggres-
sive’ approach removes all restrictions occurring in the UNSAT core at once

366 T. Seufert et al.

1 function RestrictionSkippingLoop(Inv)
2 while true do

3 Assume
∧

v∈R vρ(v) /* Assume restrictions. */

4 if SAT?[Inv ∧ T ∧ ¬Inv′] then
5 /* Invariant spurious, retracted enough to break it. */

6 return Spurious

7 else
8 if UNSAT core contains no variable v with v ∈ R then
9 /* No restriction in UNSAT core, correct proof. */

10 return Safe

11 else
12 if careful then
13 skip one restriction appearing in the UNSAT core from R

14 else
15 skip all restrictions appearing in the UNSAT core from R

Algorithm 5: The Restriction Skipping Loop.

(line 15). Removing restrictions just means adding transitions to the transition
relation TR. If we finally arrive at line 6, we have removed enough restrictions
such that the resulting TR contains at least one transition from Inv to ¬Inv.
i.e., the safe invariant has been destroyed and in the overall algorithm we can
start over with the reduced set R of restrictions.3 If we arrive at line 10, we
have been able to prove that removing more restrictions will never destroy the
invariant and the (unrestricted) system is safe. The different strategies (line 13
vs. 15) will be subject to our empirical evaluation in Sect. 7.

6 Implementation of PROGRESS-PDR

We present our implementation of PDR, called PROGRESS-PDR, which imple-
ments restrictions and the restriction skipping loop from Sect. 5. The algorithm
is shown in Algorithm 6. In the following we will discuss the different parts of
the algorithm in more detail.

6.1 Combining PROGRESS-PDRwith Standard PDR

PROGRESS-PDR is meant to supplement PDR’s capabilities of finding deep
counterexamples. Therefore, there may be instances (especially safe instances)
for which standard PDR could be of better use. In order to profit from the

3 In this case the Restriction Skipping Loop has finally computed an approximate
solution to the partial MaxSAT [29] problem

∧
v∈R vρ(v) ∧ Inv ∧ T ∧ ¬Inv′ with

{vρ(v)} as soft clauses.

Making PROGRESS in Property Directed Reachability 367

1 function ProgressPdr()

2 resPDR ← Pdr(I, T , P , ‘check stuck’) /* Safe/Unsafe/Stuck */

3 if resPDR �= ‘Stuck’ then return resPDR

4 Ninit ← N , F init
1 ← F1, . . . , F

init
N ← FN

5 PO ← ∅ /* Discard proof obligations. */

6 /* F1, . . . , FN remain for next PDR run. */

7 R ← InitRestrictionSet(), ρ ← InitRestrictionFunction()

8 HandleTrivialCases(R)

9 nspurious ← 0
10 while true do
11 resPDR ← Pdr(I, T R, P) /* returns Safe or Unsafe */

12 if resPDR = ‘Unsafe’ then return ‘Unsafe’
13 if resPDR = ‘Safe’ then /* Proof may be spurious! */

14 resRSL ← RestrictionSkippingLoop(InvR)
15 if resRSL = ‘Safe’ then return ‘Safe’
16 if resRSL = ‘Spurious’ then /* Spurious, R was reduced. */

17 nspurious ← nspurious + 1
18 if nspurious > cspurious then
19 R ← ∅ /* Remove all restrictions. */

20 /* Proof obligations PO remain for next PDR run. */

21 N ← Ninit

22 F prev
1 ← F1

23 if R �= ∅ then
24 F1 ← P, . . . , FN ← P

25 else
26 F1 ← F init

1 , . . . , FN ← F init
N

27 for c blocked in F prev
1 do

28 if ¬ SAT?[¬c ∧ F0 ∧ T R ∧ c′] then F1 ← F1 ∧ ¬c

29 Propagate()

Algorithm 6: Overall approach PROGRESS-PDR.

advantages of both worlds, we start with a run of standard PDR (line 2 of Algo-
rithm 6) and use restrictions and restriction skipping only if PDR gets ’stuck’.
This is similar to the approach in [35] which employs k-induction if PDR starts
to exhaustively enumerate states due to the lack of strong generalization. By
‘stuck’ we mean that PDR does not advance fast enough in the number of open
time frames, i.e., within main loop N PDR is busy with handling proof obligation
after proof obligation, but is not able to prove the absence of counterexamples
of length N for a long time. In our implementation we heuristically detect such
a situation as follows: Starting from a fixed initial number of time frames (we
choose 3 in our implementation) we store the number of proof obligations nPO

that have been resolved so far at the moment when standard PDR is about to
open a new time frame. If the next main iteration of PDR (that strengthens the
new time frame) produces a larger number of proof obligations than nPO , we

368 T. Seufert et al.

consider the execution as ‘stuck’ and we will switch to PDR with restrictions.
Note that in PROGRESS-PDR we can always re-use the complete trace with
its clauses and time frames from the standard PDR execution which we have
aborted, since the restriction gets stronger and not weaker, but the unresolved
proof obligations from the aborted standard PDR run have to be discarded,
since they will not be necessarily proof obligations in the following PDR run
with restrictions (see lines 5, 6).

6.2 Choosing Appropriate Restrictions

Now we introduce restrictions, i.e., we choose a restriction function ρ and a
set R of restricted variables (line 7). Choosing the most effective restrictions in
order to find deep counterexamples is a challenging task. For our study we use
the simplest possible method: We start with restrictions on all primary inputs,
present state and next state variables and we initially restrict them with 0. (In
our experiments we also consider a variant restricting primary inputs and present
state variables only.) Advanced heuristics for choosing initial restrictions remain
as future work. Apparently, too many restrictions may cause the verification
problem to become trivial. For instance, the restricted transition relation TR

may even become empty. Therefore, after initializing R and ρ, we immediately
call HandleTrivialCases(R) in line 8 which subsequently removes variables
from R until (I ∧ TR), (TR ∧ P ′), as well as (TR ∧ ¬P ′) become satisfiable,
i.e., until there is at least one transition in TR starting from I (otherwise the
restricted system is trivially safe), there is at least one transition in TR leading to
P (otherwise the restricted system is trivially unsafe, if there are any transitions
from I in TR), and there is at least one transition in TR leading to ¬P (otherwise
the restricted system is trivially safe).

6.3 PDR with Restrictions

Now PDR is applied with the chosen restrictions on T (line 11). If we encounter
a counterexample, we know (according to Sect. 4) that it is valid and terminate
concluding that the design is unsafe (line 12). If we encounter a safe induc-
tive invariant InvR, we check whether it is spurious (according to Sect. 5.1)
(line 14). If it is a valid inductive invariant, we terminate concluding that the
design is safe (line 15). If not, we retract with our Restriction Skipping Loop
a number of restricted variables from R until InvR is not an inductive invari-
ant anymore (line 13). Apparently, finding spurious safe inductive invariants,
retracting restrictions accordingly, and starting over comes with additional cost.
Therefore we count the number nspurious of coarsenings by restriction skipping
and reset R to ∅ as soon as nspurious exceeds some upper limit cspurious (in our
implementation we use cspurious = 20) (line 19).

6.4 Re-using Information from Previous Restricted PDR Run

Before we start over PDR with the reduced restriction set R (and unchanged
restriction function ρ), we prepare to re-use certain parts of the previous PDR

Making PROGRESS in Property Directed Reachability 369

run for the next one. For instance, we may re-use proof obligations (line 20 –
we assume that the proof obligations from the previous run are stored in a set
PO), since these are still valid predecessors of the unsafe states (see Sect. 4).

We are also able to re-use certain learned clauses (blocked cubes). We recall
that cubes may be blocked early due to the restrictions on variables from R.
Here, we call the set of restricted variables from the previous run (before we
encountered a spurious proof and reduced it) Rprev . Assume that with Rprev

cube c can be blocked in frame Fi+1, because the formula ¬c ∧ Fi ∧ TRprev ∧ c′ is
unsatisfiable. If c has been blocked in the previous run with TRprev

, and cannot be
blocked in the run with TR, we distinguish two cases: (1) There are transitions
from ¬c ∧ Fi to c′ in TR which had been removed from TRprev

by stronger
restrictions. (2) Such transitions are not directly removed by restrictions in the
previous run, but in the previous run Fi already contained spurious clauses which
exclude valid predecessors of c′ from the state space.

One option for re-using learned clauses would be similar to the technique
from Sect. 5. For a blocked cube c we could compute by using assumptions and
UNSAT-core analysis a subset of restrictions and clauses in Fi which are suf-
ficient for making ¬c ∧ Fi ∧ TR ∧ c′ unsatisfiable. If the same analysis had
been done for the clauses in Fi, we could compute by transitivity the subset
of restrictions which are directly or indirectly involved in the blocking of cube
c. This directly reveals which learned clauses can be safely re-used in the new
run with relaxed restrictions R. Such an analysis entails additional effort and an
intensive bookkeeping. Moreover, it could over-estimate the set of restrictions
needed for blocking a cube c. Therefore we prefer a much simpler approach for
re-using learned clauses in this paper:

For the next PDR run we set the number N of open frames apart from F0 to
Ninit which is the same number occurring in the initial standard PDR run that
was stuck (see lines 4 and 21). Moreover, we open N additional frames F1, . . . , FN

(apart from F0 = I) for the next PDR run (line 24). Since in the initial standard
PDR run is has been proven that there are no traces from I to ¬P of lengths
up to N under T , there are no traces from I to ¬P of lengths up to N under TR

(which is an underapproximation of T) either. So P overapproximates the set
of states reachable in up to N steps under TR and thus it is sound to initialize
F1, . . . , FN with P . Now we validate for all blocked cubes from the previous run
(under Rprev) whether they can be blocked in the first time frame F1 of our new
run (under relaxed restrictions R) (line 28). (Note that due to monotonicity of
the frames in PDR all cubes blocked in some arbitrary time frame Fi are blocked
in F1 as well.) We start a propagation phase (as in standard PDR) and try to
subsequently block the cubes in higher time frames (line 29). Line 26 considers
the special case R = ∅ where TR = T . Apparently, we can restore all sets Fi

from the initial standard PDR run in this case (see lines 4 and 26).

7 Experimental Results

We discuss the results of our approach on Hardware Model Checking Com-
petition (HWMCC) benchmarks. All experiments have been performed on the

370 T. Seufert et al.

HWMCC benchmark sets (626 benchmarks in total) of the latest three competi-
tions (2017, 2019 and 2020) [4,6,33]. For 2019 and 2020 we have only considered
the AIGER [5] benchmarks (bit-vector track), since our tool does not support
word-level verification. We limited the execution time to3600 s and set a memory
limit of 7 GB. We used one core of an Intel Xeon CPU E5-2650v2 with 2.6 GHz.
We provide a reproduction artifact under [37].

Our implementation of PROGRESS-PDR uses IC3ref [8] as its PDR core.
Stand-alone IC3ref (without any preprocessing) is competitive [21,36], well-
known and commonly referenced in the literature. Therefore, it is a perfect fit
for the demonstration of our algorithm. To justify our selection of IC3ref [8] as
the basis for our algorithmic extensions as well as comparisons we also compare
our results to the PDR implementation of ABC4 [10]. Moreover, we compare the
results to the BMC implementation (bmc2) of ABC. We ran both ABC tools
in their default configuration. We made only one change to IC3ref and replaced
the lifting procedure for proof obligation generalization by IGBG from [34,38]
(see Sect. 4.2). Replacing lifting in IC3ref has two advantages: IGBG is slightly
better than the standard lifting implementation in IC3ref (which we have shown
in previous work [38]). Moreover, IGBG requires for its correctness only right-
uniqueness of the transition relation and is therefore able to cope with invariant
constraints (imposed on HWMCC’19 and ’20 benchmarks) without any changes
as well as with restricted transition relations used in PROGRESS-PDR. In the
following, we address the IC3ref implementation with IGBG and without restric-
tions as ‘standard PDR’ or just ‘PDR’.

We use MiniSat v2.2.0 [19] as a SAT solver. Furthermore, we test whether
PROGRESS-PDR is dominated by PDR with preprocessing the AIGER spec-
ifications with Cone-Of-Influence (COI) reduction. As an implementation for
COI reduction we use the one from IIMC [22]. We also compare PROGRESS-
PDR to BMC which uses the same interface to the AIGER model with the same
transition relation (preprocessed with variable elimination of MiniSat).

Although the different methods have complementary strengths and weak-
nesses, we refrain from considering portfolio approaches combining different
methods and rather focus on the contribution of single approaches for clearer
comparisons. Moreover, we do not affect our comparisons by orthogonal methods
like preprocessing with sequential circuit transformations.

7.1 Design Decisions for PROGRESS-PDR

First, in this section we justify our design decisions made for PROGRESS-PDR
by analyzing the impact of different alternatives. We decided to use the fol-
lowing options: In PROGRESS-PDR we always re-use blocked cubes (learned
clauses) after restriction skipping and check whether they can be blocked also
with less restrictions. Moreover, we re-use proof obligations from the previous

4 Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential
Synthesis and Verification, ABC 1.01 (downloaded Jul 13 2021). http://www.eecs.
berkeley.edu/∼alanmi/abc/.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

Making PROGRESS in Property Directed Reachability 371

Table 1. Different variants of PROGRESS-PDR.

Variant Unsafe Unsafe (≥30) Safe MO/TO

Standard PDR 69 15 293 264

PROGRESS-PDR 84 27 293 249

Restricting all state variables + inputs 79 25 292 255

Restricting present state variables + inputs 82 26 290 255

Restricting only present state variables 77 22 290 259

No re-used blocked cubes 73 20 291 262

No re-used proof obligations 82 26 293 251

Aggressive retracting 77 23 289 260

Modified Lifting 77 22 284 265

run with more restrictions without needing additional checks. We restrict only
state variables instead of restricting inputs. When encountering a spurious proof,
we carefully retract restrictions within the restriction skipping loop from Sect. 5.2
(one-by-one until a spurious invariant is broken) instead of aggressively retract-
ing all restrictions from the UNSAT-core of the SAT solver. Finally, we use
IGBG for proof obligation generalization (instead of using the lifting approach
of [14,34] with the extension from Sect. 4.2).

In the first and second line of Table 1 we report the number of solved bench-
marks for standard PDR as well as PROGRESS-PDR. In the second column
‘unsafe’ we report the number of benchmarks for which we found counterexam-
ples, whereas in the third column ’unsafe (≥30)’ we report the number of bench-
marks for which we found deep counterexamples with a path length greater or
equal to 30. The fourth column ‘safe’ shows the number of benchmarks proved
to be safe and the last column shows the number of benchmarks where the time
or memory limit was exceeded.

We start our analysis by considering different sets of restricted variables.
Whereas all variants outperform standard PDR in finding counterexamples and
especially deep ones, we still observe some differences: In the third line, we
present the results for restricting primary inputs in addition to the state vari-
ables. This configuration performs slightly worse. The fourth line shows the
results for restricting primary inputs and present state variables, but no next
state variables. Again, the results are slightly worse than the standard configura-
tion with restrictions on present and next state variables. Interestingly though,
when we do not restrict next state variables but only present state variables,
we observed that it is beneficial to also restrict primary inputs (solving 5 more
unsafe instances than with only restricting present state variables, see line 5).

We believe that restricting not only present state but also next state variables
can be a powerful means, if we analyze rather loosely coupled circuits with inputs,
which may deactivate irrelevant (at least for disproving the safety property)
parts of the state space. These restrictions may simplify the verification problem
drastically and also support the generalization of blocked cubes in PDR, see

372 T. Seufert et al.

Sect. 4.4. Although the results in Sect. 7.2 will show that (syntactical) Cone-of-
Influence (COI) reduction does not have a significant impact on the considered
benchmarks, the given safety property may not be influenced by certain state
bits all the same (i.e., those state bits are not in the ‘semantic COI’). Fixing those
state bits to constants does not have an impact on the safety proof (apart from
simplifications by unit propagation and reduced state spaces) and, apparently,
it is often also not important to which value those state bits are fixed. However,
we conjecture that restricting primary input variables as well would improve if
we would replace our brute-force method of restricting inputs and state variables
just by a fixed constant 0 by a more informed restriction variant exploiting user
knowledge on inputs driving the design into potential error states. Nevertheless,
we expect that varying the classes of variables to be restricted could make sense
when considering different classes of benchmarks.

In the sixth line of Table 1 we show how the results change, if we do not re-
use blocked cubes from previous runs. The results clearly show that this leads to
significantly worse results - especially for deep counterexamples. Re-using cubes
seems to be vital for PDR to be able to progress faster after restarting with less
restrictions.

The seventh line shows a variant without re-using proof obligations from the
previous run with more restrictions. Re-using proof obligations helps, but not
as much as re-using blocked cubes. This could be due to the fact that proof
obligations are generated relatively quickly and are therefore less valuable (in
terms of computational effort) than blocked cubes which have been generalized
with much more effort using a loop performing literal dropping.

As line 8 of Table 1 shows, aggressively retracting all restrictions from the
UNSAT-core in case of a spurious proof (see Sect. 5.2) does not pay off. It seems
to be beneficial to carefully keep as many restrictions as possible.

Finally, it turned out (see line 9 of Table 1) that the lifting approach of [14,34]
with the extension from Sect. 4.2 is inferior to IGBG for proof obligation gen-
eralization. Solving 16 benchmarks less than PROGRESS-PDR with IGBG we
conclude that adapting and using the standard lifting procedure is not worthwile.

7.2 PROGRESS-PDRvs. PDR

We compare PROGRESS-PDR against standard PDR. We present the overall
results in Fig. 2 - including unsafe instances and also all kinds of counterexample
depths. We depict the graphs for only unsafe benchmarks in Fig. 3. Furthermore,
we also plot the graphs for unsafe benchmarks with counterexamples which are
represented by error paths with a length greater or equal to 30 in Fig. 4. All
comparisons show that our choice for ‘standard PDR’ (based on IC3ref) performs
pretty similar to the PDR implementation in ABC.

PROGRESS-PDR greatly outperforms standard PDR on benchmarks with
counterexamples present. The longer the error path, the stronger PROGRESS-
PDR gets, nearly doubling the amount of deep counterexamples solved by stan-
dard PDR. Regarding safe benchmarks, PROGRESS-PDR and PDR both prove
the absence of counterexamples in 293 problem instances. Interestingly though,
these instances are not identical. PROGRESS-PDR solves safe instances that

Making PROGRESS in Property Directed Reachability 373

Fig. 2. Results on all instances.

Fig. 3. Results on counterexamples.

PDR does not and vice versa. In summary, even though PROGRESS-PDR pri-
marily aims to increase the capability of finding counterexamples, we can also
observe an overall improvement.

We made the additional observation that for the instances solved by our
Restriction Skipping Loop on average 49.3% of the total number of state variables
were still under restriction after solving the instance and 5.65 restarts happened
due to spurious proofs.

We also investigate whether our PROGRESS-PDR approach is dominated by
simple COI reduction. It could be the case, that the remaining restrictions after
some restriction skipping loops simply restrict variables which would have been
removed by COI reduction anyway. However, our experimental results show that
this can rarely be the case. The results for PDR and PDR with COI reduction
are pretty similar in Figs. 2, 3, and 4 with really visible differences only in Fig. 2.
This shows that COI reduction does not help for the considered benchmarks
whereas PROGRESS-PDR does.

7.3 PROGRESS-PDR vs. BMC

To evaluate the effectiveness of PROGRESS-PDR we compare it to the most
common SAT-based bug hunting technique, namely BMC. We depict our results

374 T. Seufert et al.

Fig. 4. Results on deep counterexamples.

in the cactus plot of Fig. 3 and for deep counterexamples (with an error path
of length greater or equal to 30) in Fig. 4. While BMC achieves similar results
as PROGRESS-PDR in the number of solved instances on the set of all unsafe
benchmarks (benchmarks with counterexamples), it is greatly outperformed by
PROGRESS-PDR on deep counterexamples. Even standard PDR is able to meet
the results of BMC when it comes to deeper counterexamples. This can be
explained by the size of SAT problems produced by circuit unrolling in BMC
for deep counterexamples. Note that for our results COI reduction has been
performed on the BMC instances, but it did not help much. As the results also
show, exchanging our BMC implementation with the BMC implementation of
ABC does not change the experimental findings above.

8 Conclusions and Future Work

With PROGRESS-PDR, we presented a complete and fully automatic approach
for applying PDR to a system under restrictions. We introduced PROGRESS
which - as a method that is dual to CEGAR - relaxes restrictions guided by
spurious proofs. We were able to show that PROGRESS-PDR greatly improves
upon PDR’s capabilities of finding counterexamples, especially those with long
error paths. Furthermore, our study shows that PROGRESS-PDR performs sig-
nificantly better than BMC on deep counterexamples.

Our results indicate that restrictions can be a powerful tool for safety ver-
ification with PDR, even without domain knowledge on the structure of the
circuit or the property under verification. We conjecture that our results could
be further improved with such knowledge, for instance by distinguishing between
control and data signals and by considering signals activating parts of the circuit
which are relevant to a checked property.

User knowledge could also be beneficial for bug hunting by restricting internal
signals other than primary inputs and state variables or by initially restricting
signals with more sophisticated constraints instead of fixing signals to constants.

Making PROGRESS in Property Directed Reachability 375

References

1. Baumgartner, J., Ivrii, A., Matsliah, A., Mony, H.: IC3-guided abstraction. In:
FMCAD, pp. 182–185 (2012). https://ieeexplore.ieee.org/document/6462571/

2. Berryhill, R., Ivrii, A., Veira, N., Veneris, A.G.: Learning support sets in IC3 and
quip: the good, the bad, and the ugly. In: 2017 Formal Methods in Computer
Aided Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 140–147.
IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102252

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS, pp. 193–207 (1999). https://doi.org/10.1007/3-540-49059-0 14

4. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition (2017).
http://fmv.jku.at/hwmcc17/

5. Biere, A., Heljanko, K., Wieringa, S.: Aiger 1.9 and beyond (2011). http://fmv.
jku.at/hwmcc11/beyond1.pdf

6. Biere, A., Preiner, M.: Hardware model checking competition (2019). http://fmv.
jku.at/hwmcc19/

7. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction
guided abstraction refinement (CTIGAR). In: CAV, pp. 831–848 (2014). https://
doi.org/10.1007/978-3-319-08867-9 55

8. Bradley, A.: Ic3 reference implementation (2013). https://github.com/arbrad/
IC3ref

9. Bradley, A.R.: Sat-based model checking without unrolling. In: VMCAI, pp. 70–87
(2011). https://doi.org/10.1007/978-3-642-18275-4 7

10. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

11. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proceedings of 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15–18 November 2009, Austin, Texas,
USA, pp. 69–76. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351141

12. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In:
Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009.
LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04772-5 40

13. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 28

14. Chockler, H., Ivrii, A., Matsliah, A., Moran, S., Nevo, Z.: Incremental formal veri-
fication of hardware. In: FMCAD, pp. 135–143 (2011). http://dl.acm.org/citation.
cfm?id=2157676

15. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

16. Dill, D.L., Wong-Toi, H.: Verification of real-time systems by successive over and
under approximation. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 409–422.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60045-0 66

https://ieeexplore.ieee.org/document/6462571/
https://doi.org/10.23919/FMCAD.2017.8102252
https://doi.org/10.1007/3-540-49059-0_14
http://fmv.jku.at/hwmcc17/
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc19/
http://fmv.jku.at/hwmcc19/
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://github.com/arbrad/IC3ref
https://github.com/arbrad/IC3ref
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1109/FMCAD.2009.5351141
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-642-04772-5_40
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
http://dl.acm.org/citation.cfm?id=2157676
http://dl.acm.org/citation.cfm?id=2157676
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-60045-0_66

376 T. Seufert et al.

17. Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation
of proof- and counterexample-based abstraction. In: Proceedings of 10th Interna-
tional Conference on Formal Methods in Computer-Aided Design, FMCAD 2010,
Lugano, Switzerland, 20–23 October 2010, pp. 181–188. IEEE (2010). https://
ieeexplore.ieee.org/document/5770948/

18. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134 (2011). http://dl.acm.org/citation.
cfm?id=2157675

19. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, pp. 502–518 (2003).
https://doi.org/10.1007/978-3-540-24605-3 37

20. Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. Ph.D. thesis, University of Trento, Italy (2010). http://
eprints-phd.biblio.unitn.it/345/

21. Griggio, A., Roveri, M.: Comparing different variants of the ic3 algorithm for hard-
ware model checking. IEEE Trans. CAD Integr. Circuits Syst. 35(6), 1026–1039
(2016). https://doi.org/10.1109/TCAD.2015.2481869

22. Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, inductive CTL model check-
ing. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
532–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 38

23. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD,
pp. 157–164 (2013). https://ieeexplore.ieee.org/document/6679405/

24. Ho, Y., Mishchenko, A., Brayton, R.K.: Property directed reachability with word-
level abstraction. In: 2017 Formal Methods in Computer Aided Design, FMCAD
2017, Vienna, Austria, 2–6 October 2017, pp. 132–139. IEEE (2017). https://doi.
org/10.23919/FMCAD.2017.8102251

25. Hooker, J.N.: Solving the incremental satisfiability problem. J. Log. Program. 15(1
& 2), 177–186 (1993) 15(1&2), 177–186 (1993) 15(1&2), 177–186 (1993)

26. Ivrii, A., Gurfinkel, A.: Pushing to the top. In: FMCAD, pp. 65–72 (2015). https://
www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/paper39.pdf

27. Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based sat-
isfiability solving of presburger arithmetic. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27813-9 24

28. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton (1994)

29. Li, C.M., Manya, F.: Maxsat, hard and soft constraints. Handb. Satisf. 185, 613–
631 (2009)

30. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In:
Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 2

31. Mishchenko, A., Eén, N., Brayton, R.K., Baumgartner, J., Mony, H., Nalla, P.K.:
GLA: gate-level abstraction revisited. In: Design, Automation and Test in Europe,
DATE 13, Grenoble, France, 18–22 March 2013, pp. 1399–1404. EDA Consortium
San Jose, CA, USA/ACM DL (2013). https://doi.org/10.7873/DATE.2013.286

32. Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flex-
ible modeling of unknowns. IEEE Trans. Comput. 62(6), 1234–1254 (2013)

33. Preiner, M., Biere, A., Froleyks, N.: Hardware model checking competition 2020
(2020). http://fmv.jku.at/hwmcc20/

34. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In:
TACAS, pp. 31–45 (2004). https://doi.org/10.1007/978-3-540-24730-2 3

https://ieeexplore.ieee.org/document/5770948/
https://ieeexplore.ieee.org/document/5770948/
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-540-24605-3_37
http://eprints-phd.biblio.unitn.it/345/
http://eprints-phd.biblio.unitn.it/345/
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1007/978-3-642-31424-7_38
https://doi.org/10.1007/978-3-642-31424-7_38
https://ieeexplore.ieee.org/document/6679405/
https://doi.org/10.23919/FMCAD.2017.8102251
https://doi.org/10.23919/FMCAD.2017.8102251
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/paper39.pdf
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/paper39.pdf
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/978-3-540-27813-9_24
https://doi.org/10.1007/3-540-36577-X_2
https://doi.org/10.7873/DATE.2013.286
http://fmv.jku.at/hwmcc20/
https://doi.org/10.1007/978-3-540-24730-2_3

Making PROGRESS in Property Directed Reachability 377

35. Scheibler, K., Winterer, F., Seufert, T., Teige, T., Scholl, C., Becker, B.: ICP and
IC3. In: Design, Automation & Test in Europe Conference & Exhibition, DATE
2021 (2021). https://doi.org/10.23919/DATE51398.2021.9473970

36. Seufert, T., Scholl, C.: fbpdr: In-depth combination of forward and backward anal-
ysis in property directed reachability. In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, 25–29 March 2019, pp. 456–
461. IEEE (2019). https://doi.org/10.23919/DATE.2019.8714819

37. Seufert, T., Scholl, C., Chandrasekharan, A., Reimer, S., Welp, T.: Reproduc-
tion artifact (2021). https://abs.informatik.uni-freiburg.de/src/projects view.php?
projectID=23

38. Seufert, T., Winterer, F., Scholl, C., Scheibler, K., Paxian, T., Becker, B.: Every-
thing You Always Wanted to Know About Generalization of Proof Obligations in
PDR. arXiv preprint arXiv:2105.09169 (2021). https://arxiv.org/abs/2105.09169

39. Silva, J.P.M., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In:
ICCAD, pp. 220–227 (1996). https://doi.org/10.1109/ICCAD.1996.569607

40. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logics (1968)

41. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and SAT-based reachability
in hardware model checking. In: FMCAD, pp. 173–181 (2012). https://ieeexplore.
ieee.org/document/6462570/

42. Wang, D., et al.: Formal property verification by abstraction refinement with for-
mal, simulation and hybrid engines. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 35–40. ACM
(2001). https://doi.org/10.1145/378239.378260

https://doi.org/10.23919/DATE51398.2021.9473970
https://doi.org/10.23919/DATE.2019.8714819
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=23
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=23
http://arxiv.org/abs/2105.09169
https://arxiv.org/abs/2105.09169
https://doi.org/10.1109/ICCAD.1996.569607
https://ieeexplore.ieee.org/document/6462570/
https://ieeexplore.ieee.org/document/6462570/
https://doi.org/10.1145/378239.378260

Scaling Up Livelock
Verification for

Network-on-Chip
Routing Algorithms

Landon Taylor(B) and Zhen Zhang

Utah State University, Logan, UT, USA
{landon.jeffrey.taylor,zhen.zhang}@usu.edu

Abstract. As an efficient interconnection network, Network-on-Chip
(NoC) provides significant flexibility for increasingly prevalent many-core
systems. It is desirable to deploy fault-tolerance in a dependable safety-
critical NoC design. However, this process can easily introduce deeply
buried flaws that traditional simulation-based NoC design approaches
may miss. This paper presents a case study on applying scalable for-
mal verification that detects, corrects, and proves livelock in a depend-
able fault-tolerant NoC using the IVy verification tool. We formally ver-
ify correctness at the routing algorithm level. We first present livelock
verification using refutation-based simulation scaled to a 15-by-15 two-
dimensional NoC. We then present a novel zone-based approach to live-
lock verification in which finite coordinate-based routing conditions are
abstracted as positional zones relative to a packet’s destination. This
abstraction allows us to detect and remove livelock patterns on an arbi-
trarily large network. The resultant improved routing algorithm is free
of livelock and maintains a high level of fault tolerance.

Keywords: Network-on-Chip · Fault-tolerant routing · Model
checking · Property-directed reachability

1 Introduction

Network-on-Chip (NoC) is an interconnection network that governs on-chip com-
munication among homogeneous routers for many-core systems. NoC provides
flexibility in balancing processing load among interconnected cores to optimize
power and tolerate faulty connections. As computing systems advance, many-
core systems increase design complexity, and NoC provides an efficient solution
to this challenge [17,21]. When NoC is used in safety-critical applications such
as electronic control units in a vehicle [26], it must provide provable correct-
ness guarantees. A dependable NoC routing algorithm must tolerate faulty links
to minimize the impact on processing cores. Fault tolerance improves network
dependability by allowing a network to route otherwise blocked packets to their
destinations. However, the complexity of fault-tolerant routing design is liable
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 378–399, 2022.
https://doi.org/10.1007/978-3-030-94583-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_19&domain=pdf
http://orcid.org/0000-0002-4071-3625
http://orcid.org/0000-0002-8269-9489
https://doi.org/10.1007/978-3-030-94583-1_19

Scaling Up Livelock Verification for NoC Algorithms 379

to include flaws that traditional simulation and testing methods may miss. A
flaw in a routing algorithm may produce livelock, which results in packets travel-
ing cyclically forever while wasting power and worsening network traffic. Formal
verification of livelock freedom on NoC designs remains challenging today.

This paper presents a case study on scaling formal verification of a complex
fault-tolerant routing algorithm designed to operate on either a synchronous or
an asynchronous NoC routing architecture. We rebut the livelock-freedom claim
made in [29] by finding livelock traces in the same routing algorithm. We then
demonstrate significantly improved scalability of livelock freedom verification on
arbitrarily large two-dimensional mesh networks. The paper then presents the
proven livelock-free routing algorithm.

Our approach evaluates the high-level routing algorithm using the IVy
tool [19]. We describe our verification approach as follows:

– We first simulate the routing behavioral model to prove packet delivery and
prove that any discovered potential livelock traces indicate true livelock sce-
narios. We use this approach to verify livelock freedom in NoCs of size 3×3
to 15×15.

– Next, we describe a highly automated method to fix the routing algorithm by
incrementally removing livelock traces. Eventually, this produces a livelock-
free and fault-tolerant routing algorithm.

– To further scale up livelock verification, we present an incremental abstraction
approach to derive routing zones on an arbitrary m×n network, followed by
the derivation of abstract moves to allow efficient representation of very large
livelock patterns.

This paper is organized as follows. Sections 2 and 3 describe background and
related work, respectively. Section 4 introduces the link-fault routing algorithm
analyzed in this paper. Sections 5, 6, and 7 present our refutation-based simu-
lation approach for livelock checking and livelock removal. Sections 8, 9, and 10
present our zone-based routing model and livelock verification scaled to arbitrar-
ily large network. Section 11 concludes the work. Data, supplemental material,
and models from this work can be found on GitHub1.

2 Preliminaries

Inductive Invariant Verification. The IVy tool supports interactive induc-
tive invariant strengthening and verification [18]. Using the Z3 SMT solver [20],
IVy can interactively aid a user to strengthen invariants. It starts by check-
ing the user-provided invariant for inductiveness and returns a counterexample
to induction if the invariant fails to be inductive. It then guides the user with
recommendations to strengthen the invariant. Once the user strengthens the
invariant, it checks for inductiveness again. These counterexamples to induc-
tion and invariant-strengthening recommendations prove invaluable to our work
by providing traces of livelock scenarios. A recent addition to IVy that has

1 https://github.com/formal-verification-research/IVy-Models.

https://github.com/formal-verification-research/IVy-Models

380 L. Taylor and Z. Zhang

proved pivotal to this research is integration with Property-Directed Reachabil-
ity (PDR) in the ABC model checking tool [2,6]. PDR Automatically strengthens
invariants to use inductiveness checking as reachability verification.

Network-On-Chip and Livelock. In this paper, we use the terms “NoC”
and “network” interchangeably. We consider a two-dimensional NoC in a square
mesh and model it as a coordinate system composed of n×n nodes (n � 2 and
n ∈ N). A node (xi, yi) is represented as a coordinate pair identified by an index
i. The subscript i has no relation to the location of the packet in the network;
rather, it represents the number of times the packet has been forwarded to reach
a node. For instance (x4, y4) is the fourth node a packet visits, and its coordi-
nates may be (3, 3), and (x5, y5) may have coordinates (3, 2). Nodes exchange
information by sending each other packets. In this work, a packet is assumed to
only carry its destination coordinate (xd, yd). Packets travel through a network
following a pre-defined routing algorithm. We present the formal analysis and
correction of an adaptive routing algorithm that tolerates faults dynamically, i.e.,
the routing algorithm does not know fault locations in the network and it selects
an alternative route for each packet whenever it encounters a fault on its way
to the destination. Therefore, a packet’s route from its source to destination is
not statically determined beforehand. Each node in the network is composed of
routers that determine a packet’s next forwarding direction based on its intended
destination and arbiters that resolve simultaneous packet forwarding requests to
compete for the output channel in the same direction.

As a packet travels through the network, it produces a trace, which records
the history of visited nodes. A trace begins at (x0, y0) where the packet is gener-
ated and is represented by (x0, y0), (x1, y1), . . . , (xi, yi). Define a livelock pattern
as (xi, yi), (xi+1, yi+1), . . . , (xi+k, yi+k), (xi, yi), (xi+1, yi+1), . . . , (xi+k, yi+k),
. . . , where 1 ≤ k ≤ K and K ∈ N. Nodes (xi, yi) and (xi+K , yi+K) are the
first and the final nodes in the sequence of repeated nodes constituting the
livelock pattern, respectively. A vital part of a livelock pattern is cyclical behav-
ior. That is, a livelock pattern includes a series of repeated changes in trav-
eling direction. For instance, a livelock pattern starting at (x2, y2) consisting
of a packet traveling back and forth between two nodes can be represented by
(x2, y2), (x3, y3), (x2, y2), (x3, y3), . . . , which may be shown using coordinates as
(2, 1), (2, 2), (2, 1), (2, 2), A livelock prefix is a finite trace represented by
(x0, y0), (x1, y1), . . . , (xi−1, yi−1) and (xi, yi) is the first node in a livelock pat-
tern. A prefix may be empty in the case where i = 0. For instance, a prefix for
the pattern above with (xi, yi) = (2, 1) may be (x0, y0), (x1, y1), or (1, 0), (1, 1).
A livelock trace consists of a livelock prefix followed immediately by a livelock
pattern. For example, combining the prefix and pattern listed above produces the
trace (x0, y0), (x1, y1), (x2, y2), (x3, y3), (x2, y2), (x3, y3), . . . , which may be rep-
resented using coordinates as (1, 0), (1, 1), (2, 1), (2, 2), (2, 1), A livelock-free
trace does not include a livelock pattern. If the set of all traces produced in a
network contains only livelock-free traces, the network is a livelock-free network.
In other words, a livelock-free network is one in which no packet can generate a
livelock trace.

Scaling Up Livelock Verification for NoC Algorithms 381

3 Related Work

Formal verification techniques have been applied to safe and reliable NoC designs
at different levels of abstraction. An overview of recent work can be found in [4].
Dridi et al. [10] modeled a double arbiter and a switching router in the IF lan-
guage [5] and verified circuit-level safety properties. Zaman et al. [27] verified
functional correctness on networks up to 8×8 using the SPIN model checker [14].
They randomly simulated the NoC model to eliminate property violation sce-
narios before applying model checking. Similarly, we find that simulation enables
rapid discovery of potential livelock cases that can be further proved by formal
techniques. Van Gastel et al. [12] used the xMAS language [8] to formally define
executable specifications of micro-architectures. Using the ABS language [16],
Din et al. [9] verified livelock freedom using invariants to monitor their local
history. In comparison, our proposed livelock freedom verification work checks
stronger properties, including termination of each packet’s travel. Particularly
important to NoC dependability is a fault-tolerant routing algorithm. Imai et
al. [15] proposed a link-fault location forwarding mechanism to achieve single
link-fault tolerance. Zhang et al. [28,29] modeled an improved link-fault-tolerant
routing algorithm [25] in the process-algebraic language LNT [7] and proved
deadlock- and livelock-freedom, as well as, tolerance to a single-link fault using
the CADP toolbox [11] for 2×2 NoCs. These approaches, however, encountered
significant challenges in scaling the verification to larger NoCs.

In addition to model checking, theorem proving has been applied to NoC
verification. The Generic Network-on-Chip [3] framework was created with the
help of the ACL2 theorem prover and was used to verify non-minimal adaptive
routing algorithms in [13]. Verbeek et al. [24] proved livelock- and deadlock-
freedom for an adaptive west-first routing algorithm on a Hermes NoC, with
approximately 86% of the proof automatically derived. The prototype tool DCI2
(Deadlock Checker In Designs of Communication Interconnects) [23] implements
necessary and sufficient conditions for deadlock-free routing and was used for
deadlock detection in a range of NoCs [22]. This tool requires a user to define
a network topology, size, and routing algorithm [1]. Using this tool, Zhang et
al. [29] verified livelock freedom for up to 5×5 NoCs for the link-fault-tolerant
routing algorithm in [25]. However, this tool is impacted by combinatorial blow-
up when the size of a NoC is increased.

Work presented in this paper drastically scales formal verification of the link-
fault-tolerant algorithm in [29] to arbitrarily large NoCs. While [29] illustrates
limitations of tools like DCI2 [23] and LNT [7], this work describes a novel and
effective way to scale-up livelock verification. We show that property-directed
reachability using the IVy verification tool is an efficient way to verify compli-
cated NoC routing algorithms, especially compared to enumerative model check-
ing approaches. Compared to similar recent work, this work places an emphasis
on guiding a user through abstracting and improving the routing algorithm for a
fault-tolerant network. Moreover, we rebut the livelock freedom proof in [29] by
showing the existence of livelock traces on a 3×3 NoC which DCI2 did not detect
according to [29]. We derive and prove a correct livelock-free routing algorithm.

382 L. Taylor and Z. Zhang

4 Link-Fault-Tolerant Routing Algorithm

Originally presented in Fig. 9 of [29], this algorithm is adapted as Algorithm 1
with variables defined in Table 1. It operates on an m×n mesh network with
no virtual channels. Figure 1 provides an example of routing decisions according
to Algorithm 1. Unless the packet is at the destination or can make one hop
to reach the destination, it is first routed west and south towards the desti-
nation. A packet is routed west even if the destination is directly south of it,
as shown by the source-destination pair (S1,D1), unless its west-going link is
faulty (e.g., (S3,D3)). Overshooting adds tolerance for faulty link(s) directly
south of a packet (e.g., (S5,D5) with a faulty output link of S5). The same
rule applies to the south forwarding direction as indicated by (S4,D4). After
negative directions, the routing algorithm tries positive directions (i.e., east or
north direction). No overshoot is needed for positive directions (e.g., (S8,D8)).
The general rule is that a packet already traveling in the positive direction does
not change to a negative direction unless there is no danger of forming a cyclic
deadlock. For example, the last east-to-south turn of (S2,D2) is only allowed
if it has no potential of forming a deadlock. If there were a packet in D2, the
packet would instead be dropped in order to prevent potentially creating a cycle
of dependencies, which leads to a deadlock. This routing algorithm always routes
the packet around a single fault, such as (S2,D2) and (S6,D6). The algorithm
can often deliver a packet even in the presence of two link faults (e.g., (S7,D7)).

Table 1. Variables used in Algorithm 1 and Invariants 1–4.

Variable Type Definition

x, y int Current x and y coordinates of the packet

x′, y′ int Immediate next x and y coordinates of the packet

xd, yd int x and y coordinates of the packet’s destination node

xm, ym int The maximal (corner) coordinates for a given NoC

dir enum Direction dir ∈ {n, e, s, w, i}, where i represents

a newly injected packet with no traveling direction

fdir bool Node (x, y) has a faulty link in the direction dir

τ enum The packet’s current traveling direction, τ ∈ dir

τ ′ enum The packet’s next traveling direction, τ ′ ∈ dir

ν(x, y) bool Node (x, y) has a packet

μ(x, y) bool Node (x, y) sent a packet one step previously

σ list Infinite repeated livelock pattern

Lσ set(list) Set of all nodes constituting a livelock pattern σ

Scaling Up Livelock Verification for NoC Algorithms 383

Algorithm 1: Link-Fault-Tolerant Routing Algorithm [29].
Input: x, y, τ
Output: x′, y′, τ ′

1 while ¬delivered do
2 if x = xd ∧ y = yd then
3 delivered := true;
4 else if (xd, yd) is 1 hop away and link is free then
5 x′ := xd; y′ := yd; � Send to destination
6 else if x �= 0 ∧ ¬fw ∧ (τ ∈ {w, s, i}) ∧ ((xd ≤ x) ∨ (yd ≥ y ∧ fs)) then
7 x′ := x − 1; y′ := y, τ ′ := w; � Send west
8 else if y �= 0 ∧ ¬fs ∧ (τ ∈ {s, w, i}) ∧ ((yd ≤ y) ∨ (xd ≥ x ∧ fw)) then
9 x′ := x; y′ := y − 1, τ ′ := s; � Send south

10 else if x �= xm ∧ ¬fe ∧ τ �= w ∧ (xd > x + 1 ∨ (xd > x ∧ yd = y + 1)) then
11 x′ := x + 1; y′ := y, τ ′ := e; � Send east
12 else if y �= ym ∧ ¬fn ∧ τ �= s ∧ yd > y then
13 x′ := x; y′ := y + 1, τ ′ := n; � Send north
14 else if x �= 0 ∧ ¬fw ∧ xd ≤ x ∧ (τ �= e ∨ (yd = y + 1 ∧ xd = x)) then
15 x′ := x − 1; y′ := y, τ ′ := w; � Send west
16 else if y �= 0 ∧ ¬fs ∧ yd ≤ y ∧ τ �= n then
17 x′ := x; y′ := y − 1, τ ′ := s; � Send south
18 else if

x �= xm ∧ ¬fe ∧ xd ≥ x ∧ (τ �= w ∨ xd = x ∨ (xd = x + 1 ∧ yd �= y + 1)) then
19 x′ := x + 1; y′ := y, τ ′ := e; � Send east
20 else if y �= ym ∧ ¬fn ∧ yd ≥ y ∧ (τ �= s ∨ xd ≥ x) then
21 x′ := x; y′ := y + 1, τ ′ := n; � Send north
22 else
23 break; � Unroutable packet. Drop.

5 Refutation-Based Verification

We attempt to scale up verification of the correctness of Algorithm 1 by imple-
menting it at the routing node level and stripping away architecture and commu-
nication details. Our aim is to check that Algorithm 1 is free of livelock. A major
cause of livelock is excessive fault tolerance in the routing algorithm. Because
every node attempts to provide an alternate route to a packet, it is possible that
a packet could circle around several nodes without ever reaching its destination.
As we later prove, livelock does not occur when a network contains less than
two faults. While this algorithm was proven in [29] to be livelock-free on a 2×2
network, we discover additional livelock patterns which emerge upon scaling to
a 3×3 NoC.

Part of the condition for livelock is a packet’s inability to reach its destina-
tion. Livelock freedom in this network implies that a packet is either delivered
or dropped (i.e. deemed unroutable) due to link-fault configurations. In both
cases, a packet’s trace is finite. This enables us to identify known non-livelock
traces by simulating the routing algorithm for a finite number of moves. We
use this observation to adapt a refutation-based simulation in which simulation

384 L. Taylor and Z. Zhang

S S

D D

S

D

S D S

D

S D

S D

S

D

Fig. 1. Fault-tolerant routing examples. The black arrows show the path a packet will
take; the red arrows point in the direction of a link fault. (Color figure online)

eliminates traces representing a packet being delivered or dropped. If a finite
trace does not belong to either case, it is extracted to construct an invariant in
IVy. This invariant is used to verify that the trace is truly livelock.

5.1 Disproving Livelock Through Refutation-Based Simulation

To quickly view the routes of each individual packet, we construct a C++ NoC
model implementing Algorithm 1. Starting with a 3×3 NoC, we simulate every
possible packet’s route within K steps. K is an overestimate of the maximal
number of steps that a packet requires to be delivered or dropped.

Our experiments are successful: a finite trace with K = 1000 can be efficiently
generated when scaling up to a 15×15 NoC. A Windows 10 machine (version
1903) with a 2 GHz 4-Core CPU and 8 GB of memory simulates every possible
packet’s route and verifies livelock traces in under 9 h. This is a significant scale-
up of livelock verification as compared to the 2×2 NoC verified in [29].

Scaling Up Livelock Verification for NoC Algorithms 385

While K = 1000 is sufficient to identify potential livelock patterns on a mas-
sive network, this approach slows down greatly as the network’s size increases. It
is also based on finite dimensions provided at the time of simulation. Verification
time increases exponentially upon scaling beyond a 10×10 network.

5.2 Proving Livelock Using IVy

For each trace that is not delivered or dropped within K steps, we developed a
script to analyze the trace and identify looping behavior. Based on the packet’s
starting and destination coordinates, the configuration of faulty links, and the
looping behavior, the script constructs an IVy model.

To effectively describe livelock, invariant checking in IVy begins within the
livelock pattern. Since the simulation shows that the packet can enter the pat-
tern, the only portion remaining to be checked is whether the livelock pattern
is truly infinite. Using IVy’s interactive proof assistant and the trace analysis
script, the invariants described next are automatically constructed to check the
infinite cycles of each trace.

Invariant 1 restricts the destination coordinates of the model to the desti-
nation coordinates of the trace produced by simulation. This eliminates every
case where the destination node is not involved in producing livelock. Invariant
2 ensures that the only nodes which ever obtain the packet are nodes in Lσ,
the set of nodes in the livelock trace. We define the immediate precedence order
(x, y) ≺ (x′, y′) ∈ σ as a predicate to formulate the following two invariants.
These invariants together restrict invariant checking to each livelock trace. They
define the order in which nodes receive the packet. Invariant 3 checks that every
time a packet leaves a certain node, it will be traveling in the direction that
leads to the next node in trace σ. Invariant 4 checks that every packet that
leaves node (x, y) in σ is forwarded to its immediate next node (x′, y′) in σ.
Enumerations of current and immediate next node coordinates for Invariants 3
and 4 are automatically added to the IVy model. Table 1 defines variables used
in these invariants.

xd = Dx ∧ yd = Dy (1)

∧

0<x�xm; 0<y�ym

((x, y) /∈ Lσ ∧ ¬ν(x, y)) (2)

∧

0<x,x′�xm; 0<y,y′�ym

((x, y), (x′, y′) ∈ Lσ ∧ ((x, y) ≺ (x′, y′) ∈ σ) ∧ (ν(x′, y′)

=⇒ τ(x′, y′) = τ ′(x, y))) (3)

∧

0<x,x′�xm; 0<y,y′�ym

((x, y), (x′, y′) ∈ Lσ ∧ ((x, y) ≺ (x′, y′) ∈ σ) ∧ (μ(x, y)

=⇒ ν(x′, y′) ∧ τ(x′, y′) = τ ′(x, y))) (4)

386 L. Taylor and Z. Zhang

These invariants reproduce in IVy the potential livelock pattern obtained
from simulating the C++ model. If IVy confirms that they are inductive invari-
ants for the corresponding model, it proves not only that the trace σ is possible
but that once it begins, no single move can remove the packet from σ. Therefore,
σ is infinite, indicating a true livelock pattern.

This refutation-based verification method combines the efficiency of C++
routing simulation with the power of IVy invariant checking. It streamlines trace
extraction and pruning from simulation and invariant formulation for proving the
existence of livelock. We have automated this process, and it has demonstrated
substantial improvement in scaling livelock checking to significantly larger net-
works than the 2×2 NoC proven in [29], in our case, up to 15×15.

6 User-Aided Livelock Removal

After confirming livelock traces using IVy’s invariant verification, we correct the
routing logic in Algorithm 1 to prevent each livelock pattern as early in a packet’s
journey as possible. A script automatically identifies each livelock pattern to aid
the user in adjusting the algorithm. Our incremental livelock removal process
starts with a 3×3 NoC and scales up once livelock freedom is achieved. We first
analyze the decision that initiates livelock as illustrated by the blue arrows in
Figs. 2 and 3.

D D

Fig. 2. Livelock patterns on a 3×3 NoC.

DD
D

D
D D

Fig. 3. Patterns from the 4×4 NoC.

Scaling Up Livelock Verification for NoC Algorithms 387

Our observation is that the majority of livelock patterns that emerge in a 3×3
NoC are almost identical to those in Fig. 2. To remove these patterns, we modify
the algorithm iteratively at each condition. The modification that removes the
largest quantity of livelock traces while maintaining a low number of unroutable
packets is then tested as the current working model. This process repeats until
the NoC is livelock-free.

By analyzing the identified livelock patterns in Fig. 2, we find that the livelock
scenario on the left can be removed by adding the condition (xd �= x + 1 ∨ yd �=
y + 1) to line 8 of Algorithm 1, effectively preventing the packet from being
routed south if the destination is one node northeast. We continue removing
other livelock patterns using the steps below.

1. Prune the prefix of a livelock trace and then identify each turn a packet makes
in a livelock cycle.

2. Manually adjust the conditions for one turn at a time by excluding the current
state of the packet at a specific node from making the livelock-producing turn.
These conditions include the packet’s current location and traveling direction,
the arrangement of link faults, and the destination coordinates.

3. Simulate the model with each modification to the routing algorithm.
4. Identify and count the potential livelock scenarios that were removed. Since

modifications decrease a packet’s ability to move, no new livelock scenarios
are created and the process can terminate.

5. Implement the modification that yields the fewest livelock scenarios and
unroutable cases to the routing algorithm, effectively removing the livelock
pattern under analysis as well as other similar patterns.

6. Simulate the modified model and repeat all steps above to eliminate any
remaining livelock scenarios.

A user can intuitively find similarities between livelock patterns. This interac-
tive procedure vastly simplifies routing algorithm modification, especially when
scaling up the network. For example, when we discover that the livelock patterns
on a 4×4 network very closely resemble those of the 3×3 network, it is clear that
the modification to the algorithm has to account for scenarios in different areas
of the NoC. Figure 3 shows two groups of livelock patterns that emerge when
scaling up to a 4×4 NoC. The nodes marked D represent possible locations for
a destination that caused livelock. After analyzing each move of the new live-
lock patterns, the previously mentioned modification to the routing protocol is
designed to be scalable, and packets are excluded from travelling south if the
destination is one node east and any number of nodes north of the packet. This
incremental process repeats to produce a livelock-free routing algorithm.

Specifically, conditions 1, 2, and 3 shown below have been added as conjunc-
tive clauses to lines 6, 8, and 16 of Algorithm 1, respectively. The addition of
these conditions produces a livelock-free routing algorithm for up to a 15×15
NoC. Because a packet cannot be in livelock if it is delivered or dropped within
K steps, and because all traces produced by the C++ model show that a packet
is delivered or dropped within K steps, no livelock exists in the 15×15 NoC.

388 L. Taylor and Z. Zhang

1. yd �= y + 1 ∨ τ �= s
2. xd �= x + 1 ∨ yd < y + 1
3. τ �= e ∨ xd �= xm ∨ yd �= ym

7 Unroutable Packets

Modifying the original routing algorithm to remove livelock can turn an infi-
nite livelock pattern into a finite trace representing either packet delivery or
unroutability. The “unroutable” status of a packet is determined when a routing
node has exhausted all alternative routes for a packet but still cannot deliver
it. Labeling a packet as unroutable allows it to be removed from the network,
which reduces unnecessary network traffic that consumes power as is the case
for livelock. On the other hand, minimizing traces for unroutable packets while
removing livelock scenarios is ideal as it allows improved packet delivery rate
for a NoC while reducing unprofitable network traffic. The C++ model tracks
unroutable packets in addition to potential livelock patterns.

We find that some unroutable cases are introduced when livelock is removed.
However, this modification also allows for many packets otherwise in live-
lock to be converted into deliverable packets. An interesting cause of packet
unroutability is livelock prevention. This can cause seemingly random patterns
of unroutable packets, but they form an insignificant amount of packets, espe-
cially as the network is scaled. In these cases, the faulty links are in relatively
unique arrangements in the network.

8 Zone-Based Routing Model

The aforementioned refutation-based livelock verification and removal method
can be used to identify and eliminate livelock and produce an improved routing
algorithm. It, however, becomes unrealistic to simulate when livelock checking
scales to a large NoC. A key observation during the livelock removal process
is that traces representing deliverable, unroutable, and livelock scenarios share
common features and can be abstracted for more efficient analysis. A critical
observation of the routing algorithm is formed after grouping and classifying
these traces: the relative positions between a packet’s source and destination
nodes can represent their corresponding absolute coordinate-based positions.
Therefore, the coordinate-based NoC that has been discussed so far can be
lifted to a NoC of arbitrary size as the relative source-destination positions no
longer require the coordinates. This leads to further simplification of the model:
a packet used to store current and destination coordinates now only stores its
zone information.

Predicates and Invariants for Routing Zones. It is imperative that the
abstraction of a model accurately represent the model. We utilize IVy to aid in
incrementally creating the zone-based routing abstraction. Each location-based

Scaling Up Livelock Verification for NoC Algorithms 389

condition from the routing algorithm is extracted and mapped to a predicate
variable. If two physically adjacent zones satisfy an identical set of predicates,
the zones are merged. The detailed process is as follows.

First, we extract location-based conditions from the routing algorithm to
form predicates, e.g., the condition yd � y in line 6 of Algorithm 1 is represented
by a predicate variable p1. A zone represents a set of routing nodes satisfying
the same predicates. Denote zone �Zi = 〈p1, . . . , pn〉 as a vector of n predicate
variables, i.e., location-based predicates extracted from the routing algorithm.
In the case of Algorithm 1, n = 18. Even if one predicate can cover the other,
predicates are stored as separate variables. For example, if p1 is xd = x and p2
is xd � x, we denote p1 and p2 as separate predicates. Given a NoC routing
algorithm and a set of predicates, we formulate the three invariants listed below
and check them against our NoC model in IVy:

1. ∀i �= j : �Zi �= �Zj (Every zone is unique.)
2. ∀i,∃k, s.t. �Zi[k] = true (Every zone has at least one true predicate.)
3. ∀k,∃i, s.t. �Zi[k] = true (Every predicate is true in at least one zone.)

When Invariant 1 fails, there must exist one pair of zones, namely, �Zi and �Zj ,
that are identical (i.e., �Zi = �Zj). When Invariant 1 holds, every zone is unique
and no two zones can be merged. Invariants 2 and 3 describe the necessity of
each zone and each predicate, respectively. That is, if a predicate evaluates to
false everywhere in the NoC, it can be removed from the routing algorithm.

Abstracting Routing Nodes into Zones. We begin with a 1×1 NoC with
one zone, i.e., the destination zone shown in Fig. 4(a). Note that we represent
the destination node with white text on a black background in all subfigures
of Fig. 4. Because every zone in a 1×1 NoC is trivially unique, we scale up by
adding one node in each direction to create a 3×3 NoC. When encountering
a new node after expanding the NoC for the first time, we assign each node a
unique zone identifier, as shown in Fig. 4(b). Then we check the three invariants
above against the IVy model. When Invariant 1 fails, IVy returns two identical
zones as a counterexample. When Invariant 2 or 3 fail, IVy returns the unused
zone or predicate to be evaluated by the user. If equivalent zones are physically
adjacent on the NoC, we merge them into one zone then repeat checking these
invariants. When Invariant 1 holds, it indicates that no further abstraction can
be made as every zone is unique, and combining two unique zones would cause
neighboring nodes within the same zone to forward a packet differently. For the
3×3 NoC, IVy proves that every zone is unique. Therefore, we continue scale it
up to a 5×5 network as shown in Fig. 4(c). Invariant checking in IVy shows that
some, but not all of the new zones are unique. For instance, after IVy finds that
ZH = ZX , they are merged into one zone ZL. This process is repeated until all
zones are unique. The resulting zones are shown in Fig. 4(d).

Before further scaling the zone-based model, we first analyze the routing deci-
sion conditions of Algorithm 1. We observe that the routing decision conditions
are reliant only on the following distance specifications (where m represents

390 L. Taylor and Z. Zhang

A IE
D C B

A
F G H

YE
D C B

A
F G H

I
X
W

Q
R
S T U V

JP
KO N M L

RP

D
O

B

N
M Q L

AF
G
H I J K

E
C

RP
D O B

N
M Q L

AF
G
H I J K

E
C

(a) (b) (c) (d) (e)

Fig. 4. Development of abstract zones

either an x-coordinate or a y-coordinate): m < md − 1, m < md, m � md,
m = md, m � md, m > md, and m > md + 1. Because none of these specifi-
cations differentiates between a node that is two or more nodes away from the
destination, the nodes or zones on an edge in a 5×5 network can be extended to
represent all nodes more than one node away from the destination. As an exam-
ple, the node labeled C in Fig. 4(d) is representative not only for the node two
nodes north of the destination, but also for all nodes more than one node north.
To validate our conjecture, we use IVy to check the aforementioned invariants
in arbitrarily large networks where all new zones are present. IVy confirms all
zones are unique. Figure 4(e) and Table 2 show the final zones for Algorithm 1.

Table 2. Formulas corresponding to each zone in Fig. 4(e)

Zone x y Size Zone x y Size

A x > xd + 1 y = yd k × 1 J x = xd y < yd − 1 1 × k

B x > xd y > yd k × k K x > xd y < yd − 1 k × k

C x = xd y > yd + 1 1 × k L x > xd y = yd − 1 k × 1

D x = xd − 1 y > yd 1 × k M x = xd − 1 y = yd − 1 1 × 1

E x < xd − 1 y > yd k × k N x = xd + 1 y = yd 1 × 1

F x < xd − 1 y = yd k × 1 O x = xd y = yd + 1 1 × 1

G x < xd − 1 y = yd − 1 k × 1 P x = xd − 1 y = yd 1 × 1

H x < xd − 1 y < yd − 1 k × k Q x = xd y = yd − 1 1 × 1

I x = xd − 1 y < yd − 1 1 × k R x = xd y = yd 1 × 1

9 Zone-Based IVy Implementation

In the zone-based model, it is no longer necessary to maintain the coordinates
for routing nodes. In order for the routing algorithm to determine a packet’s
next forwarding direction, one needs to know the following information about a

Scaling Up Livelock Verification for NoC Algorithms 391

packet: current traveling zone �, current traveling direction τ , and the status
of the current routing node’s four output links Λdir, where dir ∈ {w, s, n, e},
which can be free (�), faulty (�), or edge (⊥). The “edge” status of an output
link indicates that the current traveling node is on an edge of a NoC. Table 3
lists these variables and their types. Note that τ is the most recent direction of
travel or the direction of travel that led into the current node. Since coordinates
are not used in the zone-based model, τ is no longer associated to its node’s
coordinates, but rather an enumerative typed variable.

Table 3. Variables for zone-based model.

Variable Type Definition

� enum Packet’s most recent traveling zone (A to R) in Fig. 4(e)

τ enum Packet’s most recent traveling direction, τ ∈ dir

Λdir enum Output link in the direction specified by dir, where dir = {n, e, s, w};
and output link can be free (�), faulty (�), or edge (⊥)

On-the-fly NoC Construction. The zone-based model inherits the assump-
tion that the number of faults in a network does not exceed two. This number
could be modified to improve the protocol and guarantee a higher fault tolerance,
but increasing fault tolerance creates additional complexity without necessarily
increasing packet’s ability to route [29]. Thus, the zone-based model aims to
guarantee livelock freedom for two-fault tolerant routing. We specify the zone-
based routing algorithm in IVy. In an arbitrarily large NoC, the user is no longer
required to specify dimensions for the network. Instead, a network is constructed
on-the-fly while the packet travels. Forwarding decisions in the abstract network
use the following procedure:

1. The current zone of a packet (�) is nondeterministically chosen.
2. The current node’s link statuses (Λn,e,s,w) are nondeterministically chosen.
3. The routing algorithm determines the direction to forward the packet.
4. The packet is forwarded and the process repeats.

To guarantee realistic scenarios throughout the IVy NoC model, we specified
constraints and heuristics to aid the nondeterministic choices in the procedure
above. For example, if a packet is sent west from an unknown location in zone
K (see Fig. 4), a westbound move can keep it in zone K or forward it to zone
J , decided nondeterministically. However, if a packet travels from zone N to
zone B in one move and then travels west one node, it must be in zone O.
The routing model also excludes impossible edge cases. For instance, the rules 5
and 6 below are assumptions for the east links, and symmetric rules apply to
the other links. As shown in Fig. 6, this requires that the edges of the network
remain intact. It removes unrealistic scenarios including one in which a packet
reaches the east edge, travels south, and then is allowed to be forwarded east
again. It disallows the scenario on the left of Fig. 6 but enforces the scenario on
the right. While they do not define perfect conditions for east links, they allow
every possible scenario to be tested, along with some impossible scenarios. Since

392 L. Taylor and Z. Zhang

realistic scenarios are a subset of all verified scenarios, and the set of all verified
scenarios is livelock-free, we prove livelock freedom in all realistic scenarios.

(τ ∈ {n, s} ∧ Λe =⊥) =⇒ (Λ′
e =⊥) (5)

((τ ∈ {n, s} ∧ Λe �=⊥) ∨ τ = w) =⇒ (Λ′
e �=⊥) (6)

Abstract Moves. In order to effectively check for a livelock pattern con-
sisting of a large number of single-step moves of a packet, we specify an
abstract move, which aggregates a sequence of consecutive stuttering single-
step moves into a single move. It is the abstract moves of a packet that are
stored as it travels. For example, if a packet takes 300 moves east in zone
E before turning south, but remaining in E, they are all represented by one
abstract east move followed by another abstract move to the south. Define the
state of the zone-based model as (�, τ, Λw, Λs, Λn, Λe). A single-step move α

causes possibly trivial update to the current state, i.e., (�, τ, Λw, Λs, Λn, Λe)
α−→

(�′, τ ′, Λ′
w, Λ′

s, Λ
′
n, Λ′

e). A single-step move is stuttering, denoted as ε, if τ ′ = τ ,
i.e., the move does not change the packet traveling direction. An abstract
move is used to represent a (finite) sequence of stuttering single-step moves
and a sequence of abstract moves only consists of non-stuttering moves. As
a packet travels, an abstract move is formed by storing only the end state
of a sequence of stuttering moves. Specifically, given a sequence of moves,
si

α−→ si+1
ε−→ si+2

ε−→ . . . ,
ε−→ si+k

α−→ si+(k+1), it is abstracted as si
α−→

si+k
α−→ si+(k+1). For instance, for a packet with the following sequence of

exact moves, (B,w,�,�,�,�) ε−→ (B,w,�,�,�,�) α−→ (B, s,�,�,�,�), its
abstract sequence becomes (B,w,�,�,�,�) α−→ (B, s,�,�,�,�). Storing only
abstract moves while checking for livelock enables us to detect very large cyclic
patterns. As shown in Fig. 5, we can detect cycles using only the turns in those
cycles. Using abstract moves significantly reduces verification effort while pre-
serving livelock in the system. Since livelock is based on a series of moves that
change traveling directions, the number of stuttering moves a packet makes in
sequence does not impact livelock.

...

...

......

Fig. 5. Abstract moves Fig. 6. Edge heuristics

RP
QM

F
G

H
I J

Fig. 7. Livelock pattern

Scaling Up Livelock Verification for NoC Algorithms 393

10 Verification of Livelock Freedom

The invariants used for livelock checking are presented in Fig. 8. Let τn represent
the traveling direction of the nth stored abstract move along a packet trace to
destination, with n = 0 indicating the most recent decision and n = 6 indi-
cating the earliest recorded abstract move. The upper bound of stored abstract
moves Tmax is set to 7 because our experimentation indicates that it is the
lowest number that does not cause “false positives” – packets traveling in a
near-complete loop without entering livelock. Since a livelock pattern is infinite
but must contain at least 2 nodes (in a back-and-forth livelock pattern) or 4
nodes (in a cyclical pattern), Tmax has to be at least 4. When 4 � Tmax � 6,
scenarios emerge that cause a packet to complete a loop without entering live-
lock. For example, a packet may travel to the destination by passing through
zones J → Q → M → I → J → K → N → R when the node at zone M is
on the west edge and has a faulty north link. Note that zone L is not stored
between K → N because the packet traveling direction remains the same from K
through L until it turns west in zone N . While not a livelock pattern, it includes
four nodes that checking with Tmax = 4 would cause to be flagged as a livelock
pattern. Clockwise, counter-clockwise, and back-and-forth livelock patterns are
given as invariants 7 to 10, 11 to 14, and 15 to 18 in Fig. 8, respectively. These
twelve invariants cover all possible livelock patterns in the zone-based model and
therefore, are used for livelock detection and removal in our work.

For livelock freedom verification in the zone-based model, our approach offers
a stronger guarantee than livelock freedom. That is, in addition to proving the
routing algorithm is free of livelock, we prove that it is free of any traces making
more than seven abstract turns in a cyclic pattern. If a packet does not reach its
destination without making seven cyclic abstract turns, then its abstract trace
is considered as a “livelock” trace, even though it may have a chance of reaching
its destination after seven abstract turns. Such a trace is automatically detected
and then used for improving the routing algorithm as discussed later in this
section. Thus, we argue that the network is efficient since packets mostly take a
direct path to the destination and avoid traveling needlessly in cyclical patterns.

Verification of the zone-based routing algorithm is performed in IVy with the
ABC implementation of Property-Directed Reachability [2]. After detecting the
first invariant violation, the model checker terminates and returns a counterex-
ample representing a livelock trace. For the purpose of correcting Algorithm 1 to
achieve livelock-free routing, it is required to collect all livelock traces. To enu-
merate every possible livelock scenario, we automate incremental livelock trace
generation by iteratively adding a previously generated livelock trace as a new
IVy invariant and then invoking IVy to find the next livelock pattern. A report
of each livelock pattern is generated to aid a user in adapting the routing algo-
rithm to remove it. The report makes clear which routing decision is taken. The
traces provided by this model are sufficiently informative for a user to correct
the routing algorithm.

We begin livelock verification by first encoding in IVy all invariants shown in
Fig. 8. Each invariant in this figure represents a zone-independent packet trav-

394 L. Taylor and Z. Zhang

τ6 = s ∧ τ5 = w ∧ τ4 = n ∧ τ3 = e ∧ τ2 = s ∧ τ1 = w ∧ τ0 = n (7)

τ6 = w ∧ τ5 = n ∧ τ4 = e ∧ τ3 = s ∧ τ2 = w ∧ τ1 = n ∧ τ0 = e (8)

τ6 = n ∧ τ5 = e ∧ τ4 = s ∧ τ3 = w ∧ τ2 = n ∧ τ1 = e ∧ τ0 = s (9)

τ6 = e ∧ τ5 = s ∧ τ4 = w ∧ τ3 = n ∧ τ2 = e ∧ τ1 = s ∧ τ0 = w (10)

τ6 = e ∧ τ5 = n ∧ τ4 = w ∧ τ3 = s ∧ τ2 = e ∧ τ1 = n ∧ τ0 = w (11)

τ6 = n ∧ τ5 = w ∧ τ4 = s ∧ τ3 = e ∧ τ2 = n ∧ τ1 = w ∧ τ0 = s (12)

τ6 = w ∧ τ5 = s ∧ τ4 = e ∧ τ3 = n ∧ τ2 = w ∧ τ1 = s ∧ τ0 = e (13)

τ6 = s ∧ τ5 = e ∧ τ4 = n ∧ τ3 = w ∧ τ2 = s ∧ τ1 = e ∧ τ0 = n (14)

τ6 = w ∧ τ5 = e ∧ τ4 = w ∧ τ3 = e ∧ τ2 = w ∧ τ1 = e ∧ τ0 = w (15)

τ6 = e ∧ τ5 = w ∧ τ4 = e ∧ τ3 = w ∧ τ2 = e ∧ τ1 = w ∧ τ0 = e (16)

τ6 = n ∧ τ5 = s ∧ τ4 = n ∧ τ3 = s ∧ τ2 = n ∧ τ1 = s ∧ τ0 = n (17)

τ6 = s ∧ τ5 = n ∧ τ4 = s ∧ τ3 = n ∧ τ2 = s ∧ τ1 = n ∧ τ0 = s (18)

Fig. 8. Livelock patterns encoded as invariants for routing zones.

eling pattern. Therefore, such a pattern can exist in a number of livelock traces
when mapped to actual regions. Our technique relies on IVy to incrementally
enumerate actual livelock traces. For example, Invariant 14 in Fig. 8 is encoded
as ¬σ0 below. Then IVy can detect a violation of ¬σ0 by returning an actual live-
lock trace as a counterexample shown as σ1 below. This trace describes packet
travel between zones I and J , where sentN represents τN and ΛdirN is repre-
sented by northLinkN, eastLinkN, and so forth. A packet’s Xth zone �X is
given by packet.znX and packet.zn3 = i means that the packet’s third zone
was I. More concrete examples are found on GitHub (See footnote 1).

The amended invariant is constructed as ¬σ0 ∨ σ1 (i.e., σ0 ⇒ σ1) so that
IVy can skip livelock trace σ1 and continue to search for the next trace. When
n livelock traces are produced, the amended invariant is constructed as ¬σ0 ∨
σ1 ∨ σ2 ∨ · · · ∨ σn−1 ∨ σn. This process is repeated for verifying the model and

Scaling Up Livelock Verification for NoC Algorithms 395

appending new invariants representing livelock traces as disjunctive clauses to
existing ones until every livelock pattern has been identified, when verification
terminates with a livelock-free model.

10.1 Incremental Removal of Livelock Traces in Routing Algorithm

We apply a similar method to that presented in Sect. 6 to improve the routing
algorithm until no livelock patterns can be found. For instance, consider the
livelock pattern from Fig. 7. To eliminate this pattern, we remove the condition
τ �= e∨xd �= xm ∨ yd �= ym (implemented in Sect. 6) from the routing algorithm.
We then add to the first west decision a condition that truly eliminates livelock
scenarios: � /∈ {J,Q}∨τ �= n, as shown on line 20 of Algorithm 2. In most cases,
this does not produce additional unroutable scenarios, as a packet that satisfies
the new condition (excluding it from the second west routing option) generally
satisfies the condition to be routed east and then north or south toward the
destination. This approach leads to the creation of our final zone-based livelock-
free routing algorithm shown in Algorithm 2.

10.2 Verification Results for Zone-Based Routing Algorithm

The final zone-based link-fault-tolerant routing algorithm was verified to satisfy
the invariants in Fig. 8 on a Windows 10 machine (version 1903) with an Intel
Core i7 4-Core 2 GHz Processor and 8 GB memory. With a single faulty link, the
improved routing algorithm is proven to be livelock-free with no unroutable pack-
ets. Under two-faulty-link configurations, this routing algorithm is also livelock-
free, with only a small number of unroutable patterns. Because it is unlikely to
find more than two faults on a NoC [29], only networks with one and two faults
are tested. With no livelock detected for Algorithm 2, it runs in approximately
four minutes. The original routing algorithm contains 18 livelock patterns which
are discovered in under three hours. The livelock verification script can consis-
tently detect livelock at a rate of under ten minutes per livelock scenario. Thus,
the zone-based IVy verification is both more efficient and more accurate than
the C++ simulation.

10.3 Detecting Unroutable Packets

Ideally, a fault-tolerant algorithm should be free of livelock while producing the
fewest unroutable cases. Thus, it is important to identify unroutable packets on
Algorithm 2. The same script that modifies the livelock-resistance invariants can
be used to detect unroutable packets.

While it is difficult to obtain a finite percentage of unroutable packets on
an arbitrarily large network, we can detect and count the patterns that cause a
packet to become unroutable. In a similar fashion to livelock detection, the invari-
ant ¬packet.unroutable can be checked each time we verify the algorithm.
When IVy finds a counterexample (i.e., a trace showing an unroutable packet)
the script analyzes it and adds the trace of the scenario that caused an unroutable

396 L. Taylor and Z. Zhang

Algorithm 2: Final Livelock-Free Zone-Based Routing Algorithm.
Input: �, Λdir, τ
Output: τ ′

1 while ¬delivered do
2 if � = R then
3 delivered := true;
4 else if � = N ∧ Λw = � then
5 τ ′ := w; � Send west
6 else if � = O ∧ Λs = � then
7 τ ′ := s; � Send south
8 else if � = P ∧ Λe = � then
9 τ ′ := e; � Send east

10 else if � = Q ∧ Λn = � then
11 τ ′ := n; � Send north
12 else if Λw = � ∧ τ ∈ {w, s, i} ∧ (� ∈ {A, B, C, J, K, L, N, O, Q} ∨ (� /∈

{D, E} ∧ Λs = �)) ∧ (� /∈ {G, L, M, Q} ∨ τ �= s) then
13 τ ′ := w; � Send west
14 else if Λs = � ∧ τ ∈ {w, s, i} ∧ (� ∈ {A, B, C, E, F, N, O, P} ∨ (� /∈

{D, K, L} ∧ Λw = �)) then
15 τ ′ := s; � Send south
16 else if Λe = � ∧ τ �= w ∧ � ∈ {E, F, G, H, M} then
17 τ ′ := e; � Send east
18 else if Λn = � ∧ τ �= s ∧ � ∈ {G, H, I, J, K, L, M, Q} then
19 τ ′ := n; � Send north
20 else if Λw = � ∧ � ∈ {A, B, C, J, K, L, N, O, Q} ∧ (� = Q ∨ τ �= e) ∧ (� /∈

{J, Q} ∨ τ �= n) then
21 τ ′ := w; � Send west

22 else if Λs = � ∧ τ �= n ∧ � ∈ {A, B, C, D, E, F, N, O, P} then
23 τ ′ := s; � Send south
24 else if Λe = � ∧ � ∈ {C, D, E, F, G, H, I, J, M, O, P, Q} ∧ (τ �= w ∨ � ∈

{C, J, O, Q, D, I, P}) then
25 τ ′ := e; � Send east
26 else if Λn = � ∧ � ∈ {A, F, G, H, I, J, K, L, M, N, P, Q} ∧ (τ �= s ∨ � ∈

{F, G, H, I, J, M, P, Q}) then
27 τ ′ := n; � Send north
28 else
29 break; � Unroutable packet. Drop

packet as a disjunctive clause to the original invariant. IVy can detect all of the
unroutable scenarios within several hours using the same machine described in
Sect. 10.2. The script generates a log file with traces of those unroutable patterns.

11 Conclusion

This paper describes a process for scalable verification of a fault-tolerant routing
algorithm. While refutation-based simulation enables the model to scale from

Scaling Up Livelock Verification for NoC Algorithms 397

2 × 2 to 15 × 15 NoCs, this approach allows us to discover livelock traces missed
by the previous verification approach from [29]. We then propose an abstract
zone-based routing algorithm model based on a packet’s relative position to its
destination. It uses Property-Directed Reachability to verify livelock freedom on
arbitrarily large NoCs. We propose iterative techniques to automatically discover
all livelock patterns. We use these patterns to derive an improved link-fault-
tolerant routing algorithm that is livelock-free for arbitrarily large NoCs. This
livelock freedom guarantees increase dependability of the analyzed fault-tolerant
algorithm for its application in safety-critical systems.

Techniques developed in this paper are applicable to formal specification
and verification of a variety of fault-tolerant adaptive routing algorithms, as
well as, other NoC topologies. Future work includes investigating techniques
for optimizing the zone-based, livelock-free routing algorithm to produce the
minimal number of unroutable packets. We also plan to investigate other safety
properties on the zone-based model, such as deadlock freedom.

Acknowledgment. The authors would like to thank Ken McMillan for his assistance
in understanding the IVy formal specification language and utilizing the IVy verifi-
cation tool. Landon Taylor was supported in part by National Science Foundation
grant (CAREER-1253024). Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. The authors would also like to thank
Adobe Systems Incorporated for their support.

References

1. Alhussien, A., Verbeek, F., van Gastel, B., Bagherzadeh, N., Schmaltz, J.: Fully
reliable dynamic routing logic for a fault-tolerant NoC architecture. J. Integr. Cir-
cuits Syst. 8(1), 43–53 (2013)

2. Berkeley Logic Synthesis and Verification Group: ABC: A system for sequen-
tial synthesis and verification (September 2020). http://www.eecs.berkeley.edu/
∼alanmi/abc/ and https://github.com/berkeley-abc/abc

3. Borrione, D., Helmy, A., Pierre, L., Schmaltz, J.: A formal approach to the ver-
ification of networks on chip. EURASIP J. Embed. Syst. 2009(1), 1–14 (2009).
https://dl.acm.org/doi/10.1155/2009/548324

4. Boutekkouk, F.: Formal specification and verification of communication in
Network-on-Chip: an overview. Int. J. Recent Contrib. Eng. Sci. IT (iJES) 6(4),
15–31 (2018). https://doi.org/10.3991/ijes.v6i4.9416

5. Bozga, M., Graf, S., Mounier, L.: IF-2.0: a validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343–348. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 26

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

7. Champelovier, D., et al.: Reference manual of the LNT to LOTOS translator (ver-
sion 6.0). INRIA/VASY/CONVECS (June 2014)

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://github.com/berkeley-abc/abc
https://dl.acm.org/doi/10.1155/2009/548324
https://doi.org/10.3991/ijes.v6i4.9416
https://doi.org/10.1007/3-540-45657-0_26
https://doi.org/10.1007/3-540-45657-0_26
https://doi.org/10.1007/978-3-642-14295-6_5

398 L. Taylor and Z. Zhang

8. Chatterjee, S., Kishinevsky, M., Ogras, U.Y.: Quick formal modeling of commu-
nication fabrics to enable verification. In: 2010 IEEE International High Level
Design Validation and Test Workshop (HLDVT), pp. 42–49 (2010). https://doi.
org/10.1109/HLDVT.2010.5496662

9. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 14

10. Dridi, M., Lallali, M., Rubini, S., Singhoff, F., Diguet, J.P.: Modeling and validation
of a mixed-criticality NoC router using the IF language. In: Proceedings of the
10th International Workshop on Network on Chip Architectures. NoCArc 2017,
Association for Computing Machinery, New York, NY, USA (2017). https://doi.
org/10.1145/3139540.3139543

11. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

12. van Gastel, B., Schmaltz, J.: A formalisation of xMAS. In: Gamboa, R., Davis,
J. (eds.) Proceedings International Workshop on the ACL2 Theorem Prover and
its Applications, ACL2 2013, Laramie, Wyoming, USA, 30–31 May 2013, EPTCS,
vol. 114, pp. 111–126 (2013). https://doi.org/10.4204/eptcs.114.9

13. Helmy, A., Pierre, L., Jantsch, A.: Theorem proving techniques for the formal ver-
ification of NoC communications with non-minimal adaptive routing. In: DDECS,
pp. 221–224. IEEE (2010)

14. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

15. Imai, M., Yoneda, T.: Improving dependability and performance of fully asyn-
chronous on-chip networks. In: Proceedings of the 2011 17th IEEE International
Symposium on Asynchronous Circuits and Systems, pp. 65–76. ASYNC 2011,
IEEE Computer Society, Washington, DC, USA (2011). https://doi.org/10.1109/
ASYNC.2011.15, http://dx.doi.org/10.1109/ASYNC.2011.15

16. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

17. Lecler, J.J., Baillieu, G.: Application driven network-on-chip architecture explo-
ration & refinement for a complex SoC. Des. Autom. Embed. Syst. 15,
133–158 (2011). https://doi.org/10.1007/s10617-011-9075-5, https://link.springer.
com/article/10.1007/s10617-011-9075-5

18. McMillan, K.L.: IVy (2019). http://microsoft.github.io/ivy/, https://github.com/
kenmcmil/ivy

19. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

21. Tsai, W.C., Lan, Y.C., Hu, Y.H., Chen, S.J.: Networks on chips: structure and
design methodologies. J. Electr. Comput. Eng. 2012, 15 (2012). https://doi.org/
10.1155/2012/509465

https://doi.org/10.1109/HLDVT.2010.5496662
https://doi.org/10.1109/HLDVT.2010.5496662
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1145/3139540.3139543
https://doi.org/10.1145/3139540.3139543
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.4204/eptcs.114.9
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/ASYNC.2011.15
https://doi.org/10.1109/ASYNC.2011.15
http://dx.doi.org/10.1109/ASYNC.2011.15
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/s10617-011-9075-5
https://link.springer.com/article/10.1007/s10617-011-9075-5
https://link.springer.com/article/10.1007/s10617-011-9075-5
http://microsoft.github.io/ivy/
https://github.com/kenmcmil/ivy
https://github.com/kenmcmil/ivy
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1155/2012/509465
https://doi.org/10.1155/2012/509465

Scaling Up Livelock Verification for NoC Algorithms 399

22. Verbeek, F., Schmaltz, J.: A decision procedure for deadlock-free routing in
wormhole networks. IEEE Trans. Parallel Distrib. Syst. 25(8), 1935–1944 (2014).
https://doi.org/10.1109/TPDS.2013.121

23. Verbeek, F., Schmaltz, J.: Automatic verification for deadlock in Networks-on-
Chips with adaptive routing and wormhole switching. In: Proceedings of the fifth
ACM/IEEE International Symposium on Networks-on-Chip, pp. 25–32. NOCS
2011, Association for Computing Machinery, New York, NY, USA (2011). https://
doi.org/10.1145/1999946.1999951

24. Verbeek, F., Schmaltz, J.: Easy formal specification and validation of unbounded
Networks-on-Chips architectures. ACM Trans. Des. Autom. Electron. Syst. 17(1)
(2012). https://doi.org/10.1145/2071356.2071357

25. Wu, J., Zhang, Z., Myers, C.: A fault-tolerant routing algorithm for a Network-on-
Chip using a link fault model. In: Virtual Worldwide Forum for PhD Researchers
in Electronic Design Automation (2011)

26. Yoneda, T., et al.: Network-on-Chip based multiple-core centralized ECUs for
safety-critical automotive applications. In: Asai, S. (ed.) VLSI Design and Test
for Systems Dependability, pp. 607–633. Springer, Tokyo (2019). https://doi.org/
10.1007/978-4-431-56594-9 19

27. Zaman, A., Hasan, O.: Formal verification of circuit-switched Network on chip
(NoC) architectures using SPIN. In: 2014 International Symposium on System-on-
Chip, SoC 2014. Institute of Electrical and Electronics Engineers Inc. (December
2014). https://doi.org/10.1109/ISSOC.2014.6972449

28. Zhang, Z., Serwe, W., Wu, J., Yoneda, T., Zheng, H., Myers, C.: Formal analysis of
a fault-tolerant routing algorithm for a Network-on-Chip. In: Lang, F., Flammini,
F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 48–62. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10702-8 4

29. Zhang, Z., Serwe, W., Wu, J., Yoneda, T., Zheng, H., Myers, C.: An improved fault-
tolerant routing algorithm for a Network-on-Chip derived with formal analysis.
Sci. Comput. Program. 118, 24–39 (2016). https://doi.org/10.1016/j.scico.2016.01.
002, http://www.sciencedirect.com/science/article/pii/S0167642316000125, For-
mal Methods for Industrial Critical Systems (FMICS 2014)

https://doi.org/10.1109/TPDS.2013.121
https://doi.org/10.1145/1999946.1999951
https://doi.org/10.1145/1999946.1999951
https://doi.org/10.1145/2071356.2071357
https://doi.org/10.1007/978-4-431-56594-9_19
https://doi.org/10.1007/978-4-431-56594-9_19
https://doi.org/10.1109/ISSOC.2014.6972449
https://doi.org/10.1007/978-3-319-10702-8_4
https://doi.org/10.1007/978-3-319-10702-8_4
https://doi.org/10.1016/j.scico.2016.01.002
https://doi.org/10.1016/j.scico.2016.01.002
http://www.sciencedirect.com/science/article/pii/S0167642316000125

Stateful Dynamic
Partial Order

Reduction for Model
Checking Event-

Driven Applications
that Do Not Terminate

Rahmadi Trimananda1(B), Weiyu Luo1, Brian Demsky1,
and Guoqing Harry Xu2

1 University of California, Irvine, USA
{rtrimana,weiyul7,bdemsky}@uci.edu

2 University of California, Los Angeles, USA
harryxu@g.ucla.edu

Abstract. Event-driven architectures are broadly used for systems that
must respond to events in the real world. Event-driven applications are
prone to concurrency bugs that involve subtle errors in reasoning about
the ordering of events. Unfortunately, there are several challenges in using
existing model-checking techniques on these systems. Event-driven appli-
cations often loop indefinitely and thus pose a challenge for stateless
model checking techniques. On the other hand, deploying purely stateful
model checking can explore large sets of equivalent executions.

In this work, we explore a new technique that combines dynamic
partial order reduction with stateful model checking to support non-
terminating applications. Our work is (1) the first dynamic partial order
reduction algorithm for stateful model checking that is sound for non-
terminating applications and (2) the first dynamic partial reduction algo-
rithm for stateful model checking of event-driven applications. We exper-
imented with the IoTCheck dataset—a study of interactions in smart
home app pairs. This dataset consists of app pairs originated from 198
real-world smart home apps. Overall, our DPOR algorithm successfully
reduced the search space for the app pairs, enabling 69 pairs of apps
that did not finish without DPOR to finish and providing a 7× average
speedup.

1 Introduction

Event-driven architectures are broadly used to build systems that react to events
in the real world. They include smart home systems, GUIs, mobile applications,
and servers. For example, in the context of smart home systems, event-driven sys-
tems include Samsung SmartThings [46], Android Things [16], OpenHAB [35],
and If This Then That (IFTTT) [21].
c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 400–424, 2022.
https://doi.org/10.1007/978-3-030-94583-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_20

Stateful Dynamic Partial Order Reduction 401

Event-driven architectures can have analogs of the concurrency bugs that are
known to be problematic in multithreaded programming. Subtle programming
errors involving the ordering of events can easily cause event-driven programs to
fail. These failures can be challenging to find during testing as exposing these
failures may require a specific set of events to occur in a specific order. Model-
checking tools can be helpful for finding subtle concurrency bugs or understand-
ing complex interactions between different applications [49]. In recent years,
significant work has been expended on developing model checkers for multi-
threaded concurrency [2,19,22,25,57,60,62,64], but event-driven systems have
received much less attention [22,30].

Event-driven systems pose several challenges for existing stateless and state-
ful model-checking tools. Stateless model checking of concurrent applications
explores all execution schedules without checking whether these schedules visit
the same program states. Stateless model checking often uses dynamic par-
tial order reduction (DPOR) to eliminate equivalent schedules. While there has
been much work on DPOR for stateless model checking of multithreaded pro-
grams [2,12,19,25,64], stateless model checking requires that the program under
test terminates for fair schedules. Event-driven systems are often intended to
run continuously and may not terminate. To handle non-termination, stateless
model checkers require hacks such as bounding the length of executions to verify
event-driven systems.

Stateful model checking keeps track of an application’s states and avoids
revisiting the same application states. It is less common for stateful model check-
ers to use dynamic partial order reduction to eliminate equivalent executions.
Researchers have done much work on stateful model checking [17,18,32,56].
While stateful model checking can handle non-terminating programs, they miss
an opportunity to efficiently reason about conflicting transitions to scale to large
programs. In particular, typical event-driven programs such as smart home appli-
cations have several event handlers that are completely independent of each
other. Stateful model checking enumerates different orderings of these event han-
dlers, overlooking the fact that these handlers are independent of each other and
hence the orderings are equivalent.

Stateful model checking and dynamic partial order reduction discover dif-
ferent types of redundancy, and therefore it is beneficial to combine them to
further improve model-checking scalability and efficiency. For example, we have
observed that some smart home systems have several independent event han-
dlers in our experiments, and stateful model checkers can waste an enormous
amount of time exploring different orderings of these independent transitions.
DPOR can substantially reduce the number of states and transitions that must
be explored. Although work has been done to combine DPOR algorithms with
stateful model checking [61,63] in the context of multithreaded programs, this
line of work requires that the application has an acyclic state space, i.e., it ter-
minates under all schedules. In particular, the approach of Yang et al. [61] is
designed explicitly for programs with acyclic state space and thus cannot check
programs that do not terminate. Yi et al. [63] presents a DPOR algorithm for

402 R. Trimananda et al.

stateful model checking, which is, however, incorrect for cyclic state spaces. For
instance, their algorithm fails to produce the asserting execution in the example
we will discuss shortly in Fig. 1. As a result, prior DPOR techniques all fall short
for checking event-driven programs such as smart home apps, that, in general,
do not terminate.

Our Contributions. In this work, we present a stateful model checking tech-
nique for event-driven programs that may not terminate. Such programs have
cyclic state spaces, and existing algorithms can prematurely terminate an exe-
cution and thus fail to set the necessary backtracking points to fully explore a
program’s state space. Our first technical contribution is the formulation of a
sufficient condition to complete an execution of the application that ensures that
our algorithm fully explores the application’s state space.

In addition to the early termination issue, for programs with cyclic state
spaces, a model checker can discover multiple paths to a state s before it explores
the entire state space that is reachable from state s. In this case, the backtracking
algorithms used by traditional DPOR techniques including Yang et al. [61] can
fail to set the necessary backtracking points. Our second technical contribution
is a graph-traversal-based algorithm to appropriately set backtracking points on
all paths that can reach the current state.

Prior work on stateful DPOR only considers the multithreaded case and
assumes algorithms know the effects of the next transitions of all threads before
setting backtracking points. For multithreaded programs, this assumption is not
a serious limitation as transitions model low-level memory operations (i.e., reads,
writes, and RMW operations), and each transition involves a single memory
operation. However, in the context of event-driven programs, events can involve
many memory operations that access multiple memory locations, and knowing
the effects of a transition requires actually executing the event. While it is con-
ceptually possible to execute events and then rollback to discover their effects,
this approach is likely to incur large overheads as model checkers need to know
the effects of enabled events at each program state. As our third contribution,
our algorithm avoids this extra rollback overhead by waiting until an event is
actually executed to set backtracking points and incorporates a modified back-
tracking algorithm to appropriately handle events.

We have implemented the proposed algorithm in the Java Pathfinder model
checker [56] and evaluated it on hundreds of real-world smart home apps. We
have made our DPOR implementation publicly available [50].

Paper Structure. The remainder of this paper is structured as follows: Sect. 2
presents the event-driven concurrency model that we use in this work. Section 3
presents the definitions we use to describe our stateful DPOR algorithm.
Section 4 presents problems when using the classic DPOR algorithm to model
check event-driven programs and the basic ideas behind how our algorithm solves
these problems. Section 5 presents our stateful DPOR algorithm for event-driven
programs. Section 6 presents the evaluation of our algorithm implementation on
hundreds of smart home apps. Section 7 presents the related work; we conclude
in Sect. 8.

Stateful Dynamic Partial Order Reduction 403

2 Event-Driven Concurrency Model

In this section, we first present the concurrency model of our event-driven system
and then discuss the key elements of this system formulated as an event-driven
concurrency model. Our event-driven system is inspired by—and distilled from—
smart home IoT devices and applications deployed widely in the real world.
Modern smart home platforms support developers writing apps that implement
useful functionality on smart devices. Significant efforts have been made to create
integration platforms such as Android Things from Google [16], SmartThings
from Samsung [46], and the open-source openHAB platform [35]. All of these
platforms allow users to create smart home apps that integrate multiple devices
and perform complex routines, such as implementing a home security system.

The presence of multiple apps that can control the same device cre-
ates undesirable interactions [49]. For example, a homeowner may install the
FireCO2Alarm [38] app, which upon the detection of smoke, sounds alarms and
unlocks the door. The same homeowner may also install the Lock-It-When-
I-Leave [1] app to lock the door automatically when the homeowner leaves
the house. However, these apps can interact in surprising ways when installed
together. For instance, if smoke is detected, FireCO2Alarm will unlock the door.
If someone leaves home, the Lock-It-When-I-Leave app will lock the door. This
defeats the intended purpose of the FireCO2Alarm app. Due to the increasing
popularity of IoT devices, understanding and finding such conflicting interac-
tions has become a hot research topic [27,28,54,55,58] in the past few years.
Among the many techniques developed, model checking is a popular one [49,59].
However, existing DPOR-based model checking algorithms do not support non-
terminating event-handling logic (detailed in Sect. 4), which strongly motivates
the need of developing new algorithms that are both sound and efficient in han-
dling real-world event-based (e.g., IoT) programs.

2.1 Event-Driven Concurrency Model

We next present our event-driven concurrency model (see an example of event-
driven systems in Appendix A in [51]). We assume that the event-driven system
has a finite set E of different event types. Each event type e ∈ E has a corre-
sponding event handler that is executed when an instance of the event occurs.
We assume that there is a potentially shared state and that event handlers have
arbitrary access to read and write from this shared state.

An event handler can be an arbitrarily long finite sequence of instructions and
can include an arbitrary number of accesses to shared state. We assume event-
handlers are executed atomically by the event-driven runtime system. Events can
be enabled by both external sources (e.g., events in the physical world) or event
handlers. Events can also be disabled by the execution of an event handler. We
assume that the runtime system maintains an unordered set of enabled events
to execute. It contains an event dispatch loop that selects an arbitrary enabled
event to execute next.

404 R. Trimananda et al.

This work is inspired by smart-home systems that are widely deployed in the
real world. However, the proposed techniques are general enough to handle other
types of event-driven systems, such as web applications, as long as the systems
follow the concurrency model stated above.

2.2 Background on Stateless DPOR

Partial order reduction is based on the observation that traces of concurrent sys-
tems are equivalent if they only reorder independent operations. These equiv-
alence classes are called Mazurkiewicz traces [31]. The classical DPOR algo-
rithm [12] dynamically computes persistent sets for multithreaded programs and
is guaranteed to explore at least one interleaving in each equivalence class.

The key idea behind the DPOR algorithm is to compute the next pending
memory operation for each thread, and at each point in the execution to compute
the most recent conflict for each thread’s next operation. These conflicts are used
to set backtracking points so that future executions will reverse the order of
conflicting operations and explore an execution in a different equivalence class.
Due to space constraints, we refer the interested readers to [12] for a detailed
description of the original DPOR algorithm.

3 Preliminaries

We next introduce the notations and definitions we use throughout this paper.

Transition System. We consider a transition system that consists of a finite
set E of events. Each event e ∈ E executes a sequence of instructions that change
the global state of the system.

States. Let States be the set of the states of the system, where s0 ∈ States
is the initial state. A state s captures the heap of a running program and the
values of global variables.

Transitions and Transition Sequences. Let T be the set of all transitions
for the system. Each transition t ∈ T is a partial function from States to States.
The notation ts,e = next (s, e) returns the transition ts,e from executing event e
on program state s. We assume that the transition system is deterministic, and
thus the destination state dst(ts,e) is unique for a given state s and event e. If
the execution of transition t from s produces state s′, then we write s

t−→ s′.
We formalize the behavior of the system as a transition system AG =

(States,Δ, s0), where Δ ⊆ States × States is the transition relation defined
by

(s, s′) ∈ Δ iff ∃t ∈ T : s
t−→ s′

and s0 is the initial state of the system.
A transition sequence S of the transition system is a finite sequence of tran-

sitions t1, t2, ..., tn. These transitions advance the state of the system from the
initial state s0 to further states s1, ..., si such that

Stateful Dynamic Partial Order Reduction 405

S = s0
t1−→ s1

t2−→ ... si−1
tn−→ si.

Enabling and Disabling Events. Events can be enabled and disabled. We
make the same assumption as Jensen et al. [22] regarding the mechanism for
enabling and disabling events. Each event has a special memory location asso-
ciated with it. When an event is enabled or disabled, that memory location is
written to. Thus, the same conflict detection mechanism we used for memory
operations will detect enabled/disabled conflicts between events.

Notation. We use the following notations in our presentation:

– event(t) returns the event that performs the transition t.
– first(S, s) returns the first occurrence of state s in S, e.g., if s4 is first visited

at step 2 then first(S, s4) returns 2.
– last(S) returns the last state s in a transition sequence S.
– S.t produces a new transition sequence by extending the transition sequence

S with the transition t.
– states(S) returns the set of states traversed by the transition sequence S.
– enabled(s) denotes the set of enabled events at s.
– backtrack(s) denotes the backtrack set of state s.
– done(s) denotes the set of events that have already been executed at s.
– accesses(t) denotes the set of memory accesses performed by the transition t.

An access consists of a memory operation, i.e., a read or write, and a memory
location.

State Transition Graph. In our algorithm, we construct a state transition
graph R that is similar to the visible operation dependency graph presented
in [61]. The state transition graph records all of the states that our DPOR
algorithm has explored and all of the transitions it has taken. In more detail, a
state transition graph R = 〈V,E〉 for a transition system is a directed graph,
where every node n ∈ V is a visited state, and every edge e ∈ E is a transition
explored in some execution. We use →r to denote that a transition is reachable
from another transition in R, e.g., t1 →r t2 indicates that t2 is reachable from
t1 in R.

Independence and Persistent Sets. We define the independence relation
over transitions as follows:

Definition 1 (Independence). Let T be the set of transitions. An indepen-
dence relation I ⊆ T × T is a irreflexive and symmetric relation, such that for
any transitions (t1, t2) ∈ I and any state s in the state space of a transition
system AG, the following conditions hold:

1. if t1 ∈ enabled(s) and s
t1−→ s′, then t2 ∈ enabled(s) iff t2 ∈ enabled(s′).

2. if t1 and t2 are enabled in s, then there is a unique state s′ such that s
t1t2−−→ s′

and s
t2t1−−→ s′.

406 R. Trimananda et al.

If (t1, t2) ∈ I, then we say t1 and t2 are independent. We also say that two
memory accesses to a shared location conflict if at least one of them is a write.
Since executing the same event from different states can have different effects
on the states, i.e., resulting in different transitions, we also define the notion of
read-write independence between events on top of the definition of independence
relation over transitions.

Definition 2 (Read-Write Independence). We say that two events x and
y are read-write independent, if for every transition sequences τ where events x
and y are executed, the transitions tx and ty corresponding to executing x and y
are independent, and tx and ty do not have conflicting memory accesses.

Definition 3 (Persistent Set). A set of events X ⊆ E enabled in a state s is
persistent in s if for every transition sequence from s

s
t1−→ s1

t2−→ ...
tn−1−−−→ sn−1

tn−→ sn

where event(ti) /∈ X for all 1 ≤ i ≤ n, then event(tn) is read-write independent
with all events in X.

In Appendix B in [51], we prove that exploring a persistent set of events at
each state is sufficient to ensure the exploration of at least one execution per
Mazurkiewicz trace for a program with cyclic state spaces and finite reachable
states.

4 Technique Overview

This section overviews our ideas. These ideas are discussed in the context of
four problems that arise when existing DPOR algorithms are applied directly
to event-driven programs. For each problem, we first explain the cause of the
problem and then proceed to discuss our solution.

4.1 Problem 1: Premature Termination

The first problem is that the naive application of existing stateless DPOR algo-
rithms to stateful model checking will prematurely terminate the execution of
programs with cyclic state spaces, causing a model checker to miss exploring
portions of the state space. This problem is known in the general POR liter-
ature [13,37,52] and various provisos (conditions) have been proposed to solve
the problem. While the problem is known, all existing stateful DPOR algorithms
produce incorrect results for programs with cyclic state spaces. Prior work by
Yang et al. [61] only handles programs with acyclic state spaces. Work by Yi
et al. [63] claims to handle cyclic state spaces, but overlooks the need for a pro-
viso for when it is safe to stop an execution due to a state match and thus
can produce incorrect results when model checking programs with cyclic state
spaces.

Stateful Dynamic Partial Order Reduction 407

Fig. 1. Problem with existing stateful DPOR algorithms on a non-terminating mul-
tithreaded program. Execution (a) terminates at a state match without setting any
backtracking points. Thus, stateful DPOR would miss exploring Execution (b) which
has an assertion failure.

Figure 1 presents a simple multithreaded program that illustrates the prob-
lem of using a naive stateful adaptation of the DPOR algorithm to check pro-
grams with cyclic state spaces. Let us suppose that a stateful DPOR algorithm
explores the state space from s0, and it selects thread T1 to take a step: the state
is advanced to state s1. However, when it selects T2 to take the next step, it will
revisit the same state and stop the current execution (see Fig. 1-a). Since it did
not set any backtracking points, the algorithm prematurely finishes its explo-
ration at this point. It misses the execution where both threads T1 and T3 take
steps, leading to an assertion failure. Figure 1-b shows this missing execution.
The underlying issue with halting an execution when it matches a state from the
current execution is that the execution may not have explored a sufficient set of
events to create the necessary backtracking points. In our context, event-driven
applications are non-terminating. Similar to our multithreaded example, execu-
tions in event-driven applications may cause the algorithm to revisit a state and
prematurely stop the exploration.

Our Idea. Since the applications we are interested in typically have cyclic state
spaces, we address this challenge by changing our termination criteria for an exe-
cution to require that an execution either (1) matches a state from a previous
execution or (2) matches a previously explored state from the current execu-
tion and has explored every enabled event in the cycle at least once since the
first exploration of that state. The second criterion would prevent the DPOR
algorithm from terminating prematurely after the exploration in Fig. 1-a.

408 R. Trimananda et al.

Fig. 2. (a) Stateless model checking explores si, sj , sk, and sl twice and thus sets
backtracking points for both S and S’. (b) Stateful model checking matches state si
and skips the second exploration and thus we must explicitly set backtracking points.

4.2 Problem 2: State Matching for Previously Explored States

Typically stateful model checkers can simply terminate an execution when a
previously discovered state is reached. As mentioned in [61], this handling is
unsound in the presence of dynamic partial order reduction. Figure 2 illustrates
the issue: Fig. 2-a and b show the behavior of a classical stateless DPOR algo-
rithm as well as the situation in a stateful DPOR algorithm, respectively. We
assume that S was the first transition sequence to reach si and S’ was the second
such transition sequence. The issue in Fig. 2-b is that after the state match for si
in S’, the algorithm may inappropriately skip setting backtracking points for the
transition sequence S’, preventing the model checker from completely exploring
the state space.

Our Idea. Similar to the approach of Yang et al. [61], we propose to use a graph
to store the set of previously explored transitions that may set backtracking
points in the current transition sequence, so that the algorithm can set those
backtracking points without reexploring the same state space.

4.3 Problem 3: State Matching Incompletely Explored States

Figure 3 illustrates another problem with cyclic state spaces—even if our new
termination condition and the algorithm for setting backtrack points for a state
match are applied to the stateful DPOR algorithm, it could still fail to explore
all executions.

With our new termination criteria, the stateful DPOR algorithm will first
explore the execution shown in Fig. 3-a. It starts from s0 and executes the events
e1, e2, and e3. While executing the three events, it puts event e2 in the backtrack
set of s0 and event e3 in the backtrack set of s1 as it finds a conflict between
the events e1 and e2, and the events e2 and e3. Then, the algorithm revisits
s1. At this point it updates the backtrack sets using the transitions that are
reachable from state s1: it puts event e2 in the backtrack set of state s2 because
of a conflict between e2 and e3.

Stateful Dynamic Partial Order Reduction 409

Fig. 3. Example of a event-driven program that misses an execution. We assume that
e1, e2, e3, and e4 are all initially enabled.

However, with the new termination criteria, it does not stop its exploration. It
continues to execute event e4, finds a conflict between e1 and e4, and puts event
e4 into the backtrack set of s0. The algorithm now revisits state s0 and updates
the backtrack sets using the transitions reachable from state s0: it puts event e1
in the backtrack set of s1 because of the conflict between e1 and e4. Figures 3-b,
c, and d show the executions explored by the stateful DPOR algorithm from the
events e1 and e3 in the backtrack set of s1, and event e2 in the backtrack set of
s2, respectively.

Next, the algorithm explores the execution from event e2 in the backtrack set
of s0 shown in Fig. 3-e. The algorithm finds a conflict between the events e2 and
e3, and it puts event e2 in the backtrack set of s3 and event e3 in the backtrack
set of s0 whose executions are shown in Figs. 3-f and g, respectively. Finally, the
algorithm explores the execution from event e4 in the backtrack set of s0 shown

410 R. Trimananda et al.

Fig. 4. Stateful model checking needs to handle loops caused by cyclic state spaces.

in Fig. 3-h. Then the algorithm stops, failing to explore the asserting execution
shown in Fig. 3-i.

The key issue in the above example is that the stateful DPOR algorithm
by Yang et al. [61] does not consider all possible transition sequences that can
reach the current state but merely considers the current transition sequence when
setting backtracking points. It thus does not add event e4 from the execution in
Fig. 3-h to the backtrack set of state s3.

Our Idea. Figure 4 shows the core issue behind the problem. When the algo-
rithm sets backtracking points after executing the transition tk, the algorithm
must consider both the transition sequence that includes th and the transition
sequence that includes ti. The classical backtracking algorithm would only con-
sider the current transition sequence when setting backtracking points.

We propose a new algorithm that uses a backwards depth first search on the
state transition graph combined with summaries to set backtracking points on
previously discovered paths to the currently executing transition. Yi et al. [63]
uses a different approach for updating summary information to address this
issue.

4.4 Problem 4: Events as Transitions

The fourth problem, also identified in Jensen et al. [22], is that existing stateful
DPOR algorithms and most DPOR algorithms assume that each transition only
executes a single memory operation, whereas an event in our context can consist
of many different memory operations. For example, the e4 handler in Fig. 3 reads
x and y.

A related issue is that many DPOR algorithms assume that they know, ahead
of time, the effects of the next step for each thread. In our setting, however, since
events contain many different memory operations, we must execute an event to
know its effects. Figure 5 illustrates this problem. In this example, we assume
that each event can only execute once.

Stateful Dynamic Partial Order Reduction 411

Fig. 5. Example of an event-driven program for which a naive application of the stan-
dard DPOR algorithm fails to construct the correct persistent set at state s0. We
assume that e1, e2, and e3 are all initially enabled.

Figure 5-a shows the first execution of these 3 events. The stateful DPOR
algorithm finds a conflict between the events e2 and e3, adds event e3 to the
backtrack set for state s1, and then schedules the second execution shown in
Fig. 5-b. At this point, the exploration stops prematurely, missing the assertion
violating execution shown in Fig. 5-c.

The key issue is that the set {e1} is not a persistent set for state s0. Tradi-
tional DPOR algorithms fail to construct the correct persistent set at state s0
because the backtracking algorithm finds that the transition for event e3 con-
flicts with the transition for event e2 and stops setting backtracking points. This
occurs since these algorithms do not separately track conflicts from different
memory operations in an event when adding backtracking points—they simply
assume transitions are comprised of single memory operations. Separately track-
ing different operations would allow these algorithms to find a conflict relation
between the events e1 and e3 (as both access the variable y) in the first execu-
tion, put event e2 into the backtrack set of s0, and explore the missing execution
shown in Fig. 5-c.

Our Idea. In the classical DPOR algorithm, transitions correspond to single
instructions whose effects can be determined ahead of time without executing
the instructions [12]. Thus, the DPOR algorithm assumes that the effects of each
thread’s next transition are known. Our events on the other hand include many
instructions, and thus, as Jensen et al. [22] observes, determining the effects of
an event requires executing the event. Our algorithm therefore determines the
effects of a transition when the transition is actually executed.

412 R. Trimananda et al.

Algorithm 1: Top-level exploration algorithm.
1 ExploreAll()
2 H := ∅
3 R := ∅
4 S := ∅
5 Explore(s0)
6 while ∃s, backtrack(s) �= done(s) do
7 Explore(s)
8 end

9 end

A second consequence of having events as transitions is that transitions can
access multiple different memory locations. Thus, as the example in Fig. 5 shows,
it does not suffice to simply set a backtracking point at the last conflicting tran-
sition. To address this issue, our idea is to compute conflicts on a per-memory-
location basis.

5 Stateful Dynamic Partial Order Reduction

This section presents our algorithm, which extends DPOR to support stateful
model checking of event-driven applications with cyclic state spaces. We first
present the states that our algorithm maintains:

1. The transition sequence S contains the new transitions that the current
execution explores. Our algorithm explores a given transition in at most one
execution.

2. The state history H is a set of program states that have been visited in
completed executions.

3. The state transition graph R records the states our algorithm has
explored thus far. Nodes in this graph correspond to program states and
edges to transitions between program states.

Recall that for each reachable state s ∈ States, our algorithm maintains the
backtrack(s) set that contains the events to be explored at s, the done(s) set
that contains the events that have already been explored at s, and the enabled(s)
set that contains all events that are enabled at s.

Algorithm 1 presents the top-level ExploreAll procedure. This proce-
dure first invokes the Explore procedure to start model checking from the
initial state. However, the presence of cycles in the state space means that
our backtracking-based search algorithm may occasionally set new backtrack-
ing points for states in completed executions. The ExploreAll procedure thus
loops over all states that have unexplored items in their backtrack sets and
invokes the Explore procedure to explore those transitions.

Algorithm 2 describes the logic of the Explore procedure. The if statement
in line 2 checks if the current state s’s backtrack set is the same as the current

Stateful Dynamic Partial Order Reduction 413

Algorithm 2: Stateful DPOR algorithm for event-driven applications.
1 Explore(s)
2 if backtrack(s) = done(s) then
3 if done(s) = enabled(s) then
4 if enabled(s) is not empty then
5 select e ∈ enabled(s)
6 remove e from done(s)

7 else
8 add states(S) to H
9 S := ∅

10 return

11 end

12 else
13 select e ∈ enabled(s) \ done(s)
14 add e to backtrack(s)

15 end

16 end
17 while ∃b ∈ backtrack(s) \ done(s) do
18 add b to s.done
19 t := next (s, b)
20 s′ := dst (t)
21 add transition t to R
22 foreach e ∈ enabled(s) \ enabled(s′) do
23 add e to backtrack(s)
24 end
25 UpdateBacktrackSet (t)
26 if s′ ∈ H ∨ IsFullCycle (t) then
27 UpdateBacktrackSetsFromGraph (t)
28 add states(S) to H
29 S := ∅
30 else
31 if s′ ∈ states(S) then
32 UpdateBacktrackSetsFromGraph (t)
33 end
34 S := S.t
35 Explore(s′)
36 end

37 end

38 end

state s’s done set. If so, the algorithm selects an event to execute in the next
transition. If some enabled events are not yet explored, it selects an unexplored
event to add to the current state’s backtrack set. Otherwise, if the enabled set
is not empty, it selects an enabled event to remove from the done set. Note that
this scenario occurs only if the execution is continuing past a state match to
satisfy the termination condition.

414 R. Trimananda et al.

Then the while loop in line 17 selects an event b to execute on the current
state s and executes the event b to generate the transition t that leads to a
new state s′. At this point, the algorithm knows the memory accesses performed
by the transition t and thus can add the event b to the backtrack sets of the
previous states. This is done via the procedure UpdateBacktrackSet.

Traditional DPOR algorithms continue an execution until it terminates. Since
our programs may have cyclic state spaces, this would cause the model checker
to potentially not terminate. Our algorithm instead checks the conditions in
line 26 to decide whether to terminate the execution. These checks see whether
the new state s′ matches a state from a previous execution, or if the current exe-
cution revisits a state the current execution previously explored and meets other
criteria that are checked in the IsFullCycle procedure. If so, the algorithm
calls the UpdateBacktrackSetsFromGraph procedure to set backtracking
points, from transitions reachable from t, to states that can reach t. An execu-
tion will also terminate if it reaches a state in which no event is enabled (line 4).
It then adds the states from the current transition sequence to the set of previ-
ously visited states H, resets the current execution transition sequence S, and
backtracks to start a new execution.

If the algorithm has reached a state s′ that was previously discovered in this
execution, it sets backtracking points by calling the UpdateBacktrackSets-
FromGraph procedure. Finally, it updates the transition sequence S and calls
Explore.

Algorithm 3: Procedure that updates the backtrack sets of states in pre-
vious executions.
1 UpdateBacktrackSetsFromGraph(ts)
2 Rt := {t ∈ R | ts →r t}
3 foreach t ∈ Rt do
4 UpdateBacktrackSet (t)
5 end

6 end

Algorithm 3 shows the UpdateBacktrackSetsFromGraph procedure.
This procedure takes a transition t that connects the current execution to a
previously discovered state in the transition graph R. Since our algorithm does
not explore all of the transitions reachable from the previously discovered state,
we need to set the backtracking points that would have been set by these skipped
transitions. This procedure therefore computes the set of transitions reachable
from the destination state of t and invokes UpdateBacktrackSet on each of
those transitions to set backtracking points.

Stateful Dynamic Partial Order Reduction 415

Algorithm 4: Procedure that checks the looping termination condition: a
cycle that contains every event enabled in the cycle.
1 IsFullCycle(t)
2 if ¬dst(t) ∈ states(S) then
3 return false
4 end

5 Sfc := {tj ∈ S | i = first(S, dst(t)), and i < j} ∪ {t}
6 Efc := {event(t′) | ∀t′ ∈ Sfc }
7 Eenabled := {enabled(dst(t′)) | ∀t′ ∈ Sfc }
8 return Efc = Eenabled

9 end

Algorithm 4 presents the IsFullCycle procedure. This procedure first
checks if there is a cycle that contains the transition t in the state space explored
by the current execution. The example from Fig. 1 shows that such a state match
is not sufficient to terminate the execution as the execution may not have set the
necessary backtracking points. Our algorithm stops the exploration of an execu-
tion when there is a cycle that has explored every event that is enabled in that
cycle. This ensures that for every transition t in the execution, there is a future
transition te for each enabled event e in the cycle that can set a backtracking
point if t and te conflict.

Algorithm 5 presents the UpdateBacktrackSet procedure, which sets
backtracking points. There are two differences between our algorithm and tra-
ditional DPOR algorithms. First, since our algorithm supports programs with
cyclic state spaces, it is possible that the algorithm has discovered multiple
paths from the start state s0 to the current transition t. Thus, the algorithm
must potentially set backtracking points on multiple different paths. We address
this issue using a backwards depth first search traversal of the R graph. Second,
since our transitions correspond to events, they may potentially access multi-
ple different memory locations and thus the backtracking algorithm potentially
needs to set separate backtracking points for each of these memory locations.

The UpdateBacktrackSetDFS procedure implements a backwards depth
first traversal to set backtracking points. The procedure takes the following
parameters: tcurr is the current transition in the DFS, tconf is the transition
that we are currently setting a backtracking point for, A is the set of accesses
that the algorithm searches for conflicts for, and Texp is the set of transitions that
the algorithm has explored down this search path. Recall that accesses consist
of both an operation, i.e., a read or write, and a memory location. Conflicts are
defined in the usual way—writes to a memory location conflict with reads or
writes to the same location.

416 R. Trimananda et al.

Algorithm 5: Procedure that updates the backtrack sets of states for
previously executed transitions that conflict with the current transition in
the search stack.
1 UpdateBacktrackSet(t)
2 UpdateBacktrackSetDFS (t, t, accesses(t), {t})
3 end
4 UpdateBacktrackSetDFS(tcurr, tconf,A, Texp)
5 foreach tb ∈ predR(tcurr) \ Texp do

6 Ab := accesses(tb)
7 tconf

′ := tconf
8 if ∃a ∈ A, ∃ab ∈ Ab, conflicts(a, ab) then
9 if event(tconf) ∈ enabled(src(tb)) then

10 add event(tconf) to backtrack(src(tb))
11 else
12 add enabled(src(tb)) to backtrack(src(tb))
13 end
14 tconf

′ := tb
15 end
16 Ar := {a ∈ A | ¬∃ab ∈ Ab, conflicts(a, ab)}
17 UpdateBacktrackSetDFS (tb, tconf

′,Ar, Texp ∪ {tb})

18 end

19 end

Line 5 loops over each transition tb that immediately precedes transition tcurr
in the state transition graph and has not been explored. Line 8 checks for con-
flicts between the accesses of tb and the access set A for the DFS. If a conflict
is detected, the algorithm adds the event for transition tconf to the backtrack
set. Line 16 removes the accesses that conflicted with transition tb. The search
procedure then recursively calls itself. If the current transition tb conflicts with
the transition tconf for which we are setting a backtracking point, then it is pos-
sible that the behavior we are interested in for tconf requires that tb be executed
first. Thus, if there is a conflict between tb and tconf, we pass tb as the conflict
transition parameter to the recursive calls to UpdateBacktrackSetDFS.

Appendix B in [51] proves correctness properties for our DPOR algorithm.
Appendix C in [51] revisits the example shown in Fig. 3. It describes how our
DPOR algorithm explores all executions in Fig. 3, including Fig. 3-i.

6 Implementation and Evaluation

In this section, we present the implementation of our DPOR algorithm (Sect. 6.1)
and its evaluation results (Sect. 6.2).

6.1 Implementation

We have implemented the algorithm by extending IoTCheck [49], a tool that
model-checks pairs of Samsung’s SmartThings smart home apps and reports

Stateful Dynamic Partial Order Reduction 417

conflicting updates to the same device or global variables from different apps.
IoTCheck extends Java Pathfinder, an explicit stateful model checker [56]. In
the implementation, we optimized our DPOR algorithm by caching the results
of the graph search when UpdateBacktrackSetsFromGraph is called. The
results are cached for each state as a summary of the potentially conflicting
transitions that are reachable from the given state (see Appendix D in [51]).

We selected the SmartThings platform because it has an extensive collection
of event-driven apps. The SmartThings official GitHub [45] has an active user
community—the repository has been forked more than 84,000 times as of August
2021.

We did not compare our implementation against other systems, e.g., event-
driven systems [22,30]. Not only that these systems do not perform stateful
model checking and handle cyclic state spaces, but also they implemented their
algorithms in different domains: web [22] and Android applications [30]—it will
not be straightforward to adapt and compare these with our implementation on
smart home apps.

6.2 Evaluation

Dataset. Our SmartThings app corpus consists of 198 official and third-party
apps that are taken from the IoTCheck smart home apps dataset [48,49]. These
apps were collected from different sources, including the official SmartThings
GitHub [45]. In this dataset, the authors of IoTCheck formed pairs of apps to
study the interactions between the apps [49].

We selected the 1,438 pairs of apps in the Device Interaction category as our
benchmarks set. It contains a diverse set of apps and app pairs that are further
categorized into 11 subgroups based on various device handlers [44] used in each
app. For example, the FireCO2Alarm [38] and the Lock-It-When-I-Leave [1] apps
both control and may interact through a door lock (see Sect. 1). Hence, they are
both categorized as a pair in the Locks group. As the authors of IoTCheck
noted, these pairs are challenging to model check—IoTCheck did not finish for
412 pairs.

Pair Selection. In the IoTCheck evaluation, the authors had to exclude
175 problematic pairs. In our evaluation, we further excluded pairs. First, we
excluded pairs that were reported to finish their executions in 10 s or less—
these typically will generate a small number of states (i.e., less than 100) when
model checked. Next, we further removed redundant pairs across the different
11 subgroups. An app may control different devices, and thus they may use
various device handlers in its code. For example, the apps FireCO2Alarm [38]
and groveStreams [39] both control door locks and thermostats in their code.
Thus, the two apps are categorized as a pair both in the Locks and Thermostats
subgroups—we need to only include this pair once in our evaluation. These steps
reduced our benchmarks set to 535 pairs.

Experimental Setup. Each pair was model checked on an Ubuntu-based server
with Intel Xeon quad-core CPU of 3.5 GHz and 32 GB of memory—we allocated

418 R. Trimananda et al.

Table 1. Sample model-checked pairs that finished with or without DPOR. Evt. is
number of events and Time is in seconds. The complete list of results for 229 pairs
that finished with or without DPOR is included in Table A.2 in Appendices in [51].

No. App Evt. Without DPOR With DPOR

States Trans. Time States Trans. Time

1 smart-nightlight–ecobeeAwayFromHome 14 16,441 76,720 5,059 11,743 46,196 5,498

2 step-notifier–ecobeeAwayFromHome 11 14,401 52,800 4,885 11,490 35,142 5,079

3 smart-security–ecobeeAwayFromHome 11 14,301 47,608 4,385 8,187 21,269 2,980

4 keep-me-cozy–whole-house-fan 17 8,793 149,464 4,736 8,776 95,084 6,043

5 keep-me-cozy-ii–thermostat-window-check 13 8,764 113,919 4,070 7,884 59,342 4,515

6 step-notifier–mini-hue-controller 6 7,967 47,796 2,063 7,907 40,045 3,582

7 keep-me-cozy–thermostat-mode-director 12 7,633 91,584 3,259 6,913 49,850 3,652

8 lighting-director–step-notifier 14 7,611 106,540 5,278 2,723 25,295 2,552

9 smart-alarm–DeviceTamperAlarm 15 5,665 84,960 3,559 3,437 40,906 4,441

10 forgiving-security–smart-alarm 13 5,545 72,072 3,134 4,903 52,205 5,728

28 GB of heap space for JVM. In our experiments, we ran the model checker
for every pair for at most 2 h. We found that the model checker usually ran out
of memory for pairs that had to be model checked longer. Further investigation
indicates that these pairs generate too many states even when run with the
DPOR algorithm. We observed that many smart home apps generate substantial
numbers of read-write and write-write conflicts when model checked—this is
challenging for any DPOR algorithms. In our benchmarks set, 300 pairs finished
for DPOR and/or no DPOR.

Results. Our DPOR algorithm substantially reduced the search space for many
pairs. There are 69 pairs that were unfinished (i.e.,“Unf”) without DPOR. These
pairs did not finish because their executions exceeded the 2-h limit, or gener-
ated too many states quickly and consumed too much memory, causing the
model checker to run out of memory within the first hour of their execution.
When run with our DPOR algorithm, these pairs successfully finished—mostly
in 1 h or less. Table A.1 in Appendices in [51] shows the results for pairs that
finished with DPOR but did not finish without DPOR. Most notably, even for
the pair initial-state-event-streamer—thermostat-auto-off that has the
most number of states, our DPOR algorithm successfully finished model checking
it within 1 h.

Next, we discovered that 229 pairs finished when model checked with and
without DPOR. Table 1 shows 10 pairs with the most numbers of states (see the
complete results in Table A.2 in Appendices in [51]). These pairs consist of apps
that generate substantial numbers of read-write and write-write conflicts when
model checked with our DPOR algorithm. Thus, our DPOR algorithm did not
significantly reduce the states, transitions, and runtimes for these pairs.

Finally, we found 2 pairs that finished when run without our DPOR algo-
rithm, but did not finish when run with it. These pairs consist of apps that
are exceptionally challenging for our DPOR algorithm in terms of numbers of

Stateful Dynamic Partial Order Reduction 419

read-write and write-write conflicts. Nevertheless, these are corner cases—please
note that our DPOR algorithm is effective in many pairs.

Overall, our DPOR algorithm achieved a 2× state reduction and a 3× tran-
sition reduction for the 229 pairs that finished for both DPOR and no DPOR
(geometric mean). Assuming that “Unf” is equal to 7,200 s (i.e., 2 h) of runtime,
we achieved an overall speedup of 7× for the 300 pairs (geometric mean). This
is a lower bound runtime for the “Unf” cases, in which executions exceeded the
2-h limit—these pairs could have taken more time to finish.

7 Related Work

There has been much work on model checking. Stateless model checking tech-
niques do not explicitly track which program states have been visited and instead
focus on enumerating schedules [13–15,33].

To make model checking more efficient, researchers have also looked into
various partial order reduction techniques. The original partial order reduction
techniques (e.g., persistent/stubborn sets [13,53] and sleep sets [13]) can also
be used in the context of cyclic state spaces when combined with a proviso that
ensures that executions are not prematurely terminated [13], and ample sets [7,8]
that are basically persistent sets with additional conditions. However, the persis-
tent/stubborn set techniques “suffer from severe fundamental limitation” [12]:
the operations and their communication objects in future process executions are
difficult or impossible to compute precisely through static analysis, while sleep
sets alone only reduce the number of transitions (not states). Work on collapses
by Katz and Peled also suffers from the same requirement for a statically known
independence relation [23].

The first DPOR technique was proposed by Flanagan and Godefroid [12]
to address those issues. The authors introduced a technique that combats the
state space explosion by detecting read-write and write-write conflicts on shared
variable on the fly. Since then, a significant effort has been made to further
improve dynamic partial order reduction [26,41–43,47]. Unfortunately, a lot of
DPOR algorithms assume the context of shared-memory concurrency in that
each transition consists of a single memory operation. In the context of event-
driven applications, each transition is an event that can consist of different mem-
ory operations. Thus, we have to execute the event to know its effects and analyze
it dynamically on the fly in our DPOR algorithm (see Sect. 4.4).

Optimal DPOR [2] seeks to make stateless model checking more efficient by
skipping equivalent executions. Maximal causality reduction [19] further refines
the technique with the insight that it is only necessary to explore executions
in which threads read different values. Value-centric DPOR [6] has the insight
that executions are equivalent if all of their loads read from the same writes.
Unfolding [40] is an alternative approach to POR for reducing the number of
executions to be explored. The unfolding algorithm involves solving an NP-
complete problem to add events to the unfolding.

Recent work has extended these algorithms to handle the TSO and PSO
memory models [3,20,64] and the release acquire fragment of C/C++ [4]. The

420 R. Trimananda et al.

RCMC tool implements a DPOR tool that operates on execution graphs for
the RC11 memory model [24]. SAT solvers have been used to avoid explicitly
enumerating all executions. SATCheck extends partial order reduction with the
insight that it is only necessary to explore executions that exhibit new behav-
iors [9]. CheckFence checks code by translating it into SAT [5]. Other work has
also presented techniques orthogonal to DPOR, either in a more general con-
text [10] or platform specific (e.g., Android [36] and Node.js [29]).

Recent work on dynamic partial order reduction for event-driven programs
has developed dynamic partial order reduction algorithms for stateless model
checking of event-driven applications [22,30]. Jensen et al. [22] consider a model
similar to ours in which an event is treated as a single transition, while Maiya
et al. [30] consider a model in which event execution interleaves concurrently
with threads. Neither of these approaches handle cyclic state spaces nor consider
challenges that arise from stateful model checking.

Recent work on DPOR algorithms reduces the number of executions for pro-
grams with critical sections by considering whether critical sections contain con-
flicting operations [25]. This work considers stateless model checking of multi-
threaded programs, but like our work it must consider code blocks that perform
multiple memory operations.

CHESS [33] is designed to find and reproduce concurrency bugs in C, C++,
and C#. It systematically explores thread interleavings using a preemption
bounded strategy. The Inspect tool combines stateless model checking and state-
ful model checking to model check C and C++ code [57,60,62].

In stateful model checking, there has also been substantial work such as
SPIN [18], Bogor [11], and JPF [56]. In addition to these model checkers, other
researchers have proposed different techniques to capture program states [17,32].

Versions of JPF include a partial order reduction algorithm. The design of
this algorithm is not well documented, but some publications have reverse engi-
neered the pseudocode [34]. The algorithm is naive compared to modern DPOR
algorithms—this algorithm simply identifies accesses to shared variables and
adds backtracking points for all threads at any shared variable access.

8 Conclusion

In this paper, we have presented a new technique that combines dynamic partial
order reduction with stateful model checking to model check event-driven appli-
cations with cyclic state spaces. To achieve this, we introduce two techniques: a
new termination condition for looping executions and a new algorithm for setting
backtracking points. Our technique is the first stateful DPOR algorithm that can
model check event-driven applications with cyclic state spaces. We have evalu-
ated this work on a benchmark set of smart home apps. Our results show that
our techniques effectively reduce the search space for these apps. An extended
version of this paper, including appendices, can be found in [51].

Stateful Dynamic Partial Order Reduction 421

Acknowledgment. We would like to thank our anonymous reviewers for their thor-
ough comments and feedback. This project was supported partly by the National
Science Foundation under grants CCF-2006948, CCF-2102940, CNS-1703598, CNS-
1763172, CNS-1907352, CNS-2006437, CNS-2007737, CNS-2106838, CNS-2128653,
OAC-1740210 and by the Office of Naval Research under grant N00014-18-1-2037.

References

1. Lock it when i leave (2015). https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy

2. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: Proceedings of the 2014 Symposium on Principles of Programming
Languages, pp. 373–384 (2014). http://doi.acm.org/10.1145/2535838.2535845

3. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Proceedings of the 21st Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 353–367 (2015). http://link.springer.com/chapter/10.1007

4. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model check-
ing under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA)
(2018). https://doi.org/10.1145/3276505

5. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: Proceedings of the 2007 Con-
ference on Programming Language Design and Implementation, pp. 12–21 (2007).
http://doi.acm.org/10.1145/1250734.1250737

6. Chatterjee, K., Pavlogiannis, A., Toman, V.: Value-centric dynamic partial order
reduction. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/10.
1145/3360550

7. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999)

8. Clarke Jr, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

9. Demsky, B., Lam, P.: SATCheck: SAT-directed stateless model checking for SC and
TSO. In: Proceedings of the 2015 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 20–36 (October 2015). http://doi.acm.
org/10.1145/2814270.2814297

10. Desai, A., Qadeer, S., Seshia, S.A.: Systematic testing of asynchronous reactive
systems. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 73–83 (2015)

11. Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software model
checking framework. ACM SIGSOFT Softw. Eng. Notes 28(5), 267–276 (2003)

12. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. ACM Sigplan Not. 40(1), 110–121 (2005)

13. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag, Berlin, Heidelberg
(1996)

14. Godefroid, P.: Model checking for programming languages using verisoft. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 174–186 (1997)

https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
http://doi.acm.org/10.1145/2535838.2535845
http://link.springer.com/chapter/10.1007
https://doi.org/10.1145/3276505
http://doi.acm.org/10.1145/1250734.1250737
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
http://doi.acm.org/10.1145/2814270.2814297
http://doi.acm.org/10.1145/2814270.2814297

422 R. Trimananda et al.

15. Godefroid, P.: Software model checking: the verisoft approach. Form. Methods
Syst. Des. 26(2), 77–101 (2005)

16. Google: Android things website (2015). https://developer.android.com/things/
17. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.

In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6 8

18. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual, vol.
1003 (2003)

19. Huang, J.: Stateless model checking concurrent programs with maximal causal-
ity reduction. In: Proceedings of the 2015 Conference on Programming Lan-
guage Design and Implementation, pp. 165–174 (2015). http://doi.acm.org/10.
1145/2813885.2737975

20. Huang, S., Huang, J.: Maximal causality reduction for TSO and PSO. In: Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 447–461 (2016). http://
doi.acm.org/10.1145/2983990.2984025

21. IFTTT: IFTTT (September 2011). https://www.ifttt.com/
22. Jensen, C.S., Møller, A., Raychev, V., Dimitrov, D., Vechev, M.: Stateless model

checking of event-driven applications. ACM SIGPLAN Not. 50(10), 57–73 (2015)
23. Katz, S., Peled, D.: Defining conditional independence using collapses. Theor. Com-

put. Sci. 101(2), 337–359 (1992)
24. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless

model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL)
(2017). https://doi.org/10.1145/3158105

25. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Effective lock handling in stateless
model checking. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/
10.1145/3360599

26. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating ordering heuris-
tics for dynamic partial-order reduction techniques. In: Rosenblum, D.S., Taentzer,
G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12029-9 22

27. Li, X., Zhang, L., Shen, X.: IA-graph based inter-app conflicts detection in open
IoT systems. In: Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems, pp. 135–
147 (2019)

28. Li, X., Zhang, L., Shen, X., Qi, Y.: A systematic examination of inter-app conflicts
detections in open IoT systems. Technical report TR-2017-1, North Carolina State
University, Dept. of Computer Science (2017)

29. Loring, M.C., Marron, M., Leijen, D.: Semantics of asynchronous Javascript. In:
Proceedings of the 13th ACM SIGPLAN International Symposium on on Dynamic
Languages, pp. 51–62 (2017)

30. Maiya, P., Gupta, R., Kanade, A., Majumdar, R.: Partial order reduction for event-
driven multi-threaded programs. In: Proceedings of the 22nd International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 16) (2016)

31. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

32. Musuvathi, M., Park, D.Y., Chou, A., Engler, D.R., Dill, D.L.: CMC: a pragmatic
approach to model checking real code. ACM SIGOPS Oper. Syst. Rev. 36(SI),
75–88 (2002)

https://developer.android.com/things/
https://doi.org/10.1007/978-3-540-73370-6_8
http://doi.acm.org/10.1145/2813885.2737975
http://doi.acm.org/10.1145/2813885.2737975
http://doi.acm.org/10.1145/2983990.2984025
http://doi.acm.org/10.1145/2983990.2984025
https://www.ifttt.com/
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599
https://doi.org/10.1007/978-3-642-12029-9_22
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30

Stateful Dynamic Partial Order Reduction 423

33. Musuvathi, M., Qadeer, S., Ball, T.: Chess: a systematic testing tool for concurrent
software (2007)

34. Noonan, E., Mercer, E., Rungta, N.: Vector-clock based partial order reduction for
JPF. SIGSOFT Softw. Eng. Notes 39(1), 1–5 (2014)

35. openHAB: openhab website (2010). https://www.openhab.org/
36. Ozkan, B.K., Emmi, M., Tasiran, S.: Systematic asynchrony bug exploration for

android apps. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 455–461. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 28

37. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Proceedings of the International Conference on Computer Aided Verification, pp.
377–390 (1994)

38. Racine, Y.: Fireco2alarm smartapp (2014). https://github.com/yracine/device-
type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.
groovy

39. Racine, Y.: grovestreams smartapp (2014). https://github.com/uci-plrg/iotcheck/
blob/master/smartapps/groveStreams.groovy

40. Rodŕıguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order
reduction. In: CONCUR (2015)

41. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reduc-
tions for concolic testing. In: 2012 12th International Conference on Application
of Concurrency to System Design, pp. 132–141. IEEE (2012)

42. Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693017 25

43. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing
of multi-threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 166–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-70889-6 13

44. SmartThings: Device handlers (2018). https://docs.smartthings.com/en/latest/
device-type-developers-guide/

45. SmartThings: Smartthings public github repo (2018). https://github.com/
SmartThingsCommunity/SmartThingsPublic

46. SmartThings, S.: Samsung smartthings website (2012). http://www.smartthings.
com

47. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.:
TransDPOR: a novel dynamic partial-order reduction technique for testing actor
programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol.
7273, pp. 219–234. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30793-5 14

48. Trimananda, R., Aqajari, S.A.H., Chuang, J., Demsky, B., Xu, G.H., Lu, S.:
Iotcheck supporting materials (2020). https://github.com/uci-plrg/iotcheck-data/
tree/master/Device

49. Trimananda, R., Aqajari, S.A.H., Chuang, J., Demsky, B., Xu, G.H., Lu, S.: Under-
standing and automatically detecting conflicting interactions between smart home
IoT applications. In: Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (November 2020)

50. Trimananda, R., Luo, W., Demsky, B., Xu, G.H.: Iotcheck dpor (2021). https://
github.com/uci-plrg/iotcheck-dpor, https://doi.org/10.5281/zenodo.5168843,
https://zenodo.org/record/5168843#.YQ8KjVNKh6c

https://www.openhab.org/
https://doi.org/10.1007/978-3-319-21690-4_28
https://doi.org/10.1007/978-3-319-21690-4_28
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/uci-plrg/iotcheck/blob/master/smartapps/groveStreams.groovy
https://github.com/uci-plrg/iotcheck/blob/master/smartapps/groveStreams.groovy
https://doi.org/10.1007/11693017_25
https://doi.org/10.1007/978-3-540-70889-6_13
https://doi.org/10.1007/978-3-540-70889-6_13
https://docs.smartthings.com/en/latest/device-type-developers-guide/
https://docs.smartthings.com/en/latest/device-type-developers-guide/
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
http://www.smartthings.com
http://www.smartthings.com
https://doi.org/10.1007/978-3-642-30793-5_14
https://doi.org/10.1007/978-3-642-30793-5_14
https://github.com/uci-plrg/iotcheck-data/tree/master/Device
https://github.com/uci-plrg/iotcheck-data/tree/master/Device
https://github.com/uci-plrg/iotcheck-dpor
https://github.com/uci-plrg/iotcheck-dpor
https://doi.org/10.5281/zenodo.5168843
https://zenodo.org/record/5168843#.YQ8KjVNKh6c

424 R. Trimananda et al.

51. Trimananda, R., Luo, W., Demsky, B., Xu, G.H.: Stateful dynamic partial order
reduction for model checking event-driven applications that do not terminate.
arXiv preprint arXiv:2111.05290 (2021)

52. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0023729

53. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

54. Vicaire, P.A., Hoque, E., Xie, Z., Stankovic, J.A.: Bundle: a group-based program-
ming abstraction for cyber-physical systems. IEEE Trans. Ind. Inf. 8(2), 379–392
(2012)

55. Vicaire, P.A., Xie, Z., Hoque, E., Stankovic, J.A.: Physicalnet: a generic framework
for managing and programming across pervasive computing networks. In: Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2010 16th
IEEE, pp. 269–278. IEEE (2010)

56. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs
10, 203–232 (2003)

57. Wang, C., Yang, Yu., Gupta, A., Gopalakrishnan, G.: Dynamic model checking
with property driven pruning to detect race conditions. In: Cha, S.S., Choi, J.-Y.,
Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 126–
140. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6 11

58. Wood, A.D., et al.: Context-aware wireless sensor networks for assisted living and
residential monitoring. IEEE Netw. 22(4) (2008)

59. Yagita, M., Ishikawa, F., Honiden, S.: An application conflict detection and resolu-
tion system for smart homes. In: Proceedings of the First International Workshop
on Software Engineering for Smart Cyber-Physical Systems, pp. 33–39. SEsCPS
2015, IEEE Press, Piscataway, NJ, USA (2015). http://dl.acm.org/citation.cfm?
id=2821404.2821413

60. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed dynamic partial
order reduction based verification of threaded software. In: Proceedings of the 14th
International SPIN Conference on Model Checking Software, pp. 58–75 (2007)

61. Yang, Yu., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic
partial order reduction. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 288–305. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85114-1 20

62. Yang, Y., Chen, X., Gopalakrishnan, G., Wang, C.: Automatic discovery of transi-
tion symmetry in multithreaded programs using dynamic analysis. In: Proceedings
of the 16th International SPIN Workshop on Model Checking Software, pp. 279–
295 (2009)

63. Yi, X., Wang, J., Yang, X.: Stateful dynamic partial-order reduction. In: Liu, Z.,
He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 149–167. Springer, Heidelberg
(2006). https://doi.org/10.1007/11901433 9

64. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 250–259 (2015). http://doi.
acm.org/10.1145/2737924.2737956

http://arxiv.org/abs/2111.05290
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/978-3-540-88387-6_11
http://dl.acm.org/citation.cfm?id=2821404.2821413
http://dl.acm.org/citation.cfm?id=2821404.2821413
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/978-3-540-85114-1_20
https://doi.org/10.1007/11901433_9
http://doi.acm.org/10.1145/2737924.2737956
http://doi.acm.org/10.1145/2737924.2737956

Verifying Solidity Smart Contracts
via Communication

Abstraction in
SmartACE

Scott Wesley1, Maria Christakis2,
Jorge A. Navas3, Richard Trefler1,

Valentin Wüstholz4, and Arie Gurfinkel1(B)

1 University of Waterloo, Waterloo, Canada
ar627383@dal.ca, arie.gurfinkel@uwaterloo.ca

2 MPI-SWS, Kaiserslautern and Saarbrücken, Germany
3 SRI International, Menlo Park, USA
4 ConsenSys, Kaiserslautern, Germany

Abstract. Solidity smart contract allow developers to formalize finan-
cial agreements between users. Due to their monetary nature, smart con-
tracts have been the target of many high-profile attacks. Brute-force
verification of smart contracts that maintain data for up to 2160 users is
intractable. In this paper, we present SmartACE, an automated frame-
work for smart contract verification. To ameliorate the state explosion
induced by large numbers of users, SmartACE implements local bundle
abstractions that reduce verification from arbitrarily many users to a few
representative users. To uncover deep bugs spanning multiple transac-
tions, SmartACE employs a variety of techniques such as model check-
ing, fuzzing, and symbolic execution. To illustrate the effectiveness of
SmartACE, we verify several contracts from the popular OpenZep-
pelin library: an access-control policy and an escrow service. For each
contract, we provide specifications in the Scribble language and apply
fault injection to validate each specification. We report on our experience
integrating Scribble with SmartACE, and describe the performance of
SmartACE on each specification.

1 Introduction

Smart contracts are a trustless mechanism to enforce financial agreements
between many users [46]. The Ethereum blockchain [52] is a popular platform
for smart contract development, with most smart contracts written in Solid-
ity. Due to their monetary nature, smart contracts have been the target of many
high-profile attacks [14]. Formal verification is a promising technique to ensure
the correctness of deployed contracts. However, Solidity smart contracts can

This work was supported, in part, by Individual Discovery Grants from the Natural Sci-
ences and Engineering Research Council of Canada, and a Ripple Fellowship. Jorge A.
Navas was supported by NSF grant 1816936.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 425–449, 2022.
https://doi.org/10.1007/978-3-030-94583-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_21

426 S. Wesley et al.

Fig. 1. A smart contract that implements a simple auction.

address and maintain data for up to 2160 users. Analyzing smart contracts with
this many users is intractable in general, and calls for specialized techniques [51].

In this paper, we present SmartACE, an automated framework for smart
contract verification. SmartACE takes as input a smart contract annotated
with assertions, then checks that all assertions hold. This is in contrast to tools
that check general patterns on unannotated smart contracts, such as absence
of integer overflows (e.g., [47]), or access control policies (e.g., [10]). To amelio-
rate the state explosion induced by large numbers of users, SmartACE imple-
ments local bundle abstractions [51] to reduce verification from arbitrarily many
users to a few representative users. SmartACE targets deep violations, that
require multiple transactions to observe, using a variety of techniques such as
model checking, fuzzing, and symbolic execution. To avoid reinventing the wheel,
SmartACE models each contract in LLVM-IR [33] to integrate off-the-shelf ana-
lyzers such as SeaHorn [21], libFuzzer [34], and Klee [11].

As an example of the local bundle abstraction, consider Auction in Fig. 1.
In Auction, each user starts with a bid of zero. Users alternate, and submit
increasingly larger bids, until a designated manager stops the auction. While the
auction is not stopped, a non-leading user may withdraw their bid. To ensure that
the auction is fair, a manager is not allowed to place their own bid. Furthermore,
the role of the manager is never assigned to the zero-account (i.e., the null user
at address 0). It follows that Auction satisfies property A0: “All bids are less
than or equal to the recorded leading bid.”

In general, Auction can interact with up to 2160 users. However, each trans-
action of Auction interacts with at most the zero-account, the auction itself, the
manager, and an arbitrary sender. Furthermore, all arbitrary senders are inter-
changeable with respect to A0. For example, if there are exactly three active
bids {2, 4, 8} then A0 can be verified without knowing which user placed which

SmartACE: Smart Contract Analysis 427

Fig. 2. A simplified test harness for Auction of Fig. 1

bid. This is because the leading bid is always 8, and each bid is at most 8. Due
to these symmetries between senders, it is sufficient to verify Auction relative to
a representative user from each class (i.e., the zero account, the auction itself,
the manager, and an arbitrary sender), rather than all 2160 users. The key idea
is that each representative user corresponds to one or many concrete users [40].

If a representative’s class contains a single concrete user, then there is no
difference between the concrete user and the representative user. For example,
the zero-account and the auction each correspond to single concrete users. Simi-
larly, the manager refers to a single concrete user, so long as the manager variable
does not change. Therefore, the addresses of these users, and in turn, their bids,
are known with absolute certainty. On the other hand, there are many arbitrary
senders. Since Auction only compares addresses by equality, the exact address
of the representative sender is unimportant. What matters is that the repre-
sentative sender does not share an address with the zero-account, the auction,
nor the manager. However, this means that at the start of each transaction the
location of the representative sender is not absolute, and, therefore, the sender
has a range of possible bids. To account for this, we introduce a predicate, called
an interference invariant, to summarize the bid of each sender. An example
interference invariant for Auction is A0 itself.

Given an interference invariant, A0 can be verified by SeaHorn. To do this,
the concrete users in Auction must be abstracted by representative users. The
abstract system (see Fig. 2), known as a local bundle abstraction, assigns the zero-
account to address 0, the auction to address 1, the manager to address 2, the
representative sender to address 3, and then executes an unbounded sequence
of transactions (all feasible sequences are included). Before each transaction,
the sender’s bid is set to a nondeterministic value that satisfies its interference
invariant. If the abstract system and A0 are provided to SeaHorn, then Sea-
Horn verifies that all states reachable in the abstract system satisfy A0. It then
follows from the symmetries between senders that A0 holds for any number of
users.

Prior work has demonstrated SmartACE to be competitive with state-of-
the-art smart contract verifiers [51]. This paper illustrates the effectiveness of
SmartACE by verifying several contracts from the popular OpenZeppelin
library. For each contract, we provide specifications in the Scribble language.
We report on our experience integrating Scribble with SmartACE, and
describe the performance of SmartACE on each specification. As opposed to

428 S. Wesley et al.

other case studies (e.g., [2,10,16,17,23–26,30,32,35,37,45,47–49]), we do not
apply SmartACE to contracts scraped from the blockchain. As outlined by
the methodology of [16], such studies are not appropriate for tools that require
annotated contracts. Furthermore, it is shown in [23] that most contracts on the
blockchain are unannotated, and those with annotations are often incorrect. For
these reasons, we restrict our case studies to manually annotated contracts.

This paper makes the following contributions: (1) the design and implementa-
tion of an efficient Solidity smart contract verifier SmartACE, that is available
at https://github.com/contract-ace/smartace; (2) a methodology for automatic
verification of deep properties of smart contracts, including aggregate proper-
ties involving sum and maximum; and (3) a case-study in verification of two
OpenZeppelin contracts, and an open-bid auction contract, that are available
at https://github.com/contract-ace/verify-openzeppelin.

The rest of this paper is structured as follows. Section 2 presents the high-
level architecture of SmartACE. Section 3 describes the conversion from a smart
contract to an abstract model. Section 4 describes challenges and benefits in
integrating SmartACE with off-the-shelf analyzers. Section 5 reports on a case
study that uses SmartACE and Scribble to verify several OpenZeppelin
contracts. The performance of SmartACE, and the challenges of integrating
with Scribble, are both discussed.

2 Architecture and Design Principles of SmartACE

SmartACE is a smart contract analysis framework guided by communication
patterns. As opposed to other tools, SmartACE performs all analysis against
a local bundle abstraction for a provided smart contract. The abstraction is
obtained through source-to-source translation from Solidity to a harness mod-
elled in LLVM-IR. The design of SmartACE is guided by four principles.

1. Reusability: The framework should support state-of-the-art and off-the-shelf
analyzers to minimize the risk of incorrect analysis results.

2. Reciprocity: The framework should produce intermediate artifacts that can
be used as benchmarks for off-the-shelf analyzers.

3. Extensibility: The framework should extend to new analyzers without mod-
ifying existing features.

4. Testability: The intermediate artifacts produced by the framework should
be executable, to support both validation and interpretation of results.

These principles are achieved through the architecture in Fig. 3. SmartACE
takes as input a smart contract with Scribble annotations (e.g., contract invari-
ants and function postconditions), and optionally an interference invariant.
Scribble processes the annotated smart contract and produces a smart con-
tract with assertions. The smart contract with assertions and the interference
invariant are then passed to a source-to-source translator, to obtain a model of
the smart contract and its environment in LLVM-IR (see Sect. 3). This model is
called a harness. Harnesses use an interface called libVerify to integrate with

https://github.com/contract-ace/smartace
https://github.com/contract-ace/verify-openzeppelin

SmartACE: Smart Contract Analysis 429

Fig. 3. The architecture of SmartACE for integration with SeaHorn for model check-
ing and libFuzzer for greybox fuzzing.

Fig. 4. The analysis and transformations performed by SmartACE.

arbitrary analyzers, and are therefore analyzer-agnostic (see Sect. 4). When an
analyzer is chosen, CMake is used to automatically compile the harness, the
analyzer, and its dependencies, into an executable program. Analysis results for
the program are returned by SmartACE.

The SmartACE architecture achieves its guiding principles as follows. To
ensure reusability, SmartACE uses state-of-the-art tools for contract instru-
mentation (Scribble), build automation (CMake), and program analysis
(e.g., SeaHorn and libFuzzer). The source-to-source translation is based on
the Solidity compiler to utilize existing source-code analysis (e.g., AST con-
struction, type resolution). To ensure reciprocity, the SmartACE architecture
integrates third-party tools entirely through intermediate artifacts. In our expe-
rience, these artifacts have provided useful feedback for SeaHorn development.
To ensure extensibility, the libVerify interface is used together with CMake
build scripts to orchestrate smart contract analysis. A new analyzer can be added
to SmartACE by first creating a new implementation of libVerify, and then
adding a build target to the CMake build scripts. Finally, testability is achieved
by ensuring all harnesses are executable. As shown in Sect. 4, executable har-
nesses provide many benefits, such as validating counterexamples from model
checkers, and manually inspecting harness behaviour.

430 S. Wesley et al.

3 Contract Modelling

This section describes the translation from a smart contract with annotations, to
a harness in LLVM-IR. A high-level overview is provided by Fig. 4. First, static
analysis is applied to a smart contract, such as resolving inheritance and over-
approximating user participation (see Sect. 3.1). Next, the analysis results are
used to convert each contract to LLVM structures and functions (see Sect. 3.2).
Finally, these functions are combined into a harness that schedules an unbounded
sequence of smart contract transactions (see Sect. 3.3).

3.1 Static Analysis

The static analysis in SmartACE is illustrated by the top row of Fig. 4. At
a high-level, static analysis ensures that a bundle conforms to the restrictions
of [51], and extracts facts about the bundle required during the source-to-source
translation. Bundle facts include a flat inheritance hierarchy [5], the dynamic
type of each contract-typed variable, the devirtualization of each call (e.g., [4]),
and the representative users (participants) of the bundle. Key design considera-
tions in the analysis follow.

Reducing Code Surface. SmartACE over-approximates conformance checks
through syntactic rules. Therefore, it is possible for SmartACE to reject valid
smart contracts due to inaccuracies. For this reason, SmartACE uses incre-
mental passes to restrict the code surface that reaches the conformance checker.
The first pass flattens the inheritance hierarchy by duplicating member vari-
ables and specializing methods. The second pass resolves the dynamic type of
each contract-typed variable, by identifying its allocation sites. For example, the
dynamic type for state variable auction in TimedMgr of Fig. 1 is Auction due to
the allocation on line 35. The third pass uses the dynamic type of each contract-
typed variable, to resolve all virtual calls in the smart contract. For example,
super.stop at line 52 devirtualizes to method stop of contract Mgr. The fourth
pass constructs a call graph for the public and external methods of each smart
contract. Only methods in the call graph are subject to the conformance checker.

Conformance Checking. The syntactic conformance check follows from [51] and
places the following restrictions: (1) There is no inline assembly; (2) Mapping
indices are addresses; (3) Mapping values are numeric; (4) Address comparisons
must be (dis)equality; (5) Addresses never appear in arithmetic operations; (6)
Each contract-typed variable corresponds to a single call to new.

Participation Analysis. A key step in local analysis is to identify a set of rep-
resentative users. A representative user corresponds to one or arbitrarily many
concrete users. In the case of one concrete user, the corresponding address is
either static or dynamic (changes between transactions). Classifying representa-
tive users according to this criterion is critical for local analysis. A write of v to
abstract location l is said to be strong if v replaces the value at l, and weak if v

SmartACE: Smart Contract Analysis 431

is added to a set of values at locations referenced by l. It follows that a write to
many concrete users is weak, whereas a write to a single concrete user is strong.
Furthermore, if the address of the single concrete user is dynamic, then aliasing
between representative users can occur. A representative user with weak updates
is an explicit participant, as weak updates result from passing arbitrary users
as inputs to transactions (e.g., msg.sender). A representative user with strong
updates and a dynamic address is a transient participant, as dynamic addresses
are maintained via roles, and may change throughout execution (e.g., manager).
A representative user with strong updates and a static address is an implicit
participant, as static addresses are determined by the source text of a contract,
independent of transaction inputs and roles (e.g., the zero account). SmartACE
implements the PTGBuilder algorithm from [51] that uses an intraprocedural taint
analysis to over-approximate the maximum number of explicit, transient, and
implicit participants. Recall that taint analysis [28] determines whether certain
variables, called tainted sources, influence certain expressions, called sinks. In
PTGBuilder, tainted sources are (a) input address variables, (b) state address
variables, and (c) literal addresses, while sinks are (a) memory writes, (b) com-
parisons, and (c) mapping accesses. An input address variable, v, that taints at
least one sink is an explicit participant1. Similarly, state address variables and
literal addresses that taint sinks represent transient and implicit participants,
respectively. For example, PTGBuilder on Fig. 1, computes 2 explicit participants
due to msg.sender and _m in the constructor of Auction, 1 transient participant
due to manager in Auction, and 3 implicit participants due to the addresses of the
zero-account, Auction, and TimedMgr. This over-approximates true participation
in several ways. For example, the constructor of Auction is never influenced by
the equality of msg.sender and _m, and TimedMgr is always the manager of Auction.

3.2 Source-to-Source Translation

Source-to-source translation relies on the call graph and participants obtained
through static analysis. The translation is illustrated by the bottom row of Fig. 4.
A translation for Fig. 1 is given in Fig. 5. Note that the C language is used in
Fig. 5, rather than LLVM-IR, as C is more human-readable.

Abstract Data Types (ADTs). An ADT is either a struct or a contract. Each
struct is translated directly to an LLVM structure. The name of the structure
is prefixed by the name of its containing contract to avoid name collisions. Each
contract is translated to an LLVM structure of the same name, with a field for
its address (model_address), a field for its balance (model_balance), and a field for
each user-defined member variable. An example is given for Auction at line 3.

Primitive Types. Primitive types include all integer types, along with bool,
address, and enum (unbounded arrays are not yet supported in SmartACE).
Integer types are mapped to singleton structures, according to their signedness

1 One exception is msg.sender which is always an explicit participant.

432 S. Wesley et al.

Fig. 5. Partial modelling of the types and methods in Fig. 1 as C code (LLVM).

and bit-width. For example, the type of leadingBid is mapped to sol_uint256_t

(see line 5). Each bool type is mapped to the singleton structure sol_bool_t,
which contains the same underlying type as uint8 (see line 6). Each address type
is mapped to the singleton structure sol_address_t, which contains the same
underlying type as uint160 (see line 5). Each enum is treated as an unsigned
integer of the nearest containing bit-width. Benefits of singleton structures, and
their underlying types, are discussed in Sect. 4.

Functions. Methods and modifiers are translated to LLVM functions. Meth-
ods are specialized according to the flattened inheritance hierarchy, and mod-
ifiers are specialized to each method. To avoid name collisions, each function
is renamed according to the contract that defines it, the contract that is call-
ing it, and its position in the chain of modifiers. For example, the specializa-
tion of method Mgr.stop for TimedMgr is Mgr_Method_For_TimedMgr_stop. Likewise,
the specializations of method Auction.bid and its modifier canParticipate are
Auction_Method_1_bid and Auction_Method_bid, respectively. Extra arguments are
added to each method to represent the current call state (see self through to orig

on line 9). Specifically, self is this, sndr is msg.sender, value is msg.value, bnum is
block.number, time is block.timestamp, and orig is msg.origin. A special argument,
paid, indicates if msg.value has been added to a contract’s balance (see line 13,

SmartACE: Smart Contract Analysis 433

Fig. 6. The control-flow of a test harness. Each � denotes an optional step.

where paid is set to false). If paid is true, then the balance is updated before exe-
cuting the body of the method (see line 30). Multiple return values are handled
through the standard practice of output variables. For example, the argument
out_1 in TimedMgr_Method_check represents the second return value of check.

Statements and Expressions. Most expressions map directly from Solidity to
LLVM (as both are typed imperative languages). Special cases are outlined.
Each assert maps to sol_assert from libVerify, which causes a program failure
given argument false. Each require maps to sol_require from libVerify, which
reverts a transaction given argument false (see line 31). For each emit statement,
the arguments of the event are expanded out, and then a call is made to sol_emit

(see line 12). For each method call, the devirtualized call is obtained from the
call graph, and the call state is propagated (see line 13 for the devirtualized
called to super.stop). For external method calls, paid and msg.sender are reset.

Mappings. Each mapping is translated to an LLVM structure. This structure
represents a bounded mapping with an entry for each participant of the contract.
For example, if a contract has N participants, then a one-dimensional mapping will
have N entries, and a two-dimensional mapping will have N2 entries. Since mapping

types are unnamed, the name of each LLVM structure is generated according to
declaration order. For example, bids of Auction is the first mapping in Fig. 1, and
translates to Map_1 accordingly (see line 1). Accesses to Map_1 are encapsulated
by Read_Map_1 and Write_Map_1 (see line 26).

Strings. Each string literal is translated to a unique integer value. This model
supports string equality, but disallows string manipulation. Note that string
manipulation is hardly ever used in smart contracts due to high gas costs.

Addresses. Implicit participation is induced by literal addresses. This means
that the value of a literal address is unimportant, so long as it is unique
and constant. For reasons outlined in Sect. 3.3, it is important to set the
value of each literal address programmatically. Therefore, each literal address
is translated to a unique global variable. For example, address(0) translates to
g_literal_address_0.

434 S. Wesley et al.

Fig. 7. The harness for Fig. 1. Logging is omitted to simplify the presentation.

3.3 Harness Design

A harness provides an entry-point for LLVM analyzers. Currently, SmartACE
implements a single harness that models a blockchain from an arbitrary state,
and then schedules an unbounded sequence of transactions for contracts in a
bundle. A high-level overview of this harness is given in Fig. 6. The harness for
Auction in Fig. 1 is depicted in Fig. 7.

Modelling Nondeterminism. All nondeterministic choices are resolved by inter-
faces from libVerify. ND_INT(id,bits,msg) and ND_UINT(id,bits,msg) choose
integers of a desired signedness and bit-width. ND_RANGE(id,lo,hi,msg) chooses
values between lo (inclusively) and hi (exclusively). ND_INCREASE(id,old,msg)

chooses values larger than old. In all cases, id is an identifier for the call site,
and msg is used for logging purposes.

Address Space. An abstract address space restricts the number of addresses in
a harness. It assigns abstract address values to each contract address and literal
address symbol. Assume that there are N contracts, M literal addresses, and
K non-implicit participants. The corresponding harness has abstract addresses
0 to (N +M +K−1). Constraints are placed on address assignments to prevent
impossible address spaces, such as two literal addresses sharing the same value,
two contracts sharing the same value, or a contract having the same value as the
zero-account. The number of constraints must be minimized, to simplify symbolic
analysis. In SmartACE, the following partitioning is used. Address(0) is always
mapped to abstract address 0 (see line 6). Abstract addresses 1 to N are assigned
to contracts according to declaration order (see lines 7–8). Literal addresses are
assigned arbitrary values from 1 to (N+M). This allows contracts to have literal

SmartACE: Smart Contract Analysis 435

addresses. Disequality constraints ensure each assignment is unique. Senders are
then chosen from the range of non-contract addresses (see line 16).

Blockchain Model. SmartACE models block.number, block.timestamp, msg.value,
msg.sender, and msg.origin. The block number and timestamp are maintained
across transactions by bnum at line 10 and time at line 12. Before transaction gen-
eration, bnum and time may be incremented in lockstep (see lines 29–33). When-
ever a method is called, msg.sender is chosen from the non-contract addresses
(e.g., line 16). The value of msg.sender is also used for msg.origin (e.g., the sec-
ond argument on line 22). If a method is payable, then msg.value is chosen by
ND_UINT, else msg.value is set to 0 (e.g., line 17).

Transaction Loop. Transactions are scheduled by the loop on line 24. The loop
terminates if sol_continue from libVerify returns false (this does not hap-
pen for most analyzers). Upon entry to the loop, sol_on_transaction from lib-
Verify provides a hook for analyzer-specific bookkeeping. Interference is then
checked and re-applied, provided that sol_can_interfere returns true at line 27.
A transaction is picked on line 36 by assigning a consecutive number to each
valid method, and then choosing a number from this range. Arguments for the
method are chosen using ND_INT and ND_UINT for integer types, and ND_RANGE for
bounded types such as address, bool and enum (see lines 15–19 for an example).

Interference. A harness may be instrumented with interference invariants to
enable modular reasoning. Interference invariants summarize the data of all con-
crete users abstracted by a representative user, relative to the scalar variables in
a smart contract (e.g., leadingBid, stopped, and _sum in Fig. 1). An interference
invariant must be true of all data initially, and maintained across each transac-
tion, regardless of whether the representative user has participated or not. As
illustrated in Fig. 6, interference is checked and then re-applied before executing
each transaction. Note that checking interference after a transaction would be
insufficient, as this would fail to check the initial state of each user. To apply
interference, a harness chooses a new value for each mapping entry, and then
assumes that these new values satisfy their interference invariants. To check
interference, a harness chooses an arbitrary entry from a mapping, and asserts
that the entry satisfies its interference invariant. Note that asserting each entry
explicitly would challenge symbolic analyzers. For example, a two-dimensional
mapping with 16 participants would require 256 assertions.

Limitations. The harness has three key limitations. First, as gas is unlimited,
the possible transactions are over-approximated. Second, there is no guarantee
that time must increase (i.e., a fairness constraint), so time-dependent actions
may be postponed indefinitely. Third, reentrancy is not modeled [20], though
this is sufficient for effectively callback free contracts as defined in [42].

436 S. Wesley et al.

4 Integration with Analyzers

CMake and libVerify are used to integrate SmartACE with LLVM ana-
lyzers. Functions from libVerify, as described in Table 1, provide an interface
between a harness and an analyzer (usage of each function is described in Sect. 3).
Each implementation of libVerify configures how a certain analyzer should
interact with a harness. Build details are resolved using CMake scripts. For
example, CMake arguments are used to switch the implementation of prim-
itive singleton structures between native C integers and Boost multiprecision
integers. To promote extensibility, certain interfaces in libVerify are designed
with many analyzers in mind. A key example is bounded nondeterminism.

In libVerify, the functions ND_INT and ND_UINT are used as sources of non-
determinism. For example, SeaHorn provides nondeterminism via symbolic
values, whereas libFuzzer approximates nondeterminism through randomness.
In principle, all choices could be implemented using these interfaces. However,
certain operations, such as “increase the current block number,” or “choose an
address between 3 and 5,” require specialized implementations, depending on the
analyzer. For this reason, libVerify provides multiple interfaces for nondeter-
minism, such as ND_INCREASE and ND_RANGE. To illustrate this design choice, the
implementations of ND_RANGE for SeaHorn and libFuzzer are discussed.

The interface ND_RANGE(id,lo,hi,msg) returns a value between lo (inclusively)
and hi (exclusively). Efficient implementations are given for SeaHorn and lib-
Fuzzer in Fig. 8a and Fig. 8b, respectively. The SeaHorn implementation is
correct, since failed assumptions in symbolic analysis simply restrict the domain
of each symbolic variable. Intuitively, assumptions made in the future can influ-
ence choices made in the past. This design does not work for libFuzzer, as
failed assumptions in libFuzzer simply halt execution. This is because all val-
ues in libFuzzer are concrete. Instead, a value is constructed between lo and
hi through modular arithmetic. In contrast, many symbolic analyzers struggle
with non-linear constraints such as modulo. Therefore, neither implementation
is efficient for both model checking and fuzzing.

SmartACE has been instantiated for greybox fuzzing, bounded model check-
ing (BMC), parameterized compositional model checking (PCMC), and symbolic
execution. The current version of libVerify supports libFuzzer for fuzzing,
SeaHorn for model checking, and Klee for symbolic execution. Other analyz-
ers, such as AFL [54] and SMACK [13], can also be integrated by extending
libVerify. Each implementation of libVerify offers unique analysis benefits.

Interactive Test Harness. A default implementation of libVerify provides an
interactive test harness. Nondeterminism, and the return values for sol_continue,
are resolved through standard input. Events such as sol_emit are printed to stan-
dard output. The sol_on_transaction hook is used to collect test metrics, such
as the number of transactions. As mentioned in Sect. 2, providing an interactive
harness improves the testability of SmartACE.

SmartACE: Smart Contract Analysis 437

Table 1. Summary of the libVerify interface.

Interface Description

sol_continue() Returns true if the transaction
execution loop should continue

sol_can_interfere() Returns true if interference should
be applied and validated

sol_require(cond, msg) If cond is false, then msg is logged
and the transaction aborts

sol_assert(cond, msg) If cond is false, then msg is logged
and the program fails

sol_emit(expr) Performs analyzer-specific
processing for a call to emit expr

ND_INT(id, n, msg) Returns an n-bit signed integer

ND_UINT(id, n, msg) Returns an n-bit unsigned integer

ND_RANGE(id, lo, hi, msg) Returns an 8-bit unsigned integer
between lo (incl.) and hi (excl.)

ND_INCREASE(id, cur, strict, msg) Returns a 256-bit unsigned integer
that is greater than or equal to cur

If strict is true, then the integer
is strictly larger than cur

Fig. 8. Possible implementations of ND_RANGE(n,lo,hi,msg).

Greybox Fuzzing. Fuzzing is an automated testing technique that explores exe-
cutions of a program via input generation [38]. In greybox fuzzing, coverage
information is extracted from a program to generate a sequence of inputs that
maximize test coverage [56]. The harness for greybox fuzzing is instantiated with
N participants, and each participant has strong updates. In general, greybox
fuzzing is a light-weight technique to test edge-cases in contracts. As opposed
to other smart contract fuzzing techniques, SmartACE performs all fuzzing
against a local bundle abstraction. This ensures that all implicit participants
are in the address space. To illustrate the benefit of local bundle abstractions
in fuzzing, consider the property for Fig. 1: “The user with address 100 never
places a bid.”. Without a local bundle abstraction, a counterexample requires
101 users (address(0) to address(100)). With a local bundle abstraction, only 4
users are required (e.g., the zero-account, the two contracts, and address(100)).

438 S. Wesley et al.

Table 2. Analysis results for each case study. For bug finding, n is the number of users,
FUZ is greybox fuzzing, and SYM is symbolic execution. BMC results marked by (†)
were obtained using an additional bound of 5 transactions. Omitted results indicate
that a system memory limit was exceeded.

Benchmark Verification Bug Finding (n = 5) Bug Finding (n = 500)

Contract Prop. Manual (s) Auto. (s) BMC (s) FUZ (s) SYM (s) BMC (s) FUZ (s) SYM (s)

Ownable O1 1 1 1 1 90 1 1 85
O2 1 1 1 1 25 1 1 27
O3 1 1 1 1 25 1 1 27

RefundEscrow R1 2 2 2 1 454 140 22 —
R2 2 3 2 2 5 277 32 3124
R3 2 7 5 26 5 1800 74 —
R4 12 17 3 6 90 1724 296 —

R5 3 4 3 2 6 2010(†) 33 —
Auction A1 9 59 2 4 39 564 21 123

A2 69 246 4 3 533 4392 397 —

Symbolic Execution. Symbolic execution is a sophisticated technique that can
be used to find bugs in programs. At a high-level, symbolic execution converts
program paths into logical constraints, and then solves for inputs that violate
program assertions [12]. Symbolic execution is very precise, but its performance
is negatively impacted by the number of paths through a program, which is often
unbounded. As in the case of greybox fuzzing, the symbolic execution harness is
instantiated with N participants, each with strong updates. Symbolic execution
targets deeper violations than greybox fuzzing, at the cost of analysis time.

BMC. Model checking is a technique that, with little human input, proves prop-
erties of a program [15,43]. In bounded model checking (BMC), properties are
proven up to a bound on execution (e.g., on the number of loop iterations or
users) [7]. The harness for BMC is instantiated with N participants, each with
strong updates. BMC either proves a bundle is safe up to N users, or finds a coun-
terexample using at most N users (e.g., see [29]). As the harness is executable,
SmartACE is able to compile and execute counterexamples found by Sea-
Horn. With SeaHorn, integers can be bit-precise [31], or over-approximated
by linear integer arithmetic [8]. The number of transactions can be bounded, or
an inductive invariant can be discovered for the transaction loop.

PCMC. PCMC is a modular reasoning technique for network verification [40].
Given an interference invariant, PCMC either proves a bundle is safe for any
number of users, or finds a counterexample to compositionality (i.e., the inter-
ference invariant is inadequate). The harness is instantiated with representative
users, and at most the transient and implicit participants are concrete (this is
configurable). Increasing the number of concrete participants refines the abstrac-
tion, but also increases the size of the state space. As with BMC, integers may be
bit-precise or arithmetic, and all counterexamples are executable. If SeaHorn
is used as a model checker, then interference invariants are inferred from their
initial conditions (i.e., all mapping entries are zero), and their usage throughout
the harness. This technique is called predicate synthesis.

SmartACE: Smart Contract Analysis 439

5 Case Study: Verifying OpenZeppelin Contracts

We illustrate the effectiveness of SmartACE and Scribble by applying them to
analyze the OpenZeppelin library2. OpenZeppelin is a widely used Solidity
library (more than 12’000 stars on GitHub) that implements many Ethereum
protocols. From this library, we identify and verify key properties for the Ownable

and RefundEscrow contracts. Properties are specified in the Scribble specifica-
tion language3. To validate our results, we use fault injection to show that both
the harness and the property instrumentation behave as expected. Faults are
detected using SeaHorn (bounded in the number of users), libFuzzer, and
Klee. To highlight properties not reflected in prior smart contract research, we
conclude by verifying two novel properties for Auction from Fig. 1. All evaluations
were run on an Intel® Core i7® CPU @ 1.8 GHz 8-core machine with 16 GB of
RAM running Ubuntu 20.04. Timing results are given in Table 2.

5.1 Verification of Ownable

A simplified implementation of Ownable is presented in Fig. 9. This contract pro-
vides a simple access-control mechanism, in which a single user, called the owner,
has special privileges. Initially, the owner is the user who creates the contract.
At any point during execution, an owner may transfer ownership to another user
by calling transferOwnership. An owner may also renounce ownership by calling
renounceOwnership. When ownership is renounced, the owner is permanently set
to address(0) and all privileges are lost. These behaviours are captured infor-
mally by three properties:

O1. If transferOwnership(u) is called successfully, then the new owner is u.
O2. If ownership changes, then the sender is the previous owner.
O3. If ownership changes and renounceOwnership has been called at least once,
then the new owner is address(0).

O1 is a post-condition for transferOwnership. In Scribble, post-conditions
are specified by function annotations. However, function annotations are checked
upon function return, using the latest value of each local variable. This means
that if u was changed during the execution of transferOwnership, then the anno-
tation refers to the newest value of u. To overcome this, old(u) is used to refer
to the original value of u. The Scribble annotation is added at line 17 of Fig. 9.

O2 is an assertion for each update to _owner. In Scribble, invariants can be
placed on state variable updates using state variable annotations. State variable
annotations are checked after each update, even if the update is made dur-
ing setup in a constructor. However, O2 refers to “ownership changes” which
assumes implicitly that some user already owns the contract. Therefore, the
invariant should only be checked after construction. This is achieved by adding

2 https://github.com/OpenZeppelin/openzeppelin-contracts/
3 https://docs.scribble.codes/

https://github.com/OpenZeppelin/openzeppelin-contracts/
https://docs.scribble.codes/

440 S. Wesley et al.

Fig. 9. A simplified implementation of Ownable from OpenZeppelin. All comments
are Scribble annotations, and all highlighted lines are instrumentation used in anno-
tations.

Fig. 10. A simplified implementation of RefundEscrow from OpenZeppelin. All com-
ments are Scribble annotations, and all highlighted lines are instrumentation used in
annotations. The field _deposits is renamed _d.

a flag variable _ctor at line 2 that is set to true after the constructor has termi-
nated (see line 11). The Scribble annotation is added at line 5 of Fig. 9.

O3 is also an assertion for each update to _owner. However, the techniques
used to formalize O2 are not sufficient for O3, as O3 also refers to func-
tions called in the past. To determine if renounceOwnership has been called,
a second flag variable _called is added at line 3 that is set to true upon
entry to renounceOwnership at line 22. The Scribble annotation is added at
line 6 of Fig. 9.

SmartACE verified each property within 1 s. Furthermore, as Ownable does
not maintain user-data, verification did not require interference invariants. To
validate these results, a fault was injected for each property. Bounded models
were then generated using 5 and 500 users to analyze the impact of parame-
terization. All faults were detected using each of BMC, greybox fuzzing, and
symbolic execution. Both BMC and greybox fuzzing were able to detect each
fault within 1 s, whereas symbolic execution required up to 90 s per fault. In this
case study, the number of users did not impact analysis time.

SmartACE: Smart Contract Analysis 441

5.2 Verification of RefundEscrow

A simplified implementation for RefundEscrow is presented in Fig. 10. An escrow
is used when a smart contract (the owner) must temporarily hold funds from
its users. In the case of RefundEscrow, the owner deposits funds on behalf of its
users. If some condition is reached (as determined by the owner), the escrow
is closed and a beneficiary may withdraw all funds. Otherwise, the owner may
enable refunds, and each user can withdraw their funds without the intervention
of the owner. In this case study, we consider five properties of RefundEscrow:

R1 If the state changes, then ownership has not been renounced.
R2 If close has been called, then all deposits are immutable.
R3 If close has been called, then enableRefunds has not been called.
R4 If beneficiaryWithdraw has been called, then the balance of the refund escrow

is 0, otherwise the balance is the sum of all deposits.
R5 If enableRefunds has not been called, then all deposits are increasing.

The first three properties are not parameterized and can be formalized using
the same techniques as in the previous case study (Sect. 5.1). R4 is formal-
ized using the unchecked_sum operator and a contract invariant, as illustrated
on lines 1–2 of Fig. 10. In Scribble, unchecked_sum is used to track the sum of
all elements in a mapping, without checking for integer overflow. Note that a
contract invariant was required, as R4 must be checked each time RefundEscrow

receives payment. R5 is formalized using a new technique, as illustrated on
line 10 of Fig. 10. The key observation is that R5 is equivalent to, “For every
address _u,if enableRefunds has not been called, then old(_d[_u]) is less than or
equal to _d[_u].” Then, RefundEscrow does not satisfy R5 if and only if there exists
some witnessing address _u that violates the new formulation. Therefore, R5 can
be checked by non-deterministically selecting a witness, and then validating its
deposits across each transactions. In Fig. 10, line 15 non-deterministically selects
a witness via user input, and line 10 validates each deposit made on behalf of
the witness. Therefore, the annotation on line 10 is equivalent to R5.

Since RefundEscrow maintains user-data, all verification required interference
invariants (see Sect. 3.3). SmartACE verified each property within 17 s using
predicate synthesis. For R1 to R4, all users were abstract, whereas R5 required
concrete transient participants to reason exactly about _d[_u]. For comparison,
SmartACE was then used to verify each property with user-provided interfer-
ence invariants. It was found that a “trivial” interference invariant, that includes
all deposits, was sufficient to verify each property within 12 s. As in the previous
case study, faults were then injected, and detected using 5 and 500 users. With
5 users, BMC required up to 5 s, greybox fuzzing required up to 26 s, and sym-
bolic execution required up to 454 s. However, with 500 users, BMC increased
to 33 min, fuzzing increased to 5 min, and symbolic execution exceeded system
resource limits for most properties. In this case study, reducing the number of
users significantly reduced analysis time.

442 S. Wesley et al.

Fig. 11. An annotated version of Auction from Fig. 1. All comments are Scribble
annotations, and all highlighted lines are instrumentation used in annotations.

5.3 Verification of Auction

Recall Auction from Fig. 1. In this case study the following two properties are
formalized and verified:

A1. The maximum bid equals leadingBid and is at most the sum of all bids.
A2. Any pair of non-zero bids are unequal.

A1 involves the maximum element of bids, and is not addressed by existing
smart contract analyzers. The challenge in verifying A1 is that the exact value
of max(bids) depends on all previous writes to bids. Specifically, each time the
largest bid is overwritten by a smaller bid, the value of max(bids) must be set to
the next largest bid. However, if the maximum bid is monotonically increasing,
then max(bids) is equal to the largest value previously written into bids. This
motivates a formalization that approximates max(bids). In this formalization,
two variables are added to Auction. The first variable tracks the largest value
written to bids (see line 19 in Fig. 11). The second variable is true so long as
max(bids) is monotonically increasing (see line 20 in Fig. 11). Together, these two
variables help formalize A1, as illustrated by lines 1–2 in Fig. 11.

A2 compares two arbitrary elements in bids, and cannot be reduced to pre-
and post-conditions. However, the technique used for R5 in Sect. 5.2 generalizes
directly to A2 as shown on line 3 in Fig. 11. In the formalization, there are now
two instantiated users: u and v. On line 11, an assertion is added to ensure that
these users are unique (i.e., a “pair” of users).

SmartACE verified each property within 246 s using predicate synthesis. For
A1, all users were abstract, whereas A2 required concrete transient participants
to reason exactly about bids[_u] and bids[_v]. For comparison, SmartACE
was then used to verify each property with user-provided interference invariants.
Unlike in the previous study (Sect. 5.2), a trivial interference invariant was insuf-
ficient to prove A1. However, the discovery of a non-trivial invariant was aided by
counterexamples. Initially, the trivial invariant was used, and a counterexample
was returned in which each user’s initial bid was larger than 0. This suggested
that each element of bids must be bounded above, which motivated a second
invariant: bids[i] <= leadingBid. This new invariant was shown to be composi-
tional, and adequate to prove A1. Using the provided interference invariants,
each property was verified within 56 s.

SmartACE: Smart Contract Analysis 443

As in the previous case studies, faults were then injected, and detected using
5 and 500 users. With 5 users, BMC required up to 4 s, greybox fuzzing required
up to 4 s, and symbolic execution required up to 533 s. However, with 500 users,
BMC increased to 73 min, fuzzing increased to 6 min, and symbolic execution
exceeded system resource limits for A1. As in Sect. 5.2, reducing the number of
users significantly reduced analysis time.

5.4 Discussion

Inter-transactional Analysis. SmartACE is an inter-transactional verification
tool. That is, SmartACE verifies properties across unbounded sequences of
transactions. In contrast, intra-transactional verification tools (e.g., [2,26]) verify
pre- and post-conditions for single transactions. Inter-transactional verification
is a more challenging problem, as it requires an invariant for contract state
between transactions. In our study, inter-transactional verification was required
to support properties involving calls made in the past (e.g., O3 and R3), and
to eliminate unreachable contract states (e.g., the interference invariant used to
prove A1). While there are many techniques for inter-transactional verification
(e.g., [23,37,42,44,45,50]), we believe that the SmartACE approach is unique in
its level of automation and its ability to handle parameterization in the number
of contract users.

Automation. SmartACE is a fully-automated tool for inter-transactional verifi-
cation, with optional user-guidance (i.e., user-provided interference invariants).
Many other tools rely on semi-automated approaches, such as user-provided
contract invariants (i.e., [23,50]) or predicate abstractions (i.e., [42]). Of the
fully-automated tools (i.e., [37,44,45]), neither address the state explosion prob-
lem. Furthermore, [45] is designed for the harder problem of liveness checking,
whereas [37,44] rely on less optimized model checking techniques than in Sea-
Horn.

Parameterization. SmartACE is based on the hypothesis that existing smart
contract verifiers struggle to scale due to the impact of users on the size of the
state space. This aligns with bug finding results for Ownable, RefundEscrow, and
Auction. In the case of Ownable, user-data was not maintained, and as expected,
the number of users had no noticeable impact on analysis time. In contrast,
both RefundEscrow and Auction maintain user-data and are significantly impacted
by the number of users. For BMC, analysis time increased from seconds to
hours, whereas symbolic execution became infeasible. Greybox fuzzing was less
impacted by the number of users, which likely reflects that greybox fuzzing is
coverage-based, as opposed to symbolic.

Integration Challenges. Two major challenges were encountered while integrat-
ing SmartACE with Scribble. The first challenge came from unchecked_sum.
When Scribble instruments unchecked_sum, extra ghost state is added such as
address[] keys which is used to track all updated fields in the mapping. The

444 S. Wesley et al.

purpose of this ghost state is to support quantification, but it is not required for
summation. However, this state is not supported by SmartACE, and also adds
overhead for dynamic analysis. To support unchecked_sum in SmartACE, this
state was manually removed. The second challenge came with formalizing the
predicate: “function fn has been called at least once.” Formally, this predicate is
expressed by once(called(fn)), and is supported by other smart contract verifi-
cation tools such as [42,45]. However, these specifications are not supported by
Scribble. As shown in Sect. 5.1, both once and called can be instrumented man-
ually with flag variables. However, manual instrumentation is more error-prone
than well-tested automated instrumentation. We conclude that SmartACE can
integrate with Scribble, but that further improvements are needed for the inte-
gration to become seamless. Furthermore, these improvements would benefit all
users of Scribble, as opposed to only SmartACE.

6 Related Work

Inter-transactional Verification. There are many tools for inter-transactional
verification. Manual approaches, such as [6,19,27] provide proof-assistants for
end-users to verify properties. These tools are versatile, but are also time con-
suming and are aimed at verification engineers rather than developers. Semi-
automated approaches, such as [23,50], require end-users to manually provide
contract invariants. In VerX [42], contract invariants are discovered automat-
ically, but an end-user must provide an adequate predicate abstraction. Auto-
mated approaches, such as [37,44,45], do not offer solutions to parameterization,
and instead rely on the underlying solvers to reduce symmetries.

Reusing Off-the-Shelf Tools. SmartACE is not the first smart contract analyzer
to leverage existing analyzers for more widely used languages. For example, prior
work has applied SeaHorn for gas estimation [36], and intra-transactional verifi-
cation [2,26]. Other smart contract analyzers have reduced to Datalog for check-
ing access control patterns [10], detecting gas exploits [17], and implementing
general pattern checks [48]. In [49], SMACK is used to detect non-deterministic
payment bugs. In [29], TLA+ is used to perform inter-transactional analysis with
a reduced number of users. SmartACE is the first application of off-the-shelf
tools to unbounded inter-transactional verification.

Bug Finding. There are multiple tools for smart contract symbolic execution
(e.g., [32,35,39,47,55]) and fuzzing (e.g., [18,24,25,53]). A major challenge for
such tools is finding deep violations across many transactions. In [55], a static
analysis technique is introduced to eliminate uninteresting transaction sequences.
In [47], a learning-based approach is used to train accurate fuzzers from symbolic
execution. We suspect that SmartACE would also benefit from such techniques.

Parameterized Verification. Parameterized systems form a rich field of research,
as outlined in [9]. In general, verifying a parameterized system is undecidable [3].

SmartACE: Smart Contract Analysis 445

However, local bundle abstraction is an instance of PCMC [40], and is decidable
(for finite-state systems) relative to an interference invariant. Furthermore, the
discovery of interference invariants in SmartACE is an instance of [22]. Though
this paper is restricted to safety properties, local bundle abstractions are known
to extend to CTL∗ [41]. Abdualla et al. [1] propose a somewhat similar notion
of view abstraction to abstract interfering processes in a network, though this
abstraction has not been applied to smart contracts.

7 Conclusion

We presented SmartACE, a communication-aware smart contract framework
with support for multiple off-the-shelf analyzers. The framework is based on
parameterized smart contract verification, and can verify properties for arbi-
trarily many users. We reported on verifying two widely used smart contracts
from the OpenZeppelin library. We then applied SmartACE to a simple open-
bid auction to highlight limitations of existing smart contract analyzers, and how
they are alleviated by SmartACE. We show that in practice, SmartACE is
appropriate for fully-automated smart contract analysis.

During the implementation and evaluation of SmartACE, several challenges
were encountered. At the implementation stage, we observed that many analyz-
ers handle value selection and non-determinism using incompatible techniques.
To overcome this incompatibility, we introduced libVerify to separate the
details of an analyzer from the harness design. At the evaluation stage, we iden-
tified limitations in Scribble and suggested improvements. We also proposed
manual solutions that can be used to circumvent the limitations of Scribble.

References

1. Abdulla, P., Haziza, F., Hoĺık, L.: Parameterized verification through view abstrac-
tion. Int. J. Softw. Tools Technol. Transf. 18(5), 495–516 (2015). https://doi.org/
10.1007/s10009-015-0406-x

2. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: SAFEVM: a safety
verifier for Ethereum smart contracts. In: Zhang, D., Møller, A. (eds.) Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, Beijing, China, 15–19 July 2019, pp. 386–389. ACM (2019).
https://doi.org/10.1145/3293882.3338999

3. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986). https://doi.org/10.1016/0020-
0190(86)90071-2

4. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
Anderson, L., Coplien, J. (eds.) Proceedings of the 1996 ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages & Applications (OOP-
SLA 1996), San Jose, California, USA, 6–10 October 1996, pp. 324–341. ACM
(1996). https://doi.org/10.1145/236337.236371

https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1145/3293882.3338999
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1145/236337.236371

446 S. Wesley et al.

5. Beyer, D., Lewerentz, C., Simon, F.: Impact of inheritance on metrics for size,
coupling, and cohesion in object-oriented systems. In: Dumke, R., Abran, A. (eds.)
IWSM 2000. LNCS, vol. 2006, pp. 1–17. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44704-0 1

6. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Mur-
ray, T.C., Stefan, D. (eds.) Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security, PLAS@CCS 2016, Vienna, Austria, 24
October 2016, pp. 91–96. ACM (2016). https://doi.org/10.1145/2993600.2993611

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: D’Souza,
D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 263–281.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8 15

9. Bloem, R., et al.: Decidability in parameterized verification. SIGACT News 47(2),
53–64 (2016). https://doi.org/10.1145/2951860.2951873

10. Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter: a
smart contract security analyzer for composite vulnerabilities. In: Donaldson, A.F.,
Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2020, London,
UK, 15–20 June 2020, pp. 454–469. ACM (2020). https://doi.org/10.1145/3385412.
3385990

11. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, 8–10 December 2008, San Diego, California, USA, Proceedings,
pp. 209–224. USENIX Association (2008)

12. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Juels, A., Wright, R.N., di Vimercati, S.D.C.
(eds.) Proceedings of the 13th ACM Conference on Computer and Communica-
tions Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November 2006,
pp. 322–335. ACM (2006). https://doi.org/10.1145/1180405.1180445

13. Carter, M., He, S., Whitaker, J., Rakamaric, Z., Emmi, M.: SMACK software
verification toolchain. In: Dillon, L.K., Visser, W., Williams, L.A. (eds.) Proceed-
ings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, 14–22 May 2016 - Companion Volume, pp. 589–592. ACM
(2016). https://doi.org/10.1145/2889160.2889163

14. Chen, H., Pendleton, M., Njilla, L., Xu, S.: A survey on Ethereum systems secu-
rity: vulnerabilities, attacks, and defenses. ACM Comput. Surv. 53(3), 67:1–67:43
(2020). https://doi.org/10.1145/3391195

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

16. Durieux, T., Ferreira, J.F., Abreu, R., Cruz, P.: Empirical review of automated
analysis tools on 47, 587 Ethereum smart contracts. In: Rothermel, G., Bae, D.
(eds.) ICSE 2020: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June-19 July 2020, pp. 530–541. ACM (2020). https://doi.org/
10.1145/3377811.3380364

https://doi.org/10.1007/3-540-44704-0_1
https://doi.org/10.1007/3-540-44704-0_1
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-46081-8_15
https://doi.org/10.1145/2951860.2951873
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1145/3391195
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364

SmartACE: Smart Contract Analysis 447

17. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
Max: surviving out-of-gas conditions in Ethereum smart contracts. Proc. ACM Pro-
gram. Lang. 2(OOPSLA), 116:1–116:27 (2018). https://doi.org/10.1145/3276486

18. Grieco, G., Song, W., Cygan, A., Feist, J., Groce, A.: Echidna: effective, usable, and
fast fuzzing for smart contracts. In: Khurshid, S., Pasareanu, C.S. (eds.) ISSTA
2020: 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, USA, 18–22 July 2020, pp. 557–560. ACM (2020). https://
doi.org/10.1145/3395363.3404366

19. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

20. Grossman, S., et al.: Online detection of effectively callback free objects with
applications to smart contracts. Proc. ACM Program. Lang. 2(POPL), 48:1–48:28
(2018). https://doi.org/10.1145/3158136

21. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

22. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameterized
systems. In: Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, 13–18 November 2016, pp. 338–348.
ACM (2016). https://doi.org/10.1145/2950290.2950330

23. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp.
161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3 11

24. He, J., Balunovic, M., Ambroladze, N., Tsankov, P., Vechev, M.T.: Learning to
fuzz from symbolic execution with application to smart contracts. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, London, UK, 11–
15 November 2019, pp. 531–548. ACM (2019). https://doi.org/10.1145/3319535.
3363230

25. Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vul-
nerability detection. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2018, Montpellier, France, 3–7 September 2018, pp. 259–269. ACM
(2018). https://doi.org/10.1145/3238147.3238177

26. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, 18–21 February 2018. The Internet Soci-
ety (2018)

27. Kasampalis, T., et al.: IELE: a rigorously designed language and tool ecosystem
for the blockchain. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 593–610. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 35

28. Kildall, G.A.: A unified approach to global program optimization. In: Fischer, P.C.,
Ullman, J.D. (eds.) Conference Record of the ACM Symposium on Principles of
Programming Languages, Boston, Massachusetts, USA, October 1973, pp. 194–
206. ACM Press (1973). https://doi.org/10.1145/512927.512945

https://doi.org/10.1145/3276486
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1145/3158136
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1145/2950290.2950330
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1007/978-3-030-30942-8_35
https://doi.org/10.1007/978-3-030-30942-8_35
https://doi.org/10.1145/512927.512945

448 S. Wesley et al.

29. Kolb, J.: A languge-based approach to smart contract engineering. Ph.D. thesis,
University of California at Berkeley, USA (2020)

30. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting the laws
of order in smart contracts. In: Zhang, D., Møller, A. (eds.) Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, 15–19 July 2019, pp. 363–373. ACM (2019). https://
doi.org/10.1145/3293882.3330560

31. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

32. Krupp, J., Rossow, C.: teEther: Gnawing at Ethereum to automatically exploit
smart contracts. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018, pp. 1317–1333.
USENIX Association (2018)

33. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), 20–24 March 2004, San Jose, CA, USA,
pp. 75–88. IEEE Computer Society (2004). https://doi.org/10.1109/CGO.2004.
1281665

34. LibFuzzer–A library for coverage-guided fuzz testing. https://llvm.org/docs/
LibFuzzer.html

35. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, 24–28 October 2016, pp. 254–269. ACM
(2016). https://doi.org/10.1145/2976749.2978309

36. Marescotti, M., Blicha, M., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Computing
exact worst-case gas consumption for smart contracts. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 450–465. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 33

37. Marescotti, M., Otoni, R., Alt, L., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.:
Accurate smart contract verification through direct modelling. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp. 178–194. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-61467-6 12

38. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.
96279

39. Mossberg, M., et al.: Manticore: a user-friendly symbolic execution framework for
binaries and smart contracts. In: 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, San Diego, CA, USA, 11–15 Novem-
ber 2019, pp. 1186–1189. IEEE (2019). https://doi.org/10.1109/ASE.2019.00133

40. Namjoshi, K.S., Trefler, R.J.: Parameterized compositional model checking. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 589–606.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 39

41. Namjoshi, K.S., Trefler, R.J.: Symmetry reduction for the local mu-calculus. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 379–395.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 22

42. Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., Vechev, M.T.:
VerX: safety verification of smart contracts. In: 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, 18–21 May 2020, pp. 1661–1677.
IEEE (2020). https://doi.org/10.1109/SP40000.2020.00024

https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-030-03427-6_33
https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1007/978-3-662-49674-9_39
https://doi.org/10.1007/978-3-319-89963-3_22
https://doi.org/10.1109/SP40000.2020.00024

SmartACE: Smart Contract Analysis 449

43. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). https://doi.org/10.1007/
3-540-11494-7 22

44. So, S., Lee, M., Park, J., Lee, H., Oh, H.: VeriSmart: a highly precise safety verifier
for Ethereum smart contracts. In: 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, 18–21 May 2020, pp. 1678–1694. IEEE (2020).
https://doi.org/10.1109/SP40000.2020.00032

45. Stephens, J., Ferles, K., Mariano, B., Lahiri, S., Dillig, I.: SmartPulse: automated
checking of temporal properties in smart contracts. In: 42nd IEEE Symposium on
Security and Privacy. IEEE (2021)

46. Szabo, N.: Smart contracts: building blocks for digital markets (1996)
47. Torres, C.F., Schütte, J., State, R.: Osiris: hunting for integer bugs in Ethereum

smart contracts. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, ACSAC 2018, San Juan, PR, USA, 03–07 December 2018, pp.
664–676. ACM (2018). https://doi.org/10.1145/3274694.3274737

48. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: practical security analysis of smart contracts. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
15–19 October 2018, pp. 67–82. ACM (2018). https://doi.org/10.1145/3243734.
3243780

49. Wang, S., Zhang, C., Su, Z.: Detecting nondeterministic payment bugs in Ethereum
smart contracts. Proc. ACM Program. Lang. 3(OOPSLA), 189:1–189:29 (2019).
https://doi.org/10.1145/3360615

50. Wang, Y., et al.: Formal verification of workflow policies for smart contracts in
azure blockchain. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS,
vol. 12031, pp. 87–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
41600-3 7

51. Wesley, S., Christakis, M., Navas, J.A., Trefler, R.J., Wüstholz, V., Gurfinkel, A.:
Compositional verification of smart contracts through communication abstraction
(extended). CoRR abs/2107.08583 (2021)

52. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014)
53. Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. In:

Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC/FSE 2020: 28th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, Virtual Event, USA, 8–13 November 2020, pp.
1398–1409. ACM (2020). https://doi.org/10.1145/3368089.3417064

54. Zalewski, M.: Technical whitepaper for AFL. http://lcamtuf.coredump.cx/afl/
technical details.txt

55. Zhang, W., Banescu, S., Pasos, L., Stewart, S.T., Ganesh, V.: MPro: combining
static and symbolic analysis for scalable testing of smart contract. In: Wolter, K.,
Schieferdecker, I., Gallina, B., Cukier, M., Natella, R., Ivaki, N.R., Laranjeiro, N.
(eds.) 30th IEEE International Symposium on Software Reliability Engineering,
ISSRE 2019, Berlin, Germany, 28–31 October 2019, pp. 456–462. IEEE (2019).
https://doi.org/10.1109/ISSRE.2019.00052

56. Zhang, Y., Zhang, J., Zhang, D., Mu, Y.: Survey of directed fuzzy technology.
In: 2018 IEEE 9th International Conference on Software Engineering and Service
Science (ICSESS), pp. 696–699. IEEE (2018). https://doi.org/10.1109/ICSESS.
2018.8663772

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1109/SP40000.2020.00032
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3360615
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1145/3368089.3417064
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1109/ISSRE.2019.00052
https://doi.org/10.1109/ICSESS.2018.8663772
https://doi.org/10.1109/ICSESS.2018.8663772

Out of Control: Reducing Probabilistic
Models by Control-State Elimination

Tobias Winkler(B) ,
Johannes Lehmann ,

and Joost-Pieter Katoen

RWTH Aachen University,
Aachen, Germany
{tobias.winkler,

katoen}@cs.rwth-aachen.de,
johannes.lehmann@rwth-aachen.de

Abstract. State-of-the-art probabilistic model checkers perform verifi-
cation on explicit-state Markov models defined in a high-level program-
ming formalism like the PRISM modeling language. Typically, the low-
level models resulting from such program-like specifications exhibit lots
of structure such as repeating subpatterns. Established techniques like
probabilistic bisimulation minimization are able to exploit these struc-
tures; however, they operate directly on the explicit-state model. On
the other hand, methods for reducing structured state spaces by reason-
ing about the high-level program have not been investigated that much.
In this paper, we present a new, simple, and fully automatic program-
level technique to reduce the underlying Markov model. Our approach
aims at computing the summary behavior of adjacent locations in the
program’s control-flow graph, thereby obtaining a program with fewer
“control states”. This reduction is immediately reflected in the program’s
operational semantics, enabling more efficient model checking. A key
insight is that in principle, each (combination of) program variable(s)
with finite domain can play the role of the program counter that defines
the flow structure. Unlike most other reduction techniques, our approach
is property-directed and naturally supports unspecified model parame-
ters. Experiments demonstrate that our simple method yields state-space
reductions of up to 80% on practically relevant benchmarks.

1 Introduction

Modelling Markov Models. Probabilistic model checking is a fully automated
technique to rigorously prove correctness of a system model with randomness
against a formal specification. Its key algorithmic component is computing reach-
ability probabilities on stochastic processes such as (discrete- or continuous-time)
Markov chains and Markov Decision Processes. These stochastic processes are

This work is supported by the Research Training Group 2236 UnRAVeL, funded by
the German Research Foundation.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 450–472, 2022.
https://doi.org/10.1007/978-3-030-94583-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_22&domain=pdf
http://orcid.org/0000-0003-1084-6408
http://orcid.org/0000-0001-7047-3813
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-94583-1_22

Reducing Probabilistic Models by Control-State Elimination 451

typically described in some high-level modelling language. State-of-the-art tools
like PRISM [33], storm [26] and mcsta [24] support input models specified in e.g.,
the PRISM modeling language1, PPDDL [42], a probabilistic extension of the
planning domain definition language [22], the process algebraic language MoD-
eST [9], the jani model exchange format [11], or the probabilistic guarded com-
mand language pGCL [34]. The recent tool from [21] even supports verification
of probabilistic models written in Java.
Model Construction. Prior to computing reachability probabilities, existing
model checkers explore all the program’s reachable variable valuations and
encode them into the state space of the operational Markov model. Termi-
nation is guaranteed as variables are restricted to finite domains. This paper
proposes a simple reduction technique for this model construction phase that
avoids unfolding the full model prior to the actual analysis, thereby mitigating
the state explosion problem. The basic idea is to unfold variables one-by-one—
rather than all at once as in the standard pipeline—and apply analysis steps
after each unfolding. We detail this control-state reduction technique for proba-
bilistic control-flow graphs and illustrate its application to the PRISM modelling
language. Its principle is however quite generic and is applicable to the afore-
mentioned modelling formalisms. Our technique is thus to be seen as a model
simplification front-end for general purpose probabilistic model checkers.
Approach. Technically our approach works as follows. The principle is to unfold
a (set of) variable(s) into the control state space, a technique inspired by static
program analyses such as abstract interpretation [28]. The selection of which
variables to unfold is property-driven, i.e., depending on the reachability or
reward property to be checked. We define the unfolding on probabilistic control-
flow programs [19] (PCFPs, for short) and simplify them using a technique that
generalizes state elimination in (parametric) Markov chains [13]. Our elimina-
tion technique heavily relies on classical weakest precondition reasoning [16].
This enables the elimination of several states at once from the underlying “low-
level” Markov model while preserving exact reachability probabilities or expected
rewards. Figure 1 provides a visual intuition on the resulting model compression.

The choice of the variables and locations for unfolding and elimination, resp.,
is driven by heuristics. In a nutshell, our unfolding heuristics prefers the variables
that lead to a high number of control-flow locations without self-loops. These
loop-free locations are then removed by the elimination heuristics which gives
preference to locations whose removal does not blow up the transition matrix
of the underlying model. Unfolding and elimination steps are performed in an
alternating fashion, but only until the PCFP size reaches a certain threshold.
After this, the reduction phase is complete and the transformed PCFP can be
fed into a standard probabilistic model checker.

Contributions. In summary, the main contributions of this paper are:

– A simple, widely applicable reduction technique that considers each program
variable with finite domain as a “program counter” and selects suitable vari-
ables for unfolding into the control state space one-by-one.

1 https://www.prismmodelchecker.org/manual/ThePRISMLanguage.

https://www.prismmodelchecker.org/manual/ThePRISMLanguage

452 T. Winkler et al.

Fig. 1. Left: Visualization of the original nand model from [35] (930 states, parameters
5/1). Transitions go from top to bottom. Right: The same model after our reduction
(207 states). A single “program counter variable” taking at most 5 different values was
unfolded and a total of three locations were eliminated thereafter. Note that the overall
structure is preserved but several local substructures such as the pyramidal shape at
the top are compressed significantly. This behavior is typical for our approach.

– A sound rule to eliminate control-flow locations in PCFPs in order to shrink
the state space of the underlying Markov model while preserving exact reach-
ability probabilities or expected rewards.

– Elimination in PCFPs—in contrast to Markov chains—is shown to have an
exponential worst-case complexity.

– An implementation in the probabilistic model checker storm demonstrating
the potential to significantly compress practically relevant benchmarks.

Related Work. The state explosion problem has been given top priority in both
classical and probabilistic model checking. Techniques similar to ours have been
known for quite some time in the non-probabilistic setting [18,32]. Regarding
probabilistic model checking, reduction methods on the state-space level include
symbolic model checking using MTBDDs [1], SMT/SAT techniques [7,40], bisim-
ulation minimization [27,30,38], Kronecker representations [1,10] and partial
order reduction [4,12]. Language-based reductions include symmetry reduc-
tion [17], bisimulation reduction using SMT on PRISM modules [15], as well
as abstraction-refinement techniques [23,31,39]. Our reductions on PCFPs are
inspired by state elimination [13]. Similar kinds of reductions on probabilistic
workflow nets have been considered in [20]. Despite all these efforts, it is some-
what surprising that simple probabilistic control-flow reductions as proposed in
this paper have not been investigated that much. A notable exception is the
recent work by Dubslaff et al. that applies existing static analyses to control-
flow-rich PCFPs [19]. In contrast to our method, their technique yields bisimilar
models and exploits a different kind of structure.

Organization of the Paper. Section 2 starts off by illustrating the central aspects
of our approach by example. Section 3 defines PCFPs and their semantics in
terms of MDPs. Section 4 formalizes the reductions, proves their correctness and
analyzes the complexity. Our implementation in storm is discussed in Sect. 5.
We present our experimental evaluation in Sect. 6 and conclude in Sect. 7. A full
version of this paper including detailed proofs is available online [41].

Reducing Probabilistic Models by Control-State Elimination 453

dtmc

const int N;

module coingame

x : [0..N+1] init N/2;

f : bool init false;

[] 0<x & x<N & !f -> 1/2: (x’=x-1) + 1/2: (f’=true);

[] 0<x & x<N & f -> 1/2: (x’=x-1) & (f’=false) + 1/2: (x’=x+2) & (f’=false);

[] x=0 | x>=N -> 1: (f’=false);

endmodule

Fig. 2. The coin game as a PRISM program. Variable x stands for the current budget.

2 A Bird’s Eye View

This section introduces a running example to illustrate our approach. Consider a
game of chance where a gambler starts with an initial budget of x = N/2 tokens.
The game is played in rounds, each of which either increases or decreases the
budget. The game is lost once the budget has dropped to zero and won once
it exceeds N tokens. In each round, a fair coin is tossed: If the outcome is tails,
then the gambler loses one token and proceeds to the next round; on the other
hand, if heads occurs, then the coin is flipped again. If tails is observed in the
second coin flip, then the gambler also loses one token; however, if the outcome
is again heads then the gambler receives two tokens.

In order to answer questions such as “Is this game fair?” (for a fixed N), prob-
abilistic model checking can be applied. To this end, we model the game as the
PRISM program in Fig. 2. We briefly explain its central components: The first
two lines of the module block are variable declarations. Variable x is an integer
with bounded domain and f is a Boolean. The idea of x and f is to represent
the current budget and whether the coin has to be flipped a second time, respec-
tively. The next three lines that each begin with [] define commands which are
interpreted as follows: If the guard on the left-hand side of the arrow -> is satis-
fied, then one of the updates on the right side is executed with its corresponding
probability. For instance, in the first command, x is decremented by one (and
f is left unchanged) with probability 1/2. Otherwise f is set to true. The order
in which the commands occur in the program text is irrelevant. If there is more
than one command enabled for a specific valuation of the variables, then one of
them is chosen non-deterministically. Our example is, however, deterministic in
this regard since the three guards are mutually exclusive.

Probabilistic model checkers like PRISM and storm expand the above program
as a Markov chain with approximately 2N states. This is depicted for N = 6 at
the top of Fig. 3. Given that we are only interested in the winning probability
(i.e., to reach one of the two rightmost states), this Markov chain is equivalent
to the smaller one on the bottom of Fig. 3. Indeed, eliminating each dashed state
in the lower row individually yields that the overall probability per round to go
one step to the left is 3/4 and 1/4 to go two steps to the right. On the program
level, this simplification could have been achieved by summarizing the first two
commands to

454 T. Winkler et al.

0 1 2 3 4 5 6 7

!f

f

f
3/4 3/4 3/4 3/4 3/4

1/4 1/4 1/4 1/4 1/4

Fig. 3. Top: The Markov chain of the original coin game for N = 6. All transition
probabilities (except on the self-loops) are 1/2. Bottom: The Markov chain of the
simplified model.

[] 0<x & x<N -> 3/4: (x’=x-1) + 1/4: (x’=x+2);

so that variable f is effectively removed from the program.
Obtaining such simplifications in an automated manner is the main purpose

of this paper. In summary, our proposed solution works as follows:

1. First, we view the input program as a probabilistic control flow program
(PCFP), which can be seen as a generalization of PRISM programs from
a single to multiple control-flow locations (Fig. 4, left). A PRISM program
(with a single module) is a PCFP with a unique control location. Imperative
programs such as pGCL programs [34] can be regarded as PCFPs with roughly
one location per line of code.

2. We then unfold one or several variables into the location space, thereby inter-
preting them as “program counters”. We will discuss in Sect. 4.1 that—in
principle—every variable can be unfolded in this way. The distinction between
program counters and “data variables” is thus an informal one. This insight
renders the approach quite flexible. In the example, we unfold f (Fig. 4, mid-
dle), but we stress that it is also possible to unfold x instead (for any fixed
N), even though this is not as useful in this case.

3. The last and most important step is elimination. Once sufficiently unfolded,
we identify locations in the PCFP that can be eliminated. Our elimination
rules are inspired by state elimination in Markov chains [13]. In the example,
we eliminate the location labeled f. To this end, we try to eliminate all ingoing
transitions of location f. Applying the rules described in detail in Sect. 4, we
obtain the PCFP shown in Fig. 4 (right). This PCFP generates the reduced
Markov chain in Fig. 3 (bottom). Here, location elimination has also reduced
the size of the PCFP, but this is not always the case. In general, elimination
adds more commands to the program while reducing the size of the generated
Markov chain or MDP (cf. Sect. 6).

These unfolding and elimination steps may be performed in an alternating fash-
ion following the principle “unfold a bit, eliminate reasonably”. Here, “reason-

Reducing Probabilistic Models by Control-State Elimination 455

x=0 | x>=N

1:f=false
0
<
x
<
N
&
!
f

1/2:x--1/2:f=true

0
<
x
<
N
&
f

1/2:x--;

f=false

1/2:x+=2;

f=false

f!f

x=0 | x>=N

1

x=0 | x>=N1
0<
x<
N1/

2:
x-
- 1/2

0<
x<
N

1/2:x--

1/2:x+=2

!f

x=0 | x>=N

1

0
<
x
<
N

3/4:x--

1
/
4
:
x
+
=
2

Fig. 4. Left: The coin game as a single-location PCFP Pgame . Middle: The PCFP after
unfolding variable f. Right: The PCFP after eliminating the location labeled f.

ably” means that in particular, we must be careful to not blow up the underlying
transition matrix (cf. Sect. 5).

Despite its simplicity, we are not aware of any other automatic technique
that achieves the same or similar reductions on the coin game model. In par-
ticular, bisimulation minimization is not applicable: The bisimulation quotient
of the Markov chain in Fig. 3 (top) is already obtained by merging just the two
rightmost goal states.

Arguably, the program transformations in the above example could have
been done by hand. However, automation is crucial for our technique because
the transformation makes the program harder to understand and obfuscates
the original model’s mechanics due to the removed intermediate control states.
Indeed, simplification only takes place from the model checker’s perspective but
not from the programmer’s. Moreover, our transformations are rather tedious
and error-prone, and may not always be that obvious for more complicated
programs. To illustrate this, we mention the work [35] where a PRISM model of
the von Neumann NAND multiplexing system was presented. Optimizations with
regard to the resulting state space were applied manually already at modeling
time2. Despite these (successful) manual efforts, our fully automatic technique
can further shrink the state-space of the same model by ≈80% (cf. Sect. 6).

3 Technical Background on PCFPs

In this section, we review the necessary definitions of Markov Decision Pro-
cesses (MDPs), Probabilistic Control Flow Programs (PCFPs), and reachabil-
ity properties. The set of probability distributions on a finite set S is denoted
Dist(S) =

{
p : S → [0, 1] | ∑

s∈S p(s) = 1
}
. The set of (total) functions A → B

is denoted BA.

2 See paragraph 7 in [35, Sec. III A.].

456 T. Winkler et al.

Basic Markov Models. An MDP is tuple M = (S, Act, ι, P) where S is a
finite set of states, ι ∈ S is an initial state, Act is a finite set of action labels
and P : S × Act ��� Dist(S) is a (partial) probabilistic transition function. We
say that action a ∈ Act is available at state s ∈ S if P (s, a) is defined. We use
the notation s

a, p−−→ s′ to indicate that P (s, a)(s′) = p. In the following, we write
P (s, a, s′) rather than P (s, a)(s′).

A Markov chain is an MDP with exactly one available action at every state.
We omit action labels when considering Markov chains, i.e., the transition func-
tion of a Markov chain has type P : S → Dist(S). Given a Markov chain M
together with a goal set G ⊆ S, we define the set of paths reaching G as
Paths(G) = { s0 . . . sn ∈ Sn | n ≥ 0, s0 = ι, sn ∈ G,∀i < n : si /∈ G }. The reach-
ability probability of G is PM(♦G) =

∑
π∈Paths(G)

∏l(π)−1
i=0 P (πi, πi+1) where l(π)

denotes the length of a path π and πi is the i-th state along π. P(♦G) is always
a well-defined probability (see e.g. [5, Ch. 10] for more details).

A (memoryless deterministic) scheduler of an MDP is a mapping σ ∈ ActS

with the restriction that action σ(s) is available at s. Each scheduler σ induces a
Markov chain Mσ by retaining only the action σ(s) at every s ∈ S. Scheduler σ is
called optimal if σ = argmaxσ′ PMσ′ (♦G) (or argmin, depending on the context).
In finite MDPs as considered here, there always exists an optimal memoryless
and deterministic scheduler, even if the above argmax is taken over more general
schedulers that may additionally use memory and/or randomization [36].

PCFP Syntax and Semantics. We first define (guarded) commands. Let
Var = {x1, . . . , xn} be a set of integer-valued variables. An update is a set of
assignments

u = { x′
1 = f1(x1, . . . , xn), . . . , x′

n = fn(x1, . . . , xn) }

that are executed simultaneously. We assume that the expressions fi always yield
integers. An update u transforms a variable valuation ν ∈ Z

Var into a valuation
ν′ = u(ν). For technical reasons, we also allow chaining of updates, that is, if
u1 and u2 are updates, then u1 � u2 is the update that corresponds to executing
the updates in sequence: first u1 and then u2. A command is an expression

ϕ → p1 : u1 + . . . + pk : uk,

where ϕ is a guard, i.e., a Boolean expression over program variables, ui are
updates, and pi are non-negative real numbers such that

∑k
i=1 pi = 1, i.e., they

describe a probability distribution over the updates. We further define location-
guided commands which additionally depend on control-flow locations l and
l1, . . . , lk:

ϕ, l → p1 : u1 : l1 + . . . + pk : uk : lk.

The intuitive meaning of a location-guided command is as follows: It is enabled
if the system is at location l and the current variable valuation satisfies ϕ.
Based on the probabilities p1, . . . , pk, the system then randomly executes one

Reducing Probabilistic Models by Control-State Elimination 457

of the updates ui and transitions to the next location li. We use the notation
l

ϕ → pi : ui−−−−−−−→ li to refer to such a possible transition between locations. We call
location-guided commands simply commands in the rest of the paper.

Probabilistic Control Flow Programs (PCFPs) combine several commands
into a probabilistic program and constitute the formal basis of our approach:

Definition 1 (PCFP). A PCFP is a tuple P = (Loc, Var, dom, Cmd, ι) where
Loc is a non-empty set of (control-flow) locations, Var is a set of integer-valued
variables, dom ∈ P(Z)Var is a domain for each variable, Cmd is a set of com-
mands as defined above, and ι = (lι, νι) is the initial location/valuation pair.

This definition and our notation for commands are similar to [19]. We also allow
Boolean variables as syntactic sugar by identifying false ≡ 0 and true ≡ 1. We
generally assume that Loc and all variable domains are finite sets. For a variable
valuation ν ∈ Z

Var, we write ν ∈ dom if ν(x) ∈ dom(x) for all x ∈ Var. In
some occasions, we consider only partial valuations ν ∈ Z

Var′ , where Var′ � Var.
We use the notations ϕ[ν] and u[ν] to indicate that all variables occurring in
the guard ϕ (the update u, respectively) are replaced according to the given
(partial) valuation ν. For updates, we also remove assignments whose left-hand
side variables become a constant. Recall that the notation u(ν) has a different
meaning; it denotes the result of executing the update u on valuation ν.

The straightforward operational semantics of a PCFP is defined in terms of
a Markov Decision Process (MDP).

Definition 2 (MDP Semantics). For a PCFP P = (Loc, Var, dom, Cmd, ι),
we define the semantic MDP MP = (S, Act, ι, P) as follows:

S = Loc × {ν ∈ dom} ∪ {⊥}, Act = { aγ | γ ∈ Cmd } , ι = 〈lι, νι〉

and the probabilistic transition relation P is defined according to the rules

l1
ϕ→p:u−−−−→ l2 ∧ ν |= ϕ ∧ u(ν) ∈ dom

〈l1, ν〉 aγ ,p−−−→ 〈l2, u(ν)〉
,

l1
ϕ→p:u−−−−→ l2 ∧ ν |= ϕ ∧ u(ν) /∈ dom

〈l1, ν〉 aγ ,p−−−→ ⊥
where aγ ∈ Act is an action label that uniquely identifies the command γ con-
taining transition l1

ϕ→p:u−−−−→ l2.

An element 〈l, ν〉 ∈ Loc × {ν ∈ dom} is called a configuration. A PCFP is
deterministic if the MDP MP is a Markov chain. Moreover, we say that a PCFP
is well-formed if the out-of-bounds state ⊥ is not reachable from the initial state
and if there is at least one action available at each state of MP. From now on,
we assume that PCFPs are always well-formed.

Example 1. The semantic MDP—a Markov chain in this case—of the two
PCFPs in Fig. 4 (left and middle) is given in Fig. 3 (top), and the one of the
PCFP in Fig. 4 (right) is depicted in Fig. 3 (bottom). �

458 T. Winkler et al.

Reachability in PCFPs. It is natural to describe a set of good (or bad)
PCFP configurations by means of a predicate ϑ over the program variables which
defines a set of target states in the semantic MDP MP. We slightly extend this
to account for information available from previous unfolding steps. To this end,
we will sometimes consider a labeling function L : Loc → Z

Var′ that assigns to
each location an additional variable valuation ν′ over Var′, a set of variables
disjoint to the actual programs variables Var. The idea is that Var′ contains the
variables that have already been unfolded (see Sect. 4.1 below for the details). A
predicate ϑ over Var � Var′ describes the following goal set in the MDP MP:

Gϑ = { 〈l, ν〉 | l ∈ Loc, ν ∈ dom, (ν, L(l)) |= ϑ }
where (ν, L(l)) is the variable valuation over Var � Var′ that results from com-
bining ν and L(l).

Definition 3 (Potential Goal). Let (Loc, Var, dom, Cmd, ι) be a PCFP
labeled with valuations L : Loc → Z

Var′ and let ϑ be a predicate over Var � Var′.
A location l ∈ Loc is called a potential goal w.r.t. ϑ if ϑ[L(l)] is satisfiable in
dom.

Example 2. Consider the PCFP in Fig. 4 (middle) with N = 6. Note that here,
Var = {x} and Var′ = {f}. Let ϑ = (x ≥ 6 ∧ f = false). Assume the labeling
function L(!f) = {f �→ false} and L(f) = {f �→ true}. Then the location
labeled !f is a potential goal w.r.t. ϑ because ϑ[f �→ false] ≡ x ≥ 6 is satisfiable.
The other location f is no potential goal. �

In Sect. 4 below, we introduce PCFP transformation rules that preserve
reachability probabilities. This is formally defined as follows:

Definition 4 (Reachability Equivalence). Let P1 and P2 be PCFPs over
the same set of variables Var. For i ∈ {1, 2}, let Li : Loci → Z

Var′ be labeling
functions on Pi. Further, let ϑ be a predicate over Var � Var′. Then P1 and P2

are ϑ-reachability equivalent if

opt
σ

PMσ
P1

(♦Gϑ) = opt
σ

PMσ
P2

(♦Gϑ)

for both opt ∈ {min,max} and where σ ranges of the class of memoryless deter-
ministic schedulers for the MDPs Mσ

P1
and Mσ

P2
, respectively.

Example 3. For all N ≥ 0, the PCFPs in Fig. 4 (middle) and Fig. 4 (right) with
labeling functions as in Example 2 are reachability equivalent w.r.t. to ϑ =
(x ≥ N ∧ f = false). This follows from our intuitive explanation in Sect. 2, or
alternatively from the formal rules to be presented in the following Sect. 4. �

4 PCFP Reduction

We now describe our two main ingredients in detail: variable unfolding and loca-
tion elimination. Throughout this section, P = (Loc, Var, dom, Cmd, ι) denotes
an arbitrary well-formed PCFP.

Reducing Probabilistic Models by Control-State Elimination 459

4.1 Variable Unfolding

Let Asgn be the set of all assignments that occur anywhere in the updates of P.
For an assignment α ∈ Asgn, we write lhs(α) for the variable on the left-hand side
and rhs(α) for the expression on the right-hand side. Let x, y ∈ Var be arbitrary.
Define the relation x → y (“x depends on y”) as

x → y ⇐⇒ ∃α ∈ Asgn : x = lhs(α) ∧ rhs(α) contains y.

This syntactic dependency relation only takes updates but no guards into
account. This is, however, sufficient for our purpose. We say that x is (directly)
unfoldable if ∀y : x → y =⇒ x = y, that is, x depends at most on itself.

Example 4. Variables x and f in the PCFP in Fig. 4 (left) are unfoldable. �
The rationale of this definition is as follows: If variable x is to be unfolded into
the location space, then we must make sure that any update assigning to x
yields an explicit numerical value and hence an unambiguous location. Formally,
unfolding is defined as follows:

Definition 5 (Unfolding). Let x ∈ Var be unfoldable. The unfolding
Unf(P, x) of P with respect to x is the PCFP (Loc′, Var\{x}, dom, Cmd′, ι′)
where

Loc′ = Loc × dom(x), ι′ = (〈 lι, νι(x) 〉, ν′
ι)

where ν′
ι(x) = νι(x) for all x ∈ Var′, and Cmd′ is defined according to the rule

l
ϕ→p:u−−−−→ l′ in P ∧ ν : {x} → dom(x)

〈 l, ν(x) 〉 ϕ[ν]→ p:u[ν]−−−−−−−−→ 〈 l′, u(ν)(x) 〉
.

Recall that u[ν] substitutes all x in u for ν(x) while u(ν) applies u to valuation
ν. Note that even though ν only assigns a value to x in the above rule, we
nonetheless have that u(ν)(x) is a well-defined integer in dom(x). This is ensured
by the definition of unfoldable and because P is well-formed. Unfolding preserves
the semantics of a PCFP (up to renaming of states and action labels):

Lemma 1. For every unfoldable x ∈ Var, we have MUnf(P,x) = MP.

Example 5. The PCFP in Fig. 4 (middle) is the unfolding Unf(Pgame , f) of the
PCFP Pgame in Fig. 4 (left) with respect to variable f. �
In general, it is possible that no single variable of a PCFP is unfoldable. We
offer two alternatives for such cases:

– There always exists a set U ⊆ Var of variables that can be unfolded at once
(U = Var in the extreme case). Definition 5 can be readily adapted to this
case. Preferably small sets of unfoldable variables can be found by considering
the bottom SCCs of the directed graph (Var,→).

– In principle, each variable can be made unfoldable by introducing further
commands. Consider for instance a command γ with an update x′ = y. We
may introduce |dom(y)| new commands by strengthening γ’s guard with con-
dition “y = z” for each z ∈ dom(y) and substituting all occurrences of y for
the constant z. This transformation is mostly of theoretical interest as it may
create a large number of new commands.

460 T. Winkler et al.

s

r
p1

p2

q1

q2

s

p1

p2

q1
1−r

q2
1−r

s

p1

p2

q1

q2

p1q1

p2q
1 p1q2

p2q2

Fig. 5. State elimination in Markov chains. Left: Elimination of a self-loop. Right:
Elimination of a state without self-loops. These rules preserve reachability probabilities
provided that s is neither initial nor a goal state.

4.2 Elimination

For the sake of illustration, we first recall state elimination in Markov chains.
Let s be a state of the Markov chain. The first step is to eliminate all self-
loops of s by rescaling the probabilities accordingly (Fig. 5, left). Afterwards,
all ingoing transitions are redirected to the successor states of s by multiplying
the probabilities along each possible path (Fig. 5, right). The state s is then not
reachable anymore and can be removed. This preserves reachability probabilities
in the Markov chain provided that s was neither an initial nor goal state. Note
that state elimination may increase the total number of transitions. In essence,
state elimination in Markov chains is an automata-theoretic interpretation of
solving a linear equation system by Gaussian elimination [29].

In the rest of this section, we develop a location elimination rule for PCFPs
that generalizes state elimination in Markov chains. Updates and guards are
handled by weakest precondition reasoning which is briefly recalled below. We
then introduce a rule to remove single transitions, and show how it can be
employed to eliminate self-loop-free locations. For the (much) more difficult case
of self-loop elimination, we refer to the full version [41] for the treatment of some
special cases. Handling general loops requires finding loop invariants which is
notoriously difficult to automize. Instead, the overall idea of this paper is to
create self-loop-free locations by suitable unfolding.

Weakest Preconditions. As mentioned above, our elimination rules rely on
classical weakest preconditions which are defined as follows. Fix a set Var of
program variables with domains dom. Further, let u be an update and ϕ,ψ be
predicates over Var. We call { ψ } u { ϕ } a valid Hoare-triple if

∀ν ∈ dom : ν |= ψ =⇒ u(ν) |= ϕ.

The predicate wp(u, ϕ) is defined as the weakest ψ such that { ψ } u { ϕ } is
a valid Hoare-triple and is called the weakest precondition of u with respect to
postcondition ϕ. Here, “weakest” is to be understood as maximal in the semantic
implication order on predicates. Note that u(ν) |= ϕ iff ν |= wp(u, ϕ). It is
well known [16] that for an update u = { x′

1 = f1, . . . , x′
n = fn }, the weakest

precondition is given by

wp(u, ϕ) = ϕ[x1, . . . , xn �→ f1, . . . , fn],

Reducing Probabilistic Models by Control-State Elimination 461

Fig. 6. Transition elimination in PCFPs. Transition l
ϕ→p1:u1−−−−−−→ l1 is eliminated. The

rule is correct even if the depicted locations are not pairwise distinct.

i.e., all free occurrences of the variables x1, . . . , xn in ϕ are simultaneously
replaced by the expressions f1, . . . , fn. For example,

wp(
{

x′ = y2, y′ = 5
}

, x ≥ y) = y2 ≥ 5.

For chained updates u1 � u2, we have wp(u1 � u2, ϕ) = wp(u1,wp(u2, ϕ)) [16].

Transition Elimination. To simplify the presentation, we focus on the case
of binary PCFPs where locations have exactly two commands and commands
have exactly two transitions (the general case is treated in [41]). The following
construction is depicted in Fig. 6. Let l

ϕ→p1:u1−−−−−−→ l1 be the transition we want to
eliminate and suppose that it is part of a command

γ : l, ϕ → p1 : u1 : l1 + p2 : u2 : l2. (1)

Suppose that the PCFP is in a configuration 〈l, ν〉 where guard ϕ is enabled,
i.e., ν |= ϕ. Intuitively, to remove the desired transition, we must jump with
probability p1 directly from l to one of the possible destinations of l1, i.e.,
either l11, l12, l21 or l22. Moreover, we need to anticipate the—possibly non-
deterministic—choice at l1 already at l. Note that guard ψ1 will be enabled
at l1 iff u1(ν) |= ψ1. The latter is true iff ν |= wp(u1, ψ1). Hence, if
ν |= ϕ ∧ wp(u1, ψ1), then we can choose to jump from l directly to l11 or
l12 with probability p1. The exact probabilities p1q11 and p1q12, respectively, are
obtained by simply multiplying the probabilities along each path. To preserve
the semantics, we must also execute the updates found on these paths in the
right order, i.e., either u1 � v11 or u1 � v12. The situation is completely analogous
for the other command with guard ψ2.

In summary, we apply the following transformation: We remove the command
γ in (1) completely (and hence not only the transition l

ϕ→p1:u1−−−−−−→ l1) and replace
it by two new commands γ1 and γ2 which are defined as follows:

γi : l, ϕ ∧ wp(u1, ψi) → p2 : u2 : l2 +
2∑

j=1

p1qij : (u1 � vij) : lij , i ∈ {1, 2}.

462 T. Winkler et al.

Note that in particular, this operation preserves deterministic PCFPs: If ψ1 and
ψ2 are mutually exclusive, then so are wp(u1, ψ1) and wp(u1, ψ2). If the guards
are not exclusive, then the construction transfers the non-deterministic choice
from l1 to l.

Example 6. In the PCFP in Fig. 4 (middle), we eliminate the transition

!f
0<x<N → 1/2:nop−−−−−−−−−−−−→ f.

The above transition is contained in the command

!f, 0 < x < N → 1/2 : nop : f + 1/2 : x-- : !f.

The following two commands are available at location f:

f, x=0 | x >= N → 1 : nop : !f
f, 0 < x < N → 1/2 : x+=2 : !f + 1/2 : x-- : !f.

Note that wp(nop, ψ) = ψ for any guard ψ. According to the construction in
Fig. 6, we add the following two new commands to location !f:

!f, 0 < x < N & (x=0 | x >= N) → 1/2 : nop : !f + 1/2 : x-- : !f
!f, 0 < x < N & 0 < x < N → 1/2 : x-- : !f + 1/4 : x-- : !f

+ 1/4 : x=x+2 : !f.

The guard of the first command is unsatisfiable so that the whole command can
be discarded. The second command can be further simplified to

!f, 0 < x < N → 3/4 : x-- : !f + 1/4 : x=x+2 : !f.

Removing unreachable locations yields the PCFP in Fig. 4 (right). �

Regarding the correctness of transition elimination, the intuitive idea is that
the rule preserves reachability probabilities if location l1 is not a potential goal.
Recall that potential goals are locations for which we do not know whether they
contain goal states when fully unfolded. Formally, we have the following:

Lemma 2. Let l1 ∈ Loc\{lι} be no potential goal with respect to goal predicate
ϑ and let P′ be obtained from P by eliminating transition l

ϕ→p1:u1−−−−−−→ l1 according
to Fig. 6. Then P and P′ are ϑ-reachability equivalent.

Proof (Sketch). This follows by extending Markov chain transition elimination
to MDPs and noticing that the semantic MDP MP′ is obtained from MP by
applying transition elimination repeatedly, see [41] for the details. �

Reducing Probabilistic Models by Control-State Elimination 463

Location Elimination. We say that location l ∈ Loc has a self-loop if there
exists a transition l

ϕ→p:u−−−−→ l. In analogy to state elimination in Markov chains,
we can directly remove any location without self-loops by applying the elimina-
tion rule to its ingoing transitions. However, the case l1 = l2 in Fig. 6 needs to be
examined carefully as eliminating l

ϕ→p1:u1−−−−−−→ l1 actually creates two new ingoing
transitions to l1 = l2. Termination of the algorithm is thus not immediately
obvious. Nonetheless, even for general (non-binary) PCFPs, the following holds:

Theorem 1 (Correctness of Location Elimination). If l ∈ Loc\{lι} has
no self-loops and is not a potential goal w.r.t. goal predicate ϑ, then the algorithm

while (∃ l′
ϕ→p:u−−−−→ l in P) { eliminate l′

ϕ→p:u−−−−→ l }

terminates with a ϑ-reachability equivalent PCFP P′ where l is unreachable.

The following notion is helpful for proving termination of the above algorithm:

Definition 6 (Transition Multiplicity). Given a transition l′
ϕ→p:u−−−−→ l con-

tained in command γ, we define its multiplicity m as the total number of tran-
sitions in γ that also have destination l.

For instance, if l1 = l2 in Fig. 6, then transition l
ϕ→p1:u1−−−−−−→ l1 has multiplicity

m = 2. If l1 �= l2, then it has multiplicity m = 1.

Proof (of Theorem 1). With Lemma 2 it only remains to show termination.
We directly prove the general case where P is non-binary. Suppose that l has
k commands. Eliminating a transition entering l with multiplicity 1 does not
create any new ingoing transitions (as l has no self-loops). On the other hand,
eliminating a transition with multiplicity m > 1 creates k new commands, each
with m − 1 ingoing transitions to l1. Thus, as the multiplicity strictly decreases,
the algorithm terminates. �

We now analyze the complexity of the algorithm in Theorem 1 in detail.

Theorem 2 (Complexity of Location Elimination). Let l ∈ Loc\{lι} be
a location without self-loops. Let k be the number of commands available at l.
Further, let n be the number of distinct commands in Cmd that have a transition
with destination l, and suppose that each such transition has multiplicity at most
m. Then the location elimination algorithm in Theorem 1 applied to l has the
following properties:

– It terminates after at most n(km−1)/(k−1) iterations.
– It creates at most O(nkm) new commands.
– There exist PCFPs where it creates at least Ω(n2m) new distinct commands

with satisfiable guards.

Proof (Sketch). We only consider the case n = 1 here, the remaining details are
treated in [41]. We show the three items independently:

464 T. Winkler et al.

l′
... l

l1

l2

true

c
21

: y′
1 = 1

c
2m

: y′
m = 1

∨m
i=1

(xi ∧ yi) {x′
i = 0, y′

i = 0 | 1≤i≤m }

¬(...)

Fig. 7. The PCFP P used for the lower bound in Theorem 2. The transitions from l′

to l have multiplicity m each. Variables x, y have Boolean domain, c is a normalizing
constant.

– The number I(m) of iterations of the algorithm in Theorem 1 applied to
location l satisfies the recurrence I(1) = 1 and I(m) = 1 + kI(m − 1) for all
m > 1 since eliminating a transition with multiplicity m > 1 yields k new
commands with multiplicity m − 1 each. The solution of this recurrence is
I(m) =

∑m−1
i=0 ki = (km−1)/(k−1) as claimed.

– For the upper bound on the number of new commands, we consider the exe-
cution of the algorithm in the following stages: In stage 1, there is a single
command with multiplicity m. In stage j for j > 1, the commands from
the previous stage are transformed into k new commands with multiplicity
m−j+1 each. In the final stage m, there are thus km−1 commands with mul-
tiplicity 1 each. Eliminating all of them yields k · km−1 = km new commands
after which the algorithm terminates.

– Consider the PCFP P in Fig. 7 where k = 2. Intuitively, location elimination
must yield a PCFP P′ with 2m commands available at location l′ because
every possible combination of the updates y′

i = 1, i = 1, . . . , m, may result
in enabling either of the two guards at l. Indeed, for each such combination,
the guard which is enabled depends on the values of x1, . . . , xm at location l′.
Thus in the semantic MDP MP′ , for every variable valuation ν with ν(yi) = 0
for all i = 1, . . . ,m, the probabilities P (〈l′, ν〉, 〈l1,0〉) are pairwise distinct.
This implies that P′ must have 2m commands (with satisfiable guards)
at l′. �

5 Implementation

Overview. We have implemented our approach in the probabilistic model
checker storm [26]. Technically, instead of defining custom data structures for our
PCFPs, we operate directly on models in the jani model exchange format [11].
storm accepts jani models as input and also supports conversion from PRISM to
jani. The PCFPs described in this paper are a subset of the models expressible
in jani. Other jani models such as timed or hybrid automata are not in the scope
of our implementation. In practice, we use our algorithms as a simplification
front-end, i.e., we apply just a handful of unfolding and elimination steps and
then fall back to storm’s default engine. This is steered by heuristics that we
explain in detail further below.

Reducing Probabilistic Models by Control-State Elimination 465

Features. Apart from the basic PCFPs treated in the previous sections, our
implementation supports the following more advanced jani features:

– Parameters. It is common practice to leave key quantities in a high-level model
undefined and then analyze it for various instantiations of those parameters
(as done in most of the PRISM case studies3); or synthesize in some sense suit-
able parameters [14,29,37]. Examples include undefined probabilities or unde-
fined variable bounds like N in the PRISM program in Fig. 2. Our approach
can naturally handle such parameters and is therefore particularly useful in
situations where the model is to be analyzed for several parameter configura-
tions. Virtually, the only restriction is that we cannot unfold variables with
parametric bounds.

– Rewards. Our framework can be easily extended to accommodate expected-
reward-until-reachability properties (see e.g. [5, Def. 10.71] for a formal def-
inition). The latter are also highly common in the benchmarks used in the
quantitative verification literature [25]. Formally, in a reward PCFP, each
transition is additionally equipped with a non-negative reward that can either
be a constant or given as an expression in the program variables. Technically,
the treatment of rewards is straightforward: Each time we multiply the prob-
abilities of two transitions in our transition elimination rule (Fig. 6), we add
their corresponding rewards.

– Parallel composition. PCFPs can be extended by action labels to allow for
synchronization of various parallel PCFPs. This is standard in model check-
ing (e.g. [5, Sec. 2.2.2]). We have implemented two approaches for dealing
with this: (1) A “flat” product model is constructed first. This functional-
ity is already shipped with the storm checker. This approach is restricted
to compositions of just a few modules as the size of the resulting product
PCFP is in general exponential in the number of modules. Nonetheless, in
many practical cases, flattening leads to satisfactory results (cf. Sect. 6). (2)
Control-flow elimination is applied to each component individually. Here, we
may only eliminate internal, i.e. non-synchronizing commands, and we forbid
shared variables. Otherwise, we would alter the resulting composition.

– Probability expressions. Without changes, all of the theory presented so far
can be applied to PCFPs with probability expressions like |x|/(|x| + 1) over
the program variables instead of constant probabilities only. Expressions that
do not yield correct probabilities are considered modeling errors.

Heuristics. The choice of the next variable to be unfolded and the next location
to be eliminated is driven by heuristics. The overall goal of the heuristics is to
eliminate as many locations as possible while maintaining a reasonably sized
PCFP. This is controlled by two configurable parameters, L and T . The heuristics
alternates between unfolding and elimination (see the diagram in Fig. 8).

To find a suitable variable for unfolding, the heuristics first analyzes the
dependency graph defined in Sect. 4.1. It then selects a variable based on the

3 https://www.prismmodelchecker.org/casestudies/.

https://www.prismmodelchecker.org/casestudies/

466 T. Winkler et al.

Build
dependency

graph

start

done

|Loc| < L

Unfold x ∈ Var
with max.

score

Eliminate l ∈ Loc
with min. compl.

∃ l ∈ Loc \ {lι} s.t.
– l loop-free

– l no pot. goal
– est. compl. < T

yesno

no

yes

Unfolding Elimination

Fig. 8. Our heuristics alternates between unfolding and elimination steps. The next
unfold is determined by selecting a variable with maximal score as computed by a static
analysis (see main text). Loop-free non-potential goal locations are then eliminated
until the next elimination has a too high estimated complexity.

following static analysis: For each unfoldable variable x, the heuristics consid-
ers each command γ in the PCFP and determines the percentage p(γ, x) of γ’s
transitions that have an update with writing access to x. Each variable is then
assigned a score which is defined as the average percentage p(γ, x) over all com-
mands of the PCFP. The intuition behind this technique is that variables which
are changed in many commands are more likely to create self-loop free locations
when unfolded. We consider the percentage for each command individually in
order to not give too much weight to commands with many transitions. Unfold-
ing is only performed if the current PCFP has at most L locations. By default,
L = 10 which in practice often leads to unfolding just two or three variables
with small domains.

After unfolding a variable, the heuristics tries to eliminate self-loop-free loca-
tions that are no potential goals. The next location to be eliminated is selected
by estimating the number of new commands that would be created by the algo-
rithm. Here, we rely on the theoretical results from Theorem 2: In particular, we
take the multiplicity (cf. Definition 6) of ingoing transitions into account which
may cause an exponential blowup. We use the estimate O(nkm) from Theorem
2 as an approximation for the elimination complexity; determining the exact
complexity of each possible elimination is highly impractical. We only eliminate
locations whose estimated complexity is at most T , and we eliminate those with
lowest complexity first. By default, T = 104.

6 Experiments

In this section, we report on our experimental evaluation of the implementation
described in the previous section.

Benchmarks. We have compiled a set of 10 control-flow intensive DTMC and
MDP benchmarks from the literature. Each benchmark model is equipped with
a reachability or expected reward property.

Reducing Probabilistic Models by Control-State Elimination 467

Table 1. Reductions achieved by our control-flow elimination. Times are in ms.

Name Type Prop.
type

Red.
time

Params. States Transitions Build time Check time Total time

orig. red. orig. red. orig. red. orig. red. orig. red.

brp dtmc P 134 210/5 78.9K −44% 106K −33% 261 −33% 22 −38% 16,418 −46%

211/10 291K −45% 397K −33% 1,027 −39% 101 −46%

212/20 1.11M −46% 1.53M −33% 3,945 −48% 462 −48%

213/25 2.76M −46% 3.8M −33% 9,413 −47% 1,187 −47%

coingame dtmc P 35 104 20K −50% 40K −50% 53 −24% 18,500 −79% 18,553 −78%

dice5 mdp P 671 n/a 371K −84% 2.01M −83% 1,709 −82% 9,538 −99% 11,247 −91%

eajs mdp R 223 103 194K −28% 326K −1% 1,242 −43% 220 −32% 18,397 −42%

104 2M −28% 3.38M −1% 13,154 −46% 3,780 −31%

grid dtmc P 117 104 300K −47% 410K −34% 1,062 −57% 17 −52% 11,716 −52%

105 3M −47% 4.1M −34% 10,430 −53% 207 −54%

hospital mdp P 57 n/a 160K −66% 396K −27% 502 −50% 19 −56% 521 −39%

nand dtmc P 80 20/4 308K −79% 476K −52% 589 −45% 108 −75% 86,060 −56%

40/4 4M −80% 6.29M −51% 8,248 −50% 1,859 −77%

60/2 9.42M −80% 14.9M −50% 19,701 −49% 4,685 −76%

60/4 18.8M −80% 29.8M −50% 40,168 −53% 10,703 −77%

nd-nand mdp P 106 20/4 308K −79% 476K −52% 618 −36% 127 −74% 96,956 −52%

40/4 4M −80% 6.29M −51% 8,783 −42% 2,270 −77%

60/2 9.42M −80% 14.9M −50% 21,792 −47% 5,646 −75%

60/4 18.8M −80% 29.8M −50% 44,409 −46% 13,312 −76%

negotiation dtmc P 148 104 129K −32% 184K −26% 481 −39% 22 −49% 5,631 −39%

105 1.29M −32% 1.84M −26% 4,930 −43% 197 −30%

pole dtmc R 208 102 315K −46% 790K −4% 1,496 −46% 26 −42% 17,431 −45%

103 3.16M −46% 7.9M −4% 15,503 −47% 406 −33%

brp models a bounded retransmission protocol and is taken from the PRISM
benchmark suite. coingame is our running example from Fig. 2. dice5 is an
example shipped with storm and models rolling several dice, five in this case,
that are themselves simulated by coinflips in parallel. eajs models energy-aware
job scheduling and was first presented in [3]. grid is taken from [2] and represents
a robot moving in a partially observable grid world. hospital is adapted from [8]
and models a hospital inventory management problem. nand is the von Neu-
mann NAND multiplexing system mentioned near the end of Sect. 2. nd-nand
is a custom-made adaption of nand where some probabilistic behavior has been
replaced by non-determinism. negotiation is an adaption of the Alternating
Offers Protocol from [6] which is also included in the PRISM case studies. pole is
also from [2] and models balancing a pole in a noisy and unknown environment.
The problems brp, eajs, and nand are part of the QComp benchmark set [25].

For all examples except dice5, we have first flattened parallel compositions
(if there were any) into a single module, cf. Sect. 5.

Setup. We report on two experiments. In the first one, we compare the number
of states and transitions as well as the model build and check times of the origi-
nal and the reduced program (columns ‘States’, ‘Transitions’, ‘Build time’, and
‘Check time’ of Table 1). We work with storm’s default settings4. We also report
the time needed for the reduction itself, including the time consumed by flatten-

4 By default, storm builds the Markov model as a sparse graph data structure and
uses (inexact) floating point arithmetic.

468 T. Winkler et al.

ing (column ‘Red. time’). We always use the default configuration for our heuris-
tics, i.e., we do not manually fine-tune the heuristics for each benchmark. We
report on some additional experimental results obtained with fine-tuned heuris-
tics in [41]. For the benchmarks where this is applicable, we consider the different
parameter configurations given in column ‘Params.’. Recall that in these cases,
we need to compute the reduced program only once. We report the amortized
runtime of storm on all parameter configurations vs. the runtime on the reduced
models, including the time needed for reduction in the rightmost column ‘Total
time’. In the second, less extensive experiment, we compare our reductions to
bisimulation minimization (Table 2 below). All experiments were conducted on a
notebook with a 2.4 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM.
The script for creating the table is available5.

Results. Our default heuristics was able to reduce all considered models in terms
of states (by 28–84%) and transitions (by 1–83%). The total time for building
and checking these models was decreased by 39–91%. The relative decrease in
the number of states is usually more striking than the decrease in the number of
transitions. This is because, as explained in Sect. 4, location elimination always
removes states but may add more commands to the PCFP and hence more tran-
sitions to the underlying Markov model. Similarly, the time savings for model
checking are often higher than the ones for model building; here, this is mostly
because building our reduced model introduces some overhead due to the addi-
tional commands. The reduction itself was always completed within a fraction
of a second and is independent of the size of the underlying state space.

Bisimulation and Control-Flow Reduction. In Table 2, we compare the compres-
sion achieved by storm’s probabilistic bisimulation engine, our method and both
techniques combined. We also include the total time needed for reduction, model
building and checking. For the comparison, we have selected three benchmarks
representing three different situations: (1) for brp, the two techniques achieve
similar reductions, (2) for nand, our reduced model is smaller than the bisim-
ulation quotient, and (3) for pole, the situation is the other way around, i.e.,
the bisimulation quotient is (much) smaller than our reduced model. Interest-
ingly, combining the two techniques yields an even smaller model in all three
cases. This demonstrates the fact that control-flow reduction and bisimulation
are orthogonal to each other. In the examples, control-flow reduction was also
faster than bisimulation as the latter has to process large explicit state spaces. It
is thus an interesting direction for future work to combine program-level reduc-
tion techniques that yield bisimilar models with control-flow reduction.

When Does Control-Flow Reduction Work Well? Our technique works best for
models that use one or more explicit or implicit program counters. Such program
counters often come in form of a variable that determines which commands are
currently available and that is updated after most execution steps. Unfolding

5 https://doi.org/10.5281/zenodo.5497947.

https://doi.org/10.5281/zenodo.5497947

Reducing Probabilistic Models by Control-State Elimination 469

Table 2. Comparison of bisimulation minimization and our control-flow reduction
(‘CFR’). Column ‘Total time’ includes building, reducing and checking the model.

Name Params. States Transitions Total time

Bisim. CFR Both Bisim. CFR Both Bisim. CFR Both

brp 212/20 598K 606K 344K 852K 1.02M 598K 4,767 2,883 2,965

nand 40/4 3.21M 816K 678K 5M 3.1M 2.46M 17,868 5,588 8,199

pole 103 4.06K 1.72M 1.2K 12.2K 7.54M 9.82K 19,443 10,305 10,801

such variables typically yields several loop-free locations. For example, the vari-
able f in Fig. 2 is of this kind. However, we again stress that there is no formal
difference between program counter variables and “data variables” in our frame-
work. The distinction is made automatically by our heuristics; no additional user
input is required. Control-flow reduction yields especially good results if it can
be applied compositionally such as in the dice5 benchmark.

Limitations. Finally, we remark that our approach is less applicable to exten-
sively synchronizing parallel compositions of more than just a handful of mod-
ules. The flattening approach then typically yields large PCFPs which are not
well suited for symbolic techniques such as ours. Larger PCFPs also require a sig-
nificantly higher model building time. Another limiting factor are dense variable
dependencies in the sense of Sect. 4.1, i.e., the variable dependency graph has
relatively large BSCCs. The latter, however, seems to rarely occur in practice.

7 Conclusion

This paper presented a property-directed “unfold and eliminate” technique on
probabilistic control-flow programs which is applicable to state-based high-level
modeling languages. It preserves reachability probabilities and expected rewards
exactly and can be used as a simplification front-end for any probabilistic model
checker. It can also handle parametric DTMC and MDP models where some key
quantities are left open. On existing benchmarks, our implementation achieved
model compressions of up to an order of magnitude, even on models that have
much larger bisimulation quotients. Future work is to amend this approach to
continuous-time models like CMTCs and Markov automata, and to further prop-
erties such as LTL.

References

1. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-
0 27

https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/3-540-46419-0_27

470 T. Winkler et al.

2. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P., Stupinský, Š: PAYNT: a
tool for inductive synthesis of probabilistic programs. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12759, pp. 856–869. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81685-8 40

3. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 24

4. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: QEST 2004, pp. 230–239 (2004). https://doi.org/10.1109/QEST.2004.
1348037

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Ballarini, P., Fisher, M., Wooldridge, M.J.: Automated game analysis via proba-

bilistic model checking: a case study. Electron. Notes Theor. Comput. Sci. 149(2),
125–137 (2006). https://doi.org/10.1016/j.entcs.2005.07.030

7. Batz, K., Junges, S., Kaminski, B.L., Katoen, J.-P., Matheja, C., Schröer, P.: PrIC3:
property directed reachability for MDPs. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 512–538. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8 27

8. Biagi, M., Carnevali, L., Santoni, F., Vicario, E.: Hospital inventory management
through Markov decision processes @runtime. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 87–103. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 6

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

10. Buchholz, P., Katoen, J., Kemper, P., Tepper, C.: Model-checking large struc-
tured Markov chains. J. Log. Algebraic Methods Program. 56(1–2), 69–97 (2003).
https://doi.org/10.1016/S1567-8326(02)00067-X

11. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

12. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: QEST 2004, pp. 240–249 (2004). https://doi.org/10.1109/QEST.
2004.1348038

13. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

14. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

15. Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of
Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013.
LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-35873-9 5

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood (1976)
17. Donaldson, A.F., Miller, A., Parker, D.: Language-level symmetry reduction for

probabilistic model checking. In: Proceedings of the QEST 2009, pp. 289–298
(2009). https://doi.org/10.1109/QEST.2009.21

https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1016/j.entcs.2005.07.030
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-319-99154-2_6
https://doi.org/10.1007/978-3-319-99154-2_6
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1109/QEST.2009.21

Reducing Probabilistic Models by Control-State Elimination 471

18. Dong, Y., Ramakrishnan, C.R.: An optimizing compiler for efficient model check-
ing. In: FORTE XII/PSTV XIX. IFIP Conference Proceedings, vol. 156, pp. 241–
256. Kluwer (1999)

19. Dubslaff, C., Morozov, A., Baier, C., Janschek, K.: Reduction methods on
probabilistic control-flow programs for reliability analysis. In: 30th European
Safety and Reliability Conference, ESREL (2020). https://www.rpsonline.com.sg/
proceedings/esrel2020/pdf/4489.pdf

20. Esparza, J., Hoffmann, P., Saha, R.: Polynomial analysis algorithms for free choice
probabilistic workflow nets. Perform. Eval. 117, 104–129 (2017). https://doi.org/
10.1016/j.peva.2017.09.006

21. Fatmi, S.Z., Chen, X., Dhamija, Y., Wildes, M., Tang, Q., van Breugel, F.: Prob-
abilistic model checking of randomized Java code. In: Laarman, A., Sokolova, A.
(eds.) SPIN 2021. LNCS, vol. 12864, pp. 157–174. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84629-9 9

22. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003). https://doi.org/10.1613/
jair.1129

23. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 30

24. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

25. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

26. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transfer 1–22 (2021). https://
doi.org/10.1007/s10009-021-00633-z

27. Jansen, D.N., Groote, J.F., Timmers, F., Yang, P.: A near-linear-time algorithm
for weak bisimilarity on Markov chains. In: CONCUR 2020. LIPIcs, vol. 171, pp.
8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.CONCUR.2020.8

28. Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the
verification of reactive systems. Formal Methods Syst. Des. 23(1), 5–37 (2003).
https://doi.org/10.1023/A:1024480913162

29. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019). http://arxiv.org/abs/1903.07993

30. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 9

31. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
Syst. Des. 36(3), 246–280 (2010). https://doi.org/10.1007/s10703-010-0097-6

32. Kurshan, R., Levin, V., Yenigün, H.: Compressing transitions for model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 569–582.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 48

https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/4489.pdf
https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/4489.pdf
https://doi.org/10.1016/j.peva.2017.09.006
https://doi.org/10.1016/j.peva.2017.09.006
https://doi.org/10.1007/978-3-030-84629-9_9
https://doi.org/10.1007/978-3-030-84629-9_9
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.4230/LIPIcs.CONCUR.2020.8
https://doi.org/10.4230/LIPIcs.CONCUR.2020.8
https://doi.org/10.1023/A:1024480913162
http://arxiv.org/abs/1903.07993
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/3-540-45657-0_48

472 T. Winkler et al.

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

34. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer, New York (2005). https://doi.
org/10.1007/b138392

35. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reliabil-
ity of NAND multiplexing with PRISM. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 24(10), 1629–1637 (2005). https://doi.org/10.1109/TCAD.2005.852033

36. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994).
https://doi.org/10.1002/9780470316887

37. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

38. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 4

39. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 362–379. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2 26

40. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time Markov chains using bounded model checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-93900-9 29

41. Winkler, T., Lehmann, J., Katoen, J.: Out of control: reducing probabilistic models
by control-state elimination. CoRR abs/2011.00983 (2020). https://arxiv.org/abs/
2011.00983

42. Younes, H.L., Littman, M.L.: PPDDL1.0: an extension to PDDL for expressing
planning domains with probabilistic effects. Technical report, CMU-CS-04-162, 2,
99 (2004)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1109/TCAD.2005.852033
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-642-12002-2_4
https://doi.org/10.1007/978-3-642-11319-2_26
https://doi.org/10.1007/978-3-540-93900-9_29
https://arxiv.org/abs/2011.00983
https://arxiv.org/abs/2011.00983

Mixed Semantics Guided
Layered Bounded

Reachability Analysis
of Compositional Linear

Hybrid Automata

Yuming Wu, Lei Bu(B), Jiawan Wang, Xinyue Ren, Wen Xiong,
and Xuandong Li

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, Jiangsu, People’s Republic of China

bulei@nju.edu.cn

Abstract. Due to the tangling of discrete and continuous behavior and
the compositional state space explosion, bounded model checking (BMC)
of compositional linear hybrid automata (CLHA) is a very challenging
task. In this paper, we propose a mixed semantics guided layered method
to handle this problem in a divide-and-conquer manner. Specifically, we
first enumerate candidate compositional paths in the discrete layer of
CLHA through the classical step semantics. Then, we remove all stut-
ter transitions in the candidate paths to cover all interleaving cases,
and check the reachability of the generalized paths in the continuous
level through the shallow semantics. We only handle one shallow com-
positional path at a time, so that the memory usage in the checking
can be well controlled. Besides, we propose two optimization methods
to tailor infeasible paths to further improve the efficiency of our app-
roach. We implement these techniques into an LHA reachability checker
called BACH. The experimental results show that our method outper-
forms state-of-the-art tools significantly in the aspects of efficiency and
scalability.

1 Introduction

Hybrid automata is a classical modeling language for hybrid systems, which is a
class of complex systems consisting of continuous subsystems and discrete sub-
systems [24]. For hybrid automata, the model checking [16] problem is extremely
difficult due to the tangling of discrete and continuous system behavior. Even for
linear hybrid automata (LHA), a simple class of hybrid automata, the reachabil-
ity problem, i.e. judging whether a given state is reachable, is undecidable [1,27].

This work is supported in part by the National Key Research and Development Plan
(No. 2017YFA0700604), the Leading-Edge Technology Program of Jiangsu Natural
Science Foundation (No. BK20202001), and the National Natural Science Foundation
of China (No. 62172200).

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 473–495, 2022.
https://doi.org/10.1007/978-3-030-94583-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-94583-1_23

474 Y. Wu et al.

For LHA with several components, we call them compositional linear hybrid
automata (CLHA). The model checking problem is even harder for CLHA than
for a single LHA. Traditional methods usually convert compositional automata
into a single automaton by Cartesian product, which often leads to the well-
known problem of compositional state explosion.

Classical reachability analysis methods usually compute the entire set of
reachable states of automata based on polyhedron [20] or support functions [21],
which are imprecise, sensitive to the number of continuous variables, and not
guaranteed to terminate.

In recent years, bounded model checking (BMC) [5], which restricts model
behavior within a finite bound to reduce the difficulty of problems, has attracted
lots of attention. Although BMC cannot explore state spaces exhaustively, it
surpasses classical model checking methods in the ability to find errors. Typical
BMC methods for the reachability analysis of LHA encode the model behavior in
the given bound into a set of SMT formulas [4], and then find out witnesses that
satisfy the given reachability specification through SMT solving [3]. However,
the size of the corresponding SMT problems increases rapidly, as the model
scales and the bound grows. Especially for the reachability checking of CLHA,
the size of the corresponding SMT problems increases dramatically due to the
interleaving of component automata. Thus, these encoded SMT problems are
often difficult to solve by off-the-shelf SMT solvers.

In this paper, we propose a layered method to analyze the bounded reachabil-
ity of CLHA in a divide-and-conquer manner. As shown in Fig. 1, the method is
divided into two layers, the discrete layer and the continuous layer. It also mixes
two different kinds of semantics in different layers: the step semantics for path
enumeration in the discrete layer, and the shallow semantics for path checking
in the continuous layer.

In the discrete layer, we enumerate candidate paths. The discrete relations
of a CLHA, including transition relations in the bounded graph structure and
synchronization relations in the step semantics [22], are encoded as a proposi-
tional formula set. The feasibility problem of this formula set is then solved by a
SAT solver, and we encode each of its solutions into a candidate compositional
path in the step semantics. For each candidate path, if it is then checked to be
infeasible in the continuous layer, we use it to refine the SAT formula set. The
path enumeration process in the discrete layer does not stop until there is no
candidate path, i.e. the SAT problem becomes unsatisfiable.

In the continuous layer, we check the feasibility of candidate paths. In order
to cover more interleaving cases, we first generalize a candidate compositional
path in the shallow semantics from the candidate compositional path in the step
semantics by removing all stutter transitions. For each generalized candidate
path, according to the shallow semantics [8], its feasibility checking problem is
then reduced to a linear programming (LP) problem and can be solved efficiently.
If the LP problem is feasible, then the path is checked to be feasible and we obtain
a witness that satisfies the reachability specification. Otherwise, we extract the
Irreducible Infeasible Set (IIS) [11] of the LP problem, which is the reason for the
infeasibility of this path. We then encode the IIS back to the corresponding path

Mixed Semantics Guided Layered Bounded Reachability Analysis 475

Fig. 1. Mixed semantics guided layered bounded reachability analysis

segment in the candidate path, and report this infeasible path segment back to
the discrete layer, in order to refine the SAT formula set and to accelerate the
path enumeration.

The memory usage of this layered BMC method can be well controlled
because at most one shallow compositional path is checked at a time. How-
ever, this method needs to traverse all candidate paths in the given bound.
When the number of components or the given bound is large, the number of
candidate paths in the classical step semantics could be huge. To alleviate this
problem and to improve the efficiency of our approach, we also propose two opti-
mization methods to prune infeasible paths. In the first optimization method, we
summarize three kinds of redundant paths that are identical under mixed seman-
tics. Then, we give the formula encodings to avoid these redundant paths when
traversing the bounded graph structure. In the second optimization method, we
obtain multiple irreducible infeasible sets from LP by splitting the infeasible
candidate path based on shared labels. Then, we could retrieve more infeasible
path segments from these irreducible infeasible sets and could prune candidate
paths that contain any of these infeasible path segments efficiently.

We implemented our solution into an LHA checker called BACH [9,10]. We
use a set of well-recognized benchmarks, which covers all the CLHA cases used
in ARCH-COMP 2020 [6], to evaluate the performance of our method. The
experimental results show that our method outperforms state-of-the-art tools
significantly in the aspects of efficiency and scalability.

2 Background

Definition 1 (Linear Hybrid Automaton) [24]. A linear hybrid automaton
(LHA) is a tuple H = (X,V, vI , Σ,E, I, α, β, φ, ψ), where

– X is a finite set of continuous state variables;
– V is a finite set of discrete locations; vI ∈ V is the initial location;
– Σ is a finite set of labels; E ⊆ V × Σ × V is a finite set of transitions;

476 Y. Wu et al.

– I is the initial condition, which is a finite set of constraints of the form
n∑

i=0

cixi ∼ a (xi ∈ X, ∼∈ {=, <,�, >,�}, ci, a ∈ R).

– α maps each location in V to its invariant, which is a finite set of constraints

of the form
n∑

i=0

cixi ∼ a (xi ∈ X, ∼∈ {=, <,�, >,�}, ci, a ∈ R).

– β maps each location in V to its flow condition, which is a finite set of con-
straints of the form ẋ ∼ a (x ∈ X, ∼∈ {=, <,�, >,�}, a ∈ R).

– φ maps each transition in E to its guard, which is a finite set of constraints

of the form
n∑

i=0

cixi ∼ a (xi ∈ X, ∼∈ {=, <,�, >,�}, ci, a ∈ R).

– ψ maps each transition in E to its reset action of the form
n∑

i=0

(cixi + c′
ix

′
i) ∼

a (xi ∈ X,∼∈ {=, <,�, >,�}, ci, a ∈ R).

V, vI , Σ and E constitute the discrete graph structure of a hybrid automaton,
while the rest constitutes its continuous part. The state of H is a tuple (v,x),
which means H is at the location v and the value of X is x.

A path of an LHA H is a sequence of the form 〈v0〉 σ0

−→ 〈v1〉 σ1

−→ · · · σn−1

−−−→
〈vn〉, where v0 = vI is the initial location and for each i ∈ [0, n), (vi, σi, vi+1) ∈
E. For an automaton, a path describes its discrete transforming process among
discrete locations through labels. By attaching a time stamp δi to each location

vi along the path, we then get a timed sequence of the form 〈v0

δ0 〉 σ0

−→ 〈v1

δ1 〉 σ1

−→
· · · σn−1

−−−→ 〈vn

δn 〉.
Definition 2 (Run). For an LHA H = (X,V, vI , Σ,E, I, α, β, φ, ψ), a timed

sequence ω of the form 〈v0

δ0 〉 σ0

−→ 〈v1

δ1 〉 σ1

−→ · · · σn−1

−−−→ 〈vn

δn 〉 is a run of H if and
only if:

– 〈v0〉 σ0

−→ 〈v1〉 σ1

−→ · · · σn−1

−−−→ 〈vn〉 is a path of H;
– For each x ∈ X and 0 ≤ j ≤ n, there exist variables δj, denoting the time

spent in location vj, as well as variables λj(x), ζj(x) to denote when the
automaton reaches and leaves the location vj accordingly; they satisfy all fol-
lowing conditions:

• the initial condition, i.e.
n∑

i=0

ciλ
0(xi) ∼ a if

n∑

i=0

cixi ∼ a ∈ I;

• the invariant of each location, i.e.
n∑

i=0

ciλ
j(xi) ∼ a and

n∑

i=0

ciζ
j(xi) ∼ a if

n∑

i=0

cixi ∼ a ∈ α(vj);

• the flow condition of each location, i.e. ζj(x) − λj(x) ∼ a · δj if ẋ ∼ a ∈
β(vj);

• the guard of each transition, i.e.
n∑

i=0

ciζ
j(xi) ∼ a if

n∑

i=0

cixi ∼ a ∈
φ((vj , σi, vj+1));

Mixed Semantics Guided Layered Bounded Reachability Analysis 477

• the reset action of each transition, i.e.
n∑

i=0

(ciζ
j(xi) + c′

iλ
j+1(xi)) ∼ a if

n∑

i=0

(cixi + c′
ix

′
i) ∼ a ∈ ψ((vj , σi, vj+1)).

Definition 3 (Reachability Specification). Given an LHA H = (X,V, vI ,
Σ,E, I, α, β, φ, ψ), a reachability specification R(v, ϕ) consists of a location v

and a constraint set ϕ where constraints are in the form of
n∑

i=0

cixi ∼ a(xi ∈
X, ∼∈ {=, <,�, >,�}, ci, a ∈ R). A run of H satisfies R(v, ϕ) if and only if
vn = v and each constraint in ϕ is satisfied when replacing xi with λn(xi).

Definition 4 (Interleaving Semantics-Based LHA Composition) [24].
Given LHA H1 = (X1, V1, vI1, Σ1, E1, I1, α1, β1, φ1, ψ1) and H2 = (X2, V2, vI2,
Σ2, E2, I2, α2, β2, φ2, ψ2) (X1 ∩ X2 = ∅), the interleaving semantics-based
composition of this two LHA, denoted as H1||H2, is an LHA H = (X,V,
vI , Σ,E, I, α, β, φ, ψ), where

– X = X1 ∪ X2, V = V1 × V2, vI = vI1 × vI2, Σ = Σ1 ∪ Σ2, I = I1 ∪ I2
– E, φ, ψ are defined as follows:

• for σ ∈ Σ1 ∩Σ2, for every e1 = (v1, σ, v′
1) in E1 and every e2 = (v2, σ, v′

2)
in E2, E contains e = ((v1, v2), σ, (v′

1, v
′
2)), and φ(e) = φ(e1) ∪ φ(e2),

ψ(e) = ψ(e1) ∪ ψ(e2).
• for σ ∈ Σ1\Σ2, for every e1 = (v, σ, v′) in E1 and every v2 in V2, E

contains e = ((v, v2), σ, (v′, v2)), and φ(e) = φ(e1), ψ(e) = ψ(e1) ∪ {x′ :=
x | x ∈ X2}.

• for σ ∈ Σ2\Σ1, for every e2 = (v, σ, v′) in E2 and every v1 in V1, E
contains e = ((v1, v), σ, (v1, v′)), and φ(e) = φ(e2), ψ(e) = ψ(e2) ∪ {x′ :=
x | x ∈ X1}.

– α((v1, v2)) = α1(v1) ∪ α2(v2), β((v1, v2)) = β1(v1) ∪ β2(v2)

For all m > 2, a compositional LHA (CLHA) H = H1||H2|| · · · ||Hm is
defined recursively as H = H1||H ′, where H ′ = H2||H3|| · · · ||Hm. We say that
H1,H2, · · · ,Hm are all member automata of H.

Given a path ρ = 〈v0
1 , v

0
2 , · · · , v0

m〉 σ0

−→ 〈v1
1 , v

1
2 · · · , v1

m〉 σ1

−→ · · · σn−1

−−−→ 〈vn
1 , vn

2 ,
· · · , vn

m〉 in a compositional LHA (CLHA) H = H1||H2|| · · · ||Hm, the projection

of ρ on a member automaton Hi is a component path ρi = 〈v0
i 〉 σ0

i−→ 〈v1
i 〉 σ1

i−→
· · · σn−1

i−−−→ 〈vn
i 〉, where σk

i is σk if σk is a label in Hi, otherwise σk
i is a stutter. A

stutter transition could start from any location, but it always jumps back to its
starting location without any guard or variable modification. And the label of
the stutter transition does not belong to the Σ of any member automaton. We
call the tuple 〈ρ1, ρ2, · · · , ρm〉 a interleaving compositional path.

Intuitively, in the interleaving semantics, we enable one of the labels by one
member automaton. Similarly, if we enable a set of discrete transitions in differ-
ent automata at the same time, it is called the step semantics [22]. The corre-
sponding compositional path is called the step compositional path.

478 Y. Wu et al.

Fig. 2. Nuclear reactor system

Definition 5 (S-trace). Given a set of labels S ⊆ Σ and a run ω

〈v0

δ0 〉 σ0

−→ 〈v1

δ1 〉 σ1

−→ · · · σn−1

−−−→ 〈vn

δn 〉, the S-trace τS(ω) is the sequence of events
〈σi0 , ti0〉, 〈σi1 , ti1〉, · · · , 〈σik , tik〉, 〈END, te〉, where σi ∈ S, ti =

∑i
j=0 δj is the

time when σi happens and te =
∑n

j=0 δj is the end time of ω. For the path ρ of
the run ω, S-trace τS(ρ) is the sequence of labels 〈σi0〉, 〈σi1〉, · · · , 〈σik〉, 〈END〉.

Since compositional automata are synchronized through shared labels, their
runs, or more specifically the mappings of their runs on shared events, must be
consistent.

Definition 6 (Shallow Semantics-Based Path Consistent). Given an
LHA H1 with labels Σ1 and an LHA H2 with labels Σ2, the runs of H1 and H2,
denoted as ω1 and ω2, are shallowly-consistent iff τΣ1∩Σ2(ω1) = τΣ1∩Σ2(ω2),
which means ω1 and ω2 fires the shared labels at the exactly same time spots.

Definition 7 (Shallow Semantics-Based LHA Composition). A shal-
lowly synchronized run of a CLHA is a tuple 〈ω1, ω2, · · · , ωm〉 such that ωi is a
run of Hi, and for all i, j, 1 ≤ i < j ≤ m, ωi and ωj are shallowly-consistent with
each other. The tuple 〈ρ1, ρ2, · · · , ρm〉, where ρi is the path of ωi, is a shallow
compositional path.

Figure 2 shows a CLHA model of a Nuclear Reactor System, which describes
that a controller schedules multiple control rods to enter the heavy water to
absorb the neutrons in order [35]. The member automata of the system include
a controller and several control rods. They have several shared labels such as
add i and remove i which add/remove the ith rod into/from the heavy water.
The number of locations of this CLHA increases exponentially with the number
of rods, bringing difficulties to model checking. We will take this system as an
example to illustrate the process of bounded reachability analysis of CLHA.

3 Mixed Semantics Guided Layered BMC

Instead of encoding the complete bounded state space into one huge SMT prob-
lem, we propose a layered BMC method to solve the problem in a divide-and-
conquer manner. Firstly, we traverse the graph structure of the CLHA to look

Mixed Semantics Guided Layered Bounded Reachability Analysis 479

for candidate paths that may reach the target location. Then, we verify whether
a certain candidate path is feasible or not.

3.1 Graph Structure Traversal Through Step Semantics

In [7], an SMT-based encoding is proposed to enumerate paths in the shallow
semantics. But SMT solvers do not perform well when the scale of the problem
is large. It needs to solve both Boolean constraints and linear constraints at the
same time. The performance drops rapidly as the problem scale increases, which
leads to an inefficient path search.

To make the path traversing efficient, we first propose a bounded graph
structure encoding method based on the step semantics of CLHA. Then, we
encode the path enumerating problem as a SAT problem.

As shown in Definition 4, step semantics requires each component path to
have the same length and to enable each shared label at the same position by
adding stutter transitions, which start from one location and then jump back
to this starting location. Therefore, our graph structure encoding of CLHA is
divided into two parts: the graph structure encoding of each member automaton
and the synchronization encoding guided by shared labels. The encoding ensures
that all Boolean variables that represent the locations or transitions existing in
the searched path are true, and the others are false. The specific encoding method
is shown below, where loci represents the i-th location on the path, and transi

represents the i-th transition on the path1:

– Initial condition encoding

INIT := (loc0 = vI) (1)

– Transition relation encoding.

TRANS i :=
∧

v∈V

(
(loci = v) → ((transi = stutter) ∨

∨

t=(v,σ,v′)∈E

(transi = t))
)

∧
∧

t=(v,σ,v′)∈E

(
(transi = t) → ((loci = v) ∧ (loci+1 = v′))

)

∧
(
(transi = stutter) → (loci = loci+1)

)
(2)

– Exclusion encoding, where E′ = E ∪ {stutter}

EXC i :=
∧

s∈E′,t∈E′,s �=t

(¬(transi = s) ∨ ¬(transi = t)) (3)

– Target condition encoding

TARGET i := (loci = vtarget) (4)

1 In practice, each (loci = x) and (transi = y) is treated as a Boolean variable.

480 Y. Wu et al.

Fig. 3. Path ρstep in the step semantics of CLHA from Fig. 2

– Bounded Graph structure encoding

BGk := INIT ∧
∧

0≤i≤k−1

TRANS i ∧
∧

0≤i≤k

EXC i ∧
∨

0≤i≤k

TARGET i (5)

The encoding of shared labels guarantees that automata which have a specific
shared label have to enable such shared label at the same position.

SYNC i
H :=

∧

σ∈Σ

(label iσ ↔
∨

t=(v,σ,v′)∈E

(transi = t)) (6)

Thus, we give the encoding of bounded graph structure traversal of CLHA
H = H1||H2|| · · · ||Hm on the step semantics:

BGk
H :=

(∧

1≤j≤m

BGk
Hj

)
∧

∧

0≤i<k

SYNC i
H (7)

Let us analyze the size of the generated formula. Each location, label, or
transition at each position on the path needs a literal to indicate whether it is
selected, so the number of literals is O(

∑

1≤j≤m

(|Ej | + |Vj |)k). The sizes of INIT

and TARGET i are both constant. The size of TRANS i
Hj

increases linearly with
|Ej | and |Vj |. EXC i encodes the relationship between every two transitions. So,
the number of clauses in BGk

H is O(
∑

1≤j≤m

(|Ej |2 + |Vj |)k).

We can get a truth assignment of BGk
H by calling a SAT solver. The result

can be decoded into a step compositional path in the CLHA. loci
H represents

the i-th location on the path of H. transi
H represents the i-th transition on the

path of H. For example, ρstep, shown in Fig. 3, is a candidate step compositional
path located in the graph structure of the NRS system in Fig. 2.

3.2 Path Feasibility Verification Through Shallow Semantics

For a step compositional path, all of its labels are sorted in a total order. If we
slightly change the order of any two labels, we will get a new candidate path.
And, accordingly, we need to conduct verification for each new path.

Mixed Semantics Guided Layered Bounded Reachability Analysis 481

Fig. 4. Path ρ′
step obtained by changing the order of recover 1 and stutter in ρstep

Fig. 5. Candidate path ρshallow in the shallow semantics

However, for two labels belonging to different automata, their order does not
matter unless they are both shared. It is a waste of time to check all these cases
with a total order of transitions. Therefore, for all candidate step compositional
paths, we generalize them into stutter-free paths under shallow semantics.

For example, the path ρ′
step in Fig. 4 is obtained by slightly changing the order

of recover 1 and stutter in the path of rod 1 in ρstep, shown in Fig. 3. We can see
paths ρstep and ρ′

step are shallowly-consistent with each other. Their feasibility
will be checked twice if we conduct verification through the step semantics, while
only once through the shallow semantics. Their corresponding stutter-free path
in the shallow semantics, which is path ρshallow, is given in Fig. 5.

Clearly, the relation between paths in the shallow semantics and paths in the
step semantics is a one-to-many relationship, which means that a path in the
shallow semantics covers multiple interleaving cases, while a path in the step
semantics covers only one interleaving case.

According to Definition 2, 3, 5 and the finiteness of each candidate path,

given a shallow compositional path ρ = 〈ρ1, ρ2, · · · , ρm〉 with ρi = 〈v0
i 〉 σ0

i−→
〈v1

i 〉 σ1
i−→ · · · σni−1−−−−→ 〈vni〉, the feasibility verification problem of ρ under shallow

semantics can be encoded into the feasibility problem of a linear constraint set
on variables δj

i , λj
i (x), ζj

i (x) and tjl . Recall that δj
i is the time spent in location

vj
i , λj

i (x) and ζj
i (x) are the value of x when the i-th automaton reaches and

leaves the location vj
i , and tjl is the time when the label l occurs for the j-th

time.
According to Definition 2 and 5, the encoding of path behavior is divided

into local behavior encoding and synchronization encoding. The local behavior

482 Y. Wu et al.

encoding consists of the encoding of nodes and the encoding of transitions. Take
the node out and the transition add 2 of the second automaton rod 2 as an
example2:

– For the first location out, local behavior encodings are given below.
• Time spent in this location is non-negative: δ02 ≥ 0
• Values of relevant variables satisfy flow constraints when leaving this loca-

tion: λ0
2(x) + 0.9 · δ02 ≤ ζ02 (x) ≤ λ0

2(x) + 1.1 · δ02
• Values of relevant variables satisfy the invariant constraint when entering

and leaving this location: λ0
2(x) ≤ 10 ∧ ζ02 (x) ≤ 10

– For the first transition add 2, local behavior encodings are given below.
• Values of relevant variables satisfy its guard constraint: ζ02 (x) ≥ 1
• Values of relevant variables satisfy its reset constraint: λ1

2(x) = 0

As for synchronization encoding, it ensures that each shared label occurs
simultaneously and each automaton ends simultaneously. For instance, the syn-
chronization encoding of the first add 2 label in controlled is: t1add 2 = δ13 + δ23 + δ33 .

We encode the other parts of ρ and ϕ in the reachability specification in a
similar way. Then, we check the obtained linear constraint formula set by linear
programming.

3.3 Bounded Graph Structure Refinement

If the encoded constraint set of a path ρ is proved to be satisfiable, ρ is a witness
to satisfy the reachability specification. This linear programming process ensures
the soundness of this method in finding a valid witness. If ρ is not feasible, we
should prevent such a path from appearing again in the future traversal. A simple
way to avoid enumerating such paths again is to add the negative encoding of ρ,
i.e. the negation of the conjunction of all variables assigned to true, back to the
graph structure formula set. However, it only excludes one path in this way. In
order to prune more state spaces, we use the Irreducible Infeasible Set (IIS) [11]
method to locate the infeasible core path segments in ρ and exclude all paths
that contain such infeasible path segments.

Definition 8 (Irreducible Infeasible Set). An irreducible infeasible set of a
linear constraint set C is a subset C

′ ⊆ C such that C
′ is inconsistent and for

any C
′′ ⊂ C

′, C′′ is consistent.

For an infeasible path ρ, we can obtain an IIS C
′ from the constraint set

C w.r.t. ρ. Since all constraints in C come from elements like invariants, flow
conditions, and so on in ρ, we can map constraints in the IIS C

′ to a shallow
compositional path segment ρ′ in ρ. As the feasibility of the path segment ρ′

implies the satisfiability of C
′, any path containing ρ′ is infeasible for sure. It

does not matter where ρ′ is, because its position does not affect the relationship
of the variables in C

′ but their names. Intuitively, the infeasibility of infeasible

2 Please refer to Fig. 2 for detail constraints on the model due to the space limitation.

Mixed Semantics Guided Layered Bounded Reachability Analysis 483

Fig. 6. Infeasible path segment in ρshallow and ρstep

path segments always holds, no matter how the length, locations, and transitions
of other parts of the path change.

For example, the following constraints make an IIS of ρshallow (Fig. 5):

– Constraints on rod 1:
• Reset constraints on the first add 1, the first remove 1 and recovery 1:

λ1
1(x) = 0, λ2

1(x) = 0, λ3
1(x) = ζ21 (x).

• Flow constraints on the first in, the first recover, and the second out :
λk
1(x) + 0.9 · δk

1 ≤ ζk
1 (x) for k = 1, 2, 3.

• Invariant constraints on the second out : ζ31 (x) ≤ 10.
– Constraints on controller :

• Reset constraints on the first add 1, the first remove 1, add 2, remove 2:
λk
3(x) = 0 for k = 1, 2, 3, 4.

• Flow constraints on the first rod 1, the second rod 0, rod 2, and the third
rod 0: ζk

3 (x) ≤ λk
3(x) + 1.1 · δk

3 for k = 1, 2, 3, 4.
• Guard constraints on the first remove 1, remove 2, and the second add 1:

ζ13 (x) ≥ 16, ζ33 (x) ≥ 16, ζ43 (x) ≥ 5.
– Synchronization constraints on the first and second label of add 1: t1add 1 = δ01 ,

t1add 1 = δ03 , t2add 1 = δ01 + δ11 + δ21 + δ31 , t2add 1 = δ03 + δ13 + δ23 + δ33 + δ43 .
– Time spent in locations is non-negative: δk

1 ≥ 0 for k = 1, 2, 3, δk
3 ≥ 0 for

k = 1, 2, 3, 4.

Mapping these constraints back to the path ρshallow, we get the infeasible
path segment represented by solid lines in Fig. 6.

In our method, we use the step semantics to enumerate candidate paths. And,
we obtain the infeasible path segment through the shallow semantics. Thus, we
need to map the infeasible path segment back to the form of step semantics
for later SAT refinement and encoding. In order to map quickly, for each path
segment in the shallow semantics, its original form in the step semantics can
be recorded in advance when it is generalized. The dashed part in Fig. 6 is the
path segment mapped back to the original path ρstep in Fig. 3 in step semantics.
Pruning such a small path segment is more effective than pruning the whole
path.

We refine the path enumerating problem by adding the negative encoding of
the infeasible path segment back to the bounded graph structure. The refinement
is as follows, where p is the position of the first location of the path segment,
k is the bound, l is the length of the path segment, and InfeasiblePathSegp is

484 Y. Wu et al.

the negation of the conjunction of all variables that encode such a path segment
when its first location is at p:

BGk
H := BGk

H ∧
∧

0≤p≤k−l

¬(InfeasiblePathSegp) (8)

For example, the corresponding refinement formula for the infeasible path
segment in Fig. 6 is as follows:

InfeasiblePathSegp =(transp1 = add 1) ∧ (transp+1
1 = remove 1) ∧ (transp+2

1 = recovery 1)

∧(transp+3
1 = stutter) ∧ (transp+4

1 = add 1)

∧(transp3 = add 1) ∧ (transp+1
3 = remove 1) ∧ (transp+2

3 = add 2)

∧(transp+3
3 = remove 2) ∧ (transp+4

3 = add 1) (9)

4 Path Pruning-Based Optimization

4.1 Non-identical Path Guided Path Pruning

When analyzing paths obtained from our SAT-based enumerating, we discover
that lots of paths are redundant w.r.t. the shallow semantics. As shown in
Sect. 3.2, although these redundant paths are different from each other in the
step semantics, their corresponding paths in the shallow semantics are the same.

Definition 9 (Identical Paths under Mixed Semantics). Given two step
compositional paths ρ1 = 〈ρ11, ρ12, · · · , ρ1m〉 and ρ2 = 〈ρ21, ρ22, · · · , ρ2m〉 in a CLHA
H = (X,V, vI , Σ,E, I, α, β, φ, ψ), they are identical paths under mixed semantics
(or identical for short) iff τΣ(ρ1k) = τΣ(ρ2k) for k = 1, 2, · · · ,m.

Intuitively, paths that are identical to each other represent the same path in the
shallow semantics. As we check the feasibility of paths through shallow semantics,
we hope to obtain only paths, which are non-identical to each other, from the
path enumerating process.

By observing enumerated identical paths, we summarize three classes of con-
ditions, in which identical paths are generated, w.r.t. the position of stutter
transitions. We also propose the corresponding encoding methods to avoid them.

Fig. 7. Path of global waiting

Mixed Semantics Guided Layered Bounded Reachability Analysis 485

Global Waiting. Stutter transitions could be inserted at any position endlessly
to postpone other transitions. If all automata enable a stutter transition at the
same position, we call such conditions “global waiting”.

Global waiting leads to lots of uncertainties in the number and position
of stutter transitions. Thus, global waiting increases the number of redundant
candidate paths and makes it difficult to decode infeasible path segments. The
path shown in Fig. 7 is a redundant path because there is a global waiting at the
second position. It is identical to the path ρstep in Fig. 3.

To avoid such redundant paths, we set up a new blocking rule. It requires
that for any position in a path of CLHA, all member automata are not allowed
to enable the stutter transition simultaneously. The formula is given below as:

BLOCK G i
H =

∨

1≤j≤m

(transi
j �= stutter) (10)

Fig. 8. Path of repeated waiting for shared labels

Repeated Waiting for Shared Labels. Similar to global waiting, simulta-
neous stutter transitions before a shared label will also cause redundant paths.
Since a stutter transition is inserted in a member automaton in order to ask it
to wait for and synchronize with another automaton on their shared label, there
is no need to insert stutter transitions simultaneously before one shared label in
every related member automata. We call such conditions “repeated waiting for
shared labels”. As shown in Fig. 8, in the automata rod 2 and controller, stutter
transitions appear before the shared label add 2. This path is also identical to
the path ρstep in Fig. 3.

We set up the second blocking rule to avoid such redundant paths. It requires
that for any shared label of CLHA, all member automata with this specific shared
label are not allowed to enable the stutter transition simultaneously. The formula
is given as follows, where Σshared is the set of shared labels:

BLOCK S i
H =

∧

σ∈Σshared

(
labeli+1

σ →
∨

1≤j≤m

(σ ∈ Σj ∧ transi
j �= stutter)

)
(11)

486 Y. Wu et al.

Fig. 9. Path of randomly waiting

Random Waiting. Stutter transitions might appear anywhere on the path
for synchronization. As shown in Fig. 9, stutter transitions may occur before
stutters, shared labels, or local labels. Compared with the original path ρstep, this
path just exchanges the order of local label recovery 1 and a stutter transition.
Since stutter transitions do not affect the sequence of labels in shallow semantics,
the path shown in Fig. 9 is identical to the original path ρstep in Fig. 3 and is
redundant as well. We call such conditions “random waiting”.

As we discussed before, the purpose of stutter transitions is to make shared
labels occur at the same position. Thus, member automata should only enable
stutter transitions to postpone a shared label when necessary. As long as stutter
transitions only occur before shared labels, the consistency of the sequence of
shared labels can be guaranteed, and the problem caused by the uncertainty of
the position of stutter transition can be alleviated. Based on this observation,
we set up the third blocking rule. It requires that for each member automaton,
a stutter transition is allowed, if and only if its next label is a shared label or a
stutter. The formula is as follows:

BLOCK R
i
H =

∧

1≤j<m

(
(trans

i
j = stutter) → ((trans

i+1
j = stutter) ∨

∨

σ∈Σshared∩Σj

label
i+1
σ)

)

(12)

With the encoding of rules to avoid all these three kinds of redundant paths,
we update the bounded graph structure encoding of CLHA H as below:

BG IH k =
(∧

1≤j≤m

BGk
Hj

)
∧

∧

0≤i<k

SYNC i
H

∧
∧

0≤i≤k

BLOCK G i
H ∧

∧

0<i≤k

BLOCK S i
H ∧

∧

0≤i<k

BLOCK Ri
H

(13)

The number of literals and clauses in BG I k
H are still O(

∑

1≤j≤m

(|Ej |+ |Vj |)k)

and O(
∑

1≤j≤m

(|Ej |2 + |Vj |)k), respectively.

Overall, our intuitive idea for these three rules is that if a transition is def-
initely selected, it should appear as early as possible in the path, rather than

Mixed Semantics Guided Layered Bounded Reachability Analysis 487

being delayed by stutter transitions. We prove the correctness of our method
based on this.

Theorem 1. For each path that satisfy BGk
H in Eq. 7, there is a identical path

that satisfies BG Ik
H in Eq. 13.

Proof Sketch: Given a CLHA s H, for a step compositional path ρorigin which
satisfies BGk

H , ρshallow = 〈ρ1, ρ2, · · · , ρm〉 is a shallow compositional path which

is obtained by removing all stutters in ρorigin, where ρi = 〈v0
i 〉 σ0

i−→ 〈v1
i 〉 σ1

i−→
· · · σni−1−−−−→ 〈vni〉, we construct the corresponding step compositional path ρnew

which satisfies BG Ik
H below.

We use the tuple (i, t) to represent the k-th transition in ρi. Obviously, for any
transition except the stutter transition, the number of its occurrence in ρshallow

and ρnew should be the same. We use a function f to denote the relationship
between the position of a transition in ρshallow and the position of it in ρnew.
Sync(i, t) represents the set of transitions that should be enabled simultaneously
with the transition (i, t) according to the consistency of shallow semantics, i.e.
transitions that have the same position as (i, t) in the S-trace of ρi and other
paths. Certainly, (i, t) belongs to Sync(i, t). The definition of f is as follows:

fi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, t < 0
fi(t − 1) + 1, σt

i is local
max

(j,l)∈Sync(i,t)
fj(l − 1) + 1, σt

i is shared
(14)

So we are able to obtain the target path ρnew. We put each transition in the
calculated position, and fill the rest with stutter transitions. Such a path ρnew

satisfies the three block rules given in Eq. 13, because:

– the value of f increases by 1 according to the second case and the third case
of Eq. 14, so there is no “global waiting”;

– the shared label always follows a non-stutter transition according to the third
case of Eq. 14, so there is no “repeated waiting for shared labels”;

– fi(t) − fi(t − 1) > 1, i.e., there are some stutter transitions in the position
between fi(t − 1) and fi(t), only if σt

i is shared, so there is no “random
waiting”.

Meanwhile, according to Eq. 14, we can see all the labels in ρnew are put in
the first position that is possible. Thus, the length of ρnew is definitely no longer
than ρorigin.

Sums up, by constructing the corresponding path ρnew, we proved the theo-
rem. ��

Above, we show that although we have reduced the number of paths to be
searched, we have not missed any non-identical paths, and will not generate an
incorrect verification result.

488 Y. Wu et al.

4.2 Multiple Infeasible Path Segments-Based Pruning

As shown in Sect. 3.3, the IIS acceleration technology is used to accelerate the
path enumerating process of CLHA. If we can find more infeasible path segments
from one infeasible path, we can take advantage of more infeasible segments and
block more infeasible paths.

Fig. 10. Path splitting to obtain multiple infeasible path segments

Therefore, we propose an acceleration technology that retrieves multiple IISes
by splitting the path based on shared labels. As shown in Fig. 10, where different
colors represent different shared labels, we try to obtain multiple infeasible path
segments by repeatedly splitting the candidate path based on shared labels from
its rear end. If the remaining shallow compositional path segment is feasible, stop
splitting. Otherwise, we extract IIS from the current linear constraint set and
then continue to split the path until the remaining path segment is feasible. By
splitting paths in this way, we could limit the infeasible path segment in a smaller
range. Meanwhile, it could help to extract shorter infeasible path segments which
might exclude more candidate paths.

Table 1. Model size of benchmarks

#Automata #Locations #Variables #Discrete transitions

NRS n + 1 (n + 1) · 3n n + 1 2n + 3

FDDI n + 1 2n · 6n 3n 5n + 5

Fischer n + 1 (n + 1) · 4n n 3n + 3

Motorcycle n 9n 3n 2n + 3

DISC n + 2 (n + 1) · 4n 4n + 1 2n + 3

TTE n + 2 4n+2 n + 4 2n + 3

5 Experimental Results

We implemented the method presented in the previous sections into the Bounded
Reachability Checker BACH [9,10]. We chose CryptoMiniSat5 [34] as the SAT
solver and Z3 [33] as the LP solver.

Six well-known benchmarks of CLHA, which cover all compositional LHA
cases in ARCH-COMP 2020 [6], are used in the experiments:

Mixed Semantics Guided Layered Bounded Reachability Analysis 489

Fig. 11. Experimental results in reachable models

– Nuclear Reactor System (NRS) [35] is the running example used in this paper.
It is a widely used CLHA case that consists of a controller and multiple control
rods.

– FDDI protocol [15,17] is adapted from the model which describes the data
transmission standard in the local area network.

– Fischer [30], used in ARCH-COMP 2020, is a classic CLHA model which
describes the Fischer algorithm in the mutual exclusion protocol.

– Motorcycle [28] is adapted from the highway system model in ARCH-COMP
2020.

– Distributed Controller (DISC) [25] is adapted from a distributed control sys-
tem model. It reads and processes data from multiple sensors according to
the sensor priorities in ARCH-COMP 2020.

– TTEThernet (TTE) [32], used in ARCH-COMP 2020, describes the fault-
tolerant synchronization clock algorithm.

Table 1 shows the size of each benchmark, where n is the number of variable
components. In these benchmarks, DISC and TTE have only the unreachable
version, while the other four cases have both reachable and unreachable versions.
In the reachable version, there is at least one run that reaches the target state
within the given bound, while in the unreachable version, there exists no such
witness runs. We use the reachable version to evaluate how fast our method
can locate the witness, and the unreachable version to evaluate its efficiency of
searching the entire bounded state space.

All experiments are conducted on a workstation (Intel Core i7-6700 CPU
3.4 GHz, 16 GB RAM, and UBUNTU 18.04). The time limit for experiments is
set to 1000 s, and the memory usage limit is set to 4 GB.

In the experiments, we ran both the basic layered version in Sect. 3, marked
as BACH, and the optimized version in Sect. 4, marked as BACH-opt. We also
ran HyComp [14], a state-of-the-art tool for the bounded reachability verification
of CLHA, to solve the same problems for comparison. In the experiments, the
step bound for HyComp is set to twice for BACH, because HyComp counts both
discrete transitions and continuous changes as a step, while BACH only counts
discrete transitions. Meanwhile, it is worth noting that since BACH generalizes
and checks a candidate path through shallow semantics, so it may check some
paths which has a longer length than the given bound in the step semantics.

490 Y. Wu et al.

Fig. 12. Experimental results in unreachable models

Therefore, the state spaces explored by both checkers are very “close” with each
other, but not exactly the same, due to different semantics equipped.

Experimental results on reachable and unreachable cases are shown in Fig. 11
and Fig. 12 with respectively. The vertical axis is logarithmic time and the hor-
izontal axis represents the number of components in the system.

Performance in Reachable Models. The experimental data in reachable
cases are given in the Fig. 11. We can see that both BACH and BACH-opt
outperform HyComp significantly in all cases in the aspects of scalability and
efficiency. For example, in the Motorcycle model in Fig. 11(d) with a scale of
8 components, BACH only took less than 1 s, while HyComp did not give an
answer within 1000 s.

This confirms our argument that, due to the separation of the discrete layer
and the continuous layer in our method, we can control the size of the encoded
problems and find the witness run quickly.

On the other hand, BACH and BACH-opt have similar performance in all
these reachable models. The reason is that, for reachable cases, the procedure
terminates once finding the first confirmed witness, with no need to traverse
the complete state space. Actually, BACH even outperforms BACH-opt a little
in several reachable cases, because, in BACH-opt, the additional encodings of
non-identical paths could bring extra burden to the SAT solver.

Mixed Semantics Guided Layered Bounded Reachability Analysis 491

Table 2. Number of checked paths in unreachable models

System #Components Number of paths System #Components Number of paths

BACH BACH-opt Reduction BACH BACH-opt Reduction

NRS 2 55 3 94.5% Motorcycle 2 4 1 75.0%

4 1409 4 99.7% 6 282 16 94.3%

6 69413 6 99.9% 10 14381 201 98.6%

FDDI 2 314 2 99.3% Fischer 2 18 2 88.8%

8 2817 2 99.9% 5 187 29 84.4%

15 11424 2 99.9% 7 544 78 85.6%

Distributed controller 2 45 4 91.1% TTEThernet 3 393 7 98.2%

3 227 3 98.6% 9 393 7 98.2%

4 1325 4 99.6% 15 393 7 98.2%

Performance in Unreachable Models. The performance in unreachable
models reflects the efficiency of the tool in exploring the whole state space.
As we can see from Fig. 12, BACH-opt dominates in most of the cases.

– In NRS, FDDI, and DISC, the time usage of the basic version of BACH
increases quickly. BACH fails to scale up to these large problems, because
there is a trade-off between space and time in our basic method proposed in
Sect. 3. When there are a large number of candidate paths to enumerate and
to check, the time usage of BACH could be long.

– On the other hand, the performance of BACH-opt outperforms the basic
BACH version significantly. With the help of non-identical paths and multi-
ple IIS, BACH-opt prunes space effectively. As described in Sect. 4, it could
dismiss most of the redundant interleaving cases and block more infeasible
paths during path enumeration.

– Comparing BACH-opt with HyComp, we can see that BACH-opt ties with
HyComp in the Motorcycle and DISC cases, while it dominates in all other
cases. It shows that, instead of solving the large verification problem as a
whole like HyComp, our layered method could solve the problem more effi-
ciently in a divide-and-conquer manner and could handle much larger and
complex cases.

Evaluation of Path Reduction. Our basic layered method analyzes the
bounded reachability of CLHA by verifying the feasibility of all candidate paths
one by one. Clearly, the more candidate paths our optimized method prunes in
the discrete layer, the better performance it achieves. In Table 2, we record the
number of paths that BACH and BACH-opt need to check in all unreachable
models. We can see that the reduction ratio reaches 90% in most models, show-
ing the effectiveness of our path reduction optimization methods in state space
pruning.

However, although the number of checked paths has been reduced a lot in
BACH-opt, from Fig. 12, we can see that its verification efficiency has not been
greatly improved in a few models such as Fischer and Motorcycle. The reason is
that extracting multiple infeasible path segments brings extra overhead to the
procedure. If it spends too much time analyzing an infeasible path, the complete
time usage will increase accordingly.

492 Y. Wu et al.

6 Related Work

Classical compositional linear hybrid automata reachability analysis methods
and tools, e.g. HyTech [26], PHAVer [20] and SpaceEx [21], are usually based on
polyhedral computations. These methods obtain an automaton by the Cartesian
product of all member automata, and then traverse the state space of the product
automaton by repeatedly computing one-step successor reachable state space.
Compared with HyTech, PHAVer limits the number of bits and constraints that
describe polyhedrons, in order to manage the complexity of polyhedral compu-
tations. Based on PHAVer, they have also developed a new tool called SpaceEx
to handle hybrid automata with linear dynamics. Besides, many compositional
approaches [2,18,19,23] are proposed to reduce the expensiveness of computa-
tion. However, there is still a distance between the scale of automata that they
can handle and the scale of practical problems.

Bounded model checking (BMC), which has recently attracted a lot of atten-
tion, is an alternative to classical model checking. It only checks the state space
within a certain bound. A typical BMC method for reachability analysis of com-
positional LHA encodes the whole state space within the bound as an SMT
satisfiability problem, either based on the interleaving semantics or the step
semantics. This kind of method exhibits a good performance with the develop-
ment of SMT technology. However, interleaving semantics brings lots of stut-
ter transitions, making the object SMT problem too huge to solve, especially
when the system or the bound is large. HyComp [14] is a typical SMT-based
Model Checker that integrates several verification techniques, e.g., BMC, K-
induction [29], and IC3 [12,13].

A path-oriented shallow semantics for CLHA was introduced in [8], without
using any stutter transition to synchronize member automata. It also introduced
a path checking method, encoding each component path separately and adding
synchronization constraints when it is necessary. Such path checking method was
then extended to an SMT-based encoding method in [7]. Compared to our pure
SAT solution for synchronization in this work, the introduction of counters and
timers makes it difficult for their SMT solution to scale up.

A SAT-LP-IIS [36] joint-directed path-oriented approach was proposed for
the BMC of single LHA. We learn the merits from [36] and propose a layered
method for the BMC of CLHA in this work.

IIS plays an important role in our framework. In [31], an algorithm called
MARCO was proposed to extract multiple minimal unsatisfiable sets from a
constraint set. However, if we roughly extract infeasible path segments based
on MARCO, we may obtain multiple infeasible path segments overlapping with
each other, due to the structural semantics of our paths. It is difficult to prune
paths efficiently by these overlapping infeasible path segments.

7 Conclusion

In this paper, we presented a mixed semantics guided layered approach to per-
form bounded reachability analysis of compositional LHA. Instead of encoding

Mixed Semantics Guided Layered Bounded Reachability Analysis 493

the complete bounded state space into one SMT problem as classical methods,
we enumerate candidate paths in the step semantics in the discrete layer and
then check the feasibility of candidate paths in the shallow semantics in the
continuous layer. Besides, to prune the state space under check, we proposed a
non-identical path-guided graph structure tailoring method, as well as a back-
tracking method guided by multiple infeasible path segments.

This approach has been implemented into a BMC checker for LHA, BACH.
The experimental data showed that with the help of our mixed semantics guided
layered BMC approach, BACH outperforms state-of-the-art CLHA reachability
verification tools on the aspects of efficiency and scalability substantially.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

2. Aştefănoaei, L., Bensalem, S., Bozga, M.: A compositional approach to the veri-
fication of hybrid systems. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 88–103. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 8

3. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial
hybrid systems with MathSAT. Electron. Notes Theor. Comput. Sci. 119(2), 17–32
(2005)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885 (2009)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003)

6. Bu, L., et al.: ARCH-COMP20 category report: hybrid systems with piecewise
constant dynamics and bounded model checking. In: Frehse, G., Althoff, M. (eds.)
7th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH 2020). EPiC Series in Computing, vol. 74, pp. 1–15. EasyChair
(2020)

7. Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model checking of hybrid systems
using shallow synchronization. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE
-2010. LNCS, vol. 6117, pp. 155–169. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13464-7 13

8. Bu, L., Li, X.: Path-oriented bounded reachability analysis of composed lin-
ear hybrid systems. Int. J. Softw. Tools Technol. Transf. 13(4), 307–317 (2011).
https://doi.org/10.1007/s10009-010-0163-9

9. Bu, L., Li, Y., Wang, L., Chen, X., Li, X.: BACH 2: bounded reachability checker
for compositional linear hybrid systems. In: Design, Automation and Test in
Europe, DATE 2010, Dresden, Germany, 8–12 March 2010, pp. 1512–1517 (2010)

10. Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear
hybrid automata. In: Formal Methods in Computer-Aided Design, FMCAD 2008,
Portland, Oregon, USA, 17–20 November 2008, pp. 1–4 (2008)

11. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. INFORMS J. Comput. 3(2), 157–168 (1991)

12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
20–23 October 2013, pp. 165–168 (2013)

https://doi.org/10.1007/978-3-319-30734-3_8
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1007/978-3-642-13464-7_13
https://doi.org/10.1007/s10009-010-0163-9

494 Y. Wu et al.

13. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 4

14. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46681-0 4

15. Clark, R.J., Mukherjee, A.: Book review: FDDI handbook: high speed network-
ing using fiber and other media, by Raj Jain (Addison-Wesley 1994). Comput.
Commun. Rev. 24(2), 44 (1994)

16. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking. In: Proceedings of the
NATO Advanced Study Institute on Deductive Program Design, Marktoberdorf,
Germany, pp. 305–349 (1996)

17. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Hen-
zinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0020947

18. Frehse, G.: Compositional verification of hybrid systems with discrete interaction
using simulation relations. In: Proceedings of the CACSD (2004)

19. Frehse, G., Zhi, H., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: IEEE Conference
on Decision & Control (2004)

20. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int.
J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008). https://doi.org/10.1007/
s10009-007-0062-x

21. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

22. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. Theory
Pract. Log. Program. 3(4–5), 519–550 (2003)

23. Henzinger, T.A., Minea, M., Prabhu, V.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 275–290. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45351-2 24

24. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, 27–30 July 1996, pp. 278–292 (1996)

25. Henzinger, T.A., Ho, P.-H.: HyTech: the Cornell hybrid technology tool. In: Antsak-
lis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–
293. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3 14

26. Henzinger, T.A., Ho, P., Wong-Toi, H.: HYTECH: a model checker for hybrid
systems. Int. J. Softw. Tools Technol. Transf. 1(1–2), 110–122 (1997). https://doi.
org/10.1007/s100090050008

27. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

28. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid
automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., But-
tazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71493-4 24

https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/BFb0020947
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/3-540-45351-2_24
https://doi.org/10.1007/3-540-45351-2_24
https://doi.org/10.1007/3-540-60472-3_14
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/978-3-540-71493-4_24

Mixed Semantics Guided Layered Bounded Reachability Analysis 495

29. Jha, S., Brady, B.A., Seshia, S.A.: Symbolic reachability analysis of lazy linear
hybrid automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 241–256. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 18

30. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1),
1–11 (1987)

31. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp.
160–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-
3 11

32. Lundelius, J., Lynch, N.A.: A new fault-tolerant algorithm for clock synchroniza-
tion. In: Proceedings of the Third Annual ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, B.C., Canada, 27–29 August 1984, pp. 75–88
(1984)

33. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

34. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

35. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-
like data-structures. IEEE Trans. Softw. Eng. 31(1), 38–51 (2005)

36. Xie, D., Bu, L., Zhao, J., Li, X.: SAT-LP-IIS joint-directed path-oriented bounded
reachability analysis of linear hybrid automata. Formal Methods Syst. Des. 45(1),
42–62 (2014). https://doi.org/10.1007/s10703-014-0210-3

https://doi.org/10.1007/978-3-540-75454-1_18
https://doi.org/10.1007/978-3-540-75454-1_18
https://doi.org/10.1007/978-3-642-38171-3_11
https://doi.org/10.1007/978-3-642-38171-3_11
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/s10703-014-0210-3

Bit-Precise Reasoning
via Int-Blasting

Yoni Zohar1(B) , Ahmed Irfan2 ,
Makai Mann2 , Aina Niemetz2 ,

Andres Nötzli2 , Mathias Preiner2 ,
Andrew Reynolds3 , Clark Barrett2 ,

and Cesare Tinelli3

1 Bar-Ilan University, Ramat Gan, Israel
yoni.zohar@biu.ac.il

2 Stanford University, Stanford, USA
3 The University of Iowa, Iowa City, USA

Abstract. The state of the art for bit-precise reasoning in the context
of Satisfiability Modulo Theories (SMT) is a SAT-based technique called
bit-blasting where the input formula is first simplified and then translated
to an equisatisfiable propositional formula. The main limitation of this
technique is scalability, especially in the presence of large bit-widths and
arithmetic operators. We introduce an alternative technique, which we
call int-blasting, based on a translation to an extension of integer arith-
metic rather than propositional logic. We present several translations,
discuss their differences, and evaluate them on benchmarks that arise
from the verification of rewrite rule candidates for bit-vector solving, as
well as benchmarks from SMT-LIB. We also provide preliminary results
on 35 benchmarks that arise from smart contract verification. The eval-
uation shows that this technique is particularly useful for benchmarks
with large bit-widths and can solve benchmarks that the state of the art
cannot.

1 Introduction

Bit-precise reasoning is paramount for software and hardware verification. Bit-
vectors directly and naturally model basic building blocks of both software and
hardware, like registers, integers, memory, and more. Many applications rely on
satisfiability modulo theories (SMT) for reasoning about bit-vectors, and the
number of solvers and techniques for handling bit-vector formulas is large and
increasing. One indication of that is the number of bit-vector benchmarks in

This work was supported in part by DARPA (awards N66001-18-C-4012, FA8650-18-
2-7854 and FA8650-18-2-7861), ONR (award N68335-17-C-0558), the Stanford Center
for Blockchain Research, Certora Inc., and by an NSF Graduate Fellowship (to Makai
Mann).
A. Irfan—This author’s contributions were made while he was a postdoc at Stanford
University.

c© Springer Nature Switzerland AG 2022
B. Finkbeiner and T. Wies (Eds.): VMCAI 2022, LNCS 13182, pp. 496–518, 2022.
https://doi.org/10.1007/978-3-030-94583-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94583-1_24&domain=pdf
http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0001-7791-9021
http://orcid.org/0000-0002-1555-5784
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0001-8669-0011
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
https://doi.org/10.1007/978-3-030-94583-1_24

Bit-Precise Reasoning via Int-Blasting 497

the SMT-LIB [7] benchmark library, by far the highest among all benchmark
categories in the library. The current state of the art for determining the satis-
fiability of fixed-size bit-vector formulas is a technique called bit-blasting. With
this technique, the input formula is first simplified by means of satisfiability pre-
serving transformations. Then, it is fully reduced to a propositional satisfiability
(SAT) problem and handed to a SAT solver [11]. The success of this approach
is mainly due to the fact that modern SAT solvers are able to solve complex
propositional formulas with millions of variables very efficiently. Thus, problems
that can be efficiently encoded as SAT instances can leverage the great progress
in SAT solving. Nevertheless, bit-blasting has scalability limitations, especially
with large bit-widths. In fact, even for conventional bit-widths such as 32 and
64, bit-blasting may face scalability issues, in particular for formulas containing
bit-vector arithmetic operators.

The work described in this paper is part of an ongoing effort to improve the
scalability of bit-precise reasoning by offering alternatives to bit-blasting that
primarily use word-level reasoning and rely on bit-level reasoning only when
needed. Specifically, we study a translation of bit-vector formulas to an extension
of integer arithmetic; that is, we replace bit-blasting by int-blasting. To encode
bitwise bit-vector operators, the extension introduces an operator that represents
the bitwise and operation over integers, parameterized by bit-width. The idea
of using arithmetic reasoning to solve bit-vector formulas is not new (e.g., [12,
19]). We believe, however, that recent progress in arithmetic solvers (e.g., [14]),
especially for non-linear arithmetic (e.g., [17,18,26,41]), make it worthwhile to
revisit this approach, as these techniques can be leveraged by applying them to
the int-blasted formulas.

We study two kinds of translations: an eager one and a (semi-)lazy one. In the
former, the input bit-vector formula is eagerly translated to an integer formula
with uninterpreted functions. In the latter, most of the formula is translated
eagerly while preserving satisfiability except for bitwise operators (such as bit-
wise and), which are handled lazily using a counterexample-guided abstraction
refinement (CEGAR) loop [28].

We additionally consider two alternative ways to encode bitwise bit-vector
operations in integer arithmetic for the purposes of abstraction refinement: one
based on a polynomial expansion and the other based on bit-level comparisons.
Both alternatives require non-linear arithmetic reasoning, as recovering individ-
ual bits from an integer encoding of a bit-vector is achieved via division and
modulo operations. The main difference between the two alternatives in the
context of an SMT solver implementation, and our reason for considering both,
is that the first further exercises the arithmetic subsolver whereas the second
relies more heavily on the underlying SAT engine.

Contributions. We have implemented the aforementioned variants of int-blasting
in the cvc5 SMT solver (the successor of CVC4 [5]) and evaluated our implemen-
tation experimentally to estimate its potential. For that, we compiled a new set
of benchmarks, encoding equivalence checks of rewrite rule candidates proposed
by the syntax-guided rewrite rule enumeration framework presented by Nötzli
et al. [36]. We show that for those benchmarks, int-blasting significantly outper-

498 Y. Zohar et al.

Table 1. Considered bit-vector operators with SMT-LIB 2 syntax. In [u : l]BV, 0 ≤
l ≤ u < n.

Symbol SMT-LIB syntax Arity

= = σ[n] × σ[n] → Bool

<u
BV, >u

BV bvult, bvugt σ[n] × σ[n] → Bool

<s
BV, >s

BV bvslt, bvsgt σ[n] × σ[n] → Bool

≤u
BV, ≥u

BV bvule, bvuge σ[n] × σ[n] → Bool

≤s
BV, ≥s

BV bvsle, bvsge σ[n] × σ[n] → Bool

∼ BV, −BV bvnot, bvneg σ[n] → σ[n]

&BV, |BV, ⊕BV bvand, bvor, bvxor σ[n] × σ[n] → σ[n]

<<BV, >>BV bvshl, bvlshr σ[n] × σ[n] → σ[n]

+BV, −BV bvadd, bvsub σ[n] × σ[n] → σ[n]

·BV bvmul σ[n] × σ[n] → σ[n]

modBV, divBV bvurem, bvudiv σ[n] × σ[n] → σ[n]

[u : l]BV extract σ[n] → σ[u−l+1]

◦BV concatenation σ[n] × σ[m] → σ[n+m]

forms bit-blasting as the bit-width increases. We further evaluated our technique
on the QF BV benchmarks in the SMT-LIB benchmark library [6], as well as
on 35 benchmarks that arise from smart contract verification, and observed that
int-blasting is complementary to bit-blasting on those benchmarks.

Outline. After introducing some background and notation in Sect. 2, Sect. 3
introduces an extension of the theory of integer arithmetic, in which an operator
representing bitwise and is added for each bit-width. We present a translation
from the theory of bit-vectors to this extension, in Sect. 4, along with eager and
lazy algorithms for solving the translated formula. We discuss an initial exper-
imental evaluation of the various translations in Sect. 5 and conclude in Sect. 6
with some directions for further work.

2 Preliminaries

We review the usual notions and terminology of many-sorted first-order logic
with equality (see [21,44] for more detailed information). Let S be a set of
sort symbols. For every sort σ ∈ S, we assume an infinite set of variables that
are pairwise disjoint across sorts. A signature Σ consists of a set Σs ⊆ S of
sort symbols and a set Σf of function symbols. Arities of function symbols are
defined in the usual way, and correspond to their types, that is, they take the
form σ1 × . . . × σn → σ where σ1, . . . , σn, σ are sorts. Constants are treated as
functions with no input sorts. We assume that Σ includes a sort Bool, interpreted
as the Boolean domain, and the Bool constants � and ⊥ (respectively for true

Bit-Precise Reasoning via Int-Blasting 499

and false). Signatures do not contain separate predicate symbols and use instead
function symbols with Bool return type.

We assume the usual definitions of well-sorted terms, literals, and formulas,
and refer to them as Σ-terms, Σ-literals, and Σ-formulas, respectively. These
are constructed using the symbols in Σ, variables, quantifiers and connectives,
as well as the if-then-else constructor ite(ϕ, t1, t2), where ϕ is a formula and t1
and t2 are Σ-terms of the same sort.

A Σ-interpretation I maps: each σ ∈ Σs to a distinct non-empty set of values
σI (the domain of σ in I); each variable x of sort σ to an element xI ∈ σI ; and
each fσ1···σnσ ∈ Σf to a total function fI : σI

1 × ... × σI
n → σI if n > 0, and

to an element in σI if n = 0. We use the usual notion of a satisfiability relation
|= between Σ-interpretations and Σ-formulas. A term of the form ite(ϕ, t1, t2)
is interpreted in an interpretation I as tI1 if I |= ϕ, and as tI2 otherwise. For
each sub-signature Σ′ of Σ, the reduct IΣ′

of I to Σ′ is obtained from I by
restricting it to the sorts and symbols of Σ′.

A Σ-theory T is a non-empty class of Σ-interpretations, such that every
interpretation that only disagrees from one in T on the variable assignments is
also in T . A Σ-formula ϕ is T -satisfiable (resp., T -unsatisfiable, T -valid) if it is
satisfied by some (resp., no, all) interpretations in T .

The signature ΣBV of fixed-size bit-vectors is defined in the SMT-LIB 2 stan-
dard [7], and includes a unique sort for each positive integer n (representing the
bit-vector width), denoted here as σ[n]. Without loss of generality, we take ΣBV

to consist of a restricted set of bit-vector function symbols (or bit-vector opera-
tors) as listed in Table 1. The selection of operators is arbitrary but complete in
the sense that it suffices to express all bit-vector operators defined in SMT-LIB
2. We further assume that ΣBV includes all bit-vector constants of sort σ[n] for
each n, represented as bit-strings. To simplify the notation, we will sometimes
denote them by the corresponding natural number. If a term t has sort σ[n] then
we denote n by κ(t). The SMT-LIB 2 standard for the ΣBV-theory TBV defines
a set of ΣBV-interpretations I, such that for each positive integer n, σ[n]

I is the
set of all bit-vectors of size n and function symbols are interpreted as the cor-
responding word-level operations in these domains (for details, see [38,39]). All
function symbols (of non-zero arity) in ΣBV are overloaded for every σ[n]∈ ΣBV.
We refer to the i-th bit of t as t[i] with 0 ≤ i < n. We interpret t[0] as the
least significant bit (LSB), and t[n − 1] as the most significant bit (MSB). The
unsigned interpretation of a bit-vector v of width k as a natural number is given
by [v]

N
= Σk−1

i=0 v [i] · 2i, and its signed interpretation as an integer is given by
[v]

Z
= −v [k − 1] · 2k−1 + [v[k − 2 : 0]BV]

N
. Given 0 ≤ n < 2k, the bit-vector

of width k with unsigned interpretation n is denoted [n]k
BV

. This notation is
extended also for n outside this bound by defining [n]k

BV
:=

[
n mod 2k

]k

BV
.1

We consider a theory TIA of integer arithmetic whose signature ΣIA includes
a single sort Int, function symbols +, −, ·, div, and mod of arity Int× Int → Int,
the function symbol pow2 of arity Int → Int, the predicate symbols < and ≤
1 The result of this modulo operation is non-negative, even when the argument is

negative, as specified by the SMT-LIB 2 standard.

500 Y. Zohar et al.

of arity Int × Int → Bool, and a constant symbol of sort Int for every integer.
The pow2-free fragment of this theory is identical to the SMT-LIB 2 theory of
integers [43]. Its models are all possible expansions of the models of the SMT-
LIB 2 theory obtained by interpreting pow2(n) as 2n when n is a non-negative
constant, and interpreting pow2(n) arbitrarily otherwise.

3 Integer Arithmetic with Bitwise and

In this paper, we reduce TBV-satisfiability to satisfiability in a theory that extends
TIA as follows. We first extend the signature ΣIA with binary function symbols
&N

k : Int × Int → Int, one for each positive integer k. We define two theories for
the extended signature: the first treats the new symbols &N

k as uninterpreted
functions (UF); the second interprets them as bitwise and operators on integers
modulo 2k. This is defined formally as follows:

Definition 1. The signature ΣIA(&N) is obtained from ΣIA by adding a function
symbol &N

k of arity Int × Int → Int for each k > 0. The ΣIA(&N)-theory TIAUF

consists of all ΣIA(&N)-interpretations whose ΣIA-reduct is a TIA-interpretation.
The ΣIA(&N)-theory TIA(&N) consists of all TIAUF-interpretations I in which

(&N

k)I(a, b) =
[
[a]k

BV
&BV[b]k

BV

]

N

.

Following Footnote 1, notice that &N

k is fully interpreted, even for integers
that are not between 0 and 2k. In the following definition, we identify a decidable
fragment of TIA(&N) that corresponds to formulas that originate from ΣBV.

Definition 2. Let n be a positive integer, and let t be a ΣIA(&N)-term of sort
Int. A ΣIA(&N)-formula ϕ is a t-n-range constraint if it has the form ⊥, �, or
(0 ��1 t ∧ t ��2 n) for ��1, ��2∈ { <,≤ }. A formula ϕ is a range constraint if it
is a t-n-range constraint for some t and n; a formula ϕ is bounded if there are
quantifier-free formulas ϕ1, ϕ2, ψ1, . . . , ψm such that ϕ = ϕ1∧ϕ2, ϕ2 =

∧m
i=1 ψi,

each ψi is a range constraint, and for each term t that occurs in ϕ1 that is either
a variable or has the form &N

k(t1, t2), there exist 1 ≤ i ≤ m and a positive integer
n such that ψi is a t-n-range constraint.

Example 1. Let ϕ1 be (&N

3(x, 0) < x) ∨ (&N

3(x, y) < x) and ϕ2 be (0 ≤ x ∧
x < 8) ∧ (0 ≤ y ∧ y < 8) ∧ (0 ≤ &N

3(x, 0) ∧ &N

3(x, 0) < 8). Then ϕ1 ∧ ϕ2

is not bounded, because it does not include any range constraint for &N

3(x, y).
Consider the formula ϕ′

2 obtained from ϕ2 by conjoining the range constraint
(0 ≤ &N

3(x, y) ∧ &N

3(x, y) < 8). Then ϕ1 ∧ ϕ′
2 is bounded.

A naive algorithm for deciding TIA(&N)-satisfiability of bounded ΣIA(&N)-
formulas can be obtained by enumerating all possible values for variables within
the specified bounds, and checking if the formula evaluates to true. If it does, a
full model can be constructed according to Definition 1. In fact, bounds over vari-
ables are sufficient for TIA(&N)-satisfiability since the semantics of &N in TIA(&N)

is fixed. A similar decision procedure can be obtained for TIAUF-satisfiability,
which does require the bounds over &N-terms. This algorithm gives us:

Bit-Precise Reasoning via Int-Blasting 501

Proposition 1. The TIA(&N)- and TIAUF-satisfiability of bounded formulas is
decidable.

In the next section, we show that the class of bounded formulas in TIA(&N) is
both useful and effective: it is expressive enough to describe bit-vector formulas
and can be reduced to problems for which there are efficient solvers.

4 Int-Blasting

In this section, we present our integer-based approach for solving TBV-satisfiab-
ility. There are two stages in our approach. The first, described in Sect. 4.1
and proved correct in Sect. 4.2, translates TBV-formulas to TIA(&N). The second,
described in Sect. 4.3 and 4.4, solves the resulting formulas by eager and lazy
reductions to TIAUF, respectively. Although we developed our translations for
the full fragment of TBV, to simplify the exposition in this paper, we will restrict
ourselves to quantifier-free formulas only.

4.1 From TBV to TIA(&N)

The first step is to translate ΣBV-formulas to equisatisfiable ΣIA(&N)-formulas,
so that the original formula is TBV-satisfiable if, and only if, its translation
is TIA(&N)-satisfiable. For this purpose, we define a translation function T as
shown in Fig. 1, which recursively translates ΣBV-formulas to ΣIA(&N) (via the
conversion function C) and collects additional lemmas about the ranges of the
translated variables and the introduced &N-terms (via the function Lem≤).

Conversion Function C. We use a one-to-one mapping χ from bit-vector vari-
ables (i.e., variables of sort σ[k] for some k > 0) to integer variables (i.e., vari-
ables of sort Int). A bit-vector constant c is translated to its integer counterpart
using []

N
which maps c to its unsigned integer interpretation. For Boolean con-

nectives
 ∈ {∧,∨,⇒,¬,⇔}, equalities, and unsigned comparators ��BV with
�� ∈ {<,≤, >,≥}, the conversion function is recursively applied to their argu-
ments. In the latter case, ��BV is replaced by its ΣIA counterpart ��. Signed com-
parators are handled similarly, except that the arguments are processed with
function utsk() (unsigned to signed with bit-width k), also defined in Fig. 1,
which ensures that the semantics of signed comparison is preserved properly.
For a given integer n in the range 0 ≤ n < 2k, it returns

[
[n]k

BV

]

Z

, the signed
interpretation of the bit-vector whose unsigned interpretation is n. Bit-vector
addition is translated to integer addition modulo 2k, where k is the bit-width of
the arguments. Bit-vector subtraction, multiplication, and one’s and two’s com-
plement are handled similarly. For division, the SMT-LIB 2 standard defines a
default value for bit-vector division by 0, but not for integer division by 0. This
is handled by wrapping the translated division term in an ite, which embeds
the semantics of bit-vector division within integer arithmetic. A similar pattern
is followed for remainder. Note that there is no need to take the result mod-
ulo 2k for one’s complement and unsigned division and remainder, as they are

502 Y. Zohar et al.

T ϕ:
C ϕ ∧ Lem≤(ϕ)

C e:
Match e:

x → χ(x)
c → [c]

N

t1 = t2 → C t1 = C t2
t1��

BVt2 → C t1 �� C t2
t1��s

BVt2 → utsk(C t1) �� utsk(C t2) �� ∈ {<, ≤, >, ≥}
�(ϕ1, . . . , ϕn) → �(C ϕ1, . . . , C ϕn) � ∈ {∧, ∨, ⇒, ¬, ⇔}

t1 +BV t2 → (C t1 + C t2) mod 2k

t1 −BV t2 → (C t1 − C t2) mod 2k

t1 ·BVt2 → (C t1 · C t2) mod 2k

∼ BVt1 → 2k − (C t1 + 1)
−BVt1 → (2k − C t1) mod 2k

t1 divBVt2 → ite(C t2 = 0, 2k − 1, C t1 div C t2)
t1 modBVt2 → ite(C t2 = 0, C t1, C t1 mod C t2)
t1◦BVt2 → C t1 · 2k + C t2
t1[u : l]BV → C t1 div 2l mod 2u−l+1

t1 <<BVt2 → (C t1 · pow2(C t2)) mod 2k

t1 >>BVt2 → C t1 div pow2(C t2)

t1 &BVt2 → &N

k(C t1, C t2)
t1 |BV t2 → C ((t1 +BV t2) −BV (t1 &BVt2))
t1⊕BVt2 → C ((t1 |BV t2) −BV (t1 &BVt2))

utsk(x) = 2 · (x mod 2k−1) − x

Lem≤(e):
Match e:

x → 0 ≤ χ(x) < 2κ(x)

c → �
t1 = t2 → Lem≤(t1) ∧ Lem≤(t2)

fBV(t1, t2) → 0 ≤ &N

k(C t1, C t2) < 2k∧
Lem≤(t1) ∧ Lem≤(t2)

fBV ∈ {&BV, |BV, ⊕BV}

gBV(t1, . . . , tn) →
∧n

i=1 Lem
≤(ti) gBV ∈ ΣBV \ {&BV, |BV, ⊕BV}

�(ϕ1, . . . , ϕn) →
∧n

i=1 Lem
≤(ϕi)

Fig. 1. Translation T from ΣBV to ΣIA(&N). We denote by k the bit-width κ(t2) of the
second argument, except for the cases of −BV and ∼ BV, where it denotes the bit-width
κ(t1) of the only argument; x ranges over bit-vector variables; χ is a one-to-one mapping
from bit-vector variables to integer variables; c ranges over bit-vector constants.

Bit-Precise Reasoning via Int-Blasting 503

guaranteed to be within the correct bounds. Concatenation and extraction are
handled as expected, using multiplication, division, and modulo. Left/right shifts
are obtained by multiplying/dividing the first argument by 2 to the power of the
second argument. Bitwise and is translated to &N

k, where k is determined accord-
ing to the bit-width of the bit-vector arguments. Bitwise or (|BV) and xor (⊕BV)
are reduced to other operators, using the following identities that hold for all
bit-vectors x and y [46]:

x |BV
y = (x +BV y) −BV (x &BVy) x⊕BVy = (x |BV

y) −BV (x &BVy) (1)

Lemmas Function Lem≤. Function Lem≤ takes a ΣIA(&N)-formula and collects
necessary range constraints for integer variables and terms of the form &N

k(t1, t2)
that are introduced by C. For variables, the range is determined by the bit-width
of the original bit-vector variable. For &BV, |BV and ⊕BV terms, the constraint is
determined by the bit-width of the arguments. Since |BV and ⊕BV are eliminated,
the constraint is stated in terms of &N. Notice that the &BV terms introduced
by Eq. (1) have the same arguments as the original terms. For all other terms
and formulas, Lem≤ simply collects such constraints recursively.

4.2 Correctness

The correctness of T is stated in the following theorem. It follows from the SMT-
LIB 2 semantics of bit-vectors and arithmetic, and from Definition 1. Its proof
is by structural induction on ϕ. Most cases are similar to the correctness proof
of the translation by Niemetz et al. [35], from bit-vectors with parametric width
to integers, with the main difference being the case of &BV. Unlike that work,
where the quantified axiomatization had to be proven correct by induction on
the bit-width, here the correctness follows directly from Definition 1.

Theorem 1. A ΣBV-formula ϕ is TBV-satisfiable iff T ϕ is TIA(&N)-satisfiable.

The theorem is actually stronger than stated: from any model I of T ϕ one
can compute a satisfying assignment for ϕ’s free variables, simply by assigning
to each free variable x of ϕ the bit-vector corresponding to the (integer) value
of χ(x) in I. An analogous result holds in the opposite direction as well.

We prove this theorem in the remainder of this section, focusing on the left-
to-right direction. The other direction is shown similarly. Throughout the proof,
we employ the following notation:

bsel i(x) := (xdiv 2i) mod 2 (2)

The term bsel i(x) represents the selection of the i-th bit in the bit-vector repre-
sentation of x. In particular, it is always 0 or 1.

Let ϕ be a ΣBV-formula. We assume without loss of generality that ϕ does not
have any occurrence of the ite operator, as it can be eliminated using the Boolean
operators and the introduction of fresh variables. Suppose ϕ is TBV-satisfiable

504 Y. Zohar et al.

and let A be a TBV-interpretation that satisfies it. We prove that T ϕ is TIA(&N)-
satisfiable. Define the following ΣIA(&N)-interpretation B: all function symbols
and constants are interpreted as defined by TIA(&N); division and remainder by
0, as well as pow2(m) for any negative m are defined arbitrarily; for every bit-
vector variable x, the value in B of its translation is the unsigned interpretation
of its value in A, that is:

χ(x)B :=
[
xA]

N
.

This fixes B. Also, B is a TIA(&N)-interpretation by construction.
Notice that every term of the form t1 div t2 or t1 mod t2 that occurs in the

translation is guarded by an assumption that t2 is not 0. Similarly, pow2 is
always applied on arguments that are guaranteed to be non-negative. Therefore,
the interpretation of these corner cases in B can indeed remain arbitrary.

We first prove the following lemma, which states the correctness of the trans-
lation for terms, that is, that the translation of each ΣBV-term is interpreted in
B as the unsigned interpretation of the original term’s value in A.

Lemma 1. (C t)B =
[
tA

]
N

for every ΣBV-term t of sort σ[k].

Proof. By induction on t. If t is a bit-vector variable then (C t)B = χ(t)B =
[
tA

]
N

by the definitions of C and B. If t is a bit-vector constant then (C t)B = [t]B
N

=[
tA

]
N

by the definition of []
N
. If t has the form t1 +BV t2, then by the definition

of C, (C t)B = (C t1 + C t2 mod 2k)B. Now, 2k �= 0 and hence the interpretation
in B is governed by TIA(&N), and is equal to (C t1)B + (C t2)B mod 2k. By the
induction hypothesis, this is equal to

[
tA1

]
N

+
[
tA2

]
N

mod 2k. By the semantics
of +BV according to the SMT-LIB 2 standard, this is the same as

[
tA

]
N
. The

other bit-vector operators are handled similarly. |BV and ⊕BV are eliminated by
C, and the correctness of this elimination follows from [46].

Finally suppose t has the form t1 &BV t2. By the definition of C,
(C t)B = &N

k(C t1, C t2)B. By Definition 1, since B is a TIA(&N)-interpretation,

&N

k(C t1, C t2)B =
[[

(C t1)B]k

BV
&BV

[
(C t2)B]k

BV

]

N

. By the induction hypothesis,

this is the same as
[[[

tA1
]
N

]k

BV
&BV

[[
tA2

]
N

]k

BV

]

N

. Now, []
N

and []
BV

cancel each

other, and hence we get
[
tA1 &BVtA2

]
N
, which is the same as

[
tA

]
N
. ��

Going back to ϕ, which is assumed to be satisfied by A, we now prove that
B |= T ϕ, that is B |= Cϕ∧Lem≤(ϕ). First, we prove that B |= Cϕ by induction
on ϕ. The induction step, in which ϕ is recursively constructed from propositional
connectives, trivially follows from the induction hypothesis, hence we focus on
the induction base. In the induction base, ϕ has either the form t1 = t2, t1��

BVt2,
or t1��s

BVt2 for some ��∈ { <,≤, >,≥ }. If ϕ has the form t1 = t2, then since
A |= ϕ, tA1 = tA2 . By Lemma 1, (C t1)B =

[
tA1

]
N

=
[
tA2

]
N

= (C t2)B, and therefore
B |= C ϕ. If ϕ has the form t1 <u

BVt2 then since A |= ϕ, tA1 <BVtA2 . By Lemma 1,
(C t1)B =

[
tA1

]
N

and
[
tA2

]
N

= (C t2)B. Thus we get (C t1)B < (C t2)B, and so
B |= C ϕ. The case of ≤u

BV is shown similarly. Finally, if ϕ has the form t1 <s
BVt2

then since A |= ϕ, we have tA1 <s
BVtA2 . In turn, by the semantics of TBV as defined

Bit-Precise Reasoning via Int-Blasting 505

in the SMT-LIB 2 standard, this means that
[
tA1

]
Z

<
[
tA2

]
Z
. By the definition

of uts, we get utsk(
[
tA1

]
N
) < utsk(

[
tA2

]
N
), with k = κ(t1). By Lemma 1 we have:

utsk((C t1)B) < utsk((C t2)B), which means B |= C ϕ. The case of ≤s
BV is shown

similarly.
Next, we prove that B |= Lem≤(ϕ), also by induction on ϕ. Similarly to the

above, the induction step follows directly from the induction hypothesis and so
we focus on the induction base, in which ϕ is atomic, and hence it has the form
t1 = t2, t1��

BVt2, or t1��s
BVt2 for some ��∈ { <,≤, >,≥ }. By the definition of

Lem≤, Lem≤(ϕ) = Lem≤(t1) ∧ Lem≤(t2). We thus prove that B |= Lem≤(t)
for any term t of sort σ[k] by an inner induction on t. If t is a bit-vector variable,
Lem≤(t) = 0 ≤ χ(t) < 2k. By Lemma 1, χ(t)B =

[
tA

]
N
, and by the definition

of []
N
, 0 ≤ χ(t)B < 2k. If t is a bit-vector constant, then the condition is

trivially satisfied. If t has the form fBV(t1, t2) with fBV ∈ {&BV, |BV
,⊕BV}, then

Lem≤(t) = 0 ≤ &N

k(C t1, C t2) < 2k ∧ Lem≤(t1) ∧ Lem≤(t2). By the induction
hypothesis, B |= Lem≤(t1) ∧ Lem≤(t2). Also, B |= 0 ≤ &N

k(C t1, C t2) < 2k by
Definition 1, and the fact that it is a TIA(&N)-interpretation. For any other form
of t, this follows immediately from the induction hypothesis. ��

4.3 TIA(&N)-Satisfiability: Eager Approach

Now that we have reduced TBV-satisfiability to TIA(&N)-satisfiability, we present
eager and lazy reductions from the latter to TIAUF-satisfiability. The first app-
roach for determining TIA(&N)-satisfiability is an eager reduction to TIAUF-
satisfiability. The reduction is defined by the translation TA, which is param-
eterized by a mode A ∈ { sum, bitwise }, as shown in Fig. 2.

The translation adds to ϕ a conjunction Lem&
A(ϕ) of lemmas that reflect the

definition of &N

k for each relevant k. Function Lem&
A, when applied to a term or

formula e, recursively collects lemmas for subterms of e of the form &N

k(t1, t2).
The introduced lemma depends on the mode A. For A = sum, the lemma

represents the usual encoding of integers in binary notation, by summing powers
of 2 with coefficients that depend on the bits. Alternatively, for A = bitwise, the
translation introduces a lemma that compares each i-parity of the &N

k-term to
its expected result, based on the i-parities of the two arguments. The lemmas
use the term ITEand(x, y) to encode each bit using the ite operator. This case
splitting requires access to the i-th bit in the bit-vector representations of t1, t2,
and &N

k(t1, t2). These are abbreviated by ai, bi, and ci in Fig. 2, and are defined
using the function bsel from Eq. (2).

The main difference between bitwise and sum is in the balance between the
arithmetic solver and the Boolean solver. While both approaches heavily use
mod and div terms, the bitwise mode only includes comparisons between such
terms, thus relying mainly on the SAT solver, as well as the equality solver. In
contrast, the sum mode incorporates them within sums and multiplications by
constants, making heavy use of the arithmetic solver.

The following theorem states the correctness of the reduction described
in Fig. 2 from TIA(&N)-satisfiability to TIAUF-satisfiability. It follows from the

506 Y. Zohar et al.

TA ϕ:

Lem&
A(ϕ) ∧ ϕ

Lem&
A(e):

Match e:
x → �
c → �
t1 = t2 → Lem&

A(t1) ∧ Lem&
A(t2)

�(ϕ1, . . . , ϕn) →
∧n

i=1 Lem
&
A(ϕi)

f(t1, . . . , tn) →
∧n

i=1 Lem
&
A(ti)

&N

k(t1, t2) → IandA(t1, t2) ∧
∧

i∈{ 1,2 } Lem
&
A(ti)

Iandsum(t1, t2):

&N

k(t1, t2) = Σk−1
i=0 2

i · ITEand(ai, bi)

Iandbitwise(t1, t2):
∧k−1

i=0 ci = ITEand(ai, bi)

where:

ai = bsel i(t1)

bi = bsel i(t2)

ci = bsel i(&N

k(t1, t2))

ITEand(x, y) = ite(x = 1 ∧ y = 1, 1, 0)

Fig. 2. Translation TA from TIA(&N) to TIAUF, parameterized by A ∈ { sum, bitwise }. x
and c range over integer variables and constants, resp.; 	 ranges over the connectives;
f ranges over ΣIA-symbols; bsel is from Eq. (2).

semantics of TBV and Definition 1, which induces the same semantics for &N as
the one induced by the lemmas that are produced in IandA(t1, t2).

Theorem 2. Let ϕ be a ΣIA(&N)-formula. For all A ∈ { sum, bitwise }, ϕ is
TIA(&N)-satisfiable iff TA ϕ is TIAUF-satisfiable.

Proof. Suppose ϕ is TIA(&N)-satisfiable and let A be a TIA(&N)-interpretation
that satisfies it. Now, A is also a TIAUF-interpretation, and hence what is left
to show is that A |= Lem&

A(ϕ), which directly follows from Definition 1 and a
routine verification of the TIA(&N)-validity of Lem&

A(ϕ) for A ∈ { sum, bitwise }.
Now suppose TA ϕ is TIAUF-satisfiable and let A be a TIAUF-interpretation

that satisfies TA ϕ. We prove that ϕ is TIA(&N)-satisfiable. Let B be the ΣIA(&N)-
interpretation obtained from A by ignoring the interpretations of &N

k in A, and
redefining them according to Definition 1. Clearly, B is a TIA(&N)-interpretation.

Bit-Precise Reasoning via Int-Blasting 507

EagerA
BV (ϕ):

PTIAUF(TA (T ϕ))

LazyA
BV (ϕ):

Γ := { T ϕ }
Δ :=

{
&N

k(t1, t2) | &N

k(t1, t2) occurs in T ϕ
}

Λ := Prop(Δ) ∪
{
IandA(t1, t2) | &N

k(t1, t2) ∈ Δ
}

Repeat:
1. If PTIAUF(

∧
Γ) is “unsat”, then return “unsat”.

2. Otherwise, let I = PTIAUF(
∧

Γ)

/* check I against properties of &N

k */
(a) If I satisfies Λ, return “sat”.

(b) Otherwise:

/* refine abstraction Γ */

Γ := Γ ∪ { ψ ∈ Λ |�I| = ψ }

Prop(Δ) =
{
Prop(t1, t2) | &N

k(t1, t2) ∈ Δ
}

Prop(t1, t2):

&N

k(t1, t2) ≤ t1 ∧ &N

k(t1, t2) ≤ t2 ∧ bounds

(t1 = t2 ⇒ &N

k(t1, t2) = t1) ∧ idempotence

&N

k(t1, t2) = &N

k(t2, t1) ∧ symmetry

(t1 = 0 ⇒ &N

k(t1, t2) = 0) ∧
(t1 = 2k − 1 ⇒ &N

k(t1, t2) = t2) ∧
(t2 = 0 ⇒ &N

k(t1, t2) = 0) ∧
(t2 = 2k − 1 ⇒ &N

k(t1, t2) = t1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

special cases

Fig. 3. Procedures for TBV-satisfiability. We assume PTIAUF is a procedure for TIAUF-
satisfiability that returns a finite representation of a model for satisfiable formulas.

To show that it satisfies ϕ, it suffices to show that &N

k(t1, t2)A = &N

k(t1, t2)B

for any term &N

k(t1, t2) that occurs in ϕ. All other terms that occur in ϕ are

508 Y. Zohar et al.

interpreted the same as in A, by the way B was defined. Now suppose &N

k(t1, t2)
occurs in ϕ. Suppose for contradiction that &N

k(t1, t2)A �= &N

k(t1, t2)B. Since B
is a TIA(&N)-interpretation, this means that &N

k(t1, t2)A �=
[[

tA1
]k

BV
&BV

[
tA2

]k

BV

]

N

.

In other words,
[
&N

k(tA1 , tA2)
]k

BV
�=

[
tA1

]k

BV
&BV

[
tA2

]k

BV
. Hence there is some 0 ≤

i < k such that
[
&N

k(tA1 , tA2)
]k

BV
[i] �= (

[
tA1

]k

BV
&BV

[
tA2

]k

BV
)[i]. Now, recall bsel

from Eq. (2), which equals to 0 or 1, according to the i-th bit in the bit-vector
representation of the input integer. Using the semantics of &BV in SMT-LIB 2,
we get that bsel i(&N

k(tA1 , tA2)) �= ite(bsel i(tA1) = bsel i(tA2), 1, 0). For both modes
sum and bitwise, this means A �|= IandA(t1, t2). For the former, the sums will
evaluate differently, while for the latter, a direct disequality will be obtained.
This is a contradiction to the assumption that A |= TA ϕ. ��

We use TA in the eager procedure EagerA
BV (ϕ) of Fig. 3, in which the input

ΣBV-formula ϕ is processed through T to obtain an equisatisfiable formula T ϕ
in TIA(&N), and then through TA to get an equisatisfiable formula in TIAUF. The
result is then handed to a TIAUF-solver PTIAUF for bounded formulas, which is
expected to be a decision procedure for the TIAUF-satisfiability of quantifier-free
formulas that also returns (a finite representation of) a TIAUF-model satisfying
the input formula whenever that formula is TIAUF-satisfiable. Notice that T
always generates bounded formulas due to Lem≤, and TA preserves boundedness
as it does not introduce any new variables or terms of the form &N

k(t1, t2). This
leads to the following correctness result for EagerA

BV .

Proposition 2. EagerA
BV is a decision procedure for the TBV-satisfiability of

quantifier-free formulas.

4.4 TIA(&N)-Satisfiability: Lazy Approach

We now examine a CEGAR-based approach, which applies the function Lem&
A

in the TA translation in a lazy and incremental way. Our CEGAR-procedure
LazyA

BV is described in Fig. 3. It maintains a set Γ of assertions, initially set to
the translation of the input ΣBV-formula ϕ using T , and a set Δ of terms of the
form &N

k(t1, t2) in T ϕ. Similarly to the eager approach, we utilize the decision
procedure PTIAUF for TIAUF-satisfiability. If, at any point, PTIAUF determines that
Γ is TIAUF-unsatisfiable, LazyA

BV returns “unsat”. Otherwise, the model I of
Γ returned by PTIAUF is validated against a set Λ of lemmas, instantiated with
the terms in Δ. The set Λ is a union of two sets of lemmas: (i) a set of basic
lemmas Prop(Δ) that capture basic properties of bitwise and: upper bounds,
idempotence, symmetry, and values for special inputs; and (ii) lemmas based on
Lem&

A, as defined in Fig. 2. Any lemmas falsified by I make the model unsuitable
for ϕ. Such lemmas are then added to Γ , and the process repeats. If all of the
lemmas in Λ are satisfied, the algorithm returns “sat”.

The correctness argument for LazyA
BV is similar to that of Proposition 2.

At any point in the procedure, Γ consists of T ϕ, as well as a subset of Λ.

Bit-Precise Reasoning via Int-Blasting 509

It is routine to check that every formula in Λ is TIA(&N)-valid. If the proce-
dure returns “unsat”, this means that the abstraction Γ is not TIAUF-satisfiable,
which means that T ϕ itself is TIA(&N)-unsatisfiable. By Theorem 1, ϕ is TBV-
unsatisfiable. In contrast, when the procedure returns “sat”, a satisfying TIA(&N)-
interpretation for T ϕ can be constructed according to Definition 1 from the
TIAUF-interpretation I, in a similar fashion to the proof of Theorem2. In turn,
this interpretation can be translated to a TBV-interpretation following Theo-
rem 1. Since T ϕ is bounded, we then have the following.

Proposition 3. LazyA
BV is a decision procedure for the TBV-satisfiability of

quantifier-free formulas.

Remark 1. At this point, it is instructive to compare the translation presented
here to that by Niemetz et al. [35]. Although the solutions offered in the two
works are similar, they differ on the problem they address. Niemetz et al. study
the satisfiability of formulas over bit-vectors with parametric bit-widths, while
this paper focuses on the regular SMT-LIB 2 theory of fixed-width bit-vectors.
Since the translation to integers involves the bit-width of the terms in the input
formula, parametric bit-widths require the introduction of quantifiers in the
translation in practically all cases. In contrast, by considering only inputs over
fixed bit-widths, our approach requires no quantifiers at all. Also, the solving
technique we present here has both eager and lazy variants, with two alternative
encodings in each. Instead, Niemetz et al. present only eager translations. The
most successful translation there mostly resembles our eager sum mode, with
some additional quantified axioms that correspond Prop(t1, t2) from Fig. 3. A
counterpart to the bitwise mode was not considered there. Furthermore, their
method was only evaluated on benchmarks with a single parametric bit-width
due to the limited expressiveness supported by the prototype implementation.
In contrast, our technique is fully implemented within the cvc5 solver.

5 Experimental Results

5.1 Implementation and Experiments

We implemented both EagerA
BV and LazyA

BV in the cvc5 SMT solver and evalu-
ated the implementation on three classes of benchmarks.2 The eager translations
are implemented in a preprocessing pass that translates the entire input formula
to a formula over the SMT-LIB 2 theory of integers, without any extension.
The lazy translations use the same preprocessing pass; however, the translated
formulas include the &N

k operators. The CEGAR loop for &N

k is implemented as
part of the non-linear extension of the arithmetic solver of cvc5.

Note that cvc5 does not have built-in support for pow2. For all ΣBV-operators
except <<BV and >>BV this does not matter in practice since the argument to
pow2 is a concrete constant. For the shift operators, the argument t to pow2
2 An artifact that includes the implementation, benchmarks, and results is available

at https://doi.org/10.5281/zenodo.5652826.

https://doi.org/10.5281/zenodo.5652826

510 Y. Zohar et al.

Table 2. Overall results on all three benchmark sets.

SMT-LIB ECRW SC

slvd sat uns m slvd sat uns m slvd sat uns m

eagerb 35031 10447 24584 38 41989 119 41870 0 24 9 15 0

eagers 35035 10459 24576 28 41435 119 41316 77 24 9 15 0

lazyb 35001 10383 24618 23 47071 119 46952 0 24 9 15 0

lazys 34819 10297 24522 27 45350 119 45231 138 24 9 15 0

Bitwuzla 41220 14233 26987 19 37297 265 37032 11120 16 8 8 0

cvc5 40543 14204 26339 36 33187 220 32967 17535 – – – –

Yices 41228 14280 26948 11 31646 255 31391 15801 9 3 6 0

bw-ind – – – – 25608 0 25608 0 – – – –

may include variables, but the value of pow2(t) only matters when 0 ≤ t < k,
where k is the bit-width of the original ΣBV-term. Thus, we are able to eliminate
pow2-terms by enumerating a finite set of cases using ite-terms.

In accordance with Sect. 4, our implementation focuses on finding and
improving strategies for lemma instantiation. Another aspect of integer reason-
ing is the evaluation of operations over constants, especially when the constants
are large, as in our experience, operations on big integers can take up to 30–40%
of the overall runtime. In the experiments described below, these are handled by
the CLN library [25], which is supported by cvc5. Our focus on lemma instantia-
tion is meant to reduce how often expensive numeric operations must be invoked.

We evaluated our int-blasting approaches EagerA
BV and LazyA

BV for A ∈
{sum, bitwise} on three sets of benchmarks: (1) the QF BV benchmarks from
SMT-LIB, (2) a set of benchmarks consisting of equivalence checks of bit-vector
rewrite rule candidates, and (3) 35 benchmarks originating from a smart con-
tract verification application.3 We compared our four int-blasting configurations,
denoted eagers , eagerb , lazys , lazyb , where b stands for bitwise and s stands for
sum, against (1) cvc5 running its eager bit-vector solver using CaDiCaL [10] as
the SAT back end, (2) Bitwuzla [31] version 0.1-202011 (the QF BV winner of
the 2020 SMT competition), (3) Yices [20] version 2.6.2 with CaDiCaL as the
SAT back end (the QF BV runner-up at the same competition), and (4) bw-ind,
the prototype implementation for proving bit-width independent properties used
by Niemetz et al. [35], which uses the arithmetic solver of cvc5 as a back-end,
the same arithmetic solver used in our int-blasting approaches. We used bw-ind
only for the second benchmark set since its support is limited to benchmarks
that contain a single bit-width. We performed all experiments on a cluster with
Intel Xeon CPU E5-2620 v4 CPUs with 2.1 GHz and 128 GB memory.

3 Provided to us by collaborators at Certora.

https://www.certora.com

Bit-Precise Reasoning via Int-Blasting 511

16 32 64 128 256 512 1,024 2,048 4,096 8,192

500

1,000

1,500

Bit-width

S
o
lv

ed

(a) With bitwise and operator.

16 32 64 128 256 512 1,024 2,048 4,096 8,192

1,000

2,000

3,000

4,000

Bit-width

S
o
lv

ed

(b) Without bitwise and operator.

16 32 64 128 256 512 1,024 2,048 4,096 8,192

1,000

2,000

3,000

4,000

5,000

Bit-width

S
o
lv

ed

(c) All ECRW benchmarks.

eagerb eagers lazyb lazys bw-ind Bitwuzla cvc5 Yices

Fig. 4. Number of solved benchmarks grouped by bit-width.

512 Y. Zohar et al.

5.2 Results

Table 2 summarizes the overall results for all benchmark sets. For each set and
running configuration, it shows the total number of solved benchmarks (slvd),
sat results (sat), unsat result (uns) and number of memory-outs (m).

QF BVBenchmarks (SMT-LIB). The QF BV benchmark set includes all 41,713
benchmarks from the 2020 SMT-LIB release. We used a limit of 600 s of CPU
time and a memory limit of 8 GB for each solver/benchmark pair. None of
the int-blasting configurations is competitive with the other bit-blasting solvers.
This is as expected since the QF BV benchmark set contains few benchmarks
with bit-widths larger than 64, the target of our approach. The pspace fam-
ily of QF BV benchmarks consists of benchmarks with bit-widths ranging from
5,000 to 30,000. The more challenging benchmarks in this set, however, con-
tain the bitwise and operator, and our int-blasting approach cannot solve them
within the time limit. All four int-blasting approaches are more competitive on
unsatisfiable benchmarks than satisfiable ones. This is because int-blasting relies
heavily on the performance of cvc5’s procedure for non-linear integer arithmetic.
This procedure is based on instantiating a set of lemma schemas [16,41], which
may show unsatisfiability quickly when useful lemmas are discovered, but may
take longer to converge when the problem is satisfiable. Overall, each of our
int-blasting configurations is able to solve 18 benchmarks that none of the bit-
blasting approaches is able to solve; 14 of these are from the arithmetic-heavy
Sage2 family, which includes a wide range of both arithmetic and bitwise oper-
ators, including shifts and bitwise and , or , and xor .

Equivalence Checks of Rewrite Rule Candidates (ECRW). The ECRW benchmark
set consists of equivalence checks of rewrite rule candidates for TBV-terms and
formulas. They were automatically generated using a state-of-the-art Syntax-
Guided Synthesis (SyGuS) [2] solver implemented in cvc5 [40]. We enumerated
pairs of ΣBV-terms that are equivalent for bit-vectors of bit-width 4. These pairs
of terms were generated over a sub-signature of ΣBV consisting of the constants
0 and 1, the = operator, and the unsigned comparison operators <u

BV and ≤u
BV,

as well as the operators −BV, ∼ BV, +BV, ·BV, divBV, &BV, and modBV. In total,
we generated 5,491 distinct equivalence checks with bit-width 4. Each equiva-
lence check was then instantiated with bit-widths 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, and 8192, resulting in a total of 54,910 benchmarks. An important
feature of the generated checks is that they exclude equivalences that are already
derivable solely by the rewriter of cvc5. We used a CPU time limit of 300 s and
a memory limit of 8 GB per solver/benchmark pair. For this benchmark set, our
evaluation included bw-ind, whose primary purpose is to prove bit-width inde-
pendent properties via bit-vectors of parametric widths. Since this benchmark
set consists of fixed-width bit-vectors and not parametric ones, we added a con-
straint that specifies the concrete bit-width of each benchmark, by comparing it
to the parametric bit-width. It is evident that bw-ind does not perform well on
this benchmark set. This is expected given that this approach is the only one
that makes any use of quantifiers.

Bit-Precise Reasoning via Int-Blasting 513

On this benchmark set, all int-blasting approaches outperformed all other
approaches. Figures 4a to 4c provide a more fine-grained analysis for this set
by depicting the number of solved benchmarks grouped by bit-width for each
solver on (a) benchmarks with applications of the bitwise and operator &BV

(29%), (b) benchmarks without &BV (71%), and (c) the full ECRW benchmark
set. The bit-blasting approaches are marked with circles, while the int-blasting
approaches are marked with other shapes. For each subset of benchmarks there is
a bit-width k for which the best int-blasting configuration, the lazy bitwise mode,
outperforms all other configurations and solvers: 512 for those benchmarks with
&BV, 128 for those without, and 256 for the full set. This shows that int-blasting
can be a useful tool to add to the tool-box of bit-precise reasoning engines,
in the presence of large bit-widths. Surprisingly, even for bit-width 16, there
were benchmarks for which int-blasting performed better than bit-blasting. For
example, there are 78 benchmarks of bit-width 16, without the &BV operator
that were solved by the int-blasting approaches in less than 1 s, while all the bit-
blasting approaches required more than 10 s (in many of these cases, bit-blasting
required more than 100 s).

Comparing the different int-blasting configurations, Fig. 4b clearly shows that
for benchmarks without &BV applications, the lazy and eager int-blasting con-
figurations are almost bit-width independent, and perform equally well (in turn,
their markings overlap in the figure). This is expected because the translations
differ from one another only in the way they handle &BV. Moreover, the &BV-
free part of our translations is actually bit-width independent, as the size of
the generated terms does not depend on it, except for shift operators, which
are not included in this benchmark set. The differences between the transla-
tions are visible, also as expected, for benchmarks with &BV applications, as
shown in Fig. 4a. There, the best int-blasting configuration is lazyb . In the pres-
ence of bitwise operators, both the eager and lazy translations introduce terms
whose size does depend on the bit-width. Accordingly, we see a clear decrease
in the performance of the eager translations as the bit-width increases, while
little performance degradation is observable for the lazy translations. This can
be explained by the fact that the eager approach introduces bit comparison
lemmas or sum-based lemmas before the integer solver comes into play. In con-
trast, the lazy approach introduces those lemmas only if the model generated in
the CEGAR loop falsifies them, so there are generally fewer terms whose size
depends on the bit-width.

As for the better performance of bitwise compared to sum, we conjecture that
the bitwise translation outperforms the sum translation because it is a more
direct translation to SAT. The sum translation relies on the linear arithmetic
solver generating simple conflicts and lemmas over linear arithmetic literals that
correspond to the same reasoning in a more indirect way. While this choice is
not obvious, our experiments have confirmed that the former is superior.

Smart Contract Verification Benchmarks (SC). This benchmark set consists of
35 benchmarks from a smart contract verification application. They contain (lin-
ear and non-linear) arithmetic operators, bitwise operators, as well as uninter-

514 Y. Zohar et al.

preted functions, and reason about bit-vectors of width 256. These benchmarks
originate from verification conditions that are directly produced by Certora’s
verification tool for Ethereum smart contracts [15]. They encode algebraic prop-
erties of low-level methods in smart contracts (e.g., commutativity of balance
updates). The application requires the generation of models, which the eager
bit-blasting configuration of cvc5 does not support for uninterpreted functions.
We imposed a CPU time limit of 3,600 s and a memory limit of 32 GB per
solver/benchmark pair.

The int-blasting configurations are able to solve 24 benchmarks, whereas the
bit-blasting solvers solve less (Bitwuzla solves 16 and Yices solves 9). In addition
to solving more benchmarks in this benchmark set, the int-blasting approaches
are also faster: The 24 benchmarks that are solved by int-blasting take a total
of 232 s, to be solved, where 22 out of these benchmarks are solved in a total
time of 20 s. This is the case for all int-blasting configurations. In contrast,
Bitwuzla solves 16 benchmarks in 5,900 s, and Yices solves 9 benchmarks in
3,900 s. Notice that unsatisfiable benchmarks seem to be better suited for int-
blasting, while satisfiable benchmarks are solved better with bit-blasting. This
positions int-blasting as a useful complement to bit-blasting.

6 Related Work, Conclusion, and Future Work

Related Work. Earlier integer-based techniques for bit-precise reasoning focus
on translating hardware register transfer level (RTL) constraints into integer
linear programming (ILP) and are thus limited to the linear arithmetic sub-
set of the theory of bit-vectors [13,48]. Similarly, Achterberg’s PhD thesis [1]
studies translations of bit-vector constraints over linear arithmetic to integers in
the context of constraint programming, while bit-blasting non-linear and bitwise
operators. Kafle et al. [27] present an approach based on Benders Decomposi-
tion [9] for solving modular arithmetic problems after translating them to linear
integer arithmetic (LIA). Another approach to solving modular arithmetic prob-
lems that originates from software verification was studied by Vizel et al. [45],
using a model checking approach. The MathSAT5 solver [19] applies a layered
approach for computing Craig’s interpolants for the theory of bit-vectors by first
converting the problem into an overapproximated LIA problem [24]. When that
approach is unsuccessful, MathSAT5 automatically falls back to finding a propo-
sitional interpolant via bit-blasting. Earlier versions of MathSAT also utilized
this approach for solving bit-vector problems [12]. A similar but more sophisti-
cated approach [3,4] is implemented in the Princess theorem prover [42]. Another
recent LIA-based interpolation method is presented in [37]. Although similar in
spirit to that of MathSAT5 [24], it is often able to recover the word-level struc-
ture from the propositional interpolant.

In contrast to [3,13,27,48], we focus on general bit-vector problems, and
unlike [3,12,13,24,27,48], we translate bit-vector problems into an extension of
non-linear integer arithmetic. As a result, our approach can handle all opera-
tors of the theory of bit-vectors. We present several variants of our technique,

Bit-Precise Reasoning via Int-Blasting 515

including a CEGAR-based one similar in spirit to the lazy approaches discussed
above.

Alternative approaches to bit-blasting based on bit-vector reasoning and
the so-called model constructing satisfiability calculus (mcSAT) [30] have shown
promising results [23,47]. Other orthogonal bit-vector-based alternatives include
local search techniques which, while refutationally incomplete, are particularly
effective in combination with bit-blasting [22,32–34]. We reduce the amount of
bit-blasting by converting bit-vector formulas to non-linear integer arithmetic
formulas and relying on a DPLL(T)-based SMT approach [8] to solve them.

Our translation of bit-vector formulas to integer formulas is similar to the
one for solving formulas with bit-vectors of parametric bit-width we proposed in
previous work [35]. However, in this case, the bit-width is not parametric but
fixed, which eliminates the need for the translation to introduce quantifiers. A
more detailed comparison with that work is provided in Remark 1.

We implemented an earlier prototype of this approach in lazybv2int [49] that
used our SMT solver cvc5 as a black box, via the solver-agnostic API of Smt-
switch [29]. Initial evaluation led us to the conclusion that it is preferable to
implement int-blasting inside cvc5, thus utilizing its efficient mechanisms such
as handling of terms and rewriting.

Conclusion. We studied eager and lazy translations from bit-vector formulas to
an extension of integer arithmetic, and implemented them in the SMT solver
cvc5. The translations reduce arithmetic bit-vector operators as defined in the
SMT-LIB 2 standard, and differ in the way they handle bitwise operators. For
those, we examined sum-based and bit-based approaches. The experiments we
conducted on equivalence checks for rewrite rule candidates show promising
results for formulas that involve multiplications and divisions of large bit-vectors.
For SMT-LIB benchmarks, our approach is less effective than state-of-the-art
approaches largely based on bit-blasting, though not in all cases. Finally, the
smart contracts benchmarks show that our approach provides a complement to
bit-blasting, especially for unsatisfiable formulas.

Future Work. We believe that alternative approaches for bit-precise reasoning,
including mcSAT, local search, and integer-based approaches, can be further
developed and improved to the point where they can become a true complement
to bit-blasting in applications where bit-blasting struggles to scale up. We plan
to continue this line of research by studying integer-based abstractions of other
bit-vector operators, in particular, the shift operators. Interestingly, our trans-
lations also generate challenging benchmarks for non-linear integer arithmetic
solvers. We plan to use these benchmarks to improve non-linear integer reason-
ing, specifically in the presence of division and modulo operations. For that, we
target a submission of such benchmarks to the SMT-LIB library.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Berlin Institute of
Technology (2007)

516 Y. Zohar et al.

2. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013, pp. 1–8 (2013)

3. Backeman, P., Rümmer, P., Zeljic, A.: Bit-vector interpolation and quantifier elim-
ination by lazy reduction. In: FMCAD, pp. 1–10. IEEE (2018)

4. Backeman, P., Rümmer, P., Zeljić, A.: Interpolating bit-vector formulas using unin-
terpreted predicates and Presburger arithmetic. Formal Methods Syst. Des. 57,
121–156 (2021). https://doi.org/10.1007/s10703-021-00372-6

5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

6. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2020)

7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, UK (2010)

8. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 825–885. IOS Press (2009)

9. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numer. Math. 4(1), 238–252 (1962)

10. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

12. Bozzano, M., et al.: Encoding RTL constructs for MathSAT: a preliminary report.
Electron. Notes Theor. Comput. Sci. 144(2), 3–14 (2006)

13. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear pro-
gramming. In: VLSI Design, pp. 741–746. IEEE Computer Society (2002)

14. Bromberger, M., Fleury, M., Schwarz, S., Weidenbach, C.: SPASS-SATT. In:
Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 111–122. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 7

15. Buterin, V.: Ethereum whitepaper. https://ethereum.org/en/whitepaper/
16. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking

of NRA transition systems via incremental reduction to LRA with EUF. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58–75. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54577-5 4

17. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 383–398. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94144-8 23

18. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

https://doi.org/10.1007/s10703-021-00372-6
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-29436-6_7
https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-642-36742-7_7

Bit-Precise Reasoning via Int-Blasting 517

20. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

21. Enderton, H., Enderton, H.B.: A Mathematical Introduction to Logic. Elsevier,
Amsterdam (2001)

22. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search
for satisfiability modulo theories. In: Bonet, B., Koenig, S. (eds.) Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA,
25–30 January 2015, pp. 1136–1143. AAAI Press (2015)

23. Graham-Lengrand, S., Jovanović, D., Dutertre, B.: Solving bitvectors with
MCSAT: explanations from bits and pieces. In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 103–121. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51074-9 7

24. Griggio, A.: Effective word-level interpolation for software verification. In:
FMCAD, pp. 28–36. FMCAD Inc. (2011)

25. Haible, B., Kreckel, R.: CLN, a class library for numbers (1996). http://www.
ginac.de/CLN

26. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330–346. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52234-0 18

27. Kafle, B., Gange, G., Schachte, P., Søndergaard, H., Stuckey, P.J.: A benders
decomposition approach to deciding modular linear integer arithmetic. In: Gaspers,
S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 380–397. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66263-3 24

28. Kroening, D., Groce, A., Clarke, E.: Counterexample guided abstraction refinement
via program execution. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM
2004. LNCS, vol. 3308, pp. 224–238. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30482-1 23

29. Mann, M., et al.: SMT-switch: a solver-agnostic C++ API for SMT solving. In:
Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 377–386. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-80223-3 26

30. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9 1

31. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020). https://arxiv.org/abs/2006.01621

32. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: FMCAD, pp. 214–224. IEEE (2020)

33. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017). https://doi.org/10.
1007/s10703-017-0295-6

34. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-
vector logics in SMT with path propagation. In: Proceedings of the Fourth Inter-
national Workshop on Design and Implementation of Formal Tools and Systems,
Austin, TX, USA, 26–27 September 2015, pp. 1–10 (2015)

35. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
bit-width-independent proofs in SMT solvers. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 366–384. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 22

https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-030-51074-9_7
http://www.ginac.de/CLN
http://www.ginac.de/CLN
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-66263-3_24
https://doi.org/10.1007/978-3-540-30482-1_23
https://doi.org/10.1007/978-3-540-30482-1_23
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/978-3-642-35873-9_1
https://arxiv.org/abs/2006.01621
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22

518 Y. Zohar et al.

36. Nötzli, A., et al.: Syntax-guided rewrite rule enumeration for SMT solvers. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 279–297. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 20

37. Okudono, T., King, A.: Mind the gap: bit-vector interpolation recast over linear
integer arithmetic. In: Biere, A., Parker, D. (eds.) TACAS 2020. LNCS, vol. 12078,
pp. 79–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 5

38. Ranise, S., Tinelli, C., Barrett, C.: Definition of the logic QF BV in the SMT-LIB
standard. http://smtlib.cs.uiowa.edu/logics-all.shtml#QF BV

39. Ranise, S., Tinelli, C., Barrett, C.: Definition of the theory FixedSizeBitVectors in
the SMT-LIB standard. http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.
shtml

40. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019. LNCS, vol. 11562, pp. 74–83. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25543-5 5

41. Reynolds, A., Tinelli, C., Jovanović, D., Barrett, C.: Designing theory solvers with
extensions. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483,
pp. 22–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4 2

42. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

43. Tinelli, C.: Definition of the theory Int in the SMT-LIB standard. http://smtlib.
cs.uiowa.edu/theories-Ints.shtml

44. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8 53

45. Vizel, Y., Nadel, A., Malik, S.: Solving linear arithmetic with SAT-based model
checking. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
47–54 (2017). https://doi.org/10.23919/FMCAD.2017.8102240

46. Warren, H.S.: Hacker’s Delight. Pearson Education (2013)
47. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with

mcSAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
249–266. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 16

48. Zeng, Z., Kalla, P., Ciesielski, M.J.: LPSAT: a unified approach to RTL satisfia-
bility. In: DATE, pp. 398–402. IEEE Computer Society (2001)

49. Zohar, Y., Irfan, A., Mann, M., Notzli, A., Reynolds, A., Barrett, C.: lazybv2int
at the SMT competition 2020 (2020). https://arxiv.org/abs/2105.09743

https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.1007/978-3-030-45190-5_5
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
http://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
http://smtlib.cs.uiowa.edu/theories-Ints.shtml
https://doi.org/10.1007/978-3-540-30227-8_53
https://doi.org/10.23919/FMCAD.2017.8102240
https://doi.org/10.1007/978-3-319-40970-2_16
https://arxiv.org/abs/2105.09743

Author Index

Arceri, Vincenzo 20

Barr, Earl T. 108
Barrett, Clark 496
Bartocci, Ezio 1
Bayani, David 43
Bu, Lei 473
Buecherl, Lukas 319

Chandrasekharan, Arun 355
Christakis, Maria 425
Cortesi, Agostino 20

da Costa, Ana Oliveira 1
Demsky, Brian 400

Ellison, Tosha 108
Ernst, Gidon 69

Ferrara, Pietro 20
Ferrère, Thomas 1
Fu, Chen 93

Goldbaum, Stephen 108
Gurfinkel, Arie 425

Hahn, Ernst Moritz 93
Heck, Linus 127
Henzinger, Thomas A. 1

Irfan, Ahmed 496

Jensen, Peter Gjøl 151
Junges, Sebastian 127

Katoen, Joost-Pieter 127, 450
Kunčak, Viktor 301, 332

Lehmann, Johannes 450
Lemerre, Matthieu 219
Li, Xuandong 473
Li, Yong 93

Liu, Depeng 174
Luo, Weiyu 400

Mann, Makai 496
Marron, Mark 108
Mihaly, Attila 108
Mirliaz, Solène 197
Mitsch, Stefan 43
Moerman, Joshua 127
Myers, Chris J. 319

Navas, Jorge A. 425
Neupane, Thakur 319
Nickovic, Dejan 1
Nicole, Olivier 219
Niemetz, Aina 496
Nötzli, Andres 496

Olliaro, Martina 20
Onderka, Jan 242

Pichardie, David 197
Polgreen, Elizabeth 263
Prabhakar, Pavithra 285
Preiner, Mathias 496

Ratschan, Stefan 242
Raya, Rodrigo 301
Reimer, Sven 355
Ren, Xinyue 473
Reynolds, Andrew 263, 496
Rival, Xavier 219
Roberts, Riley 319

Schewe, Sven 93
Schmid, Georg Stefan 332
Scholl, Christoph 355
Seshia, Sanjit A. 263
Seufert, Tobias 355
Spel, Jip 127
Srba, Jiří 151
Sun, Meng 93

Taylor, Landon 378
Tinelli, Cesare 496
Trefler, Richard 425
Trimananda, Rahmadi 400
Turrini, Andrea 93

Ulrik, Nikolaj Jensen 151

Virenfeldt, Simon Mejlby 151

Wang, Bow-Yaw 174
Wang, Jiawan 473

Welp, Tobias 355
Wesley, Scott 425
Winkler, Tobias 450
Wu, Yuming 473
Wüstholz, Valentin 425

Xiong, Wen 473
Xu, Guoqing Harry 400

Zhang, Lijun 93, 174
Zhang, Zhen 319, 378
Zohar, Yoni 496

520 Author Index

	Preface
	Organization
	Contents
	Flavors of Sequential Information Flow
	1 Introduction
	2 The First-Order Logic of Trace Sets
	2.1 Preliminaries
	2.2 Hypertrace Logic
	2.3 The Trace-Prefixed Fragment of Hypertrace Logic
	2.4 The Time-Prefixed Fragment of Hypertrace Logic

	3 Two-State Local Independence
	4 Expressiveness
	4.1 Indistinguishable Trace Sets
	4.2 Point Semantics
	4.3 Segment Semantics

	5 Related Work
	6 Conclusion
	References

	Relational String Abstract Domains
	1 Introduction
	1.1 Paper Contribution
	1.2 Paper Structure

	2 Related Work
	3 Background
	4 The Imp Language
	5 A Suite of String Relational Abstract Domains
	5.1 General Relational Framework
	5.2 Character Inclusion Relational Abstract Domain
	5.3 Substring Relational Abstract Domain
	5.4 Extension to String Expressions

	6 Experimental Results
	6.1 Case Studies
	6.2 Improving Precision of Non-relational Abstract Domains
	6.3 Scalability of Sub

	7 Conclusion
	References

	Fanoos: Multi-resolution, Multi-strength, Interactive Explanations for Learned Systems
	1 Introduction
	2 The Methodology of Fanoos
	2.1 Knowledge Domains and User Questions
	2.2 Reachability Analysis of the Learned System
	2.3 Generating Descriptions
	2.4 User Feedback and Revaluation
	2.5 Capturing the Concept of Abstractness

	3 Fanoos Interaction Example
	4 Related Work and Discussion
	5 Experiments and Results
	5.1 Experiment Design
	5.2 Metrics
	5.3 Results

	6 Conclusions and Future Work
	References

	Loop Verification with Invariants and Contracts
	1 Introduction
	2 Motivation and Overview
	3 Preliminaries
	4 Verification of Loops with Invariants and Contracts
	5 Translating Between the Approaches
	6 Loop Contracts in Hoare Logic
	7 Specification of Examples and Comparison
	8 Related Work
	9 Conclusion and Outlook
	References

	EPMC Gets Knowledge in Multi-agent Systems
	1 Introduction
	2 Architecture
	2.1 EPMC Core
	2.2 Plugins Available in EPMC
	2.3 PETL Model Checker as a Plugin

	3 Empirical Evaluation
	4 Related Work
	5 Conclusion
	References

	High Assurance Software for Financial Regulation and Business Platforms
	1 Introduction
	2 MorphirIR Stack
	2.1 Surface Languages
	2.2 Validation Pipeline
	2.3 Monitoring and Compilation

	3 Validation Methodology
	3.1 BSQChk Validation Workflow

	4 MorphirIR Core Langauge
	4.1 Types and Values
	4.2 Expressions
	4.3 Containers and Operations

	5 Experience Report
	5.1 Languages Targeting MorphirIR
	5.2 Validation Pipeline
	5.3 Injection of Compliance and Audit Logs

	6 Conclusion
	References

	Gradient-Descent for Randomized Controllers Under Partial Observability
	1 Introduction
	2 Preliminaries
	2.1 Parametric Markov Chains
	2.2 Expected Rewards
	2.3 Problem Statement

	3 Computing Gradients for Expected Rewards
	3.1 Equation-System Based Characterisation
	3.2 Derived Automaton

	4 Gradient Descent
	4.1 Plain GD
	4.2 GD Update Methods
	4.3 Dealing with Parameter Regions

	5 Empirical Evaluation
	5.1 Set-Up
	5.2 Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Automata-Driven Partial Order Reduction and Guided Search for LTL Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Labelled Transition Systems
	2.2 Linear Temporal Logic
	2.3 Nondeterministic Büchi Automata
	2.4 Petri Nets

	3 Automata-Guided Partial Order Reduction
	3.1 Automata-Driven Stubborn Set Method for LTL
	3.2 Stubborn Sets for LTL Model Checking on Petri Nets

	4 Automata-Driven Guided Search
	5 Experimental Evaluation
	6 Conclusion
	References

	Verifying Pufferfish Privacy in Hidden Markov Models
	1 Introduction
	2 Preliminaries
	3 Pufferfish Privacy Framework
	4 Geometric Mechanism as Hidden Markov Model
	4.1 Geometric Mechanism
	4.2 Differential Privacy Using Markov Chains
	4.3 Pufferfish Privacy Using Hidden Markov Models

	5 Pufferfish Privacy Verification
	5.1 Complexity of Pufferfish Privacy Problem
	5.2 Verifying Pufferfish Privacy

	6 Pufferfish Privacy Verifier: FAIER
	6.1 Evaluation for FAIER
	6.2 Noisy Max
	6.3 Above Threshold

	7 Combining Techniques for Differential Privacy
	7.1 Comparison
	7.2 Combining Verification and Testing

	8 Related Work
	References

	A Flow-Insensitive-Complete Program Representation
	1 Introduction
	2 Motivating Example
	3 Background Definitions
	3.1 Program
	3.2 Static Information
	3.3 Block Local Semantics
	3.4 Flow-Sensitive Collecting Semantics
	3.5 Flow-Insensitive Collecting Semantics

	4 Flow-Insensitive Complete (FIC) Programs
	5 Main Theorem: Flow Insensitive Completeness
	6 Transformation to Flow Insensitive Complete Form
	6.1 Sufficient Conditions for FIC Form
	6.2 Transformation of a SSA Program Form to FIC Form
	6.3 Correctness of the Transformation

	7 Experiments
	8 Related Work
	9 Conclusion
	References

	Lightweight Shape Analysis Based on Physical Types
	1 Introduction
	2 Overview Example
	3 Language and Semantics
	4 Physical Representation Types
	5 Type-Based Shape Domain
	6 Static Analysis
	7 Retained and Staged Points-To Predicates
	8 Experimental Evaluation
	9 Related Works and Conclusion
	References

	Fast Three-Valued Abstract Bit-Vector Arithmetic
	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 Basic Definitions
	3.1 Abstract Bit Encodings
	3.2 Abstract Transformers
	3.3 Algorithm Complexity Considerations
	3.4 Naïve Universal Abstract Algorithm

	4 Formal Problem Statement
	5 Modular Extreme-Finding Technique
	6 Fast Abstract Addition
	7 Fast Abstract Multiplication
	7.1 Obtaining a Best Abstract Transformer
	7.2 At Most One Double-Unknown k-th Column Pair
	7.3 Multiple Double-Unknown k-th Column Pairs
	7.4 Implementation Considerations
	7.5 Fast Abstract Multiplication Algorithm

	8 Experimental Evaluation
	8.1 Visualisation and Interpretation

	9 Conclusion
	References

	Satisfiability and Synthesis Modulo Oracles
	1 Introduction
	2 Oracles
	2.1 Preliminaries and Notation
	2.2 Basic Definitions

	3 Satisfiability Modulo Theories and Oracles
	3.1 Algorithm for Definitional SMTO

	4 Synthesis Modulo Oracles
	4.1 Algorithm for Synthesis with Oracles

	5 Instances of Synthesis Modulo Oracles
	6 Delphi: A Satisfiability and Synthesis Modulo Oracles Solver
	6.1 Case Studies
	6.2 Observations

	7 Conclusion
	References

	Bisimulations for Neural Network Reduction
	1 Introduction
	2 Preliminaries
	3 Neural Networks
	4 NN-Bisimulation and Semantic Equivalence
	5 -NN-Bisimulation and Semantic Closeness
	6 Minimization Algorithm
	7 Conclusions
	References

	NP Satisfiability for Arrays as Powers
	1 Introduction
	2 NP Complexity for Power Structures
	2.1 Corollary: Quantifier-Free Skolem Arithmetic is in NP

	3 Explicit Sets of Indices and a Polynomial Verifier for QFBAPA
	4 NP Complexity for QFBAPAI
	5 Combination with the Array Theory
	6 Further Related Work
	7 Conclusion and Future Work
	References

	STAMINA 2.0: Improving Scalability of Infinite-State Stochastic Model Checking
	1 Introduction
	2 Overview of the STAMINA Tool
	3 Improvements over STAMINA 1.0
	4 Results
	5 Conclusion
	References

	Generalized Arrays for Stainless Frames
	1 Introduction
	2 First Example: Stack
	3 Extended Example: Map on a Tree
	4 First-Class Heaps
	5 Heap Encoding
	5.1 Encoding tmap
	5.2 Translation Rules
	5.3 Quantifier-Free Frame Conditions
	5.4 First-Class Heaps

	6 Evaluation
	7 Conclusions
	References

	Making PROGRESS in Property Directed Reachability
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Basics and Notations
	3.2 An Overview of PDR

	4 Restrictions
	4.1 Finding Proof Obligations
	4.2 Generalizing Proof Obligations
	4.3 Blocking Cubes
	4.4 Generalizing Blocked Cubes
	4.5 Overall Algorithm

	5 Skipping Restrictions by Analyzing a Spurious Proof
	5.1 Detecting Spurious Proofs in PDR
	5.2 Restriction Skipping Loop

	6 Implementation of PROGRESS-PDR
	6.1 Combining PROGRESS-PDRwith Standard PDR
	6.2 Choosing Appropriate Restrictions
	6.3 PDR with Restrictions
	6.4 Re-using Information from Previous Restricted PDR Run

	7 Experimental Results
	7.1 Design Decisions for PROGRESS-PDR
	7.2 PROGRESS-PDRvs. PDR
	7.3 PROGRESS-PDR vs. BMC

	8 Conclusions and Future Work
	References

	Scaling Up Livelock Verification for Network-on-Chip Routing Algorithms
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Link-Fault-Tolerant Routing Algorithm
	5 Refutation-Based Verification
	5.1 Disproving Livelock Through Refutation-Based Simulation
	5.2 Proving Livelock Using IVy

	6 User-Aided Livelock Removal
	7 Unroutable Packets
	8 Zone-Based Routing Model
	9 Zone-Based IVy Implementation
	10 Verification of Livelock Freedom
	10.1 Incremental Removal of Livelock Traces in Routing Algorithm
	10.2 Verification Results for Zone-Based Routing Algorithm
	10.3 Detecting Unroutable Packets

	11 Conclusion
	References

	Stateful Dynamic Partial Order Reduction for Model Checking Event-Driven Applications that Do Not Terminate
	1 Introduction
	2 Event-Driven Concurrency Model
	2.1 Event-Driven Concurrency Model
	2.2 Background on Stateless DPOR

	3 Preliminaries
	4 Technique Overview
	4.1 Problem 1: Premature Termination
	4.2 Problem 2: State Matching for Previously Explored States
	4.3 Problem 3: State Matching Incompletely Explored States
	4.4 Problem 4: Events as Transitions

	5 Stateful Dynamic Partial Order Reduction
	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Related Work
	8 Conclusion
	References

	Verifying Solidity Smart Contracts via Communication Abstraction in SmartACE
	1 Introduction
	2 Architecture and Design Principles of SmartACE
	3 Contract Modelling
	3.1 Static Analysis
	3.2 Source-to-Source Translation
	3.3 Harness Design

	4 Integration with Analyzers
	5 Case Study: Verifying OpenZeppelin Contracts
	5.1 Verification of [language=Solidity,basicstyle=] Ownable
	5.2 Verification of [language=Solidity,basicstyle=] RefundEscrow
	5.3 Verification of [language=Solidity,basicstyle=] Auction
	5.4 Discussion

	6 Related Work
	7 Conclusion
	References

	Out of Control: Reducing Probabilistic Models by Control-State Elimination
	1 Introduction
	2 A Bird's Eye View
	3 Technical Background on PCFPs
	4 PCFP Reduction
	4.1 Variable Unfolding
	4.2 Elimination

	5 Implementation
	6 Experiments
	7 Conclusion
	References

	Mixed Semantics Guided Layered Bounded Reachability Analysis of Compositional Linear Hybrid Automata
	1 Introduction
	2 Background
	3 Mixed Semantics Guided Layered BMC
	3.1 Graph Structure Traversal Through Step Semantics
	3.2 Path Feasibility Verification Through Shallow Semantics
	3.3 Bounded Graph Structure Refinement

	4 Path Pruning-Based Optimization
	4.1 Non-identical Path Guided Path Pruning
	4.2 Multiple Infeasible Path Segments-Based Pruning

	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Bit-Precise Reasoning via Int-Blasting
	1 Introduction
	2 Preliminaries
	3 Integer Arithmetic with Bitwise and
	4 Int-Blasting
	4.1 From TBV to TIA (&N4pt)
	4.2 Correctness
	4.3 TIA (&N4pt)-Satisfiability: Eager Approach
	4.4 TIA (&N4pt)-Satisfiability: Lazy Approach

	5 Experimental Results
	5.1 Implementation and Experiments
	5.2 Results

	6 Related Work, Conclusion, and Future Work
	References

	Author Index

